PowerPC64 --plt-align
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28
29 static bfd_boolean
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32 static reloc_howto_type howto_table[] =
33 {
34 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
62 FALSE, /* pc_relative */
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE, /* partial_inplace */
68 0, /* src_mask */
69 0, /* dst_mask */
70 FALSE),
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
76 FALSE, /* pc_relative */
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE, /* partial_inplace */
82 0, /* src_mask */
83 0, /* dst_mask */
84 FALSE),
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342 };
343
344 static void
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346 {
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
351 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
352 abfd, (int) indx);
353 indx = R_68K_NONE;
354 }
355 cache_ptr->howto = &howto_table[indx];
356 }
357
358 #define elf_info_to_howto rtype_to_howto
359
360 static const struct
361 {
362 bfd_reloc_code_real_type bfd_val;
363 int elf_val;
364 }
365 reloc_map[] =
366 {
367 { BFD_RELOC_NONE, R_68K_NONE },
368 { BFD_RELOC_32, R_68K_32 },
369 { BFD_RELOC_16, R_68K_16 },
370 { BFD_RELOC_8, R_68K_8 },
371 { BFD_RELOC_32_PCREL, R_68K_PC32 },
372 { BFD_RELOC_16_PCREL, R_68K_PC16 },
373 { BFD_RELOC_8_PCREL, R_68K_PC8 },
374 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
375 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
376 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
377 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
378 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
379 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
380 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
381 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
382 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
383 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
384 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
385 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
386 { BFD_RELOC_NONE, R_68K_COPY },
387 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
388 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
389 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
390 { BFD_RELOC_CTOR, R_68K_32 },
391 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
392 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
393 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
394 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
395 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
396 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
397 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
398 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
399 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
400 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
401 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
402 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
403 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
404 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
405 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
406 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
407 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
408 };
409
410 static reloc_howto_type *
411 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
412 bfd_reloc_code_real_type code)
413 {
414 unsigned int i;
415 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
416 {
417 if (reloc_map[i].bfd_val == code)
418 return &howto_table[reloc_map[i].elf_val];
419 }
420 return 0;
421 }
422
423 static reloc_howto_type *
424 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
425 {
426 unsigned int i;
427
428 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
429 if (howto_table[i].name != NULL
430 && strcasecmp (howto_table[i].name, r_name) == 0)
431 return &howto_table[i];
432
433 return NULL;
434 }
435
436 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
437 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
438 #define ELF_ARCH bfd_arch_m68k
439 #define ELF_TARGET_ID M68K_ELF_DATA
440 \f
441 /* Functions for the m68k ELF linker. */
442
443 /* The name of the dynamic interpreter. This is put in the .interp
444 section. */
445
446 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
447
448 /* Describes one of the various PLT styles. */
449
450 struct elf_m68k_plt_info
451 {
452 /* The size of each PLT entry. */
453 bfd_vma size;
454
455 /* The template for the first PLT entry. */
456 const bfd_byte *plt0_entry;
457
458 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
459 The comments by each member indicate the value that the relocation
460 is against. */
461 struct {
462 unsigned int got4; /* .got + 4 */
463 unsigned int got8; /* .got + 8 */
464 } plt0_relocs;
465
466 /* The template for a symbol's PLT entry. */
467 const bfd_byte *symbol_entry;
468
469 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
470 The comments by each member indicate the value that the relocation
471 is against. */
472 struct {
473 unsigned int got; /* the symbol's .got.plt entry */
474 unsigned int plt; /* .plt */
475 } symbol_relocs;
476
477 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
478 The stub starts with "move.l #relocoffset,%d0". */
479 bfd_vma symbol_resolve_entry;
480 };
481
482 /* The size in bytes of an entry in the procedure linkage table. */
483
484 #define PLT_ENTRY_SIZE 20
485
486 /* The first entry in a procedure linkage table looks like this. See
487 the SVR4 ABI m68k supplement to see how this works. */
488
489 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
490 {
491 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
492 0, 0, 0, 2, /* + (.got + 4) - . */
493 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
494 0, 0, 0, 2, /* + (.got + 8) - . */
495 0, 0, 0, 0 /* pad out to 20 bytes. */
496 };
497
498 /* Subsequent entries in a procedure linkage table look like this. */
499
500 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
501 {
502 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
503 0, 0, 0, 2, /* + (.got.plt entry) - . */
504 0x2f, 0x3c, /* move.l #offset,-(%sp) */
505 0, 0, 0, 0, /* + reloc index */
506 0x60, 0xff, /* bra.l .plt */
507 0, 0, 0, 0 /* + .plt - . */
508 };
509
510 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
511 PLT_ENTRY_SIZE,
512 elf_m68k_plt0_entry, { 4, 12 },
513 elf_m68k_plt_entry, { 4, 16 }, 8
514 };
515
516 #define ISAB_PLT_ENTRY_SIZE 24
517
518 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
519 {
520 0x20, 0x3c, /* move.l #offset,%d0 */
521 0, 0, 0, 0, /* + (.got + 4) - . */
522 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
523 0x20, 0x3c, /* move.l #offset,%d0 */
524 0, 0, 0, 0, /* + (.got + 8) - . */
525 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
526 0x4e, 0xd0, /* jmp (%a0) */
527 0x4e, 0x71 /* nop */
528 };
529
530 /* Subsequent entries in a procedure linkage table look like this. */
531
532 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
533 {
534 0x20, 0x3c, /* move.l #offset,%d0 */
535 0, 0, 0, 0, /* + (.got.plt entry) - . */
536 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
537 0x4e, 0xd0, /* jmp (%a0) */
538 0x2f, 0x3c, /* move.l #offset,-(%sp) */
539 0, 0, 0, 0, /* + reloc index */
540 0x60, 0xff, /* bra.l .plt */
541 0, 0, 0, 0 /* + .plt - . */
542 };
543
544 static const struct elf_m68k_plt_info elf_isab_plt_info = {
545 ISAB_PLT_ENTRY_SIZE,
546 elf_isab_plt0_entry, { 2, 12 },
547 elf_isab_plt_entry, { 2, 20 }, 12
548 };
549
550 #define ISAC_PLT_ENTRY_SIZE 24
551
552 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
553 {
554 0x20, 0x3c, /* move.l #offset,%d0 */
555 0, 0, 0, 0, /* replaced with .got + 4 - . */
556 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
557 0x20, 0x3c, /* move.l #offset,%d0 */
558 0, 0, 0, 0, /* replaced with .got + 8 - . */
559 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
560 0x4e, 0xd0, /* jmp (%a0) */
561 0x4e, 0x71 /* nop */
562 };
563
564 /* Subsequent entries in a procedure linkage table look like this. */
565
566 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
567 {
568 0x20, 0x3c, /* move.l #offset,%d0 */
569 0, 0, 0, 0, /* replaced with (.got entry) - . */
570 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
571 0x4e, 0xd0, /* jmp (%a0) */
572 0x2f, 0x3c, /* move.l #offset,-(%sp) */
573 0, 0, 0, 0, /* replaced with offset into relocation table */
574 0x61, 0xff, /* bsr.l .plt */
575 0, 0, 0, 0 /* replaced with .plt - . */
576 };
577
578 static const struct elf_m68k_plt_info elf_isac_plt_info = {
579 ISAC_PLT_ENTRY_SIZE,
580 elf_isac_plt0_entry, { 2, 12},
581 elf_isac_plt_entry, { 2, 20 }, 12
582 };
583
584 #define CPU32_PLT_ENTRY_SIZE 24
585 /* Procedure linkage table entries for the cpu32 */
586 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
587 {
588 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
589 0, 0, 0, 2, /* + (.got + 4) - . */
590 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
591 0, 0, 0, 2, /* + (.got + 8) - . */
592 0x4e, 0xd1, /* jmp %a1@ */
593 0, 0, 0, 0, /* pad out to 24 bytes. */
594 0, 0
595 };
596
597 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
598 {
599 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
600 0, 0, 0, 2, /* + (.got.plt entry) - . */
601 0x4e, 0xd1, /* jmp %a1@ */
602 0x2f, 0x3c, /* move.l #offset,-(%sp) */
603 0, 0, 0, 0, /* + reloc index */
604 0x60, 0xff, /* bra.l .plt */
605 0, 0, 0, 0, /* + .plt - . */
606 0, 0
607 };
608
609 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
610 CPU32_PLT_ENTRY_SIZE,
611 elf_cpu32_plt0_entry, { 4, 12 },
612 elf_cpu32_plt_entry, { 4, 18 }, 10
613 };
614
615 /* The m68k linker needs to keep track of the number of relocs that it
616 decides to copy in check_relocs for each symbol. This is so that it
617 can discard PC relative relocs if it doesn't need them when linking
618 with -Bsymbolic. We store the information in a field extending the
619 regular ELF linker hash table. */
620
621 /* This structure keeps track of the number of PC relative relocs we have
622 copied for a given symbol. */
623
624 struct elf_m68k_pcrel_relocs_copied
625 {
626 /* Next section. */
627 struct elf_m68k_pcrel_relocs_copied *next;
628 /* A section in dynobj. */
629 asection *section;
630 /* Number of relocs copied in this section. */
631 bfd_size_type count;
632 };
633
634 /* Forward declaration. */
635 struct elf_m68k_got_entry;
636
637 /* m68k ELF linker hash entry. */
638
639 struct elf_m68k_link_hash_entry
640 {
641 struct elf_link_hash_entry root;
642
643 /* Number of PC relative relocs copied for this symbol. */
644 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
645
646 /* Key to got_entries. */
647 unsigned long got_entry_key;
648
649 /* List of GOT entries for this symbol. This list is build during
650 offset finalization and is used within elf_m68k_finish_dynamic_symbol
651 to traverse all GOT entries for a particular symbol.
652
653 ??? We could've used root.got.glist field instead, but having
654 a separate field is cleaner. */
655 struct elf_m68k_got_entry *glist;
656 };
657
658 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
659
660 /* Key part of GOT entry in hashtable. */
661 struct elf_m68k_got_entry_key
662 {
663 /* BFD in which this symbol was defined. NULL for global symbols. */
664 const bfd *bfd;
665
666 /* Symbol index. Either local symbol index or h->got_entry_key. */
667 unsigned long symndx;
668
669 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
670 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
671
672 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
673 matters. That is, we distinguish between, say, R_68K_GOT16O
674 and R_68K_GOT32O when allocating offsets, but they are considered to be
675 the same when searching got->entries. */
676 enum elf_m68k_reloc_type type;
677 };
678
679 /* Size of the GOT offset suitable for relocation. */
680 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
681
682 /* Entry of the GOT. */
683 struct elf_m68k_got_entry
684 {
685 /* GOT entries are put into a got->entries hashtable. This is the key. */
686 struct elf_m68k_got_entry_key key_;
687
688 /* GOT entry data. We need s1 before offset finalization and s2 after. */
689 union
690 {
691 struct
692 {
693 /* Number of times this entry is referenced. It is used to
694 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
695 bfd_vma refcount;
696 } s1;
697
698 struct
699 {
700 /* Offset from the start of .got section. To calculate offset relative
701 to GOT pointer one should substract got->offset from this value. */
702 bfd_vma offset;
703
704 /* Pointer to the next GOT entry for this global symbol.
705 Symbols have at most one entry in one GOT, but might
706 have entries in more than one GOT.
707 Root of this list is h->glist.
708 NULL for local symbols. */
709 struct elf_m68k_got_entry *next;
710 } s2;
711 } u;
712 };
713
714 /* Return representative type for relocation R_TYPE.
715 This is used to avoid enumerating many relocations in comparisons,
716 switches etc. */
717
718 static enum elf_m68k_reloc_type
719 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
720 {
721 switch (r_type)
722 {
723 /* In most cases R_68K_GOTx relocations require the very same
724 handling as R_68K_GOT32O relocation. In cases when we need
725 to distinguish between the two, we use explicitly compare against
726 r_type. */
727 case R_68K_GOT32:
728 case R_68K_GOT16:
729 case R_68K_GOT8:
730 case R_68K_GOT32O:
731 case R_68K_GOT16O:
732 case R_68K_GOT8O:
733 return R_68K_GOT32O;
734
735 case R_68K_TLS_GD32:
736 case R_68K_TLS_GD16:
737 case R_68K_TLS_GD8:
738 return R_68K_TLS_GD32;
739
740 case R_68K_TLS_LDM32:
741 case R_68K_TLS_LDM16:
742 case R_68K_TLS_LDM8:
743 return R_68K_TLS_LDM32;
744
745 case R_68K_TLS_IE32:
746 case R_68K_TLS_IE16:
747 case R_68K_TLS_IE8:
748 return R_68K_TLS_IE32;
749
750 default:
751 BFD_ASSERT (FALSE);
752 return 0;
753 }
754 }
755
756 /* Return size of the GOT entry offset for relocation R_TYPE. */
757
758 static enum elf_m68k_got_offset_size
759 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
760 {
761 switch (r_type)
762 {
763 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
764 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
765 case R_68K_TLS_IE32:
766 return R_32;
767
768 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
769 case R_68K_TLS_IE16:
770 return R_16;
771
772 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
773 case R_68K_TLS_IE8:
774 return R_8;
775
776 default:
777 BFD_ASSERT (FALSE);
778 return 0;
779 }
780 }
781
782 /* Return number of GOT entries we need to allocate in GOT for
783 relocation R_TYPE. */
784
785 static bfd_vma
786 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
787 {
788 switch (elf_m68k_reloc_got_type (r_type))
789 {
790 case R_68K_GOT32O:
791 case R_68K_TLS_IE32:
792 return 1;
793
794 case R_68K_TLS_GD32:
795 case R_68K_TLS_LDM32:
796 return 2;
797
798 default:
799 BFD_ASSERT (FALSE);
800 return 0;
801 }
802 }
803
804 /* Return TRUE if relocation R_TYPE is a TLS one. */
805
806 static bfd_boolean
807 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
808 {
809 switch (r_type)
810 {
811 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
812 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
813 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
814 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
815 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
816 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
817 return TRUE;
818
819 default:
820 return FALSE;
821 }
822 }
823
824 /* Data structure representing a single GOT. */
825 struct elf_m68k_got
826 {
827 /* Hashtable of 'struct elf_m68k_got_entry's.
828 Starting size of this table is the maximum number of
829 R_68K_GOT8O entries. */
830 htab_t entries;
831
832 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
833 several GOT slots.
834
835 n_slots[R_8] is the count of R_8 slots in this GOT.
836 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
837 in this GOT.
838 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
839 in this GOT. This is the total number of slots. */
840 bfd_vma n_slots[R_LAST];
841
842 /* Number of local (entry->key_.h == NULL) slots in this GOT.
843 This is only used to properly calculate size of .rela.got section;
844 see elf_m68k_partition_multi_got. */
845 bfd_vma local_n_slots;
846
847 /* Offset of this GOT relative to beginning of .got section. */
848 bfd_vma offset;
849 };
850
851 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
852 struct elf_m68k_bfd2got_entry
853 {
854 /* BFD. */
855 const bfd *bfd;
856
857 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
858 GOT structure. After partitioning several BFD's might [and often do]
859 share a single GOT. */
860 struct elf_m68k_got *got;
861 };
862
863 /* The main data structure holding all the pieces. */
864 struct elf_m68k_multi_got
865 {
866 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
867 here, then it doesn't need a GOT (this includes the case of a BFD
868 having an empty GOT).
869
870 ??? This hashtable can be replaced by an array indexed by bfd->id. */
871 htab_t bfd2got;
872
873 /* Next symndx to assign a global symbol.
874 h->got_entry_key is initialized from this counter. */
875 unsigned long global_symndx;
876 };
877
878 /* m68k ELF linker hash table. */
879
880 struct elf_m68k_link_hash_table
881 {
882 struct elf_link_hash_table root;
883
884 /* Small local sym cache. */
885 struct sym_cache sym_cache;
886
887 /* The PLT format used by this link, or NULL if the format has not
888 yet been chosen. */
889 const struct elf_m68k_plt_info *plt_info;
890
891 /* True, if GP is loaded within each function which uses it.
892 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
893 bfd_boolean local_gp_p;
894
895 /* Switch controlling use of negative offsets to double the size of GOTs. */
896 bfd_boolean use_neg_got_offsets_p;
897
898 /* Switch controlling generation of multiple GOTs. */
899 bfd_boolean allow_multigot_p;
900
901 /* Multi-GOT data structure. */
902 struct elf_m68k_multi_got multi_got_;
903 };
904
905 /* Get the m68k ELF linker hash table from a link_info structure. */
906
907 #define elf_m68k_hash_table(p) \
908 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
909 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
910
911 /* Shortcut to multi-GOT data. */
912 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
913
914 /* Create an entry in an m68k ELF linker hash table. */
915
916 static struct bfd_hash_entry *
917 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
918 struct bfd_hash_table *table,
919 const char *string)
920 {
921 struct bfd_hash_entry *ret = entry;
922
923 /* Allocate the structure if it has not already been allocated by a
924 subclass. */
925 if (ret == NULL)
926 ret = bfd_hash_allocate (table,
927 sizeof (struct elf_m68k_link_hash_entry));
928 if (ret == NULL)
929 return ret;
930
931 /* Call the allocation method of the superclass. */
932 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
933 if (ret != NULL)
934 {
935 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
936 elf_m68k_hash_entry (ret)->got_entry_key = 0;
937 elf_m68k_hash_entry (ret)->glist = NULL;
938 }
939
940 return ret;
941 }
942
943 /* Destroy an m68k ELF linker hash table. */
944
945 static void
946 elf_m68k_link_hash_table_free (bfd *obfd)
947 {
948 struct elf_m68k_link_hash_table *htab;
949
950 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
951
952 if (htab->multi_got_.bfd2got != NULL)
953 {
954 htab_delete (htab->multi_got_.bfd2got);
955 htab->multi_got_.bfd2got = NULL;
956 }
957 _bfd_elf_link_hash_table_free (obfd);
958 }
959
960 /* Create an m68k ELF linker hash table. */
961
962 static struct bfd_link_hash_table *
963 elf_m68k_link_hash_table_create (bfd *abfd)
964 {
965 struct elf_m68k_link_hash_table *ret;
966 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
967
968 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
969 if (ret == (struct elf_m68k_link_hash_table *) NULL)
970 return NULL;
971
972 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
973 elf_m68k_link_hash_newfunc,
974 sizeof (struct elf_m68k_link_hash_entry),
975 M68K_ELF_DATA))
976 {
977 free (ret);
978 return NULL;
979 }
980 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
981
982 ret->multi_got_.global_symndx = 1;
983
984 return &ret->root.root;
985 }
986
987 /* Set the right machine number. */
988
989 static bfd_boolean
990 elf32_m68k_object_p (bfd *abfd)
991 {
992 unsigned int mach = 0;
993 unsigned features = 0;
994 flagword eflags = elf_elfheader (abfd)->e_flags;
995
996 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
997 features |= m68000;
998 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
999 features |= cpu32;
1000 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1001 features |= fido_a;
1002 else
1003 {
1004 switch (eflags & EF_M68K_CF_ISA_MASK)
1005 {
1006 case EF_M68K_CF_ISA_A_NODIV:
1007 features |= mcfisa_a;
1008 break;
1009 case EF_M68K_CF_ISA_A:
1010 features |= mcfisa_a|mcfhwdiv;
1011 break;
1012 case EF_M68K_CF_ISA_A_PLUS:
1013 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1014 break;
1015 case EF_M68K_CF_ISA_B_NOUSP:
1016 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1017 break;
1018 case EF_M68K_CF_ISA_B:
1019 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1020 break;
1021 case EF_M68K_CF_ISA_C:
1022 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1023 break;
1024 case EF_M68K_CF_ISA_C_NODIV:
1025 features |= mcfisa_a|mcfisa_c|mcfusp;
1026 break;
1027 }
1028 switch (eflags & EF_M68K_CF_MAC_MASK)
1029 {
1030 case EF_M68K_CF_MAC:
1031 features |= mcfmac;
1032 break;
1033 case EF_M68K_CF_EMAC:
1034 features |= mcfemac;
1035 break;
1036 }
1037 if (eflags & EF_M68K_CF_FLOAT)
1038 features |= cfloat;
1039 }
1040
1041 mach = bfd_m68k_features_to_mach (features);
1042 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1043
1044 return TRUE;
1045 }
1046
1047 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1048 field based on the machine number. */
1049
1050 static void
1051 elf_m68k_final_write_processing (bfd *abfd,
1052 bfd_boolean linker ATTRIBUTE_UNUSED)
1053 {
1054 int mach = bfd_get_mach (abfd);
1055 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1056
1057 if (!e_flags)
1058 {
1059 unsigned int arch_mask;
1060
1061 arch_mask = bfd_m68k_mach_to_features (mach);
1062
1063 if (arch_mask & m68000)
1064 e_flags = EF_M68K_M68000;
1065 else if (arch_mask & cpu32)
1066 e_flags = EF_M68K_CPU32;
1067 else if (arch_mask & fido_a)
1068 e_flags = EF_M68K_FIDO;
1069 else
1070 {
1071 switch (arch_mask
1072 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1073 {
1074 case mcfisa_a:
1075 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1076 break;
1077 case mcfisa_a | mcfhwdiv:
1078 e_flags |= EF_M68K_CF_ISA_A;
1079 break;
1080 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1081 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1082 break;
1083 case mcfisa_a | mcfisa_b | mcfhwdiv:
1084 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1085 break;
1086 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1087 e_flags |= EF_M68K_CF_ISA_B;
1088 break;
1089 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1090 e_flags |= EF_M68K_CF_ISA_C;
1091 break;
1092 case mcfisa_a | mcfisa_c | mcfusp:
1093 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1094 break;
1095 }
1096 if (arch_mask & mcfmac)
1097 e_flags |= EF_M68K_CF_MAC;
1098 else if (arch_mask & mcfemac)
1099 e_flags |= EF_M68K_CF_EMAC;
1100 if (arch_mask & cfloat)
1101 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1102 }
1103 elf_elfheader (abfd)->e_flags = e_flags;
1104 }
1105 }
1106
1107 /* Keep m68k-specific flags in the ELF header. */
1108
1109 static bfd_boolean
1110 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1111 {
1112 elf_elfheader (abfd)->e_flags = flags;
1113 elf_flags_init (abfd) = TRUE;
1114 return TRUE;
1115 }
1116
1117 /* Merge backend specific data from an object file to the output
1118 object file when linking. */
1119 static bfd_boolean
1120 elf32_m68k_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1121 {
1122 flagword out_flags;
1123 flagword in_flags;
1124 flagword out_isa;
1125 flagword in_isa;
1126 const bfd_arch_info_type *arch_info;
1127
1128 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1129 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1130 return FALSE;
1131
1132 /* Get the merged machine. This checks for incompatibility between
1133 Coldfire & non-Coldfire flags, incompability between different
1134 Coldfire ISAs, and incompability between different MAC types. */
1135 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1136 if (!arch_info)
1137 return FALSE;
1138
1139 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1140
1141 in_flags = elf_elfheader (ibfd)->e_flags;
1142 if (!elf_flags_init (obfd))
1143 {
1144 elf_flags_init (obfd) = TRUE;
1145 out_flags = in_flags;
1146 }
1147 else
1148 {
1149 out_flags = elf_elfheader (obfd)->e_flags;
1150 unsigned int variant_mask;
1151
1152 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1153 variant_mask = 0;
1154 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1155 variant_mask = 0;
1156 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1157 variant_mask = 0;
1158 else
1159 variant_mask = EF_M68K_CF_ISA_MASK;
1160
1161 in_isa = (in_flags & variant_mask);
1162 out_isa = (out_flags & variant_mask);
1163 if (in_isa > out_isa)
1164 out_flags ^= in_isa ^ out_isa;
1165 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1166 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1167 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1168 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1169 out_flags = EF_M68K_FIDO;
1170 else
1171 out_flags |= in_flags ^ in_isa;
1172 }
1173 elf_elfheader (obfd)->e_flags = out_flags;
1174
1175 return TRUE;
1176 }
1177
1178 /* Display the flags field. */
1179
1180 static bfd_boolean
1181 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1182 {
1183 FILE *file = (FILE *) ptr;
1184 flagword eflags = elf_elfheader (abfd)->e_flags;
1185
1186 BFD_ASSERT (abfd != NULL && ptr != NULL);
1187
1188 /* Print normal ELF private data. */
1189 _bfd_elf_print_private_bfd_data (abfd, ptr);
1190
1191 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1192
1193 /* xgettext:c-format */
1194 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1195
1196 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1197 fprintf (file, " [m68000]");
1198 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1199 fprintf (file, " [cpu32]");
1200 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1201 fprintf (file, " [fido]");
1202 else
1203 {
1204 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1205 fprintf (file, " [cfv4e]");
1206
1207 if (eflags & EF_M68K_CF_ISA_MASK)
1208 {
1209 char const *isa = _("unknown");
1210 char const *mac = _("unknown");
1211 char const *additional = "";
1212
1213 switch (eflags & EF_M68K_CF_ISA_MASK)
1214 {
1215 case EF_M68K_CF_ISA_A_NODIV:
1216 isa = "A";
1217 additional = " [nodiv]";
1218 break;
1219 case EF_M68K_CF_ISA_A:
1220 isa = "A";
1221 break;
1222 case EF_M68K_CF_ISA_A_PLUS:
1223 isa = "A+";
1224 break;
1225 case EF_M68K_CF_ISA_B_NOUSP:
1226 isa = "B";
1227 additional = " [nousp]";
1228 break;
1229 case EF_M68K_CF_ISA_B:
1230 isa = "B";
1231 break;
1232 case EF_M68K_CF_ISA_C:
1233 isa = "C";
1234 break;
1235 case EF_M68K_CF_ISA_C_NODIV:
1236 isa = "C";
1237 additional = " [nodiv]";
1238 break;
1239 }
1240 fprintf (file, " [isa %s]%s", isa, additional);
1241
1242 if (eflags & EF_M68K_CF_FLOAT)
1243 fprintf (file, " [float]");
1244
1245 switch (eflags & EF_M68K_CF_MAC_MASK)
1246 {
1247 case 0:
1248 mac = NULL;
1249 break;
1250 case EF_M68K_CF_MAC:
1251 mac = "mac";
1252 break;
1253 case EF_M68K_CF_EMAC:
1254 mac = "emac";
1255 break;
1256 case EF_M68K_CF_EMAC_B:
1257 mac = "emac_b";
1258 break;
1259 }
1260 if (mac)
1261 fprintf (file, " [%s]", mac);
1262 }
1263 }
1264
1265 fputc ('\n', file);
1266
1267 return TRUE;
1268 }
1269
1270 /* Multi-GOT support implementation design:
1271
1272 Multi-GOT starts in check_relocs hook. There we scan all
1273 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1274 for it. If a single BFD appears to require too many GOT slots with
1275 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1276 to user.
1277 After check_relocs has been invoked for each input BFD, we have
1278 constructed a GOT for each input BFD.
1279
1280 To minimize total number of GOTs required for a particular output BFD
1281 (as some environments support only 1 GOT per output object) we try
1282 to merge some of the GOTs to share an offset space. Ideally [and in most
1283 cases] we end up with a single GOT. In cases when there are too many
1284 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1285 several GOTs, assuming the environment can handle them.
1286
1287 Partitioning is done in elf_m68k_partition_multi_got. We start with
1288 an empty GOT and traverse bfd2got hashtable putting got_entries from
1289 local GOTs to the new 'big' one. We do that by constructing an
1290 intermediate GOT holding all the entries the local GOT has and the big
1291 GOT lacks. Then we check if there is room in the big GOT to accomodate
1292 all the entries from diff. On success we add those entries to the big
1293 GOT; on failure we start the new 'big' GOT and retry the adding of
1294 entries from the local GOT. Note that this retry will always succeed as
1295 each local GOT doesn't overflow the limits. After partitioning we
1296 end up with each bfd assigned one of the big GOTs. GOT entries in the
1297 big GOTs are initialized with GOT offsets. Note that big GOTs are
1298 positioned consequently in program space and represent a single huge GOT
1299 to the outside world.
1300
1301 After that we get to elf_m68k_relocate_section. There we
1302 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1303 relocations to refer to appropriate [assigned to current input_bfd]
1304 big GOT.
1305
1306 Notes:
1307
1308 GOT entry type: We have several types of GOT entries.
1309 * R_8 type is used in entries for symbols that have at least one
1310 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1311 such entries in one GOT.
1312 * R_16 type is used in entries for symbols that have at least one
1313 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1314 We can have at most 0x4000 such entries in one GOT.
1315 * R_32 type is used in all other cases. We can have as many
1316 such entries in one GOT as we'd like.
1317 When counting relocations we have to include the count of the smaller
1318 ranged relocations in the counts of the larger ranged ones in order
1319 to correctly detect overflow.
1320
1321 Sorting the GOT: In each GOT starting offsets are assigned to
1322 R_8 entries, which are followed by R_16 entries, and
1323 R_32 entries go at the end. See finalize_got_offsets for details.
1324
1325 Negative GOT offsets: To double usable offset range of GOTs we use
1326 negative offsets. As we assign entries with GOT offsets relative to
1327 start of .got section, the offset values are positive. They become
1328 negative only in relocate_section where got->offset value is
1329 subtracted from them.
1330
1331 3 special GOT entries: There are 3 special GOT entries used internally
1332 by loader. These entries happen to be placed to .got.plt section,
1333 so we don't do anything about them in multi-GOT support.
1334
1335 Memory management: All data except for hashtables
1336 multi_got->bfd2got and got->entries are allocated on
1337 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1338 to most functions), so we don't need to care to free them. At the
1339 moment of allocation hashtables are being linked into main data
1340 structure (multi_got), all pieces of which are reachable from
1341 elf_m68k_multi_got (info). We deallocate them in
1342 elf_m68k_link_hash_table_free. */
1343
1344 /* Initialize GOT. */
1345
1346 static void
1347 elf_m68k_init_got (struct elf_m68k_got *got)
1348 {
1349 got->entries = NULL;
1350 got->n_slots[R_8] = 0;
1351 got->n_slots[R_16] = 0;
1352 got->n_slots[R_32] = 0;
1353 got->local_n_slots = 0;
1354 got->offset = (bfd_vma) -1;
1355 }
1356
1357 /* Destruct GOT. */
1358
1359 static void
1360 elf_m68k_clear_got (struct elf_m68k_got *got)
1361 {
1362 if (got->entries != NULL)
1363 {
1364 htab_delete (got->entries);
1365 got->entries = NULL;
1366 }
1367 }
1368
1369 /* Create and empty GOT structure. INFO is the context where memory
1370 should be allocated. */
1371
1372 static struct elf_m68k_got *
1373 elf_m68k_create_empty_got (struct bfd_link_info *info)
1374 {
1375 struct elf_m68k_got *got;
1376
1377 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1378 if (got == NULL)
1379 return NULL;
1380
1381 elf_m68k_init_got (got);
1382
1383 return got;
1384 }
1385
1386 /* Initialize KEY. */
1387
1388 static void
1389 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1390 struct elf_link_hash_entry *h,
1391 const bfd *abfd, unsigned long symndx,
1392 enum elf_m68k_reloc_type reloc_type)
1393 {
1394 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1395 /* All TLS_LDM relocations share a single GOT entry. */
1396 {
1397 key->bfd = NULL;
1398 key->symndx = 0;
1399 }
1400 else if (h != NULL)
1401 /* Global symbols are identified with their got_entry_key. */
1402 {
1403 key->bfd = NULL;
1404 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1405 BFD_ASSERT (key->symndx != 0);
1406 }
1407 else
1408 /* Local symbols are identified by BFD they appear in and symndx. */
1409 {
1410 key->bfd = abfd;
1411 key->symndx = symndx;
1412 }
1413
1414 key->type = reloc_type;
1415 }
1416
1417 /* Calculate hash of got_entry.
1418 ??? Is it good? */
1419
1420 static hashval_t
1421 elf_m68k_got_entry_hash (const void *_entry)
1422 {
1423 const struct elf_m68k_got_entry_key *key;
1424
1425 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1426
1427 return (key->symndx
1428 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1429 + elf_m68k_reloc_got_type (key->type));
1430 }
1431
1432 /* Check if two got entries are equal. */
1433
1434 static int
1435 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1436 {
1437 const struct elf_m68k_got_entry_key *key1;
1438 const struct elf_m68k_got_entry_key *key2;
1439
1440 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1441 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1442
1443 return (key1->bfd == key2->bfd
1444 && key1->symndx == key2->symndx
1445 && (elf_m68k_reloc_got_type (key1->type)
1446 == elf_m68k_reloc_got_type (key2->type)));
1447 }
1448
1449 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1450 and one extra R_32 slots to simplify handling of 2-slot entries during
1451 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1452
1453 /* Maximal number of R_8 slots in a single GOT. */
1454 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1455 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1456 ? (0x40 - 1) \
1457 : 0x20)
1458
1459 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1460 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1461 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1462 ? (0x4000 - 2) \
1463 : 0x2000)
1464
1465 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1466 the entry cannot be found.
1467 FIND_OR_CREATE - search for an existing entry, but create new if there's
1468 no such.
1469 MUST_FIND - search for an existing entry and assert that it exist.
1470 MUST_CREATE - assert that there's no such entry and create new one. */
1471 enum elf_m68k_get_entry_howto
1472 {
1473 SEARCH,
1474 FIND_OR_CREATE,
1475 MUST_FIND,
1476 MUST_CREATE
1477 };
1478
1479 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1480 INFO is context in which memory should be allocated (can be NULL if
1481 HOWTO is SEARCH or MUST_FIND). */
1482
1483 static struct elf_m68k_got_entry *
1484 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1485 const struct elf_m68k_got_entry_key *key,
1486 enum elf_m68k_get_entry_howto howto,
1487 struct bfd_link_info *info)
1488 {
1489 struct elf_m68k_got_entry entry_;
1490 struct elf_m68k_got_entry *entry;
1491 void **ptr;
1492
1493 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1494
1495 if (got->entries == NULL)
1496 /* This is the first entry in ABFD. Initialize hashtable. */
1497 {
1498 if (howto == SEARCH)
1499 return NULL;
1500
1501 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1502 (info),
1503 elf_m68k_got_entry_hash,
1504 elf_m68k_got_entry_eq, NULL);
1505 if (got->entries == NULL)
1506 {
1507 bfd_set_error (bfd_error_no_memory);
1508 return NULL;
1509 }
1510 }
1511
1512 entry_.key_ = *key;
1513 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1514 ? INSERT : NO_INSERT));
1515 if (ptr == NULL)
1516 {
1517 if (howto == SEARCH)
1518 /* Entry not found. */
1519 return NULL;
1520
1521 /* We're out of memory. */
1522 bfd_set_error (bfd_error_no_memory);
1523 return NULL;
1524 }
1525
1526 if (*ptr == NULL)
1527 /* We didn't find the entry and we're asked to create a new one. */
1528 {
1529 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1530
1531 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1532 if (entry == NULL)
1533 return NULL;
1534
1535 /* Initialize new entry. */
1536 entry->key_ = *key;
1537
1538 entry->u.s1.refcount = 0;
1539
1540 /* Mark the entry as not initialized. */
1541 entry->key_.type = R_68K_max;
1542
1543 *ptr = entry;
1544 }
1545 else
1546 /* We found the entry. */
1547 {
1548 BFD_ASSERT (howto != MUST_CREATE);
1549
1550 entry = *ptr;
1551 }
1552
1553 return entry;
1554 }
1555
1556 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1557 Return the value to which ENTRY's type should be set. */
1558
1559 static enum elf_m68k_reloc_type
1560 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1561 enum elf_m68k_reloc_type was,
1562 enum elf_m68k_reloc_type new_reloc)
1563 {
1564 enum elf_m68k_got_offset_size was_size;
1565 enum elf_m68k_got_offset_size new_size;
1566 bfd_vma n_slots;
1567
1568 if (was == R_68K_max)
1569 /* The type of the entry is not initialized yet. */
1570 {
1571 /* Update all got->n_slots counters, including n_slots[R_32]. */
1572 was_size = R_LAST;
1573
1574 was = new_reloc;
1575 }
1576 else
1577 {
1578 /* !!! We, probably, should emit an error rather then fail on assert
1579 in such a case. */
1580 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1581 == elf_m68k_reloc_got_type (new_reloc));
1582
1583 was_size = elf_m68k_reloc_got_offset_size (was);
1584 }
1585
1586 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1587 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1588
1589 while (was_size > new_size)
1590 {
1591 --was_size;
1592 got->n_slots[was_size] += n_slots;
1593 }
1594
1595 if (new_reloc > was)
1596 /* Relocations are ordered from bigger got offset size to lesser,
1597 so choose the relocation type with lesser offset size. */
1598 was = new_reloc;
1599
1600 return was;
1601 }
1602
1603 /* Update GOT counters when removing an entry of type TYPE. */
1604
1605 static void
1606 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1607 enum elf_m68k_reloc_type type)
1608 {
1609 enum elf_m68k_got_offset_size os;
1610 bfd_vma n_slots;
1611
1612 n_slots = elf_m68k_reloc_got_n_slots (type);
1613
1614 /* Decrese counter of slots with offset size corresponding to TYPE
1615 and all greater offset sizes. */
1616 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1617 {
1618 BFD_ASSERT (got->n_slots[os] >= n_slots);
1619
1620 got->n_slots[os] -= n_slots;
1621 }
1622 }
1623
1624 /* Add new or update existing entry to GOT.
1625 H, ABFD, TYPE and SYMNDX is data for the entry.
1626 INFO is a context where memory should be allocated. */
1627
1628 static struct elf_m68k_got_entry *
1629 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1630 struct elf_link_hash_entry *h,
1631 const bfd *abfd,
1632 enum elf_m68k_reloc_type reloc_type,
1633 unsigned long symndx,
1634 struct bfd_link_info *info)
1635 {
1636 struct elf_m68k_got_entry_key key_;
1637 struct elf_m68k_got_entry *entry;
1638
1639 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1640 elf_m68k_hash_entry (h)->got_entry_key
1641 = elf_m68k_multi_got (info)->global_symndx++;
1642
1643 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1644
1645 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1646 if (entry == NULL)
1647 return NULL;
1648
1649 /* Determine entry's type and update got->n_slots counters. */
1650 entry->key_.type = elf_m68k_update_got_entry_type (got,
1651 entry->key_.type,
1652 reloc_type);
1653
1654 /* Update refcount. */
1655 ++entry->u.s1.refcount;
1656
1657 if (entry->u.s1.refcount == 1)
1658 /* We see this entry for the first time. */
1659 {
1660 if (entry->key_.bfd != NULL)
1661 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1662 }
1663
1664 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1665
1666 if ((got->n_slots[R_8]
1667 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1668 || (got->n_slots[R_16]
1669 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1670 /* This BFD has too many relocation. */
1671 {
1672 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1673 (*_bfd_error_handler) (_("%B: GOT overflow: "
1674 "Number of relocations with 8-bit "
1675 "offset > %d"),
1676 abfd,
1677 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1678 else
1679 (*_bfd_error_handler) (_("%B: GOT overflow: "
1680 "Number of relocations with 8- or 16-bit "
1681 "offset > %d"),
1682 abfd,
1683 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1684
1685 return NULL;
1686 }
1687
1688 return entry;
1689 }
1690
1691 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1692
1693 static hashval_t
1694 elf_m68k_bfd2got_entry_hash (const void *entry)
1695 {
1696 const struct elf_m68k_bfd2got_entry *e;
1697
1698 e = (const struct elf_m68k_bfd2got_entry *) entry;
1699
1700 return e->bfd->id;
1701 }
1702
1703 /* Check whether two hash entries have the same bfd. */
1704
1705 static int
1706 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1707 {
1708 const struct elf_m68k_bfd2got_entry *e1;
1709 const struct elf_m68k_bfd2got_entry *e2;
1710
1711 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1712 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1713
1714 return e1->bfd == e2->bfd;
1715 }
1716
1717 /* Destruct a bfd2got entry. */
1718
1719 static void
1720 elf_m68k_bfd2got_entry_del (void *_entry)
1721 {
1722 struct elf_m68k_bfd2got_entry *entry;
1723
1724 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1725
1726 BFD_ASSERT (entry->got != NULL);
1727 elf_m68k_clear_got (entry->got);
1728 }
1729
1730 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1731 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1732 memory should be allocated. */
1733
1734 static struct elf_m68k_bfd2got_entry *
1735 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1736 const bfd *abfd,
1737 enum elf_m68k_get_entry_howto howto,
1738 struct bfd_link_info *info)
1739 {
1740 struct elf_m68k_bfd2got_entry entry_;
1741 void **ptr;
1742 struct elf_m68k_bfd2got_entry *entry;
1743
1744 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1745
1746 if (multi_got->bfd2got == NULL)
1747 /* This is the first GOT. Initialize bfd2got. */
1748 {
1749 if (howto == SEARCH)
1750 return NULL;
1751
1752 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1753 elf_m68k_bfd2got_entry_eq,
1754 elf_m68k_bfd2got_entry_del);
1755 if (multi_got->bfd2got == NULL)
1756 {
1757 bfd_set_error (bfd_error_no_memory);
1758 return NULL;
1759 }
1760 }
1761
1762 entry_.bfd = abfd;
1763 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1764 ? INSERT : NO_INSERT));
1765 if (ptr == NULL)
1766 {
1767 if (howto == SEARCH)
1768 /* Entry not found. */
1769 return NULL;
1770
1771 /* We're out of memory. */
1772 bfd_set_error (bfd_error_no_memory);
1773 return NULL;
1774 }
1775
1776 if (*ptr == NULL)
1777 /* Entry was not found. Create new one. */
1778 {
1779 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1780
1781 entry = ((struct elf_m68k_bfd2got_entry *)
1782 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1783 if (entry == NULL)
1784 return NULL;
1785
1786 entry->bfd = abfd;
1787
1788 entry->got = elf_m68k_create_empty_got (info);
1789 if (entry->got == NULL)
1790 return NULL;
1791
1792 *ptr = entry;
1793 }
1794 else
1795 {
1796 BFD_ASSERT (howto != MUST_CREATE);
1797
1798 /* Return existing entry. */
1799 entry = *ptr;
1800 }
1801
1802 return entry;
1803 }
1804
1805 struct elf_m68k_can_merge_gots_arg
1806 {
1807 /* A current_got that we constructing a DIFF against. */
1808 struct elf_m68k_got *big;
1809
1810 /* GOT holding entries not present or that should be changed in
1811 BIG. */
1812 struct elf_m68k_got *diff;
1813
1814 /* Context where to allocate memory. */
1815 struct bfd_link_info *info;
1816
1817 /* Error flag. */
1818 bfd_boolean error_p;
1819 };
1820
1821 /* Process a single entry from the small GOT to see if it should be added
1822 or updated in the big GOT. */
1823
1824 static int
1825 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1826 {
1827 const struct elf_m68k_got_entry *entry1;
1828 struct elf_m68k_can_merge_gots_arg *arg;
1829 const struct elf_m68k_got_entry *entry2;
1830 enum elf_m68k_reloc_type type;
1831
1832 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1833 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1834
1835 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1836
1837 if (entry2 != NULL)
1838 /* We found an existing entry. Check if we should update it. */
1839 {
1840 type = elf_m68k_update_got_entry_type (arg->diff,
1841 entry2->key_.type,
1842 entry1->key_.type);
1843
1844 if (type == entry2->key_.type)
1845 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1846 To skip creation of difference entry we use the type,
1847 which we won't see in GOT entries for sure. */
1848 type = R_68K_max;
1849 }
1850 else
1851 /* We didn't find the entry. Add entry1 to DIFF. */
1852 {
1853 BFD_ASSERT (entry1->key_.type != R_68K_max);
1854
1855 type = elf_m68k_update_got_entry_type (arg->diff,
1856 R_68K_max, entry1->key_.type);
1857
1858 if (entry1->key_.bfd != NULL)
1859 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1860 }
1861
1862 if (type != R_68K_max)
1863 /* Create an entry in DIFF. */
1864 {
1865 struct elf_m68k_got_entry *entry;
1866
1867 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1868 arg->info);
1869 if (entry == NULL)
1870 {
1871 arg->error_p = TRUE;
1872 return 0;
1873 }
1874
1875 entry->key_.type = type;
1876 }
1877
1878 return 1;
1879 }
1880
1881 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1882 Construct DIFF GOT holding the entries which should be added or updated
1883 in BIG GOT to accumulate information from SMALL.
1884 INFO is the context where memory should be allocated. */
1885
1886 static bfd_boolean
1887 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1888 const struct elf_m68k_got *small,
1889 struct bfd_link_info *info,
1890 struct elf_m68k_got *diff)
1891 {
1892 struct elf_m68k_can_merge_gots_arg arg_;
1893
1894 BFD_ASSERT (small->offset == (bfd_vma) -1);
1895
1896 arg_.big = big;
1897 arg_.diff = diff;
1898 arg_.info = info;
1899 arg_.error_p = FALSE;
1900 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1901 if (arg_.error_p)
1902 {
1903 diff->offset = 0;
1904 return FALSE;
1905 }
1906
1907 /* Check for overflow. */
1908 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1909 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1910 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1911 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1912 return FALSE;
1913
1914 return TRUE;
1915 }
1916
1917 struct elf_m68k_merge_gots_arg
1918 {
1919 /* The BIG got. */
1920 struct elf_m68k_got *big;
1921
1922 /* Context where memory should be allocated. */
1923 struct bfd_link_info *info;
1924
1925 /* Error flag. */
1926 bfd_boolean error_p;
1927 };
1928
1929 /* Process a single entry from DIFF got. Add or update corresponding
1930 entry in the BIG got. */
1931
1932 static int
1933 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1934 {
1935 const struct elf_m68k_got_entry *from;
1936 struct elf_m68k_merge_gots_arg *arg;
1937 struct elf_m68k_got_entry *to;
1938
1939 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1940 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1941
1942 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1943 arg->info);
1944 if (to == NULL)
1945 {
1946 arg->error_p = TRUE;
1947 return 0;
1948 }
1949
1950 BFD_ASSERT (to->u.s1.refcount == 0);
1951 /* All we need to merge is TYPE. */
1952 to->key_.type = from->key_.type;
1953
1954 return 1;
1955 }
1956
1957 /* Merge data from DIFF to BIG. INFO is context where memory should be
1958 allocated. */
1959
1960 static bfd_boolean
1961 elf_m68k_merge_gots (struct elf_m68k_got *big,
1962 struct elf_m68k_got *diff,
1963 struct bfd_link_info *info)
1964 {
1965 if (diff->entries != NULL)
1966 /* DIFF is not empty. Merge it into BIG GOT. */
1967 {
1968 struct elf_m68k_merge_gots_arg arg_;
1969
1970 /* Merge entries. */
1971 arg_.big = big;
1972 arg_.info = info;
1973 arg_.error_p = FALSE;
1974 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1975 if (arg_.error_p)
1976 return FALSE;
1977
1978 /* Merge counters. */
1979 big->n_slots[R_8] += diff->n_slots[R_8];
1980 big->n_slots[R_16] += diff->n_slots[R_16];
1981 big->n_slots[R_32] += diff->n_slots[R_32];
1982 big->local_n_slots += diff->local_n_slots;
1983 }
1984 else
1985 /* DIFF is empty. */
1986 {
1987 BFD_ASSERT (diff->n_slots[R_8] == 0);
1988 BFD_ASSERT (diff->n_slots[R_16] == 0);
1989 BFD_ASSERT (diff->n_slots[R_32] == 0);
1990 BFD_ASSERT (diff->local_n_slots == 0);
1991 }
1992
1993 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1994 || ((big->n_slots[R_8]
1995 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1996 && (big->n_slots[R_16]
1997 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
1998
1999 return TRUE;
2000 }
2001
2002 struct elf_m68k_finalize_got_offsets_arg
2003 {
2004 /* Ranges of the offsets for GOT entries.
2005 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2006 R_x is R_8, R_16 and R_32. */
2007 bfd_vma *offset1;
2008 bfd_vma *offset2;
2009
2010 /* Mapping from global symndx to global symbols.
2011 This is used to build lists of got entries for global symbols. */
2012 struct elf_m68k_link_hash_entry **symndx2h;
2013
2014 bfd_vma n_ldm_entries;
2015 };
2016
2017 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2018 along the way. */
2019
2020 static int
2021 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2022 {
2023 struct elf_m68k_got_entry *entry;
2024 struct elf_m68k_finalize_got_offsets_arg *arg;
2025
2026 enum elf_m68k_got_offset_size got_offset_size;
2027 bfd_vma entry_size;
2028
2029 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2030 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2031
2032 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2033 BFD_ASSERT (entry->u.s1.refcount == 0);
2034
2035 /* Get GOT offset size for the entry . */
2036 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2037
2038 /* Calculate entry size in bytes. */
2039 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2040
2041 /* Check if we should switch to negative range of the offsets. */
2042 if (arg->offset1[got_offset_size] + entry_size
2043 > arg->offset2[got_offset_size])
2044 {
2045 /* Verify that this is the only switch to negative range for
2046 got_offset_size. If this assertion fails, then we've miscalculated
2047 range for got_offset_size entries in
2048 elf_m68k_finalize_got_offsets. */
2049 BFD_ASSERT (arg->offset2[got_offset_size]
2050 != arg->offset2[-(int) got_offset_size - 1]);
2051
2052 /* Switch. */
2053 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2054 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2055
2056 /* Verify that now we have enough room for the entry. */
2057 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2058 <= arg->offset2[got_offset_size]);
2059 }
2060
2061 /* Assign offset to entry. */
2062 entry->u.s2.offset = arg->offset1[got_offset_size];
2063 arg->offset1[got_offset_size] += entry_size;
2064
2065 if (entry->key_.bfd == NULL)
2066 /* Hook up this entry into the list of got_entries of H. */
2067 {
2068 struct elf_m68k_link_hash_entry *h;
2069
2070 h = arg->symndx2h[entry->key_.symndx];
2071 if (h != NULL)
2072 {
2073 entry->u.s2.next = h->glist;
2074 h->glist = entry;
2075 }
2076 else
2077 /* This should be the entry for TLS_LDM relocation then. */
2078 {
2079 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2080 == R_68K_TLS_LDM32)
2081 && entry->key_.symndx == 0);
2082
2083 ++arg->n_ldm_entries;
2084 }
2085 }
2086 else
2087 /* This entry is for local symbol. */
2088 entry->u.s2.next = NULL;
2089
2090 return 1;
2091 }
2092
2093 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2094 should use negative offsets.
2095 Build list of GOT entries for global symbols along the way.
2096 SYMNDX2H is mapping from global symbol indices to actual
2097 global symbols.
2098 Return offset at which next GOT should start. */
2099
2100 static void
2101 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2102 bfd_boolean use_neg_got_offsets_p,
2103 struct elf_m68k_link_hash_entry **symndx2h,
2104 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2105 {
2106 struct elf_m68k_finalize_got_offsets_arg arg_;
2107 bfd_vma offset1_[2 * R_LAST];
2108 bfd_vma offset2_[2 * R_LAST];
2109 int i;
2110 bfd_vma start_offset;
2111
2112 BFD_ASSERT (got->offset != (bfd_vma) -1);
2113
2114 /* We set entry offsets relative to the .got section (and not the
2115 start of a particular GOT), so that we can use them in
2116 finish_dynamic_symbol without needing to know the GOT which they come
2117 from. */
2118
2119 /* Put offset1 in the middle of offset1_, same for offset2. */
2120 arg_.offset1 = offset1_ + R_LAST;
2121 arg_.offset2 = offset2_ + R_LAST;
2122
2123 start_offset = got->offset;
2124
2125 if (use_neg_got_offsets_p)
2126 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2127 i = -(int) R_32 - 1;
2128 else
2129 /* Setup positives ranges for R_8, R_16 and R_32. */
2130 i = (int) R_8;
2131
2132 for (; i <= (int) R_32; ++i)
2133 {
2134 int j;
2135 size_t n;
2136
2137 /* Set beginning of the range of offsets I. */
2138 arg_.offset1[i] = start_offset;
2139
2140 /* Calculate number of slots that require I offsets. */
2141 j = (i >= 0) ? i : -i - 1;
2142 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2143 n = got->n_slots[j] - n;
2144
2145 if (use_neg_got_offsets_p && n != 0)
2146 {
2147 if (i < 0)
2148 /* We first fill the positive side of the range, so we might
2149 end up with one empty slot at that side when we can't fit
2150 whole 2-slot entry. Account for that at negative side of
2151 the interval with one additional entry. */
2152 n = n / 2 + 1;
2153 else
2154 /* When the number of slots is odd, make positive side of the
2155 range one entry bigger. */
2156 n = (n + 1) / 2;
2157 }
2158
2159 /* N is the number of slots that require I offsets.
2160 Calculate length of the range for I offsets. */
2161 n = 4 * n;
2162
2163 /* Set end of the range. */
2164 arg_.offset2[i] = start_offset + n;
2165
2166 start_offset = arg_.offset2[i];
2167 }
2168
2169 if (!use_neg_got_offsets_p)
2170 /* Make sure that if we try to switch to negative offsets in
2171 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2172 the bug. */
2173 for (i = R_8; i <= R_32; ++i)
2174 arg_.offset2[-i - 1] = arg_.offset2[i];
2175
2176 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2177 beginning of GOT depending on use_neg_got_offsets_p. */
2178 got->offset = arg_.offset1[R_8];
2179
2180 arg_.symndx2h = symndx2h;
2181 arg_.n_ldm_entries = 0;
2182
2183 /* Assign offsets. */
2184 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2185
2186 /* Check offset ranges we have actually assigned. */
2187 for (i = (int) R_8; i <= (int) R_32; ++i)
2188 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2189
2190 *final_offset = start_offset;
2191 *n_ldm_entries = arg_.n_ldm_entries;
2192 }
2193
2194 struct elf_m68k_partition_multi_got_arg
2195 {
2196 /* The GOT we are adding entries to. Aka big got. */
2197 struct elf_m68k_got *current_got;
2198
2199 /* Offset to assign the next CURRENT_GOT. */
2200 bfd_vma offset;
2201
2202 /* Context where memory should be allocated. */
2203 struct bfd_link_info *info;
2204
2205 /* Total number of slots in the .got section.
2206 This is used to calculate size of the .got and .rela.got sections. */
2207 bfd_vma n_slots;
2208
2209 /* Difference in numbers of allocated slots in the .got section
2210 and necessary relocations in the .rela.got section.
2211 This is used to calculate size of the .rela.got section. */
2212 bfd_vma slots_relas_diff;
2213
2214 /* Error flag. */
2215 bfd_boolean error_p;
2216
2217 /* Mapping from global symndx to global symbols.
2218 This is used to build lists of got entries for global symbols. */
2219 struct elf_m68k_link_hash_entry **symndx2h;
2220 };
2221
2222 static void
2223 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2224 {
2225 bfd_vma n_ldm_entries;
2226
2227 elf_m68k_finalize_got_offsets (arg->current_got,
2228 (elf_m68k_hash_table (arg->info)
2229 ->use_neg_got_offsets_p),
2230 arg->symndx2h,
2231 &arg->offset, &n_ldm_entries);
2232
2233 arg->n_slots += arg->current_got->n_slots[R_32];
2234
2235 if (!arg->info->shared)
2236 /* If we are generating a shared object, we need to
2237 output a R_68K_RELATIVE reloc so that the dynamic
2238 linker can adjust this GOT entry. Overwise we
2239 don't need space in .rela.got for local symbols. */
2240 arg->slots_relas_diff += arg->current_got->local_n_slots;
2241
2242 /* @LDM relocations require a 2-slot GOT entry, but only
2243 one relocation. Account for that. */
2244 arg->slots_relas_diff += n_ldm_entries;
2245
2246 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2247 }
2248
2249
2250 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2251 or start a new CURRENT_GOT. */
2252
2253 static int
2254 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2255 {
2256 struct elf_m68k_bfd2got_entry *entry;
2257 struct elf_m68k_partition_multi_got_arg *arg;
2258 struct elf_m68k_got *got;
2259 struct elf_m68k_got diff_;
2260 struct elf_m68k_got *diff;
2261
2262 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2263 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2264
2265 got = entry->got;
2266 BFD_ASSERT (got != NULL);
2267 BFD_ASSERT (got->offset == (bfd_vma) -1);
2268
2269 diff = NULL;
2270
2271 if (arg->current_got != NULL)
2272 /* Construct diff. */
2273 {
2274 diff = &diff_;
2275 elf_m68k_init_got (diff);
2276
2277 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2278 {
2279 if (diff->offset == 0)
2280 /* Offset set to 0 in the diff_ indicates an error. */
2281 {
2282 arg->error_p = TRUE;
2283 goto final_return;
2284 }
2285
2286 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2287 {
2288 elf_m68k_clear_got (diff);
2289 /* Schedule to finish up current_got and start new one. */
2290 diff = NULL;
2291 }
2292 /* else
2293 Merge GOTs no matter what. If big GOT overflows,
2294 we'll fail in relocate_section due to truncated relocations.
2295
2296 ??? May be fail earlier? E.g., in can_merge_gots. */
2297 }
2298 }
2299 else
2300 /* Diff of got against empty current_got is got itself. */
2301 {
2302 /* Create empty current_got to put subsequent GOTs to. */
2303 arg->current_got = elf_m68k_create_empty_got (arg->info);
2304 if (arg->current_got == NULL)
2305 {
2306 arg->error_p = TRUE;
2307 goto final_return;
2308 }
2309
2310 arg->current_got->offset = arg->offset;
2311
2312 diff = got;
2313 }
2314
2315 if (diff != NULL)
2316 {
2317 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2318 {
2319 arg->error_p = TRUE;
2320 goto final_return;
2321 }
2322
2323 /* Now we can free GOT. */
2324 elf_m68k_clear_got (got);
2325
2326 entry->got = arg->current_got;
2327 }
2328 else
2329 {
2330 /* Finish up current_got. */
2331 elf_m68k_partition_multi_got_2 (arg);
2332
2333 /* Schedule to start a new current_got. */
2334 arg->current_got = NULL;
2335
2336 /* Retry. */
2337 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2338 {
2339 BFD_ASSERT (arg->error_p);
2340 goto final_return;
2341 }
2342 }
2343
2344 final_return:
2345 if (diff != NULL)
2346 elf_m68k_clear_got (diff);
2347
2348 return arg->error_p == FALSE ? 1 : 0;
2349 }
2350
2351 /* Helper function to build symndx2h mapping. */
2352
2353 static bfd_boolean
2354 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2355 void *_arg)
2356 {
2357 struct elf_m68k_link_hash_entry *h;
2358
2359 h = elf_m68k_hash_entry (_h);
2360
2361 if (h->got_entry_key != 0)
2362 /* H has at least one entry in the GOT. */
2363 {
2364 struct elf_m68k_partition_multi_got_arg *arg;
2365
2366 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2367
2368 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2369 arg->symndx2h[h->got_entry_key] = h;
2370 }
2371
2372 return TRUE;
2373 }
2374
2375 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2376 lists of GOT entries for global symbols.
2377 Calculate sizes of .got and .rela.got sections. */
2378
2379 static bfd_boolean
2380 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2381 {
2382 struct elf_m68k_multi_got *multi_got;
2383 struct elf_m68k_partition_multi_got_arg arg_;
2384
2385 multi_got = elf_m68k_multi_got (info);
2386
2387 arg_.current_got = NULL;
2388 arg_.offset = 0;
2389 arg_.info = info;
2390 arg_.n_slots = 0;
2391 arg_.slots_relas_diff = 0;
2392 arg_.error_p = FALSE;
2393
2394 if (multi_got->bfd2got != NULL)
2395 {
2396 /* Initialize symndx2h mapping. */
2397 {
2398 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2399 * sizeof (*arg_.symndx2h));
2400 if (arg_.symndx2h == NULL)
2401 return FALSE;
2402
2403 elf_link_hash_traverse (elf_hash_table (info),
2404 elf_m68k_init_symndx2h_1, &arg_);
2405 }
2406
2407 /* Partition. */
2408 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2409 &arg_);
2410 if (arg_.error_p)
2411 {
2412 free (arg_.symndx2h);
2413 arg_.symndx2h = NULL;
2414
2415 return FALSE;
2416 }
2417
2418 /* Finish up last current_got. */
2419 elf_m68k_partition_multi_got_2 (&arg_);
2420
2421 free (arg_.symndx2h);
2422 }
2423
2424 if (elf_hash_table (info)->dynobj != NULL)
2425 /* Set sizes of .got and .rela.got sections. */
2426 {
2427 asection *s;
2428
2429 s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".got");
2430 if (s != NULL)
2431 s->size = arg_.offset;
2432 else
2433 BFD_ASSERT (arg_.offset == 0);
2434
2435 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2436 arg_.n_slots -= arg_.slots_relas_diff;
2437
2438 s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".rela.got");
2439 if (s != NULL)
2440 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2441 else
2442 BFD_ASSERT (arg_.n_slots == 0);
2443 }
2444 else
2445 BFD_ASSERT (multi_got->bfd2got == NULL);
2446
2447 return TRUE;
2448 }
2449
2450 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2451 to hashtable slot, thus allowing removal of entry via
2452 elf_m68k_remove_got_entry. */
2453
2454 static struct elf_m68k_got_entry **
2455 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2456 struct elf_m68k_got_entry_key *key)
2457 {
2458 void **ptr;
2459 struct elf_m68k_got_entry entry_;
2460 struct elf_m68k_got_entry **entry_ptr;
2461
2462 entry_.key_ = *key;
2463 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2464 BFD_ASSERT (ptr != NULL);
2465
2466 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2467
2468 return entry_ptr;
2469 }
2470
2471 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2472
2473 static void
2474 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2475 struct elf_m68k_got_entry **entry_ptr)
2476 {
2477 struct elf_m68k_got_entry *entry;
2478
2479 entry = *entry_ptr;
2480
2481 /* Check that offsets have not been finalized yet. */
2482 BFD_ASSERT (got->offset == (bfd_vma) -1);
2483 /* Check that this entry is indeed unused. */
2484 BFD_ASSERT (entry->u.s1.refcount == 0);
2485
2486 elf_m68k_remove_got_entry_type (got, entry->key_.type);
2487
2488 if (entry->key_.bfd != NULL)
2489 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2490
2491 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2492
2493 htab_clear_slot (got->entries, (void **) entry_ptr);
2494 }
2495
2496 /* Copy any information related to dynamic linking from a pre-existing
2497 symbol to a newly created symbol. Also called to copy flags and
2498 other back-end info to a weakdef, in which case the symbol is not
2499 newly created and plt/got refcounts and dynamic indices should not
2500 be copied. */
2501
2502 static void
2503 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2504 struct elf_link_hash_entry *_dir,
2505 struct elf_link_hash_entry *_ind)
2506 {
2507 struct elf_m68k_link_hash_entry *dir;
2508 struct elf_m68k_link_hash_entry *ind;
2509
2510 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2511
2512 if (_ind->root.type != bfd_link_hash_indirect)
2513 return;
2514
2515 dir = elf_m68k_hash_entry (_dir);
2516 ind = elf_m68k_hash_entry (_ind);
2517
2518 /* Any absolute non-dynamic relocations against an indirect or weak
2519 definition will be against the target symbol. */
2520 _dir->non_got_ref |= _ind->non_got_ref;
2521
2522 /* We might have a direct symbol already having entries in the GOTs.
2523 Update its key only in case indirect symbol has GOT entries and
2524 assert that both indirect and direct symbols don't have GOT entries
2525 at the same time. */
2526 if (ind->got_entry_key != 0)
2527 {
2528 BFD_ASSERT (dir->got_entry_key == 0);
2529 /* Assert that GOTs aren't partioned yet. */
2530 BFD_ASSERT (ind->glist == NULL);
2531
2532 dir->got_entry_key = ind->got_entry_key;
2533 ind->got_entry_key = 0;
2534 }
2535 }
2536
2537 /* Look through the relocs for a section during the first phase, and
2538 allocate space in the global offset table or procedure linkage
2539 table. */
2540
2541 static bfd_boolean
2542 elf_m68k_check_relocs (bfd *abfd,
2543 struct bfd_link_info *info,
2544 asection *sec,
2545 const Elf_Internal_Rela *relocs)
2546 {
2547 bfd *dynobj;
2548 Elf_Internal_Shdr *symtab_hdr;
2549 struct elf_link_hash_entry **sym_hashes;
2550 const Elf_Internal_Rela *rel;
2551 const Elf_Internal_Rela *rel_end;
2552 asection *sgot;
2553 asection *srelgot;
2554 asection *sreloc;
2555 struct elf_m68k_got *got;
2556
2557 if (info->relocatable)
2558 return TRUE;
2559
2560 dynobj = elf_hash_table (info)->dynobj;
2561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2562 sym_hashes = elf_sym_hashes (abfd);
2563
2564 sgot = NULL;
2565 srelgot = NULL;
2566 sreloc = NULL;
2567
2568 got = NULL;
2569
2570 rel_end = relocs + sec->reloc_count;
2571 for (rel = relocs; rel < rel_end; rel++)
2572 {
2573 unsigned long r_symndx;
2574 struct elf_link_hash_entry *h;
2575
2576 r_symndx = ELF32_R_SYM (rel->r_info);
2577
2578 if (r_symndx < symtab_hdr->sh_info)
2579 h = NULL;
2580 else
2581 {
2582 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2583 while (h->root.type == bfd_link_hash_indirect
2584 || h->root.type == bfd_link_hash_warning)
2585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2586
2587 /* PR15323, ref flags aren't set for references in the same
2588 object. */
2589 h->root.non_ir_ref = 1;
2590 }
2591
2592 switch (ELF32_R_TYPE (rel->r_info))
2593 {
2594 case R_68K_GOT8:
2595 case R_68K_GOT16:
2596 case R_68K_GOT32:
2597 if (h != NULL
2598 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2599 break;
2600 /* Fall through. */
2601
2602 /* Relative GOT relocations. */
2603 case R_68K_GOT8O:
2604 case R_68K_GOT16O:
2605 case R_68K_GOT32O:
2606 /* Fall through. */
2607
2608 /* TLS relocations. */
2609 case R_68K_TLS_GD8:
2610 case R_68K_TLS_GD16:
2611 case R_68K_TLS_GD32:
2612 case R_68K_TLS_LDM8:
2613 case R_68K_TLS_LDM16:
2614 case R_68K_TLS_LDM32:
2615 case R_68K_TLS_IE8:
2616 case R_68K_TLS_IE16:
2617 case R_68K_TLS_IE32:
2618
2619 case R_68K_TLS_TPREL32:
2620 case R_68K_TLS_DTPREL32:
2621
2622 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2623 && info->shared)
2624 /* Do the special chorus for libraries with static TLS. */
2625 info->flags |= DF_STATIC_TLS;
2626
2627 /* This symbol requires a global offset table entry. */
2628
2629 if (dynobj == NULL)
2630 {
2631 /* Create the .got section. */
2632 elf_hash_table (info)->dynobj = dynobj = abfd;
2633 if (!_bfd_elf_create_got_section (dynobj, info))
2634 return FALSE;
2635 }
2636
2637 if (sgot == NULL)
2638 {
2639 sgot = bfd_get_linker_section (dynobj, ".got");
2640 BFD_ASSERT (sgot != NULL);
2641 }
2642
2643 if (srelgot == NULL
2644 && (h != NULL || info->shared))
2645 {
2646 srelgot = bfd_get_linker_section (dynobj, ".rela.got");
2647 if (srelgot == NULL)
2648 {
2649 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2650 | SEC_IN_MEMORY | SEC_LINKER_CREATED
2651 | SEC_READONLY);
2652 srelgot = bfd_make_section_anyway_with_flags (dynobj,
2653 ".rela.got",
2654 flags);
2655 if (srelgot == NULL
2656 || !bfd_set_section_alignment (dynobj, srelgot, 2))
2657 return FALSE;
2658 }
2659 }
2660
2661 if (got == NULL)
2662 {
2663 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2664
2665 bfd2got_entry
2666 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2667 abfd, FIND_OR_CREATE, info);
2668 if (bfd2got_entry == NULL)
2669 return FALSE;
2670
2671 got = bfd2got_entry->got;
2672 BFD_ASSERT (got != NULL);
2673 }
2674
2675 {
2676 struct elf_m68k_got_entry *got_entry;
2677
2678 /* Add entry to got. */
2679 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2680 ELF32_R_TYPE (rel->r_info),
2681 r_symndx, info);
2682 if (got_entry == NULL)
2683 return FALSE;
2684
2685 if (got_entry->u.s1.refcount == 1)
2686 {
2687 /* Make sure this symbol is output as a dynamic symbol. */
2688 if (h != NULL
2689 && h->dynindx == -1
2690 && !h->forced_local)
2691 {
2692 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2693 return FALSE;
2694 }
2695 }
2696 }
2697
2698 break;
2699
2700 case R_68K_PLT8:
2701 case R_68K_PLT16:
2702 case R_68K_PLT32:
2703 /* This symbol requires a procedure linkage table entry. We
2704 actually build the entry in adjust_dynamic_symbol,
2705 because this might be a case of linking PIC code which is
2706 never referenced by a dynamic object, in which case we
2707 don't need to generate a procedure linkage table entry
2708 after all. */
2709
2710 /* If this is a local symbol, we resolve it directly without
2711 creating a procedure linkage table entry. */
2712 if (h == NULL)
2713 continue;
2714
2715 h->needs_plt = 1;
2716 h->plt.refcount++;
2717 break;
2718
2719 case R_68K_PLT8O:
2720 case R_68K_PLT16O:
2721 case R_68K_PLT32O:
2722 /* This symbol requires a procedure linkage table entry. */
2723
2724 if (h == NULL)
2725 {
2726 /* It does not make sense to have this relocation for a
2727 local symbol. FIXME: does it? How to handle it if
2728 it does make sense? */
2729 bfd_set_error (bfd_error_bad_value);
2730 return FALSE;
2731 }
2732
2733 /* Make sure this symbol is output as a dynamic symbol. */
2734 if (h->dynindx == -1
2735 && !h->forced_local)
2736 {
2737 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2738 return FALSE;
2739 }
2740
2741 h->needs_plt = 1;
2742 h->plt.refcount++;
2743 break;
2744
2745 case R_68K_PC8:
2746 case R_68K_PC16:
2747 case R_68K_PC32:
2748 /* If we are creating a shared library and this is not a local
2749 symbol, we need to copy the reloc into the shared library.
2750 However when linking with -Bsymbolic and this is a global
2751 symbol which is defined in an object we are including in the
2752 link (i.e., DEF_REGULAR is set), then we can resolve the
2753 reloc directly. At this point we have not seen all the input
2754 files, so it is possible that DEF_REGULAR is not set now but
2755 will be set later (it is never cleared). We account for that
2756 possibility below by storing information in the
2757 pcrel_relocs_copied field of the hash table entry. */
2758 if (!(info->shared
2759 && (sec->flags & SEC_ALLOC) != 0
2760 && h != NULL
2761 && (!info->symbolic
2762 || h->root.type == bfd_link_hash_defweak
2763 || !h->def_regular)))
2764 {
2765 if (h != NULL)
2766 {
2767 /* Make sure a plt entry is created for this symbol if
2768 it turns out to be a function defined by a dynamic
2769 object. */
2770 h->plt.refcount++;
2771 }
2772 break;
2773 }
2774 /* Fall through. */
2775 case R_68K_8:
2776 case R_68K_16:
2777 case R_68K_32:
2778 /* We don't need to handle relocs into sections not going into
2779 the "real" output. */
2780 if ((sec->flags & SEC_ALLOC) == 0)
2781 break;
2782
2783 if (h != NULL)
2784 {
2785 /* Make sure a plt entry is created for this symbol if it
2786 turns out to be a function defined by a dynamic object. */
2787 h->plt.refcount++;
2788
2789 if (info->executable)
2790 /* This symbol needs a non-GOT reference. */
2791 h->non_got_ref = 1;
2792 }
2793
2794 /* If we are creating a shared library, we need to copy the
2795 reloc into the shared library. */
2796 if (info->shared)
2797 {
2798 /* When creating a shared object, we must copy these
2799 reloc types into the output file. We create a reloc
2800 section in dynobj and make room for this reloc. */
2801 if (sreloc == NULL)
2802 {
2803 sreloc = _bfd_elf_make_dynamic_reloc_section
2804 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2805
2806 if (sreloc == NULL)
2807 return FALSE;
2808 }
2809
2810 if (sec->flags & SEC_READONLY
2811 /* Don't set DF_TEXTREL yet for PC relative
2812 relocations, they might be discarded later. */
2813 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2814 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2815 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2816 info->flags |= DF_TEXTREL;
2817
2818 sreloc->size += sizeof (Elf32_External_Rela);
2819
2820 /* We count the number of PC relative relocations we have
2821 entered for this symbol, so that we can discard them
2822 again if, in the -Bsymbolic case, the symbol is later
2823 defined by a regular object, or, in the normal shared
2824 case, the symbol is forced to be local. Note that this
2825 function is only called if we are using an m68kelf linker
2826 hash table, which means that h is really a pointer to an
2827 elf_m68k_link_hash_entry. */
2828 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2829 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2830 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2831 {
2832 struct elf_m68k_pcrel_relocs_copied *p;
2833 struct elf_m68k_pcrel_relocs_copied **head;
2834
2835 if (h != NULL)
2836 {
2837 struct elf_m68k_link_hash_entry *eh
2838 = elf_m68k_hash_entry (h);
2839 head = &eh->pcrel_relocs_copied;
2840 }
2841 else
2842 {
2843 asection *s;
2844 void *vpp;
2845 Elf_Internal_Sym *isym;
2846
2847 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2848 abfd, r_symndx);
2849 if (isym == NULL)
2850 return FALSE;
2851
2852 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2853 if (s == NULL)
2854 s = sec;
2855
2856 vpp = &elf_section_data (s)->local_dynrel;
2857 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2858 }
2859
2860 for (p = *head; p != NULL; p = p->next)
2861 if (p->section == sreloc)
2862 break;
2863
2864 if (p == NULL)
2865 {
2866 p = ((struct elf_m68k_pcrel_relocs_copied *)
2867 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2868 if (p == NULL)
2869 return FALSE;
2870 p->next = *head;
2871 *head = p;
2872 p->section = sreloc;
2873 p->count = 0;
2874 }
2875
2876 ++p->count;
2877 }
2878 }
2879
2880 break;
2881
2882 /* This relocation describes the C++ object vtable hierarchy.
2883 Reconstruct it for later use during GC. */
2884 case R_68K_GNU_VTINHERIT:
2885 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2886 return FALSE;
2887 break;
2888
2889 /* This relocation describes which C++ vtable entries are actually
2890 used. Record for later use during GC. */
2891 case R_68K_GNU_VTENTRY:
2892 BFD_ASSERT (h != NULL);
2893 if (h != NULL
2894 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2895 return FALSE;
2896 break;
2897
2898 default:
2899 break;
2900 }
2901 }
2902
2903 return TRUE;
2904 }
2905
2906 /* Return the section that should be marked against GC for a given
2907 relocation. */
2908
2909 static asection *
2910 elf_m68k_gc_mark_hook (asection *sec,
2911 struct bfd_link_info *info,
2912 Elf_Internal_Rela *rel,
2913 struct elf_link_hash_entry *h,
2914 Elf_Internal_Sym *sym)
2915 {
2916 if (h != NULL)
2917 switch (ELF32_R_TYPE (rel->r_info))
2918 {
2919 case R_68K_GNU_VTINHERIT:
2920 case R_68K_GNU_VTENTRY:
2921 return NULL;
2922 }
2923
2924 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2925 }
2926
2927 /* Update the got entry reference counts for the section being removed. */
2928
2929 static bfd_boolean
2930 elf_m68k_gc_sweep_hook (bfd *abfd,
2931 struct bfd_link_info *info,
2932 asection *sec,
2933 const Elf_Internal_Rela *relocs)
2934 {
2935 Elf_Internal_Shdr *symtab_hdr;
2936 struct elf_link_hash_entry **sym_hashes;
2937 const Elf_Internal_Rela *rel, *relend;
2938 bfd *dynobj;
2939 struct elf_m68k_got *got;
2940
2941 if (info->relocatable)
2942 return TRUE;
2943
2944 dynobj = elf_hash_table (info)->dynobj;
2945 if (dynobj == NULL)
2946 return TRUE;
2947
2948 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2949 sym_hashes = elf_sym_hashes (abfd);
2950 got = NULL;
2951
2952 relend = relocs + sec->reloc_count;
2953 for (rel = relocs; rel < relend; rel++)
2954 {
2955 unsigned long r_symndx;
2956 struct elf_link_hash_entry *h = NULL;
2957
2958 r_symndx = ELF32_R_SYM (rel->r_info);
2959 if (r_symndx >= symtab_hdr->sh_info)
2960 {
2961 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2962 while (h->root.type == bfd_link_hash_indirect
2963 || h->root.type == bfd_link_hash_warning)
2964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2965 }
2966
2967 switch (ELF32_R_TYPE (rel->r_info))
2968 {
2969 case R_68K_GOT8:
2970 case R_68K_GOT16:
2971 case R_68K_GOT32:
2972 if (h != NULL
2973 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2974 break;
2975
2976 /* FALLTHRU */
2977 case R_68K_GOT8O:
2978 case R_68K_GOT16O:
2979 case R_68K_GOT32O:
2980 /* Fall through. */
2981
2982 /* TLS relocations. */
2983 case R_68K_TLS_GD8:
2984 case R_68K_TLS_GD16:
2985 case R_68K_TLS_GD32:
2986 case R_68K_TLS_LDM8:
2987 case R_68K_TLS_LDM16:
2988 case R_68K_TLS_LDM32:
2989 case R_68K_TLS_IE8:
2990 case R_68K_TLS_IE16:
2991 case R_68K_TLS_IE32:
2992
2993 case R_68K_TLS_TPREL32:
2994 case R_68K_TLS_DTPREL32:
2995
2996 if (got == NULL)
2997 {
2998 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2999 abfd, MUST_FIND, NULL)->got;
3000 BFD_ASSERT (got != NULL);
3001 }
3002
3003 {
3004 struct elf_m68k_got_entry_key key_;
3005 struct elf_m68k_got_entry **got_entry_ptr;
3006 struct elf_m68k_got_entry *got_entry;
3007
3008 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
3009 ELF32_R_TYPE (rel->r_info));
3010 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
3011
3012 got_entry = *got_entry_ptr;
3013
3014 if (got_entry->u.s1.refcount > 0)
3015 {
3016 --got_entry->u.s1.refcount;
3017
3018 if (got_entry->u.s1.refcount == 0)
3019 /* We don't need the .got entry any more. */
3020 elf_m68k_remove_got_entry (got, got_entry_ptr);
3021 }
3022 }
3023 break;
3024
3025 case R_68K_PLT8:
3026 case R_68K_PLT16:
3027 case R_68K_PLT32:
3028 case R_68K_PLT8O:
3029 case R_68K_PLT16O:
3030 case R_68K_PLT32O:
3031 case R_68K_PC8:
3032 case R_68K_PC16:
3033 case R_68K_PC32:
3034 case R_68K_8:
3035 case R_68K_16:
3036 case R_68K_32:
3037 if (h != NULL)
3038 {
3039 if (h->plt.refcount > 0)
3040 --h->plt.refcount;
3041 }
3042 break;
3043
3044 default:
3045 break;
3046 }
3047 }
3048
3049 return TRUE;
3050 }
3051 \f
3052 /* Return the type of PLT associated with OUTPUT_BFD. */
3053
3054 static const struct elf_m68k_plt_info *
3055 elf_m68k_get_plt_info (bfd *output_bfd)
3056 {
3057 unsigned int features;
3058
3059 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3060 if (features & cpu32)
3061 return &elf_cpu32_plt_info;
3062 if (features & mcfisa_b)
3063 return &elf_isab_plt_info;
3064 if (features & mcfisa_c)
3065 return &elf_isac_plt_info;
3066 return &elf_m68k_plt_info;
3067 }
3068
3069 /* This function is called after all the input files have been read,
3070 and the input sections have been assigned to output sections.
3071 It's a convenient place to determine the PLT style. */
3072
3073 static bfd_boolean
3074 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3075 {
3076 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3077 sections. */
3078 if (!elf_m68k_partition_multi_got (info))
3079 return FALSE;
3080
3081 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3082 return TRUE;
3083 }
3084
3085 /* Adjust a symbol defined by a dynamic object and referenced by a
3086 regular object. The current definition is in some section of the
3087 dynamic object, but we're not including those sections. We have to
3088 change the definition to something the rest of the link can
3089 understand. */
3090
3091 static bfd_boolean
3092 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
3093 struct elf_link_hash_entry *h)
3094 {
3095 struct elf_m68k_link_hash_table *htab;
3096 bfd *dynobj;
3097 asection *s;
3098
3099 htab = elf_m68k_hash_table (info);
3100 dynobj = elf_hash_table (info)->dynobj;
3101
3102 /* Make sure we know what is going on here. */
3103 BFD_ASSERT (dynobj != NULL
3104 && (h->needs_plt
3105 || h->u.weakdef != NULL
3106 || (h->def_dynamic
3107 && h->ref_regular
3108 && !h->def_regular)));
3109
3110 /* If this is a function, put it in the procedure linkage table. We
3111 will fill in the contents of the procedure linkage table later,
3112 when we know the address of the .got section. */
3113 if (h->type == STT_FUNC
3114 || h->needs_plt)
3115 {
3116 if ((h->plt.refcount <= 0
3117 || SYMBOL_CALLS_LOCAL (info, h)
3118 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3119 && h->root.type == bfd_link_hash_undefweak))
3120 /* We must always create the plt entry if it was referenced
3121 by a PLTxxO relocation. In this case we already recorded
3122 it as a dynamic symbol. */
3123 && h->dynindx == -1)
3124 {
3125 /* This case can occur if we saw a PLTxx reloc in an input
3126 file, but the symbol was never referred to by a dynamic
3127 object, or if all references were garbage collected. In
3128 such a case, we don't actually need to build a procedure
3129 linkage table, and we can just do a PCxx reloc instead. */
3130 h->plt.offset = (bfd_vma) -1;
3131 h->needs_plt = 0;
3132 return TRUE;
3133 }
3134
3135 /* Make sure this symbol is output as a dynamic symbol. */
3136 if (h->dynindx == -1
3137 && !h->forced_local)
3138 {
3139 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3140 return FALSE;
3141 }
3142
3143 s = bfd_get_linker_section (dynobj, ".plt");
3144 BFD_ASSERT (s != NULL);
3145
3146 /* If this is the first .plt entry, make room for the special
3147 first entry. */
3148 if (s->size == 0)
3149 s->size = htab->plt_info->size;
3150
3151 /* If this symbol is not defined in a regular file, and we are
3152 not generating a shared library, then set the symbol to this
3153 location in the .plt. This is required to make function
3154 pointers compare as equal between the normal executable and
3155 the shared library. */
3156 if (!info->shared
3157 && !h->def_regular)
3158 {
3159 h->root.u.def.section = s;
3160 h->root.u.def.value = s->size;
3161 }
3162
3163 h->plt.offset = s->size;
3164
3165 /* Make room for this entry. */
3166 s->size += htab->plt_info->size;
3167
3168 /* We also need to make an entry in the .got.plt section, which
3169 will be placed in the .got section by the linker script. */
3170 s = bfd_get_linker_section (dynobj, ".got.plt");
3171 BFD_ASSERT (s != NULL);
3172 s->size += 4;
3173
3174 /* We also need to make an entry in the .rela.plt section. */
3175 s = bfd_get_linker_section (dynobj, ".rela.plt");
3176 BFD_ASSERT (s != NULL);
3177 s->size += sizeof (Elf32_External_Rela);
3178
3179 return TRUE;
3180 }
3181
3182 /* Reinitialize the plt offset now that it is not used as a reference
3183 count any more. */
3184 h->plt.offset = (bfd_vma) -1;
3185
3186 /* If this is a weak symbol, and there is a real definition, the
3187 processor independent code will have arranged for us to see the
3188 real definition first, and we can just use the same value. */
3189 if (h->u.weakdef != NULL)
3190 {
3191 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3192 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3193 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3194 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3195 return TRUE;
3196 }
3197
3198 /* This is a reference to a symbol defined by a dynamic object which
3199 is not a function. */
3200
3201 /* If we are creating a shared library, we must presume that the
3202 only references to the symbol are via the global offset table.
3203 For such cases we need not do anything here; the relocations will
3204 be handled correctly by relocate_section. */
3205 if (info->shared)
3206 return TRUE;
3207
3208 /* If there are no references to this symbol that do not use the
3209 GOT, we don't need to generate a copy reloc. */
3210 if (!h->non_got_ref)
3211 return TRUE;
3212
3213 /* We must allocate the symbol in our .dynbss section, which will
3214 become part of the .bss section of the executable. There will be
3215 an entry for this symbol in the .dynsym section. The dynamic
3216 object will contain position independent code, so all references
3217 from the dynamic object to this symbol will go through the global
3218 offset table. The dynamic linker will use the .dynsym entry to
3219 determine the address it must put in the global offset table, so
3220 both the dynamic object and the regular object will refer to the
3221 same memory location for the variable. */
3222
3223 s = bfd_get_linker_section (dynobj, ".dynbss");
3224 BFD_ASSERT (s != NULL);
3225
3226 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3227 copy the initial value out of the dynamic object and into the
3228 runtime process image. We need to remember the offset into the
3229 .rela.bss section we are going to use. */
3230 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3231 {
3232 asection *srel;
3233
3234 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3235 BFD_ASSERT (srel != NULL);
3236 srel->size += sizeof (Elf32_External_Rela);
3237 h->needs_copy = 1;
3238 }
3239
3240 return _bfd_elf_adjust_dynamic_copy (h, s);
3241 }
3242
3243 /* Set the sizes of the dynamic sections. */
3244
3245 static bfd_boolean
3246 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3247 struct bfd_link_info *info)
3248 {
3249 bfd *dynobj;
3250 asection *s;
3251 bfd_boolean plt;
3252 bfd_boolean relocs;
3253
3254 dynobj = elf_hash_table (info)->dynobj;
3255 BFD_ASSERT (dynobj != NULL);
3256
3257 if (elf_hash_table (info)->dynamic_sections_created)
3258 {
3259 /* Set the contents of the .interp section to the interpreter. */
3260 if (info->executable)
3261 {
3262 s = bfd_get_linker_section (dynobj, ".interp");
3263 BFD_ASSERT (s != NULL);
3264 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3265 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3266 }
3267 }
3268 else
3269 {
3270 /* We may have created entries in the .rela.got section.
3271 However, if we are not creating the dynamic sections, we will
3272 not actually use these entries. Reset the size of .rela.got,
3273 which will cause it to get stripped from the output file
3274 below. */
3275 s = bfd_get_linker_section (dynobj, ".rela.got");
3276 if (s != NULL)
3277 s->size = 0;
3278 }
3279
3280 /* If this is a -Bsymbolic shared link, then we need to discard all
3281 PC relative relocs against symbols defined in a regular object.
3282 For the normal shared case we discard the PC relative relocs
3283 against symbols that have become local due to visibility changes.
3284 We allocated space for them in the check_relocs routine, but we
3285 will not fill them in in the relocate_section routine. */
3286 if (info->shared)
3287 elf_link_hash_traverse (elf_hash_table (info),
3288 elf_m68k_discard_copies,
3289 info);
3290
3291 /* The check_relocs and adjust_dynamic_symbol entry points have
3292 determined the sizes of the various dynamic sections. Allocate
3293 memory for them. */
3294 plt = FALSE;
3295 relocs = FALSE;
3296 for (s = dynobj->sections; s != NULL; s = s->next)
3297 {
3298 const char *name;
3299
3300 if ((s->flags & SEC_LINKER_CREATED) == 0)
3301 continue;
3302
3303 /* It's OK to base decisions on the section name, because none
3304 of the dynobj section names depend upon the input files. */
3305 name = bfd_get_section_name (dynobj, s);
3306
3307 if (strcmp (name, ".plt") == 0)
3308 {
3309 /* Remember whether there is a PLT. */
3310 plt = s->size != 0;
3311 }
3312 else if (CONST_STRNEQ (name, ".rela"))
3313 {
3314 if (s->size != 0)
3315 {
3316 relocs = TRUE;
3317
3318 /* We use the reloc_count field as a counter if we need
3319 to copy relocs into the output file. */
3320 s->reloc_count = 0;
3321 }
3322 }
3323 else if (! CONST_STRNEQ (name, ".got")
3324 && strcmp (name, ".dynbss") != 0)
3325 {
3326 /* It's not one of our sections, so don't allocate space. */
3327 continue;
3328 }
3329
3330 if (s->size == 0)
3331 {
3332 /* If we don't need this section, strip it from the
3333 output file. This is mostly to handle .rela.bss and
3334 .rela.plt. We must create both sections in
3335 create_dynamic_sections, because they must be created
3336 before the linker maps input sections to output
3337 sections. The linker does that before
3338 adjust_dynamic_symbol is called, and it is that
3339 function which decides whether anything needs to go
3340 into these sections. */
3341 s->flags |= SEC_EXCLUDE;
3342 continue;
3343 }
3344
3345 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3346 continue;
3347
3348 /* Allocate memory for the section contents. */
3349 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3350 Unused entries should be reclaimed before the section's contents
3351 are written out, but at the moment this does not happen. Thus in
3352 order to prevent writing out garbage, we initialise the section's
3353 contents to zero. */
3354 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3355 if (s->contents == NULL)
3356 return FALSE;
3357 }
3358
3359 if (elf_hash_table (info)->dynamic_sections_created)
3360 {
3361 /* Add some entries to the .dynamic section. We fill in the
3362 values later, in elf_m68k_finish_dynamic_sections, but we
3363 must add the entries now so that we get the correct size for
3364 the .dynamic section. The DT_DEBUG entry is filled in by the
3365 dynamic linker and used by the debugger. */
3366 #define add_dynamic_entry(TAG, VAL) \
3367 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3368
3369 if (info->executable)
3370 {
3371 if (!add_dynamic_entry (DT_DEBUG, 0))
3372 return FALSE;
3373 }
3374
3375 if (plt)
3376 {
3377 if (!add_dynamic_entry (DT_PLTGOT, 0)
3378 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3379 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3380 || !add_dynamic_entry (DT_JMPREL, 0))
3381 return FALSE;
3382 }
3383
3384 if (relocs)
3385 {
3386 if (!add_dynamic_entry (DT_RELA, 0)
3387 || !add_dynamic_entry (DT_RELASZ, 0)
3388 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3389 return FALSE;
3390 }
3391
3392 if ((info->flags & DF_TEXTREL) != 0)
3393 {
3394 if (!add_dynamic_entry (DT_TEXTREL, 0))
3395 return FALSE;
3396 }
3397 }
3398 #undef add_dynamic_entry
3399
3400 return TRUE;
3401 }
3402
3403 /* This function is called via elf_link_hash_traverse if we are
3404 creating a shared object. In the -Bsymbolic case it discards the
3405 space allocated to copy PC relative relocs against symbols which
3406 are defined in regular objects. For the normal shared case, it
3407 discards space for pc-relative relocs that have become local due to
3408 symbol visibility changes. We allocated space for them in the
3409 check_relocs routine, but we won't fill them in in the
3410 relocate_section routine.
3411
3412 We also check whether any of the remaining relocations apply
3413 against a readonly section, and set the DF_TEXTREL flag in this
3414 case. */
3415
3416 static bfd_boolean
3417 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3418 void * inf)
3419 {
3420 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3421 struct elf_m68k_pcrel_relocs_copied *s;
3422
3423 if (!SYMBOL_CALLS_LOCAL (info, h))
3424 {
3425 if ((info->flags & DF_TEXTREL) == 0)
3426 {
3427 /* Look for relocations against read-only sections. */
3428 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3429 s != NULL;
3430 s = s->next)
3431 if ((s->section->flags & SEC_READONLY) != 0)
3432 {
3433 info->flags |= DF_TEXTREL;
3434 break;
3435 }
3436 }
3437
3438 /* Make sure undefined weak symbols are output as a dynamic symbol
3439 in PIEs. */
3440 if (h->non_got_ref
3441 && h->root.type == bfd_link_hash_undefweak
3442 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3443 && h->dynindx == -1
3444 && !h->forced_local)
3445 {
3446 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3447 return FALSE;
3448 }
3449
3450 return TRUE;
3451 }
3452
3453 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3454 s != NULL;
3455 s = s->next)
3456 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3457
3458 return TRUE;
3459 }
3460
3461
3462 /* Install relocation RELA. */
3463
3464 static void
3465 elf_m68k_install_rela (bfd *output_bfd,
3466 asection *srela,
3467 Elf_Internal_Rela *rela)
3468 {
3469 bfd_byte *loc;
3470
3471 loc = srela->contents;
3472 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3473 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3474 }
3475
3476 /* Find the base offsets for thread-local storage in this object,
3477 for GD/LD and IE/LE respectively. */
3478
3479 #define DTP_OFFSET 0x8000
3480 #define TP_OFFSET 0x7000
3481
3482 static bfd_vma
3483 dtpoff_base (struct bfd_link_info *info)
3484 {
3485 /* If tls_sec is NULL, we should have signalled an error already. */
3486 if (elf_hash_table (info)->tls_sec == NULL)
3487 return 0;
3488 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3489 }
3490
3491 static bfd_vma
3492 tpoff_base (struct bfd_link_info *info)
3493 {
3494 /* If tls_sec is NULL, we should have signalled an error already. */
3495 if (elf_hash_table (info)->tls_sec == NULL)
3496 return 0;
3497 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3498 }
3499
3500 /* Output necessary relocation to handle a symbol during static link.
3501 This function is called from elf_m68k_relocate_section. */
3502
3503 static void
3504 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3505 bfd *output_bfd,
3506 enum elf_m68k_reloc_type r_type,
3507 asection *sgot,
3508 bfd_vma got_entry_offset,
3509 bfd_vma relocation)
3510 {
3511 switch (elf_m68k_reloc_got_type (r_type))
3512 {
3513 case R_68K_GOT32O:
3514 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3515 break;
3516
3517 case R_68K_TLS_GD32:
3518 /* We know the offset within the module,
3519 put it into the second GOT slot. */
3520 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3521 sgot->contents + got_entry_offset + 4);
3522 /* FALLTHRU */
3523
3524 case R_68K_TLS_LDM32:
3525 /* Mark it as belonging to module 1, the executable. */
3526 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3527 break;
3528
3529 case R_68K_TLS_IE32:
3530 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3531 sgot->contents + got_entry_offset);
3532 break;
3533
3534 default:
3535 BFD_ASSERT (FALSE);
3536 }
3537 }
3538
3539 /* Output necessary relocation to handle a local symbol
3540 during dynamic link.
3541 This function is called either from elf_m68k_relocate_section
3542 or from elf_m68k_finish_dynamic_symbol. */
3543
3544 static void
3545 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3546 bfd *output_bfd,
3547 enum elf_m68k_reloc_type r_type,
3548 asection *sgot,
3549 bfd_vma got_entry_offset,
3550 bfd_vma relocation,
3551 asection *srela)
3552 {
3553 Elf_Internal_Rela outrel;
3554
3555 switch (elf_m68k_reloc_got_type (r_type))
3556 {
3557 case R_68K_GOT32O:
3558 /* Emit RELATIVE relocation to initialize GOT slot
3559 at run-time. */
3560 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3561 outrel.r_addend = relocation;
3562 break;
3563
3564 case R_68K_TLS_GD32:
3565 /* We know the offset within the module,
3566 put it into the second GOT slot. */
3567 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3568 sgot->contents + got_entry_offset + 4);
3569 /* FALLTHRU */
3570
3571 case R_68K_TLS_LDM32:
3572 /* We don't know the module number,
3573 create a relocation for it. */
3574 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3575 outrel.r_addend = 0;
3576 break;
3577
3578 case R_68K_TLS_IE32:
3579 /* Emit TPREL relocation to initialize GOT slot
3580 at run-time. */
3581 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3582 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3583 break;
3584
3585 default:
3586 BFD_ASSERT (FALSE);
3587 }
3588
3589 /* Offset of the GOT entry. */
3590 outrel.r_offset = (sgot->output_section->vma
3591 + sgot->output_offset
3592 + got_entry_offset);
3593
3594 /* Install one of the above relocations. */
3595 elf_m68k_install_rela (output_bfd, srela, &outrel);
3596
3597 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3598 }
3599
3600 /* Relocate an M68K ELF section. */
3601
3602 static bfd_boolean
3603 elf_m68k_relocate_section (bfd *output_bfd,
3604 struct bfd_link_info *info,
3605 bfd *input_bfd,
3606 asection *input_section,
3607 bfd_byte *contents,
3608 Elf_Internal_Rela *relocs,
3609 Elf_Internal_Sym *local_syms,
3610 asection **local_sections)
3611 {
3612 bfd *dynobj;
3613 Elf_Internal_Shdr *symtab_hdr;
3614 struct elf_link_hash_entry **sym_hashes;
3615 asection *sgot;
3616 asection *splt;
3617 asection *sreloc;
3618 asection *srela;
3619 struct elf_m68k_got *got;
3620 Elf_Internal_Rela *rel;
3621 Elf_Internal_Rela *relend;
3622
3623 dynobj = elf_hash_table (info)->dynobj;
3624 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3625 sym_hashes = elf_sym_hashes (input_bfd);
3626
3627 sgot = NULL;
3628 splt = NULL;
3629 sreloc = NULL;
3630 srela = NULL;
3631
3632 got = NULL;
3633
3634 rel = relocs;
3635 relend = relocs + input_section->reloc_count;
3636 for (; rel < relend; rel++)
3637 {
3638 int r_type;
3639 reloc_howto_type *howto;
3640 unsigned long r_symndx;
3641 struct elf_link_hash_entry *h;
3642 Elf_Internal_Sym *sym;
3643 asection *sec;
3644 bfd_vma relocation;
3645 bfd_boolean unresolved_reloc;
3646 bfd_reloc_status_type r;
3647
3648 r_type = ELF32_R_TYPE (rel->r_info);
3649 if (r_type < 0 || r_type >= (int) R_68K_max)
3650 {
3651 bfd_set_error (bfd_error_bad_value);
3652 return FALSE;
3653 }
3654 howto = howto_table + r_type;
3655
3656 r_symndx = ELF32_R_SYM (rel->r_info);
3657
3658 h = NULL;
3659 sym = NULL;
3660 sec = NULL;
3661 unresolved_reloc = FALSE;
3662
3663 if (r_symndx < symtab_hdr->sh_info)
3664 {
3665 sym = local_syms + r_symndx;
3666 sec = local_sections[r_symndx];
3667 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3668 }
3669 else
3670 {
3671 bfd_boolean warned, ignored;
3672
3673 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3674 r_symndx, symtab_hdr, sym_hashes,
3675 h, sec, relocation,
3676 unresolved_reloc, warned, ignored);
3677 }
3678
3679 if (sec != NULL && discarded_section (sec))
3680 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3681 rel, 1, relend, howto, 0, contents);
3682
3683 if (info->relocatable)
3684 continue;
3685
3686 switch (r_type)
3687 {
3688 case R_68K_GOT8:
3689 case R_68K_GOT16:
3690 case R_68K_GOT32:
3691 /* Relocation is to the address of the entry for this symbol
3692 in the global offset table. */
3693 if (h != NULL
3694 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3695 {
3696 if (elf_m68k_hash_table (info)->local_gp_p)
3697 {
3698 bfd_vma sgot_output_offset;
3699 bfd_vma got_offset;
3700
3701 if (sgot == NULL)
3702 {
3703 sgot = bfd_get_linker_section (dynobj, ".got");
3704
3705 if (sgot != NULL)
3706 sgot_output_offset = sgot->output_offset;
3707 else
3708 /* In this case we have a reference to
3709 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3710 empty.
3711 ??? Issue a warning? */
3712 sgot_output_offset = 0;
3713 }
3714 else
3715 sgot_output_offset = sgot->output_offset;
3716
3717 if (got == NULL)
3718 {
3719 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3720
3721 bfd2got_entry
3722 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3723 input_bfd, SEARCH, NULL);
3724
3725 if (bfd2got_entry != NULL)
3726 {
3727 got = bfd2got_entry->got;
3728 BFD_ASSERT (got != NULL);
3729
3730 got_offset = got->offset;
3731 }
3732 else
3733 /* In this case we have a reference to
3734 _GLOBAL_OFFSET_TABLE_, but no other references
3735 accessing any GOT entries.
3736 ??? Issue a warning? */
3737 got_offset = 0;
3738 }
3739 else
3740 got_offset = got->offset;
3741
3742 /* Adjust GOT pointer to point to the GOT
3743 assigned to input_bfd. */
3744 rel->r_addend += sgot_output_offset + got_offset;
3745 }
3746 else
3747 BFD_ASSERT (got == NULL || got->offset == 0);
3748
3749 break;
3750 }
3751 /* Fall through. */
3752 case R_68K_GOT8O:
3753 case R_68K_GOT16O:
3754 case R_68K_GOT32O:
3755
3756 case R_68K_TLS_LDM32:
3757 case R_68K_TLS_LDM16:
3758 case R_68K_TLS_LDM8:
3759
3760 case R_68K_TLS_GD8:
3761 case R_68K_TLS_GD16:
3762 case R_68K_TLS_GD32:
3763
3764 case R_68K_TLS_IE8:
3765 case R_68K_TLS_IE16:
3766 case R_68K_TLS_IE32:
3767
3768 /* Relocation is the offset of the entry for this symbol in
3769 the global offset table. */
3770
3771 {
3772 struct elf_m68k_got_entry_key key_;
3773 bfd_vma *off_ptr;
3774 bfd_vma off;
3775
3776 if (sgot == NULL)
3777 {
3778 sgot = bfd_get_linker_section (dynobj, ".got");
3779 BFD_ASSERT (sgot != NULL);
3780 }
3781
3782 if (got == NULL)
3783 {
3784 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3785 input_bfd, MUST_FIND,
3786 NULL)->got;
3787 BFD_ASSERT (got != NULL);
3788 }
3789
3790 /* Get GOT offset for this symbol. */
3791 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3792 r_type);
3793 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3794 NULL)->u.s2.offset;
3795 off = *off_ptr;
3796
3797 /* The offset must always be a multiple of 4. We use
3798 the least significant bit to record whether we have
3799 already generated the necessary reloc. */
3800 if ((off & 1) != 0)
3801 off &= ~1;
3802 else
3803 {
3804 if (h != NULL
3805 /* @TLSLDM relocations are bounded to the module, in
3806 which the symbol is defined -- not to the symbol
3807 itself. */
3808 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3809 {
3810 bfd_boolean dyn;
3811
3812 dyn = elf_hash_table (info)->dynamic_sections_created;
3813 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3814 || (info->shared
3815 && SYMBOL_REFERENCES_LOCAL (info, h))
3816 || (ELF_ST_VISIBILITY (h->other)
3817 && h->root.type == bfd_link_hash_undefweak))
3818 {
3819 /* This is actually a static link, or it is a
3820 -Bsymbolic link and the symbol is defined
3821 locally, or the symbol was forced to be local
3822 because of a version file. We must initialize
3823 this entry in the global offset table. Since
3824 the offset must always be a multiple of 4, we
3825 use the least significant bit to record whether
3826 we have initialized it already.
3827
3828 When doing a dynamic link, we create a .rela.got
3829 relocation entry to initialize the value. This
3830 is done in the finish_dynamic_symbol routine. */
3831
3832 elf_m68k_init_got_entry_static (info,
3833 output_bfd,
3834 r_type,
3835 sgot,
3836 off,
3837 relocation);
3838
3839 *off_ptr |= 1;
3840 }
3841 else
3842 unresolved_reloc = FALSE;
3843 }
3844 else if (info->shared) /* && h == NULL */
3845 /* Process local symbol during dynamic link. */
3846 {
3847 if (srela == NULL)
3848 {
3849 srela = bfd_get_linker_section (dynobj, ".rela.got");
3850 BFD_ASSERT (srela != NULL);
3851 }
3852
3853 elf_m68k_init_got_entry_local_shared (info,
3854 output_bfd,
3855 r_type,
3856 sgot,
3857 off,
3858 relocation,
3859 srela);
3860
3861 *off_ptr |= 1;
3862 }
3863 else /* h == NULL && !info->shared */
3864 {
3865 elf_m68k_init_got_entry_static (info,
3866 output_bfd,
3867 r_type,
3868 sgot,
3869 off,
3870 relocation);
3871
3872 *off_ptr |= 1;
3873 }
3874 }
3875
3876 /* We don't use elf_m68k_reloc_got_type in the condition below
3877 because this is the only place where difference between
3878 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3879 if (r_type == R_68K_GOT32O
3880 || r_type == R_68K_GOT16O
3881 || r_type == R_68K_GOT8O
3882 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3883 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3884 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3885 {
3886 /* GOT pointer is adjusted to point to the start/middle
3887 of local GOT. Adjust the offset accordingly. */
3888 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3889 || off >= got->offset);
3890
3891 if (elf_m68k_hash_table (info)->local_gp_p)
3892 relocation = off - got->offset;
3893 else
3894 {
3895 BFD_ASSERT (got->offset == 0);
3896 relocation = sgot->output_offset + off;
3897 }
3898
3899 /* This relocation does not use the addend. */
3900 rel->r_addend = 0;
3901 }
3902 else
3903 relocation = (sgot->output_section->vma + sgot->output_offset
3904 + off);
3905 }
3906 break;
3907
3908 case R_68K_TLS_LDO32:
3909 case R_68K_TLS_LDO16:
3910 case R_68K_TLS_LDO8:
3911 relocation -= dtpoff_base (info);
3912 break;
3913
3914 case R_68K_TLS_LE32:
3915 case R_68K_TLS_LE16:
3916 case R_68K_TLS_LE8:
3917 if (info->shared && !info->pie)
3918 {
3919 (*_bfd_error_handler)
3920 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3921 "in shared object"),
3922 input_bfd, input_section, (long) rel->r_offset, howto->name);
3923
3924 return FALSE;
3925 }
3926 else
3927 relocation -= tpoff_base (info);
3928
3929 break;
3930
3931 case R_68K_PLT8:
3932 case R_68K_PLT16:
3933 case R_68K_PLT32:
3934 /* Relocation is to the entry for this symbol in the
3935 procedure linkage table. */
3936
3937 /* Resolve a PLTxx reloc against a local symbol directly,
3938 without using the procedure linkage table. */
3939 if (h == NULL)
3940 break;
3941
3942 if (h->plt.offset == (bfd_vma) -1
3943 || !elf_hash_table (info)->dynamic_sections_created)
3944 {
3945 /* We didn't make a PLT entry for this symbol. This
3946 happens when statically linking PIC code, or when
3947 using -Bsymbolic. */
3948 break;
3949 }
3950
3951 if (splt == NULL)
3952 {
3953 splt = bfd_get_linker_section (dynobj, ".plt");
3954 BFD_ASSERT (splt != NULL);
3955 }
3956
3957 relocation = (splt->output_section->vma
3958 + splt->output_offset
3959 + h->plt.offset);
3960 unresolved_reloc = FALSE;
3961 break;
3962
3963 case R_68K_PLT8O:
3964 case R_68K_PLT16O:
3965 case R_68K_PLT32O:
3966 /* Relocation is the offset of the entry for this symbol in
3967 the procedure linkage table. */
3968 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3969
3970 if (splt == NULL)
3971 {
3972 splt = bfd_get_linker_section (dynobj, ".plt");
3973 BFD_ASSERT (splt != NULL);
3974 }
3975
3976 relocation = h->plt.offset;
3977 unresolved_reloc = FALSE;
3978
3979 /* This relocation does not use the addend. */
3980 rel->r_addend = 0;
3981
3982 break;
3983
3984 case R_68K_8:
3985 case R_68K_16:
3986 case R_68K_32:
3987 case R_68K_PC8:
3988 case R_68K_PC16:
3989 case R_68K_PC32:
3990 if (info->shared
3991 && r_symndx != STN_UNDEF
3992 && (input_section->flags & SEC_ALLOC) != 0
3993 && (h == NULL
3994 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3995 || h->root.type != bfd_link_hash_undefweak)
3996 && ((r_type != R_68K_PC8
3997 && r_type != R_68K_PC16
3998 && r_type != R_68K_PC32)
3999 || !SYMBOL_CALLS_LOCAL (info, h)))
4000 {
4001 Elf_Internal_Rela outrel;
4002 bfd_byte *loc;
4003 bfd_boolean skip, relocate;
4004
4005 /* When generating a shared object, these relocations
4006 are copied into the output file to be resolved at run
4007 time. */
4008
4009 skip = FALSE;
4010 relocate = FALSE;
4011
4012 outrel.r_offset =
4013 _bfd_elf_section_offset (output_bfd, info, input_section,
4014 rel->r_offset);
4015 if (outrel.r_offset == (bfd_vma) -1)
4016 skip = TRUE;
4017 else if (outrel.r_offset == (bfd_vma) -2)
4018 skip = TRUE, relocate = TRUE;
4019 outrel.r_offset += (input_section->output_section->vma
4020 + input_section->output_offset);
4021
4022 if (skip)
4023 memset (&outrel, 0, sizeof outrel);
4024 else if (h != NULL
4025 && h->dynindx != -1
4026 && (r_type == R_68K_PC8
4027 || r_type == R_68K_PC16
4028 || r_type == R_68K_PC32
4029 || !info->shared
4030 || !info->symbolic
4031 || !h->def_regular))
4032 {
4033 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4034 outrel.r_addend = rel->r_addend;
4035 }
4036 else
4037 {
4038 /* This symbol is local, or marked to become local. */
4039 outrel.r_addend = relocation + rel->r_addend;
4040
4041 if (r_type == R_68K_32)
4042 {
4043 relocate = TRUE;
4044 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4045 }
4046 else
4047 {
4048 long indx;
4049
4050 if (bfd_is_abs_section (sec))
4051 indx = 0;
4052 else if (sec == NULL || sec->owner == NULL)
4053 {
4054 bfd_set_error (bfd_error_bad_value);
4055 return FALSE;
4056 }
4057 else
4058 {
4059 asection *osec;
4060
4061 /* We are turning this relocation into one
4062 against a section symbol. It would be
4063 proper to subtract the symbol's value,
4064 osec->vma, from the emitted reloc addend,
4065 but ld.so expects buggy relocs. */
4066 osec = sec->output_section;
4067 indx = elf_section_data (osec)->dynindx;
4068 if (indx == 0)
4069 {
4070 struct elf_link_hash_table *htab;
4071 htab = elf_hash_table (info);
4072 osec = htab->text_index_section;
4073 indx = elf_section_data (osec)->dynindx;
4074 }
4075 BFD_ASSERT (indx != 0);
4076 }
4077
4078 outrel.r_info = ELF32_R_INFO (indx, r_type);
4079 }
4080 }
4081
4082 sreloc = elf_section_data (input_section)->sreloc;
4083 if (sreloc == NULL)
4084 abort ();
4085
4086 loc = sreloc->contents;
4087 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4088 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4089
4090 /* This reloc will be computed at runtime, so there's no
4091 need to do anything now, except for R_68K_32
4092 relocations that have been turned into
4093 R_68K_RELATIVE. */
4094 if (!relocate)
4095 continue;
4096 }
4097
4098 break;
4099
4100 case R_68K_GNU_VTINHERIT:
4101 case R_68K_GNU_VTENTRY:
4102 /* These are no-ops in the end. */
4103 continue;
4104
4105 default:
4106 break;
4107 }
4108
4109 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4110 because such sections are not SEC_ALLOC and thus ld.so will
4111 not process them. */
4112 if (unresolved_reloc
4113 && !((input_section->flags & SEC_DEBUGGING) != 0
4114 && h->def_dynamic)
4115 && _bfd_elf_section_offset (output_bfd, info, input_section,
4116 rel->r_offset) != (bfd_vma) -1)
4117 {
4118 (*_bfd_error_handler)
4119 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4120 input_bfd,
4121 input_section,
4122 (long) rel->r_offset,
4123 howto->name,
4124 h->root.root.string);
4125 return FALSE;
4126 }
4127
4128 if (r_symndx != STN_UNDEF
4129 && r_type != R_68K_NONE
4130 && (h == NULL
4131 || h->root.type == bfd_link_hash_defined
4132 || h->root.type == bfd_link_hash_defweak))
4133 {
4134 char sym_type;
4135
4136 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4137
4138 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4139 {
4140 const char *name;
4141
4142 if (h != NULL)
4143 name = h->root.root.string;
4144 else
4145 {
4146 name = (bfd_elf_string_from_elf_section
4147 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4148 if (name == NULL || *name == '\0')
4149 name = bfd_section_name (input_bfd, sec);
4150 }
4151
4152 (*_bfd_error_handler)
4153 ((sym_type == STT_TLS
4154 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4155 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4156 input_bfd,
4157 input_section,
4158 (long) rel->r_offset,
4159 howto->name,
4160 name);
4161 }
4162 }
4163
4164 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4165 contents, rel->r_offset,
4166 relocation, rel->r_addend);
4167
4168 if (r != bfd_reloc_ok)
4169 {
4170 const char *name;
4171
4172 if (h != NULL)
4173 name = h->root.root.string;
4174 else
4175 {
4176 name = bfd_elf_string_from_elf_section (input_bfd,
4177 symtab_hdr->sh_link,
4178 sym->st_name);
4179 if (name == NULL)
4180 return FALSE;
4181 if (*name == '\0')
4182 name = bfd_section_name (input_bfd, sec);
4183 }
4184
4185 if (r == bfd_reloc_overflow)
4186 {
4187 if (!(info->callbacks->reloc_overflow
4188 (info, (h ? &h->root : NULL), name, howto->name,
4189 (bfd_vma) 0, input_bfd, input_section,
4190 rel->r_offset)))
4191 return FALSE;
4192 }
4193 else
4194 {
4195 (*_bfd_error_handler)
4196 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4197 input_bfd, input_section,
4198 (long) rel->r_offset, name, (int) r);
4199 return FALSE;
4200 }
4201 }
4202 }
4203
4204 return TRUE;
4205 }
4206
4207 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4208 into section SEC. */
4209
4210 static void
4211 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4212 {
4213 /* Make VALUE PC-relative. */
4214 value -= sec->output_section->vma + offset;
4215
4216 /* Apply any in-place addend. */
4217 value += bfd_get_32 (sec->owner, sec->contents + offset);
4218
4219 bfd_put_32 (sec->owner, value, sec->contents + offset);
4220 }
4221
4222 /* Finish up dynamic symbol handling. We set the contents of various
4223 dynamic sections here. */
4224
4225 static bfd_boolean
4226 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4227 struct bfd_link_info *info,
4228 struct elf_link_hash_entry *h,
4229 Elf_Internal_Sym *sym)
4230 {
4231 bfd *dynobj;
4232
4233 dynobj = elf_hash_table (info)->dynobj;
4234
4235 if (h->plt.offset != (bfd_vma) -1)
4236 {
4237 const struct elf_m68k_plt_info *plt_info;
4238 asection *splt;
4239 asection *sgot;
4240 asection *srela;
4241 bfd_vma plt_index;
4242 bfd_vma got_offset;
4243 Elf_Internal_Rela rela;
4244 bfd_byte *loc;
4245
4246 /* This symbol has an entry in the procedure linkage table. Set
4247 it up. */
4248
4249 BFD_ASSERT (h->dynindx != -1);
4250
4251 plt_info = elf_m68k_hash_table (info)->plt_info;
4252 splt = bfd_get_linker_section (dynobj, ".plt");
4253 sgot = bfd_get_linker_section (dynobj, ".got.plt");
4254 srela = bfd_get_linker_section (dynobj, ".rela.plt");
4255 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4256
4257 /* Get the index in the procedure linkage table which
4258 corresponds to this symbol. This is the index of this symbol
4259 in all the symbols for which we are making plt entries. The
4260 first entry in the procedure linkage table is reserved. */
4261 plt_index = (h->plt.offset / plt_info->size) - 1;
4262
4263 /* Get the offset into the .got table of the entry that
4264 corresponds to this function. Each .got entry is 4 bytes.
4265 The first three are reserved. */
4266 got_offset = (plt_index + 3) * 4;
4267
4268 memcpy (splt->contents + h->plt.offset,
4269 plt_info->symbol_entry,
4270 plt_info->size);
4271
4272 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4273 (sgot->output_section->vma
4274 + sgot->output_offset
4275 + got_offset));
4276
4277 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4278 splt->contents
4279 + h->plt.offset
4280 + plt_info->symbol_resolve_entry + 2);
4281
4282 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4283 splt->output_section->vma);
4284
4285 /* Fill in the entry in the global offset table. */
4286 bfd_put_32 (output_bfd,
4287 (splt->output_section->vma
4288 + splt->output_offset
4289 + h->plt.offset
4290 + plt_info->symbol_resolve_entry),
4291 sgot->contents + got_offset);
4292
4293 /* Fill in the entry in the .rela.plt section. */
4294 rela.r_offset = (sgot->output_section->vma
4295 + sgot->output_offset
4296 + got_offset);
4297 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4298 rela.r_addend = 0;
4299 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4300 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4301
4302 if (!h->def_regular)
4303 {
4304 /* Mark the symbol as undefined, rather than as defined in
4305 the .plt section. Leave the value alone. */
4306 sym->st_shndx = SHN_UNDEF;
4307 }
4308 }
4309
4310 if (elf_m68k_hash_entry (h)->glist != NULL)
4311 {
4312 asection *sgot;
4313 asection *srela;
4314 struct elf_m68k_got_entry *got_entry;
4315
4316 /* This symbol has an entry in the global offset table. Set it
4317 up. */
4318
4319 sgot = bfd_get_linker_section (dynobj, ".got");
4320 srela = bfd_get_linker_section (dynobj, ".rela.got");
4321 BFD_ASSERT (sgot != NULL && srela != NULL);
4322
4323 got_entry = elf_m68k_hash_entry (h)->glist;
4324
4325 while (got_entry != NULL)
4326 {
4327 enum elf_m68k_reloc_type r_type;
4328 bfd_vma got_entry_offset;
4329
4330 r_type = got_entry->key_.type;
4331 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4332
4333 /* If this is a -Bsymbolic link, and the symbol is defined
4334 locally, we just want to emit a RELATIVE reloc. Likewise if
4335 the symbol was forced to be local because of a version file.
4336 The entry in the global offset table already have been
4337 initialized in the relocate_section function. */
4338 if (info->shared
4339 && SYMBOL_REFERENCES_LOCAL (info, h))
4340 {
4341 bfd_vma relocation;
4342
4343 relocation = bfd_get_signed_32 (output_bfd,
4344 (sgot->contents
4345 + got_entry_offset));
4346
4347 /* Undo TP bias. */
4348 switch (elf_m68k_reloc_got_type (r_type))
4349 {
4350 case R_68K_GOT32O:
4351 case R_68K_TLS_LDM32:
4352 break;
4353
4354 case R_68K_TLS_GD32:
4355 /* The value for this relocation is actually put in
4356 the second GOT slot. */
4357 relocation = bfd_get_signed_32 (output_bfd,
4358 (sgot->contents
4359 + got_entry_offset + 4));
4360 relocation += dtpoff_base (info);
4361 break;
4362
4363 case R_68K_TLS_IE32:
4364 relocation += tpoff_base (info);
4365 break;
4366
4367 default:
4368 BFD_ASSERT (FALSE);
4369 }
4370
4371 elf_m68k_init_got_entry_local_shared (info,
4372 output_bfd,
4373 r_type,
4374 sgot,
4375 got_entry_offset,
4376 relocation,
4377 srela);
4378 }
4379 else
4380 {
4381 Elf_Internal_Rela rela;
4382
4383 /* Put zeros to GOT slots that will be initialized
4384 at run-time. */
4385 {
4386 bfd_vma n_slots;
4387
4388 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4389 while (n_slots--)
4390 bfd_put_32 (output_bfd, (bfd_vma) 0,
4391 (sgot->contents + got_entry_offset
4392 + 4 * n_slots));
4393 }
4394
4395 rela.r_addend = 0;
4396 rela.r_offset = (sgot->output_section->vma
4397 + sgot->output_offset
4398 + got_entry_offset);
4399
4400 switch (elf_m68k_reloc_got_type (r_type))
4401 {
4402 case R_68K_GOT32O:
4403 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4404 elf_m68k_install_rela (output_bfd, srela, &rela);
4405 break;
4406
4407 case R_68K_TLS_GD32:
4408 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4409 elf_m68k_install_rela (output_bfd, srela, &rela);
4410
4411 rela.r_offset += 4;
4412 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4413 elf_m68k_install_rela (output_bfd, srela, &rela);
4414 break;
4415
4416 case R_68K_TLS_IE32:
4417 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4418 elf_m68k_install_rela (output_bfd, srela, &rela);
4419 break;
4420
4421 default:
4422 BFD_ASSERT (FALSE);
4423 break;
4424 }
4425 }
4426
4427 got_entry = got_entry->u.s2.next;
4428 }
4429 }
4430
4431 if (h->needs_copy)
4432 {
4433 asection *s;
4434 Elf_Internal_Rela rela;
4435 bfd_byte *loc;
4436
4437 /* This symbol needs a copy reloc. Set it up. */
4438
4439 BFD_ASSERT (h->dynindx != -1
4440 && (h->root.type == bfd_link_hash_defined
4441 || h->root.type == bfd_link_hash_defweak));
4442
4443 s = bfd_get_linker_section (dynobj, ".rela.bss");
4444 BFD_ASSERT (s != NULL);
4445
4446 rela.r_offset = (h->root.u.def.value
4447 + h->root.u.def.section->output_section->vma
4448 + h->root.u.def.section->output_offset);
4449 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4450 rela.r_addend = 0;
4451 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4452 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4453 }
4454
4455 return TRUE;
4456 }
4457
4458 /* Finish up the dynamic sections. */
4459
4460 static bfd_boolean
4461 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4462 {
4463 bfd *dynobj;
4464 asection *sgot;
4465 asection *sdyn;
4466
4467 dynobj = elf_hash_table (info)->dynobj;
4468
4469 sgot = bfd_get_linker_section (dynobj, ".got.plt");
4470 BFD_ASSERT (sgot != NULL);
4471 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4472
4473 if (elf_hash_table (info)->dynamic_sections_created)
4474 {
4475 asection *splt;
4476 Elf32_External_Dyn *dyncon, *dynconend;
4477
4478 splt = bfd_get_linker_section (dynobj, ".plt");
4479 BFD_ASSERT (splt != NULL && sdyn != NULL);
4480
4481 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4482 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4483 for (; dyncon < dynconend; dyncon++)
4484 {
4485 Elf_Internal_Dyn dyn;
4486 const char *name;
4487 asection *s;
4488
4489 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4490
4491 switch (dyn.d_tag)
4492 {
4493 default:
4494 break;
4495
4496 case DT_PLTGOT:
4497 name = ".got";
4498 goto get_vma;
4499 case DT_JMPREL:
4500 name = ".rela.plt";
4501 get_vma:
4502 s = bfd_get_section_by_name (output_bfd, name);
4503 BFD_ASSERT (s != NULL);
4504 dyn.d_un.d_ptr = s->vma;
4505 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4506 break;
4507
4508 case DT_PLTRELSZ:
4509 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4510 BFD_ASSERT (s != NULL);
4511 dyn.d_un.d_val = s->size;
4512 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4513 break;
4514
4515 case DT_RELASZ:
4516 /* The procedure linkage table relocs (DT_JMPREL) should
4517 not be included in the overall relocs (DT_RELA).
4518 Therefore, we override the DT_RELASZ entry here to
4519 make it not include the JMPREL relocs. Since the
4520 linker script arranges for .rela.plt to follow all
4521 other relocation sections, we don't have to worry
4522 about changing the DT_RELA entry. */
4523 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4524 if (s != NULL)
4525 dyn.d_un.d_val -= s->size;
4526 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4527 break;
4528 }
4529 }
4530
4531 /* Fill in the first entry in the procedure linkage table. */
4532 if (splt->size > 0)
4533 {
4534 const struct elf_m68k_plt_info *plt_info;
4535
4536 plt_info = elf_m68k_hash_table (info)->plt_info;
4537 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4538
4539 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4540 (sgot->output_section->vma
4541 + sgot->output_offset
4542 + 4));
4543
4544 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4545 (sgot->output_section->vma
4546 + sgot->output_offset
4547 + 8));
4548
4549 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4550 = plt_info->size;
4551 }
4552 }
4553
4554 /* Fill in the first three entries in the global offset table. */
4555 if (sgot->size > 0)
4556 {
4557 if (sdyn == NULL)
4558 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4559 else
4560 bfd_put_32 (output_bfd,
4561 sdyn->output_section->vma + sdyn->output_offset,
4562 sgot->contents);
4563 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4564 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4565 }
4566
4567 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4568
4569 return TRUE;
4570 }
4571
4572 /* Given a .data section and a .emreloc in-memory section, store
4573 relocation information into the .emreloc section which can be
4574 used at runtime to relocate the section. This is called by the
4575 linker when the --embedded-relocs switch is used. This is called
4576 after the add_symbols entry point has been called for all the
4577 objects, and before the final_link entry point is called. */
4578
4579 bfd_boolean
4580 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
4581 bfd *abfd;
4582 struct bfd_link_info *info;
4583 asection *datasec;
4584 asection *relsec;
4585 char **errmsg;
4586 {
4587 Elf_Internal_Shdr *symtab_hdr;
4588 Elf_Internal_Sym *isymbuf = NULL;
4589 Elf_Internal_Rela *internal_relocs = NULL;
4590 Elf_Internal_Rela *irel, *irelend;
4591 bfd_byte *p;
4592 bfd_size_type amt;
4593
4594 BFD_ASSERT (! info->relocatable);
4595
4596 *errmsg = NULL;
4597
4598 if (datasec->reloc_count == 0)
4599 return TRUE;
4600
4601 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4602
4603 /* Get a copy of the native relocations. */
4604 internal_relocs = (_bfd_elf_link_read_relocs
4605 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4606 info->keep_memory));
4607 if (internal_relocs == NULL)
4608 goto error_return;
4609
4610 amt = (bfd_size_type) datasec->reloc_count * 12;
4611 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4612 if (relsec->contents == NULL)
4613 goto error_return;
4614
4615 p = relsec->contents;
4616
4617 irelend = internal_relocs + datasec->reloc_count;
4618 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4619 {
4620 asection *targetsec;
4621
4622 /* We are going to write a four byte longword into the runtime
4623 reloc section. The longword will be the address in the data
4624 section which must be relocated. It is followed by the name
4625 of the target section NUL-padded or truncated to 8
4626 characters. */
4627
4628 /* We can only relocate absolute longword relocs at run time. */
4629 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4630 {
4631 *errmsg = _("unsupported reloc type");
4632 bfd_set_error (bfd_error_bad_value);
4633 goto error_return;
4634 }
4635
4636 /* Get the target section referred to by the reloc. */
4637 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4638 {
4639 /* A local symbol. */
4640 Elf_Internal_Sym *isym;
4641
4642 /* Read this BFD's local symbols if we haven't done so already. */
4643 if (isymbuf == NULL)
4644 {
4645 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4646 if (isymbuf == NULL)
4647 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4648 symtab_hdr->sh_info, 0,
4649 NULL, NULL, NULL);
4650 if (isymbuf == NULL)
4651 goto error_return;
4652 }
4653
4654 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4655 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4656 }
4657 else
4658 {
4659 unsigned long indx;
4660 struct elf_link_hash_entry *h;
4661
4662 /* An external symbol. */
4663 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4664 h = elf_sym_hashes (abfd)[indx];
4665 BFD_ASSERT (h != NULL);
4666 if (h->root.type == bfd_link_hash_defined
4667 || h->root.type == bfd_link_hash_defweak)
4668 targetsec = h->root.u.def.section;
4669 else
4670 targetsec = NULL;
4671 }
4672
4673 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4674 memset (p + 4, 0, 8);
4675 if (targetsec != NULL)
4676 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4677 }
4678
4679 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4680 free (isymbuf);
4681 if (internal_relocs != NULL
4682 && elf_section_data (datasec)->relocs != internal_relocs)
4683 free (internal_relocs);
4684 return TRUE;
4685
4686 error_return:
4687 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4688 free (isymbuf);
4689 if (internal_relocs != NULL
4690 && elf_section_data (datasec)->relocs != internal_relocs)
4691 free (internal_relocs);
4692 return FALSE;
4693 }
4694
4695 /* Set target options. */
4696
4697 void
4698 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4699 {
4700 struct elf_m68k_link_hash_table *htab;
4701 bfd_boolean use_neg_got_offsets_p;
4702 bfd_boolean allow_multigot_p;
4703 bfd_boolean local_gp_p;
4704
4705 switch (got_handling)
4706 {
4707 case 0:
4708 /* --got=single. */
4709 local_gp_p = FALSE;
4710 use_neg_got_offsets_p = FALSE;
4711 allow_multigot_p = FALSE;
4712 break;
4713
4714 case 1:
4715 /* --got=negative. */
4716 local_gp_p = TRUE;
4717 use_neg_got_offsets_p = TRUE;
4718 allow_multigot_p = FALSE;
4719 break;
4720
4721 case 2:
4722 /* --got=multigot. */
4723 local_gp_p = TRUE;
4724 use_neg_got_offsets_p = TRUE;
4725 allow_multigot_p = TRUE;
4726 break;
4727
4728 default:
4729 BFD_ASSERT (FALSE);
4730 return;
4731 }
4732
4733 htab = elf_m68k_hash_table (info);
4734 if (htab != NULL)
4735 {
4736 htab->local_gp_p = local_gp_p;
4737 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4738 htab->allow_multigot_p = allow_multigot_p;
4739 }
4740 }
4741
4742 static enum elf_reloc_type_class
4743 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4744 const asection *rel_sec ATTRIBUTE_UNUSED,
4745 const Elf_Internal_Rela *rela)
4746 {
4747 switch ((int) ELF32_R_TYPE (rela->r_info))
4748 {
4749 case R_68K_RELATIVE:
4750 return reloc_class_relative;
4751 case R_68K_JMP_SLOT:
4752 return reloc_class_plt;
4753 case R_68K_COPY:
4754 return reloc_class_copy;
4755 default:
4756 return reloc_class_normal;
4757 }
4758 }
4759
4760 /* Return address for Ith PLT stub in section PLT, for relocation REL
4761 or (bfd_vma) -1 if it should not be included. */
4762
4763 static bfd_vma
4764 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4765 const arelent *rel ATTRIBUTE_UNUSED)
4766 {
4767 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4768 }
4769
4770 /* Support for core dump NOTE sections. */
4771
4772 static bfd_boolean
4773 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4774 {
4775 int offset;
4776 size_t size;
4777
4778 switch (note->descsz)
4779 {
4780 default:
4781 return FALSE;
4782
4783 case 154: /* Linux/m68k */
4784 /* pr_cursig */
4785 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4786
4787 /* pr_pid */
4788 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4789
4790 /* pr_reg */
4791 offset = 70;
4792 size = 80;
4793
4794 break;
4795 }
4796
4797 /* Make a ".reg/999" section. */
4798 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4799 size, note->descpos + offset);
4800 }
4801
4802 static bfd_boolean
4803 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4804 {
4805 switch (note->descsz)
4806 {
4807 default:
4808 return FALSE;
4809
4810 case 124: /* Linux/m68k elf_prpsinfo. */
4811 elf_tdata (abfd)->core->pid
4812 = bfd_get_32 (abfd, note->descdata + 12);
4813 elf_tdata (abfd)->core->program
4814 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4815 elf_tdata (abfd)->core->command
4816 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4817 }
4818
4819 /* Note that for some reason, a spurious space is tacked
4820 onto the end of the args in some (at least one anyway)
4821 implementations, so strip it off if it exists. */
4822 {
4823 char *command = elf_tdata (abfd)->core->command;
4824 int n = strlen (command);
4825
4826 if (n > 0 && command[n - 1] == ' ')
4827 command[n - 1] = '\0';
4828 }
4829
4830 return TRUE;
4831 }
4832
4833 /* Hook called by the linker routine which adds symbols from an object
4834 file. */
4835
4836 static bfd_boolean
4837 elf_m68k_add_symbol_hook (bfd *abfd,
4838 struct bfd_link_info *info,
4839 Elf_Internal_Sym *sym,
4840 const char **namep ATTRIBUTE_UNUSED,
4841 flagword *flagsp ATTRIBUTE_UNUSED,
4842 asection **secp ATTRIBUTE_UNUSED,
4843 bfd_vma *valp ATTRIBUTE_UNUSED)
4844 {
4845 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4846 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
4847 && (abfd->flags & DYNAMIC) == 0
4848 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4849 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4850
4851 return TRUE;
4852 }
4853
4854 #define TARGET_BIG_SYM m68k_elf32_vec
4855 #define TARGET_BIG_NAME "elf32-m68k"
4856 #define ELF_MACHINE_CODE EM_68K
4857 #define ELF_MAXPAGESIZE 0x2000
4858 #define elf_backend_create_dynamic_sections \
4859 _bfd_elf_create_dynamic_sections
4860 #define bfd_elf32_bfd_link_hash_table_create \
4861 elf_m68k_link_hash_table_create
4862 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4863
4864 #define elf_backend_check_relocs elf_m68k_check_relocs
4865 #define elf_backend_always_size_sections \
4866 elf_m68k_always_size_sections
4867 #define elf_backend_adjust_dynamic_symbol \
4868 elf_m68k_adjust_dynamic_symbol
4869 #define elf_backend_size_dynamic_sections \
4870 elf_m68k_size_dynamic_sections
4871 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4872 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4873 #define elf_backend_relocate_section elf_m68k_relocate_section
4874 #define elf_backend_finish_dynamic_symbol \
4875 elf_m68k_finish_dynamic_symbol
4876 #define elf_backend_finish_dynamic_sections \
4877 elf_m68k_finish_dynamic_sections
4878 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4879 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
4880 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4881 #define bfd_elf32_bfd_merge_private_bfd_data \
4882 elf32_m68k_merge_private_bfd_data
4883 #define bfd_elf32_bfd_set_private_flags \
4884 elf32_m68k_set_private_flags
4885 #define bfd_elf32_bfd_print_private_bfd_data \
4886 elf32_m68k_print_private_bfd_data
4887 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4888 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4889 #define elf_backend_object_p elf32_m68k_object_p
4890 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4891 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4892 #define elf_backend_add_symbol_hook elf_m68k_add_symbol_hook
4893
4894 #define elf_backend_can_gc_sections 1
4895 #define elf_backend_can_refcount 1
4896 #define elf_backend_want_got_plt 1
4897 #define elf_backend_plt_readonly 1
4898 #define elf_backend_want_plt_sym 0
4899 #define elf_backend_got_header_size 12
4900 #define elf_backend_rela_normal 1
4901
4902 #include "elf32-target.h"
This page took 0.142063 seconds and 4 git commands to generate.