* elf32-arm.h (elf32_arm_final_link_relocate): Don't copy STN_UNDEF
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
49 static boolean elf_i386_check_relocs
50 PARAMS ((bfd *, struct bfd_link_info *, asection *,
51 const Elf_Internal_Rela *));
52 static asection *elf_i386_gc_mark_hook
53 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
54 struct elf_link_hash_entry *, Elf_Internal_Sym *));
55 static boolean elf_i386_gc_sweep_hook
56 PARAMS ((bfd *, struct bfd_link_info *, asection *,
57 const Elf_Internal_Rela *));
58 static boolean elf_i386_adjust_dynamic_symbol
59 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
60 static boolean allocate_dynrelocs
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean readonly_dynrelocs
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static boolean elf_i386_size_dynamic_sections
67 PARAMS ((bfd *, struct bfd_link_info *));
68 static boolean elf_i386_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean elf_i386_finish_dynamic_symbol
72 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
73 Elf_Internal_Sym *));
74 static enum elf_reloc_type_class elf_i386_reloc_type_class
75 PARAMS ((const Elf_Internal_Rela *));
76 static boolean elf_i386_finish_dynamic_sections
77 PARAMS ((bfd *, struct bfd_link_info *));
78
79 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
80
81 #include "elf/i386.h"
82
83 static reloc_howto_type elf_howto_table[]=
84 {
85 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_NONE",
87 true, 0x00000000, 0x00000000, false),
88 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PC32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_GOT32",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PLT32",
99 true, 0xffffffff, 0xffffffff, true),
100 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_COPY",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_RELATIVE",
111 true, 0xffffffff, 0xffffffff, false),
112 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_GOTOFF",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GOTPC",
117 true, 0xffffffff, 0xffffffff, true),
118
119 /* We have a gap in the reloc numbers here.
120 R_386_standard counts the number up to this point, and
121 R_386_ext_offset is the value to subtract from a reloc type of
122 R_386_16 thru R_386_PC8 to form an index into this table. */
123 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
124 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
125
126 /* The remaining relocs are a GNU extension. */
127 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_16",
129 true, 0xffff, 0xffff, false),
130 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_PC16",
132 true, 0xffff, 0xffff, true),
133 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
134 bfd_elf_generic_reloc, "R_386_8",
135 true, 0xff, 0xff, false),
136 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_386_PC8",
138 true, 0xff, 0xff, true),
139
140 /* Another gap. */
141 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
142 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
143
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
146 0, /* rightshift */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
148 0, /* bitsize */
149 false, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 false, /* partial_inplace */
155 0, /* src_mask */
156 0, /* dst_mask */
157 false),
158
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 0, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 false, /* partial_inplace */
170 0, /* src_mask */
171 0, /* dst_mask */
172 false)
173
174 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
175
176 };
177
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
180 #else
181 #define TRACE(str)
182 #endif
183
184 static reloc_howto_type *
185 elf_i386_reloc_type_lookup (abfd, code)
186 bfd *abfd ATTRIBUTE_UNUSED;
187 bfd_reloc_code_real_type code;
188 {
189 switch (code)
190 {
191 case BFD_RELOC_NONE:
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[(unsigned int) R_386_NONE ];
194
195 case BFD_RELOC_32:
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[(unsigned int) R_386_32 ];
198
199 case BFD_RELOC_CTOR:
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[(unsigned int) R_386_32 ];
202
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[(unsigned int) R_386_PC32 ];
206
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
210
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
214
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[(unsigned int) R_386_COPY ];
218
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
222
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
226
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
230
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
234
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
238
239 /* The remaining relocs are a GNU extension. */
240 case BFD_RELOC_16:
241 TRACE ("BFD_RELOC_16");
242 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
243
244 case BFD_RELOC_16_PCREL:
245 TRACE ("BFD_RELOC_16_PCREL");
246 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
247
248 case BFD_RELOC_8:
249 TRACE ("BFD_RELOC_8");
250 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
251
252 case BFD_RELOC_8_PCREL:
253 TRACE ("BFD_RELOC_8_PCREL");
254 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
255
256 case BFD_RELOC_VTABLE_INHERIT:
257 TRACE ("BFD_RELOC_VTABLE_INHERIT");
258 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
259 - R_386_vt_offset];
260
261 case BFD_RELOC_VTABLE_ENTRY:
262 TRACE ("BFD_RELOC_VTABLE_ENTRY");
263 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
264 - R_386_vt_offset];
265
266 default:
267 break;
268 }
269
270 TRACE ("Unknown");
271 return 0;
272 }
273
274 static void
275 elf_i386_info_to_howto (abfd, cache_ptr, dst)
276 bfd *abfd ATTRIBUTE_UNUSED;
277 arelent *cache_ptr ATTRIBUTE_UNUSED;
278 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
279 {
280 abort ();
281 }
282
283 static void
284 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
285 bfd *abfd ATTRIBUTE_UNUSED;
286 arelent *cache_ptr;
287 Elf32_Internal_Rel *dst;
288 {
289 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
290 unsigned int indx;
291
292 if ((indx = r_type) >= R_386_standard
293 && ((indx = r_type - R_386_ext_offset) - R_386_standard
294 >= R_386_ext - R_386_standard)
295 && ((indx = r_type - R_386_vt_offset) - R_386_ext
296 >= R_386_vt - R_386_ext))
297 {
298 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
299 bfd_archive_filename (abfd), (int) r_type);
300 indx = (unsigned int) R_386_NONE;
301 }
302 cache_ptr->howto = &elf_howto_table[indx];
303 }
304
305 /* Return whether a symbol name implies a local label. The UnixWare
306 2.1 cc generates temporary symbols that start with .X, so we
307 recognize them here. FIXME: do other SVR4 compilers also use .X?.
308 If so, we should move the .X recognition into
309 _bfd_elf_is_local_label_name. */
310
311 static boolean
312 elf_i386_is_local_label_name (abfd, name)
313 bfd *abfd;
314 const char *name;
315 {
316 if (name[0] == '.' && name[1] == 'X')
317 return true;
318
319 return _bfd_elf_is_local_label_name (abfd, name);
320 }
321 \f
322 /* Support for core dump NOTE sections. */
323 static boolean
324 elf_i386_grok_prstatus (abfd, note)
325 bfd *abfd;
326 Elf_Internal_Note *note;
327 {
328 int offset;
329 size_t raw_size;
330
331 switch (note->descsz)
332 {
333 default:
334 return false;
335
336 case 144: /* Linux/i386 */
337 /* pr_cursig */
338 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
339
340 /* pr_pid */
341 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
342
343 /* pr_reg */
344 offset = 72;
345 raw_size = 68;
346
347 break;
348 }
349
350 /* Make a ".reg/999" section. */
351 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
352 raw_size, note->descpos + offset);
353 }
354
355 static boolean
356 elf_i386_grok_psinfo (abfd, note)
357 bfd *abfd;
358 Elf_Internal_Note *note;
359 {
360 switch (note->descsz)
361 {
362 default:
363 return false;
364
365 case 128: /* Linux/MIPS elf_prpsinfo */
366 elf_tdata (abfd)->core_program
367 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
368 elf_tdata (abfd)->core_command
369 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
370 }
371
372 /* Note that for some reason, a spurious space is tacked
373 onto the end of the args in some (at least one anyway)
374 implementations, so strip it off if it exists. */
375
376 {
377 char *command = elf_tdata (abfd)->core_command;
378 int n = strlen (command);
379
380 if (0 < n && command[n - 1] == ' ')
381 command[n - 1] = '\0';
382 }
383
384 return true;
385 }
386 \f
387 /* Functions for the i386 ELF linker.
388
389 In order to gain some understanding of code in this file without
390 knowing all the intricate details of the linker, note the
391 following:
392
393 Functions named elf_i386_* are called by external routines, other
394 functions are only called locally. elf_i386_* functions appear
395 in this file more or less in the order in which they are called
396 from external routines. eg. elf_i386_check_relocs is called
397 early in the link process, elf_i386_finish_dynamic_sections is
398 one of the last functions. */
399
400
401 /* The name of the dynamic interpreter. This is put in the .interp
402 section. */
403
404 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
405
406 /* The size in bytes of an entry in the procedure linkage table. */
407
408 #define PLT_ENTRY_SIZE 16
409
410 /* The first entry in an absolute procedure linkage table looks like
411 this. See the SVR4 ABI i386 supplement to see how this works. */
412
413 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
414 {
415 0xff, 0x35, /* pushl contents of address */
416 0, 0, 0, 0, /* replaced with address of .got + 4. */
417 0xff, 0x25, /* jmp indirect */
418 0, 0, 0, 0, /* replaced with address of .got + 8. */
419 0, 0, 0, 0 /* pad out to 16 bytes. */
420 };
421
422 /* Subsequent entries in an absolute procedure linkage table look like
423 this. */
424
425 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
426 {
427 0xff, 0x25, /* jmp indirect */
428 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
429 0x68, /* pushl immediate */
430 0, 0, 0, 0, /* replaced with offset into relocation table. */
431 0xe9, /* jmp relative */
432 0, 0, 0, 0 /* replaced with offset to start of .plt. */
433 };
434
435 /* The first entry in a PIC procedure linkage table look like this. */
436
437 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
438 {
439 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
440 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
441 0, 0, 0, 0 /* pad out to 16 bytes. */
442 };
443
444 /* Subsequent entries in a PIC procedure linkage table look like this. */
445
446 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
447 {
448 0xff, 0xa3, /* jmp *offset(%ebx) */
449 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
450 0x68, /* pushl immediate */
451 0, 0, 0, 0, /* replaced with offset into relocation table. */
452 0xe9, /* jmp relative */
453 0, 0, 0, 0 /* replaced with offset to start of .plt. */
454 };
455
456 /* The i386 linker needs to keep track of the number of relocs that it
457 decides to copy as dynamic relocs in check_relocs for each symbol.
458 This is so that it can later discard them if they are found to be
459 unnecessary. We store the information in a field extending the
460 regular ELF linker hash table. */
461
462 struct elf_i386_dyn_relocs
463 {
464 struct elf_i386_dyn_relocs *next;
465
466 /* The input section of the reloc. */
467 asection *sec;
468
469 /* Total number of relocs copied for the input section. */
470 bfd_size_type count;
471
472 /* Number of pc-relative relocs copied for the input section. */
473 bfd_size_type pc_count;
474 };
475
476 /* i386 ELF linker hash entry. */
477
478 struct elf_i386_link_hash_entry
479 {
480 struct elf_link_hash_entry elf;
481
482 /* Track dynamic relocs copied for this symbol. */
483 struct elf_i386_dyn_relocs *dyn_relocs;
484 };
485
486 /* i386 ELF linker hash table. */
487
488 struct elf_i386_link_hash_table
489 {
490 struct elf_link_hash_table elf;
491
492 /* Short-cuts to get to dynamic linker sections. */
493 asection *sgot;
494 asection *sgotplt;
495 asection *srelgot;
496 asection *splt;
497 asection *srelplt;
498 asection *sdynbss;
499 asection *srelbss;
500
501 /* Small local sym to section mapping cache. */
502 struct sym_sec_cache sym_sec;
503 };
504
505 /* Get the i386 ELF linker hash table from a link_info structure. */
506
507 #define elf_i386_hash_table(p) \
508 ((struct elf_i386_link_hash_table *) ((p)->hash))
509
510 /* Create an entry in an i386 ELF linker hash table. */
511
512 static struct bfd_hash_entry *
513 link_hash_newfunc (entry, table, string)
514 struct bfd_hash_entry *entry;
515 struct bfd_hash_table *table;
516 const char *string;
517 {
518 /* Allocate the structure if it has not already been allocated by a
519 subclass. */
520 if (entry == NULL)
521 {
522 entry = bfd_hash_allocate (table,
523 sizeof (struct elf_i386_link_hash_entry));
524 if (entry == NULL)
525 return entry;
526 }
527
528 /* Call the allocation method of the superclass. */
529 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
530 if (entry != NULL)
531 {
532 struct elf_i386_link_hash_entry *eh;
533
534 eh = (struct elf_i386_link_hash_entry *) entry;
535 eh->dyn_relocs = NULL;
536 }
537
538 return entry;
539 }
540
541 /* Create an i386 ELF linker hash table. */
542
543 static struct bfd_link_hash_table *
544 elf_i386_link_hash_table_create (abfd)
545 bfd *abfd;
546 {
547 struct elf_i386_link_hash_table *ret;
548 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
549
550 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
551 if (ret == NULL)
552 return NULL;
553
554 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
555 {
556 bfd_release (abfd, ret);
557 return NULL;
558 }
559
560 ret->sgot = NULL;
561 ret->sgotplt = NULL;
562 ret->srelgot = NULL;
563 ret->splt = NULL;
564 ret->srelplt = NULL;
565 ret->sdynbss = NULL;
566 ret->srelbss = NULL;
567 ret->sym_sec.abfd = NULL;
568
569 return &ret->elf.root;
570 }
571
572 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
573 shortcuts to them in our hash table. */
574
575 static boolean
576 create_got_section (dynobj, info)
577 bfd *dynobj;
578 struct bfd_link_info *info;
579 {
580 struct elf_i386_link_hash_table *htab;
581
582 if (! _bfd_elf_create_got_section (dynobj, info))
583 return false;
584
585 htab = elf_i386_hash_table (info);
586 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
587 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
588 if (!htab->sgot || !htab->sgotplt)
589 abort ();
590
591 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
592 if (htab->srelgot == NULL
593 || ! bfd_set_section_flags (dynobj, htab->srelgot,
594 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
595 | SEC_IN_MEMORY | SEC_LINKER_CREATED
596 | SEC_READONLY))
597 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
598 return false;
599 return true;
600 }
601
602 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
603 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
604 hash table. */
605
606 static boolean
607 elf_i386_create_dynamic_sections (dynobj, info)
608 bfd *dynobj;
609 struct bfd_link_info *info;
610 {
611 struct elf_i386_link_hash_table *htab;
612
613 htab = elf_i386_hash_table (info);
614 if (!htab->sgot && !create_got_section (dynobj, info))
615 return false;
616
617 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
618 return false;
619
620 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
621 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
622 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
623 if (!info->shared)
624 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
625
626 if (!htab->splt || !htab->srelplt || !htab->sdynbss
627 || (!info->shared && !htab->srelbss))
628 abort ();
629
630 return true;
631 }
632
633 /* Copy the extra info we tack onto an elf_link_hash_entry. */
634
635 static void
636 elf_i386_copy_indirect_symbol (dir, ind)
637 struct elf_link_hash_entry *dir, *ind;
638 {
639 struct elf_i386_link_hash_entry *edir, *eind;
640
641 edir = (struct elf_i386_link_hash_entry *) dir;
642 eind = (struct elf_i386_link_hash_entry *) ind;
643
644 if (eind->dyn_relocs != NULL)
645 {
646 if (edir->dyn_relocs != NULL)
647 {
648 struct elf_i386_dyn_relocs **pp;
649 struct elf_i386_dyn_relocs *p;
650
651 if (ind->root.type == bfd_link_hash_indirect)
652 abort ();
653
654 /* Add reloc counts against the weak sym to the strong sym
655 list. Merge any entries against the same section. */
656 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
657 {
658 struct elf_i386_dyn_relocs *q;
659
660 for (q = edir->dyn_relocs; q != NULL; q = q->next)
661 if (q->sec == p->sec)
662 {
663 q->pc_count += p->pc_count;
664 q->count += p->count;
665 *pp = p->next;
666 break;
667 }
668 if (q == NULL)
669 pp = &p->next;
670 }
671 *pp = edir->dyn_relocs;
672 }
673
674 edir->dyn_relocs = eind->dyn_relocs;
675 eind->dyn_relocs = NULL;
676 }
677
678 _bfd_elf_link_hash_copy_indirect (dir, ind);
679 }
680
681 /* Look through the relocs for a section during the first phase, and
682 calculate needed space in the global offset table, procedure linkage
683 table, and dynamic reloc sections. */
684
685 static boolean
686 elf_i386_check_relocs (abfd, info, sec, relocs)
687 bfd *abfd;
688 struct bfd_link_info *info;
689 asection *sec;
690 const Elf_Internal_Rela *relocs;
691 {
692 struct elf_i386_link_hash_table *htab;
693 Elf_Internal_Shdr *symtab_hdr;
694 struct elf_link_hash_entry **sym_hashes;
695 const Elf_Internal_Rela *rel;
696 const Elf_Internal_Rela *rel_end;
697 asection *sreloc;
698
699 if (info->relocateable)
700 return true;
701
702 htab = elf_i386_hash_table (info);
703 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
704 sym_hashes = elf_sym_hashes (abfd);
705
706 sreloc = NULL;
707
708 rel_end = relocs + sec->reloc_count;
709 for (rel = relocs; rel < rel_end; rel++)
710 {
711 unsigned long r_symndx;
712 struct elf_link_hash_entry *h;
713
714 r_symndx = ELF32_R_SYM (rel->r_info);
715
716 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
717 {
718 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
719 bfd_archive_filename (abfd),
720 r_symndx);
721 return false;
722 }
723
724 if (r_symndx < symtab_hdr->sh_info)
725 h = NULL;
726 else
727 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
728
729 switch (ELF32_R_TYPE (rel->r_info))
730 {
731 case R_386_GOT32:
732 /* This symbol requires a global offset table entry. */
733 if (h != NULL)
734 {
735 h->got.refcount += 1;
736 }
737 else
738 {
739 bfd_signed_vma *local_got_refcounts;
740
741 /* This is a global offset table entry for a local symbol. */
742 local_got_refcounts = elf_local_got_refcounts (abfd);
743 if (local_got_refcounts == NULL)
744 {
745 bfd_size_type size;
746
747 size = symtab_hdr->sh_info;
748 size *= sizeof (bfd_signed_vma);
749 local_got_refcounts = ((bfd_signed_vma *)
750 bfd_zalloc (abfd, size));
751 if (local_got_refcounts == NULL)
752 return false;
753 elf_local_got_refcounts (abfd) = local_got_refcounts;
754 }
755 local_got_refcounts[r_symndx] += 1;
756 }
757 /* Fall through */
758
759 case R_386_GOTOFF:
760 case R_386_GOTPC:
761 if (htab->sgot == NULL)
762 {
763 if (htab->elf.dynobj == NULL)
764 htab->elf.dynobj = abfd;
765 if (!create_got_section (htab->elf.dynobj, info))
766 return false;
767 }
768 break;
769
770 case R_386_PLT32:
771 /* This symbol requires a procedure linkage table entry. We
772 actually build the entry in adjust_dynamic_symbol,
773 because this might be a case of linking PIC code which is
774 never referenced by a dynamic object, in which case we
775 don't need to generate a procedure linkage table entry
776 after all. */
777
778 /* If this is a local symbol, we resolve it directly without
779 creating a procedure linkage table entry. */
780 if (h == NULL)
781 continue;
782
783 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
784 h->plt.refcount += 1;
785 break;
786
787 case R_386_32:
788 case R_386_PC32:
789 if (h != NULL && !info->shared)
790 {
791 /* If this reloc is in a read-only section, we might
792 need a copy reloc. We can't check reliably at this
793 stage whether the section is read-only, as input
794 sections have not yet been mapped to output sections.
795 Tentatively set the flag for now, and correct in
796 adjust_dynamic_symbol. */
797 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
798
799 /* We may need a .plt entry if the function this reloc
800 refers to is in a shared lib. */
801 h->plt.refcount += 1;
802 }
803
804 /* If we are creating a shared library, and this is a reloc
805 against a global symbol, or a non PC relative reloc
806 against a local symbol, then we need to copy the reloc
807 into the shared library. However, if we are linking with
808 -Bsymbolic, we do not need to copy a reloc against a
809 global symbol which is defined in an object we are
810 including in the link (i.e., DEF_REGULAR is set). At
811 this point we have not seen all the input files, so it is
812 possible that DEF_REGULAR is not set now but will be set
813 later (it is never cleared). In case of a weak definition,
814 DEF_REGULAR may be cleared later by a strong definition in
815 a shared library. We account for that possibility below by
816 storing information in the relocs_copied field of the hash
817 table entry. A similar situation occurs when creating
818 shared libraries and symbol visibility changes render the
819 symbol local.
820
821 If on the other hand, we are creating an executable, we
822 may need to keep relocations for symbols satisfied by a
823 dynamic library if we manage to avoid copy relocs for the
824 symbol. */
825 if ((info->shared
826 && (sec->flags & SEC_ALLOC) != 0
827 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
828 || (h != NULL
829 && (! info->symbolic
830 || h->root.type == bfd_link_hash_defweak
831 || (h->elf_link_hash_flags
832 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
833 || (!info->shared
834 && (sec->flags & SEC_ALLOC) != 0
835 && h != NULL
836 && (h->root.type == bfd_link_hash_defweak
837 || (h->elf_link_hash_flags
838 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
839 {
840 struct elf_i386_dyn_relocs *p;
841 struct elf_i386_dyn_relocs **head;
842
843 /* We must copy these reloc types into the output file.
844 Create a reloc section in dynobj and make room for
845 this reloc. */
846 if (sreloc == NULL)
847 {
848 const char *name;
849 bfd *dynobj;
850
851 name = (bfd_elf_string_from_elf_section
852 (abfd,
853 elf_elfheader (abfd)->e_shstrndx,
854 elf_section_data (sec)->rel_hdr.sh_name));
855 if (name == NULL)
856 return false;
857
858 if (strncmp (name, ".rel", 4) != 0
859 || strcmp (bfd_get_section_name (abfd, sec),
860 name + 4) != 0)
861 {
862 (*_bfd_error_handler)
863 (_("%s: bad relocation section name `%s\'"),
864 bfd_archive_filename (abfd), name);
865 }
866
867 if (htab->elf.dynobj == NULL)
868 htab->elf.dynobj = abfd;
869
870 dynobj = htab->elf.dynobj;
871 sreloc = bfd_get_section_by_name (dynobj, name);
872 if (sreloc == NULL)
873 {
874 flagword flags;
875
876 sreloc = bfd_make_section (dynobj, name);
877 flags = (SEC_HAS_CONTENTS | SEC_READONLY
878 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
879 if ((sec->flags & SEC_ALLOC) != 0)
880 flags |= SEC_ALLOC | SEC_LOAD;
881 if (sreloc == NULL
882 || ! bfd_set_section_flags (dynobj, sreloc, flags)
883 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
884 return false;
885 }
886 elf_section_data (sec)->sreloc = sreloc;
887 }
888
889 /* If this is a global symbol, we count the number of
890 relocations we need for this symbol. */
891 if (h != NULL)
892 {
893 head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
894 }
895 else
896 {
897 /* Track dynamic relocs needed for local syms too.
898 We really need local syms available to do this
899 easily. Oh well. */
900
901 asection *s;
902 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
903 sec, r_symndx);
904 if (s == NULL)
905 return false;
906
907 head = ((struct elf_i386_dyn_relocs **)
908 &elf_section_data (s)->local_dynrel);
909 }
910
911 p = *head;
912 if (p == NULL || p->sec != sec)
913 {
914 bfd_size_type amt = sizeof *p;
915 p = ((struct elf_i386_dyn_relocs *)
916 bfd_alloc (htab->elf.dynobj, amt));
917 if (p == NULL)
918 return false;
919 p->next = *head;
920 *head = p;
921 p->sec = sec;
922 p->count = 0;
923 p->pc_count = 0;
924 }
925
926 p->count += 1;
927 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
928 p->pc_count += 1;
929 }
930 break;
931
932 /* This relocation describes the C++ object vtable hierarchy.
933 Reconstruct it for later use during GC. */
934 case R_386_GNU_VTINHERIT:
935 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
936 return false;
937 break;
938
939 /* This relocation describes which C++ vtable entries are actually
940 used. Record for later use during GC. */
941 case R_386_GNU_VTENTRY:
942 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
943 return false;
944 break;
945
946 default:
947 break;
948 }
949 }
950
951 return true;
952 }
953
954 /* Return the section that should be marked against GC for a given
955 relocation. */
956
957 static asection *
958 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
959 bfd *abfd;
960 struct bfd_link_info *info ATTRIBUTE_UNUSED;
961 Elf_Internal_Rela *rel;
962 struct elf_link_hash_entry *h;
963 Elf_Internal_Sym *sym;
964 {
965 if (h != NULL)
966 {
967 switch (ELF32_R_TYPE (rel->r_info))
968 {
969 case R_386_GNU_VTINHERIT:
970 case R_386_GNU_VTENTRY:
971 break;
972
973 default:
974 switch (h->root.type)
975 {
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 return h->root.u.def.section;
979
980 case bfd_link_hash_common:
981 return h->root.u.c.p->section;
982
983 default:
984 break;
985 }
986 }
987 }
988 else
989 {
990 if (!(elf_bad_symtab (abfd)
991 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
992 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
993 && sym->st_shndx != SHN_COMMON))
994 {
995 return bfd_section_from_elf_index (abfd, sym->st_shndx);
996 }
997 }
998
999 return NULL;
1000 }
1001
1002 /* Update the got entry reference counts for the section being removed. */
1003
1004 static boolean
1005 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
1006 bfd *abfd;
1007 struct bfd_link_info *info;
1008 asection *sec;
1009 const Elf_Internal_Rela *relocs;
1010 {
1011 Elf_Internal_Shdr *symtab_hdr;
1012 struct elf_link_hash_entry **sym_hashes;
1013 bfd_signed_vma *local_got_refcounts;
1014 const Elf_Internal_Rela *rel, *relend;
1015 unsigned long r_symndx;
1016 struct elf_link_hash_entry *h;
1017
1018 elf_section_data (sec)->local_dynrel = NULL;
1019
1020 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1021 sym_hashes = elf_sym_hashes (abfd);
1022 local_got_refcounts = elf_local_got_refcounts (abfd);
1023
1024 relend = relocs + sec->reloc_count;
1025 for (rel = relocs; rel < relend; rel++)
1026 switch (ELF32_R_TYPE (rel->r_info))
1027 {
1028 case R_386_GOT32:
1029 case R_386_GOTOFF:
1030 case R_386_GOTPC:
1031 r_symndx = ELF32_R_SYM (rel->r_info);
1032 if (r_symndx >= symtab_hdr->sh_info)
1033 {
1034 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1035 if (h->got.refcount > 0)
1036 h->got.refcount -= 1;
1037 }
1038 else if (local_got_refcounts != NULL)
1039 {
1040 if (local_got_refcounts[r_symndx] > 0)
1041 local_got_refcounts[r_symndx] -= 1;
1042 }
1043 break;
1044
1045 case R_386_32:
1046 case R_386_PC32:
1047 r_symndx = ELF32_R_SYM (rel->r_info);
1048 if (r_symndx >= symtab_hdr->sh_info)
1049 {
1050 struct elf_i386_link_hash_entry *eh;
1051 struct elf_i386_dyn_relocs **pp;
1052 struct elf_i386_dyn_relocs *p;
1053
1054 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1055
1056 if (!info->shared && h->plt.refcount > 0)
1057 h->plt.refcount -= 1;
1058
1059 eh = (struct elf_i386_link_hash_entry *) h;
1060
1061 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1062 if (p->sec == sec)
1063 {
1064 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1065 p->pc_count -= 1;
1066 p->count -= 1;
1067 if (p->count == 0)
1068 *pp = p->next;
1069 break;
1070 }
1071 }
1072 break;
1073
1074 case R_386_PLT32:
1075 r_symndx = ELF32_R_SYM (rel->r_info);
1076 if (r_symndx >= symtab_hdr->sh_info)
1077 {
1078 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1079 if (h->plt.refcount > 0)
1080 h->plt.refcount -= 1;
1081 }
1082 break;
1083
1084 default:
1085 break;
1086 }
1087
1088 return true;
1089 }
1090
1091 /* Adjust a symbol defined by a dynamic object and referenced by a
1092 regular object. The current definition is in some section of the
1093 dynamic object, but we're not including those sections. We have to
1094 change the definition to something the rest of the link can
1095 understand. */
1096
1097 static boolean
1098 elf_i386_adjust_dynamic_symbol (info, h)
1099 struct bfd_link_info *info;
1100 struct elf_link_hash_entry *h;
1101 {
1102 struct elf_i386_link_hash_table *htab;
1103 struct elf_i386_link_hash_entry * eh;
1104 struct elf_i386_dyn_relocs *p;
1105 asection *s;
1106 unsigned int power_of_two;
1107
1108 /* If this is a function, put it in the procedure linkage table. We
1109 will fill in the contents of the procedure linkage table later,
1110 when we know the address of the .got section. */
1111 if (h->type == STT_FUNC
1112 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1113 {
1114 if (h->plt.refcount <= 0
1115 || (! info->shared
1116 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1117 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1118 {
1119 /* This case can occur if we saw a PLT32 reloc in an input
1120 file, but the symbol was never referred to by a dynamic
1121 object, or if all references were garbage collected. In
1122 such a case, we don't actually need to build a procedure
1123 linkage table, and we can just do a PC32 reloc instead. */
1124 h->plt.offset = (bfd_vma) -1;
1125 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1126 }
1127
1128 return true;
1129 }
1130 else
1131 /* It's possible that we incorrectly decided a .plt reloc was
1132 needed for an R_386_PC32 reloc to a non-function sym in
1133 check_relocs. We can't decide accurately between function and
1134 non-function syms in check-relocs; Objects loaded later in
1135 the link may change h->type. So fix it now. */
1136 h->plt.offset = (bfd_vma) -1;
1137
1138 /* If this is a weak symbol, and there is a real definition, the
1139 processor independent code will have arranged for us to see the
1140 real definition first, and we can just use the same value. */
1141 if (h->weakdef != NULL)
1142 {
1143 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1144 || h->weakdef->root.type == bfd_link_hash_defweak);
1145 h->root.u.def.section = h->weakdef->root.u.def.section;
1146 h->root.u.def.value = h->weakdef->root.u.def.value;
1147 return true;
1148 }
1149
1150 /* This is a reference to a symbol defined by a dynamic object which
1151 is not a function. */
1152
1153 /* If we are creating a shared library, we must presume that the
1154 only references to the symbol are via the global offset table.
1155 For such cases we need not do anything here; the relocations will
1156 be handled correctly by relocate_section. */
1157 if (info->shared)
1158 return true;
1159
1160 /* If there are no references to this symbol that do not use the
1161 GOT, we don't need to generate a copy reloc. */
1162 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1163 return true;
1164
1165 /* If -z nocopyreloc was given, we won't generate them either. */
1166 if (info->nocopyreloc)
1167 {
1168 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1169 return true;
1170 }
1171
1172 eh = (struct elf_i386_link_hash_entry *) h;
1173 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1174 {
1175 s = p->sec->output_section;
1176 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1177 break;
1178 }
1179
1180 /* If we didn't find any dynamic relocs in read-only sections, then
1181 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1182 if (p == NULL)
1183 {
1184 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1185 return true;
1186 }
1187
1188 /* We must allocate the symbol in our .dynbss section, which will
1189 become part of the .bss section of the executable. There will be
1190 an entry for this symbol in the .dynsym section. The dynamic
1191 object will contain position independent code, so all references
1192 from the dynamic object to this symbol will go through the global
1193 offset table. The dynamic linker will use the .dynsym entry to
1194 determine the address it must put in the global offset table, so
1195 both the dynamic object and the regular object will refer to the
1196 same memory location for the variable. */
1197
1198 htab = elf_i386_hash_table (info);
1199
1200 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1201 copy the initial value out of the dynamic object and into the
1202 runtime process image. */
1203 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1204 {
1205 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1206 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1207 }
1208
1209 /* We need to figure out the alignment required for this symbol. I
1210 have no idea how ELF linkers handle this. */
1211 power_of_two = bfd_log2 (h->size);
1212 if (power_of_two > 3)
1213 power_of_two = 3;
1214
1215 /* Apply the required alignment. */
1216 s = htab->sdynbss;
1217 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1218 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1219 {
1220 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1221 return false;
1222 }
1223
1224 /* Define the symbol as being at this point in the section. */
1225 h->root.u.def.section = s;
1226 h->root.u.def.value = s->_raw_size;
1227
1228 /* Increment the section size to make room for the symbol. */
1229 s->_raw_size += h->size;
1230
1231 return true;
1232 }
1233
1234 /* This is the condition under which elf_i386_finish_dynamic_symbol
1235 will be called from elflink.h. If elflink.h doesn't call our
1236 finish_dynamic_symbol routine, we'll need to do something about
1237 initializing any .plt and .got entries in elf_i386_relocate_section. */
1238 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1239 ((DYN) \
1240 && ((INFO)->shared \
1241 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1242 && ((H)->dynindx != -1 \
1243 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1244
1245 /* Allocate space in .plt, .got and associated reloc sections for
1246 dynamic relocs. */
1247
1248 static boolean
1249 allocate_dynrelocs (h, inf)
1250 struct elf_link_hash_entry *h;
1251 PTR inf;
1252 {
1253 struct bfd_link_info *info;
1254 struct elf_i386_link_hash_table *htab;
1255 struct elf_i386_link_hash_entry *eh;
1256 struct elf_i386_dyn_relocs *p;
1257
1258 if (h->root.type == bfd_link_hash_indirect
1259 || h->root.type == bfd_link_hash_warning)
1260 return true;
1261
1262 info = (struct bfd_link_info *) inf;
1263 htab = elf_i386_hash_table (info);
1264
1265 if (htab->elf.dynamic_sections_created
1266 && h->plt.refcount > 0)
1267 {
1268 /* Make sure this symbol is output as a dynamic symbol.
1269 Undefined weak syms won't yet be marked as dynamic. */
1270 if (h->dynindx == -1
1271 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1272 {
1273 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1274 return false;
1275 }
1276
1277 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1278 {
1279 asection *s = htab->splt;
1280
1281 /* If this is the first .plt entry, make room for the special
1282 first entry. */
1283 if (s->_raw_size == 0)
1284 s->_raw_size += PLT_ENTRY_SIZE;
1285
1286 h->plt.offset = s->_raw_size;
1287
1288 /* If this symbol is not defined in a regular file, and we are
1289 not generating a shared library, then set the symbol to this
1290 location in the .plt. This is required to make function
1291 pointers compare as equal between the normal executable and
1292 the shared library. */
1293 if (! info->shared
1294 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1295 {
1296 h->root.u.def.section = s;
1297 h->root.u.def.value = h->plt.offset;
1298 }
1299
1300 /* Make room for this entry. */
1301 s->_raw_size += PLT_ENTRY_SIZE;
1302
1303 /* We also need to make an entry in the .got.plt section, which
1304 will be placed in the .got section by the linker script. */
1305 htab->sgotplt->_raw_size += 4;
1306
1307 /* We also need to make an entry in the .rel.plt section. */
1308 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1309 }
1310 else
1311 {
1312 h->plt.offset = (bfd_vma) -1;
1313 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1314 }
1315 }
1316 else
1317 {
1318 h->plt.offset = (bfd_vma) -1;
1319 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1320 }
1321
1322 if (h->got.refcount > 0)
1323 {
1324 asection *s;
1325 boolean dyn;
1326
1327 /* Make sure this symbol is output as a dynamic symbol.
1328 Undefined weak syms won't yet be marked as dynamic. */
1329 if (h->dynindx == -1
1330 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1331 {
1332 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1333 return false;
1334 }
1335
1336 s = htab->sgot;
1337 h->got.offset = s->_raw_size;
1338 s->_raw_size += 4;
1339 dyn = htab->elf.dynamic_sections_created;
1340 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1341 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1342 }
1343 else
1344 h->got.offset = (bfd_vma) -1;
1345
1346 eh = (struct elf_i386_link_hash_entry *) h;
1347 if (eh->dyn_relocs == NULL)
1348 return true;
1349
1350 /* In the shared -Bsymbolic case, discard space allocated for
1351 dynamic pc-relative relocs against symbols which turn out to be
1352 defined in regular objects. For the normal shared case, discard
1353 space for pc-relative relocs that have become local due to symbol
1354 visibility changes. */
1355
1356 if (info->shared)
1357 {
1358 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1359 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1360 || info->symbolic))
1361 {
1362 struct elf_i386_dyn_relocs **pp;
1363
1364 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1365 {
1366 p->count -= p->pc_count;
1367 p->pc_count = 0;
1368 if (p->count == 0)
1369 *pp = p->next;
1370 else
1371 pp = &p->next;
1372 }
1373 }
1374 }
1375 else
1376 {
1377 /* For the non-shared case, discard space for relocs against
1378 symbols which turn out to need copy relocs or are not
1379 dynamic. */
1380
1381 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1382 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1384 || (htab->elf.dynamic_sections_created
1385 && (h->root.type == bfd_link_hash_undefweak
1386 || h->root.type == bfd_link_hash_undefined))))
1387 {
1388 /* Make sure this symbol is output as a dynamic symbol.
1389 Undefined weak syms won't yet be marked as dynamic. */
1390 if (h->dynindx == -1
1391 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1392 {
1393 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1394 return false;
1395 }
1396
1397 /* If that succeeded, we know we'll be keeping all the
1398 relocs. */
1399 if (h->dynindx != -1)
1400 goto keep;
1401 }
1402
1403 eh->dyn_relocs = NULL;
1404
1405 keep: ;
1406 }
1407
1408 /* Finally, allocate space. */
1409 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1410 {
1411 asection *sreloc = elf_section_data (p->sec)->sreloc;
1412 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1413 }
1414
1415 return true;
1416 }
1417
1418 /* Find any dynamic relocs that apply to read-only sections. */
1419
1420 static boolean
1421 readonly_dynrelocs (h, inf)
1422 struct elf_link_hash_entry *h;
1423 PTR inf;
1424 {
1425 struct elf_i386_link_hash_entry *eh;
1426 struct elf_i386_dyn_relocs *p;
1427
1428 eh = (struct elf_i386_link_hash_entry *) h;
1429 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1430 {
1431 asection *s = p->sec->output_section;
1432
1433 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1434 {
1435 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1436
1437 info->flags |= DF_TEXTREL;
1438
1439 /* Not an error, just cut short the traversal. */
1440 return false;
1441 }
1442 }
1443 return true;
1444 }
1445
1446 /* Set the sizes of the dynamic sections. */
1447
1448 static boolean
1449 elf_i386_size_dynamic_sections (output_bfd, info)
1450 bfd *output_bfd ATTRIBUTE_UNUSED;
1451 struct bfd_link_info *info;
1452 {
1453 struct elf_i386_link_hash_table *htab;
1454 bfd *dynobj;
1455 asection *s;
1456 boolean relocs;
1457 bfd *ibfd;
1458
1459 htab = elf_i386_hash_table (info);
1460 dynobj = htab->elf.dynobj;
1461 if (dynobj == NULL)
1462 abort ();
1463
1464 if (htab->elf.dynamic_sections_created)
1465 {
1466 /* Set the contents of the .interp section to the interpreter. */
1467 if (! info->shared)
1468 {
1469 s = bfd_get_section_by_name (dynobj, ".interp");
1470 if (s == NULL)
1471 abort ();
1472 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1473 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1474 }
1475 }
1476
1477 /* Set up .got offsets for local syms, and space for local dynamic
1478 relocs. */
1479 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1480 {
1481 bfd_signed_vma *local_got;
1482 bfd_signed_vma *end_local_got;
1483 bfd_size_type locsymcount;
1484 Elf_Internal_Shdr *symtab_hdr;
1485 asection *srel;
1486
1487 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1488 continue;
1489
1490 for (s = ibfd->sections; s != NULL; s = s->next)
1491 {
1492 struct elf_i386_dyn_relocs *p;
1493
1494 for (p = *((struct elf_i386_dyn_relocs **)
1495 &elf_section_data (s)->local_dynrel);
1496 p != NULL;
1497 p = p->next)
1498 {
1499 if (!bfd_is_abs_section (p->sec)
1500 && bfd_is_abs_section (p->sec->output_section))
1501 {
1502 /* Input section has been discarded, either because
1503 it is a copy of a linkonce section or due to
1504 linker script /DISCARD/, so we'll be discarding
1505 the relocs too. */
1506 }
1507 else
1508 {
1509 srel = elf_section_data (p->sec)->sreloc;
1510 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
1511 }
1512 }
1513 }
1514
1515 local_got = elf_local_got_refcounts (ibfd);
1516 if (!local_got)
1517 continue;
1518
1519 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1520 locsymcount = symtab_hdr->sh_info;
1521 end_local_got = local_got + locsymcount;
1522 s = htab->sgot;
1523 srel = htab->srelgot;
1524 for (; local_got < end_local_got; ++local_got)
1525 {
1526 if (*local_got > 0)
1527 {
1528 *local_got = s->_raw_size;
1529 s->_raw_size += 4;
1530 if (info->shared)
1531 srel->_raw_size += sizeof (Elf32_External_Rel);
1532 }
1533 else
1534 *local_got = (bfd_vma) -1;
1535 }
1536 }
1537
1538 /* Allocate global sym .plt and .got entries, and space for global
1539 sym dynamic relocs. */
1540 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1541
1542 /* We now have determined the sizes of the various dynamic sections.
1543 Allocate memory for them. */
1544 relocs = false;
1545 for (s = dynobj->sections; s != NULL; s = s->next)
1546 {
1547 if ((s->flags & SEC_LINKER_CREATED) == 0)
1548 continue;
1549
1550 if (s == htab->splt
1551 || s == htab->sgot
1552 || s == htab->sgotplt)
1553 {
1554 /* Strip this section if we don't need it; see the
1555 comment below. */
1556 }
1557 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1558 {
1559 if (s->_raw_size != 0 && s != htab->srelplt)
1560 relocs = true;
1561
1562 /* We use the reloc_count field as a counter if we need
1563 to copy relocs into the output file. */
1564 s->reloc_count = 0;
1565 }
1566 else
1567 {
1568 /* It's not one of our sections, so don't allocate space. */
1569 continue;
1570 }
1571
1572 if (s->_raw_size == 0)
1573 {
1574 /* If we don't need this section, strip it from the
1575 output file. This is mostly to handle .rel.bss and
1576 .rel.plt. We must create both sections in
1577 create_dynamic_sections, because they must be created
1578 before the linker maps input sections to output
1579 sections. The linker does that before
1580 adjust_dynamic_symbol is called, and it is that
1581 function which decides whether anything needs to go
1582 into these sections. */
1583
1584 _bfd_strip_section_from_output (info, s);
1585 continue;
1586 }
1587
1588 /* Allocate memory for the section contents. We use bfd_zalloc
1589 here in case unused entries are not reclaimed before the
1590 section's contents are written out. This should not happen,
1591 but this way if it does, we get a R_386_NONE reloc instead
1592 of garbage. */
1593 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1594 if (s->contents == NULL)
1595 return false;
1596 }
1597
1598 if (htab->elf.dynamic_sections_created)
1599 {
1600 /* Add some entries to the .dynamic section. We fill in the
1601 values later, in elf_i386_finish_dynamic_sections, but we
1602 must add the entries now so that we get the correct size for
1603 the .dynamic section. The DT_DEBUG entry is filled in by the
1604 dynamic linker and used by the debugger. */
1605 #define add_dynamic_entry(TAG, VAL) \
1606 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1607
1608 if (! info->shared)
1609 {
1610 if (!add_dynamic_entry (DT_DEBUG, 0))
1611 return false;
1612 }
1613
1614 if (htab->splt->_raw_size != 0)
1615 {
1616 if (!add_dynamic_entry (DT_PLTGOT, 0)
1617 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1618 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1619 || !add_dynamic_entry (DT_JMPREL, 0))
1620 return false;
1621 }
1622
1623 if (relocs)
1624 {
1625 if (!add_dynamic_entry (DT_REL, 0)
1626 || !add_dynamic_entry (DT_RELSZ, 0)
1627 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1628 return false;
1629
1630 /* If any dynamic relocs apply to a read-only section,
1631 then we need a DT_TEXTREL entry. */
1632 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1633
1634 if ((info->flags & DF_TEXTREL) != 0)
1635 {
1636 if (!add_dynamic_entry (DT_TEXTREL, 0))
1637 return false;
1638 }
1639 }
1640 }
1641 #undef add_dynamic_entry
1642
1643 return true;
1644 }
1645
1646 /* Set the correct type for an x86 ELF section. We do this by the
1647 section name, which is a hack, but ought to work. */
1648
1649 static boolean
1650 elf_i386_fake_sections (abfd, hdr, sec)
1651 bfd *abfd ATTRIBUTE_UNUSED;
1652 Elf32_Internal_Shdr *hdr;
1653 asection *sec;
1654 {
1655 register const char *name;
1656
1657 name = bfd_get_section_name (abfd, sec);
1658
1659 /* This is an ugly, but unfortunately necessary hack that is
1660 needed when producing EFI binaries on x86. It tells
1661 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1662 containing ELF relocation info. We need this hack in order to
1663 be able to generate ELF binaries that can be translated into
1664 EFI applications (which are essentially COFF objects). Those
1665 files contain a COFF ".reloc" section inside an ELFNN object,
1666 which would normally cause BFD to segfault because it would
1667 attempt to interpret this section as containing relocation
1668 entries for section "oc". With this hack enabled, ".reloc"
1669 will be treated as a normal data section, which will avoid the
1670 segfault. However, you won't be able to create an ELFNN binary
1671 with a section named "oc" that needs relocations, but that's
1672 the kind of ugly side-effects you get when detecting section
1673 types based on their names... In practice, this limitation is
1674 unlikely to bite. */
1675 if (strcmp (name, ".reloc") == 0)
1676 hdr->sh_type = SHT_PROGBITS;
1677
1678 return true;
1679 }
1680
1681 /* Relocate an i386 ELF section. */
1682
1683 static boolean
1684 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1685 contents, relocs, local_syms, local_sections)
1686 bfd *output_bfd;
1687 struct bfd_link_info *info;
1688 bfd *input_bfd;
1689 asection *input_section;
1690 bfd_byte *contents;
1691 Elf_Internal_Rela *relocs;
1692 Elf_Internal_Sym *local_syms;
1693 asection **local_sections;
1694 {
1695 struct elf_i386_link_hash_table *htab;
1696 Elf_Internal_Shdr *symtab_hdr;
1697 struct elf_link_hash_entry **sym_hashes;
1698 bfd_vma *local_got_offsets;
1699 Elf_Internal_Rela *rel;
1700 Elf_Internal_Rela *relend;
1701
1702 htab = elf_i386_hash_table (info);
1703 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1704 sym_hashes = elf_sym_hashes (input_bfd);
1705 local_got_offsets = elf_local_got_offsets (input_bfd);
1706
1707 rel = relocs;
1708 relend = relocs + input_section->reloc_count;
1709 for (; rel < relend; rel++)
1710 {
1711 int r_type;
1712 reloc_howto_type *howto;
1713 unsigned long r_symndx;
1714 struct elf_link_hash_entry *h;
1715 Elf_Internal_Sym *sym;
1716 asection *sec;
1717 bfd_vma off;
1718 bfd_vma relocation;
1719 boolean unresolved_reloc;
1720 bfd_reloc_status_type r;
1721 unsigned int indx;
1722
1723 r_type = ELF32_R_TYPE (rel->r_info);
1724 if (r_type == (int) R_386_GNU_VTINHERIT
1725 || r_type == (int) R_386_GNU_VTENTRY)
1726 continue;
1727
1728 if ((indx = (unsigned) r_type) >= R_386_standard
1729 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1730 >= R_386_ext - R_386_standard))
1731 {
1732 bfd_set_error (bfd_error_bad_value);
1733 return false;
1734 }
1735 howto = elf_howto_table + indx;
1736
1737 r_symndx = ELF32_R_SYM (rel->r_info);
1738
1739 if (info->relocateable)
1740 {
1741 /* This is a relocatable link. We don't have to change
1742 anything, unless the reloc is against a section symbol,
1743 in which case we have to adjust according to where the
1744 section symbol winds up in the output section. */
1745 if (r_symndx < symtab_hdr->sh_info)
1746 {
1747 sym = local_syms + r_symndx;
1748 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1749 {
1750 bfd_vma val;
1751
1752 sec = local_sections[r_symndx];
1753 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1754 val += sec->output_offset + sym->st_value;
1755 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1756 }
1757 }
1758 continue;
1759 }
1760
1761 /* This is a final link. */
1762 h = NULL;
1763 sym = NULL;
1764 sec = NULL;
1765 unresolved_reloc = false;
1766 if (r_symndx < symtab_hdr->sh_info)
1767 {
1768 sym = local_syms + r_symndx;
1769 sec = local_sections[r_symndx];
1770 relocation = (sec->output_section->vma
1771 + sec->output_offset
1772 + sym->st_value);
1773 }
1774 else
1775 {
1776 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1777 while (h->root.type == bfd_link_hash_indirect
1778 || h->root.type == bfd_link_hash_warning)
1779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1780
1781 relocation = 0;
1782 if (h->root.type == bfd_link_hash_defined
1783 || h->root.type == bfd_link_hash_defweak)
1784 {
1785 sec = h->root.u.def.section;
1786 if (sec->output_section == NULL)
1787 /* Set a flag that will be cleared later if we find a
1788 relocation value for this symbol. output_section
1789 is typically NULL for symbols satisfied by a shared
1790 library. */
1791 unresolved_reloc = true;
1792 else
1793 relocation = (h->root.u.def.value
1794 + sec->output_section->vma
1795 + sec->output_offset);
1796 }
1797 else if (h->root.type == bfd_link_hash_undefweak)
1798 ;
1799 else if (info->shared
1800 && (!info->symbolic || info->allow_shlib_undefined)
1801 && !info->no_undefined
1802 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1803 ;
1804 else
1805 {
1806 if (! ((*info->callbacks->undefined_symbol)
1807 (info, h->root.root.string, input_bfd,
1808 input_section, rel->r_offset,
1809 (!info->shared || info->no_undefined
1810 || ELF_ST_VISIBILITY (h->other)))))
1811 return false;
1812 }
1813 }
1814
1815 switch (r_type)
1816 {
1817 case R_386_GOT32:
1818 /* Relocation is to the entry for this symbol in the global
1819 offset table. */
1820 if (htab->sgot == NULL)
1821 abort ();
1822
1823 if (h != NULL)
1824 {
1825 boolean dyn;
1826
1827 off = h->got.offset;
1828 dyn = htab->elf.dynamic_sections_created;
1829 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1830 || (info->shared
1831 && (info->symbolic
1832 || h->dynindx == -1
1833 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1834 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1835 {
1836 /* This is actually a static link, or it is a
1837 -Bsymbolic link and the symbol is defined
1838 locally, or the symbol was forced to be local
1839 because of a version file. We must initialize
1840 this entry in the global offset table. Since the
1841 offset must always be a multiple of 4, we use the
1842 least significant bit to record whether we have
1843 initialized it already.
1844
1845 When doing a dynamic link, we create a .rel.got
1846 relocation entry to initialize the value. This
1847 is done in the finish_dynamic_symbol routine. */
1848 if ((off & 1) != 0)
1849 off &= ~1;
1850 else
1851 {
1852 bfd_put_32 (output_bfd, relocation,
1853 htab->sgot->contents + off);
1854 h->got.offset |= 1;
1855 }
1856 }
1857 else
1858 unresolved_reloc = false;
1859 }
1860 else
1861 {
1862 if (local_got_offsets == NULL)
1863 abort ();
1864
1865 off = local_got_offsets[r_symndx];
1866
1867 /* The offset must always be a multiple of 4. We use
1868 the least significant bit to record whether we have
1869 already generated the necessary reloc. */
1870 if ((off & 1) != 0)
1871 off &= ~1;
1872 else
1873 {
1874 bfd_put_32 (output_bfd, relocation,
1875 htab->sgot->contents + off);
1876
1877 if (info->shared)
1878 {
1879 asection *srelgot;
1880 Elf_Internal_Rel outrel;
1881 Elf32_External_Rel *loc;
1882
1883 srelgot = htab->srelgot;
1884 if (srelgot == NULL)
1885 abort ();
1886
1887 outrel.r_offset = (htab->sgot->output_section->vma
1888 + htab->sgot->output_offset
1889 + off);
1890 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1891 loc = (Elf32_External_Rel *) srelgot->contents;
1892 loc += srelgot->reloc_count++;
1893 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1894 }
1895
1896 local_got_offsets[r_symndx] |= 1;
1897 }
1898 }
1899
1900 if (off >= (bfd_vma) -2)
1901 abort ();
1902
1903 relocation = htab->sgot->output_offset + off;
1904 break;
1905
1906 case R_386_GOTOFF:
1907 /* Relocation is relative to the start of the global offset
1908 table. */
1909
1910 /* Note that sgot->output_offset is not involved in this
1911 calculation. We always want the start of .got. If we
1912 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1913 permitted by the ABI, we might have to change this
1914 calculation. */
1915 relocation -= htab->sgot->output_section->vma;
1916 break;
1917
1918 case R_386_GOTPC:
1919 /* Use global offset table as symbol value. */
1920 relocation = htab->sgot->output_section->vma;
1921 unresolved_reloc = false;
1922 break;
1923
1924 case R_386_PLT32:
1925 /* Relocation is to the entry for this symbol in the
1926 procedure linkage table. */
1927
1928 /* Resolve a PLT32 reloc against a local symbol directly,
1929 without using the procedure linkage table. */
1930 if (h == NULL)
1931 break;
1932
1933 if (h->plt.offset == (bfd_vma) -1
1934 || htab->splt == NULL)
1935 {
1936 /* We didn't make a PLT entry for this symbol. This
1937 happens when statically linking PIC code, or when
1938 using -Bsymbolic. */
1939 break;
1940 }
1941
1942 relocation = (htab->splt->output_section->vma
1943 + htab->splt->output_offset
1944 + h->plt.offset);
1945 unresolved_reloc = false;
1946 break;
1947
1948 case R_386_32:
1949 case R_386_PC32:
1950 /* r_symndx will be zero only for relocs against symbols
1951 from removed linkonce sections, or sections discarded by
1952 a linker script. */
1953 if (r_symndx == 0
1954 || (input_section->flags & SEC_ALLOC) == 0)
1955 break;
1956
1957 if ((info->shared
1958 && (r_type != R_386_PC32
1959 || (h != NULL
1960 && h->dynindx != -1
1961 && (! info->symbolic
1962 || (h->elf_link_hash_flags
1963 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1964 || (!info->shared
1965 && h != NULL
1966 && h->dynindx != -1
1967 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1968 && (((h->elf_link_hash_flags
1969 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1970 && (h->elf_link_hash_flags
1971 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1972 || h->root.type == bfd_link_hash_undefweak
1973 || h->root.type == bfd_link_hash_undefined)))
1974 {
1975 Elf_Internal_Rel outrel;
1976 boolean skip, relocate;
1977 asection *sreloc;
1978 Elf32_External_Rel *loc;
1979
1980 /* When generating a shared object, these relocations
1981 are copied into the output file to be resolved at run
1982 time. */
1983
1984 skip = false;
1985
1986 if (elf_section_data (input_section)->stab_info == NULL)
1987 outrel.r_offset = rel->r_offset;
1988 else
1989 {
1990 off = (_bfd_stab_section_offset
1991 (output_bfd, htab->elf.stab_info, input_section,
1992 &elf_section_data (input_section)->stab_info,
1993 rel->r_offset));
1994 if (off == (bfd_vma) -1)
1995 skip = true;
1996 outrel.r_offset = off;
1997 }
1998
1999 outrel.r_offset += (input_section->output_section->vma
2000 + input_section->output_offset);
2001
2002 if (skip)
2003 {
2004 memset (&outrel, 0, sizeof outrel);
2005 relocate = false;
2006 }
2007 else if (h != NULL
2008 && h->dynindx != -1
2009 && (r_type == R_386_PC32
2010 || !info->shared
2011 || !info->symbolic
2012 || (h->elf_link_hash_flags
2013 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2014
2015 {
2016 relocate = false;
2017 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
2018 }
2019 else
2020 {
2021 /* This symbol is local, or marked to become local. */
2022 relocate = true;
2023 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2024 }
2025
2026 sreloc = elf_section_data (input_section)->sreloc;
2027 if (sreloc == NULL)
2028 abort ();
2029
2030 loc = (Elf32_External_Rel *) sreloc->contents;
2031 loc += sreloc->reloc_count++;
2032 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2033
2034 /* If this reloc is against an external symbol, we do
2035 not want to fiddle with the addend. Otherwise, we
2036 need to include the symbol value so that it becomes
2037 an addend for the dynamic reloc. */
2038 if (! relocate)
2039 continue;
2040 }
2041 break;
2042
2043 default:
2044 break;
2045 }
2046
2047 /* FIXME: Why do we allow debugging sections to escape this error?
2048 More importantly, why do we not emit dynamic relocs for
2049 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
2050 If we had emitted the dynamic reloc, we could remove the
2051 fudge here. */
2052 if (unresolved_reloc
2053 && !(info->shared
2054 && (input_section->flags & SEC_DEBUGGING) != 0
2055 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2056 (*_bfd_error_handler)
2057 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2058 bfd_archive_filename (input_bfd),
2059 bfd_get_section_name (input_bfd, input_section),
2060 (long) rel->r_offset,
2061 h->root.root.string);
2062
2063 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2064 contents, rel->r_offset,
2065 relocation, (bfd_vma) 0);
2066
2067 if (r != bfd_reloc_ok)
2068 {
2069 const char *name;
2070
2071 if (h != NULL)
2072 name = h->root.root.string;
2073 else
2074 {
2075 name = bfd_elf_string_from_elf_section (input_bfd,
2076 symtab_hdr->sh_link,
2077 sym->st_name);
2078 if (name == NULL)
2079 return false;
2080 if (*name == '\0')
2081 name = bfd_section_name (input_bfd, sec);
2082 }
2083
2084 if (r == bfd_reloc_overflow)
2085 {
2086
2087 if (! ((*info->callbacks->reloc_overflow)
2088 (info, name, howto->name, (bfd_vma) 0,
2089 input_bfd, input_section, rel->r_offset)))
2090 return false;
2091 }
2092 else
2093 {
2094 (*_bfd_error_handler)
2095 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2096 bfd_archive_filename (input_bfd),
2097 bfd_get_section_name (input_bfd, input_section),
2098 (long) rel->r_offset, name, (int) r);
2099 return false;
2100 }
2101 }
2102 }
2103
2104 return true;
2105 }
2106
2107 /* Finish up dynamic symbol handling. We set the contents of various
2108 dynamic sections here. */
2109
2110 static boolean
2111 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2112 bfd *output_bfd;
2113 struct bfd_link_info *info;
2114 struct elf_link_hash_entry *h;
2115 Elf_Internal_Sym *sym;
2116 {
2117 struct elf_i386_link_hash_table *htab;
2118
2119 htab = elf_i386_hash_table (info);
2120
2121 if (h->plt.offset != (bfd_vma) -1)
2122 {
2123 bfd_vma plt_index;
2124 bfd_vma got_offset;
2125 Elf_Internal_Rel rel;
2126 Elf32_External_Rel *loc;
2127
2128 /* This symbol has an entry in the procedure linkage table. Set
2129 it up. */
2130
2131 if (h->dynindx == -1
2132 || htab->splt == NULL
2133 || htab->sgotplt == NULL
2134 || htab->srelplt == NULL)
2135 abort ();
2136
2137 /* Get the index in the procedure linkage table which
2138 corresponds to this symbol. This is the index of this symbol
2139 in all the symbols for which we are making plt entries. The
2140 first entry in the procedure linkage table is reserved. */
2141 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2142
2143 /* Get the offset into the .got table of the entry that
2144 corresponds to this function. Each .got entry is 4 bytes.
2145 The first three are reserved. */
2146 got_offset = (plt_index + 3) * 4;
2147
2148 /* Fill in the entry in the procedure linkage table. */
2149 if (! info->shared)
2150 {
2151 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2152 PLT_ENTRY_SIZE);
2153 bfd_put_32 (output_bfd,
2154 (htab->sgotplt->output_section->vma
2155 + htab->sgotplt->output_offset
2156 + got_offset),
2157 htab->splt->contents + h->plt.offset + 2);
2158 }
2159 else
2160 {
2161 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2162 PLT_ENTRY_SIZE);
2163 bfd_put_32 (output_bfd, got_offset,
2164 htab->splt->contents + h->plt.offset + 2);
2165 }
2166
2167 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2168 htab->splt->contents + h->plt.offset + 7);
2169 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2170 htab->splt->contents + h->plt.offset + 12);
2171
2172 /* Fill in the entry in the global offset table. */
2173 bfd_put_32 (output_bfd,
2174 (htab->splt->output_section->vma
2175 + htab->splt->output_offset
2176 + h->plt.offset
2177 + 6),
2178 htab->sgotplt->contents + got_offset);
2179
2180 /* Fill in the entry in the .rel.plt section. */
2181 rel.r_offset = (htab->sgotplt->output_section->vma
2182 + htab->sgotplt->output_offset
2183 + got_offset);
2184 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2185 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2186 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2187
2188 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2189 {
2190 /* Mark the symbol as undefined, rather than as defined in
2191 the .plt section. Leave the value alone. This is a clue
2192 for the dynamic linker, to make function pointer
2193 comparisons work between an application and shared
2194 library. */
2195 sym->st_shndx = SHN_UNDEF;
2196 }
2197 }
2198
2199 if (h->got.offset != (bfd_vma) -1)
2200 {
2201 Elf_Internal_Rel rel;
2202 Elf32_External_Rel *loc;
2203
2204 /* This symbol has an entry in the global offset table. Set it
2205 up. */
2206
2207 if (htab->sgot == NULL || htab->srelgot == NULL)
2208 abort ();
2209
2210 rel.r_offset = (htab->sgot->output_section->vma
2211 + htab->sgot->output_offset
2212 + (h->got.offset & ~(bfd_vma) 1));
2213
2214 /* If this is a static link, or it is a -Bsymbolic link and the
2215 symbol is defined locally or was forced to be local because
2216 of a version file, we just want to emit a RELATIVE reloc.
2217 The entry in the global offset table will already have been
2218 initialized in the relocate_section function. */
2219 if (info->shared
2220 && (info->symbolic
2221 || h->dynindx == -1
2222 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2223 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2224 {
2225 BFD_ASSERT((h->got.offset & 1) != 0);
2226 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2227 }
2228 else
2229 {
2230 BFD_ASSERT((h->got.offset & 1) == 0);
2231 bfd_put_32 (output_bfd, (bfd_vma) 0,
2232 htab->sgot->contents + h->got.offset);
2233 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2234 }
2235
2236 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2237 loc += htab->srelgot->reloc_count++;
2238 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2239 }
2240
2241 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2242 {
2243 Elf_Internal_Rel rel;
2244 Elf32_External_Rel *loc;
2245
2246 /* This symbol needs a copy reloc. Set it up. */
2247
2248 if (h->dynindx == -1
2249 || (h->root.type != bfd_link_hash_defined
2250 && h->root.type != bfd_link_hash_defweak)
2251 || htab->srelbss == NULL)
2252 abort ();
2253
2254 rel.r_offset = (h->root.u.def.value
2255 + h->root.u.def.section->output_section->vma
2256 + h->root.u.def.section->output_offset);
2257 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2258 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2259 loc += htab->srelbss->reloc_count++;
2260 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2261 }
2262
2263 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2264 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2265 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2266 sym->st_shndx = SHN_ABS;
2267
2268 return true;
2269 }
2270
2271 /* Used to decide how to sort relocs in an optimal manner for the
2272 dynamic linker, before writing them out. */
2273
2274 static enum elf_reloc_type_class
2275 elf_i386_reloc_type_class (rela)
2276 const Elf_Internal_Rela *rela;
2277 {
2278 switch ((int) ELF32_R_TYPE (rela->r_info))
2279 {
2280 case R_386_RELATIVE:
2281 return reloc_class_relative;
2282 case R_386_JUMP_SLOT:
2283 return reloc_class_plt;
2284 case R_386_COPY:
2285 return reloc_class_copy;
2286 default:
2287 return reloc_class_normal;
2288 }
2289 }
2290
2291 /* Finish up the dynamic sections. */
2292
2293 static boolean
2294 elf_i386_finish_dynamic_sections (output_bfd, info)
2295 bfd *output_bfd;
2296 struct bfd_link_info *info;
2297 {
2298 struct elf_i386_link_hash_table *htab;
2299 bfd *dynobj;
2300 asection *sdyn;
2301
2302 htab = elf_i386_hash_table (info);
2303 dynobj = htab->elf.dynobj;
2304 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2305
2306 if (htab->elf.dynamic_sections_created)
2307 {
2308 Elf32_External_Dyn *dyncon, *dynconend;
2309
2310 if (sdyn == NULL || htab->sgot == NULL)
2311 abort ();
2312
2313 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2314 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2315 for (; dyncon < dynconend; dyncon++)
2316 {
2317 Elf_Internal_Dyn dyn;
2318 asection *s;
2319
2320 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2321
2322 switch (dyn.d_tag)
2323 {
2324 default:
2325 continue;
2326
2327 case DT_PLTGOT:
2328 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2329 break;
2330
2331 case DT_JMPREL:
2332 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2333 break;
2334
2335 case DT_PLTRELSZ:
2336 s = htab->srelplt->output_section;
2337 if (s->_cooked_size != 0)
2338 dyn.d_un.d_val = s->_cooked_size;
2339 else
2340 dyn.d_un.d_val = s->_raw_size;
2341 break;
2342
2343 case DT_RELSZ:
2344 /* My reading of the SVR4 ABI indicates that the
2345 procedure linkage table relocs (DT_JMPREL) should be
2346 included in the overall relocs (DT_REL). This is
2347 what Solaris does. However, UnixWare can not handle
2348 that case. Therefore, we override the DT_RELSZ entry
2349 here to make it not include the JMPREL relocs. Since
2350 the linker script arranges for .rel.plt to follow all
2351 other relocation sections, we don't have to worry
2352 about changing the DT_REL entry. */
2353 if (htab->srelplt != NULL)
2354 {
2355 s = htab->srelplt->output_section;
2356 if (s->_cooked_size != 0)
2357 dyn.d_un.d_val -= s->_cooked_size;
2358 else
2359 dyn.d_un.d_val -= s->_raw_size;
2360 }
2361 break;
2362 }
2363
2364 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2365 }
2366
2367 /* Fill in the first entry in the procedure linkage table. */
2368 if (htab->splt && htab->splt->_raw_size > 0)
2369 {
2370 if (info->shared)
2371 memcpy (htab->splt->contents,
2372 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2373 else
2374 {
2375 memcpy (htab->splt->contents,
2376 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2377 bfd_put_32 (output_bfd,
2378 (htab->sgotplt->output_section->vma
2379 + htab->sgotplt->output_offset
2380 + 4),
2381 htab->splt->contents + 2);
2382 bfd_put_32 (output_bfd,
2383 (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + 8),
2386 htab->splt->contents + 8);
2387 }
2388
2389 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2390 really seem like the right value. */
2391 elf_section_data (htab->splt->output_section)
2392 ->this_hdr.sh_entsize = 4;
2393 }
2394 }
2395
2396 if (htab->sgotplt)
2397 {
2398 /* Fill in the first three entries in the global offset table. */
2399 if (htab->sgotplt->_raw_size > 0)
2400 {
2401 bfd_put_32 (output_bfd,
2402 (sdyn == NULL ? (bfd_vma) 0
2403 : sdyn->output_section->vma + sdyn->output_offset),
2404 htab->sgotplt->contents);
2405 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2406 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2407 }
2408
2409 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2410 }
2411 return true;
2412 }
2413
2414 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2415 #define TARGET_LITTLE_NAME "elf32-i386"
2416 #define ELF_ARCH bfd_arch_i386
2417 #define ELF_MACHINE_CODE EM_386
2418 #define ELF_MAXPAGESIZE 0x1000
2419
2420 #define elf_backend_can_gc_sections 1
2421 #define elf_backend_can_refcount 1
2422 #define elf_backend_want_got_plt 1
2423 #define elf_backend_plt_readonly 1
2424 #define elf_backend_want_plt_sym 0
2425 #define elf_backend_got_header_size 12
2426 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2427
2428 #define elf_info_to_howto elf_i386_info_to_howto
2429 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2430
2431 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2432 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2433 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2434
2435 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2436 #define elf_backend_check_relocs elf_i386_check_relocs
2437 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2438 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2439 #define elf_backend_fake_sections elf_i386_fake_sections
2440 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2441 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2442 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2443 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2444 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2445 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2446 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2447 #define elf_backend_relocate_section elf_i386_relocate_section
2448 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2449
2450 #include "elf32-target.h"
This page took 0.082525 seconds and 4 git commands to generate.