* configure.in (host==solaris): Pass only the first word of $CC
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 static reloc_howto_type *reloc_type_lookup
27 PARAMS ((bfd *, bfd_reloc_code_real_type));
28 static void rtype_to_howto
29 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
30 static void rtype_to_howto_rel
31 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
32 static boolean elf_m68k_check_relocs
33 PARAMS ((bfd *, struct bfd_link_info *, asection *,
34 const Elf_Internal_Rela *));
35 static boolean elf_m68k_adjust_dynamic_symbol
36 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
37 static boolean elf_m68k_size_dynamic_sections
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_m68k_relocate_section
40 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
42 static boolean elf_m68k_finish_dynamic_symbol
43 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
44 Elf_Internal_Sym *));
45 static boolean elf_m68k_finish_dynamic_sections
46 PARAMS ((bfd *, struct bfd_link_info *));
47
48 /* elf32 m68k code, generated by elf.el */
49 enum reloc_type {
50 R_68K_NONE = 0,
51 R_68K_32 = 1,
52 R_68K_16 = 2,
53 R_68K_8 = 3,
54 R_68K_PC32 = 4,
55 R_68K_PC16 = 5,
56 R_68K_PC8 = 6,
57 R_68K_GOT32 = 7,
58 R_68K_GOT16 = 8,
59 R_68K_GOT8 = 9,
60 R_68K_GOT32O = 10,
61 R_68K_GOT16O = 11,
62 R_68K_GOT8O = 12,
63 R_68K_PLT32 = 13,
64 R_68K_PLT16 = 14,
65 R_68K_PLT8 = 15,
66 R_68K_PLT32O = 16,
67 R_68K_PLT16O = 17,
68 R_68K_PLT8O = 18,
69 R_68K_COPY = 19,
70 R_68K_GLOB_DAT = 20,
71 R_68K_JMP_SLOT = 21,
72 R_68K_RELATIVE = 22,
73 R_68K__max
74 };
75
76 static reloc_howto_type howto_table[] = {
77 HOWTO(R_68K_NONE, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", false, 0, 0x00000000,false),
78 HOWTO(R_68K_32, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", false, 0, 0xffffffff,false),
79 HOWTO(R_68K_16, 0, 1,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", false, 0, 0x0000ffff,false),
80 HOWTO(R_68K_8, 0, 0, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", false, 0, 0x000000ff,false),
81 HOWTO(R_68K_PC32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC32", false, 0, 0xffffffff,true),
82 HOWTO(R_68K_PC16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", false, 0, 0x0000ffff,true),
83 HOWTO(R_68K_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", false, 0, 0x000000ff,true),
84 HOWTO(R_68K_GOT32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT32", false, 0, 0xffffffff,true),
85 HOWTO(R_68K_GOT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", false, 0, 0x0000ffff,true),
86 HOWTO(R_68K_GOT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", false, 0, 0x000000ff,true),
87 HOWTO(R_68K_GOT32O, 0, 2,32, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT32O", false, 0, 0xffffffff,false),
88 HOWTO(R_68K_GOT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", false, 0, 0x0000ffff,false),
89 HOWTO(R_68K_GOT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", false, 0, 0x000000ff,false),
90 HOWTO(R_68K_PLT32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT32", false, 0, 0xffffffff,true),
91 HOWTO(R_68K_PLT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", false, 0, 0x0000ffff,true),
92 HOWTO(R_68K_PLT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", false, 0, 0x000000ff,true),
93 HOWTO(R_68K_PLT32O, 0, 2,32, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT32O", false, 0, 0xffffffff,false),
94 HOWTO(R_68K_PLT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", false, 0, 0x0000ffff,false),
95 HOWTO(R_68K_PLT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", false, 0, 0x000000ff,false),
96 HOWTO(R_68K_COPY, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", false, 0, 0xffffffff,false),
97 HOWTO(R_68K_GLOB_DAT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", false, 0, 0xffffffff,false),
98 HOWTO(R_68K_JMP_SLOT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", false, 0, 0xffffffff,false),
99 HOWTO(R_68K_RELATIVE, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", false, 0, 0xffffffff,false),
100 };
101
102 static void
103 rtype_to_howto (abfd, cache_ptr, dst)
104 bfd *abfd;
105 arelent *cache_ptr;
106 Elf_Internal_Rela *dst;
107 {
108 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K__max);
109 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
110 }
111
112 static void
113 rtype_to_howto_rel (abfd, cache_ptr, dst)
114 bfd *abfd;
115 arelent *cache_ptr;
116 Elf_Internal_Rel *dst;
117 {
118 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K__max);
119 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
120 }
121
122 #define elf_info_to_howto rtype_to_howto
123 #define elf_info_to_howto_rel rtype_to_howto_rel
124
125 static const struct { unsigned char bfd_val, elf_val; } reloc_map[] = {
126 { BFD_RELOC_NONE, R_68K_NONE },
127 { BFD_RELOC_32, R_68K_32 },
128 { BFD_RELOC_16, R_68K_16 },
129 { BFD_RELOC_8, R_68K_8 },
130 { BFD_RELOC_32_PCREL, R_68K_PC32 },
131 { BFD_RELOC_16_PCREL, R_68K_PC16 },
132 { BFD_RELOC_8_PCREL, R_68K_PC8 },
133 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
134 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
135 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
136 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
137 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
138 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
139 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
140 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
141 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
142 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
143 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
144 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
145 { BFD_RELOC_NONE, R_68K_COPY },
146 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
147 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
148 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
149 { BFD_RELOC_CTOR, R_68K_32 },
150 };
151
152 static reloc_howto_type *
153 reloc_type_lookup (abfd, code)
154 bfd *abfd;
155 bfd_reloc_code_real_type code;
156 {
157 unsigned int i;
158 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
159 {
160 if (reloc_map[i].bfd_val == code)
161 return &howto_table[(int) reloc_map[i].elf_val];
162 }
163 return 0;
164 }
165
166 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
167 #define ELF_ARCH bfd_arch_m68k
168 /* end code generated by elf.el */
169
170 #define USE_RELA
171
172 \f
173 /* Functions for the m68k ELF linker. */
174
175 /* The name of the dynamic interpreter. This is put in the .interp
176 section. */
177
178 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
179
180 /* The size in bytes of an entry in the procedure linkage table. */
181
182 #define PLT_ENTRY_SIZE 20
183
184 /* The first entry in a procedure linkage table looks like this. See
185 the SVR4 ABI m68k supplement to see how this works. */
186
187 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
188 {
189 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
190 0, 0, 0, 0, /* replaced with address of .got + 4. */
191 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
192 0, 0, 0, 0, /* replaced with address of .got + 8. */
193 0, 0, 0, 0 /* pad out to 20 bytes. */
194 };
195
196 /* Subsequent entries in a procedure linkage table look like this. */
197
198 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
199 {
200 0x4e, 0xfb, 0x01, 0x71, /* jmp ([addr]) */
201 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
202 0x2f, 0x3c, /* move.l #offset,-(%sp) */
203 0, 0, 0, 0, /* replaced with offset into relocation table. */
204 0x60, 0xff, /* bra.l .plt */
205 0, 0, 0, 0 /* replaced with offset to start of .plt. */
206 };
207
208 /* Look through the relocs for a section during the first phase, and
209 allocate space in the global offset table or procedure linkage
210 table. */
211
212 static boolean
213 elf_m68k_check_relocs (abfd, info, sec, relocs)
214 bfd *abfd;
215 struct bfd_link_info *info;
216 asection *sec;
217 const Elf_Internal_Rela *relocs;
218 {
219 bfd *dynobj;
220 Elf_Internal_Shdr *symtab_hdr;
221 struct elf_link_hash_entry **sym_hashes;
222 bfd_vma *local_got_offsets;
223 const Elf_Internal_Rela *rel;
224 const Elf_Internal_Rela *rel_end;
225 asection *sgot;
226 asection *srelgot;
227 asection *sreloc;
228
229 if (info->relocateable)
230 return true;
231
232 dynobj = elf_hash_table (info)->dynobj;
233 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
234 sym_hashes = elf_sym_hashes (abfd);
235 local_got_offsets = elf_local_got_offsets (abfd);
236
237 sgot = NULL;
238 srelgot = NULL;
239 sreloc = NULL;
240
241 rel_end = relocs + sec->reloc_count;
242 for (rel = relocs; rel < rel_end; rel++)
243 {
244 unsigned long r_symndx;
245 struct elf_link_hash_entry *h;
246
247 r_symndx = ELF32_R_SYM (rel->r_info);
248
249 if (r_symndx < symtab_hdr->sh_info)
250 h = NULL;
251 else
252 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
253
254 switch (ELF32_R_TYPE (rel->r_info))
255 {
256 case R_68K_GOT8:
257 case R_68K_GOT16:
258 case R_68K_GOT32:
259 case R_68K_GOT8O:
260 case R_68K_GOT16O:
261 case R_68K_GOT32O:
262 /* This symbol requires a global offset table entry. */
263
264 if (h != NULL
265 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
266 break;
267
268 if (dynobj == NULL)
269 {
270 /* Create the .got section. */
271 elf_hash_table (info)->dynobj = dynobj = abfd;
272 if (!_bfd_elf_create_got_section (dynobj, info))
273 return false;
274 }
275
276 if (sgot == NULL)
277 {
278 sgot = bfd_get_section_by_name (dynobj, ".got");
279 BFD_ASSERT (sgot != NULL);
280 }
281
282 if (srelgot == NULL
283 && (h != NULL || info->shared))
284 {
285 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
286 if (srelgot == NULL)
287 {
288 srelgot = bfd_make_section (dynobj, ".rela.got");
289 if (srelgot == NULL
290 || !bfd_set_section_flags (dynobj, srelgot,
291 (SEC_ALLOC
292 | SEC_LOAD
293 | SEC_HAS_CONTENTS
294 | SEC_IN_MEMORY
295 | SEC_READONLY))
296 || !bfd_set_section_alignment (dynobj, srelgot, 2))
297 return false;
298 }
299 }
300
301 if (h != NULL)
302 {
303 if (h->got_offset != (bfd_vma) -1)
304 {
305 /* We have already allocated space in the .got. */
306 break;
307 }
308 h->got_offset = sgot->_raw_size;
309
310 /* Make sure this symbol is output as a dynamic symbol. */
311 if (h->dynindx == -1)
312 {
313 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
314 return false;
315 }
316
317 srelgot->_raw_size += sizeof (Elf32_External_Rela);
318 }
319 else
320 {
321 /* This is a global offset table entry for a local
322 symbol. */
323 if (local_got_offsets == NULL)
324 {
325 size_t size;
326 register unsigned int i;
327
328 size = symtab_hdr->sh_info * sizeof (bfd_vma);
329 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
330 if (local_got_offsets == NULL)
331 return false;
332 elf_local_got_offsets (abfd) = local_got_offsets;
333 for (i = 0; i < symtab_hdr->sh_info; i++)
334 local_got_offsets[i] = (bfd_vma) -1;
335 }
336 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
337 {
338 /* We have already allocated space in the .got. */
339 break;
340 }
341 local_got_offsets[r_symndx] = sgot->_raw_size;
342
343 if (info->shared)
344 {
345 /* If we are generating a shared object, we need to
346 output a R_68K_RELATIVE reloc so that the dynamic
347 linker can adjust this GOT entry. */
348 srelgot->_raw_size += sizeof (Elf32_External_Rela);
349 }
350 }
351
352 sgot->_raw_size += 4;
353 break;
354
355 case R_68K_PLT8:
356 case R_68K_PLT16:
357 case R_68K_PLT32:
358 case R_68K_PLT8O:
359 case R_68K_PLT16O:
360 case R_68K_PLT32O:
361 /* This symbol requires a procedure linkage table entry. We
362 actually build the entry in adjust_dynamic_symbol,
363 because this might be a case of linking PIC code without
364 linking in any dynamic objects, in which case we don't
365 need to generate a procedure linkage table after all. */
366
367 /* If this is a local symbol, we resolve it directly without
368 creating a procedure linkage table entry. */
369 if (h == NULL)
370 continue;
371
372 /* Make sure this symbol is output as a dynamic symbol. */
373 if (h->dynindx == -1)
374 {
375 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
376 return false;
377 }
378
379 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
380 break;
381
382 case R_68K_PC8:
383 case R_68K_PC16:
384 case R_68K_PC32:
385 if (h == NULL)
386 break;
387 /* Fall through. */
388 case R_68K_8:
389 case R_68K_16:
390 case R_68K_32:
391 if (info->shared
392 && (sec->flags & SEC_ALLOC) != 0)
393 {
394 /* When creating a shared object, we must copy these
395 reloc types into the output file. We create a reloc
396 section in dynobj and make room for this reloc. */
397 if (sreloc == NULL)
398 {
399 const char *name;
400
401 name = (bfd_elf_string_from_elf_section
402 (abfd,
403 elf_elfheader (abfd)->e_shstrndx,
404 elf_section_data (sec)->rel_hdr.sh_name));
405 if (name == NULL)
406 return false;
407
408 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
409 && strcmp (bfd_get_section_name (abfd, sec),
410 name + 5) == 0);
411
412 sreloc = bfd_get_section_by_name (dynobj, name);
413 if (sreloc == NULL)
414 {
415 sreloc = bfd_make_section (dynobj, name);
416 if (sreloc == NULL
417 || !bfd_set_section_flags (dynobj, sreloc,
418 (SEC_ALLOC
419 | SEC_LOAD
420 | SEC_HAS_CONTENTS
421 | SEC_IN_MEMORY
422 | SEC_READONLY))
423 || !bfd_set_section_alignment (dynobj, sreloc, 2))
424 return false;
425 }
426 }
427
428 sreloc->_raw_size += sizeof (Elf32_External_Rela);
429 }
430
431 break;
432
433 default:
434 break;
435 }
436 }
437
438 return true;
439 }
440
441 /* Adjust a symbol defined by a dynamic object and referenced by a
442 regular object. The current definition is in some section of the
443 dynamic object, but we're not including those sections. We have to
444 change the definition to something the rest of the link can
445 understand. */
446
447 static boolean
448 elf_m68k_adjust_dynamic_symbol (info, h)
449 struct bfd_link_info *info;
450 struct elf_link_hash_entry *h;
451 {
452 bfd *dynobj;
453 asection *s;
454 unsigned int power_of_two;
455
456 dynobj = elf_hash_table (info)->dynobj;
457
458 /* Make sure we know what is going on here. */
459 BFD_ASSERT (dynobj != NULL
460 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
461 || h->weakdef != NULL
462 || ((h->elf_link_hash_flags
463 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
464 && (h->elf_link_hash_flags
465 & ELF_LINK_HASH_REF_REGULAR) != 0
466 && (h->elf_link_hash_flags
467 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
468
469 /* If this is a function, put it in the procedure linkage table. We
470 will fill in the contents of the procedure linkage table later,
471 when we know the address of the .got section. */
472 if (h->type == STT_FUNC
473 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
474 {
475 if (!elf_hash_table (info)->dynamic_sections_created)
476 {
477 /* This case can occur if we saw a PLT32 reloc in an input
478 file, but none of the input files were dynamic objects.
479 In such a case, we don't actually need to build a
480 procedure linkage table, and we can just do a PC32 reloc
481 instead. */
482 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
483 return true;
484 }
485
486 s = bfd_get_section_by_name (dynobj, ".plt");
487 BFD_ASSERT (s != NULL);
488
489 /* If this is the first .plt entry, make room for the special
490 first entry. */
491 if (s->_raw_size == 0)
492 s->_raw_size += PLT_ENTRY_SIZE;
493
494 /* If this symbol is not defined in a regular file, and we are
495 not generating a shared library, then set the symbol to this
496 location in the .plt. This is required to make function
497 pointers compare as equal between the normal executable and
498 the shared library. */
499 if (!info->shared
500 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
501 {
502 h->root.u.def.section = s;
503 h->root.u.def.value = s->_raw_size;
504 }
505
506 h->plt_offset = s->_raw_size;
507
508 /* Make room for this entry. */
509 s->_raw_size += PLT_ENTRY_SIZE;
510
511 /* We also need to make an entry in the .got.plt section, which
512 will be placed in the .got section by the linker script. */
513
514 s = bfd_get_section_by_name (dynobj, ".got.plt");
515 BFD_ASSERT (s != NULL);
516 s->_raw_size += 4;
517
518 /* We also need to make an entry in the .rela.plt section. */
519
520 s = bfd_get_section_by_name (dynobj, ".rela.plt");
521 BFD_ASSERT (s != NULL);
522 s->_raw_size += sizeof (Elf32_External_Rela);
523
524 return true;
525 }
526
527 /* If this is a weak symbol, and there is a real definition, the
528 processor independent code will have arranged for us to see the
529 real definition first, and we can just use the same value. */
530 if (h->weakdef != NULL)
531 {
532 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
533 || h->weakdef->root.type == bfd_link_hash_defweak);
534 h->root.u.def.section = h->weakdef->root.u.def.section;
535 h->root.u.def.value = h->weakdef->root.u.def.value;
536 return true;
537 }
538
539 /* This is a reference to a symbol defined by a dynamic object which
540 is not a function. */
541
542 /* If we are creating a shared library, we must presume that the
543 only references to the symbol are via the global offset table.
544 For such cases we need not do anything here; the relocations will
545 be handled correctly by relocate_section. */
546 if (info->shared)
547 return true;
548
549 /* We must allocate the symbol in our .dynbss section, which will
550 become part of the .bss section of the executable. There will be
551 an entry for this symbol in the .dynsym section. The dynamic
552 object will contain position independent code, so all references
553 from the dynamic object to this symbol will go through the global
554 offset table. The dynamic linker will use the .dynsym entry to
555 determine the address it must put in the global offset table, so
556 both the dynamic object and the regular object will refer to the
557 same memory location for the variable. */
558
559 s = bfd_get_section_by_name (dynobj, ".dynbss");
560 BFD_ASSERT (s != NULL);
561
562 /* If the symbol is currently defined in the .bss section of the
563 dynamic object, then it is OK to simply initialize it to zero.
564 If the symbol is in some other section, we must generate a
565 R_68K_COPY reloc to tell the dynamic linker to copy the initial
566 value out of the dynamic object and into the runtime process
567 image. We need to remember the offset into the .rela.bss section
568 we are going to use. */
569 if ((h->root.u.def.section->flags & SEC_LOAD) != 0)
570 {
571 asection *srel;
572
573 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
574 BFD_ASSERT (srel != NULL);
575 srel->_raw_size += sizeof (Elf32_External_Rela);
576 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
577 }
578
579 /* We need to figure out the alignment required for this symbol. I
580 have no idea how ELF linkers handle this. */
581 power_of_two = bfd_log2 (h->size);
582 if (power_of_two > 3)
583 power_of_two = 3;
584
585 /* Apply the required alignment. */
586 s->_raw_size = BFD_ALIGN (s->_raw_size,
587 (bfd_size_type) (1 << power_of_two));
588 if (power_of_two > bfd_get_section_alignment (dynobj, s))
589 {
590 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
591 return false;
592 }
593
594 /* Define the symbol as being at this point in the section. */
595 h->root.u.def.section = s;
596 h->root.u.def.value = s->_raw_size;
597
598 /* Increment the section size to make room for the symbol. */
599 s->_raw_size += h->size;
600
601 return true;
602 }
603
604 /* Set the sizes of the dynamic sections. */
605
606 static boolean
607 elf_m68k_size_dynamic_sections (output_bfd, info)
608 bfd *output_bfd;
609 struct bfd_link_info *info;
610 {
611 bfd *dynobj;
612 asection *s;
613 boolean plt;
614 boolean relocs;
615 boolean reltext;
616
617 dynobj = elf_hash_table (info)->dynobj;
618 BFD_ASSERT (dynobj != NULL);
619
620 if (elf_hash_table (info)->dynamic_sections_created)
621 {
622 /* Set the contents of the .interp section to the interpreter. */
623 if (!info->shared)
624 {
625 s = bfd_get_section_by_name (dynobj, ".interp");
626 BFD_ASSERT (s != NULL);
627 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
628 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
629 }
630 }
631 else
632 {
633 /* We may have created entries in the .rela.got section.
634 However, if we are not creating the dynamic sections, we will
635 not actually use these entries. Reset the size of .rela.got,
636 which will cause it to get stripped from the output file
637 below. */
638 s = bfd_get_section_by_name (dynobj, ".rela.got");
639 if (s != NULL)
640 s->_raw_size = 0;
641 }
642
643 /* The check_relocs and adjust_dynamic_symbol entry points have
644 determined the sizes of the various dynamic sections. Allocate
645 memory for them. */
646 plt = false;
647 relocs = false;
648 reltext = false;
649 for (s = dynobj->sections; s != NULL; s = s->next)
650 {
651 const char *name;
652 boolean strip;
653
654 if ((s->flags & SEC_IN_MEMORY) == 0)
655 continue;
656
657 /* It's OK to base decisions on the section name, because none
658 of the dynobj section names depend upon the input files. */
659 name = bfd_get_section_name (dynobj, s);
660
661 strip = false;
662
663 if (strcmp (name, ".plt") == 0)
664 {
665 if (s->_raw_size == 0)
666 {
667 /* Strip this section if we don't need it; see the
668 comment below. */
669 strip = true;
670 }
671 else
672 {
673 /* Remember whether there is a PLT. */
674 plt = true;
675 }
676 }
677 else if (strncmp (name, ".rela", 5) == 0)
678 {
679 if (s->_raw_size == 0)
680 {
681 /* If we don't need this section, strip it from the
682 output file. This is mostly to handle .rela.bss and
683 .rela.plt. We must create both sections in
684 create_dynamic_sections, because they must be created
685 before the linker maps input sections to output
686 sections. The linker does that before
687 adjust_dynamic_symbol is called, and it is that
688 function which decides whether anything needs to go
689 into these sections. */
690 strip = true;
691 }
692 else
693 {
694 asection *target;
695
696 /* Remember whether there are any reloc sections other
697 than .rela.plt. */
698 if (strcmp (name, ".rela.plt") != 0)
699 {
700 relocs = true;
701
702 /* If this relocation section applies to a read only
703 section, then we probably need a DT_TEXTREL
704 entry. .rela.plt is actually associated with
705 .got.plt, which is never readonly. */
706 target = bfd_get_section_by_name (output_bfd, name + 5);
707 if (target != NULL
708 && (target->flags & SEC_READONLY) != 0)
709 reltext = true;
710 }
711
712 /* We use the reloc_count field as a counter if we need
713 to copy relocs into the output file. */
714 s->reloc_count = 0;
715 }
716 }
717 else if (strncmp (name, ".got", 4) != 0)
718 {
719 /* It's not one of our sections, so don't allocate space. */
720 continue;
721 }
722
723 if (strip)
724 {
725 asection **spp;
726
727 for (spp = &s->output_section->owner->sections;
728 *spp != s->output_section;
729 spp = &(*spp)->next)
730 ;
731 *spp = s->output_section->next;
732 --s->output_section->owner->section_count;
733
734 continue;
735 }
736
737 /* Allocate memory for the section contents. */
738 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
739 if (s->contents == NULL && s->_raw_size != 0)
740 return false;
741 }
742
743 if (elf_hash_table (info)->dynamic_sections_created)
744 {
745 /* Add some entries to the .dynamic section. We fill in the
746 values later, in elf_m68k_finish_dynamic_sections, but we
747 must add the entries now so that we get the correct size for
748 the .dynamic section. The DT_DEBUG entry is filled in by the
749 dynamic linker and used by the debugger. */
750 if (!info->shared)
751 {
752 if (!bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
753 return false;
754 }
755
756 if (plt)
757 {
758 if (!bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
759 || !bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
760 || !bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
761 || !bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
762 return false;
763 }
764
765 if (relocs)
766 {
767 if (!bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
768 || !bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
769 || !bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
770 sizeof (Elf32_External_Rela)))
771 return false;
772 }
773
774 if (reltext)
775 {
776 if (!bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
777 return false;
778 }
779 }
780
781 return true;
782 }
783
784 /* Relocate an M68K ELF section. */
785
786 static boolean
787 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
788 contents, relocs, local_syms, local_sections)
789 bfd *output_bfd;
790 struct bfd_link_info *info;
791 bfd *input_bfd;
792 asection *input_section;
793 bfd_byte *contents;
794 Elf_Internal_Rela *relocs;
795 Elf_Internal_Sym *local_syms;
796 asection **local_sections;
797 {
798 bfd *dynobj;
799 Elf_Internal_Shdr *symtab_hdr;
800 struct elf_link_hash_entry **sym_hashes;
801 bfd_vma *local_got_offsets;
802 asection *sgot;
803 asection *sgotplt;
804 asection *splt;
805 asection *sreloc;
806 Elf_Internal_Rela *rel;
807 Elf_Internal_Rela *relend;
808
809 dynobj = elf_hash_table (info)->dynobj;
810 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
811 sym_hashes = elf_sym_hashes (input_bfd);
812 local_got_offsets = elf_local_got_offsets (input_bfd);
813
814 sgot = NULL;
815 sgotplt = NULL;
816 splt = NULL;
817 sreloc = NULL;
818
819 rel = relocs;
820 relend = relocs + input_section->reloc_count;
821 for (; rel < relend; rel++)
822 {
823 int r_type;
824 reloc_howto_type *howto;
825 unsigned long r_symndx;
826 struct elf_link_hash_entry *h;
827 Elf_Internal_Sym *sym;
828 asection *sec;
829 bfd_vma relocation;
830 bfd_reloc_status_type r;
831
832 r_type = ELF32_R_TYPE (rel->r_info);
833 if (r_type < 0 || r_type >= (int) R_68K__max)
834 {
835 bfd_set_error (bfd_error_bad_value);
836 return false;
837 }
838 howto = howto_table + r_type;
839
840 r_symndx = ELF32_R_SYM (rel->r_info);
841
842 if (info->relocateable)
843 {
844 /* This is a relocateable link. We don't have to change
845 anything, unless the reloc is against a section symbol,
846 in which case we have to adjust according to where the
847 section symbol winds up in the output section. */
848 if (r_symndx < symtab_hdr->sh_info)
849 {
850 sym = local_syms + r_symndx;
851 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
852 {
853 sec = local_sections[r_symndx];
854 rel->r_addend += sec->output_offset + sym->st_value;
855 }
856 }
857
858 continue;
859 }
860
861 /* This is a final link. */
862 h = NULL;
863 sym = NULL;
864 sec = NULL;
865 if (r_symndx < symtab_hdr->sh_info)
866 {
867 sym = local_syms + r_symndx;
868 sec = local_sections[r_symndx];
869 relocation = (sec->output_section->vma
870 + sec->output_offset
871 + sym->st_value);
872 }
873 else
874 {
875 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
876 while (h->root.type == bfd_link_hash_indirect
877 || h->root.type == bfd_link_hash_warning)
878 h = (struct elf_link_hash_entry *) h->root.u.i.link;
879 if (h->root.type == bfd_link_hash_defined
880 || h->root.type == bfd_link_hash_defweak)
881 {
882 sec = h->root.u.def.section;
883 if (((r_type == R_68K_PLT8
884 || r_type == R_68K_PLT16
885 || r_type == R_68K_PLT32
886 || r_type == R_68K_PLT8O
887 || r_type == R_68K_PLT16O
888 || r_type == R_68K_PLT32O)
889 && h->plt_offset != (bfd_vma) -1)
890 || ((r_type == R_68K_GOT8O
891 || r_type == R_68K_GOT16O
892 || r_type == R_68K_GOT32O
893 || ((r_type == R_68K_GOT8
894 || r_type == R_68K_GOT16
895 || r_type == R_68K_GOT32)
896 && strcmp (h->root.root.string,
897 "_GLOBAL_OFFSET_TABLE_") != 0))
898 && elf_hash_table (info)->dynamic_sections_created
899 && (! info->shared
900 || ! info->symbolic
901 || (h->elf_link_hash_flags
902 & ELF_LINK_HASH_DEF_REGULAR) == 0))
903 || (info->shared
904 && (! info->symbolic
905 || (h->elf_link_hash_flags
906 & ELF_LINK_HASH_DEF_REGULAR) == 0)
907 && (input_section->flags & SEC_ALLOC) != 0
908 && (r_type == R_68K_8
909 || r_type == R_68K_16
910 || r_type == R_68K_32
911 || r_type == R_68K_PC8
912 || r_type == R_68K_PC16
913 || r_type == R_68K_PC32)))
914 {
915 /* In these cases, we don't need the relocation
916 value. We check specially because in some
917 obscure cases sec->output_section will be NULL. */
918 relocation = 0;
919 }
920 else
921 relocation = (h->root.u.def.value
922 + sec->output_section->vma
923 + sec->output_offset);
924 }
925 else if (h->root.type == bfd_link_hash_undefweak)
926 relocation = 0;
927 else if (info->shared && !info->symbolic)
928 relocation = 0;
929 else
930 {
931 if (!(info->callbacks->undefined_symbol
932 (info, h->root.root.string, input_bfd,
933 input_section, rel->r_offset)))
934 return false;
935 relocation = 0;
936 }
937 }
938
939 switch (r_type)
940 {
941 case R_68K_GOT8:
942 case R_68K_GOT16:
943 case R_68K_GOT32:
944 /* Relocation is to the entry for this symbol in the global
945 offset table. */
946 if (h != NULL
947 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
948 break;
949 /* Fall through. */
950 case R_68K_GOT8O:
951 case R_68K_GOT16O:
952 case R_68K_GOT32O:
953 /* Relocation is the offset of the entry for this symbol in
954 the global offset table. */
955
956 if (sgot == NULL)
957 {
958 sgot = bfd_get_section_by_name (dynobj, ".got");
959 BFD_ASSERT (sgot != NULL);
960 }
961
962 if (sgotplt == NULL)
963 {
964 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
965 BFD_ASSERT (sgotplt != NULL);
966 }
967
968 if (h != NULL)
969 {
970 bfd_vma off;
971
972 off = h->got_offset;
973 BFD_ASSERT (off != (bfd_vma) -1);
974
975 if (!elf_hash_table (info)->dynamic_sections_created
976 || (info->shared
977 && info->symbolic
978 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
979 {
980 /* This is actually a static link, or it is a
981 -Bsymbolic link and the symbol is defined
982 locally. We must initialize this entry in the
983 global offset table. Since the offset must
984 always be a multiple of 4, we use the least
985 significant bit to record whether we have
986 initialized it already.
987
988 When doing a dynamic link, we create a .rela.got
989 relocation entry to initialize the value. This
990 is done in the finish_dynamic_symbol routine. */
991 if ((off & 1) != 0)
992 off &= ~1;
993 else
994 {
995 bfd_put_32 (output_bfd, relocation,
996 sgot->contents + off);
997 h->got_offset |= 1;
998 }
999 }
1000
1001 relocation = sgot->output_offset + off;
1002 if (r_type == R_68K_GOT8O
1003 || r_type == R_68K_GOT16O
1004 || r_type == R_68K_GOT32O)
1005 relocation -= sgotplt->output_offset;
1006 }
1007 else
1008 {
1009 bfd_vma off;
1010
1011 BFD_ASSERT (local_got_offsets != NULL
1012 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1013
1014 off = local_got_offsets[r_symndx];
1015
1016 /* The offset must always be a multiple of 4. We use
1017 the least significant bit to record whether we have
1018 already generated the necessary reloc. */
1019 if ((off & 1) != 0)
1020 off &= ~1;
1021 else
1022 {
1023 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1024
1025 if (info->shared)
1026 {
1027 asection *srelgot;
1028 Elf_Internal_Rela outrel;
1029
1030 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1031 BFD_ASSERT (srelgot != NULL);
1032
1033 outrel.r_offset = (sgot->output_section->vma
1034 + sgot->output_offset
1035 + off);
1036 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1037 outrel.r_addend = 0;
1038 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1039 (((Elf32_External_Rela *)
1040 srelgot->contents)
1041 + srelgot->reloc_count));
1042 ++srelgot->reloc_count;
1043 }
1044
1045 local_got_offsets[r_symndx] |= 1;
1046 }
1047
1048 relocation = sgot->output_offset + off;
1049 if (r_type == R_68K_GOT8O
1050 || r_type == R_68K_GOT16O
1051 || r_type == R_68K_GOT32O)
1052 relocation -= sgotplt->output_offset;
1053 }
1054
1055 break;
1056
1057 case R_68K_PLT8:
1058 case R_68K_PLT16:
1059 case R_68K_PLT32:
1060 /* Relocation is to the entry for this symbol in the
1061 procedure linkage table. */
1062
1063 /* Resolve a PLT32 reloc against a local symbol directly,
1064 without using the procedure linkage table. */
1065 if (h == NULL)
1066 break;
1067
1068 if (h->plt_offset == (bfd_vma) -1)
1069 {
1070 /* We didn't make a PLT entry for this symbol. This
1071 happens when statically linking PIC code, or when
1072 using -Bsymbolic. */
1073 break;
1074 }
1075
1076 if (splt == NULL)
1077 {
1078 splt = bfd_get_section_by_name (dynobj, ".plt");
1079 BFD_ASSERT (splt != NULL);
1080 }
1081
1082 relocation = (splt->output_section->vma
1083 + splt->output_offset
1084 + h->plt_offset);
1085 break;
1086
1087 case R_68K_PLT8O:
1088 case R_68K_PLT16O:
1089 case R_68K_PLT32O:
1090 /* Relocation is the offset of the entry for this symbol in
1091 the procedure linkage table. */
1092 BFD_ASSERT (h != NULL);
1093
1094 if (h->plt_offset == (bfd_vma) -1)
1095 {
1096 /* We didn't make a PLT entry for this symbol. This
1097 happens when statically linking PIC code. */
1098 break;
1099 }
1100
1101 if (splt == NULL)
1102 {
1103 splt = bfd_get_section_by_name (dynobj, ".plt");
1104 BFD_ASSERT (splt != NULL);
1105 }
1106
1107 relocation = h->plt_offset;
1108 break;
1109
1110 case R_68K_PC8:
1111 case R_68K_PC16:
1112 case R_68K_PC32:
1113 if (h == NULL)
1114 break;
1115 /* Fall through. */
1116 case R_68K_8:
1117 case R_68K_16:
1118 case R_68K_32:
1119 if (info->shared
1120 && (input_section->flags & SEC_ALLOC) != 0)
1121 {
1122 Elf_Internal_Rela outrel;
1123
1124 /* When generating a shared object, these relocations
1125 are copied into the output file to be resolved at run
1126 time. */
1127
1128 if (sreloc == NULL)
1129 {
1130 const char *name;
1131
1132 name = (bfd_elf_string_from_elf_section
1133 (input_bfd,
1134 elf_elfheader (input_bfd)->e_shstrndx,
1135 elf_section_data (input_section)->rel_hdr.sh_name));
1136 if (name == NULL)
1137 return false;
1138
1139 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1140 && strcmp (bfd_get_section_name (input_bfd,
1141 input_section),
1142 name + 5) == 0);
1143
1144 sreloc = bfd_get_section_by_name (dynobj, name);
1145 BFD_ASSERT (sreloc != NULL);
1146 }
1147
1148 outrel.r_offset = (rel->r_offset
1149 + input_section->output_section->vma
1150 + input_section->output_offset);
1151 if (h != NULL
1152 && (! info->symbolic
1153 || (h->elf_link_hash_flags
1154 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1155 {
1156 BFD_ASSERT (h->dynindx != -1);
1157 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1158 outrel.r_addend = rel->r_addend;
1159 }
1160 else
1161 {
1162 if (r_type == R_68K_32)
1163 {
1164 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1165 outrel.r_addend = relocation + rel->r_addend;
1166 }
1167 else
1168 {
1169 long indx;
1170
1171 if (h == NULL)
1172 sec = local_sections[r_symndx];
1173 else
1174 {
1175 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1176 || (h->root.type
1177 == bfd_link_hash_defweak));
1178 sec = h->root.u.def.section;
1179 }
1180 if (sec != NULL && bfd_is_abs_section (sec))
1181 indx = 0;
1182 else if (sec == NULL || sec->owner == NULL)
1183 {
1184 bfd_set_error (bfd_error_bad_value);
1185 return false;
1186 }
1187 else
1188 {
1189 asection *osec;
1190
1191 osec = sec->output_section;
1192 indx = elf_section_data (osec)->dynindx;
1193 if (indx == 0)
1194 abort ();
1195 }
1196
1197 outrel.r_info = ELF32_R_INFO (indx, r_type);
1198 outrel.r_addend = relocation + rel->r_addend;
1199 }
1200 }
1201
1202 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1203 (((Elf32_External_Rela *)
1204 sreloc->contents)
1205 + sreloc->reloc_count));
1206 ++sreloc->reloc_count;
1207
1208 /* This reloc will be computed at runtime, so there's no
1209 need to do anything now. */
1210 continue;
1211 }
1212
1213 break;
1214
1215 default:
1216 break;
1217 }
1218
1219 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1220 contents, rel->r_offset,
1221 relocation, rel->r_addend);
1222
1223 if (r != bfd_reloc_ok)
1224 {
1225 switch (r)
1226 {
1227 default:
1228 case bfd_reloc_outofrange:
1229 abort ();
1230 case bfd_reloc_overflow:
1231 {
1232 const char *name;
1233
1234 if (h != NULL)
1235 name = h->root.root.string;
1236 else
1237 {
1238 name = bfd_elf_string_from_elf_section (input_bfd,
1239 symtab_hdr->sh_link,
1240 sym->st_name);
1241 if (name == NULL)
1242 return false;
1243 if (*name == '\0')
1244 name = bfd_section_name (input_bfd, sec);
1245 }
1246 if (!(info->callbacks->reloc_overflow
1247 (info, name, howto->name, (bfd_vma) 0,
1248 input_bfd, input_section, rel->r_offset)))
1249 return false;
1250 }
1251 break;
1252 }
1253 }
1254 }
1255
1256 return true;
1257 }
1258
1259 /* Finish up dynamic symbol handling. We set the contents of various
1260 dynamic sections here. */
1261
1262 static boolean
1263 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
1264 bfd *output_bfd;
1265 struct bfd_link_info *info;
1266 struct elf_link_hash_entry *h;
1267 Elf_Internal_Sym *sym;
1268 {
1269 bfd *dynobj;
1270
1271 dynobj = elf_hash_table (info)->dynobj;
1272
1273 if (h->plt_offset != (bfd_vma) -1)
1274 {
1275 asection *splt;
1276 asection *sgot;
1277 asection *srela;
1278 bfd_vma plt_index;
1279 bfd_vma got_offset;
1280 Elf_Internal_Rela rela;
1281
1282 /* This symbol has an entry in the procedure linkage table. Set
1283 it up. */
1284
1285 BFD_ASSERT (h->dynindx != -1);
1286
1287 splt = bfd_get_section_by_name (dynobj, ".plt");
1288 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1289 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1290 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1291
1292 /* Get the index in the procedure linkage table which
1293 corresponds to this symbol. This is the index of this symbol
1294 in all the symbols for which we are making plt entries. The
1295 first entry in the procedure linkage table is reserved. */
1296 plt_index = h->plt_offset / PLT_ENTRY_SIZE - 1;
1297
1298 /* Get the offset into the .got table of the entry that
1299 corresponds to this function. Each .got entry is 4 bytes.
1300 The first three are reserved. */
1301 got_offset = (plt_index + 3) * 4;
1302
1303 /* Fill in the entry in the procedure linkage table. */
1304 memcpy (splt->contents + h->plt_offset, elf_m68k_plt_entry,
1305 PLT_ENTRY_SIZE);
1306 /* The offset is relative to the first extension word. */
1307 bfd_put_32 (output_bfd,
1308 (sgot->output_section->vma
1309 + sgot->output_offset
1310 + got_offset
1311 - (splt->output_section->vma
1312 + h->plt_offset + 2)),
1313 splt->contents + h->plt_offset + 4);
1314
1315 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1316 splt->contents + h->plt_offset + 10);
1317 bfd_put_32 (output_bfd, - (h->plt_offset + 16),
1318 splt->contents + h->plt_offset + 16);
1319
1320 /* Fill in the entry in the global offset table. */
1321 bfd_put_32 (output_bfd,
1322 (splt->output_section->vma
1323 + splt->output_offset
1324 + h->plt_offset
1325 + 8),
1326 sgot->contents + got_offset);
1327
1328 /* Fill in the entry in the .rela.plt section. */
1329 rela.r_offset = (sgot->output_section->vma
1330 + sgot->output_offset
1331 + got_offset);
1332 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
1333 rela.r_addend = 0;
1334 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1335 ((Elf32_External_Rela *) srela->contents
1336 + plt_index));
1337
1338 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1339 {
1340 /* Mark the symbol as undefined, rather than as defined in
1341 the .plt section. Leave the value alone. */
1342 sym->st_shndx = SHN_UNDEF;
1343 }
1344 }
1345
1346 if (h->got_offset != (bfd_vma) -1)
1347 {
1348 asection *sgot;
1349 asection *srela;
1350 Elf_Internal_Rela rela;
1351
1352 /* This symbol has an entry in the global offset table. Set it
1353 up. */
1354
1355 BFD_ASSERT (h->dynindx != -1);
1356
1357 sgot = bfd_get_section_by_name (dynobj, ".got");
1358 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1359 BFD_ASSERT (sgot != NULL && srela != NULL);
1360
1361 rela.r_offset = (sgot->output_section->vma
1362 + sgot->output_offset
1363 + (h->got_offset &~ 1));
1364
1365 /* If this is a -Bsymbolic link, and the symbol is defined
1366 locally, we just want to emit a RELATIVE reloc. The entry in
1367 the global offset table will already have been initialized in
1368 the relocate_section function. */
1369 if (info->shared
1370 && info->symbolic
1371 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1372 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1373 else
1374 {
1375 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset);
1376 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
1377 }
1378
1379 rela.r_addend = 0;
1380 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1381 ((Elf32_External_Rela *) srela->contents
1382 + srela->reloc_count));
1383 ++srela->reloc_count;
1384 }
1385
1386 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1387 {
1388 asection *s;
1389 Elf_Internal_Rela rela;
1390
1391 /* This symbol needs a copy reloc. Set it up. */
1392
1393 BFD_ASSERT (h->dynindx != -1
1394 && (h->root.type == bfd_link_hash_defined
1395 || h->root.type == bfd_link_hash_defweak));
1396
1397 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1398 ".rela.bss");
1399 BFD_ASSERT (s != NULL);
1400
1401 rela.r_offset = (h->root.u.def.value
1402 + h->root.u.def.section->output_section->vma
1403 + h->root.u.def.section->output_offset);
1404 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
1405 rela.r_addend = 0;
1406 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1407 ((Elf32_External_Rela *) s->contents
1408 + s->reloc_count));
1409 ++s->reloc_count;
1410 }
1411
1412 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1413 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1414 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1415 sym->st_shndx = SHN_ABS;
1416
1417 return true;
1418 }
1419
1420 /* Finish up the dynamic sections. */
1421
1422 static boolean
1423 elf_m68k_finish_dynamic_sections (output_bfd, info)
1424 bfd *output_bfd;
1425 struct bfd_link_info *info;
1426 {
1427 bfd *dynobj;
1428 asection *sgot;
1429 asection *sdyn;
1430
1431 dynobj = elf_hash_table (info)->dynobj;
1432
1433 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1434 BFD_ASSERT (sgot != NULL);
1435 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1436
1437 if (elf_hash_table (info)->dynamic_sections_created)
1438 {
1439 asection *splt;
1440 Elf32_External_Dyn *dyncon, *dynconend;
1441
1442 splt = bfd_get_section_by_name (dynobj, ".plt");
1443 BFD_ASSERT (splt != NULL && sdyn != NULL);
1444
1445 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1446 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1447 for (; dyncon < dynconend; dyncon++)
1448 {
1449 Elf_Internal_Dyn dyn;
1450 const char *name;
1451 asection *s;
1452
1453 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1454
1455 switch (dyn.d_tag)
1456 {
1457 default:
1458 break;
1459
1460 case DT_PLTGOT:
1461 name = ".got";
1462 goto get_vma;
1463 case DT_JMPREL:
1464 name = ".rela.plt";
1465 get_vma:
1466 s = bfd_get_section_by_name (output_bfd, name);
1467 BFD_ASSERT (s != NULL);
1468 dyn.d_un.d_ptr = s->vma;
1469 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1470 break;
1471
1472 case DT_PLTRELSZ:
1473 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1474 BFD_ASSERT (s != NULL);
1475 if (s->_cooked_size != 0)
1476 dyn.d_un.d_val = s->_cooked_size;
1477 else
1478 dyn.d_un.d_val = s->_raw_size;
1479 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1480 break;
1481
1482 case DT_RELASZ:
1483 /* My reading of the SVR4 ABI indicates that the
1484 procedure linkage table relocs (DT_JMPREL) should be
1485 included in the overall relocs (DT_RELA). This is
1486 what Solaris does. However, UnixWare can not handle
1487 that case. Therefore, we override the DT_RELASZ entry
1488 here to make it not include the JMPREL relocs. Since
1489 the linker script arranges for .rela.plt to follow all
1490 other relocation sections, we don't have to worry
1491 about changing the DT_RELA entry. */
1492 /* FIXME: This comment is from elf32-i386.c, what about
1493 the SVR4/m68k implementations? */
1494 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1495 if (s != NULL)
1496 {
1497 if (s->_cooked_size != 0)
1498 dyn.d_un.d_val -= s->_cooked_size;
1499 else
1500 dyn.d_un.d_val -= s->_raw_size;
1501 }
1502 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1503 break;
1504 }
1505 }
1506
1507 /* Fill in the first entry in the procedure linkage table. */
1508 if (splt->_raw_size > 0)
1509 {
1510 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE);
1511 bfd_put_32 (output_bfd,
1512 (sgot->output_section->vma
1513 + sgot->output_offset + 4
1514 - (splt->output_section->vma + 2)),
1515 splt->contents + 4);
1516 bfd_put_32 (output_bfd,
1517 (sgot->output_section->vma
1518 + sgot->output_offset + 8
1519 - (splt->output_section->vma + 10)),
1520 splt->contents + 12);
1521 }
1522
1523 elf_section_data (splt->output_section)->this_hdr.sh_entsize
1524 = PLT_ENTRY_SIZE;
1525 }
1526
1527 /* Fill in the first three entries in the global offset table. */
1528 if (sgot->_raw_size > 0)
1529 {
1530 if (sdyn == NULL)
1531 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
1532 else
1533 bfd_put_32 (output_bfd,
1534 sdyn->output_section->vma + sdyn->output_offset,
1535 sgot->contents);
1536 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
1537 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
1538 }
1539
1540 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
1541
1542 return true;
1543 }
1544
1545 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
1546 #define TARGET_BIG_NAME "elf32-m68k"
1547 #define ELF_MACHINE_CODE EM_68K
1548 #define ELF_MAXPAGESIZE 0x2000
1549 #define elf_backend_create_dynamic_sections \
1550 _bfd_elf_create_dynamic_sections
1551 #define elf_backend_check_relocs elf_m68k_check_relocs
1552 #define elf_backend_adjust_dynamic_symbol \
1553 elf_m68k_adjust_dynamic_symbol
1554 #define elf_backend_size_dynamic_sections \
1555 elf_m68k_size_dynamic_sections
1556 #define elf_backend_relocate_section elf_m68k_relocate_section
1557 #define elf_backend_finish_dynamic_symbol \
1558 elf_m68k_finish_dynamic_symbol
1559 #define elf_backend_finish_dynamic_sections \
1560 elf_m68k_finish_dynamic_sections
1561 #define elf_backend_want_got_plt 1
1562 #define elf_backend_plt_readonly 1
1563 #define elf_backend_want_plt_sym 0
1564
1565 #include "elf32-target.h"
This page took 0.063931 seconds and 4 git commands to generate.