98c2994462168fe182338a3abc06180cc32a42fb
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "alloca-conf.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf32-m68hc1x.h"
30 #include "elf/m68hc11.h"
31 #include "opcode/m68hc11.h"
32
33
34 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
35 ((struct elf32_m68hc11_stub_hash_entry *) \
36 bfd_hash_lookup ((table), (string), (create), (copy)))
37
38 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
39 (const char *stub_name,
40 asection *section,
41 struct m68hc11_elf_link_hash_table *htab);
42
43 static struct bfd_hash_entry *stub_hash_newfunc
44 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
45
46 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
47 const char* name, bfd_vma value,
48 asection* sec);
49
50 static bfd_boolean m68hc11_elf_export_one_stub
51 (struct bfd_hash_entry *gen_entry, void *in_arg);
52
53 static void scan_sections_for_abi (bfd*, asection*, void *);
54
55 struct m68hc11_scan_param
56 {
57 struct m68hc11_page_info* pinfo;
58 bfd_boolean use_memory_banks;
59 };
60
61
62 /* Create a 68HC11/68HC12 ELF linker hash table. */
63
64 struct m68hc11_elf_link_hash_table*
65 m68hc11_elf_hash_table_create (bfd *abfd)
66 {
67 struct m68hc11_elf_link_hash_table *ret;
68 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
69
70 ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
71 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
72 return NULL;
73
74 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
75 _bfd_elf_link_hash_newfunc,
76 sizeof (struct elf_link_hash_entry),
77 M68HC11_ELF_DATA))
78 {
79 free (ret);
80 return NULL;
81 }
82
83 /* Init the stub hash table too. */
84 amt = sizeof (struct bfd_hash_table);
85 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
86 if (ret->stub_hash_table == NULL)
87 {
88 free (ret);
89 return NULL;
90 }
91 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
92 sizeof (struct elf32_m68hc11_stub_hash_entry)))
93 return NULL;
94
95 return ret;
96 }
97
98 /* Free the derived linker hash table. */
99
100 void
101 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
102 {
103 struct m68hc11_elf_link_hash_table *ret
104 = (struct m68hc11_elf_link_hash_table *) hash;
105
106 bfd_hash_table_free (ret->stub_hash_table);
107 free (ret->stub_hash_table);
108 _bfd_elf_link_hash_table_free (hash);
109 }
110
111 /* Assorted hash table functions. */
112
113 /* Initialize an entry in the stub hash table. */
114
115 static struct bfd_hash_entry *
116 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
117 const char *string)
118 {
119 /* Allocate the structure if it has not already been allocated by a
120 subclass. */
121 if (entry == NULL)
122 {
123 entry = bfd_hash_allocate (table,
124 sizeof (struct elf32_m68hc11_stub_hash_entry));
125 if (entry == NULL)
126 return entry;
127 }
128
129 /* Call the allocation method of the superclass. */
130 entry = bfd_hash_newfunc (entry, table, string);
131 if (entry != NULL)
132 {
133 struct elf32_m68hc11_stub_hash_entry *eh;
134
135 /* Initialize the local fields. */
136 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
137 eh->stub_sec = NULL;
138 eh->stub_offset = 0;
139 eh->target_value = 0;
140 eh->target_section = NULL;
141 }
142
143 return entry;
144 }
145
146 /* Add a new stub entry to the stub hash. Not all fields of the new
147 stub entry are initialised. */
148
149 static struct elf32_m68hc11_stub_hash_entry *
150 m68hc12_add_stub (const char *stub_name, asection *section,
151 struct m68hc11_elf_link_hash_table *htab)
152 {
153 struct elf32_m68hc11_stub_hash_entry *stub_entry;
154
155 /* Enter this entry into the linker stub hash table. */
156 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
157 TRUE, FALSE);
158 if (stub_entry == NULL)
159 {
160 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
161 section->owner, stub_name);
162 return NULL;
163 }
164
165 if (htab->stub_section == 0)
166 {
167 htab->stub_section = (*htab->add_stub_section) (".tramp",
168 htab->tramp_section);
169 }
170
171 stub_entry->stub_sec = htab->stub_section;
172 stub_entry->stub_offset = 0;
173 return stub_entry;
174 }
175
176 /* Hook called by the linker routine which adds symbols from an object
177 file. We use it for identify far symbols and force a loading of
178 the trampoline handler. */
179
180 bfd_boolean
181 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
182 Elf_Internal_Sym *sym,
183 const char **namep ATTRIBUTE_UNUSED,
184 flagword *flagsp ATTRIBUTE_UNUSED,
185 asection **secp ATTRIBUTE_UNUSED,
186 bfd_vma *valp ATTRIBUTE_UNUSED)
187 {
188 if (sym->st_other & STO_M68HC12_FAR)
189 {
190 struct elf_link_hash_entry *h;
191
192 h = (struct elf_link_hash_entry *)
193 bfd_link_hash_lookup (info->hash, "__far_trampoline",
194 FALSE, FALSE, FALSE);
195 if (h == NULL)
196 {
197 struct bfd_link_hash_entry* entry = NULL;
198
199 _bfd_generic_link_add_one_symbol (info, abfd,
200 "__far_trampoline",
201 BSF_GLOBAL,
202 bfd_und_section_ptr,
203 (bfd_vma) 0, (const char*) NULL,
204 FALSE, FALSE, &entry);
205 }
206
207 }
208 return TRUE;
209 }
210
211 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
212 STO_M68HC12_INTERRUPT. */
213
214 void
215 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
216 const Elf_Internal_Sym *isym,
217 bfd_boolean definition,
218 bfd_boolean dynamic ATTRIBUTE_UNUSED)
219 {
220 if (definition)
221 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
222 | ELF_ST_VISIBILITY (h->other));
223 }
224
225 /* External entry points for sizing and building linker stubs. */
226
227 /* Set up various things so that we can make a list of input sections
228 for each output section included in the link. Returns -1 on error,
229 0 when no stubs will be needed, and 1 on success. */
230
231 int
232 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
233 {
234 bfd *input_bfd;
235 unsigned int bfd_count;
236 int top_id, top_index;
237 asection *section;
238 asection **input_list, **list;
239 bfd_size_type amt;
240 asection *text_section;
241 struct m68hc11_elf_link_hash_table *htab;
242
243 htab = m68hc11_elf_hash_table (info);
244 if (htab == NULL)
245 return -1;
246
247 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
248 return 0;
249
250 /* Count the number of input BFDs and find the top input section id.
251 Also search for an existing ".tramp" section so that we know
252 where generated trampolines must go. Default to ".text" if we
253 can't find it. */
254 htab->tramp_section = 0;
255 text_section = 0;
256 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
257 input_bfd != NULL;
258 input_bfd = input_bfd->link_next)
259 {
260 bfd_count += 1;
261 for (section = input_bfd->sections;
262 section != NULL;
263 section = section->next)
264 {
265 const char* name = bfd_get_section_name (input_bfd, section);
266
267 if (!strcmp (name, ".tramp"))
268 htab->tramp_section = section;
269
270 if (!strcmp (name, ".text"))
271 text_section = section;
272
273 if (top_id < section->id)
274 top_id = section->id;
275 }
276 }
277 htab->bfd_count = bfd_count;
278 if (htab->tramp_section == 0)
279 htab->tramp_section = text_section;
280
281 /* We can't use output_bfd->section_count here to find the top output
282 section index as some sections may have been removed, and
283 strip_excluded_output_sections doesn't renumber the indices. */
284 for (section = output_bfd->sections, top_index = 0;
285 section != NULL;
286 section = section->next)
287 {
288 if (top_index < section->index)
289 top_index = section->index;
290 }
291
292 htab->top_index = top_index;
293 amt = sizeof (asection *) * (top_index + 1);
294 input_list = (asection **) bfd_malloc (amt);
295 htab->input_list = input_list;
296 if (input_list == NULL)
297 return -1;
298
299 /* For sections we aren't interested in, mark their entries with a
300 value we can check later. */
301 list = input_list + top_index;
302 do
303 *list = bfd_abs_section_ptr;
304 while (list-- != input_list);
305
306 for (section = output_bfd->sections;
307 section != NULL;
308 section = section->next)
309 {
310 if ((section->flags & SEC_CODE) != 0)
311 input_list[section->index] = NULL;
312 }
313
314 return 1;
315 }
316
317 /* Determine and set the size of the stub section for a final link.
318
319 The basic idea here is to examine all the relocations looking for
320 PC-relative calls to a target that is unreachable with a "bl"
321 instruction. */
322
323 bfd_boolean
324 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
325 struct bfd_link_info *info,
326 asection * (*add_stub_section) (const char*, asection*))
327 {
328 bfd *input_bfd;
329 asection *section;
330 Elf_Internal_Sym *local_syms, **all_local_syms;
331 unsigned int bfd_indx, bfd_count;
332 bfd_size_type amt;
333 asection *stub_sec;
334 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
335
336 if (htab == NULL)
337 return FALSE;
338
339 /* Stash our params away. */
340 htab->stub_bfd = stub_bfd;
341 htab->add_stub_section = add_stub_section;
342
343 /* Count the number of input BFDs and find the top input section id. */
344 for (input_bfd = info->input_bfds, bfd_count = 0;
345 input_bfd != NULL;
346 input_bfd = input_bfd->link_next)
347 bfd_count += 1;
348
349 /* We want to read in symbol extension records only once. To do this
350 we need to read in the local symbols in parallel and save them for
351 later use; so hold pointers to the local symbols in an array. */
352 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
353 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
354 if (all_local_syms == NULL)
355 return FALSE;
356
357 /* Walk over all the input BFDs, swapping in local symbols. */
358 for (input_bfd = info->input_bfds, bfd_indx = 0;
359 input_bfd != NULL;
360 input_bfd = input_bfd->link_next, bfd_indx++)
361 {
362 Elf_Internal_Shdr *symtab_hdr;
363
364 /* We'll need the symbol table in a second. */
365 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
366 if (symtab_hdr->sh_info == 0)
367 continue;
368
369 /* We need an array of the local symbols attached to the input bfd. */
370 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
371 if (local_syms == NULL)
372 {
373 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
374 symtab_hdr->sh_info, 0,
375 NULL, NULL, NULL);
376 /* Cache them for elf_link_input_bfd. */
377 symtab_hdr->contents = (unsigned char *) local_syms;
378 }
379 if (local_syms == NULL)
380 {
381 free (all_local_syms);
382 return FALSE;
383 }
384
385 all_local_syms[bfd_indx] = local_syms;
386 }
387
388 for (input_bfd = info->input_bfds, bfd_indx = 0;
389 input_bfd != NULL;
390 input_bfd = input_bfd->link_next, bfd_indx++)
391 {
392 Elf_Internal_Shdr *symtab_hdr;
393 struct elf_link_hash_entry ** sym_hashes;
394
395 sym_hashes = elf_sym_hashes (input_bfd);
396
397 /* We'll need the symbol table in a second. */
398 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
399 if (symtab_hdr->sh_info == 0)
400 continue;
401
402 local_syms = all_local_syms[bfd_indx];
403
404 /* Walk over each section attached to the input bfd. */
405 for (section = input_bfd->sections;
406 section != NULL;
407 section = section->next)
408 {
409 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
410
411 /* If there aren't any relocs, then there's nothing more
412 to do. */
413 if ((section->flags & SEC_RELOC) == 0
414 || section->reloc_count == 0)
415 continue;
416
417 /* If this section is a link-once section that will be
418 discarded, then don't create any stubs. */
419 if (section->output_section == NULL
420 || section->output_section->owner != output_bfd)
421 continue;
422
423 /* Get the relocs. */
424 internal_relocs
425 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
426 (Elf_Internal_Rela *) NULL,
427 info->keep_memory);
428 if (internal_relocs == NULL)
429 goto error_ret_free_local;
430
431 /* Now examine each relocation. */
432 irela = internal_relocs;
433 irelaend = irela + section->reloc_count;
434 for (; irela < irelaend; irela++)
435 {
436 unsigned int r_type, r_indx;
437 struct elf32_m68hc11_stub_hash_entry *stub_entry;
438 asection *sym_sec;
439 bfd_vma sym_value;
440 struct elf_link_hash_entry *hash;
441 const char *stub_name;
442 Elf_Internal_Sym *sym;
443
444 r_type = ELF32_R_TYPE (irela->r_info);
445
446 /* Only look at 16-bit relocs. */
447 if (r_type != (unsigned int) R_M68HC11_16)
448 continue;
449
450 /* Now determine the call target, its name, value,
451 section. */
452 r_indx = ELF32_R_SYM (irela->r_info);
453 if (r_indx < symtab_hdr->sh_info)
454 {
455 /* It's a local symbol. */
456 Elf_Internal_Shdr *hdr;
457 bfd_boolean is_far;
458
459 sym = local_syms + r_indx;
460 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
461 if (!is_far)
462 continue;
463
464 if (sym->st_shndx >= elf_numsections (input_bfd))
465 sym_sec = NULL;
466 else
467 {
468 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
469 sym_sec = hdr->bfd_section;
470 }
471 stub_name = (bfd_elf_string_from_elf_section
472 (input_bfd, symtab_hdr->sh_link,
473 sym->st_name));
474 sym_value = sym->st_value;
475 hash = NULL;
476 }
477 else
478 {
479 /* It's an external symbol. */
480 int e_indx;
481
482 e_indx = r_indx - symtab_hdr->sh_info;
483 hash = (struct elf_link_hash_entry *)
484 (sym_hashes[e_indx]);
485
486 while (hash->root.type == bfd_link_hash_indirect
487 || hash->root.type == bfd_link_hash_warning)
488 hash = ((struct elf_link_hash_entry *)
489 hash->root.u.i.link);
490
491 if (hash->root.type == bfd_link_hash_defined
492 || hash->root.type == bfd_link_hash_defweak
493 || hash->root.type == bfd_link_hash_new)
494 {
495 if (!(hash->other & STO_M68HC12_FAR))
496 continue;
497 }
498 else if (hash->root.type == bfd_link_hash_undefweak)
499 {
500 continue;
501 }
502 else if (hash->root.type == bfd_link_hash_undefined)
503 {
504 continue;
505 }
506 else
507 {
508 bfd_set_error (bfd_error_bad_value);
509 goto error_ret_free_internal;
510 }
511 sym_sec = hash->root.u.def.section;
512 sym_value = hash->root.u.def.value;
513 stub_name = hash->root.root.string;
514 }
515
516 if (!stub_name)
517 goto error_ret_free_internal;
518
519 stub_entry = m68hc12_stub_hash_lookup
520 (htab->stub_hash_table,
521 stub_name,
522 FALSE, FALSE);
523 if (stub_entry == NULL)
524 {
525 if (add_stub_section == 0)
526 continue;
527
528 stub_entry = m68hc12_add_stub (stub_name, section, htab);
529 if (stub_entry == NULL)
530 {
531 error_ret_free_internal:
532 if (elf_section_data (section)->relocs == NULL)
533 free (internal_relocs);
534 goto error_ret_free_local;
535 }
536 }
537
538 stub_entry->target_value = sym_value;
539 stub_entry->target_section = sym_sec;
540 }
541
542 /* We're done with the internal relocs, free them. */
543 if (elf_section_data (section)->relocs == NULL)
544 free (internal_relocs);
545 }
546 }
547
548 if (add_stub_section)
549 {
550 /* OK, we've added some stubs. Find out the new size of the
551 stub sections. */
552 for (stub_sec = htab->stub_bfd->sections;
553 stub_sec != NULL;
554 stub_sec = stub_sec->next)
555 {
556 stub_sec->size = 0;
557 }
558
559 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
560 }
561 free (all_local_syms);
562 return TRUE;
563
564 error_ret_free_local:
565 free (all_local_syms);
566 return FALSE;
567 }
568
569 /* Export the trampoline addresses in the symbol table. */
570 static bfd_boolean
571 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
572 {
573 struct bfd_link_info *info;
574 struct m68hc11_elf_link_hash_table *htab;
575 struct elf32_m68hc11_stub_hash_entry *stub_entry;
576 char* name;
577 bfd_boolean result;
578
579 info = (struct bfd_link_info *) in_arg;
580 htab = m68hc11_elf_hash_table (info);
581 if (htab == NULL)
582 return FALSE;
583
584 /* Massage our args to the form they really have. */
585 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
586
587 /* Generate the trampoline according to HC11 or HC12. */
588 result = (* htab->build_one_stub) (gen_entry, in_arg);
589
590 /* Make a printable name that does not conflict with the real function. */
591 name = alloca (strlen (stub_entry->root.string) + 16);
592 sprintf (name, "tramp.%s", stub_entry->root.string);
593
594 /* Export the symbol for debugging/disassembling. */
595 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
596 stub_entry->stub_offset,
597 stub_entry->stub_sec);
598 return result;
599 }
600
601 /* Export a symbol or set its value and section. */
602 static void
603 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
604 const char *name, bfd_vma value, asection *sec)
605 {
606 struct elf_link_hash_entry *h;
607
608 h = (struct elf_link_hash_entry *)
609 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
610 if (h == NULL)
611 {
612 _bfd_generic_link_add_one_symbol (info, abfd,
613 name,
614 BSF_GLOBAL,
615 sec,
616 value,
617 (const char*) NULL,
618 TRUE, FALSE, NULL);
619 }
620 else
621 {
622 h->root.type = bfd_link_hash_defined;
623 h->root.u.def.value = value;
624 h->root.u.def.section = sec;
625 }
626 }
627
628
629 /* Build all the stubs associated with the current output file. The
630 stubs are kept in a hash table attached to the main linker hash
631 table. This function is called via m68hc12elf_finish in the
632 linker. */
633
634 bfd_boolean
635 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
636 {
637 asection *stub_sec;
638 struct bfd_hash_table *table;
639 struct m68hc11_elf_link_hash_table *htab;
640 struct m68hc11_scan_param param;
641
642 m68hc11_elf_get_bank_parameters (info);
643 htab = m68hc11_elf_hash_table (info);
644 if (htab == NULL)
645 return FALSE;
646
647 for (stub_sec = htab->stub_bfd->sections;
648 stub_sec != NULL;
649 stub_sec = stub_sec->next)
650 {
651 bfd_size_type size;
652
653 /* Allocate memory to hold the linker stubs. */
654 size = stub_sec->size;
655 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
656 if (stub_sec->contents == NULL && size != 0)
657 return FALSE;
658 stub_sec->size = 0;
659 }
660
661 /* Build the stubs as directed by the stub hash table. */
662 table = htab->stub_hash_table;
663 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
664
665 /* Scan the output sections to see if we use the memory banks.
666 If so, export the symbols that define how the memory banks
667 are mapped. This is used by gdb and the simulator to obtain
668 the information. It can be used by programs to burn the eprom
669 at the good addresses. */
670 param.use_memory_banks = FALSE;
671 param.pinfo = &htab->pinfo;
672 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
673 if (param.use_memory_banks)
674 {
675 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
676 htab->pinfo.bank_physical,
677 bfd_abs_section_ptr);
678 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
679 htab->pinfo.bank_virtual,
680 bfd_abs_section_ptr);
681 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
682 htab->pinfo.bank_size,
683 bfd_abs_section_ptr);
684 }
685
686 return TRUE;
687 }
688
689 void
690 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
691 {
692 unsigned i;
693 struct m68hc11_page_info *pinfo;
694 struct bfd_link_hash_entry *h;
695 struct m68hc11_elf_link_hash_table *htab;
696
697 htab = m68hc11_elf_hash_table (info);
698 if (htab == NULL)
699 return;
700
701 pinfo = & htab->pinfo;
702 if (pinfo->bank_param_initialized)
703 return;
704
705 pinfo->bank_virtual = M68HC12_BANK_VIRT;
706 pinfo->bank_mask = M68HC12_BANK_MASK;
707 pinfo->bank_physical = M68HC12_BANK_BASE;
708 pinfo->bank_shift = M68HC12_BANK_SHIFT;
709 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
710
711 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
712 FALSE, FALSE, TRUE);
713 if (h != (struct bfd_link_hash_entry*) NULL
714 && h->type == bfd_link_hash_defined)
715 pinfo->bank_physical = (h->u.def.value
716 + h->u.def.section->output_section->vma
717 + h->u.def.section->output_offset);
718
719 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
720 FALSE, FALSE, TRUE);
721 if (h != (struct bfd_link_hash_entry*) NULL
722 && h->type == bfd_link_hash_defined)
723 pinfo->bank_virtual = (h->u.def.value
724 + h->u.def.section->output_section->vma
725 + h->u.def.section->output_offset);
726
727 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
728 FALSE, FALSE, TRUE);
729 if (h != (struct bfd_link_hash_entry*) NULL
730 && h->type == bfd_link_hash_defined)
731 pinfo->bank_size = (h->u.def.value
732 + h->u.def.section->output_section->vma
733 + h->u.def.section->output_offset);
734
735 pinfo->bank_shift = 0;
736 for (i = pinfo->bank_size; i != 0; i >>= 1)
737 pinfo->bank_shift++;
738 pinfo->bank_shift--;
739 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
740 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
741 pinfo->bank_param_initialized = 1;
742
743 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
744 FALSE, TRUE);
745 if (h != (struct bfd_link_hash_entry*) NULL
746 && h->type == bfd_link_hash_defined)
747 pinfo->trampoline_addr = (h->u.def.value
748 + h->u.def.section->output_section->vma
749 + h->u.def.section->output_offset);
750 }
751
752 /* Return 1 if the address is in banked memory.
753 This can be applied to a virtual address and to a physical address. */
754 int
755 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
756 {
757 if (addr >= pinfo->bank_virtual)
758 return 1;
759
760 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
761 return 1;
762
763 return 0;
764 }
765
766 /* Return the physical address seen by the processor, taking
767 into account banked memory. */
768 bfd_vma
769 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
770 {
771 if (addr < pinfo->bank_virtual)
772 return addr;
773
774 /* Map the address to the memory bank. */
775 addr -= pinfo->bank_virtual;
776 addr &= pinfo->bank_mask;
777 addr += pinfo->bank_physical;
778 return addr;
779 }
780
781 /* Return the page number corresponding to an address in banked memory. */
782 bfd_vma
783 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
784 {
785 if (addr < pinfo->bank_virtual)
786 return 0;
787
788 /* Map the address to the memory bank. */
789 addr -= pinfo->bank_virtual;
790 addr >>= pinfo->bank_shift;
791 addr &= 0x0ff;
792 return addr;
793 }
794
795 /* This function is used for relocs which are only used for relaxing,
796 which the linker should otherwise ignore. */
797
798 bfd_reloc_status_type
799 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
800 arelent *reloc_entry,
801 asymbol *symbol ATTRIBUTE_UNUSED,
802 void *data ATTRIBUTE_UNUSED,
803 asection *input_section,
804 bfd *output_bfd,
805 char **error_message ATTRIBUTE_UNUSED)
806 {
807 if (output_bfd != NULL)
808 reloc_entry->address += input_section->output_offset;
809 return bfd_reloc_ok;
810 }
811
812 bfd_reloc_status_type
813 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
814 arelent *reloc_entry,
815 asymbol *symbol,
816 void *data ATTRIBUTE_UNUSED,
817 asection *input_section,
818 bfd *output_bfd,
819 char **error_message ATTRIBUTE_UNUSED)
820 {
821 if (output_bfd != (bfd *) NULL
822 && (symbol->flags & BSF_SECTION_SYM) == 0
823 && (! reloc_entry->howto->partial_inplace
824 || reloc_entry->addend == 0))
825 {
826 reloc_entry->address += input_section->output_offset;
827 return bfd_reloc_ok;
828 }
829
830 if (output_bfd != NULL)
831 return bfd_reloc_continue;
832
833 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
834 return bfd_reloc_outofrange;
835
836 abort();
837 }
838
839 /* Look through the relocs for a section during the first phase.
840 Since we don't do .gots or .plts, we just need to consider the
841 virtual table relocs for gc. */
842
843 bfd_boolean
844 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
845 asection *sec, const Elf_Internal_Rela *relocs)
846 {
847 Elf_Internal_Shdr * symtab_hdr;
848 struct elf_link_hash_entry ** sym_hashes;
849 const Elf_Internal_Rela * rel;
850 const Elf_Internal_Rela * rel_end;
851
852 if (info->relocatable)
853 return TRUE;
854
855 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
856 sym_hashes = elf_sym_hashes (abfd);
857 rel_end = relocs + sec->reloc_count;
858
859 for (rel = relocs; rel < rel_end; rel++)
860 {
861 struct elf_link_hash_entry * h;
862 unsigned long r_symndx;
863
864 r_symndx = ELF32_R_SYM (rel->r_info);
865
866 if (r_symndx < symtab_hdr->sh_info)
867 h = NULL;
868 else
869 {
870 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
871 while (h->root.type == bfd_link_hash_indirect
872 || h->root.type == bfd_link_hash_warning)
873 h = (struct elf_link_hash_entry *) h->root.u.i.link;
874 }
875
876 switch (ELF32_R_TYPE (rel->r_info))
877 {
878 /* This relocation describes the C++ object vtable hierarchy.
879 Reconstruct it for later use during GC. */
880 case R_M68HC11_GNU_VTINHERIT:
881 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
882 return FALSE;
883 break;
884
885 /* This relocation describes which C++ vtable entries are actually
886 used. Record for later use during GC. */
887 case R_M68HC11_GNU_VTENTRY:
888 BFD_ASSERT (h != NULL);
889 if (h != NULL
890 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
891 return FALSE;
892 break;
893 }
894 }
895
896 return TRUE;
897 }
898
899 /* Relocate a 68hc11/68hc12 ELF section. */
900 bfd_boolean
901 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
902 struct bfd_link_info *info,
903 bfd *input_bfd, asection *input_section,
904 bfd_byte *contents, Elf_Internal_Rela *relocs,
905 Elf_Internal_Sym *local_syms,
906 asection **local_sections)
907 {
908 Elf_Internal_Shdr *symtab_hdr;
909 struct elf_link_hash_entry **sym_hashes;
910 Elf_Internal_Rela *rel, *relend;
911 const char *name = NULL;
912 struct m68hc11_page_info *pinfo;
913 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
914 struct m68hc11_elf_link_hash_table *htab;
915 unsigned long e_flags;
916
917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
918 sym_hashes = elf_sym_hashes (input_bfd);
919 e_flags = elf_elfheader (input_bfd)->e_flags;
920
921 htab = m68hc11_elf_hash_table (info);
922 if (htab == NULL)
923 return FALSE;
924
925 /* Get memory bank parameters. */
926 m68hc11_elf_get_bank_parameters (info);
927
928 pinfo = & htab->pinfo;
929 rel = relocs;
930 relend = relocs + input_section->reloc_count;
931
932 for (; rel < relend; rel++)
933 {
934 int r_type;
935 arelent arel;
936 reloc_howto_type *howto;
937 unsigned long r_symndx;
938 Elf_Internal_Sym *sym;
939 asection *sec;
940 bfd_vma relocation = 0;
941 bfd_reloc_status_type r = bfd_reloc_undefined;
942 bfd_vma phys_page;
943 bfd_vma phys_addr;
944 bfd_vma insn_addr;
945 bfd_vma insn_page;
946 bfd_boolean is_far = FALSE;
947 bfd_boolean is_xgate_symbol = FALSE;
948 bfd_boolean is_section_symbol = FALSE;
949 struct elf_link_hash_entry *h;
950 bfd_vma val;
951
952 r_symndx = ELF32_R_SYM (rel->r_info);
953 r_type = ELF32_R_TYPE (rel->r_info);
954
955 if (r_type == R_M68HC11_GNU_VTENTRY
956 || r_type == R_M68HC11_GNU_VTINHERIT)
957 continue;
958
959 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
960 howto = arel.howto;
961
962 h = NULL;
963 sym = NULL;
964 sec = NULL;
965 if (r_symndx < symtab_hdr->sh_info)
966 {
967 sym = local_syms + r_symndx;
968 sec = local_sections[r_symndx];
969 relocation = (sec->output_section->vma
970 + sec->output_offset
971 + sym->st_value);
972 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
973 is_xgate_symbol = (sym && (sym->st_target_internal));
974 is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
975 }
976 else
977 {
978 bfd_boolean unresolved_reloc, warned;
979
980 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
981 r_symndx, symtab_hdr, sym_hashes,
982 h, sec, relocation, unresolved_reloc,
983 warned);
984
985 is_far = (h && (h->other & STO_M68HC12_FAR));
986 is_xgate_symbol = (h && (h->target_internal));
987 }
988
989 if (sec != NULL && discarded_section (sec))
990 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
991 rel, 1, relend, howto, 0, contents);
992
993 if (info->relocatable)
994 {
995 /* This is a relocatable link. We don't have to change
996 anything, unless the reloc is against a section symbol,
997 in which case we have to adjust according to where the
998 section symbol winds up in the output section. */
999 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1000 rel->r_addend += sec->output_offset;
1001 continue;
1002 }
1003
1004 if (h != NULL)
1005 name = h->root.root.string;
1006 else
1007 {
1008 name = (bfd_elf_string_from_elf_section
1009 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1010 if (name == NULL || *name == '\0')
1011 name = bfd_section_name (input_bfd, sec);
1012 }
1013
1014 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1015 {
1016 struct elf32_m68hc11_stub_hash_entry* stub;
1017
1018 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1019 name, FALSE, FALSE);
1020 if (stub)
1021 {
1022 relocation = stub->stub_offset
1023 + stub->stub_sec->output_section->vma
1024 + stub->stub_sec->output_offset;
1025 is_far = FALSE;
1026 }
1027 }
1028
1029 /* Do the memory bank mapping. */
1030 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1031 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1032 switch (r_type)
1033 {
1034 case R_M68HC12_LO8XG:
1035 /* This relocation is specific to XGATE IMM16 calls and will precede
1036 a HI8. tc-m68hc11 only generates them in pairs.
1037 Leave the relocation to the HI8XG step. */
1038 r = bfd_reloc_ok;
1039 r_type = R_M68HC11_NONE;
1040 break;
1041
1042 case R_M68HC12_HI8XG:
1043 /* This relocation is specific to XGATE IMM16 calls and must follow
1044 a LO8XG. Does not actually check that it was a LO8XG.
1045 Adjusts high and low bytes. */
1046 relocation = phys_addr;
1047 if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
1048 && (relocation >= 0x2000))
1049 relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */
1050
1051 /* Fetch 16 bit value including low byte in previous insn. */
1052 val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
1053 | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
1054
1055 /* Add on value to preserve carry, then write zero to high byte. */
1056 relocation += val;
1057
1058 /* Write out top byte. */
1059 bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
1060 (bfd_byte*) contents + rel->r_offset);
1061
1062 /* Write out low byte to previous instruction. */
1063 bfd_put_8 (input_bfd, relocation & 0xff,
1064 (bfd_byte*) contents + rel->r_offset - 2);
1065
1066 /* Mark as relocation completed. */
1067 r = bfd_reloc_ok;
1068 r_type = R_M68HC11_NONE;
1069 break;
1070
1071 /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
1072 assembler directives. %hi does not support carry. */
1073 case R_M68HC11_HI8:
1074 case R_M68HC11_LO8:
1075 relocation = phys_addr;
1076 break;
1077
1078 case R_M68HC11_24:
1079 /* Reloc used by 68HC12 call instruction. */
1080 bfd_put_16 (input_bfd, phys_addr,
1081 (bfd_byte*) contents + rel->r_offset);
1082 bfd_put_8 (input_bfd, phys_page,
1083 (bfd_byte*) contents + rel->r_offset + 2);
1084 r = bfd_reloc_ok;
1085 r_type = R_M68HC11_NONE;
1086 break;
1087
1088 case R_M68HC11_NONE:
1089 r = bfd_reloc_ok;
1090 break;
1091
1092 case R_M68HC11_LO16:
1093 /* Reloc generated by %addr(expr) gas to obtain the
1094 address as mapped in the memory bank window. */
1095 relocation = phys_addr;
1096 break;
1097
1098 case R_M68HC11_PAGE:
1099 /* Reloc generated by %page(expr) gas to obtain the
1100 page number associated with the address. */
1101 relocation = phys_page;
1102 break;
1103
1104 case R_M68HC11_16:
1105 /* Get virtual address of instruction having the relocation. */
1106 if (is_far)
1107 {
1108 const char* msg;
1109 char* buf;
1110 msg = _("Reference to the far symbol `%s' using a wrong "
1111 "relocation may result in incorrect execution");
1112 buf = alloca (strlen (msg) + strlen (name) + 10);
1113 sprintf (buf, msg, name);
1114
1115 (* info->callbacks->warning)
1116 (info, buf, name, input_bfd, NULL, rel->r_offset);
1117 }
1118
1119 /* Get virtual address of instruction having the relocation. */
1120 insn_addr = input_section->output_section->vma
1121 + input_section->output_offset
1122 + rel->r_offset;
1123
1124 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1125
1126 /* If we are linking an S12 instruction against an XGATE symbol, we
1127 need to change the offset of the symbol value so that it's correct
1128 from the S12's perspective. */
1129 if (is_xgate_symbol)
1130 {
1131 /* The ram in the global space is mapped to 0x2000 in the 16-bit
1132 address space for S12 and 0xE000 in the 16-bit address space
1133 for XGATE. */
1134 if (relocation >= 0xE000)
1135 {
1136 /* We offset the address by the difference
1137 between these two mappings. */
1138 relocation -= 0xC000;
1139 break;
1140 }
1141 else
1142 {
1143 const char * msg;
1144 char * buf;
1145
1146 msg = _("XGATE address (%lx) is not within shared RAM"
1147 "(0xE000-0xFFFF), therefore you must manually offset "
1148 "the address, and possibly manage the page, in your "
1149 "code.");
1150 buf = alloca (strlen (msg) + 128);
1151 sprintf (buf, msg, phys_addr);
1152 if (!((*info->callbacks->warning) (info, buf, name, input_bfd,
1153 input_section, insn_addr)))
1154 return FALSE;
1155 break;
1156 }
1157 }
1158
1159 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1160 && m68hc11_addr_is_banked (pinfo, insn_addr)
1161 && phys_page != insn_page && !(e_flags & E_M68HC11_NO_BANK_WARNING))
1162 {
1163 const char * msg;
1164 char * buf;
1165
1166 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1167 "as current banked address [%lx:%04lx] (%lx)");
1168
1169 buf = alloca (strlen (msg) + 128);
1170 sprintf (buf, msg, phys_page, phys_addr,
1171 (long) (relocation + rel->r_addend),
1172 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1173 (long) (insn_addr));
1174 if (!((*info->callbacks->warning)
1175 (info, buf, name, input_bfd, input_section,
1176 rel->r_offset)))
1177 return FALSE;
1178 break;
1179 }
1180
1181 if (phys_page != 0 && insn_page == 0)
1182 {
1183 const char * msg;
1184 char * buf;
1185
1186 msg = _("reference to a banked address [%lx:%04lx] in the "
1187 "normal address space at %04lx");
1188
1189 buf = alloca (strlen (msg) + 128);
1190 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1191 if (!((*info->callbacks->warning)
1192 (info, buf, name, input_bfd, input_section,
1193 insn_addr)))
1194 return FALSE;
1195
1196 relocation = phys_addr;
1197 break;
1198 }
1199
1200 /* If this is a banked address use the phys_addr so that
1201 we stay in the banked window. */
1202 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1203 relocation = phys_addr;
1204 break;
1205 }
1206
1207 /* If we are linking an XGATE instruction against an S12 symbol, we
1208 need to change the offset of the symbol value so that it's correct
1209 from the XGATE's perspective. */
1210 if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
1211 || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
1212 {
1213 /* We can only offset S12 addresses that lie within the non-paged
1214 area of RAM. */
1215 if (!is_xgate_symbol && !is_section_symbol)
1216 {
1217 /* The ram in the global space is mapped to 0x2000 and stops at
1218 0x4000 in the 16-bit address space for S12 and 0xE000 in the
1219 16-bit address space for XGATE. */
1220 if (relocation >= 0x2000 && relocation < 0x4000)
1221 /* We offset the address by the difference
1222 between these two mappings. */
1223 relocation += 0xC000;
1224 else
1225 {
1226 const char * msg;
1227 char * buf;
1228
1229 /* Get virtual address of instruction having the relocation. */
1230 insn_addr = input_section->output_section->vma
1231 + input_section->output_offset + rel->r_offset;
1232
1233 msg = _("S12 address (%lx) is not within shared RAM"
1234 "(0x2000-0x4000), therefore you must manually "
1235 "offset the address in your code");
1236 buf = alloca (strlen (msg) + 128);
1237 sprintf (buf, msg, phys_addr);
1238 if (!((*info->callbacks->warning) (info, buf, name, input_bfd,
1239 input_section, insn_addr)))
1240 return FALSE;
1241 break;
1242 }
1243 }
1244 }
1245
1246 if (r_type != R_M68HC11_NONE)
1247 {
1248 if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
1249 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1250 contents, rel->r_offset,
1251 relocation - 2, rel->r_addend);
1252 else
1253 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1254 contents, rel->r_offset,
1255 relocation, rel->r_addend);
1256 }
1257
1258 if (r != bfd_reloc_ok)
1259 {
1260 const char * msg = (const char *) 0;
1261
1262 switch (r)
1263 {
1264 case bfd_reloc_overflow:
1265 if (!((*info->callbacks->reloc_overflow)
1266 (info, NULL, name, howto->name, (bfd_vma) 0,
1267 input_bfd, input_section, rel->r_offset)))
1268 return FALSE;
1269 break;
1270
1271 case bfd_reloc_undefined:
1272 if (!((*info->callbacks->undefined_symbol)
1273 (info, name, input_bfd, input_section,
1274 rel->r_offset, TRUE)))
1275 return FALSE;
1276 break;
1277
1278 case bfd_reloc_outofrange:
1279 msg = _ ("internal error: out of range error");
1280 goto common_error;
1281
1282 case bfd_reloc_notsupported:
1283 msg = _ ("internal error: unsupported relocation error");
1284 goto common_error;
1285
1286 case bfd_reloc_dangerous:
1287 msg = _ ("internal error: dangerous error");
1288 goto common_error;
1289
1290 default:
1291 msg = _ ("internal error: unknown error");
1292 /* fall through */
1293
1294 common_error:
1295 if (!((*info->callbacks->warning)
1296 (info, msg, name, input_bfd, input_section,
1297 rel->r_offset)))
1298 return FALSE;
1299 break;
1300 }
1301 }
1302 }
1303
1304 return TRUE;
1305 }
1306
1307
1308 \f
1309 /* Set and control ELF flags in ELF header. */
1310
1311 bfd_boolean
1312 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1313 {
1314 BFD_ASSERT (!elf_flags_init (abfd)
1315 || elf_elfheader (abfd)->e_flags == flags);
1316
1317 elf_elfheader (abfd)->e_flags = flags;
1318 elf_flags_init (abfd) = TRUE;
1319 return TRUE;
1320 }
1321
1322 /* Merge backend specific data from an object file to the output
1323 object file when linking. */
1324
1325 bfd_boolean
1326 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1327 {
1328 flagword old_flags;
1329 flagword new_flags;
1330 bfd_boolean ok = TRUE;
1331
1332 /* Check if we have the same endianness */
1333 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1334 return FALSE;
1335
1336 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1337 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1338 return TRUE;
1339
1340 new_flags = elf_elfheader (ibfd)->e_flags;
1341 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1342 old_flags = elf_elfheader (obfd)->e_flags;
1343
1344 if (! elf_flags_init (obfd))
1345 {
1346 elf_flags_init (obfd) = TRUE;
1347 elf_elfheader (obfd)->e_flags = new_flags;
1348 elf_elfheader (obfd)->e_ident[EI_CLASS]
1349 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1350
1351 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1352 && bfd_get_arch_info (obfd)->the_default)
1353 {
1354 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1355 bfd_get_mach (ibfd)))
1356 return FALSE;
1357 }
1358
1359 return TRUE;
1360 }
1361
1362 /* Check ABI compatibility. */
1363 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1364 {
1365 (*_bfd_error_handler)
1366 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1367 "and others for 32-bit integers"), ibfd);
1368 ok = FALSE;
1369 }
1370 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1371 {
1372 (*_bfd_error_handler)
1373 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1374 "and others for 64-bit double"), ibfd);
1375 ok = FALSE;
1376 }
1377
1378 /* Processor compatibility. */
1379 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1380 {
1381 (*_bfd_error_handler)
1382 (_("%B: linking files compiled for HCS12 with "
1383 "others compiled for HC12"), ibfd);
1384 ok = FALSE;
1385 }
1386 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1387 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1388
1389 elf_elfheader (obfd)->e_flags = new_flags;
1390
1391 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1392 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1393
1394 /* Warn about any other mismatches */
1395 if (new_flags != old_flags)
1396 {
1397 (*_bfd_error_handler)
1398 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1399 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1400 ok = FALSE;
1401 }
1402
1403 if (! ok)
1404 {
1405 bfd_set_error (bfd_error_bad_value);
1406 return FALSE;
1407 }
1408
1409 return TRUE;
1410 }
1411
1412 bfd_boolean
1413 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1414 {
1415 FILE *file = (FILE *) ptr;
1416
1417 BFD_ASSERT (abfd != NULL && ptr != NULL);
1418
1419 /* Print normal ELF private data. */
1420 _bfd_elf_print_private_bfd_data (abfd, ptr);
1421
1422 /* xgettext:c-format */
1423 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1424
1425 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1426 fprintf (file, _("[abi=32-bit int, "));
1427 else
1428 fprintf (file, _("[abi=16-bit int, "));
1429
1430 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1431 fprintf (file, _("64-bit double, "));
1432 else
1433 fprintf (file, _("32-bit double, "));
1434
1435 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1436 fprintf (file, _("cpu=HC11]"));
1437 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1438 fprintf (file, _("cpu=HCS12]"));
1439 else
1440 fprintf (file, _("cpu=HC12]"));
1441
1442 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1443 fprintf (file, _(" [memory=bank-model]"));
1444 else
1445 fprintf (file, _(" [memory=flat]"));
1446
1447 if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
1448 fprintf (file, _(" [XGATE RAM offsetting]"));
1449
1450 fputc ('\n', file);
1451
1452 return TRUE;
1453 }
1454
1455 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1456 asection *asect, void *arg)
1457 {
1458 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1459
1460 if (asect->vma >= p->pinfo->bank_virtual)
1461 p->use_memory_banks = TRUE;
1462 }
1463
1464 /* Tweak the OSABI field of the elf header. */
1465
1466 void
1467 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1468 {
1469 struct m68hc11_scan_param param;
1470 struct m68hc11_elf_link_hash_table *htab;
1471
1472 if (link_info == NULL)
1473 return;
1474
1475 htab = m68hc11_elf_hash_table (link_info);
1476 if (htab == NULL)
1477 return;
1478
1479 m68hc11_elf_get_bank_parameters (link_info);
1480
1481 param.use_memory_banks = FALSE;
1482 param.pinfo = & htab->pinfo;
1483
1484 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1485
1486 if (param.use_memory_banks)
1487 {
1488 Elf_Internal_Ehdr * i_ehdrp;
1489
1490 i_ehdrp = elf_elfheader (abfd);
1491 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1492 }
1493 }
This page took 0.08848 seconds and 4 git commands to generate.