* readelf.c (do_archive_index): New.
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf32-m68hc1x.h"
29 #include "elf/m68hc11.h"
30 #include "opcode/m68hc11.h"
31
32
33 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
34 ((struct elf32_m68hc11_stub_hash_entry *) \
35 bfd_hash_lookup ((table), (string), (create), (copy)))
36
37 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
38 (const char *stub_name,
39 asection *section,
40 struct m68hc11_elf_link_hash_table *htab);
41
42 static struct bfd_hash_entry *stub_hash_newfunc
43 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
44
45 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
46 const char* name, bfd_vma value,
47 asection* sec);
48
49 static bfd_boolean m68hc11_elf_export_one_stub
50 (struct bfd_hash_entry *gen_entry, void *in_arg);
51
52 static void scan_sections_for_abi (bfd*, asection*, PTR);
53
54 struct m68hc11_scan_param
55 {
56 struct m68hc11_page_info* pinfo;
57 bfd_boolean use_memory_banks;
58 };
59
60
61 /* Create a 68HC11/68HC12 ELF linker hash table. */
62
63 struct m68hc11_elf_link_hash_table*
64 m68hc11_elf_hash_table_create (bfd *abfd)
65 {
66 struct m68hc11_elf_link_hash_table *ret;
67 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
68
69 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
70 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
71 return NULL;
72
73 memset (ret, 0, amt);
74 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
75 _bfd_elf_link_hash_newfunc,
76 sizeof (struct elf_link_hash_entry)))
77 {
78 free (ret);
79 return NULL;
80 }
81
82 /* Init the stub hash table too. */
83 amt = sizeof (struct bfd_hash_table);
84 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
85 if (ret->stub_hash_table == NULL)
86 {
87 free (ret);
88 return NULL;
89 }
90 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
91 sizeof (struct elf32_m68hc11_stub_hash_entry)))
92 return NULL;
93
94 ret->stub_bfd = NULL;
95 ret->stub_section = 0;
96 ret->add_stub_section = NULL;
97 ret->sym_sec.abfd = NULL;
98
99 return ret;
100 }
101
102 /* Free the derived linker hash table. */
103
104 void
105 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
106 {
107 struct m68hc11_elf_link_hash_table *ret
108 = (struct m68hc11_elf_link_hash_table *) hash;
109
110 bfd_hash_table_free (ret->stub_hash_table);
111 free (ret->stub_hash_table);
112 _bfd_generic_link_hash_table_free (hash);
113 }
114
115 /* Assorted hash table functions. */
116
117 /* Initialize an entry in the stub hash table. */
118
119 static struct bfd_hash_entry *
120 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
121 const char *string)
122 {
123 /* Allocate the structure if it has not already been allocated by a
124 subclass. */
125 if (entry == NULL)
126 {
127 entry = bfd_hash_allocate (table,
128 sizeof (struct elf32_m68hc11_stub_hash_entry));
129 if (entry == NULL)
130 return entry;
131 }
132
133 /* Call the allocation method of the superclass. */
134 entry = bfd_hash_newfunc (entry, table, string);
135 if (entry != NULL)
136 {
137 struct elf32_m68hc11_stub_hash_entry *eh;
138
139 /* Initialize the local fields. */
140 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
141 eh->stub_sec = NULL;
142 eh->stub_offset = 0;
143 eh->target_value = 0;
144 eh->target_section = NULL;
145 }
146
147 return entry;
148 }
149
150 /* Add a new stub entry to the stub hash. Not all fields of the new
151 stub entry are initialised. */
152
153 static struct elf32_m68hc11_stub_hash_entry *
154 m68hc12_add_stub (const char *stub_name, asection *section,
155 struct m68hc11_elf_link_hash_table *htab)
156 {
157 struct elf32_m68hc11_stub_hash_entry *stub_entry;
158
159 /* Enter this entry into the linker stub hash table. */
160 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
161 TRUE, FALSE);
162 if (stub_entry == NULL)
163 {
164 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
165 section->owner, stub_name);
166 return NULL;
167 }
168
169 if (htab->stub_section == 0)
170 {
171 htab->stub_section = (*htab->add_stub_section) (".tramp",
172 htab->tramp_section);
173 }
174
175 stub_entry->stub_sec = htab->stub_section;
176 stub_entry->stub_offset = 0;
177 return stub_entry;
178 }
179
180 /* Hook called by the linker routine which adds symbols from an object
181 file. We use it for identify far symbols and force a loading of
182 the trampoline handler. */
183
184 bfd_boolean
185 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
186 Elf_Internal_Sym *sym,
187 const char **namep ATTRIBUTE_UNUSED,
188 flagword *flagsp ATTRIBUTE_UNUSED,
189 asection **secp ATTRIBUTE_UNUSED,
190 bfd_vma *valp ATTRIBUTE_UNUSED)
191 {
192 if (sym->st_other & STO_M68HC12_FAR)
193 {
194 struct elf_link_hash_entry *h;
195
196 h = (struct elf_link_hash_entry *)
197 bfd_link_hash_lookup (info->hash, "__far_trampoline",
198 FALSE, FALSE, FALSE);
199 if (h == NULL)
200 {
201 struct bfd_link_hash_entry* entry = NULL;
202
203 _bfd_generic_link_add_one_symbol (info, abfd,
204 "__far_trampoline",
205 BSF_GLOBAL,
206 bfd_und_section_ptr,
207 (bfd_vma) 0, (const char*) NULL,
208 FALSE, FALSE, &entry);
209 }
210
211 }
212 return TRUE;
213 }
214
215 /* External entry points for sizing and building linker stubs. */
216
217 /* Set up various things so that we can make a list of input sections
218 for each output section included in the link. Returns -1 on error,
219 0 when no stubs will be needed, and 1 on success. */
220
221 int
222 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
223 {
224 bfd *input_bfd;
225 unsigned int bfd_count;
226 int top_id, top_index;
227 asection *section;
228 asection **input_list, **list;
229 bfd_size_type amt;
230 asection *text_section;
231 struct m68hc11_elf_link_hash_table *htab;
232
233 htab = m68hc11_elf_hash_table (info);
234
235 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
236 return 0;
237
238 /* Count the number of input BFDs and find the top input section id.
239 Also search for an existing ".tramp" section so that we know
240 where generated trampolines must go. Default to ".text" if we
241 can't find it. */
242 htab->tramp_section = 0;
243 text_section = 0;
244 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
245 input_bfd != NULL;
246 input_bfd = input_bfd->link_next)
247 {
248 bfd_count += 1;
249 for (section = input_bfd->sections;
250 section != NULL;
251 section = section->next)
252 {
253 const char* name = bfd_get_section_name (input_bfd, section);
254
255 if (!strcmp (name, ".tramp"))
256 htab->tramp_section = section;
257
258 if (!strcmp (name, ".text"))
259 text_section = section;
260
261 if (top_id < section->id)
262 top_id = section->id;
263 }
264 }
265 htab->bfd_count = bfd_count;
266 if (htab->tramp_section == 0)
267 htab->tramp_section = text_section;
268
269 /* We can't use output_bfd->section_count here to find the top output
270 section index as some sections may have been removed, and
271 strip_excluded_output_sections doesn't renumber the indices. */
272 for (section = output_bfd->sections, top_index = 0;
273 section != NULL;
274 section = section->next)
275 {
276 if (top_index < section->index)
277 top_index = section->index;
278 }
279
280 htab->top_index = top_index;
281 amt = sizeof (asection *) * (top_index + 1);
282 input_list = (asection **) bfd_malloc (amt);
283 htab->input_list = input_list;
284 if (input_list == NULL)
285 return -1;
286
287 /* For sections we aren't interested in, mark their entries with a
288 value we can check later. */
289 list = input_list + top_index;
290 do
291 *list = bfd_abs_section_ptr;
292 while (list-- != input_list);
293
294 for (section = output_bfd->sections;
295 section != NULL;
296 section = section->next)
297 {
298 if ((section->flags & SEC_CODE) != 0)
299 input_list[section->index] = NULL;
300 }
301
302 return 1;
303 }
304
305 /* Determine and set the size of the stub section for a final link.
306
307 The basic idea here is to examine all the relocations looking for
308 PC-relative calls to a target that is unreachable with a "bl"
309 instruction. */
310
311 bfd_boolean
312 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
313 struct bfd_link_info *info,
314 asection * (*add_stub_section) (const char*, asection*))
315 {
316 bfd *input_bfd;
317 asection *section;
318 Elf_Internal_Sym *local_syms, **all_local_syms;
319 unsigned int bfd_indx, bfd_count;
320 bfd_size_type amt;
321 asection *stub_sec;
322
323 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
324
325 /* Stash our params away. */
326 htab->stub_bfd = stub_bfd;
327 htab->add_stub_section = add_stub_section;
328
329 /* Count the number of input BFDs and find the top input section id. */
330 for (input_bfd = info->input_bfds, bfd_count = 0;
331 input_bfd != NULL;
332 input_bfd = input_bfd->link_next)
333 {
334 bfd_count += 1;
335 }
336
337 /* We want to read in symbol extension records only once. To do this
338 we need to read in the local symbols in parallel and save them for
339 later use; so hold pointers to the local symbols in an array. */
340 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
341 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
342 if (all_local_syms == NULL)
343 return FALSE;
344
345 /* Walk over all the input BFDs, swapping in local symbols. */
346 for (input_bfd = info->input_bfds, bfd_indx = 0;
347 input_bfd != NULL;
348 input_bfd = input_bfd->link_next, bfd_indx++)
349 {
350 Elf_Internal_Shdr *symtab_hdr;
351
352 /* We'll need the symbol table in a second. */
353 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
354 if (symtab_hdr->sh_info == 0)
355 continue;
356
357 /* We need an array of the local symbols attached to the input bfd. */
358 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
359 if (local_syms == NULL)
360 {
361 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
362 symtab_hdr->sh_info, 0,
363 NULL, NULL, NULL);
364 /* Cache them for elf_link_input_bfd. */
365 symtab_hdr->contents = (unsigned char *) local_syms;
366 }
367 if (local_syms == NULL)
368 {
369 free (all_local_syms);
370 return FALSE;
371 }
372
373 all_local_syms[bfd_indx] = local_syms;
374 }
375
376 for (input_bfd = info->input_bfds, bfd_indx = 0;
377 input_bfd != NULL;
378 input_bfd = input_bfd->link_next, bfd_indx++)
379 {
380 Elf_Internal_Shdr *symtab_hdr;
381 Elf_Internal_Sym *local_syms;
382 struct elf_link_hash_entry ** sym_hashes;
383
384 sym_hashes = elf_sym_hashes (input_bfd);
385
386 /* We'll need the symbol table in a second. */
387 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
388 if (symtab_hdr->sh_info == 0)
389 continue;
390
391 local_syms = all_local_syms[bfd_indx];
392
393 /* Walk over each section attached to the input bfd. */
394 for (section = input_bfd->sections;
395 section != NULL;
396 section = section->next)
397 {
398 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
399
400 /* If there aren't any relocs, then there's nothing more
401 to do. */
402 if ((section->flags & SEC_RELOC) == 0
403 || section->reloc_count == 0)
404 continue;
405
406 /* If this section is a link-once section that will be
407 discarded, then don't create any stubs. */
408 if (section->output_section == NULL
409 || section->output_section->owner != output_bfd)
410 continue;
411
412 /* Get the relocs. */
413 internal_relocs
414 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
415 (Elf_Internal_Rela *) NULL,
416 info->keep_memory);
417 if (internal_relocs == NULL)
418 goto error_ret_free_local;
419
420 /* Now examine each relocation. */
421 irela = internal_relocs;
422 irelaend = irela + section->reloc_count;
423 for (; irela < irelaend; irela++)
424 {
425 unsigned int r_type, r_indx;
426 struct elf32_m68hc11_stub_hash_entry *stub_entry;
427 asection *sym_sec;
428 bfd_vma sym_value;
429 struct elf_link_hash_entry *hash;
430 const char *stub_name;
431 Elf_Internal_Sym *sym;
432
433 r_type = ELF32_R_TYPE (irela->r_info);
434
435 /* Only look at 16-bit relocs. */
436 if (r_type != (unsigned int) R_M68HC11_16)
437 continue;
438
439 /* Now determine the call target, its name, value,
440 section. */
441 r_indx = ELF32_R_SYM (irela->r_info);
442 if (r_indx < symtab_hdr->sh_info)
443 {
444 /* It's a local symbol. */
445 Elf_Internal_Shdr *hdr;
446 bfd_boolean is_far;
447
448 sym = local_syms + r_indx;
449 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
450 if (!is_far)
451 continue;
452
453 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
454 sym_sec = hdr->bfd_section;
455 stub_name = (bfd_elf_string_from_elf_section
456 (input_bfd, symtab_hdr->sh_link,
457 sym->st_name));
458 sym_value = sym->st_value;
459 hash = NULL;
460 }
461 else
462 {
463 /* It's an external symbol. */
464 int e_indx;
465
466 e_indx = r_indx - symtab_hdr->sh_info;
467 hash = (struct elf_link_hash_entry *)
468 (sym_hashes[e_indx]);
469
470 while (hash->root.type == bfd_link_hash_indirect
471 || hash->root.type == bfd_link_hash_warning)
472 hash = ((struct elf_link_hash_entry *)
473 hash->root.u.i.link);
474
475 if (hash->root.type == bfd_link_hash_defined
476 || hash->root.type == bfd_link_hash_defweak
477 || hash->root.type == bfd_link_hash_new)
478 {
479 if (!(hash->other & STO_M68HC12_FAR))
480 continue;
481 }
482 else if (hash->root.type == bfd_link_hash_undefweak)
483 {
484 continue;
485 }
486 else if (hash->root.type == bfd_link_hash_undefined)
487 {
488 continue;
489 }
490 else
491 {
492 bfd_set_error (bfd_error_bad_value);
493 goto error_ret_free_internal;
494 }
495 sym_sec = hash->root.u.def.section;
496 sym_value = hash->root.u.def.value;
497 stub_name = hash->root.root.string;
498 }
499
500 if (!stub_name)
501 goto error_ret_free_internal;
502
503 stub_entry = m68hc12_stub_hash_lookup
504 (htab->stub_hash_table,
505 stub_name,
506 FALSE, FALSE);
507 if (stub_entry == NULL)
508 {
509 if (add_stub_section == 0)
510 continue;
511
512 stub_entry = m68hc12_add_stub (stub_name, section, htab);
513 if (stub_entry == NULL)
514 {
515 error_ret_free_internal:
516 if (elf_section_data (section)->relocs == NULL)
517 free (internal_relocs);
518 goto error_ret_free_local;
519 }
520 }
521
522 stub_entry->target_value = sym_value;
523 stub_entry->target_section = sym_sec;
524 }
525
526 /* We're done with the internal relocs, free them. */
527 if (elf_section_data (section)->relocs == NULL)
528 free (internal_relocs);
529 }
530 }
531
532 if (add_stub_section)
533 {
534 /* OK, we've added some stubs. Find out the new size of the
535 stub sections. */
536 for (stub_sec = htab->stub_bfd->sections;
537 stub_sec != NULL;
538 stub_sec = stub_sec->next)
539 {
540 stub_sec->size = 0;
541 }
542
543 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
544 }
545 free (all_local_syms);
546 return TRUE;
547
548 error_ret_free_local:
549 free (all_local_syms);
550 return FALSE;
551 }
552
553 /* Export the trampoline addresses in the symbol table. */
554 static bfd_boolean
555 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
556 {
557 struct bfd_link_info *info;
558 struct m68hc11_elf_link_hash_table *htab;
559 struct elf32_m68hc11_stub_hash_entry *stub_entry;
560 char* name;
561 bfd_boolean result;
562
563 info = (struct bfd_link_info *) in_arg;
564 htab = m68hc11_elf_hash_table (info);
565
566 /* Massage our args to the form they really have. */
567 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
568
569 /* Generate the trampoline according to HC11 or HC12. */
570 result = (* htab->build_one_stub) (gen_entry, in_arg);
571
572 /* Make a printable name that does not conflict with the real function. */
573 name = alloca (strlen (stub_entry->root.string) + 16);
574 sprintf (name, "tramp.%s", stub_entry->root.string);
575
576 /* Export the symbol for debugging/disassembling. */
577 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
578 stub_entry->stub_offset,
579 stub_entry->stub_sec);
580 return result;
581 }
582
583 /* Export a symbol or set its value and section. */
584 static void
585 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
586 const char *name, bfd_vma value, asection *sec)
587 {
588 struct elf_link_hash_entry *h;
589
590 h = (struct elf_link_hash_entry *)
591 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
592 if (h == NULL)
593 {
594 _bfd_generic_link_add_one_symbol (info, abfd,
595 name,
596 BSF_GLOBAL,
597 sec,
598 value,
599 (const char*) NULL,
600 TRUE, FALSE, NULL);
601 }
602 else
603 {
604 h->root.type = bfd_link_hash_defined;
605 h->root.u.def.value = value;
606 h->root.u.def.section = sec;
607 }
608 }
609
610
611 /* Build all the stubs associated with the current output file. The
612 stubs are kept in a hash table attached to the main linker hash
613 table. This function is called via m68hc12elf_finish in the
614 linker. */
615
616 bfd_boolean
617 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
618 {
619 asection *stub_sec;
620 struct bfd_hash_table *table;
621 struct m68hc11_elf_link_hash_table *htab;
622 struct m68hc11_scan_param param;
623
624 m68hc11_elf_get_bank_parameters (info);
625 htab = m68hc11_elf_hash_table (info);
626
627 for (stub_sec = htab->stub_bfd->sections;
628 stub_sec != NULL;
629 stub_sec = stub_sec->next)
630 {
631 bfd_size_type size;
632
633 /* Allocate memory to hold the linker stubs. */
634 size = stub_sec->size;
635 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
636 if (stub_sec->contents == NULL && size != 0)
637 return FALSE;
638 stub_sec->size = 0;
639 }
640
641 /* Build the stubs as directed by the stub hash table. */
642 table = htab->stub_hash_table;
643 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
644
645 /* Scan the output sections to see if we use the memory banks.
646 If so, export the symbols that define how the memory banks
647 are mapped. This is used by gdb and the simulator to obtain
648 the information. It can be used by programs to burn the eprom
649 at the good addresses. */
650 param.use_memory_banks = FALSE;
651 param.pinfo = &htab->pinfo;
652 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
653 if (param.use_memory_banks)
654 {
655 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
656 htab->pinfo.bank_physical,
657 bfd_abs_section_ptr);
658 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
659 htab->pinfo.bank_virtual,
660 bfd_abs_section_ptr);
661 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
662 htab->pinfo.bank_size,
663 bfd_abs_section_ptr);
664 }
665
666 return TRUE;
667 }
668
669 void
670 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
671 {
672 unsigned i;
673 struct m68hc11_page_info *pinfo;
674 struct bfd_link_hash_entry *h;
675
676 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
677 if (pinfo->bank_param_initialized)
678 return;
679
680 pinfo->bank_virtual = M68HC12_BANK_VIRT;
681 pinfo->bank_mask = M68HC12_BANK_MASK;
682 pinfo->bank_physical = M68HC12_BANK_BASE;
683 pinfo->bank_shift = M68HC12_BANK_SHIFT;
684 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
685
686 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
687 FALSE, FALSE, TRUE);
688 if (h != (struct bfd_link_hash_entry*) NULL
689 && h->type == bfd_link_hash_defined)
690 pinfo->bank_physical = (h->u.def.value
691 + h->u.def.section->output_section->vma
692 + h->u.def.section->output_offset);
693
694 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
695 FALSE, FALSE, TRUE);
696 if (h != (struct bfd_link_hash_entry*) NULL
697 && h->type == bfd_link_hash_defined)
698 pinfo->bank_virtual = (h->u.def.value
699 + h->u.def.section->output_section->vma
700 + h->u.def.section->output_offset);
701
702 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
703 FALSE, FALSE, TRUE);
704 if (h != (struct bfd_link_hash_entry*) NULL
705 && h->type == bfd_link_hash_defined)
706 pinfo->bank_size = (h->u.def.value
707 + h->u.def.section->output_section->vma
708 + h->u.def.section->output_offset);
709
710 pinfo->bank_shift = 0;
711 for (i = pinfo->bank_size; i != 0; i >>= 1)
712 pinfo->bank_shift++;
713 pinfo->bank_shift--;
714 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
715 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
716 pinfo->bank_param_initialized = 1;
717
718 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
719 FALSE, TRUE);
720 if (h != (struct bfd_link_hash_entry*) NULL
721 && h->type == bfd_link_hash_defined)
722 pinfo->trampoline_addr = (h->u.def.value
723 + h->u.def.section->output_section->vma
724 + h->u.def.section->output_offset);
725 }
726
727 /* Return 1 if the address is in banked memory.
728 This can be applied to a virtual address and to a physical address. */
729 int
730 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
731 {
732 if (addr >= pinfo->bank_virtual)
733 return 1;
734
735 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return the physical address seen by the processor, taking
742 into account banked memory. */
743 bfd_vma
744 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
745 {
746 if (addr < pinfo->bank_virtual)
747 return addr;
748
749 /* Map the address to the memory bank. */
750 addr -= pinfo->bank_virtual;
751 addr &= pinfo->bank_mask;
752 addr += pinfo->bank_physical;
753 return addr;
754 }
755
756 /* Return the page number corresponding to an address in banked memory. */
757 bfd_vma
758 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
759 {
760 if (addr < pinfo->bank_virtual)
761 return 0;
762
763 /* Map the address to the memory bank. */
764 addr -= pinfo->bank_virtual;
765 addr >>= pinfo->bank_shift;
766 addr &= 0x0ff;
767 return addr;
768 }
769
770 /* This function is used for relocs which are only used for relaxing,
771 which the linker should otherwise ignore. */
772
773 bfd_reloc_status_type
774 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
775 arelent *reloc_entry,
776 asymbol *symbol ATTRIBUTE_UNUSED,
777 void *data ATTRIBUTE_UNUSED,
778 asection *input_section,
779 bfd *output_bfd,
780 char **error_message ATTRIBUTE_UNUSED)
781 {
782 if (output_bfd != NULL)
783 reloc_entry->address += input_section->output_offset;
784 return bfd_reloc_ok;
785 }
786
787 bfd_reloc_status_type
788 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
789 arelent *reloc_entry,
790 asymbol *symbol,
791 void *data ATTRIBUTE_UNUSED,
792 asection *input_section,
793 bfd *output_bfd,
794 char **error_message ATTRIBUTE_UNUSED)
795 {
796 if (output_bfd != (bfd *) NULL
797 && (symbol->flags & BSF_SECTION_SYM) == 0
798 && (! reloc_entry->howto->partial_inplace
799 || reloc_entry->addend == 0))
800 {
801 reloc_entry->address += input_section->output_offset;
802 return bfd_reloc_ok;
803 }
804
805 if (output_bfd != NULL)
806 return bfd_reloc_continue;
807
808 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
809 return bfd_reloc_outofrange;
810
811 abort();
812 }
813
814 /* Look through the relocs for a section during the first phase.
815 Since we don't do .gots or .plts, we just need to consider the
816 virtual table relocs for gc. */
817
818 bfd_boolean
819 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
820 asection *sec, const Elf_Internal_Rela *relocs)
821 {
822 Elf_Internal_Shdr * symtab_hdr;
823 struct elf_link_hash_entry ** sym_hashes;
824 struct elf_link_hash_entry ** sym_hashes_end;
825 const Elf_Internal_Rela * rel;
826 const Elf_Internal_Rela * rel_end;
827
828 if (info->relocatable)
829 return TRUE;
830
831 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
832 sym_hashes = elf_sym_hashes (abfd);
833 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
834 if (!elf_bad_symtab (abfd))
835 sym_hashes_end -= symtab_hdr->sh_info;
836
837 rel_end = relocs + sec->reloc_count;
838
839 for (rel = relocs; rel < rel_end; rel++)
840 {
841 struct elf_link_hash_entry * h;
842 unsigned long r_symndx;
843
844 r_symndx = ELF32_R_SYM (rel->r_info);
845
846 if (r_symndx < symtab_hdr->sh_info)
847 h = NULL;
848 else
849 {
850 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
851 while (h->root.type == bfd_link_hash_indirect
852 || h->root.type == bfd_link_hash_warning)
853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
854 }
855
856 switch (ELF32_R_TYPE (rel->r_info))
857 {
858 /* This relocation describes the C++ object vtable hierarchy.
859 Reconstruct it for later use during GC. */
860 case R_M68HC11_GNU_VTINHERIT:
861 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
862 return FALSE;
863 break;
864
865 /* This relocation describes which C++ vtable entries are actually
866 used. Record for later use during GC. */
867 case R_M68HC11_GNU_VTENTRY:
868 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
869 return FALSE;
870 break;
871 }
872 }
873
874 return TRUE;
875 }
876
877 /* Relocate a 68hc11/68hc12 ELF section. */
878 bfd_boolean
879 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
880 struct bfd_link_info *info,
881 bfd *input_bfd, asection *input_section,
882 bfd_byte *contents, Elf_Internal_Rela *relocs,
883 Elf_Internal_Sym *local_syms,
884 asection **local_sections)
885 {
886 Elf_Internal_Shdr *symtab_hdr;
887 struct elf_link_hash_entry **sym_hashes;
888 Elf_Internal_Rela *rel, *relend;
889 const char *name = NULL;
890 struct m68hc11_page_info *pinfo;
891 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
892
893 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
894 sym_hashes = elf_sym_hashes (input_bfd);
895
896 /* Get memory bank parameters. */
897 m68hc11_elf_get_bank_parameters (info);
898 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
899
900 rel = relocs;
901 relend = relocs + input_section->reloc_count;
902 for (; rel < relend; rel++)
903 {
904 int r_type;
905 arelent arel;
906 reloc_howto_type *howto;
907 unsigned long r_symndx;
908 Elf_Internal_Sym *sym;
909 asection *sec;
910 bfd_vma relocation = 0;
911 bfd_reloc_status_type r = bfd_reloc_undefined;
912 bfd_vma phys_page;
913 bfd_vma phys_addr;
914 bfd_vma insn_addr;
915 bfd_vma insn_page;
916 bfd_boolean is_far = FALSE;
917 struct elf_link_hash_entry *h;
918 const char* stub_name = 0;
919
920 r_symndx = ELF32_R_SYM (rel->r_info);
921 r_type = ELF32_R_TYPE (rel->r_info);
922
923 if (r_type == R_M68HC11_GNU_VTENTRY
924 || r_type == R_M68HC11_GNU_VTINHERIT )
925 continue;
926
927 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
928 howto = arel.howto;
929
930 h = NULL;
931 sym = NULL;
932 sec = NULL;
933 if (r_symndx < symtab_hdr->sh_info)
934 {
935 sym = local_syms + r_symndx;
936 sec = local_sections[r_symndx];
937 relocation = (sec->output_section->vma
938 + sec->output_offset
939 + sym->st_value);
940 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
941 if (is_far)
942 stub_name = (bfd_elf_string_from_elf_section
943 (input_bfd, symtab_hdr->sh_link,
944 sym->st_name));
945 }
946 else
947 {
948 bfd_boolean unresolved_reloc, warned;
949
950 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
951 r_symndx, symtab_hdr, sym_hashes,
952 h, sec, relocation, unresolved_reloc,
953 warned);
954
955 is_far = (h && (h->other & STO_M68HC12_FAR));
956 stub_name = h->root.root.string;
957 }
958
959 if (sec != NULL && elf_discarded_section (sec))
960 {
961 /* For relocs against symbols from removed linkonce sections,
962 or sections discarded by a linker script, we just want the
963 section contents zeroed. Avoid any special processing. */
964 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
965 rel->r_info = 0;
966 rel->r_addend = 0;
967 continue;
968 }
969
970 if (info->relocatable)
971 {
972 /* This is a relocatable link. We don't have to change
973 anything, unless the reloc is against a section symbol,
974 in which case we have to adjust according to where the
975 section symbol winds up in the output section. */
976 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
977 rel->r_addend += sec->output_offset;
978 continue;
979 }
980
981 if (h != NULL)
982 name = h->root.root.string;
983 else
984 {
985 name = (bfd_elf_string_from_elf_section
986 (input_bfd, symtab_hdr->sh_link, sym->st_name));
987 if (name == NULL || *name == '\0')
988 name = bfd_section_name (input_bfd, sec);
989 }
990
991 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
992 {
993 struct elf32_m68hc11_stub_hash_entry* stub;
994 struct m68hc11_elf_link_hash_table *htab;
995
996 htab = m68hc11_elf_hash_table (info);
997 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
998 name, FALSE, FALSE);
999 if (stub)
1000 {
1001 relocation = stub->stub_offset
1002 + stub->stub_sec->output_section->vma
1003 + stub->stub_sec->output_offset;
1004 is_far = FALSE;
1005 }
1006 }
1007
1008 /* Do the memory bank mapping. */
1009 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1010 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1011 switch (r_type)
1012 {
1013 case R_M68HC11_24:
1014 /* Reloc used by 68HC12 call instruction. */
1015 bfd_put_16 (input_bfd, phys_addr,
1016 (bfd_byte*) contents + rel->r_offset);
1017 bfd_put_8 (input_bfd, phys_page,
1018 (bfd_byte*) contents + rel->r_offset + 2);
1019 r = bfd_reloc_ok;
1020 r_type = R_M68HC11_NONE;
1021 break;
1022
1023 case R_M68HC11_NONE:
1024 r = bfd_reloc_ok;
1025 break;
1026
1027 case R_M68HC11_LO16:
1028 /* Reloc generated by %addr(expr) gas to obtain the
1029 address as mapped in the memory bank window. */
1030 relocation = phys_addr;
1031 break;
1032
1033 case R_M68HC11_PAGE:
1034 /* Reloc generated by %page(expr) gas to obtain the
1035 page number associated with the address. */
1036 relocation = phys_page;
1037 break;
1038
1039 case R_M68HC11_16:
1040 /* Get virtual address of instruction having the relocation. */
1041 if (is_far)
1042 {
1043 const char* msg;
1044 char* buf;
1045 msg = _("Reference to the far symbol `%s' using a wrong "
1046 "relocation may result in incorrect execution");
1047 buf = alloca (strlen (msg) + strlen (name) + 10);
1048 sprintf (buf, msg, name);
1049
1050 (* info->callbacks->warning)
1051 (info, buf, name, input_bfd, NULL, rel->r_offset);
1052 }
1053
1054 /* Get virtual address of instruction having the relocation. */
1055 insn_addr = input_section->output_section->vma
1056 + input_section->output_offset
1057 + rel->r_offset;
1058
1059 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1060
1061 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1062 && m68hc11_addr_is_banked (pinfo, insn_addr)
1063 && phys_page != insn_page)
1064 {
1065 const char* msg;
1066 char* buf;
1067
1068 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1069 "as current banked address [%lx:%04lx] (%lx)");
1070
1071 buf = alloca (strlen (msg) + 128);
1072 sprintf (buf, msg, phys_page, phys_addr,
1073 (long) (relocation + rel->r_addend),
1074 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1075 (long) (insn_addr));
1076 if (!((*info->callbacks->warning)
1077 (info, buf, name, input_bfd, input_section,
1078 rel->r_offset)))
1079 return FALSE;
1080 break;
1081 }
1082 if (phys_page != 0 && insn_page == 0)
1083 {
1084 const char* msg;
1085 char* buf;
1086
1087 msg = _("reference to a banked address [%lx:%04lx] in the "
1088 "normal address space at %04lx");
1089
1090 buf = alloca (strlen (msg) + 128);
1091 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1092 if (!((*info->callbacks->warning)
1093 (info, buf, name, input_bfd, input_section,
1094 insn_addr)))
1095 return FALSE;
1096
1097 relocation = phys_addr;
1098 break;
1099 }
1100
1101 /* If this is a banked address use the phys_addr so that
1102 we stay in the banked window. */
1103 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1104 relocation = phys_addr;
1105 break;
1106 }
1107 if (r_type != R_M68HC11_NONE)
1108 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1109 contents, rel->r_offset,
1110 relocation, rel->r_addend);
1111
1112 if (r != bfd_reloc_ok)
1113 {
1114 const char * msg = (const char *) 0;
1115
1116 switch (r)
1117 {
1118 case bfd_reloc_overflow:
1119 if (!((*info->callbacks->reloc_overflow)
1120 (info, NULL, name, howto->name, (bfd_vma) 0,
1121 input_bfd, input_section, rel->r_offset)))
1122 return FALSE;
1123 break;
1124
1125 case bfd_reloc_undefined:
1126 if (!((*info->callbacks->undefined_symbol)
1127 (info, name, input_bfd, input_section,
1128 rel->r_offset, TRUE)))
1129 return FALSE;
1130 break;
1131
1132 case bfd_reloc_outofrange:
1133 msg = _ ("internal error: out of range error");
1134 goto common_error;
1135
1136 case bfd_reloc_notsupported:
1137 msg = _ ("internal error: unsupported relocation error");
1138 goto common_error;
1139
1140 case bfd_reloc_dangerous:
1141 msg = _ ("internal error: dangerous error");
1142 goto common_error;
1143
1144 default:
1145 msg = _ ("internal error: unknown error");
1146 /* fall through */
1147
1148 common_error:
1149 if (!((*info->callbacks->warning)
1150 (info, msg, name, input_bfd, input_section,
1151 rel->r_offset)))
1152 return FALSE;
1153 break;
1154 }
1155 }
1156 }
1157
1158 return TRUE;
1159 }
1160
1161
1162 \f
1163 /* Set and control ELF flags in ELF header. */
1164
1165 bfd_boolean
1166 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1167 {
1168 BFD_ASSERT (!elf_flags_init (abfd)
1169 || elf_elfheader (abfd)->e_flags == flags);
1170
1171 elf_elfheader (abfd)->e_flags = flags;
1172 elf_flags_init (abfd) = TRUE;
1173 return TRUE;
1174 }
1175
1176 /* Merge backend specific data from an object file to the output
1177 object file when linking. */
1178
1179 bfd_boolean
1180 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1181 {
1182 flagword old_flags;
1183 flagword new_flags;
1184 bfd_boolean ok = TRUE;
1185
1186 /* Check if we have the same endianess */
1187 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1188 return FALSE;
1189
1190 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1191 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1192 return TRUE;
1193
1194 new_flags = elf_elfheader (ibfd)->e_flags;
1195 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1196 old_flags = elf_elfheader (obfd)->e_flags;
1197
1198 if (! elf_flags_init (obfd))
1199 {
1200 elf_flags_init (obfd) = TRUE;
1201 elf_elfheader (obfd)->e_flags = new_flags;
1202 elf_elfheader (obfd)->e_ident[EI_CLASS]
1203 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1204
1205 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1206 && bfd_get_arch_info (obfd)->the_default)
1207 {
1208 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1209 bfd_get_mach (ibfd)))
1210 return FALSE;
1211 }
1212
1213 return TRUE;
1214 }
1215
1216 /* Check ABI compatibility. */
1217 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1218 {
1219 (*_bfd_error_handler)
1220 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1221 "and others for 32-bit integers"), ibfd);
1222 ok = FALSE;
1223 }
1224 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1225 {
1226 (*_bfd_error_handler)
1227 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1228 "and others for 64-bit double"), ibfd);
1229 ok = FALSE;
1230 }
1231
1232 /* Processor compatibility. */
1233 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1234 {
1235 (*_bfd_error_handler)
1236 (_("%B: linking files compiled for HCS12 with "
1237 "others compiled for HC12"), ibfd);
1238 ok = FALSE;
1239 }
1240 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1241 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1242
1243 elf_elfheader (obfd)->e_flags = new_flags;
1244
1245 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1246 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1247
1248 /* Warn about any other mismatches */
1249 if (new_flags != old_flags)
1250 {
1251 (*_bfd_error_handler)
1252 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1253 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1254 ok = FALSE;
1255 }
1256
1257 if (! ok)
1258 {
1259 bfd_set_error (bfd_error_bad_value);
1260 return FALSE;
1261 }
1262
1263 return TRUE;
1264 }
1265
1266 bfd_boolean
1267 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1268 {
1269 FILE *file = (FILE *) ptr;
1270
1271 BFD_ASSERT (abfd != NULL && ptr != NULL);
1272
1273 /* Print normal ELF private data. */
1274 _bfd_elf_print_private_bfd_data (abfd, ptr);
1275
1276 /* xgettext:c-format */
1277 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1278
1279 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1280 fprintf (file, _("[abi=32-bit int, "));
1281 else
1282 fprintf (file, _("[abi=16-bit int, "));
1283
1284 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1285 fprintf (file, _("64-bit double, "));
1286 else
1287 fprintf (file, _("32-bit double, "));
1288
1289 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1290 fprintf (file, _("cpu=HC11]"));
1291 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1292 fprintf (file, _("cpu=HCS12]"));
1293 else
1294 fprintf (file, _("cpu=HC12]"));
1295
1296 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1297 fprintf (file, _(" [memory=bank-model]"));
1298 else
1299 fprintf (file, _(" [memory=flat]"));
1300
1301 fputc ('\n', file);
1302
1303 return TRUE;
1304 }
1305
1306 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1307 asection *asect, void *arg)
1308 {
1309 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1310
1311 if (asect->vma >= p->pinfo->bank_virtual)
1312 p->use_memory_banks = TRUE;
1313 }
1314
1315 /* Tweak the OSABI field of the elf header. */
1316
1317 void
1318 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1319 {
1320 struct m68hc11_scan_param param;
1321
1322 if (link_info == 0)
1323 return;
1324
1325 m68hc11_elf_get_bank_parameters (link_info);
1326
1327 param.use_memory_banks = FALSE;
1328 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1329 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1330 if (param.use_memory_banks)
1331 {
1332 Elf_Internal_Ehdr * i_ehdrp;
1333
1334 i_ehdrp = elf_elfheader (abfd);
1335 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1336 }
1337 }
1338
This page took 0.057515 seconds and 4 git commands to generate.