* wince-stub.c (FREE): New macro.
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 94-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 static reloc_howto_type *elf_i386_reloc_type_lookup
27 PARAMS ((bfd *, bfd_reloc_code_real_type));
28 static void elf_i386_info_to_howto
29 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
30 static void elf_i386_info_to_howto_rel
31 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
32 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
33 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
35 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
36 PARAMS ((bfd *));
37 static boolean elf_i386_check_relocs
38 PARAMS ((bfd *, struct bfd_link_info *, asection *,
39 const Elf_Internal_Rela *));
40 static boolean elf_i386_adjust_dynamic_symbol
41 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
42 static boolean elf_i386_size_dynamic_sections
43 PARAMS ((bfd *, struct bfd_link_info *));
44 static boolean elf_i386_relocate_section
45 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
46 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
47 static boolean elf_i386_finish_dynamic_symbol
48 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
49 Elf_Internal_Sym *));
50 static boolean elf_i386_finish_dynamic_sections
51 PARAMS ((bfd *, struct bfd_link_info *));
52
53 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
54
55 #include "elf/i386.h"
56
57 static reloc_howto_type elf_howto_table[]=
58 {
59 HOWTO(R_386_NONE, 0,0, 0,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_NONE", true,0x00000000,0x00000000,false),
60 HOWTO(R_386_32, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_32", true,0xffffffff,0xffffffff,false),
61 HOWTO(R_386_PC32, 0,2,32,true, 0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PC32", true,0xffffffff,0xffffffff,true),
62 HOWTO(R_386_GOT32, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOT32", true,0xffffffff,0xffffffff,false),
63 HOWTO(R_386_PLT32, 0,2,32,true,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PLT32", true,0xffffffff,0xffffffff,true),
64 HOWTO(R_386_COPY, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_COPY", true,0xffffffff,0xffffffff,false),
65 HOWTO(R_386_GLOB_DAT, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GLOB_DAT", true,0xffffffff,0xffffffff,false),
66 HOWTO(R_386_JUMP_SLOT, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_JUMP_SLOT",true,0xffffffff,0xffffffff,false),
67 HOWTO(R_386_RELATIVE, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_RELATIVE", true,0xffffffff,0xffffffff,false),
68 HOWTO(R_386_GOTOFF, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOTOFF", true,0xffffffff,0xffffffff,false),
69 HOWTO(R_386_GOTPC, 0,2,32,true,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOTPC", true,0xffffffff,0xffffffff,true),
70 EMPTY_HOWTO (11),
71 EMPTY_HOWTO (12),
72 EMPTY_HOWTO (13),
73 EMPTY_HOWTO (14),
74 EMPTY_HOWTO (15),
75 EMPTY_HOWTO (16),
76 EMPTY_HOWTO (17),
77 EMPTY_HOWTO (18),
78 EMPTY_HOWTO (19),
79 /* The remaining relocs are a GNU extension. */
80 HOWTO(R_386_16, 0,1,16,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_16", true,0xffff,0xffff,false),
81 HOWTO(R_386_PC16, 0,1,16,true, 0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PC16", true,0xffff,0xffff,true),
82 HOWTO(R_386_8, 0,0,8,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_8", true,0xff,0xff,false),
83 HOWTO(R_386_PC8, 0,0,8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_386_PC8", true,0xff,0xff,true),
84 };
85
86 /* GNU extension to record C++ vtable hierarchy. */
87 static reloc_howto_type elf32_i386_vtinherit_howto =
88 HOWTO (R_386_GNU_VTINHERIT, /* type */
89 0, /* rightshift */
90 2, /* size (0 = byte, 1 = short, 2 = long) */
91 0, /* bitsize */
92 false, /* pc_relative */
93 0, /* bitpos */
94 complain_overflow_dont, /* complain_on_overflow */
95 NULL, /* special_function */
96 "R_386_GNU_VTINHERIT", /* name */
97 false, /* partial_inplace */
98 0, /* src_mask */
99 0, /* dst_mask */
100 false);
101
102 /* GNU extension to record C++ vtable member usage. */
103 static reloc_howto_type elf32_i386_vtentry_howto =
104 HOWTO (R_386_GNU_VTENTRY, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 0, /* bitsize */
108 false, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_386_GNU_VTENTRY", /* name */
113 false, /* partial_inplace */
114 0, /* src_mask */
115 0, /* dst_mask */
116 false);
117
118 #ifdef DEBUG_GEN_RELOC
119 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
120 #else
121 #define TRACE(str)
122 #endif
123
124 static reloc_howto_type *
125 elf_i386_reloc_type_lookup (abfd, code)
126 bfd *abfd ATTRIBUTE_UNUSED;
127 bfd_reloc_code_real_type code;
128 {
129 switch (code)
130 {
131 case BFD_RELOC_NONE:
132 TRACE ("BFD_RELOC_NONE");
133 return &elf_howto_table[ (int)R_386_NONE ];
134
135 case BFD_RELOC_32:
136 TRACE ("BFD_RELOC_32");
137 return &elf_howto_table[ (int)R_386_32 ];
138
139 case BFD_RELOC_CTOR:
140 TRACE ("BFD_RELOC_CTOR");
141 return &elf_howto_table[ (int)R_386_32 ];
142
143 case BFD_RELOC_32_PCREL:
144 TRACE ("BFD_RELOC_PC32");
145 return &elf_howto_table[ (int)R_386_PC32 ];
146
147 case BFD_RELOC_386_GOT32:
148 TRACE ("BFD_RELOC_386_GOT32");
149 return &elf_howto_table[ (int)R_386_GOT32 ];
150
151 case BFD_RELOC_386_PLT32:
152 TRACE ("BFD_RELOC_386_PLT32");
153 return &elf_howto_table[ (int)R_386_PLT32 ];
154
155 case BFD_RELOC_386_COPY:
156 TRACE ("BFD_RELOC_386_COPY");
157 return &elf_howto_table[ (int)R_386_COPY ];
158
159 case BFD_RELOC_386_GLOB_DAT:
160 TRACE ("BFD_RELOC_386_GLOB_DAT");
161 return &elf_howto_table[ (int)R_386_GLOB_DAT ];
162
163 case BFD_RELOC_386_JUMP_SLOT:
164 TRACE ("BFD_RELOC_386_JUMP_SLOT");
165 return &elf_howto_table[ (int)R_386_JUMP_SLOT ];
166
167 case BFD_RELOC_386_RELATIVE:
168 TRACE ("BFD_RELOC_386_RELATIVE");
169 return &elf_howto_table[ (int)R_386_RELATIVE ];
170
171 case BFD_RELOC_386_GOTOFF:
172 TRACE ("BFD_RELOC_386_GOTOFF");
173 return &elf_howto_table[ (int)R_386_GOTOFF ];
174
175 case BFD_RELOC_386_GOTPC:
176 TRACE ("BFD_RELOC_386_GOTPC");
177 return &elf_howto_table[ (int)R_386_GOTPC ];
178
179 /* The remaining relocs are a GNU extension. */
180 case BFD_RELOC_16:
181 TRACE ("BFD_RELOC_16");
182 return &elf_howto_table[(int) R_386_16];
183
184 case BFD_RELOC_16_PCREL:
185 TRACE ("BFD_RELOC_16_PCREL");
186 return &elf_howto_table[(int) R_386_PC16];
187
188 case BFD_RELOC_8:
189 TRACE ("BFD_RELOC_8");
190 return &elf_howto_table[(int) R_386_8];
191
192 case BFD_RELOC_8_PCREL:
193 TRACE ("BFD_RELOC_8_PCREL");
194 return &elf_howto_table[(int) R_386_PC8];
195
196 case BFD_RELOC_VTABLE_INHERIT:
197 TRACE ("BFD_RELOC_VTABLE_INHERIT");
198 return &elf32_i386_vtinherit_howto;
199
200 case BFD_RELOC_VTABLE_ENTRY:
201 TRACE ("BFD_RELOC_VTABLE_ENTRY");
202 return &elf32_i386_vtentry_howto;
203
204 default:
205 break;
206 }
207
208 TRACE ("Unknown");
209 return 0;
210 }
211
212 static void
213 elf_i386_info_to_howto (abfd, cache_ptr, dst)
214 bfd *abfd ATTRIBUTE_UNUSED;
215 arelent *cache_ptr ATTRIBUTE_UNUSED;
216 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
217 {
218 abort ();
219 }
220
221 static void
222 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
223 bfd *abfd ATTRIBUTE_UNUSED;
224 arelent *cache_ptr;
225 Elf32_Internal_Rel *dst;
226 {
227 enum elf_i386_reloc_type type;
228
229 type = (enum elf_i386_reloc_type) ELF32_R_TYPE (dst->r_info);
230 if (type == R_386_GNU_VTINHERIT)
231 cache_ptr->howto = &elf32_i386_vtinherit_howto;
232 else if (type == R_386_GNU_VTENTRY)
233 cache_ptr->howto = &elf32_i386_vtentry_howto;
234 else if (type < R_386_max
235 && (type < FIRST_INVALID_RELOC || type > LAST_INVALID_RELOC))
236 cache_ptr->howto = &elf_howto_table[(int) type];
237 else
238 {
239 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
240 bfd_get_filename (abfd), (int) type);
241 cache_ptr->howto = &elf_howto_table[(int) R_386_NONE];
242 }
243 }
244
245 /* Return whether a symbol name implies a local label. The UnixWare
246 2.1 cc generates temporary symbols that start with .X, so we
247 recognize them here. FIXME: do other SVR4 compilers also use .X?.
248 If so, we should move the .X recognition into
249 _bfd_elf_is_local_label_name. */
250
251 static boolean
252 elf_i386_is_local_label_name (abfd, name)
253 bfd *abfd;
254 const char *name;
255 {
256 if (name[0] == '.' && name[1] == 'X')
257 return true;
258
259 return _bfd_elf_is_local_label_name (abfd, name);
260 }
261 \f
262 /* Functions for the i386 ELF linker. */
263
264 /* The name of the dynamic interpreter. This is put in the .interp
265 section. */
266
267 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
268
269 /* The size in bytes of an entry in the procedure linkage table. */
270
271 #define PLT_ENTRY_SIZE 16
272
273 /* The first entry in an absolute procedure linkage table looks like
274 this. See the SVR4 ABI i386 supplement to see how this works. */
275
276 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
277 {
278 0xff, 0x35, /* pushl contents of address */
279 0, 0, 0, 0, /* replaced with address of .got + 4. */
280 0xff, 0x25, /* jmp indirect */
281 0, 0, 0, 0, /* replaced with address of .got + 8. */
282 0, 0, 0, 0 /* pad out to 16 bytes. */
283 };
284
285 /* Subsequent entries in an absolute procedure linkage table look like
286 this. */
287
288 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
289 {
290 0xff, 0x25, /* jmp indirect */
291 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
292 0x68, /* pushl immediate */
293 0, 0, 0, 0, /* replaced with offset into relocation table. */
294 0xe9, /* jmp relative */
295 0, 0, 0, 0 /* replaced with offset to start of .plt. */
296 };
297
298 /* The first entry in a PIC procedure linkage table look like this. */
299
300 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
301 {
302 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
303 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
304 0, 0, 0, 0 /* pad out to 16 bytes. */
305 };
306
307 /* Subsequent entries in a PIC procedure linkage table look like this. */
308
309 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
310 {
311 0xff, 0xa3, /* jmp *offset(%ebx) */
312 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
313 0x68, /* pushl immediate */
314 0, 0, 0, 0, /* replaced with offset into relocation table. */
315 0xe9, /* jmp relative */
316 0, 0, 0, 0 /* replaced with offset to start of .plt. */
317 };
318
319 /* The i386 linker needs to keep track of the number of relocs that it
320 decides to copy in check_relocs for each symbol. This is so that
321 it can discard PC relative relocs if it doesn't need them when
322 linking with -Bsymbolic. We store the information in a field
323 extending the regular ELF linker hash table. */
324
325 /* This structure keeps track of the number of PC relative relocs we
326 have copied for a given symbol. */
327
328 struct elf_i386_pcrel_relocs_copied
329 {
330 /* Next section. */
331 struct elf_i386_pcrel_relocs_copied *next;
332 /* A section in dynobj. */
333 asection *section;
334 /* Number of relocs copied in this section. */
335 bfd_size_type count;
336 };
337
338 /* i386 ELF linker hash entry. */
339
340 struct elf_i386_link_hash_entry
341 {
342 struct elf_link_hash_entry root;
343
344 /* Number of PC relative relocs copied for this symbol. */
345 struct elf_i386_pcrel_relocs_copied *pcrel_relocs_copied;
346 };
347
348 /* i386 ELF linker hash table. */
349
350 struct elf_i386_link_hash_table
351 {
352 struct elf_link_hash_table root;
353 };
354
355 /* Declare this now that the above structures are defined. */
356
357 static boolean elf_i386_discard_copies
358 PARAMS ((struct elf_i386_link_hash_entry *, PTR));
359
360 /* Traverse an i386 ELF linker hash table. */
361
362 #define elf_i386_link_hash_traverse(table, func, info) \
363 (elf_link_hash_traverse \
364 (&(table)->root, \
365 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
366 (info)))
367
368 /* Get the i386 ELF linker hash table from a link_info structure. */
369
370 #define elf_i386_hash_table(p) \
371 ((struct elf_i386_link_hash_table *) ((p)->hash))
372
373 /* Create an entry in an i386 ELF linker hash table. */
374
375 static struct bfd_hash_entry *
376 elf_i386_link_hash_newfunc (entry, table, string)
377 struct bfd_hash_entry *entry;
378 struct bfd_hash_table *table;
379 const char *string;
380 {
381 struct elf_i386_link_hash_entry *ret =
382 (struct elf_i386_link_hash_entry *) entry;
383
384 /* Allocate the structure if it has not already been allocated by a
385 subclass. */
386 if (ret == (struct elf_i386_link_hash_entry *) NULL)
387 ret = ((struct elf_i386_link_hash_entry *)
388 bfd_hash_allocate (table,
389 sizeof (struct elf_i386_link_hash_entry)));
390 if (ret == (struct elf_i386_link_hash_entry *) NULL)
391 return (struct bfd_hash_entry *) ret;
392
393 /* Call the allocation method of the superclass. */
394 ret = ((struct elf_i386_link_hash_entry *)
395 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
396 table, string));
397 if (ret != (struct elf_i386_link_hash_entry *) NULL)
398 {
399 ret->pcrel_relocs_copied = NULL;
400 }
401
402 return (struct bfd_hash_entry *) ret;
403 }
404
405 /* Create an i386 ELF linker hash table. */
406
407 static struct bfd_link_hash_table *
408 elf_i386_link_hash_table_create (abfd)
409 bfd *abfd;
410 {
411 struct elf_i386_link_hash_table *ret;
412
413 ret = ((struct elf_i386_link_hash_table *)
414 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
415 if (ret == (struct elf_i386_link_hash_table *) NULL)
416 return NULL;
417
418 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
419 elf_i386_link_hash_newfunc))
420 {
421 bfd_release (abfd, ret);
422 return NULL;
423 }
424
425 return &ret->root.root;
426 }
427
428 /* Look through the relocs for a section during the first phase, and
429 allocate space in the global offset table or procedure linkage
430 table. */
431
432 static boolean
433 elf_i386_check_relocs (abfd, info, sec, relocs)
434 bfd *abfd;
435 struct bfd_link_info *info;
436 asection *sec;
437 const Elf_Internal_Rela *relocs;
438 {
439 bfd *dynobj;
440 Elf_Internal_Shdr *symtab_hdr;
441 struct elf_link_hash_entry **sym_hashes;
442 bfd_vma *local_got_offsets;
443 const Elf_Internal_Rela *rel;
444 const Elf_Internal_Rela *rel_end;
445 asection *sgot;
446 asection *srelgot;
447 asection *sreloc;
448
449 if (info->relocateable)
450 return true;
451
452 dynobj = elf_hash_table (info)->dynobj;
453 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
454 sym_hashes = elf_sym_hashes (abfd);
455 local_got_offsets = elf_local_got_offsets (abfd);
456
457 sgot = NULL;
458 srelgot = NULL;
459 sreloc = NULL;
460
461 rel_end = relocs + sec->reloc_count;
462 for (rel = relocs; rel < rel_end; rel++)
463 {
464 unsigned long r_symndx;
465 struct elf_link_hash_entry *h;
466
467 r_symndx = ELF32_R_SYM (rel->r_info);
468
469 if (r_symndx < symtab_hdr->sh_info)
470 h = NULL;
471 else
472 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
473
474 /* Some relocs require a global offset table. */
475 if (dynobj == NULL)
476 {
477 switch (ELF32_R_TYPE (rel->r_info))
478 {
479 case R_386_GOT32:
480 case R_386_GOTOFF:
481 case R_386_GOTPC:
482 elf_hash_table (info)->dynobj = dynobj = abfd;
483 if (! _bfd_elf_create_got_section (dynobj, info))
484 return false;
485 break;
486
487 default:
488 break;
489 }
490 }
491
492 switch (ELF32_R_TYPE (rel->r_info))
493 {
494 case R_386_GOT32:
495 /* This symbol requires a global offset table entry. */
496
497 if (sgot == NULL)
498 {
499 sgot = bfd_get_section_by_name (dynobj, ".got");
500 BFD_ASSERT (sgot != NULL);
501 }
502
503 if (srelgot == NULL
504 && (h != NULL || info->shared))
505 {
506 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
507 if (srelgot == NULL)
508 {
509 srelgot = bfd_make_section (dynobj, ".rel.got");
510 if (srelgot == NULL
511 || ! bfd_set_section_flags (dynobj, srelgot,
512 (SEC_ALLOC
513 | SEC_LOAD
514 | SEC_HAS_CONTENTS
515 | SEC_IN_MEMORY
516 | SEC_LINKER_CREATED
517 | SEC_READONLY))
518 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
519 return false;
520 }
521 }
522
523 if (h != NULL)
524 {
525 if (h->got.offset != (bfd_vma) -1)
526 {
527 /* We have already allocated space in the .got. */
528 break;
529 }
530 h->got.offset = sgot->_raw_size;
531
532 /* Make sure this symbol is output as a dynamic symbol. */
533 if (h->dynindx == -1)
534 {
535 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
536 return false;
537 }
538
539 srelgot->_raw_size += sizeof (Elf32_External_Rel);
540 }
541 else
542 {
543 /* This is a global offset table entry for a local
544 symbol. */
545 if (local_got_offsets == NULL)
546 {
547 size_t size;
548 register unsigned int i;
549
550 size = symtab_hdr->sh_info * sizeof (bfd_vma);
551 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
552 if (local_got_offsets == NULL)
553 return false;
554 elf_local_got_offsets (abfd) = local_got_offsets;
555 for (i = 0; i < symtab_hdr->sh_info; i++)
556 local_got_offsets[i] = (bfd_vma) -1;
557 }
558 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
559 {
560 /* We have already allocated space in the .got. */
561 break;
562 }
563 local_got_offsets[r_symndx] = sgot->_raw_size;
564
565 if (info->shared)
566 {
567 /* If we are generating a shared object, we need to
568 output a R_386_RELATIVE reloc so that the dynamic
569 linker can adjust this GOT entry. */
570 srelgot->_raw_size += sizeof (Elf32_External_Rel);
571 }
572 }
573
574 sgot->_raw_size += 4;
575
576 break;
577
578 case R_386_PLT32:
579 /* This symbol requires a procedure linkage table entry. We
580 actually build the entry in adjust_dynamic_symbol,
581 because this might be a case of linking PIC code which is
582 never referenced by a dynamic object, in which case we
583 don't need to generate a procedure linkage table entry
584 after all. */
585
586 /* If this is a local symbol, we resolve it directly without
587 creating a procedure linkage table entry. */
588 if (h == NULL)
589 continue;
590
591 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
592
593 break;
594
595 case R_386_32:
596 case R_386_PC32:
597 if (h != NULL)
598 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
599
600 /* If we are creating a shared library, and this is a reloc
601 against a global symbol, or a non PC relative reloc
602 against a local symbol, then we need to copy the reloc
603 into the shared library. However, if we are linking with
604 -Bsymbolic, we do not need to copy a reloc against a
605 global symbol which is defined in an object we are
606 including in the link (i.e., DEF_REGULAR is set). At
607 this point we have not seen all the input files, so it is
608 possible that DEF_REGULAR is not set now but will be set
609 later (it is never cleared). We account for that
610 possibility below by storing information in the
611 pcrel_relocs_copied field of the hash table entry. */
612 if (info->shared
613 && (sec->flags & SEC_ALLOC) != 0
614 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
615 || (h != NULL
616 && (! info->symbolic
617 || (h->elf_link_hash_flags
618 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
619 {
620 /* When creating a shared object, we must copy these
621 reloc types into the output file. We create a reloc
622 section in dynobj and make room for this reloc. */
623 if (sreloc == NULL)
624 {
625 const char *name;
626
627 name = (bfd_elf_string_from_elf_section
628 (abfd,
629 elf_elfheader (abfd)->e_shstrndx,
630 elf_section_data (sec)->rel_hdr.sh_name));
631 if (name == NULL)
632 return false;
633
634 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
635 && strcmp (bfd_get_section_name (abfd, sec),
636 name + 4) == 0);
637
638 sreloc = bfd_get_section_by_name (dynobj, name);
639 if (sreloc == NULL)
640 {
641 flagword flags;
642
643 sreloc = bfd_make_section (dynobj, name);
644 flags = (SEC_HAS_CONTENTS | SEC_READONLY
645 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
646 if ((sec->flags & SEC_ALLOC) != 0)
647 flags |= SEC_ALLOC | SEC_LOAD;
648 if (sreloc == NULL
649 || ! bfd_set_section_flags (dynobj, sreloc, flags)
650 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
651 return false;
652 }
653 }
654
655 sreloc->_raw_size += sizeof (Elf32_External_Rel);
656
657 /* If we are linking with -Bsymbolic, and this is a
658 global symbol, we count the number of PC relative
659 relocations we have entered for this symbol, so that
660 we can discard them again if the symbol is later
661 defined by a regular object. Note that this function
662 is only called if we are using an elf_i386 linker
663 hash table, which means that h is really a pointer to
664 an elf_i386_link_hash_entry. */
665 if (h != NULL && info->symbolic
666 && ELF32_R_TYPE (rel->r_info) == R_386_PC32)
667 {
668 struct elf_i386_link_hash_entry *eh;
669 struct elf_i386_pcrel_relocs_copied *p;
670
671 eh = (struct elf_i386_link_hash_entry *) h;
672
673 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
674 if (p->section == sreloc)
675 break;
676
677 if (p == NULL)
678 {
679 p = ((struct elf_i386_pcrel_relocs_copied *)
680 bfd_alloc (dynobj, sizeof *p));
681 if (p == NULL)
682 return false;
683 p->next = eh->pcrel_relocs_copied;
684 eh->pcrel_relocs_copied = p;
685 p->section = sreloc;
686 p->count = 0;
687 }
688
689 ++p->count;
690 }
691 }
692
693 break;
694
695 /* This relocation describes the C++ object vtable hierarchy.
696 Reconstruct it for later use during GC. */
697 case R_386_GNU_VTINHERIT:
698 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
699 return false;
700 break;
701
702 /* This relocation describes which C++ vtable entries are actually
703 used. Record for later use during GC. */
704 case R_386_GNU_VTENTRY:
705 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
706 return false;
707 break;
708
709 default:
710 break;
711 }
712 }
713
714 return true;
715 }
716
717 /* Return the section that should be marked against GC for a given
718 relocation. */
719
720 static asection *
721 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
722 bfd *abfd;
723 struct bfd_link_info *info ATTRIBUTE_UNUSED;
724 Elf_Internal_Rela *rel;
725 struct elf_link_hash_entry *h;
726 Elf_Internal_Sym *sym;
727 {
728 if (h != NULL)
729 {
730 switch (ELF32_R_TYPE (rel->r_info))
731 {
732 case R_386_GNU_VTINHERIT:
733 case R_386_GNU_VTENTRY:
734 break;
735
736 default:
737 switch (h->root.type)
738 {
739 case bfd_link_hash_defined:
740 case bfd_link_hash_defweak:
741 return h->root.u.def.section;
742
743 case bfd_link_hash_common:
744 return h->root.u.c.p->section;
745
746 default:
747 break;
748 }
749 }
750 }
751 else
752 {
753 if (!(elf_bad_symtab (abfd)
754 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
755 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
756 && sym->st_shndx != SHN_COMMON))
757 {
758 return bfd_section_from_elf_index (abfd, sym->st_shndx);
759 }
760 }
761
762 return NULL;
763 }
764
765 /* Update the got entry reference counts for the section being removed. */
766
767 static boolean
768 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
769 bfd *abfd ATTRIBUTE_UNUSED;
770 struct bfd_link_info *info ATTRIBUTE_UNUSED;
771 asection *sec ATTRIBUTE_UNUSED;
772 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
773 {
774 /* ??? It would seem that the existing i386 code does no sort
775 of reference counting or whatnot on its GOT and PLT entries,
776 so it is not possible to garbage collect them at this time. */
777
778 return true;
779 }
780
781 /* Adjust a symbol defined by a dynamic object and referenced by a
782 regular object. The current definition is in some section of the
783 dynamic object, but we're not including those sections. We have to
784 change the definition to something the rest of the link can
785 understand. */
786
787 static boolean
788 elf_i386_adjust_dynamic_symbol (info, h)
789 struct bfd_link_info *info;
790 struct elf_link_hash_entry *h;
791 {
792 bfd *dynobj;
793 asection *s;
794 unsigned int power_of_two;
795
796 dynobj = elf_hash_table (info)->dynobj;
797
798 /* Make sure we know what is going on here. */
799 BFD_ASSERT (dynobj != NULL
800 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
801 || h->weakdef != NULL
802 || ((h->elf_link_hash_flags
803 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
804 && (h->elf_link_hash_flags
805 & ELF_LINK_HASH_REF_REGULAR) != 0
806 && (h->elf_link_hash_flags
807 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
808
809 /* If this is a function, put it in the procedure linkage table. We
810 will fill in the contents of the procedure linkage table later,
811 when we know the address of the .got section. */
812 if (h->type == STT_FUNC
813 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
814 {
815 if (! info->shared
816 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
817 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
818 {
819 /* This case can occur if we saw a PLT32 reloc in an input
820 file, but the symbol was never referred to by a dynamic
821 object. In such a case, we don't actually need to build
822 a procedure linkage table, and we can just do a PC32
823 reloc instead. */
824 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
825 return true;
826 }
827
828 /* Make sure this symbol is output as a dynamic symbol. */
829 if (h->dynindx == -1)
830 {
831 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
832 return false;
833 }
834
835 s = bfd_get_section_by_name (dynobj, ".plt");
836 BFD_ASSERT (s != NULL);
837
838 /* If this is the first .plt entry, make room for the special
839 first entry. */
840 if (s->_raw_size == 0)
841 s->_raw_size += PLT_ENTRY_SIZE;
842
843 /* If this symbol is not defined in a regular file, and we are
844 not generating a shared library, then set the symbol to this
845 location in the .plt. This is required to make function
846 pointers compare as equal between the normal executable and
847 the shared library. */
848 if (! info->shared
849 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
850 {
851 h->root.u.def.section = s;
852 h->root.u.def.value = s->_raw_size;
853 }
854
855 h->plt.offset = s->_raw_size;
856
857 /* Make room for this entry. */
858 s->_raw_size += PLT_ENTRY_SIZE;
859
860 /* We also need to make an entry in the .got.plt section, which
861 will be placed in the .got section by the linker script. */
862
863 s = bfd_get_section_by_name (dynobj, ".got.plt");
864 BFD_ASSERT (s != NULL);
865 s->_raw_size += 4;
866
867 /* We also need to make an entry in the .rel.plt section. */
868
869 s = bfd_get_section_by_name (dynobj, ".rel.plt");
870 BFD_ASSERT (s != NULL);
871 s->_raw_size += sizeof (Elf32_External_Rel);
872
873 return true;
874 }
875
876 /* If this is a weak symbol, and there is a real definition, the
877 processor independent code will have arranged for us to see the
878 real definition first, and we can just use the same value. */
879 if (h->weakdef != NULL)
880 {
881 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
882 || h->weakdef->root.type == bfd_link_hash_defweak);
883 h->root.u.def.section = h->weakdef->root.u.def.section;
884 h->root.u.def.value = h->weakdef->root.u.def.value;
885 return true;
886 }
887
888 /* This is a reference to a symbol defined by a dynamic object which
889 is not a function. */
890
891 /* If we are creating a shared library, we must presume that the
892 only references to the symbol are via the global offset table.
893 For such cases we need not do anything here; the relocations will
894 be handled correctly by relocate_section. */
895 if (info->shared)
896 return true;
897
898 /* If there are no references to this symbol that do not use the
899 GOT, we don't need to generate a copy reloc. */
900 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
901 return true;
902
903 /* We must allocate the symbol in our .dynbss section, which will
904 become part of the .bss section of the executable. There will be
905 an entry for this symbol in the .dynsym section. The dynamic
906 object will contain position independent code, so all references
907 from the dynamic object to this symbol will go through the global
908 offset table. The dynamic linker will use the .dynsym entry to
909 determine the address it must put in the global offset table, so
910 both the dynamic object and the regular object will refer to the
911 same memory location for the variable. */
912
913 s = bfd_get_section_by_name (dynobj, ".dynbss");
914 BFD_ASSERT (s != NULL);
915
916 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
917 copy the initial value out of the dynamic object and into the
918 runtime process image. We need to remember the offset into the
919 .rel.bss section we are going to use. */
920 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
921 {
922 asection *srel;
923
924 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
925 BFD_ASSERT (srel != NULL);
926 srel->_raw_size += sizeof (Elf32_External_Rel);
927 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
928 }
929
930 /* We need to figure out the alignment required for this symbol. I
931 have no idea how ELF linkers handle this. */
932 power_of_two = bfd_log2 (h->size);
933 if (power_of_two > 3)
934 power_of_two = 3;
935
936 /* Apply the required alignment. */
937 s->_raw_size = BFD_ALIGN (s->_raw_size,
938 (bfd_size_type) (1 << power_of_two));
939 if (power_of_two > bfd_get_section_alignment (dynobj, s))
940 {
941 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
942 return false;
943 }
944
945 /* Define the symbol as being at this point in the section. */
946 h->root.u.def.section = s;
947 h->root.u.def.value = s->_raw_size;
948
949 /* Increment the section size to make room for the symbol. */
950 s->_raw_size += h->size;
951
952 return true;
953 }
954
955 /* Set the sizes of the dynamic sections. */
956
957 static boolean
958 elf_i386_size_dynamic_sections (output_bfd, info)
959 bfd *output_bfd;
960 struct bfd_link_info *info;
961 {
962 bfd *dynobj;
963 asection *s;
964 boolean plt;
965 boolean relocs;
966 boolean reltext;
967
968 dynobj = elf_hash_table (info)->dynobj;
969 BFD_ASSERT (dynobj != NULL);
970
971 if (elf_hash_table (info)->dynamic_sections_created)
972 {
973 /* Set the contents of the .interp section to the interpreter. */
974 if (! info->shared)
975 {
976 s = bfd_get_section_by_name (dynobj, ".interp");
977 BFD_ASSERT (s != NULL);
978 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
979 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
980 }
981 }
982 else
983 {
984 /* We may have created entries in the .rel.got section.
985 However, if we are not creating the dynamic sections, we will
986 not actually use these entries. Reset the size of .rel.got,
987 which will cause it to get stripped from the output file
988 below. */
989 s = bfd_get_section_by_name (dynobj, ".rel.got");
990 if (s != NULL)
991 s->_raw_size = 0;
992 }
993
994 /* If this is a -Bsymbolic shared link, then we need to discard all
995 PC relative relocs against symbols defined in a regular object.
996 We allocated space for them in the check_relocs routine, but we
997 will not fill them in in the relocate_section routine. */
998 if (info->shared && info->symbolic)
999 elf_i386_link_hash_traverse (elf_i386_hash_table (info),
1000 elf_i386_discard_copies,
1001 (PTR) NULL);
1002
1003 /* The check_relocs and adjust_dynamic_symbol entry points have
1004 determined the sizes of the various dynamic sections. Allocate
1005 memory for them. */
1006 plt = false;
1007 relocs = false;
1008 reltext = false;
1009 for (s = dynobj->sections; s != NULL; s = s->next)
1010 {
1011 const char *name;
1012 boolean strip;
1013
1014 if ((s->flags & SEC_LINKER_CREATED) == 0)
1015 continue;
1016
1017 /* It's OK to base decisions on the section name, because none
1018 of the dynobj section names depend upon the input files. */
1019 name = bfd_get_section_name (dynobj, s);
1020
1021 strip = false;
1022
1023 if (strcmp (name, ".plt") == 0)
1024 {
1025 if (s->_raw_size == 0)
1026 {
1027 /* Strip this section if we don't need it; see the
1028 comment below. */
1029 strip = true;
1030 }
1031 else
1032 {
1033 /* Remember whether there is a PLT. */
1034 plt = true;
1035 }
1036 }
1037 else if (strncmp (name, ".rel", 4) == 0)
1038 {
1039 if (s->_raw_size == 0)
1040 {
1041 /* If we don't need this section, strip it from the
1042 output file. This is mostly to handle .rel.bss and
1043 .rel.plt. We must create both sections in
1044 create_dynamic_sections, because they must be created
1045 before the linker maps input sections to output
1046 sections. The linker does that before
1047 adjust_dynamic_symbol is called, and it is that
1048 function which decides whether anything needs to go
1049 into these sections. */
1050 strip = true;
1051 }
1052 else
1053 {
1054 asection *target;
1055
1056 /* Remember whether there are any reloc sections other
1057 than .rel.plt. */
1058 if (strcmp (name, ".rel.plt") != 0)
1059 {
1060 const char *outname;
1061
1062 relocs = true;
1063
1064 /* If this relocation section applies to a read only
1065 section, then we probably need a DT_TEXTREL
1066 entry. The entries in the .rel.plt section
1067 really apply to the .got section, which we
1068 created ourselves and so know is not readonly. */
1069 outname = bfd_get_section_name (output_bfd,
1070 s->output_section);
1071 target = bfd_get_section_by_name (output_bfd, outname + 4);
1072 if (target != NULL
1073 && (target->flags & SEC_READONLY) != 0
1074 && (target->flags & SEC_ALLOC) != 0)
1075 reltext = true;
1076 }
1077
1078 /* We use the reloc_count field as a counter if we need
1079 to copy relocs into the output file. */
1080 s->reloc_count = 0;
1081 }
1082 }
1083 else if (strncmp (name, ".got", 4) != 0)
1084 {
1085 /* It's not one of our sections, so don't allocate space. */
1086 continue;
1087 }
1088
1089 if (strip)
1090 {
1091 _bfd_strip_section_from_output (info, s);
1092 continue;
1093 }
1094
1095 /* Allocate memory for the section contents. */
1096 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1097 if (s->contents == NULL && s->_raw_size != 0)
1098 return false;
1099 }
1100
1101 if (elf_hash_table (info)->dynamic_sections_created)
1102 {
1103 /* Add some entries to the .dynamic section. We fill in the
1104 values later, in elf_i386_finish_dynamic_sections, but we
1105 must add the entries now so that we get the correct size for
1106 the .dynamic section. The DT_DEBUG entry is filled in by the
1107 dynamic linker and used by the debugger. */
1108 if (! info->shared)
1109 {
1110 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1111 return false;
1112 }
1113
1114 if (plt)
1115 {
1116 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1117 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1118 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1119 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1120 return false;
1121 }
1122
1123 if (relocs)
1124 {
1125 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1126 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1127 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1128 sizeof (Elf32_External_Rel)))
1129 return false;
1130 }
1131
1132 if (reltext)
1133 {
1134 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1135 return false;
1136 }
1137 }
1138
1139 return true;
1140 }
1141
1142 /* This function is called via elf_i386_link_hash_traverse if we are
1143 creating a shared object with -Bsymbolic. It discards the space
1144 allocated to copy PC relative relocs against symbols which are
1145 defined in regular objects. We allocated space for them in the
1146 check_relocs routine, but we won't fill them in in the
1147 relocate_section routine. */
1148
1149 /*ARGSUSED*/
1150 static boolean
1151 elf_i386_discard_copies (h, ignore)
1152 struct elf_i386_link_hash_entry *h;
1153 PTR ignore ATTRIBUTE_UNUSED;
1154 {
1155 struct elf_i386_pcrel_relocs_copied *s;
1156
1157 /* We only discard relocs for symbols defined in a regular object. */
1158 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1159 return true;
1160
1161 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1162 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
1163
1164 return true;
1165 }
1166
1167 /* Relocate an i386 ELF section. */
1168
1169 static boolean
1170 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1171 contents, relocs, local_syms, local_sections)
1172 bfd *output_bfd;
1173 struct bfd_link_info *info;
1174 bfd *input_bfd;
1175 asection *input_section;
1176 bfd_byte *contents;
1177 Elf_Internal_Rela *relocs;
1178 Elf_Internal_Sym *local_syms;
1179 asection **local_sections;
1180 {
1181 bfd *dynobj;
1182 Elf_Internal_Shdr *symtab_hdr;
1183 struct elf_link_hash_entry **sym_hashes;
1184 bfd_vma *local_got_offsets;
1185 asection *sgot;
1186 asection *splt;
1187 asection *sreloc;
1188 Elf_Internal_Rela *rel;
1189 Elf_Internal_Rela *relend;
1190
1191 dynobj = elf_hash_table (info)->dynobj;
1192 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1193 sym_hashes = elf_sym_hashes (input_bfd);
1194 local_got_offsets = elf_local_got_offsets (input_bfd);
1195
1196 sgot = NULL;
1197 splt = NULL;
1198 sreloc = NULL;
1199
1200 rel = relocs;
1201 relend = relocs + input_section->reloc_count;
1202 for (; rel < relend; rel++)
1203 {
1204 int r_type;
1205 reloc_howto_type *howto;
1206 unsigned long r_symndx;
1207 struct elf_link_hash_entry *h;
1208 Elf_Internal_Sym *sym;
1209 asection *sec;
1210 bfd_vma relocation;
1211 bfd_reloc_status_type r;
1212
1213 r_type = ELF32_R_TYPE (rel->r_info);
1214 if (r_type == R_386_GNU_VTINHERIT
1215 || r_type == R_386_GNU_VTENTRY)
1216 continue;
1217 if (r_type < 0
1218 || r_type >= (int) R_386_max
1219 || (r_type >= (int) FIRST_INVALID_RELOC
1220 && r_type <= (int) LAST_INVALID_RELOC))
1221 {
1222 bfd_set_error (bfd_error_bad_value);
1223 return false;
1224 }
1225 howto = elf_howto_table + r_type;
1226
1227 r_symndx = ELF32_R_SYM (rel->r_info);
1228
1229 if (info->relocateable)
1230 {
1231 /* This is a relocateable link. We don't have to change
1232 anything, unless the reloc is against a section symbol,
1233 in which case we have to adjust according to where the
1234 section symbol winds up in the output section. */
1235 if (r_symndx < symtab_hdr->sh_info)
1236 {
1237 sym = local_syms + r_symndx;
1238 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1239 {
1240 bfd_vma val;
1241
1242 sec = local_sections[r_symndx];
1243 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1244 val += sec->output_offset + sym->st_value;
1245 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1246 }
1247 }
1248
1249 continue;
1250 }
1251
1252 /* This is a final link. */
1253 h = NULL;
1254 sym = NULL;
1255 sec = NULL;
1256 if (r_symndx < symtab_hdr->sh_info)
1257 {
1258 sym = local_syms + r_symndx;
1259 sec = local_sections[r_symndx];
1260 relocation = (sec->output_section->vma
1261 + sec->output_offset
1262 + sym->st_value);
1263 }
1264 else
1265 {
1266 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1267 while (h->root.type == bfd_link_hash_indirect
1268 || h->root.type == bfd_link_hash_warning)
1269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1270 if (h->root.type == bfd_link_hash_defined
1271 || h->root.type == bfd_link_hash_defweak)
1272 {
1273 sec = h->root.u.def.section;
1274 if (r_type == R_386_GOTPC
1275 || (r_type == R_386_PLT32
1276 && h->plt.offset != (bfd_vma) -1)
1277 || (r_type == R_386_GOT32
1278 && elf_hash_table (info)->dynamic_sections_created
1279 && (! info->shared
1280 || (! info->symbolic && h->dynindx != -1)
1281 || (h->elf_link_hash_flags
1282 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1283 || (info->shared
1284 && ((! info->symbolic && h->dynindx != -1)
1285 || (h->elf_link_hash_flags
1286 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1287 && (r_type == R_386_32
1288 || r_type == R_386_PC32)
1289 && ((input_section->flags & SEC_ALLOC) != 0
1290 /* DWARF will emit R_386_32 relocations in its
1291 sections against symbols defined externally
1292 in shared libraries. We can't do anything
1293 with them here. */
1294 || ((input_section->flags & SEC_DEBUGGING) != 0
1295 && (h->elf_link_hash_flags
1296 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1297 {
1298 /* In these cases, we don't need the relocation
1299 value. We check specially because in some
1300 obscure cases sec->output_section will be NULL. */
1301 relocation = 0;
1302 }
1303 else if (sec->output_section == NULL)
1304 {
1305 (*_bfd_error_handler)
1306 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1307 bfd_get_filename (input_bfd), h->root.root.string,
1308 bfd_get_section_name (input_bfd, input_section));
1309 relocation = 0;
1310 }
1311 else
1312 relocation = (h->root.u.def.value
1313 + sec->output_section->vma
1314 + sec->output_offset);
1315 }
1316 else if (h->root.type == bfd_link_hash_undefweak)
1317 relocation = 0;
1318 else if (info->shared && !info->symbolic && !info->no_undefined)
1319 relocation = 0;
1320 else
1321 {
1322 if (! ((*info->callbacks->undefined_symbol)
1323 (info, h->root.root.string, input_bfd,
1324 input_section, rel->r_offset,
1325 (!info->shared || info->no_undefined))))
1326 return false;
1327 relocation = 0;
1328 }
1329 }
1330
1331 switch (r_type)
1332 {
1333 case R_386_GOT32:
1334 /* Relocation is to the entry for this symbol in the global
1335 offset table. */
1336 if (sgot == NULL)
1337 {
1338 sgot = bfd_get_section_by_name (dynobj, ".got");
1339 BFD_ASSERT (sgot != NULL);
1340 }
1341
1342 if (h != NULL)
1343 {
1344 bfd_vma off;
1345
1346 off = h->got.offset;
1347 BFD_ASSERT (off != (bfd_vma) -1);
1348
1349 if (! elf_hash_table (info)->dynamic_sections_created
1350 || (info->shared
1351 && (info->symbolic || h->dynindx == -1)
1352 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1353 {
1354 /* This is actually a static link, or it is a
1355 -Bsymbolic link and the symbol is defined
1356 locally, or the symbol was forced to be local
1357 because of a version file. We must initialize
1358 this entry in the global offset table. Since the
1359 offset must always be a multiple of 4, we use the
1360 least significant bit to record whether we have
1361 initialized it already.
1362
1363 When doing a dynamic link, we create a .rel.got
1364 relocation entry to initialize the value. This
1365 is done in the finish_dynamic_symbol routine. */
1366 if ((off & 1) != 0)
1367 off &= ~1;
1368 else
1369 {
1370 bfd_put_32 (output_bfd, relocation,
1371 sgot->contents + off);
1372 h->got.offset |= 1;
1373 }
1374 }
1375
1376 relocation = sgot->output_offset + off;
1377 }
1378 else
1379 {
1380 bfd_vma off;
1381
1382 BFD_ASSERT (local_got_offsets != NULL
1383 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1384
1385 off = local_got_offsets[r_symndx];
1386
1387 /* The offset must always be a multiple of 4. We use
1388 the least significant bit to record whether we have
1389 already generated the necessary reloc. */
1390 if ((off & 1) != 0)
1391 off &= ~1;
1392 else
1393 {
1394 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1395
1396 if (info->shared)
1397 {
1398 asection *srelgot;
1399 Elf_Internal_Rel outrel;
1400
1401 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1402 BFD_ASSERT (srelgot != NULL);
1403
1404 outrel.r_offset = (sgot->output_section->vma
1405 + sgot->output_offset
1406 + off);
1407 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1408 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1409 (((Elf32_External_Rel *)
1410 srelgot->contents)
1411 + srelgot->reloc_count));
1412 ++srelgot->reloc_count;
1413 }
1414
1415 local_got_offsets[r_symndx] |= 1;
1416 }
1417
1418 relocation = sgot->output_offset + off;
1419 }
1420
1421 break;
1422
1423 case R_386_GOTOFF:
1424 /* Relocation is relative to the start of the global offset
1425 table. */
1426
1427 if (sgot == NULL)
1428 {
1429 sgot = bfd_get_section_by_name (dynobj, ".got");
1430 BFD_ASSERT (sgot != NULL);
1431 }
1432
1433 /* Note that sgot->output_offset is not involved in this
1434 calculation. We always want the start of .got. If we
1435 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1436 permitted by the ABI, we might have to change this
1437 calculation. */
1438 relocation -= sgot->output_section->vma;
1439
1440 break;
1441
1442 case R_386_GOTPC:
1443 /* Use global offset table as symbol value. */
1444
1445 if (sgot == NULL)
1446 {
1447 sgot = bfd_get_section_by_name (dynobj, ".got");
1448 BFD_ASSERT (sgot != NULL);
1449 }
1450
1451 relocation = sgot->output_section->vma;
1452
1453 break;
1454
1455 case R_386_PLT32:
1456 /* Relocation is to the entry for this symbol in the
1457 procedure linkage table. */
1458
1459 /* Resolve a PLT32 reloc again a local symbol directly,
1460 without using the procedure linkage table. */
1461 if (h == NULL)
1462 break;
1463
1464 if (h->plt.offset == (bfd_vma) -1)
1465 {
1466 /* We didn't make a PLT entry for this symbol. This
1467 happens when statically linking PIC code, or when
1468 using -Bsymbolic. */
1469 break;
1470 }
1471
1472 if (splt == NULL)
1473 {
1474 splt = bfd_get_section_by_name (dynobj, ".plt");
1475 BFD_ASSERT (splt != NULL);
1476 }
1477
1478 relocation = (splt->output_section->vma
1479 + splt->output_offset
1480 + h->plt.offset);
1481
1482 break;
1483
1484 case R_386_32:
1485 case R_386_PC32:
1486 if (info->shared
1487 && (input_section->flags & SEC_ALLOC) != 0
1488 && (r_type != R_386_PC32
1489 || (h != NULL
1490 && h->dynindx != -1
1491 && (! info->symbolic
1492 || (h->elf_link_hash_flags
1493 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1494 {
1495 Elf_Internal_Rel outrel;
1496 boolean skip, relocate;
1497
1498 /* When generating a shared object, these relocations
1499 are copied into the output file to be resolved at run
1500 time. */
1501
1502 if (sreloc == NULL)
1503 {
1504 const char *name;
1505
1506 name = (bfd_elf_string_from_elf_section
1507 (input_bfd,
1508 elf_elfheader (input_bfd)->e_shstrndx,
1509 elf_section_data (input_section)->rel_hdr.sh_name));
1510 if (name == NULL)
1511 return false;
1512
1513 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1514 && strcmp (bfd_get_section_name (input_bfd,
1515 input_section),
1516 name + 4) == 0);
1517
1518 sreloc = bfd_get_section_by_name (dynobj, name);
1519 BFD_ASSERT (sreloc != NULL);
1520 }
1521
1522 skip = false;
1523
1524 if (elf_section_data (input_section)->stab_info == NULL)
1525 outrel.r_offset = rel->r_offset;
1526 else
1527 {
1528 bfd_vma off;
1529
1530 off = (_bfd_stab_section_offset
1531 (output_bfd, &elf_hash_table (info)->stab_info,
1532 input_section,
1533 &elf_section_data (input_section)->stab_info,
1534 rel->r_offset));
1535 if (off == (bfd_vma) -1)
1536 skip = true;
1537 outrel.r_offset = off;
1538 }
1539
1540 outrel.r_offset += (input_section->output_section->vma
1541 + input_section->output_offset);
1542
1543 if (skip)
1544 {
1545 memset (&outrel, 0, sizeof outrel);
1546 relocate = false;
1547 }
1548 else if (r_type == R_386_PC32)
1549 {
1550 BFD_ASSERT (h != NULL && h->dynindx != -1);
1551 relocate = false;
1552 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32);
1553 }
1554 else
1555 {
1556 /* h->dynindx may be -1 if this symbol was marked to
1557 become local. */
1558 if (h == NULL
1559 || ((info->symbolic || h->dynindx == -1)
1560 && (h->elf_link_hash_flags
1561 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1562 {
1563 relocate = true;
1564 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1565 }
1566 else
1567 {
1568 BFD_ASSERT (h->dynindx != -1);
1569 relocate = false;
1570 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32);
1571 }
1572 }
1573
1574 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1575 (((Elf32_External_Rel *)
1576 sreloc->contents)
1577 + sreloc->reloc_count));
1578 ++sreloc->reloc_count;
1579
1580 /* If this reloc is against an external symbol, we do
1581 not want to fiddle with the addend. Otherwise, we
1582 need to include the symbol value so that it becomes
1583 an addend for the dynamic reloc. */
1584 if (! relocate)
1585 continue;
1586 }
1587
1588 break;
1589
1590 default:
1591 break;
1592 }
1593
1594 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1595 contents, rel->r_offset,
1596 relocation, (bfd_vma) 0);
1597
1598 if (r != bfd_reloc_ok)
1599 {
1600 switch (r)
1601 {
1602 default:
1603 case bfd_reloc_outofrange:
1604 abort ();
1605 case bfd_reloc_overflow:
1606 {
1607 const char *name;
1608
1609 if (h != NULL)
1610 name = h->root.root.string;
1611 else
1612 {
1613 name = bfd_elf_string_from_elf_section (input_bfd,
1614 symtab_hdr->sh_link,
1615 sym->st_name);
1616 if (name == NULL)
1617 return false;
1618 if (*name == '\0')
1619 name = bfd_section_name (input_bfd, sec);
1620 }
1621 if (! ((*info->callbacks->reloc_overflow)
1622 (info, name, howto->name, (bfd_vma) 0,
1623 input_bfd, input_section, rel->r_offset)))
1624 return false;
1625 }
1626 break;
1627 }
1628 }
1629 }
1630
1631 return true;
1632 }
1633
1634 /* Finish up dynamic symbol handling. We set the contents of various
1635 dynamic sections here. */
1636
1637 static boolean
1638 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1639 bfd *output_bfd;
1640 struct bfd_link_info *info;
1641 struct elf_link_hash_entry *h;
1642 Elf_Internal_Sym *sym;
1643 {
1644 bfd *dynobj;
1645
1646 dynobj = elf_hash_table (info)->dynobj;
1647
1648 if (h->plt.offset != (bfd_vma) -1)
1649 {
1650 asection *splt;
1651 asection *sgot;
1652 asection *srel;
1653 bfd_vma plt_index;
1654 bfd_vma got_offset;
1655 Elf_Internal_Rel rel;
1656
1657 /* This symbol has an entry in the procedure linkage table. Set
1658 it up. */
1659
1660 BFD_ASSERT (h->dynindx != -1);
1661
1662 splt = bfd_get_section_by_name (dynobj, ".plt");
1663 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1664 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
1665 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1666
1667 /* Get the index in the procedure linkage table which
1668 corresponds to this symbol. This is the index of this symbol
1669 in all the symbols for which we are making plt entries. The
1670 first entry in the procedure linkage table is reserved. */
1671 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1672
1673 /* Get the offset into the .got table of the entry that
1674 corresponds to this function. Each .got entry is 4 bytes.
1675 The first three are reserved. */
1676 got_offset = (plt_index + 3) * 4;
1677
1678 /* Fill in the entry in the procedure linkage table. */
1679 if (! info->shared)
1680 {
1681 memcpy (splt->contents + h->plt.offset, elf_i386_plt_entry,
1682 PLT_ENTRY_SIZE);
1683 bfd_put_32 (output_bfd,
1684 (sgot->output_section->vma
1685 + sgot->output_offset
1686 + got_offset),
1687 splt->contents + h->plt.offset + 2);
1688 }
1689 else
1690 {
1691 memcpy (splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1692 PLT_ENTRY_SIZE);
1693 bfd_put_32 (output_bfd, got_offset,
1694 splt->contents + h->plt.offset + 2);
1695 }
1696
1697 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1698 splt->contents + h->plt.offset + 7);
1699 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1700 splt->contents + h->plt.offset + 12);
1701
1702 /* Fill in the entry in the global offset table. */
1703 bfd_put_32 (output_bfd,
1704 (splt->output_section->vma
1705 + splt->output_offset
1706 + h->plt.offset
1707 + 6),
1708 sgot->contents + got_offset);
1709
1710 /* Fill in the entry in the .rel.plt section. */
1711 rel.r_offset = (sgot->output_section->vma
1712 + sgot->output_offset
1713 + got_offset);
1714 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1715 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1716 ((Elf32_External_Rel *) srel->contents
1717 + plt_index));
1718
1719 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1720 {
1721 /* Mark the symbol as undefined, rather than as defined in
1722 the .plt section. Leave the value alone. */
1723 sym->st_shndx = SHN_UNDEF;
1724 }
1725 }
1726
1727 if (h->got.offset != (bfd_vma) -1)
1728 {
1729 asection *sgot;
1730 asection *srel;
1731 Elf_Internal_Rel rel;
1732
1733 /* This symbol has an entry in the global offset table. Set it
1734 up. */
1735
1736 sgot = bfd_get_section_by_name (dynobj, ".got");
1737 srel = bfd_get_section_by_name (dynobj, ".rel.got");
1738 BFD_ASSERT (sgot != NULL && srel != NULL);
1739
1740 rel.r_offset = (sgot->output_section->vma
1741 + sgot->output_offset
1742 + (h->got.offset &~ 1));
1743
1744 /* If this is a -Bsymbolic link, and the symbol is defined
1745 locally, we just want to emit a RELATIVE reloc. Likewise if
1746 the symbol was forced to be local because of a version file.
1747 The entry in the global offset table will already have been
1748 initialized in the relocate_section function. */
1749 if (info->shared
1750 && (info->symbolic || h->dynindx == -1)
1751 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1752 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1753 else
1754 {
1755 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1756 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
1757 }
1758
1759 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1760 ((Elf32_External_Rel *) srel->contents
1761 + srel->reloc_count));
1762 ++srel->reloc_count;
1763 }
1764
1765 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1766 {
1767 asection *s;
1768 Elf_Internal_Rel rel;
1769
1770 /* This symbol needs a copy reloc. Set it up. */
1771
1772 BFD_ASSERT (h->dynindx != -1
1773 && (h->root.type == bfd_link_hash_defined
1774 || h->root.type == bfd_link_hash_defweak));
1775
1776 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1777 ".rel.bss");
1778 BFD_ASSERT (s != NULL);
1779
1780 rel.r_offset = (h->root.u.def.value
1781 + h->root.u.def.section->output_section->vma
1782 + h->root.u.def.section->output_offset);
1783 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
1784 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1785 ((Elf32_External_Rel *) s->contents
1786 + s->reloc_count));
1787 ++s->reloc_count;
1788 }
1789
1790 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1791 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1792 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1793 sym->st_shndx = SHN_ABS;
1794
1795 return true;
1796 }
1797
1798 /* Finish up the dynamic sections. */
1799
1800 static boolean
1801 elf_i386_finish_dynamic_sections (output_bfd, info)
1802 bfd *output_bfd;
1803 struct bfd_link_info *info;
1804 {
1805 bfd *dynobj;
1806 asection *sgot;
1807 asection *sdyn;
1808
1809 dynobj = elf_hash_table (info)->dynobj;
1810
1811 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1812 BFD_ASSERT (sgot != NULL);
1813 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1814
1815 if (elf_hash_table (info)->dynamic_sections_created)
1816 {
1817 asection *splt;
1818 Elf32_External_Dyn *dyncon, *dynconend;
1819
1820 BFD_ASSERT (sdyn != NULL);
1821
1822 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1823 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1824 for (; dyncon < dynconend; dyncon++)
1825 {
1826 Elf_Internal_Dyn dyn;
1827 const char *name;
1828 asection *s;
1829
1830 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1831
1832 switch (dyn.d_tag)
1833 {
1834 default:
1835 break;
1836
1837 case DT_PLTGOT:
1838 name = ".got";
1839 goto get_vma;
1840 case DT_JMPREL:
1841 name = ".rel.plt";
1842 get_vma:
1843 s = bfd_get_section_by_name (output_bfd, name);
1844 BFD_ASSERT (s != NULL);
1845 dyn.d_un.d_ptr = s->vma;
1846 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1847 break;
1848
1849 case DT_PLTRELSZ:
1850 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1851 BFD_ASSERT (s != NULL);
1852 if (s->_cooked_size != 0)
1853 dyn.d_un.d_val = s->_cooked_size;
1854 else
1855 dyn.d_un.d_val = s->_raw_size;
1856 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1857 break;
1858
1859 case DT_RELSZ:
1860 /* My reading of the SVR4 ABI indicates that the
1861 procedure linkage table relocs (DT_JMPREL) should be
1862 included in the overall relocs (DT_REL). This is
1863 what Solaris does. However, UnixWare can not handle
1864 that case. Therefore, we override the DT_RELSZ entry
1865 here to make it not include the JMPREL relocs. Since
1866 the linker script arranges for .rel.plt to follow all
1867 other relocation sections, we don't have to worry
1868 about changing the DT_REL entry. */
1869 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1870 if (s != NULL)
1871 {
1872 if (s->_cooked_size != 0)
1873 dyn.d_un.d_val -= s->_cooked_size;
1874 else
1875 dyn.d_un.d_val -= s->_raw_size;
1876 }
1877 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1878 break;
1879 }
1880 }
1881
1882 /* Fill in the first entry in the procedure linkage table. */
1883 splt = bfd_get_section_by_name (dynobj, ".plt");
1884 if (splt && splt->_raw_size > 0)
1885 {
1886 if (info->shared)
1887 memcpy (splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
1888 else
1889 {
1890 memcpy (splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE);
1891 bfd_put_32 (output_bfd,
1892 sgot->output_section->vma + sgot->output_offset + 4,
1893 splt->contents + 2);
1894 bfd_put_32 (output_bfd,
1895 sgot->output_section->vma + sgot->output_offset + 8,
1896 splt->contents + 8);
1897 }
1898
1899 /* UnixWare sets the entsize of .plt to 4, although that doesn't
1900 really seem like the right value. */
1901 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
1902 }
1903 }
1904
1905 /* Fill in the first three entries in the global offset table. */
1906 if (sgot->_raw_size > 0)
1907 {
1908 if (sdyn == NULL)
1909 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
1910 else
1911 bfd_put_32 (output_bfd,
1912 sdyn->output_section->vma + sdyn->output_offset,
1913 sgot->contents);
1914 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
1915 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
1916 }
1917
1918 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
1919
1920 return true;
1921 }
1922
1923 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
1924 #define TARGET_LITTLE_NAME "elf32-i386"
1925 #define ELF_ARCH bfd_arch_i386
1926 #define ELF_MACHINE_CODE EM_386
1927 #define ELF_MAXPAGESIZE 0x1000
1928 #define elf_info_to_howto elf_i386_info_to_howto
1929 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
1930 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
1931 #define bfd_elf32_bfd_is_local_label_name \
1932 elf_i386_is_local_label_name
1933 #define elf_backend_create_dynamic_sections \
1934 _bfd_elf_create_dynamic_sections
1935 #define bfd_elf32_bfd_link_hash_table_create \
1936 elf_i386_link_hash_table_create
1937 #define elf_backend_check_relocs elf_i386_check_relocs
1938 #define elf_backend_adjust_dynamic_symbol \
1939 elf_i386_adjust_dynamic_symbol
1940 #define elf_backend_size_dynamic_sections \
1941 elf_i386_size_dynamic_sections
1942 #define elf_backend_relocate_section elf_i386_relocate_section
1943 #define elf_backend_finish_dynamic_symbol \
1944 elf_i386_finish_dynamic_symbol
1945 #define elf_backend_finish_dynamic_sections \
1946 elf_i386_finish_dynamic_sections
1947 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
1948 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
1949
1950 #define elf_backend_can_gc_sections 1
1951 #define elf_backend_want_got_plt 1
1952 #define elf_backend_plt_readonly 1
1953 #define elf_backend_want_plt_sym 0
1954 #define elf_backend_got_header_size 12
1955 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1956
1957 #include "elf32-target.h"
This page took 0.146117 seconds and 4 git commands to generate.