* bfd-in.h (_bfd_elf_tls_setup): Declare.
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 /* 386 uses REL relocations instead of RELA. */
28 #define USE_REL 1
29
30 #include "elf/i386.h"
31
32 static reloc_howto_type elf_howto_table[]=
33 {
34 HOWTO(R_386_NONE, 0, 0, 0, FALSE, 0, complain_overflow_bitfield,
35 bfd_elf_generic_reloc, "R_386_NONE",
36 TRUE, 0x00000000, 0x00000000, FALSE),
37 HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
38 bfd_elf_generic_reloc, "R_386_32",
39 TRUE, 0xffffffff, 0xffffffff, FALSE),
40 HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_386_PC32",
42 TRUE, 0xffffffff, 0xffffffff, TRUE),
43 HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "R_386_GOT32",
45 TRUE, 0xffffffff, 0xffffffff, FALSE),
46 HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
47 bfd_elf_generic_reloc, "R_386_PLT32",
48 TRUE, 0xffffffff, 0xffffffff, TRUE),
49 HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
50 bfd_elf_generic_reloc, "R_386_COPY",
51 TRUE, 0xffffffff, 0xffffffff, FALSE),
52 HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
54 TRUE, 0xffffffff, 0xffffffff, FALSE),
55 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
57 TRUE, 0xffffffff, 0xffffffff, FALSE),
58 HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_386_RELATIVE",
60 TRUE, 0xffffffff, 0xffffffff, FALSE),
61 HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_386_GOTOFF",
63 TRUE, 0xffffffff, 0xffffffff, FALSE),
64 HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
65 bfd_elf_generic_reloc, "R_386_GOTPC",
66 TRUE, 0xffffffff, 0xffffffff, TRUE),
67
68 /* We have a gap in the reloc numbers here.
69 R_386_standard counts the number up to this point, and
70 R_386_ext_offset is the value to subtract from a reloc type of
71 R_386_16 thru R_386_PC8 to form an index into this table. */
72 #define R_386_standard (R_386_GOTPC + 1)
73 #define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard)
74
75 /* These relocs are a GNU extension. */
76 HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_386_TLS_TPOFF",
78 TRUE, 0xffffffff, 0xffffffff, FALSE),
79 HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_386_TLS_IE",
81 TRUE, 0xffffffff, 0xffffffff, FALSE),
82 HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_386_TLS_GOTIE",
84 TRUE, 0xffffffff, 0xffffffff, FALSE),
85 HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_TLS_LE",
87 TRUE, 0xffffffff, 0xffffffff, FALSE),
88 HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_TLS_GD",
90 TRUE, 0xffffffff, 0xffffffff, FALSE),
91 HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_TLS_LDM",
93 TRUE, 0xffffffff, 0xffffffff, FALSE),
94 HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_16",
96 TRUE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PC16",
99 TRUE, 0xffff, 0xffff, TRUE),
100 HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_8",
102 TRUE, 0xff, 0xff, FALSE),
103 HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_386_PC8",
105 TRUE, 0xff, 0xff, TRUE),
106
107 #define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset)
108 #define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext)
109 /* These are common with Solaris TLS implementation. */
110 HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
112 TRUE, 0xffffffff, 0xffffffff, FALSE),
113 HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_386_TLS_IE_32",
115 TRUE, 0xffffffff, 0xffffffff, FALSE),
116 HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
117 bfd_elf_generic_reloc, "R_386_TLS_LE_32",
118 TRUE, 0xffffffff, 0xffffffff, FALSE),
119 HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
120 bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
121 TRUE, 0xffffffff, 0xffffffff, FALSE),
122 HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
123 bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
124 TRUE, 0xffffffff, 0xffffffff, FALSE),
125 HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
127 TRUE, 0xffffffff, 0xffffffff, FALSE),
128
129 /* Another gap. */
130 #define R_386_tls (R_386_TLS_TPOFF32 + 1 - R_386_tls_offset)
131 #define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_tls)
132
133 /* GNU extension to record C++ vtable hierarchy. */
134 HOWTO (R_386_GNU_VTINHERIT, /* type */
135 0, /* rightshift */
136 2, /* size (0 = byte, 1 = short, 2 = long) */
137 0, /* bitsize */
138 FALSE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont, /* complain_on_overflow */
141 NULL, /* special_function */
142 "R_386_GNU_VTINHERIT", /* name */
143 FALSE, /* partial_inplace */
144 0, /* src_mask */
145 0, /* dst_mask */
146 FALSE), /* pcrel_offset */
147
148 /* GNU extension to record C++ vtable member usage. */
149 HOWTO (R_386_GNU_VTENTRY, /* type */
150 0, /* rightshift */
151 2, /* size (0 = byte, 1 = short, 2 = long) */
152 0, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_dont, /* complain_on_overflow */
156 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
157 "R_386_GNU_VTENTRY", /* name */
158 FALSE, /* partial_inplace */
159 0, /* src_mask */
160 0, /* dst_mask */
161 FALSE) /* pcrel_offset */
162
163 #define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
164
165 };
166
167 #ifdef DEBUG_GEN_RELOC
168 #define TRACE(str) \
169 fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
170 #else
171 #define TRACE(str)
172 #endif
173
174 static reloc_howto_type *
175 elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
176 bfd_reloc_code_real_type code)
177 {
178 switch (code)
179 {
180 case BFD_RELOC_NONE:
181 TRACE ("BFD_RELOC_NONE");
182 return &elf_howto_table[R_386_NONE];
183
184 case BFD_RELOC_32:
185 TRACE ("BFD_RELOC_32");
186 return &elf_howto_table[R_386_32];
187
188 case BFD_RELOC_CTOR:
189 TRACE ("BFD_RELOC_CTOR");
190 return &elf_howto_table[R_386_32];
191
192 case BFD_RELOC_32_PCREL:
193 TRACE ("BFD_RELOC_PC32");
194 return &elf_howto_table[R_386_PC32];
195
196 case BFD_RELOC_386_GOT32:
197 TRACE ("BFD_RELOC_386_GOT32");
198 return &elf_howto_table[R_386_GOT32];
199
200 case BFD_RELOC_386_PLT32:
201 TRACE ("BFD_RELOC_386_PLT32");
202 return &elf_howto_table[R_386_PLT32];
203
204 case BFD_RELOC_386_COPY:
205 TRACE ("BFD_RELOC_386_COPY");
206 return &elf_howto_table[R_386_COPY];
207
208 case BFD_RELOC_386_GLOB_DAT:
209 TRACE ("BFD_RELOC_386_GLOB_DAT");
210 return &elf_howto_table[R_386_GLOB_DAT];
211
212 case BFD_RELOC_386_JUMP_SLOT:
213 TRACE ("BFD_RELOC_386_JUMP_SLOT");
214 return &elf_howto_table[R_386_JUMP_SLOT];
215
216 case BFD_RELOC_386_RELATIVE:
217 TRACE ("BFD_RELOC_386_RELATIVE");
218 return &elf_howto_table[R_386_RELATIVE];
219
220 case BFD_RELOC_386_GOTOFF:
221 TRACE ("BFD_RELOC_386_GOTOFF");
222 return &elf_howto_table[R_386_GOTOFF];
223
224 case BFD_RELOC_386_GOTPC:
225 TRACE ("BFD_RELOC_386_GOTPC");
226 return &elf_howto_table[R_386_GOTPC];
227
228 /* These relocs are a GNU extension. */
229 case BFD_RELOC_386_TLS_TPOFF:
230 TRACE ("BFD_RELOC_386_TLS_TPOFF");
231 return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset];
232
233 case BFD_RELOC_386_TLS_IE:
234 TRACE ("BFD_RELOC_386_TLS_IE");
235 return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset];
236
237 case BFD_RELOC_386_TLS_GOTIE:
238 TRACE ("BFD_RELOC_386_TLS_GOTIE");
239 return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset];
240
241 case BFD_RELOC_386_TLS_LE:
242 TRACE ("BFD_RELOC_386_TLS_LE");
243 return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset];
244
245 case BFD_RELOC_386_TLS_GD:
246 TRACE ("BFD_RELOC_386_TLS_GD");
247 return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset];
248
249 case BFD_RELOC_386_TLS_LDM:
250 TRACE ("BFD_RELOC_386_TLS_LDM");
251 return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset];
252
253 case BFD_RELOC_16:
254 TRACE ("BFD_RELOC_16");
255 return &elf_howto_table[R_386_16 - R_386_ext_offset];
256
257 case BFD_RELOC_16_PCREL:
258 TRACE ("BFD_RELOC_16_PCREL");
259 return &elf_howto_table[R_386_PC16 - R_386_ext_offset];
260
261 case BFD_RELOC_8:
262 TRACE ("BFD_RELOC_8");
263 return &elf_howto_table[R_386_8 - R_386_ext_offset];
264
265 case BFD_RELOC_8_PCREL:
266 TRACE ("BFD_RELOC_8_PCREL");
267 return &elf_howto_table[R_386_PC8 - R_386_ext_offset];
268
269 /* Common with Sun TLS implementation. */
270 case BFD_RELOC_386_TLS_LDO_32:
271 TRACE ("BFD_RELOC_386_TLS_LDO_32");
272 return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset];
273
274 case BFD_RELOC_386_TLS_IE_32:
275 TRACE ("BFD_RELOC_386_TLS_IE_32");
276 return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset];
277
278 case BFD_RELOC_386_TLS_LE_32:
279 TRACE ("BFD_RELOC_386_TLS_LE_32");
280 return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset];
281
282 case BFD_RELOC_386_TLS_DTPMOD32:
283 TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
284 return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset];
285
286 case BFD_RELOC_386_TLS_DTPOFF32:
287 TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
288 return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset];
289
290 case BFD_RELOC_386_TLS_TPOFF32:
291 TRACE ("BFD_RELOC_386_TLS_TPOFF32");
292 return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset];
293
294 case BFD_RELOC_VTABLE_INHERIT:
295 TRACE ("BFD_RELOC_VTABLE_INHERIT");
296 return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset];
297
298 case BFD_RELOC_VTABLE_ENTRY:
299 TRACE ("BFD_RELOC_VTABLE_ENTRY");
300 return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset];
301
302 default:
303 break;
304 }
305
306 TRACE ("Unknown");
307 return 0;
308 }
309
310 static void
311 elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED,
312 arelent *cache_ptr,
313 Elf_Internal_Rela *dst)
314 {
315 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
316 unsigned int indx;
317
318 if ((indx = r_type) >= R_386_standard
319 && ((indx = r_type - R_386_ext_offset) - R_386_standard
320 >= R_386_ext - R_386_standard)
321 && ((indx = r_type - R_386_tls_offset) - R_386_ext
322 >= R_386_tls - R_386_ext)
323 && ((indx = r_type - R_386_vt_offset) - R_386_tls
324 >= R_386_vt - R_386_tls))
325 {
326 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
327 bfd_archive_filename (abfd), (int) r_type);
328 indx = R_386_NONE;
329 }
330 cache_ptr->howto = &elf_howto_table[indx];
331 }
332
333 /* Return whether a symbol name implies a local label. The UnixWare
334 2.1 cc generates temporary symbols that start with .X, so we
335 recognize them here. FIXME: do other SVR4 compilers also use .X?.
336 If so, we should move the .X recognition into
337 _bfd_elf_is_local_label_name. */
338
339 static bfd_boolean
340 elf_i386_is_local_label_name (bfd *abfd, const char *name)
341 {
342 if (name[0] == '.' && name[1] == 'X')
343 return TRUE;
344
345 return _bfd_elf_is_local_label_name (abfd, name);
346 }
347 \f
348 /* Support for core dump NOTE sections. */
349 static bfd_boolean
350 elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
351 {
352 int offset;
353 size_t raw_size;
354
355 switch (note->descsz)
356 {
357 default:
358 return FALSE;
359
360 case 144: /* Linux/i386 */
361 /* pr_cursig */
362 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
363
364 /* pr_pid */
365 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
366
367 /* pr_reg */
368 offset = 72;
369 raw_size = 68;
370
371 break;
372 }
373
374 /* Make a ".reg/999" section. */
375 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
376 raw_size, note->descpos + offset);
377 }
378
379 static bfd_boolean
380 elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
381 {
382 switch (note->descsz)
383 {
384 default:
385 return FALSE;
386
387 case 124: /* Linux/i386 elf_prpsinfo */
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 }
393
394 /* Note that for some reason, a spurious space is tacked
395 onto the end of the args in some (at least one anyway)
396 implementations, so strip it off if it exists. */
397
398 {
399 char *command = elf_tdata (abfd)->core_command;
400 int n = strlen (command);
401
402 if (0 < n && command[n - 1] == ' ')
403 command[n - 1] = '\0';
404 }
405
406 return TRUE;
407 }
408 \f
409 /* Functions for the i386 ELF linker.
410
411 In order to gain some understanding of code in this file without
412 knowing all the intricate details of the linker, note the
413 following:
414
415 Functions named elf_i386_* are called by external routines, other
416 functions are only called locally. elf_i386_* functions appear
417 in this file more or less in the order in which they are called
418 from external routines. eg. elf_i386_check_relocs is called
419 early in the link process, elf_i386_finish_dynamic_sections is
420 one of the last functions. */
421
422
423 /* The name of the dynamic interpreter. This is put in the .interp
424 section. */
425
426 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
427
428 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
429 copying dynamic variables from a shared lib into an app's dynbss
430 section, and instead use a dynamic relocation to point into the
431 shared lib. */
432 #define ELIMINATE_COPY_RELOCS 1
433
434 /* The size in bytes of an entry in the procedure linkage table. */
435
436 #define PLT_ENTRY_SIZE 16
437
438 /* The first entry in an absolute procedure linkage table looks like
439 this. See the SVR4 ABI i386 supplement to see how this works. */
440
441 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
442 {
443 0xff, 0x35, /* pushl contents of address */
444 0, 0, 0, 0, /* replaced with address of .got + 4. */
445 0xff, 0x25, /* jmp indirect */
446 0, 0, 0, 0, /* replaced with address of .got + 8. */
447 0, 0, 0, 0 /* pad out to 16 bytes. */
448 };
449
450 /* Subsequent entries in an absolute procedure linkage table look like
451 this. */
452
453 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
454 {
455 0xff, 0x25, /* jmp indirect */
456 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
457 0x68, /* pushl immediate */
458 0, 0, 0, 0, /* replaced with offset into relocation table. */
459 0xe9, /* jmp relative */
460 0, 0, 0, 0 /* replaced with offset to start of .plt. */
461 };
462
463 /* The first entry in a PIC procedure linkage table look like this. */
464
465 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
466 {
467 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
468 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
469 0, 0, 0, 0 /* pad out to 16 bytes. */
470 };
471
472 /* Subsequent entries in a PIC procedure linkage table look like this. */
473
474 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
475 {
476 0xff, 0xa3, /* jmp *offset(%ebx) */
477 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
478 0x68, /* pushl immediate */
479 0, 0, 0, 0, /* replaced with offset into relocation table. */
480 0xe9, /* jmp relative */
481 0, 0, 0, 0 /* replaced with offset to start of .plt. */
482 };
483
484 /* The i386 linker needs to keep track of the number of relocs that it
485 decides to copy as dynamic relocs in check_relocs for each symbol.
486 This is so that it can later discard them if they are found to be
487 unnecessary. We store the information in a field extending the
488 regular ELF linker hash table. */
489
490 struct elf_i386_dyn_relocs
491 {
492 struct elf_i386_dyn_relocs *next;
493
494 /* The input section of the reloc. */
495 asection *sec;
496
497 /* Total number of relocs copied for the input section. */
498 bfd_size_type count;
499
500 /* Number of pc-relative relocs copied for the input section. */
501 bfd_size_type pc_count;
502 };
503
504 /* i386 ELF linker hash entry. */
505
506 struct elf_i386_link_hash_entry
507 {
508 struct elf_link_hash_entry elf;
509
510 /* Track dynamic relocs copied for this symbol. */
511 struct elf_i386_dyn_relocs *dyn_relocs;
512
513 #define GOT_UNKNOWN 0
514 #define GOT_NORMAL 1
515 #define GOT_TLS_GD 2
516 #define GOT_TLS_IE 4
517 #define GOT_TLS_IE_POS 5
518 #define GOT_TLS_IE_NEG 6
519 #define GOT_TLS_IE_BOTH 7
520 unsigned char tls_type;
521 };
522
523 #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
524
525 struct elf_i386_obj_tdata
526 {
527 struct elf_obj_tdata root;
528
529 /* tls_type for each local got entry. */
530 char *local_got_tls_type;
531 };
532
533 #define elf_i386_tdata(abfd) \
534 ((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
535
536 #define elf_i386_local_got_tls_type(abfd) \
537 (elf_i386_tdata (abfd)->local_got_tls_type)
538
539 static bfd_boolean
540 elf_i386_mkobject (bfd *abfd)
541 {
542 bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
543 abfd->tdata.any = bfd_zalloc (abfd, amt);
544 if (abfd->tdata.any == NULL)
545 return FALSE;
546 return TRUE;
547 }
548
549 static bfd_boolean
550 elf_i386_object_p (bfd *abfd)
551 {
552 /* Allocate our special target data. */
553 struct elf_i386_obj_tdata *new_tdata;
554 bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
555 new_tdata = bfd_zalloc (abfd, amt);
556 if (new_tdata == NULL)
557 return FALSE;
558 new_tdata->root = *abfd->tdata.elf_obj_data;
559 abfd->tdata.any = new_tdata;
560 return TRUE;
561 }
562
563 /* i386 ELF linker hash table. */
564
565 struct elf_i386_link_hash_table
566 {
567 struct elf_link_hash_table elf;
568
569 /* Short-cuts to get to dynamic linker sections. */
570 asection *sgot;
571 asection *sgotplt;
572 asection *srelgot;
573 asection *splt;
574 asection *srelplt;
575 asection *sdynbss;
576 asection *srelbss;
577
578 union {
579 bfd_signed_vma refcount;
580 bfd_vma offset;
581 } tls_ldm_got;
582
583 /* Small local sym to section mapping cache. */
584 struct sym_sec_cache sym_sec;
585 };
586
587 /* Get the i386 ELF linker hash table from a link_info structure. */
588
589 #define elf_i386_hash_table(p) \
590 ((struct elf_i386_link_hash_table *) ((p)->hash))
591
592 /* Create an entry in an i386 ELF linker hash table. */
593
594 static struct bfd_hash_entry *
595 link_hash_newfunc (struct bfd_hash_entry *entry,
596 struct bfd_hash_table *table,
597 const char *string)
598 {
599 /* Allocate the structure if it has not already been allocated by a
600 subclass. */
601 if (entry == NULL)
602 {
603 entry = bfd_hash_allocate (table,
604 sizeof (struct elf_i386_link_hash_entry));
605 if (entry == NULL)
606 return entry;
607 }
608
609 /* Call the allocation method of the superclass. */
610 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
611 if (entry != NULL)
612 {
613 struct elf_i386_link_hash_entry *eh;
614
615 eh = (struct elf_i386_link_hash_entry *) entry;
616 eh->dyn_relocs = NULL;
617 eh->tls_type = GOT_UNKNOWN;
618 }
619
620 return entry;
621 }
622
623 /* Create an i386 ELF linker hash table. */
624
625 static struct bfd_link_hash_table *
626 elf_i386_link_hash_table_create (bfd *abfd)
627 {
628 struct elf_i386_link_hash_table *ret;
629 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
630
631 ret = bfd_malloc (amt);
632 if (ret == NULL)
633 return NULL;
634
635 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
636 {
637 free (ret);
638 return NULL;
639 }
640
641 ret->sgot = NULL;
642 ret->sgotplt = NULL;
643 ret->srelgot = NULL;
644 ret->splt = NULL;
645 ret->srelplt = NULL;
646 ret->sdynbss = NULL;
647 ret->srelbss = NULL;
648 ret->tls_ldm_got.refcount = 0;
649 ret->sym_sec.abfd = NULL;
650
651 return &ret->elf.root;
652 }
653
654 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
655 shortcuts to them in our hash table. */
656
657 static bfd_boolean
658 create_got_section (bfd *dynobj, struct bfd_link_info *info)
659 {
660 struct elf_i386_link_hash_table *htab;
661
662 if (! _bfd_elf_create_got_section (dynobj, info))
663 return FALSE;
664
665 htab = elf_i386_hash_table (info);
666 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
667 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
668 if (!htab->sgot || !htab->sgotplt)
669 abort ();
670
671 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
672 if (htab->srelgot == NULL
673 || ! bfd_set_section_flags (dynobj, htab->srelgot,
674 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
675 | SEC_IN_MEMORY | SEC_LINKER_CREATED
676 | SEC_READONLY))
677 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
678 return FALSE;
679 return TRUE;
680 }
681
682 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
683 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
684 hash table. */
685
686 static bfd_boolean
687 elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
688 {
689 struct elf_i386_link_hash_table *htab;
690
691 htab = elf_i386_hash_table (info);
692 if (!htab->sgot && !create_got_section (dynobj, info))
693 return FALSE;
694
695 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
696 return FALSE;
697
698 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
699 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
700 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
701 if (!info->shared)
702 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
703
704 if (!htab->splt || !htab->srelplt || !htab->sdynbss
705 || (!info->shared && !htab->srelbss))
706 abort ();
707
708 return TRUE;
709 }
710
711 /* Copy the extra info we tack onto an elf_link_hash_entry. */
712
713 static void
714 elf_i386_copy_indirect_symbol (const struct elf_backend_data *bed,
715 struct elf_link_hash_entry *dir,
716 struct elf_link_hash_entry *ind)
717 {
718 struct elf_i386_link_hash_entry *edir, *eind;
719
720 edir = (struct elf_i386_link_hash_entry *) dir;
721 eind = (struct elf_i386_link_hash_entry *) ind;
722
723 if (eind->dyn_relocs != NULL)
724 {
725 if (edir->dyn_relocs != NULL)
726 {
727 struct elf_i386_dyn_relocs **pp;
728 struct elf_i386_dyn_relocs *p;
729
730 if (ind->root.type == bfd_link_hash_indirect)
731 abort ();
732
733 /* Add reloc counts against the weak sym to the strong sym
734 list. Merge any entries against the same section. */
735 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
736 {
737 struct elf_i386_dyn_relocs *q;
738
739 for (q = edir->dyn_relocs; q != NULL; q = q->next)
740 if (q->sec == p->sec)
741 {
742 q->pc_count += p->pc_count;
743 q->count += p->count;
744 *pp = p->next;
745 break;
746 }
747 if (q == NULL)
748 pp = &p->next;
749 }
750 *pp = edir->dyn_relocs;
751 }
752
753 edir->dyn_relocs = eind->dyn_relocs;
754 eind->dyn_relocs = NULL;
755 }
756
757 if (ind->root.type == bfd_link_hash_indirect
758 && dir->got.refcount <= 0)
759 {
760 edir->tls_type = eind->tls_type;
761 eind->tls_type = GOT_UNKNOWN;
762 }
763
764 if (ELIMINATE_COPY_RELOCS
765 && ind->root.type != bfd_link_hash_indirect
766 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
767 /* If called to transfer flags for a weakdef during processing
768 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
769 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
770 dir->elf_link_hash_flags |=
771 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
772 | ELF_LINK_HASH_REF_REGULAR
773 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
774 else
775 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
776 }
777
778 static int
779 elf_i386_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
780 {
781 if (info->shared)
782 return r_type;
783
784 switch (r_type)
785 {
786 case R_386_TLS_GD:
787 case R_386_TLS_IE_32:
788 if (is_local)
789 return R_386_TLS_LE_32;
790 return R_386_TLS_IE_32;
791 case R_386_TLS_IE:
792 case R_386_TLS_GOTIE:
793 if (is_local)
794 return R_386_TLS_LE_32;
795 return r_type;
796 case R_386_TLS_LDM:
797 return R_386_TLS_LE_32;
798 }
799
800 return r_type;
801 }
802
803 /* Look through the relocs for a section during the first phase, and
804 calculate needed space in the global offset table, procedure linkage
805 table, and dynamic reloc sections. */
806
807 static bfd_boolean
808 elf_i386_check_relocs (bfd *abfd,
809 struct bfd_link_info *info,
810 asection *sec,
811 const Elf_Internal_Rela *relocs)
812 {
813 struct elf_i386_link_hash_table *htab;
814 Elf_Internal_Shdr *symtab_hdr;
815 struct elf_link_hash_entry **sym_hashes;
816 const Elf_Internal_Rela *rel;
817 const Elf_Internal_Rela *rel_end;
818 asection *sreloc;
819
820 if (info->relocatable)
821 return TRUE;
822
823 htab = elf_i386_hash_table (info);
824 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
825 sym_hashes = elf_sym_hashes (abfd);
826
827 sreloc = NULL;
828
829 rel_end = relocs + sec->reloc_count;
830 for (rel = relocs; rel < rel_end; rel++)
831 {
832 unsigned int r_type;
833 unsigned long r_symndx;
834 struct elf_link_hash_entry *h;
835
836 r_symndx = ELF32_R_SYM (rel->r_info);
837 r_type = ELF32_R_TYPE (rel->r_info);
838
839 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
840 {
841 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
842 bfd_archive_filename (abfd),
843 r_symndx);
844 return FALSE;
845 }
846
847 if (r_symndx < symtab_hdr->sh_info)
848 h = NULL;
849 else
850 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
851
852 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
853
854 switch (r_type)
855 {
856 case R_386_TLS_LDM:
857 htab->tls_ldm_got.refcount += 1;
858 goto create_got;
859
860 case R_386_PLT32:
861 /* This symbol requires a procedure linkage table entry. We
862 actually build the entry in adjust_dynamic_symbol,
863 because this might be a case of linking PIC code which is
864 never referenced by a dynamic object, in which case we
865 don't need to generate a procedure linkage table entry
866 after all. */
867
868 /* If this is a local symbol, we resolve it directly without
869 creating a procedure linkage table entry. */
870 if (h == NULL)
871 continue;
872
873 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
874 h->plt.refcount += 1;
875 break;
876
877 case R_386_TLS_IE_32:
878 case R_386_TLS_IE:
879 case R_386_TLS_GOTIE:
880 if (info->shared)
881 info->flags |= DF_STATIC_TLS;
882 /* Fall through */
883
884 case R_386_GOT32:
885 case R_386_TLS_GD:
886 /* This symbol requires a global offset table entry. */
887 {
888 int tls_type, old_tls_type;
889
890 switch (r_type)
891 {
892 default:
893 case R_386_GOT32: tls_type = GOT_NORMAL; break;
894 case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
895 case R_386_TLS_IE_32:
896 if (ELF32_R_TYPE (rel->r_info) == r_type)
897 tls_type = GOT_TLS_IE_NEG;
898 else
899 /* If this is a GD->IE transition, we may use either of
900 R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */
901 tls_type = GOT_TLS_IE;
902 break;
903 case R_386_TLS_IE:
904 case R_386_TLS_GOTIE:
905 tls_type = GOT_TLS_IE_POS; break;
906 }
907
908 if (h != NULL)
909 {
910 h->got.refcount += 1;
911 old_tls_type = elf_i386_hash_entry(h)->tls_type;
912 }
913 else
914 {
915 bfd_signed_vma *local_got_refcounts;
916
917 /* This is a global offset table entry for a local symbol. */
918 local_got_refcounts = elf_local_got_refcounts (abfd);
919 if (local_got_refcounts == NULL)
920 {
921 bfd_size_type size;
922
923 size = symtab_hdr->sh_info;
924 size *= (sizeof (bfd_signed_vma) + sizeof(char));
925 local_got_refcounts = bfd_zalloc (abfd, size);
926 if (local_got_refcounts == NULL)
927 return FALSE;
928 elf_local_got_refcounts (abfd) = local_got_refcounts;
929 elf_i386_local_got_tls_type (abfd)
930 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
931 }
932 local_got_refcounts[r_symndx] += 1;
933 old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
934 }
935
936 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
937 tls_type |= old_tls_type;
938 /* If a TLS symbol is accessed using IE at least once,
939 there is no point to use dynamic model for it. */
940 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
941 && (old_tls_type != GOT_TLS_GD
942 || (tls_type & GOT_TLS_IE) == 0))
943 {
944 if ((old_tls_type & GOT_TLS_IE) && tls_type == GOT_TLS_GD)
945 tls_type = old_tls_type;
946 else
947 {
948 (*_bfd_error_handler)
949 (_("%s: `%s' accessed both as normal and "
950 "thread local symbol"),
951 bfd_archive_filename (abfd),
952 h ? h->root.root.string : "<local>");
953 return FALSE;
954 }
955 }
956
957 if (old_tls_type != tls_type)
958 {
959 if (h != NULL)
960 elf_i386_hash_entry (h)->tls_type = tls_type;
961 else
962 elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
963 }
964 }
965 /* Fall through */
966
967 case R_386_GOTOFF:
968 case R_386_GOTPC:
969 create_got:
970 if (htab->sgot == NULL)
971 {
972 if (htab->elf.dynobj == NULL)
973 htab->elf.dynobj = abfd;
974 if (!create_got_section (htab->elf.dynobj, info))
975 return FALSE;
976 }
977 if (r_type != R_386_TLS_IE)
978 break;
979 /* Fall through */
980
981 case R_386_TLS_LE_32:
982 case R_386_TLS_LE:
983 if (!info->shared)
984 break;
985 info->flags |= DF_STATIC_TLS;
986 /* Fall through */
987
988 case R_386_32:
989 case R_386_PC32:
990 if (h != NULL && !info->shared)
991 {
992 /* If this reloc is in a read-only section, we might
993 need a copy reloc. We can't check reliably at this
994 stage whether the section is read-only, as input
995 sections have not yet been mapped to output sections.
996 Tentatively set the flag for now, and correct in
997 adjust_dynamic_symbol. */
998 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
999
1000 /* We may need a .plt entry if the function this reloc
1001 refers to is in a shared lib. */
1002 h->plt.refcount += 1;
1003 }
1004
1005 /* If we are creating a shared library, and this is a reloc
1006 against a global symbol, or a non PC relative reloc
1007 against a local symbol, then we need to copy the reloc
1008 into the shared library. However, if we are linking with
1009 -Bsymbolic, we do not need to copy a reloc against a
1010 global symbol which is defined in an object we are
1011 including in the link (i.e., DEF_REGULAR is set). At
1012 this point we have not seen all the input files, so it is
1013 possible that DEF_REGULAR is not set now but will be set
1014 later (it is never cleared). In case of a weak definition,
1015 DEF_REGULAR may be cleared later by a strong definition in
1016 a shared library. We account for that possibility below by
1017 storing information in the relocs_copied field of the hash
1018 table entry. A similar situation occurs when creating
1019 shared libraries and symbol visibility changes render the
1020 symbol local.
1021
1022 If on the other hand, we are creating an executable, we
1023 may need to keep relocations for symbols satisfied by a
1024 dynamic library if we manage to avoid copy relocs for the
1025 symbol. */
1026 if ((info->shared
1027 && (sec->flags & SEC_ALLOC) != 0
1028 && (r_type != R_386_PC32
1029 || (h != NULL
1030 && (! info->symbolic
1031 || h->root.type == bfd_link_hash_defweak
1032 || (h->elf_link_hash_flags
1033 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1034 || (ELIMINATE_COPY_RELOCS
1035 && !info->shared
1036 && (sec->flags & SEC_ALLOC) != 0
1037 && h != NULL
1038 && (h->root.type == bfd_link_hash_defweak
1039 || (h->elf_link_hash_flags
1040 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1041 {
1042 struct elf_i386_dyn_relocs *p;
1043 struct elf_i386_dyn_relocs **head;
1044
1045 /* We must copy these reloc types into the output file.
1046 Create a reloc section in dynobj and make room for
1047 this reloc. */
1048 if (sreloc == NULL)
1049 {
1050 const char *name;
1051 bfd *dynobj;
1052 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
1053 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
1054
1055 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
1056 if (name == NULL)
1057 return FALSE;
1058
1059 if (strncmp (name, ".rel", 4) != 0
1060 || strcmp (bfd_get_section_name (abfd, sec),
1061 name + 4) != 0)
1062 {
1063 (*_bfd_error_handler)
1064 (_("%s: bad relocation section name `%s\'"),
1065 bfd_archive_filename (abfd), name);
1066 }
1067
1068 if (htab->elf.dynobj == NULL)
1069 htab->elf.dynobj = abfd;
1070
1071 dynobj = htab->elf.dynobj;
1072 sreloc = bfd_get_section_by_name (dynobj, name);
1073 if (sreloc == NULL)
1074 {
1075 flagword flags;
1076
1077 sreloc = bfd_make_section (dynobj, name);
1078 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1079 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1080 if ((sec->flags & SEC_ALLOC) != 0)
1081 flags |= SEC_ALLOC | SEC_LOAD;
1082 if (sreloc == NULL
1083 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1084 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
1085 return FALSE;
1086 }
1087 elf_section_data (sec)->sreloc = sreloc;
1088 }
1089
1090 /* If this is a global symbol, we count the number of
1091 relocations we need for this symbol. */
1092 if (h != NULL)
1093 {
1094 head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
1095 }
1096 else
1097 {
1098 /* Track dynamic relocs needed for local syms too.
1099 We really need local syms available to do this
1100 easily. Oh well. */
1101
1102 asection *s;
1103 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1104 sec, r_symndx);
1105 if (s == NULL)
1106 return FALSE;
1107
1108 head = ((struct elf_i386_dyn_relocs **)
1109 &elf_section_data (s)->local_dynrel);
1110 }
1111
1112 p = *head;
1113 if (p == NULL || p->sec != sec)
1114 {
1115 bfd_size_type amt = sizeof *p;
1116 p = bfd_alloc (htab->elf.dynobj, amt);
1117 if (p == NULL)
1118 return FALSE;
1119 p->next = *head;
1120 *head = p;
1121 p->sec = sec;
1122 p->count = 0;
1123 p->pc_count = 0;
1124 }
1125
1126 p->count += 1;
1127 if (r_type == R_386_PC32)
1128 p->pc_count += 1;
1129 }
1130 break;
1131
1132 /* This relocation describes the C++ object vtable hierarchy.
1133 Reconstruct it for later use during GC. */
1134 case R_386_GNU_VTINHERIT:
1135 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1136 return FALSE;
1137 break;
1138
1139 /* This relocation describes which C++ vtable entries are actually
1140 used. Record for later use during GC. */
1141 case R_386_GNU_VTENTRY:
1142 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
1143 return FALSE;
1144 break;
1145
1146 default:
1147 break;
1148 }
1149 }
1150
1151 return TRUE;
1152 }
1153
1154 /* Return the section that should be marked against GC for a given
1155 relocation. */
1156
1157 static asection *
1158 elf_i386_gc_mark_hook (asection *sec,
1159 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1160 Elf_Internal_Rela *rel,
1161 struct elf_link_hash_entry *h,
1162 Elf_Internal_Sym *sym)
1163 {
1164 if (h != NULL)
1165 {
1166 switch (ELF32_R_TYPE (rel->r_info))
1167 {
1168 case R_386_GNU_VTINHERIT:
1169 case R_386_GNU_VTENTRY:
1170 break;
1171
1172 default:
1173 switch (h->root.type)
1174 {
1175 case bfd_link_hash_defined:
1176 case bfd_link_hash_defweak:
1177 return h->root.u.def.section;
1178
1179 case bfd_link_hash_common:
1180 return h->root.u.c.p->section;
1181
1182 default:
1183 break;
1184 }
1185 }
1186 }
1187 else
1188 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1189
1190 return NULL;
1191 }
1192
1193 /* Update the got entry reference counts for the section being removed. */
1194
1195 static bfd_boolean
1196 elf_i386_gc_sweep_hook (bfd *abfd,
1197 struct bfd_link_info *info,
1198 asection *sec,
1199 const Elf_Internal_Rela *relocs)
1200 {
1201 Elf_Internal_Shdr *symtab_hdr;
1202 struct elf_link_hash_entry **sym_hashes;
1203 bfd_signed_vma *local_got_refcounts;
1204 const Elf_Internal_Rela *rel, *relend;
1205
1206 elf_section_data (sec)->local_dynrel = NULL;
1207
1208 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1209 sym_hashes = elf_sym_hashes (abfd);
1210 local_got_refcounts = elf_local_got_refcounts (abfd);
1211
1212 relend = relocs + sec->reloc_count;
1213 for (rel = relocs; rel < relend; rel++)
1214 {
1215 unsigned long r_symndx;
1216 unsigned int r_type;
1217 struct elf_link_hash_entry *h = NULL;
1218
1219 r_symndx = ELF32_R_SYM (rel->r_info);
1220 if (r_symndx >= symtab_hdr->sh_info)
1221 {
1222 struct elf_i386_link_hash_entry *eh;
1223 struct elf_i386_dyn_relocs **pp;
1224 struct elf_i386_dyn_relocs *p;
1225
1226 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1227 eh = (struct elf_i386_link_hash_entry *) h;
1228
1229 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1230 if (p->sec == sec)
1231 {
1232 /* Everything must go for SEC. */
1233 *pp = p->next;
1234 break;
1235 }
1236 }
1237
1238 r_type = ELF32_R_TYPE (rel->r_info);
1239 r_type = elf_i386_tls_transition (info, r_type, h != NULL);
1240 switch (r_type)
1241 {
1242 case R_386_TLS_LDM:
1243 if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
1244 elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
1245 break;
1246
1247 case R_386_TLS_GD:
1248 case R_386_TLS_IE_32:
1249 case R_386_TLS_IE:
1250 case R_386_TLS_GOTIE:
1251 case R_386_GOT32:
1252 if (h != NULL)
1253 {
1254 if (h->got.refcount > 0)
1255 h->got.refcount -= 1;
1256 }
1257 else if (local_got_refcounts != NULL)
1258 {
1259 if (local_got_refcounts[r_symndx] > 0)
1260 local_got_refcounts[r_symndx] -= 1;
1261 }
1262 break;
1263
1264 case R_386_32:
1265 case R_386_PC32:
1266 if (info->shared)
1267 break;
1268 /* Fall through */
1269
1270 case R_386_PLT32:
1271 if (h != NULL)
1272 {
1273 if (h->plt.refcount > 0)
1274 h->plt.refcount -= 1;
1275 }
1276 break;
1277
1278 default:
1279 break;
1280 }
1281 }
1282
1283 return TRUE;
1284 }
1285
1286 /* Adjust a symbol defined by a dynamic object and referenced by a
1287 regular object. The current definition is in some section of the
1288 dynamic object, but we're not including those sections. We have to
1289 change the definition to something the rest of the link can
1290 understand. */
1291
1292 static bfd_boolean
1293 elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info,
1294 struct elf_link_hash_entry *h)
1295 {
1296 struct elf_i386_link_hash_table *htab;
1297 asection *s;
1298 unsigned int power_of_two;
1299
1300 /* If this is a function, put it in the procedure linkage table. We
1301 will fill in the contents of the procedure linkage table later,
1302 when we know the address of the .got section. */
1303 if (h->type == STT_FUNC
1304 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1305 {
1306 if (h->plt.refcount <= 0
1307 || SYMBOL_CALLS_LOCAL (info, h)
1308 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1309 && h->root.type == bfd_link_hash_undefweak))
1310 {
1311 /* This case can occur if we saw a PLT32 reloc in an input
1312 file, but the symbol was never referred to by a dynamic
1313 object, or if all references were garbage collected. In
1314 such a case, we don't actually need to build a procedure
1315 linkage table, and we can just do a PC32 reloc instead. */
1316 h->plt.offset = (bfd_vma) -1;
1317 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1318 }
1319
1320 return TRUE;
1321 }
1322 else
1323 /* It's possible that we incorrectly decided a .plt reloc was
1324 needed for an R_386_PC32 reloc to a non-function sym in
1325 check_relocs. We can't decide accurately between function and
1326 non-function syms in check-relocs; Objects loaded later in
1327 the link may change h->type. So fix it now. */
1328 h->plt.offset = (bfd_vma) -1;
1329
1330 /* If this is a weak symbol, and there is a real definition, the
1331 processor independent code will have arranged for us to see the
1332 real definition first, and we can just use the same value. */
1333 if (h->weakdef != NULL)
1334 {
1335 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1336 || h->weakdef->root.type == bfd_link_hash_defweak);
1337 h->root.u.def.section = h->weakdef->root.u.def.section;
1338 h->root.u.def.value = h->weakdef->root.u.def.value;
1339 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1340 h->elf_link_hash_flags
1341 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1342 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1343 return TRUE;
1344 }
1345
1346 /* This is a reference to a symbol defined by a dynamic object which
1347 is not a function. */
1348
1349 /* If we are creating a shared library, we must presume that the
1350 only references to the symbol are via the global offset table.
1351 For such cases we need not do anything here; the relocations will
1352 be handled correctly by relocate_section. */
1353 if (info->shared)
1354 return TRUE;
1355
1356 /* If there are no references to this symbol that do not use the
1357 GOT, we don't need to generate a copy reloc. */
1358 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1359 return TRUE;
1360
1361 /* If -z nocopyreloc was given, we won't generate them either. */
1362 if (info->nocopyreloc)
1363 {
1364 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1365 return TRUE;
1366 }
1367
1368 if (ELIMINATE_COPY_RELOCS)
1369 {
1370 struct elf_i386_link_hash_entry * eh;
1371 struct elf_i386_dyn_relocs *p;
1372
1373 eh = (struct elf_i386_link_hash_entry *) h;
1374 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1375 {
1376 s = p->sec->output_section;
1377 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1378 break;
1379 }
1380
1381 /* If we didn't find any dynamic relocs in read-only sections, then
1382 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1383 if (p == NULL)
1384 {
1385 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1386 return TRUE;
1387 }
1388 }
1389
1390 /* We must allocate the symbol in our .dynbss section, which will
1391 become part of the .bss section of the executable. There will be
1392 an entry for this symbol in the .dynsym section. The dynamic
1393 object will contain position independent code, so all references
1394 from the dynamic object to this symbol will go through the global
1395 offset table. The dynamic linker will use the .dynsym entry to
1396 determine the address it must put in the global offset table, so
1397 both the dynamic object and the regular object will refer to the
1398 same memory location for the variable. */
1399
1400 htab = elf_i386_hash_table (info);
1401
1402 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1403 copy the initial value out of the dynamic object and into the
1404 runtime process image. */
1405 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1406 {
1407 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1408 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1409 }
1410
1411 /* We need to figure out the alignment required for this symbol. I
1412 have no idea how ELF linkers handle this. */
1413 power_of_two = bfd_log2 (h->size);
1414 if (power_of_two > 3)
1415 power_of_two = 3;
1416
1417 /* Apply the required alignment. */
1418 s = htab->sdynbss;
1419 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1420 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1421 {
1422 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1423 return FALSE;
1424 }
1425
1426 /* Define the symbol as being at this point in the section. */
1427 h->root.u.def.section = s;
1428 h->root.u.def.value = s->_raw_size;
1429
1430 /* Increment the section size to make room for the symbol. */
1431 s->_raw_size += h->size;
1432
1433 return TRUE;
1434 }
1435
1436 /* This is the condition under which elf_i386_finish_dynamic_symbol
1437 will be called from elflink.h. If elflink.h doesn't call our
1438 finish_dynamic_symbol routine, we'll need to do something about
1439 initializing any .plt and .got entries in elf_i386_relocate_section. */
1440 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, SHARED, H) \
1441 ((DYN) \
1442 && ((SHARED) \
1443 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1444 && ((H)->dynindx != -1 \
1445 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1446
1447 /* Allocate space in .plt, .got and associated reloc sections for
1448 dynamic relocs. */
1449
1450 static bfd_boolean
1451 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1452 {
1453 struct bfd_link_info *info;
1454 struct elf_i386_link_hash_table *htab;
1455 struct elf_i386_link_hash_entry *eh;
1456 struct elf_i386_dyn_relocs *p;
1457
1458 if (h->root.type == bfd_link_hash_indirect)
1459 return TRUE;
1460
1461 if (h->root.type == bfd_link_hash_warning)
1462 /* When warning symbols are created, they **replace** the "real"
1463 entry in the hash table, thus we never get to see the real
1464 symbol in a hash traversal. So look at it now. */
1465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1466
1467 info = (struct bfd_link_info *) inf;
1468 htab = elf_i386_hash_table (info);
1469
1470 if (htab->elf.dynamic_sections_created
1471 && h->plt.refcount > 0)
1472 {
1473 /* Make sure this symbol is output as a dynamic symbol.
1474 Undefined weak syms won't yet be marked as dynamic. */
1475 if (h->dynindx == -1
1476 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1477 {
1478 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1479 return FALSE;
1480 }
1481
1482 if (info->shared
1483 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1484 {
1485 asection *s = htab->splt;
1486
1487 /* If this is the first .plt entry, make room for the special
1488 first entry. */
1489 if (s->_raw_size == 0)
1490 s->_raw_size += PLT_ENTRY_SIZE;
1491
1492 h->plt.offset = s->_raw_size;
1493
1494 /* If this symbol is not defined in a regular file, and we are
1495 not generating a shared library, then set the symbol to this
1496 location in the .plt. This is required to make function
1497 pointers compare as equal between the normal executable and
1498 the shared library. */
1499 if (! info->shared
1500 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1501 {
1502 h->root.u.def.section = s;
1503 h->root.u.def.value = h->plt.offset;
1504 }
1505
1506 /* Make room for this entry. */
1507 s->_raw_size += PLT_ENTRY_SIZE;
1508
1509 /* We also need to make an entry in the .got.plt section, which
1510 will be placed in the .got section by the linker script. */
1511 htab->sgotplt->_raw_size += 4;
1512
1513 /* We also need to make an entry in the .rel.plt section. */
1514 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1515 }
1516 else
1517 {
1518 h->plt.offset = (bfd_vma) -1;
1519 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1520 }
1521 }
1522 else
1523 {
1524 h->plt.offset = (bfd_vma) -1;
1525 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1526 }
1527
1528 /* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary,
1529 make it a R_386_TLS_LE_32 requiring no TLS entry. */
1530 if (h->got.refcount > 0
1531 && !info->shared
1532 && h->dynindx == -1
1533 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE))
1534 h->got.offset = (bfd_vma) -1;
1535 else if (h->got.refcount > 0)
1536 {
1537 asection *s;
1538 bfd_boolean dyn;
1539 int tls_type = elf_i386_hash_entry(h)->tls_type;
1540
1541 /* Make sure this symbol is output as a dynamic symbol.
1542 Undefined weak syms won't yet be marked as dynamic. */
1543 if (h->dynindx == -1
1544 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1545 {
1546 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1547 return FALSE;
1548 }
1549
1550 s = htab->sgot;
1551 h->got.offset = s->_raw_size;
1552 s->_raw_size += 4;
1553 /* R_386_TLS_GD needs 2 consecutive GOT slots. */
1554 if (tls_type == GOT_TLS_GD || tls_type == GOT_TLS_IE_BOTH)
1555 s->_raw_size += 4;
1556 dyn = htab->elf.dynamic_sections_created;
1557 /* R_386_TLS_IE_32 needs one dynamic relocation,
1558 R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
1559 (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
1560 need two), R_386_TLS_GD needs one if local symbol and two if
1561 global. */
1562 if (tls_type == GOT_TLS_IE_BOTH)
1563 htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel);
1564 else if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1565 || (tls_type & GOT_TLS_IE))
1566 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1567 else if (tls_type == GOT_TLS_GD)
1568 htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel);
1569 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1570 || h->root.type != bfd_link_hash_undefweak)
1571 && (info->shared
1572 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1573 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1574 }
1575 else
1576 h->got.offset = (bfd_vma) -1;
1577
1578 eh = (struct elf_i386_link_hash_entry *) h;
1579 if (eh->dyn_relocs == NULL)
1580 return TRUE;
1581
1582 /* In the shared -Bsymbolic case, discard space allocated for
1583 dynamic pc-relative relocs against symbols which turn out to be
1584 defined in regular objects. For the normal shared case, discard
1585 space for pc-relative relocs that have become local due to symbol
1586 visibility changes. */
1587
1588 if (info->shared)
1589 {
1590 /* The only reloc that uses pc_count is R_386_PC32, which will
1591 appear on a call or on something like ".long foo - .". We
1592 want calls to protected symbols to resolve directly to the
1593 function rather than going via the plt. If people want
1594 function pointer comparisons to work as expected then they
1595 should avoid writing assembly like ".long foo - .". */
1596 if (SYMBOL_CALLS_LOCAL (info, h))
1597 {
1598 struct elf_i386_dyn_relocs **pp;
1599
1600 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1601 {
1602 p->count -= p->pc_count;
1603 p->pc_count = 0;
1604 if (p->count == 0)
1605 *pp = p->next;
1606 else
1607 pp = &p->next;
1608 }
1609 }
1610
1611 /* Also discard relocs on undefined weak syms with non-default
1612 visibility. */
1613 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1614 && h->root.type == bfd_link_hash_undefweak)
1615 eh->dyn_relocs = NULL;
1616 }
1617 else if (ELIMINATE_COPY_RELOCS)
1618 {
1619 /* For the non-shared case, discard space for relocs against
1620 symbols which turn out to need copy relocs or are not
1621 dynamic. */
1622
1623 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1624 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1625 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1626 || (htab->elf.dynamic_sections_created
1627 && (h->root.type == bfd_link_hash_undefweak
1628 || h->root.type == bfd_link_hash_undefined))))
1629 {
1630 /* Make sure this symbol is output as a dynamic symbol.
1631 Undefined weak syms won't yet be marked as dynamic. */
1632 if (h->dynindx == -1
1633 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1634 {
1635 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1636 return FALSE;
1637 }
1638
1639 /* If that succeeded, we know we'll be keeping all the
1640 relocs. */
1641 if (h->dynindx != -1)
1642 goto keep;
1643 }
1644
1645 eh->dyn_relocs = NULL;
1646
1647 keep: ;
1648 }
1649
1650 /* Finally, allocate space. */
1651 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1652 {
1653 asection *sreloc = elf_section_data (p->sec)->sreloc;
1654 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1655 }
1656
1657 return TRUE;
1658 }
1659
1660 /* Find any dynamic relocs that apply to read-only sections. */
1661
1662 static bfd_boolean
1663 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1664 {
1665 struct elf_i386_link_hash_entry *eh;
1666 struct elf_i386_dyn_relocs *p;
1667
1668 if (h->root.type == bfd_link_hash_warning)
1669 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1670
1671 eh = (struct elf_i386_link_hash_entry *) h;
1672 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1673 {
1674 asection *s = p->sec->output_section;
1675
1676 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1677 {
1678 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1679
1680 info->flags |= DF_TEXTREL;
1681
1682 /* Not an error, just cut short the traversal. */
1683 return FALSE;
1684 }
1685 }
1686 return TRUE;
1687 }
1688
1689 /* Set the sizes of the dynamic sections. */
1690
1691 static bfd_boolean
1692 elf_i386_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1693 struct bfd_link_info *info)
1694 {
1695 struct elf_i386_link_hash_table *htab;
1696 bfd *dynobj;
1697 asection *s;
1698 bfd_boolean relocs;
1699 bfd *ibfd;
1700
1701 htab = elf_i386_hash_table (info);
1702 dynobj = htab->elf.dynobj;
1703 if (dynobj == NULL)
1704 abort ();
1705
1706 if (htab->elf.dynamic_sections_created)
1707 {
1708 /* Set the contents of the .interp section to the interpreter. */
1709 if (info->executable)
1710 {
1711 s = bfd_get_section_by_name (dynobj, ".interp");
1712 if (s == NULL)
1713 abort ();
1714 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1715 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1716 }
1717 }
1718
1719 /* Set up .got offsets for local syms, and space for local dynamic
1720 relocs. */
1721 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1722 {
1723 bfd_signed_vma *local_got;
1724 bfd_signed_vma *end_local_got;
1725 char *local_tls_type;
1726 bfd_size_type locsymcount;
1727 Elf_Internal_Shdr *symtab_hdr;
1728 asection *srel;
1729
1730 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1731 continue;
1732
1733 for (s = ibfd->sections; s != NULL; s = s->next)
1734 {
1735 struct elf_i386_dyn_relocs *p;
1736
1737 for (p = *((struct elf_i386_dyn_relocs **)
1738 &elf_section_data (s)->local_dynrel);
1739 p != NULL;
1740 p = p->next)
1741 {
1742 if (!bfd_is_abs_section (p->sec)
1743 && bfd_is_abs_section (p->sec->output_section))
1744 {
1745 /* Input section has been discarded, either because
1746 it is a copy of a linkonce section or due to
1747 linker script /DISCARD/, so we'll be discarding
1748 the relocs too. */
1749 }
1750 else if (p->count != 0)
1751 {
1752 srel = elf_section_data (p->sec)->sreloc;
1753 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
1754 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1755 info->flags |= DF_TEXTREL;
1756 }
1757 }
1758 }
1759
1760 local_got = elf_local_got_refcounts (ibfd);
1761 if (!local_got)
1762 continue;
1763
1764 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1765 locsymcount = symtab_hdr->sh_info;
1766 end_local_got = local_got + locsymcount;
1767 local_tls_type = elf_i386_local_got_tls_type (ibfd);
1768 s = htab->sgot;
1769 srel = htab->srelgot;
1770 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1771 {
1772 if (*local_got > 0)
1773 {
1774 *local_got = s->_raw_size;
1775 s->_raw_size += 4;
1776 if (*local_tls_type == GOT_TLS_GD
1777 || *local_tls_type == GOT_TLS_IE_BOTH)
1778 s->_raw_size += 4;
1779 if (info->shared
1780 || *local_tls_type == GOT_TLS_GD
1781 || (*local_tls_type & GOT_TLS_IE))
1782 {
1783 if (*local_tls_type == GOT_TLS_IE_BOTH)
1784 srel->_raw_size += 2 * sizeof (Elf32_External_Rel);
1785 else
1786 srel->_raw_size += sizeof (Elf32_External_Rel);
1787 }
1788 }
1789 else
1790 *local_got = (bfd_vma) -1;
1791 }
1792 }
1793
1794 if (htab->tls_ldm_got.refcount > 0)
1795 {
1796 /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
1797 relocs. */
1798 htab->tls_ldm_got.offset = htab->sgot->_raw_size;
1799 htab->sgot->_raw_size += 8;
1800 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1801 }
1802 else
1803 htab->tls_ldm_got.offset = -1;
1804
1805 /* Allocate global sym .plt and .got entries, and space for global
1806 sym dynamic relocs. */
1807 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1808
1809 /* We now have determined the sizes of the various dynamic sections.
1810 Allocate memory for them. */
1811 relocs = FALSE;
1812 for (s = dynobj->sections; s != NULL; s = s->next)
1813 {
1814 if ((s->flags & SEC_LINKER_CREATED) == 0)
1815 continue;
1816
1817 if (s == htab->splt
1818 || s == htab->sgot
1819 || s == htab->sgotplt)
1820 {
1821 /* Strip this section if we don't need it; see the
1822 comment below. */
1823 }
1824 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1825 {
1826 if (s->_raw_size != 0 && s != htab->srelplt)
1827 relocs = TRUE;
1828
1829 /* We use the reloc_count field as a counter if we need
1830 to copy relocs into the output file. */
1831 s->reloc_count = 0;
1832 }
1833 else
1834 {
1835 /* It's not one of our sections, so don't allocate space. */
1836 continue;
1837 }
1838
1839 if (s->_raw_size == 0)
1840 {
1841 /* If we don't need this section, strip it from the
1842 output file. This is mostly to handle .rel.bss and
1843 .rel.plt. We must create both sections in
1844 create_dynamic_sections, because they must be created
1845 before the linker maps input sections to output
1846 sections. The linker does that before
1847 adjust_dynamic_symbol is called, and it is that
1848 function which decides whether anything needs to go
1849 into these sections. */
1850
1851 _bfd_strip_section_from_output (info, s);
1852 continue;
1853 }
1854
1855 /* Allocate memory for the section contents. We use bfd_zalloc
1856 here in case unused entries are not reclaimed before the
1857 section's contents are written out. This should not happen,
1858 but this way if it does, we get a R_386_NONE reloc instead
1859 of garbage. */
1860 s->contents = bfd_zalloc (dynobj, s->_raw_size);
1861 if (s->contents == NULL)
1862 return FALSE;
1863 }
1864
1865 if (htab->elf.dynamic_sections_created)
1866 {
1867 /* Add some entries to the .dynamic section. We fill in the
1868 values later, in elf_i386_finish_dynamic_sections, but we
1869 must add the entries now so that we get the correct size for
1870 the .dynamic section. The DT_DEBUG entry is filled in by the
1871 dynamic linker and used by the debugger. */
1872 #define add_dynamic_entry(TAG, VAL) \
1873 bfd_elf32_add_dynamic_entry (info, (TAG), (VAL))
1874
1875 if (info->executable)
1876 {
1877 if (!add_dynamic_entry (DT_DEBUG, 0))
1878 return FALSE;
1879 }
1880
1881 if (htab->splt->_raw_size != 0)
1882 {
1883 if (!add_dynamic_entry (DT_PLTGOT, 0)
1884 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1885 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1886 || !add_dynamic_entry (DT_JMPREL, 0))
1887 return FALSE;
1888 }
1889
1890 if (relocs)
1891 {
1892 if (!add_dynamic_entry (DT_REL, 0)
1893 || !add_dynamic_entry (DT_RELSZ, 0)
1894 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1895 return FALSE;
1896
1897 /* If any dynamic relocs apply to a read-only section,
1898 then we need a DT_TEXTREL entry. */
1899 if ((info->flags & DF_TEXTREL) == 0)
1900 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1901 (PTR) info);
1902
1903 if ((info->flags & DF_TEXTREL) != 0)
1904 {
1905 if (!add_dynamic_entry (DT_TEXTREL, 0))
1906 return FALSE;
1907 }
1908 }
1909 }
1910 #undef add_dynamic_entry
1911
1912 return TRUE;
1913 }
1914
1915 /* Set the correct type for an x86 ELF section. We do this by the
1916 section name, which is a hack, but ought to work. */
1917
1918 static bfd_boolean
1919 elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
1920 Elf_Internal_Shdr *hdr,
1921 asection *sec)
1922 {
1923 register const char *name;
1924
1925 name = bfd_get_section_name (abfd, sec);
1926
1927 /* This is an ugly, but unfortunately necessary hack that is
1928 needed when producing EFI binaries on x86. It tells
1929 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1930 containing ELF relocation info. We need this hack in order to
1931 be able to generate ELF binaries that can be translated into
1932 EFI applications (which are essentially COFF objects). Those
1933 files contain a COFF ".reloc" section inside an ELFNN object,
1934 which would normally cause BFD to segfault because it would
1935 attempt to interpret this section as containing relocation
1936 entries for section "oc". With this hack enabled, ".reloc"
1937 will be treated as a normal data section, which will avoid the
1938 segfault. However, you won't be able to create an ELFNN binary
1939 with a section named "oc" that needs relocations, but that's
1940 the kind of ugly side-effects you get when detecting section
1941 types based on their names... In practice, this limitation is
1942 unlikely to bite. */
1943 if (strcmp (name, ".reloc") == 0)
1944 hdr->sh_type = SHT_PROGBITS;
1945
1946 return TRUE;
1947 }
1948
1949 /* Return the base VMA address which should be subtracted from real addresses
1950 when resolving @dtpoff relocation.
1951 This is PT_TLS segment p_vaddr. */
1952
1953 static bfd_vma
1954 dtpoff_base (struct bfd_link_info *info)
1955 {
1956 /* If tls_sec is NULL, we should have signalled an error already. */
1957 if (elf_hash_table (info)->tls_sec == NULL)
1958 return 0;
1959 return elf_hash_table (info)->tls_sec->vma;
1960 }
1961
1962 /* Return the relocation value for @tpoff relocation
1963 if STT_TLS virtual address is ADDRESS. */
1964
1965 static bfd_vma
1966 tpoff (struct bfd_link_info *info, bfd_vma address)
1967 {
1968 struct elf_link_hash_table *htab = elf_hash_table (info);
1969
1970 /* If tls_sec is NULL, we should have signalled an error already. */
1971 if (htab->tls_sec == NULL)
1972 return 0;
1973 return htab->tls_size + htab->tls_sec->vma - address;
1974 }
1975
1976 /* Relocate an i386 ELF section. */
1977
1978 static bfd_boolean
1979 elf_i386_relocate_section (bfd *output_bfd,
1980 struct bfd_link_info *info,
1981 bfd *input_bfd,
1982 asection *input_section,
1983 bfd_byte *contents,
1984 Elf_Internal_Rela *relocs,
1985 Elf_Internal_Sym *local_syms,
1986 asection **local_sections)
1987 {
1988 struct elf_i386_link_hash_table *htab;
1989 Elf_Internal_Shdr *symtab_hdr;
1990 struct elf_link_hash_entry **sym_hashes;
1991 bfd_vma *local_got_offsets;
1992 Elf_Internal_Rela *rel;
1993 Elf_Internal_Rela *relend;
1994
1995 htab = elf_i386_hash_table (info);
1996 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1997 sym_hashes = elf_sym_hashes (input_bfd);
1998 local_got_offsets = elf_local_got_offsets (input_bfd);
1999
2000 rel = relocs;
2001 relend = relocs + input_section->reloc_count;
2002 for (; rel < relend; rel++)
2003 {
2004 unsigned int r_type;
2005 reloc_howto_type *howto;
2006 unsigned long r_symndx;
2007 struct elf_link_hash_entry *h;
2008 Elf_Internal_Sym *sym;
2009 asection *sec;
2010 bfd_vma off;
2011 bfd_vma relocation;
2012 bfd_boolean unresolved_reloc;
2013 bfd_reloc_status_type r;
2014 unsigned int indx;
2015 int tls_type;
2016
2017 r_type = ELF32_R_TYPE (rel->r_info);
2018 if (r_type == R_386_GNU_VTINHERIT
2019 || r_type == R_386_GNU_VTENTRY)
2020 continue;
2021
2022 if ((indx = r_type) >= R_386_standard
2023 && ((indx = r_type - R_386_ext_offset) - R_386_standard
2024 >= R_386_ext - R_386_standard)
2025 && ((indx = r_type - R_386_tls_offset) - R_386_ext
2026 >= R_386_tls - R_386_ext))
2027 {
2028 bfd_set_error (bfd_error_bad_value);
2029 return FALSE;
2030 }
2031 howto = elf_howto_table + indx;
2032
2033 r_symndx = ELF32_R_SYM (rel->r_info);
2034
2035 if (info->relocatable)
2036 {
2037 bfd_vma val;
2038 bfd_byte *where;
2039
2040 /* This is a relocatable link. We don't have to change
2041 anything, unless the reloc is against a section symbol,
2042 in which case we have to adjust according to where the
2043 section symbol winds up in the output section. */
2044 if (r_symndx >= symtab_hdr->sh_info)
2045 continue;
2046
2047 sym = local_syms + r_symndx;
2048 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2049 continue;
2050
2051 sec = local_sections[r_symndx];
2052 val = sec->output_offset;
2053 if (val == 0)
2054 continue;
2055
2056 where = contents + rel->r_offset;
2057 switch (howto->size)
2058 {
2059 /* FIXME: overflow checks. */
2060 case 0:
2061 val += bfd_get_8 (input_bfd, where);
2062 bfd_put_8 (input_bfd, val, where);
2063 break;
2064 case 1:
2065 val += bfd_get_16 (input_bfd, where);
2066 bfd_put_16 (input_bfd, val, where);
2067 break;
2068 case 2:
2069 val += bfd_get_32 (input_bfd, where);
2070 bfd_put_32 (input_bfd, val, where);
2071 break;
2072 default:
2073 abort ();
2074 }
2075 continue;
2076 }
2077
2078 /* This is a final link. */
2079 h = NULL;
2080 sym = NULL;
2081 sec = NULL;
2082 unresolved_reloc = FALSE;
2083 if (r_symndx < symtab_hdr->sh_info)
2084 {
2085 sym = local_syms + r_symndx;
2086 sec = local_sections[r_symndx];
2087 relocation = (sec->output_section->vma
2088 + sec->output_offset
2089 + sym->st_value);
2090 if ((sec->flags & SEC_MERGE)
2091 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2092 {
2093 asection *msec;
2094 bfd_vma addend;
2095 bfd_byte *where = contents + rel->r_offset;
2096
2097 switch (howto->size)
2098 {
2099 case 0:
2100 addend = bfd_get_8 (input_bfd, where);
2101 if (howto->pc_relative)
2102 {
2103 addend = (addend ^ 0x80) - 0x80;
2104 addend += 1;
2105 }
2106 break;
2107 case 1:
2108 addend = bfd_get_16 (input_bfd, where);
2109 if (howto->pc_relative)
2110 {
2111 addend = (addend ^ 0x8000) - 0x8000;
2112 addend += 2;
2113 }
2114 break;
2115 case 2:
2116 addend = bfd_get_32 (input_bfd, where);
2117 if (howto->pc_relative)
2118 {
2119 addend = (addend ^ 0x80000000) - 0x80000000;
2120 addend += 4;
2121 }
2122 break;
2123 default:
2124 abort ();
2125 }
2126
2127 msec = sec;
2128 addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend);
2129 addend -= relocation;
2130 addend += msec->output_section->vma + msec->output_offset;
2131
2132 switch (howto->size)
2133 {
2134 case 0:
2135 /* FIXME: overflow checks. */
2136 if (howto->pc_relative)
2137 addend -= 1;
2138 bfd_put_8 (input_bfd, addend, where);
2139 break;
2140 case 1:
2141 if (howto->pc_relative)
2142 addend -= 2;
2143 bfd_put_16 (input_bfd, addend, where);
2144 break;
2145 case 2:
2146 if (howto->pc_relative)
2147 addend -= 4;
2148 bfd_put_32 (input_bfd, addend, where);
2149 break;
2150 }
2151 }
2152 }
2153 else
2154 {
2155 bfd_boolean warned;
2156
2157 RELOC_FOR_GLOBAL_SYMBOL (h, sym_hashes, r_symndx, symtab_hdr, relocation, sec, unresolved_reloc, info, warned);
2158 }
2159
2160 switch (r_type)
2161 {
2162 case R_386_GOT32:
2163 /* Relocation is to the entry for this symbol in the global
2164 offset table. */
2165 if (htab->sgot == NULL)
2166 abort ();
2167
2168 if (h != NULL)
2169 {
2170 bfd_boolean dyn;
2171
2172 off = h->got.offset;
2173 dyn = htab->elf.dynamic_sections_created;
2174 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2175 || (info->shared
2176 && SYMBOL_REFERENCES_LOCAL (info, h))
2177 || (ELF_ST_VISIBILITY (h->other)
2178 && h->root.type == bfd_link_hash_undefweak))
2179 {
2180 /* This is actually a static link, or it is a
2181 -Bsymbolic link and the symbol is defined
2182 locally, or the symbol was forced to be local
2183 because of a version file. We must initialize
2184 this entry in the global offset table. Since the
2185 offset must always be a multiple of 4, we use the
2186 least significant bit to record whether we have
2187 initialized it already.
2188
2189 When doing a dynamic link, we create a .rel.got
2190 relocation entry to initialize the value. This
2191 is done in the finish_dynamic_symbol routine. */
2192 if ((off & 1) != 0)
2193 off &= ~1;
2194 else
2195 {
2196 bfd_put_32 (output_bfd, relocation,
2197 htab->sgot->contents + off);
2198 h->got.offset |= 1;
2199 }
2200 }
2201 else
2202 unresolved_reloc = FALSE;
2203 }
2204 else
2205 {
2206 if (local_got_offsets == NULL)
2207 abort ();
2208
2209 off = local_got_offsets[r_symndx];
2210
2211 /* The offset must always be a multiple of 4. We use
2212 the least significant bit to record whether we have
2213 already generated the necessary reloc. */
2214 if ((off & 1) != 0)
2215 off &= ~1;
2216 else
2217 {
2218 bfd_put_32 (output_bfd, relocation,
2219 htab->sgot->contents + off);
2220
2221 if (info->shared)
2222 {
2223 asection *s;
2224 Elf_Internal_Rela outrel;
2225 bfd_byte *loc;
2226
2227 s = htab->srelgot;
2228 if (s == NULL)
2229 abort ();
2230
2231 outrel.r_offset = (htab->sgot->output_section->vma
2232 + htab->sgot->output_offset
2233 + off);
2234 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2235 loc = s->contents;
2236 loc += s->reloc_count++ * sizeof (Elf32_External_Rel);
2237 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2238 }
2239
2240 local_got_offsets[r_symndx] |= 1;
2241 }
2242 }
2243
2244 if (off >= (bfd_vma) -2)
2245 abort ();
2246
2247 relocation = htab->sgot->output_offset + off;
2248 break;
2249
2250 case R_386_GOTOFF:
2251 /* Relocation is relative to the start of the global offset
2252 table. */
2253
2254 /* Note that sgot->output_offset is not involved in this
2255 calculation. We always want the start of .got. If we
2256 defined _GLOBAL_OFFSET_TABLE in a different way, as is
2257 permitted by the ABI, we might have to change this
2258 calculation. */
2259 relocation -= htab->sgot->output_section->vma;
2260 break;
2261
2262 case R_386_GOTPC:
2263 /* Use global offset table as symbol value. */
2264 relocation = htab->sgot->output_section->vma;
2265 unresolved_reloc = FALSE;
2266 break;
2267
2268 case R_386_PLT32:
2269 /* Relocation is to the entry for this symbol in the
2270 procedure linkage table. */
2271
2272 /* Resolve a PLT32 reloc against a local symbol directly,
2273 without using the procedure linkage table. */
2274 if (h == NULL)
2275 break;
2276
2277 if (h->plt.offset == (bfd_vma) -1
2278 || htab->splt == NULL)
2279 {
2280 /* We didn't make a PLT entry for this symbol. This
2281 happens when statically linking PIC code, or when
2282 using -Bsymbolic. */
2283 break;
2284 }
2285
2286 relocation = (htab->splt->output_section->vma
2287 + htab->splt->output_offset
2288 + h->plt.offset);
2289 unresolved_reloc = FALSE;
2290 break;
2291
2292 case R_386_32:
2293 case R_386_PC32:
2294 /* r_symndx will be zero only for relocs against symbols
2295 from removed linkonce sections, or sections discarded by
2296 a linker script. */
2297 if (r_symndx == 0
2298 || (input_section->flags & SEC_ALLOC) == 0)
2299 break;
2300
2301 if ((info->shared
2302 && (h == NULL
2303 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2304 || h->root.type != bfd_link_hash_undefweak)
2305 && (r_type != R_386_PC32
2306 || !SYMBOL_CALLS_LOCAL (info, h)))
2307 || (ELIMINATE_COPY_RELOCS
2308 && !info->shared
2309 && h != NULL
2310 && h->dynindx != -1
2311 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2312 && (((h->elf_link_hash_flags
2313 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2314 && (h->elf_link_hash_flags
2315 & ELF_LINK_HASH_DEF_REGULAR) == 0)
2316 || h->root.type == bfd_link_hash_undefweak
2317 || h->root.type == bfd_link_hash_undefined)))
2318 {
2319 Elf_Internal_Rela outrel;
2320 bfd_byte *loc;
2321 bfd_boolean skip, relocate;
2322 asection *sreloc;
2323
2324 /* When generating a shared object, these relocations
2325 are copied into the output file to be resolved at run
2326 time. */
2327
2328 skip = FALSE;
2329 relocate = FALSE;
2330
2331 outrel.r_offset =
2332 _bfd_elf_section_offset (output_bfd, info, input_section,
2333 rel->r_offset);
2334 if (outrel.r_offset == (bfd_vma) -1)
2335 skip = TRUE;
2336 else if (outrel.r_offset == (bfd_vma) -2)
2337 skip = TRUE, relocate = TRUE;
2338 outrel.r_offset += (input_section->output_section->vma
2339 + input_section->output_offset);
2340
2341 if (skip)
2342 memset (&outrel, 0, sizeof outrel);
2343 else if (h != NULL
2344 && h->dynindx != -1
2345 && (r_type == R_386_PC32
2346 || !info->shared
2347 || !info->symbolic
2348 || (h->elf_link_hash_flags
2349 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2350 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
2351 else
2352 {
2353 /* This symbol is local, or marked to become local. */
2354 relocate = TRUE;
2355 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2356 }
2357
2358 sreloc = elf_section_data (input_section)->sreloc;
2359 if (sreloc == NULL)
2360 abort ();
2361
2362 loc = sreloc->contents;
2363 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2364 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2365
2366 /* If this reloc is against an external symbol, we do
2367 not want to fiddle with the addend. Otherwise, we
2368 need to include the symbol value so that it becomes
2369 an addend for the dynamic reloc. */
2370 if (! relocate)
2371 continue;
2372 }
2373 break;
2374
2375 case R_386_TLS_IE:
2376 if (info->shared)
2377 {
2378 Elf_Internal_Rela outrel;
2379 bfd_byte *loc;
2380 asection *sreloc;
2381
2382 outrel.r_offset = rel->r_offset
2383 + input_section->output_section->vma
2384 + input_section->output_offset;
2385 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2386 sreloc = elf_section_data (input_section)->sreloc;
2387 if (sreloc == NULL)
2388 abort ();
2389 loc = sreloc->contents;
2390 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2391 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2392 }
2393 /* Fall through */
2394
2395 case R_386_TLS_GD:
2396 case R_386_TLS_IE_32:
2397 case R_386_TLS_GOTIE:
2398 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
2399 tls_type = GOT_UNKNOWN;
2400 if (h == NULL && local_got_offsets)
2401 tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
2402 else if (h != NULL)
2403 {
2404 tls_type = elf_i386_hash_entry(h)->tls_type;
2405 if (!info->shared && h->dynindx == -1 && (tls_type & GOT_TLS_IE))
2406 r_type = R_386_TLS_LE_32;
2407 }
2408 if (tls_type == GOT_TLS_IE)
2409 tls_type = GOT_TLS_IE_NEG;
2410 if (r_type == R_386_TLS_GD)
2411 {
2412 if (tls_type == GOT_TLS_IE_POS)
2413 r_type = R_386_TLS_GOTIE;
2414 else if (tls_type & GOT_TLS_IE)
2415 r_type = R_386_TLS_IE_32;
2416 }
2417
2418 if (r_type == R_386_TLS_LE_32)
2419 {
2420 BFD_ASSERT (! unresolved_reloc);
2421 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
2422 {
2423 unsigned int val, type;
2424 bfd_vma roff;
2425
2426 /* GD->LE transition. */
2427 BFD_ASSERT (rel->r_offset >= 2);
2428 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2429 BFD_ASSERT (type == 0x8d || type == 0x04);
2430 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2431 BFD_ASSERT (bfd_get_8 (input_bfd,
2432 contents + rel->r_offset + 4)
2433 == 0xe8);
2434 BFD_ASSERT (rel + 1 < relend);
2435 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2436 roff = rel->r_offset + 5;
2437 val = bfd_get_8 (input_bfd,
2438 contents + rel->r_offset - 1);
2439 if (type == 0x04)
2440 {
2441 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2442 Change it into:
2443 movl %gs:0, %eax; subl $foo@tpoff, %eax
2444 (6 byte form of subl). */
2445 BFD_ASSERT (rel->r_offset >= 3);
2446 BFD_ASSERT (bfd_get_8 (input_bfd,
2447 contents + rel->r_offset - 3)
2448 == 0x8d);
2449 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2450 memcpy (contents + rel->r_offset - 3,
2451 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2452 }
2453 else
2454 {
2455 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2456 if (rel->r_offset + 10 <= input_section->_raw_size
2457 && bfd_get_8 (input_bfd,
2458 contents + rel->r_offset + 9) == 0x90)
2459 {
2460 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2461 Change it into:
2462 movl %gs:0, %eax; subl $foo@tpoff, %eax
2463 (6 byte form of subl). */
2464 memcpy (contents + rel->r_offset - 2,
2465 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2466 roff = rel->r_offset + 6;
2467 }
2468 else
2469 {
2470 /* leal foo(%reg), %eax; call ___tls_get_addr
2471 Change it into:
2472 movl %gs:0, %eax; subl $foo@tpoff, %eax
2473 (5 byte form of subl). */
2474 memcpy (contents + rel->r_offset - 2,
2475 "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2476 }
2477 }
2478 bfd_put_32 (output_bfd, tpoff (info, relocation),
2479 contents + roff);
2480 /* Skip R_386_PLT32. */
2481 rel++;
2482 continue;
2483 }
2484 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_IE)
2485 {
2486 unsigned int val, type;
2487
2488 /* IE->LE transition:
2489 Originally it can be one of:
2490 movl foo, %eax
2491 movl foo, %reg
2492 addl foo, %reg
2493 We change it into:
2494 movl $foo, %eax
2495 movl $foo, %reg
2496 addl $foo, %reg. */
2497 BFD_ASSERT (rel->r_offset >= 1);
2498 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2499 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2500 if (val == 0xa1)
2501 {
2502 /* movl foo, %eax. */
2503 bfd_put_8 (output_bfd, 0xb8,
2504 contents + rel->r_offset - 1);
2505 }
2506 else
2507 {
2508 BFD_ASSERT (rel->r_offset >= 2);
2509 type = bfd_get_8 (input_bfd,
2510 contents + rel->r_offset - 2);
2511 switch (type)
2512 {
2513 case 0x8b:
2514 /* movl */
2515 BFD_ASSERT ((val & 0xc7) == 0x05);
2516 bfd_put_8 (output_bfd, 0xc7,
2517 contents + rel->r_offset - 2);
2518 bfd_put_8 (output_bfd,
2519 0xc0 | ((val >> 3) & 7),
2520 contents + rel->r_offset - 1);
2521 break;
2522 case 0x03:
2523 /* addl */
2524 BFD_ASSERT ((val & 0xc7) == 0x05);
2525 bfd_put_8 (output_bfd, 0x81,
2526 contents + rel->r_offset - 2);
2527 bfd_put_8 (output_bfd,
2528 0xc0 | ((val >> 3) & 7),
2529 contents + rel->r_offset - 1);
2530 break;
2531 default:
2532 BFD_FAIL ();
2533 break;
2534 }
2535 }
2536 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2537 contents + rel->r_offset);
2538 continue;
2539 }
2540 else
2541 {
2542 unsigned int val, type;
2543
2544 /* {IE_32,GOTIE}->LE transition:
2545 Originally it can be one of:
2546 subl foo(%reg1), %reg2
2547 movl foo(%reg1), %reg2
2548 addl foo(%reg1), %reg2
2549 We change it into:
2550 subl $foo, %reg2
2551 movl $foo, %reg2 (6 byte form)
2552 addl $foo, %reg2. */
2553 BFD_ASSERT (rel->r_offset >= 2);
2554 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2555 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2556 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2557 BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
2558 if (type == 0x8b)
2559 {
2560 /* movl */
2561 bfd_put_8 (output_bfd, 0xc7,
2562 contents + rel->r_offset - 2);
2563 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2564 contents + rel->r_offset - 1);
2565 }
2566 else if (type == 0x2b)
2567 {
2568 /* subl */
2569 bfd_put_8 (output_bfd, 0x81,
2570 contents + rel->r_offset - 2);
2571 bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
2572 contents + rel->r_offset - 1);
2573 }
2574 else if (type == 0x03)
2575 {
2576 /* addl */
2577 bfd_put_8 (output_bfd, 0x81,
2578 contents + rel->r_offset - 2);
2579 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2580 contents + rel->r_offset - 1);
2581 }
2582 else
2583 BFD_FAIL ();
2584 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTIE)
2585 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2586 contents + rel->r_offset);
2587 else
2588 bfd_put_32 (output_bfd, tpoff (info, relocation),
2589 contents + rel->r_offset);
2590 continue;
2591 }
2592 }
2593
2594 if (htab->sgot == NULL)
2595 abort ();
2596
2597 if (h != NULL)
2598 off = h->got.offset;
2599 else
2600 {
2601 if (local_got_offsets == NULL)
2602 abort ();
2603
2604 off = local_got_offsets[r_symndx];
2605 }
2606
2607 if ((off & 1) != 0)
2608 off &= ~1;
2609 else
2610 {
2611 Elf_Internal_Rela outrel;
2612 bfd_byte *loc;
2613 int dr_type, indx;
2614
2615 if (htab->srelgot == NULL)
2616 abort ();
2617
2618 outrel.r_offset = (htab->sgot->output_section->vma
2619 + htab->sgot->output_offset + off);
2620
2621 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2622 if (r_type == R_386_TLS_GD)
2623 dr_type = R_386_TLS_DTPMOD32;
2624 else if (tls_type == GOT_TLS_IE_POS)
2625 dr_type = R_386_TLS_TPOFF;
2626 else
2627 dr_type = R_386_TLS_TPOFF32;
2628 if (dr_type == R_386_TLS_TPOFF && indx == 0)
2629 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
2630 htab->sgot->contents + off);
2631 else if (dr_type == R_386_TLS_TPOFF32 && indx == 0)
2632 bfd_put_32 (output_bfd, dtpoff_base (info) - relocation,
2633 htab->sgot->contents + off);
2634 else
2635 bfd_put_32 (output_bfd, 0,
2636 htab->sgot->contents + off);
2637 outrel.r_info = ELF32_R_INFO (indx, dr_type);
2638 loc = htab->srelgot->contents;
2639 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
2640 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2641
2642 if (r_type == R_386_TLS_GD)
2643 {
2644 if (indx == 0)
2645 {
2646 BFD_ASSERT (! unresolved_reloc);
2647 bfd_put_32 (output_bfd,
2648 relocation - dtpoff_base (info),
2649 htab->sgot->contents + off + 4);
2650 }
2651 else
2652 {
2653 bfd_put_32 (output_bfd, 0,
2654 htab->sgot->contents + off + 4);
2655 outrel.r_info = ELF32_R_INFO (indx,
2656 R_386_TLS_DTPOFF32);
2657 outrel.r_offset += 4;
2658 htab->srelgot->reloc_count++;
2659 loc += sizeof (Elf32_External_Rel);
2660 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2661 }
2662 }
2663 else if (tls_type == GOT_TLS_IE_BOTH)
2664 {
2665 bfd_put_32 (output_bfd,
2666 indx == 0 ? relocation - dtpoff_base (info) : 0,
2667 htab->sgot->contents + off + 4);
2668 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
2669 outrel.r_offset += 4;
2670 htab->srelgot->reloc_count++;
2671 loc += sizeof (Elf32_External_Rel);
2672 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2673 }
2674
2675 if (h != NULL)
2676 h->got.offset |= 1;
2677 else
2678 local_got_offsets[r_symndx] |= 1;
2679 }
2680
2681 if (off >= (bfd_vma) -2)
2682 abort ();
2683 if (r_type == ELF32_R_TYPE (rel->r_info))
2684 {
2685 relocation = htab->sgot->output_offset + off;
2686 if ((r_type == R_386_TLS_IE || r_type == R_386_TLS_GOTIE)
2687 && tls_type == GOT_TLS_IE_BOTH)
2688 relocation += 4;
2689 if (r_type == R_386_TLS_IE)
2690 relocation += htab->sgot->output_section->vma;
2691 unresolved_reloc = FALSE;
2692 }
2693 else
2694 {
2695 unsigned int val, type;
2696 bfd_vma roff;
2697
2698 /* GD->IE transition. */
2699 BFD_ASSERT (rel->r_offset >= 2);
2700 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2701 BFD_ASSERT (type == 0x8d || type == 0x04);
2702 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2703 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2704 == 0xe8);
2705 BFD_ASSERT (rel + 1 < relend);
2706 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2707 roff = rel->r_offset - 3;
2708 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2709 if (type == 0x04)
2710 {
2711 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2712 Change it into:
2713 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
2714 BFD_ASSERT (rel->r_offset >= 3);
2715 BFD_ASSERT (bfd_get_8 (input_bfd,
2716 contents + rel->r_offset - 3)
2717 == 0x8d);
2718 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2719 val >>= 3;
2720 }
2721 else
2722 {
2723 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2724 Change it into:
2725 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
2726 BFD_ASSERT (rel->r_offset + 10 <= input_section->_raw_size);
2727 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2728 BFD_ASSERT (bfd_get_8 (input_bfd,
2729 contents + rel->r_offset + 9)
2730 == 0x90);
2731 roff = rel->r_offset - 2;
2732 }
2733 memcpy (contents + roff,
2734 "\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
2735 contents[roff + 7] = 0x80 | (val & 7);
2736 /* If foo is used only with foo@gotntpoff(%reg) and
2737 foo@indntpoff, but not with foo@gottpoff(%reg), change
2738 subl $foo@gottpoff(%reg), %eax
2739 into:
2740 addl $foo@gotntpoff(%reg), %eax. */
2741 if (r_type == R_386_TLS_GOTIE)
2742 {
2743 contents[roff + 6] = 0x03;
2744 if (tls_type == GOT_TLS_IE_BOTH)
2745 off += 4;
2746 }
2747 bfd_put_32 (output_bfd, htab->sgot->output_offset + off,
2748 contents + roff + 8);
2749 /* Skip R_386_PLT32. */
2750 rel++;
2751 continue;
2752 }
2753 break;
2754
2755 case R_386_TLS_LDM:
2756 if (! info->shared)
2757 {
2758 unsigned int val;
2759
2760 /* LD->LE transition:
2761 Ensure it is:
2762 leal foo(%reg), %eax; call ___tls_get_addr.
2763 We change it into:
2764 movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
2765 BFD_ASSERT (rel->r_offset >= 2);
2766 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2767 == 0x8d);
2768 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2769 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2770 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2771 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2772 == 0xe8);
2773 BFD_ASSERT (rel + 1 < relend);
2774 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2775 memcpy (contents + rel->r_offset - 2,
2776 "\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
2777 /* Skip R_386_PLT32. */
2778 rel++;
2779 continue;
2780 }
2781
2782 if (htab->sgot == NULL)
2783 abort ();
2784
2785 off = htab->tls_ldm_got.offset;
2786 if (off & 1)
2787 off &= ~1;
2788 else
2789 {
2790 Elf_Internal_Rela outrel;
2791 bfd_byte *loc;
2792
2793 if (htab->srelgot == NULL)
2794 abort ();
2795
2796 outrel.r_offset = (htab->sgot->output_section->vma
2797 + htab->sgot->output_offset + off);
2798
2799 bfd_put_32 (output_bfd, 0,
2800 htab->sgot->contents + off);
2801 bfd_put_32 (output_bfd, 0,
2802 htab->sgot->contents + off + 4);
2803 outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
2804 loc = htab->srelgot->contents;
2805 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
2806 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2807 htab->tls_ldm_got.offset |= 1;
2808 }
2809 relocation = htab->sgot->output_offset + off;
2810 unresolved_reloc = FALSE;
2811 break;
2812
2813 case R_386_TLS_LDO_32:
2814 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2815 relocation -= dtpoff_base (info);
2816 else
2817 /* When converting LDO to LE, we must negate. */
2818 relocation = -tpoff (info, relocation);
2819 break;
2820
2821 case R_386_TLS_LE_32:
2822 case R_386_TLS_LE:
2823 if (info->shared)
2824 {
2825 Elf_Internal_Rela outrel;
2826 asection *sreloc;
2827 bfd_byte *loc;
2828 int indx;
2829
2830 outrel.r_offset = rel->r_offset
2831 + input_section->output_section->vma
2832 + input_section->output_offset;
2833 if (h != NULL && h->dynindx != -1)
2834 indx = h->dynindx;
2835 else
2836 indx = 0;
2837 if (r_type == R_386_TLS_LE_32)
2838 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF32);
2839 else
2840 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
2841 sreloc = elf_section_data (input_section)->sreloc;
2842 if (sreloc == NULL)
2843 abort ();
2844 loc = sreloc->contents;
2845 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2846 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2847 if (indx)
2848 continue;
2849 else if (r_type == R_386_TLS_LE_32)
2850 relocation = dtpoff_base (info) - relocation;
2851 else
2852 relocation -= dtpoff_base (info);
2853 }
2854 else if (r_type == R_386_TLS_LE_32)
2855 relocation = tpoff (info, relocation);
2856 else
2857 relocation = -tpoff (info, relocation);
2858 break;
2859
2860 default:
2861 break;
2862 }
2863
2864 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2865 because such sections are not SEC_ALLOC and thus ld.so will
2866 not process them. */
2867 if (unresolved_reloc
2868 && !((input_section->flags & SEC_DEBUGGING) != 0
2869 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2870 {
2871 (*_bfd_error_handler)
2872 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2873 bfd_archive_filename (input_bfd),
2874 bfd_get_section_name (input_bfd, input_section),
2875 (long) rel->r_offset,
2876 h->root.root.string);
2877 return FALSE;
2878 }
2879
2880 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2881 contents, rel->r_offset,
2882 relocation, 0);
2883
2884 if (r != bfd_reloc_ok)
2885 {
2886 const char *name;
2887
2888 if (h != NULL)
2889 name = h->root.root.string;
2890 else
2891 {
2892 name = bfd_elf_string_from_elf_section (input_bfd,
2893 symtab_hdr->sh_link,
2894 sym->st_name);
2895 if (name == NULL)
2896 return FALSE;
2897 if (*name == '\0')
2898 name = bfd_section_name (input_bfd, sec);
2899 }
2900
2901 if (r == bfd_reloc_overflow)
2902 {
2903 if (! ((*info->callbacks->reloc_overflow)
2904 (info, name, howto->name, 0,
2905 input_bfd, input_section, rel->r_offset)))
2906 return FALSE;
2907 }
2908 else
2909 {
2910 (*_bfd_error_handler)
2911 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2912 bfd_archive_filename (input_bfd),
2913 bfd_get_section_name (input_bfd, input_section),
2914 (long) rel->r_offset, name, (int) r);
2915 return FALSE;
2916 }
2917 }
2918 }
2919
2920 return TRUE;
2921 }
2922
2923 /* Finish up dynamic symbol handling. We set the contents of various
2924 dynamic sections here. */
2925
2926 static bfd_boolean
2927 elf_i386_finish_dynamic_symbol (bfd *output_bfd,
2928 struct bfd_link_info *info,
2929 struct elf_link_hash_entry *h,
2930 Elf_Internal_Sym *sym)
2931 {
2932 struct elf_i386_link_hash_table *htab;
2933
2934 htab = elf_i386_hash_table (info);
2935
2936 if (h->plt.offset != (bfd_vma) -1)
2937 {
2938 bfd_vma plt_index;
2939 bfd_vma got_offset;
2940 Elf_Internal_Rela rel;
2941 bfd_byte *loc;
2942
2943 /* This symbol has an entry in the procedure linkage table. Set
2944 it up. */
2945
2946 if (h->dynindx == -1
2947 || htab->splt == NULL
2948 || htab->sgotplt == NULL
2949 || htab->srelplt == NULL)
2950 abort ();
2951
2952 /* Get the index in the procedure linkage table which
2953 corresponds to this symbol. This is the index of this symbol
2954 in all the symbols for which we are making plt entries. The
2955 first entry in the procedure linkage table is reserved. */
2956 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2957
2958 /* Get the offset into the .got table of the entry that
2959 corresponds to this function. Each .got entry is 4 bytes.
2960 The first three are reserved. */
2961 got_offset = (plt_index + 3) * 4;
2962
2963 /* Fill in the entry in the procedure linkage table. */
2964 if (! info->shared)
2965 {
2966 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2967 PLT_ENTRY_SIZE);
2968 bfd_put_32 (output_bfd,
2969 (htab->sgotplt->output_section->vma
2970 + htab->sgotplt->output_offset
2971 + got_offset),
2972 htab->splt->contents + h->plt.offset + 2);
2973 }
2974 else
2975 {
2976 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2977 PLT_ENTRY_SIZE);
2978 bfd_put_32 (output_bfd, got_offset,
2979 htab->splt->contents + h->plt.offset + 2);
2980 }
2981
2982 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2983 htab->splt->contents + h->plt.offset + 7);
2984 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2985 htab->splt->contents + h->plt.offset + 12);
2986
2987 /* Fill in the entry in the global offset table. */
2988 bfd_put_32 (output_bfd,
2989 (htab->splt->output_section->vma
2990 + htab->splt->output_offset
2991 + h->plt.offset
2992 + 6),
2993 htab->sgotplt->contents + got_offset);
2994
2995 /* Fill in the entry in the .rel.plt section. */
2996 rel.r_offset = (htab->sgotplt->output_section->vma
2997 + htab->sgotplt->output_offset
2998 + got_offset);
2999 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
3000 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rel);
3001 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3002
3003 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3004 {
3005 /* Mark the symbol as undefined, rather than as defined in
3006 the .plt section. Leave the value alone. This is a clue
3007 for the dynamic linker, to make function pointer
3008 comparisons work between an application and shared
3009 library. */
3010 sym->st_shndx = SHN_UNDEF;
3011 }
3012 }
3013
3014 if (h->got.offset != (bfd_vma) -1
3015 && elf_i386_hash_entry(h)->tls_type != GOT_TLS_GD
3016 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE) == 0)
3017 {
3018 Elf_Internal_Rela rel;
3019 bfd_byte *loc;
3020
3021 /* This symbol has an entry in the global offset table. Set it
3022 up. */
3023
3024 if (htab->sgot == NULL || htab->srelgot == NULL)
3025 abort ();
3026
3027 rel.r_offset = (htab->sgot->output_section->vma
3028 + htab->sgot->output_offset
3029 + (h->got.offset & ~(bfd_vma) 1));
3030
3031 /* If this is a static link, or it is a -Bsymbolic link and the
3032 symbol is defined locally or was forced to be local because
3033 of a version file, we just want to emit a RELATIVE reloc.
3034 The entry in the global offset table will already have been
3035 initialized in the relocate_section function. */
3036 if (info->shared
3037 && SYMBOL_REFERENCES_LOCAL (info, h))
3038 {
3039 BFD_ASSERT((h->got.offset & 1) != 0);
3040 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
3041 }
3042 else
3043 {
3044 BFD_ASSERT((h->got.offset & 1) == 0);
3045 bfd_put_32 (output_bfd, (bfd_vma) 0,
3046 htab->sgot->contents + h->got.offset);
3047 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
3048 }
3049
3050 loc = htab->srelgot->contents;
3051 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
3052 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3053 }
3054
3055 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3056 {
3057 Elf_Internal_Rela rel;
3058 bfd_byte *loc;
3059
3060 /* This symbol needs a copy reloc. Set it up. */
3061
3062 if (h->dynindx == -1
3063 || (h->root.type != bfd_link_hash_defined
3064 && h->root.type != bfd_link_hash_defweak)
3065 || htab->srelbss == NULL)
3066 abort ();
3067
3068 rel.r_offset = (h->root.u.def.value
3069 + h->root.u.def.section->output_section->vma
3070 + h->root.u.def.section->output_offset);
3071 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
3072 loc = htab->srelbss->contents;
3073 loc += htab->srelbss->reloc_count++ * sizeof (Elf32_External_Rel);
3074 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3075 }
3076
3077 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3078 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3079 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3080 sym->st_shndx = SHN_ABS;
3081
3082 return TRUE;
3083 }
3084
3085 /* Used to decide how to sort relocs in an optimal manner for the
3086 dynamic linker, before writing them out. */
3087
3088 static enum elf_reloc_type_class
3089 elf_i386_reloc_type_class (const Elf_Internal_Rela *rela)
3090 {
3091 switch (ELF32_R_TYPE (rela->r_info))
3092 {
3093 case R_386_RELATIVE:
3094 return reloc_class_relative;
3095 case R_386_JUMP_SLOT:
3096 return reloc_class_plt;
3097 case R_386_COPY:
3098 return reloc_class_copy;
3099 default:
3100 return reloc_class_normal;
3101 }
3102 }
3103
3104 /* Finish up the dynamic sections. */
3105
3106 static bfd_boolean
3107 elf_i386_finish_dynamic_sections (bfd *output_bfd,
3108 struct bfd_link_info *info)
3109 {
3110 struct elf_i386_link_hash_table *htab;
3111 bfd *dynobj;
3112 asection *sdyn;
3113
3114 htab = elf_i386_hash_table (info);
3115 dynobj = htab->elf.dynobj;
3116 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3117
3118 if (htab->elf.dynamic_sections_created)
3119 {
3120 Elf32_External_Dyn *dyncon, *dynconend;
3121
3122 if (sdyn == NULL || htab->sgot == NULL)
3123 abort ();
3124
3125 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3126 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3127 for (; dyncon < dynconend; dyncon++)
3128 {
3129 Elf_Internal_Dyn dyn;
3130 asection *s;
3131
3132 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3133
3134 switch (dyn.d_tag)
3135 {
3136 default:
3137 continue;
3138
3139 case DT_PLTGOT:
3140 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3141 break;
3142
3143 case DT_JMPREL:
3144 s = htab->srelplt;
3145 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3146 break;
3147
3148 case DT_PLTRELSZ:
3149 s = htab->srelplt;
3150 dyn.d_un.d_val = s->_raw_size;
3151 break;
3152
3153 case DT_RELSZ:
3154 /* My reading of the SVR4 ABI indicates that the
3155 procedure linkage table relocs (DT_JMPREL) should be
3156 included in the overall relocs (DT_REL). This is
3157 what Solaris does. However, UnixWare can not handle
3158 that case. Therefore, we override the DT_RELSZ entry
3159 here to make it not include the JMPREL relocs. */
3160 s = htab->srelplt;
3161 if (s == NULL)
3162 continue;
3163 dyn.d_un.d_val -= s->_raw_size;
3164 break;
3165
3166 case DT_REL:
3167 /* We may not be using the standard ELF linker script.
3168 If .rel.plt is the first .rel section, we adjust
3169 DT_REL to not include it. */
3170 s = htab->srelplt;
3171 if (s == NULL)
3172 continue;
3173 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
3174 continue;
3175 dyn.d_un.d_ptr += s->_raw_size;
3176 break;
3177 }
3178
3179 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3180 }
3181
3182 /* Fill in the first entry in the procedure linkage table. */
3183 if (htab->splt && htab->splt->_raw_size > 0)
3184 {
3185 if (info->shared)
3186 memcpy (htab->splt->contents,
3187 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
3188 else
3189 {
3190 memcpy (htab->splt->contents,
3191 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
3192 bfd_put_32 (output_bfd,
3193 (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + 4),
3196 htab->splt->contents + 2);
3197 bfd_put_32 (output_bfd,
3198 (htab->sgotplt->output_section->vma
3199 + htab->sgotplt->output_offset
3200 + 8),
3201 htab->splt->contents + 8);
3202 }
3203
3204 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3205 really seem like the right value. */
3206 elf_section_data (htab->splt->output_section)
3207 ->this_hdr.sh_entsize = 4;
3208 }
3209 }
3210
3211 if (htab->sgotplt)
3212 {
3213 /* Fill in the first three entries in the global offset table. */
3214 if (htab->sgotplt->_raw_size > 0)
3215 {
3216 bfd_put_32 (output_bfd,
3217 (sdyn == NULL ? 0
3218 : sdyn->output_section->vma + sdyn->output_offset),
3219 htab->sgotplt->contents);
3220 bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 4);
3221 bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 8);
3222 }
3223
3224 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
3225 }
3226 return TRUE;
3227 }
3228
3229 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
3230 #define TARGET_LITTLE_NAME "elf32-i386"
3231 #define ELF_ARCH bfd_arch_i386
3232 #define ELF_MACHINE_CODE EM_386
3233 #define ELF_MAXPAGESIZE 0x1000
3234
3235 #define elf_backend_can_gc_sections 1
3236 #define elf_backend_can_refcount 1
3237 #define elf_backend_want_got_plt 1
3238 #define elf_backend_plt_readonly 1
3239 #define elf_backend_want_plt_sym 0
3240 #define elf_backend_got_header_size 12
3241
3242 /* Support RELA for objdump of prelink objects. */
3243 #define elf_info_to_howto elf_i386_info_to_howto_rel
3244 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
3245
3246 #define bfd_elf32_mkobject elf_i386_mkobject
3247 #define elf_backend_object_p elf_i386_object_p
3248
3249 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
3250 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
3251 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
3252
3253 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
3254 #define elf_backend_check_relocs elf_i386_check_relocs
3255 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
3256 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
3257 #define elf_backend_fake_sections elf_i386_fake_sections
3258 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
3259 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
3260 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
3261 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
3262 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
3263 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
3264 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
3265 #define elf_backend_relocate_section elf_i386_relocate_section
3266 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
3267
3268 #include "elf32-target.h"
3269
3270 /* FreeBSD support. */
3271
3272 #undef TARGET_LITTLE_SYM
3273 #define TARGET_LITTLE_SYM bfd_elf32_i386_freebsd_vec
3274 #undef TARGET_LITTLE_NAME
3275 #define TARGET_LITTLE_NAME "elf32-i386-freebsd"
3276
3277 /* The kernel recognizes executables as valid only if they carry a
3278 "FreeBSD" label in the ELF header. So we put this label on all
3279 executables and (for simplicity) also all other object files. */
3280
3281 static void
3282 elf_i386_post_process_headers (bfd *abfd,
3283 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3284 {
3285 Elf_Internal_Ehdr *i_ehdrp;
3286
3287 i_ehdrp = elf_elfheader (abfd);
3288
3289 /* Put an ABI label supported by FreeBSD >= 4.1. */
3290 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
3291 #ifdef OLD_FREEBSD_ABI_LABEL
3292 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
3293 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
3294 #endif
3295 }
3296
3297 #undef elf_backend_post_process_headers
3298 #define elf_backend_post_process_headers elf_i386_post_process_headers
3299 #undef elf32_bed
3300 #define elf32_bed elf32_i386_fbsd_bed
3301
3302 #include "elf32-target.h"
This page took 0.348825 seconds and 4 git commands to generate.