* elflink.c (_bfd_elf_gc_mark_hook): New function.
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
30
31
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
35
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
40
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
43
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
47
48 static bfd_boolean m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
50
51 static void scan_sections_for_abi (bfd*, asection*, PTR);
52
53 struct m68hc11_scan_param
54 {
55 struct m68hc11_page_info* pinfo;
56 bfd_boolean use_memory_banks;
57 };
58
59
60 /* Create a 68HC11/68HC12 ELF linker hash table. */
61
62 struct m68hc11_elf_link_hash_table*
63 m68hc11_elf_hash_table_create (bfd *abfd)
64 {
65 struct m68hc11_elf_link_hash_table *ret;
66 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
67
68 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
69 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
70 return NULL;
71
72 memset (ret, 0, amt);
73 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
74 _bfd_elf_link_hash_newfunc,
75 sizeof (struct elf_link_hash_entry)))
76 {
77 free (ret);
78 return NULL;
79 }
80
81 /* Init the stub hash table too. */
82 amt = sizeof (struct bfd_hash_table);
83 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
84 if (ret->stub_hash_table == NULL)
85 {
86 free (ret);
87 return NULL;
88 }
89 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
90 sizeof (struct elf32_m68hc11_stub_hash_entry)))
91 return NULL;
92
93 ret->stub_bfd = NULL;
94 ret->stub_section = 0;
95 ret->add_stub_section = NULL;
96 ret->sym_sec.abfd = NULL;
97
98 return ret;
99 }
100
101 /* Free the derived linker hash table. */
102
103 void
104 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
105 {
106 struct m68hc11_elf_link_hash_table *ret
107 = (struct m68hc11_elf_link_hash_table *) hash;
108
109 bfd_hash_table_free (ret->stub_hash_table);
110 free (ret->stub_hash_table);
111 _bfd_generic_link_hash_table_free (hash);
112 }
113
114 /* Assorted hash table functions. */
115
116 /* Initialize an entry in the stub hash table. */
117
118 static struct bfd_hash_entry *
119 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
120 const char *string)
121 {
122 /* Allocate the structure if it has not already been allocated by a
123 subclass. */
124 if (entry == NULL)
125 {
126 entry = bfd_hash_allocate (table,
127 sizeof (struct elf32_m68hc11_stub_hash_entry));
128 if (entry == NULL)
129 return entry;
130 }
131
132 /* Call the allocation method of the superclass. */
133 entry = bfd_hash_newfunc (entry, table, string);
134 if (entry != NULL)
135 {
136 struct elf32_m68hc11_stub_hash_entry *eh;
137
138 /* Initialize the local fields. */
139 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
140 eh->stub_sec = NULL;
141 eh->stub_offset = 0;
142 eh->target_value = 0;
143 eh->target_section = NULL;
144 }
145
146 return entry;
147 }
148
149 /* Add a new stub entry to the stub hash. Not all fields of the new
150 stub entry are initialised. */
151
152 static struct elf32_m68hc11_stub_hash_entry *
153 m68hc12_add_stub (const char *stub_name, asection *section,
154 struct m68hc11_elf_link_hash_table *htab)
155 {
156 struct elf32_m68hc11_stub_hash_entry *stub_entry;
157
158 /* Enter this entry into the linker stub hash table. */
159 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
160 TRUE, FALSE);
161 if (stub_entry == NULL)
162 {
163 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
164 section->owner, stub_name);
165 return NULL;
166 }
167
168 if (htab->stub_section == 0)
169 {
170 htab->stub_section = (*htab->add_stub_section) (".tramp",
171 htab->tramp_section);
172 }
173
174 stub_entry->stub_sec = htab->stub_section;
175 stub_entry->stub_offset = 0;
176 return stub_entry;
177 }
178
179 /* Hook called by the linker routine which adds symbols from an object
180 file. We use it for identify far symbols and force a loading of
181 the trampoline handler. */
182
183 bfd_boolean
184 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
185 Elf_Internal_Sym *sym,
186 const char **namep ATTRIBUTE_UNUSED,
187 flagword *flagsp ATTRIBUTE_UNUSED,
188 asection **secp ATTRIBUTE_UNUSED,
189 bfd_vma *valp ATTRIBUTE_UNUSED)
190 {
191 if (sym->st_other & STO_M68HC12_FAR)
192 {
193 struct elf_link_hash_entry *h;
194
195 h = (struct elf_link_hash_entry *)
196 bfd_link_hash_lookup (info->hash, "__far_trampoline",
197 FALSE, FALSE, FALSE);
198 if (h == NULL)
199 {
200 struct bfd_link_hash_entry* entry = NULL;
201
202 _bfd_generic_link_add_one_symbol (info, abfd,
203 "__far_trampoline",
204 BSF_GLOBAL,
205 bfd_und_section_ptr,
206 (bfd_vma) 0, (const char*) NULL,
207 FALSE, FALSE, &entry);
208 }
209
210 }
211 return TRUE;
212 }
213
214 /* External entry points for sizing and building linker stubs. */
215
216 /* Set up various things so that we can make a list of input sections
217 for each output section included in the link. Returns -1 on error,
218 0 when no stubs will be needed, and 1 on success. */
219
220 int
221 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
222 {
223 bfd *input_bfd;
224 unsigned int bfd_count;
225 int top_id, top_index;
226 asection *section;
227 asection **input_list, **list;
228 bfd_size_type amt;
229 asection *text_section;
230 struct m68hc11_elf_link_hash_table *htab;
231
232 htab = m68hc11_elf_hash_table (info);
233
234 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
235 return 0;
236
237 /* Count the number of input BFDs and find the top input section id.
238 Also search for an existing ".tramp" section so that we know
239 where generated trampolines must go. Default to ".text" if we
240 can't find it. */
241 htab->tramp_section = 0;
242 text_section = 0;
243 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
244 input_bfd != NULL;
245 input_bfd = input_bfd->link_next)
246 {
247 bfd_count += 1;
248 for (section = input_bfd->sections;
249 section != NULL;
250 section = section->next)
251 {
252 const char* name = bfd_get_section_name (input_bfd, section);
253
254 if (!strcmp (name, ".tramp"))
255 htab->tramp_section = section;
256
257 if (!strcmp (name, ".text"))
258 text_section = section;
259
260 if (top_id < section->id)
261 top_id = section->id;
262 }
263 }
264 htab->bfd_count = bfd_count;
265 if (htab->tramp_section == 0)
266 htab->tramp_section = text_section;
267
268 /* We can't use output_bfd->section_count here to find the top output
269 section index as some sections may have been removed, and
270 strip_excluded_output_sections doesn't renumber the indices. */
271 for (section = output_bfd->sections, top_index = 0;
272 section != NULL;
273 section = section->next)
274 {
275 if (top_index < section->index)
276 top_index = section->index;
277 }
278
279 htab->top_index = top_index;
280 amt = sizeof (asection *) * (top_index + 1);
281 input_list = (asection **) bfd_malloc (amt);
282 htab->input_list = input_list;
283 if (input_list == NULL)
284 return -1;
285
286 /* For sections we aren't interested in, mark their entries with a
287 value we can check later. */
288 list = input_list + top_index;
289 do
290 *list = bfd_abs_section_ptr;
291 while (list-- != input_list);
292
293 for (section = output_bfd->sections;
294 section != NULL;
295 section = section->next)
296 {
297 if ((section->flags & SEC_CODE) != 0)
298 input_list[section->index] = NULL;
299 }
300
301 return 1;
302 }
303
304 /* Determine and set the size of the stub section for a final link.
305
306 The basic idea here is to examine all the relocations looking for
307 PC-relative calls to a target that is unreachable with a "bl"
308 instruction. */
309
310 bfd_boolean
311 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
312 struct bfd_link_info *info,
313 asection * (*add_stub_section) (const char*, asection*))
314 {
315 bfd *input_bfd;
316 asection *section;
317 Elf_Internal_Sym *local_syms, **all_local_syms;
318 unsigned int bfd_indx, bfd_count;
319 bfd_size_type amt;
320 asection *stub_sec;
321
322 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
323
324 /* Stash our params away. */
325 htab->stub_bfd = stub_bfd;
326 htab->add_stub_section = add_stub_section;
327
328 /* Count the number of input BFDs and find the top input section id. */
329 for (input_bfd = info->input_bfds, bfd_count = 0;
330 input_bfd != NULL;
331 input_bfd = input_bfd->link_next)
332 {
333 bfd_count += 1;
334 }
335
336 /* We want to read in symbol extension records only once. To do this
337 we need to read in the local symbols in parallel and save them for
338 later use; so hold pointers to the local symbols in an array. */
339 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
340 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
341 if (all_local_syms == NULL)
342 return FALSE;
343
344 /* Walk over all the input BFDs, swapping in local symbols. */
345 for (input_bfd = info->input_bfds, bfd_indx = 0;
346 input_bfd != NULL;
347 input_bfd = input_bfd->link_next, bfd_indx++)
348 {
349 Elf_Internal_Shdr *symtab_hdr;
350
351 /* We'll need the symbol table in a second. */
352 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
353 if (symtab_hdr->sh_info == 0)
354 continue;
355
356 /* We need an array of the local symbols attached to the input bfd. */
357 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
358 if (local_syms == NULL)
359 {
360 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
361 symtab_hdr->sh_info, 0,
362 NULL, NULL, NULL);
363 /* Cache them for elf_link_input_bfd. */
364 symtab_hdr->contents = (unsigned char *) local_syms;
365 }
366 if (local_syms == NULL)
367 {
368 free (all_local_syms);
369 return FALSE;
370 }
371
372 all_local_syms[bfd_indx] = local_syms;
373 }
374
375 for (input_bfd = info->input_bfds, bfd_indx = 0;
376 input_bfd != NULL;
377 input_bfd = input_bfd->link_next, bfd_indx++)
378 {
379 Elf_Internal_Shdr *symtab_hdr;
380 Elf_Internal_Sym *local_syms;
381 struct elf_link_hash_entry ** sym_hashes;
382
383 sym_hashes = elf_sym_hashes (input_bfd);
384
385 /* We'll need the symbol table in a second. */
386 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
387 if (symtab_hdr->sh_info == 0)
388 continue;
389
390 local_syms = all_local_syms[bfd_indx];
391
392 /* Walk over each section attached to the input bfd. */
393 for (section = input_bfd->sections;
394 section != NULL;
395 section = section->next)
396 {
397 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
398
399 /* If there aren't any relocs, then there's nothing more
400 to do. */
401 if ((section->flags & SEC_RELOC) == 0
402 || section->reloc_count == 0)
403 continue;
404
405 /* If this section is a link-once section that will be
406 discarded, then don't create any stubs. */
407 if (section->output_section == NULL
408 || section->output_section->owner != output_bfd)
409 continue;
410
411 /* Get the relocs. */
412 internal_relocs
413 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
414 (Elf_Internal_Rela *) NULL,
415 info->keep_memory);
416 if (internal_relocs == NULL)
417 goto error_ret_free_local;
418
419 /* Now examine each relocation. */
420 irela = internal_relocs;
421 irelaend = irela + section->reloc_count;
422 for (; irela < irelaend; irela++)
423 {
424 unsigned int r_type, r_indx;
425 struct elf32_m68hc11_stub_hash_entry *stub_entry;
426 asection *sym_sec;
427 bfd_vma sym_value;
428 struct elf_link_hash_entry *hash;
429 const char *stub_name;
430 Elf_Internal_Sym *sym;
431
432 r_type = ELF32_R_TYPE (irela->r_info);
433
434 /* Only look at 16-bit relocs. */
435 if (r_type != (unsigned int) R_M68HC11_16)
436 continue;
437
438 /* Now determine the call target, its name, value,
439 section. */
440 r_indx = ELF32_R_SYM (irela->r_info);
441 if (r_indx < symtab_hdr->sh_info)
442 {
443 /* It's a local symbol. */
444 Elf_Internal_Shdr *hdr;
445 bfd_boolean is_far;
446
447 sym = local_syms + r_indx;
448 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
449 if (!is_far)
450 continue;
451
452 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
453 sym_sec = hdr->bfd_section;
454 stub_name = (bfd_elf_string_from_elf_section
455 (input_bfd, symtab_hdr->sh_link,
456 sym->st_name));
457 sym_value = sym->st_value;
458 hash = NULL;
459 }
460 else
461 {
462 /* It's an external symbol. */
463 int e_indx;
464
465 e_indx = r_indx - symtab_hdr->sh_info;
466 hash = (struct elf_link_hash_entry *)
467 (sym_hashes[e_indx]);
468
469 while (hash->root.type == bfd_link_hash_indirect
470 || hash->root.type == bfd_link_hash_warning)
471 hash = ((struct elf_link_hash_entry *)
472 hash->root.u.i.link);
473
474 if (hash->root.type == bfd_link_hash_defined
475 || hash->root.type == bfd_link_hash_defweak
476 || hash->root.type == bfd_link_hash_new)
477 {
478 if (!(hash->other & STO_M68HC12_FAR))
479 continue;
480 }
481 else if (hash->root.type == bfd_link_hash_undefweak)
482 {
483 continue;
484 }
485 else if (hash->root.type == bfd_link_hash_undefined)
486 {
487 continue;
488 }
489 else
490 {
491 bfd_set_error (bfd_error_bad_value);
492 goto error_ret_free_internal;
493 }
494 sym_sec = hash->root.u.def.section;
495 sym_value = hash->root.u.def.value;
496 stub_name = hash->root.root.string;
497 }
498
499 if (!stub_name)
500 goto error_ret_free_internal;
501
502 stub_entry = m68hc12_stub_hash_lookup
503 (htab->stub_hash_table,
504 stub_name,
505 FALSE, FALSE);
506 if (stub_entry == NULL)
507 {
508 if (add_stub_section == 0)
509 continue;
510
511 stub_entry = m68hc12_add_stub (stub_name, section, htab);
512 if (stub_entry == NULL)
513 {
514 error_ret_free_internal:
515 if (elf_section_data (section)->relocs == NULL)
516 free (internal_relocs);
517 goto error_ret_free_local;
518 }
519 }
520
521 stub_entry->target_value = sym_value;
522 stub_entry->target_section = sym_sec;
523 }
524
525 /* We're done with the internal relocs, free them. */
526 if (elf_section_data (section)->relocs == NULL)
527 free (internal_relocs);
528 }
529 }
530
531 if (add_stub_section)
532 {
533 /* OK, we've added some stubs. Find out the new size of the
534 stub sections. */
535 for (stub_sec = htab->stub_bfd->sections;
536 stub_sec != NULL;
537 stub_sec = stub_sec->next)
538 {
539 stub_sec->size = 0;
540 }
541
542 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
543 }
544 free (all_local_syms);
545 return TRUE;
546
547 error_ret_free_local:
548 free (all_local_syms);
549 return FALSE;
550 }
551
552 /* Export the trampoline addresses in the symbol table. */
553 static bfd_boolean
554 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
555 {
556 struct bfd_link_info *info;
557 struct m68hc11_elf_link_hash_table *htab;
558 struct elf32_m68hc11_stub_hash_entry *stub_entry;
559 char* name;
560 bfd_boolean result;
561
562 info = (struct bfd_link_info *) in_arg;
563 htab = m68hc11_elf_hash_table (info);
564
565 /* Massage our args to the form they really have. */
566 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
567
568 /* Generate the trampoline according to HC11 or HC12. */
569 result = (* htab->build_one_stub) (gen_entry, in_arg);
570
571 /* Make a printable name that does not conflict with the real function. */
572 name = alloca (strlen (stub_entry->root.string) + 16);
573 sprintf (name, "tramp.%s", stub_entry->root.string);
574
575 /* Export the symbol for debugging/disassembling. */
576 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
577 stub_entry->stub_offset,
578 stub_entry->stub_sec);
579 return result;
580 }
581
582 /* Export a symbol or set its value and section. */
583 static void
584 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
585 const char *name, bfd_vma value, asection *sec)
586 {
587 struct elf_link_hash_entry *h;
588
589 h = (struct elf_link_hash_entry *)
590 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
591 if (h == NULL)
592 {
593 _bfd_generic_link_add_one_symbol (info, abfd,
594 name,
595 BSF_GLOBAL,
596 sec,
597 value,
598 (const char*) NULL,
599 TRUE, FALSE, NULL);
600 }
601 else
602 {
603 h->root.type = bfd_link_hash_defined;
604 h->root.u.def.value = value;
605 h->root.u.def.section = sec;
606 }
607 }
608
609
610 /* Build all the stubs associated with the current output file. The
611 stubs are kept in a hash table attached to the main linker hash
612 table. This function is called via m68hc12elf_finish in the
613 linker. */
614
615 bfd_boolean
616 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
617 {
618 asection *stub_sec;
619 struct bfd_hash_table *table;
620 struct m68hc11_elf_link_hash_table *htab;
621 struct m68hc11_scan_param param;
622
623 m68hc11_elf_get_bank_parameters (info);
624 htab = m68hc11_elf_hash_table (info);
625
626 for (stub_sec = htab->stub_bfd->sections;
627 stub_sec != NULL;
628 stub_sec = stub_sec->next)
629 {
630 bfd_size_type size;
631
632 /* Allocate memory to hold the linker stubs. */
633 size = stub_sec->size;
634 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
635 if (stub_sec->contents == NULL && size != 0)
636 return FALSE;
637 stub_sec->size = 0;
638 }
639
640 /* Build the stubs as directed by the stub hash table. */
641 table = htab->stub_hash_table;
642 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
643
644 /* Scan the output sections to see if we use the memory banks.
645 If so, export the symbols that define how the memory banks
646 are mapped. This is used by gdb and the simulator to obtain
647 the information. It can be used by programs to burn the eprom
648 at the good addresses. */
649 param.use_memory_banks = FALSE;
650 param.pinfo = &htab->pinfo;
651 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
652 if (param.use_memory_banks)
653 {
654 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
655 htab->pinfo.bank_physical,
656 bfd_abs_section_ptr);
657 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
658 htab->pinfo.bank_virtual,
659 bfd_abs_section_ptr);
660 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
661 htab->pinfo.bank_size,
662 bfd_abs_section_ptr);
663 }
664
665 return TRUE;
666 }
667
668 void
669 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
670 {
671 unsigned i;
672 struct m68hc11_page_info *pinfo;
673 struct bfd_link_hash_entry *h;
674
675 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
676 if (pinfo->bank_param_initialized)
677 return;
678
679 pinfo->bank_virtual = M68HC12_BANK_VIRT;
680 pinfo->bank_mask = M68HC12_BANK_MASK;
681 pinfo->bank_physical = M68HC12_BANK_BASE;
682 pinfo->bank_shift = M68HC12_BANK_SHIFT;
683 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
684
685 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
686 FALSE, FALSE, TRUE);
687 if (h != (struct bfd_link_hash_entry*) NULL
688 && h->type == bfd_link_hash_defined)
689 pinfo->bank_physical = (h->u.def.value
690 + h->u.def.section->output_section->vma
691 + h->u.def.section->output_offset);
692
693 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
694 FALSE, FALSE, TRUE);
695 if (h != (struct bfd_link_hash_entry*) NULL
696 && h->type == bfd_link_hash_defined)
697 pinfo->bank_virtual = (h->u.def.value
698 + h->u.def.section->output_section->vma
699 + h->u.def.section->output_offset);
700
701 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
702 FALSE, FALSE, TRUE);
703 if (h != (struct bfd_link_hash_entry*) NULL
704 && h->type == bfd_link_hash_defined)
705 pinfo->bank_size = (h->u.def.value
706 + h->u.def.section->output_section->vma
707 + h->u.def.section->output_offset);
708
709 pinfo->bank_shift = 0;
710 for (i = pinfo->bank_size; i != 0; i >>= 1)
711 pinfo->bank_shift++;
712 pinfo->bank_shift--;
713 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
714 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
715 pinfo->bank_param_initialized = 1;
716
717 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
718 FALSE, TRUE);
719 if (h != (struct bfd_link_hash_entry*) NULL
720 && h->type == bfd_link_hash_defined)
721 pinfo->trampoline_addr = (h->u.def.value
722 + h->u.def.section->output_section->vma
723 + h->u.def.section->output_offset);
724 }
725
726 /* Return 1 if the address is in banked memory.
727 This can be applied to a virtual address and to a physical address. */
728 int
729 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
730 {
731 if (addr >= pinfo->bank_virtual)
732 return 1;
733
734 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
735 return 1;
736
737 return 0;
738 }
739
740 /* Return the physical address seen by the processor, taking
741 into account banked memory. */
742 bfd_vma
743 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
744 {
745 if (addr < pinfo->bank_virtual)
746 return addr;
747
748 /* Map the address to the memory bank. */
749 addr -= pinfo->bank_virtual;
750 addr &= pinfo->bank_mask;
751 addr += pinfo->bank_physical;
752 return addr;
753 }
754
755 /* Return the page number corresponding to an address in banked memory. */
756 bfd_vma
757 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
758 {
759 if (addr < pinfo->bank_virtual)
760 return 0;
761
762 /* Map the address to the memory bank. */
763 addr -= pinfo->bank_virtual;
764 addr >>= pinfo->bank_shift;
765 addr &= 0x0ff;
766 return addr;
767 }
768
769 /* This function is used for relocs which are only used for relaxing,
770 which the linker should otherwise ignore. */
771
772 bfd_reloc_status_type
773 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
774 arelent *reloc_entry,
775 asymbol *symbol ATTRIBUTE_UNUSED,
776 void *data ATTRIBUTE_UNUSED,
777 asection *input_section,
778 bfd *output_bfd,
779 char **error_message ATTRIBUTE_UNUSED)
780 {
781 if (output_bfd != NULL)
782 reloc_entry->address += input_section->output_offset;
783 return bfd_reloc_ok;
784 }
785
786 bfd_reloc_status_type
787 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
788 arelent *reloc_entry,
789 asymbol *symbol,
790 void *data ATTRIBUTE_UNUSED,
791 asection *input_section,
792 bfd *output_bfd,
793 char **error_message ATTRIBUTE_UNUSED)
794 {
795 if (output_bfd != (bfd *) NULL
796 && (symbol->flags & BSF_SECTION_SYM) == 0
797 && (! reloc_entry->howto->partial_inplace
798 || reloc_entry->addend == 0))
799 {
800 reloc_entry->address += input_section->output_offset;
801 return bfd_reloc_ok;
802 }
803
804 if (output_bfd != NULL)
805 return bfd_reloc_continue;
806
807 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
808 return bfd_reloc_outofrange;
809
810 abort();
811 }
812
813 /* Look through the relocs for a section during the first phase.
814 Since we don't do .gots or .plts, we just need to consider the
815 virtual table relocs for gc. */
816
817 bfd_boolean
818 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
819 asection *sec, const Elf_Internal_Rela *relocs)
820 {
821 Elf_Internal_Shdr * symtab_hdr;
822 struct elf_link_hash_entry ** sym_hashes;
823 struct elf_link_hash_entry ** sym_hashes_end;
824 const Elf_Internal_Rela * rel;
825 const Elf_Internal_Rela * rel_end;
826
827 if (info->relocatable)
828 return TRUE;
829
830 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
831 sym_hashes = elf_sym_hashes (abfd);
832 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
833 if (!elf_bad_symtab (abfd))
834 sym_hashes_end -= symtab_hdr->sh_info;
835
836 rel_end = relocs + sec->reloc_count;
837
838 for (rel = relocs; rel < rel_end; rel++)
839 {
840 struct elf_link_hash_entry * h;
841 unsigned long r_symndx;
842
843 r_symndx = ELF32_R_SYM (rel->r_info);
844
845 if (r_symndx < symtab_hdr->sh_info)
846 h = NULL;
847 else
848 {
849 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
850 while (h->root.type == bfd_link_hash_indirect
851 || h->root.type == bfd_link_hash_warning)
852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
853 }
854
855 switch (ELF32_R_TYPE (rel->r_info))
856 {
857 /* This relocation describes the C++ object vtable hierarchy.
858 Reconstruct it for later use during GC. */
859 case R_M68HC11_GNU_VTINHERIT:
860 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
861 return FALSE;
862 break;
863
864 /* This relocation describes which C++ vtable entries are actually
865 used. Record for later use during GC. */
866 case R_M68HC11_GNU_VTENTRY:
867 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
868 return FALSE;
869 break;
870 }
871 }
872
873 return TRUE;
874 }
875
876 static bfd_boolean
877 m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info,
878 asection *input_section,
879 asection **local_sections,
880 Elf_Internal_Sym *local_syms,
881 Elf_Internal_Rela *rel,
882 const char **name,
883 bfd_vma *relocation, bfd_boolean *is_far)
884 {
885 Elf_Internal_Shdr *symtab_hdr;
886 struct elf_link_hash_entry **sym_hashes;
887 unsigned long r_symndx;
888 asection *sec;
889 struct elf_link_hash_entry *h;
890 Elf_Internal_Sym *sym;
891 const char* stub_name = 0;
892
893 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
894 sym_hashes = elf_sym_hashes (input_bfd);
895
896 r_symndx = ELF32_R_SYM (rel->r_info);
897
898 /* This is a final link. */
899 h = NULL;
900 sym = NULL;
901 sec = NULL;
902 if (r_symndx < symtab_hdr->sh_info)
903 {
904 sym = local_syms + r_symndx;
905 sec = local_sections[r_symndx];
906 *relocation = (sec->output_section->vma
907 + sec->output_offset
908 + sym->st_value);
909 *is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
910 if (*is_far)
911 stub_name = (bfd_elf_string_from_elf_section
912 (input_bfd, symtab_hdr->sh_link,
913 sym->st_name));
914 }
915 else
916 {
917 bfd_boolean unresolved_reloc, warned;
918
919 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
920 r_symndx, symtab_hdr, sym_hashes,
921 h, sec, *relocation, unresolved_reloc, warned);
922
923 *is_far = (h && (h->other & STO_M68HC12_FAR));
924 stub_name = h->root.root.string;
925 }
926
927 if (h != NULL)
928 *name = h->root.root.string;
929 else
930 {
931 *name = (bfd_elf_string_from_elf_section
932 (input_bfd, symtab_hdr->sh_link, sym->st_name));
933 if (*name == NULL || **name == '\0')
934 *name = bfd_section_name (input_bfd, sec);
935 }
936
937 if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
938 {
939 struct elf32_m68hc11_stub_hash_entry* stub;
940 struct m68hc11_elf_link_hash_table *htab;
941
942 htab = m68hc11_elf_hash_table (info);
943 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
944 *name, FALSE, FALSE);
945 if (stub)
946 {
947 *relocation = stub->stub_offset
948 + stub->stub_sec->output_section->vma
949 + stub->stub_sec->output_offset;
950 *is_far = FALSE;
951 }
952 }
953 return TRUE;
954 }
955
956 /* Relocate a 68hc11/68hc12 ELF section. */
957 bfd_boolean
958 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
959 struct bfd_link_info *info,
960 bfd *input_bfd, asection *input_section,
961 bfd_byte *contents, Elf_Internal_Rela *relocs,
962 Elf_Internal_Sym *local_syms,
963 asection **local_sections)
964 {
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 Elf_Internal_Rela *rel, *relend;
968 const char *name = NULL;
969 struct m68hc11_page_info *pinfo;
970 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
971
972 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
973 sym_hashes = elf_sym_hashes (input_bfd);
974
975 /* Get memory bank parameters. */
976 m68hc11_elf_get_bank_parameters (info);
977 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
978
979 rel = relocs;
980 relend = relocs + input_section->reloc_count;
981 for (; rel < relend; rel++)
982 {
983 int r_type;
984 arelent arel;
985 reloc_howto_type *howto;
986 unsigned long r_symndx;
987 Elf_Internal_Sym *sym;
988 asection *sec;
989 bfd_vma relocation = 0;
990 bfd_reloc_status_type r = bfd_reloc_undefined;
991 bfd_vma phys_page;
992 bfd_vma phys_addr;
993 bfd_vma insn_addr;
994 bfd_vma insn_page;
995 bfd_boolean is_far = FALSE;
996
997 r_symndx = ELF32_R_SYM (rel->r_info);
998 r_type = ELF32_R_TYPE (rel->r_info);
999
1000 if (r_type == R_M68HC11_GNU_VTENTRY
1001 || r_type == R_M68HC11_GNU_VTINHERIT )
1002 continue;
1003
1004 if (info->relocatable)
1005 {
1006 /* This is a relocatable link. We don't have to change
1007 anything, unless the reloc is against a section symbol,
1008 in which case we have to adjust according to where the
1009 section symbol winds up in the output section. */
1010 if (r_symndx < symtab_hdr->sh_info)
1011 {
1012 sym = local_syms + r_symndx;
1013 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1014 {
1015 sec = local_sections[r_symndx];
1016 rel->r_addend += sec->output_offset + sym->st_value;
1017 }
1018 }
1019
1020 continue;
1021 }
1022 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
1023 howto = arel.howto;
1024
1025 m68hc11_get_relocation_value (input_bfd, info, input_section,
1026 local_sections, local_syms,
1027 rel, &name, &relocation, &is_far);
1028
1029 /* Do the memory bank mapping. */
1030 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1031 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1032 switch (r_type)
1033 {
1034 case R_M68HC11_24:
1035 /* Reloc used by 68HC12 call instruction. */
1036 bfd_put_16 (input_bfd, phys_addr,
1037 (bfd_byte*) contents + rel->r_offset);
1038 bfd_put_8 (input_bfd, phys_page,
1039 (bfd_byte*) contents + rel->r_offset + 2);
1040 r = bfd_reloc_ok;
1041 r_type = R_M68HC11_NONE;
1042 break;
1043
1044 case R_M68HC11_NONE:
1045 r = bfd_reloc_ok;
1046 break;
1047
1048 case R_M68HC11_LO16:
1049 /* Reloc generated by %addr(expr) gas to obtain the
1050 address as mapped in the memory bank window. */
1051 relocation = phys_addr;
1052 break;
1053
1054 case R_M68HC11_PAGE:
1055 /* Reloc generated by %page(expr) gas to obtain the
1056 page number associated with the address. */
1057 relocation = phys_page;
1058 break;
1059
1060 case R_M68HC11_16:
1061 /* Get virtual address of instruction having the relocation. */
1062 if (is_far)
1063 {
1064 const char* msg;
1065 char* buf;
1066 msg = _("Reference to the far symbol `%s' using a wrong "
1067 "relocation may result in incorrect execution");
1068 buf = alloca (strlen (msg) + strlen (name) + 10);
1069 sprintf (buf, msg, name);
1070
1071 (* info->callbacks->warning)
1072 (info, buf, name, input_bfd, NULL, rel->r_offset);
1073 }
1074
1075 /* Get virtual address of instruction having the relocation. */
1076 insn_addr = input_section->output_section->vma
1077 + input_section->output_offset
1078 + rel->r_offset;
1079
1080 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1081
1082 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1083 && m68hc11_addr_is_banked (pinfo, insn_addr)
1084 && phys_page != insn_page)
1085 {
1086 const char* msg;
1087 char* buf;
1088
1089 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1090 "as current banked address [%lx:%04lx] (%lx)");
1091
1092 buf = alloca (strlen (msg) + 128);
1093 sprintf (buf, msg, phys_page, phys_addr,
1094 (long) (relocation + rel->r_addend),
1095 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1096 (long) (insn_addr));
1097 if (!((*info->callbacks->warning)
1098 (info, buf, name, input_bfd, input_section,
1099 rel->r_offset)))
1100 return FALSE;
1101 break;
1102 }
1103 if (phys_page != 0 && insn_page == 0)
1104 {
1105 const char* msg;
1106 char* buf;
1107
1108 msg = _("reference to a banked address [%lx:%04lx] in the "
1109 "normal address space at %04lx");
1110
1111 buf = alloca (strlen (msg) + 128);
1112 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1113 if (!((*info->callbacks->warning)
1114 (info, buf, name, input_bfd, input_section,
1115 insn_addr)))
1116 return FALSE;
1117
1118 relocation = phys_addr;
1119 break;
1120 }
1121
1122 /* If this is a banked address use the phys_addr so that
1123 we stay in the banked window. */
1124 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1125 relocation = phys_addr;
1126 break;
1127 }
1128 if (r_type != R_M68HC11_NONE)
1129 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1130 contents, rel->r_offset,
1131 relocation, rel->r_addend);
1132
1133 if (r != bfd_reloc_ok)
1134 {
1135 const char * msg = (const char *) 0;
1136
1137 switch (r)
1138 {
1139 case bfd_reloc_overflow:
1140 if (!((*info->callbacks->reloc_overflow)
1141 (info, NULL, name, howto->name, (bfd_vma) 0,
1142 input_bfd, input_section, rel->r_offset)))
1143 return FALSE;
1144 break;
1145
1146 case bfd_reloc_undefined:
1147 if (!((*info->callbacks->undefined_symbol)
1148 (info, name, input_bfd, input_section,
1149 rel->r_offset, TRUE)))
1150 return FALSE;
1151 break;
1152
1153 case bfd_reloc_outofrange:
1154 msg = _ ("internal error: out of range error");
1155 goto common_error;
1156
1157 case bfd_reloc_notsupported:
1158 msg = _ ("internal error: unsupported relocation error");
1159 goto common_error;
1160
1161 case bfd_reloc_dangerous:
1162 msg = _ ("internal error: dangerous error");
1163 goto common_error;
1164
1165 default:
1166 msg = _ ("internal error: unknown error");
1167 /* fall through */
1168
1169 common_error:
1170 if (!((*info->callbacks->warning)
1171 (info, msg, name, input_bfd, input_section,
1172 rel->r_offset)))
1173 return FALSE;
1174 break;
1175 }
1176 }
1177 }
1178
1179 return TRUE;
1180 }
1181
1182
1183 \f
1184 /* Set and control ELF flags in ELF header. */
1185
1186 bfd_boolean
1187 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1188 {
1189 BFD_ASSERT (!elf_flags_init (abfd)
1190 || elf_elfheader (abfd)->e_flags == flags);
1191
1192 elf_elfheader (abfd)->e_flags = flags;
1193 elf_flags_init (abfd) = TRUE;
1194 return TRUE;
1195 }
1196
1197 /* Merge backend specific data from an object file to the output
1198 object file when linking. */
1199
1200 bfd_boolean
1201 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1202 {
1203 flagword old_flags;
1204 flagword new_flags;
1205 bfd_boolean ok = TRUE;
1206
1207 /* Check if we have the same endianess */
1208 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1209 return FALSE;
1210
1211 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1212 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1213 return TRUE;
1214
1215 new_flags = elf_elfheader (ibfd)->e_flags;
1216 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1217 old_flags = elf_elfheader (obfd)->e_flags;
1218
1219 if (! elf_flags_init (obfd))
1220 {
1221 elf_flags_init (obfd) = TRUE;
1222 elf_elfheader (obfd)->e_flags = new_flags;
1223 elf_elfheader (obfd)->e_ident[EI_CLASS]
1224 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1225
1226 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1227 && bfd_get_arch_info (obfd)->the_default)
1228 {
1229 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1230 bfd_get_mach (ibfd)))
1231 return FALSE;
1232 }
1233
1234 return TRUE;
1235 }
1236
1237 /* Check ABI compatibility. */
1238 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1239 {
1240 (*_bfd_error_handler)
1241 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1242 "and others for 32-bit integers"), ibfd);
1243 ok = FALSE;
1244 }
1245 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1246 {
1247 (*_bfd_error_handler)
1248 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1249 "and others for 64-bit double"), ibfd);
1250 ok = FALSE;
1251 }
1252
1253 /* Processor compatibility. */
1254 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1255 {
1256 (*_bfd_error_handler)
1257 (_("%B: linking files compiled for HCS12 with "
1258 "others compiled for HC12"), ibfd);
1259 ok = FALSE;
1260 }
1261 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1262 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1263
1264 elf_elfheader (obfd)->e_flags = new_flags;
1265
1266 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1267 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1268
1269 /* Warn about any other mismatches */
1270 if (new_flags != old_flags)
1271 {
1272 (*_bfd_error_handler)
1273 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1274 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1275 ok = FALSE;
1276 }
1277
1278 if (! ok)
1279 {
1280 bfd_set_error (bfd_error_bad_value);
1281 return FALSE;
1282 }
1283
1284 return TRUE;
1285 }
1286
1287 bfd_boolean
1288 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1289 {
1290 FILE *file = (FILE *) ptr;
1291
1292 BFD_ASSERT (abfd != NULL && ptr != NULL);
1293
1294 /* Print normal ELF private data. */
1295 _bfd_elf_print_private_bfd_data (abfd, ptr);
1296
1297 /* xgettext:c-format */
1298 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1299
1300 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1301 fprintf (file, _("[abi=32-bit int, "));
1302 else
1303 fprintf (file, _("[abi=16-bit int, "));
1304
1305 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1306 fprintf (file, _("64-bit double, "));
1307 else
1308 fprintf (file, _("32-bit double, "));
1309
1310 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1311 fprintf (file, _("cpu=HC11]"));
1312 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1313 fprintf (file, _("cpu=HCS12]"));
1314 else
1315 fprintf (file, _("cpu=HC12]"));
1316
1317 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1318 fprintf (file, _(" [memory=bank-model]"));
1319 else
1320 fprintf (file, _(" [memory=flat]"));
1321
1322 fputc ('\n', file);
1323
1324 return TRUE;
1325 }
1326
1327 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1328 asection *asect, void *arg)
1329 {
1330 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1331
1332 if (asect->vma >= p->pinfo->bank_virtual)
1333 p->use_memory_banks = TRUE;
1334 }
1335
1336 /* Tweak the OSABI field of the elf header. */
1337
1338 void
1339 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1340 {
1341 struct m68hc11_scan_param param;
1342
1343 if (link_info == 0)
1344 return;
1345
1346 m68hc11_elf_get_bank_parameters (link_info);
1347
1348 param.use_memory_banks = FALSE;
1349 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1350 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1351 if (param.use_memory_banks)
1352 {
1353 Elf_Internal_Ehdr * i_ehdrp;
1354
1355 i_ehdrp = elf_elfheader (abfd);
1356 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1357 }
1358 }
1359
This page took 0.058586 seconds and 4 git commands to generate.