3989a9a0097aff466a38a9dc40f287b0fff2b019
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static boolean elf_i386_adjust_dynamic_symbol
45 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
46 static boolean allocate_plt_and_got_and_discard_relocs
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_i386_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_i386_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_i386_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_i386_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
58
59 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
60
61 #include "elf/i386.h"
62
63 static reloc_howto_type elf_howto_table[]=
64 {
65 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
66 bfd_elf_generic_reloc, "R_386_NONE",
67 true, 0x00000000, 0x00000000, false),
68 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
69 bfd_elf_generic_reloc, "R_386_32",
70 true, 0xffffffff, 0xffffffff, false),
71 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
72 bfd_elf_generic_reloc, "R_386_PC32",
73 true, 0xffffffff, 0xffffffff, true),
74 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_386_GOT32",
76 true, 0xffffffff, 0xffffffff, false),
77 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_386_PLT32",
79 true, 0xffffffff, 0xffffffff, true),
80 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_386_COPY",
82 true, 0xffffffff, 0xffffffff, false),
83 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
85 true, 0xffffffff, 0xffffffff, false),
86 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
88 true, 0xffffffff, 0xffffffff, false),
89 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_386_RELATIVE",
91 true, 0xffffffff, 0xffffffff, false),
92 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_386_GOTOFF",
94 true, 0xffffffff, 0xffffffff, false),
95 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_386_GOTPC",
97 true, 0xffffffff, 0xffffffff, true),
98
99 /* We have a gap in the reloc numbers here.
100 R_386_standard counts the number up to this point, and
101 R_386_ext_offset is the value to subtract from a reloc type of
102 R_386_16 thru R_386_PC8 to form an index into this table. */
103 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
104 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
105
106 /* The remaining relocs are a GNU extension. */
107 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_386_16",
109 true, 0xffff, 0xffff, false),
110 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_386_PC16",
112 true, 0xffff, 0xffff, true),
113 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_386_8",
115 true, 0xff, 0xff, false),
116 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_386_PC8",
118 true, 0xff, 0xff, true),
119
120 /* Another gap. */
121 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
122 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
123
124 /* GNU extension to record C++ vtable hierarchy. */
125 HOWTO (R_386_GNU_VTINHERIT, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 0, /* bitsize */
129 false, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_dont, /* complain_on_overflow */
132 NULL, /* special_function */
133 "R_386_GNU_VTINHERIT", /* name */
134 false, /* partial_inplace */
135 0, /* src_mask */
136 0, /* dst_mask */
137 false),
138
139 /* GNU extension to record C++ vtable member usage. */
140 HOWTO (R_386_GNU_VTENTRY, /* type */
141 0, /* rightshift */
142 2, /* size (0 = byte, 1 = short, 2 = long) */
143 0, /* bitsize */
144 false, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont, /* complain_on_overflow */
147 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
148 "R_386_GNU_VTENTRY", /* name */
149 false, /* partial_inplace */
150 0, /* src_mask */
151 0, /* dst_mask */
152 false)
153
154 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
155
156 };
157
158 #ifdef DEBUG_GEN_RELOC
159 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
160 #else
161 #define TRACE(str)
162 #endif
163
164 static reloc_howto_type *
165 elf_i386_reloc_type_lookup (abfd, code)
166 bfd *abfd ATTRIBUTE_UNUSED;
167 bfd_reloc_code_real_type code;
168 {
169 switch (code)
170 {
171 case BFD_RELOC_NONE:
172 TRACE ("BFD_RELOC_NONE");
173 return &elf_howto_table[(unsigned int) R_386_NONE ];
174
175 case BFD_RELOC_32:
176 TRACE ("BFD_RELOC_32");
177 return &elf_howto_table[(unsigned int) R_386_32 ];
178
179 case BFD_RELOC_CTOR:
180 TRACE ("BFD_RELOC_CTOR");
181 return &elf_howto_table[(unsigned int) R_386_32 ];
182
183 case BFD_RELOC_32_PCREL:
184 TRACE ("BFD_RELOC_PC32");
185 return &elf_howto_table[(unsigned int) R_386_PC32 ];
186
187 case BFD_RELOC_386_GOT32:
188 TRACE ("BFD_RELOC_386_GOT32");
189 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
190
191 case BFD_RELOC_386_PLT32:
192 TRACE ("BFD_RELOC_386_PLT32");
193 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
194
195 case BFD_RELOC_386_COPY:
196 TRACE ("BFD_RELOC_386_COPY");
197 return &elf_howto_table[(unsigned int) R_386_COPY ];
198
199 case BFD_RELOC_386_GLOB_DAT:
200 TRACE ("BFD_RELOC_386_GLOB_DAT");
201 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
202
203 case BFD_RELOC_386_JUMP_SLOT:
204 TRACE ("BFD_RELOC_386_JUMP_SLOT");
205 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
206
207 case BFD_RELOC_386_RELATIVE:
208 TRACE ("BFD_RELOC_386_RELATIVE");
209 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
210
211 case BFD_RELOC_386_GOTOFF:
212 TRACE ("BFD_RELOC_386_GOTOFF");
213 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
214
215 case BFD_RELOC_386_GOTPC:
216 TRACE ("BFD_RELOC_386_GOTPC");
217 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
218
219 /* The remaining relocs are a GNU extension. */
220 case BFD_RELOC_16:
221 TRACE ("BFD_RELOC_16");
222 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
223
224 case BFD_RELOC_16_PCREL:
225 TRACE ("BFD_RELOC_16_PCREL");
226 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
227
228 case BFD_RELOC_8:
229 TRACE ("BFD_RELOC_8");
230 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
231
232 case BFD_RELOC_8_PCREL:
233 TRACE ("BFD_RELOC_8_PCREL");
234 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
235
236 case BFD_RELOC_VTABLE_INHERIT:
237 TRACE ("BFD_RELOC_VTABLE_INHERIT");
238 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
239 - R_386_vt_offset];
240
241 case BFD_RELOC_VTABLE_ENTRY:
242 TRACE ("BFD_RELOC_VTABLE_ENTRY");
243 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
244 - R_386_vt_offset];
245
246 default:
247 break;
248 }
249
250 TRACE ("Unknown");
251 return 0;
252 }
253
254 static void
255 elf_i386_info_to_howto (abfd, cache_ptr, dst)
256 bfd *abfd ATTRIBUTE_UNUSED;
257 arelent *cache_ptr ATTRIBUTE_UNUSED;
258 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
259 {
260 abort ();
261 }
262
263 static void
264 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
265 bfd *abfd ATTRIBUTE_UNUSED;
266 arelent *cache_ptr;
267 Elf32_Internal_Rel *dst;
268 {
269 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
270 unsigned int indx;
271
272 if ((indx = r_type) >= R_386_standard
273 && ((indx = r_type - R_386_ext_offset) - R_386_standard
274 >= R_386_ext - R_386_standard)
275 && ((indx = r_type - R_386_vt_offset) - R_386_ext
276 >= R_386_vt - R_386_ext))
277 {
278 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
279 bfd_get_filename (abfd), (int) r_type);
280 indx = (unsigned int) R_386_NONE;
281 }
282 cache_ptr->howto = &elf_howto_table[indx];
283 }
284
285 /* Return whether a symbol name implies a local label. The UnixWare
286 2.1 cc generates temporary symbols that start with .X, so we
287 recognize them here. FIXME: do other SVR4 compilers also use .X?.
288 If so, we should move the .X recognition into
289 _bfd_elf_is_local_label_name. */
290
291 static boolean
292 elf_i386_is_local_label_name (abfd, name)
293 bfd *abfd;
294 const char *name;
295 {
296 if (name[0] == '.' && name[1] == 'X')
297 return true;
298
299 return _bfd_elf_is_local_label_name (abfd, name);
300 }
301 \f
302 /* Functions for the i386 ELF linker. */
303
304 /* The name of the dynamic interpreter. This is put in the .interp
305 section. */
306
307 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
308
309 /* The size in bytes of an entry in the procedure linkage table. */
310
311 #define PLT_ENTRY_SIZE 16
312
313 /* The first entry in an absolute procedure linkage table looks like
314 this. See the SVR4 ABI i386 supplement to see how this works. */
315
316 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
317 {
318 0xff, 0x35, /* pushl contents of address */
319 0, 0, 0, 0, /* replaced with address of .got + 4. */
320 0xff, 0x25, /* jmp indirect */
321 0, 0, 0, 0, /* replaced with address of .got + 8. */
322 0, 0, 0, 0 /* pad out to 16 bytes. */
323 };
324
325 /* Subsequent entries in an absolute procedure linkage table look like
326 this. */
327
328 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
329 {
330 0xff, 0x25, /* jmp indirect */
331 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
332 0x68, /* pushl immediate */
333 0, 0, 0, 0, /* replaced with offset into relocation table. */
334 0xe9, /* jmp relative */
335 0, 0, 0, 0 /* replaced with offset to start of .plt. */
336 };
337
338 /* The first entry in a PIC procedure linkage table look like this. */
339
340 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
341 {
342 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
343 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
344 0, 0, 0, 0 /* pad out to 16 bytes. */
345 };
346
347 /* Subsequent entries in a PIC procedure linkage table look like this. */
348
349 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
350 {
351 0xff, 0xa3, /* jmp *offset(%ebx) */
352 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
353 0x68, /* pushl immediate */
354 0, 0, 0, 0, /* replaced with offset into relocation table. */
355 0xe9, /* jmp relative */
356 0, 0, 0, 0 /* replaced with offset to start of .plt. */
357 };
358
359 /* The i386 linker needs to keep track of the number of relocs that it
360 decides to copy as dynamic relocs in check_relocs for each symbol.
361 This is so that it can later discard them if they are found to be
362 unnecessary. We store the information in a field extending the
363 regular ELF linker hash table. */
364
365 struct elf_i386_dyn_relocs
366 {
367 /* Next section. */
368 struct elf_i386_dyn_relocs *next;
369 /* A section in dynobj. */
370 asection *section;
371 /* Number of relocs copied in this section. */
372 bfd_size_type count;
373 };
374
375 /* i386 ELF linker hash entry. */
376
377 struct elf_i386_link_hash_entry
378 {
379 struct elf_link_hash_entry root;
380
381 /* Number of PC relative relocs copied for this symbol. */
382 struct elf_i386_dyn_relocs *dyn_relocs;
383 };
384
385 /* i386 ELF linker hash table. */
386
387 struct elf_i386_link_hash_table
388 {
389 struct elf_link_hash_table root;
390
391 /* Short-cuts to get to dynamic linker sections. */
392 asection *sgot;
393 asection *sgotplt;
394 asection *srelgot;
395 asection *splt;
396 asection *srelplt;
397 asection *sdynbss;
398 asection *srelbss;
399 };
400
401 /* Get the i386 ELF linker hash table from a link_info structure. */
402
403 #define elf_i386_hash_table(p) \
404 ((struct elf_i386_link_hash_table *) ((p)->hash))
405
406 /* Create an entry in an i386 ELF linker hash table. */
407
408 static struct bfd_hash_entry *
409 elf_i386_link_hash_newfunc (entry, table, string)
410 struct bfd_hash_entry *entry;
411 struct bfd_hash_table *table;
412 const char *string;
413 {
414 struct elf_i386_link_hash_entry *ret =
415 (struct elf_i386_link_hash_entry *) entry;
416
417 /* Allocate the structure if it has not already been allocated by a
418 subclass. */
419 if (ret == (struct elf_i386_link_hash_entry *) NULL)
420 ret = ((struct elf_i386_link_hash_entry *)
421 bfd_hash_allocate (table,
422 sizeof (struct elf_i386_link_hash_entry)));
423 if (ret == (struct elf_i386_link_hash_entry *) NULL)
424 return (struct bfd_hash_entry *) ret;
425
426 /* Call the allocation method of the superclass. */
427 ret = ((struct elf_i386_link_hash_entry *)
428 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
429 table, string));
430 if (ret != (struct elf_i386_link_hash_entry *) NULL)
431 {
432 ret->dyn_relocs = NULL;
433 }
434
435 return (struct bfd_hash_entry *) ret;
436 }
437
438 /* Create an i386 ELF linker hash table. */
439
440 static struct bfd_link_hash_table *
441 elf_i386_link_hash_table_create (abfd)
442 bfd *abfd;
443 {
444 struct elf_i386_link_hash_table *ret;
445
446 ret = ((struct elf_i386_link_hash_table *)
447 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
448 if (ret == (struct elf_i386_link_hash_table *) NULL)
449 return NULL;
450
451 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
452 elf_i386_link_hash_newfunc))
453 {
454 bfd_release (abfd, ret);
455 return NULL;
456 }
457
458 ret->sgot = NULL;
459 ret->sgotplt = NULL;
460 ret->srelgot = NULL;
461 ret->splt = NULL;
462 ret->srelplt = NULL;
463 ret->sdynbss = NULL;
464 ret->srelbss = NULL;
465
466 return &ret->root.root;
467 }
468
469 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
470 shortcuts to them in our hash table. */
471
472 static boolean
473 create_got_section (dynobj, info)
474 bfd *dynobj;
475 struct bfd_link_info *info;
476 {
477 struct elf_i386_link_hash_table *htab;
478
479 if (! _bfd_elf_create_got_section (dynobj, info))
480 return false;
481
482 htab = elf_i386_hash_table (info);
483 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
484 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
485 if (!htab->sgot || !htab->sgotplt)
486 abort ();
487
488 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
489 if (htab->srelgot == NULL
490 || ! bfd_set_section_flags (dynobj, htab->srelgot,
491 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
492 | SEC_IN_MEMORY | SEC_LINKER_CREATED
493 | SEC_READONLY))
494 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
495 return false;
496 return true;
497 }
498
499 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
500 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
501 hash table. */
502
503 static boolean
504 elf_i386_create_dynamic_sections (dynobj, info)
505 bfd *dynobj;
506 struct bfd_link_info *info;
507 {
508 struct elf_i386_link_hash_table *htab;
509
510 htab = elf_i386_hash_table (info);
511 if (!htab->sgot && !create_got_section (dynobj, info))
512 return false;
513
514 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
515 return false;
516
517 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
518 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
519 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
520 if (!info->shared)
521 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
522
523 if (!htab->splt || !htab->srelplt || !htab->sdynbss
524 || (!info->shared && !htab->srelbss))
525 abort ();
526
527 return true;
528 }
529
530 /* Look through the relocs for a section during the first phase, and
531 allocate space in the global offset table or procedure linkage
532 table. */
533
534 static boolean
535 elf_i386_check_relocs (abfd, info, sec, relocs)
536 bfd *abfd;
537 struct bfd_link_info *info;
538 asection *sec;
539 const Elf_Internal_Rela *relocs;
540 {
541 struct elf_i386_link_hash_table *htab;
542 bfd *dynobj;
543 Elf_Internal_Shdr *symtab_hdr;
544 struct elf_link_hash_entry **sym_hashes;
545 bfd_signed_vma *local_got_refcounts;
546 const Elf_Internal_Rela *rel;
547 const Elf_Internal_Rela *rel_end;
548 asection *sreloc;
549
550 if (info->relocateable)
551 return true;
552
553 htab = elf_i386_hash_table (info);
554 dynobj = htab->root.dynobj;
555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
556 sym_hashes = elf_sym_hashes (abfd);
557 local_got_refcounts = elf_local_got_refcounts (abfd);
558
559 sreloc = NULL;
560
561 rel_end = relocs + sec->reloc_count;
562 for (rel = relocs; rel < rel_end; rel++)
563 {
564 unsigned long r_symndx;
565 struct elf_link_hash_entry *h;
566
567 r_symndx = ELF32_R_SYM (rel->r_info);
568
569 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
570 {
571 if (abfd->my_archive)
572 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
573 bfd_get_filename (abfd->my_archive),
574 bfd_get_filename (abfd),
575 r_symndx);
576 else
577 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
578 bfd_get_filename (abfd),
579 r_symndx);
580 return false;
581 }
582
583 if (r_symndx < symtab_hdr->sh_info)
584 h = NULL;
585 else
586 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
587
588 /* Some relocs require a global offset table. */
589 if (htab->sgot == NULL)
590 {
591 switch (ELF32_R_TYPE (rel->r_info))
592 {
593 case R_386_GOT32:
594 case R_386_GOTOFF:
595 case R_386_GOTPC:
596 if (dynobj == NULL)
597 htab->root.dynobj = dynobj = abfd;
598 if (!create_got_section (dynobj, info))
599 return false;
600 break;
601
602 default:
603 break;
604 }
605 }
606
607 switch (ELF32_R_TYPE (rel->r_info))
608 {
609 case R_386_GOT32:
610 /* This symbol requires a global offset table entry. */
611 if (h != NULL)
612 {
613 if (h->got.refcount == -1)
614 {
615 /* Make sure this symbol is output as a dynamic symbol. */
616 if (h->dynindx == -1)
617 {
618 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
619 return false;
620 }
621 h->got.refcount = 1;
622 }
623 else
624 h->got.refcount += 1;
625 }
626 else
627 {
628 /* This is a global offset table entry for a local symbol. */
629 if (local_got_refcounts == NULL)
630 {
631 size_t size;
632
633 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
634 local_got_refcounts = ((bfd_signed_vma *)
635 bfd_alloc (abfd, size));
636 if (local_got_refcounts == NULL)
637 return false;
638 elf_local_got_refcounts (abfd) = local_got_refcounts;
639 memset (local_got_refcounts, -1, size);
640 }
641 if (local_got_refcounts[r_symndx] == -1)
642 local_got_refcounts[r_symndx] = 1;
643 else
644 local_got_refcounts[r_symndx] += 1;
645 }
646 break;
647
648 case R_386_PLT32:
649 /* This symbol requires a procedure linkage table entry. We
650 actually build the entry in adjust_dynamic_symbol,
651 because this might be a case of linking PIC code which is
652 never referenced by a dynamic object, in which case we
653 don't need to generate a procedure linkage table entry
654 after all. */
655
656 /* If this is a local symbol, we resolve it directly without
657 creating a procedure linkage table entry. */
658 if (h == NULL)
659 continue;
660
661 if (h->plt.refcount == -1)
662 {
663 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
664 h->plt.refcount = 1;
665 }
666 else
667 h->plt.refcount += 1;
668 break;
669
670 case R_386_32:
671 case R_386_PC32:
672 if (h != NULL && !info->shared)
673 {
674 /* If this reloc is in a read-only section, we might
675 need a copy reloc. */
676 if ((sec->flags & SEC_READONLY) != 0)
677 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
678
679 /* We may need a .plt entry if the function this reloc
680 refers to is in a shared lib. */
681 if (h->plt.refcount == -1)
682 h->plt.refcount = 1;
683 else
684 h->plt.refcount += 1;
685 }
686
687 /* If we are creating a shared library, and this is a reloc
688 against a global symbol, or a non PC relative reloc
689 against a local symbol, then we need to copy the reloc
690 into the shared library. However, if we are linking with
691 -Bsymbolic, we do not need to copy a reloc against a
692 global symbol which is defined in an object we are
693 including in the link (i.e., DEF_REGULAR is set). At
694 this point we have not seen all the input files, so it is
695 possible that DEF_REGULAR is not set now but will be set
696 later (it is never cleared). In case of a weak definition,
697 DEF_REGULAR may be cleared later by a strong definition in
698 a shared library. We account for that possibility below by
699 storing information in the relocs_copied field of the hash
700 table entry. A similar situation occurs when creating
701 shared libraries and symbol visibility changes render the
702 symbol local.
703 If on the other hand, we are creating an executable, we
704 may need to keep relocations for symbols satisfied by a
705 dynamic library if we manage to avoid copy relocs for the
706 symbol. */
707 if ((info->shared
708 && (sec->flags & SEC_ALLOC) != 0
709 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
710 || (h != NULL
711 && (! info->symbolic
712 || h->root.type == bfd_link_hash_defweak
713 || (h->elf_link_hash_flags
714 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
715 || (!info->shared
716 && (sec->flags & SEC_ALLOC) != 0
717 && h != NULL
718 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
719 && (h->root.type == bfd_link_hash_defweak
720 || (h->elf_link_hash_flags
721 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
722 {
723 /* We must copy these reloc types into the output file.
724 Create a reloc section in dynobj and make room for
725 this reloc. */
726 if (dynobj == NULL)
727 htab->root.dynobj = dynobj = abfd;
728
729 if (h != NULL && h->dynindx == -1)
730 {
731 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
732 return false;
733 }
734
735 if (sreloc == NULL)
736 {
737 const char *name;
738
739 name = (bfd_elf_string_from_elf_section
740 (abfd,
741 elf_elfheader (abfd)->e_shstrndx,
742 elf_section_data (sec)->rel_hdr.sh_name));
743 if (name == NULL)
744 return false;
745
746 if (strncmp (name, ".rel", 4) != 0
747 || strcmp (bfd_get_section_name (abfd, sec),
748 name + 4) != 0)
749 {
750 if (abfd->my_archive)
751 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
752 bfd_get_filename (abfd->my_archive),
753 bfd_get_filename (abfd),
754 name);
755 else
756 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
757 bfd_get_filename (abfd),
758 name);
759 }
760
761 sreloc = bfd_get_section_by_name (dynobj, name);
762 if (sreloc == NULL)
763 {
764 flagword flags;
765
766 sreloc = bfd_make_section (dynobj, name);
767 flags = (SEC_HAS_CONTENTS | SEC_READONLY
768 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
769 if ((sec->flags & SEC_ALLOC) != 0)
770 flags |= SEC_ALLOC | SEC_LOAD;
771 if (sreloc == NULL
772 || ! bfd_set_section_flags (dynobj, sreloc, flags)
773 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
774 return false;
775 }
776 }
777
778 sreloc->_raw_size += sizeof (Elf32_External_Rel);
779
780 /* If this is a global symbol, we count the number of PC
781 relative relocations we have entered for this symbol,
782 so that we can discard them later as necessary. Note
783 that this function is only called if we are using an
784 elf_i386 linker hash table, which means that h is
785 really a pointer to an elf_i386_link_hash_entry. */
786 if (!info->shared
787 || (h != NULL
788 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
789 {
790 struct elf_i386_link_hash_entry *eh;
791 struct elf_i386_dyn_relocs *p;
792
793 eh = (struct elf_i386_link_hash_entry *) h;
794
795 for (p = eh->dyn_relocs; p != NULL; p = p->next)
796 if (p->section == sreloc)
797 break;
798
799 if (p == NULL)
800 {
801 p = ((struct elf_i386_dyn_relocs *)
802 bfd_alloc (dynobj, sizeof *p));
803 if (p == NULL)
804 return false;
805 p->next = eh->dyn_relocs;
806 eh->dyn_relocs = p;
807 p->section = sreloc;
808 p->count = 0;
809 }
810
811 ++p->count;
812 }
813 }
814
815 break;
816
817 /* This relocation describes the C++ object vtable hierarchy.
818 Reconstruct it for later use during GC. */
819 case R_386_GNU_VTINHERIT:
820 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
821 return false;
822 break;
823
824 /* This relocation describes which C++ vtable entries are actually
825 used. Record for later use during GC. */
826 case R_386_GNU_VTENTRY:
827 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
828 return false;
829 break;
830
831 default:
832 break;
833 }
834 }
835
836 return true;
837 }
838
839 /* Return the section that should be marked against GC for a given
840 relocation. */
841
842 static asection *
843 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
844 bfd *abfd;
845 struct bfd_link_info *info ATTRIBUTE_UNUSED;
846 Elf_Internal_Rela *rel;
847 struct elf_link_hash_entry *h;
848 Elf_Internal_Sym *sym;
849 {
850 if (h != NULL)
851 {
852 switch (ELF32_R_TYPE (rel->r_info))
853 {
854 case R_386_GNU_VTINHERIT:
855 case R_386_GNU_VTENTRY:
856 break;
857
858 default:
859 switch (h->root.type)
860 {
861 case bfd_link_hash_defined:
862 case bfd_link_hash_defweak:
863 return h->root.u.def.section;
864
865 case bfd_link_hash_common:
866 return h->root.u.c.p->section;
867
868 default:
869 break;
870 }
871 }
872 }
873 else
874 {
875 if (!(elf_bad_symtab (abfd)
876 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
877 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
878 && sym->st_shndx != SHN_COMMON))
879 {
880 return bfd_section_from_elf_index (abfd, sym->st_shndx);
881 }
882 }
883
884 return NULL;
885 }
886
887 /* Update the got entry reference counts for the section being removed. */
888
889 static boolean
890 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
891 bfd *abfd;
892 struct bfd_link_info *info;
893 asection *sec;
894 const Elf_Internal_Rela *relocs;
895 {
896 Elf_Internal_Shdr *symtab_hdr;
897 struct elf_link_hash_entry **sym_hashes;
898 bfd_signed_vma *local_got_refcounts;
899 const Elf_Internal_Rela *rel, *relend;
900 unsigned long r_symndx;
901 struct elf_link_hash_entry *h;
902 bfd *dynobj;
903
904 dynobj = elf_hash_table (info)->dynobj;
905 if (dynobj == NULL)
906 return true;
907
908 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
909 sym_hashes = elf_sym_hashes (abfd);
910 local_got_refcounts = elf_local_got_refcounts (abfd);
911
912 relend = relocs + sec->reloc_count;
913 for (rel = relocs; rel < relend; rel++)
914 switch (ELF32_R_TYPE (rel->r_info))
915 {
916 case R_386_GOT32:
917 case R_386_GOTOFF:
918 case R_386_GOTPC:
919 r_symndx = ELF32_R_SYM (rel->r_info);
920 if (r_symndx >= symtab_hdr->sh_info)
921 {
922 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
923 if (h->got.refcount > 0)
924 h->got.refcount -= 1;
925 }
926 else if (local_got_refcounts != NULL)
927 {
928 if (local_got_refcounts[r_symndx] > 0)
929 local_got_refcounts[r_symndx] -= 1;
930 }
931 break;
932
933 case R_386_32:
934 case R_386_PC32:
935 if (info->shared)
936 break;
937 /* Fall through. */
938
939 case R_386_PLT32:
940 r_symndx = ELF32_R_SYM (rel->r_info);
941 if (r_symndx >= symtab_hdr->sh_info)
942 {
943 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
944 if (h->plt.refcount > 0)
945 h->plt.refcount -= 1;
946 }
947 break;
948
949 default:
950 break;
951 }
952
953 return true;
954 }
955
956 /* Adjust a symbol defined by a dynamic object and referenced by a
957 regular object. The current definition is in some section of the
958 dynamic object, but we're not including those sections. We have to
959 change the definition to something the rest of the link can
960 understand. */
961
962 static boolean
963 elf_i386_adjust_dynamic_symbol (info, h)
964 struct bfd_link_info *info;
965 struct elf_link_hash_entry *h;
966 {
967 struct elf_i386_link_hash_table *htab;
968 bfd *dynobj;
969 asection *s;
970 unsigned int power_of_two;
971
972 htab = elf_i386_hash_table (info);
973 dynobj = htab->root.dynobj;
974
975 /* If this is a function, put it in the procedure linkage table. We
976 will fill in the contents of the procedure linkage table later,
977 when we know the address of the .got section. */
978 if (h->type == STT_FUNC
979 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
980 {
981 if (h->plt.refcount <= 0
982 || (! info->shared
983 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
984 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
985 {
986 /* This case can occur if we saw a PLT32 reloc in an input
987 file, but the symbol was never referred to by a dynamic
988 object, or if all references were garbage collected. In
989 such a case, we don't actually need to build a procedure
990 linkage table, and we can just do a PC32 reloc instead. */
991 h->plt.refcount = (bfd_vma) -1;
992 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
993 return true;
994 }
995
996 /* Make sure this symbol is output as a dynamic symbol. */
997 if (h->dynindx == -1)
998 {
999 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1000 return false;
1001 }
1002
1003 return true;
1004 }
1005 else
1006 /* It's possible that we incorrectly decided a .plt reloc was
1007 needed for an R_386_PC32 reloc to a non-function sym in
1008 check_relocs. We can't decide accurately between function and
1009 non-function syms in check-relocs; Objects loaded later in
1010 the link may change h->type. So fix it now. */
1011 h->plt.refcount = (bfd_vma) -1;
1012
1013 /* If this is a weak symbol, and there is a real definition, the
1014 processor independent code will have arranged for us to see the
1015 real definition first, and we can just use the same value. */
1016 if (h->weakdef != NULL)
1017 {
1018 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1019 || h->weakdef->root.type == bfd_link_hash_defweak);
1020 h->root.u.def.section = h->weakdef->root.u.def.section;
1021 h->root.u.def.value = h->weakdef->root.u.def.value;
1022 return true;
1023 }
1024
1025 /* This is a reference to a symbol defined by a dynamic object which
1026 is not a function. */
1027
1028 /* If we are creating a shared library, we must presume that the
1029 only references to the symbol are via the global offset table.
1030 For such cases we need not do anything here; the relocations will
1031 be handled correctly by relocate_section. */
1032 if (info->shared)
1033 return true;
1034
1035 /* If there are no references to this symbol that do not use the
1036 GOT, we don't need to generate a copy reloc. */
1037 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1038 return true;
1039
1040 /* We must allocate the symbol in our .dynbss section, which will
1041 become part of the .bss section of the executable. There will be
1042 an entry for this symbol in the .dynsym section. The dynamic
1043 object will contain position independent code, so all references
1044 from the dynamic object to this symbol will go through the global
1045 offset table. The dynamic linker will use the .dynsym entry to
1046 determine the address it must put in the global offset table, so
1047 both the dynamic object and the regular object will refer to the
1048 same memory location for the variable. */
1049
1050 s = htab->sdynbss;
1051 if (s == NULL)
1052 abort ();
1053
1054 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1055 copy the initial value out of the dynamic object and into the
1056 runtime process image. We need to remember the offset into the
1057 .rel.bss section we are going to use. */
1058 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1059 {
1060 asection *srel;
1061
1062 srel = htab->srelbss;
1063 if (srel == NULL)
1064 abort ();
1065 srel->_raw_size += sizeof (Elf32_External_Rel);
1066 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1067 }
1068
1069 /* We need to figure out the alignment required for this symbol. I
1070 have no idea how ELF linkers handle this. */
1071 power_of_two = bfd_log2 (h->size);
1072 if (power_of_two > 3)
1073 power_of_two = 3;
1074
1075 /* Apply the required alignment. */
1076 s->_raw_size = BFD_ALIGN (s->_raw_size,
1077 (bfd_size_type) (1 << power_of_two));
1078 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1079 {
1080 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1081 return false;
1082 }
1083
1084 /* Define the symbol as being at this point in the section. */
1085 h->root.u.def.section = s;
1086 h->root.u.def.value = s->_raw_size;
1087
1088 /* Increment the section size to make room for the symbol. */
1089 s->_raw_size += h->size;
1090
1091 return true;
1092 }
1093
1094 /* This is the condition under which elf_i386_finish_dynamic_symbol
1095 will be called from elflink.h. If elflink.h doesn't call our
1096 finish_dynamic_symbol routine, we'll need to do something about
1097 initializing any .plt and .got entries in elf_i386_relocate_section. */
1098 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1099 ((DYN) \
1100 && ((INFO)->shared \
1101 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1102 && ((H)->dynindx != -1 \
1103 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1104
1105 /* Allocate space in .plt, .got and associated reloc sections for
1106 global syms. Also discards space allocated for relocs in the
1107 check_relocs function that we subsequently have found to be
1108 unneeded. */
1109
1110 static boolean
1111 allocate_plt_and_got_and_discard_relocs (h, inf)
1112 struct elf_link_hash_entry *h;
1113 PTR inf;
1114 {
1115 struct bfd_link_info *info;
1116 struct elf_i386_link_hash_table *htab;
1117 asection *s;
1118
1119 if (h->root.type == bfd_link_hash_indirect
1120 || h->root.type == bfd_link_hash_warning)
1121 return true;
1122
1123 info = (struct bfd_link_info *) inf;
1124 htab = elf_i386_hash_table (info);
1125
1126 if (htab->root.dynamic_sections_created
1127 && h->plt.refcount > 0)
1128 {
1129 s = htab->splt;
1130 if (s == NULL)
1131 abort ();
1132
1133 /* If this is the first .plt entry, make room for the special
1134 first entry. */
1135 if (s->_raw_size == 0)
1136 s->_raw_size += PLT_ENTRY_SIZE;
1137
1138 h->plt.offset = s->_raw_size;
1139
1140 /* If this symbol is not defined in a regular file, and we are
1141 not generating a shared library, then set the symbol to this
1142 location in the .plt. This is required to make function
1143 pointers compare as equal between the normal executable and
1144 the shared library. */
1145 if (! info->shared
1146 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1147 {
1148 h->root.u.def.section = s;
1149 h->root.u.def.value = h->plt.offset;
1150 }
1151
1152 /* Make room for this entry. */
1153 s->_raw_size += PLT_ENTRY_SIZE;
1154
1155 /* We also need to make an entry in the .got.plt section, which
1156 will be placed in the .got section by the linker script. */
1157 s = htab->sgotplt;
1158 if (s == NULL)
1159 abort ();
1160 s->_raw_size += 4;
1161
1162 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1163 {
1164 /* We also need to make an entry in the .rel.plt section. */
1165 s = htab->srelplt;
1166 if (s == NULL)
1167 abort ();
1168 s->_raw_size += sizeof (Elf32_External_Rel);
1169 }
1170 }
1171 else
1172 {
1173 h->plt.offset = (bfd_vma) -1;
1174 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1175 }
1176
1177 if (h->got.refcount > 0)
1178 {
1179 boolean dyn;
1180
1181 s = htab->sgot;
1182 h->got.offset = s->_raw_size;
1183 s->_raw_size += 4;
1184 dyn = htab->root.dynamic_sections_created;
1185 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1186 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1187 }
1188 else
1189 h->got.offset = (bfd_vma) -1;
1190
1191 /* In the shared -Bsymbolic case, discard space allocated to copy
1192 PC relative relocs against symbols which turn out to be defined
1193 in regular objects. For the normal shared case, discard space
1194 for relocs that have become local due to symbol visibility
1195 changes. For the non-shared case, discard space for symbols
1196 which turn out to need copy relocs or are not dynamic. */
1197
1198 if ((info->shared
1199 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1200 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1201 || info->symbolic))
1202 || (!info->shared
1203 && (h->dynindx == -1
1204 || (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) != 0
1205 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1206 && h->root.type != bfd_link_hash_undefweak
1207 && h->root.type != bfd_link_hash_undefined))))
1208 {
1209 struct elf_i386_link_hash_entry *eh;
1210 struct elf_i386_dyn_relocs *c;
1211
1212 eh = (struct elf_i386_link_hash_entry *) h;
1213 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1214 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1215 }
1216
1217 return true;
1218 }
1219
1220 /* Set the sizes of the dynamic sections. */
1221
1222 static boolean
1223 elf_i386_size_dynamic_sections (output_bfd, info)
1224 bfd *output_bfd;
1225 struct bfd_link_info *info;
1226 {
1227 struct elf_i386_link_hash_table *htab;
1228 bfd *dynobj;
1229 asection *s;
1230 boolean relocs;
1231 boolean reltext;
1232 bfd *i;
1233
1234 htab = elf_i386_hash_table (info);
1235 dynobj = htab->root.dynobj;
1236 if (dynobj == NULL)
1237 abort ();
1238
1239 if (htab->root.dynamic_sections_created)
1240 {
1241 /* Set the contents of the .interp section to the interpreter. */
1242 if (! info->shared)
1243 {
1244 s = bfd_get_section_by_name (dynobj, ".interp");
1245 if (s == NULL)
1246 abort ();
1247 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1248 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1249 }
1250 }
1251
1252 /* Set up .got offsets for local syms. */
1253 for (i = info->input_bfds; i; i = i->link_next)
1254 {
1255 bfd_signed_vma *local_got;
1256 bfd_signed_vma *end_local_got;
1257 bfd_size_type locsymcount;
1258 Elf_Internal_Shdr *symtab_hdr;
1259 asection *srel;
1260
1261 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1262 continue;
1263
1264 local_got = elf_local_got_refcounts (i);
1265 if (!local_got)
1266 continue;
1267
1268 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1269 locsymcount = symtab_hdr->sh_info;
1270 end_local_got = local_got + locsymcount;
1271 s = htab->sgot;
1272 srel = htab->srelgot;
1273 for (; local_got < end_local_got; ++local_got)
1274 {
1275 if (*local_got > 0)
1276 {
1277 *local_got = s->_raw_size;
1278 s->_raw_size += 4;
1279 if (info->shared)
1280 srel->_raw_size += sizeof (Elf32_External_Rel);
1281 }
1282 else
1283 *local_got = (bfd_vma) -1;
1284 }
1285 }
1286
1287 /* Allocate global sym .plt and .got entries. Also discard all
1288 unneeded relocs. */
1289 elf_link_hash_traverse (&htab->root,
1290 allocate_plt_and_got_and_discard_relocs,
1291 (PTR) info);
1292
1293 /* The check_relocs and adjust_dynamic_symbol entry points have
1294 determined the sizes of the various dynamic sections. Allocate
1295 memory for them. */
1296 relocs = false;
1297 reltext = false;
1298 for (s = dynobj->sections; s != NULL; s = s->next)
1299 {
1300 if ((s->flags & SEC_LINKER_CREATED) == 0)
1301 continue;
1302
1303 if (s == htab->splt
1304 || s == htab->sgot
1305 || s == htab->sgotplt)
1306 {
1307 /* Strip this section if we don't need it; see the
1308 comment below. */
1309 }
1310 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1311 {
1312 if (s->_raw_size == 0)
1313 {
1314 /* If we don't need this section, strip it from the
1315 output file. This is mostly to handle .rel.bss and
1316 .rel.plt. We must create both sections in
1317 create_dynamic_sections, because they must be created
1318 before the linker maps input sections to output
1319 sections. The linker does that before
1320 adjust_dynamic_symbol is called, and it is that
1321 function which decides whether anything needs to go
1322 into these sections. */
1323 }
1324 else
1325 {
1326 asection *target;
1327
1328 /* Remember whether there are any reloc sections other
1329 than .rel.plt. */
1330 if (s != htab->srelplt)
1331 {
1332 const char *outname;
1333
1334 relocs = true;
1335
1336 /* If this relocation section applies to a read only
1337 section, then we probably need a DT_TEXTREL
1338 entry. The entries in the .rel.plt section
1339 really apply to the .got section, which we
1340 created ourselves and so know is not readonly. */
1341 outname = bfd_get_section_name (output_bfd,
1342 s->output_section);
1343 target = bfd_get_section_by_name (output_bfd, outname + 4);
1344 if (target != NULL
1345 && (target->flags & SEC_READONLY) != 0
1346 && (target->flags & SEC_ALLOC) != 0)
1347 reltext = true;
1348 }
1349
1350 /* We use the reloc_count field as a counter if we need
1351 to copy relocs into the output file. */
1352 s->reloc_count = 0;
1353 }
1354 }
1355 else
1356 {
1357 /* It's not one of our sections, so don't allocate space. */
1358 continue;
1359 }
1360
1361 if (s->_raw_size == 0)
1362 {
1363 _bfd_strip_section_from_output (info, s);
1364 continue;
1365 }
1366
1367 /* Allocate memory for the section contents. We use bfd_zalloc
1368 here in case unused entries are not reclaimed before the
1369 section's contents are written out. This should not happen,
1370 but this way if it does, we get a R_386_NONE reloc instead
1371 of garbage. */
1372 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1373 if (s->contents == NULL)
1374 return false;
1375 }
1376
1377 if (htab->root.dynamic_sections_created)
1378 {
1379 /* Add some entries to the .dynamic section. We fill in the
1380 values later, in elf_i386_finish_dynamic_sections, but we
1381 must add the entries now so that we get the correct size for
1382 the .dynamic section. The DT_DEBUG entry is filled in by the
1383 dynamic linker and used by the debugger. */
1384 if (! info->shared)
1385 {
1386 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1387 return false;
1388 }
1389
1390 if (htab->splt->_raw_size != 0)
1391 {
1392 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1393 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1394 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1395 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1396 return false;
1397 }
1398
1399 if (relocs)
1400 {
1401 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1402 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1403 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1404 sizeof (Elf32_External_Rel)))
1405 return false;
1406 }
1407
1408 if (reltext)
1409 {
1410 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1411 return false;
1412 info->flags |= DF_TEXTREL;
1413 }
1414 }
1415
1416 return true;
1417 }
1418
1419 /* Relocate an i386 ELF section. */
1420
1421 static boolean
1422 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1423 contents, relocs, local_syms, local_sections)
1424 bfd *output_bfd;
1425 struct bfd_link_info *info;
1426 bfd *input_bfd;
1427 asection *input_section;
1428 bfd_byte *contents;
1429 Elf_Internal_Rela *relocs;
1430 Elf_Internal_Sym *local_syms;
1431 asection **local_sections;
1432 {
1433 struct elf_i386_link_hash_table *htab;
1434 bfd *dynobj;
1435 Elf_Internal_Shdr *symtab_hdr;
1436 struct elf_link_hash_entry **sym_hashes;
1437 bfd_vma *local_got_offsets;
1438 asection *sreloc;
1439 Elf_Internal_Rela *rel;
1440 Elf_Internal_Rela *relend;
1441
1442 htab = elf_i386_hash_table (info);
1443 dynobj = htab->root.dynobj;
1444 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1445 sym_hashes = elf_sym_hashes (input_bfd);
1446 local_got_offsets = elf_local_got_offsets (input_bfd);
1447
1448 sreloc = NULL;
1449 rel = relocs;
1450 relend = relocs + input_section->reloc_count;
1451 for (; rel < relend; rel++)
1452 {
1453 int r_type;
1454 reloc_howto_type *howto;
1455 unsigned long r_symndx;
1456 struct elf_link_hash_entry *h;
1457 Elf_Internal_Sym *sym;
1458 asection *sec;
1459 bfd_vma off;
1460 bfd_vma relocation;
1461 boolean unresolved_reloc;
1462 bfd_reloc_status_type r;
1463 unsigned int indx;
1464
1465 r_type = ELF32_R_TYPE (rel->r_info);
1466 if (r_type == (int) R_386_GNU_VTINHERIT
1467 || r_type == (int) R_386_GNU_VTENTRY)
1468 continue;
1469
1470 if ((indx = (unsigned) r_type) >= R_386_standard
1471 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1472 >= R_386_ext - R_386_standard))
1473 {
1474 bfd_set_error (bfd_error_bad_value);
1475 return false;
1476 }
1477 howto = elf_howto_table + indx;
1478
1479 r_symndx = ELF32_R_SYM (rel->r_info);
1480
1481 if (info->relocateable)
1482 {
1483 /* This is a relocateable link. We don't have to change
1484 anything, unless the reloc is against a section symbol,
1485 in which case we have to adjust according to where the
1486 section symbol winds up in the output section. */
1487 if (r_symndx < symtab_hdr->sh_info)
1488 {
1489 sym = local_syms + r_symndx;
1490 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1491 {
1492 bfd_vma val;
1493
1494 sec = local_sections[r_symndx];
1495 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1496 val += sec->output_offset + sym->st_value;
1497 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1498 }
1499 }
1500
1501 continue;
1502 }
1503
1504 /* This is a final link. */
1505 h = NULL;
1506 sym = NULL;
1507 sec = NULL;
1508 unresolved_reloc = false;
1509 if (r_symndx < symtab_hdr->sh_info)
1510 {
1511 sym = local_syms + r_symndx;
1512 sec = local_sections[r_symndx];
1513 relocation = (sec->output_section->vma
1514 + sec->output_offset
1515 + sym->st_value);
1516 }
1517 else
1518 {
1519 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1520 while (h->root.type == bfd_link_hash_indirect
1521 || h->root.type == bfd_link_hash_warning)
1522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1523
1524 relocation = 0;
1525 if (h->root.type == bfd_link_hash_defined
1526 || h->root.type == bfd_link_hash_defweak)
1527 {
1528 sec = h->root.u.def.section;
1529 if (sec->output_section == NULL)
1530 /* Set a flag that will be cleared later if we find a
1531 relocation value for this symbol. output_section
1532 is typically NULL for symbols satisfied by a shared
1533 library. */
1534 unresolved_reloc = true;
1535 else
1536 relocation = (h->root.u.def.value
1537 + sec->output_section->vma
1538 + sec->output_offset);
1539 }
1540 else if (h->root.type == bfd_link_hash_undefweak)
1541 ;
1542 else if (info->shared && !info->symbolic
1543 && !info->no_undefined
1544 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1545 ;
1546 else
1547 {
1548 if (! ((*info->callbacks->undefined_symbol)
1549 (info, h->root.root.string, input_bfd,
1550 input_section, rel->r_offset,
1551 (!info->shared || info->no_undefined
1552 || ELF_ST_VISIBILITY (h->other)))))
1553 return false;
1554 }
1555 }
1556
1557 switch (r_type)
1558 {
1559 case R_386_GOT32:
1560 /* Relocation is to the entry for this symbol in the global
1561 offset table. */
1562 if (htab->sgot == NULL)
1563 abort ();
1564
1565 if (h != NULL)
1566 {
1567 boolean dyn;
1568
1569 off = h->got.offset;
1570 dyn = htab->root.dynamic_sections_created;
1571 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1572 || (info->shared
1573 && (info->symbolic
1574 || h->dynindx == -1
1575 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1576 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1577 {
1578 /* This is actually a static link, or it is a
1579 -Bsymbolic link and the symbol is defined
1580 locally, or the symbol was forced to be local
1581 because of a version file. We must initialize
1582 this entry in the global offset table. Since the
1583 offset must always be a multiple of 4, we use the
1584 least significant bit to record whether we have
1585 initialized it already.
1586
1587 When doing a dynamic link, we create a .rel.got
1588 relocation entry to initialize the value. This
1589 is done in the finish_dynamic_symbol routine. */
1590 if ((off & 1) != 0)
1591 off &= ~1;
1592 else
1593 {
1594 bfd_put_32 (output_bfd, relocation,
1595 htab->sgot->contents + off);
1596 h->got.offset |= 1;
1597 }
1598 }
1599 else
1600 unresolved_reloc = false;
1601 }
1602 else
1603 {
1604 if (local_got_offsets == NULL)
1605 abort ();
1606
1607 off = local_got_offsets[r_symndx];
1608
1609 /* The offset must always be a multiple of 4. We use
1610 the least significant bit to record whether we have
1611 already generated the necessary reloc. */
1612 if ((off & 1) != 0)
1613 off &= ~1;
1614 else
1615 {
1616 bfd_put_32 (output_bfd, relocation,
1617 htab->sgot->contents + off);
1618
1619 if (info->shared)
1620 {
1621 asection *srelgot;
1622 Elf_Internal_Rel outrel;
1623
1624 srelgot = htab->srelgot;
1625 if (srelgot == NULL)
1626 abort ();
1627
1628 outrel.r_offset = (htab->sgot->output_section->vma
1629 + htab->sgot->output_offset
1630 + off);
1631 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1632 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1633 (((Elf32_External_Rel *)
1634 srelgot->contents)
1635 + srelgot->reloc_count));
1636 ++srelgot->reloc_count;
1637 }
1638
1639 local_got_offsets[r_symndx] |= 1;
1640 }
1641 }
1642
1643 if (off >= (bfd_vma) -2)
1644 abort ();
1645
1646 relocation = htab->sgot->output_offset + off;
1647 break;
1648
1649 case R_386_GOTOFF:
1650 /* Relocation is relative to the start of the global offset
1651 table. */
1652
1653 /* Note that sgot->output_offset is not involved in this
1654 calculation. We always want the start of .got. If we
1655 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1656 permitted by the ABI, we might have to change this
1657 calculation. */
1658 relocation -= htab->sgot->output_section->vma;
1659 break;
1660
1661 case R_386_GOTPC:
1662 /* Use global offset table as symbol value. */
1663 relocation = htab->sgot->output_section->vma;
1664 unresolved_reloc = false;
1665 break;
1666
1667 case R_386_PLT32:
1668 /* Relocation is to the entry for this symbol in the
1669 procedure linkage table. */
1670
1671 /* Resolve a PLT32 reloc against a local symbol directly,
1672 without using the procedure linkage table. */
1673 if (h == NULL)
1674 break;
1675
1676 if (h->plt.offset == (bfd_vma) -1
1677 || htab->splt == NULL)
1678 {
1679 /* We didn't make a PLT entry for this symbol. This
1680 happens when statically linking PIC code, or when
1681 using -Bsymbolic. */
1682 break;
1683 }
1684
1685 relocation = (htab->splt->output_section->vma
1686 + htab->splt->output_offset
1687 + h->plt.offset);
1688 unresolved_reloc = false;
1689 break;
1690
1691 case R_386_32:
1692 case R_386_PC32:
1693 if ((info->shared
1694 && (input_section->flags & SEC_ALLOC) != 0
1695 && (r_type != R_386_PC32
1696 || (h != NULL
1697 && h->dynindx != -1
1698 && (! info->symbolic
1699 || (h->elf_link_hash_flags
1700 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1701 || (!info->shared
1702 && (input_section->flags & SEC_ALLOC) != 0
1703 && h != NULL
1704 && h->dynindx != -1
1705 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1706 && ((h->elf_link_hash_flags
1707 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1708 || h->root.type == bfd_link_hash_undefweak
1709 || h->root.type == bfd_link_hash_undefined)))
1710 {
1711 Elf_Internal_Rel outrel;
1712 boolean skip, relocate;
1713
1714 /* When generating a shared object, these relocations
1715 are copied into the output file to be resolved at run
1716 time. */
1717
1718 if (sreloc == NULL)
1719 {
1720 const char *name;
1721
1722 name = (bfd_elf_string_from_elf_section
1723 (input_bfd,
1724 elf_elfheader (input_bfd)->e_shstrndx,
1725 elf_section_data (input_section)->rel_hdr.sh_name));
1726 if (name == NULL)
1727 return false;
1728
1729 if (strncmp (name, ".rel", 4) != 0
1730 || strcmp (bfd_get_section_name (input_bfd,
1731 input_section),
1732 name + 4) != 0)
1733 {
1734 if (input_bfd->my_archive)
1735 (*_bfd_error_handler)\
1736 (_("%s(%s): bad relocation section name `%s\'"),
1737 bfd_get_filename (input_bfd->my_archive),
1738 bfd_get_filename (input_bfd),
1739 name);
1740 else
1741 (*_bfd_error_handler)
1742 (_("%s: bad relocation section name `%s\'"),
1743 bfd_get_filename (input_bfd),
1744 name);
1745 return false;
1746 }
1747
1748 sreloc = bfd_get_section_by_name (dynobj, name);
1749 if (sreloc == NULL)
1750 abort ();
1751 }
1752
1753 skip = false;
1754
1755 if (elf_section_data (input_section)->stab_info == NULL)
1756 outrel.r_offset = rel->r_offset;
1757 else
1758 {
1759 bfd_vma off;
1760
1761 off = (_bfd_stab_section_offset
1762 (output_bfd, htab->root.stab_info, input_section,
1763 &elf_section_data (input_section)->stab_info,
1764 rel->r_offset));
1765 if (off == (bfd_vma) -1)
1766 skip = true;
1767 outrel.r_offset = off;
1768 }
1769
1770 outrel.r_offset += (input_section->output_section->vma
1771 + input_section->output_offset);
1772
1773 if (skip)
1774 {
1775 memset (&outrel, 0, sizeof outrel);
1776 relocate = false;
1777 }
1778 else if (r_type == R_386_PC32)
1779 {
1780 BFD_ASSERT (h != NULL && h->dynindx != -1);
1781 relocate = false;
1782 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32);
1783 }
1784 else
1785 {
1786 /* h->dynindx may be -1 if this symbol was marked to
1787 become local. */
1788 if (h == NULL
1789 || (info->shared
1790 && (info->symbolic || h->dynindx == -1)
1791 && (h->elf_link_hash_flags
1792 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1793 {
1794 relocate = true;
1795 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1796 }
1797 else
1798 {
1799 BFD_ASSERT (h->dynindx != -1);
1800 relocate = false;
1801 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32);
1802 }
1803 }
1804
1805 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1806 (((Elf32_External_Rel *)
1807 sreloc->contents)
1808 + sreloc->reloc_count));
1809 ++sreloc->reloc_count;
1810
1811 /* If this reloc is against an external symbol, we do
1812 not want to fiddle with the addend. Otherwise, we
1813 need to include the symbol value so that it becomes
1814 an addend for the dynamic reloc. */
1815 if (! relocate)
1816 continue;
1817 }
1818
1819 break;
1820
1821 default:
1822 break;
1823 }
1824
1825 /* FIXME: Why do we allow debugging sections to escape this error?
1826 More importantly, why do we not emit dynamic relocs for
1827 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1828 If we had emitted the dynamic reloc, we could remove the
1829 fudge here. */
1830 if (unresolved_reloc
1831 && !(info->shared
1832 && (input_section->flags & SEC_DEBUGGING) != 0
1833 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1834 (*_bfd_error_handler)
1835 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1836 bfd_get_filename (input_bfd),
1837 bfd_get_section_name (input_bfd, input_section),
1838 (long) rel->r_offset,
1839 h->root.root.string);
1840
1841 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1842 contents, rel->r_offset,
1843 relocation, (bfd_vma) 0);
1844
1845 switch (r)
1846 {
1847 case bfd_reloc_ok:
1848 break;
1849
1850 case bfd_reloc_overflow:
1851 {
1852 const char *name;
1853
1854 if (h != NULL)
1855 name = h->root.root.string;
1856 else
1857 {
1858 name = bfd_elf_string_from_elf_section (input_bfd,
1859 symtab_hdr->sh_link,
1860 sym->st_name);
1861 if (name == NULL)
1862 return false;
1863 if (*name == '\0')
1864 name = bfd_section_name (input_bfd, sec);
1865 }
1866 if (! ((*info->callbacks->reloc_overflow)
1867 (info, name, howto->name, (bfd_vma) 0,
1868 input_bfd, input_section, rel->r_offset)))
1869 return false;
1870 }
1871 break;
1872
1873 default:
1874 case bfd_reloc_outofrange:
1875 abort ();
1876 break;
1877 }
1878 }
1879
1880 return true;
1881 }
1882
1883 /* Finish up dynamic symbol handling. We set the contents of various
1884 dynamic sections here. */
1885
1886 static boolean
1887 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1888 bfd *output_bfd;
1889 struct bfd_link_info *info;
1890 struct elf_link_hash_entry *h;
1891 Elf_Internal_Sym *sym;
1892 {
1893 struct elf_i386_link_hash_table *htab;
1894 bfd *dynobj;
1895
1896 htab = elf_i386_hash_table (info);
1897 dynobj = htab->root.dynobj;
1898
1899 if (h->plt.offset != (bfd_vma) -1)
1900 {
1901 bfd_vma plt_index;
1902 bfd_vma got_offset;
1903 Elf_Internal_Rel rel;
1904
1905 /* This symbol has an entry in the procedure linkage table. Set
1906 it up. */
1907
1908 if (h->dynindx == -1
1909 || htab->splt == NULL
1910 || htab->sgotplt == NULL
1911 || htab->srelplt == NULL)
1912 abort ();
1913
1914 /* Get the index in the procedure linkage table which
1915 corresponds to this symbol. This is the index of this symbol
1916 in all the symbols for which we are making plt entries. The
1917 first entry in the procedure linkage table is reserved. */
1918 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1919
1920 /* Get the offset into the .got table of the entry that
1921 corresponds to this function. Each .got entry is 4 bytes.
1922 The first three are reserved. */
1923 got_offset = (plt_index + 3) * 4;
1924
1925 /* Fill in the entry in the procedure linkage table. */
1926 if (! info->shared)
1927 {
1928 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1929 PLT_ENTRY_SIZE);
1930 bfd_put_32 (output_bfd,
1931 (htab->sgotplt->output_section->vma
1932 + htab->sgotplt->output_offset
1933 + got_offset),
1934 htab->splt->contents + h->plt.offset + 2);
1935 }
1936 else
1937 {
1938 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1939 PLT_ENTRY_SIZE);
1940 bfd_put_32 (output_bfd, got_offset,
1941 htab->splt->contents + h->plt.offset + 2);
1942 }
1943
1944 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1945 htab->splt->contents + h->plt.offset + 7);
1946 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1947 htab->splt->contents + h->plt.offset + 12);
1948
1949 /* Fill in the entry in the global offset table. */
1950 bfd_put_32 (output_bfd,
1951 (htab->splt->output_section->vma
1952 + htab->splt->output_offset
1953 + h->plt.offset
1954 + 6),
1955 htab->sgotplt->contents + got_offset);
1956
1957 /* Fill in the entry in the .rel.plt section. */
1958 rel.r_offset = (htab->sgotplt->output_section->vma
1959 + htab->sgotplt->output_offset
1960 + got_offset);
1961 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1962 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1963 ((Elf32_External_Rel *) htab->srelplt->contents
1964 + plt_index));
1965
1966 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1967 {
1968 /* Mark the symbol as undefined, rather than as defined in
1969 the .plt section. Leave the value alone. */
1970 sym->st_shndx = SHN_UNDEF;
1971 }
1972 }
1973
1974 if (h->got.offset != (bfd_vma) -1)
1975 {
1976 Elf_Internal_Rel rel;
1977
1978 /* This symbol has an entry in the global offset table. Set it
1979 up. */
1980
1981 if (htab->sgot == NULL || htab->srelgot == NULL)
1982 abort ();
1983
1984 rel.r_offset = (htab->sgot->output_section->vma
1985 + htab->sgot->output_offset
1986 + (h->got.offset &~ 1));
1987
1988 /* If this is a static link, or it is a -Bsymbolic link and the
1989 symbol is defined locally or was forced to be local because
1990 of a version file, we just want to emit a RELATIVE reloc.
1991 The entry in the global offset table will already have been
1992 initialized in the relocate_section function. */
1993 if (info->shared
1994 && (info->symbolic
1995 || h->dynindx == -1
1996 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1997 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1998 {
1999 BFD_ASSERT((h->got.offset & 1) != 0);
2000 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2001 }
2002 else
2003 {
2004 BFD_ASSERT((h->got.offset & 1) == 0);
2005 bfd_put_32 (output_bfd, (bfd_vma) 0,
2006 htab->sgot->contents + h->got.offset);
2007 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2008 }
2009
2010 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2011 ((Elf32_External_Rel *) htab->srelgot->contents
2012 + htab->srelgot->reloc_count));
2013 ++htab->srelgot->reloc_count;
2014 }
2015
2016 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2017 {
2018 Elf_Internal_Rel rel;
2019
2020 /* This symbol needs a copy reloc. Set it up. */
2021
2022 if (h->dynindx == -1
2023 || (h->root.type != bfd_link_hash_defined
2024 && h->root.type != bfd_link_hash_defweak)
2025 || htab->srelbss == NULL)
2026 abort ();
2027
2028 rel.r_offset = (h->root.u.def.value
2029 + h->root.u.def.section->output_section->vma
2030 + h->root.u.def.section->output_offset);
2031 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2032 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2033 ((Elf32_External_Rel *) htab->srelbss->contents
2034 + htab->srelbss->reloc_count));
2035 ++htab->srelbss->reloc_count;
2036 }
2037
2038 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2039 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2040 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2041 sym->st_shndx = SHN_ABS;
2042
2043 return true;
2044 }
2045
2046 /* Finish up the dynamic sections. */
2047
2048 static boolean
2049 elf_i386_finish_dynamic_sections (output_bfd, info)
2050 bfd *output_bfd;
2051 struct bfd_link_info *info;
2052 {
2053 struct elf_i386_link_hash_table *htab;
2054 bfd *dynobj;
2055 asection *sdyn;
2056
2057 htab = elf_i386_hash_table (info);
2058 dynobj = htab->root.dynobj;
2059 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2060
2061 if (htab->root.dynamic_sections_created)
2062 {
2063 Elf32_External_Dyn *dyncon, *dynconend;
2064
2065 if (sdyn == NULL || htab->sgot == NULL)
2066 abort ();
2067
2068 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2069 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2070 for (; dyncon < dynconend; dyncon++)
2071 {
2072 Elf_Internal_Dyn dyn;
2073
2074 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2075
2076 switch (dyn.d_tag)
2077 {
2078 default:
2079 break;
2080
2081 case DT_PLTGOT:
2082 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2083 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2084 break;
2085
2086 case DT_JMPREL:
2087 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2088 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2089 break;
2090
2091 case DT_PLTRELSZ:
2092 if (htab->srelplt->output_section->_cooked_size != 0)
2093 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2094 else
2095 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2096 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2097 break;
2098
2099 case DT_RELSZ:
2100 /* My reading of the SVR4 ABI indicates that the
2101 procedure linkage table relocs (DT_JMPREL) should be
2102 included in the overall relocs (DT_REL). This is
2103 what Solaris does. However, UnixWare can not handle
2104 that case. Therefore, we override the DT_RELSZ entry
2105 here to make it not include the JMPREL relocs. Since
2106 the linker script arranges for .rel.plt to follow all
2107 other relocation sections, we don't have to worry
2108 about changing the DT_REL entry. */
2109 if (htab->srelplt != NULL)
2110 {
2111 if (htab->srelplt->output_section->_cooked_size != 0)
2112 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2113 else
2114 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2115 }
2116 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2117 break;
2118 }
2119 }
2120
2121 /* Fill in the first entry in the procedure linkage table. */
2122 if (htab->splt && htab->splt->_raw_size > 0)
2123 {
2124 if (info->shared)
2125 memcpy (htab->splt->contents,
2126 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2127 else
2128 {
2129 memcpy (htab->splt->contents,
2130 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2131 bfd_put_32 (output_bfd,
2132 (htab->sgotplt->output_section->vma
2133 + htab->sgotplt->output_offset
2134 + 4),
2135 htab->splt->contents + 2);
2136 bfd_put_32 (output_bfd,
2137 (htab->sgotplt->output_section->vma
2138 + htab->sgotplt->output_offset
2139 + 8),
2140 htab->splt->contents + 8);
2141 }
2142
2143 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2144 really seem like the right value. */
2145 elf_section_data (htab->splt->output_section)
2146 ->this_hdr.sh_entsize = 4;
2147 }
2148 }
2149
2150 if (htab->sgotplt)
2151 {
2152 /* Fill in the first three entries in the global offset table. */
2153 if (htab->sgotplt->_raw_size > 0)
2154 {
2155 bfd_put_32 (output_bfd,
2156 (sdyn == NULL ? (bfd_vma) 0
2157 : sdyn->output_section->vma + sdyn->output_offset),
2158 htab->sgotplt->contents);
2159 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2160 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2161 }
2162
2163 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2164 }
2165 return true;
2166 }
2167
2168 /* Set the correct type for an x86 ELF section. We do this by the
2169 section name, which is a hack, but ought to work. */
2170
2171 static boolean
2172 elf_i386_fake_sections (abfd, hdr, sec)
2173 bfd *abfd ATTRIBUTE_UNUSED;
2174 Elf32_Internal_Shdr *hdr;
2175 asection *sec;
2176 {
2177 register const char *name;
2178
2179 name = bfd_get_section_name (abfd, sec);
2180
2181 if (strcmp (name, ".reloc") == 0)
2182 /*
2183 * This is an ugly, but unfortunately necessary hack that is
2184 * needed when producing EFI binaries on x86. It tells
2185 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2186 * containing ELF relocation info. We need this hack in order to
2187 * be able to generate ELF binaries that can be translated into
2188 * EFI applications (which are essentially COFF objects). Those
2189 * files contain a COFF ".reloc" section inside an ELFNN object,
2190 * which would normally cause BFD to segfault because it would
2191 * attempt to interpret this section as containing relocation
2192 * entries for section "oc". With this hack enabled, ".reloc"
2193 * will be treated as a normal data section, which will avoid the
2194 * segfault. However, you won't be able to create an ELFNN binary
2195 * with a section named "oc" that needs relocations, but that's
2196 * the kind of ugly side-effects you get when detecting section
2197 * types based on their names... In practice, this limitation is
2198 * unlikely to bite.
2199 */
2200 hdr->sh_type = SHT_PROGBITS;
2201
2202 return true;
2203 }
2204
2205
2206 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2207 #define TARGET_LITTLE_NAME "elf32-i386"
2208 #define ELF_ARCH bfd_arch_i386
2209 #define ELF_MACHINE_CODE EM_386
2210 #define ELF_MAXPAGESIZE 0x1000
2211
2212 #define elf_backend_can_gc_sections 1
2213 #define elf_backend_want_got_plt 1
2214 #define elf_backend_plt_readonly 1
2215 #define elf_backend_want_plt_sym 0
2216 #define elf_backend_got_header_size 12
2217 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2218
2219 #define elf_info_to_howto elf_i386_info_to_howto
2220 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2221
2222 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2223 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2224 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2225
2226 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2227 #define elf_backend_check_relocs elf_i386_check_relocs
2228 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2229 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2230 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2231 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2232 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2233 #define elf_backend_relocate_section elf_i386_relocate_section
2234 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2235 #define elf_backend_fake_sections elf_i386_fake_sections
2236
2237 #include "elf32-target.h"
This page took 0.076654 seconds and 4 git commands to generate.