gdb:
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
322
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
325
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
329
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
335
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
338
339 /* Assorted hash table functions. */
340
341 /* Initialize an entry in the stub hash table. */
342
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 struct bfd_hash_table *table,
346 const char *string)
347 {
348 /* Allocate the structure if it has not already been allocated by a
349 subclass. */
350 if (entry == NULL)
351 {
352 entry = bfd_hash_allocate (table,
353 sizeof (struct elf32_hppa_stub_hash_entry));
354 if (entry == NULL)
355 return entry;
356 }
357
358 /* Call the allocation method of the superclass. */
359 entry = bfd_hash_newfunc (entry, table, string);
360 if (entry != NULL)
361 {
362 struct elf32_hppa_stub_hash_entry *hsh;
363
364 /* Initialize the local fields. */
365 hsh = hppa_stub_hash_entry (entry);
366 hsh->stub_sec = NULL;
367 hsh->stub_offset = 0;
368 hsh->target_value = 0;
369 hsh->target_section = NULL;
370 hsh->stub_type = hppa_stub_long_branch;
371 hsh->hh = NULL;
372 hsh->id_sec = NULL;
373 }
374
375 return entry;
376 }
377
378 /* Initialize an entry in the link hash table. */
379
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 struct bfd_hash_table *table,
383 const char *string)
384 {
385 /* Allocate the structure if it has not already been allocated by a
386 subclass. */
387 if (entry == NULL)
388 {
389 entry = bfd_hash_allocate (table,
390 sizeof (struct elf32_hppa_link_hash_entry));
391 if (entry == NULL)
392 return entry;
393 }
394
395 /* Call the allocation method of the superclass. */
396 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 if (entry != NULL)
398 {
399 struct elf32_hppa_link_hash_entry *hh;
400
401 /* Initialize the local fields. */
402 hh = hppa_elf_hash_entry (entry);
403 hh->hsh_cache = NULL;
404 hh->dyn_relocs = NULL;
405 hh->plabel = 0;
406 hh->tls_type = GOT_UNKNOWN;
407 }
408
409 return entry;
410 }
411
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
415
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419 struct elf32_hppa_link_hash_table *htab;
420 bfd_size_type amt = sizeof (*htab);
421
422 htab = bfd_malloc (amt);
423 if (htab == NULL)
424 return NULL;
425
426 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 sizeof (struct elf32_hppa_link_hash_entry),
428 HPPA32_ELF_DATA))
429 {
430 free (htab);
431 return NULL;
432 }
433
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 sizeof (struct elf32_hppa_stub_hash_entry)))
437 return NULL;
438
439 htab->stub_bfd = NULL;
440 htab->add_stub_section = NULL;
441 htab->layout_sections_again = NULL;
442 htab->stub_group = NULL;
443 htab->sgot = NULL;
444 htab->srelgot = NULL;
445 htab->splt = NULL;
446 htab->srelplt = NULL;
447 htab->sdynbss = NULL;
448 htab->srelbss = NULL;
449 htab->text_segment_base = (bfd_vma) -1;
450 htab->data_segment_base = (bfd_vma) -1;
451 htab->multi_subspace = 0;
452 htab->has_12bit_branch = 0;
453 htab->has_17bit_branch = 0;
454 htab->has_22bit_branch = 0;
455 htab->need_plt_stub = 0;
456 htab->sym_cache.abfd = NULL;
457 htab->tls_ldm_got.refcount = 0;
458
459 return &htab->etab.root;
460 }
461
462 /* Free the derived linker hash table. */
463
464 static void
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
466 {
467 struct elf32_hppa_link_hash_table *htab
468 = (struct elf32_hppa_link_hash_table *) btab;
469
470 bfd_hash_table_free (&htab->bstab);
471 _bfd_generic_link_hash_table_free (btab);
472 }
473
474 /* Build a name for an entry in the stub hash table. */
475
476 static char *
477 hppa_stub_name (const asection *input_section,
478 const asection *sym_sec,
479 const struct elf32_hppa_link_hash_entry *hh,
480 const Elf_Internal_Rela *rela)
481 {
482 char *stub_name;
483 bfd_size_type len;
484
485 if (hh)
486 {
487 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
488 stub_name = bfd_malloc (len);
489 if (stub_name != NULL)
490 sprintf (stub_name, "%08x_%s+%x",
491 input_section->id & 0xffffffff,
492 hh_name (hh),
493 (int) rela->r_addend & 0xffffffff);
494 }
495 else
496 {
497 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498 stub_name = bfd_malloc (len);
499 if (stub_name != NULL)
500 sprintf (stub_name, "%08x_%x:%x+%x",
501 input_section->id & 0xffffffff,
502 sym_sec->id & 0xffffffff,
503 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
504 (int) rela->r_addend & 0xffffffff);
505 }
506 return stub_name;
507 }
508
509 /* Look up an entry in the stub hash. Stub entries are cached because
510 creating the stub name takes a bit of time. */
511
512 static struct elf32_hppa_stub_hash_entry *
513 hppa_get_stub_entry (const asection *input_section,
514 const asection *sym_sec,
515 struct elf32_hppa_link_hash_entry *hh,
516 const Elf_Internal_Rela *rela,
517 struct elf32_hppa_link_hash_table *htab)
518 {
519 struct elf32_hppa_stub_hash_entry *hsh_entry;
520 const asection *id_sec;
521
522 /* If this input section is part of a group of sections sharing one
523 stub section, then use the id of the first section in the group.
524 Stub names need to include a section id, as there may well be
525 more than one stub used to reach say, printf, and we need to
526 distinguish between them. */
527 id_sec = htab->stub_group[input_section->id].link_sec;
528
529 if (hh != NULL && hh->hsh_cache != NULL
530 && hh->hsh_cache->hh == hh
531 && hh->hsh_cache->id_sec == id_sec)
532 {
533 hsh_entry = hh->hsh_cache;
534 }
535 else
536 {
537 char *stub_name;
538
539 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
540 if (stub_name == NULL)
541 return NULL;
542
543 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
544 stub_name, FALSE, FALSE);
545 if (hh != NULL)
546 hh->hsh_cache = hsh_entry;
547
548 free (stub_name);
549 }
550
551 return hsh_entry;
552 }
553
554 /* Add a new stub entry to the stub hash. Not all fields of the new
555 stub entry are initialised. */
556
557 static struct elf32_hppa_stub_hash_entry *
558 hppa_add_stub (const char *stub_name,
559 asection *section,
560 struct elf32_hppa_link_hash_table *htab)
561 {
562 asection *link_sec;
563 asection *stub_sec;
564 struct elf32_hppa_stub_hash_entry *hsh;
565
566 link_sec = htab->stub_group[section->id].link_sec;
567 stub_sec = htab->stub_group[section->id].stub_sec;
568 if (stub_sec == NULL)
569 {
570 stub_sec = htab->stub_group[link_sec->id].stub_sec;
571 if (stub_sec == NULL)
572 {
573 size_t namelen;
574 bfd_size_type len;
575 char *s_name;
576
577 namelen = strlen (link_sec->name);
578 len = namelen + sizeof (STUB_SUFFIX);
579 s_name = bfd_alloc (htab->stub_bfd, len);
580 if (s_name == NULL)
581 return NULL;
582
583 memcpy (s_name, link_sec->name, namelen);
584 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
585 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
586 if (stub_sec == NULL)
587 return NULL;
588 htab->stub_group[link_sec->id].stub_sec = stub_sec;
589 }
590 htab->stub_group[section->id].stub_sec = stub_sec;
591 }
592
593 /* Enter this entry into the linker stub hash table. */
594 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
595 TRUE, FALSE);
596 if (hsh == NULL)
597 {
598 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
599 section->owner,
600 stub_name);
601 return NULL;
602 }
603
604 hsh->stub_sec = stub_sec;
605 hsh->stub_offset = 0;
606 hsh->id_sec = link_sec;
607 return hsh;
608 }
609
610 /* Determine the type of stub needed, if any, for a call. */
611
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection *input_sec,
614 const Elf_Internal_Rela *rela,
615 struct elf32_hppa_link_hash_entry *hh,
616 bfd_vma destination,
617 struct bfd_link_info *info)
618 {
619 bfd_vma location;
620 bfd_vma branch_offset;
621 bfd_vma max_branch_offset;
622 unsigned int r_type;
623
624 if (hh != NULL
625 && hh->eh.plt.offset != (bfd_vma) -1
626 && hh->eh.dynindx != -1
627 && !hh->plabel
628 && (info->shared
629 || !hh->eh.def_regular
630 || hh->eh.root.type == bfd_link_hash_defweak))
631 {
632 /* We need an import stub. Decide between hppa_stub_import
633 and hppa_stub_import_shared later. */
634 return hppa_stub_import;
635 }
636
637 /* Determine where the call point is. */
638 location = (input_sec->output_offset
639 + input_sec->output_section->vma
640 + rela->r_offset);
641
642 branch_offset = destination - location - 8;
643 r_type = ELF32_R_TYPE (rela->r_info);
644
645 /* Determine if a long branch stub is needed. parisc branch offsets
646 are relative to the second instruction past the branch, ie. +8
647 bytes on from the branch instruction location. The offset is
648 signed and counts in units of 4 bytes. */
649 if (r_type == (unsigned int) R_PARISC_PCREL17F)
650 max_branch_offset = (1 << (17 - 1)) << 2;
651
652 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
653 max_branch_offset = (1 << (12 - 1)) << 2;
654
655 else /* R_PARISC_PCREL22F. */
656 max_branch_offset = (1 << (22 - 1)) << 2;
657
658 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
659 return hppa_stub_long_branch;
660
661 return hppa_stub_none;
662 }
663
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665 IN_ARG contains the link info pointer. */
666
667 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
668 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
669
670 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
671 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
672 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
673
674 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
675 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
676 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
677 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
678
679 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
680 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
681
682 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
683 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
684 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
685 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
686
687 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
688 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
689 #define NOP 0x08000240 /* nop */
690 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
691 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
692 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
693
694 #ifndef R19_STUBS
695 #define R19_STUBS 1
696 #endif
697
698 #if R19_STUBS
699 #define LDW_R1_DLT LDW_R1_R19
700 #else
701 #define LDW_R1_DLT LDW_R1_DP
702 #endif
703
704 static bfd_boolean
705 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
706 {
707 struct elf32_hppa_stub_hash_entry *hsh;
708 struct bfd_link_info *info;
709 struct elf32_hppa_link_hash_table *htab;
710 asection *stub_sec;
711 bfd *stub_bfd;
712 bfd_byte *loc;
713 bfd_vma sym_value;
714 bfd_vma insn;
715 bfd_vma off;
716 int val;
717 int size;
718
719 /* Massage our args to the form they really have. */
720 hsh = hppa_stub_hash_entry (bh);
721 info = (struct bfd_link_info *)in_arg;
722
723 htab = hppa_link_hash_table (info);
724 if (htab == NULL)
725 return FALSE;
726
727 stub_sec = hsh->stub_sec;
728
729 /* Make a note of the offset within the stubs for this entry. */
730 hsh->stub_offset = stub_sec->size;
731 loc = stub_sec->contents + hsh->stub_offset;
732
733 stub_bfd = stub_sec->owner;
734
735 switch (hsh->stub_type)
736 {
737 case hppa_stub_long_branch:
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = 8;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Branches are relative. This is where we are going to. */
759 sym_value = (hsh->target_value
760 + hsh->target_section->output_offset
761 + hsh->target_section->output_section->vma);
762
763 /* And this is where we are coming from, more or less. */
764 sym_value -= (hsh->stub_offset
765 + stub_sec->output_offset
766 + stub_sec->output_section->vma);
767
768 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
770 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
771 bfd_put_32 (stub_bfd, insn, loc + 4);
772
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
774 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
775 bfd_put_32 (stub_bfd, insn, loc + 8);
776 size = 12;
777 break;
778
779 case hppa_stub_import:
780 case hppa_stub_import_shared:
781 off = hsh->hh->eh.plt.offset;
782 if (off >= (bfd_vma) -2)
783 abort ();
784
785 off &= ~ (bfd_vma) 1;
786 sym_value = (off
787 + htab->splt->output_offset
788 + htab->splt->output_section->vma
789 - elf_gp (htab->splt->output_section->owner));
790
791 insn = ADDIL_DP;
792 #if R19_STUBS
793 if (hsh->stub_type == hppa_stub_import_shared)
794 insn = ADDIL_R19;
795 #endif
796 val = hppa_field_adjust (sym_value, 0, e_lrsel),
797 insn = hppa_rebuild_insn ((int) insn, val, 21);
798 bfd_put_32 (stub_bfd, insn, loc);
799
800 /* It is critical to use lrsel/rrsel here because we are using
801 two different offsets (+0 and +4) from sym_value. If we use
802 lsel/rsel then with unfortunate sym_values we will round
803 sym_value+4 up to the next 2k block leading to a mis-match
804 between the lsel and rsel value. */
805 val = hppa_field_adjust (sym_value, 0, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 4);
808
809 if (htab->multi_subspace)
810 {
811 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
812 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
813 bfd_put_32 (stub_bfd, insn, loc + 8);
814
815 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
816 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
817 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
818 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
819
820 size = 28;
821 }
822 else
823 {
824 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
825 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
826 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
827 bfd_put_32 (stub_bfd, insn, loc + 12);
828
829 size = 16;
830 }
831
832 break;
833
834 case hppa_stub_export:
835 /* Branches are relative. This is where we are going to. */
836 sym_value = (hsh->target_value
837 + hsh->target_section->output_offset
838 + hsh->target_section->output_section->vma);
839
840 /* And this is where we are coming from. */
841 sym_value -= (hsh->stub_offset
842 + stub_sec->output_offset
843 + stub_sec->output_section->vma);
844
845 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 && (!htab->has_22bit_branch
847 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
848 {
849 (*_bfd_error_handler)
850 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 hsh->target_section->owner,
852 stub_sec,
853 (long) hsh->stub_offset,
854 hsh->bh_root.string);
855 bfd_set_error (bfd_error_bad_value);
856 return FALSE;
857 }
858
859 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
860 if (!htab->has_22bit_branch)
861 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
862 else
863 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
864 bfd_put_32 (stub_bfd, insn, loc);
865
866 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
867 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
868 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
869 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
870 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
871
872 /* Point the function symbol at the stub. */
873 hsh->hh->eh.root.u.def.section = stub_sec;
874 hsh->hh->eh.root.u.def.value = stub_sec->size;
875
876 size = 24;
877 break;
878
879 default:
880 BFD_FAIL ();
881 return FALSE;
882 }
883
884 stub_sec->size += size;
885 return TRUE;
886 }
887
888 #undef LDIL_R1
889 #undef BE_SR4_R1
890 #undef BL_R1
891 #undef ADDIL_R1
892 #undef DEPI_R1
893 #undef LDW_R1_R21
894 #undef LDW_R1_DLT
895 #undef LDW_R1_R19
896 #undef ADDIL_R19
897 #undef LDW_R1_DP
898 #undef LDSID_R21_R1
899 #undef MTSP_R1
900 #undef BE_SR0_R21
901 #undef STW_RP
902 #undef BV_R0_R21
903 #undef BL_RP
904 #undef NOP
905 #undef LDW_RP
906 #undef LDSID_RP_R1
907 #undef BE_SR0_RP
908
909 /* As above, but don't actually build the stub. Just bump offset so
910 we know stub section sizes. */
911
912 static bfd_boolean
913 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
914 {
915 struct elf32_hppa_stub_hash_entry *hsh;
916 struct elf32_hppa_link_hash_table *htab;
917 int size;
918
919 /* Massage our args to the form they really have. */
920 hsh = hppa_stub_hash_entry (bh);
921 htab = in_arg;
922
923 if (hsh->stub_type == hppa_stub_long_branch)
924 size = 8;
925 else if (hsh->stub_type == hppa_stub_long_branch_shared)
926 size = 12;
927 else if (hsh->stub_type == hppa_stub_export)
928 size = 24;
929 else /* hppa_stub_import or hppa_stub_import_shared. */
930 {
931 if (htab->multi_subspace)
932 size = 28;
933 else
934 size = 16;
935 }
936
937 hsh->stub_sec->size += size;
938 return TRUE;
939 }
940
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942 Additionally we set the default architecture and machine. */
943
944 static bfd_boolean
945 elf32_hppa_object_p (bfd *abfd)
946 {
947 Elf_Internal_Ehdr * i_ehdrp;
948 unsigned int flags;
949
950 i_ehdrp = elf_elfheader (abfd);
951 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
952 {
953 /* GCC on hppa-linux produces binaries with OSABI=GNU,
954 but the kernel produces corefiles with OSABI=SysV. */
955 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
956 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
957 return FALSE;
958 }
959 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
960 {
961 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 but the kernel produces corefiles with OSABI=SysV. */
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
964 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 return FALSE;
966 }
967 else
968 {
969 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
970 return FALSE;
971 }
972
973 flags = i_ehdrp->e_flags;
974 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
975 {
976 case EFA_PARISC_1_0:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
978 case EFA_PARISC_1_1:
979 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
980 case EFA_PARISC_2_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
982 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984 }
985 return TRUE;
986 }
987
988 /* Create the .plt and .got sections, and set up our hash table
989 short-cuts to various dynamic sections. */
990
991 static bfd_boolean
992 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
993 {
994 struct elf32_hppa_link_hash_table *htab;
995 struct elf_link_hash_entry *eh;
996
997 /* Don't try to create the .plt and .got twice. */
998 htab = hppa_link_hash_table (info);
999 if (htab == NULL)
1000 return FALSE;
1001 if (htab->splt != NULL)
1002 return TRUE;
1003
1004 /* Call the generic code to do most of the work. */
1005 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1006 return FALSE;
1007
1008 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1009 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1010
1011 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1012 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1013
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1026
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1031 {
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1036
1037 if (hh_ind->dyn_relocs != NULL)
1038 {
1039 if (hh_dir->dyn_relocs != NULL)
1040 {
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 {
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049
1050 for (hdh_q = hh_dir->dyn_relocs;
1051 hdh_q != NULL;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1054 {
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1060 break;
1061 }
1062 if (hdh_q == NULL)
1063 hdh_pp = &hdh_p->hdh_next;
1064 }
1065 *hdh_pp = hh_dir->dyn_relocs;
1066 }
1067
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1070 }
1071
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1075 {
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1083 }
1084 else
1085 {
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1088 {
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1091 }
1092
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 }
1095 }
1096
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101 /* For now we don't support linker optimizations. */
1102 return r_type;
1103 }
1104
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106 for ABFD. Returns NULL if the storage allocation fails. */
1107
1108 static bfd_signed_vma *
1109 hppa32_elf_local_refcounts (bfd *abfd)
1110 {
1111 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 bfd_signed_vma *local_refcounts;
1113
1114 local_refcounts = elf_local_got_refcounts (abfd);
1115 if (local_refcounts == NULL)
1116 {
1117 bfd_size_type size;
1118
1119 /* Allocate space for local GOT and PLT reference
1120 counts. Done this way to save polluting elf_obj_tdata
1121 with another target specific pointer. */
1122 size = symtab_hdr->sh_info;
1123 size *= 2 * sizeof (bfd_signed_vma);
1124 /* Add in space to store the local GOT TLS types. */
1125 size += symtab_hdr->sh_info;
1126 local_refcounts = bfd_zalloc (abfd, size);
1127 if (local_refcounts == NULL)
1128 return NULL;
1129 elf_local_got_refcounts (abfd) = local_refcounts;
1130 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1131 symtab_hdr->sh_info);
1132 }
1133 return local_refcounts;
1134 }
1135
1136
1137 /* Look through the relocs for a section during the first phase, and
1138 calculate needed space in the global offset table, procedure linkage
1139 table, and dynamic reloc sections. At this point we haven't
1140 necessarily read all the input files. */
1141
1142 static bfd_boolean
1143 elf32_hppa_check_relocs (bfd *abfd,
1144 struct bfd_link_info *info,
1145 asection *sec,
1146 const Elf_Internal_Rela *relocs)
1147 {
1148 Elf_Internal_Shdr *symtab_hdr;
1149 struct elf_link_hash_entry **eh_syms;
1150 const Elf_Internal_Rela *rela;
1151 const Elf_Internal_Rela *rela_end;
1152 struct elf32_hppa_link_hash_table *htab;
1153 asection *sreloc;
1154 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1155
1156 if (info->relocatable)
1157 return TRUE;
1158
1159 htab = hppa_link_hash_table (info);
1160 if (htab == NULL)
1161 return FALSE;
1162 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163 eh_syms = elf_sym_hashes (abfd);
1164 sreloc = NULL;
1165
1166 rela_end = relocs + sec->reloc_count;
1167 for (rela = relocs; rela < rela_end; rela++)
1168 {
1169 enum {
1170 NEED_GOT = 1,
1171 NEED_PLT = 2,
1172 NEED_DYNREL = 4,
1173 PLT_PLABEL = 8
1174 };
1175
1176 unsigned int r_symndx, r_type;
1177 struct elf32_hppa_link_hash_entry *hh;
1178 int need_entry = 0;
1179
1180 r_symndx = ELF32_R_SYM (rela->r_info);
1181
1182 if (r_symndx < symtab_hdr->sh_info)
1183 hh = NULL;
1184 else
1185 {
1186 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 while (hh->eh.root.type == bfd_link_hash_indirect
1188 || hh->eh.root.type == bfd_link_hash_warning)
1189 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 }
1191
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194
1195 switch (r_type)
1196 {
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1202 break;
1203
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1209 abort ();
1210
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1216
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 break;
1230
1231 case R_PARISC_PCREL12F:
1232 htab->has_12bit_branch = 1;
1233 goto branch_common;
1234
1235 case R_PARISC_PCREL17C:
1236 case R_PARISC_PCREL17F:
1237 htab->has_17bit_branch = 1;
1238 goto branch_common;
1239
1240 case R_PARISC_PCREL22F:
1241 htab->has_22bit_branch = 1;
1242 branch_common:
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1245 if (hh == NULL)
1246 {
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1251 branch stub. */
1252 continue;
1253 }
1254 else
1255 {
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry = NEED_PLT;
1262 if (hh->eh.type == STT_PARISC_MILLI)
1263 need_entry = 0;
1264 }
1265 break;
1266
1267 case R_PARISC_SEGBASE: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R:
1271 case R_PARISC_PCREL17R: /* External branches. */
1272 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1276 continue;
1277
1278 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R:
1280 case R_PARISC_DPREL21L:
1281 if (info->shared)
1282 {
1283 (*_bfd_error_handler)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 abfd,
1286 elf_hppa_howto_table[r_type].name);
1287 bfd_set_error (bfd_error_bad_value);
1288 return FALSE;
1289 }
1290 /* Fall through. */
1291
1292 case R_PARISC_DIR17F: /* Used for external branches. */
1293 case R_PARISC_DIR17R:
1294 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R:
1296 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry = NEED_DYNREL;
1300 break;
1301
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT:
1305 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 return FALSE;
1307 continue;
1308
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY:
1312 BFD_ASSERT (hh != NULL);
1313 if (hh != NULL
1314 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 return FALSE;
1316 continue;
1317
1318 case R_PARISC_TLS_GD21L:
1319 case R_PARISC_TLS_GD14R:
1320 case R_PARISC_TLS_LDM21L:
1321 case R_PARISC_TLS_LDM14R:
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 case R_PARISC_TLS_IE21L:
1326 case R_PARISC_TLS_IE14R:
1327 if (info->shared)
1328 info->flags |= DF_STATIC_TLS;
1329 need_entry = NEED_GOT;
1330 break;
1331
1332 default:
1333 continue;
1334 }
1335
1336 /* Now carry out our orders. */
1337 if (need_entry & NEED_GOT)
1338 {
1339 switch (r_type)
1340 {
1341 default:
1342 tls_type = GOT_NORMAL;
1343 break;
1344 case R_PARISC_TLS_GD21L:
1345 case R_PARISC_TLS_GD14R:
1346 tls_type |= GOT_TLS_GD;
1347 break;
1348 case R_PARISC_TLS_LDM21L:
1349 case R_PARISC_TLS_LDM14R:
1350 tls_type |= GOT_TLS_LDM;
1351 break;
1352 case R_PARISC_TLS_IE21L:
1353 case R_PARISC_TLS_IE14R:
1354 tls_type |= GOT_TLS_IE;
1355 break;
1356 }
1357
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab->sgot == NULL)
1361 {
1362 if (htab->etab.dynobj == NULL)
1363 htab->etab.dynobj = abfd;
1364 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 return FALSE;
1366 }
1367
1368 if (r_type == R_PARISC_TLS_LDM21L
1369 || r_type == R_PARISC_TLS_LDM14R)
1370 htab->tls_ldm_got.refcount += 1;
1371 else
1372 {
1373 if (hh != NULL)
1374 {
1375 hh->eh.got.refcount += 1;
1376 old_tls_type = hh->tls_type;
1377 }
1378 else
1379 {
1380 bfd_signed_vma *local_got_refcounts;
1381
1382 /* This is a global offset table entry for a local symbol. */
1383 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1384 if (local_got_refcounts == NULL)
1385 return FALSE;
1386 local_got_refcounts[r_symndx] += 1;
1387
1388 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 }
1390
1391 tls_type |= old_tls_type;
1392
1393 if (old_tls_type != tls_type)
1394 {
1395 if (hh != NULL)
1396 hh->tls_type = tls_type;
1397 else
1398 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1399 }
1400
1401 }
1402 }
1403
1404 if (need_entry & NEED_PLT)
1405 {
1406 /* If we are creating a shared library, and this is a reloc
1407 against a weak symbol or a global symbol in a dynamic
1408 object, then we will be creating an import stub and a
1409 .plt entry for the symbol. Similarly, on a normal link
1410 to symbols defined in a dynamic object we'll need the
1411 import stub and a .plt entry. We don't know yet whether
1412 the symbol is defined or not, so make an entry anyway and
1413 clean up later in adjust_dynamic_symbol. */
1414 if ((sec->flags & SEC_ALLOC) != 0)
1415 {
1416 if (hh != NULL)
1417 {
1418 hh->eh.needs_plt = 1;
1419 hh->eh.plt.refcount += 1;
1420
1421 /* If this .plt entry is for a plabel, mark it so
1422 that adjust_dynamic_symbol will keep the entry
1423 even if it appears to be local. */
1424 if (need_entry & PLT_PLABEL)
1425 hh->plabel = 1;
1426 }
1427 else if (need_entry & PLT_PLABEL)
1428 {
1429 bfd_signed_vma *local_got_refcounts;
1430 bfd_signed_vma *local_plt_refcounts;
1431
1432 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1433 if (local_got_refcounts == NULL)
1434 return FALSE;
1435 local_plt_refcounts = (local_got_refcounts
1436 + symtab_hdr->sh_info);
1437 local_plt_refcounts[r_symndx] += 1;
1438 }
1439 }
1440 }
1441
1442 if (need_entry & NEED_DYNREL)
1443 {
1444 /* Flag this symbol as having a non-got, non-plt reference
1445 so that we generate copy relocs if it turns out to be
1446 dynamic. */
1447 if (hh != NULL && !info->shared)
1448 hh->eh.non_got_ref = 1;
1449
1450 /* If we are creating a shared library then we need to copy
1451 the reloc into the shared library. However, if we are
1452 linking with -Bsymbolic, we need only copy absolute
1453 relocs or relocs against symbols that are not defined in
1454 an object we are including in the link. PC- or DP- or
1455 DLT-relative relocs against any local sym or global sym
1456 with DEF_REGULAR set, can be discarded. At this point we
1457 have not seen all the input files, so it is possible that
1458 DEF_REGULAR is not set now but will be set later (it is
1459 never cleared). We account for that possibility below by
1460 storing information in the dyn_relocs field of the
1461 hash table entry.
1462
1463 A similar situation to the -Bsymbolic case occurs when
1464 creating shared libraries and symbol visibility changes
1465 render the symbol local.
1466
1467 As it turns out, all the relocs we will be creating here
1468 are absolute, so we cannot remove them on -Bsymbolic
1469 links or visibility changes anyway. A STUB_REL reloc
1470 is absolute too, as in that case it is the reloc in the
1471 stub we will be creating, rather than copying the PCREL
1472 reloc in the branch.
1473
1474 If on the other hand, we are creating an executable, we
1475 may need to keep relocations for symbols satisfied by a
1476 dynamic library if we manage to avoid copy relocs for the
1477 symbol. */
1478 if ((info->shared
1479 && (sec->flags & SEC_ALLOC) != 0
1480 && (IS_ABSOLUTE_RELOC (r_type)
1481 || (hh != NULL
1482 && (!info->symbolic
1483 || hh->eh.root.type == bfd_link_hash_defweak
1484 || !hh->eh.def_regular))))
1485 || (ELIMINATE_COPY_RELOCS
1486 && !info->shared
1487 && (sec->flags & SEC_ALLOC) != 0
1488 && hh != NULL
1489 && (hh->eh.root.type == bfd_link_hash_defweak
1490 || !hh->eh.def_regular)))
1491 {
1492 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1493 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494
1495 /* Create a reloc section in dynobj and make room for
1496 this reloc. */
1497 if (sreloc == NULL)
1498 {
1499 if (htab->etab.dynobj == NULL)
1500 htab->etab.dynobj = abfd;
1501
1502 sreloc = _bfd_elf_make_dynamic_reloc_section
1503 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1504
1505 if (sreloc == NULL)
1506 {
1507 bfd_set_error (bfd_error_bad_value);
1508 return FALSE;
1509 }
1510 }
1511
1512 /* If this is a global symbol, we count the number of
1513 relocations we need for this symbol. */
1514 if (hh != NULL)
1515 {
1516 hdh_head = &hh->dyn_relocs;
1517 }
1518 else
1519 {
1520 /* Track dynamic relocs needed for local syms too.
1521 We really need local syms available to do this
1522 easily. Oh well. */
1523 asection *sr;
1524 void *vpp;
1525 Elf_Internal_Sym *isym;
1526
1527 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1528 abfd, r_symndx);
1529 if (isym == NULL)
1530 return FALSE;
1531
1532 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1533 if (sr == NULL)
1534 sr = sec;
1535
1536 vpp = &elf_section_data (sr)->local_dynrel;
1537 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 }
1539
1540 hdh_p = *hdh_head;
1541 if (hdh_p == NULL || hdh_p->sec != sec)
1542 {
1543 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1544 if (hdh_p == NULL)
1545 return FALSE;
1546 hdh_p->hdh_next = *hdh_head;
1547 *hdh_head = hdh_p;
1548 hdh_p->sec = sec;
1549 hdh_p->count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 hdh_p->relative_count = 0;
1552 #endif
1553 }
1554
1555 hdh_p->count += 1;
1556 #if RELATIVE_DYNRELOCS
1557 if (!IS_ABSOLUTE_RELOC (rtype))
1558 hdh_p->relative_count += 1;
1559 #endif
1560 }
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* Return the section that should be marked against garbage collection
1568 for a given relocation. */
1569
1570 static asection *
1571 elf32_hppa_gc_mark_hook (asection *sec,
1572 struct bfd_link_info *info,
1573 Elf_Internal_Rela *rela,
1574 struct elf_link_hash_entry *hh,
1575 Elf_Internal_Sym *sym)
1576 {
1577 if (hh != NULL)
1578 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1579 {
1580 case R_PARISC_GNU_VTINHERIT:
1581 case R_PARISC_GNU_VTENTRY:
1582 return NULL;
1583 }
1584
1585 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 }
1587
1588 /* Update the got and plt entry reference counts for the section being
1589 removed. */
1590
1591 static bfd_boolean
1592 elf32_hppa_gc_sweep_hook (bfd *abfd,
1593 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1594 asection *sec,
1595 const Elf_Internal_Rela *relocs)
1596 {
1597 Elf_Internal_Shdr *symtab_hdr;
1598 struct elf_link_hash_entry **eh_syms;
1599 bfd_signed_vma *local_got_refcounts;
1600 bfd_signed_vma *local_plt_refcounts;
1601 const Elf_Internal_Rela *rela, *relend;
1602 struct elf32_hppa_link_hash_table *htab;
1603
1604 if (info->relocatable)
1605 return TRUE;
1606
1607 htab = hppa_link_hash_table (info);
1608 if (htab == NULL)
1609 return FALSE;
1610
1611 elf_section_data (sec)->local_dynrel = NULL;
1612
1613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614 eh_syms = elf_sym_hashes (abfd);
1615 local_got_refcounts = elf_local_got_refcounts (abfd);
1616 local_plt_refcounts = local_got_refcounts;
1617 if (local_plt_refcounts != NULL)
1618 local_plt_refcounts += symtab_hdr->sh_info;
1619
1620 relend = relocs + sec->reloc_count;
1621 for (rela = relocs; rela < relend; rela++)
1622 {
1623 unsigned long r_symndx;
1624 unsigned int r_type;
1625 struct elf_link_hash_entry *eh = NULL;
1626
1627 r_symndx = ELF32_R_SYM (rela->r_info);
1628 if (r_symndx >= symtab_hdr->sh_info)
1629 {
1630 struct elf32_hppa_link_hash_entry *hh;
1631 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633
1634 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 while (eh->root.type == bfd_link_hash_indirect
1636 || eh->root.type == bfd_link_hash_warning)
1637 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 hh = hppa_elf_hash_entry (eh);
1639
1640 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 if (hdh_p->sec == sec)
1642 {
1643 /* Everything must go for SEC. */
1644 *hdh_pp = hdh_p->hdh_next;
1645 break;
1646 }
1647 }
1648
1649 r_type = ELF32_R_TYPE (rela->r_info);
1650 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651
1652 switch (r_type)
1653 {
1654 case R_PARISC_DLTIND14F:
1655 case R_PARISC_DLTIND14R:
1656 case R_PARISC_DLTIND21L:
1657 case R_PARISC_TLS_GD21L:
1658 case R_PARISC_TLS_GD14R:
1659 case R_PARISC_TLS_IE21L:
1660 case R_PARISC_TLS_IE14R:
1661 if (eh != NULL)
1662 {
1663 if (eh->got.refcount > 0)
1664 eh->got.refcount -= 1;
1665 }
1666 else if (local_got_refcounts != NULL)
1667 {
1668 if (local_got_refcounts[r_symndx] > 0)
1669 local_got_refcounts[r_symndx] -= 1;
1670 }
1671 break;
1672
1673 case R_PARISC_TLS_LDM21L:
1674 case R_PARISC_TLS_LDM14R:
1675 htab->tls_ldm_got.refcount -= 1;
1676 break;
1677
1678 case R_PARISC_PCREL12F:
1679 case R_PARISC_PCREL17C:
1680 case R_PARISC_PCREL17F:
1681 case R_PARISC_PCREL22F:
1682 if (eh != NULL)
1683 {
1684 if (eh->plt.refcount > 0)
1685 eh->plt.refcount -= 1;
1686 }
1687 break;
1688
1689 case R_PARISC_PLABEL14R:
1690 case R_PARISC_PLABEL21L:
1691 case R_PARISC_PLABEL32:
1692 if (eh != NULL)
1693 {
1694 if (eh->plt.refcount > 0)
1695 eh->plt.refcount -= 1;
1696 }
1697 else if (local_plt_refcounts != NULL)
1698 {
1699 if (local_plt_refcounts[r_symndx] > 0)
1700 local_plt_refcounts[r_symndx] -= 1;
1701 }
1702 break;
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 return TRUE;
1710 }
1711
1712 /* Support for core dump NOTE sections. */
1713
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717 int offset;
1718 size_t size;
1719
1720 switch (note->descsz)
1721 {
1722 default:
1723 return FALSE;
1724
1725 case 396: /* Linux/hppa */
1726 /* pr_cursig */
1727 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728
1729 /* pr_pid */
1730 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1731
1732 /* pr_reg */
1733 offset = 72;
1734 size = 320;
1735
1736 break;
1737 }
1738
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 size, note->descpos + offset);
1742 }
1743
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747 switch (note->descsz)
1748 {
1749 default:
1750 return FALSE;
1751
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd)->core_program
1754 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 elf_tdata (abfd)->core_command
1756 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757 }
1758
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1762 {
1763 char *command = elf_tdata (abfd)->core_command;
1764 int n = strlen (command);
1765
1766 if (0 < n && command[n - 1] == ' ')
1767 command[n - 1] = '\0';
1768 }
1769
1770 return TRUE;
1771 }
1772
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774 plabels. */
1775
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh,
1779 bfd_boolean force_local)
1780 {
1781 if (force_local)
1782 {
1783 eh->forced_local = 1;
1784 if (eh->dynindx != -1)
1785 {
1786 eh->dynindx = -1;
1787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 eh->dynstr_index);
1789 }
1790 }
1791
1792 /* STT_GNU_IFUNC symbol must go through PLT. */
1793 if (! hppa_elf_hash_entry (eh)->plabel
1794 && eh->type != STT_GNU_IFUNC)
1795 {
1796 eh->needs_plt = 0;
1797 eh->plt = elf_hash_table (info)->init_plt_offset;
1798 }
1799 }
1800
1801 /* Adjust a symbol defined by a dynamic object and referenced by a
1802 regular object. The current definition is in some section of the
1803 dynamic object, but we're not including those sections. We have to
1804 change the definition to something the rest of the link can
1805 understand. */
1806
1807 static bfd_boolean
1808 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1809 struct elf_link_hash_entry *eh)
1810 {
1811 struct elf32_hppa_link_hash_table *htab;
1812 asection *sec;
1813
1814 /* If this is a function, put it in the procedure linkage table. We
1815 will fill in the contents of the procedure linkage table later. */
1816 if (eh->type == STT_FUNC
1817 || eh->needs_plt)
1818 {
1819 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1820 The refcounts are not reliable when it has been hidden since
1821 hide_symbol can be called before the plabel flag is set. */
1822 if (hppa_elf_hash_entry (eh)->plabel
1823 && eh->plt.refcount <= 0)
1824 eh->plt.refcount = 1;
1825
1826 if (eh->plt.refcount <= 0
1827 || (eh->def_regular
1828 && eh->root.type != bfd_link_hash_defweak
1829 && ! hppa_elf_hash_entry (eh)->plabel
1830 && (!info->shared || info->symbolic)))
1831 {
1832 /* The .plt entry is not needed when:
1833 a) Garbage collection has removed all references to the
1834 symbol, or
1835 b) We know for certain the symbol is defined in this
1836 object, and it's not a weak definition, nor is the symbol
1837 used by a plabel relocation. Either this object is the
1838 application or we are doing a shared symbolic link. */
1839
1840 eh->plt.offset = (bfd_vma) -1;
1841 eh->needs_plt = 0;
1842 }
1843
1844 return TRUE;
1845 }
1846 else
1847 eh->plt.offset = (bfd_vma) -1;
1848
1849 /* If this is a weak symbol, and there is a real definition, the
1850 processor independent code will have arranged for us to see the
1851 real definition first, and we can just use the same value. */
1852 if (eh->u.weakdef != NULL)
1853 {
1854 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1855 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1856 abort ();
1857 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1858 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1859 if (ELIMINATE_COPY_RELOCS)
1860 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1861 return TRUE;
1862 }
1863
1864 /* This is a reference to a symbol defined by a dynamic object which
1865 is not a function. */
1866
1867 /* If we are creating a shared library, we must presume that the
1868 only references to the symbol are via the global offset table.
1869 For such cases we need not do anything here; the relocations will
1870 be handled correctly by relocate_section. */
1871 if (info->shared)
1872 return TRUE;
1873
1874 /* If there are no references to this symbol that do not use the
1875 GOT, we don't need to generate a copy reloc. */
1876 if (!eh->non_got_ref)
1877 return TRUE;
1878
1879 if (ELIMINATE_COPY_RELOCS)
1880 {
1881 struct elf32_hppa_link_hash_entry *hh;
1882 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1883
1884 hh = hppa_elf_hash_entry (eh);
1885 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1886 {
1887 sec = hdh_p->sec->output_section;
1888 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1889 break;
1890 }
1891
1892 /* If we didn't find any dynamic relocs in read-only sections, then
1893 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1894 if (hdh_p == NULL)
1895 {
1896 eh->non_got_ref = 0;
1897 return TRUE;
1898 }
1899 }
1900
1901 if (eh->size == 0)
1902 {
1903 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1904 eh->root.root.string);
1905 return TRUE;
1906 }
1907
1908 /* We must allocate the symbol in our .dynbss section, which will
1909 become part of the .bss section of the executable. There will be
1910 an entry for this symbol in the .dynsym section. The dynamic
1911 object will contain position independent code, so all references
1912 from the dynamic object to this symbol will go through the global
1913 offset table. The dynamic linker will use the .dynsym entry to
1914 determine the address it must put in the global offset table, so
1915 both the dynamic object and the regular object will refer to the
1916 same memory location for the variable. */
1917
1918 htab = hppa_link_hash_table (info);
1919 if (htab == NULL)
1920 return FALSE;
1921
1922 /* We must generate a COPY reloc to tell the dynamic linker to
1923 copy the initial value out of the dynamic object and into the
1924 runtime process image. */
1925 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1926 {
1927 htab->srelbss->size += sizeof (Elf32_External_Rela);
1928 eh->needs_copy = 1;
1929 }
1930
1931 sec = htab->sdynbss;
1932
1933 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1934 }
1935
1936 /* Allocate space in the .plt for entries that won't have relocations.
1937 ie. plabel entries. */
1938
1939 static bfd_boolean
1940 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1941 {
1942 struct bfd_link_info *info;
1943 struct elf32_hppa_link_hash_table *htab;
1944 struct elf32_hppa_link_hash_entry *hh;
1945 asection *sec;
1946
1947 if (eh->root.type == bfd_link_hash_indirect)
1948 return TRUE;
1949
1950 info = (struct bfd_link_info *) inf;
1951 hh = hppa_elf_hash_entry (eh);
1952 htab = hppa_link_hash_table (info);
1953 if (htab == NULL)
1954 return FALSE;
1955
1956 if (htab->etab.dynamic_sections_created
1957 && eh->plt.refcount > 0)
1958 {
1959 /* Make sure this symbol is output as a dynamic symbol.
1960 Undefined weak syms won't yet be marked as dynamic. */
1961 if (eh->dynindx == -1
1962 && !eh->forced_local
1963 && eh->type != STT_PARISC_MILLI)
1964 {
1965 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1966 return FALSE;
1967 }
1968
1969 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1970 {
1971 /* Allocate these later. From this point on, h->plabel
1972 means that the plt entry is only used by a plabel.
1973 We'll be using a normal plt entry for this symbol, so
1974 clear the plabel indicator. */
1975
1976 hh->plabel = 0;
1977 }
1978 else if (hh->plabel)
1979 {
1980 /* Make an entry in the .plt section for plabel references
1981 that won't have a .plt entry for other reasons. */
1982 sec = htab->splt;
1983 eh->plt.offset = sec->size;
1984 sec->size += PLT_ENTRY_SIZE;
1985 }
1986 else
1987 {
1988 /* No .plt entry needed. */
1989 eh->plt.offset = (bfd_vma) -1;
1990 eh->needs_plt = 0;
1991 }
1992 }
1993 else
1994 {
1995 eh->plt.offset = (bfd_vma) -1;
1996 eh->needs_plt = 0;
1997 }
1998
1999 return TRUE;
2000 }
2001
2002 /* Allocate space in .plt, .got and associated reloc sections for
2003 global syms. */
2004
2005 static bfd_boolean
2006 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2007 {
2008 struct bfd_link_info *info;
2009 struct elf32_hppa_link_hash_table *htab;
2010 asection *sec;
2011 struct elf32_hppa_link_hash_entry *hh;
2012 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2013
2014 if (eh->root.type == bfd_link_hash_indirect)
2015 return TRUE;
2016
2017 info = inf;
2018 htab = hppa_link_hash_table (info);
2019 if (htab == NULL)
2020 return FALSE;
2021
2022 hh = hppa_elf_hash_entry (eh);
2023
2024 if (htab->etab.dynamic_sections_created
2025 && eh->plt.offset != (bfd_vma) -1
2026 && !hh->plabel
2027 && eh->plt.refcount > 0)
2028 {
2029 /* Make an entry in the .plt section. */
2030 sec = htab->splt;
2031 eh->plt.offset = sec->size;
2032 sec->size += PLT_ENTRY_SIZE;
2033
2034 /* We also need to make an entry in the .rela.plt section. */
2035 htab->srelplt->size += sizeof (Elf32_External_Rela);
2036 htab->need_plt_stub = 1;
2037 }
2038
2039 if (eh->got.refcount > 0)
2040 {
2041 /* Make sure this symbol is output as a dynamic symbol.
2042 Undefined weak syms won't yet be marked as dynamic. */
2043 if (eh->dynindx == -1
2044 && !eh->forced_local
2045 && eh->type != STT_PARISC_MILLI)
2046 {
2047 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2048 return FALSE;
2049 }
2050
2051 sec = htab->sgot;
2052 eh->got.offset = sec->size;
2053 sec->size += GOT_ENTRY_SIZE;
2054 /* R_PARISC_TLS_GD* needs two GOT entries */
2055 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2056 sec->size += GOT_ENTRY_SIZE * 2;
2057 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2058 sec->size += GOT_ENTRY_SIZE;
2059 if (htab->etab.dynamic_sections_created
2060 && (info->shared
2061 || (eh->dynindx != -1
2062 && !eh->forced_local)))
2063 {
2064 htab->srelgot->size += sizeof (Elf32_External_Rela);
2065 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2066 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2067 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2068 htab->srelgot->size += sizeof (Elf32_External_Rela);
2069 }
2070 }
2071 else
2072 eh->got.offset = (bfd_vma) -1;
2073
2074 if (hh->dyn_relocs == NULL)
2075 return TRUE;
2076
2077 /* If this is a -Bsymbolic shared link, then we need to discard all
2078 space allocated for dynamic pc-relative relocs against symbols
2079 defined in a regular object. For the normal shared case, discard
2080 space for relocs that have become local due to symbol visibility
2081 changes. */
2082 if (info->shared)
2083 {
2084 #if RELATIVE_DYNRELOCS
2085 if (SYMBOL_CALLS_LOCAL (info, eh))
2086 {
2087 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2088
2089 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2090 {
2091 hdh_p->count -= hdh_p->relative_count;
2092 hdh_p->relative_count = 0;
2093 if (hdh_p->count == 0)
2094 *hdh_pp = hdh_p->hdh_next;
2095 else
2096 hdh_pp = &hdh_p->hdh_next;
2097 }
2098 }
2099 #endif
2100
2101 /* Also discard relocs on undefined weak syms with non-default
2102 visibility. */
2103 if (hh->dyn_relocs != NULL
2104 && eh->root.type == bfd_link_hash_undefweak)
2105 {
2106 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2107 hh->dyn_relocs = NULL;
2108
2109 /* Make sure undefined weak symbols are output as a dynamic
2110 symbol in PIEs. */
2111 else if (eh->dynindx == -1
2112 && !eh->forced_local)
2113 {
2114 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2115 return FALSE;
2116 }
2117 }
2118 }
2119 else
2120 {
2121 /* For the non-shared case, discard space for relocs against
2122 symbols which turn out to need copy relocs or are not
2123 dynamic. */
2124
2125 if (!eh->non_got_ref
2126 && ((ELIMINATE_COPY_RELOCS
2127 && eh->def_dynamic
2128 && !eh->def_regular)
2129 || (htab->etab.dynamic_sections_created
2130 && (eh->root.type == bfd_link_hash_undefweak
2131 || eh->root.type == bfd_link_hash_undefined))))
2132 {
2133 /* Make sure this symbol is output as a dynamic symbol.
2134 Undefined weak syms won't yet be marked as dynamic. */
2135 if (eh->dynindx == -1
2136 && !eh->forced_local
2137 && eh->type != STT_PARISC_MILLI)
2138 {
2139 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2140 return FALSE;
2141 }
2142
2143 /* If that succeeded, we know we'll be keeping all the
2144 relocs. */
2145 if (eh->dynindx != -1)
2146 goto keep;
2147 }
2148
2149 hh->dyn_relocs = NULL;
2150 return TRUE;
2151
2152 keep: ;
2153 }
2154
2155 /* Finally, allocate space. */
2156 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2157 {
2158 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2159 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2160 }
2161
2162 return TRUE;
2163 }
2164
2165 /* This function is called via elf_link_hash_traverse to force
2166 millicode symbols local so they do not end up as globals in the
2167 dynamic symbol table. We ought to be able to do this in
2168 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2169 for all dynamic symbols. Arguably, this is a bug in
2170 elf_adjust_dynamic_symbol. */
2171
2172 static bfd_boolean
2173 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2174 struct bfd_link_info *info)
2175 {
2176 if (eh->type == STT_PARISC_MILLI
2177 && !eh->forced_local)
2178 {
2179 elf32_hppa_hide_symbol (info, eh, TRUE);
2180 }
2181 return TRUE;
2182 }
2183
2184 /* Find any dynamic relocs that apply to read-only sections. */
2185
2186 static bfd_boolean
2187 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2188 {
2189 struct elf32_hppa_link_hash_entry *hh;
2190 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2191
2192 hh = hppa_elf_hash_entry (eh);
2193 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2194 {
2195 asection *sec = hdh_p->sec->output_section;
2196
2197 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2198 {
2199 struct bfd_link_info *info = inf;
2200
2201 info->flags |= DF_TEXTREL;
2202
2203 /* Not an error, just cut short the traversal. */
2204 return FALSE;
2205 }
2206 }
2207 return TRUE;
2208 }
2209
2210 /* Set the sizes of the dynamic sections. */
2211
2212 static bfd_boolean
2213 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2214 struct bfd_link_info *info)
2215 {
2216 struct elf32_hppa_link_hash_table *htab;
2217 bfd *dynobj;
2218 bfd *ibfd;
2219 asection *sec;
2220 bfd_boolean relocs;
2221
2222 htab = hppa_link_hash_table (info);
2223 if (htab == NULL)
2224 return FALSE;
2225
2226 dynobj = htab->etab.dynobj;
2227 if (dynobj == NULL)
2228 abort ();
2229
2230 if (htab->etab.dynamic_sections_created)
2231 {
2232 /* Set the contents of the .interp section to the interpreter. */
2233 if (info->executable)
2234 {
2235 sec = bfd_get_section_by_name (dynobj, ".interp");
2236 if (sec == NULL)
2237 abort ();
2238 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2239 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2240 }
2241
2242 /* Force millicode symbols local. */
2243 elf_link_hash_traverse (&htab->etab,
2244 clobber_millicode_symbols,
2245 info);
2246 }
2247
2248 /* Set up .got and .plt offsets for local syms, and space for local
2249 dynamic relocs. */
2250 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2251 {
2252 bfd_signed_vma *local_got;
2253 bfd_signed_vma *end_local_got;
2254 bfd_signed_vma *local_plt;
2255 bfd_signed_vma *end_local_plt;
2256 bfd_size_type locsymcount;
2257 Elf_Internal_Shdr *symtab_hdr;
2258 asection *srel;
2259 char *local_tls_type;
2260
2261 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2262 continue;
2263
2264 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2265 {
2266 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2267
2268 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2269 elf_section_data (sec)->local_dynrel);
2270 hdh_p != NULL;
2271 hdh_p = hdh_p->hdh_next)
2272 {
2273 if (!bfd_is_abs_section (hdh_p->sec)
2274 && bfd_is_abs_section (hdh_p->sec->output_section))
2275 {
2276 /* Input section has been discarded, either because
2277 it is a copy of a linkonce section or due to
2278 linker script /DISCARD/, so we'll be discarding
2279 the relocs too. */
2280 }
2281 else if (hdh_p->count != 0)
2282 {
2283 srel = elf_section_data (hdh_p->sec)->sreloc;
2284 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2285 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2286 info->flags |= DF_TEXTREL;
2287 }
2288 }
2289 }
2290
2291 local_got = elf_local_got_refcounts (ibfd);
2292 if (!local_got)
2293 continue;
2294
2295 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2296 locsymcount = symtab_hdr->sh_info;
2297 end_local_got = local_got + locsymcount;
2298 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2299 sec = htab->sgot;
2300 srel = htab->srelgot;
2301 for (; local_got < end_local_got; ++local_got)
2302 {
2303 if (*local_got > 0)
2304 {
2305 *local_got = sec->size;
2306 sec->size += GOT_ENTRY_SIZE;
2307 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2308 sec->size += 2 * GOT_ENTRY_SIZE;
2309 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2310 sec->size += GOT_ENTRY_SIZE;
2311 if (info->shared)
2312 {
2313 srel->size += sizeof (Elf32_External_Rela);
2314 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2315 srel->size += 2 * sizeof (Elf32_External_Rela);
2316 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2317 srel->size += sizeof (Elf32_External_Rela);
2318 }
2319 }
2320 else
2321 *local_got = (bfd_vma) -1;
2322
2323 ++local_tls_type;
2324 }
2325
2326 local_plt = end_local_got;
2327 end_local_plt = local_plt + locsymcount;
2328 if (! htab->etab.dynamic_sections_created)
2329 {
2330 /* Won't be used, but be safe. */
2331 for (; local_plt < end_local_plt; ++local_plt)
2332 *local_plt = (bfd_vma) -1;
2333 }
2334 else
2335 {
2336 sec = htab->splt;
2337 srel = htab->srelplt;
2338 for (; local_plt < end_local_plt; ++local_plt)
2339 {
2340 if (*local_plt > 0)
2341 {
2342 *local_plt = sec->size;
2343 sec->size += PLT_ENTRY_SIZE;
2344 if (info->shared)
2345 srel->size += sizeof (Elf32_External_Rela);
2346 }
2347 else
2348 *local_plt = (bfd_vma) -1;
2349 }
2350 }
2351 }
2352
2353 if (htab->tls_ldm_got.refcount > 0)
2354 {
2355 /* Allocate 2 got entries and 1 dynamic reloc for
2356 R_PARISC_TLS_DTPMOD32 relocs. */
2357 htab->tls_ldm_got.offset = htab->sgot->size;
2358 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2359 htab->srelgot->size += sizeof (Elf32_External_Rela);
2360 }
2361 else
2362 htab->tls_ldm_got.offset = -1;
2363
2364 /* Do all the .plt entries without relocs first. The dynamic linker
2365 uses the last .plt reloc to find the end of the .plt (and hence
2366 the start of the .got) for lazy linking. */
2367 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2368
2369 /* Allocate global sym .plt and .got entries, and space for global
2370 sym dynamic relocs. */
2371 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2372
2373 /* The check_relocs and adjust_dynamic_symbol entry points have
2374 determined the sizes of the various dynamic sections. Allocate
2375 memory for them. */
2376 relocs = FALSE;
2377 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2378 {
2379 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2380 continue;
2381
2382 if (sec == htab->splt)
2383 {
2384 if (htab->need_plt_stub)
2385 {
2386 /* Make space for the plt stub at the end of the .plt
2387 section. We want this stub right at the end, up
2388 against the .got section. */
2389 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2390 int pltalign = bfd_section_alignment (dynobj, sec);
2391 bfd_size_type mask;
2392
2393 if (gotalign > pltalign)
2394 bfd_set_section_alignment (dynobj, sec, gotalign);
2395 mask = ((bfd_size_type) 1 << gotalign) - 1;
2396 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2397 }
2398 }
2399 else if (sec == htab->sgot
2400 || sec == htab->sdynbss)
2401 ;
2402 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2403 {
2404 if (sec->size != 0)
2405 {
2406 /* Remember whether there are any reloc sections other
2407 than .rela.plt. */
2408 if (sec != htab->srelplt)
2409 relocs = TRUE;
2410
2411 /* We use the reloc_count field as a counter if we need
2412 to copy relocs into the output file. */
2413 sec->reloc_count = 0;
2414 }
2415 }
2416 else
2417 {
2418 /* It's not one of our sections, so don't allocate space. */
2419 continue;
2420 }
2421
2422 if (sec->size == 0)
2423 {
2424 /* If we don't need this section, strip it from the
2425 output file. This is mostly to handle .rela.bss and
2426 .rela.plt. We must create both sections in
2427 create_dynamic_sections, because they must be created
2428 before the linker maps input sections to output
2429 sections. The linker does that before
2430 adjust_dynamic_symbol is called, and it is that
2431 function which decides whether anything needs to go
2432 into these sections. */
2433 sec->flags |= SEC_EXCLUDE;
2434 continue;
2435 }
2436
2437 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2438 continue;
2439
2440 /* Allocate memory for the section contents. Zero it, because
2441 we may not fill in all the reloc sections. */
2442 sec->contents = bfd_zalloc (dynobj, sec->size);
2443 if (sec->contents == NULL)
2444 return FALSE;
2445 }
2446
2447 if (htab->etab.dynamic_sections_created)
2448 {
2449 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2450 actually has nothing to do with the PLT, it is how we
2451 communicate the LTP value of a load module to the dynamic
2452 linker. */
2453 #define add_dynamic_entry(TAG, VAL) \
2454 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2455
2456 if (!add_dynamic_entry (DT_PLTGOT, 0))
2457 return FALSE;
2458
2459 /* Add some entries to the .dynamic section. We fill in the
2460 values later, in elf32_hppa_finish_dynamic_sections, but we
2461 must add the entries now so that we get the correct size for
2462 the .dynamic section. The DT_DEBUG entry is filled in by the
2463 dynamic linker and used by the debugger. */
2464 if (info->executable)
2465 {
2466 if (!add_dynamic_entry (DT_DEBUG, 0))
2467 return FALSE;
2468 }
2469
2470 if (htab->srelplt->size != 0)
2471 {
2472 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2473 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2474 || !add_dynamic_entry (DT_JMPREL, 0))
2475 return FALSE;
2476 }
2477
2478 if (relocs)
2479 {
2480 if (!add_dynamic_entry (DT_RELA, 0)
2481 || !add_dynamic_entry (DT_RELASZ, 0)
2482 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2483 return FALSE;
2484
2485 /* If any dynamic relocs apply to a read-only section,
2486 then we need a DT_TEXTREL entry. */
2487 if ((info->flags & DF_TEXTREL) == 0)
2488 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2489
2490 if ((info->flags & DF_TEXTREL) != 0)
2491 {
2492 if (!add_dynamic_entry (DT_TEXTREL, 0))
2493 return FALSE;
2494 }
2495 }
2496 }
2497 #undef add_dynamic_entry
2498
2499 return TRUE;
2500 }
2501
2502 /* External entry points for sizing and building linker stubs. */
2503
2504 /* Set up various things so that we can make a list of input sections
2505 for each output section included in the link. Returns -1 on error,
2506 0 when no stubs will be needed, and 1 on success. */
2507
2508 int
2509 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2510 {
2511 bfd *input_bfd;
2512 unsigned int bfd_count;
2513 int top_id, top_index;
2514 asection *section;
2515 asection **input_list, **list;
2516 bfd_size_type amt;
2517 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2518
2519 if (htab == NULL)
2520 return -1;
2521
2522 /* Count the number of input BFDs and find the top input section id. */
2523 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2524 input_bfd != NULL;
2525 input_bfd = input_bfd->link_next)
2526 {
2527 bfd_count += 1;
2528 for (section = input_bfd->sections;
2529 section != NULL;
2530 section = section->next)
2531 {
2532 if (top_id < section->id)
2533 top_id = section->id;
2534 }
2535 }
2536 htab->bfd_count = bfd_count;
2537
2538 amt = sizeof (struct map_stub) * (top_id + 1);
2539 htab->stub_group = bfd_zmalloc (amt);
2540 if (htab->stub_group == NULL)
2541 return -1;
2542
2543 /* We can't use output_bfd->section_count here to find the top output
2544 section index as some sections may have been removed, and
2545 strip_excluded_output_sections doesn't renumber the indices. */
2546 for (section = output_bfd->sections, top_index = 0;
2547 section != NULL;
2548 section = section->next)
2549 {
2550 if (top_index < section->index)
2551 top_index = section->index;
2552 }
2553
2554 htab->top_index = top_index;
2555 amt = sizeof (asection *) * (top_index + 1);
2556 input_list = bfd_malloc (amt);
2557 htab->input_list = input_list;
2558 if (input_list == NULL)
2559 return -1;
2560
2561 /* For sections we aren't interested in, mark their entries with a
2562 value we can check later. */
2563 list = input_list + top_index;
2564 do
2565 *list = bfd_abs_section_ptr;
2566 while (list-- != input_list);
2567
2568 for (section = output_bfd->sections;
2569 section != NULL;
2570 section = section->next)
2571 {
2572 if ((section->flags & SEC_CODE) != 0)
2573 input_list[section->index] = NULL;
2574 }
2575
2576 return 1;
2577 }
2578
2579 /* The linker repeatedly calls this function for each input section,
2580 in the order that input sections are linked into output sections.
2581 Build lists of input sections to determine groupings between which
2582 we may insert linker stubs. */
2583
2584 void
2585 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2586 {
2587 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2588
2589 if (htab == NULL)
2590 return;
2591
2592 if (isec->output_section->index <= htab->top_index)
2593 {
2594 asection **list = htab->input_list + isec->output_section->index;
2595 if (*list != bfd_abs_section_ptr)
2596 {
2597 /* Steal the link_sec pointer for our list. */
2598 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2599 /* This happens to make the list in reverse order,
2600 which is what we want. */
2601 PREV_SEC (isec) = *list;
2602 *list = isec;
2603 }
2604 }
2605 }
2606
2607 /* See whether we can group stub sections together. Grouping stub
2608 sections may result in fewer stubs. More importantly, we need to
2609 put all .init* and .fini* stubs at the beginning of the .init or
2610 .fini output sections respectively, because glibc splits the
2611 _init and _fini functions into multiple parts. Putting a stub in
2612 the middle of a function is not a good idea. */
2613
2614 static void
2615 group_sections (struct elf32_hppa_link_hash_table *htab,
2616 bfd_size_type stub_group_size,
2617 bfd_boolean stubs_always_before_branch)
2618 {
2619 asection **list = htab->input_list + htab->top_index;
2620 do
2621 {
2622 asection *tail = *list;
2623 if (tail == bfd_abs_section_ptr)
2624 continue;
2625 while (tail != NULL)
2626 {
2627 asection *curr;
2628 asection *prev;
2629 bfd_size_type total;
2630 bfd_boolean big_sec;
2631
2632 curr = tail;
2633 total = tail->size;
2634 big_sec = total >= stub_group_size;
2635
2636 while ((prev = PREV_SEC (curr)) != NULL
2637 && ((total += curr->output_offset - prev->output_offset)
2638 < stub_group_size))
2639 curr = prev;
2640
2641 /* OK, the size from the start of CURR to the end is less
2642 than 240000 bytes and thus can be handled by one stub
2643 section. (or the tail section is itself larger than
2644 240000 bytes, in which case we may be toast.)
2645 We should really be keeping track of the total size of
2646 stubs added here, as stubs contribute to the final output
2647 section size. That's a little tricky, and this way will
2648 only break if stubs added total more than 22144 bytes, or
2649 2768 long branch stubs. It seems unlikely for more than
2650 2768 different functions to be called, especially from
2651 code only 240000 bytes long. This limit used to be
2652 250000, but c++ code tends to generate lots of little
2653 functions, and sometimes violated the assumption. */
2654 do
2655 {
2656 prev = PREV_SEC (tail);
2657 /* Set up this stub group. */
2658 htab->stub_group[tail->id].link_sec = curr;
2659 }
2660 while (tail != curr && (tail = prev) != NULL);
2661
2662 /* But wait, there's more! Input sections up to 240000
2663 bytes before the stub section can be handled by it too.
2664 Don't do this if we have a really large section after the
2665 stubs, as adding more stubs increases the chance that
2666 branches may not reach into the stub section. */
2667 if (!stubs_always_before_branch && !big_sec)
2668 {
2669 total = 0;
2670 while (prev != NULL
2671 && ((total += tail->output_offset - prev->output_offset)
2672 < stub_group_size))
2673 {
2674 tail = prev;
2675 prev = PREV_SEC (tail);
2676 htab->stub_group[tail->id].link_sec = curr;
2677 }
2678 }
2679 tail = prev;
2680 }
2681 }
2682 while (list-- != htab->input_list);
2683 free (htab->input_list);
2684 #undef PREV_SEC
2685 }
2686
2687 /* Read in all local syms for all input bfds, and create hash entries
2688 for export stubs if we are building a multi-subspace shared lib.
2689 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2690
2691 static int
2692 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2693 {
2694 unsigned int bfd_indx;
2695 Elf_Internal_Sym *local_syms, **all_local_syms;
2696 int stub_changed = 0;
2697 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2698
2699 if (htab == NULL)
2700 return -1;
2701
2702 /* We want to read in symbol extension records only once. To do this
2703 we need to read in the local symbols in parallel and save them for
2704 later use; so hold pointers to the local symbols in an array. */
2705 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2706 all_local_syms = bfd_zmalloc (amt);
2707 htab->all_local_syms = all_local_syms;
2708 if (all_local_syms == NULL)
2709 return -1;
2710
2711 /* Walk over all the input BFDs, swapping in local symbols.
2712 If we are creating a shared library, create hash entries for the
2713 export stubs. */
2714 for (bfd_indx = 0;
2715 input_bfd != NULL;
2716 input_bfd = input_bfd->link_next, bfd_indx++)
2717 {
2718 Elf_Internal_Shdr *symtab_hdr;
2719
2720 /* We'll need the symbol table in a second. */
2721 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2722 if (symtab_hdr->sh_info == 0)
2723 continue;
2724
2725 /* We need an array of the local symbols attached to the input bfd. */
2726 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2727 if (local_syms == NULL)
2728 {
2729 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2730 symtab_hdr->sh_info, 0,
2731 NULL, NULL, NULL);
2732 /* Cache them for elf_link_input_bfd. */
2733 symtab_hdr->contents = (unsigned char *) local_syms;
2734 }
2735 if (local_syms == NULL)
2736 return -1;
2737
2738 all_local_syms[bfd_indx] = local_syms;
2739
2740 if (info->shared && htab->multi_subspace)
2741 {
2742 struct elf_link_hash_entry **eh_syms;
2743 struct elf_link_hash_entry **eh_symend;
2744 unsigned int symcount;
2745
2746 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2747 - symtab_hdr->sh_info);
2748 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2749 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2750
2751 /* Look through the global syms for functions; We need to
2752 build export stubs for all globally visible functions. */
2753 for (; eh_syms < eh_symend; eh_syms++)
2754 {
2755 struct elf32_hppa_link_hash_entry *hh;
2756
2757 hh = hppa_elf_hash_entry (*eh_syms);
2758
2759 while (hh->eh.root.type == bfd_link_hash_indirect
2760 || hh->eh.root.type == bfd_link_hash_warning)
2761 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2762
2763 /* At this point in the link, undefined syms have been
2764 resolved, so we need to check that the symbol was
2765 defined in this BFD. */
2766 if ((hh->eh.root.type == bfd_link_hash_defined
2767 || hh->eh.root.type == bfd_link_hash_defweak)
2768 && hh->eh.type == STT_FUNC
2769 && hh->eh.root.u.def.section->output_section != NULL
2770 && (hh->eh.root.u.def.section->output_section->owner
2771 == output_bfd)
2772 && hh->eh.root.u.def.section->owner == input_bfd
2773 && hh->eh.def_regular
2774 && !hh->eh.forced_local
2775 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2776 {
2777 asection *sec;
2778 const char *stub_name;
2779 struct elf32_hppa_stub_hash_entry *hsh;
2780
2781 sec = hh->eh.root.u.def.section;
2782 stub_name = hh_name (hh);
2783 hsh = hppa_stub_hash_lookup (&htab->bstab,
2784 stub_name,
2785 FALSE, FALSE);
2786 if (hsh == NULL)
2787 {
2788 hsh = hppa_add_stub (stub_name, sec, htab);
2789 if (!hsh)
2790 return -1;
2791
2792 hsh->target_value = hh->eh.root.u.def.value;
2793 hsh->target_section = hh->eh.root.u.def.section;
2794 hsh->stub_type = hppa_stub_export;
2795 hsh->hh = hh;
2796 stub_changed = 1;
2797 }
2798 else
2799 {
2800 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2801 input_bfd,
2802 stub_name);
2803 }
2804 }
2805 }
2806 }
2807 }
2808
2809 return stub_changed;
2810 }
2811
2812 /* Determine and set the size of the stub section for a final link.
2813
2814 The basic idea here is to examine all the relocations looking for
2815 PC-relative calls to a target that is unreachable with a "bl"
2816 instruction. */
2817
2818 bfd_boolean
2819 elf32_hppa_size_stubs
2820 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2821 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2822 asection * (*add_stub_section) (const char *, asection *),
2823 void (*layout_sections_again) (void))
2824 {
2825 bfd_size_type stub_group_size;
2826 bfd_boolean stubs_always_before_branch;
2827 bfd_boolean stub_changed;
2828 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2829
2830 if (htab == NULL)
2831 return FALSE;
2832
2833 /* Stash our params away. */
2834 htab->stub_bfd = stub_bfd;
2835 htab->multi_subspace = multi_subspace;
2836 htab->add_stub_section = add_stub_section;
2837 htab->layout_sections_again = layout_sections_again;
2838 stubs_always_before_branch = group_size < 0;
2839 if (group_size < 0)
2840 stub_group_size = -group_size;
2841 else
2842 stub_group_size = group_size;
2843 if (stub_group_size == 1)
2844 {
2845 /* Default values. */
2846 if (stubs_always_before_branch)
2847 {
2848 stub_group_size = 7680000;
2849 if (htab->has_17bit_branch || htab->multi_subspace)
2850 stub_group_size = 240000;
2851 if (htab->has_12bit_branch)
2852 stub_group_size = 7500;
2853 }
2854 else
2855 {
2856 stub_group_size = 6971392;
2857 if (htab->has_17bit_branch || htab->multi_subspace)
2858 stub_group_size = 217856;
2859 if (htab->has_12bit_branch)
2860 stub_group_size = 6808;
2861 }
2862 }
2863
2864 group_sections (htab, stub_group_size, stubs_always_before_branch);
2865
2866 switch (get_local_syms (output_bfd, info->input_bfds, info))
2867 {
2868 default:
2869 if (htab->all_local_syms)
2870 goto error_ret_free_local;
2871 return FALSE;
2872
2873 case 0:
2874 stub_changed = FALSE;
2875 break;
2876
2877 case 1:
2878 stub_changed = TRUE;
2879 break;
2880 }
2881
2882 while (1)
2883 {
2884 bfd *input_bfd;
2885 unsigned int bfd_indx;
2886 asection *stub_sec;
2887
2888 for (input_bfd = info->input_bfds, bfd_indx = 0;
2889 input_bfd != NULL;
2890 input_bfd = input_bfd->link_next, bfd_indx++)
2891 {
2892 Elf_Internal_Shdr *symtab_hdr;
2893 asection *section;
2894 Elf_Internal_Sym *local_syms;
2895
2896 /* We'll need the symbol table in a second. */
2897 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2898 if (symtab_hdr->sh_info == 0)
2899 continue;
2900
2901 local_syms = htab->all_local_syms[bfd_indx];
2902
2903 /* Walk over each section attached to the input bfd. */
2904 for (section = input_bfd->sections;
2905 section != NULL;
2906 section = section->next)
2907 {
2908 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2909
2910 /* If there aren't any relocs, then there's nothing more
2911 to do. */
2912 if ((section->flags & SEC_RELOC) == 0
2913 || section->reloc_count == 0)
2914 continue;
2915
2916 /* If this section is a link-once section that will be
2917 discarded, then don't create any stubs. */
2918 if (section->output_section == NULL
2919 || section->output_section->owner != output_bfd)
2920 continue;
2921
2922 /* Get the relocs. */
2923 internal_relocs
2924 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2925 info->keep_memory);
2926 if (internal_relocs == NULL)
2927 goto error_ret_free_local;
2928
2929 /* Now examine each relocation. */
2930 irela = internal_relocs;
2931 irelaend = irela + section->reloc_count;
2932 for (; irela < irelaend; irela++)
2933 {
2934 unsigned int r_type, r_indx;
2935 enum elf32_hppa_stub_type stub_type;
2936 struct elf32_hppa_stub_hash_entry *hsh;
2937 asection *sym_sec;
2938 bfd_vma sym_value;
2939 bfd_vma destination;
2940 struct elf32_hppa_link_hash_entry *hh;
2941 char *stub_name;
2942 const asection *id_sec;
2943
2944 r_type = ELF32_R_TYPE (irela->r_info);
2945 r_indx = ELF32_R_SYM (irela->r_info);
2946
2947 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2948 {
2949 bfd_set_error (bfd_error_bad_value);
2950 error_ret_free_internal:
2951 if (elf_section_data (section)->relocs == NULL)
2952 free (internal_relocs);
2953 goto error_ret_free_local;
2954 }
2955
2956 /* Only look for stubs on call instructions. */
2957 if (r_type != (unsigned int) R_PARISC_PCREL12F
2958 && r_type != (unsigned int) R_PARISC_PCREL17F
2959 && r_type != (unsigned int) R_PARISC_PCREL22F)
2960 continue;
2961
2962 /* Now determine the call target, its name, value,
2963 section. */
2964 sym_sec = NULL;
2965 sym_value = 0;
2966 destination = 0;
2967 hh = NULL;
2968 if (r_indx < symtab_hdr->sh_info)
2969 {
2970 /* It's a local symbol. */
2971 Elf_Internal_Sym *sym;
2972 Elf_Internal_Shdr *hdr;
2973 unsigned int shndx;
2974
2975 sym = local_syms + r_indx;
2976 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2977 sym_value = sym->st_value;
2978 shndx = sym->st_shndx;
2979 if (shndx < elf_numsections (input_bfd))
2980 {
2981 hdr = elf_elfsections (input_bfd)[shndx];
2982 sym_sec = hdr->bfd_section;
2983 destination = (sym_value + irela->r_addend
2984 + sym_sec->output_offset
2985 + sym_sec->output_section->vma);
2986 }
2987 }
2988 else
2989 {
2990 /* It's an external symbol. */
2991 int e_indx;
2992
2993 e_indx = r_indx - symtab_hdr->sh_info;
2994 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2995
2996 while (hh->eh.root.type == bfd_link_hash_indirect
2997 || hh->eh.root.type == bfd_link_hash_warning)
2998 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2999
3000 if (hh->eh.root.type == bfd_link_hash_defined
3001 || hh->eh.root.type == bfd_link_hash_defweak)
3002 {
3003 sym_sec = hh->eh.root.u.def.section;
3004 sym_value = hh->eh.root.u.def.value;
3005 if (sym_sec->output_section != NULL)
3006 destination = (sym_value + irela->r_addend
3007 + sym_sec->output_offset
3008 + sym_sec->output_section->vma);
3009 }
3010 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3011 {
3012 if (! info->shared)
3013 continue;
3014 }
3015 else if (hh->eh.root.type == bfd_link_hash_undefined)
3016 {
3017 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3018 && (ELF_ST_VISIBILITY (hh->eh.other)
3019 == STV_DEFAULT)
3020 && hh->eh.type != STT_PARISC_MILLI))
3021 continue;
3022 }
3023 else
3024 {
3025 bfd_set_error (bfd_error_bad_value);
3026 goto error_ret_free_internal;
3027 }
3028 }
3029
3030 /* Determine what (if any) linker stub is needed. */
3031 stub_type = hppa_type_of_stub (section, irela, hh,
3032 destination, info);
3033 if (stub_type == hppa_stub_none)
3034 continue;
3035
3036 /* Support for grouping stub sections. */
3037 id_sec = htab->stub_group[section->id].link_sec;
3038
3039 /* Get the name of this stub. */
3040 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3041 if (!stub_name)
3042 goto error_ret_free_internal;
3043
3044 hsh = hppa_stub_hash_lookup (&htab->bstab,
3045 stub_name,
3046 FALSE, FALSE);
3047 if (hsh != NULL)
3048 {
3049 /* The proper stub has already been created. */
3050 free (stub_name);
3051 continue;
3052 }
3053
3054 hsh = hppa_add_stub (stub_name, section, htab);
3055 if (hsh == NULL)
3056 {
3057 free (stub_name);
3058 goto error_ret_free_internal;
3059 }
3060
3061 hsh->target_value = sym_value;
3062 hsh->target_section = sym_sec;
3063 hsh->stub_type = stub_type;
3064 if (info->shared)
3065 {
3066 if (stub_type == hppa_stub_import)
3067 hsh->stub_type = hppa_stub_import_shared;
3068 else if (stub_type == hppa_stub_long_branch)
3069 hsh->stub_type = hppa_stub_long_branch_shared;
3070 }
3071 hsh->hh = hh;
3072 stub_changed = TRUE;
3073 }
3074
3075 /* We're done with the internal relocs, free them. */
3076 if (elf_section_data (section)->relocs == NULL)
3077 free (internal_relocs);
3078 }
3079 }
3080
3081 if (!stub_changed)
3082 break;
3083
3084 /* OK, we've added some stubs. Find out the new size of the
3085 stub sections. */
3086 for (stub_sec = htab->stub_bfd->sections;
3087 stub_sec != NULL;
3088 stub_sec = stub_sec->next)
3089 stub_sec->size = 0;
3090
3091 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3092
3093 /* Ask the linker to do its stuff. */
3094 (*htab->layout_sections_again) ();
3095 stub_changed = FALSE;
3096 }
3097
3098 free (htab->all_local_syms);
3099 return TRUE;
3100
3101 error_ret_free_local:
3102 free (htab->all_local_syms);
3103 return FALSE;
3104 }
3105
3106 /* For a final link, this function is called after we have sized the
3107 stubs to provide a value for __gp. */
3108
3109 bfd_boolean
3110 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3111 {
3112 struct bfd_link_hash_entry *h;
3113 asection *sec = NULL;
3114 bfd_vma gp_val = 0;
3115 struct elf32_hppa_link_hash_table *htab;
3116
3117 htab = hppa_link_hash_table (info);
3118 if (htab == NULL)
3119 return FALSE;
3120
3121 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3122
3123 if (h != NULL
3124 && (h->type == bfd_link_hash_defined
3125 || h->type == bfd_link_hash_defweak))
3126 {
3127 gp_val = h->u.def.value;
3128 sec = h->u.def.section;
3129 }
3130 else
3131 {
3132 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3133 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3134
3135 /* Choose to point our LTP at, in this order, one of .plt, .got,
3136 or .data, if these sections exist. In the case of choosing
3137 .plt try to make the LTP ideal for addressing anywhere in the
3138 .plt or .got with a 14 bit signed offset. Typically, the end
3139 of the .plt is the start of the .got, so choose .plt + 0x2000
3140 if either the .plt or .got is larger than 0x2000. If both
3141 the .plt and .got are smaller than 0x2000, choose the end of
3142 the .plt section. */
3143 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3144 ? NULL : splt;
3145 if (sec != NULL)
3146 {
3147 gp_val = sec->size;
3148 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3149 {
3150 gp_val = 0x2000;
3151 }
3152 }
3153 else
3154 {
3155 sec = sgot;
3156 if (sec != NULL)
3157 {
3158 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3159 {
3160 /* We know we don't have a .plt. If .got is large,
3161 offset our LTP. */
3162 if (sec->size > 0x2000)
3163 gp_val = 0x2000;
3164 }
3165 }
3166 else
3167 {
3168 /* No .plt or .got. Who cares what the LTP is? */
3169 sec = bfd_get_section_by_name (abfd, ".data");
3170 }
3171 }
3172
3173 if (h != NULL)
3174 {
3175 h->type = bfd_link_hash_defined;
3176 h->u.def.value = gp_val;
3177 if (sec != NULL)
3178 h->u.def.section = sec;
3179 else
3180 h->u.def.section = bfd_abs_section_ptr;
3181 }
3182 }
3183
3184 if (sec != NULL && sec->output_section != NULL)
3185 gp_val += sec->output_section->vma + sec->output_offset;
3186
3187 elf_gp (abfd) = gp_val;
3188 return TRUE;
3189 }
3190
3191 /* Build all the stubs associated with the current output file. The
3192 stubs are kept in a hash table attached to the main linker hash
3193 table. We also set up the .plt entries for statically linked PIC
3194 functions here. This function is called via hppaelf_finish in the
3195 linker. */
3196
3197 bfd_boolean
3198 elf32_hppa_build_stubs (struct bfd_link_info *info)
3199 {
3200 asection *stub_sec;
3201 struct bfd_hash_table *table;
3202 struct elf32_hppa_link_hash_table *htab;
3203
3204 htab = hppa_link_hash_table (info);
3205 if (htab == NULL)
3206 return FALSE;
3207
3208 for (stub_sec = htab->stub_bfd->sections;
3209 stub_sec != NULL;
3210 stub_sec = stub_sec->next)
3211 {
3212 bfd_size_type size;
3213
3214 /* Allocate memory to hold the linker stubs. */
3215 size = stub_sec->size;
3216 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3217 if (stub_sec->contents == NULL && size != 0)
3218 return FALSE;
3219 stub_sec->size = 0;
3220 }
3221
3222 /* Build the stubs as directed by the stub hash table. */
3223 table = &htab->bstab;
3224 bfd_hash_traverse (table, hppa_build_one_stub, info);
3225
3226 return TRUE;
3227 }
3228
3229 /* Return the base vma address which should be subtracted from the real
3230 address when resolving a dtpoff relocation.
3231 This is PT_TLS segment p_vaddr. */
3232
3233 static bfd_vma
3234 dtpoff_base (struct bfd_link_info *info)
3235 {
3236 /* If tls_sec is NULL, we should have signalled an error already. */
3237 if (elf_hash_table (info)->tls_sec == NULL)
3238 return 0;
3239 return elf_hash_table (info)->tls_sec->vma;
3240 }
3241
3242 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3243
3244 static bfd_vma
3245 tpoff (struct bfd_link_info *info, bfd_vma address)
3246 {
3247 struct elf_link_hash_table *htab = elf_hash_table (info);
3248
3249 /* If tls_sec is NULL, we should have signalled an error already. */
3250 if (htab->tls_sec == NULL)
3251 return 0;
3252 /* hppa TLS ABI is variant I and static TLS block start just after
3253 tcbhead structure which has 2 pointer fields. */
3254 return (address - htab->tls_sec->vma
3255 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3256 }
3257
3258 /* Perform a final link. */
3259
3260 static bfd_boolean
3261 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3262 {
3263 /* Invoke the regular ELF linker to do all the work. */
3264 if (!bfd_elf_final_link (abfd, info))
3265 return FALSE;
3266
3267 /* If we're producing a final executable, sort the contents of the
3268 unwind section. */
3269 if (info->relocatable)
3270 return TRUE;
3271
3272 return elf_hppa_sort_unwind (abfd);
3273 }
3274
3275 /* Record the lowest address for the data and text segments. */
3276
3277 static void
3278 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3279 {
3280 struct elf32_hppa_link_hash_table *htab;
3281
3282 htab = (struct elf32_hppa_link_hash_table*) data;
3283 if (htab == NULL)
3284 return;
3285
3286 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3287 {
3288 bfd_vma value;
3289 Elf_Internal_Phdr *p;
3290
3291 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3292 BFD_ASSERT (p != NULL);
3293 value = p->p_vaddr;
3294
3295 if ((section->flags & SEC_READONLY) != 0)
3296 {
3297 if (value < htab->text_segment_base)
3298 htab->text_segment_base = value;
3299 }
3300 else
3301 {
3302 if (value < htab->data_segment_base)
3303 htab->data_segment_base = value;
3304 }
3305 }
3306 }
3307
3308 /* Perform a relocation as part of a final link. */
3309
3310 static bfd_reloc_status_type
3311 final_link_relocate (asection *input_section,
3312 bfd_byte *contents,
3313 const Elf_Internal_Rela *rela,
3314 bfd_vma value,
3315 struct elf32_hppa_link_hash_table *htab,
3316 asection *sym_sec,
3317 struct elf32_hppa_link_hash_entry *hh,
3318 struct bfd_link_info *info)
3319 {
3320 int insn;
3321 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3322 unsigned int orig_r_type = r_type;
3323 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3324 int r_format = howto->bitsize;
3325 enum hppa_reloc_field_selector_type_alt r_field;
3326 bfd *input_bfd = input_section->owner;
3327 bfd_vma offset = rela->r_offset;
3328 bfd_vma max_branch_offset = 0;
3329 bfd_byte *hit_data = contents + offset;
3330 bfd_signed_vma addend = rela->r_addend;
3331 bfd_vma location;
3332 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3333 int val;
3334
3335 if (r_type == R_PARISC_NONE)
3336 return bfd_reloc_ok;
3337
3338 insn = bfd_get_32 (input_bfd, hit_data);
3339
3340 /* Find out where we are and where we're going. */
3341 location = (offset +
3342 input_section->output_offset +
3343 input_section->output_section->vma);
3344
3345 /* If we are not building a shared library, convert DLTIND relocs to
3346 DPREL relocs. */
3347 if (!info->shared)
3348 {
3349 switch (r_type)
3350 {
3351 case R_PARISC_DLTIND21L:
3352 case R_PARISC_TLS_GD21L:
3353 case R_PARISC_TLS_LDM21L:
3354 case R_PARISC_TLS_IE21L:
3355 r_type = R_PARISC_DPREL21L;
3356 break;
3357
3358 case R_PARISC_DLTIND14R:
3359 case R_PARISC_TLS_GD14R:
3360 case R_PARISC_TLS_LDM14R:
3361 case R_PARISC_TLS_IE14R:
3362 r_type = R_PARISC_DPREL14R;
3363 break;
3364
3365 case R_PARISC_DLTIND14F:
3366 r_type = R_PARISC_DPREL14F;
3367 break;
3368 }
3369 }
3370
3371 switch (r_type)
3372 {
3373 case R_PARISC_PCREL12F:
3374 case R_PARISC_PCREL17F:
3375 case R_PARISC_PCREL22F:
3376 /* If this call should go via the plt, find the import stub in
3377 the stub hash. */
3378 if (sym_sec == NULL
3379 || sym_sec->output_section == NULL
3380 || (hh != NULL
3381 && hh->eh.plt.offset != (bfd_vma) -1
3382 && hh->eh.dynindx != -1
3383 && !hh->plabel
3384 && (info->shared
3385 || !hh->eh.def_regular
3386 || hh->eh.root.type == bfd_link_hash_defweak)))
3387 {
3388 hsh = hppa_get_stub_entry (input_section, sym_sec,
3389 hh, rela, htab);
3390 if (hsh != NULL)
3391 {
3392 value = (hsh->stub_offset
3393 + hsh->stub_sec->output_offset
3394 + hsh->stub_sec->output_section->vma);
3395 addend = 0;
3396 }
3397 else if (sym_sec == NULL && hh != NULL
3398 && hh->eh.root.type == bfd_link_hash_undefweak)
3399 {
3400 /* It's OK if undefined weak. Calls to undefined weak
3401 symbols behave as if the "called" function
3402 immediately returns. We can thus call to a weak
3403 function without first checking whether the function
3404 is defined. */
3405 value = location;
3406 addend = 8;
3407 }
3408 else
3409 return bfd_reloc_undefined;
3410 }
3411 /* Fall thru. */
3412
3413 case R_PARISC_PCREL21L:
3414 case R_PARISC_PCREL17C:
3415 case R_PARISC_PCREL17R:
3416 case R_PARISC_PCREL14R:
3417 case R_PARISC_PCREL14F:
3418 case R_PARISC_PCREL32:
3419 /* Make it a pc relative offset. */
3420 value -= location;
3421 addend -= 8;
3422 break;
3423
3424 case R_PARISC_DPREL21L:
3425 case R_PARISC_DPREL14R:
3426 case R_PARISC_DPREL14F:
3427 /* Convert instructions that use the linkage table pointer (r19) to
3428 instructions that use the global data pointer (dp). This is the
3429 most efficient way of using PIC code in an incomplete executable,
3430 but the user must follow the standard runtime conventions for
3431 accessing data for this to work. */
3432 if (orig_r_type != r_type)
3433 {
3434 if (r_type == R_PARISC_DPREL21L)
3435 {
3436 /* GCC sometimes uses a register other than r19 for the
3437 operation, so we must convert any addil instruction
3438 that uses this relocation. */
3439 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3440 insn = ADDIL_DP;
3441 else
3442 /* We must have a ldil instruction. It's too hard to find
3443 and convert the associated add instruction, so issue an
3444 error. */
3445 (*_bfd_error_handler)
3446 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3447 input_bfd,
3448 input_section,
3449 (long) offset,
3450 howto->name,
3451 insn);
3452 }
3453 else if (r_type == R_PARISC_DPREL14F)
3454 {
3455 /* This must be a format 1 load/store. Change the base
3456 register to dp. */
3457 insn = (insn & 0xfc1ffff) | (27 << 21);
3458 }
3459 }
3460
3461 /* For all the DP relative relocations, we need to examine the symbol's
3462 section. If it has no section or if it's a code section, then
3463 "data pointer relative" makes no sense. In that case we don't
3464 adjust the "value", and for 21 bit addil instructions, we change the
3465 source addend register from %dp to %r0. This situation commonly
3466 arises for undefined weak symbols and when a variable's "constness"
3467 is declared differently from the way the variable is defined. For
3468 instance: "extern int foo" with foo defined as "const int foo". */
3469 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3470 {
3471 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3472 == (((int) OP_ADDIL << 26) | (27 << 21)))
3473 {
3474 insn &= ~ (0x1f << 21);
3475 }
3476 /* Now try to make things easy for the dynamic linker. */
3477
3478 break;
3479 }
3480 /* Fall thru. */
3481
3482 case R_PARISC_DLTIND21L:
3483 case R_PARISC_DLTIND14R:
3484 case R_PARISC_DLTIND14F:
3485 case R_PARISC_TLS_GD21L:
3486 case R_PARISC_TLS_LDM21L:
3487 case R_PARISC_TLS_IE21L:
3488 case R_PARISC_TLS_GD14R:
3489 case R_PARISC_TLS_LDM14R:
3490 case R_PARISC_TLS_IE14R:
3491 value -= elf_gp (input_section->output_section->owner);
3492 break;
3493
3494 case R_PARISC_SEGREL32:
3495 if ((sym_sec->flags & SEC_CODE) != 0)
3496 value -= htab->text_segment_base;
3497 else
3498 value -= htab->data_segment_base;
3499 break;
3500
3501 default:
3502 break;
3503 }
3504
3505 switch (r_type)
3506 {
3507 case R_PARISC_DIR32:
3508 case R_PARISC_DIR14F:
3509 case R_PARISC_DIR17F:
3510 case R_PARISC_PCREL17C:
3511 case R_PARISC_PCREL14F:
3512 case R_PARISC_PCREL32:
3513 case R_PARISC_DPREL14F:
3514 case R_PARISC_PLABEL32:
3515 case R_PARISC_DLTIND14F:
3516 case R_PARISC_SEGBASE:
3517 case R_PARISC_SEGREL32:
3518 case R_PARISC_TLS_DTPMOD32:
3519 case R_PARISC_TLS_DTPOFF32:
3520 case R_PARISC_TLS_TPREL32:
3521 r_field = e_fsel;
3522 break;
3523
3524 case R_PARISC_DLTIND21L:
3525 case R_PARISC_PCREL21L:
3526 case R_PARISC_PLABEL21L:
3527 r_field = e_lsel;
3528 break;
3529
3530 case R_PARISC_DIR21L:
3531 case R_PARISC_DPREL21L:
3532 case R_PARISC_TLS_GD21L:
3533 case R_PARISC_TLS_LDM21L:
3534 case R_PARISC_TLS_LDO21L:
3535 case R_PARISC_TLS_IE21L:
3536 case R_PARISC_TLS_LE21L:
3537 r_field = e_lrsel;
3538 break;
3539
3540 case R_PARISC_PCREL17R:
3541 case R_PARISC_PCREL14R:
3542 case R_PARISC_PLABEL14R:
3543 case R_PARISC_DLTIND14R:
3544 r_field = e_rsel;
3545 break;
3546
3547 case R_PARISC_DIR17R:
3548 case R_PARISC_DIR14R:
3549 case R_PARISC_DPREL14R:
3550 case R_PARISC_TLS_GD14R:
3551 case R_PARISC_TLS_LDM14R:
3552 case R_PARISC_TLS_LDO14R:
3553 case R_PARISC_TLS_IE14R:
3554 case R_PARISC_TLS_LE14R:
3555 r_field = e_rrsel;
3556 break;
3557
3558 case R_PARISC_PCREL12F:
3559 case R_PARISC_PCREL17F:
3560 case R_PARISC_PCREL22F:
3561 r_field = e_fsel;
3562
3563 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3564 {
3565 max_branch_offset = (1 << (17-1)) << 2;
3566 }
3567 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3568 {
3569 max_branch_offset = (1 << (12-1)) << 2;
3570 }
3571 else
3572 {
3573 max_branch_offset = (1 << (22-1)) << 2;
3574 }
3575
3576 /* sym_sec is NULL on undefined weak syms or when shared on
3577 undefined syms. We've already checked for a stub for the
3578 shared undefined case. */
3579 if (sym_sec == NULL)
3580 break;
3581
3582 /* If the branch is out of reach, then redirect the
3583 call to the local stub for this function. */
3584 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3585 {
3586 hsh = hppa_get_stub_entry (input_section, sym_sec,
3587 hh, rela, htab);
3588 if (hsh == NULL)
3589 return bfd_reloc_undefined;
3590
3591 /* Munge up the value and addend so that we call the stub
3592 rather than the procedure directly. */
3593 value = (hsh->stub_offset
3594 + hsh->stub_sec->output_offset
3595 + hsh->stub_sec->output_section->vma
3596 - location);
3597 addend = -8;
3598 }
3599 break;
3600
3601 /* Something we don't know how to handle. */
3602 default:
3603 return bfd_reloc_notsupported;
3604 }
3605
3606 /* Make sure we can reach the stub. */
3607 if (max_branch_offset != 0
3608 && value + addend + max_branch_offset >= 2*max_branch_offset)
3609 {
3610 (*_bfd_error_handler)
3611 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3612 input_bfd,
3613 input_section,
3614 (long) offset,
3615 hsh->bh_root.string);
3616 bfd_set_error (bfd_error_bad_value);
3617 return bfd_reloc_notsupported;
3618 }
3619
3620 val = hppa_field_adjust (value, addend, r_field);
3621
3622 switch (r_type)
3623 {
3624 case R_PARISC_PCREL12F:
3625 case R_PARISC_PCREL17C:
3626 case R_PARISC_PCREL17F:
3627 case R_PARISC_PCREL17R:
3628 case R_PARISC_PCREL22F:
3629 case R_PARISC_DIR17F:
3630 case R_PARISC_DIR17R:
3631 /* This is a branch. Divide the offset by four.
3632 Note that we need to decide whether it's a branch or
3633 otherwise by inspecting the reloc. Inspecting insn won't
3634 work as insn might be from a .word directive. */
3635 val >>= 2;
3636 break;
3637
3638 default:
3639 break;
3640 }
3641
3642 insn = hppa_rebuild_insn (insn, val, r_format);
3643
3644 /* Update the instruction word. */
3645 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3646 return bfd_reloc_ok;
3647 }
3648
3649 /* Relocate an HPPA ELF section. */
3650
3651 static bfd_boolean
3652 elf32_hppa_relocate_section (bfd *output_bfd,
3653 struct bfd_link_info *info,
3654 bfd *input_bfd,
3655 asection *input_section,
3656 bfd_byte *contents,
3657 Elf_Internal_Rela *relocs,
3658 Elf_Internal_Sym *local_syms,
3659 asection **local_sections)
3660 {
3661 bfd_vma *local_got_offsets;
3662 struct elf32_hppa_link_hash_table *htab;
3663 Elf_Internal_Shdr *symtab_hdr;
3664 Elf_Internal_Rela *rela;
3665 Elf_Internal_Rela *relend;
3666
3667 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3668
3669 htab = hppa_link_hash_table (info);
3670 if (htab == NULL)
3671 return FALSE;
3672
3673 local_got_offsets = elf_local_got_offsets (input_bfd);
3674
3675 rela = relocs;
3676 relend = relocs + input_section->reloc_count;
3677 for (; rela < relend; rela++)
3678 {
3679 unsigned int r_type;
3680 reloc_howto_type *howto;
3681 unsigned int r_symndx;
3682 struct elf32_hppa_link_hash_entry *hh;
3683 Elf_Internal_Sym *sym;
3684 asection *sym_sec;
3685 bfd_vma relocation;
3686 bfd_reloc_status_type rstatus;
3687 const char *sym_name;
3688 bfd_boolean plabel;
3689 bfd_boolean warned_undef;
3690
3691 r_type = ELF32_R_TYPE (rela->r_info);
3692 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3693 {
3694 bfd_set_error (bfd_error_bad_value);
3695 return FALSE;
3696 }
3697 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3698 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3699 continue;
3700
3701 r_symndx = ELF32_R_SYM (rela->r_info);
3702 hh = NULL;
3703 sym = NULL;
3704 sym_sec = NULL;
3705 warned_undef = FALSE;
3706 if (r_symndx < symtab_hdr->sh_info)
3707 {
3708 /* This is a local symbol, h defaults to NULL. */
3709 sym = local_syms + r_symndx;
3710 sym_sec = local_sections[r_symndx];
3711 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3712 }
3713 else
3714 {
3715 struct elf_link_hash_entry *eh;
3716 bfd_boolean unresolved_reloc;
3717 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3718
3719 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3720 r_symndx, symtab_hdr, sym_hashes,
3721 eh, sym_sec, relocation,
3722 unresolved_reloc, warned_undef);
3723
3724 if (!info->relocatable
3725 && relocation == 0
3726 && eh->root.type != bfd_link_hash_defined
3727 && eh->root.type != bfd_link_hash_defweak
3728 && eh->root.type != bfd_link_hash_undefweak)
3729 {
3730 if (info->unresolved_syms_in_objects == RM_IGNORE
3731 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3732 && eh->type == STT_PARISC_MILLI)
3733 {
3734 if (! info->callbacks->undefined_symbol
3735 (info, eh_name (eh), input_bfd,
3736 input_section, rela->r_offset, FALSE))
3737 return FALSE;
3738 warned_undef = TRUE;
3739 }
3740 }
3741 hh = hppa_elf_hash_entry (eh);
3742 }
3743
3744 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3745 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3746 rela, relend,
3747 elf_hppa_howto_table + r_type,
3748 contents);
3749
3750 if (info->relocatable)
3751 continue;
3752
3753 /* Do any required modifications to the relocation value, and
3754 determine what types of dynamic info we need to output, if
3755 any. */
3756 plabel = 0;
3757 switch (r_type)
3758 {
3759 case R_PARISC_DLTIND14F:
3760 case R_PARISC_DLTIND14R:
3761 case R_PARISC_DLTIND21L:
3762 {
3763 bfd_vma off;
3764 bfd_boolean do_got = 0;
3765
3766 /* Relocation is to the entry for this symbol in the
3767 global offset table. */
3768 if (hh != NULL)
3769 {
3770 bfd_boolean dyn;
3771
3772 off = hh->eh.got.offset;
3773 dyn = htab->etab.dynamic_sections_created;
3774 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3775 &hh->eh))
3776 {
3777 /* If we aren't going to call finish_dynamic_symbol,
3778 then we need to handle initialisation of the .got
3779 entry and create needed relocs here. Since the
3780 offset must always be a multiple of 4, we use the
3781 least significant bit to record whether we have
3782 initialised it already. */
3783 if ((off & 1) != 0)
3784 off &= ~1;
3785 else
3786 {
3787 hh->eh.got.offset |= 1;
3788 do_got = 1;
3789 }
3790 }
3791 }
3792 else
3793 {
3794 /* Local symbol case. */
3795 if (local_got_offsets == NULL)
3796 abort ();
3797
3798 off = local_got_offsets[r_symndx];
3799
3800 /* The offset must always be a multiple of 4. We use
3801 the least significant bit to record whether we have
3802 already generated the necessary reloc. */
3803 if ((off & 1) != 0)
3804 off &= ~1;
3805 else
3806 {
3807 local_got_offsets[r_symndx] |= 1;
3808 do_got = 1;
3809 }
3810 }
3811
3812 if (do_got)
3813 {
3814 if (info->shared)
3815 {
3816 /* Output a dynamic relocation for this GOT entry.
3817 In this case it is relative to the base of the
3818 object because the symbol index is zero. */
3819 Elf_Internal_Rela outrel;
3820 bfd_byte *loc;
3821 asection *sec = htab->srelgot;
3822
3823 outrel.r_offset = (off
3824 + htab->sgot->output_offset
3825 + htab->sgot->output_section->vma);
3826 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3827 outrel.r_addend = relocation;
3828 loc = sec->contents;
3829 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3830 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3831 }
3832 else
3833 bfd_put_32 (output_bfd, relocation,
3834 htab->sgot->contents + off);
3835 }
3836
3837 if (off >= (bfd_vma) -2)
3838 abort ();
3839
3840 /* Add the base of the GOT to the relocation value. */
3841 relocation = (off
3842 + htab->sgot->output_offset
3843 + htab->sgot->output_section->vma);
3844 }
3845 break;
3846
3847 case R_PARISC_SEGREL32:
3848 /* If this is the first SEGREL relocation, then initialize
3849 the segment base values. */
3850 if (htab->text_segment_base == (bfd_vma) -1)
3851 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3852 break;
3853
3854 case R_PARISC_PLABEL14R:
3855 case R_PARISC_PLABEL21L:
3856 case R_PARISC_PLABEL32:
3857 if (htab->etab.dynamic_sections_created)
3858 {
3859 bfd_vma off;
3860 bfd_boolean do_plt = 0;
3861 /* If we have a global symbol with a PLT slot, then
3862 redirect this relocation to it. */
3863 if (hh != NULL)
3864 {
3865 off = hh->eh.plt.offset;
3866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3867 &hh->eh))
3868 {
3869 /* In a non-shared link, adjust_dynamic_symbols
3870 isn't called for symbols forced local. We
3871 need to write out the plt entry here. */
3872 if ((off & 1) != 0)
3873 off &= ~1;
3874 else
3875 {
3876 hh->eh.plt.offset |= 1;
3877 do_plt = 1;
3878 }
3879 }
3880 }
3881 else
3882 {
3883 bfd_vma *local_plt_offsets;
3884
3885 if (local_got_offsets == NULL)
3886 abort ();
3887
3888 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3889 off = local_plt_offsets[r_symndx];
3890
3891 /* As for the local .got entry case, we use the last
3892 bit to record whether we've already initialised
3893 this local .plt entry. */
3894 if ((off & 1) != 0)
3895 off &= ~1;
3896 else
3897 {
3898 local_plt_offsets[r_symndx] |= 1;
3899 do_plt = 1;
3900 }
3901 }
3902
3903 if (do_plt)
3904 {
3905 if (info->shared)
3906 {
3907 /* Output a dynamic IPLT relocation for this
3908 PLT entry. */
3909 Elf_Internal_Rela outrel;
3910 bfd_byte *loc;
3911 asection *s = htab->srelplt;
3912
3913 outrel.r_offset = (off
3914 + htab->splt->output_offset
3915 + htab->splt->output_section->vma);
3916 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3917 outrel.r_addend = relocation;
3918 loc = s->contents;
3919 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3920 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3921 }
3922 else
3923 {
3924 bfd_put_32 (output_bfd,
3925 relocation,
3926 htab->splt->contents + off);
3927 bfd_put_32 (output_bfd,
3928 elf_gp (htab->splt->output_section->owner),
3929 htab->splt->contents + off + 4);
3930 }
3931 }
3932
3933 if (off >= (bfd_vma) -2)
3934 abort ();
3935
3936 /* PLABELs contain function pointers. Relocation is to
3937 the entry for the function in the .plt. The magic +2
3938 offset signals to $$dyncall that the function pointer
3939 is in the .plt and thus has a gp pointer too.
3940 Exception: Undefined PLABELs should have a value of
3941 zero. */
3942 if (hh == NULL
3943 || (hh->eh.root.type != bfd_link_hash_undefweak
3944 && hh->eh.root.type != bfd_link_hash_undefined))
3945 {
3946 relocation = (off
3947 + htab->splt->output_offset
3948 + htab->splt->output_section->vma
3949 + 2);
3950 }
3951 plabel = 1;
3952 }
3953 /* Fall through and possibly emit a dynamic relocation. */
3954
3955 case R_PARISC_DIR17F:
3956 case R_PARISC_DIR17R:
3957 case R_PARISC_DIR14F:
3958 case R_PARISC_DIR14R:
3959 case R_PARISC_DIR21L:
3960 case R_PARISC_DPREL14F:
3961 case R_PARISC_DPREL14R:
3962 case R_PARISC_DPREL21L:
3963 case R_PARISC_DIR32:
3964 if ((input_section->flags & SEC_ALLOC) == 0)
3965 break;
3966
3967 /* The reloc types handled here and this conditional
3968 expression must match the code in ..check_relocs and
3969 allocate_dynrelocs. ie. We need exactly the same condition
3970 as in ..check_relocs, with some extra conditions (dynindx
3971 test in this case) to cater for relocs removed by
3972 allocate_dynrelocs. If you squint, the non-shared test
3973 here does indeed match the one in ..check_relocs, the
3974 difference being that here we test DEF_DYNAMIC as well as
3975 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3976 which is why we can't use just that test here.
3977 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3978 there all files have not been loaded. */
3979 if ((info->shared
3980 && (hh == NULL
3981 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3982 || hh->eh.root.type != bfd_link_hash_undefweak)
3983 && (IS_ABSOLUTE_RELOC (r_type)
3984 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3985 || (!info->shared
3986 && hh != NULL
3987 && hh->eh.dynindx != -1
3988 && !hh->eh.non_got_ref
3989 && ((ELIMINATE_COPY_RELOCS
3990 && hh->eh.def_dynamic
3991 && !hh->eh.def_regular)
3992 || hh->eh.root.type == bfd_link_hash_undefweak
3993 || hh->eh.root.type == bfd_link_hash_undefined)))
3994 {
3995 Elf_Internal_Rela outrel;
3996 bfd_boolean skip;
3997 asection *sreloc;
3998 bfd_byte *loc;
3999
4000 /* When generating a shared object, these relocations
4001 are copied into the output file to be resolved at run
4002 time. */
4003
4004 outrel.r_addend = rela->r_addend;
4005 outrel.r_offset =
4006 _bfd_elf_section_offset (output_bfd, info, input_section,
4007 rela->r_offset);
4008 skip = (outrel.r_offset == (bfd_vma) -1
4009 || outrel.r_offset == (bfd_vma) -2);
4010 outrel.r_offset += (input_section->output_offset
4011 + input_section->output_section->vma);
4012
4013 if (skip)
4014 {
4015 memset (&outrel, 0, sizeof (outrel));
4016 }
4017 else if (hh != NULL
4018 && hh->eh.dynindx != -1
4019 && (plabel
4020 || !IS_ABSOLUTE_RELOC (r_type)
4021 || !info->shared
4022 || !info->symbolic
4023 || !hh->eh.def_regular))
4024 {
4025 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4026 }
4027 else /* It's a local symbol, or one marked to become local. */
4028 {
4029 int indx = 0;
4030
4031 /* Add the absolute offset of the symbol. */
4032 outrel.r_addend += relocation;
4033
4034 /* Global plabels need to be processed by the
4035 dynamic linker so that functions have at most one
4036 fptr. For this reason, we need to differentiate
4037 between global and local plabels, which we do by
4038 providing the function symbol for a global plabel
4039 reloc, and no symbol for local plabels. */
4040 if (! plabel
4041 && sym_sec != NULL
4042 && sym_sec->output_section != NULL
4043 && ! bfd_is_abs_section (sym_sec))
4044 {
4045 asection *osec;
4046
4047 osec = sym_sec->output_section;
4048 indx = elf_section_data (osec)->dynindx;
4049 if (indx == 0)
4050 {
4051 osec = htab->etab.text_index_section;
4052 indx = elf_section_data (osec)->dynindx;
4053 }
4054 BFD_ASSERT (indx != 0);
4055
4056 /* We are turning this relocation into one
4057 against a section symbol, so subtract out the
4058 output section's address but not the offset
4059 of the input section in the output section. */
4060 outrel.r_addend -= osec->vma;
4061 }
4062
4063 outrel.r_info = ELF32_R_INFO (indx, r_type);
4064 }
4065 sreloc = elf_section_data (input_section)->sreloc;
4066 if (sreloc == NULL)
4067 abort ();
4068
4069 loc = sreloc->contents;
4070 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4071 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4072 }
4073 break;
4074
4075 case R_PARISC_TLS_LDM21L:
4076 case R_PARISC_TLS_LDM14R:
4077 {
4078 bfd_vma off;
4079
4080 off = htab->tls_ldm_got.offset;
4081 if (off & 1)
4082 off &= ~1;
4083 else
4084 {
4085 Elf_Internal_Rela outrel;
4086 bfd_byte *loc;
4087
4088 outrel.r_offset = (off
4089 + htab->sgot->output_section->vma
4090 + htab->sgot->output_offset);
4091 outrel.r_addend = 0;
4092 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4093 loc = htab->srelgot->contents;
4094 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4095
4096 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4097 htab->tls_ldm_got.offset |= 1;
4098 }
4099
4100 /* Add the base of the GOT to the relocation value. */
4101 relocation = (off
4102 + htab->sgot->output_offset
4103 + htab->sgot->output_section->vma);
4104
4105 break;
4106 }
4107
4108 case R_PARISC_TLS_LDO21L:
4109 case R_PARISC_TLS_LDO14R:
4110 relocation -= dtpoff_base (info);
4111 break;
4112
4113 case R_PARISC_TLS_GD21L:
4114 case R_PARISC_TLS_GD14R:
4115 case R_PARISC_TLS_IE21L:
4116 case R_PARISC_TLS_IE14R:
4117 {
4118 bfd_vma off;
4119 int indx;
4120 char tls_type;
4121
4122 indx = 0;
4123 if (hh != NULL)
4124 {
4125 bfd_boolean dyn;
4126 dyn = htab->etab.dynamic_sections_created;
4127
4128 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4129 && (!info->shared
4130 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4131 {
4132 indx = hh->eh.dynindx;
4133 }
4134 off = hh->eh.got.offset;
4135 tls_type = hh->tls_type;
4136 }
4137 else
4138 {
4139 off = local_got_offsets[r_symndx];
4140 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4141 }
4142
4143 if (tls_type == GOT_UNKNOWN)
4144 abort ();
4145
4146 if ((off & 1) != 0)
4147 off &= ~1;
4148 else
4149 {
4150 bfd_boolean need_relocs = FALSE;
4151 Elf_Internal_Rela outrel;
4152 bfd_byte *loc = NULL;
4153 int cur_off = off;
4154
4155 /* The GOT entries have not been initialized yet. Do it
4156 now, and emit any relocations. If both an IE GOT and a
4157 GD GOT are necessary, we emit the GD first. */
4158
4159 if ((info->shared || indx != 0)
4160 && (hh == NULL
4161 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4162 || hh->eh.root.type != bfd_link_hash_undefweak))
4163 {
4164 need_relocs = TRUE;
4165 loc = htab->srelgot->contents;
4166 /* FIXME (CAO): Should this be reloc_count++ ? */
4167 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4168 }
4169
4170 if (tls_type & GOT_TLS_GD)
4171 {
4172 if (need_relocs)
4173 {
4174 outrel.r_offset = (cur_off
4175 + htab->sgot->output_section->vma
4176 + htab->sgot->output_offset);
4177 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4178 outrel.r_addend = 0;
4179 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4180 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4181 htab->srelgot->reloc_count++;
4182 loc += sizeof (Elf32_External_Rela);
4183
4184 if (indx == 0)
4185 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4186 htab->sgot->contents + cur_off + 4);
4187 else
4188 {
4189 bfd_put_32 (output_bfd, 0,
4190 htab->sgot->contents + cur_off + 4);
4191 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4192 outrel.r_offset += 4;
4193 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4194 htab->srelgot->reloc_count++;
4195 loc += sizeof (Elf32_External_Rela);
4196 }
4197 }
4198 else
4199 {
4200 /* If we are not emitting relocations for a
4201 general dynamic reference, then we must be in a
4202 static link or an executable link with the
4203 symbol binding locally. Mark it as belonging
4204 to module 1, the executable. */
4205 bfd_put_32 (output_bfd, 1,
4206 htab->sgot->contents + cur_off);
4207 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4208 htab->sgot->contents + cur_off + 4);
4209 }
4210
4211
4212 cur_off += 8;
4213 }
4214
4215 if (tls_type & GOT_TLS_IE)
4216 {
4217 if (need_relocs)
4218 {
4219 outrel.r_offset = (cur_off
4220 + htab->sgot->output_section->vma
4221 + htab->sgot->output_offset);
4222 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4223
4224 if (indx == 0)
4225 outrel.r_addend = relocation - dtpoff_base (info);
4226 else
4227 outrel.r_addend = 0;
4228
4229 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4230 htab->srelgot->reloc_count++;
4231 loc += sizeof (Elf32_External_Rela);
4232 }
4233 else
4234 bfd_put_32 (output_bfd, tpoff (info, relocation),
4235 htab->sgot->contents + cur_off);
4236
4237 cur_off += 4;
4238 }
4239
4240 if (hh != NULL)
4241 hh->eh.got.offset |= 1;
4242 else
4243 local_got_offsets[r_symndx] |= 1;
4244 }
4245
4246 if ((tls_type & GOT_TLS_GD)
4247 && r_type != R_PARISC_TLS_GD21L
4248 && r_type != R_PARISC_TLS_GD14R)
4249 off += 2 * GOT_ENTRY_SIZE;
4250
4251 /* Add the base of the GOT to the relocation value. */
4252 relocation = (off
4253 + htab->sgot->output_offset
4254 + htab->sgot->output_section->vma);
4255
4256 break;
4257 }
4258
4259 case R_PARISC_TLS_LE21L:
4260 case R_PARISC_TLS_LE14R:
4261 {
4262 relocation = tpoff (info, relocation);
4263 break;
4264 }
4265 break;
4266
4267 default:
4268 break;
4269 }
4270
4271 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4272 htab, sym_sec, hh, info);
4273
4274 if (rstatus == bfd_reloc_ok)
4275 continue;
4276
4277 if (hh != NULL)
4278 sym_name = hh_name (hh);
4279 else
4280 {
4281 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4282 symtab_hdr->sh_link,
4283 sym->st_name);
4284 if (sym_name == NULL)
4285 return FALSE;
4286 if (*sym_name == '\0')
4287 sym_name = bfd_section_name (input_bfd, sym_sec);
4288 }
4289
4290 howto = elf_hppa_howto_table + r_type;
4291
4292 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4293 {
4294 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4295 {
4296 (*_bfd_error_handler)
4297 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4298 input_bfd,
4299 input_section,
4300 (long) rela->r_offset,
4301 howto->name,
4302 sym_name);
4303 bfd_set_error (bfd_error_bad_value);
4304 return FALSE;
4305 }
4306 }
4307 else
4308 {
4309 if (!((*info->callbacks->reloc_overflow)
4310 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4311 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4312 return FALSE;
4313 }
4314 }
4315
4316 return TRUE;
4317 }
4318
4319 /* Finish up dynamic symbol handling. We set the contents of various
4320 dynamic sections here. */
4321
4322 static bfd_boolean
4323 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4324 struct bfd_link_info *info,
4325 struct elf_link_hash_entry *eh,
4326 Elf_Internal_Sym *sym)
4327 {
4328 struct elf32_hppa_link_hash_table *htab;
4329 Elf_Internal_Rela rela;
4330 bfd_byte *loc;
4331
4332 htab = hppa_link_hash_table (info);
4333 if (htab == NULL)
4334 return FALSE;
4335
4336 if (eh->plt.offset != (bfd_vma) -1)
4337 {
4338 bfd_vma value;
4339
4340 if (eh->plt.offset & 1)
4341 abort ();
4342
4343 /* This symbol has an entry in the procedure linkage table. Set
4344 it up.
4345
4346 The format of a plt entry is
4347 <funcaddr>
4348 <__gp>
4349 */
4350 value = 0;
4351 if (eh->root.type == bfd_link_hash_defined
4352 || eh->root.type == bfd_link_hash_defweak)
4353 {
4354 value = eh->root.u.def.value;
4355 if (eh->root.u.def.section->output_section != NULL)
4356 value += (eh->root.u.def.section->output_offset
4357 + eh->root.u.def.section->output_section->vma);
4358 }
4359
4360 /* Create a dynamic IPLT relocation for this entry. */
4361 rela.r_offset = (eh->plt.offset
4362 + htab->splt->output_offset
4363 + htab->splt->output_section->vma);
4364 if (eh->dynindx != -1)
4365 {
4366 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4367 rela.r_addend = 0;
4368 }
4369 else
4370 {
4371 /* This symbol has been marked to become local, and is
4372 used by a plabel so must be kept in the .plt. */
4373 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4374 rela.r_addend = value;
4375 }
4376
4377 loc = htab->srelplt->contents;
4378 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4379 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4380
4381 if (!eh->def_regular)
4382 {
4383 /* Mark the symbol as undefined, rather than as defined in
4384 the .plt section. Leave the value alone. */
4385 sym->st_shndx = SHN_UNDEF;
4386 }
4387 }
4388
4389 if (eh->got.offset != (bfd_vma) -1
4390 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4391 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4392 {
4393 /* This symbol has an entry in the global offset table. Set it
4394 up. */
4395
4396 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4397 + htab->sgot->output_offset
4398 + htab->sgot->output_section->vma);
4399
4400 /* If this is a -Bsymbolic link and the symbol is defined
4401 locally or was forced to be local because of a version file,
4402 we just want to emit a RELATIVE reloc. The entry in the
4403 global offset table will already have been initialized in the
4404 relocate_section function. */
4405 if (info->shared
4406 && (info->symbolic || eh->dynindx == -1)
4407 && eh->def_regular)
4408 {
4409 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4410 rela.r_addend = (eh->root.u.def.value
4411 + eh->root.u.def.section->output_offset
4412 + eh->root.u.def.section->output_section->vma);
4413 }
4414 else
4415 {
4416 if ((eh->got.offset & 1) != 0)
4417 abort ();
4418
4419 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4420 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4421 rela.r_addend = 0;
4422 }
4423
4424 loc = htab->srelgot->contents;
4425 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4426 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4427 }
4428
4429 if (eh->needs_copy)
4430 {
4431 asection *sec;
4432
4433 /* This symbol needs a copy reloc. Set it up. */
4434
4435 if (! (eh->dynindx != -1
4436 && (eh->root.type == bfd_link_hash_defined
4437 || eh->root.type == bfd_link_hash_defweak)))
4438 abort ();
4439
4440 sec = htab->srelbss;
4441
4442 rela.r_offset = (eh->root.u.def.value
4443 + eh->root.u.def.section->output_offset
4444 + eh->root.u.def.section->output_section->vma);
4445 rela.r_addend = 0;
4446 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4447 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4448 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4449 }
4450
4451 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4452 if (eh_name (eh)[0] == '_'
4453 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4454 || eh == htab->etab.hgot))
4455 {
4456 sym->st_shndx = SHN_ABS;
4457 }
4458
4459 return TRUE;
4460 }
4461
4462 /* Used to decide how to sort relocs in an optimal manner for the
4463 dynamic linker, before writing them out. */
4464
4465 static enum elf_reloc_type_class
4466 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4467 {
4468 /* Handle TLS relocs first; we don't want them to be marked
4469 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4470 check below. */
4471 switch ((int) ELF32_R_TYPE (rela->r_info))
4472 {
4473 case R_PARISC_TLS_DTPMOD32:
4474 case R_PARISC_TLS_DTPOFF32:
4475 case R_PARISC_TLS_TPREL32:
4476 return reloc_class_normal;
4477 }
4478
4479 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4480 return reloc_class_relative;
4481
4482 switch ((int) ELF32_R_TYPE (rela->r_info))
4483 {
4484 case R_PARISC_IPLT:
4485 return reloc_class_plt;
4486 case R_PARISC_COPY:
4487 return reloc_class_copy;
4488 default:
4489 return reloc_class_normal;
4490 }
4491 }
4492
4493 /* Finish up the dynamic sections. */
4494
4495 static bfd_boolean
4496 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4497 struct bfd_link_info *info)
4498 {
4499 bfd *dynobj;
4500 struct elf32_hppa_link_hash_table *htab;
4501 asection *sdyn;
4502 asection * sgot;
4503
4504 htab = hppa_link_hash_table (info);
4505 if (htab == NULL)
4506 return FALSE;
4507
4508 dynobj = htab->etab.dynobj;
4509
4510 sgot = htab->sgot;
4511 /* A broken linker script might have discarded the dynamic sections.
4512 Catch this here so that we do not seg-fault later on. */
4513 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4514 return FALSE;
4515
4516 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4517
4518 if (htab->etab.dynamic_sections_created)
4519 {
4520 Elf32_External_Dyn *dyncon, *dynconend;
4521
4522 if (sdyn == NULL)
4523 abort ();
4524
4525 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4526 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4527 for (; dyncon < dynconend; dyncon++)
4528 {
4529 Elf_Internal_Dyn dyn;
4530 asection *s;
4531
4532 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4533
4534 switch (dyn.d_tag)
4535 {
4536 default:
4537 continue;
4538
4539 case DT_PLTGOT:
4540 /* Use PLTGOT to set the GOT register. */
4541 dyn.d_un.d_ptr = elf_gp (output_bfd);
4542 break;
4543
4544 case DT_JMPREL:
4545 s = htab->srelplt;
4546 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4547 break;
4548
4549 case DT_PLTRELSZ:
4550 s = htab->srelplt;
4551 dyn.d_un.d_val = s->size;
4552 break;
4553
4554 case DT_RELASZ:
4555 /* Don't count procedure linkage table relocs in the
4556 overall reloc count. */
4557 s = htab->srelplt;
4558 if (s == NULL)
4559 continue;
4560 dyn.d_un.d_val -= s->size;
4561 break;
4562
4563 case DT_RELA:
4564 /* We may not be using the standard ELF linker script.
4565 If .rela.plt is the first .rela section, we adjust
4566 DT_RELA to not include it. */
4567 s = htab->srelplt;
4568 if (s == NULL)
4569 continue;
4570 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4571 continue;
4572 dyn.d_un.d_ptr += s->size;
4573 break;
4574 }
4575
4576 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4577 }
4578 }
4579
4580 if (sgot != NULL && sgot->size != 0)
4581 {
4582 /* Fill in the first entry in the global offset table.
4583 We use it to point to our dynamic section, if we have one. */
4584 bfd_put_32 (output_bfd,
4585 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4586 sgot->contents);
4587
4588 /* The second entry is reserved for use by the dynamic linker. */
4589 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4590
4591 /* Set .got entry size. */
4592 elf_section_data (sgot->output_section)
4593 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4594 }
4595
4596 if (htab->splt != NULL && htab->splt->size != 0)
4597 {
4598 /* Set plt entry size. */
4599 elf_section_data (htab->splt->output_section)
4600 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4601
4602 if (htab->need_plt_stub)
4603 {
4604 /* Set up the .plt stub. */
4605 memcpy (htab->splt->contents
4606 + htab->splt->size - sizeof (plt_stub),
4607 plt_stub, sizeof (plt_stub));
4608
4609 if ((htab->splt->output_offset
4610 + htab->splt->output_section->vma
4611 + htab->splt->size)
4612 != (sgot->output_offset
4613 + sgot->output_section->vma))
4614 {
4615 (*_bfd_error_handler)
4616 (_(".got section not immediately after .plt section"));
4617 return FALSE;
4618 }
4619 }
4620 }
4621
4622 return TRUE;
4623 }
4624
4625 /* Called when writing out an object file to decide the type of a
4626 symbol. */
4627 static int
4628 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4629 {
4630 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4631 return STT_PARISC_MILLI;
4632 else
4633 return type;
4634 }
4635
4636 /* Misc BFD support code. */
4637 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4638 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4639 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4640 #define elf_info_to_howto elf_hppa_info_to_howto
4641 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4642
4643 /* Stuff for the BFD linker. */
4644 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4645 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4646 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4647 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4648 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4649 #define elf_backend_check_relocs elf32_hppa_check_relocs
4650 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4651 #define elf_backend_fake_sections elf_hppa_fake_sections
4652 #define elf_backend_relocate_section elf32_hppa_relocate_section
4653 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4654 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4655 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4656 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4657 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4658 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4659 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4660 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4661 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4662 #define elf_backend_object_p elf32_hppa_object_p
4663 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4664 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4665 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4666 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4667 #define elf_backend_action_discarded elf_hppa_action_discarded
4668
4669 #define elf_backend_can_gc_sections 1
4670 #define elf_backend_can_refcount 1
4671 #define elf_backend_plt_alignment 2
4672 #define elf_backend_want_got_plt 0
4673 #define elf_backend_plt_readonly 0
4674 #define elf_backend_want_plt_sym 0
4675 #define elf_backend_got_header_size 8
4676 #define elf_backend_rela_normal 1
4677
4678 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4679 #define TARGET_BIG_NAME "elf32-hppa"
4680 #define ELF_ARCH bfd_arch_hppa
4681 #define ELF_TARGET_ID HPPA32_ELF_DATA
4682 #define ELF_MACHINE_CODE EM_PARISC
4683 #define ELF_MAXPAGESIZE 0x1000
4684 #define ELF_OSABI ELFOSABI_HPUX
4685 #define elf32_bed elf32_hppa_hpux_bed
4686
4687 #include "elf32-target.h"
4688
4689 #undef TARGET_BIG_SYM
4690 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4691 #undef TARGET_BIG_NAME
4692 #define TARGET_BIG_NAME "elf32-hppa-linux"
4693 #undef ELF_OSABI
4694 #define ELF_OSABI ELFOSABI_GNU
4695 #undef elf32_bed
4696 #define elf32_bed elf32_hppa_linux_bed
4697
4698 #include "elf32-target.h"
4699
4700 #undef TARGET_BIG_SYM
4701 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4702 #undef TARGET_BIG_NAME
4703 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4704 #undef ELF_OSABI
4705 #define ELF_OSABI ELFOSABI_NETBSD
4706 #undef elf32_bed
4707 #define elf32_bed elf32_hppa_netbsd_bed
4708
4709 #include "elf32-target.h"
This page took 0.180575 seconds and 5 git commands to generate.