ΓΏ
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/m68k.h"
26
27 static reloc_howto_type *reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void rtype_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
32 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
33 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
34 PARAMS ((bfd *));
35 static boolean elf_m68k_check_relocs
36 PARAMS ((bfd *, struct bfd_link_info *, asection *,
37 const Elf_Internal_Rela *));
38 static asection *elf_m68k_gc_mark_hook
39 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
40 struct elf_link_hash_entry *, Elf_Internal_Sym *));
41 static boolean elf_m68k_gc_sweep_hook
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static boolean elf_m68k_adjust_dynamic_symbol
45 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
46 static boolean elf_m68k_adjust_dynindx
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_m68k_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_m68k_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_m68k_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_m68k_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
58
59 static reloc_howto_type howto_table[] = {
60 HOWTO(R_68K_NONE, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", false, 0, 0x00000000,false),
61 HOWTO(R_68K_32, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", false, 0, 0xffffffff,false),
62 HOWTO(R_68K_16, 0, 1,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", false, 0, 0x0000ffff,false),
63 HOWTO(R_68K_8, 0, 0, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", false, 0, 0x000000ff,false),
64 HOWTO(R_68K_PC32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", false, 0, 0xffffffff,true),
65 HOWTO(R_68K_PC16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", false, 0, 0x0000ffff,true),
66 HOWTO(R_68K_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", false, 0, 0x000000ff,true),
67 HOWTO(R_68K_GOT32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", false, 0, 0xffffffff,true),
68 HOWTO(R_68K_GOT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", false, 0, 0x0000ffff,true),
69 HOWTO(R_68K_GOT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", false, 0, 0x000000ff,true),
70 HOWTO(R_68K_GOT32O, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", false, 0, 0xffffffff,false),
71 HOWTO(R_68K_GOT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", false, 0, 0x0000ffff,false),
72 HOWTO(R_68K_GOT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", false, 0, 0x000000ff,false),
73 HOWTO(R_68K_PLT32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", false, 0, 0xffffffff,true),
74 HOWTO(R_68K_PLT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", false, 0, 0x0000ffff,true),
75 HOWTO(R_68K_PLT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", false, 0, 0x000000ff,true),
76 HOWTO(R_68K_PLT32O, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", false, 0, 0xffffffff,false),
77 HOWTO(R_68K_PLT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", false, 0, 0x0000ffff,false),
78 HOWTO(R_68K_PLT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", false, 0, 0x000000ff,false),
79 HOWTO(R_68K_COPY, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", false, 0, 0xffffffff,false),
80 HOWTO(R_68K_GLOB_DAT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", false, 0, 0xffffffff,false),
81 HOWTO(R_68K_JMP_SLOT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", false, 0, 0xffffffff,false),
82 HOWTO(R_68K_RELATIVE, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", false, 0, 0xffffffff,false),
83 /* GNU extension to record C++ vtable hierarchy */
84 HOWTO (R_68K_GNU_VTINHERIT, /* type */
85 0, /* rightshift */
86 2, /* size (0 = byte, 1 = short, 2 = long) */
87 0, /* bitsize */
88 false, /* pc_relative */
89 0, /* bitpos */
90 complain_overflow_dont, /* complain_on_overflow */
91 NULL, /* special_function */
92 "R_68K_GNU_VTINHERIT", /* name */
93 false, /* partial_inplace */
94 0, /* src_mask */
95 0, /* dst_mask */
96 false),
97 /* GNU extension to record C++ vtable member usage */
98 HOWTO (R_68K_GNU_VTENTRY, /* type */
99 0, /* rightshift */
100 2, /* size (0 = byte, 1 = short, 2 = long) */
101 0, /* bitsize */
102 false, /* pc_relative */
103 0, /* bitpos */
104 complain_overflow_dont, /* complain_on_overflow */
105 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
106 "R_68K_GNU_VTENTRY", /* name */
107 false, /* partial_inplace */
108 0, /* src_mask */
109 0, /* dst_mask */
110 false),
111 };
112
113 static void
114 rtype_to_howto (abfd, cache_ptr, dst)
115 bfd *abfd;
116 arelent *cache_ptr;
117 Elf_Internal_Rela *dst;
118 {
119 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
120 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
121 }
122
123 #define elf_info_to_howto rtype_to_howto
124
125 static const struct
126 {
127 bfd_reloc_code_real_type bfd_val;
128 int elf_val;
129 } reloc_map[] = {
130 { BFD_RELOC_NONE, R_68K_NONE },
131 { BFD_RELOC_32, R_68K_32 },
132 { BFD_RELOC_16, R_68K_16 },
133 { BFD_RELOC_8, R_68K_8 },
134 { BFD_RELOC_32_PCREL, R_68K_PC32 },
135 { BFD_RELOC_16_PCREL, R_68K_PC16 },
136 { BFD_RELOC_8_PCREL, R_68K_PC8 },
137 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
138 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
139 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
140 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
141 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
142 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
143 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
144 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
145 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
146 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
147 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
148 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
149 { BFD_RELOC_NONE, R_68K_COPY },
150 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
151 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
152 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
153 { BFD_RELOC_CTOR, R_68K_32 },
154 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
155 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
156 };
157
158 static reloc_howto_type *
159 reloc_type_lookup (abfd, code)
160 bfd *abfd;
161 bfd_reloc_code_real_type code;
162 {
163 unsigned int i;
164 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
165 {
166 if (reloc_map[i].bfd_val == code)
167 return &howto_table[reloc_map[i].elf_val];
168 }
169 return 0;
170 }
171
172 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
173 #define ELF_ARCH bfd_arch_m68k
174 /* end code generated by elf.el */
175
176 #define USE_RELA
177
178 \f
179 /* Functions for the m68k ELF linker. */
180
181 /* The name of the dynamic interpreter. This is put in the .interp
182 section. */
183
184 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
185
186 /* The size in bytes of an entry in the procedure linkage table. */
187
188 #define PLT_ENTRY_SIZE 20
189
190 /* The first entry in a procedure linkage table looks like this. See
191 the SVR4 ABI m68k supplement to see how this works. */
192
193 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
194 {
195 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
196 0, 0, 0, 0, /* replaced with offset to .got + 4. */
197 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
198 0, 0, 0, 0, /* replaced with offset to .got + 8. */
199 0, 0, 0, 0 /* pad out to 20 bytes. */
200 };
201
202 /* Subsequent entries in a procedure linkage table look like this. */
203
204 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
205 {
206 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
207 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
208 0x2f, 0x3c, /* move.l #offset,-(%sp) */
209 0, 0, 0, 0, /* replaced with offset into relocation table. */
210 0x60, 0xff, /* bra.l .plt */
211 0, 0, 0, 0 /* replaced with offset to start of .plt. */
212 };
213
214 /* The m68k linker needs to keep track of the number of relocs that it
215 decides to copy in check_relocs for each symbol. This is so that it
216 can discard PC relative relocs if it doesn't need them when linking
217 with -Bsymbolic. We store the information in a field extending the
218 regular ELF linker hash table. */
219
220 /* This structure keeps track of the number of PC relative relocs we have
221 copied for a given symbol. */
222
223 struct elf_m68k_pcrel_relocs_copied
224 {
225 /* Next section. */
226 struct elf_m68k_pcrel_relocs_copied *next;
227 /* A section in dynobj. */
228 asection *section;
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231 };
232
233 /* m68k ELF linker hash entry. */
234
235 struct elf_m68k_link_hash_entry
236 {
237 struct elf_link_hash_entry root;
238
239 /* Number of PC relative relocs copied for this symbol. */
240 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
241 };
242
243 /* m68k ELF linker hash table. */
244
245 struct elf_m68k_link_hash_table
246 {
247 struct elf_link_hash_table root;
248 };
249
250 /* Declare this now that the above structures are defined. */
251
252 static boolean elf_m68k_discard_copies
253 PARAMS ((struct elf_m68k_link_hash_entry *, PTR));
254
255 /* Traverse an m68k ELF linker hash table. */
256
257 #define elf_m68k_link_hash_traverse(table, func, info) \
258 (elf_link_hash_traverse \
259 (&(table)->root, \
260 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
261 (info)))
262
263 /* Get the m68k ELF linker hash table from a link_info structure. */
264
265 #define elf_m68k_hash_table(p) \
266 ((struct elf_m68k_link_hash_table *) (p)->hash)
267
268 /* Create an entry in an m68k ELF linker hash table. */
269
270 static struct bfd_hash_entry *
271 elf_m68k_link_hash_newfunc (entry, table, string)
272 struct bfd_hash_entry *entry;
273 struct bfd_hash_table *table;
274 const char *string;
275 {
276 struct elf_m68k_link_hash_entry *ret =
277 (struct elf_m68k_link_hash_entry *) entry;
278
279 /* Allocate the structure if it has not already been allocated by a
280 subclass. */
281 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
282 ret = ((struct elf_m68k_link_hash_entry *)
283 bfd_hash_allocate (table,
284 sizeof (struct elf_m68k_link_hash_entry)));
285 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
286 return (struct bfd_hash_entry *) ret;
287
288 /* Call the allocation method of the superclass. */
289 ret = ((struct elf_m68k_link_hash_entry *)
290 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
291 table, string));
292 if (ret != (struct elf_m68k_link_hash_entry *) NULL)
293 {
294 ret->pcrel_relocs_copied = NULL;
295 }
296
297 return (struct bfd_hash_entry *) ret;
298 }
299
300 /* Create an m68k ELF linker hash table. */
301
302 static struct bfd_link_hash_table *
303 elf_m68k_link_hash_table_create (abfd)
304 bfd *abfd;
305 {
306 struct elf_m68k_link_hash_table *ret;
307
308 ret = ((struct elf_m68k_link_hash_table *)
309 bfd_alloc (abfd, sizeof (struct elf_m68k_link_hash_table)));
310 if (ret == (struct elf_m68k_link_hash_table *) NULL)
311 return NULL;
312
313 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
314 elf_m68k_link_hash_newfunc))
315 {
316 bfd_release (abfd, ret);
317 return NULL;
318 }
319
320 return &ret->root.root;
321 }
322
323 /* Look through the relocs for a section during the first phase, and
324 allocate space in the global offset table or procedure linkage
325 table. */
326
327 static boolean
328 elf_m68k_check_relocs (abfd, info, sec, relocs)
329 bfd *abfd;
330 struct bfd_link_info *info;
331 asection *sec;
332 const Elf_Internal_Rela *relocs;
333 {
334 bfd *dynobj;
335 Elf_Internal_Shdr *symtab_hdr;
336 struct elf_link_hash_entry **sym_hashes;
337 bfd_signed_vma *local_got_refcounts;
338 const Elf_Internal_Rela *rel;
339 const Elf_Internal_Rela *rel_end;
340 asection *sgot;
341 asection *srelgot;
342 asection *sreloc;
343
344 if (info->relocateable)
345 return true;
346
347 dynobj = elf_hash_table (info)->dynobj;
348 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
349 sym_hashes = elf_sym_hashes (abfd);
350 local_got_refcounts = elf_local_got_refcounts (abfd);
351
352 sgot = NULL;
353 srelgot = NULL;
354 sreloc = NULL;
355
356 rel_end = relocs + sec->reloc_count;
357 for (rel = relocs; rel < rel_end; rel++)
358 {
359 unsigned long r_symndx;
360 struct elf_link_hash_entry *h;
361
362 r_symndx = ELF32_R_SYM (rel->r_info);
363
364 if (r_symndx < symtab_hdr->sh_info)
365 h = NULL;
366 else
367 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
368
369 switch (ELF32_R_TYPE (rel->r_info))
370 {
371 case R_68K_GOT8:
372 case R_68K_GOT16:
373 case R_68K_GOT32:
374 if (h != NULL
375 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
376 break;
377 /* Fall through. */
378 case R_68K_GOT8O:
379 case R_68K_GOT16O:
380 case R_68K_GOT32O:
381 /* This symbol requires a global offset table entry. */
382
383 if (dynobj == NULL)
384 {
385 /* Create the .got section. */
386 elf_hash_table (info)->dynobj = dynobj = abfd;
387 if (!_bfd_elf_create_got_section (dynobj, info))
388 return false;
389 }
390
391 if (sgot == NULL)
392 {
393 sgot = bfd_get_section_by_name (dynobj, ".got");
394 BFD_ASSERT (sgot != NULL);
395 }
396
397 if (srelgot == NULL
398 && (h != NULL || info->shared))
399 {
400 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
401 if (srelgot == NULL)
402 {
403 srelgot = bfd_make_section (dynobj, ".rela.got");
404 if (srelgot == NULL
405 || !bfd_set_section_flags (dynobj, srelgot,
406 (SEC_ALLOC
407 | SEC_LOAD
408 | SEC_HAS_CONTENTS
409 | SEC_IN_MEMORY
410 | SEC_LINKER_CREATED
411 | SEC_READONLY))
412 || !bfd_set_section_alignment (dynobj, srelgot, 2))
413 return false;
414 }
415 }
416
417 if (h != NULL)
418 {
419 if (h->got.refcount == -1)
420 {
421 h->got.refcount = 1;
422
423 /* Make sure this symbol is output as a dynamic symbol. */
424 if (h->dynindx == -1)
425 {
426 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
427 return false;
428 }
429
430 /* Allocate space in the .got section. */
431 sgot->_raw_size += 4;
432 /* Allocate relocation space. */
433 srelgot->_raw_size += sizeof (Elf32_External_Rela);
434 }
435 else
436 h->got.refcount++;
437 }
438 else
439 {
440 /* This is a global offset table entry for a local symbol. */
441 if (local_got_refcounts == NULL)
442 {
443 size_t size;
444
445 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
446 local_got_refcounts = ((bfd_signed_vma *)
447 bfd_alloc (abfd, size));
448 if (local_got_refcounts == NULL)
449 return false;
450 elf_local_got_refcounts (abfd) = local_got_refcounts;
451 memset (local_got_refcounts, -1, size);
452 }
453 if (local_got_refcounts[r_symndx] == -1)
454 {
455 local_got_refcounts[r_symndx] = 1;
456
457 sgot->_raw_size += 4;
458 if (info->shared)
459 {
460 /* If we are generating a shared object, we need to
461 output a R_68K_RELATIVE reloc so that the dynamic
462 linker can adjust this GOT entry. */
463 srelgot->_raw_size += sizeof (Elf32_External_Rela);
464 }
465 }
466 else
467 local_got_refcounts[r_symndx]++;
468 }
469 break;
470
471 case R_68K_PLT8:
472 case R_68K_PLT16:
473 case R_68K_PLT32:
474 /* This symbol requires a procedure linkage table entry. We
475 actually build the entry in adjust_dynamic_symbol,
476 because this might be a case of linking PIC code which is
477 never referenced by a dynamic object, in which case we
478 don't need to generate a procedure linkage table entry
479 after all. */
480
481 /* If this is a local symbol, we resolve it directly without
482 creating a procedure linkage table entry. */
483 if (h == NULL)
484 continue;
485
486 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
487 if (h->plt.refcount == -1)
488 h->plt.refcount = 1;
489 else
490 h->plt.refcount++;
491 break;
492
493 case R_68K_PLT8O:
494 case R_68K_PLT16O:
495 case R_68K_PLT32O:
496 /* This symbol requires a procedure linkage table entry. */
497
498 if (h == NULL)
499 {
500 /* It does not make sense to have this relocation for a
501 local symbol. FIXME: does it? How to handle it if
502 it does make sense? */
503 bfd_set_error (bfd_error_bad_value);
504 return false;
505 }
506
507 /* Make sure this symbol is output as a dynamic symbol. */
508 if (h->dynindx == -1)
509 {
510 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
511 return false;
512 }
513
514 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
515 if (h->plt.refcount == -1)
516 h->plt.refcount = 1;
517 else
518 h->plt.refcount++;
519 break;
520
521 case R_68K_PC8:
522 case R_68K_PC16:
523 case R_68K_PC32:
524 /* If we are creating a shared library and this is not a local
525 symbol, we need to copy the reloc into the shared library.
526 However when linking with -Bsymbolic and this is a global
527 symbol which is defined in an object we are including in the
528 link (i.e., DEF_REGULAR is set), then we can resolve the
529 reloc directly. At this point we have not seen all the input
530 files, so it is possible that DEF_REGULAR is not set now but
531 will be set later (it is never cleared). We account for that
532 possibility below by storing information in the
533 pcrel_relocs_copied field of the hash table entry. */
534 if (!(info->shared
535 && (sec->flags & SEC_ALLOC) != 0
536 && h != NULL
537 && (!info->symbolic
538 || (h->elf_link_hash_flags
539 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
540 {
541 if (h != NULL)
542 {
543 /* Make sure a plt entry is created for this symbol if
544 it turns out to be a function defined by a dynamic
545 object. */
546 if (h->plt.refcount == -1)
547 h->plt.refcount = 1;
548 else
549 h->plt.refcount++;
550 }
551 break;
552 }
553 /* Fall through. */
554 case R_68K_8:
555 case R_68K_16:
556 case R_68K_32:
557 if (h != NULL)
558 {
559 /* Make sure a plt entry is created for this symbol if it
560 turns out to be a function defined by a dynamic object. */
561 if (h->plt.refcount == -1)
562 h->plt.refcount = 1;
563 else
564 h->plt.refcount++;
565 }
566
567 /* If we are creating a shared library, we need to copy the
568 reloc into the shared library. */
569 if (info->shared
570 && (sec->flags & SEC_ALLOC) != 0)
571 {
572 /* When creating a shared object, we must copy these
573 reloc types into the output file. We create a reloc
574 section in dynobj and make room for this reloc. */
575 if (sreloc == NULL)
576 {
577 const char *name;
578
579 name = (bfd_elf_string_from_elf_section
580 (abfd,
581 elf_elfheader (abfd)->e_shstrndx,
582 elf_section_data (sec)->rel_hdr.sh_name));
583 if (name == NULL)
584 return false;
585
586 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
587 && strcmp (bfd_get_section_name (abfd, sec),
588 name + 5) == 0);
589
590 sreloc = bfd_get_section_by_name (dynobj, name);
591 if (sreloc == NULL)
592 {
593 sreloc = bfd_make_section (dynobj, name);
594 if (sreloc == NULL
595 || !bfd_set_section_flags (dynobj, sreloc,
596 (SEC_ALLOC
597 | SEC_LOAD
598 | SEC_HAS_CONTENTS
599 | SEC_IN_MEMORY
600 | SEC_LINKER_CREATED
601 | SEC_READONLY))
602 || !bfd_set_section_alignment (dynobj, sreloc, 2))
603 return false;
604 }
605 }
606
607 sreloc->_raw_size += sizeof (Elf32_External_Rela);
608
609 /* If we are linking with -Bsymbolic, we count the number of
610 PC relative relocations we have entered for this symbol,
611 so that we can discard them again if the symbol is later
612 defined by a regular object. Note that this function is
613 only called if we are using an m68kelf linker hash table,
614 which means that h is really a pointer to an
615 elf_m68k_link_hash_entry. */
616 if ((ELF32_R_TYPE (rel->r_info) == R_68K_PC8
617 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
618 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
619 && info->symbolic)
620 {
621 struct elf_m68k_link_hash_entry *eh;
622 struct elf_m68k_pcrel_relocs_copied *p;
623
624 eh = (struct elf_m68k_link_hash_entry *) h;
625
626 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
627 if (p->section == sreloc)
628 break;
629
630 if (p == NULL)
631 {
632 p = ((struct elf_m68k_pcrel_relocs_copied *)
633 bfd_alloc (dynobj, sizeof *p));
634 if (p == NULL)
635 return false;
636 p->next = eh->pcrel_relocs_copied;
637 eh->pcrel_relocs_copied = p;
638 p->section = sreloc;
639 p->count = 0;
640 }
641
642 ++p->count;
643 }
644 }
645
646 break;
647
648 /* This relocation describes the C++ object vtable hierarchy.
649 Reconstruct it for later use during GC. */
650 case R_68K_GNU_VTINHERIT:
651 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
652 return false;
653 break;
654
655 /* This relocation describes which C++ vtable entries are actually
656 used. Record for later use during GC. */
657 case R_68K_GNU_VTENTRY:
658 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
659 return false;
660 break;
661
662 default:
663 break;
664 }
665 }
666
667 return true;
668 }
669
670 /* Return the section that should be marked against GC for a given
671 relocation. */
672
673 static asection *
674 elf_m68k_gc_mark_hook (abfd, info, rel, h, sym)
675 bfd *abfd;
676 struct bfd_link_info *info;
677 Elf_Internal_Rela *rel;
678 struct elf_link_hash_entry *h;
679 Elf_Internal_Sym *sym;
680 {
681 if (h != NULL)
682 {
683 switch (ELF32_R_TYPE (rel->r_info))
684 {
685 case R_68K_GNU_VTINHERIT:
686 case R_68K_GNU_VTENTRY:
687 break;
688
689 default:
690 switch (h->root.type)
691 {
692 default:
693 break;
694
695 case bfd_link_hash_defined:
696 case bfd_link_hash_defweak:
697 return h->root.u.def.section;
698
699 case bfd_link_hash_common:
700 return h->root.u.c.p->section;
701 }
702 }
703 }
704 else
705 {
706 if (!(elf_bad_symtab (abfd)
707 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
708 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
709 && sym->st_shndx != SHN_COMMON))
710 {
711 return bfd_section_from_elf_index (abfd, sym->st_shndx);
712 }
713 }
714
715 return NULL;
716 }
717
718 /* Update the got entry reference counts for the section being removed. */
719
720 static boolean
721 elf_m68k_gc_sweep_hook (abfd, info, sec, relocs)
722 bfd *abfd;
723 struct bfd_link_info *info;
724 asection *sec;
725 const Elf_Internal_Rela *relocs;
726 {
727 Elf_Internal_Shdr *symtab_hdr;
728 struct elf_link_hash_entry **sym_hashes;
729 bfd_signed_vma *local_got_refcounts;
730 const Elf_Internal_Rela *rel, *relend;
731 unsigned long r_symndx;
732 struct elf_link_hash_entry *h;
733 bfd *dynobj;
734 asection *sgot;
735 asection *srelgot;
736
737 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
738 sym_hashes = elf_sym_hashes (abfd);
739 local_got_refcounts = elf_local_got_refcounts (abfd);
740
741 dynobj = elf_hash_table (info)->dynobj;
742 if (dynobj)
743 {
744 sgot = bfd_get_section_by_name (dynobj, ".got");
745 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
746 }
747
748 relend = relocs + sec->reloc_count;
749 for (rel = relocs; rel < relend; rel++)
750 {
751 switch (ELF32_R_TYPE (rel->r_info))
752 {
753 case R_68K_GOT8:
754 case R_68K_GOT16:
755 case R_68K_GOT32:
756 case R_68K_GOT8O:
757 case R_68K_GOT16O:
758 case R_68K_GOT32O:
759 r_symndx = ELF32_R_SYM (rel->r_info);
760 if (r_symndx >= symtab_hdr->sh_info)
761 {
762 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
763 if (h->got.refcount > 0)
764 {
765 --h->got.refcount;
766 if (h->got.refcount == 0)
767 {
768 /* We don't need the .got entry any more. */
769 sgot->_raw_size -= 4;
770 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
771 }
772 }
773 }
774 else
775 {
776 if (local_got_refcounts[r_symndx] > 0)
777 {
778 --local_got_refcounts[r_symndx];
779 if (local_got_refcounts[r_symndx] == 0)
780 {
781 /* We don't need the .got entry any more. */
782 sgot->_raw_size -= 4;
783 if (info->shared)
784 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
785 }
786 }
787 }
788 break;
789
790 case R_68K_PLT8:
791 case R_68K_PLT16:
792 case R_68K_PLT32:
793 case R_68K_PLT8O:
794 case R_68K_PLT16O:
795 case R_68K_PLT32O:
796 case R_68K_PC8:
797 case R_68K_PC16:
798 case R_68K_PC32:
799 case R_68K_8:
800 case R_68K_16:
801 case R_68K_32:
802 r_symndx = ELF32_R_SYM (rel->r_info);
803 if (r_symndx >= symtab_hdr->sh_info)
804 {
805 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
806 if (h->plt.refcount > 0)
807 --h->plt.refcount;
808 }
809 break;
810
811 default:
812 break;
813 }
814 }
815
816 return true;
817 }
818
819
820 /* Adjust a symbol defined by a dynamic object and referenced by a
821 regular object. The current definition is in some section of the
822 dynamic object, but we're not including those sections. We have to
823 change the definition to something the rest of the link can
824 understand. */
825
826 static boolean
827 elf_m68k_adjust_dynamic_symbol (info, h)
828 struct bfd_link_info *info;
829 struct elf_link_hash_entry *h;
830 {
831 bfd *dynobj;
832 asection *s;
833 unsigned int power_of_two;
834
835 dynobj = elf_hash_table (info)->dynobj;
836
837 /* Make sure we know what is going on here. */
838 BFD_ASSERT (dynobj != NULL
839 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
840 || h->weakdef != NULL
841 || ((h->elf_link_hash_flags
842 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
843 && (h->elf_link_hash_flags
844 & ELF_LINK_HASH_REF_REGULAR) != 0
845 && (h->elf_link_hash_flags
846 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
847
848 /* If this is a function, put it in the procedure linkage table. We
849 will fill in the contents of the procedure linkage table later,
850 when we know the address of the .got section. */
851 if (h->type == STT_FUNC
852 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
853 {
854 if (! info->shared
855 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
856 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
857 /* We must always create the plt entry if it was referenced
858 by a PLTxxO relocation. In this case we already recorded
859 it as a dynamic symbol. */
860 && h->dynindx == -1)
861 {
862 /* This case can occur if we saw a PLTxx reloc in an input
863 file, but the symbol was never referred to by a dynamic
864 object. In such a case, we don't actually need to build
865 a procedure linkage table, and we can just do a PCxx
866 reloc instead. */
867 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
868 h->plt.offset = (bfd_vma) -1;
869 return true;
870 }
871
872 /* GC may have rendered this entry unused. */
873 if (h->plt.refcount <= 0)
874 {
875 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
876 h->plt.offset = (bfd_vma) -1;
877 return true;
878 }
879
880 /* Make sure this symbol is output as a dynamic symbol. */
881 if (h->dynindx == -1)
882 {
883 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
884 return false;
885 }
886
887 s = bfd_get_section_by_name (dynobj, ".plt");
888 BFD_ASSERT (s != NULL);
889
890 /* If this is the first .plt entry, make room for the special
891 first entry. */
892 if (s->_raw_size == 0)
893 s->_raw_size += PLT_ENTRY_SIZE;
894
895 /* If this symbol is not defined in a regular file, and we are
896 not generating a shared library, then set the symbol to this
897 location in the .plt. This is required to make function
898 pointers compare as equal between the normal executable and
899 the shared library. */
900 if (!info->shared
901 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
902 {
903 h->root.u.def.section = s;
904 h->root.u.def.value = s->_raw_size;
905 }
906
907 h->plt.offset = s->_raw_size;
908
909 /* Make room for this entry. */
910 s->_raw_size += PLT_ENTRY_SIZE;
911
912 /* We also need to make an entry in the .got.plt section, which
913 will be placed in the .got section by the linker script. */
914
915 s = bfd_get_section_by_name (dynobj, ".got.plt");
916 BFD_ASSERT (s != NULL);
917 s->_raw_size += 4;
918
919 /* We also need to make an entry in the .rela.plt section. */
920
921 s = bfd_get_section_by_name (dynobj, ".rela.plt");
922 BFD_ASSERT (s != NULL);
923 s->_raw_size += sizeof (Elf32_External_Rela);
924
925 return true;
926 }
927
928 /* Reinitialize the plt offset now that it is not used as a reference
929 count any more. */
930 h->plt.offset = (bfd_vma) -1;
931
932 /* If this is a weak symbol, and there is a real definition, the
933 processor independent code will have arranged for us to see the
934 real definition first, and we can just use the same value. */
935 if (h->weakdef != NULL)
936 {
937 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
938 || h->weakdef->root.type == bfd_link_hash_defweak);
939 h->root.u.def.section = h->weakdef->root.u.def.section;
940 h->root.u.def.value = h->weakdef->root.u.def.value;
941 return true;
942 }
943
944 /* This is a reference to a symbol defined by a dynamic object which
945 is not a function. */
946
947 /* If we are creating a shared library, we must presume that the
948 only references to the symbol are via the global offset table.
949 For such cases we need not do anything here; the relocations will
950 be handled correctly by relocate_section. */
951 if (info->shared)
952 return true;
953
954 /* We must allocate the symbol in our .dynbss section, which will
955 become part of the .bss section of the executable. There will be
956 an entry for this symbol in the .dynsym section. The dynamic
957 object will contain position independent code, so all references
958 from the dynamic object to this symbol will go through the global
959 offset table. The dynamic linker will use the .dynsym entry to
960 determine the address it must put in the global offset table, so
961 both the dynamic object and the regular object will refer to the
962 same memory location for the variable. */
963
964 s = bfd_get_section_by_name (dynobj, ".dynbss");
965 BFD_ASSERT (s != NULL);
966
967 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
968 copy the initial value out of the dynamic object and into the
969 runtime process image. We need to remember the offset into the
970 .rela.bss section we are going to use. */
971 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
972 {
973 asection *srel;
974
975 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
976 BFD_ASSERT (srel != NULL);
977 srel->_raw_size += sizeof (Elf32_External_Rela);
978 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
979 }
980
981 /* We need to figure out the alignment required for this symbol. I
982 have no idea how ELF linkers handle this. */
983 power_of_two = bfd_log2 (h->size);
984 if (power_of_two > 3)
985 power_of_two = 3;
986
987 /* Apply the required alignment. */
988 s->_raw_size = BFD_ALIGN (s->_raw_size,
989 (bfd_size_type) (1 << power_of_two));
990 if (power_of_two > bfd_get_section_alignment (dynobj, s))
991 {
992 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
993 return false;
994 }
995
996 /* Define the symbol as being at this point in the section. */
997 h->root.u.def.section = s;
998 h->root.u.def.value = s->_raw_size;
999
1000 /* Increment the section size to make room for the symbol. */
1001 s->_raw_size += h->size;
1002
1003 return true;
1004 }
1005
1006 /* Set the sizes of the dynamic sections. */
1007
1008 static boolean
1009 elf_m68k_size_dynamic_sections (output_bfd, info)
1010 bfd *output_bfd;
1011 struct bfd_link_info *info;
1012 {
1013 bfd *dynobj;
1014 asection *s;
1015 boolean plt;
1016 boolean relocs;
1017 boolean reltext;
1018
1019 dynobj = elf_hash_table (info)->dynobj;
1020 BFD_ASSERT (dynobj != NULL);
1021
1022 if (elf_hash_table (info)->dynamic_sections_created)
1023 {
1024 /* Set the contents of the .interp section to the interpreter. */
1025 if (!info->shared)
1026 {
1027 s = bfd_get_section_by_name (dynobj, ".interp");
1028 BFD_ASSERT (s != NULL);
1029 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1030 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1031 }
1032 }
1033 else
1034 {
1035 /* We may have created entries in the .rela.got section.
1036 However, if we are not creating the dynamic sections, we will
1037 not actually use these entries. Reset the size of .rela.got,
1038 which will cause it to get stripped from the output file
1039 below. */
1040 s = bfd_get_section_by_name (dynobj, ".rela.got");
1041 if (s != NULL)
1042 s->_raw_size = 0;
1043 }
1044
1045 /* If this is a -Bsymbolic shared link, then we need to discard all PC
1046 relative relocs against symbols defined in a regular object. We
1047 allocated space for them in the check_relocs routine, but we will not
1048 fill them in in the relocate_section routine. */
1049 if (info->shared && info->symbolic)
1050 elf_m68k_link_hash_traverse (elf_m68k_hash_table (info),
1051 elf_m68k_discard_copies,
1052 (PTR) NULL);
1053
1054 /* The check_relocs and adjust_dynamic_symbol entry points have
1055 determined the sizes of the various dynamic sections. Allocate
1056 memory for them. */
1057 plt = false;
1058 relocs = false;
1059 reltext = false;
1060 for (s = dynobj->sections; s != NULL; s = s->next)
1061 {
1062 const char *name;
1063 boolean strip;
1064
1065 if ((s->flags & SEC_LINKER_CREATED) == 0)
1066 continue;
1067
1068 /* It's OK to base decisions on the section name, because none
1069 of the dynobj section names depend upon the input files. */
1070 name = bfd_get_section_name (dynobj, s);
1071
1072 strip = false;
1073
1074 if (strcmp (name, ".plt") == 0)
1075 {
1076 if (s->_raw_size == 0)
1077 {
1078 /* Strip this section if we don't need it; see the
1079 comment below. */
1080 strip = true;
1081 }
1082 else
1083 {
1084 /* Remember whether there is a PLT. */
1085 plt = true;
1086 }
1087 }
1088 else if (strncmp (name, ".rela", 5) == 0)
1089 {
1090 if (s->_raw_size == 0)
1091 {
1092 /* If we don't need this section, strip it from the
1093 output file. This is mostly to handle .rela.bss and
1094 .rela.plt. We must create both sections in
1095 create_dynamic_sections, because they must be created
1096 before the linker maps input sections to output
1097 sections. The linker does that before
1098 adjust_dynamic_symbol is called, and it is that
1099 function which decides whether anything needs to go
1100 into these sections. */
1101 strip = true;
1102 }
1103 else
1104 {
1105 asection *target;
1106
1107 /* Remember whether there are any reloc sections other
1108 than .rela.plt. */
1109 if (strcmp (name, ".rela.plt") != 0)
1110 {
1111 const char *outname;
1112
1113 relocs = true;
1114
1115 /* If this relocation section applies to a read only
1116 section, then we probably need a DT_TEXTREL
1117 entry. .rela.plt is actually associated with
1118 .got.plt, which is never readonly. */
1119 outname = bfd_get_section_name (output_bfd,
1120 s->output_section);
1121 target = bfd_get_section_by_name (output_bfd, outname + 5);
1122 if (target != NULL
1123 && (target->flags & SEC_READONLY) != 0
1124 && (target->flags & SEC_ALLOC) != 0)
1125 reltext = true;
1126 }
1127
1128 /* We use the reloc_count field as a counter if we need
1129 to copy relocs into the output file. */
1130 s->reloc_count = 0;
1131 }
1132 }
1133 else if (strncmp (name, ".got", 4) != 0)
1134 {
1135 /* It's not one of our sections, so don't allocate space. */
1136 continue;
1137 }
1138
1139 if (strip)
1140 {
1141 _bfd_strip_section_from_output (s);
1142 continue;
1143 }
1144
1145 /* Allocate memory for the section contents. */
1146 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1147 if (s->contents == NULL && s->_raw_size != 0)
1148 return false;
1149 }
1150
1151 if (elf_hash_table (info)->dynamic_sections_created)
1152 {
1153 /* Add some entries to the .dynamic section. We fill in the
1154 values later, in elf_m68k_finish_dynamic_sections, but we
1155 must add the entries now so that we get the correct size for
1156 the .dynamic section. The DT_DEBUG entry is filled in by the
1157 dynamic linker and used by the debugger. */
1158 if (!info->shared)
1159 {
1160 if (!bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1161 return false;
1162 }
1163
1164 if (plt)
1165 {
1166 if (!bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1167 || !bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1168 || !bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1169 || !bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1170 return false;
1171 }
1172
1173 if (relocs)
1174 {
1175 if (!bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
1176 || !bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
1177 || !bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
1178 sizeof (Elf32_External_Rela)))
1179 return false;
1180 }
1181
1182 if (reltext)
1183 {
1184 if (!bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1185 return false;
1186 }
1187 }
1188
1189 /* If we are generating a shared library, we generate a section
1190 symbol for each output section for which we might need to copy
1191 relocs. These are local symbols, which means that they must come
1192 first in the dynamic symbol table. That means we must increment
1193 the dynamic symbol index of every other dynamic symbol. */
1194 if (info->shared)
1195 {
1196 int c;
1197
1198 c = 0;
1199 for (s = output_bfd->sections; s != NULL; s = s->next)
1200 {
1201 if ((s->flags & SEC_LINKER_CREATED) != 0
1202 || (s->flags & SEC_ALLOC) == 0)
1203 continue;
1204
1205 elf_section_data (s)->dynindx = c + 1;
1206
1207 /* These symbols will have no names, so we don't need to
1208 fiddle with dynstr_index. */
1209
1210 ++c;
1211 }
1212
1213 elf_link_hash_traverse (elf_hash_table (info),
1214 elf_m68k_adjust_dynindx,
1215 (PTR) &c);
1216 elf_hash_table (info)->dynsymcount += c;
1217 }
1218
1219 return true;
1220 }
1221
1222 /* Increment the index of a dynamic symbol by a given amount. Called
1223 via elf_link_hash_traverse. */
1224
1225 static boolean
1226 elf_m68k_adjust_dynindx (h, cparg)
1227 struct elf_link_hash_entry *h;
1228 PTR cparg;
1229 {
1230 int *cp = (int *) cparg;
1231
1232 if (h->dynindx != -1)
1233 h->dynindx += *cp;
1234 return true;
1235 }
1236
1237 /* This function is called via elf_m68k_link_hash_traverse if we are
1238 creating a shared object with -Bsymbolic. It discards the space
1239 allocated to copy PC relative relocs against symbols which are defined
1240 in regular objects. We allocated space for them in the check_relocs
1241 routine, but we won't fill them in in the relocate_section routine. */
1242
1243 /*ARGSUSED*/
1244 static boolean
1245 elf_m68k_discard_copies (h, ignore)
1246 struct elf_m68k_link_hash_entry *h;
1247 PTR ignore;
1248 {
1249 struct elf_m68k_pcrel_relocs_copied *s;
1250
1251 /* We only discard relocs for symbols defined in a regular object. */
1252 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1253 return true;
1254
1255 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1256 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1257
1258 return true;
1259 }
1260
1261 /* Relocate an M68K ELF section. */
1262
1263 static boolean
1264 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
1265 contents, relocs, local_syms, local_sections)
1266 bfd *output_bfd;
1267 struct bfd_link_info *info;
1268 bfd *input_bfd;
1269 asection *input_section;
1270 bfd_byte *contents;
1271 Elf_Internal_Rela *relocs;
1272 Elf_Internal_Sym *local_syms;
1273 asection **local_sections;
1274 {
1275 bfd *dynobj;
1276 Elf_Internal_Shdr *symtab_hdr;
1277 struct elf_link_hash_entry **sym_hashes;
1278 bfd_vma *local_got_offsets;
1279 asection *sgot;
1280 asection *splt;
1281 asection *sreloc;
1282 Elf_Internal_Rela *rel;
1283 Elf_Internal_Rela *relend;
1284
1285 dynobj = elf_hash_table (info)->dynobj;
1286 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1287 sym_hashes = elf_sym_hashes (input_bfd);
1288 local_got_offsets = elf_local_got_offsets (input_bfd);
1289
1290 sgot = NULL;
1291 splt = NULL;
1292 sreloc = NULL;
1293
1294 rel = relocs;
1295 relend = relocs + input_section->reloc_count;
1296 for (; rel < relend; rel++)
1297 {
1298 int r_type;
1299 reloc_howto_type *howto;
1300 unsigned long r_symndx;
1301 struct elf_link_hash_entry *h;
1302 Elf_Internal_Sym *sym;
1303 asection *sec;
1304 bfd_vma relocation;
1305 bfd_reloc_status_type r;
1306
1307 r_type = ELF32_R_TYPE (rel->r_info);
1308 if (r_type < 0 || r_type >= (int) R_68K_max)
1309 {
1310 bfd_set_error (bfd_error_bad_value);
1311 return false;
1312 }
1313 howto = howto_table + r_type;
1314
1315 r_symndx = ELF32_R_SYM (rel->r_info);
1316
1317 if (info->relocateable)
1318 {
1319 /* This is a relocateable link. We don't have to change
1320 anything, unless the reloc is against a section symbol,
1321 in which case we have to adjust according to where the
1322 section symbol winds up in the output section. */
1323 if (r_symndx < symtab_hdr->sh_info)
1324 {
1325 sym = local_syms + r_symndx;
1326 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1327 {
1328 sec = local_sections[r_symndx];
1329 rel->r_addend += sec->output_offset + sym->st_value;
1330 }
1331 }
1332
1333 continue;
1334 }
1335
1336 /* This is a final link. */
1337 h = NULL;
1338 sym = NULL;
1339 sec = NULL;
1340 if (r_symndx < symtab_hdr->sh_info)
1341 {
1342 sym = local_syms + r_symndx;
1343 sec = local_sections[r_symndx];
1344 relocation = (sec->output_section->vma
1345 + sec->output_offset
1346 + sym->st_value);
1347 }
1348 else
1349 {
1350 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1351 while (h->root.type == bfd_link_hash_indirect
1352 || h->root.type == bfd_link_hash_warning)
1353 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1354 if (h->root.type == bfd_link_hash_defined
1355 || h->root.type == bfd_link_hash_defweak)
1356 {
1357 sec = h->root.u.def.section;
1358 if (((r_type == R_68K_PLT8
1359 || r_type == R_68K_PLT16
1360 || r_type == R_68K_PLT32
1361 || r_type == R_68K_PLT8O
1362 || r_type == R_68K_PLT16O
1363 || r_type == R_68K_PLT32O)
1364 && h->plt.offset != (bfd_vma) -1
1365 && elf_hash_table (info)->dynamic_sections_created)
1366 || ((r_type == R_68K_GOT8O
1367 || r_type == R_68K_GOT16O
1368 || r_type == R_68K_GOT32O
1369 || ((r_type == R_68K_GOT8
1370 || r_type == R_68K_GOT16
1371 || r_type == R_68K_GOT32)
1372 && strcmp (h->root.root.string,
1373 "_GLOBAL_OFFSET_TABLE_") != 0))
1374 && elf_hash_table (info)->dynamic_sections_created
1375 && (! info->shared
1376 || (! info->symbolic && h->dynindx != -1)
1377 || (h->elf_link_hash_flags
1378 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1379 || (info->shared
1380 && ((! info->symbolic && h->dynindx != -1)
1381 || (h->elf_link_hash_flags
1382 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1383 && (input_section->flags & SEC_ALLOC) != 0
1384 && (r_type == R_68K_8
1385 || r_type == R_68K_16
1386 || r_type == R_68K_32
1387 || r_type == R_68K_PC8
1388 || r_type == R_68K_PC16
1389 || r_type == R_68K_PC32)))
1390 {
1391 /* In these cases, we don't need the relocation
1392 value. We check specially because in some
1393 obscure cases sec->output_section will be NULL. */
1394 relocation = 0;
1395 }
1396 else
1397 relocation = (h->root.u.def.value
1398 + sec->output_section->vma
1399 + sec->output_offset);
1400 }
1401 else if (h->root.type == bfd_link_hash_undefweak)
1402 relocation = 0;
1403 else if (info->shared && !info->symbolic && !info->no_undefined)
1404 relocation = 0;
1405 else
1406 {
1407 if (!(info->callbacks->undefined_symbol
1408 (info, h->root.root.string, input_bfd,
1409 input_section, rel->r_offset)))
1410 return false;
1411 relocation = 0;
1412 }
1413 }
1414
1415 switch (r_type)
1416 {
1417 case R_68K_GOT8:
1418 case R_68K_GOT16:
1419 case R_68K_GOT32:
1420 /* Relocation is to the address of the entry for this symbol
1421 in the global offset table. */
1422 if (h != NULL
1423 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1424 break;
1425 /* Fall through. */
1426 case R_68K_GOT8O:
1427 case R_68K_GOT16O:
1428 case R_68K_GOT32O:
1429 /* Relocation is the offset of the entry for this symbol in
1430 the global offset table. */
1431
1432 {
1433 bfd_vma off;
1434
1435 if (sgot == NULL)
1436 {
1437 sgot = bfd_get_section_by_name (dynobj, ".got");
1438 BFD_ASSERT (sgot != NULL);
1439 }
1440
1441 if (h != NULL)
1442 {
1443 off = h->got.offset;
1444 BFD_ASSERT (off != (bfd_vma) -1);
1445
1446 if (!elf_hash_table (info)->dynamic_sections_created
1447 || (info->shared
1448 && (info->symbolic || h->dynindx == -1)
1449 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1450 {
1451 /* This is actually a static link, or it is a
1452 -Bsymbolic link and the symbol is defined
1453 locally, or the symbol was forced to be local
1454 because of a version file.. We must initialize
1455 this entry in the global offset table. Since
1456 the offset must always be a multiple of 4, we
1457 use the least significant bit to record whether
1458 we have initialized it already.
1459
1460 When doing a dynamic link, we create a .rela.got
1461 relocation entry to initialize the value. This
1462 is done in the finish_dynamic_symbol routine. */
1463 if ((off & 1) != 0)
1464 off &= ~1;
1465 else
1466 {
1467 bfd_put_32 (output_bfd, relocation,
1468 sgot->contents + off);
1469 h->got.offset |= 1;
1470 }
1471 }
1472 }
1473 else
1474 {
1475 BFD_ASSERT (local_got_offsets != NULL
1476 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1477
1478 off = local_got_offsets[r_symndx];
1479
1480 /* The offset must always be a multiple of 4. We use
1481 the least significant bit to record whether we have
1482 already generated the necessary reloc. */
1483 if ((off & 1) != 0)
1484 off &= ~1;
1485 else
1486 {
1487 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1488
1489 if (info->shared)
1490 {
1491 asection *srelgot;
1492 Elf_Internal_Rela outrel;
1493
1494 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1495 BFD_ASSERT (srelgot != NULL);
1496
1497 outrel.r_offset = (sgot->output_section->vma
1498 + sgot->output_offset
1499 + off);
1500 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1501 outrel.r_addend = relocation;
1502 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1503 (((Elf32_External_Rela *)
1504 srelgot->contents)
1505 + srelgot->reloc_count));
1506 ++srelgot->reloc_count;
1507 }
1508
1509 local_got_offsets[r_symndx] |= 1;
1510 }
1511 }
1512
1513 relocation = sgot->output_offset + off;
1514 if (r_type == R_68K_GOT8O
1515 || r_type == R_68K_GOT16O
1516 || r_type == R_68K_GOT32O)
1517 {
1518 /* This relocation does not use the addend. */
1519 rel->r_addend = 0;
1520 }
1521 else
1522 relocation += sgot->output_section->vma;
1523 }
1524 break;
1525
1526 case R_68K_PLT8:
1527 case R_68K_PLT16:
1528 case R_68K_PLT32:
1529 /* Relocation is to the entry for this symbol in the
1530 procedure linkage table. */
1531
1532 /* Resolve a PLTxx reloc against a local symbol directly,
1533 without using the procedure linkage table. */
1534 if (h == NULL)
1535 break;
1536
1537 if (h->plt.offset == (bfd_vma) -1
1538 || !elf_hash_table (info)->dynamic_sections_created)
1539 {
1540 /* We didn't make a PLT entry for this symbol. This
1541 happens when statically linking PIC code, or when
1542 using -Bsymbolic. */
1543 break;
1544 }
1545
1546 if (splt == NULL)
1547 {
1548 splt = bfd_get_section_by_name (dynobj, ".plt");
1549 BFD_ASSERT (splt != NULL);
1550 }
1551
1552 relocation = (splt->output_section->vma
1553 + splt->output_offset
1554 + h->plt.offset);
1555 break;
1556
1557 case R_68K_PLT8O:
1558 case R_68K_PLT16O:
1559 case R_68K_PLT32O:
1560 /* Relocation is the offset of the entry for this symbol in
1561 the procedure linkage table. */
1562 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
1563
1564 if (splt == NULL)
1565 {
1566 splt = bfd_get_section_by_name (dynobj, ".plt");
1567 BFD_ASSERT (splt != NULL);
1568 }
1569
1570 relocation = h->plt.offset;
1571
1572 /* This relocation does not use the addend. */
1573 rel->r_addend = 0;
1574
1575 break;
1576
1577 case R_68K_PC8:
1578 case R_68K_PC16:
1579 case R_68K_PC32:
1580 if (h == NULL)
1581 break;
1582 /* Fall through. */
1583 case R_68K_8:
1584 case R_68K_16:
1585 case R_68K_32:
1586 if (info->shared
1587 && (input_section->flags & SEC_ALLOC) != 0
1588 && ((r_type != R_68K_PC8
1589 && r_type != R_68K_PC16
1590 && r_type != R_68K_PC32)
1591 || (!info->symbolic
1592 || (h->elf_link_hash_flags
1593 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1594 {
1595 Elf_Internal_Rela outrel;
1596 boolean skip, relocate;
1597
1598 /* When generating a shared object, these relocations
1599 are copied into the output file to be resolved at run
1600 time. */
1601
1602 if (sreloc == NULL)
1603 {
1604 const char *name;
1605
1606 name = (bfd_elf_string_from_elf_section
1607 (input_bfd,
1608 elf_elfheader (input_bfd)->e_shstrndx,
1609 elf_section_data (input_section)->rel_hdr.sh_name));
1610 if (name == NULL)
1611 return false;
1612
1613 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1614 && strcmp (bfd_get_section_name (input_bfd,
1615 input_section),
1616 name + 5) == 0);
1617
1618 sreloc = bfd_get_section_by_name (dynobj, name);
1619 BFD_ASSERT (sreloc != NULL);
1620 }
1621
1622 skip = false;
1623
1624 if (elf_section_data (input_section)->stab_info == NULL)
1625 outrel.r_offset = rel->r_offset;
1626 else
1627 {
1628 bfd_vma off;
1629
1630 off = (_bfd_stab_section_offset
1631 (output_bfd, &elf_hash_table (info)->stab_info,
1632 input_section,
1633 &elf_section_data (input_section)->stab_info,
1634 rel->r_offset));
1635 if (off == (bfd_vma) -1)
1636 skip = true;
1637 outrel.r_offset = off;
1638 }
1639
1640 outrel.r_offset += (input_section->output_section->vma
1641 + input_section->output_offset);
1642
1643 if (skip)
1644 {
1645 memset (&outrel, 0, sizeof outrel);
1646 relocate = false;
1647 }
1648 /* h->dynindx may be -1 if the symbol was marked to
1649 become local. */
1650 else if (h != NULL
1651 && ((! info->symbolic && h->dynindx != -1)
1652 || (h->elf_link_hash_flags
1653 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1654 {
1655 BFD_ASSERT (h->dynindx != -1);
1656 relocate = false;
1657 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1658 outrel.r_addend = relocation + rel->r_addend;
1659 }
1660 else
1661 {
1662 if (r_type == R_68K_32)
1663 {
1664 relocate = true;
1665 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1666 outrel.r_addend = relocation + rel->r_addend;
1667 }
1668 else
1669 {
1670 long indx;
1671
1672 if (h == NULL)
1673 sec = local_sections[r_symndx];
1674 else
1675 {
1676 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1677 || (h->root.type
1678 == bfd_link_hash_defweak));
1679 sec = h->root.u.def.section;
1680 }
1681 if (sec != NULL && bfd_is_abs_section (sec))
1682 indx = 0;
1683 else if (sec == NULL || sec->owner == NULL)
1684 {
1685 bfd_set_error (bfd_error_bad_value);
1686 return false;
1687 }
1688 else
1689 {
1690 asection *osec;
1691
1692 osec = sec->output_section;
1693 indx = elf_section_data (osec)->dynindx;
1694 BFD_ASSERT (indx > 0);
1695 }
1696
1697 relocate = false;
1698 outrel.r_info = ELF32_R_INFO (indx, r_type);
1699 outrel.r_addend = relocation + rel->r_addend;
1700 }
1701 }
1702
1703 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1704 (((Elf32_External_Rela *)
1705 sreloc->contents)
1706 + sreloc->reloc_count));
1707 ++sreloc->reloc_count;
1708
1709 /* This reloc will be computed at runtime, so there's no
1710 need to do anything now, except for R_68K_32
1711 relocations that have been turned into
1712 R_68K_RELATIVE. */
1713 if (!relocate)
1714 continue;
1715 }
1716
1717 break;
1718
1719 case R_68K_GNU_VTINHERIT:
1720 case R_68K_GNU_VTENTRY:
1721 /* These are no-ops in the end. */
1722 continue;
1723
1724 default:
1725 break;
1726 }
1727
1728 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1729 contents, rel->r_offset,
1730 relocation, rel->r_addend);
1731
1732 if (r != bfd_reloc_ok)
1733 {
1734 switch (r)
1735 {
1736 default:
1737 case bfd_reloc_outofrange:
1738 abort ();
1739 case bfd_reloc_overflow:
1740 {
1741 const char *name;
1742
1743 if (h != NULL)
1744 name = h->root.root.string;
1745 else
1746 {
1747 name = bfd_elf_string_from_elf_section (input_bfd,
1748 symtab_hdr->sh_link,
1749 sym->st_name);
1750 if (name == NULL)
1751 return false;
1752 if (*name == '\0')
1753 name = bfd_section_name (input_bfd, sec);
1754 }
1755 if (!(info->callbacks->reloc_overflow
1756 (info, name, howto->name, (bfd_vma) 0,
1757 input_bfd, input_section, rel->r_offset)))
1758 return false;
1759 }
1760 break;
1761 }
1762 }
1763 }
1764
1765 return true;
1766 }
1767
1768 /* Finish up dynamic symbol handling. We set the contents of various
1769 dynamic sections here. */
1770
1771 static boolean
1772 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
1773 bfd *output_bfd;
1774 struct bfd_link_info *info;
1775 struct elf_link_hash_entry *h;
1776 Elf_Internal_Sym *sym;
1777 {
1778 bfd *dynobj;
1779
1780 dynobj = elf_hash_table (info)->dynobj;
1781
1782 if (h->plt.offset != (bfd_vma) -1)
1783 {
1784 asection *splt;
1785 asection *sgot;
1786 asection *srela;
1787 bfd_vma plt_index;
1788 bfd_vma got_offset;
1789 Elf_Internal_Rela rela;
1790
1791 /* This symbol has an entry in the procedure linkage table. Set
1792 it up. */
1793
1794 BFD_ASSERT (h->dynindx != -1);
1795
1796 splt = bfd_get_section_by_name (dynobj, ".plt");
1797 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1798 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1799 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1800
1801 /* Get the index in the procedure linkage table which
1802 corresponds to this symbol. This is the index of this symbol
1803 in all the symbols for which we are making plt entries. The
1804 first entry in the procedure linkage table is reserved. */
1805 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1806
1807 /* Get the offset into the .got table of the entry that
1808 corresponds to this function. Each .got entry is 4 bytes.
1809 The first three are reserved. */
1810 got_offset = (plt_index + 3) * 4;
1811
1812 /* Fill in the entry in the procedure linkage table. */
1813 memcpy (splt->contents + h->plt.offset, elf_m68k_plt_entry,
1814 PLT_ENTRY_SIZE);
1815 /* The offset is relative to the first extension word. */
1816 bfd_put_32 (output_bfd,
1817 (sgot->output_section->vma
1818 + sgot->output_offset
1819 + got_offset
1820 - (splt->output_section->vma
1821 + h->plt.offset + 2)),
1822 splt->contents + h->plt.offset + 4);
1823
1824 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1825 splt->contents + h->plt.offset + 10);
1826 bfd_put_32 (output_bfd, - (h->plt.offset + 16),
1827 splt->contents + h->plt.offset + 16);
1828
1829 /* Fill in the entry in the global offset table. */
1830 bfd_put_32 (output_bfd,
1831 (splt->output_section->vma
1832 + splt->output_offset
1833 + h->plt.offset
1834 + 8),
1835 sgot->contents + got_offset);
1836
1837 /* Fill in the entry in the .rela.plt section. */
1838 rela.r_offset = (sgot->output_section->vma
1839 + sgot->output_offset
1840 + got_offset);
1841 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
1842 rela.r_addend = 0;
1843 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1844 ((Elf32_External_Rela *) srela->contents
1845 + plt_index));
1846
1847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1848 {
1849 /* Mark the symbol as undefined, rather than as defined in
1850 the .plt section. Leave the value alone. */
1851 sym->st_shndx = SHN_UNDEF;
1852 }
1853 }
1854
1855 if (h->got.offset != (bfd_vma) -1)
1856 {
1857 asection *sgot;
1858 asection *srela;
1859 Elf_Internal_Rela rela;
1860
1861 /* This symbol has an entry in the global offset table. Set it
1862 up. */
1863
1864 sgot = bfd_get_section_by_name (dynobj, ".got");
1865 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1866 BFD_ASSERT (sgot != NULL && srela != NULL);
1867
1868 rela.r_offset = (sgot->output_section->vma
1869 + sgot->output_offset
1870 + (h->got.offset &~ 1));
1871
1872 /* If this is a -Bsymbolic link, and the symbol is defined
1873 locally, we just want to emit a RELATIVE reloc. Likewise if
1874 the symbol was forced to be local because of a version file.
1875 The entry in the global offset table will already have been
1876 initialized in the relocate_section function. */
1877 if (info->shared
1878 && (info->symbolic || h->dynindx == -1)
1879 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1880 {
1881 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1882 rela.r_addend = bfd_get_signed_32 (output_bfd,
1883 (sgot->contents
1884 + (h->got.offset & ~1)));
1885 }
1886 else
1887 {
1888 bfd_put_32 (output_bfd, (bfd_vma) 0,
1889 sgot->contents + (h->got.offset & ~1));
1890 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
1891 rela.r_addend = 0;
1892 }
1893
1894 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1895 ((Elf32_External_Rela *) srela->contents
1896 + srela->reloc_count));
1897 ++srela->reloc_count;
1898 }
1899
1900 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1901 {
1902 asection *s;
1903 Elf_Internal_Rela rela;
1904
1905 /* This symbol needs a copy reloc. Set it up. */
1906
1907 BFD_ASSERT (h->dynindx != -1
1908 && (h->root.type == bfd_link_hash_defined
1909 || h->root.type == bfd_link_hash_defweak));
1910
1911 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1912 ".rela.bss");
1913 BFD_ASSERT (s != NULL);
1914
1915 rela.r_offset = (h->root.u.def.value
1916 + h->root.u.def.section->output_section->vma
1917 + h->root.u.def.section->output_offset);
1918 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
1919 rela.r_addend = 0;
1920 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1921 ((Elf32_External_Rela *) s->contents
1922 + s->reloc_count));
1923 ++s->reloc_count;
1924 }
1925
1926 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1927 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1928 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1929 sym->st_shndx = SHN_ABS;
1930
1931 return true;
1932 }
1933
1934 /* Finish up the dynamic sections. */
1935
1936 static boolean
1937 elf_m68k_finish_dynamic_sections (output_bfd, info)
1938 bfd *output_bfd;
1939 struct bfd_link_info *info;
1940 {
1941 bfd *dynobj;
1942 asection *sgot;
1943 asection *sdyn;
1944
1945 dynobj = elf_hash_table (info)->dynobj;
1946
1947 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1948 BFD_ASSERT (sgot != NULL);
1949 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1950
1951 if (elf_hash_table (info)->dynamic_sections_created)
1952 {
1953 asection *splt;
1954 Elf32_External_Dyn *dyncon, *dynconend;
1955
1956 splt = bfd_get_section_by_name (dynobj, ".plt");
1957 BFD_ASSERT (splt != NULL && sdyn != NULL);
1958
1959 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1960 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1961 for (; dyncon < dynconend; dyncon++)
1962 {
1963 Elf_Internal_Dyn dyn;
1964 const char *name;
1965 asection *s;
1966
1967 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1968
1969 switch (dyn.d_tag)
1970 {
1971 default:
1972 break;
1973
1974 case DT_PLTGOT:
1975 name = ".got";
1976 goto get_vma;
1977 case DT_JMPREL:
1978 name = ".rela.plt";
1979 get_vma:
1980 s = bfd_get_section_by_name (output_bfd, name);
1981 BFD_ASSERT (s != NULL);
1982 dyn.d_un.d_ptr = s->vma;
1983 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1984 break;
1985
1986 case DT_PLTRELSZ:
1987 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1988 BFD_ASSERT (s != NULL);
1989 if (s->_cooked_size != 0)
1990 dyn.d_un.d_val = s->_cooked_size;
1991 else
1992 dyn.d_un.d_val = s->_raw_size;
1993 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1994 break;
1995
1996 case DT_RELASZ:
1997 /* The procedure linkage table relocs (DT_JMPREL) should
1998 not be included in the overall relocs (DT_RELA).
1999 Therefore, we override the DT_RELASZ entry here to
2000 make it not include the JMPREL relocs. Since the
2001 linker script arranges for .rela.plt to follow all
2002 other relocation sections, we don't have to worry
2003 about changing the DT_RELA entry. */
2004 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2005 if (s != NULL)
2006 {
2007 if (s->_cooked_size != 0)
2008 dyn.d_un.d_val -= s->_cooked_size;
2009 else
2010 dyn.d_un.d_val -= s->_raw_size;
2011 }
2012 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2013 break;
2014 }
2015 }
2016
2017 /* Fill in the first entry in the procedure linkage table. */
2018 if (splt->_raw_size > 0)
2019 {
2020 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE);
2021 bfd_put_32 (output_bfd,
2022 (sgot->output_section->vma
2023 + sgot->output_offset + 4
2024 - (splt->output_section->vma + 2)),
2025 splt->contents + 4);
2026 bfd_put_32 (output_bfd,
2027 (sgot->output_section->vma
2028 + sgot->output_offset + 8
2029 - (splt->output_section->vma + 10)),
2030 splt->contents + 12);
2031 }
2032
2033 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2034 = PLT_ENTRY_SIZE;
2035 }
2036
2037 /* Fill in the first three entries in the global offset table. */
2038 if (sgot->_raw_size > 0)
2039 {
2040 if (sdyn == NULL)
2041 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2042 else
2043 bfd_put_32 (output_bfd,
2044 sdyn->output_section->vma + sdyn->output_offset,
2045 sgot->contents);
2046 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2047 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2048 }
2049
2050 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2051
2052 if (info->shared)
2053 {
2054 asection *sdynsym;
2055 asection *s;
2056 Elf_Internal_Sym sym;
2057 int c;
2058
2059 /* Set up the section symbols for the output sections. */
2060
2061 sdynsym = bfd_get_section_by_name (dynobj, ".dynsym");
2062 BFD_ASSERT (sdynsym != NULL);
2063
2064 sym.st_size = 0;
2065 sym.st_name = 0;
2066 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
2067 sym.st_other = 0;
2068
2069 c = 0;
2070 for (s = output_bfd->sections; s != NULL; s = s->next)
2071 {
2072 int indx;
2073
2074 if (elf_section_data (s)->dynindx == 0)
2075 continue;
2076
2077 sym.st_value = s->vma;
2078
2079 indx = elf_section_data (s)->this_idx;
2080 BFD_ASSERT (indx > 0);
2081 sym.st_shndx = indx;
2082
2083 bfd_elf32_swap_symbol_out (output_bfd, &sym,
2084 (PTR) (((Elf32_External_Sym *)
2085 sdynsym->contents)
2086 + elf_section_data (s)->dynindx));
2087
2088 ++c;
2089 }
2090
2091 /* Set the sh_info field of the output .dynsym section to the
2092 index of the first global symbol. */
2093 elf_section_data (sdynsym->output_section)->this_hdr.sh_info = c + 1;
2094 }
2095
2096 return true;
2097 }
2098
2099 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
2100 #define TARGET_BIG_NAME "elf32-m68k"
2101 #define ELF_MACHINE_CODE EM_68K
2102 #define ELF_MAXPAGESIZE 0x2000
2103 #define elf_backend_create_dynamic_sections \
2104 _bfd_elf_create_dynamic_sections
2105 #define bfd_elf32_bfd_link_hash_table_create \
2106 elf_m68k_link_hash_table_create
2107 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2108
2109 #define elf_backend_check_relocs elf_m68k_check_relocs
2110 #define elf_backend_adjust_dynamic_symbol \
2111 elf_m68k_adjust_dynamic_symbol
2112 #define elf_backend_size_dynamic_sections \
2113 elf_m68k_size_dynamic_sections
2114 #define elf_backend_relocate_section elf_m68k_relocate_section
2115 #define elf_backend_finish_dynamic_symbol \
2116 elf_m68k_finish_dynamic_symbol
2117 #define elf_backend_finish_dynamic_sections \
2118 elf_m68k_finish_dynamic_sections
2119 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
2120 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
2121 #define elf_backend_can_gc_sections 1
2122 #define elf_backend_want_got_plt 1
2123 #define elf_backend_plt_readonly 1
2124 #define elf_backend_want_plt_sym 0
2125 #define elf_backend_got_header_size 12
2126 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2127
2128 #include "elf32-target.h"
This page took 0.079145 seconds and 4 git commands to generate.