* elf32-mips.c (elf_mips_howto_table): Add R_MIPS_JALR.
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/m68k.h"
26
27 static reloc_howto_type *reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void rtype_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
32 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
33 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
34 PARAMS ((bfd *));
35 static boolean elf_m68k_check_relocs
36 PARAMS ((bfd *, struct bfd_link_info *, asection *,
37 const Elf_Internal_Rela *));
38 static asection *elf_m68k_gc_mark_hook
39 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
40 struct elf_link_hash_entry *, Elf_Internal_Sym *));
41 static boolean elf_m68k_gc_sweep_hook
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static boolean elf_m68k_adjust_dynamic_symbol
45 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
46 static boolean elf_m68k_adjust_dynindx
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_m68k_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_m68k_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_m68k_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_m68k_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
58
59 static boolean elf32_m68k_set_private_flags
60 PARAMS ((bfd *, flagword));
61 static boolean elf32_m68k_copy_private_bfd_data
62 PARAMS ((bfd *, bfd *));
63 static boolean elf32_m68k_merge_private_bfd_data
64 PARAMS ((bfd *, bfd *));
65 static boolean elf32_m68k_print_private_bfd_data
66 PARAMS ((bfd *, PTR));
67
68 static reloc_howto_type howto_table[] = {
69 HOWTO(R_68K_NONE, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", false, 0, 0x00000000,false),
70 HOWTO(R_68K_32, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", false, 0, 0xffffffff,false),
71 HOWTO(R_68K_16, 0, 1,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", false, 0, 0x0000ffff,false),
72 HOWTO(R_68K_8, 0, 0, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", false, 0, 0x000000ff,false),
73 HOWTO(R_68K_PC32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", false, 0, 0xffffffff,true),
74 HOWTO(R_68K_PC16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", false, 0, 0x0000ffff,true),
75 HOWTO(R_68K_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", false, 0, 0x000000ff,true),
76 HOWTO(R_68K_GOT32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", false, 0, 0xffffffff,true),
77 HOWTO(R_68K_GOT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", false, 0, 0x0000ffff,true),
78 HOWTO(R_68K_GOT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", false, 0, 0x000000ff,true),
79 HOWTO(R_68K_GOT32O, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", false, 0, 0xffffffff,false),
80 HOWTO(R_68K_GOT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", false, 0, 0x0000ffff,false),
81 HOWTO(R_68K_GOT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", false, 0, 0x000000ff,false),
82 HOWTO(R_68K_PLT32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", false, 0, 0xffffffff,true),
83 HOWTO(R_68K_PLT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", false, 0, 0x0000ffff,true),
84 HOWTO(R_68K_PLT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", false, 0, 0x000000ff,true),
85 HOWTO(R_68K_PLT32O, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", false, 0, 0xffffffff,false),
86 HOWTO(R_68K_PLT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", false, 0, 0x0000ffff,false),
87 HOWTO(R_68K_PLT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", false, 0, 0x000000ff,false),
88 HOWTO(R_68K_COPY, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", false, 0, 0xffffffff,false),
89 HOWTO(R_68K_GLOB_DAT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", false, 0, 0xffffffff,false),
90 HOWTO(R_68K_JMP_SLOT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", false, 0, 0xffffffff,false),
91 HOWTO(R_68K_RELATIVE, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", false, 0, 0xffffffff,false),
92 /* GNU extension to record C++ vtable hierarchy */
93 HOWTO (R_68K_GNU_VTINHERIT, /* type */
94 0, /* rightshift */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
96 0, /* bitsize */
97 false, /* pc_relative */
98 0, /* bitpos */
99 complain_overflow_dont, /* complain_on_overflow */
100 NULL, /* special_function */
101 "R_68K_GNU_VTINHERIT", /* name */
102 false, /* partial_inplace */
103 0, /* src_mask */
104 0, /* dst_mask */
105 false),
106 /* GNU extension to record C++ vtable member usage */
107 HOWTO (R_68K_GNU_VTENTRY, /* type */
108 0, /* rightshift */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
110 0, /* bitsize */
111 false, /* pc_relative */
112 0, /* bitpos */
113 complain_overflow_dont, /* complain_on_overflow */
114 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
115 "R_68K_GNU_VTENTRY", /* name */
116 false, /* partial_inplace */
117 0, /* src_mask */
118 0, /* dst_mask */
119 false),
120 };
121
122 static void
123 rtype_to_howto (abfd, cache_ptr, dst)
124 bfd *abfd;
125 arelent *cache_ptr;
126 Elf_Internal_Rela *dst;
127 {
128 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
129 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
130 }
131
132 #define elf_info_to_howto rtype_to_howto
133
134 static const struct
135 {
136 bfd_reloc_code_real_type bfd_val;
137 int elf_val;
138 } reloc_map[] = {
139 { BFD_RELOC_NONE, R_68K_NONE },
140 { BFD_RELOC_32, R_68K_32 },
141 { BFD_RELOC_16, R_68K_16 },
142 { BFD_RELOC_8, R_68K_8 },
143 { BFD_RELOC_32_PCREL, R_68K_PC32 },
144 { BFD_RELOC_16_PCREL, R_68K_PC16 },
145 { BFD_RELOC_8_PCREL, R_68K_PC8 },
146 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
147 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
148 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
149 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
150 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
151 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
152 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
153 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
154 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
155 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
156 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
157 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
158 { BFD_RELOC_NONE, R_68K_COPY },
159 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
160 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
161 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
162 { BFD_RELOC_CTOR, R_68K_32 },
163 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
164 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
165 };
166
167 static reloc_howto_type *
168 reloc_type_lookup (abfd, code)
169 bfd *abfd;
170 bfd_reloc_code_real_type code;
171 {
172 unsigned int i;
173 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
174 {
175 if (reloc_map[i].bfd_val == code)
176 return &howto_table[reloc_map[i].elf_val];
177 }
178 return 0;
179 }
180
181 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
182 #define ELF_ARCH bfd_arch_m68k
183 /* end code generated by elf.el */
184
185 #define USE_RELA
186
187 \f
188 /* Functions for the m68k ELF linker. */
189
190 /* The name of the dynamic interpreter. This is put in the .interp
191 section. */
192
193 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
194
195 /* The size in bytes of an entry in the procedure linkage table. */
196
197 #define PLT_ENTRY_SIZE 20
198
199 /* The first entry in a procedure linkage table looks like this. See
200 the SVR4 ABI m68k supplement to see how this works. */
201
202 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
203 {
204 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
205 0, 0, 0, 0, /* replaced with offset to .got + 4. */
206 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
207 0, 0, 0, 0, /* replaced with offset to .got + 8. */
208 0, 0, 0, 0 /* pad out to 20 bytes. */
209 };
210
211 /* Subsequent entries in a procedure linkage table look like this. */
212
213 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
214 {
215 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
216 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
217 0x2f, 0x3c, /* move.l #offset,-(%sp) */
218 0, 0, 0, 0, /* replaced with offset into relocation table. */
219 0x60, 0xff, /* bra.l .plt */
220 0, 0, 0, 0 /* replaced with offset to start of .plt. */
221 };
222
223 #define CPU32_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_CPU32)
224
225 #define PLT_CPU32_ENTRY_SIZE 24
226 /* Procedure linkage table entries for the cpu32 */
227 static const bfd_byte elf_cpu32_plt0_entry[PLT_CPU32_ENTRY_SIZE] =
228 {
229 0x20, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a0 */
230 0, 0, 0, 0, /* replaced with offset to .got + 4. */
231 0x4e, 0xd0, /* jmp %a0@ */
232 0, 0, 0, 0, /* replace with offset to .got +8. */
233 0, 0, 0, 0, /* pad out to 24 bytes. */
234 0, 0, 0, 0, /* pad out to 24 bytes. */
235 0, 0
236 };
237
238 static const bfd_byte elf_cpu32_plt_entry[PLT_CPU32_ENTRY_SIZE] =
239 {
240 0x20, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a0 */
241 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
242 0x4e, 0xd0, /* jmp %a0@ */
243 0x2f, 0x3c, /* move.l #offset,-(%sp) */
244 0, 0, 0, 0, /* replaced with offset into relocation table. */
245 0x60, 0xff, /* bra.l .plt */
246 0, 0, 0, 0, /* replaced with offset to start of .plt. */
247 0, 0
248 };
249
250 /* The m68k linker needs to keep track of the number of relocs that it
251 decides to copy in check_relocs for each symbol. This is so that it
252 can discard PC relative relocs if it doesn't need them when linking
253 with -Bsymbolic. We store the information in a field extending the
254 regular ELF linker hash table. */
255
256 /* This structure keeps track of the number of PC relative relocs we have
257 copied for a given symbol. */
258
259 struct elf_m68k_pcrel_relocs_copied
260 {
261 /* Next section. */
262 struct elf_m68k_pcrel_relocs_copied *next;
263 /* A section in dynobj. */
264 asection *section;
265 /* Number of relocs copied in this section. */
266 bfd_size_type count;
267 };
268
269 /* m68k ELF linker hash entry. */
270
271 struct elf_m68k_link_hash_entry
272 {
273 struct elf_link_hash_entry root;
274
275 /* Number of PC relative relocs copied for this symbol. */
276 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
277 };
278
279 /* m68k ELF linker hash table. */
280
281 struct elf_m68k_link_hash_table
282 {
283 struct elf_link_hash_table root;
284 };
285
286 /* Declare this now that the above structures are defined. */
287
288 static boolean elf_m68k_discard_copies
289 PARAMS ((struct elf_m68k_link_hash_entry *, PTR));
290
291 /* Traverse an m68k ELF linker hash table. */
292
293 #define elf_m68k_link_hash_traverse(table, func, info) \
294 (elf_link_hash_traverse \
295 (&(table)->root, \
296 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
297 (info)))
298
299 /* Get the m68k ELF linker hash table from a link_info structure. */
300
301 #define elf_m68k_hash_table(p) \
302 ((struct elf_m68k_link_hash_table *) (p)->hash)
303
304 /* Create an entry in an m68k ELF linker hash table. */
305
306 static struct bfd_hash_entry *
307 elf_m68k_link_hash_newfunc (entry, table, string)
308 struct bfd_hash_entry *entry;
309 struct bfd_hash_table *table;
310 const char *string;
311 {
312 struct elf_m68k_link_hash_entry *ret =
313 (struct elf_m68k_link_hash_entry *) entry;
314
315 /* Allocate the structure if it has not already been allocated by a
316 subclass. */
317 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
318 ret = ((struct elf_m68k_link_hash_entry *)
319 bfd_hash_allocate (table,
320 sizeof (struct elf_m68k_link_hash_entry)));
321 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
322 return (struct bfd_hash_entry *) ret;
323
324 /* Call the allocation method of the superclass. */
325 ret = ((struct elf_m68k_link_hash_entry *)
326 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
327 table, string));
328 if (ret != (struct elf_m68k_link_hash_entry *) NULL)
329 {
330 ret->pcrel_relocs_copied = NULL;
331 }
332
333 return (struct bfd_hash_entry *) ret;
334 }
335
336 /* Create an m68k ELF linker hash table. */
337
338 static struct bfd_link_hash_table *
339 elf_m68k_link_hash_table_create (abfd)
340 bfd *abfd;
341 {
342 struct elf_m68k_link_hash_table *ret;
343
344 ret = ((struct elf_m68k_link_hash_table *)
345 bfd_alloc (abfd, sizeof (struct elf_m68k_link_hash_table)));
346 if (ret == (struct elf_m68k_link_hash_table *) NULL)
347 return NULL;
348
349 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
350 elf_m68k_link_hash_newfunc))
351 {
352 bfd_release (abfd, ret);
353 return NULL;
354 }
355
356 return &ret->root.root;
357 }
358
359 /* Keep m68k-specific flags in the ELF header */
360 static boolean
361 elf32_m68k_set_private_flags (abfd, flags)
362 bfd *abfd;
363 flagword flags;
364 {
365 elf_elfheader (abfd)->e_flags = flags;
366 elf_flags_init (abfd) = true;
367 return true;
368 }
369
370 /* Copy m68k-specific data from one module to another */
371 static boolean
372 elf32_m68k_copy_private_bfd_data (ibfd, obfd)
373 bfd *ibfd;
374 bfd *obfd;
375 {
376 flagword in_flags;
377
378 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
379 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
380 return true;
381
382 in_flags = elf_elfheader (ibfd)->e_flags;
383
384 elf_elfheader (obfd)->e_flags = in_flags;
385 elf_flags_init (obfd) = true;
386
387 return true;
388 }
389
390 /* Merge backend specific data from an object file to the output
391 object file when linking. */
392 static boolean
393 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
394 bfd *ibfd;
395 bfd *obfd;
396 {
397 flagword out_flags;
398 flagword in_flags;
399
400 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
401 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
402 return true;
403
404 in_flags = elf_elfheader (ibfd)->e_flags;
405 out_flags = elf_elfheader (obfd)->e_flags;
406
407 if (!elf_flags_init (obfd))
408 {
409 elf_flags_init (obfd) = true;
410 elf_elfheader (obfd)->e_flags = in_flags;
411 }
412
413 return true;
414 }
415
416 /* Display the flags field */
417 static boolean
418 elf32_m68k_print_private_bfd_data (abfd, ptr)
419 bfd *abfd;
420 PTR ptr;
421 {
422 FILE *file = (FILE *) ptr;
423
424 BFD_ASSERT (abfd != NULL && ptr != NULL);
425
426 /* Print normal ELF private data. */
427 _bfd_elf_print_private_bfd_data (abfd, ptr);
428
429 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
430
431 /* xgettext:c-format */
432 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
433
434 if (elf_elfheader (abfd)->e_flags & EF_CPU32)
435 fprintf (file, _ (" [cpu32]"));
436
437 fputc ('\n', file);
438
439 return true;
440 }
441 /* Look through the relocs for a section during the first phase, and
442 allocate space in the global offset table or procedure linkage
443 table. */
444
445 static boolean
446 elf_m68k_check_relocs (abfd, info, sec, relocs)
447 bfd *abfd;
448 struct bfd_link_info *info;
449 asection *sec;
450 const Elf_Internal_Rela *relocs;
451 {
452 bfd *dynobj;
453 Elf_Internal_Shdr *symtab_hdr;
454 struct elf_link_hash_entry **sym_hashes;
455 bfd_signed_vma *local_got_refcounts;
456 const Elf_Internal_Rela *rel;
457 const Elf_Internal_Rela *rel_end;
458 asection *sgot;
459 asection *srelgot;
460 asection *sreloc;
461
462 if (info->relocateable)
463 return true;
464
465 dynobj = elf_hash_table (info)->dynobj;
466 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
467 sym_hashes = elf_sym_hashes (abfd);
468 local_got_refcounts = elf_local_got_refcounts (abfd);
469
470 sgot = NULL;
471 srelgot = NULL;
472 sreloc = NULL;
473
474 rel_end = relocs + sec->reloc_count;
475 for (rel = relocs; rel < rel_end; rel++)
476 {
477 unsigned long r_symndx;
478 struct elf_link_hash_entry *h;
479
480 r_symndx = ELF32_R_SYM (rel->r_info);
481
482 if (r_symndx < symtab_hdr->sh_info)
483 h = NULL;
484 else
485 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
486
487 switch (ELF32_R_TYPE (rel->r_info))
488 {
489 case R_68K_GOT8:
490 case R_68K_GOT16:
491 case R_68K_GOT32:
492 if (h != NULL
493 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
494 break;
495 /* Fall through. */
496 case R_68K_GOT8O:
497 case R_68K_GOT16O:
498 case R_68K_GOT32O:
499 /* This symbol requires a global offset table entry. */
500
501 if (dynobj == NULL)
502 {
503 /* Create the .got section. */
504 elf_hash_table (info)->dynobj = dynobj = abfd;
505 if (!_bfd_elf_create_got_section (dynobj, info))
506 return false;
507 }
508
509 if (sgot == NULL)
510 {
511 sgot = bfd_get_section_by_name (dynobj, ".got");
512 BFD_ASSERT (sgot != NULL);
513 }
514
515 if (srelgot == NULL
516 && (h != NULL || info->shared))
517 {
518 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
519 if (srelgot == NULL)
520 {
521 srelgot = bfd_make_section (dynobj, ".rela.got");
522 if (srelgot == NULL
523 || !bfd_set_section_flags (dynobj, srelgot,
524 (SEC_ALLOC
525 | SEC_LOAD
526 | SEC_HAS_CONTENTS
527 | SEC_IN_MEMORY
528 | SEC_LINKER_CREATED
529 | SEC_READONLY))
530 || !bfd_set_section_alignment (dynobj, srelgot, 2))
531 return false;
532 }
533 }
534
535 if (h != NULL)
536 {
537 if (h->got.refcount == -1)
538 {
539 h->got.refcount = 1;
540
541 /* Make sure this symbol is output as a dynamic symbol. */
542 if (h->dynindx == -1)
543 {
544 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
545 return false;
546 }
547
548 /* Allocate space in the .got section. */
549 sgot->_raw_size += 4;
550 /* Allocate relocation space. */
551 srelgot->_raw_size += sizeof (Elf32_External_Rela);
552 }
553 else
554 h->got.refcount++;
555 }
556 else
557 {
558 /* This is a global offset table entry for a local symbol. */
559 if (local_got_refcounts == NULL)
560 {
561 size_t size;
562
563 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
564 local_got_refcounts = ((bfd_signed_vma *)
565 bfd_alloc (abfd, size));
566 if (local_got_refcounts == NULL)
567 return false;
568 elf_local_got_refcounts (abfd) = local_got_refcounts;
569 memset (local_got_refcounts, -1, size);
570 }
571 if (local_got_refcounts[r_symndx] == -1)
572 {
573 local_got_refcounts[r_symndx] = 1;
574
575 sgot->_raw_size += 4;
576 if (info->shared)
577 {
578 /* If we are generating a shared object, we need to
579 output a R_68K_RELATIVE reloc so that the dynamic
580 linker can adjust this GOT entry. */
581 srelgot->_raw_size += sizeof (Elf32_External_Rela);
582 }
583 }
584 else
585 local_got_refcounts[r_symndx]++;
586 }
587 break;
588
589 case R_68K_PLT8:
590 case R_68K_PLT16:
591 case R_68K_PLT32:
592 /* This symbol requires a procedure linkage table entry. We
593 actually build the entry in adjust_dynamic_symbol,
594 because this might be a case of linking PIC code which is
595 never referenced by a dynamic object, in which case we
596 don't need to generate a procedure linkage table entry
597 after all. */
598
599 /* If this is a local symbol, we resolve it directly without
600 creating a procedure linkage table entry. */
601 if (h == NULL)
602 continue;
603
604 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
605 if (h->plt.refcount == -1)
606 h->plt.refcount = 1;
607 else
608 h->plt.refcount++;
609 break;
610
611 case R_68K_PLT8O:
612 case R_68K_PLT16O:
613 case R_68K_PLT32O:
614 /* This symbol requires a procedure linkage table entry. */
615
616 if (h == NULL)
617 {
618 /* It does not make sense to have this relocation for a
619 local symbol. FIXME: does it? How to handle it if
620 it does make sense? */
621 bfd_set_error (bfd_error_bad_value);
622 return false;
623 }
624
625 /* Make sure this symbol is output as a dynamic symbol. */
626 if (h->dynindx == -1)
627 {
628 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
629 return false;
630 }
631
632 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
633 if (h->plt.refcount == -1)
634 h->plt.refcount = 1;
635 else
636 h->plt.refcount++;
637 break;
638
639 case R_68K_PC8:
640 case R_68K_PC16:
641 case R_68K_PC32:
642 /* If we are creating a shared library and this is not a local
643 symbol, we need to copy the reloc into the shared library.
644 However when linking with -Bsymbolic and this is a global
645 symbol which is defined in an object we are including in the
646 link (i.e., DEF_REGULAR is set), then we can resolve the
647 reloc directly. At this point we have not seen all the input
648 files, so it is possible that DEF_REGULAR is not set now but
649 will be set later (it is never cleared). We account for that
650 possibility below by storing information in the
651 pcrel_relocs_copied field of the hash table entry. */
652 if (!(info->shared
653 && (sec->flags & SEC_ALLOC) != 0
654 && h != NULL
655 && (!info->symbolic
656 || (h->elf_link_hash_flags
657 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
658 {
659 if (h != NULL)
660 {
661 /* Make sure a plt entry is created for this symbol if
662 it turns out to be a function defined by a dynamic
663 object. */
664 if (h->plt.refcount == -1)
665 h->plt.refcount = 1;
666 else
667 h->plt.refcount++;
668 }
669 break;
670 }
671 /* Fall through. */
672 case R_68K_8:
673 case R_68K_16:
674 case R_68K_32:
675 if (h != NULL)
676 {
677 /* Make sure a plt entry is created for this symbol if it
678 turns out to be a function defined by a dynamic object. */
679 if (h->plt.refcount == -1)
680 h->plt.refcount = 1;
681 else
682 h->plt.refcount++;
683 }
684
685 /* If we are creating a shared library, we need to copy the
686 reloc into the shared library. */
687 if (info->shared
688 && (sec->flags & SEC_ALLOC) != 0)
689 {
690 /* When creating a shared object, we must copy these
691 reloc types into the output file. We create a reloc
692 section in dynobj and make room for this reloc. */
693 if (sreloc == NULL)
694 {
695 const char *name;
696
697 name = (bfd_elf_string_from_elf_section
698 (abfd,
699 elf_elfheader (abfd)->e_shstrndx,
700 elf_section_data (sec)->rel_hdr.sh_name));
701 if (name == NULL)
702 return false;
703
704 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
705 && strcmp (bfd_get_section_name (abfd, sec),
706 name + 5) == 0);
707
708 sreloc = bfd_get_section_by_name (dynobj, name);
709 if (sreloc == NULL)
710 {
711 sreloc = bfd_make_section (dynobj, name);
712 if (sreloc == NULL
713 || !bfd_set_section_flags (dynobj, sreloc,
714 (SEC_ALLOC
715 | SEC_LOAD
716 | SEC_HAS_CONTENTS
717 | SEC_IN_MEMORY
718 | SEC_LINKER_CREATED
719 | SEC_READONLY))
720 || !bfd_set_section_alignment (dynobj, sreloc, 2))
721 return false;
722 }
723 }
724
725 sreloc->_raw_size += sizeof (Elf32_External_Rela);
726
727 /* If we are linking with -Bsymbolic, we count the number of
728 PC relative relocations we have entered for this symbol,
729 so that we can discard them again if the symbol is later
730 defined by a regular object. Note that this function is
731 only called if we are using an m68kelf linker hash table,
732 which means that h is really a pointer to an
733 elf_m68k_link_hash_entry. */
734 if ((ELF32_R_TYPE (rel->r_info) == R_68K_PC8
735 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
736 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
737 && info->symbolic)
738 {
739 struct elf_m68k_link_hash_entry *eh;
740 struct elf_m68k_pcrel_relocs_copied *p;
741
742 eh = (struct elf_m68k_link_hash_entry *) h;
743
744 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
745 if (p->section == sreloc)
746 break;
747
748 if (p == NULL)
749 {
750 p = ((struct elf_m68k_pcrel_relocs_copied *)
751 bfd_alloc (dynobj, sizeof *p));
752 if (p == NULL)
753 return false;
754 p->next = eh->pcrel_relocs_copied;
755 eh->pcrel_relocs_copied = p;
756 p->section = sreloc;
757 p->count = 0;
758 }
759
760 ++p->count;
761 }
762 }
763
764 break;
765
766 /* This relocation describes the C++ object vtable hierarchy.
767 Reconstruct it for later use during GC. */
768 case R_68K_GNU_VTINHERIT:
769 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
770 return false;
771 break;
772
773 /* This relocation describes which C++ vtable entries are actually
774 used. Record for later use during GC. */
775 case R_68K_GNU_VTENTRY:
776 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
777 return false;
778 break;
779
780 default:
781 break;
782 }
783 }
784
785 return true;
786 }
787
788 /* Return the section that should be marked against GC for a given
789 relocation. */
790
791 static asection *
792 elf_m68k_gc_mark_hook (abfd, info, rel, h, sym)
793 bfd *abfd;
794 struct bfd_link_info *info;
795 Elf_Internal_Rela *rel;
796 struct elf_link_hash_entry *h;
797 Elf_Internal_Sym *sym;
798 {
799 if (h != NULL)
800 {
801 switch (ELF32_R_TYPE (rel->r_info))
802 {
803 case R_68K_GNU_VTINHERIT:
804 case R_68K_GNU_VTENTRY:
805 break;
806
807 default:
808 switch (h->root.type)
809 {
810 default:
811 break;
812
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 return h->root.u.def.section;
816
817 case bfd_link_hash_common:
818 return h->root.u.c.p->section;
819 }
820 }
821 }
822 else
823 {
824 if (!(elf_bad_symtab (abfd)
825 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
826 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
827 && sym->st_shndx != SHN_COMMON))
828 {
829 return bfd_section_from_elf_index (abfd, sym->st_shndx);
830 }
831 }
832
833 return NULL;
834 }
835
836 /* Update the got entry reference counts for the section being removed. */
837
838 static boolean
839 elf_m68k_gc_sweep_hook (abfd, info, sec, relocs)
840 bfd *abfd;
841 struct bfd_link_info *info;
842 asection *sec;
843 const Elf_Internal_Rela *relocs;
844 {
845 Elf_Internal_Shdr *symtab_hdr;
846 struct elf_link_hash_entry **sym_hashes;
847 bfd_signed_vma *local_got_refcounts;
848 const Elf_Internal_Rela *rel, *relend;
849 unsigned long r_symndx;
850 struct elf_link_hash_entry *h;
851 bfd *dynobj;
852 asection *sgot;
853 asection *srelgot;
854
855 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
856 sym_hashes = elf_sym_hashes (abfd);
857 local_got_refcounts = elf_local_got_refcounts (abfd);
858
859 dynobj = elf_hash_table (info)->dynobj;
860 if (dynobj)
861 {
862 sgot = bfd_get_section_by_name (dynobj, ".got");
863 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
864 }
865
866 relend = relocs + sec->reloc_count;
867 for (rel = relocs; rel < relend; rel++)
868 {
869 switch (ELF32_R_TYPE (rel->r_info))
870 {
871 case R_68K_GOT8:
872 case R_68K_GOT16:
873 case R_68K_GOT32:
874 case R_68K_GOT8O:
875 case R_68K_GOT16O:
876 case R_68K_GOT32O:
877 r_symndx = ELF32_R_SYM (rel->r_info);
878 if (r_symndx >= symtab_hdr->sh_info)
879 {
880 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
881 if (h->got.refcount > 0)
882 {
883 --h->got.refcount;
884 if (h->got.refcount == 0)
885 {
886 /* We don't need the .got entry any more. */
887 sgot->_raw_size -= 4;
888 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
889 }
890 }
891 }
892 else
893 {
894 if (local_got_refcounts[r_symndx] > 0)
895 {
896 --local_got_refcounts[r_symndx];
897 if (local_got_refcounts[r_symndx] == 0)
898 {
899 /* We don't need the .got entry any more. */
900 sgot->_raw_size -= 4;
901 if (info->shared)
902 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
903 }
904 }
905 }
906 break;
907
908 case R_68K_PLT8:
909 case R_68K_PLT16:
910 case R_68K_PLT32:
911 case R_68K_PLT8O:
912 case R_68K_PLT16O:
913 case R_68K_PLT32O:
914 case R_68K_PC8:
915 case R_68K_PC16:
916 case R_68K_PC32:
917 case R_68K_8:
918 case R_68K_16:
919 case R_68K_32:
920 r_symndx = ELF32_R_SYM (rel->r_info);
921 if (r_symndx >= symtab_hdr->sh_info)
922 {
923 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
924 if (h->plt.refcount > 0)
925 --h->plt.refcount;
926 }
927 break;
928
929 default:
930 break;
931 }
932 }
933
934 return true;
935 }
936
937
938 /* Adjust a symbol defined by a dynamic object and referenced by a
939 regular object. The current definition is in some section of the
940 dynamic object, but we're not including those sections. We have to
941 change the definition to something the rest of the link can
942 understand. */
943
944 static boolean
945 elf_m68k_adjust_dynamic_symbol (info, h)
946 struct bfd_link_info *info;
947 struct elf_link_hash_entry *h;
948 {
949 bfd *dynobj;
950 asection *s;
951 unsigned int power_of_two;
952
953 dynobj = elf_hash_table (info)->dynobj;
954
955 /* Make sure we know what is going on here. */
956 BFD_ASSERT (dynobj != NULL
957 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
958 || h->weakdef != NULL
959 || ((h->elf_link_hash_flags
960 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
961 && (h->elf_link_hash_flags
962 & ELF_LINK_HASH_REF_REGULAR) != 0
963 && (h->elf_link_hash_flags
964 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
965
966 /* If this is a function, put it in the procedure linkage table. We
967 will fill in the contents of the procedure linkage table later,
968 when we know the address of the .got section. */
969 if (h->type == STT_FUNC
970 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
971 {
972 if (! info->shared
973 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
974 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
975 /* We must always create the plt entry if it was referenced
976 by a PLTxxO relocation. In this case we already recorded
977 it as a dynamic symbol. */
978 && h->dynindx == -1)
979 {
980 /* This case can occur if we saw a PLTxx reloc in an input
981 file, but the symbol was never referred to by a dynamic
982 object. In such a case, we don't actually need to build
983 a procedure linkage table, and we can just do a PCxx
984 reloc instead. */
985 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
986 h->plt.offset = (bfd_vma) -1;
987 return true;
988 }
989
990 /* GC may have rendered this entry unused. */
991 if (h->plt.refcount <= 0)
992 {
993 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
994 h->plt.offset = (bfd_vma) -1;
995 return true;
996 }
997
998 /* Make sure this symbol is output as a dynamic symbol. */
999 if (h->dynindx == -1)
1000 {
1001 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1002 return false;
1003 }
1004
1005 s = bfd_get_section_by_name (dynobj, ".plt");
1006 BFD_ASSERT (s != NULL);
1007
1008 /* If this is the first .plt entry, make room for the special
1009 first entry. */
1010 if (s->_raw_size == 0)
1011 {
1012 if (CPU32_FLAG (dynobj))
1013 s->_raw_size += PLT_CPU32_ENTRY_SIZE;
1014 else
1015 s->_raw_size += PLT_ENTRY_SIZE;
1016 }
1017
1018 /* If this symbol is not defined in a regular file, and we are
1019 not generating a shared library, then set the symbol to this
1020 location in the .plt. This is required to make function
1021 pointers compare as equal between the normal executable and
1022 the shared library. */
1023 if (!info->shared
1024 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1025 {
1026 h->root.u.def.section = s;
1027 h->root.u.def.value = s->_raw_size;
1028 }
1029
1030 h->plt.offset = s->_raw_size;
1031
1032 /* Make room for this entry. */
1033 if (CPU32_FLAG (dynobj))
1034 s->_raw_size += PLT_CPU32_ENTRY_SIZE;
1035 else
1036 s->_raw_size += PLT_ENTRY_SIZE;
1037
1038 /* We also need to make an entry in the .got.plt section, which
1039 will be placed in the .got section by the linker script. */
1040
1041 s = bfd_get_section_by_name (dynobj, ".got.plt");
1042 BFD_ASSERT (s != NULL);
1043 s->_raw_size += 4;
1044
1045 /* We also need to make an entry in the .rela.plt section. */
1046
1047 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1048 BFD_ASSERT (s != NULL);
1049 s->_raw_size += sizeof (Elf32_External_Rela);
1050
1051 return true;
1052 }
1053
1054 /* Reinitialize the plt offset now that it is not used as a reference
1055 count any more. */
1056 h->plt.offset = (bfd_vma) -1;
1057
1058 /* If this is a weak symbol, and there is a real definition, the
1059 processor independent code will have arranged for us to see the
1060 real definition first, and we can just use the same value. */
1061 if (h->weakdef != NULL)
1062 {
1063 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1064 || h->weakdef->root.type == bfd_link_hash_defweak);
1065 h->root.u.def.section = h->weakdef->root.u.def.section;
1066 h->root.u.def.value = h->weakdef->root.u.def.value;
1067 return true;
1068 }
1069
1070 /* This is a reference to a symbol defined by a dynamic object which
1071 is not a function. */
1072
1073 /* If we are creating a shared library, we must presume that the
1074 only references to the symbol are via the global offset table.
1075 For such cases we need not do anything here; the relocations will
1076 be handled correctly by relocate_section. */
1077 if (info->shared)
1078 return true;
1079
1080 /* We must allocate the symbol in our .dynbss section, which will
1081 become part of the .bss section of the executable. There will be
1082 an entry for this symbol in the .dynsym section. The dynamic
1083 object will contain position independent code, so all references
1084 from the dynamic object to this symbol will go through the global
1085 offset table. The dynamic linker will use the .dynsym entry to
1086 determine the address it must put in the global offset table, so
1087 both the dynamic object and the regular object will refer to the
1088 same memory location for the variable. */
1089
1090 s = bfd_get_section_by_name (dynobj, ".dynbss");
1091 BFD_ASSERT (s != NULL);
1092
1093 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
1094 copy the initial value out of the dynamic object and into the
1095 runtime process image. We need to remember the offset into the
1096 .rela.bss section we are going to use. */
1097 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1098 {
1099 asection *srel;
1100
1101 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1102 BFD_ASSERT (srel != NULL);
1103 srel->_raw_size += sizeof (Elf32_External_Rela);
1104 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1105 }
1106
1107 /* We need to figure out the alignment required for this symbol. I
1108 have no idea how ELF linkers handle this. */
1109 power_of_two = bfd_log2 (h->size);
1110 if (power_of_two > 3)
1111 power_of_two = 3;
1112
1113 /* Apply the required alignment. */
1114 s->_raw_size = BFD_ALIGN (s->_raw_size,
1115 (bfd_size_type) (1 << power_of_two));
1116 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1117 {
1118 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
1119 return false;
1120 }
1121
1122 /* Define the symbol as being at this point in the section. */
1123 h->root.u.def.section = s;
1124 h->root.u.def.value = s->_raw_size;
1125
1126 /* Increment the section size to make room for the symbol. */
1127 s->_raw_size += h->size;
1128
1129 return true;
1130 }
1131
1132 /* Set the sizes of the dynamic sections. */
1133
1134 static boolean
1135 elf_m68k_size_dynamic_sections (output_bfd, info)
1136 bfd *output_bfd;
1137 struct bfd_link_info *info;
1138 {
1139 bfd *dynobj;
1140 asection *s;
1141 boolean plt;
1142 boolean relocs;
1143 boolean reltext;
1144
1145 dynobj = elf_hash_table (info)->dynobj;
1146 BFD_ASSERT (dynobj != NULL);
1147
1148 if (elf_hash_table (info)->dynamic_sections_created)
1149 {
1150 /* Set the contents of the .interp section to the interpreter. */
1151 if (!info->shared)
1152 {
1153 s = bfd_get_section_by_name (dynobj, ".interp");
1154 BFD_ASSERT (s != NULL);
1155 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1156 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1157 }
1158 }
1159 else
1160 {
1161 /* We may have created entries in the .rela.got section.
1162 However, if we are not creating the dynamic sections, we will
1163 not actually use these entries. Reset the size of .rela.got,
1164 which will cause it to get stripped from the output file
1165 below. */
1166 s = bfd_get_section_by_name (dynobj, ".rela.got");
1167 if (s != NULL)
1168 s->_raw_size = 0;
1169 }
1170
1171 /* If this is a -Bsymbolic shared link, then we need to discard all PC
1172 relative relocs against symbols defined in a regular object. We
1173 allocated space for them in the check_relocs routine, but we will not
1174 fill them in in the relocate_section routine. */
1175 if (info->shared && info->symbolic)
1176 elf_m68k_link_hash_traverse (elf_m68k_hash_table (info),
1177 elf_m68k_discard_copies,
1178 (PTR) NULL);
1179
1180 /* The check_relocs and adjust_dynamic_symbol entry points have
1181 determined the sizes of the various dynamic sections. Allocate
1182 memory for them. */
1183 plt = false;
1184 relocs = false;
1185 reltext = false;
1186 for (s = dynobj->sections; s != NULL; s = s->next)
1187 {
1188 const char *name;
1189 boolean strip;
1190
1191 if ((s->flags & SEC_LINKER_CREATED) == 0)
1192 continue;
1193
1194 /* It's OK to base decisions on the section name, because none
1195 of the dynobj section names depend upon the input files. */
1196 name = bfd_get_section_name (dynobj, s);
1197
1198 strip = false;
1199
1200 if (strcmp (name, ".plt") == 0)
1201 {
1202 if (s->_raw_size == 0)
1203 {
1204 /* Strip this section if we don't need it; see the
1205 comment below. */
1206 strip = true;
1207 }
1208 else
1209 {
1210 /* Remember whether there is a PLT. */
1211 plt = true;
1212 }
1213 }
1214 else if (strncmp (name, ".rela", 5) == 0)
1215 {
1216 if (s->_raw_size == 0)
1217 {
1218 /* If we don't need this section, strip it from the
1219 output file. This is mostly to handle .rela.bss and
1220 .rela.plt. We must create both sections in
1221 create_dynamic_sections, because they must be created
1222 before the linker maps input sections to output
1223 sections. The linker does that before
1224 adjust_dynamic_symbol is called, and it is that
1225 function which decides whether anything needs to go
1226 into these sections. */
1227 strip = true;
1228 }
1229 else
1230 {
1231 asection *target;
1232
1233 /* Remember whether there are any reloc sections other
1234 than .rela.plt. */
1235 if (strcmp (name, ".rela.plt") != 0)
1236 {
1237 const char *outname;
1238
1239 relocs = true;
1240
1241 /* If this relocation section applies to a read only
1242 section, then we probably need a DT_TEXTREL
1243 entry. .rela.plt is actually associated with
1244 .got.plt, which is never readonly. */
1245 outname = bfd_get_section_name (output_bfd,
1246 s->output_section);
1247 target = bfd_get_section_by_name (output_bfd, outname + 5);
1248 if (target != NULL
1249 && (target->flags & SEC_READONLY) != 0
1250 && (target->flags & SEC_ALLOC) != 0)
1251 reltext = true;
1252 }
1253
1254 /* We use the reloc_count field as a counter if we need
1255 to copy relocs into the output file. */
1256 s->reloc_count = 0;
1257 }
1258 }
1259 else if (strncmp (name, ".got", 4) != 0)
1260 {
1261 /* It's not one of our sections, so don't allocate space. */
1262 continue;
1263 }
1264
1265 if (strip)
1266 {
1267 _bfd_strip_section_from_output (s);
1268 continue;
1269 }
1270
1271 /* Allocate memory for the section contents. */
1272 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1273 if (s->contents == NULL && s->_raw_size != 0)
1274 return false;
1275 }
1276
1277 if (elf_hash_table (info)->dynamic_sections_created)
1278 {
1279 /* Add some entries to the .dynamic section. We fill in the
1280 values later, in elf_m68k_finish_dynamic_sections, but we
1281 must add the entries now so that we get the correct size for
1282 the .dynamic section. The DT_DEBUG entry is filled in by the
1283 dynamic linker and used by the debugger. */
1284 if (!info->shared)
1285 {
1286 if (!bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1287 return false;
1288 }
1289
1290 if (plt)
1291 {
1292 if (!bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1293 || !bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1294 || !bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1295 || !bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1296 return false;
1297 }
1298
1299 if (relocs)
1300 {
1301 if (!bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
1302 || !bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
1303 || !bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
1304 sizeof (Elf32_External_Rela)))
1305 return false;
1306 }
1307
1308 if (reltext)
1309 {
1310 if (!bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1311 return false;
1312 }
1313 }
1314
1315 /* If we are generating a shared library, we generate a section
1316 symbol for each output section for which we might need to copy
1317 relocs. These are local symbols, which means that they must come
1318 first in the dynamic symbol table. That means we must increment
1319 the dynamic symbol index of every other dynamic symbol. */
1320 if (info->shared)
1321 {
1322 int c;
1323
1324 c = 0;
1325 for (s = output_bfd->sections; s != NULL; s = s->next)
1326 {
1327 if ((s->flags & SEC_LINKER_CREATED) != 0
1328 || (s->flags & SEC_ALLOC) == 0)
1329 continue;
1330
1331 elf_section_data (s)->dynindx = c + 1;
1332
1333 /* These symbols will have no names, so we don't need to
1334 fiddle with dynstr_index. */
1335
1336 ++c;
1337 }
1338
1339 elf_link_hash_traverse (elf_hash_table (info),
1340 elf_m68k_adjust_dynindx,
1341 (PTR) &c);
1342 elf_hash_table (info)->dynsymcount += c;
1343 }
1344
1345 return true;
1346 }
1347
1348 /* Increment the index of a dynamic symbol by a given amount. Called
1349 via elf_link_hash_traverse. */
1350
1351 static boolean
1352 elf_m68k_adjust_dynindx (h, cparg)
1353 struct elf_link_hash_entry *h;
1354 PTR cparg;
1355 {
1356 int *cp = (int *) cparg;
1357
1358 if (h->dynindx != -1)
1359 h->dynindx += *cp;
1360 return true;
1361 }
1362
1363 /* This function is called via elf_m68k_link_hash_traverse if we are
1364 creating a shared object with -Bsymbolic. It discards the space
1365 allocated to copy PC relative relocs against symbols which are defined
1366 in regular objects. We allocated space for them in the check_relocs
1367 routine, but we won't fill them in in the relocate_section routine. */
1368
1369 /*ARGSUSED*/
1370 static boolean
1371 elf_m68k_discard_copies (h, ignore)
1372 struct elf_m68k_link_hash_entry *h;
1373 PTR ignore;
1374 {
1375 struct elf_m68k_pcrel_relocs_copied *s;
1376
1377 /* We only discard relocs for symbols defined in a regular object. */
1378 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1379 return true;
1380
1381 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1382 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1383
1384 return true;
1385 }
1386
1387 /* Relocate an M68K ELF section. */
1388
1389 static boolean
1390 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
1391 contents, relocs, local_syms, local_sections)
1392 bfd *output_bfd;
1393 struct bfd_link_info *info;
1394 bfd *input_bfd;
1395 asection *input_section;
1396 bfd_byte *contents;
1397 Elf_Internal_Rela *relocs;
1398 Elf_Internal_Sym *local_syms;
1399 asection **local_sections;
1400 {
1401 bfd *dynobj;
1402 Elf_Internal_Shdr *symtab_hdr;
1403 struct elf_link_hash_entry **sym_hashes;
1404 bfd_vma *local_got_offsets;
1405 asection *sgot;
1406 asection *splt;
1407 asection *sreloc;
1408 Elf_Internal_Rela *rel;
1409 Elf_Internal_Rela *relend;
1410
1411 dynobj = elf_hash_table (info)->dynobj;
1412 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1413 sym_hashes = elf_sym_hashes (input_bfd);
1414 local_got_offsets = elf_local_got_offsets (input_bfd);
1415
1416 sgot = NULL;
1417 splt = NULL;
1418 sreloc = NULL;
1419
1420 rel = relocs;
1421 relend = relocs + input_section->reloc_count;
1422 for (; rel < relend; rel++)
1423 {
1424 int r_type;
1425 reloc_howto_type *howto;
1426 unsigned long r_symndx;
1427 struct elf_link_hash_entry *h;
1428 Elf_Internal_Sym *sym;
1429 asection *sec;
1430 bfd_vma relocation;
1431 bfd_reloc_status_type r;
1432
1433 r_type = ELF32_R_TYPE (rel->r_info);
1434 if (r_type < 0 || r_type >= (int) R_68K_max)
1435 {
1436 bfd_set_error (bfd_error_bad_value);
1437 return false;
1438 }
1439 howto = howto_table + r_type;
1440
1441 r_symndx = ELF32_R_SYM (rel->r_info);
1442
1443 if (info->relocateable)
1444 {
1445 /* This is a relocateable link. We don't have to change
1446 anything, unless the reloc is against a section symbol,
1447 in which case we have to adjust according to where the
1448 section symbol winds up in the output section. */
1449 if (r_symndx < symtab_hdr->sh_info)
1450 {
1451 sym = local_syms + r_symndx;
1452 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1453 {
1454 sec = local_sections[r_symndx];
1455 rel->r_addend += sec->output_offset + sym->st_value;
1456 }
1457 }
1458
1459 continue;
1460 }
1461
1462 /* This is a final link. */
1463 h = NULL;
1464 sym = NULL;
1465 sec = NULL;
1466 if (r_symndx < symtab_hdr->sh_info)
1467 {
1468 sym = local_syms + r_symndx;
1469 sec = local_sections[r_symndx];
1470 relocation = (sec->output_section->vma
1471 + sec->output_offset
1472 + sym->st_value);
1473 }
1474 else
1475 {
1476 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1477 while (h->root.type == bfd_link_hash_indirect
1478 || h->root.type == bfd_link_hash_warning)
1479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1480 if (h->root.type == bfd_link_hash_defined
1481 || h->root.type == bfd_link_hash_defweak)
1482 {
1483 sec = h->root.u.def.section;
1484 if (((r_type == R_68K_PLT8
1485 || r_type == R_68K_PLT16
1486 || r_type == R_68K_PLT32
1487 || r_type == R_68K_PLT8O
1488 || r_type == R_68K_PLT16O
1489 || r_type == R_68K_PLT32O)
1490 && h->plt.offset != (bfd_vma) -1
1491 && elf_hash_table (info)->dynamic_sections_created)
1492 || ((r_type == R_68K_GOT8O
1493 || r_type == R_68K_GOT16O
1494 || r_type == R_68K_GOT32O
1495 || ((r_type == R_68K_GOT8
1496 || r_type == R_68K_GOT16
1497 || r_type == R_68K_GOT32)
1498 && strcmp (h->root.root.string,
1499 "_GLOBAL_OFFSET_TABLE_") != 0))
1500 && elf_hash_table (info)->dynamic_sections_created
1501 && (! info->shared
1502 || (! info->symbolic && h->dynindx != -1)
1503 || (h->elf_link_hash_flags
1504 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1505 || (info->shared
1506 && ((! info->symbolic && h->dynindx != -1)
1507 || (h->elf_link_hash_flags
1508 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1509 && (input_section->flags & SEC_ALLOC) != 0
1510 && (r_type == R_68K_8
1511 || r_type == R_68K_16
1512 || r_type == R_68K_32
1513 || r_type == R_68K_PC8
1514 || r_type == R_68K_PC16
1515 || r_type == R_68K_PC32)))
1516 {
1517 /* In these cases, we don't need the relocation
1518 value. We check specially because in some
1519 obscure cases sec->output_section will be NULL. */
1520 relocation = 0;
1521 }
1522 else
1523 relocation = (h->root.u.def.value
1524 + sec->output_section->vma
1525 + sec->output_offset);
1526 }
1527 else if (h->root.type == bfd_link_hash_undefweak)
1528 relocation = 0;
1529 else if (info->shared && !info->symbolic && !info->no_undefined)
1530 relocation = 0;
1531 else
1532 {
1533 if (!(info->callbacks->undefined_symbol
1534 (info, h->root.root.string, input_bfd,
1535 input_section, rel->r_offset)))
1536 return false;
1537 relocation = 0;
1538 }
1539 }
1540
1541 switch (r_type)
1542 {
1543 case R_68K_GOT8:
1544 case R_68K_GOT16:
1545 case R_68K_GOT32:
1546 /* Relocation is to the address of the entry for this symbol
1547 in the global offset table. */
1548 if (h != NULL
1549 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1550 break;
1551 /* Fall through. */
1552 case R_68K_GOT8O:
1553 case R_68K_GOT16O:
1554 case R_68K_GOT32O:
1555 /* Relocation is the offset of the entry for this symbol in
1556 the global offset table. */
1557
1558 {
1559 bfd_vma off;
1560
1561 if (sgot == NULL)
1562 {
1563 sgot = bfd_get_section_by_name (dynobj, ".got");
1564 BFD_ASSERT (sgot != NULL);
1565 }
1566
1567 if (h != NULL)
1568 {
1569 off = h->got.offset;
1570 BFD_ASSERT (off != (bfd_vma) -1);
1571
1572 if (!elf_hash_table (info)->dynamic_sections_created
1573 || (info->shared
1574 && (info->symbolic || h->dynindx == -1)
1575 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1576 {
1577 /* This is actually a static link, or it is a
1578 -Bsymbolic link and the symbol is defined
1579 locally, or the symbol was forced to be local
1580 because of a version file.. We must initialize
1581 this entry in the global offset table. Since
1582 the offset must always be a multiple of 4, we
1583 use the least significant bit to record whether
1584 we have initialized it already.
1585
1586 When doing a dynamic link, we create a .rela.got
1587 relocation entry to initialize the value. This
1588 is done in the finish_dynamic_symbol routine. */
1589 if ((off & 1) != 0)
1590 off &= ~1;
1591 else
1592 {
1593 bfd_put_32 (output_bfd, relocation,
1594 sgot->contents + off);
1595 h->got.offset |= 1;
1596 }
1597 }
1598 }
1599 else
1600 {
1601 BFD_ASSERT (local_got_offsets != NULL
1602 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1603
1604 off = local_got_offsets[r_symndx];
1605
1606 /* The offset must always be a multiple of 4. We use
1607 the least significant bit to record whether we have
1608 already generated the necessary reloc. */
1609 if ((off & 1) != 0)
1610 off &= ~1;
1611 else
1612 {
1613 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1614
1615 if (info->shared)
1616 {
1617 asection *srelgot;
1618 Elf_Internal_Rela outrel;
1619
1620 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1621 BFD_ASSERT (srelgot != NULL);
1622
1623 outrel.r_offset = (sgot->output_section->vma
1624 + sgot->output_offset
1625 + off);
1626 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1627 outrel.r_addend = relocation;
1628 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1629 (((Elf32_External_Rela *)
1630 srelgot->contents)
1631 + srelgot->reloc_count));
1632 ++srelgot->reloc_count;
1633 }
1634
1635 local_got_offsets[r_symndx] |= 1;
1636 }
1637 }
1638
1639 relocation = sgot->output_offset + off;
1640 if (r_type == R_68K_GOT8O
1641 || r_type == R_68K_GOT16O
1642 || r_type == R_68K_GOT32O)
1643 {
1644 /* This relocation does not use the addend. */
1645 rel->r_addend = 0;
1646 }
1647 else
1648 relocation += sgot->output_section->vma;
1649 }
1650 break;
1651
1652 case R_68K_PLT8:
1653 case R_68K_PLT16:
1654 case R_68K_PLT32:
1655 /* Relocation is to the entry for this symbol in the
1656 procedure linkage table. */
1657
1658 /* Resolve a PLTxx reloc against a local symbol directly,
1659 without using the procedure linkage table. */
1660 if (h == NULL)
1661 break;
1662
1663 if (h->plt.offset == (bfd_vma) -1
1664 || !elf_hash_table (info)->dynamic_sections_created)
1665 {
1666 /* We didn't make a PLT entry for this symbol. This
1667 happens when statically linking PIC code, or when
1668 using -Bsymbolic. */
1669 break;
1670 }
1671
1672 if (splt == NULL)
1673 {
1674 splt = bfd_get_section_by_name (dynobj, ".plt");
1675 BFD_ASSERT (splt != NULL);
1676 }
1677
1678 relocation = (splt->output_section->vma
1679 + splt->output_offset
1680 + h->plt.offset);
1681 break;
1682
1683 case R_68K_PLT8O:
1684 case R_68K_PLT16O:
1685 case R_68K_PLT32O:
1686 /* Relocation is the offset of the entry for this symbol in
1687 the procedure linkage table. */
1688 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
1689
1690 if (splt == NULL)
1691 {
1692 splt = bfd_get_section_by_name (dynobj, ".plt");
1693 BFD_ASSERT (splt != NULL);
1694 }
1695
1696 relocation = h->plt.offset;
1697
1698 /* This relocation does not use the addend. */
1699 rel->r_addend = 0;
1700
1701 break;
1702
1703 case R_68K_PC8:
1704 case R_68K_PC16:
1705 case R_68K_PC32:
1706 if (h == NULL)
1707 break;
1708 /* Fall through. */
1709 case R_68K_8:
1710 case R_68K_16:
1711 case R_68K_32:
1712 if (info->shared
1713 && (input_section->flags & SEC_ALLOC) != 0
1714 && ((r_type != R_68K_PC8
1715 && r_type != R_68K_PC16
1716 && r_type != R_68K_PC32)
1717 || (!info->symbolic
1718 || (h->elf_link_hash_flags
1719 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1720 {
1721 Elf_Internal_Rela outrel;
1722 boolean skip, relocate;
1723
1724 /* When generating a shared object, these relocations
1725 are copied into the output file to be resolved at run
1726 time. */
1727
1728 if (sreloc == NULL)
1729 {
1730 const char *name;
1731
1732 name = (bfd_elf_string_from_elf_section
1733 (input_bfd,
1734 elf_elfheader (input_bfd)->e_shstrndx,
1735 elf_section_data (input_section)->rel_hdr.sh_name));
1736 if (name == NULL)
1737 return false;
1738
1739 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1740 && strcmp (bfd_get_section_name (input_bfd,
1741 input_section),
1742 name + 5) == 0);
1743
1744 sreloc = bfd_get_section_by_name (dynobj, name);
1745 BFD_ASSERT (sreloc != NULL);
1746 }
1747
1748 skip = false;
1749
1750 if (elf_section_data (input_section)->stab_info == NULL)
1751 outrel.r_offset = rel->r_offset;
1752 else
1753 {
1754 bfd_vma off;
1755
1756 off = (_bfd_stab_section_offset
1757 (output_bfd, &elf_hash_table (info)->stab_info,
1758 input_section,
1759 &elf_section_data (input_section)->stab_info,
1760 rel->r_offset));
1761 if (off == (bfd_vma) -1)
1762 skip = true;
1763 outrel.r_offset = off;
1764 }
1765
1766 outrel.r_offset += (input_section->output_section->vma
1767 + input_section->output_offset);
1768
1769 if (skip)
1770 {
1771 memset (&outrel, 0, sizeof outrel);
1772 relocate = false;
1773 }
1774 /* h->dynindx may be -1 if the symbol was marked to
1775 become local. */
1776 else if (h != NULL
1777 && ((! info->symbolic && h->dynindx != -1)
1778 || (h->elf_link_hash_flags
1779 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1780 {
1781 BFD_ASSERT (h->dynindx != -1);
1782 relocate = false;
1783 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1784 outrel.r_addend = relocation + rel->r_addend;
1785 }
1786 else
1787 {
1788 if (r_type == R_68K_32)
1789 {
1790 relocate = true;
1791 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1792 outrel.r_addend = relocation + rel->r_addend;
1793 }
1794 else
1795 {
1796 long indx;
1797
1798 if (h == NULL)
1799 sec = local_sections[r_symndx];
1800 else
1801 {
1802 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1803 || (h->root.type
1804 == bfd_link_hash_defweak));
1805 sec = h->root.u.def.section;
1806 }
1807 if (sec != NULL && bfd_is_abs_section (sec))
1808 indx = 0;
1809 else if (sec == NULL || sec->owner == NULL)
1810 {
1811 bfd_set_error (bfd_error_bad_value);
1812 return false;
1813 }
1814 else
1815 {
1816 asection *osec;
1817
1818 osec = sec->output_section;
1819 indx = elf_section_data (osec)->dynindx;
1820 BFD_ASSERT (indx > 0);
1821 }
1822
1823 relocate = false;
1824 outrel.r_info = ELF32_R_INFO (indx, r_type);
1825 outrel.r_addend = relocation + rel->r_addend;
1826 }
1827 }
1828
1829 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1830 (((Elf32_External_Rela *)
1831 sreloc->contents)
1832 + sreloc->reloc_count));
1833 ++sreloc->reloc_count;
1834
1835 /* This reloc will be computed at runtime, so there's no
1836 need to do anything now, except for R_68K_32
1837 relocations that have been turned into
1838 R_68K_RELATIVE. */
1839 if (!relocate)
1840 continue;
1841 }
1842
1843 break;
1844
1845 case R_68K_GNU_VTINHERIT:
1846 case R_68K_GNU_VTENTRY:
1847 /* These are no-ops in the end. */
1848 continue;
1849
1850 default:
1851 break;
1852 }
1853
1854 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1855 contents, rel->r_offset,
1856 relocation, rel->r_addend);
1857
1858 if (r != bfd_reloc_ok)
1859 {
1860 switch (r)
1861 {
1862 default:
1863 case bfd_reloc_outofrange:
1864 abort ();
1865 case bfd_reloc_overflow:
1866 {
1867 const char *name;
1868
1869 if (h != NULL)
1870 name = h->root.root.string;
1871 else
1872 {
1873 name = bfd_elf_string_from_elf_section (input_bfd,
1874 symtab_hdr->sh_link,
1875 sym->st_name);
1876 if (name == NULL)
1877 return false;
1878 if (*name == '\0')
1879 name = bfd_section_name (input_bfd, sec);
1880 }
1881 if (!(info->callbacks->reloc_overflow
1882 (info, name, howto->name, (bfd_vma) 0,
1883 input_bfd, input_section, rel->r_offset)))
1884 return false;
1885 }
1886 break;
1887 }
1888 }
1889 }
1890
1891 return true;
1892 }
1893
1894 /* Finish up dynamic symbol handling. We set the contents of various
1895 dynamic sections here. */
1896
1897 static boolean
1898 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
1899 bfd *output_bfd;
1900 struct bfd_link_info *info;
1901 struct elf_link_hash_entry *h;
1902 Elf_Internal_Sym *sym;
1903 {
1904 bfd *dynobj;
1905 int plt_off1, plt_off2, plt_off3;
1906
1907 dynobj = elf_hash_table (info)->dynobj;
1908
1909 if (h->plt.offset != (bfd_vma) -1)
1910 {
1911 asection *splt;
1912 asection *sgot;
1913 asection *srela;
1914 bfd_vma plt_index;
1915 bfd_vma got_offset;
1916 Elf_Internal_Rela rela;
1917
1918 /* This symbol has an entry in the procedure linkage table. Set
1919 it up. */
1920
1921 BFD_ASSERT (h->dynindx != -1);
1922
1923 splt = bfd_get_section_by_name (dynobj, ".plt");
1924 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1925 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1926 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1927
1928 /* Get the index in the procedure linkage table which
1929 corresponds to this symbol. This is the index of this symbol
1930 in all the symbols for which we are making plt entries. The
1931 first entry in the procedure linkage table is reserved. */
1932 if ( CPU32_FLAG (output_bfd))
1933 plt_index = h->plt.offset / PLT_CPU32_ENTRY_SIZE - 1;
1934 else
1935 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1936
1937 /* Get the offset into the .got table of the entry that
1938 corresponds to this function. Each .got entry is 4 bytes.
1939 The first three are reserved. */
1940 got_offset = (plt_index + 3) * 4;
1941
1942 if ( CPU32_FLAG (output_bfd))
1943 {
1944 /* Fill in the entry in the procedure linkage table. */
1945 memcpy (splt->contents + h->plt.offset, elf_cpu32_plt_entry,
1946 PLT_CPU32_ENTRY_SIZE);
1947 plt_off1 = 4;
1948 plt_off2 = 12;
1949 plt_off3 = 18;
1950 }
1951 else
1952 {
1953 /* Fill in the entry in the procedure linkage table. */
1954 memcpy (splt->contents + h->plt.offset, elf_m68k_plt_entry,
1955 PLT_ENTRY_SIZE);
1956 plt_off1 = 4;
1957 plt_off2 = 10;
1958 plt_off3 = 16;
1959 }
1960
1961 /* The offset is relative to the first extension word. */
1962 bfd_put_32 (output_bfd,
1963 (sgot->output_section->vma
1964 + sgot->output_offset
1965 + got_offset
1966 - (splt->output_section->vma
1967 + h->plt.offset + 2)),
1968 splt->contents + h->plt.offset + plt_off1);
1969
1970 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1971 splt->contents + h->plt.offset + plt_off2);
1972 bfd_put_32 (output_bfd, - (h->plt.offset + plt_off3),
1973 splt->contents + h->plt.offset + plt_off3);
1974
1975 /* Fill in the entry in the global offset table. */
1976 bfd_put_32 (output_bfd,
1977 (splt->output_section->vma
1978 + splt->output_offset
1979 + h->plt.offset
1980 + 8),
1981 sgot->contents + got_offset);
1982
1983 /* Fill in the entry in the .rela.plt section. */
1984 rela.r_offset = (sgot->output_section->vma
1985 + sgot->output_offset
1986 + got_offset);
1987 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
1988 rela.r_addend = 0;
1989 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1990 ((Elf32_External_Rela *) srela->contents
1991 + plt_index));
1992
1993 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1994 {
1995 /* Mark the symbol as undefined, rather than as defined in
1996 the .plt section. Leave the value alone. */
1997 sym->st_shndx = SHN_UNDEF;
1998 }
1999 }
2000
2001 if (h->got.offset != (bfd_vma) -1)
2002 {
2003 asection *sgot;
2004 asection *srela;
2005 Elf_Internal_Rela rela;
2006
2007 /* This symbol has an entry in the global offset table. Set it
2008 up. */
2009
2010 sgot = bfd_get_section_by_name (dynobj, ".got");
2011 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2012 BFD_ASSERT (sgot != NULL && srela != NULL);
2013
2014 rela.r_offset = (sgot->output_section->vma
2015 + sgot->output_offset
2016 + (h->got.offset &~ 1));
2017
2018 /* If this is a -Bsymbolic link, and the symbol is defined
2019 locally, we just want to emit a RELATIVE reloc. Likewise if
2020 the symbol was forced to be local because of a version file.
2021 The entry in the global offset table will already have been
2022 initialized in the relocate_section function. */
2023 if (info->shared
2024 && (info->symbolic || h->dynindx == -1)
2025 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2026 {
2027 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
2028 rela.r_addend = bfd_get_signed_32 (output_bfd,
2029 (sgot->contents
2030 + (h->got.offset & ~1)));
2031 }
2032 else
2033 {
2034 bfd_put_32 (output_bfd, (bfd_vma) 0,
2035 sgot->contents + (h->got.offset & ~1));
2036 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
2037 rela.r_addend = 0;
2038 }
2039
2040 bfd_elf32_swap_reloca_out (output_bfd, &rela,
2041 ((Elf32_External_Rela *) srela->contents
2042 + srela->reloc_count));
2043 ++srela->reloc_count;
2044 }
2045
2046 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2047 {
2048 asection *s;
2049 Elf_Internal_Rela rela;
2050
2051 /* This symbol needs a copy reloc. Set it up. */
2052
2053 BFD_ASSERT (h->dynindx != -1
2054 && (h->root.type == bfd_link_hash_defined
2055 || h->root.type == bfd_link_hash_defweak));
2056
2057 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2058 ".rela.bss");
2059 BFD_ASSERT (s != NULL);
2060
2061 rela.r_offset = (h->root.u.def.value
2062 + h->root.u.def.section->output_section->vma
2063 + h->root.u.def.section->output_offset);
2064 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
2065 rela.r_addend = 0;
2066 bfd_elf32_swap_reloca_out (output_bfd, &rela,
2067 ((Elf32_External_Rela *) s->contents
2068 + s->reloc_count));
2069 ++s->reloc_count;
2070 }
2071
2072 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2073 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2074 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2075 sym->st_shndx = SHN_ABS;
2076
2077 return true;
2078 }
2079
2080 /* Finish up the dynamic sections. */
2081
2082 static boolean
2083 elf_m68k_finish_dynamic_sections (output_bfd, info)
2084 bfd *output_bfd;
2085 struct bfd_link_info *info;
2086 {
2087 bfd *dynobj;
2088 asection *sgot;
2089 asection *sdyn;
2090 int plt_entry0_size, plt_off1, plt_off2;
2091
2092 dynobj = elf_hash_table (info)->dynobj;
2093
2094 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2095 BFD_ASSERT (sgot != NULL);
2096 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2097
2098 if (elf_hash_table (info)->dynamic_sections_created)
2099 {
2100 asection *splt;
2101 Elf32_External_Dyn *dyncon, *dynconend;
2102
2103 splt = bfd_get_section_by_name (dynobj, ".plt");
2104 BFD_ASSERT (splt != NULL && sdyn != NULL);
2105
2106 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2107 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2108 for (; dyncon < dynconend; dyncon++)
2109 {
2110 Elf_Internal_Dyn dyn;
2111 const char *name;
2112 asection *s;
2113
2114 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2115
2116 switch (dyn.d_tag)
2117 {
2118 default:
2119 break;
2120
2121 case DT_PLTGOT:
2122 name = ".got";
2123 goto get_vma;
2124 case DT_JMPREL:
2125 name = ".rela.plt";
2126 get_vma:
2127 s = bfd_get_section_by_name (output_bfd, name);
2128 BFD_ASSERT (s != NULL);
2129 dyn.d_un.d_ptr = s->vma;
2130 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2131 break;
2132
2133 case DT_PLTRELSZ:
2134 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2135 BFD_ASSERT (s != NULL);
2136 if (s->_cooked_size != 0)
2137 dyn.d_un.d_val = s->_cooked_size;
2138 else
2139 dyn.d_un.d_val = s->_raw_size;
2140 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2141 break;
2142
2143 case DT_RELASZ:
2144 /* The procedure linkage table relocs (DT_JMPREL) should
2145 not be included in the overall relocs (DT_RELA).
2146 Therefore, we override the DT_RELASZ entry here to
2147 make it not include the JMPREL relocs. Since the
2148 linker script arranges for .rela.plt to follow all
2149 other relocation sections, we don't have to worry
2150 about changing the DT_RELA entry. */
2151 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2152 if (s != NULL)
2153 {
2154 if (s->_cooked_size != 0)
2155 dyn.d_un.d_val -= s->_cooked_size;
2156 else
2157 dyn.d_un.d_val -= s->_raw_size;
2158 }
2159 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2160 break;
2161 }
2162 }
2163
2164 /* Fill in the first entry in the procedure linkage table. */
2165 if (splt->_raw_size > 0)
2166 {
2167 if (!CPU32_FLAG (output_bfd))
2168 {
2169 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE);
2170 bfd_put_32 (output_bfd,
2171 (sgot->output_section->vma
2172 + sgot->output_offset + 4
2173 - (splt->output_section->vma + 2)),
2174 splt->contents + 4);
2175 bfd_put_32 (output_bfd,
2176 (sgot->output_section->vma
2177 + sgot->output_offset + 8
2178 - (splt->output_section->vma + 10)),
2179 splt->contents + 12);
2180 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2181 = PLT_ENTRY_SIZE;
2182 }
2183 else /* cpu32 */
2184 {
2185 memcpy (splt->contents, elf_cpu32_plt0_entry, PLT_CPU32_ENTRY_SIZE);
2186 bfd_put_32 (output_bfd,
2187 (sgot->output_section->vma
2188 + sgot->output_offset + 4
2189 - (splt->output_section->vma + 2)),
2190 splt->contents + 4);
2191 bfd_put_32 (output_bfd,
2192 (sgot->output_section->vma
2193 + sgot->output_offset + 8
2194 - (splt->output_section->vma + 10)),
2195 splt->contents + 10);
2196 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2197 = PLT_CPU32_ENTRY_SIZE;
2198 }
2199 }
2200 }
2201
2202 /* Fill in the first three entries in the global offset table. */
2203 if (sgot->_raw_size > 0)
2204 {
2205 if (sdyn == NULL)
2206 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2207 else
2208 bfd_put_32 (output_bfd,
2209 sdyn->output_section->vma + sdyn->output_offset,
2210 sgot->contents);
2211 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2212 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2213 }
2214
2215 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2216
2217 if (info->shared)
2218 {
2219 asection *sdynsym;
2220 asection *s;
2221 Elf_Internal_Sym sym;
2222 int c;
2223
2224 /* Set up the section symbols for the output sections. */
2225
2226 sdynsym = bfd_get_section_by_name (dynobj, ".dynsym");
2227 BFD_ASSERT (sdynsym != NULL);
2228
2229 sym.st_size = 0;
2230 sym.st_name = 0;
2231 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
2232 sym.st_other = 0;
2233
2234 c = 0;
2235 for (s = output_bfd->sections; s != NULL; s = s->next)
2236 {
2237 int indx;
2238
2239 if (elf_section_data (s)->dynindx == 0)
2240 continue;
2241
2242 sym.st_value = s->vma;
2243
2244 indx = elf_section_data (s)->this_idx;
2245 BFD_ASSERT (indx > 0);
2246 sym.st_shndx = indx;
2247
2248 bfd_elf32_swap_symbol_out (output_bfd, &sym,
2249 (PTR) (((Elf32_External_Sym *)
2250 sdynsym->contents)
2251 + elf_section_data (s)->dynindx));
2252
2253 ++c;
2254 }
2255
2256 /* Set the sh_info field of the output .dynsym section to the
2257 index of the first global symbol. */
2258 elf_section_data (sdynsym->output_section)->this_hdr.sh_info = c + 1;
2259 }
2260
2261 return true;
2262 }
2263
2264 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
2265 #define TARGET_BIG_NAME "elf32-m68k"
2266 #define ELF_MACHINE_CODE EM_68K
2267 #define ELF_MAXPAGESIZE 0x2000
2268 #define elf_backend_create_dynamic_sections \
2269 _bfd_elf_create_dynamic_sections
2270 #define bfd_elf32_bfd_link_hash_table_create \
2271 elf_m68k_link_hash_table_create
2272 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2273
2274 #define elf_backend_check_relocs elf_m68k_check_relocs
2275 #define elf_backend_adjust_dynamic_symbol \
2276 elf_m68k_adjust_dynamic_symbol
2277 #define elf_backend_size_dynamic_sections \
2278 elf_m68k_size_dynamic_sections
2279 #define elf_backend_relocate_section elf_m68k_relocate_section
2280 #define elf_backend_finish_dynamic_symbol \
2281 elf_m68k_finish_dynamic_symbol
2282 #define elf_backend_finish_dynamic_sections \
2283 elf_m68k_finish_dynamic_sections
2284 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
2285 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
2286 #define bfd_elf32_bfd_copy_private_bfd_data \
2287 elf32_m68k_copy_private_bfd_data
2288 #define bfd_elf32_bfd_merge_private_bfd_data \
2289 elf32_m68k_merge_private_bfd_data
2290 #define bfd_elf32_bfd_set_private_flags \
2291 elf32_m68k_set_private_flags
2292 #define bfd_elf32_bfd_print_private_bfd_data \
2293 elf32_m68k_print_private_bfd_data
2294
2295 #define elf_backend_can_gc_sections 1
2296 #define elf_backend_want_got_plt 1
2297 #define elf_backend_plt_readonly 1
2298 #define elf_backend_want_plt_sym 0
2299 #define elf_backend_got_header_size 12
2300
2301 #include "elf32-target.h"
This page took 0.079037 seconds and 4 git commands to generate.