(linux_test_for_tracefork): Don't leave zombie
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
30
31
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
35
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
40
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
43
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
47
48 static bfd_boolean m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
50
51 static void scan_sections_for_abi (bfd*, asection*, PTR);
52
53 struct m68hc11_scan_param
54 {
55 struct m68hc11_page_info* pinfo;
56 bfd_boolean use_memory_banks;
57 };
58
59
60 /* Create a 68HC11/68HC12 ELF linker hash table. */
61
62 struct m68hc11_elf_link_hash_table*
63 m68hc11_elf_hash_table_create (bfd *abfd)
64 {
65 struct m68hc11_elf_link_hash_table *ret;
66 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
67
68 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
69 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
70 return NULL;
71
72 memset (ret, 0, amt);
73 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
74 _bfd_elf_link_hash_newfunc,
75 sizeof (struct elf_link_hash_entry)))
76 {
77 free (ret);
78 return NULL;
79 }
80
81 /* Init the stub hash table too. */
82 amt = sizeof (struct bfd_hash_table);
83 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
84 if (ret->stub_hash_table == NULL)
85 {
86 free (ret);
87 return NULL;
88 }
89 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
90 sizeof (struct elf32_m68hc11_stub_hash_entry)))
91 return NULL;
92
93 ret->stub_bfd = NULL;
94 ret->stub_section = 0;
95 ret->add_stub_section = NULL;
96 ret->sym_sec.abfd = NULL;
97
98 return ret;
99 }
100
101 /* Free the derived linker hash table. */
102
103 void
104 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
105 {
106 struct m68hc11_elf_link_hash_table *ret
107 = (struct m68hc11_elf_link_hash_table *) hash;
108
109 bfd_hash_table_free (ret->stub_hash_table);
110 free (ret->stub_hash_table);
111 _bfd_generic_link_hash_table_free (hash);
112 }
113
114 /* Assorted hash table functions. */
115
116 /* Initialize an entry in the stub hash table. */
117
118 static struct bfd_hash_entry *
119 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
120 const char *string)
121 {
122 /* Allocate the structure if it has not already been allocated by a
123 subclass. */
124 if (entry == NULL)
125 {
126 entry = bfd_hash_allocate (table,
127 sizeof (struct elf32_m68hc11_stub_hash_entry));
128 if (entry == NULL)
129 return entry;
130 }
131
132 /* Call the allocation method of the superclass. */
133 entry = bfd_hash_newfunc (entry, table, string);
134 if (entry != NULL)
135 {
136 struct elf32_m68hc11_stub_hash_entry *eh;
137
138 /* Initialize the local fields. */
139 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
140 eh->stub_sec = NULL;
141 eh->stub_offset = 0;
142 eh->target_value = 0;
143 eh->target_section = NULL;
144 }
145
146 return entry;
147 }
148
149 /* Add a new stub entry to the stub hash. Not all fields of the new
150 stub entry are initialised. */
151
152 static struct elf32_m68hc11_stub_hash_entry *
153 m68hc12_add_stub (const char *stub_name, asection *section,
154 struct m68hc11_elf_link_hash_table *htab)
155 {
156 struct elf32_m68hc11_stub_hash_entry *stub_entry;
157
158 /* Enter this entry into the linker stub hash table. */
159 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
160 TRUE, FALSE);
161 if (stub_entry == NULL)
162 {
163 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
164 section->owner, stub_name);
165 return NULL;
166 }
167
168 if (htab->stub_section == 0)
169 {
170 htab->stub_section = (*htab->add_stub_section) (".tramp",
171 htab->tramp_section);
172 }
173
174 stub_entry->stub_sec = htab->stub_section;
175 stub_entry->stub_offset = 0;
176 return stub_entry;
177 }
178
179 /* Hook called by the linker routine which adds symbols from an object
180 file. We use it for identify far symbols and force a loading of
181 the trampoline handler. */
182
183 bfd_boolean
184 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
185 Elf_Internal_Sym *sym,
186 const char **namep ATTRIBUTE_UNUSED,
187 flagword *flagsp ATTRIBUTE_UNUSED,
188 asection **secp ATTRIBUTE_UNUSED,
189 bfd_vma *valp ATTRIBUTE_UNUSED)
190 {
191 if (sym->st_other & STO_M68HC12_FAR)
192 {
193 struct elf_link_hash_entry *h;
194
195 h = (struct elf_link_hash_entry *)
196 bfd_link_hash_lookup (info->hash, "__far_trampoline",
197 FALSE, FALSE, FALSE);
198 if (h == NULL)
199 {
200 struct bfd_link_hash_entry* entry = NULL;
201
202 _bfd_generic_link_add_one_symbol (info, abfd,
203 "__far_trampoline",
204 BSF_GLOBAL,
205 bfd_und_section_ptr,
206 (bfd_vma) 0, (const char*) NULL,
207 FALSE, FALSE, &entry);
208 }
209
210 }
211 return TRUE;
212 }
213
214 /* External entry points for sizing and building linker stubs. */
215
216 /* Set up various things so that we can make a list of input sections
217 for each output section included in the link. Returns -1 on error,
218 0 when no stubs will be needed, and 1 on success. */
219
220 int
221 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
222 {
223 bfd *input_bfd;
224 unsigned int bfd_count;
225 int top_id, top_index;
226 asection *section;
227 asection **input_list, **list;
228 bfd_size_type amt;
229 asection *text_section;
230 struct m68hc11_elf_link_hash_table *htab;
231
232 htab = m68hc11_elf_hash_table (info);
233
234 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
235 return 0;
236
237 /* Count the number of input BFDs and find the top input section id.
238 Also search for an existing ".tramp" section so that we know
239 where generated trampolines must go. Default to ".text" if we
240 can't find it. */
241 htab->tramp_section = 0;
242 text_section = 0;
243 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
244 input_bfd != NULL;
245 input_bfd = input_bfd->link_next)
246 {
247 bfd_count += 1;
248 for (section = input_bfd->sections;
249 section != NULL;
250 section = section->next)
251 {
252 const char* name = bfd_get_section_name (input_bfd, section);
253
254 if (!strcmp (name, ".tramp"))
255 htab->tramp_section = section;
256
257 if (!strcmp (name, ".text"))
258 text_section = section;
259
260 if (top_id < section->id)
261 top_id = section->id;
262 }
263 }
264 htab->bfd_count = bfd_count;
265 if (htab->tramp_section == 0)
266 htab->tramp_section = text_section;
267
268 /* We can't use output_bfd->section_count here to find the top output
269 section index as some sections may have been removed, and
270 strip_excluded_output_sections doesn't renumber the indices. */
271 for (section = output_bfd->sections, top_index = 0;
272 section != NULL;
273 section = section->next)
274 {
275 if (top_index < section->index)
276 top_index = section->index;
277 }
278
279 htab->top_index = top_index;
280 amt = sizeof (asection *) * (top_index + 1);
281 input_list = (asection **) bfd_malloc (amt);
282 htab->input_list = input_list;
283 if (input_list == NULL)
284 return -1;
285
286 /* For sections we aren't interested in, mark their entries with a
287 value we can check later. */
288 list = input_list + top_index;
289 do
290 *list = bfd_abs_section_ptr;
291 while (list-- != input_list);
292
293 for (section = output_bfd->sections;
294 section != NULL;
295 section = section->next)
296 {
297 if ((section->flags & SEC_CODE) != 0)
298 input_list[section->index] = NULL;
299 }
300
301 return 1;
302 }
303
304 /* Determine and set the size of the stub section for a final link.
305
306 The basic idea here is to examine all the relocations looking for
307 PC-relative calls to a target that is unreachable with a "bl"
308 instruction. */
309
310 bfd_boolean
311 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
312 struct bfd_link_info *info,
313 asection * (*add_stub_section) (const char*, asection*))
314 {
315 bfd *input_bfd;
316 asection *section;
317 Elf_Internal_Sym *local_syms, **all_local_syms;
318 unsigned int bfd_indx, bfd_count;
319 bfd_size_type amt;
320 asection *stub_sec;
321
322 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
323
324 /* Stash our params away. */
325 htab->stub_bfd = stub_bfd;
326 htab->add_stub_section = add_stub_section;
327
328 /* Count the number of input BFDs and find the top input section id. */
329 for (input_bfd = info->input_bfds, bfd_count = 0;
330 input_bfd != NULL;
331 input_bfd = input_bfd->link_next)
332 {
333 bfd_count += 1;
334 }
335
336 /* We want to read in symbol extension records only once. To do this
337 we need to read in the local symbols in parallel and save them for
338 later use; so hold pointers to the local symbols in an array. */
339 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
340 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
341 if (all_local_syms == NULL)
342 return FALSE;
343
344 /* Walk over all the input BFDs, swapping in local symbols. */
345 for (input_bfd = info->input_bfds, bfd_indx = 0;
346 input_bfd != NULL;
347 input_bfd = input_bfd->link_next, bfd_indx++)
348 {
349 Elf_Internal_Shdr *symtab_hdr;
350
351 /* We'll need the symbol table in a second. */
352 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
353 if (symtab_hdr->sh_info == 0)
354 continue;
355
356 /* We need an array of the local symbols attached to the input bfd. */
357 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
358 if (local_syms == NULL)
359 {
360 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
361 symtab_hdr->sh_info, 0,
362 NULL, NULL, NULL);
363 /* Cache them for elf_link_input_bfd. */
364 symtab_hdr->contents = (unsigned char *) local_syms;
365 }
366 if (local_syms == NULL)
367 {
368 free (all_local_syms);
369 return FALSE;
370 }
371
372 all_local_syms[bfd_indx] = local_syms;
373 }
374
375 for (input_bfd = info->input_bfds, bfd_indx = 0;
376 input_bfd != NULL;
377 input_bfd = input_bfd->link_next, bfd_indx++)
378 {
379 Elf_Internal_Shdr *symtab_hdr;
380 Elf_Internal_Sym *local_syms;
381 struct elf_link_hash_entry ** sym_hashes;
382
383 sym_hashes = elf_sym_hashes (input_bfd);
384
385 /* We'll need the symbol table in a second. */
386 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
387 if (symtab_hdr->sh_info == 0)
388 continue;
389
390 local_syms = all_local_syms[bfd_indx];
391
392 /* Walk over each section attached to the input bfd. */
393 for (section = input_bfd->sections;
394 section != NULL;
395 section = section->next)
396 {
397 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
398
399 /* If there aren't any relocs, then there's nothing more
400 to do. */
401 if ((section->flags & SEC_RELOC) == 0
402 || section->reloc_count == 0)
403 continue;
404
405 /* If this section is a link-once section that will be
406 discarded, then don't create any stubs. */
407 if (section->output_section == NULL
408 || section->output_section->owner != output_bfd)
409 continue;
410
411 /* Get the relocs. */
412 internal_relocs
413 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
414 (Elf_Internal_Rela *) NULL,
415 info->keep_memory);
416 if (internal_relocs == NULL)
417 goto error_ret_free_local;
418
419 /* Now examine each relocation. */
420 irela = internal_relocs;
421 irelaend = irela + section->reloc_count;
422 for (; irela < irelaend; irela++)
423 {
424 unsigned int r_type, r_indx;
425 struct elf32_m68hc11_stub_hash_entry *stub_entry;
426 asection *sym_sec;
427 bfd_vma sym_value;
428 struct elf_link_hash_entry *hash;
429 const char *stub_name;
430 Elf_Internal_Sym *sym;
431
432 r_type = ELF32_R_TYPE (irela->r_info);
433
434 /* Only look at 16-bit relocs. */
435 if (r_type != (unsigned int) R_M68HC11_16)
436 continue;
437
438 /* Now determine the call target, its name, value,
439 section. */
440 r_indx = ELF32_R_SYM (irela->r_info);
441 if (r_indx < symtab_hdr->sh_info)
442 {
443 /* It's a local symbol. */
444 Elf_Internal_Shdr *hdr;
445 bfd_boolean is_far;
446
447 sym = local_syms + r_indx;
448 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
449 if (!is_far)
450 continue;
451
452 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
453 sym_sec = hdr->bfd_section;
454 stub_name = (bfd_elf_string_from_elf_section
455 (input_bfd, symtab_hdr->sh_link,
456 sym->st_name));
457 sym_value = sym->st_value;
458 hash = NULL;
459 }
460 else
461 {
462 /* It's an external symbol. */
463 int e_indx;
464
465 e_indx = r_indx - symtab_hdr->sh_info;
466 hash = (struct elf_link_hash_entry *)
467 (sym_hashes[e_indx]);
468
469 while (hash->root.type == bfd_link_hash_indirect
470 || hash->root.type == bfd_link_hash_warning)
471 hash = ((struct elf_link_hash_entry *)
472 hash->root.u.i.link);
473
474 if (hash->root.type == bfd_link_hash_defined
475 || hash->root.type == bfd_link_hash_defweak
476 || hash->root.type == bfd_link_hash_new)
477 {
478 if (!(hash->other & STO_M68HC12_FAR))
479 continue;
480 }
481 else if (hash->root.type == bfd_link_hash_undefweak)
482 {
483 continue;
484 }
485 else if (hash->root.type == bfd_link_hash_undefined)
486 {
487 continue;
488 }
489 else
490 {
491 bfd_set_error (bfd_error_bad_value);
492 goto error_ret_free_internal;
493 }
494 sym_sec = hash->root.u.def.section;
495 sym_value = hash->root.u.def.value;
496 stub_name = hash->root.root.string;
497 }
498
499 if (!stub_name)
500 goto error_ret_free_internal;
501
502 stub_entry = m68hc12_stub_hash_lookup
503 (htab->stub_hash_table,
504 stub_name,
505 FALSE, FALSE);
506 if (stub_entry == NULL)
507 {
508 if (add_stub_section == 0)
509 continue;
510
511 stub_entry = m68hc12_add_stub (stub_name, section, htab);
512 if (stub_entry == NULL)
513 {
514 error_ret_free_internal:
515 if (elf_section_data (section)->relocs == NULL)
516 free (internal_relocs);
517 goto error_ret_free_local;
518 }
519 }
520
521 stub_entry->target_value = sym_value;
522 stub_entry->target_section = sym_sec;
523 }
524
525 /* We're done with the internal relocs, free them. */
526 if (elf_section_data (section)->relocs == NULL)
527 free (internal_relocs);
528 }
529 }
530
531 if (add_stub_section)
532 {
533 /* OK, we've added some stubs. Find out the new size of the
534 stub sections. */
535 for (stub_sec = htab->stub_bfd->sections;
536 stub_sec != NULL;
537 stub_sec = stub_sec->next)
538 {
539 stub_sec->size = 0;
540 }
541
542 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
543 }
544 free (all_local_syms);
545 return TRUE;
546
547 error_ret_free_local:
548 free (all_local_syms);
549 return FALSE;
550 }
551
552 /* Export the trampoline addresses in the symbol table. */
553 static bfd_boolean
554 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
555 {
556 struct bfd_link_info *info;
557 struct m68hc11_elf_link_hash_table *htab;
558 struct elf32_m68hc11_stub_hash_entry *stub_entry;
559 char* name;
560 bfd_boolean result;
561
562 info = (struct bfd_link_info *) in_arg;
563 htab = m68hc11_elf_hash_table (info);
564
565 /* Massage our args to the form they really have. */
566 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
567
568 /* Generate the trampoline according to HC11 or HC12. */
569 result = (* htab->build_one_stub) (gen_entry, in_arg);
570
571 /* Make a printable name that does not conflict with the real function. */
572 name = alloca (strlen (stub_entry->root.string) + 16);
573 sprintf (name, "tramp.%s", stub_entry->root.string);
574
575 /* Export the symbol for debugging/disassembling. */
576 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
577 stub_entry->stub_offset,
578 stub_entry->stub_sec);
579 return result;
580 }
581
582 /* Export a symbol or set its value and section. */
583 static void
584 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
585 const char *name, bfd_vma value, asection *sec)
586 {
587 struct elf_link_hash_entry *h;
588
589 h = (struct elf_link_hash_entry *)
590 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
591 if (h == NULL)
592 {
593 _bfd_generic_link_add_one_symbol (info, abfd,
594 name,
595 BSF_GLOBAL,
596 sec,
597 value,
598 (const char*) NULL,
599 TRUE, FALSE, NULL);
600 }
601 else
602 {
603 h->root.type = bfd_link_hash_defined;
604 h->root.u.def.value = value;
605 h->root.u.def.section = sec;
606 }
607 }
608
609
610 /* Build all the stubs associated with the current output file. The
611 stubs are kept in a hash table attached to the main linker hash
612 table. This function is called via m68hc12elf_finish in the
613 linker. */
614
615 bfd_boolean
616 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
617 {
618 asection *stub_sec;
619 struct bfd_hash_table *table;
620 struct m68hc11_elf_link_hash_table *htab;
621 struct m68hc11_scan_param param;
622
623 m68hc11_elf_get_bank_parameters (info);
624 htab = m68hc11_elf_hash_table (info);
625
626 for (stub_sec = htab->stub_bfd->sections;
627 stub_sec != NULL;
628 stub_sec = stub_sec->next)
629 {
630 bfd_size_type size;
631
632 /* Allocate memory to hold the linker stubs. */
633 size = stub_sec->size;
634 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
635 if (stub_sec->contents == NULL && size != 0)
636 return FALSE;
637 stub_sec->size = 0;
638 }
639
640 /* Build the stubs as directed by the stub hash table. */
641 table = htab->stub_hash_table;
642 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
643
644 /* Scan the output sections to see if we use the memory banks.
645 If so, export the symbols that define how the memory banks
646 are mapped. This is used by gdb and the simulator to obtain
647 the information. It can be used by programs to burn the eprom
648 at the good addresses. */
649 param.use_memory_banks = FALSE;
650 param.pinfo = &htab->pinfo;
651 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
652 if (param.use_memory_banks)
653 {
654 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
655 htab->pinfo.bank_physical,
656 bfd_abs_section_ptr);
657 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
658 htab->pinfo.bank_virtual,
659 bfd_abs_section_ptr);
660 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
661 htab->pinfo.bank_size,
662 bfd_abs_section_ptr);
663 }
664
665 return TRUE;
666 }
667
668 void
669 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
670 {
671 unsigned i;
672 struct m68hc11_page_info *pinfo;
673 struct bfd_link_hash_entry *h;
674
675 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
676 if (pinfo->bank_param_initialized)
677 return;
678
679 pinfo->bank_virtual = M68HC12_BANK_VIRT;
680 pinfo->bank_mask = M68HC12_BANK_MASK;
681 pinfo->bank_physical = M68HC12_BANK_BASE;
682 pinfo->bank_shift = M68HC12_BANK_SHIFT;
683 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
684
685 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
686 FALSE, FALSE, TRUE);
687 if (h != (struct bfd_link_hash_entry*) NULL
688 && h->type == bfd_link_hash_defined)
689 pinfo->bank_physical = (h->u.def.value
690 + h->u.def.section->output_section->vma
691 + h->u.def.section->output_offset);
692
693 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
694 FALSE, FALSE, TRUE);
695 if (h != (struct bfd_link_hash_entry*) NULL
696 && h->type == bfd_link_hash_defined)
697 pinfo->bank_virtual = (h->u.def.value
698 + h->u.def.section->output_section->vma
699 + h->u.def.section->output_offset);
700
701 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
702 FALSE, FALSE, TRUE);
703 if (h != (struct bfd_link_hash_entry*) NULL
704 && h->type == bfd_link_hash_defined)
705 pinfo->bank_size = (h->u.def.value
706 + h->u.def.section->output_section->vma
707 + h->u.def.section->output_offset);
708
709 pinfo->bank_shift = 0;
710 for (i = pinfo->bank_size; i != 0; i >>= 1)
711 pinfo->bank_shift++;
712 pinfo->bank_shift--;
713 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
714 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
715 pinfo->bank_param_initialized = 1;
716
717 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
718 FALSE, TRUE);
719 if (h != (struct bfd_link_hash_entry*) NULL
720 && h->type == bfd_link_hash_defined)
721 pinfo->trampoline_addr = (h->u.def.value
722 + h->u.def.section->output_section->vma
723 + h->u.def.section->output_offset);
724 }
725
726 /* Return 1 if the address is in banked memory.
727 This can be applied to a virtual address and to a physical address. */
728 int
729 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
730 {
731 if (addr >= pinfo->bank_virtual)
732 return 1;
733
734 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
735 return 1;
736
737 return 0;
738 }
739
740 /* Return the physical address seen by the processor, taking
741 into account banked memory. */
742 bfd_vma
743 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
744 {
745 if (addr < pinfo->bank_virtual)
746 return addr;
747
748 /* Map the address to the memory bank. */
749 addr -= pinfo->bank_virtual;
750 addr &= pinfo->bank_mask;
751 addr += pinfo->bank_physical;
752 return addr;
753 }
754
755 /* Return the page number corresponding to an address in banked memory. */
756 bfd_vma
757 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
758 {
759 if (addr < pinfo->bank_virtual)
760 return 0;
761
762 /* Map the address to the memory bank. */
763 addr -= pinfo->bank_virtual;
764 addr >>= pinfo->bank_shift;
765 addr &= 0x0ff;
766 return addr;
767 }
768
769 /* This function is used for relocs which are only used for relaxing,
770 which the linker should otherwise ignore. */
771
772 bfd_reloc_status_type
773 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
774 arelent *reloc_entry,
775 asymbol *symbol ATTRIBUTE_UNUSED,
776 void *data ATTRIBUTE_UNUSED,
777 asection *input_section,
778 bfd *output_bfd,
779 char **error_message ATTRIBUTE_UNUSED)
780 {
781 if (output_bfd != NULL)
782 reloc_entry->address += input_section->output_offset;
783 return bfd_reloc_ok;
784 }
785
786 bfd_reloc_status_type
787 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
788 arelent *reloc_entry,
789 asymbol *symbol,
790 void *data ATTRIBUTE_UNUSED,
791 asection *input_section,
792 bfd *output_bfd,
793 char **error_message ATTRIBUTE_UNUSED)
794 {
795 if (output_bfd != (bfd *) NULL
796 && (symbol->flags & BSF_SECTION_SYM) == 0
797 && (! reloc_entry->howto->partial_inplace
798 || reloc_entry->addend == 0))
799 {
800 reloc_entry->address += input_section->output_offset;
801 return bfd_reloc_ok;
802 }
803
804 if (output_bfd != NULL)
805 return bfd_reloc_continue;
806
807 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
808 return bfd_reloc_outofrange;
809
810 abort();
811 }
812
813 asection *
814 elf32_m68hc11_gc_mark_hook (asection *sec,
815 struct bfd_link_info *info ATTRIBUTE_UNUSED,
816 Elf_Internal_Rela *rel,
817 struct elf_link_hash_entry *h,
818 Elf_Internal_Sym *sym)
819 {
820 if (h != NULL)
821 {
822 switch (ELF32_R_TYPE (rel->r_info))
823 {
824 default:
825 switch (h->root.type)
826 {
827 case bfd_link_hash_defined:
828 case bfd_link_hash_defweak:
829 return h->root.u.def.section;
830
831 case bfd_link_hash_common:
832 return h->root.u.c.p->section;
833
834 default:
835 break;
836 }
837 }
838 }
839 else
840 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
841
842 return NULL;
843 }
844
845 bfd_boolean
846 elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
847 struct bfd_link_info *info ATTRIBUTE_UNUSED,
848 asection *sec ATTRIBUTE_UNUSED,
849 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
850 {
851 /* We don't use got and plt entries for 68hc11/68hc12. */
852 return TRUE;
853 }
854
855 /* Look through the relocs for a section during the first phase.
856 Since we don't do .gots or .plts, we just need to consider the
857 virtual table relocs for gc. */
858
859 bfd_boolean
860 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
861 asection *sec, const Elf_Internal_Rela *relocs)
862 {
863 Elf_Internal_Shdr * symtab_hdr;
864 struct elf_link_hash_entry ** sym_hashes;
865 struct elf_link_hash_entry ** sym_hashes_end;
866 const Elf_Internal_Rela * rel;
867 const Elf_Internal_Rela * rel_end;
868
869 if (info->relocatable)
870 return TRUE;
871
872 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
873 sym_hashes = elf_sym_hashes (abfd);
874 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
875 if (!elf_bad_symtab (abfd))
876 sym_hashes_end -= symtab_hdr->sh_info;
877
878 rel_end = relocs + sec->reloc_count;
879
880 for (rel = relocs; rel < rel_end; rel++)
881 {
882 struct elf_link_hash_entry * h;
883 unsigned long r_symndx;
884
885 r_symndx = ELF32_R_SYM (rel->r_info);
886
887 if (r_symndx < symtab_hdr->sh_info)
888 h = NULL;
889 else
890 {
891 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895 }
896
897 switch (ELF32_R_TYPE (rel->r_info))
898 {
899 /* This relocation describes the C++ object vtable hierarchy.
900 Reconstruct it for later use during GC. */
901 case R_M68HC11_GNU_VTINHERIT:
902 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
903 return FALSE;
904 break;
905
906 /* This relocation describes which C++ vtable entries are actually
907 used. Record for later use during GC. */
908 case R_M68HC11_GNU_VTENTRY:
909 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
910 return FALSE;
911 break;
912 }
913 }
914
915 return TRUE;
916 }
917
918 static bfd_boolean
919 m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info,
920 asection *input_section,
921 asection **local_sections,
922 Elf_Internal_Sym *local_syms,
923 Elf_Internal_Rela *rel,
924 const char **name,
925 bfd_vma *relocation, bfd_boolean *is_far)
926 {
927 Elf_Internal_Shdr *symtab_hdr;
928 struct elf_link_hash_entry **sym_hashes;
929 unsigned long r_symndx;
930 asection *sec;
931 struct elf_link_hash_entry *h;
932 Elf_Internal_Sym *sym;
933 const char* stub_name = 0;
934
935 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
936 sym_hashes = elf_sym_hashes (input_bfd);
937
938 r_symndx = ELF32_R_SYM (rel->r_info);
939
940 /* This is a final link. */
941 h = NULL;
942 sym = NULL;
943 sec = NULL;
944 if (r_symndx < symtab_hdr->sh_info)
945 {
946 sym = local_syms + r_symndx;
947 sec = local_sections[r_symndx];
948 *relocation = (sec->output_section->vma
949 + sec->output_offset
950 + sym->st_value);
951 *is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
952 if (*is_far)
953 stub_name = (bfd_elf_string_from_elf_section
954 (input_bfd, symtab_hdr->sh_link,
955 sym->st_name));
956 }
957 else
958 {
959 bfd_boolean unresolved_reloc, warned;
960
961 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
962 r_symndx, symtab_hdr, sym_hashes,
963 h, sec, *relocation, unresolved_reloc, warned);
964
965 *is_far = (h && (h->other & STO_M68HC12_FAR));
966 stub_name = h->root.root.string;
967 }
968
969 if (h != NULL)
970 *name = h->root.root.string;
971 else
972 {
973 *name = (bfd_elf_string_from_elf_section
974 (input_bfd, symtab_hdr->sh_link, sym->st_name));
975 if (*name == NULL || **name == '\0')
976 *name = bfd_section_name (input_bfd, sec);
977 }
978
979 if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
980 {
981 struct elf32_m68hc11_stub_hash_entry* stub;
982 struct m68hc11_elf_link_hash_table *htab;
983
984 htab = m68hc11_elf_hash_table (info);
985 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
986 *name, FALSE, FALSE);
987 if (stub)
988 {
989 *relocation = stub->stub_offset
990 + stub->stub_sec->output_section->vma
991 + stub->stub_sec->output_offset;
992 *is_far = FALSE;
993 }
994 }
995 return TRUE;
996 }
997
998 /* Relocate a 68hc11/68hc12 ELF section. */
999 bfd_boolean
1000 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1001 struct bfd_link_info *info,
1002 bfd *input_bfd, asection *input_section,
1003 bfd_byte *contents, Elf_Internal_Rela *relocs,
1004 Elf_Internal_Sym *local_syms,
1005 asection **local_sections)
1006 {
1007 Elf_Internal_Shdr *symtab_hdr;
1008 struct elf_link_hash_entry **sym_hashes;
1009 Elf_Internal_Rela *rel, *relend;
1010 const char *name = NULL;
1011 struct m68hc11_page_info *pinfo;
1012 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
1013
1014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1015 sym_hashes = elf_sym_hashes (input_bfd);
1016
1017 /* Get memory bank parameters. */
1018 m68hc11_elf_get_bank_parameters (info);
1019 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
1020
1021 rel = relocs;
1022 relend = relocs + input_section->reloc_count;
1023 for (; rel < relend; rel++)
1024 {
1025 int r_type;
1026 arelent arel;
1027 reloc_howto_type *howto;
1028 unsigned long r_symndx;
1029 Elf_Internal_Sym *sym;
1030 asection *sec;
1031 bfd_vma relocation = 0;
1032 bfd_reloc_status_type r = bfd_reloc_undefined;
1033 bfd_vma phys_page;
1034 bfd_vma phys_addr;
1035 bfd_vma insn_addr;
1036 bfd_vma insn_page;
1037 bfd_boolean is_far = FALSE;
1038
1039 r_symndx = ELF32_R_SYM (rel->r_info);
1040 r_type = ELF32_R_TYPE (rel->r_info);
1041
1042 if (r_type == R_M68HC11_GNU_VTENTRY
1043 || r_type == R_M68HC11_GNU_VTINHERIT )
1044 continue;
1045
1046 if (info->relocatable)
1047 {
1048 /* This is a relocatable link. We don't have to change
1049 anything, unless the reloc is against a section symbol,
1050 in which case we have to adjust according to where the
1051 section symbol winds up in the output section. */
1052 if (r_symndx < symtab_hdr->sh_info)
1053 {
1054 sym = local_syms + r_symndx;
1055 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1056 {
1057 sec = local_sections[r_symndx];
1058 rel->r_addend += sec->output_offset + sym->st_value;
1059 }
1060 }
1061
1062 continue;
1063 }
1064 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
1065 howto = arel.howto;
1066
1067 m68hc11_get_relocation_value (input_bfd, info, input_section,
1068 local_sections, local_syms,
1069 rel, &name, &relocation, &is_far);
1070
1071 /* Do the memory bank mapping. */
1072 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1073 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1074 switch (r_type)
1075 {
1076 case R_M68HC11_24:
1077 /* Reloc used by 68HC12 call instruction. */
1078 bfd_put_16 (input_bfd, phys_addr,
1079 (bfd_byte*) contents + rel->r_offset);
1080 bfd_put_8 (input_bfd, phys_page,
1081 (bfd_byte*) contents + rel->r_offset + 2);
1082 r = bfd_reloc_ok;
1083 r_type = R_M68HC11_NONE;
1084 break;
1085
1086 case R_M68HC11_NONE:
1087 r = bfd_reloc_ok;
1088 break;
1089
1090 case R_M68HC11_LO16:
1091 /* Reloc generated by %addr(expr) gas to obtain the
1092 address as mapped in the memory bank window. */
1093 relocation = phys_addr;
1094 break;
1095
1096 case R_M68HC11_PAGE:
1097 /* Reloc generated by %page(expr) gas to obtain the
1098 page number associated with the address. */
1099 relocation = phys_page;
1100 break;
1101
1102 case R_M68HC11_16:
1103 /* Get virtual address of instruction having the relocation. */
1104 if (is_far)
1105 {
1106 const char* msg;
1107 char* buf;
1108 msg = _("Reference to the far symbol `%s' using a wrong "
1109 "relocation may result in incorrect execution");
1110 buf = alloca (strlen (msg) + strlen (name) + 10);
1111 sprintf (buf, msg, name);
1112
1113 (* info->callbacks->warning)
1114 (info, buf, name, input_bfd, NULL, rel->r_offset);
1115 }
1116
1117 /* Get virtual address of instruction having the relocation. */
1118 insn_addr = input_section->output_section->vma
1119 + input_section->output_offset
1120 + rel->r_offset;
1121
1122 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1123
1124 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1125 && m68hc11_addr_is_banked (pinfo, insn_addr)
1126 && phys_page != insn_page)
1127 {
1128 const char* msg;
1129 char* buf;
1130
1131 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1132 "as current banked address [%lx:%04lx] (%lx)");
1133
1134 buf = alloca (strlen (msg) + 128);
1135 sprintf (buf, msg, phys_page, phys_addr,
1136 (long) (relocation + rel->r_addend),
1137 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1138 (long) (insn_addr));
1139 if (!((*info->callbacks->warning)
1140 (info, buf, name, input_bfd, input_section,
1141 rel->r_offset)))
1142 return FALSE;
1143 break;
1144 }
1145 if (phys_page != 0 && insn_page == 0)
1146 {
1147 const char* msg;
1148 char* buf;
1149
1150 msg = _("reference to a banked address [%lx:%04lx] in the "
1151 "normal address space at %04lx");
1152
1153 buf = alloca (strlen (msg) + 128);
1154 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1155 if (!((*info->callbacks->warning)
1156 (info, buf, name, input_bfd, input_section,
1157 insn_addr)))
1158 return FALSE;
1159
1160 relocation = phys_addr;
1161 break;
1162 }
1163
1164 /* If this is a banked address use the phys_addr so that
1165 we stay in the banked window. */
1166 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1167 relocation = phys_addr;
1168 break;
1169 }
1170 if (r_type != R_M68HC11_NONE)
1171 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1172 contents, rel->r_offset,
1173 relocation, rel->r_addend);
1174
1175 if (r != bfd_reloc_ok)
1176 {
1177 const char * msg = (const char *) 0;
1178
1179 switch (r)
1180 {
1181 case bfd_reloc_overflow:
1182 if (!((*info->callbacks->reloc_overflow)
1183 (info, NULL, name, howto->name, (bfd_vma) 0,
1184 input_bfd, input_section, rel->r_offset)))
1185 return FALSE;
1186 break;
1187
1188 case bfd_reloc_undefined:
1189 if (!((*info->callbacks->undefined_symbol)
1190 (info, name, input_bfd, input_section,
1191 rel->r_offset, TRUE)))
1192 return FALSE;
1193 break;
1194
1195 case bfd_reloc_outofrange:
1196 msg = _ ("internal error: out of range error");
1197 goto common_error;
1198
1199 case bfd_reloc_notsupported:
1200 msg = _ ("internal error: unsupported relocation error");
1201 goto common_error;
1202
1203 case bfd_reloc_dangerous:
1204 msg = _ ("internal error: dangerous error");
1205 goto common_error;
1206
1207 default:
1208 msg = _ ("internal error: unknown error");
1209 /* fall through */
1210
1211 common_error:
1212 if (!((*info->callbacks->warning)
1213 (info, msg, name, input_bfd, input_section,
1214 rel->r_offset)))
1215 return FALSE;
1216 break;
1217 }
1218 }
1219 }
1220
1221 return TRUE;
1222 }
1223
1224
1225 \f
1226 /* Set and control ELF flags in ELF header. */
1227
1228 bfd_boolean
1229 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1230 {
1231 BFD_ASSERT (!elf_flags_init (abfd)
1232 || elf_elfheader (abfd)->e_flags == flags);
1233
1234 elf_elfheader (abfd)->e_flags = flags;
1235 elf_flags_init (abfd) = TRUE;
1236 return TRUE;
1237 }
1238
1239 /* Merge backend specific data from an object file to the output
1240 object file when linking. */
1241
1242 bfd_boolean
1243 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1244 {
1245 flagword old_flags;
1246 flagword new_flags;
1247 bfd_boolean ok = TRUE;
1248
1249 /* Check if we have the same endianess */
1250 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1251 return FALSE;
1252
1253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1254 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1255 return TRUE;
1256
1257 new_flags = elf_elfheader (ibfd)->e_flags;
1258 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1259 old_flags = elf_elfheader (obfd)->e_flags;
1260
1261 if (! elf_flags_init (obfd))
1262 {
1263 elf_flags_init (obfd) = TRUE;
1264 elf_elfheader (obfd)->e_flags = new_flags;
1265 elf_elfheader (obfd)->e_ident[EI_CLASS]
1266 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1267
1268 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1269 && bfd_get_arch_info (obfd)->the_default)
1270 {
1271 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1272 bfd_get_mach (ibfd)))
1273 return FALSE;
1274 }
1275
1276 return TRUE;
1277 }
1278
1279 /* Check ABI compatibility. */
1280 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1281 {
1282 (*_bfd_error_handler)
1283 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1284 "and others for 32-bit integers"), ibfd);
1285 ok = FALSE;
1286 }
1287 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1288 {
1289 (*_bfd_error_handler)
1290 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1291 "and others for 64-bit double"), ibfd);
1292 ok = FALSE;
1293 }
1294
1295 /* Processor compatibility. */
1296 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1297 {
1298 (*_bfd_error_handler)
1299 (_("%B: linking files compiled for HCS12 with "
1300 "others compiled for HC12"), ibfd);
1301 ok = FALSE;
1302 }
1303 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1304 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1305
1306 elf_elfheader (obfd)->e_flags = new_flags;
1307
1308 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1309 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1310
1311 /* Warn about any other mismatches */
1312 if (new_flags != old_flags)
1313 {
1314 (*_bfd_error_handler)
1315 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1316 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1317 ok = FALSE;
1318 }
1319
1320 if (! ok)
1321 {
1322 bfd_set_error (bfd_error_bad_value);
1323 return FALSE;
1324 }
1325
1326 return TRUE;
1327 }
1328
1329 bfd_boolean
1330 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1331 {
1332 FILE *file = (FILE *) ptr;
1333
1334 BFD_ASSERT (abfd != NULL && ptr != NULL);
1335
1336 /* Print normal ELF private data. */
1337 _bfd_elf_print_private_bfd_data (abfd, ptr);
1338
1339 /* xgettext:c-format */
1340 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1341
1342 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1343 fprintf (file, _("[abi=32-bit int, "));
1344 else
1345 fprintf (file, _("[abi=16-bit int, "));
1346
1347 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1348 fprintf (file, _("64-bit double, "));
1349 else
1350 fprintf (file, _("32-bit double, "));
1351
1352 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1353 fprintf (file, _("cpu=HC11]"));
1354 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1355 fprintf (file, _("cpu=HCS12]"));
1356 else
1357 fprintf (file, _("cpu=HC12]"));
1358
1359 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1360 fprintf (file, _(" [memory=bank-model]"));
1361 else
1362 fprintf (file, _(" [memory=flat]"));
1363
1364 fputc ('\n', file);
1365
1366 return TRUE;
1367 }
1368
1369 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1370 asection *asect, void *arg)
1371 {
1372 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1373
1374 if (asect->vma >= p->pinfo->bank_virtual)
1375 p->use_memory_banks = TRUE;
1376 }
1377
1378 /* Tweak the OSABI field of the elf header. */
1379
1380 void
1381 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1382 {
1383 struct m68hc11_scan_param param;
1384
1385 if (link_info == 0)
1386 return;
1387
1388 m68hc11_elf_get_bank_parameters (link_info);
1389
1390 param.use_memory_banks = FALSE;
1391 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1392 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1393 if (param.use_memory_banks)
1394 {
1395 Elf_Internal_Ehdr * i_ehdrp;
1396
1397 i_ehdrp = elf_elfheader (abfd);
1398 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1399 }
1400 }
1401
This page took 0.07559 seconds and 4 git commands to generate.