2000-10-01 Ulf Carlsson <ulfc@engr.sgi.com>
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
28 different MIPS ELF from other targets. This matters when linking.
29 This file supports both, switching at runtime. */
30
31 #include "bfd.h"
32 #include "sysdep.h"
33 #include "libbfd.h"
34 #include "bfdlink.h"
35 #include "genlink.h"
36 #include "elf-bfd.h"
37 #include "elf/mips.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/internal.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45 #define ECOFF_SIGNED_32
46 #include "ecoffswap.h"
47
48 /* This structure is used to hold .got information when linking. It
49 is stored in the tdata field of the bfd_elf_section_data structure. */
50
51 struct mips_got_info
52 {
53 /* The global symbol in the GOT with the lowest index in the dynamic
54 symbol table. */
55 struct elf_link_hash_entry *global_gotsym;
56 /* The number of global .got entries. */
57 unsigned int global_gotno;
58 /* The number of local .got entries. */
59 unsigned int local_gotno;
60 /* The number of local .got entries we have used. */
61 unsigned int assigned_gotno;
62 };
63
64 /* The MIPS ELF linker needs additional information for each symbol in
65 the global hash table. */
66
67 struct mips_elf_link_hash_entry
68 {
69 struct elf_link_hash_entry root;
70
71 /* External symbol information. */
72 EXTR esym;
73
74 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
75 this symbol. */
76 unsigned int possibly_dynamic_relocs;
77
78 /* The index of the first dynamic relocation (in the .rel.dyn
79 section) against this symbol. */
80 unsigned int min_dyn_reloc_index;
81
82 /* If there is a stub that 32 bit functions should use to call this
83 16 bit function, this points to the section containing the stub. */
84 asection *fn_stub;
85
86 /* Whether we need the fn_stub; this is set if this symbol appears
87 in any relocs other than a 16 bit call. */
88 boolean need_fn_stub;
89
90 /* If there is a stub that 16 bit functions should use to call this
91 32 bit function, this points to the section containing the stub. */
92 asection *call_stub;
93
94 /* This is like the call_stub field, but it is used if the function
95 being called returns a floating point value. */
96 asection *call_fp_stub;
97 };
98
99 static bfd_reloc_status_type mips32_64bit_reloc
100 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
101 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
102 PARAMS ((bfd *, bfd_reloc_code_real_type));
103 static reloc_howto_type *mips_rtype_to_howto
104 PARAMS ((unsigned int));
105 static void mips_info_to_howto_rel
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
107 static void mips_info_to_howto_rela
108 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
109 static void bfd_mips_elf32_swap_gptab_in
110 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
111 static void bfd_mips_elf32_swap_gptab_out
112 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
113 #if 0
114 static void bfd_mips_elf_swap_msym_in
115 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
116 #endif
117 static void bfd_mips_elf_swap_msym_out
118 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
119 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
120 static boolean mips_elf_create_procedure_table
121 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
122 struct ecoff_debug_info *));
123 static INLINE int elf_mips_isa PARAMS ((flagword));
124 static INLINE int elf_mips_mach PARAMS ((flagword));
125 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
126 static boolean mips_elf_is_local_label_name
127 PARAMS ((bfd *, const char *));
128 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
129 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
130 static int gptab_compare PARAMS ((const void *, const void *));
131 static bfd_reloc_status_type mips16_jump_reloc
132 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
133 static bfd_reloc_status_type mips16_gprel_reloc
134 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
135 static boolean mips_elf_create_compact_rel_section
136 PARAMS ((bfd *, struct bfd_link_info *));
137 static boolean mips_elf_create_got_section
138 PARAMS ((bfd *, struct bfd_link_info *));
139 static bfd_reloc_status_type mips_elf_final_gp
140 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
141 static bfd_byte *elf32_mips_get_relocated_section_contents
142 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
143 bfd_byte *, boolean, asymbol **));
144 static asection *mips_elf_create_msym_section
145 PARAMS ((bfd *));
146 static void mips_elf_irix6_finish_dynamic_symbol
147 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
148 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
149 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
150 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
151 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
152 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
153 static bfd_vma mips_elf_global_got_index
154 PARAMS ((bfd *, struct elf_link_hash_entry *));
155 static bfd_vma mips_elf_local_got_index
156 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
157 static bfd_vma mips_elf_got_offset_from_index
158 PARAMS ((bfd *, bfd *, bfd_vma));
159 static boolean mips_elf_record_global_got_symbol
160 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
161 struct mips_got_info *));
162 static bfd_vma mips_elf_got_page
163 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
164 static const Elf_Internal_Rela *mips_elf_next_relocation
165 PARAMS ((unsigned int, const Elf_Internal_Rela *,
166 const Elf_Internal_Rela *));
167 static bfd_reloc_status_type mips_elf_calculate_relocation
168 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
169 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
170 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
171 boolean *));
172 static bfd_vma mips_elf_obtain_contents
173 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
174 static boolean mips_elf_perform_relocation
175 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
176 const Elf_Internal_Rela *, bfd_vma,
177 bfd *, asection *, bfd_byte *, boolean));
178 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
179 static boolean mips_elf_sort_hash_table_f
180 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
181 static boolean mips_elf_sort_hash_table
182 PARAMS ((struct bfd_link_info *, unsigned long));
183 static asection * mips_elf_got_section PARAMS ((bfd *));
184 static struct mips_got_info *mips_elf_got_info
185 PARAMS ((bfd *, asection **));
186 static boolean mips_elf_local_relocation_p
187 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
188 static bfd_vma mips_elf_create_local_got_entry
189 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
190 static bfd_vma mips_elf_got16_entry
191 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
192 static boolean mips_elf_create_dynamic_relocation
193 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
194 struct mips_elf_link_hash_entry *, asection *,
195 bfd_vma, bfd_vma *, asection *));
196 static void mips_elf_allocate_dynamic_relocations
197 PARAMS ((bfd *, unsigned int));
198 static boolean mips_elf_stub_section_p
199 PARAMS ((bfd *, asection *));
200 static int sort_dynamic_relocs
201 PARAMS ((const void *, const void *));
202
203 extern const bfd_target bfd_elf32_tradbigmips_vec;
204
205 /* The level of IRIX compatibility we're striving for. */
206
207 typedef enum {
208 ict_none,
209 ict_irix5,
210 ict_irix6
211 } irix_compat_t;
212
213 /* This will be used when we sort the dynamic relocation records. */
214 static bfd *reldyn_sorting_bfd;
215
216 /* Nonzero if ABFD is using the N32 ABI. */
217
218 #define ABI_N32_P(abfd) \
219 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
220
221 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
222 true, yet. */
223 #define ABI_64_P(abfd) \
224 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
225
226 /* Depending on the target vector we generate some version of Irix
227 executables or "normal" MIPS ELF ABI executables. */
228
229 #define IRIX_COMPAT(abfd) \
230 (abfd->xvec == &bfd_elf32_tradbigmips_vec ? ict_none : \
231 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
232
233 /* Whether we are trying to be compatible with IRIX at all. */
234
235 #define SGI_COMPAT(abfd) \
236 (IRIX_COMPAT (abfd) != ict_none)
237
238 /* The name of the msym section. */
239 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
240
241 /* The name of the srdata section. */
242 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
243
244 /* The name of the options section. */
245 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
246 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
247
248 /* The name of the stub section. */
249 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
250 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
251
252 /* The name of the dynamic relocation section. */
253 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
254
255 /* The size of an external REL relocation. */
256 #define MIPS_ELF_REL_SIZE(abfd) \
257 (get_elf_backend_data (abfd)->s->sizeof_rel)
258
259 /* The size of an external dynamic table entry. */
260 #define MIPS_ELF_DYN_SIZE(abfd) \
261 (get_elf_backend_data (abfd)->s->sizeof_dyn)
262
263 /* The size of a GOT entry. */
264 #define MIPS_ELF_GOT_SIZE(abfd) \
265 (get_elf_backend_data (abfd)->s->arch_size / 8)
266
267 /* The size of a symbol-table entry. */
268 #define MIPS_ELF_SYM_SIZE(abfd) \
269 (get_elf_backend_data (abfd)->s->sizeof_sym)
270
271 /* The default alignment for sections, as a power of two. */
272 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
273 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
274
275 /* Get word-sized data. */
276 #define MIPS_ELF_GET_WORD(abfd, ptr) \
277 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
278
279 /* Put out word-sized data. */
280 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
281 (ABI_64_P (abfd) \
282 ? bfd_put_64 (abfd, val, ptr) \
283 : bfd_put_32 (abfd, val, ptr))
284
285 /* Add a dynamic symbol table-entry. */
286 #ifdef BFD64
287 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
288 (ABI_64_P (elf_hash_table (info)->dynobj) \
289 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
290 : bfd_elf32_add_dynamic_entry (info, tag, val))
291 #else
292 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
293 (ABI_64_P (elf_hash_table (info)->dynobj) \
294 ? (abort (), false) \
295 : bfd_elf32_add_dynamic_entry (info, tag, val))
296 #endif
297
298 /* The number of local .got entries we reserve. */
299 #define MIPS_RESERVED_GOTNO (2)
300
301 /* Instructions which appear in a stub. For some reason the stub is
302 slightly different on an SGI system. */
303 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
304 #define STUB_LW(abfd) \
305 (SGI_COMPAT (abfd) \
306 ? (ABI_64_P (abfd) \
307 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
308 : 0x8f998010) /* lw t9,0x8010(gp) */ \
309 : 0x8f998010) /* lw t9,0x8000(gp) */
310 #define STUB_MOVE(abfd) \
311 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
312 #define STUB_JALR 0x0320f809 /* jal t9 */
313 #define STUB_LI16(abfd) \
314 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
315 #define MIPS_FUNCTION_STUB_SIZE (16)
316
317 #if 0
318 /* We no longer try to identify particular sections for the .dynsym
319 section. When we do, we wind up crashing if there are other random
320 sections with relocations. */
321
322 /* Names of sections which appear in the .dynsym section in an Irix 5
323 executable. */
324
325 static const char * const mips_elf_dynsym_sec_names[] =
326 {
327 ".text",
328 ".init",
329 ".fini",
330 ".data",
331 ".rodata",
332 ".sdata",
333 ".sbss",
334 ".bss",
335 NULL
336 };
337
338 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
339 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
340
341 /* The number of entries in mips_elf_dynsym_sec_names which go in the
342 text segment. */
343
344 #define MIPS_TEXT_DYNSYM_SECNO (3)
345
346 #endif /* 0 */
347
348 /* The names of the runtime procedure table symbols used on Irix 5. */
349
350 static const char * const mips_elf_dynsym_rtproc_names[] =
351 {
352 "_procedure_table",
353 "_procedure_string_table",
354 "_procedure_table_size",
355 NULL
356 };
357
358 /* These structures are used to generate the .compact_rel section on
359 Irix 5. */
360
361 typedef struct
362 {
363 unsigned long id1; /* Always one? */
364 unsigned long num; /* Number of compact relocation entries. */
365 unsigned long id2; /* Always two? */
366 unsigned long offset; /* The file offset of the first relocation. */
367 unsigned long reserved0; /* Zero? */
368 unsigned long reserved1; /* Zero? */
369 } Elf32_compact_rel;
370
371 typedef struct
372 {
373 bfd_byte id1[4];
374 bfd_byte num[4];
375 bfd_byte id2[4];
376 bfd_byte offset[4];
377 bfd_byte reserved0[4];
378 bfd_byte reserved1[4];
379 } Elf32_External_compact_rel;
380
381 typedef struct
382 {
383 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
384 unsigned int rtype : 4; /* Relocation types. See below. */
385 unsigned int dist2to : 8;
386 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
387 unsigned long konst; /* KONST field. See below. */
388 unsigned long vaddr; /* VADDR to be relocated. */
389 } Elf32_crinfo;
390
391 typedef struct
392 {
393 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
394 unsigned int rtype : 4; /* Relocation types. See below. */
395 unsigned int dist2to : 8;
396 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
397 unsigned long konst; /* KONST field. See below. */
398 } Elf32_crinfo2;
399
400 typedef struct
401 {
402 bfd_byte info[4];
403 bfd_byte konst[4];
404 bfd_byte vaddr[4];
405 } Elf32_External_crinfo;
406
407 typedef struct
408 {
409 bfd_byte info[4];
410 bfd_byte konst[4];
411 } Elf32_External_crinfo2;
412
413 /* These are the constants used to swap the bitfields in a crinfo. */
414
415 #define CRINFO_CTYPE (0x1)
416 #define CRINFO_CTYPE_SH (31)
417 #define CRINFO_RTYPE (0xf)
418 #define CRINFO_RTYPE_SH (27)
419 #define CRINFO_DIST2TO (0xff)
420 #define CRINFO_DIST2TO_SH (19)
421 #define CRINFO_RELVADDR (0x7ffff)
422 #define CRINFO_RELVADDR_SH (0)
423
424 /* A compact relocation info has long (3 words) or short (2 words)
425 formats. A short format doesn't have VADDR field and relvaddr
426 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
427 #define CRF_MIPS_LONG 1
428 #define CRF_MIPS_SHORT 0
429
430 /* There are 4 types of compact relocation at least. The value KONST
431 has different meaning for each type:
432
433 (type) (konst)
434 CT_MIPS_REL32 Address in data
435 CT_MIPS_WORD Address in word (XXX)
436 CT_MIPS_GPHI_LO GP - vaddr
437 CT_MIPS_JMPAD Address to jump
438 */
439
440 #define CRT_MIPS_REL32 0xa
441 #define CRT_MIPS_WORD 0xb
442 #define CRT_MIPS_GPHI_LO 0xc
443 #define CRT_MIPS_JMPAD 0xd
444
445 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
446 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
447 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
448 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
449
450 static void bfd_elf32_swap_compact_rel_out
451 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
452 static void bfd_elf32_swap_crinfo_out
453 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
454
455 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
456
457 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
458 from smaller values. Start with zero, widen, *then* decrement. */
459 #define MINUS_ONE (((bfd_vma)0) - 1)
460
461 static reloc_howto_type elf_mips_howto_table[] =
462 {
463 /* No relocation. */
464 HOWTO (R_MIPS_NONE, /* type */
465 0, /* rightshift */
466 0, /* size (0 = byte, 1 = short, 2 = long) */
467 0, /* bitsize */
468 false, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_dont, /* complain_on_overflow */
471 bfd_elf_generic_reloc, /* special_function */
472 "R_MIPS_NONE", /* name */
473 false, /* partial_inplace */
474 0, /* src_mask */
475 0, /* dst_mask */
476 false), /* pcrel_offset */
477
478 /* 16 bit relocation. */
479 HOWTO (R_MIPS_16, /* type */
480 0, /* rightshift */
481 1, /* size (0 = byte, 1 = short, 2 = long) */
482 16, /* bitsize */
483 false, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_bitfield, /* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 "R_MIPS_16", /* name */
488 true, /* partial_inplace */
489 0xffff, /* src_mask */
490 0xffff, /* dst_mask */
491 false), /* pcrel_offset */
492
493 /* 32 bit relocation. */
494 HOWTO (R_MIPS_32, /* type */
495 0, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 32, /* bitsize */
498 false, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_bitfield, /* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_MIPS_32", /* name */
503 true, /* partial_inplace */
504 0xffffffff, /* src_mask */
505 0xffffffff, /* dst_mask */
506 false), /* pcrel_offset */
507
508 /* 32 bit symbol relative relocation. */
509 HOWTO (R_MIPS_REL32, /* type */
510 0, /* rightshift */
511 2, /* size (0 = byte, 1 = short, 2 = long) */
512 32, /* bitsize */
513 false, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_bitfield, /* complain_on_overflow */
516 bfd_elf_generic_reloc, /* special_function */
517 "R_MIPS_REL32", /* name */
518 true, /* partial_inplace */
519 0xffffffff, /* src_mask */
520 0xffffffff, /* dst_mask */
521 false), /* pcrel_offset */
522
523 /* 26 bit branch address. */
524 HOWTO (R_MIPS_26, /* type */
525 2, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 26, /* bitsize */
528 false, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_dont, /* complain_on_overflow */
531 /* This needs complex overflow
532 detection, because the upper four
533 bits must match the PC. */
534 bfd_elf_generic_reloc, /* special_function */
535 "R_MIPS_26", /* name */
536 true, /* partial_inplace */
537 0x3ffffff, /* src_mask */
538 0x3ffffff, /* dst_mask */
539 false), /* pcrel_offset */
540
541 /* High 16 bits of symbol value. */
542 HOWTO (R_MIPS_HI16, /* type */
543 0, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 16, /* bitsize */
546 false, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 _bfd_mips_elf_hi16_reloc, /* special_function */
550 "R_MIPS_HI16", /* name */
551 true, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 false), /* pcrel_offset */
555
556 /* Low 16 bits of symbol value. */
557 HOWTO (R_MIPS_LO16, /* type */
558 0, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 16, /* bitsize */
561 false, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_dont, /* complain_on_overflow */
564 _bfd_mips_elf_lo16_reloc, /* special_function */
565 "R_MIPS_LO16", /* name */
566 true, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 false), /* pcrel_offset */
570
571 /* GP relative reference. */
572 HOWTO (R_MIPS_GPREL16, /* type */
573 0, /* rightshift */
574 2, /* size (0 = byte, 1 = short, 2 = long) */
575 16, /* bitsize */
576 false, /* pc_relative */
577 0, /* bitpos */
578 complain_overflow_signed, /* complain_on_overflow */
579 _bfd_mips_elf_gprel16_reloc, /* special_function */
580 "R_MIPS_GPREL16", /* name */
581 true, /* partial_inplace */
582 0xffff, /* src_mask */
583 0xffff, /* dst_mask */
584 false), /* pcrel_offset */
585
586 /* Reference to literal section. */
587 HOWTO (R_MIPS_LITERAL, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 16, /* bitsize */
591 false, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 _bfd_mips_elf_gprel16_reloc, /* special_function */
595 "R_MIPS_LITERAL", /* name */
596 true, /* partial_inplace */
597 0xffff, /* src_mask */
598 0xffff, /* dst_mask */
599 false), /* pcrel_offset */
600
601 /* Reference to global offset table. */
602 HOWTO (R_MIPS_GOT16, /* type */
603 0, /* rightshift */
604 2, /* size (0 = byte, 1 = short, 2 = long) */
605 16, /* bitsize */
606 false, /* pc_relative */
607 0, /* bitpos */
608 complain_overflow_signed, /* complain_on_overflow */
609 _bfd_mips_elf_got16_reloc, /* special_function */
610 "R_MIPS_GOT16", /* name */
611 false, /* partial_inplace */
612 0xffff, /* src_mask */
613 0xffff, /* dst_mask */
614 false), /* pcrel_offset */
615
616 /* 16 bit PC relative reference. */
617 HOWTO (R_MIPS_PC16, /* type */
618 0, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 16, /* bitsize */
621 true, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_signed, /* complain_on_overflow */
624 bfd_elf_generic_reloc, /* special_function */
625 "R_MIPS_PC16", /* name */
626 true, /* partial_inplace */
627 0xffff, /* src_mask */
628 0xffff, /* dst_mask */
629 true), /* pcrel_offset */
630
631 /* 16 bit call through global offset table. */
632 HOWTO (R_MIPS_CALL16, /* type */
633 0, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 16, /* bitsize */
636 false, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_MIPS_CALL16", /* name */
641 false, /* partial_inplace */
642 0xffff, /* src_mask */
643 0xffff, /* dst_mask */
644 false), /* pcrel_offset */
645
646 /* 32 bit GP relative reference. */
647 HOWTO (R_MIPS_GPREL32, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 false, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 _bfd_mips_elf_gprel32_reloc, /* special_function */
655 "R_MIPS_GPREL32", /* name */
656 true, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 false), /* pcrel_offset */
660
661 /* The remaining relocs are defined on Irix 5, although they are
662 not defined by the ABI. */
663 EMPTY_HOWTO (13),
664 EMPTY_HOWTO (14),
665 EMPTY_HOWTO (15),
666
667 /* A 5 bit shift field. */
668 HOWTO (R_MIPS_SHIFT5, /* type */
669 0, /* rightshift */
670 2, /* size (0 = byte, 1 = short, 2 = long) */
671 5, /* bitsize */
672 false, /* pc_relative */
673 6, /* bitpos */
674 complain_overflow_bitfield, /* complain_on_overflow */
675 bfd_elf_generic_reloc, /* special_function */
676 "R_MIPS_SHIFT5", /* name */
677 true, /* partial_inplace */
678 0x000007c0, /* src_mask */
679 0x000007c0, /* dst_mask */
680 false), /* pcrel_offset */
681
682 /* A 6 bit shift field. */
683 /* FIXME: This is not handled correctly; a special function is
684 needed to put the most significant bit in the right place. */
685 HOWTO (R_MIPS_SHIFT6, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 6, /* bitsize */
689 false, /* pc_relative */
690 6, /* bitpos */
691 complain_overflow_bitfield, /* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_MIPS_SHIFT6", /* name */
694 true, /* partial_inplace */
695 0x000007c4, /* src_mask */
696 0x000007c4, /* dst_mask */
697 false), /* pcrel_offset */
698
699 /* A 64 bit relocation. */
700 HOWTO (R_MIPS_64, /* type */
701 0, /* rightshift */
702 4, /* size (0 = byte, 1 = short, 2 = long) */
703 64, /* bitsize */
704 false, /* pc_relative */
705 0, /* bitpos */
706 complain_overflow_bitfield, /* complain_on_overflow */
707 mips32_64bit_reloc, /* special_function */
708 "R_MIPS_64", /* name */
709 true, /* partial_inplace */
710 MINUS_ONE, /* src_mask */
711 MINUS_ONE, /* dst_mask */
712 false), /* pcrel_offset */
713
714 /* Displacement in the global offset table. */
715 HOWTO (R_MIPS_GOT_DISP, /* type */
716 0, /* rightshift */
717 2, /* size (0 = byte, 1 = short, 2 = long) */
718 16, /* bitsize */
719 false, /* pc_relative */
720 0, /* bitpos */
721 complain_overflow_bitfield, /* complain_on_overflow */
722 bfd_elf_generic_reloc, /* special_function */
723 "R_MIPS_GOT_DISP", /* name */
724 true, /* partial_inplace */
725 0x0000ffff, /* src_mask */
726 0x0000ffff, /* dst_mask */
727 false), /* pcrel_offset */
728
729 /* Displacement to page pointer in the global offset table. */
730 HOWTO (R_MIPS_GOT_PAGE, /* type */
731 0, /* rightshift */
732 2, /* size (0 = byte, 1 = short, 2 = long) */
733 16, /* bitsize */
734 false, /* pc_relative */
735 0, /* bitpos */
736 complain_overflow_bitfield, /* complain_on_overflow */
737 bfd_elf_generic_reloc, /* special_function */
738 "R_MIPS_GOT_PAGE", /* name */
739 true, /* partial_inplace */
740 0x0000ffff, /* src_mask */
741 0x0000ffff, /* dst_mask */
742 false), /* pcrel_offset */
743
744 /* Offset from page pointer in the global offset table. */
745 HOWTO (R_MIPS_GOT_OFST, /* type */
746 0, /* rightshift */
747 2, /* size (0 = byte, 1 = short, 2 = long) */
748 16, /* bitsize */
749 false, /* pc_relative */
750 0, /* bitpos */
751 complain_overflow_bitfield, /* complain_on_overflow */
752 bfd_elf_generic_reloc, /* special_function */
753 "R_MIPS_GOT_OFST", /* name */
754 true, /* partial_inplace */
755 0x0000ffff, /* src_mask */
756 0x0000ffff, /* dst_mask */
757 false), /* pcrel_offset */
758
759 /* High 16 bits of displacement in global offset table. */
760 HOWTO (R_MIPS_GOT_HI16, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 false, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_MIPS_GOT_HI16", /* name */
769 true, /* partial_inplace */
770 0x0000ffff, /* src_mask */
771 0x0000ffff, /* dst_mask */
772 false), /* pcrel_offset */
773
774 /* Low 16 bits of displacement in global offset table. */
775 HOWTO (R_MIPS_GOT_LO16, /* type */
776 0, /* rightshift */
777 2, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 false, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_MIPS_GOT_LO16", /* name */
784 true, /* partial_inplace */
785 0x0000ffff, /* src_mask */
786 0x0000ffff, /* dst_mask */
787 false), /* pcrel_offset */
788
789 /* 64 bit subtraction. Used in the N32 ABI. */
790 HOWTO (R_MIPS_SUB, /* type */
791 0, /* rightshift */
792 4, /* size (0 = byte, 1 = short, 2 = long) */
793 64, /* bitsize */
794 false, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_bitfield, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 "R_MIPS_SUB", /* name */
799 true, /* partial_inplace */
800 MINUS_ONE, /* src_mask */
801 MINUS_ONE, /* dst_mask */
802 false), /* pcrel_offset */
803
804 /* Used to cause the linker to insert and delete instructions? */
805 EMPTY_HOWTO (R_MIPS_INSERT_A),
806 EMPTY_HOWTO (R_MIPS_INSERT_B),
807 EMPTY_HOWTO (R_MIPS_DELETE),
808
809 /* Get the higher value of a 64 bit addend. */
810 HOWTO (R_MIPS_HIGHER, /* type */
811 0, /* rightshift */
812 2, /* size (0 = byte, 1 = short, 2 = long) */
813 16, /* bitsize */
814 false, /* pc_relative */
815 0, /* bitpos */
816 complain_overflow_dont, /* complain_on_overflow */
817 bfd_elf_generic_reloc, /* special_function */
818 "R_MIPS_HIGHER", /* name */
819 true, /* partial_inplace */
820 0, /* src_mask */
821 0xffff, /* dst_mask */
822 false), /* pcrel_offset */
823
824 /* Get the highest value of a 64 bit addend. */
825 HOWTO (R_MIPS_HIGHEST, /* type */
826 0, /* rightshift */
827 2, /* size (0 = byte, 1 = short, 2 = long) */
828 16, /* bitsize */
829 false, /* pc_relative */
830 0, /* bitpos */
831 complain_overflow_dont, /* complain_on_overflow */
832 bfd_elf_generic_reloc, /* special_function */
833 "R_MIPS_HIGHEST", /* name */
834 true, /* partial_inplace */
835 0, /* src_mask */
836 0xffff, /* dst_mask */
837 false), /* pcrel_offset */
838
839 /* High 16 bits of displacement in global offset table. */
840 HOWTO (R_MIPS_CALL_HI16, /* type */
841 0, /* rightshift */
842 2, /* size (0 = byte, 1 = short, 2 = long) */
843 16, /* bitsize */
844 false, /* pc_relative */
845 0, /* bitpos */
846 complain_overflow_dont, /* complain_on_overflow */
847 bfd_elf_generic_reloc, /* special_function */
848 "R_MIPS_CALL_HI16", /* name */
849 true, /* partial_inplace */
850 0x0000ffff, /* src_mask */
851 0x0000ffff, /* dst_mask */
852 false), /* pcrel_offset */
853
854 /* Low 16 bits of displacement in global offset table. */
855 HOWTO (R_MIPS_CALL_LO16, /* type */
856 0, /* rightshift */
857 2, /* size (0 = byte, 1 = short, 2 = long) */
858 16, /* bitsize */
859 false, /* pc_relative */
860 0, /* bitpos */
861 complain_overflow_dont, /* complain_on_overflow */
862 bfd_elf_generic_reloc, /* special_function */
863 "R_MIPS_CALL_LO16", /* name */
864 true, /* partial_inplace */
865 0x0000ffff, /* src_mask */
866 0x0000ffff, /* dst_mask */
867 false), /* pcrel_offset */
868
869 /* Section displacement. */
870 HOWTO (R_MIPS_SCN_DISP, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 false, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont, /* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_MIPS_SCN_DISP", /* name */
879 false, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 false), /* pcrel_offset */
883
884 EMPTY_HOWTO (R_MIPS_REL16),
885 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
886 EMPTY_HOWTO (R_MIPS_PJUMP),
887 EMPTY_HOWTO (R_MIPS_RELGOT),
888
889 /* Protected jump conversion. This is an optimization hint. No
890 relocation is required for correctness. */
891 HOWTO (R_MIPS_JALR, /* type */
892 0, /* rightshift */
893 0, /* size (0 = byte, 1 = short, 2 = long) */
894 0, /* bitsize */
895 false, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont, /* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_MIPS_JALR", /* name */
900 false, /* partial_inplace */
901 0x00000000, /* src_mask */
902 0x00000000, /* dst_mask */
903 false), /* pcrel_offset */
904 };
905
906 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
907 is a hack to make the linker think that we need 64 bit values. */
908 static reloc_howto_type elf_mips_ctor64_howto =
909 HOWTO (R_MIPS_64, /* type */
910 0, /* rightshift */
911 4, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 false, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_signed, /* complain_on_overflow */
916 mips32_64bit_reloc, /* special_function */
917 "R_MIPS_64", /* name */
918 true, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 false); /* pcrel_offset */
922
923 /* The reloc used for the mips16 jump instruction. */
924 static reloc_howto_type elf_mips16_jump_howto =
925 HOWTO (R_MIPS16_26, /* type */
926 2, /* rightshift */
927 2, /* size (0 = byte, 1 = short, 2 = long) */
928 26, /* bitsize */
929 false, /* pc_relative */
930 0, /* bitpos */
931 complain_overflow_dont, /* complain_on_overflow */
932 /* This needs complex overflow
933 detection, because the upper four
934 bits must match the PC. */
935 mips16_jump_reloc, /* special_function */
936 "R_MIPS16_26", /* name */
937 true, /* partial_inplace */
938 0x3ffffff, /* src_mask */
939 0x3ffffff, /* dst_mask */
940 false); /* pcrel_offset */
941
942 /* The reloc used for the mips16 gprel instruction. */
943 static reloc_howto_type elf_mips16_gprel_howto =
944 HOWTO (R_MIPS16_GPREL, /* type */
945 0, /* rightshift */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
947 16, /* bitsize */
948 false, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_signed, /* complain_on_overflow */
951 mips16_gprel_reloc, /* special_function */
952 "R_MIPS16_GPREL", /* name */
953 true, /* partial_inplace */
954 0x07ff001f, /* src_mask */
955 0x07ff001f, /* dst_mask */
956 false); /* pcrel_offset */
957
958 /* GNU extensions for embedded-pic. */
959 /* High 16 bits of symbol value, pc-relative. */
960 static reloc_howto_type elf_mips_gnu_rel_hi16 =
961 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 16, /* bitsize */
965 true, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont, /* complain_on_overflow */
968 _bfd_mips_elf_hi16_reloc, /* special_function */
969 "R_MIPS_GNU_REL_HI16", /* name */
970 true, /* partial_inplace */
971 0xffff, /* src_mask */
972 0xffff, /* dst_mask */
973 true); /* pcrel_offset */
974
975 /* Low 16 bits of symbol value, pc-relative. */
976 static reloc_howto_type elf_mips_gnu_rel_lo16 =
977 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
978 0, /* rightshift */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
980 16, /* bitsize */
981 true, /* pc_relative */
982 0, /* bitpos */
983 complain_overflow_dont, /* complain_on_overflow */
984 _bfd_mips_elf_lo16_reloc, /* special_function */
985 "R_MIPS_GNU_REL_LO16", /* name */
986 true, /* partial_inplace */
987 0xffff, /* src_mask */
988 0xffff, /* dst_mask */
989 true); /* pcrel_offset */
990
991 /* 16 bit offset for pc-relative branches. */
992 static reloc_howto_type elf_mips_gnu_rel16_s2 =
993 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
994 2, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 true, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_signed, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_MIPS_GNU_REL16_S2", /* name */
1002 true, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 true); /* pcrel_offset */
1006
1007 /* 64 bit pc-relative. */
1008 static reloc_howto_type elf_mips_gnu_pcrel64 =
1009 HOWTO (R_MIPS_PC64, /* type */
1010 0, /* rightshift */
1011 4, /* size (0 = byte, 1 = short, 2 = long) */
1012 64, /* bitsize */
1013 true, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_signed, /* complain_on_overflow */
1016 bfd_elf_generic_reloc, /* special_function */
1017 "R_MIPS_PC64", /* name */
1018 true, /* partial_inplace */
1019 MINUS_ONE, /* src_mask */
1020 MINUS_ONE, /* dst_mask */
1021 true); /* pcrel_offset */
1022
1023 /* 32 bit pc-relative. */
1024 static reloc_howto_type elf_mips_gnu_pcrel32 =
1025 HOWTO (R_MIPS_PC32, /* type */
1026 0, /* rightshift */
1027 2, /* size (0 = byte, 1 = short, 2 = long) */
1028 32, /* bitsize */
1029 true, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_signed, /* complain_on_overflow */
1032 bfd_elf_generic_reloc, /* special_function */
1033 "R_MIPS_PC32", /* name */
1034 true, /* partial_inplace */
1035 0xffffffff, /* src_mask */
1036 0xffffffff, /* dst_mask */
1037 true); /* pcrel_offset */
1038
1039 /* GNU extension to record C++ vtable hierarchy */
1040 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1041 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1042 0, /* rightshift */
1043 2, /* size (0 = byte, 1 = short, 2 = long) */
1044 0, /* bitsize */
1045 false, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_dont, /* complain_on_overflow */
1048 NULL, /* special_function */
1049 "R_MIPS_GNU_VTINHERIT", /* name */
1050 false, /* partial_inplace */
1051 0, /* src_mask */
1052 0, /* dst_mask */
1053 false); /* pcrel_offset */
1054
1055 /* GNU extension to record C++ vtable member usage */
1056 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1057 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1058 0, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 0, /* bitsize */
1061 false, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont, /* complain_on_overflow */
1064 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1065 "R_MIPS_GNU_VTENTRY", /* name */
1066 false, /* partial_inplace */
1067 0, /* src_mask */
1068 0, /* dst_mask */
1069 false); /* pcrel_offset */
1070
1071 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1072 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1073 the HI16. Here we just save the information we need; we do the
1074 actual relocation when we see the LO16. MIPS ELF requires that the
1075 LO16 immediately follow the HI16. As a GNU extension, we permit an
1076 arbitrary number of HI16 relocs to be associated with a single LO16
1077 reloc. This extension permits gcc to output the HI and LO relocs
1078 itself. */
1079
1080 struct mips_hi16
1081 {
1082 struct mips_hi16 *next;
1083 bfd_byte *addr;
1084 bfd_vma addend;
1085 };
1086
1087 /* FIXME: This should not be a static variable. */
1088
1089 static struct mips_hi16 *mips_hi16_list;
1090
1091 bfd_reloc_status_type
1092 _bfd_mips_elf_hi16_reloc (abfd,
1093 reloc_entry,
1094 symbol,
1095 data,
1096 input_section,
1097 output_bfd,
1098 error_message)
1099 bfd *abfd ATTRIBUTE_UNUSED;
1100 arelent *reloc_entry;
1101 asymbol *symbol;
1102 PTR data;
1103 asection *input_section;
1104 bfd *output_bfd;
1105 char **error_message;
1106 {
1107 bfd_reloc_status_type ret;
1108 bfd_vma relocation;
1109 struct mips_hi16 *n;
1110
1111 /* If we're relocating, and this an external symbol, we don't want
1112 to change anything. */
1113 if (output_bfd != (bfd *) NULL
1114 && (symbol->flags & BSF_SECTION_SYM) == 0
1115 && reloc_entry->addend == 0)
1116 {
1117 reloc_entry->address += input_section->output_offset;
1118 return bfd_reloc_ok;
1119 }
1120
1121 ret = bfd_reloc_ok;
1122
1123 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1124 {
1125 boolean relocateable;
1126 bfd_vma gp;
1127
1128 if (ret == bfd_reloc_undefined)
1129 abort ();
1130
1131 if (output_bfd != NULL)
1132 relocateable = true;
1133 else
1134 {
1135 relocateable = false;
1136 output_bfd = symbol->section->output_section->owner;
1137 }
1138
1139 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1140 error_message, &gp);
1141 if (ret != bfd_reloc_ok)
1142 return ret;
1143
1144 relocation = gp - reloc_entry->address;
1145 }
1146 else
1147 {
1148 if (bfd_is_und_section (symbol->section)
1149 && output_bfd == (bfd *) NULL)
1150 ret = bfd_reloc_undefined;
1151
1152 if (bfd_is_com_section (symbol->section))
1153 relocation = 0;
1154 else
1155 relocation = symbol->value;
1156 }
1157
1158 relocation += symbol->section->output_section->vma;
1159 relocation += symbol->section->output_offset;
1160 relocation += reloc_entry->addend;
1161
1162 if (reloc_entry->address > input_section->_cooked_size)
1163 return bfd_reloc_outofrange;
1164
1165 /* Save the information, and let LO16 do the actual relocation. */
1166 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1167 if (n == NULL)
1168 return bfd_reloc_outofrange;
1169 n->addr = (bfd_byte *) data + reloc_entry->address;
1170 n->addend = relocation;
1171 n->next = mips_hi16_list;
1172 mips_hi16_list = n;
1173
1174 if (output_bfd != (bfd *) NULL)
1175 reloc_entry->address += input_section->output_offset;
1176
1177 return ret;
1178 }
1179
1180 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1181 inplace relocation; this function exists in order to do the
1182 R_MIPS_HI16 relocation described above. */
1183
1184 bfd_reloc_status_type
1185 _bfd_mips_elf_lo16_reloc (abfd,
1186 reloc_entry,
1187 symbol,
1188 data,
1189 input_section,
1190 output_bfd,
1191 error_message)
1192 bfd *abfd;
1193 arelent *reloc_entry;
1194 asymbol *symbol;
1195 PTR data;
1196 asection *input_section;
1197 bfd *output_bfd;
1198 char **error_message;
1199 {
1200 arelent gp_disp_relent;
1201
1202 if (mips_hi16_list != NULL)
1203 {
1204 struct mips_hi16 *l;
1205
1206 l = mips_hi16_list;
1207 while (l != NULL)
1208 {
1209 unsigned long insn;
1210 unsigned long val;
1211 unsigned long vallo;
1212 struct mips_hi16 *next;
1213
1214 /* Do the HI16 relocation. Note that we actually don't need
1215 to know anything about the LO16 itself, except where to
1216 find the low 16 bits of the addend needed by the LO16. */
1217 insn = bfd_get_32 (abfd, l->addr);
1218 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1219 & 0xffff);
1220 val = ((insn & 0xffff) << 16) + vallo;
1221 val += l->addend;
1222
1223 /* The low order 16 bits are always treated as a signed
1224 value. Therefore, a negative value in the low order bits
1225 requires an adjustment in the high order bits. We need
1226 to make this adjustment in two ways: once for the bits we
1227 took from the data, and once for the bits we are putting
1228 back in to the data. */
1229 if ((vallo & 0x8000) != 0)
1230 val -= 0x10000;
1231 if ((val & 0x8000) != 0)
1232 val += 0x10000;
1233
1234 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1235 bfd_put_32 (abfd, insn, l->addr);
1236
1237 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1238 {
1239 gp_disp_relent = *reloc_entry;
1240 reloc_entry = &gp_disp_relent;
1241 reloc_entry->addend = l->addend;
1242 }
1243
1244 next = l->next;
1245 free (l);
1246 l = next;
1247 }
1248
1249 mips_hi16_list = NULL;
1250 }
1251 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1252 {
1253 bfd_reloc_status_type ret;
1254 bfd_vma gp, relocation;
1255
1256 /* FIXME: Does this case ever occur? */
1257
1258 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1259 if (ret != bfd_reloc_ok)
1260 return ret;
1261
1262 relocation = gp - reloc_entry->address;
1263 relocation += symbol->section->output_section->vma;
1264 relocation += symbol->section->output_offset;
1265 relocation += reloc_entry->addend;
1266
1267 if (reloc_entry->address > input_section->_cooked_size)
1268 return bfd_reloc_outofrange;
1269
1270 gp_disp_relent = *reloc_entry;
1271 reloc_entry = &gp_disp_relent;
1272 reloc_entry->addend = relocation - 4;
1273 }
1274
1275 /* Now do the LO16 reloc in the usual way. */
1276 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1277 input_section, output_bfd, error_message);
1278 }
1279
1280 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1281 table used for PIC code. If the symbol is an external symbol, the
1282 instruction is modified to contain the offset of the appropriate
1283 entry in the global offset table. If the symbol is a section
1284 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1285 addends are combined to form the real addend against the section
1286 symbol; the GOT16 is modified to contain the offset of an entry in
1287 the global offset table, and the LO16 is modified to offset it
1288 appropriately. Thus an offset larger than 16 bits requires a
1289 modified value in the global offset table.
1290
1291 This implementation suffices for the assembler, but the linker does
1292 not yet know how to create global offset tables. */
1293
1294 bfd_reloc_status_type
1295 _bfd_mips_elf_got16_reloc (abfd,
1296 reloc_entry,
1297 symbol,
1298 data,
1299 input_section,
1300 output_bfd,
1301 error_message)
1302 bfd *abfd;
1303 arelent *reloc_entry;
1304 asymbol *symbol;
1305 PTR data;
1306 asection *input_section;
1307 bfd *output_bfd;
1308 char **error_message;
1309 {
1310 /* If we're relocating, and this an external symbol, we don't want
1311 to change anything. */
1312 if (output_bfd != (bfd *) NULL
1313 && (symbol->flags & BSF_SECTION_SYM) == 0
1314 && reloc_entry->addend == 0)
1315 {
1316 reloc_entry->address += input_section->output_offset;
1317 return bfd_reloc_ok;
1318 }
1319
1320 /* If we're relocating, and this is a local symbol, we can handle it
1321 just like HI16. */
1322 if (output_bfd != (bfd *) NULL
1323 && (symbol->flags & BSF_SECTION_SYM) != 0)
1324 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1325 input_section, output_bfd, error_message);
1326
1327 abort ();
1328 }
1329
1330 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1331 dangerous relocation. */
1332
1333 static boolean
1334 mips_elf_assign_gp (output_bfd, pgp)
1335 bfd *output_bfd;
1336 bfd_vma *pgp;
1337 {
1338 unsigned int count;
1339 asymbol **sym;
1340 unsigned int i;
1341
1342 /* If we've already figured out what GP will be, just return it. */
1343 *pgp = _bfd_get_gp_value (output_bfd);
1344 if (*pgp)
1345 return true;
1346
1347 count = bfd_get_symcount (output_bfd);
1348 sym = bfd_get_outsymbols (output_bfd);
1349
1350 /* The linker script will have created a symbol named `_gp' with the
1351 appropriate value. */
1352 if (sym == (asymbol **) NULL)
1353 i = count;
1354 else
1355 {
1356 for (i = 0; i < count; i++, sym++)
1357 {
1358 register CONST char *name;
1359
1360 name = bfd_asymbol_name (*sym);
1361 if (*name == '_' && strcmp (name, "_gp") == 0)
1362 {
1363 *pgp = bfd_asymbol_value (*sym);
1364 _bfd_set_gp_value (output_bfd, *pgp);
1365 break;
1366 }
1367 }
1368 }
1369
1370 if (i >= count)
1371 {
1372 /* Only get the error once. */
1373 *pgp = 4;
1374 _bfd_set_gp_value (output_bfd, *pgp);
1375 return false;
1376 }
1377
1378 return true;
1379 }
1380
1381 /* We have to figure out the gp value, so that we can adjust the
1382 symbol value correctly. We look up the symbol _gp in the output
1383 BFD. If we can't find it, we're stuck. We cache it in the ELF
1384 target data. We don't need to adjust the symbol value for an
1385 external symbol if we are producing relocateable output. */
1386
1387 static bfd_reloc_status_type
1388 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1389 bfd *output_bfd;
1390 asymbol *symbol;
1391 boolean relocateable;
1392 char **error_message;
1393 bfd_vma *pgp;
1394 {
1395 if (bfd_is_und_section (symbol->section)
1396 && ! relocateable)
1397 {
1398 *pgp = 0;
1399 return bfd_reloc_undefined;
1400 }
1401
1402 *pgp = _bfd_get_gp_value (output_bfd);
1403 if (*pgp == 0
1404 && (! relocateable
1405 || (symbol->flags & BSF_SECTION_SYM) != 0))
1406 {
1407 if (relocateable)
1408 {
1409 /* Make up a value. */
1410 *pgp = symbol->section->output_section->vma + 0x4000;
1411 _bfd_set_gp_value (output_bfd, *pgp);
1412 }
1413 else if (!mips_elf_assign_gp (output_bfd, pgp))
1414 {
1415 *error_message =
1416 (char *) _("GP relative relocation when _gp not defined");
1417 return bfd_reloc_dangerous;
1418 }
1419 }
1420
1421 return bfd_reloc_ok;
1422 }
1423
1424 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1425 become the offset from the gp register. This function also handles
1426 R_MIPS_LITERAL relocations, although those can be handled more
1427 cleverly because the entries in the .lit8 and .lit4 sections can be
1428 merged. */
1429
1430 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1431 arelent *, asection *,
1432 boolean, PTR, bfd_vma));
1433
1434 bfd_reloc_status_type
1435 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1436 output_bfd, error_message)
1437 bfd *abfd;
1438 arelent *reloc_entry;
1439 asymbol *symbol;
1440 PTR data;
1441 asection *input_section;
1442 bfd *output_bfd;
1443 char **error_message;
1444 {
1445 boolean relocateable;
1446 bfd_reloc_status_type ret;
1447 bfd_vma gp;
1448
1449 /* If we're relocating, and this is an external symbol with no
1450 addend, we don't want to change anything. We will only have an
1451 addend if this is a newly created reloc, not read from an ELF
1452 file. */
1453 if (output_bfd != (bfd *) NULL
1454 && (symbol->flags & BSF_SECTION_SYM) == 0
1455 && reloc_entry->addend == 0)
1456 {
1457 reloc_entry->address += input_section->output_offset;
1458 return bfd_reloc_ok;
1459 }
1460
1461 if (output_bfd != (bfd *) NULL)
1462 relocateable = true;
1463 else
1464 {
1465 relocateable = false;
1466 output_bfd = symbol->section->output_section->owner;
1467 }
1468
1469 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1470 &gp);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1475 relocateable, data, gp);
1476 }
1477
1478 static bfd_reloc_status_type
1479 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1480 gp)
1481 bfd *abfd;
1482 asymbol *symbol;
1483 arelent *reloc_entry;
1484 asection *input_section;
1485 boolean relocateable;
1486 PTR data;
1487 bfd_vma gp;
1488 {
1489 bfd_vma relocation;
1490 unsigned long insn;
1491 unsigned long val;
1492
1493 if (bfd_is_com_section (symbol->section))
1494 relocation = 0;
1495 else
1496 relocation = symbol->value;
1497
1498 relocation += symbol->section->output_section->vma;
1499 relocation += symbol->section->output_offset;
1500
1501 if (reloc_entry->address > input_section->_cooked_size)
1502 return bfd_reloc_outofrange;
1503
1504 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1505
1506 /* Set val to the offset into the section or symbol. */
1507 if (reloc_entry->howto->src_mask == 0)
1508 {
1509 /* This case occurs with the 64-bit MIPS ELF ABI. */
1510 val = reloc_entry->addend;
1511 }
1512 else
1513 {
1514 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1515 if (val & 0x8000)
1516 val -= 0x10000;
1517 }
1518
1519 /* Adjust val for the final section location and GP value. If we
1520 are producing relocateable output, we don't want to do this for
1521 an external symbol. */
1522 if (! relocateable
1523 || (symbol->flags & BSF_SECTION_SYM) != 0)
1524 val += relocation - gp;
1525
1526 insn = (insn &~ 0xffff) | (val & 0xffff);
1527 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1528
1529 if (relocateable)
1530 reloc_entry->address += input_section->output_offset;
1531
1532 /* Make sure it fit in 16 bits. */
1533 if ((long) val >= 0x8000 || (long) val < -0x8000)
1534 return bfd_reloc_overflow;
1535
1536 return bfd_reloc_ok;
1537 }
1538
1539 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1540 from the gp register? XXX */
1541
1542 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1543 arelent *, asection *,
1544 boolean, PTR, bfd_vma));
1545
1546 bfd_reloc_status_type
1547 _bfd_mips_elf_gprel32_reloc (abfd,
1548 reloc_entry,
1549 symbol,
1550 data,
1551 input_section,
1552 output_bfd,
1553 error_message)
1554 bfd *abfd;
1555 arelent *reloc_entry;
1556 asymbol *symbol;
1557 PTR data;
1558 asection *input_section;
1559 bfd *output_bfd;
1560 char **error_message;
1561 {
1562 boolean relocateable;
1563 bfd_reloc_status_type ret;
1564 bfd_vma gp;
1565
1566 /* If we're relocating, and this is an external symbol with no
1567 addend, we don't want to change anything. We will only have an
1568 addend if this is a newly created reloc, not read from an ELF
1569 file. */
1570 if (output_bfd != (bfd *) NULL
1571 && (symbol->flags & BSF_SECTION_SYM) == 0
1572 && reloc_entry->addend == 0)
1573 {
1574 *error_message = (char *)
1575 _("32bits gp relative relocation occurs for an external symbol");
1576 return bfd_reloc_outofrange;
1577 }
1578
1579 if (output_bfd != (bfd *) NULL)
1580 {
1581 relocateable = true;
1582 gp = _bfd_get_gp_value (output_bfd);
1583 }
1584 else
1585 {
1586 relocateable = false;
1587 output_bfd = symbol->section->output_section->owner;
1588
1589 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1590 error_message, &gp);
1591 if (ret != bfd_reloc_ok)
1592 return ret;
1593 }
1594
1595 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1596 relocateable, data, gp);
1597 }
1598
1599 static bfd_reloc_status_type
1600 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1601 gp)
1602 bfd *abfd;
1603 asymbol *symbol;
1604 arelent *reloc_entry;
1605 asection *input_section;
1606 boolean relocateable;
1607 PTR data;
1608 bfd_vma gp;
1609 {
1610 bfd_vma relocation;
1611 unsigned long val;
1612
1613 if (bfd_is_com_section (symbol->section))
1614 relocation = 0;
1615 else
1616 relocation = symbol->value;
1617
1618 relocation += symbol->section->output_section->vma;
1619 relocation += symbol->section->output_offset;
1620
1621 if (reloc_entry->address > input_section->_cooked_size)
1622 return bfd_reloc_outofrange;
1623
1624 if (reloc_entry->howto->src_mask == 0)
1625 {
1626 /* This case arises with the 64-bit MIPS ELF ABI. */
1627 val = 0;
1628 }
1629 else
1630 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1631
1632 /* Set val to the offset into the section or symbol. */
1633 val += reloc_entry->addend;
1634
1635 /* Adjust val for the final section location and GP value. If we
1636 are producing relocateable output, we don't want to do this for
1637 an external symbol. */
1638 if (! relocateable
1639 || (symbol->flags & BSF_SECTION_SYM) != 0)
1640 val += relocation - gp;
1641
1642 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1643
1644 if (relocateable)
1645 reloc_entry->address += input_section->output_offset;
1646
1647 return bfd_reloc_ok;
1648 }
1649
1650 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1651 generated when addreses are 64 bits. The upper 32 bits are a simle
1652 sign extension. */
1653
1654 static bfd_reloc_status_type
1655 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1656 output_bfd, error_message)
1657 bfd *abfd;
1658 arelent *reloc_entry;
1659 asymbol *symbol;
1660 PTR data;
1661 asection *input_section;
1662 bfd *output_bfd;
1663 char **error_message;
1664 {
1665 bfd_reloc_status_type r;
1666 arelent reloc32;
1667 unsigned long val;
1668 bfd_size_type addr;
1669
1670 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1671 input_section, output_bfd, error_message);
1672 if (r != bfd_reloc_continue)
1673 return r;
1674
1675 /* Do a normal 32 bit relocation on the lower 32 bits. */
1676 reloc32 = *reloc_entry;
1677 if (bfd_big_endian (abfd))
1678 reloc32.address += 4;
1679 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1680 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1681 output_bfd, error_message);
1682
1683 /* Sign extend into the upper 32 bits. */
1684 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1685 if ((val & 0x80000000) != 0)
1686 val = 0xffffffff;
1687 else
1688 val = 0;
1689 addr = reloc_entry->address;
1690 if (bfd_little_endian (abfd))
1691 addr += 4;
1692 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1693
1694 return r;
1695 }
1696
1697 /* Handle a mips16 jump. */
1698
1699 static bfd_reloc_status_type
1700 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1701 output_bfd, error_message)
1702 bfd *abfd ATTRIBUTE_UNUSED;
1703 arelent *reloc_entry;
1704 asymbol *symbol;
1705 PTR data ATTRIBUTE_UNUSED;
1706 asection *input_section;
1707 bfd *output_bfd;
1708 char **error_message ATTRIBUTE_UNUSED;
1709 {
1710 if (output_bfd != (bfd *) NULL
1711 && (symbol->flags & BSF_SECTION_SYM) == 0
1712 && reloc_entry->addend == 0)
1713 {
1714 reloc_entry->address += input_section->output_offset;
1715 return bfd_reloc_ok;
1716 }
1717
1718 /* FIXME. */
1719 {
1720 static boolean warned;
1721
1722 if (! warned)
1723 (*_bfd_error_handler)
1724 (_("Linking mips16 objects into %s format is not supported"),
1725 bfd_get_target (input_section->output_section->owner));
1726 warned = true;
1727 }
1728
1729 return bfd_reloc_undefined;
1730 }
1731
1732 /* Handle a mips16 GP relative reloc. */
1733
1734 static bfd_reloc_status_type
1735 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1736 output_bfd, error_message)
1737 bfd *abfd;
1738 arelent *reloc_entry;
1739 asymbol *symbol;
1740 PTR data;
1741 asection *input_section;
1742 bfd *output_bfd;
1743 char **error_message;
1744 {
1745 boolean relocateable;
1746 bfd_reloc_status_type ret;
1747 bfd_vma gp;
1748 unsigned short extend, insn;
1749 unsigned long final;
1750
1751 /* If we're relocating, and this is an external symbol with no
1752 addend, we don't want to change anything. We will only have an
1753 addend if this is a newly created reloc, not read from an ELF
1754 file. */
1755 if (output_bfd != NULL
1756 && (symbol->flags & BSF_SECTION_SYM) == 0
1757 && reloc_entry->addend == 0)
1758 {
1759 reloc_entry->address += input_section->output_offset;
1760 return bfd_reloc_ok;
1761 }
1762
1763 if (output_bfd != NULL)
1764 relocateable = true;
1765 else
1766 {
1767 relocateable = false;
1768 output_bfd = symbol->section->output_section->owner;
1769 }
1770
1771 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1772 &gp);
1773 if (ret != bfd_reloc_ok)
1774 return ret;
1775
1776 if (reloc_entry->address > input_section->_cooked_size)
1777 return bfd_reloc_outofrange;
1778
1779 /* Pick up the mips16 extend instruction and the real instruction. */
1780 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1781 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1782
1783 /* Stuff the current addend back as a 32 bit value, do the usual
1784 relocation, and then clean up. */
1785 bfd_put_32 (abfd,
1786 (((extend & 0x1f) << 11)
1787 | (extend & 0x7e0)
1788 | (insn & 0x1f)),
1789 (bfd_byte *) data + reloc_entry->address);
1790
1791 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1792 relocateable, data, gp);
1793
1794 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1795 bfd_put_16 (abfd,
1796 ((extend & 0xf800)
1797 | ((final >> 11) & 0x1f)
1798 | (final & 0x7e0)),
1799 (bfd_byte *) data + reloc_entry->address);
1800 bfd_put_16 (abfd,
1801 ((insn & 0xffe0)
1802 | (final & 0x1f)),
1803 (bfd_byte *) data + reloc_entry->address + 2);
1804
1805 return ret;
1806 }
1807
1808 /* Return the ISA for a MIPS e_flags value. */
1809
1810 static INLINE int
1811 elf_mips_isa (flags)
1812 flagword flags;
1813 {
1814 switch (flags & EF_MIPS_ARCH)
1815 {
1816 case E_MIPS_ARCH_1:
1817 return 1;
1818 case E_MIPS_ARCH_2:
1819 return 2;
1820 case E_MIPS_ARCH_3:
1821 return 3;
1822 case E_MIPS_ARCH_4:
1823 return 4;
1824 }
1825 return 4;
1826 }
1827
1828 /* Return the MACH for a MIPS e_flags value. */
1829
1830 static INLINE int
1831 elf_mips_mach (flags)
1832 flagword flags;
1833 {
1834 switch (flags & EF_MIPS_MACH)
1835 {
1836 case E_MIPS_MACH_3900:
1837 return bfd_mach_mips3900;
1838
1839 case E_MIPS_MACH_4010:
1840 return bfd_mach_mips4010;
1841
1842 case E_MIPS_MACH_4100:
1843 return bfd_mach_mips4100;
1844
1845 case E_MIPS_MACH_4111:
1846 return bfd_mach_mips4111;
1847
1848 case E_MIPS_MACH_4650:
1849 return bfd_mach_mips4650;
1850
1851 case E_MIPS_MACH_MIPS32:
1852 return bfd_mach_mips4K;
1853
1854 default:
1855 switch (flags & EF_MIPS_ARCH)
1856 {
1857 default:
1858 case E_MIPS_ARCH_1:
1859 return bfd_mach_mips3000;
1860 break;
1861
1862 case E_MIPS_ARCH_2:
1863 return bfd_mach_mips6000;
1864 break;
1865
1866 case E_MIPS_ARCH_3:
1867 return bfd_mach_mips4000;
1868 break;
1869
1870 case E_MIPS_ARCH_4:
1871 return bfd_mach_mips8000;
1872 break;
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
1879 /* Return printable name for ABI. */
1880
1881 static INLINE char*
1882 elf_mips_abi_name (abfd)
1883 bfd *abfd;
1884 {
1885 flagword flags;
1886
1887 if (ABI_N32_P (abfd))
1888 return "N32";
1889 else if (ABI_64_P (abfd))
1890 return "64";
1891
1892 flags = elf_elfheader (abfd)->e_flags;
1893 switch (flags & EF_MIPS_ABI)
1894 {
1895 case 0:
1896 return "none";
1897 case E_MIPS_ABI_O32:
1898 return "O32";
1899 case E_MIPS_ABI_O64:
1900 return "O64";
1901 case E_MIPS_ABI_EABI32:
1902 return "EABI32";
1903 case E_MIPS_ABI_EABI64:
1904 return "EABI64";
1905 default:
1906 return "unknown abi";
1907 }
1908 }
1909
1910 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1911
1912 struct elf_reloc_map {
1913 bfd_reloc_code_real_type bfd_reloc_val;
1914 enum elf_mips_reloc_type elf_reloc_val;
1915 };
1916
1917 static CONST struct elf_reloc_map mips_reloc_map[] =
1918 {
1919 { BFD_RELOC_NONE, R_MIPS_NONE, },
1920 { BFD_RELOC_16, R_MIPS_16 },
1921 { BFD_RELOC_32, R_MIPS_32 },
1922 { BFD_RELOC_64, R_MIPS_64 },
1923 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1924 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1925 { BFD_RELOC_LO16, R_MIPS_LO16 },
1926 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1927 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1928 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1929 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1930 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1931 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1932 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1933 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1934 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1935 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1936 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1937 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1938 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1939 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1940 };
1941
1942 /* Given a BFD reloc type, return a howto structure. */
1943
1944 static reloc_howto_type *
1945 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1946 bfd *abfd;
1947 bfd_reloc_code_real_type code;
1948 {
1949 unsigned int i;
1950
1951 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1952 {
1953 if (mips_reloc_map[i].bfd_reloc_val == code)
1954 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1955 }
1956
1957 switch (code)
1958 {
1959 default:
1960 bfd_set_error (bfd_error_bad_value);
1961 return NULL;
1962
1963 case BFD_RELOC_CTOR:
1964 /* We need to handle BFD_RELOC_CTOR specially.
1965 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1966 size of addresses on this architecture. */
1967 if (bfd_arch_bits_per_address (abfd) == 32)
1968 return &elf_mips_howto_table[(int) R_MIPS_32];
1969 else
1970 return &elf_mips_ctor64_howto;
1971
1972 case BFD_RELOC_MIPS16_JMP:
1973 return &elf_mips16_jump_howto;
1974 case BFD_RELOC_MIPS16_GPREL:
1975 return &elf_mips16_gprel_howto;
1976 case BFD_RELOC_VTABLE_INHERIT:
1977 return &elf_mips_gnu_vtinherit_howto;
1978 case BFD_RELOC_VTABLE_ENTRY:
1979 return &elf_mips_gnu_vtentry_howto;
1980 case BFD_RELOC_PCREL_HI16_S:
1981 return &elf_mips_gnu_rel_hi16;
1982 case BFD_RELOC_PCREL_LO16:
1983 return &elf_mips_gnu_rel_lo16;
1984 case BFD_RELOC_16_PCREL_S2:
1985 return &elf_mips_gnu_rel16_s2;
1986 case BFD_RELOC_64_PCREL:
1987 return &elf_mips_gnu_pcrel64;
1988 case BFD_RELOC_32_PCREL:
1989 return &elf_mips_gnu_pcrel32;
1990 }
1991 }
1992
1993 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1994
1995 static reloc_howto_type *
1996 mips_rtype_to_howto (r_type)
1997 unsigned int r_type;
1998 {
1999 switch (r_type)
2000 {
2001 case R_MIPS16_26:
2002 return &elf_mips16_jump_howto;
2003 break;
2004 case R_MIPS16_GPREL:
2005 return &elf_mips16_gprel_howto;
2006 break;
2007 case R_MIPS_GNU_VTINHERIT:
2008 return &elf_mips_gnu_vtinherit_howto;
2009 break;
2010 case R_MIPS_GNU_VTENTRY:
2011 return &elf_mips_gnu_vtentry_howto;
2012 break;
2013 case R_MIPS_GNU_REL_HI16:
2014 return &elf_mips_gnu_rel_hi16;
2015 break;
2016 case R_MIPS_GNU_REL_LO16:
2017 return &elf_mips_gnu_rel_lo16;
2018 break;
2019 case R_MIPS_GNU_REL16_S2:
2020 return &elf_mips_gnu_rel16_s2;
2021 break;
2022 case R_MIPS_PC64:
2023 return &elf_mips_gnu_pcrel64;
2024 break;
2025 case R_MIPS_PC32:
2026 return &elf_mips_gnu_pcrel32;
2027 break;
2028
2029 default:
2030 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2031 return &elf_mips_howto_table[r_type];
2032 break;
2033 }
2034 }
2035
2036 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2037
2038 static void
2039 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2040 bfd *abfd;
2041 arelent *cache_ptr;
2042 Elf32_Internal_Rel *dst;
2043 {
2044 unsigned int r_type;
2045
2046 r_type = ELF32_R_TYPE (dst->r_info);
2047 cache_ptr->howto = mips_rtype_to_howto (r_type);
2048
2049 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2050 value for the object file. We get the addend now, rather than
2051 when we do the relocation, because the symbol manipulations done
2052 by the linker may cause us to lose track of the input BFD. */
2053 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2054 && (r_type == (unsigned int) R_MIPS_GPREL16
2055 || r_type == (unsigned int) R_MIPS_LITERAL))
2056 cache_ptr->addend = elf_gp (abfd);
2057 }
2058
2059 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2060
2061 static void
2062 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2063 bfd *abfd;
2064 arelent *cache_ptr;
2065 Elf32_Internal_Rela *dst;
2066 {
2067 /* Since an Elf32_Internal_Rel is an initial prefix of an
2068 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2069 above. */
2070 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2071
2072 /* If we ever need to do any extra processing with dst->r_addend
2073 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2074 }
2075 \f
2076 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2077 routines swap this structure in and out. They are used outside of
2078 BFD, so they are globally visible. */
2079
2080 void
2081 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2082 bfd *abfd;
2083 const Elf32_External_RegInfo *ex;
2084 Elf32_RegInfo *in;
2085 {
2086 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2087 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2088 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2089 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2090 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2091 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2092 }
2093
2094 void
2095 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2096 bfd *abfd;
2097 const Elf32_RegInfo *in;
2098 Elf32_External_RegInfo *ex;
2099 {
2100 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2101 (bfd_byte *) ex->ri_gprmask);
2102 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2103 (bfd_byte *) ex->ri_cprmask[0]);
2104 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2105 (bfd_byte *) ex->ri_cprmask[1]);
2106 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2107 (bfd_byte *) ex->ri_cprmask[2]);
2108 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2109 (bfd_byte *) ex->ri_cprmask[3]);
2110 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2111 (bfd_byte *) ex->ri_gp_value);
2112 }
2113
2114 /* In the 64 bit ABI, the .MIPS.options section holds register
2115 information in an Elf64_Reginfo structure. These routines swap
2116 them in and out. They are globally visible because they are used
2117 outside of BFD. These routines are here so that gas can call them
2118 without worrying about whether the 64 bit ABI has been included. */
2119
2120 void
2121 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2122 bfd *abfd;
2123 const Elf64_External_RegInfo *ex;
2124 Elf64_Internal_RegInfo *in;
2125 {
2126 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2127 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2128 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2129 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2130 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2131 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2132 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2133 }
2134
2135 void
2136 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2137 bfd *abfd;
2138 const Elf64_Internal_RegInfo *in;
2139 Elf64_External_RegInfo *ex;
2140 {
2141 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2142 (bfd_byte *) ex->ri_gprmask);
2143 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2144 (bfd_byte *) ex->ri_pad);
2145 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2146 (bfd_byte *) ex->ri_cprmask[0]);
2147 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2148 (bfd_byte *) ex->ri_cprmask[1]);
2149 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2150 (bfd_byte *) ex->ri_cprmask[2]);
2151 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2152 (bfd_byte *) ex->ri_cprmask[3]);
2153 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2154 (bfd_byte *) ex->ri_gp_value);
2155 }
2156
2157 /* Swap an entry in a .gptab section. Note that these routines rely
2158 on the equivalence of the two elements of the union. */
2159
2160 static void
2161 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2162 bfd *abfd;
2163 const Elf32_External_gptab *ex;
2164 Elf32_gptab *in;
2165 {
2166 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2167 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2168 }
2169
2170 static void
2171 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2172 bfd *abfd;
2173 const Elf32_gptab *in;
2174 Elf32_External_gptab *ex;
2175 {
2176 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2177 ex->gt_entry.gt_g_value);
2178 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2179 ex->gt_entry.gt_bytes);
2180 }
2181
2182 static void
2183 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2184 bfd *abfd;
2185 const Elf32_compact_rel *in;
2186 Elf32_External_compact_rel *ex;
2187 {
2188 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2189 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2190 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2191 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2192 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2193 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2194 }
2195
2196 static void
2197 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2198 bfd *abfd;
2199 const Elf32_crinfo *in;
2200 Elf32_External_crinfo *ex;
2201 {
2202 unsigned long l;
2203
2204 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2205 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2206 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2207 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2208 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2209 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2210 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2211 }
2212
2213 /* Swap in an options header. */
2214
2215 void
2216 bfd_mips_elf_swap_options_in (abfd, ex, in)
2217 bfd *abfd;
2218 const Elf_External_Options *ex;
2219 Elf_Internal_Options *in;
2220 {
2221 in->kind = bfd_h_get_8 (abfd, ex->kind);
2222 in->size = bfd_h_get_8 (abfd, ex->size);
2223 in->section = bfd_h_get_16 (abfd, ex->section);
2224 in->info = bfd_h_get_32 (abfd, ex->info);
2225 }
2226
2227 /* Swap out an options header. */
2228
2229 void
2230 bfd_mips_elf_swap_options_out (abfd, in, ex)
2231 bfd *abfd;
2232 const Elf_Internal_Options *in;
2233 Elf_External_Options *ex;
2234 {
2235 bfd_h_put_8 (abfd, in->kind, ex->kind);
2236 bfd_h_put_8 (abfd, in->size, ex->size);
2237 bfd_h_put_16 (abfd, in->section, ex->section);
2238 bfd_h_put_32 (abfd, in->info, ex->info);
2239 }
2240 #if 0
2241 /* Swap in an MSYM entry. */
2242
2243 static void
2244 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2245 bfd *abfd;
2246 const Elf32_External_Msym *ex;
2247 Elf32_Internal_Msym *in;
2248 {
2249 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2250 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2251 }
2252 #endif
2253 /* Swap out an MSYM entry. */
2254
2255 static void
2256 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2257 bfd *abfd;
2258 const Elf32_Internal_Msym *in;
2259 Elf32_External_Msym *ex;
2260 {
2261 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2262 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2263 }
2264
2265 \f
2266 /* Determine whether a symbol is global for the purposes of splitting
2267 the symbol table into global symbols and local symbols. At least
2268 on Irix 5, this split must be between section symbols and all other
2269 symbols. On most ELF targets the split is between static symbols
2270 and externally visible symbols. */
2271
2272 /*ARGSUSED*/
2273 static boolean
2274 mips_elf_sym_is_global (abfd, sym)
2275 bfd *abfd ATTRIBUTE_UNUSED;
2276 asymbol *sym;
2277 {
2278 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2279 }
2280 \f
2281 /* Set the right machine number for a MIPS ELF file. This is used for
2282 both the 32-bit and the 64-bit ABI. */
2283
2284 boolean
2285 _bfd_mips_elf_object_p (abfd)
2286 bfd *abfd;
2287 {
2288 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2289 sorted correctly such that local symbols precede global symbols,
2290 and the sh_info field in the symbol table is not always right. */
2291 elf_bad_symtab (abfd) = true;
2292
2293 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2294 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2295 return true;
2296 }
2297
2298 /* The final processing done just before writing out a MIPS ELF object
2299 file. This gets the MIPS architecture right based on the machine
2300 number. This is used by both the 32-bit and the 64-bit ABI. */
2301
2302 /*ARGSUSED*/
2303 void
2304 _bfd_mips_elf_final_write_processing (abfd, linker)
2305 bfd *abfd;
2306 boolean linker ATTRIBUTE_UNUSED;
2307 {
2308 unsigned long val;
2309 unsigned int i;
2310 Elf_Internal_Shdr **hdrpp;
2311 const char *name;
2312 asection *sec;
2313
2314 switch (bfd_get_mach (abfd))
2315 {
2316 default:
2317 case bfd_mach_mips3000:
2318 val = E_MIPS_ARCH_1;
2319 break;
2320
2321 case bfd_mach_mips3900:
2322 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2323 break;
2324
2325 case bfd_mach_mips6000:
2326 val = E_MIPS_ARCH_2;
2327 break;
2328
2329 case bfd_mach_mips4000:
2330 case bfd_mach_mips4300:
2331 val = E_MIPS_ARCH_3;
2332 break;
2333
2334 case bfd_mach_mips4010:
2335 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2336 break;
2337
2338 case bfd_mach_mips4100:
2339 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2340 break;
2341
2342 case bfd_mach_mips4111:
2343 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2344 break;
2345
2346 case bfd_mach_mips4650:
2347 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2348 break;
2349
2350 case bfd_mach_mips8000:
2351 val = E_MIPS_ARCH_4;
2352 break;
2353
2354 case bfd_mach_mips4K:
2355 val = E_MIPS_ARCH_2 | E_MIPS_MACH_MIPS32;
2356 break;
2357 }
2358
2359 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2360 elf_elfheader (abfd)->e_flags |= val;
2361
2362 /* Set the sh_info field for .gptab sections and other appropriate
2363 info for each special section. */
2364 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2365 i < elf_elfheader (abfd)->e_shnum;
2366 i++, hdrpp++)
2367 {
2368 switch ((*hdrpp)->sh_type)
2369 {
2370 case SHT_MIPS_MSYM:
2371 case SHT_MIPS_LIBLIST:
2372 sec = bfd_get_section_by_name (abfd, ".dynstr");
2373 if (sec != NULL)
2374 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2375 break;
2376
2377 case SHT_MIPS_GPTAB:
2378 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2379 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2380 BFD_ASSERT (name != NULL
2381 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2382 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2383 BFD_ASSERT (sec != NULL);
2384 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2385 break;
2386
2387 case SHT_MIPS_CONTENT:
2388 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2389 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2390 BFD_ASSERT (name != NULL
2391 && strncmp (name, ".MIPS.content",
2392 sizeof ".MIPS.content" - 1) == 0);
2393 sec = bfd_get_section_by_name (abfd,
2394 name + sizeof ".MIPS.content" - 1);
2395 BFD_ASSERT (sec != NULL);
2396 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2397 break;
2398
2399 case SHT_MIPS_SYMBOL_LIB:
2400 sec = bfd_get_section_by_name (abfd, ".dynsym");
2401 if (sec != NULL)
2402 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2403 sec = bfd_get_section_by_name (abfd, ".liblist");
2404 if (sec != NULL)
2405 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2406 break;
2407
2408 case SHT_MIPS_EVENTS:
2409 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2410 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2411 BFD_ASSERT (name != NULL);
2412 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2413 sec = bfd_get_section_by_name (abfd,
2414 name + sizeof ".MIPS.events" - 1);
2415 else
2416 {
2417 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2418 sizeof ".MIPS.post_rel" - 1) == 0);
2419 sec = bfd_get_section_by_name (abfd,
2420 (name
2421 + sizeof ".MIPS.post_rel" - 1));
2422 }
2423 BFD_ASSERT (sec != NULL);
2424 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2425 break;
2426
2427 }
2428 }
2429 }
2430 \f
2431 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2432
2433 boolean
2434 _bfd_mips_elf_set_private_flags (abfd, flags)
2435 bfd *abfd;
2436 flagword flags;
2437 {
2438 BFD_ASSERT (!elf_flags_init (abfd)
2439 || elf_elfheader (abfd)->e_flags == flags);
2440
2441 elf_elfheader (abfd)->e_flags = flags;
2442 elf_flags_init (abfd) = true;
2443 return true;
2444 }
2445
2446 /* Copy backend specific data from one object module to another */
2447
2448 boolean
2449 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2450 bfd *ibfd;
2451 bfd *obfd;
2452 {
2453 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2454 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2455 return true;
2456
2457 BFD_ASSERT (!elf_flags_init (obfd)
2458 || (elf_elfheader (obfd)->e_flags
2459 == elf_elfheader (ibfd)->e_flags));
2460
2461 elf_gp (obfd) = elf_gp (ibfd);
2462 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2463 elf_flags_init (obfd) = true;
2464 return true;
2465 }
2466
2467 /* Merge backend specific data from an object file to the output
2468 object file when linking. */
2469
2470 boolean
2471 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2472 bfd *ibfd;
2473 bfd *obfd;
2474 {
2475 flagword old_flags;
2476 flagword new_flags;
2477 boolean ok;
2478
2479 /* Check if we have the same endianess */
2480 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2481 return false;
2482
2483 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2484 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2485 return true;
2486
2487 new_flags = elf_elfheader (ibfd)->e_flags;
2488 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2489 old_flags = elf_elfheader (obfd)->e_flags;
2490
2491 if (! elf_flags_init (obfd))
2492 {
2493 elf_flags_init (obfd) = true;
2494 elf_elfheader (obfd)->e_flags = new_flags;
2495 elf_elfheader (obfd)->e_ident[EI_CLASS]
2496 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2497
2498 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2499 && bfd_get_arch_info (obfd)->the_default)
2500 {
2501 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2502 bfd_get_mach (ibfd)))
2503 return false;
2504 }
2505
2506 return true;
2507 }
2508
2509 /* Check flag compatibility. */
2510
2511 new_flags &= ~EF_MIPS_NOREORDER;
2512 old_flags &= ~EF_MIPS_NOREORDER;
2513
2514 if (new_flags == old_flags)
2515 return true;
2516
2517 ok = true;
2518
2519 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2520 {
2521 new_flags &= ~EF_MIPS_PIC;
2522 old_flags &= ~EF_MIPS_PIC;
2523 (*_bfd_error_handler)
2524 (_("%s: linking PIC files with non-PIC files"),
2525 bfd_get_filename (ibfd));
2526 ok = false;
2527 }
2528
2529 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2530 {
2531 new_flags &= ~EF_MIPS_CPIC;
2532 old_flags &= ~EF_MIPS_CPIC;
2533 (*_bfd_error_handler)
2534 (_("%s: linking abicalls files with non-abicalls files"),
2535 bfd_get_filename (ibfd));
2536 ok = false;
2537 }
2538
2539 /* Compare the ISA's. */
2540 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2541 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2542 {
2543 int new_mach = new_flags & EF_MIPS_MACH;
2544 int old_mach = old_flags & EF_MIPS_MACH;
2545 int new_isa = elf_mips_isa (new_flags);
2546 int old_isa = elf_mips_isa (old_flags);
2547
2548 /* If either has no machine specified, just compare the general isa's.
2549 Some combinations of machines are ok, if the isa's match. */
2550 if (! new_mach
2551 || ! old_mach
2552 || new_mach == old_mach
2553 )
2554 {
2555 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2556 and -mips4 code. They will normally use the same data sizes and
2557 calling conventions. */
2558
2559 if ((new_isa == 1 || new_isa == 2)
2560 ? (old_isa != 1 && old_isa != 2)
2561 : (old_isa == 1 || old_isa == 2))
2562 {
2563 (*_bfd_error_handler)
2564 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2565 bfd_get_filename (ibfd), new_isa, old_isa);
2566 ok = false;
2567 }
2568 }
2569
2570 else
2571 {
2572 (*_bfd_error_handler)
2573 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2574 bfd_get_filename (ibfd),
2575 elf_mips_mach (new_flags),
2576 elf_mips_mach (old_flags));
2577 ok = false;
2578 }
2579
2580 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2581 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2582 }
2583
2584 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2585 does set EI_CLASS differently from any 32-bit ABI. */
2586 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2587 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2588 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2589 {
2590 /* Only error if both are set (to different values). */
2591 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2592 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2593 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2594 {
2595 (*_bfd_error_handler)
2596 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2597 bfd_get_filename (ibfd),
2598 elf_mips_abi_name (ibfd),
2599 elf_mips_abi_name (obfd));
2600 ok = false;
2601 }
2602 new_flags &= ~EF_MIPS_ABI;
2603 old_flags &= ~EF_MIPS_ABI;
2604 }
2605
2606 /* Warn about any other mismatches */
2607 if (new_flags != old_flags)
2608 {
2609 (*_bfd_error_handler)
2610 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2611 bfd_get_filename (ibfd), (unsigned long) new_flags,
2612 (unsigned long) old_flags);
2613 ok = false;
2614 }
2615
2616 if (! ok)
2617 {
2618 bfd_set_error (bfd_error_bad_value);
2619 return false;
2620 }
2621
2622 return true;
2623 }
2624 \f
2625 boolean
2626 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2627 bfd *abfd;
2628 PTR ptr;
2629 {
2630 FILE *file = (FILE *) ptr;
2631
2632 BFD_ASSERT (abfd != NULL && ptr != NULL);
2633
2634 /* Print normal ELF private data. */
2635 _bfd_elf_print_private_bfd_data (abfd, ptr);
2636
2637 /* xgettext:c-format */
2638 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2639
2640 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2641 fprintf (file, _ (" [abi=O32]"));
2642 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2643 fprintf (file, _ (" [abi=O64]"));
2644 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2645 fprintf (file, _ (" [abi=EABI32]"));
2646 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2647 fprintf (file, _ (" [abi=EABI64]"));
2648 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2649 fprintf (file, _ (" [abi unknown]"));
2650 else if (ABI_N32_P (abfd))
2651 fprintf (file, _ (" [abi=N32]"));
2652 else if (ABI_64_P (abfd))
2653 fprintf (file, _ (" [abi=64]"));
2654 else
2655 fprintf (file, _ (" [no abi set]"));
2656
2657 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2658 fprintf (file, _ (" [mips1]"));
2659 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2660 fprintf (file, _ (" [mips2]"));
2661 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2662 fprintf (file, _ (" [mips3]"));
2663 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2664 fprintf (file, _ (" [mips4]"));
2665 else
2666 fprintf (file, _ (" [unknown ISA]"));
2667
2668 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2669 fprintf (file, _ (" [32bitmode]"));
2670 else
2671 fprintf (file, _ (" [not 32bitmode]"));
2672
2673 fputc ('\n', file);
2674
2675 return true;
2676 }
2677 \f
2678 /* Handle a MIPS specific section when reading an object file. This
2679 is called when elfcode.h finds a section with an unknown type.
2680 This routine supports both the 32-bit and 64-bit ELF ABI.
2681
2682 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2683 how to. */
2684
2685 boolean
2686 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2687 bfd *abfd;
2688 Elf_Internal_Shdr *hdr;
2689 char *name;
2690 {
2691 flagword flags = 0;
2692
2693 /* There ought to be a place to keep ELF backend specific flags, but
2694 at the moment there isn't one. We just keep track of the
2695 sections by their name, instead. Fortunately, the ABI gives
2696 suggested names for all the MIPS specific sections, so we will
2697 probably get away with this. */
2698 switch (hdr->sh_type)
2699 {
2700 case SHT_MIPS_LIBLIST:
2701 if (strcmp (name, ".liblist") != 0)
2702 return false;
2703 break;
2704 case SHT_MIPS_MSYM:
2705 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2706 return false;
2707 break;
2708 case SHT_MIPS_CONFLICT:
2709 if (strcmp (name, ".conflict") != 0)
2710 return false;
2711 break;
2712 case SHT_MIPS_GPTAB:
2713 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2714 return false;
2715 break;
2716 case SHT_MIPS_UCODE:
2717 if (strcmp (name, ".ucode") != 0)
2718 return false;
2719 break;
2720 case SHT_MIPS_DEBUG:
2721 if (strcmp (name, ".mdebug") != 0)
2722 return false;
2723 flags = SEC_DEBUGGING;
2724 break;
2725 case SHT_MIPS_REGINFO:
2726 if (strcmp (name, ".reginfo") != 0
2727 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2728 return false;
2729 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2730 break;
2731 case SHT_MIPS_IFACE:
2732 if (strcmp (name, ".MIPS.interfaces") != 0)
2733 return false;
2734 break;
2735 case SHT_MIPS_CONTENT:
2736 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2737 return false;
2738 break;
2739 case SHT_MIPS_OPTIONS:
2740 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2741 return false;
2742 break;
2743 case SHT_MIPS_DWARF:
2744 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2745 return false;
2746 break;
2747 case SHT_MIPS_SYMBOL_LIB:
2748 if (strcmp (name, ".MIPS.symlib") != 0)
2749 return false;
2750 break;
2751 case SHT_MIPS_EVENTS:
2752 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2753 && strncmp (name, ".MIPS.post_rel",
2754 sizeof ".MIPS.post_rel" - 1) != 0)
2755 return false;
2756 break;
2757 default:
2758 return false;
2759 }
2760
2761 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2762 return false;
2763
2764 if (flags)
2765 {
2766 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2767 (bfd_get_section_flags (abfd,
2768 hdr->bfd_section)
2769 | flags)))
2770 return false;
2771 }
2772
2773 /* FIXME: We should record sh_info for a .gptab section. */
2774
2775 /* For a .reginfo section, set the gp value in the tdata information
2776 from the contents of this section. We need the gp value while
2777 processing relocs, so we just get it now. The .reginfo section
2778 is not used in the 64-bit MIPS ELF ABI. */
2779 if (hdr->sh_type == SHT_MIPS_REGINFO)
2780 {
2781 Elf32_External_RegInfo ext;
2782 Elf32_RegInfo s;
2783
2784 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2785 (file_ptr) 0, sizeof ext))
2786 return false;
2787 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2788 elf_gp (abfd) = s.ri_gp_value;
2789 }
2790
2791 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2792 set the gp value based on what we find. We may see both
2793 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2794 they should agree. */
2795 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2796 {
2797 bfd_byte *contents, *l, *lend;
2798
2799 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2800 if (contents == NULL)
2801 return false;
2802 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2803 (file_ptr) 0, hdr->sh_size))
2804 {
2805 free (contents);
2806 return false;
2807 }
2808 l = contents;
2809 lend = contents + hdr->sh_size;
2810 while (l + sizeof (Elf_External_Options) <= lend)
2811 {
2812 Elf_Internal_Options intopt;
2813
2814 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2815 &intopt);
2816 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2817 {
2818 Elf64_Internal_RegInfo intreg;
2819
2820 bfd_mips_elf64_swap_reginfo_in
2821 (abfd,
2822 ((Elf64_External_RegInfo *)
2823 (l + sizeof (Elf_External_Options))),
2824 &intreg);
2825 elf_gp (abfd) = intreg.ri_gp_value;
2826 }
2827 else if (intopt.kind == ODK_REGINFO)
2828 {
2829 Elf32_RegInfo intreg;
2830
2831 bfd_mips_elf32_swap_reginfo_in
2832 (abfd,
2833 ((Elf32_External_RegInfo *)
2834 (l + sizeof (Elf_External_Options))),
2835 &intreg);
2836 elf_gp (abfd) = intreg.ri_gp_value;
2837 }
2838 l += intopt.size;
2839 }
2840 free (contents);
2841 }
2842
2843 return true;
2844 }
2845
2846 /* Set the correct type for a MIPS ELF section. We do this by the
2847 section name, which is a hack, but ought to work. This routine is
2848 used by both the 32-bit and the 64-bit ABI. */
2849
2850 boolean
2851 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2852 bfd *abfd;
2853 Elf32_Internal_Shdr *hdr;
2854 asection *sec;
2855 {
2856 register const char *name;
2857
2858 name = bfd_get_section_name (abfd, sec);
2859
2860 if (strcmp (name, ".liblist") == 0)
2861 {
2862 hdr->sh_type = SHT_MIPS_LIBLIST;
2863 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2864 /* The sh_link field is set in final_write_processing. */
2865 }
2866 else if (strcmp (name, ".conflict") == 0)
2867 hdr->sh_type = SHT_MIPS_CONFLICT;
2868 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2869 {
2870 hdr->sh_type = SHT_MIPS_GPTAB;
2871 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2872 /* The sh_info field is set in final_write_processing. */
2873 }
2874 else if (strcmp (name, ".ucode") == 0)
2875 hdr->sh_type = SHT_MIPS_UCODE;
2876 else if (strcmp (name, ".mdebug") == 0)
2877 {
2878 hdr->sh_type = SHT_MIPS_DEBUG;
2879 /* In a shared object on Irix 5.3, the .mdebug section has an
2880 entsize of 0. FIXME: Does this matter? */
2881 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2882 hdr->sh_entsize = 0;
2883 else
2884 hdr->sh_entsize = 1;
2885 }
2886 else if (strcmp (name, ".reginfo") == 0)
2887 {
2888 hdr->sh_type = SHT_MIPS_REGINFO;
2889 /* In a shared object on Irix 5.3, the .reginfo section has an
2890 entsize of 0x18. FIXME: Does this matter? */
2891 if (SGI_COMPAT (abfd))
2892 {
2893 if ((abfd->flags & DYNAMIC) != 0)
2894 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2895 else
2896 hdr->sh_entsize = 1;
2897 }
2898 else
2899 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2900 }
2901 else if (SGI_COMPAT (abfd)
2902 && (strcmp (name, ".hash") == 0
2903 || strcmp (name, ".dynamic") == 0
2904 || strcmp (name, ".dynstr") == 0))
2905 {
2906 if ( SGI_COMPAT(abfd))
2907 hdr->sh_entsize = 0;
2908 #if 0
2909 /* This isn't how the Irix 6 linker behaves. */
2910 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2911 #endif
2912 }
2913 else if (strcmp (name, ".got") == 0
2914 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2915 || strcmp (name, ".sdata") == 0
2916 || strcmp (name, ".sbss") == 0
2917 || strcmp (name, ".lit4") == 0
2918 || strcmp (name, ".lit8") == 0)
2919 hdr->sh_flags |= SHF_MIPS_GPREL;
2920 else if (strcmp (name, ".MIPS.interfaces") == 0)
2921 {
2922 hdr->sh_type = SHT_MIPS_IFACE;
2923 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2924 }
2925 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2926 {
2927 hdr->sh_type = SHT_MIPS_CONTENT;
2928 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2929 /* The sh_info field is set in final_write_processing. */
2930 }
2931 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2932 {
2933 hdr->sh_type = SHT_MIPS_OPTIONS;
2934 hdr->sh_entsize = 1;
2935 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2936 }
2937 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2938 hdr->sh_type = SHT_MIPS_DWARF;
2939 else if (strcmp (name, ".MIPS.symlib") == 0)
2940 {
2941 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2942 /* The sh_link and sh_info fields are set in
2943 final_write_processing. */
2944 }
2945 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2946 || strncmp (name, ".MIPS.post_rel",
2947 sizeof ".MIPS.post_rel" - 1) == 0)
2948 {
2949 hdr->sh_type = SHT_MIPS_EVENTS;
2950 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2951 /* The sh_link field is set in final_write_processing. */
2952 }
2953 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2954 {
2955 hdr->sh_type = SHT_MIPS_MSYM;
2956 hdr->sh_flags |= SHF_ALLOC;
2957 hdr->sh_entsize = 8;
2958 }
2959
2960 /* The generic elf_fake_sections will set up REL_HDR using the
2961 default kind of relocations. But, we may actually need both
2962 kinds of relocations, so we set up the second header here. */
2963 if ((sec->flags & SEC_RELOC) != 0)
2964 {
2965 struct bfd_elf_section_data *esd;
2966
2967 esd = elf_section_data (sec);
2968 BFD_ASSERT (esd->rel_hdr2 == NULL);
2969 esd->rel_hdr2
2970 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2971 if (!esd->rel_hdr2)
2972 return false;
2973 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2974 !elf_section_data (sec)->use_rela_p);
2975 }
2976
2977 return true;
2978 }
2979
2980 /* Given a BFD section, try to locate the corresponding ELF section
2981 index. This is used by both the 32-bit and the 64-bit ABI.
2982 Actually, it's not clear to me that the 64-bit ABI supports these,
2983 but for non-PIC objects we will certainly want support for at least
2984 the .scommon section. */
2985
2986 boolean
2987 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
2988 bfd *abfd ATTRIBUTE_UNUSED;
2989 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2990 asection *sec;
2991 int *retval;
2992 {
2993 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2994 {
2995 *retval = SHN_MIPS_SCOMMON;
2996 return true;
2997 }
2998 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2999 {
3000 *retval = SHN_MIPS_ACOMMON;
3001 return true;
3002 }
3003 return false;
3004 }
3005
3006 /* When are writing out the .options or .MIPS.options section,
3007 remember the bytes we are writing out, so that we can install the
3008 GP value in the section_processing routine. */
3009
3010 boolean
3011 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3012 bfd *abfd;
3013 sec_ptr section;
3014 PTR location;
3015 file_ptr offset;
3016 bfd_size_type count;
3017 {
3018 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3019 {
3020 bfd_byte *c;
3021
3022 if (elf_section_data (section) == NULL)
3023 {
3024 section->used_by_bfd =
3025 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3026 if (elf_section_data (section) == NULL)
3027 return false;
3028 }
3029 c = (bfd_byte *) elf_section_data (section)->tdata;
3030 if (c == NULL)
3031 {
3032 bfd_size_type size;
3033
3034 if (section->_cooked_size != 0)
3035 size = section->_cooked_size;
3036 else
3037 size = section->_raw_size;
3038 c = (bfd_byte *) bfd_zalloc (abfd, size);
3039 if (c == NULL)
3040 return false;
3041 elf_section_data (section)->tdata = (PTR) c;
3042 }
3043
3044 memcpy (c + offset, location, count);
3045 }
3046
3047 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3048 count);
3049 }
3050
3051 /* Work over a section just before writing it out. This routine is
3052 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3053 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3054 a better way. */
3055
3056 boolean
3057 _bfd_mips_elf_section_processing (abfd, hdr)
3058 bfd *abfd;
3059 Elf_Internal_Shdr *hdr;
3060 {
3061 if (hdr->sh_type == SHT_MIPS_REGINFO
3062 && hdr->sh_size > 0)
3063 {
3064 bfd_byte buf[4];
3065
3066 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3067 BFD_ASSERT (hdr->contents == NULL);
3068
3069 if (bfd_seek (abfd,
3070 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3071 SEEK_SET) == -1)
3072 return false;
3073 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3074 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3075 return false;
3076 }
3077
3078 if (hdr->sh_type == SHT_MIPS_OPTIONS
3079 && hdr->bfd_section != NULL
3080 && elf_section_data (hdr->bfd_section) != NULL
3081 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3082 {
3083 bfd_byte *contents, *l, *lend;
3084
3085 /* We stored the section contents in the elf_section_data tdata
3086 field in the set_section_contents routine. We save the
3087 section contents so that we don't have to read them again.
3088 At this point we know that elf_gp is set, so we can look
3089 through the section contents to see if there is an
3090 ODK_REGINFO structure. */
3091
3092 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3093 l = contents;
3094 lend = contents + hdr->sh_size;
3095 while (l + sizeof (Elf_External_Options) <= lend)
3096 {
3097 Elf_Internal_Options intopt;
3098
3099 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3100 &intopt);
3101 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3102 {
3103 bfd_byte buf[8];
3104
3105 if (bfd_seek (abfd,
3106 (hdr->sh_offset
3107 + (l - contents)
3108 + sizeof (Elf_External_Options)
3109 + (sizeof (Elf64_External_RegInfo) - 8)),
3110 SEEK_SET) == -1)
3111 return false;
3112 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3113 if (bfd_write (buf, 1, 8, abfd) != 8)
3114 return false;
3115 }
3116 else if (intopt.kind == ODK_REGINFO)
3117 {
3118 bfd_byte buf[4];
3119
3120 if (bfd_seek (abfd,
3121 (hdr->sh_offset
3122 + (l - contents)
3123 + sizeof (Elf_External_Options)
3124 + (sizeof (Elf32_External_RegInfo) - 4)),
3125 SEEK_SET) == -1)
3126 return false;
3127 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3128 if (bfd_write (buf, 1, 4, abfd) != 4)
3129 return false;
3130 }
3131 l += intopt.size;
3132 }
3133 }
3134
3135 if (hdr->bfd_section != NULL)
3136 {
3137 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3138
3139 if (strcmp (name, ".sdata") == 0
3140 || strcmp (name, ".lit8") == 0
3141 || strcmp (name, ".lit4") == 0)
3142 {
3143 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3144 hdr->sh_type = SHT_PROGBITS;
3145 }
3146 else if (strcmp (name, ".sbss") == 0)
3147 {
3148 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3149 hdr->sh_type = SHT_NOBITS;
3150 }
3151 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3152 {
3153 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3154 hdr->sh_type = SHT_PROGBITS;
3155 }
3156 else if (strcmp (name, ".compact_rel") == 0)
3157 {
3158 hdr->sh_flags = 0;
3159 hdr->sh_type = SHT_PROGBITS;
3160 }
3161 else if (strcmp (name, ".rtproc") == 0)
3162 {
3163 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3164 {
3165 unsigned int adjust;
3166
3167 adjust = hdr->sh_size % hdr->sh_addralign;
3168 if (adjust != 0)
3169 hdr->sh_size += hdr->sh_addralign - adjust;
3170 }
3171 }
3172 }
3173
3174 return true;
3175 }
3176
3177 \f
3178 /* MIPS ELF uses two common sections. One is the usual one, and the
3179 other is for small objects. All the small objects are kept
3180 together, and then referenced via the gp pointer, which yields
3181 faster assembler code. This is what we use for the small common
3182 section. This approach is copied from ecoff.c. */
3183 static asection mips_elf_scom_section;
3184 static asymbol mips_elf_scom_symbol;
3185 static asymbol *mips_elf_scom_symbol_ptr;
3186
3187 /* MIPS ELF also uses an acommon section, which represents an
3188 allocated common symbol which may be overridden by a
3189 definition in a shared library. */
3190 static asection mips_elf_acom_section;
3191 static asymbol mips_elf_acom_symbol;
3192 static asymbol *mips_elf_acom_symbol_ptr;
3193
3194 /* Handle the special MIPS section numbers that a symbol may use.
3195 This is used for both the 32-bit and the 64-bit ABI. */
3196
3197 void
3198 _bfd_mips_elf_symbol_processing (abfd, asym)
3199 bfd *abfd;
3200 asymbol *asym;
3201 {
3202 elf_symbol_type *elfsym;
3203
3204 elfsym = (elf_symbol_type *) asym;
3205 switch (elfsym->internal_elf_sym.st_shndx)
3206 {
3207 case SHN_MIPS_ACOMMON:
3208 /* This section is used in a dynamically linked executable file.
3209 It is an allocated common section. The dynamic linker can
3210 either resolve these symbols to something in a shared
3211 library, or it can just leave them here. For our purposes,
3212 we can consider these symbols to be in a new section. */
3213 if (mips_elf_acom_section.name == NULL)
3214 {
3215 /* Initialize the acommon section. */
3216 mips_elf_acom_section.name = ".acommon";
3217 mips_elf_acom_section.flags = SEC_ALLOC;
3218 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3219 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3220 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3221 mips_elf_acom_symbol.name = ".acommon";
3222 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3223 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3224 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3225 }
3226 asym->section = &mips_elf_acom_section;
3227 break;
3228
3229 case SHN_COMMON:
3230 /* Common symbols less than the GP size are automatically
3231 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3232 if (asym->value > elf_gp_size (abfd)
3233 || IRIX_COMPAT (abfd) == ict_irix6)
3234 break;
3235 /* Fall through. */
3236 case SHN_MIPS_SCOMMON:
3237 if (mips_elf_scom_section.name == NULL)
3238 {
3239 /* Initialize the small common section. */
3240 mips_elf_scom_section.name = ".scommon";
3241 mips_elf_scom_section.flags = SEC_IS_COMMON;
3242 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3243 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3244 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3245 mips_elf_scom_symbol.name = ".scommon";
3246 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3247 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3248 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3249 }
3250 asym->section = &mips_elf_scom_section;
3251 asym->value = elfsym->internal_elf_sym.st_size;
3252 break;
3253
3254 case SHN_MIPS_SUNDEFINED:
3255 asym->section = bfd_und_section_ptr;
3256 break;
3257
3258 #if 0 /* for SGI_COMPAT */
3259 case SHN_MIPS_TEXT:
3260 asym->section = mips_elf_text_section_ptr;
3261 break;
3262
3263 case SHN_MIPS_DATA:
3264 asym->section = mips_elf_data_section_ptr;
3265 break;
3266 #endif
3267 }
3268 }
3269 \f
3270 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3271 segments. */
3272
3273 int
3274 _bfd_mips_elf_additional_program_headers (abfd)
3275 bfd *abfd;
3276 {
3277 asection *s;
3278 int ret = 0;
3279
3280 /* See if we need a PT_MIPS_REGINFO segment. */
3281 s = bfd_get_section_by_name (abfd, ".reginfo");
3282 if (s && (s->flags & SEC_LOAD))
3283 ++ret;
3284
3285 /* See if we need a PT_MIPS_OPTIONS segment. */
3286 if (IRIX_COMPAT (abfd) == ict_irix6
3287 && bfd_get_section_by_name (abfd,
3288 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3289 ++ret;
3290
3291 /* See if we need a PT_MIPS_RTPROC segment. */
3292 if (IRIX_COMPAT (abfd) == ict_irix5
3293 && bfd_get_section_by_name (abfd, ".dynamic")
3294 && bfd_get_section_by_name (abfd, ".mdebug"))
3295 ++ret;
3296
3297 return ret;
3298 }
3299
3300 /* Modify the segment map for an Irix 5 executable. */
3301
3302 boolean
3303 _bfd_mips_elf_modify_segment_map (abfd)
3304 bfd *abfd;
3305 {
3306 asection *s;
3307 struct elf_segment_map *m, **pm;
3308
3309 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3310 segment. */
3311 s = bfd_get_section_by_name (abfd, ".reginfo");
3312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3313 {
3314 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3315 if (m->p_type == PT_MIPS_REGINFO)
3316 break;
3317 if (m == NULL)
3318 {
3319 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3320 if (m == NULL)
3321 return false;
3322
3323 m->p_type = PT_MIPS_REGINFO;
3324 m->count = 1;
3325 m->sections[0] = s;
3326
3327 /* We want to put it after the PHDR and INTERP segments. */
3328 pm = &elf_tdata (abfd)->segment_map;
3329 while (*pm != NULL
3330 && ((*pm)->p_type == PT_PHDR
3331 || (*pm)->p_type == PT_INTERP))
3332 pm = &(*pm)->next;
3333
3334 m->next = *pm;
3335 *pm = m;
3336 }
3337 }
3338
3339 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3340 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3341 PT_OPTIONS segement immediately following the program header
3342 table. */
3343 if (IRIX_COMPAT (abfd) == ict_irix6)
3344 {
3345 asection *s;
3346
3347 for (s = abfd->sections; s; s = s->next)
3348 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3349 break;
3350
3351 if (s)
3352 {
3353 struct elf_segment_map *options_segment;
3354
3355 /* Usually, there's a program header table. But, sometimes
3356 there's not (like when running the `ld' testsuite). So,
3357 if there's no program header table, we just put the
3358 options segement at the end. */
3359 for (pm = &elf_tdata (abfd)->segment_map;
3360 *pm != NULL;
3361 pm = &(*pm)->next)
3362 if ((*pm)->p_type == PT_PHDR)
3363 break;
3364
3365 options_segment = bfd_zalloc (abfd,
3366 sizeof (struct elf_segment_map));
3367 options_segment->next = *pm;
3368 options_segment->p_type = PT_MIPS_OPTIONS;
3369 options_segment->p_flags = PF_R;
3370 options_segment->p_flags_valid = true;
3371 options_segment->count = 1;
3372 options_segment->sections[0] = s;
3373 *pm = options_segment;
3374 }
3375 }
3376 else
3377 {
3378 if (IRIX_COMPAT (abfd) == ict_irix5)
3379 {
3380 /* If there are .dynamic and .mdebug sections, we make a room
3381 for the RTPROC header. FIXME: Rewrite without section names. */
3382 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3383 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3384 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3385 {
3386 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3387 if (m->p_type == PT_MIPS_RTPROC)
3388 break;
3389 if (m == NULL)
3390 {
3391 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3392 if (m == NULL)
3393 return false;
3394
3395 m->p_type = PT_MIPS_RTPROC;
3396
3397 s = bfd_get_section_by_name (abfd, ".rtproc");
3398 if (s == NULL)
3399 {
3400 m->count = 0;
3401 m->p_flags = 0;
3402 m->p_flags_valid = 1;
3403 }
3404 else
3405 {
3406 m->count = 1;
3407 m->sections[0] = s;
3408 }
3409
3410 /* We want to put it after the DYNAMIC segment. */
3411 pm = &elf_tdata (abfd)->segment_map;
3412 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3413 pm = &(*pm)->next;
3414 if (*pm != NULL)
3415 pm = &(*pm)->next;
3416
3417 m->next = *pm;
3418 *pm = m;
3419 }
3420 }
3421 }
3422 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3423 .dynstr, .dynsym, and .hash sections, and everything in
3424 between. */
3425 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3426 pm = &(*pm)->next)
3427 if ((*pm)->p_type == PT_DYNAMIC)
3428 break;
3429 m = *pm;
3430 if (IRIX_COMPAT (abfd) == ict_none)
3431 {
3432 /* For a normal mips executable the permissions for the PT_DYNAMIC
3433 segment are read, write and execute. We do that here since
3434 the code in elf.c sets only the read permission. This matters
3435 sometimes for the dynamic linker. */
3436 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3437 {
3438 m->p_flags = PF_R | PF_W | PF_X;
3439 m->p_flags_valid = 1;
3440 }
3441 }
3442 if (m != NULL
3443 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3444 {
3445 static const char *sec_names[] =
3446 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3447 bfd_vma low, high;
3448 unsigned int i, c;
3449 struct elf_segment_map *n;
3450
3451 low = 0xffffffff;
3452 high = 0;
3453 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3454 {
3455 s = bfd_get_section_by_name (abfd, sec_names[i]);
3456 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3457 {
3458 bfd_size_type sz;
3459
3460 if (low > s->vma)
3461 low = s->vma;
3462 sz = s->_cooked_size;
3463 if (sz == 0)
3464 sz = s->_raw_size;
3465 if (high < s->vma + sz)
3466 high = s->vma + sz;
3467 }
3468 }
3469
3470 c = 0;
3471 for (s = abfd->sections; s != NULL; s = s->next)
3472 if ((s->flags & SEC_LOAD) != 0
3473 && s->vma >= low
3474 && ((s->vma
3475 + (s->_cooked_size !=
3476 0 ? s->_cooked_size : s->_raw_size)) <= high))
3477 ++c;
3478
3479 n = ((struct elf_segment_map *)
3480 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3481 if (n == NULL)
3482 return false;
3483 *n = *m;
3484 n->count = c;
3485
3486 i = 0;
3487 for (s = abfd->sections; s != NULL; s = s->next)
3488 {
3489 if ((s->flags & SEC_LOAD) != 0
3490 && s->vma >= low
3491 && ((s->vma
3492 + (s->_cooked_size != 0 ?
3493 s->_cooked_size : s->_raw_size)) <= high))
3494 {
3495 n->sections[i] = s;
3496 ++i;
3497 }
3498 }
3499
3500 *pm = n;
3501 }
3502 }
3503
3504 return true;
3505 }
3506 \f
3507 /* The structure of the runtime procedure descriptor created by the
3508 loader for use by the static exception system. */
3509
3510 typedef struct runtime_pdr {
3511 bfd_vma adr; /* memory address of start of procedure */
3512 long regmask; /* save register mask */
3513 long regoffset; /* save register offset */
3514 long fregmask; /* save floating point register mask */
3515 long fregoffset; /* save floating point register offset */
3516 long frameoffset; /* frame size */
3517 short framereg; /* frame pointer register */
3518 short pcreg; /* offset or reg of return pc */
3519 long irpss; /* index into the runtime string table */
3520 long reserved;
3521 struct exception_info *exception_info;/* pointer to exception array */
3522 } RPDR, *pRPDR;
3523 #define cbRPDR sizeof(RPDR)
3524 #define rpdNil ((pRPDR) 0)
3525
3526 /* Swap RPDR (runtime procedure table entry) for output. */
3527
3528 static void ecoff_swap_rpdr_out
3529 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3530
3531 static void
3532 ecoff_swap_rpdr_out (abfd, in, ex)
3533 bfd *abfd;
3534 const RPDR *in;
3535 struct rpdr_ext *ex;
3536 {
3537 /* ecoff_put_off was defined in ecoffswap.h. */
3538 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3539 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3540 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3541 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3542 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3543 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3544
3545 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3546 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3547
3548 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3549 #if 0 /* FIXME */
3550 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3551 #endif
3552 }
3553 \f
3554 /* Read ECOFF debugging information from a .mdebug section into a
3555 ecoff_debug_info structure. */
3556
3557 boolean
3558 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3559 bfd *abfd;
3560 asection *section;
3561 struct ecoff_debug_info *debug;
3562 {
3563 HDRR *symhdr;
3564 const struct ecoff_debug_swap *swap;
3565 char *ext_hdr = NULL;
3566
3567 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3568 memset (debug, 0, sizeof(*debug));
3569
3570 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3571 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3572 goto error_return;
3573
3574 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3575 swap->external_hdr_size)
3576 == false)
3577 goto error_return;
3578
3579 symhdr = &debug->symbolic_header;
3580 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3581
3582 /* The symbolic header contains absolute file offsets and sizes to
3583 read. */
3584 #define READ(ptr, offset, count, size, type) \
3585 if (symhdr->count == 0) \
3586 debug->ptr = NULL; \
3587 else \
3588 { \
3589 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3590 if (debug->ptr == NULL) \
3591 goto error_return; \
3592 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3593 || (bfd_read (debug->ptr, size, symhdr->count, \
3594 abfd) != size * symhdr->count)) \
3595 goto error_return; \
3596 }
3597
3598 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3599 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3600 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3601 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3602 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3603 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3604 union aux_ext *);
3605 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3606 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3607 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3608 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3609 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3610 #undef READ
3611
3612 debug->fdr = NULL;
3613 debug->adjust = NULL;
3614
3615 return true;
3616
3617 error_return:
3618 if (ext_hdr != NULL)
3619 free (ext_hdr);
3620 if (debug->line != NULL)
3621 free (debug->line);
3622 if (debug->external_dnr != NULL)
3623 free (debug->external_dnr);
3624 if (debug->external_pdr != NULL)
3625 free (debug->external_pdr);
3626 if (debug->external_sym != NULL)
3627 free (debug->external_sym);
3628 if (debug->external_opt != NULL)
3629 free (debug->external_opt);
3630 if (debug->external_aux != NULL)
3631 free (debug->external_aux);
3632 if (debug->ss != NULL)
3633 free (debug->ss);
3634 if (debug->ssext != NULL)
3635 free (debug->ssext);
3636 if (debug->external_fdr != NULL)
3637 free (debug->external_fdr);
3638 if (debug->external_rfd != NULL)
3639 free (debug->external_rfd);
3640 if (debug->external_ext != NULL)
3641 free (debug->external_ext);
3642 return false;
3643 }
3644 \f
3645 /* MIPS ELF local labels start with '$', not 'L'. */
3646
3647 /*ARGSUSED*/
3648 static boolean
3649 mips_elf_is_local_label_name (abfd, name)
3650 bfd *abfd;
3651 const char *name;
3652 {
3653 if (name[0] == '$')
3654 return true;
3655
3656 /* On Irix 6, the labels go back to starting with '.', so we accept
3657 the generic ELF local label syntax as well. */
3658 return _bfd_elf_is_local_label_name (abfd, name);
3659 }
3660
3661 /* MIPS ELF uses a special find_nearest_line routine in order the
3662 handle the ECOFF debugging information. */
3663
3664 struct mips_elf_find_line
3665 {
3666 struct ecoff_debug_info d;
3667 struct ecoff_find_line i;
3668 };
3669
3670 boolean
3671 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3672 functionname_ptr, line_ptr)
3673 bfd *abfd;
3674 asection *section;
3675 asymbol **symbols;
3676 bfd_vma offset;
3677 const char **filename_ptr;
3678 const char **functionname_ptr;
3679 unsigned int *line_ptr;
3680 {
3681 asection *msec;
3682
3683 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3684 filename_ptr, functionname_ptr,
3685 line_ptr))
3686 return true;
3687
3688 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3689 filename_ptr, functionname_ptr,
3690 line_ptr,
3691 ABI_64_P (abfd) ? 8 : 0))
3692 return true;
3693
3694 msec = bfd_get_section_by_name (abfd, ".mdebug");
3695 if (msec != NULL)
3696 {
3697 flagword origflags;
3698 struct mips_elf_find_line *fi;
3699 const struct ecoff_debug_swap * const swap =
3700 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3701
3702 /* If we are called during a link, mips_elf_final_link may have
3703 cleared the SEC_HAS_CONTENTS field. We force it back on here
3704 if appropriate (which it normally will be). */
3705 origflags = msec->flags;
3706 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3707 msec->flags |= SEC_HAS_CONTENTS;
3708
3709 fi = elf_tdata (abfd)->find_line_info;
3710 if (fi == NULL)
3711 {
3712 bfd_size_type external_fdr_size;
3713 char *fraw_src;
3714 char *fraw_end;
3715 struct fdr *fdr_ptr;
3716
3717 fi = ((struct mips_elf_find_line *)
3718 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3719 if (fi == NULL)
3720 {
3721 msec->flags = origflags;
3722 return false;
3723 }
3724
3725 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3726 {
3727 msec->flags = origflags;
3728 return false;
3729 }
3730
3731 /* Swap in the FDR information. */
3732 fi->d.fdr = ((struct fdr *)
3733 bfd_alloc (abfd,
3734 (fi->d.symbolic_header.ifdMax *
3735 sizeof (struct fdr))));
3736 if (fi->d.fdr == NULL)
3737 {
3738 msec->flags = origflags;
3739 return false;
3740 }
3741 external_fdr_size = swap->external_fdr_size;
3742 fdr_ptr = fi->d.fdr;
3743 fraw_src = (char *) fi->d.external_fdr;
3744 fraw_end = (fraw_src
3745 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3746 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3747 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3748
3749 elf_tdata (abfd)->find_line_info = fi;
3750
3751 /* Note that we don't bother to ever free this information.
3752 find_nearest_line is either called all the time, as in
3753 objdump -l, so the information should be saved, or it is
3754 rarely called, as in ld error messages, so the memory
3755 wasted is unimportant. Still, it would probably be a
3756 good idea for free_cached_info to throw it away. */
3757 }
3758
3759 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3760 &fi->i, filename_ptr, functionname_ptr,
3761 line_ptr))
3762 {
3763 msec->flags = origflags;
3764 return true;
3765 }
3766
3767 msec->flags = origflags;
3768 }
3769
3770 /* Fall back on the generic ELF find_nearest_line routine. */
3771
3772 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3773 filename_ptr, functionname_ptr,
3774 line_ptr);
3775 }
3776 \f
3777 /* The mips16 compiler uses a couple of special sections to handle
3778 floating point arguments.
3779
3780 Section names that look like .mips16.fn.FNNAME contain stubs that
3781 copy floating point arguments from the fp regs to the gp regs and
3782 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3783 call should be redirected to the stub instead. If no 32 bit
3784 function calls FNNAME, the stub should be discarded. We need to
3785 consider any reference to the function, not just a call, because
3786 if the address of the function is taken we will need the stub,
3787 since the address might be passed to a 32 bit function.
3788
3789 Section names that look like .mips16.call.FNNAME contain stubs
3790 that copy floating point arguments from the gp regs to the fp
3791 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3792 then any 16 bit function that calls FNNAME should be redirected
3793 to the stub instead. If FNNAME is not a 32 bit function, the
3794 stub should be discarded.
3795
3796 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3797 which call FNNAME and then copy the return value from the fp regs
3798 to the gp regs. These stubs store the return value in $18 while
3799 calling FNNAME; any function which might call one of these stubs
3800 must arrange to save $18 around the call. (This case is not
3801 needed for 32 bit functions that call 16 bit functions, because
3802 16 bit functions always return floating point values in both
3803 $f0/$f1 and $2/$3.)
3804
3805 Note that in all cases FNNAME might be defined statically.
3806 Therefore, FNNAME is not used literally. Instead, the relocation
3807 information will indicate which symbol the section is for.
3808
3809 We record any stubs that we find in the symbol table. */
3810
3811 #define FN_STUB ".mips16.fn."
3812 #define CALL_STUB ".mips16.call."
3813 #define CALL_FP_STUB ".mips16.call.fp."
3814
3815 /* MIPS ELF linker hash table. */
3816
3817 struct mips_elf_link_hash_table
3818 {
3819 struct elf_link_hash_table root;
3820 #if 0
3821 /* We no longer use this. */
3822 /* String section indices for the dynamic section symbols. */
3823 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3824 #endif
3825 /* The number of .rtproc entries. */
3826 bfd_size_type procedure_count;
3827 /* The size of the .compact_rel section (if SGI_COMPAT). */
3828 bfd_size_type compact_rel_size;
3829 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3830 entry is set to the address of __rld_obj_head as in Irix 5. */
3831 boolean use_rld_obj_head;
3832 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3833 bfd_vma rld_value;
3834 /* This is set if we see any mips16 stub sections. */
3835 boolean mips16_stubs_seen;
3836 };
3837
3838 /* Look up an entry in a MIPS ELF linker hash table. */
3839
3840 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3841 ((struct mips_elf_link_hash_entry *) \
3842 elf_link_hash_lookup (&(table)->root, (string), (create), \
3843 (copy), (follow)))
3844
3845 /* Traverse a MIPS ELF linker hash table. */
3846
3847 #define mips_elf_link_hash_traverse(table, func, info) \
3848 (elf_link_hash_traverse \
3849 (&(table)->root, \
3850 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3851 (info)))
3852
3853 /* Get the MIPS ELF linker hash table from a link_info structure. */
3854
3855 #define mips_elf_hash_table(p) \
3856 ((struct mips_elf_link_hash_table *) ((p)->hash))
3857
3858 static boolean mips_elf_output_extsym
3859 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3860
3861 /* Create an entry in a MIPS ELF linker hash table. */
3862
3863 static struct bfd_hash_entry *
3864 mips_elf_link_hash_newfunc (entry, table, string)
3865 struct bfd_hash_entry *entry;
3866 struct bfd_hash_table *table;
3867 const char *string;
3868 {
3869 struct mips_elf_link_hash_entry *ret =
3870 (struct mips_elf_link_hash_entry *) entry;
3871
3872 /* Allocate the structure if it has not already been allocated by a
3873 subclass. */
3874 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3875 ret = ((struct mips_elf_link_hash_entry *)
3876 bfd_hash_allocate (table,
3877 sizeof (struct mips_elf_link_hash_entry)));
3878 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3879 return (struct bfd_hash_entry *) ret;
3880
3881 /* Call the allocation method of the superclass. */
3882 ret = ((struct mips_elf_link_hash_entry *)
3883 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3884 table, string));
3885 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3886 {
3887 /* Set local fields. */
3888 memset (&ret->esym, 0, sizeof (EXTR));
3889 /* We use -2 as a marker to indicate that the information has
3890 not been set. -1 means there is no associated ifd. */
3891 ret->esym.ifd = -2;
3892 ret->possibly_dynamic_relocs = 0;
3893 ret->min_dyn_reloc_index = 0;
3894 ret->fn_stub = NULL;
3895 ret->need_fn_stub = false;
3896 ret->call_stub = NULL;
3897 ret->call_fp_stub = NULL;
3898 }
3899
3900 return (struct bfd_hash_entry *) ret;
3901 }
3902
3903 void
3904 _bfd_mips_elf_hide_symbol(info, h)
3905 struct bfd_link_info *info;
3906 struct mips_elf_link_hash_entry *h;
3907 {
3908 bfd *dynobj;
3909 asection *got;
3910 struct mips_got_info *g;
3911 dynobj = elf_hash_table (info)->dynobj;
3912 got = bfd_get_section_by_name (dynobj, ".got");
3913 g = (struct mips_got_info *) elf_section_data (got)->tdata;
3914
3915 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3916 h->root.plt.offset = (bfd_vma) -1;
3917 h->root.dynindx = -1;
3918
3919 /* FIXME: Do we allocate too much GOT space here? */
3920 g->local_gotno++;
3921 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
3922 }
3923
3924 /* Create a MIPS ELF linker hash table. */
3925
3926 struct bfd_link_hash_table *
3927 _bfd_mips_elf_link_hash_table_create (abfd)
3928 bfd *abfd;
3929 {
3930 struct mips_elf_link_hash_table *ret;
3931
3932 ret = ((struct mips_elf_link_hash_table *)
3933 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3934 if (ret == (struct mips_elf_link_hash_table *) NULL)
3935 return NULL;
3936
3937 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3938 mips_elf_link_hash_newfunc))
3939 {
3940 bfd_release (abfd, ret);
3941 return NULL;
3942 }
3943
3944 #if 0
3945 /* We no longer use this. */
3946 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3947 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3948 #endif
3949 ret->procedure_count = 0;
3950 ret->compact_rel_size = 0;
3951 ret->use_rld_obj_head = false;
3952 ret->rld_value = 0;
3953 ret->mips16_stubs_seen = false;
3954
3955 return &ret->root.root;
3956 }
3957
3958 /* Hook called by the linker routine which adds symbols from an object
3959 file. We must handle the special MIPS section numbers here. */
3960
3961 /*ARGSUSED*/
3962 boolean
3963 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3964 bfd *abfd;
3965 struct bfd_link_info *info;
3966 const Elf_Internal_Sym *sym;
3967 const char **namep;
3968 flagword *flagsp ATTRIBUTE_UNUSED;
3969 asection **secp;
3970 bfd_vma *valp;
3971 {
3972 if (SGI_COMPAT (abfd)
3973 && (abfd->flags & DYNAMIC) != 0
3974 && strcmp (*namep, "_rld_new_interface") == 0)
3975 {
3976 /* Skip Irix 5 rld entry name. */
3977 *namep = NULL;
3978 return true;
3979 }
3980
3981 switch (sym->st_shndx)
3982 {
3983 case SHN_COMMON:
3984 /* Common symbols less than the GP size are automatically
3985 treated as SHN_MIPS_SCOMMON symbols. */
3986 if (sym->st_size > elf_gp_size (abfd)
3987 || IRIX_COMPAT (abfd) == ict_irix6)
3988 break;
3989 /* Fall through. */
3990 case SHN_MIPS_SCOMMON:
3991 *secp = bfd_make_section_old_way (abfd, ".scommon");
3992 (*secp)->flags |= SEC_IS_COMMON;
3993 *valp = sym->st_size;
3994 break;
3995
3996 case SHN_MIPS_TEXT:
3997 /* This section is used in a shared object. */
3998 if (elf_tdata (abfd)->elf_text_section == NULL)
3999 {
4000 asymbol *elf_text_symbol;
4001 asection *elf_text_section;
4002
4003 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
4004 if (elf_text_section == NULL)
4005 return false;
4006
4007 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4008 if (elf_text_symbol == NULL)
4009 return false;
4010
4011 /* Initialize the section. */
4012
4013 elf_tdata (abfd)->elf_text_section = elf_text_section;
4014 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4015
4016 elf_text_section->symbol = elf_text_symbol;
4017 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4018
4019 elf_text_section->name = ".text";
4020 elf_text_section->flags = SEC_NO_FLAGS;
4021 elf_text_section->output_section = NULL;
4022 elf_text_section->owner = abfd;
4023 elf_text_symbol->name = ".text";
4024 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4025 elf_text_symbol->section = elf_text_section;
4026 }
4027 /* This code used to do *secp = bfd_und_section_ptr if
4028 info->shared. I don't know why, and that doesn't make sense,
4029 so I took it out. */
4030 *secp = elf_tdata (abfd)->elf_text_section;
4031 break;
4032
4033 case SHN_MIPS_ACOMMON:
4034 /* Fall through. XXX Can we treat this as allocated data? */
4035 case SHN_MIPS_DATA:
4036 /* This section is used in a shared object. */
4037 if (elf_tdata (abfd)->elf_data_section == NULL)
4038 {
4039 asymbol *elf_data_symbol;
4040 asection *elf_data_section;
4041
4042 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4043 if (elf_data_section == NULL)
4044 return false;
4045
4046 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4047 if (elf_data_symbol == NULL)
4048 return false;
4049
4050 /* Initialize the section. */
4051
4052 elf_tdata (abfd)->elf_data_section = elf_data_section;
4053 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4054
4055 elf_data_section->symbol = elf_data_symbol;
4056 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4057
4058 elf_data_section->name = ".data";
4059 elf_data_section->flags = SEC_NO_FLAGS;
4060 elf_data_section->output_section = NULL;
4061 elf_data_section->owner = abfd;
4062 elf_data_symbol->name = ".data";
4063 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4064 elf_data_symbol->section = elf_data_section;
4065 }
4066 /* This code used to do *secp = bfd_und_section_ptr if
4067 info->shared. I don't know why, and that doesn't make sense,
4068 so I took it out. */
4069 *secp = elf_tdata (abfd)->elf_data_section;
4070 break;
4071
4072 case SHN_MIPS_SUNDEFINED:
4073 *secp = bfd_und_section_ptr;
4074 break;
4075 }
4076
4077 if (SGI_COMPAT (abfd)
4078 && ! info->shared
4079 && info->hash->creator == abfd->xvec
4080 && strcmp (*namep, "__rld_obj_head") == 0)
4081 {
4082 struct elf_link_hash_entry *h;
4083
4084 /* Mark __rld_obj_head as dynamic. */
4085 h = NULL;
4086 if (! (_bfd_generic_link_add_one_symbol
4087 (info, abfd, *namep, BSF_GLOBAL, *secp,
4088 (bfd_vma) *valp, (const char *) NULL, false,
4089 get_elf_backend_data (abfd)->collect,
4090 (struct bfd_link_hash_entry **) &h)))
4091 return false;
4092 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
4093 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4094 h->type = STT_OBJECT;
4095
4096 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4097 return false;
4098
4099 mips_elf_hash_table (info)->use_rld_obj_head = true;
4100 }
4101
4102 /* If this is a mips16 text symbol, add 1 to the value to make it
4103 odd. This will cause something like .word SYM to come up with
4104 the right value when it is loaded into the PC. */
4105 if (sym->st_other == STO_MIPS16)
4106 ++*valp;
4107
4108 return true;
4109 }
4110
4111 /* Structure used to pass information to mips_elf_output_extsym. */
4112
4113 struct extsym_info
4114 {
4115 bfd *abfd;
4116 struct bfd_link_info *info;
4117 struct ecoff_debug_info *debug;
4118 const struct ecoff_debug_swap *swap;
4119 boolean failed;
4120 };
4121
4122 /* This routine is used to write out ECOFF debugging external symbol
4123 information. It is called via mips_elf_link_hash_traverse. The
4124 ECOFF external symbol information must match the ELF external
4125 symbol information. Unfortunately, at this point we don't know
4126 whether a symbol is required by reloc information, so the two
4127 tables may wind up being different. We must sort out the external
4128 symbol information before we can set the final size of the .mdebug
4129 section, and we must set the size of the .mdebug section before we
4130 can relocate any sections, and we can't know which symbols are
4131 required by relocation until we relocate the sections.
4132 Fortunately, it is relatively unlikely that any symbol will be
4133 stripped but required by a reloc. In particular, it can not happen
4134 when generating a final executable. */
4135
4136 static boolean
4137 mips_elf_output_extsym (h, data)
4138 struct mips_elf_link_hash_entry *h;
4139 PTR data;
4140 {
4141 struct extsym_info *einfo = (struct extsym_info *) data;
4142 boolean strip;
4143 asection *sec, *output_section;
4144
4145 if (h->root.indx == -2)
4146 strip = false;
4147 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4148 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4149 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4150 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4151 strip = true;
4152 else if (einfo->info->strip == strip_all
4153 || (einfo->info->strip == strip_some
4154 && bfd_hash_lookup (einfo->info->keep_hash,
4155 h->root.root.root.string,
4156 false, false) == NULL))
4157 strip = true;
4158 else
4159 strip = false;
4160
4161 if (strip)
4162 return true;
4163
4164 if (h->esym.ifd == -2)
4165 {
4166 h->esym.jmptbl = 0;
4167 h->esym.cobol_main = 0;
4168 h->esym.weakext = 0;
4169 h->esym.reserved = 0;
4170 h->esym.ifd = ifdNil;
4171 h->esym.asym.value = 0;
4172 h->esym.asym.st = stGlobal;
4173
4174 if (h->root.root.type == bfd_link_hash_undefined
4175 || h->root.root.type == bfd_link_hash_undefweak)
4176 {
4177 const char *name;
4178
4179 /* Use undefined class. Also, set class and type for some
4180 special symbols. */
4181 name = h->root.root.root.string;
4182 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4183 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4184 {
4185 h->esym.asym.sc = scData;
4186 h->esym.asym.st = stLabel;
4187 h->esym.asym.value = 0;
4188 }
4189 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4190 {
4191 h->esym.asym.sc = scAbs;
4192 h->esym.asym.st = stLabel;
4193 h->esym.asym.value =
4194 mips_elf_hash_table (einfo->info)->procedure_count;
4195 }
4196 else if (strcmp (name, "_gp_disp") == 0)
4197 {
4198 h->esym.asym.sc = scAbs;
4199 h->esym.asym.st = stLabel;
4200 h->esym.asym.value = elf_gp (einfo->abfd);
4201 }
4202 else
4203 h->esym.asym.sc = scUndefined;
4204 }
4205 else if (h->root.root.type != bfd_link_hash_defined
4206 && h->root.root.type != bfd_link_hash_defweak)
4207 h->esym.asym.sc = scAbs;
4208 else
4209 {
4210 const char *name;
4211
4212 sec = h->root.root.u.def.section;
4213 output_section = sec->output_section;
4214
4215 /* When making a shared library and symbol h is the one from
4216 the another shared library, OUTPUT_SECTION may be null. */
4217 if (output_section == NULL)
4218 h->esym.asym.sc = scUndefined;
4219 else
4220 {
4221 name = bfd_section_name (output_section->owner, output_section);
4222
4223 if (strcmp (name, ".text") == 0)
4224 h->esym.asym.sc = scText;
4225 else if (strcmp (name, ".data") == 0)
4226 h->esym.asym.sc = scData;
4227 else if (strcmp (name, ".sdata") == 0)
4228 h->esym.asym.sc = scSData;
4229 else if (strcmp (name, ".rodata") == 0
4230 || strcmp (name, ".rdata") == 0)
4231 h->esym.asym.sc = scRData;
4232 else if (strcmp (name, ".bss") == 0)
4233 h->esym.asym.sc = scBss;
4234 else if (strcmp (name, ".sbss") == 0)
4235 h->esym.asym.sc = scSBss;
4236 else if (strcmp (name, ".init") == 0)
4237 h->esym.asym.sc = scInit;
4238 else if (strcmp (name, ".fini") == 0)
4239 h->esym.asym.sc = scFini;
4240 else
4241 h->esym.asym.sc = scAbs;
4242 }
4243 }
4244
4245 h->esym.asym.reserved = 0;
4246 h->esym.asym.index = indexNil;
4247 }
4248
4249 if (h->root.root.type == bfd_link_hash_common)
4250 h->esym.asym.value = h->root.root.u.c.size;
4251 else if (h->root.root.type == bfd_link_hash_defined
4252 || h->root.root.type == bfd_link_hash_defweak)
4253 {
4254 if (h->esym.asym.sc == scCommon)
4255 h->esym.asym.sc = scBss;
4256 else if (h->esym.asym.sc == scSCommon)
4257 h->esym.asym.sc = scSBss;
4258
4259 sec = h->root.root.u.def.section;
4260 output_section = sec->output_section;
4261 if (output_section != NULL)
4262 h->esym.asym.value = (h->root.root.u.def.value
4263 + sec->output_offset
4264 + output_section->vma);
4265 else
4266 h->esym.asym.value = 0;
4267 }
4268 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4269 {
4270 /* Set type and value for a symbol with a function stub. */
4271 h->esym.asym.st = stProc;
4272 sec = h->root.root.u.def.section;
4273 if (sec == NULL)
4274 h->esym.asym.value = 0;
4275 else
4276 {
4277 output_section = sec->output_section;
4278 if (output_section != NULL)
4279 h->esym.asym.value = (h->root.plt.offset
4280 + sec->output_offset
4281 + output_section->vma);
4282 else
4283 h->esym.asym.value = 0;
4284 }
4285 #if 0 /* FIXME? */
4286 h->esym.ifd = 0;
4287 #endif
4288 }
4289
4290 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4291 h->root.root.root.string,
4292 &h->esym))
4293 {
4294 einfo->failed = true;
4295 return false;
4296 }
4297
4298 return true;
4299 }
4300
4301 /* Create a runtime procedure table from the .mdebug section. */
4302
4303 static boolean
4304 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4305 PTR handle;
4306 bfd *abfd;
4307 struct bfd_link_info *info;
4308 asection *s;
4309 struct ecoff_debug_info *debug;
4310 {
4311 const struct ecoff_debug_swap *swap;
4312 HDRR *hdr = &debug->symbolic_header;
4313 RPDR *rpdr, *rp;
4314 struct rpdr_ext *erp;
4315 PTR rtproc;
4316 struct pdr_ext *epdr;
4317 struct sym_ext *esym;
4318 char *ss, **sv;
4319 char *str;
4320 unsigned long size, count;
4321 unsigned long sindex;
4322 unsigned long i;
4323 PDR pdr;
4324 SYMR sym;
4325 const char *no_name_func = _("static procedure (no name)");
4326
4327 epdr = NULL;
4328 rpdr = NULL;
4329 esym = NULL;
4330 ss = NULL;
4331 sv = NULL;
4332
4333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4334
4335 sindex = strlen (no_name_func) + 1;
4336 count = hdr->ipdMax;
4337 if (count > 0)
4338 {
4339 size = swap->external_pdr_size;
4340
4341 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4342 if (epdr == NULL)
4343 goto error_return;
4344
4345 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4346 goto error_return;
4347
4348 size = sizeof (RPDR);
4349 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4350 if (rpdr == NULL)
4351 goto error_return;
4352
4353 sv = (char **) bfd_malloc (sizeof (char *) * count);
4354 if (sv == NULL)
4355 goto error_return;
4356
4357 count = hdr->isymMax;
4358 size = swap->external_sym_size;
4359 esym = (struct sym_ext *) bfd_malloc (size * count);
4360 if (esym == NULL)
4361 goto error_return;
4362
4363 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4364 goto error_return;
4365
4366 count = hdr->issMax;
4367 ss = (char *) bfd_malloc (count);
4368 if (ss == NULL)
4369 goto error_return;
4370 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4371 goto error_return;
4372
4373 count = hdr->ipdMax;
4374 for (i = 0; i < count; i++, rp++)
4375 {
4376 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4377 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4378 rp->adr = sym.value;
4379 rp->regmask = pdr.regmask;
4380 rp->regoffset = pdr.regoffset;
4381 rp->fregmask = pdr.fregmask;
4382 rp->fregoffset = pdr.fregoffset;
4383 rp->frameoffset = pdr.frameoffset;
4384 rp->framereg = pdr.framereg;
4385 rp->pcreg = pdr.pcreg;
4386 rp->irpss = sindex;
4387 sv[i] = ss + sym.iss;
4388 sindex += strlen (sv[i]) + 1;
4389 }
4390 }
4391
4392 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4393 size = BFD_ALIGN (size, 16);
4394 rtproc = (PTR) bfd_alloc (abfd, size);
4395 if (rtproc == NULL)
4396 {
4397 mips_elf_hash_table (info)->procedure_count = 0;
4398 goto error_return;
4399 }
4400
4401 mips_elf_hash_table (info)->procedure_count = count + 2;
4402
4403 erp = (struct rpdr_ext *) rtproc;
4404 memset (erp, 0, sizeof (struct rpdr_ext));
4405 erp++;
4406 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4407 strcpy (str, no_name_func);
4408 str += strlen (no_name_func) + 1;
4409 for (i = 0; i < count; i++)
4410 {
4411 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4412 strcpy (str, sv[i]);
4413 str += strlen (sv[i]) + 1;
4414 }
4415 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4416
4417 /* Set the size and contents of .rtproc section. */
4418 s->_raw_size = size;
4419 s->contents = (bfd_byte *) rtproc;
4420
4421 /* Skip this section later on (I don't think this currently
4422 matters, but someday it might). */
4423 s->link_order_head = (struct bfd_link_order *) NULL;
4424
4425 if (epdr != NULL)
4426 free (epdr);
4427 if (rpdr != NULL)
4428 free (rpdr);
4429 if (esym != NULL)
4430 free (esym);
4431 if (ss != NULL)
4432 free (ss);
4433 if (sv != NULL)
4434 free (sv);
4435
4436 return true;
4437
4438 error_return:
4439 if (epdr != NULL)
4440 free (epdr);
4441 if (rpdr != NULL)
4442 free (rpdr);
4443 if (esym != NULL)
4444 free (esym);
4445 if (ss != NULL)
4446 free (ss);
4447 if (sv != NULL)
4448 free (sv);
4449 return false;
4450 }
4451
4452 /* A comparison routine used to sort .gptab entries. */
4453
4454 static int
4455 gptab_compare (p1, p2)
4456 const PTR p1;
4457 const PTR p2;
4458 {
4459 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4460 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4461
4462 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4463 }
4464
4465 /* We need to use a special link routine to handle the .reginfo and
4466 the .mdebug sections. We need to merge all instances of these
4467 sections together, not write them all out sequentially. */
4468
4469 boolean
4470 _bfd_mips_elf_final_link (abfd, info)
4471 bfd *abfd;
4472 struct bfd_link_info *info;
4473 {
4474 asection **secpp;
4475 asection *o;
4476 struct bfd_link_order *p;
4477 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4478 asection *rtproc_sec;
4479 Elf32_RegInfo reginfo;
4480 struct ecoff_debug_info debug;
4481 const struct ecoff_debug_swap *swap
4482 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4483 HDRR *symhdr = &debug.symbolic_header;
4484 PTR mdebug_handle = NULL;
4485 asection *s;
4486 EXTR esym;
4487 bfd_vma last;
4488 unsigned int i;
4489 static const char * const name[] =
4490 { ".text", ".init", ".fini", ".data",
4491 ".rodata", ".sdata", ".sbss", ".bss" };
4492 static const int sc[] = { scText, scInit, scFini, scData,
4493 scRData, scSData, scSBss, scBss };
4494
4495 /* If all the things we linked together were PIC, but we're
4496 producing an executable (rather than a shared object), then the
4497 resulting file is CPIC (i.e., it calls PIC code.) */
4498 if (!info->shared
4499 && !info->relocateable
4500 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4501 {
4502 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4503 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4504 }
4505
4506 /* We'd carefully arranged the dynamic symbol indices, and then the
4507 generic size_dynamic_sections renumbered them out from under us.
4508 Rather than trying somehow to prevent the renumbering, just do
4509 the sort again. */
4510 if (elf_hash_table (info)->dynamic_sections_created)
4511 {
4512 bfd *dynobj;
4513 asection *got;
4514 struct mips_got_info *g;
4515
4516 /* When we resort, we must tell mips_elf_sort_hash_table what
4517 the lowest index it may use is. That's the number of section
4518 symbols we're going to add. The generic ELF linker only
4519 adds these symbols when building a shared object. Note that
4520 we count the sections after (possibly) removing the .options
4521 section above. */
4522 if (!mips_elf_sort_hash_table (info, (info->shared
4523 ? bfd_count_sections (abfd) + 1
4524 : 1)))
4525 return false;
4526
4527 /* Make sure we didn't grow the global .got region. */
4528 dynobj = elf_hash_table (info)->dynobj;
4529 got = bfd_get_section_by_name (dynobj, ".got");
4530 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4531
4532 if (g->global_gotsym != NULL)
4533 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4534 - g->global_gotsym->dynindx)
4535 <= g->global_gotno);
4536 }
4537
4538 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4539 include it, even though we don't process it quite right. (Some
4540 entries are supposed to be merged.) Empirically, we seem to be
4541 better off including it then not. */
4542 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4543 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4544 {
4545 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4546 {
4547 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4548 if (p->type == bfd_indirect_link_order)
4549 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4550 (*secpp)->link_order_head = NULL;
4551 *secpp = (*secpp)->next;
4552 --abfd->section_count;
4553
4554 break;
4555 }
4556 }
4557
4558 /* Get a value for the GP register. */
4559 if (elf_gp (abfd) == 0)
4560 {
4561 struct bfd_link_hash_entry *h;
4562
4563 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4564 if (h != (struct bfd_link_hash_entry *) NULL
4565 && h->type == bfd_link_hash_defined)
4566 elf_gp (abfd) = (h->u.def.value
4567 + h->u.def.section->output_section->vma
4568 + h->u.def.section->output_offset);
4569 else if (info->relocateable)
4570 {
4571 bfd_vma lo;
4572
4573 /* Find the GP-relative section with the lowest offset. */
4574 lo = (bfd_vma) -1;
4575 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4576 if (o->vma < lo
4577 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4578 lo = o->vma;
4579
4580 /* And calculate GP relative to that. */
4581 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4582 }
4583 else
4584 {
4585 /* If the relocate_section function needs to do a reloc
4586 involving the GP value, it should make a reloc_dangerous
4587 callback to warn that GP is not defined. */
4588 }
4589 }
4590
4591 /* Go through the sections and collect the .reginfo and .mdebug
4592 information. */
4593 reginfo_sec = NULL;
4594 mdebug_sec = NULL;
4595 gptab_data_sec = NULL;
4596 gptab_bss_sec = NULL;
4597 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4598 {
4599 if (strcmp (o->name, ".reginfo") == 0)
4600 {
4601 memset (&reginfo, 0, sizeof reginfo);
4602
4603 /* We have found the .reginfo section in the output file.
4604 Look through all the link_orders comprising it and merge
4605 the information together. */
4606 for (p = o->link_order_head;
4607 p != (struct bfd_link_order *) NULL;
4608 p = p->next)
4609 {
4610 asection *input_section;
4611 bfd *input_bfd;
4612 Elf32_External_RegInfo ext;
4613 Elf32_RegInfo sub;
4614
4615 if (p->type != bfd_indirect_link_order)
4616 {
4617 if (p->type == bfd_fill_link_order)
4618 continue;
4619 abort ();
4620 }
4621
4622 input_section = p->u.indirect.section;
4623 input_bfd = input_section->owner;
4624
4625 /* The linker emulation code has probably clobbered the
4626 size to be zero bytes. */
4627 if (input_section->_raw_size == 0)
4628 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4629
4630 if (! bfd_get_section_contents (input_bfd, input_section,
4631 (PTR) &ext,
4632 (file_ptr) 0,
4633 sizeof ext))
4634 return false;
4635
4636 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4637
4638 reginfo.ri_gprmask |= sub.ri_gprmask;
4639 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4640 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4641 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4642 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4643
4644 /* ri_gp_value is set by the function
4645 mips_elf32_section_processing when the section is
4646 finally written out. */
4647
4648 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4649 elf_link_input_bfd ignores this section. */
4650 input_section->flags &=~ SEC_HAS_CONTENTS;
4651 }
4652
4653 /* Size has been set in mips_elf_always_size_sections */
4654 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4655
4656 /* Skip this section later on (I don't think this currently
4657 matters, but someday it might). */
4658 o->link_order_head = (struct bfd_link_order *) NULL;
4659
4660 reginfo_sec = o;
4661 }
4662
4663 if (strcmp (o->name, ".mdebug") == 0)
4664 {
4665 struct extsym_info einfo;
4666
4667 /* We have found the .mdebug section in the output file.
4668 Look through all the link_orders comprising it and merge
4669 the information together. */
4670 symhdr->magic = swap->sym_magic;
4671 /* FIXME: What should the version stamp be? */
4672 symhdr->vstamp = 0;
4673 symhdr->ilineMax = 0;
4674 symhdr->cbLine = 0;
4675 symhdr->idnMax = 0;
4676 symhdr->ipdMax = 0;
4677 symhdr->isymMax = 0;
4678 symhdr->ioptMax = 0;
4679 symhdr->iauxMax = 0;
4680 symhdr->issMax = 0;
4681 symhdr->issExtMax = 0;
4682 symhdr->ifdMax = 0;
4683 symhdr->crfd = 0;
4684 symhdr->iextMax = 0;
4685
4686 /* We accumulate the debugging information itself in the
4687 debug_info structure. */
4688 debug.line = NULL;
4689 debug.external_dnr = NULL;
4690 debug.external_pdr = NULL;
4691 debug.external_sym = NULL;
4692 debug.external_opt = NULL;
4693 debug.external_aux = NULL;
4694 debug.ss = NULL;
4695 debug.ssext = debug.ssext_end = NULL;
4696 debug.external_fdr = NULL;
4697 debug.external_rfd = NULL;
4698 debug.external_ext = debug.external_ext_end = NULL;
4699
4700 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4701 if (mdebug_handle == (PTR) NULL)
4702 return false;
4703
4704 esym.jmptbl = 0;
4705 esym.cobol_main = 0;
4706 esym.weakext = 0;
4707 esym.reserved = 0;
4708 esym.ifd = ifdNil;
4709 esym.asym.iss = issNil;
4710 esym.asym.st = stLocal;
4711 esym.asym.reserved = 0;
4712 esym.asym.index = indexNil;
4713 last = 0;
4714 for (i = 0; i < 8; i++)
4715 {
4716 esym.asym.sc = sc[i];
4717 s = bfd_get_section_by_name (abfd, name[i]);
4718 if (s != NULL)
4719 {
4720 esym.asym.value = s->vma;
4721 last = s->vma + s->_raw_size;
4722 }
4723 else
4724 esym.asym.value = last;
4725 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4726 name[i], &esym))
4727 return false;
4728 }
4729
4730 for (p = o->link_order_head;
4731 p != (struct bfd_link_order *) NULL;
4732 p = p->next)
4733 {
4734 asection *input_section;
4735 bfd *input_bfd;
4736 const struct ecoff_debug_swap *input_swap;
4737 struct ecoff_debug_info input_debug;
4738 char *eraw_src;
4739 char *eraw_end;
4740
4741 if (p->type != bfd_indirect_link_order)
4742 {
4743 if (p->type == bfd_fill_link_order)
4744 continue;
4745 abort ();
4746 }
4747
4748 input_section = p->u.indirect.section;
4749 input_bfd = input_section->owner;
4750
4751 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4752 || (get_elf_backend_data (input_bfd)
4753 ->elf_backend_ecoff_debug_swap) == NULL)
4754 {
4755 /* I don't know what a non MIPS ELF bfd would be
4756 doing with a .mdebug section, but I don't really
4757 want to deal with it. */
4758 continue;
4759 }
4760
4761 input_swap = (get_elf_backend_data (input_bfd)
4762 ->elf_backend_ecoff_debug_swap);
4763
4764 BFD_ASSERT (p->size == input_section->_raw_size);
4765
4766 /* The ECOFF linking code expects that we have already
4767 read in the debugging information and set up an
4768 ecoff_debug_info structure, so we do that now. */
4769 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4770 &input_debug))
4771 return false;
4772
4773 if (! (bfd_ecoff_debug_accumulate
4774 (mdebug_handle, abfd, &debug, swap, input_bfd,
4775 &input_debug, input_swap, info)))
4776 return false;
4777
4778 /* Loop through the external symbols. For each one with
4779 interesting information, try to find the symbol in
4780 the linker global hash table and save the information
4781 for the output external symbols. */
4782 eraw_src = input_debug.external_ext;
4783 eraw_end = (eraw_src
4784 + (input_debug.symbolic_header.iextMax
4785 * input_swap->external_ext_size));
4786 for (;
4787 eraw_src < eraw_end;
4788 eraw_src += input_swap->external_ext_size)
4789 {
4790 EXTR ext;
4791 const char *name;
4792 struct mips_elf_link_hash_entry *h;
4793
4794 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4795 if (ext.asym.sc == scNil
4796 || ext.asym.sc == scUndefined
4797 || ext.asym.sc == scSUndefined)
4798 continue;
4799
4800 name = input_debug.ssext + ext.asym.iss;
4801 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4802 name, false, false, true);
4803 if (h == NULL || h->esym.ifd != -2)
4804 continue;
4805
4806 if (ext.ifd != -1)
4807 {
4808 BFD_ASSERT (ext.ifd
4809 < input_debug.symbolic_header.ifdMax);
4810 ext.ifd = input_debug.ifdmap[ext.ifd];
4811 }
4812
4813 h->esym = ext;
4814 }
4815
4816 /* Free up the information we just read. */
4817 free (input_debug.line);
4818 free (input_debug.external_dnr);
4819 free (input_debug.external_pdr);
4820 free (input_debug.external_sym);
4821 free (input_debug.external_opt);
4822 free (input_debug.external_aux);
4823 free (input_debug.ss);
4824 free (input_debug.ssext);
4825 free (input_debug.external_fdr);
4826 free (input_debug.external_rfd);
4827 free (input_debug.external_ext);
4828
4829 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4830 elf_link_input_bfd ignores this section. */
4831 input_section->flags &=~ SEC_HAS_CONTENTS;
4832 }
4833
4834 if (SGI_COMPAT (abfd) && info->shared)
4835 {
4836 /* Create .rtproc section. */
4837 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4838 if (rtproc_sec == NULL)
4839 {
4840 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4841 | SEC_LINKER_CREATED | SEC_READONLY);
4842
4843 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4844 if (rtproc_sec == NULL
4845 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4846 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4847 return false;
4848 }
4849
4850 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4851 info, rtproc_sec, &debug))
4852 return false;
4853 }
4854
4855 /* Build the external symbol information. */
4856 einfo.abfd = abfd;
4857 einfo.info = info;
4858 einfo.debug = &debug;
4859 einfo.swap = swap;
4860 einfo.failed = false;
4861 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4862 mips_elf_output_extsym,
4863 (PTR) &einfo);
4864 if (einfo.failed)
4865 return false;
4866
4867 /* Set the size of the .mdebug section. */
4868 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4869
4870 /* Skip this section later on (I don't think this currently
4871 matters, but someday it might). */
4872 o->link_order_head = (struct bfd_link_order *) NULL;
4873
4874 mdebug_sec = o;
4875 }
4876
4877 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4878 {
4879 const char *subname;
4880 unsigned int c;
4881 Elf32_gptab *tab;
4882 Elf32_External_gptab *ext_tab;
4883 unsigned int i;
4884
4885 /* The .gptab.sdata and .gptab.sbss sections hold
4886 information describing how the small data area would
4887 change depending upon the -G switch. These sections
4888 not used in executables files. */
4889 if (! info->relocateable)
4890 {
4891 asection **secpp;
4892
4893 for (p = o->link_order_head;
4894 p != (struct bfd_link_order *) NULL;
4895 p = p->next)
4896 {
4897 asection *input_section;
4898
4899 if (p->type != bfd_indirect_link_order)
4900 {
4901 if (p->type == bfd_fill_link_order)
4902 continue;
4903 abort ();
4904 }
4905
4906 input_section = p->u.indirect.section;
4907
4908 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4909 elf_link_input_bfd ignores this section. */
4910 input_section->flags &=~ SEC_HAS_CONTENTS;
4911 }
4912
4913 /* Skip this section later on (I don't think this
4914 currently matters, but someday it might). */
4915 o->link_order_head = (struct bfd_link_order *) NULL;
4916
4917 /* Really remove the section. */
4918 for (secpp = &abfd->sections;
4919 *secpp != o;
4920 secpp = &(*secpp)->next)
4921 ;
4922 *secpp = (*secpp)->next;
4923 --abfd->section_count;
4924
4925 continue;
4926 }
4927
4928 /* There is one gptab for initialized data, and one for
4929 uninitialized data. */
4930 if (strcmp (o->name, ".gptab.sdata") == 0)
4931 gptab_data_sec = o;
4932 else if (strcmp (o->name, ".gptab.sbss") == 0)
4933 gptab_bss_sec = o;
4934 else
4935 {
4936 (*_bfd_error_handler)
4937 (_("%s: illegal section name `%s'"),
4938 bfd_get_filename (abfd), o->name);
4939 bfd_set_error (bfd_error_nonrepresentable_section);
4940 return false;
4941 }
4942
4943 /* The linker script always combines .gptab.data and
4944 .gptab.sdata into .gptab.sdata, and likewise for
4945 .gptab.bss and .gptab.sbss. It is possible that there is
4946 no .sdata or .sbss section in the output file, in which
4947 case we must change the name of the output section. */
4948 subname = o->name + sizeof ".gptab" - 1;
4949 if (bfd_get_section_by_name (abfd, subname) == NULL)
4950 {
4951 if (o == gptab_data_sec)
4952 o->name = ".gptab.data";
4953 else
4954 o->name = ".gptab.bss";
4955 subname = o->name + sizeof ".gptab" - 1;
4956 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4957 }
4958
4959 /* Set up the first entry. */
4960 c = 1;
4961 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4962 if (tab == NULL)
4963 return false;
4964 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4965 tab[0].gt_header.gt_unused = 0;
4966
4967 /* Combine the input sections. */
4968 for (p = o->link_order_head;
4969 p != (struct bfd_link_order *) NULL;
4970 p = p->next)
4971 {
4972 asection *input_section;
4973 bfd *input_bfd;
4974 bfd_size_type size;
4975 unsigned long last;
4976 bfd_size_type gpentry;
4977
4978 if (p->type != bfd_indirect_link_order)
4979 {
4980 if (p->type == bfd_fill_link_order)
4981 continue;
4982 abort ();
4983 }
4984
4985 input_section = p->u.indirect.section;
4986 input_bfd = input_section->owner;
4987
4988 /* Combine the gptab entries for this input section one
4989 by one. We know that the input gptab entries are
4990 sorted by ascending -G value. */
4991 size = bfd_section_size (input_bfd, input_section);
4992 last = 0;
4993 for (gpentry = sizeof (Elf32_External_gptab);
4994 gpentry < size;
4995 gpentry += sizeof (Elf32_External_gptab))
4996 {
4997 Elf32_External_gptab ext_gptab;
4998 Elf32_gptab int_gptab;
4999 unsigned long val;
5000 unsigned long add;
5001 boolean exact;
5002 unsigned int look;
5003
5004 if (! (bfd_get_section_contents
5005 (input_bfd, input_section, (PTR) &ext_gptab,
5006 gpentry, sizeof (Elf32_External_gptab))))
5007 {
5008 free (tab);
5009 return false;
5010 }
5011
5012 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5013 &int_gptab);
5014 val = int_gptab.gt_entry.gt_g_value;
5015 add = int_gptab.gt_entry.gt_bytes - last;
5016
5017 exact = false;
5018 for (look = 1; look < c; look++)
5019 {
5020 if (tab[look].gt_entry.gt_g_value >= val)
5021 tab[look].gt_entry.gt_bytes += add;
5022
5023 if (tab[look].gt_entry.gt_g_value == val)
5024 exact = true;
5025 }
5026
5027 if (! exact)
5028 {
5029 Elf32_gptab *new_tab;
5030 unsigned int max;
5031
5032 /* We need a new table entry. */
5033 new_tab = ((Elf32_gptab *)
5034 bfd_realloc ((PTR) tab,
5035 (c + 1) * sizeof (Elf32_gptab)));
5036 if (new_tab == NULL)
5037 {
5038 free (tab);
5039 return false;
5040 }
5041 tab = new_tab;
5042 tab[c].gt_entry.gt_g_value = val;
5043 tab[c].gt_entry.gt_bytes = add;
5044
5045 /* Merge in the size for the next smallest -G
5046 value, since that will be implied by this new
5047 value. */
5048 max = 0;
5049 for (look = 1; look < c; look++)
5050 {
5051 if (tab[look].gt_entry.gt_g_value < val
5052 && (max == 0
5053 || (tab[look].gt_entry.gt_g_value
5054 > tab[max].gt_entry.gt_g_value)))
5055 max = look;
5056 }
5057 if (max != 0)
5058 tab[c].gt_entry.gt_bytes +=
5059 tab[max].gt_entry.gt_bytes;
5060
5061 ++c;
5062 }
5063
5064 last = int_gptab.gt_entry.gt_bytes;
5065 }
5066
5067 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5068 elf_link_input_bfd ignores this section. */
5069 input_section->flags &=~ SEC_HAS_CONTENTS;
5070 }
5071
5072 /* The table must be sorted by -G value. */
5073 if (c > 2)
5074 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5075
5076 /* Swap out the table. */
5077 ext_tab = ((Elf32_External_gptab *)
5078 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5079 if (ext_tab == NULL)
5080 {
5081 free (tab);
5082 return false;
5083 }
5084
5085 for (i = 0; i < c; i++)
5086 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5087 free (tab);
5088
5089 o->_raw_size = c * sizeof (Elf32_External_gptab);
5090 o->contents = (bfd_byte *) ext_tab;
5091
5092 /* Skip this section later on (I don't think this currently
5093 matters, but someday it might). */
5094 o->link_order_head = (struct bfd_link_order *) NULL;
5095 }
5096 }
5097
5098 /* Invoke the regular ELF backend linker to do all the work. */
5099 if (ABI_64_P (abfd))
5100 {
5101 #ifdef BFD64
5102 if (!bfd_elf64_bfd_final_link (abfd, info))
5103 return false;
5104 #else
5105 abort ();
5106 return false;
5107 #endif /* BFD64 */
5108 }
5109 else if (!bfd_elf32_bfd_final_link (abfd, info))
5110 return false;
5111
5112 /* Now write out the computed sections. */
5113
5114 if (reginfo_sec != (asection *) NULL)
5115 {
5116 Elf32_External_RegInfo ext;
5117
5118 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5119 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5120 (file_ptr) 0, sizeof ext))
5121 return false;
5122 }
5123
5124 if (mdebug_sec != (asection *) NULL)
5125 {
5126 BFD_ASSERT (abfd->output_has_begun);
5127 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5128 swap, info,
5129 mdebug_sec->filepos))
5130 return false;
5131
5132 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5133 }
5134
5135 if (gptab_data_sec != (asection *) NULL)
5136 {
5137 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5138 gptab_data_sec->contents,
5139 (file_ptr) 0,
5140 gptab_data_sec->_raw_size))
5141 return false;
5142 }
5143
5144 if (gptab_bss_sec != (asection *) NULL)
5145 {
5146 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5147 gptab_bss_sec->contents,
5148 (file_ptr) 0,
5149 gptab_bss_sec->_raw_size))
5150 return false;
5151 }
5152
5153 if (SGI_COMPAT (abfd))
5154 {
5155 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5156 if (rtproc_sec != NULL)
5157 {
5158 if (! bfd_set_section_contents (abfd, rtproc_sec,
5159 rtproc_sec->contents,
5160 (file_ptr) 0,
5161 rtproc_sec->_raw_size))
5162 return false;
5163 }
5164 }
5165
5166 return true;
5167 }
5168
5169 /* This function is called via qsort() to sort the dynamic relocation
5170 entries by increasing r_symndx value. */
5171
5172 static int
5173 sort_dynamic_relocs (arg1,arg2)
5174 const PTR arg1;
5175 const PTR arg2;
5176 {
5177 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5178 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5179
5180 Elf_Internal_Rel int_reloc1;
5181 Elf_Internal_Rel int_reloc2;
5182
5183 bfd_elf32_swap_reloc_in(reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5184 bfd_elf32_swap_reloc_in(reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5185
5186 return (ELF32_R_SYM(int_reloc1.r_info) - ELF32_R_SYM(int_reloc2.r_info));
5187 }
5188
5189 /* Returns the GOT section for ABFD. */
5190
5191 static asection *
5192 mips_elf_got_section (abfd)
5193 bfd *abfd;
5194 {
5195 return bfd_get_section_by_name (abfd, ".got");
5196 }
5197
5198 /* Returns the GOT information associated with the link indicated by
5199 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5200 section. */
5201
5202 static struct mips_got_info *
5203 mips_elf_got_info (abfd, sgotp)
5204 bfd *abfd;
5205 asection **sgotp;
5206 {
5207 asection *sgot;
5208 struct mips_got_info *g;
5209
5210 sgot = mips_elf_got_section (abfd);
5211 BFD_ASSERT (sgot != NULL);
5212 BFD_ASSERT (elf_section_data (sgot) != NULL);
5213 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5214 BFD_ASSERT (g != NULL);
5215
5216 if (sgotp)
5217 *sgotp = sgot;
5218 return g;
5219 }
5220
5221 /* Return whether a relocation is against a local symbol. */
5222
5223 static boolean
5224 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5225 check_forced)
5226 bfd *input_bfd;
5227 const Elf_Internal_Rela *relocation;
5228 asection **local_sections;
5229 boolean check_forced;
5230 {
5231 unsigned long r_symndx;
5232 Elf_Internal_Shdr *symtab_hdr;
5233 struct mips_elf_link_hash_entry* h;
5234 size_t extsymoff;
5235
5236 r_symndx = ELF32_R_SYM (relocation->r_info);
5237 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5238 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5239
5240 if (r_symndx < extsymoff)
5241 return true;
5242 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5243 return true;
5244
5245 if (check_forced)
5246 {
5247 /* Look up the hash table to check whether the symbol
5248 was forced local. */
5249 h = (struct mips_elf_link_hash_entry *)
5250 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5251 /* Find the real hash-table entry for this symbol. */
5252 while (h->root.root.type == bfd_link_hash_indirect
5253 || h->root.root.type == bfd_link_hash_warning)
5254 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5255 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5256 return true;
5257 }
5258
5259 return false;
5260 }
5261
5262 /* Sign-extend VALUE, which has the indicated number of BITS. */
5263
5264 static bfd_vma
5265 mips_elf_sign_extend (value, bits)
5266 bfd_vma value;
5267 int bits;
5268 {
5269 if (value & ((bfd_vma)1 << (bits - 1)))
5270 /* VALUE is negative. */
5271 value |= ((bfd_vma) - 1) << bits;
5272
5273 return value;
5274 }
5275
5276 /* Return non-zero if the indicated VALUE has overflowed the maximum
5277 range expressable by a signed number with the indicated number of
5278 BITS. */
5279
5280 static boolean
5281 mips_elf_overflow_p (value, bits)
5282 bfd_vma value;
5283 int bits;
5284 {
5285 bfd_signed_vma svalue = (bfd_signed_vma) value;
5286
5287 if (svalue > (1 << (bits - 1)) - 1)
5288 /* The value is too big. */
5289 return true;
5290 else if (svalue < -(1 << (bits - 1)))
5291 /* The value is too small. */
5292 return true;
5293
5294 /* All is well. */
5295 return false;
5296 }
5297
5298 /* Calculate the %high function. */
5299
5300 static bfd_vma
5301 mips_elf_high (value)
5302 bfd_vma value;
5303 {
5304 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5305 }
5306
5307 /* Calculate the %higher function. */
5308
5309 static bfd_vma
5310 mips_elf_higher (value)
5311 bfd_vma value ATTRIBUTE_UNUSED;
5312 {
5313 #ifdef BFD64
5314 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5315 #else
5316 abort ();
5317 return (bfd_vma) -1;
5318 #endif
5319 }
5320
5321 /* Calculate the %highest function. */
5322
5323 static bfd_vma
5324 mips_elf_highest (value)
5325 bfd_vma value ATTRIBUTE_UNUSED;
5326 {
5327 #ifdef BFD64
5328 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5329 #else
5330 abort ();
5331 return (bfd_vma) -1;
5332 #endif
5333 }
5334
5335 /* Returns the GOT index for the global symbol indicated by H. */
5336
5337 static bfd_vma
5338 mips_elf_global_got_index (abfd, h)
5339 bfd *abfd;
5340 struct elf_link_hash_entry *h;
5341 {
5342 bfd_vma index;
5343 asection *sgot;
5344 struct mips_got_info *g;
5345
5346 g = mips_elf_got_info (abfd, &sgot);
5347
5348 /* Once we determine the global GOT entry with the lowest dynamic
5349 symbol table index, we must put all dynamic symbols with greater
5350 indices into the GOT. That makes it easy to calculate the GOT
5351 offset. */
5352 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5353 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5354 * MIPS_ELF_GOT_SIZE (abfd));
5355 BFD_ASSERT (index < sgot->_raw_size);
5356
5357 return index;
5358 }
5359
5360 /* Returns the offset for the entry at the INDEXth position
5361 in the GOT. */
5362
5363 static bfd_vma
5364 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5365 bfd *dynobj;
5366 bfd *output_bfd;
5367 bfd_vma index;
5368 {
5369 asection *sgot;
5370 bfd_vma gp;
5371
5372 sgot = mips_elf_got_section (dynobj);
5373 gp = _bfd_get_gp_value (output_bfd);
5374 return (sgot->output_section->vma + sgot->output_offset + index -
5375 gp);
5376 }
5377
5378 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5379 symbol table index lower than any we've seen to date, record it for
5380 posterity. */
5381
5382 static boolean
5383 mips_elf_record_global_got_symbol (h, info, g)
5384 struct elf_link_hash_entry *h;
5385 struct bfd_link_info *info;
5386 struct mips_got_info *g ATTRIBUTE_UNUSED;
5387 {
5388 /* A global symbol in the GOT must also be in the dynamic symbol
5389 table. */
5390 if (h->dynindx == -1
5391 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5392 return false;
5393
5394 /* If we've already marked this entry as need GOT space, we don't
5395 need to do it again. */
5396 if (h->got.offset != (bfd_vma) - 1)
5397 return true;
5398
5399 /* By setting this to a value other than -1, we are indicating that
5400 there needs to be a GOT entry for H. */
5401 h->got.offset = 0;
5402
5403 return true;
5404 }
5405
5406 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5407 the dynamic symbols. */
5408
5409 struct mips_elf_hash_sort_data
5410 {
5411 /* The symbol in the global GOT with the lowest dynamic symbol table
5412 index. */
5413 struct elf_link_hash_entry *low;
5414 /* The least dynamic symbol table index corresponding to a symbol
5415 with a GOT entry. */
5416 long min_got_dynindx;
5417 /* The greatest dynamic symbol table index not corresponding to a
5418 symbol without a GOT entry. */
5419 long max_non_got_dynindx;
5420 };
5421
5422 /* If H needs a GOT entry, assign it the highest available dynamic
5423 index. Otherwise, assign it the lowest available dynamic
5424 index. */
5425
5426 static boolean
5427 mips_elf_sort_hash_table_f (h, data)
5428 struct mips_elf_link_hash_entry *h;
5429 PTR data;
5430 {
5431 struct mips_elf_hash_sort_data *hsd
5432 = (struct mips_elf_hash_sort_data *) data;
5433
5434 /* Symbols without dynamic symbol table entries aren't interesting
5435 at all. */
5436 if (h->root.dynindx == -1)
5437 return true;
5438
5439 if (h->root.got.offset != 0)
5440 h->root.dynindx = hsd->max_non_got_dynindx++;
5441 else
5442 {
5443 h->root.dynindx = --hsd->min_got_dynindx;
5444 hsd->low = (struct elf_link_hash_entry *) h;
5445 }
5446
5447 return true;
5448 }
5449
5450 /* Sort the dynamic symbol table so that symbols that need GOT entries
5451 appear towards the end. This reduces the amount of GOT space
5452 required. MAX_LOCAL is used to set the number of local symbols
5453 known to be in the dynamic symbol table. During
5454 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5455 section symbols are added and the count is higher. */
5456
5457 static boolean
5458 mips_elf_sort_hash_table (info, max_local)
5459 struct bfd_link_info *info;
5460 unsigned long max_local;
5461 {
5462 struct mips_elf_hash_sort_data hsd;
5463 struct mips_got_info *g;
5464 bfd *dynobj;
5465
5466 dynobj = elf_hash_table (info)->dynobj;
5467
5468 hsd.low = NULL;
5469 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5470 hsd.max_non_got_dynindx = max_local;
5471 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5472 elf_hash_table (info)),
5473 mips_elf_sort_hash_table_f,
5474 &hsd);
5475
5476 /* There shoud have been enough room in the symbol table to
5477 accomodate both the GOT and non-GOT symbols. */
5478 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5479
5480 /* Now we know which dynamic symbol has the lowest dynamic symbol
5481 table index in the GOT. */
5482 g = mips_elf_got_info (dynobj, NULL);
5483 g->global_gotsym = hsd.low;
5484
5485 return true;
5486 }
5487
5488 /* Create a local GOT entry for VALUE. Return the index of the entry,
5489 or -1 if it could not be created. */
5490
5491 static bfd_vma
5492 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5493 bfd *abfd;
5494 struct mips_got_info *g;
5495 asection *sgot;
5496 bfd_vma value;
5497 {
5498 if (g->assigned_gotno >= g->local_gotno)
5499 {
5500 /* We didn't allocate enough space in the GOT. */
5501 (*_bfd_error_handler)
5502 (_("not enough GOT space for local GOT entries"));
5503 bfd_set_error (bfd_error_bad_value);
5504 return (bfd_vma) -1;
5505 }
5506
5507 MIPS_ELF_PUT_WORD (abfd, value,
5508 (sgot->contents
5509 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5510 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5511 }
5512
5513 /* Returns the GOT offset at which the indicated address can be found.
5514 If there is not yet a GOT entry for this value, create one. Returns
5515 -1 if no satisfactory GOT offset can be found. */
5516
5517 static bfd_vma
5518 mips_elf_local_got_index (abfd, info, value)
5519 bfd *abfd;
5520 struct bfd_link_info *info;
5521 bfd_vma value;
5522 {
5523 asection *sgot;
5524 struct mips_got_info *g;
5525 bfd_byte *entry;
5526
5527 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5528
5529 /* Look to see if we already have an appropriate entry. */
5530 for (entry = (sgot->contents
5531 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5532 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5533 entry += MIPS_ELF_GOT_SIZE (abfd))
5534 {
5535 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5536 if (address == value)
5537 return entry - sgot->contents;
5538 }
5539
5540 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5541 }
5542
5543 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5544 are supposed to be placed at small offsets in the GOT, i.e.,
5545 within 32KB of GP. Return the index into the GOT for this page,
5546 and store the offset from this entry to the desired address in
5547 OFFSETP, if it is non-NULL. */
5548
5549 static bfd_vma
5550 mips_elf_got_page (abfd, info, value, offsetp)
5551 bfd *abfd;
5552 struct bfd_link_info *info;
5553 bfd_vma value;
5554 bfd_vma *offsetp;
5555 {
5556 asection *sgot;
5557 struct mips_got_info *g;
5558 bfd_byte *entry;
5559 bfd_byte *last_entry;
5560 bfd_vma index = 0;
5561 bfd_vma address;
5562
5563 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5564
5565 /* Look to see if we aleady have an appropriate entry. */
5566 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5567 for (entry = (sgot->contents
5568 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5569 entry != last_entry;
5570 entry += MIPS_ELF_GOT_SIZE (abfd))
5571 {
5572 address = MIPS_ELF_GET_WORD (abfd, entry);
5573
5574 if (!mips_elf_overflow_p (value - address, 16))
5575 {
5576 /* This entry will serve as the page pointer. We can add a
5577 16-bit number to it to get the actual address. */
5578 index = entry - sgot->contents;
5579 break;
5580 }
5581 }
5582
5583 /* If we didn't have an appropriate entry, we create one now. */
5584 if (entry == last_entry)
5585 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5586
5587 if (offsetp)
5588 {
5589 address = MIPS_ELF_GET_WORD (abfd, entry);
5590 *offsetp = value - address;
5591 }
5592
5593 return index;
5594 }
5595
5596 /* Find a GOT entry whose higher-order 16 bits are the same as those
5597 for value. Return the index into the GOT for this entry. */
5598
5599 static bfd_vma
5600 mips_elf_got16_entry (abfd, info, value, external)
5601 bfd *abfd;
5602 struct bfd_link_info *info;
5603 bfd_vma value;
5604 boolean external;
5605 {
5606 asection *sgot;
5607 struct mips_got_info *g;
5608 bfd_byte *entry;
5609 bfd_byte *last_entry;
5610 bfd_vma index = 0;
5611 bfd_vma address;
5612
5613 if (! external)
5614 {
5615 /* Although the ABI says that it is "the high-order 16 bits" that we
5616 want, it is really the %high value. The complete value is
5617 calculated with a `addiu' of a LO16 relocation, just as with a
5618 HI16/LO16 pair. */
5619 value = mips_elf_high (value) << 16;
5620 }
5621
5622 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5623
5624 /* Look to see if we already have an appropriate entry. */
5625 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5626 for (entry = (sgot->contents
5627 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5628 entry != last_entry;
5629 entry += MIPS_ELF_GOT_SIZE (abfd))
5630 {
5631 address = MIPS_ELF_GET_WORD (abfd, entry);
5632 if (address == value)
5633 {
5634 /* This entry has the right high-order 16 bits, and the low-order
5635 16 bits are set to zero. */
5636 index = entry - sgot->contents;
5637 break;
5638 }
5639 }
5640
5641 /* If we didn't have an appropriate entry, we create one now. */
5642 if (entry == last_entry)
5643 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5644
5645 return index;
5646 }
5647
5648 /* Returns the first relocation of type r_type found, beginning with
5649 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5650
5651 static const Elf_Internal_Rela *
5652 mips_elf_next_relocation (r_type, relocation, relend)
5653 unsigned int r_type;
5654 const Elf_Internal_Rela *relocation;
5655 const Elf_Internal_Rela *relend;
5656 {
5657 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5658 immediately following. However, for the IRIX6 ABI, the next
5659 relocation may be a composed relocation consisting of several
5660 relocations for the same address. In that case, the R_MIPS_LO16
5661 relocation may occur as one of these. We permit a similar
5662 extension in general, as that is useful for GCC. */
5663 while (relocation < relend)
5664 {
5665 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5666 return relocation;
5667
5668 ++relocation;
5669 }
5670
5671 /* We didn't find it. */
5672 bfd_set_error (bfd_error_bad_value);
5673 return NULL;
5674 }
5675
5676 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5677 is the original relocation, which is now being transformed into a
5678 dynamic relocation. The ADDENDP is adjusted if necessary; the
5679 caller should store the result in place of the original addend. */
5680
5681 static boolean
5682 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5683 symbol, addendp, input_section)
5684 bfd *output_bfd;
5685 struct bfd_link_info *info;
5686 const Elf_Internal_Rela *rel;
5687 struct mips_elf_link_hash_entry *h;
5688 asection *sec;
5689 bfd_vma symbol;
5690 bfd_vma *addendp;
5691 asection *input_section;
5692 {
5693 Elf_Internal_Rel outrel;
5694 boolean skip;
5695 asection *sreloc;
5696 bfd *dynobj;
5697 int r_type;
5698
5699 r_type = ELF32_R_TYPE (rel->r_info);
5700 dynobj = elf_hash_table (info)->dynobj;
5701 sreloc
5702 = bfd_get_section_by_name (dynobj,
5703 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5704 BFD_ASSERT (sreloc != NULL);
5705 BFD_ASSERT (sreloc->contents != NULL);
5706
5707 skip = false;
5708
5709 /* We begin by assuming that the offset for the dynamic relocation
5710 is the same as for the original relocation. We'll adjust this
5711 later to reflect the correct output offsets. */
5712 if (elf_section_data (input_section)->stab_info == NULL)
5713 outrel.r_offset = rel->r_offset;
5714 else
5715 {
5716 /* Except that in a stab section things are more complex.
5717 Because we compress stab information, the offset given in the
5718 relocation may not be the one we want; we must let the stabs
5719 machinery tell us the offset. */
5720 outrel.r_offset
5721 = (_bfd_stab_section_offset
5722 (output_bfd, &elf_hash_table (info)->stab_info,
5723 input_section,
5724 &elf_section_data (input_section)->stab_info,
5725 rel->r_offset));
5726 /* If we didn't need the relocation at all, this value will be
5727 -1. */
5728 if (outrel.r_offset == (bfd_vma) -1)
5729 skip = true;
5730 }
5731
5732 /* If we've decided to skip this relocation, just output an empty
5733 record. Note that R_MIPS_NONE == 0, so that this call to memset
5734 is a way of setting R_TYPE to R_MIPS_NONE. */
5735 if (skip)
5736 memset (&outrel, 0, sizeof (outrel));
5737 else
5738 {
5739 long indx;
5740 bfd_vma section_offset;
5741
5742 /* We must now calculate the dynamic symbol table index to use
5743 in the relocation. */
5744 if (h != NULL
5745 && (! info->symbolic || (h->root.elf_link_hash_flags
5746 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5747 {
5748 indx = h->root.dynindx;
5749 /* h->root.dynindx may be -1 if this symbol was marked to
5750 become local. */
5751 if (indx == -1)
5752 indx = 0;
5753 }
5754 else
5755 {
5756 if (sec != NULL && bfd_is_abs_section (sec))
5757 indx = 0;
5758 else if (sec == NULL || sec->owner == NULL)
5759 {
5760 bfd_set_error (bfd_error_bad_value);
5761 return false;
5762 }
5763 else
5764 {
5765 indx = elf_section_data (sec->output_section)->dynindx;
5766 if (indx == 0)
5767 abort ();
5768 }
5769
5770 /* Figure out how far the target of the relocation is from
5771 the beginning of its section. */
5772 section_offset = symbol - sec->output_section->vma;
5773 /* The relocation we're building is section-relative.
5774 Therefore, the original addend must be adjusted by the
5775 section offset. */
5776 *addendp += symbol - sec->output_section->vma;
5777 /* Now, the relocation is just against the section. */
5778 symbol = sec->output_section->vma;
5779 }
5780
5781 /* If the relocation was previously an absolute relocation, we
5782 must adjust it by the value we give it in the dynamic symbol
5783 table. */
5784 if (r_type != R_MIPS_REL32)
5785 *addendp += symbol;
5786
5787 /* The relocation is always an REL32 relocation because we don't
5788 know where the shared library will wind up at load-time. */
5789 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5790
5791 /* Adjust the output offset of the relocation to reference the
5792 correct location in the output file. */
5793 outrel.r_offset += (input_section->output_section->vma
5794 + input_section->output_offset);
5795 }
5796
5797 /* Put the relocation back out. We have to use the special
5798 relocation outputter in the 64-bit case since the 64-bit
5799 relocation format is non-standard. */
5800 if (ABI_64_P (output_bfd))
5801 {
5802 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5803 (output_bfd, &outrel,
5804 (sreloc->contents
5805 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5806 }
5807 else
5808 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5809 (((Elf32_External_Rel *)
5810 sreloc->contents)
5811 + sreloc->reloc_count));
5812
5813 /* Record the index of the first relocation referencing H. This
5814 information is later emitted in the .msym section. */
5815 if (h != NULL
5816 && (h->min_dyn_reloc_index == 0
5817 || sreloc->reloc_count < h->min_dyn_reloc_index))
5818 h->min_dyn_reloc_index = sreloc->reloc_count;
5819
5820 /* We've now added another relocation. */
5821 ++sreloc->reloc_count;
5822
5823 /* Make sure the output section is writable. The dynamic linker
5824 will be writing to it. */
5825 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5826 |= SHF_WRITE;
5827
5828 /* On IRIX5, make an entry of compact relocation info. */
5829 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5830 {
5831 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5832 bfd_byte *cr;
5833
5834 if (scpt)
5835 {
5836 Elf32_crinfo cptrel;
5837
5838 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5839 cptrel.vaddr = (rel->r_offset
5840 + input_section->output_section->vma
5841 + input_section->output_offset);
5842 if (r_type == R_MIPS_REL32)
5843 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5844 else
5845 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5846 mips_elf_set_cr_dist2to (cptrel, 0);
5847 cptrel.konst = *addendp;
5848
5849 cr = (scpt->contents
5850 + sizeof (Elf32_External_compact_rel));
5851 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5852 ((Elf32_External_crinfo *) cr
5853 + scpt->reloc_count));
5854 ++scpt->reloc_count;
5855 }
5856 }
5857
5858 return true;
5859 }
5860
5861 /* Calculate the value produced by the RELOCATION (which comes from
5862 the INPUT_BFD). The ADDEND is the addend to use for this
5863 RELOCATION; RELOCATION->R_ADDEND is ignored.
5864
5865 The result of the relocation calculation is stored in VALUEP.
5866 REQUIRE_JALXP indicates whether or not the opcode used with this
5867 relocation must be JALX.
5868
5869 This function returns bfd_reloc_continue if the caller need take no
5870 further action regarding this relocation, bfd_reloc_notsupported if
5871 something goes dramatically wrong, bfd_reloc_overflow if an
5872 overflow occurs, and bfd_reloc_ok to indicate success. */
5873
5874 static bfd_reloc_status_type
5875 mips_elf_calculate_relocation (abfd,
5876 input_bfd,
5877 input_section,
5878 info,
5879 relocation,
5880 addend,
5881 howto,
5882 local_syms,
5883 local_sections,
5884 valuep,
5885 namep,
5886 require_jalxp)
5887 bfd *abfd;
5888 bfd *input_bfd;
5889 asection *input_section;
5890 struct bfd_link_info *info;
5891 const Elf_Internal_Rela *relocation;
5892 bfd_vma addend;
5893 reloc_howto_type *howto;
5894 Elf_Internal_Sym *local_syms;
5895 asection **local_sections;
5896 bfd_vma *valuep;
5897 const char **namep;
5898 boolean *require_jalxp;
5899 {
5900 /* The eventual value we will return. */
5901 bfd_vma value;
5902 /* The address of the symbol against which the relocation is
5903 occurring. */
5904 bfd_vma symbol = 0;
5905 /* The final GP value to be used for the relocatable, executable, or
5906 shared object file being produced. */
5907 bfd_vma gp = (bfd_vma) - 1;
5908 /* The place (section offset or address) of the storage unit being
5909 relocated. */
5910 bfd_vma p;
5911 /* The value of GP used to create the relocatable object. */
5912 bfd_vma gp0 = (bfd_vma) - 1;
5913 /* The offset into the global offset table at which the address of
5914 the relocation entry symbol, adjusted by the addend, resides
5915 during execution. */
5916 bfd_vma g = (bfd_vma) - 1;
5917 /* The section in which the symbol referenced by the relocation is
5918 located. */
5919 asection *sec = NULL;
5920 struct mips_elf_link_hash_entry* h = NULL;
5921 /* True if the symbol referred to by this relocation is a local
5922 symbol. */
5923 boolean local_p;
5924 /* True if the symbol referred to by this relocation is "_gp_disp". */
5925 boolean gp_disp_p = false;
5926 Elf_Internal_Shdr *symtab_hdr;
5927 size_t extsymoff;
5928 unsigned long r_symndx;
5929 int r_type;
5930 /* True if overflow occurred during the calculation of the
5931 relocation value. */
5932 boolean overflowed_p;
5933 /* True if this relocation refers to a MIPS16 function. */
5934 boolean target_is_16_bit_code_p = false;
5935
5936 /* Parse the relocation. */
5937 r_symndx = ELF32_R_SYM (relocation->r_info);
5938 r_type = ELF32_R_TYPE (relocation->r_info);
5939 p = (input_section->output_section->vma
5940 + input_section->output_offset
5941 + relocation->r_offset);
5942
5943 /* Assume that there will be no overflow. */
5944 overflowed_p = false;
5945
5946 /* Figure out whether or not the symbol is local, and get the offset
5947 used in the array of hash table entries. */
5948 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5949 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5950 local_sections, false);
5951 if (! elf_bad_symtab (input_bfd))
5952 extsymoff = symtab_hdr->sh_info;
5953 else
5954 {
5955 /* The symbol table does not follow the rule that local symbols
5956 must come before globals. */
5957 extsymoff = 0;
5958 }
5959
5960 /* Figure out the value of the symbol. */
5961 if (local_p)
5962 {
5963 Elf_Internal_Sym *sym;
5964
5965 sym = local_syms + r_symndx;
5966 sec = local_sections[r_symndx];
5967
5968 symbol = sec->output_section->vma + sec->output_offset;
5969 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5970 symbol += sym->st_value;
5971
5972 /* MIPS16 text labels should be treated as odd. */
5973 if (sym->st_other == STO_MIPS16)
5974 ++symbol;
5975
5976 /* Record the name of this symbol, for our caller. */
5977 *namep = bfd_elf_string_from_elf_section (input_bfd,
5978 symtab_hdr->sh_link,
5979 sym->st_name);
5980 if (*namep == '\0')
5981 *namep = bfd_section_name (input_bfd, sec);
5982
5983 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
5984 }
5985 else
5986 {
5987 /* For global symbols we look up the symbol in the hash-table. */
5988 h = ((struct mips_elf_link_hash_entry *)
5989 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5990 /* Find the real hash-table entry for this symbol. */
5991 while (h->root.root.type == bfd_link_hash_indirect
5992 || h->root.root.type == bfd_link_hash_warning)
5993 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5994
5995 /* Record the name of this symbol, for our caller. */
5996 *namep = h->root.root.root.string;
5997
5998 /* See if this is the special _gp_disp symbol. Note that such a
5999 symbol must always be a global symbol. */
6000 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6001 {
6002 /* Relocations against _gp_disp are permitted only with
6003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6005 return bfd_reloc_notsupported;
6006
6007 gp_disp_p = true;
6008 }
6009 /* If this symbol is defined, calculate its address. Note that
6010 _gp_disp is a magic symbol, always implicitly defined by the
6011 linker, so it's inappropriate to check to see whether or not
6012 its defined. */
6013 else if ((h->root.root.type == bfd_link_hash_defined
6014 || h->root.root.type == bfd_link_hash_defweak)
6015 && h->root.root.u.def.section)
6016 {
6017 sec = h->root.root.u.def.section;
6018 if (sec->output_section)
6019 symbol = (h->root.root.u.def.value
6020 + sec->output_section->vma
6021 + sec->output_offset);
6022 else
6023 symbol = h->root.root.u.def.value;
6024 }
6025 else if (h->root.root.type == bfd_link_hash_undefweak)
6026 /* We allow relocations against undefined weak symbols, giving
6027 it the value zero, so that you can undefined weak functions
6028 and check to see if they exist by looking at their
6029 addresses. */
6030 symbol = 0;
6031 else if (info->shared && !info->symbolic && !info->no_undefined
6032 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6033 symbol = 0;
6034 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6035 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6036 {
6037 /* If this is a dynamic link, we should have created a
6038 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6039 in in mips_elf_create_dynamic_sections.
6040 Otherwise, we should define the symbol with a value of 0.
6041 FIXME: It should probably get into the symbol table
6042 somehow as well. */
6043 BFD_ASSERT (! info->shared);
6044 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6045 symbol = 0;
6046 }
6047 else
6048 {
6049 if (! ((*info->callbacks->undefined_symbol)
6050 (info, h->root.root.root.string, input_bfd,
6051 input_section, relocation->r_offset,
6052 (!info->shared || info->no_undefined
6053 || ELF_ST_VISIBILITY (h->root.other)))))
6054 return bfd_reloc_undefined;
6055 symbol = 0;
6056 }
6057
6058 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6059 }
6060
6061 /* If this is a 32-bit call to a 16-bit function with a stub, we
6062 need to redirect the call to the stub, unless we're already *in*
6063 a stub. */
6064 if (r_type != R_MIPS16_26 && !info->relocateable
6065 && ((h != NULL && h->fn_stub != NULL)
6066 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6067 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6068 && !mips_elf_stub_section_p (input_bfd, input_section))
6069 {
6070 /* This is a 32-bit call to a 16-bit function. We should
6071 have already noticed that we were going to need the
6072 stub. */
6073 if (local_p)
6074 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6075 else
6076 {
6077 BFD_ASSERT (h->need_fn_stub);
6078 sec = h->fn_stub;
6079 }
6080
6081 symbol = sec->output_section->vma + sec->output_offset;
6082 }
6083 /* If this is a 16-bit call to a 32-bit function with a stub, we
6084 need to redirect the call to the stub. */
6085 else if (r_type == R_MIPS16_26 && !info->relocateable
6086 && h != NULL
6087 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6088 && !target_is_16_bit_code_p)
6089 {
6090 /* If both call_stub and call_fp_stub are defined, we can figure
6091 out which one to use by seeing which one appears in the input
6092 file. */
6093 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6094 {
6095 asection *o;
6096
6097 sec = NULL;
6098 for (o = input_bfd->sections; o != NULL; o = o->next)
6099 {
6100 if (strncmp (bfd_get_section_name (input_bfd, o),
6101 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6102 {
6103 sec = h->call_fp_stub;
6104 break;
6105 }
6106 }
6107 if (sec == NULL)
6108 sec = h->call_stub;
6109 }
6110 else if (h->call_stub != NULL)
6111 sec = h->call_stub;
6112 else
6113 sec = h->call_fp_stub;
6114
6115 BFD_ASSERT (sec->_raw_size > 0);
6116 symbol = sec->output_section->vma + sec->output_offset;
6117 }
6118
6119 /* Calls from 16-bit code to 32-bit code and vice versa require the
6120 special jalx instruction. */
6121 *require_jalxp = (!info->relocateable
6122 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6123
6124 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6125 local_sections, true);
6126
6127 /* If we haven't already determined the GOT offset, or the GP value,
6128 and we're going to need it, get it now. */
6129 switch (r_type)
6130 {
6131 case R_MIPS_CALL16:
6132 case R_MIPS_GOT16:
6133 case R_MIPS_GOT_DISP:
6134 case R_MIPS_GOT_HI16:
6135 case R_MIPS_CALL_HI16:
6136 case R_MIPS_GOT_LO16:
6137 case R_MIPS_CALL_LO16:
6138 /* Find the index into the GOT where this value is located. */
6139 if (!local_p)
6140 {
6141 BFD_ASSERT (addend == 0);
6142 g = mips_elf_global_got_index
6143 (elf_hash_table (info)->dynobj,
6144 (struct elf_link_hash_entry*) h);
6145 if (! elf_hash_table(info)->dynamic_sections_created
6146 || (info->shared
6147 && (info->symbolic || h->root.dynindx == -1)
6148 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6149 {
6150 /* This is a static link or a -Bsymbolic link. The
6151 symbol is defined locally, or was forced to be local.
6152 We must initialize this entry in the GOT. */
6153 asection *sgot = mips_elf_got_section(elf_hash_table
6154 (info)->dynobj);
6155 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6156 symbol + addend, sgot->contents + g);
6157 }
6158 }
6159 else if (r_type == R_MIPS_GOT16)
6160 /* There's no need to create a local GOT entry here; the
6161 calculation for a local GOT16 entry does not involve G. */
6162 break;
6163 else
6164 {
6165 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6166 if (g == (bfd_vma) -1)
6167 return false;
6168 }
6169
6170 /* Convert GOT indices to actual offsets. */
6171 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6172 abfd, g);
6173 break;
6174
6175 case R_MIPS_HI16:
6176 case R_MIPS_LO16:
6177 case R_MIPS_GPREL16:
6178 case R_MIPS_GPREL32:
6179 case R_MIPS_LITERAL:
6180 gp0 = _bfd_get_gp_value (input_bfd);
6181 gp = _bfd_get_gp_value (abfd);
6182 break;
6183
6184 default:
6185 break;
6186 }
6187
6188 /* Figure out what kind of relocation is being performed. */
6189 switch (r_type)
6190 {
6191 case R_MIPS_NONE:
6192 return bfd_reloc_continue;
6193
6194 case R_MIPS_16:
6195 value = symbol + mips_elf_sign_extend (addend, 16);
6196 overflowed_p = mips_elf_overflow_p (value, 16);
6197 break;
6198
6199 case R_MIPS_32:
6200 case R_MIPS_REL32:
6201 case R_MIPS_64:
6202 if ((info->shared
6203 || (elf_hash_table (info)->dynamic_sections_created
6204 && h != NULL
6205 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6206 != 0)))
6207 && (input_section->flags & SEC_ALLOC) != 0)
6208 {
6209 /* If we're creating a shared library, or this relocation is
6210 against a symbol in a shared library, then we can't know
6211 where the symbol will end up. So, we create a relocation
6212 record in the output, and leave the job up to the dynamic
6213 linker. */
6214 value = addend;
6215 if (!mips_elf_create_dynamic_relocation (abfd,
6216 info,
6217 relocation,
6218 h,
6219 sec,
6220 symbol,
6221 &value,
6222 input_section))
6223 return false;
6224 }
6225 else
6226 {
6227 if (r_type != R_MIPS_REL32)
6228 value = symbol + addend;
6229 else
6230 value = addend;
6231 }
6232 value &= howto->dst_mask;
6233 break;
6234
6235 case R_MIPS_PC32:
6236 case R_MIPS_PC64:
6237 case R_MIPS_GNU_REL_LO16:
6238 value = symbol + addend - p;
6239 value &= howto->dst_mask;
6240 break;
6241
6242 case R_MIPS_GNU_REL16_S2:
6243 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6244 overflowed_p = mips_elf_overflow_p (value, 18);
6245 value = (value >> 2) & howto->dst_mask;
6246 break;
6247
6248 case R_MIPS_GNU_REL_HI16:
6249 value = mips_elf_high (addend + symbol - p);
6250 value &= howto->dst_mask;
6251 break;
6252
6253 case R_MIPS16_26:
6254 /* The calculation for R_MIPS_26 is just the same as for an
6255 R_MIPS_26. It's only the storage of the relocated field into
6256 the output file that's different. That's handled in
6257 mips_elf_perform_relocation. So, we just fall through to the
6258 R_MIPS_26 case here. */
6259 case R_MIPS_26:
6260 if (local_p)
6261 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6262 else
6263 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_HI16:
6268 if (!gp_disp_p)
6269 {
6270 value = mips_elf_high (addend + symbol);
6271 value &= howto->dst_mask;
6272 }
6273 else
6274 {
6275 value = mips_elf_high (addend + gp - p);
6276 overflowed_p = mips_elf_overflow_p (value, 16);
6277 }
6278 break;
6279
6280 case R_MIPS_LO16:
6281 if (!gp_disp_p)
6282 value = (symbol + addend) & howto->dst_mask;
6283 else
6284 {
6285 value = addend + gp - p + 4;
6286 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6287 for overflow. But, on, say, Irix 5, relocations against
6288 _gp_disp are normally generated from the .cpload
6289 pseudo-op. It generates code that normally looks like
6290 this:
6291
6292 lui $gp,%hi(_gp_disp)
6293 addiu $gp,$gp,%lo(_gp_disp)
6294 addu $gp,$gp,$t9
6295
6296 Here $t9 holds the address of the function being called,
6297 as required by the MIPS ELF ABI. The R_MIPS_LO16
6298 relocation can easily overflow in this situation, but the
6299 R_MIPS_HI16 relocation will handle the overflow.
6300 Therefore, we consider this a bug in the MIPS ABI, and do
6301 not check for overflow here. */
6302 }
6303 break;
6304
6305 case R_MIPS_LITERAL:
6306 /* Because we don't merge literal sections, we can handle this
6307 just like R_MIPS_GPREL16. In the long run, we should merge
6308 shared literals, and then we will need to additional work
6309 here. */
6310
6311 /* Fall through. */
6312
6313 case R_MIPS16_GPREL:
6314 /* The R_MIPS16_GPREL performs the same calculation as
6315 R_MIPS_GPREL16, but stores the relocated bits in a different
6316 order. We don't need to do anything special here; the
6317 differences are handled in mips_elf_perform_relocation. */
6318 case R_MIPS_GPREL16:
6319 if (local_p)
6320 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6321 else
6322 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6323 overflowed_p = mips_elf_overflow_p (value, 16);
6324 break;
6325
6326 case R_MIPS_GOT16:
6327 if (local_p)
6328 {
6329 boolean forced;
6330
6331 /* The special case is when the symbol is forced to be local. We
6332 need the full address in the GOT since no R_MIPS_LO16 relocation
6333 follows. */
6334 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6335 local_sections, false);
6336 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6337 if (value == (bfd_vma) -1)
6338 return false;
6339 value
6340 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6341 abfd,
6342 value);
6343 overflowed_p = mips_elf_overflow_p (value, 16);
6344 break;
6345 }
6346
6347 /* Fall through. */
6348
6349 case R_MIPS_CALL16:
6350 case R_MIPS_GOT_DISP:
6351 value = g;
6352 overflowed_p = mips_elf_overflow_p (value, 16);
6353 break;
6354
6355 case R_MIPS_GPREL32:
6356 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_PC16:
6360 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6361 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6362 overflowed_p = mips_elf_overflow_p (value, 16);
6363 break;
6364
6365 case R_MIPS_GOT_HI16:
6366 case R_MIPS_CALL_HI16:
6367 /* We're allowed to handle these two relocations identically.
6368 The dynamic linker is allowed to handle the CALL relocations
6369 differently by creating a lazy evaluation stub. */
6370 value = g;
6371 value = mips_elf_high (value);
6372 value &= howto->dst_mask;
6373 break;
6374
6375 case R_MIPS_GOT_LO16:
6376 case R_MIPS_CALL_LO16:
6377 value = g & howto->dst_mask;
6378 break;
6379
6380 case R_MIPS_GOT_PAGE:
6381 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6382 if (value == (bfd_vma) -1)
6383 return false;
6384 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6385 abfd,
6386 value);
6387 overflowed_p = mips_elf_overflow_p (value, 16);
6388 break;
6389
6390 case R_MIPS_GOT_OFST:
6391 mips_elf_got_page (abfd, info, symbol + addend, &value);
6392 overflowed_p = mips_elf_overflow_p (value, 16);
6393 break;
6394
6395 case R_MIPS_SUB:
6396 value = symbol - addend;
6397 value &= howto->dst_mask;
6398 break;
6399
6400 case R_MIPS_HIGHER:
6401 value = mips_elf_higher (addend + symbol);
6402 value &= howto->dst_mask;
6403 break;
6404
6405 case R_MIPS_HIGHEST:
6406 value = mips_elf_highest (addend + symbol);
6407 value &= howto->dst_mask;
6408 break;
6409
6410 case R_MIPS_SCN_DISP:
6411 value = symbol + addend - sec->output_offset;
6412 value &= howto->dst_mask;
6413 break;
6414
6415 case R_MIPS_PJUMP:
6416 case R_MIPS_JALR:
6417 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6418 hint; we could improve performance by honoring that hint. */
6419 return bfd_reloc_continue;
6420
6421 case R_MIPS_GNU_VTINHERIT:
6422 case R_MIPS_GNU_VTENTRY:
6423 /* We don't do anything with these at present. */
6424 return bfd_reloc_continue;
6425
6426 default:
6427 /* An unrecognized relocation type. */
6428 return bfd_reloc_notsupported;
6429 }
6430
6431 /* Store the VALUE for our caller. */
6432 *valuep = value;
6433 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6434 }
6435
6436 /* Obtain the field relocated by RELOCATION. */
6437
6438 static bfd_vma
6439 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6440 reloc_howto_type *howto;
6441 const Elf_Internal_Rela *relocation;
6442 bfd *input_bfd;
6443 bfd_byte *contents;
6444 {
6445 bfd_vma x;
6446 bfd_byte *location = contents + relocation->r_offset;
6447
6448 /* Obtain the bytes. */
6449 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6450
6451 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6452 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6453 && bfd_little_endian (input_bfd))
6454 /* The two 16-bit words will be reversed on a little-endian
6455 system. See mips_elf_perform_relocation for more details. */
6456 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6457
6458 return x;
6459 }
6460
6461 /* It has been determined that the result of the RELOCATION is the
6462 VALUE. Use HOWTO to place VALUE into the output file at the
6463 appropriate position. The SECTION is the section to which the
6464 relocation applies. If REQUIRE_JALX is true, then the opcode used
6465 for the relocation must be either JAL or JALX, and it is
6466 unconditionally converted to JALX.
6467
6468 Returns false if anything goes wrong. */
6469
6470 static boolean
6471 mips_elf_perform_relocation (info, howto, relocation, value,
6472 input_bfd, input_section,
6473 contents, require_jalx)
6474 struct bfd_link_info *info;
6475 reloc_howto_type *howto;
6476 const Elf_Internal_Rela *relocation;
6477 bfd_vma value;
6478 bfd *input_bfd;
6479 asection *input_section;
6480 bfd_byte *contents;
6481 boolean require_jalx;
6482 {
6483 bfd_vma x;
6484 bfd_byte *location;
6485 int r_type = ELF32_R_TYPE (relocation->r_info);
6486
6487 /* Figure out where the relocation is occurring. */
6488 location = contents + relocation->r_offset;
6489
6490 /* Obtain the current value. */
6491 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6492
6493 /* Clear the field we are setting. */
6494 x &= ~howto->dst_mask;
6495
6496 /* If this is the R_MIPS16_26 relocation, we must store the
6497 value in a funny way. */
6498 if (r_type == R_MIPS16_26)
6499 {
6500 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6501 Most mips16 instructions are 16 bits, but these instructions
6502 are 32 bits.
6503
6504 The format of these instructions is:
6505
6506 +--------------+--------------------------------+
6507 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6508 +--------------+--------------------------------+
6509 ! Immediate 15:0 !
6510 +-----------------------------------------------+
6511
6512 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6513 Note that the immediate value in the first word is swapped.
6514
6515 When producing a relocateable object file, R_MIPS16_26 is
6516 handled mostly like R_MIPS_26. In particular, the addend is
6517 stored as a straight 26-bit value in a 32-bit instruction.
6518 (gas makes life simpler for itself by never adjusting a
6519 R_MIPS16_26 reloc to be against a section, so the addend is
6520 always zero). However, the 32 bit instruction is stored as 2
6521 16-bit values, rather than a single 32-bit value. In a
6522 big-endian file, the result is the same; in a little-endian
6523 file, the two 16-bit halves of the 32 bit value are swapped.
6524 This is so that a disassembler can recognize the jal
6525 instruction.
6526
6527 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6528 instruction stored as two 16-bit values. The addend A is the
6529 contents of the targ26 field. The calculation is the same as
6530 R_MIPS_26. When storing the calculated value, reorder the
6531 immediate value as shown above, and don't forget to store the
6532 value as two 16-bit values.
6533
6534 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6535 defined as
6536
6537 big-endian:
6538 +--------+----------------------+
6539 | | |
6540 | | targ26-16 |
6541 |31 26|25 0|
6542 +--------+----------------------+
6543
6544 little-endian:
6545 +----------+------+-------------+
6546 | | | |
6547 | sub1 | | sub2 |
6548 |0 9|10 15|16 31|
6549 +----------+--------------------+
6550 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6551 ((sub1 << 16) | sub2)).
6552
6553 When producing a relocateable object file, the calculation is
6554 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6555 When producing a fully linked file, the calculation is
6556 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6557 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6558
6559 if (!info->relocateable)
6560 /* Shuffle the bits according to the formula above. */
6561 value = (((value & 0x1f0000) << 5)
6562 | ((value & 0x3e00000) >> 5)
6563 | (value & 0xffff));
6564
6565 }
6566 else if (r_type == R_MIPS16_GPREL)
6567 {
6568 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6569 mode. A typical instruction will have a format like this:
6570
6571 +--------------+--------------------------------+
6572 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6573 +--------------+--------------------------------+
6574 ! Major ! rx ! ry ! Imm 4:0 !
6575 +--------------+--------------------------------+
6576
6577 EXTEND is the five bit value 11110. Major is the instruction
6578 opcode.
6579
6580 This is handled exactly like R_MIPS_GPREL16, except that the
6581 addend is retrieved and stored as shown in this diagram; that
6582 is, the Imm fields above replace the V-rel16 field.
6583
6584 All we need to do here is shuffle the bits appropriately. As
6585 above, the two 16-bit halves must be swapped on a
6586 little-endian system. */
6587 value = (((value & 0x7e0) << 16)
6588 | ((value & 0xf800) << 5)
6589 | (value & 0x1f));
6590 }
6591
6592 /* Set the field. */
6593 x |= (value & howto->dst_mask);
6594
6595 /* If required, turn JAL into JALX. */
6596 if (require_jalx)
6597 {
6598 boolean ok;
6599 bfd_vma opcode = x >> 26;
6600 bfd_vma jalx_opcode;
6601
6602 /* Check to see if the opcode is already JAL or JALX. */
6603 if (r_type == R_MIPS16_26)
6604 {
6605 ok = ((opcode == 0x6) || (opcode == 0x7));
6606 jalx_opcode = 0x7;
6607 }
6608 else
6609 {
6610 ok = ((opcode == 0x3) || (opcode == 0x1d));
6611 jalx_opcode = 0x1d;
6612 }
6613
6614 /* If the opcode is not JAL or JALX, there's a problem. */
6615 if (!ok)
6616 {
6617 (*_bfd_error_handler)
6618 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6619 bfd_get_filename (input_bfd),
6620 input_section->name,
6621 (unsigned long) relocation->r_offset);
6622 bfd_set_error (bfd_error_bad_value);
6623 return false;
6624 }
6625
6626 /* Make this the JALX opcode. */
6627 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6628 }
6629
6630 /* Swap the high- and low-order 16 bits on little-endian systems
6631 when doing a MIPS16 relocation. */
6632 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6633 && bfd_little_endian (input_bfd))
6634 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6635
6636 /* Put the value into the output. */
6637 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6638 return true;
6639 }
6640
6641 /* Returns true if SECTION is a MIPS16 stub section. */
6642
6643 static boolean
6644 mips_elf_stub_section_p (abfd, section)
6645 bfd *abfd ATTRIBUTE_UNUSED;
6646 asection *section;
6647 {
6648 const char *name = bfd_get_section_name (abfd, section);
6649
6650 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6651 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6652 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6653 }
6654
6655 /* Relocate a MIPS ELF section. */
6656
6657 boolean
6658 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6659 contents, relocs, local_syms, local_sections)
6660 bfd *output_bfd;
6661 struct bfd_link_info *info;
6662 bfd *input_bfd;
6663 asection *input_section;
6664 bfd_byte *contents;
6665 Elf_Internal_Rela *relocs;
6666 Elf_Internal_Sym *local_syms;
6667 asection **local_sections;
6668 {
6669 Elf_Internal_Rela *rel;
6670 const Elf_Internal_Rela *relend;
6671 bfd_vma addend = 0;
6672 boolean use_saved_addend_p = false;
6673 struct elf_backend_data *bed;
6674
6675 bed = get_elf_backend_data (output_bfd);
6676 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6677 for (rel = relocs; rel < relend; ++rel)
6678 {
6679 const char *name;
6680 bfd_vma value;
6681 reloc_howto_type *howto;
6682 boolean require_jalx;
6683 /* True if the relocation is a RELA relocation, rather than a
6684 REL relocation. */
6685 boolean rela_relocation_p = true;
6686 int r_type = ELF32_R_TYPE (rel->r_info);
6687
6688 /* Find the relocation howto for this relocation. */
6689 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6690 {
6691 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6692 64-bit code, but make sure all their addresses are in the
6693 lowermost or uppermost 32-bit section of the 64-bit address
6694 space. Thus, when they use an R_MIPS_64 they mean what is
6695 usually meant by R_MIPS_32, with the exception that the
6696 stored value is sign-extended to 64 bits. */
6697 howto = elf_mips_howto_table + R_MIPS_32;
6698
6699 /* On big-endian systems, we need to lie about the position
6700 of the reloc. */
6701 if (bfd_big_endian (input_bfd))
6702 rel->r_offset += 4;
6703 }
6704 else
6705 howto = mips_rtype_to_howto (r_type);
6706
6707 if (!use_saved_addend_p)
6708 {
6709 Elf_Internal_Shdr *rel_hdr;
6710
6711 /* If these relocations were originally of the REL variety,
6712 we must pull the addend out of the field that will be
6713 relocated. Otherwise, we simply use the contents of the
6714 RELA relocation. To determine which flavor or relocation
6715 this is, we depend on the fact that the INPUT_SECTION's
6716 REL_HDR is read before its REL_HDR2. */
6717 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6718 if ((size_t) (rel - relocs)
6719 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6720 * bed->s->int_rels_per_ext_rel))
6721 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6722 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6723 {
6724 /* Note that this is a REL relocation. */
6725 rela_relocation_p = false;
6726
6727 /* Get the addend, which is stored in the input file. */
6728 addend = mips_elf_obtain_contents (howto,
6729 rel,
6730 input_bfd,
6731 contents);
6732 addend &= howto->src_mask;
6733
6734 /* For some kinds of relocations, the ADDEND is a
6735 combination of the addend stored in two different
6736 relocations. */
6737 if (r_type == R_MIPS_HI16
6738 || r_type == R_MIPS_GNU_REL_HI16
6739 || (r_type == R_MIPS_GOT16
6740 && mips_elf_local_relocation_p (input_bfd, rel,
6741 local_sections, false)))
6742 {
6743 bfd_vma l;
6744 const Elf_Internal_Rela *lo16_relocation;
6745 reloc_howto_type *lo16_howto;
6746 int lo;
6747
6748 /* The combined value is the sum of the HI16 addend,
6749 left-shifted by sixteen bits, and the LO16
6750 addend, sign extended. (Usually, the code does
6751 a `lui' of the HI16 value, and then an `addiu' of
6752 the LO16 value.)
6753
6754 Scan ahead to find a matching LO16 relocation. */
6755 if (r_type == R_MIPS_GNU_REL_HI16)
6756 lo = R_MIPS_GNU_REL_LO16;
6757 else
6758 lo = R_MIPS_LO16;
6759 lo16_relocation
6760 = mips_elf_next_relocation (lo, rel, relend);
6761 if (lo16_relocation == NULL)
6762 return false;
6763
6764 /* Obtain the addend kept there. */
6765 lo16_howto = mips_rtype_to_howto (lo);
6766 l = mips_elf_obtain_contents (lo16_howto,
6767 lo16_relocation,
6768 input_bfd, contents);
6769 l &= lo16_howto->src_mask;
6770 l = mips_elf_sign_extend (l, 16);
6771
6772 addend <<= 16;
6773
6774 /* Compute the combined addend. */
6775 addend += l;
6776 }
6777 else if (r_type == R_MIPS16_GPREL)
6778 {
6779 /* The addend is scrambled in the object file. See
6780 mips_elf_perform_relocation for details on the
6781 format. */
6782 addend = (((addend & 0x1f0000) >> 5)
6783 | ((addend & 0x7e00000) >> 16)
6784 | (addend & 0x1f));
6785 }
6786 }
6787 else
6788 addend = rel->r_addend;
6789 }
6790
6791 if (info->relocateable)
6792 {
6793 Elf_Internal_Sym *sym;
6794 unsigned long r_symndx;
6795
6796 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6797 && bfd_big_endian (input_bfd))
6798 rel->r_offset -= 4;
6799
6800 /* Since we're just relocating, all we need to do is copy
6801 the relocations back out to the object file, unless
6802 they're against a section symbol, in which case we need
6803 to adjust by the section offset, or unless they're GP
6804 relative in which case we need to adjust by the amount
6805 that we're adjusting GP in this relocateable object. */
6806
6807 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6808 false))
6809 /* There's nothing to do for non-local relocations. */
6810 continue;
6811
6812 if (r_type == R_MIPS16_GPREL
6813 || r_type == R_MIPS_GPREL16
6814 || r_type == R_MIPS_GPREL32
6815 || r_type == R_MIPS_LITERAL)
6816 addend -= (_bfd_get_gp_value (output_bfd)
6817 - _bfd_get_gp_value (input_bfd));
6818 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6819 || r_type == R_MIPS_GNU_REL16_S2)
6820 /* The addend is stored without its two least
6821 significant bits (which are always zero.) In a
6822 non-relocateable link, calculate_relocation will do
6823 this shift; here, we must do it ourselves. */
6824 addend <<= 2;
6825
6826 r_symndx = ELF32_R_SYM (rel->r_info);
6827 sym = local_syms + r_symndx;
6828 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6829 /* Adjust the addend appropriately. */
6830 addend += local_sections[r_symndx]->output_offset;
6831
6832 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6833 then we only want to write out the high-order 16 bits.
6834 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6835 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6836 || r_type == R_MIPS_GNU_REL_HI16)
6837 addend = mips_elf_high (addend);
6838 /* If the relocation is for an R_MIPS_26 relocation, then
6839 the two low-order bits are not stored in the object file;
6840 they are implicitly zero. */
6841 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6842 || r_type == R_MIPS_GNU_REL16_S2)
6843 addend >>= 2;
6844
6845 if (rela_relocation_p)
6846 /* If this is a RELA relocation, just update the addend.
6847 We have to cast away constness for REL. */
6848 rel->r_addend = addend;
6849 else
6850 {
6851 /* Otherwise, we have to write the value back out. Note
6852 that we use the source mask, rather than the
6853 destination mask because the place to which we are
6854 writing will be source of the addend in the final
6855 link. */
6856 addend &= howto->src_mask;
6857
6858 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6859 /* See the comment above about using R_MIPS_64 in the 32-bit
6860 ABI. Here, we need to update the addend. It would be
6861 possible to get away with just using the R_MIPS_32 reloc
6862 but for endianness. */
6863 {
6864 bfd_vma sign_bits;
6865 bfd_vma low_bits;
6866 bfd_vma high_bits;
6867
6868 if (addend & ((bfd_vma) 1 << 31))
6869 sign_bits = ((bfd_vma) 1 << 32) - 1;
6870 else
6871 sign_bits = 0;
6872
6873 /* If we don't know that we have a 64-bit type,
6874 do two separate stores. */
6875 if (bfd_big_endian (input_bfd))
6876 {
6877 /* Store the sign-bits (which are most significant)
6878 first. */
6879 low_bits = sign_bits;
6880 high_bits = addend;
6881 }
6882 else
6883 {
6884 low_bits = addend;
6885 high_bits = sign_bits;
6886 }
6887 bfd_put_32 (input_bfd, low_bits,
6888 contents + rel->r_offset);
6889 bfd_put_32 (input_bfd, high_bits,
6890 contents + rel->r_offset + 4);
6891 continue;
6892 }
6893
6894 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6895 input_bfd, input_section,
6896 contents, false))
6897 return false;
6898 }
6899
6900 /* Go on to the next relocation. */
6901 continue;
6902 }
6903
6904 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6905 relocations for the same offset. In that case we are
6906 supposed to treat the output of each relocation as the addend
6907 for the next. */
6908 if (rel + 1 < relend
6909 && rel->r_offset == rel[1].r_offset
6910 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6911 use_saved_addend_p = true;
6912 else
6913 use_saved_addend_p = false;
6914
6915 /* Figure out what value we are supposed to relocate. */
6916 switch (mips_elf_calculate_relocation (output_bfd,
6917 input_bfd,
6918 input_section,
6919 info,
6920 rel,
6921 addend,
6922 howto,
6923 local_syms,
6924 local_sections,
6925 &value,
6926 &name,
6927 &require_jalx))
6928 {
6929 case bfd_reloc_continue:
6930 /* There's nothing to do. */
6931 continue;
6932
6933 case bfd_reloc_undefined:
6934 /* mips_elf_calculate_relocation already called the
6935 undefined_symbol callback. There's no real point in
6936 trying to perform the relocation at this point, so we
6937 just skip ahead to the next relocation. */
6938 continue;
6939
6940 case bfd_reloc_notsupported:
6941 abort ();
6942 break;
6943
6944 case bfd_reloc_overflow:
6945 if (use_saved_addend_p)
6946 /* Ignore overflow until we reach the last relocation for
6947 a given location. */
6948 ;
6949 else
6950 {
6951 BFD_ASSERT (name != NULL);
6952 if (! ((*info->callbacks->reloc_overflow)
6953 (info, name, howto->name, (bfd_vma) 0,
6954 input_bfd, input_section, rel->r_offset)))
6955 return false;
6956 }
6957 break;
6958
6959 case bfd_reloc_ok:
6960 break;
6961
6962 default:
6963 abort ();
6964 break;
6965 }
6966
6967 /* If we've got another relocation for the address, keep going
6968 until we reach the last one. */
6969 if (use_saved_addend_p)
6970 {
6971 addend = value;
6972 continue;
6973 }
6974
6975 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6976 /* See the comment above about using R_MIPS_64 in the 32-bit
6977 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6978 that calculated the right value. Now, however, we
6979 sign-extend the 32-bit result to 64-bits, and store it as a
6980 64-bit value. We are especially generous here in that we
6981 go to extreme lengths to support this usage on systems with
6982 only a 32-bit VMA. */
6983 {
6984 bfd_vma sign_bits;
6985 bfd_vma low_bits;
6986 bfd_vma high_bits;
6987
6988 if (value & ((bfd_vma) 1 << 31))
6989 sign_bits = ((bfd_vma) 1 << 32) - 1;
6990 else
6991 sign_bits = 0;
6992
6993 /* If we don't know that we have a 64-bit type,
6994 do two separate stores. */
6995 if (bfd_big_endian (input_bfd))
6996 {
6997 /* Undo what we did above. */
6998 rel->r_offset -= 4;
6999 /* Store the sign-bits (which are most significant)
7000 first. */
7001 low_bits = sign_bits;
7002 high_bits = value;
7003 }
7004 else
7005 {
7006 low_bits = value;
7007 high_bits = sign_bits;
7008 }
7009 bfd_put_32 (input_bfd, low_bits,
7010 contents + rel->r_offset);
7011 bfd_put_32 (input_bfd, high_bits,
7012 contents + rel->r_offset + 4);
7013 continue;
7014 }
7015
7016 /* Actually perform the relocation. */
7017 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7018 input_section, contents,
7019 require_jalx))
7020 return false;
7021 }
7022
7023 return true;
7024 }
7025
7026 /* This hook function is called before the linker writes out a global
7027 symbol. We mark symbols as small common if appropriate. This is
7028 also where we undo the increment of the value for a mips16 symbol. */
7029
7030 /*ARGSIGNORED*/
7031 boolean
7032 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7033 bfd *abfd ATTRIBUTE_UNUSED;
7034 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7035 const char *name ATTRIBUTE_UNUSED;
7036 Elf_Internal_Sym *sym;
7037 asection *input_sec;
7038 {
7039 /* If we see a common symbol, which implies a relocatable link, then
7040 if a symbol was small common in an input file, mark it as small
7041 common in the output file. */
7042 if (sym->st_shndx == SHN_COMMON
7043 && strcmp (input_sec->name, ".scommon") == 0)
7044 sym->st_shndx = SHN_MIPS_SCOMMON;
7045
7046 if (sym->st_other == STO_MIPS16
7047 && (sym->st_value & 1) != 0)
7048 --sym->st_value;
7049
7050 return true;
7051 }
7052 \f
7053 /* Functions for the dynamic linker. */
7054
7055 /* The name of the dynamic interpreter. This is put in the .interp
7056 section. */
7057
7058 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7059 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7060 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7061 : "/usr/lib/libc.so.1")
7062
7063 /* Create dynamic sections when linking against a dynamic object. */
7064
7065 boolean
7066 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7067 bfd *abfd;
7068 struct bfd_link_info *info;
7069 {
7070 struct elf_link_hash_entry *h;
7071 flagword flags;
7072 register asection *s;
7073 const char * const *namep;
7074
7075 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7076 | SEC_LINKER_CREATED | SEC_READONLY);
7077
7078 /* Mips ABI requests the .dynamic section to be read only. */
7079 s = bfd_get_section_by_name (abfd, ".dynamic");
7080 if (s != NULL)
7081 {
7082 if (! bfd_set_section_flags (abfd, s, flags))
7083 return false;
7084 }
7085
7086 /* We need to create .got section. */
7087 if (! mips_elf_create_got_section (abfd, info))
7088 return false;
7089
7090 /* Create the .msym section on IRIX6. It is used by the dynamic
7091 linker to speed up dynamic relocations, and to avoid computing
7092 the ELF hash for symbols. */
7093 if (IRIX_COMPAT (abfd) == ict_irix6
7094 && !mips_elf_create_msym_section (abfd))
7095 return false;
7096
7097 /* Create .stub section. */
7098 if (bfd_get_section_by_name (abfd,
7099 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7100 {
7101 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7102 if (s == NULL
7103 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7104 || ! bfd_set_section_alignment (abfd, s,
7105 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7106 return false;
7107 }
7108
7109 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7110 && !info->shared
7111 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7112 {
7113 s = bfd_make_section (abfd, ".rld_map");
7114 if (s == NULL
7115 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7116 || ! bfd_set_section_alignment (abfd, s,
7117 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7118 return false;
7119 }
7120
7121 /* On IRIX5, we adjust add some additional symbols and change the
7122 alignments of several sections. There is no ABI documentation
7123 indicating that this is necessary on IRIX6, nor any evidence that
7124 the linker takes such action. */
7125 if (IRIX_COMPAT (abfd) == ict_irix5)
7126 {
7127 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7128 {
7129 h = NULL;
7130 if (! (_bfd_generic_link_add_one_symbol
7131 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7132 (bfd_vma) 0, (const char *) NULL, false,
7133 get_elf_backend_data (abfd)->collect,
7134 (struct bfd_link_hash_entry **) &h)))
7135 return false;
7136 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7137 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7138 h->type = STT_SECTION;
7139
7140 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7141 return false;
7142 }
7143
7144 /* We need to create a .compact_rel section. */
7145 if (SGI_COMPAT (abfd))
7146 {
7147 if (!mips_elf_create_compact_rel_section (abfd, info))
7148 return false;
7149 }
7150
7151 /* Change aligments of some sections. */
7152 s = bfd_get_section_by_name (abfd, ".hash");
7153 if (s != NULL)
7154 bfd_set_section_alignment (abfd, s, 4);
7155 s = bfd_get_section_by_name (abfd, ".dynsym");
7156 if (s != NULL)
7157 bfd_set_section_alignment (abfd, s, 4);
7158 s = bfd_get_section_by_name (abfd, ".dynstr");
7159 if (s != NULL)
7160 bfd_set_section_alignment (abfd, s, 4);
7161 s = bfd_get_section_by_name (abfd, ".reginfo");
7162 if (s != NULL)
7163 bfd_set_section_alignment (abfd, s, 4);
7164 s = bfd_get_section_by_name (abfd, ".dynamic");
7165 if (s != NULL)
7166 bfd_set_section_alignment (abfd, s, 4);
7167 }
7168
7169 if (!info->shared)
7170 {
7171 h = NULL;
7172 if (SGI_COMPAT (abfd))
7173 {
7174 if (!(_bfd_generic_link_add_one_symbol
7175 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7176 (bfd_vma) 0, (const char *) NULL, false,
7177 get_elf_backend_data (abfd)->collect,
7178 (struct bfd_link_hash_entry **) &h)))
7179 return false;
7180 }
7181 else
7182 {
7183 /* For normal mips it is _DYNAMIC_LINKING. */
7184 if (!(_bfd_generic_link_add_one_symbol
7185 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7186 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7187 get_elf_backend_data (abfd)->collect,
7188 (struct bfd_link_hash_entry **) &h)))
7189 return false;
7190 }
7191 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7192 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7193 h->type = STT_SECTION;
7194
7195 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7196 return false;
7197
7198 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7199 {
7200 /* __rld_map is a four byte word located in the .data section
7201 and is filled in by the rtld to contain a pointer to
7202 the _r_debug structure. Its symbol value will be set in
7203 mips_elf_finish_dynamic_symbol. */
7204 s = bfd_get_section_by_name (abfd, ".rld_map");
7205 BFD_ASSERT (s != NULL);
7206
7207 h = NULL;
7208 if (SGI_COMPAT (abfd))
7209 {
7210 if (!(_bfd_generic_link_add_one_symbol
7211 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7212 (bfd_vma) 0, (const char *) NULL, false,
7213 get_elf_backend_data (abfd)->collect,
7214 (struct bfd_link_hash_entry **) &h)))
7215 return false;
7216 }
7217 else
7218 {
7219 /* For normal mips the symbol is __RLD_MAP. */
7220 if (!(_bfd_generic_link_add_one_symbol
7221 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7222 (bfd_vma) 0, (const char *) NULL, false,
7223 get_elf_backend_data (abfd)->collect,
7224 (struct bfd_link_hash_entry **) &h)))
7225 return false;
7226 }
7227 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7228 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7229 h->type = STT_OBJECT;
7230
7231 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7232 return false;
7233 }
7234 }
7235
7236 return true;
7237 }
7238
7239 /* Create the .compact_rel section. */
7240
7241 static boolean
7242 mips_elf_create_compact_rel_section (abfd, info)
7243 bfd *abfd;
7244 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7245 {
7246 flagword flags;
7247 register asection *s;
7248
7249 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7250 {
7251 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7252 | SEC_READONLY);
7253
7254 s = bfd_make_section (abfd, ".compact_rel");
7255 if (s == NULL
7256 || ! bfd_set_section_flags (abfd, s, flags)
7257 || ! bfd_set_section_alignment (abfd, s,
7258 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7259 return false;
7260
7261 s->_raw_size = sizeof (Elf32_External_compact_rel);
7262 }
7263
7264 return true;
7265 }
7266
7267 /* Create the .got section to hold the global offset table. */
7268
7269 static boolean
7270 mips_elf_create_got_section (abfd, info)
7271 bfd *abfd;
7272 struct bfd_link_info *info;
7273 {
7274 flagword flags;
7275 register asection *s;
7276 struct elf_link_hash_entry *h;
7277 struct mips_got_info *g;
7278
7279 /* This function may be called more than once. */
7280 if (mips_elf_got_section (abfd))
7281 return true;
7282
7283 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7284 | SEC_LINKER_CREATED);
7285
7286 s = bfd_make_section (abfd, ".got");
7287 if (s == NULL
7288 || ! bfd_set_section_flags (abfd, s, flags)
7289 || ! bfd_set_section_alignment (abfd, s, 4))
7290 return false;
7291
7292 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7293 linker script because we don't want to define the symbol if we
7294 are not creating a global offset table. */
7295 h = NULL;
7296 if (! (_bfd_generic_link_add_one_symbol
7297 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7298 (bfd_vma) 0, (const char *) NULL, false,
7299 get_elf_backend_data (abfd)->collect,
7300 (struct bfd_link_hash_entry **) &h)))
7301 return false;
7302 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7303 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7304 h->type = STT_OBJECT;
7305
7306 if (info->shared
7307 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7308 return false;
7309
7310 /* The first several global offset table entries are reserved. */
7311 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7312
7313 g = (struct mips_got_info *) bfd_alloc (abfd,
7314 sizeof (struct mips_got_info));
7315 if (g == NULL)
7316 return false;
7317 g->global_gotsym = NULL;
7318 g->local_gotno = MIPS_RESERVED_GOTNO;
7319 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7320 if (elf_section_data (s) == NULL)
7321 {
7322 s->used_by_bfd =
7323 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7324 if (elf_section_data (s) == NULL)
7325 return false;
7326 }
7327 elf_section_data (s)->tdata = (PTR) g;
7328 elf_section_data (s)->this_hdr.sh_flags
7329 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7330
7331 return true;
7332 }
7333
7334 /* Returns the .msym section for ABFD, creating it if it does not
7335 already exist. Returns NULL to indicate error. */
7336
7337 static asection *
7338 mips_elf_create_msym_section (abfd)
7339 bfd *abfd;
7340 {
7341 asection *s;
7342
7343 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7344 if (!s)
7345 {
7346 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7347 if (!s
7348 || !bfd_set_section_flags (abfd, s,
7349 SEC_ALLOC
7350 | SEC_LOAD
7351 | SEC_HAS_CONTENTS
7352 | SEC_LINKER_CREATED
7353 | SEC_READONLY)
7354 || !bfd_set_section_alignment (abfd, s,
7355 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7356 return NULL;
7357 }
7358
7359 return s;
7360 }
7361
7362 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7363
7364 static void
7365 mips_elf_allocate_dynamic_relocations (abfd, n)
7366 bfd *abfd;
7367 unsigned int n;
7368 {
7369 asection *s;
7370
7371 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7372 BFD_ASSERT (s != NULL);
7373
7374 if (s->_raw_size == 0)
7375 {
7376 /* Make room for a null element. */
7377 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7378 ++s->reloc_count;
7379 }
7380 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7381 }
7382
7383 /* Look through the relocs for a section during the first phase, and
7384 allocate space in the global offset table. */
7385
7386 boolean
7387 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7388 bfd *abfd;
7389 struct bfd_link_info *info;
7390 asection *sec;
7391 const Elf_Internal_Rela *relocs;
7392 {
7393 const char *name;
7394 bfd *dynobj;
7395 Elf_Internal_Shdr *symtab_hdr;
7396 struct elf_link_hash_entry **sym_hashes;
7397 struct mips_got_info *g;
7398 size_t extsymoff;
7399 const Elf_Internal_Rela *rel;
7400 const Elf_Internal_Rela *rel_end;
7401 asection *sgot;
7402 asection *sreloc;
7403 struct elf_backend_data *bed;
7404
7405 if (info->relocateable)
7406 return true;
7407
7408 dynobj = elf_hash_table (info)->dynobj;
7409 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7410 sym_hashes = elf_sym_hashes (abfd);
7411 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7412
7413 /* Check for the mips16 stub sections. */
7414
7415 name = bfd_get_section_name (abfd, sec);
7416 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7417 {
7418 unsigned long r_symndx;
7419
7420 /* Look at the relocation information to figure out which symbol
7421 this is for. */
7422
7423 r_symndx = ELF32_R_SYM (relocs->r_info);
7424
7425 if (r_symndx < extsymoff
7426 || sym_hashes[r_symndx - extsymoff] == NULL)
7427 {
7428 asection *o;
7429
7430 /* This stub is for a local symbol. This stub will only be
7431 needed if there is some relocation in this BFD, other
7432 than a 16 bit function call, which refers to this symbol. */
7433 for (o = abfd->sections; o != NULL; o = o->next)
7434 {
7435 Elf_Internal_Rela *sec_relocs;
7436 const Elf_Internal_Rela *r, *rend;
7437
7438 /* We can ignore stub sections when looking for relocs. */
7439 if ((o->flags & SEC_RELOC) == 0
7440 || o->reloc_count == 0
7441 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7442 sizeof FN_STUB - 1) == 0
7443 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7444 sizeof CALL_STUB - 1) == 0
7445 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7446 sizeof CALL_FP_STUB - 1) == 0)
7447 continue;
7448
7449 sec_relocs = (_bfd_elf32_link_read_relocs
7450 (abfd, o, (PTR) NULL,
7451 (Elf_Internal_Rela *) NULL,
7452 info->keep_memory));
7453 if (sec_relocs == NULL)
7454 return false;
7455
7456 rend = sec_relocs + o->reloc_count;
7457 for (r = sec_relocs; r < rend; r++)
7458 if (ELF32_R_SYM (r->r_info) == r_symndx
7459 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7460 break;
7461
7462 if (! info->keep_memory)
7463 free (sec_relocs);
7464
7465 if (r < rend)
7466 break;
7467 }
7468
7469 if (o == NULL)
7470 {
7471 /* There is no non-call reloc for this stub, so we do
7472 not need it. Since this function is called before
7473 the linker maps input sections to output sections, we
7474 can easily discard it by setting the SEC_EXCLUDE
7475 flag. */
7476 sec->flags |= SEC_EXCLUDE;
7477 return true;
7478 }
7479
7480 /* Record this stub in an array of local symbol stubs for
7481 this BFD. */
7482 if (elf_tdata (abfd)->local_stubs == NULL)
7483 {
7484 unsigned long symcount;
7485 asection **n;
7486
7487 if (elf_bad_symtab (abfd))
7488 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7489 else
7490 symcount = symtab_hdr->sh_info;
7491 n = (asection **) bfd_zalloc (abfd,
7492 symcount * sizeof (asection *));
7493 if (n == NULL)
7494 return false;
7495 elf_tdata (abfd)->local_stubs = n;
7496 }
7497
7498 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7499
7500 /* We don't need to set mips16_stubs_seen in this case.
7501 That flag is used to see whether we need to look through
7502 the global symbol table for stubs. We don't need to set
7503 it here, because we just have a local stub. */
7504 }
7505 else
7506 {
7507 struct mips_elf_link_hash_entry *h;
7508
7509 h = ((struct mips_elf_link_hash_entry *)
7510 sym_hashes[r_symndx - extsymoff]);
7511
7512 /* H is the symbol this stub is for. */
7513
7514 h->fn_stub = sec;
7515 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7516 }
7517 }
7518 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7519 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7520 {
7521 unsigned long r_symndx;
7522 struct mips_elf_link_hash_entry *h;
7523 asection **loc;
7524
7525 /* Look at the relocation information to figure out which symbol
7526 this is for. */
7527
7528 r_symndx = ELF32_R_SYM (relocs->r_info);
7529
7530 if (r_symndx < extsymoff
7531 || sym_hashes[r_symndx - extsymoff] == NULL)
7532 {
7533 /* This stub was actually built for a static symbol defined
7534 in the same file. We assume that all static symbols in
7535 mips16 code are themselves mips16, so we can simply
7536 discard this stub. Since this function is called before
7537 the linker maps input sections to output sections, we can
7538 easily discard it by setting the SEC_EXCLUDE flag. */
7539 sec->flags |= SEC_EXCLUDE;
7540 return true;
7541 }
7542
7543 h = ((struct mips_elf_link_hash_entry *)
7544 sym_hashes[r_symndx - extsymoff]);
7545
7546 /* H is the symbol this stub is for. */
7547
7548 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7549 loc = &h->call_fp_stub;
7550 else
7551 loc = &h->call_stub;
7552
7553 /* If we already have an appropriate stub for this function, we
7554 don't need another one, so we can discard this one. Since
7555 this function is called before the linker maps input sections
7556 to output sections, we can easily discard it by setting the
7557 SEC_EXCLUDE flag. We can also discard this section if we
7558 happen to already know that this is a mips16 function; it is
7559 not necessary to check this here, as it is checked later, but
7560 it is slightly faster to check now. */
7561 if (*loc != NULL || h->root.other == STO_MIPS16)
7562 {
7563 sec->flags |= SEC_EXCLUDE;
7564 return true;
7565 }
7566
7567 *loc = sec;
7568 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7569 }
7570
7571 if (dynobj == NULL)
7572 {
7573 sgot = NULL;
7574 g = NULL;
7575 }
7576 else
7577 {
7578 sgot = mips_elf_got_section (dynobj);
7579 if (sgot == NULL)
7580 g = NULL;
7581 else
7582 {
7583 BFD_ASSERT (elf_section_data (sgot) != NULL);
7584 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7585 BFD_ASSERT (g != NULL);
7586 }
7587 }
7588
7589 sreloc = NULL;
7590 bed = get_elf_backend_data (abfd);
7591 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7592 for (rel = relocs; rel < rel_end; ++rel)
7593 {
7594 unsigned long r_symndx;
7595 int r_type;
7596 struct elf_link_hash_entry *h;
7597
7598 r_symndx = ELF32_R_SYM (rel->r_info);
7599 r_type = ELF32_R_TYPE (rel->r_info);
7600
7601 if (r_symndx < extsymoff)
7602 h = NULL;
7603 else if (r_symndx >= extsymoff + (symtab_hdr->sh_size / symtab_hdr->sh_entsize))
7604 {
7605 (*_bfd_error_handler)
7606 (_("Malformed reloc detected for section %s"), name);
7607 bfd_set_error (bfd_error_bad_value);
7608 return false;
7609 }
7610 else
7611 {
7612 h = sym_hashes[r_symndx - extsymoff];
7613
7614 /* This may be an indirect symbol created because of a version. */
7615 if (h != NULL)
7616 {
7617 while (h->root.type == bfd_link_hash_indirect)
7618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7619 }
7620 }
7621
7622 /* Some relocs require a global offset table. */
7623 if (dynobj == NULL || sgot == NULL)
7624 {
7625 switch (r_type)
7626 {
7627 case R_MIPS_GOT16:
7628 case R_MIPS_CALL16:
7629 case R_MIPS_CALL_HI16:
7630 case R_MIPS_CALL_LO16:
7631 case R_MIPS_GOT_HI16:
7632 case R_MIPS_GOT_LO16:
7633 case R_MIPS_GOT_PAGE:
7634 case R_MIPS_GOT_OFST:
7635 case R_MIPS_GOT_DISP:
7636 if (dynobj == NULL)
7637 elf_hash_table (info)->dynobj = dynobj = abfd;
7638 if (! mips_elf_create_got_section (dynobj, info))
7639 return false;
7640 g = mips_elf_got_info (dynobj, &sgot);
7641 break;
7642
7643 case R_MIPS_32:
7644 case R_MIPS_REL32:
7645 case R_MIPS_64:
7646 if (dynobj == NULL
7647 && (info->shared || h != NULL)
7648 && (sec->flags & SEC_ALLOC) != 0)
7649 elf_hash_table (info)->dynobj = dynobj = abfd;
7650 break;
7651
7652 default:
7653 break;
7654 }
7655 }
7656
7657 if (!h && (r_type == R_MIPS_CALL_LO16
7658 || r_type == R_MIPS_GOT_LO16
7659 || r_type == R_MIPS_GOT_DISP))
7660 {
7661 /* We may need a local GOT entry for this relocation. We
7662 don't count R_MIPS_GOT_PAGE because we can estimate the
7663 maximum number of pages needed by looking at the size of
7664 the segment. Similar comments apply to R_MIPS_GOT16. We
7665 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7666 these are always followed by an R_MIPS_GOT_LO16 or
7667 R_MIPS_CALL_LO16.
7668
7669 This estimation is very conservative since we can merge
7670 duplicate entries in the GOT. In order to be less
7671 conservative, we could actually build the GOT here,
7672 rather than in relocate_section. */
7673 g->local_gotno++;
7674 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7675 }
7676
7677 switch (r_type)
7678 {
7679 case R_MIPS_CALL16:
7680 if (h == NULL)
7681 {
7682 (*_bfd_error_handler)
7683 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7684 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7685 bfd_set_error (bfd_error_bad_value);
7686 return false;
7687 }
7688 /* Fall through. */
7689
7690 case R_MIPS_CALL_HI16:
7691 case R_MIPS_CALL_LO16:
7692 if (h != NULL)
7693 {
7694 /* This symbol requires a global offset table entry. */
7695 if (!mips_elf_record_global_got_symbol (h, info, g))
7696 return false;
7697
7698 /* We need a stub, not a plt entry for the undefined
7699 function. But we record it as if it needs plt. See
7700 elf_adjust_dynamic_symbol in elflink.h. */
7701 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7702 h->type = STT_FUNC;
7703 }
7704 break;
7705
7706 case R_MIPS_GOT16:
7707 case R_MIPS_GOT_HI16:
7708 case R_MIPS_GOT_LO16:
7709 case R_MIPS_GOT_DISP:
7710 /* This symbol requires a global offset table entry. */
7711 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7712 return false;
7713 break;
7714
7715 case R_MIPS_32:
7716 case R_MIPS_REL32:
7717 case R_MIPS_64:
7718 if ((info->shared || h != NULL)
7719 && (sec->flags & SEC_ALLOC) != 0)
7720 {
7721 if (sreloc == NULL)
7722 {
7723 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7724
7725 sreloc = bfd_get_section_by_name (dynobj, name);
7726 if (sreloc == NULL)
7727 {
7728 sreloc = bfd_make_section (dynobj, name);
7729 if (sreloc == NULL
7730 || ! bfd_set_section_flags (dynobj, sreloc,
7731 (SEC_ALLOC
7732 | SEC_LOAD
7733 | SEC_HAS_CONTENTS
7734 | SEC_IN_MEMORY
7735 | SEC_LINKER_CREATED
7736 | SEC_READONLY))
7737 || ! bfd_set_section_alignment (dynobj, sreloc,
7738 4))
7739 return false;
7740 }
7741 }
7742 if (info->shared)
7743 /* When creating a shared object, we must copy these
7744 reloc types into the output file as R_MIPS_REL32
7745 relocs. We make room for this reloc in the
7746 .rel.dyn reloc section. */
7747 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7748 else
7749 {
7750 struct mips_elf_link_hash_entry *hmips;
7751
7752 /* We only need to copy this reloc if the symbol is
7753 defined in a dynamic object. */
7754 hmips = (struct mips_elf_link_hash_entry *) h;
7755 ++hmips->possibly_dynamic_relocs;
7756 }
7757
7758 /* Even though we don't directly need a GOT entry for
7759 this symbol, a symbol must have a dynamic symbol
7760 table index greater that DT_MIPS_GOTSYM if there are
7761 dynamic relocations against it. */
7762 if (h != NULL
7763 && !mips_elf_record_global_got_symbol (h, info, g))
7764 return false;
7765 }
7766
7767 if (SGI_COMPAT (abfd))
7768 mips_elf_hash_table (info)->compact_rel_size +=
7769 sizeof (Elf32_External_crinfo);
7770 break;
7771
7772 case R_MIPS_26:
7773 case R_MIPS_GPREL16:
7774 case R_MIPS_LITERAL:
7775 case R_MIPS_GPREL32:
7776 if (SGI_COMPAT (abfd))
7777 mips_elf_hash_table (info)->compact_rel_size +=
7778 sizeof (Elf32_External_crinfo);
7779 break;
7780
7781 /* This relocation describes the C++ object vtable hierarchy.
7782 Reconstruct it for later use during GC. */
7783 case R_MIPS_GNU_VTINHERIT:
7784 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7785 return false;
7786 break;
7787
7788 /* This relocation describes which C++ vtable entries are actually
7789 used. Record for later use during GC. */
7790 case R_MIPS_GNU_VTENTRY:
7791 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7792 return false;
7793 break;
7794
7795 default:
7796 break;
7797 }
7798
7799 /* If this reloc is not a 16 bit call, and it has a global
7800 symbol, then we will need the fn_stub if there is one.
7801 References from a stub section do not count. */
7802 if (h != NULL
7803 && r_type != R_MIPS16_26
7804 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7805 sizeof FN_STUB - 1) != 0
7806 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7807 sizeof CALL_STUB - 1) != 0
7808 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7809 sizeof CALL_FP_STUB - 1) != 0)
7810 {
7811 struct mips_elf_link_hash_entry *mh;
7812
7813 mh = (struct mips_elf_link_hash_entry *) h;
7814 mh->need_fn_stub = true;
7815 }
7816 }
7817
7818 return true;
7819 }
7820
7821 /* Return the section that should be marked against GC for a given
7822 relocation. */
7823
7824 asection *
7825 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7826 bfd *abfd;
7827 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7828 Elf_Internal_Rela *rel;
7829 struct elf_link_hash_entry *h;
7830 Elf_Internal_Sym *sym;
7831 {
7832 /* ??? Do mips16 stub sections need to be handled special? */
7833
7834 if (h != NULL)
7835 {
7836 switch (ELF32_R_TYPE (rel->r_info))
7837 {
7838 case R_MIPS_GNU_VTINHERIT:
7839 case R_MIPS_GNU_VTENTRY:
7840 break;
7841
7842 default:
7843 switch (h->root.type)
7844 {
7845 case bfd_link_hash_defined:
7846 case bfd_link_hash_defweak:
7847 return h->root.u.def.section;
7848
7849 case bfd_link_hash_common:
7850 return h->root.u.c.p->section;
7851
7852 default:
7853 break;
7854 }
7855 }
7856 }
7857 else
7858 {
7859 if (!(elf_bad_symtab (abfd)
7860 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7861 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7862 && sym->st_shndx != SHN_COMMON))
7863 {
7864 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7865 }
7866 }
7867
7868 return NULL;
7869 }
7870
7871 /* Update the got entry reference counts for the section being removed. */
7872
7873 boolean
7874 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7875 bfd *abfd ATTRIBUTE_UNUSED;
7876 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7877 asection *sec ATTRIBUTE_UNUSED;
7878 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7879 {
7880 #if 0
7881 Elf_Internal_Shdr *symtab_hdr;
7882 struct elf_link_hash_entry **sym_hashes;
7883 bfd_signed_vma *local_got_refcounts;
7884 const Elf_Internal_Rela *rel, *relend;
7885 unsigned long r_symndx;
7886 struct elf_link_hash_entry *h;
7887
7888 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7889 sym_hashes = elf_sym_hashes (abfd);
7890 local_got_refcounts = elf_local_got_refcounts (abfd);
7891
7892 relend = relocs + sec->reloc_count;
7893 for (rel = relocs; rel < relend; rel++)
7894 switch (ELF32_R_TYPE (rel->r_info))
7895 {
7896 case R_MIPS_GOT16:
7897 case R_MIPS_CALL16:
7898 case R_MIPS_CALL_HI16:
7899 case R_MIPS_CALL_LO16:
7900 case R_MIPS_GOT_HI16:
7901 case R_MIPS_GOT_LO16:
7902 /* ??? It would seem that the existing MIPS code does no sort
7903 of reference counting or whatnot on its GOT and PLT entries,
7904 so it is not possible to garbage collect them at this time. */
7905 break;
7906
7907 default:
7908 break;
7909 }
7910 #endif
7911
7912 return true;
7913 }
7914
7915 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7916 hiding the old indirect symbol. Process additional relocation
7917 information. */
7918
7919 void
7920 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
7921 struct elf_link_hash_entry *dir, *ind;
7922 {
7923 struct mips_elf_link_hash_entry *dirmips, *indmips;
7924
7925 _bfd_elf_link_hash_copy_indirect (dir, ind);
7926
7927 dirmips = (struct mips_elf_link_hash_entry *) dir;
7928 indmips = (struct mips_elf_link_hash_entry *) ind;
7929 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7930 if (dirmips->min_dyn_reloc_index == 0
7931 || (indmips->min_dyn_reloc_index != 0
7932 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7933 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7934 }
7935
7936 /* Adjust a symbol defined by a dynamic object and referenced by a
7937 regular object. The current definition is in some section of the
7938 dynamic object, but we're not including those sections. We have to
7939 change the definition to something the rest of the link can
7940 understand. */
7941
7942 boolean
7943 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
7944 struct bfd_link_info *info;
7945 struct elf_link_hash_entry *h;
7946 {
7947 bfd *dynobj;
7948 struct mips_elf_link_hash_entry *hmips;
7949 asection *s;
7950
7951 dynobj = elf_hash_table (info)->dynobj;
7952
7953 /* Make sure we know what is going on here. */
7954 BFD_ASSERT (dynobj != NULL
7955 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7956 || h->weakdef != NULL
7957 || ((h->elf_link_hash_flags
7958 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7959 && (h->elf_link_hash_flags
7960 & ELF_LINK_HASH_REF_REGULAR) != 0
7961 && (h->elf_link_hash_flags
7962 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7963
7964 /* If this symbol is defined in a dynamic object, we need to copy
7965 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7966 file. */
7967 hmips = (struct mips_elf_link_hash_entry *) h;
7968 if (! info->relocateable
7969 && hmips->possibly_dynamic_relocs != 0
7970 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7971 mips_elf_allocate_dynamic_relocations (dynobj,
7972 hmips->possibly_dynamic_relocs);
7973
7974 /* For a function, create a stub, if needed. */
7975 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7976 {
7977 if (! elf_hash_table (info)->dynamic_sections_created)
7978 return true;
7979
7980 /* If this symbol is not defined in a regular file, then set
7981 the symbol to the stub location. This is required to make
7982 function pointers compare as equal between the normal
7983 executable and the shared library. */
7984 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7985 {
7986 /* We need .stub section. */
7987 s = bfd_get_section_by_name (dynobj,
7988 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7989 BFD_ASSERT (s != NULL);
7990
7991 h->root.u.def.section = s;
7992 h->root.u.def.value = s->_raw_size;
7993
7994 /* XXX Write this stub address somewhere. */
7995 h->plt.offset = s->_raw_size;
7996
7997 /* Make room for this stub code. */
7998 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7999
8000 /* The last half word of the stub will be filled with the index
8001 of this symbol in .dynsym section. */
8002 return true;
8003 }
8004 }
8005 else if ((h->type == STT_FUNC)
8006 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8007 {
8008 /* This will set the entry for this symbol in the GOT to 0, and
8009 the dynamic linker will take care of this. */
8010 h->root.u.def.value = 0;
8011 return true;
8012 }
8013
8014 /* If this is a weak symbol, and there is a real definition, the
8015 processor independent code will have arranged for us to see the
8016 real definition first, and we can just use the same value. */
8017 if (h->weakdef != NULL)
8018 {
8019 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8020 || h->weakdef->root.type == bfd_link_hash_defweak);
8021 h->root.u.def.section = h->weakdef->root.u.def.section;
8022 h->root.u.def.value = h->weakdef->root.u.def.value;
8023 return true;
8024 }
8025
8026 /* This is a reference to a symbol defined by a dynamic object which
8027 is not a function. */
8028
8029 return true;
8030 }
8031
8032 /* This function is called after all the input files have been read,
8033 and the input sections have been assigned to output sections. We
8034 check for any mips16 stub sections that we can discard. */
8035
8036 static boolean mips_elf_check_mips16_stubs
8037 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8038
8039 boolean
8040 _bfd_mips_elf_always_size_sections (output_bfd, info)
8041 bfd *output_bfd;
8042 struct bfd_link_info *info;
8043 {
8044 asection *ri;
8045
8046 /* The .reginfo section has a fixed size. */
8047 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8048 if (ri != NULL)
8049 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8050
8051 if (info->relocateable
8052 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8053 return true;
8054
8055 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8056 mips_elf_check_mips16_stubs,
8057 (PTR) NULL);
8058
8059 return true;
8060 }
8061
8062 /* Check the mips16 stubs for a particular symbol, and see if we can
8063 discard them. */
8064
8065 /*ARGSUSED*/
8066 static boolean
8067 mips_elf_check_mips16_stubs (h, data)
8068 struct mips_elf_link_hash_entry *h;
8069 PTR data ATTRIBUTE_UNUSED;
8070 {
8071 if (h->fn_stub != NULL
8072 && ! h->need_fn_stub)
8073 {
8074 /* We don't need the fn_stub; the only references to this symbol
8075 are 16 bit calls. Clobber the size to 0 to prevent it from
8076 being included in the link. */
8077 h->fn_stub->_raw_size = 0;
8078 h->fn_stub->_cooked_size = 0;
8079 h->fn_stub->flags &= ~ SEC_RELOC;
8080 h->fn_stub->reloc_count = 0;
8081 h->fn_stub->flags |= SEC_EXCLUDE;
8082 }
8083
8084 if (h->call_stub != NULL
8085 && h->root.other == STO_MIPS16)
8086 {
8087 /* We don't need the call_stub; this is a 16 bit function, so
8088 calls from other 16 bit functions are OK. Clobber the size
8089 to 0 to prevent it from being included in the link. */
8090 h->call_stub->_raw_size = 0;
8091 h->call_stub->_cooked_size = 0;
8092 h->call_stub->flags &= ~ SEC_RELOC;
8093 h->call_stub->reloc_count = 0;
8094 h->call_stub->flags |= SEC_EXCLUDE;
8095 }
8096
8097 if (h->call_fp_stub != NULL
8098 && h->root.other == STO_MIPS16)
8099 {
8100 /* We don't need the call_stub; this is a 16 bit function, so
8101 calls from other 16 bit functions are OK. Clobber the size
8102 to 0 to prevent it from being included in the link. */
8103 h->call_fp_stub->_raw_size = 0;
8104 h->call_fp_stub->_cooked_size = 0;
8105 h->call_fp_stub->flags &= ~ SEC_RELOC;
8106 h->call_fp_stub->reloc_count = 0;
8107 h->call_fp_stub->flags |= SEC_EXCLUDE;
8108 }
8109
8110 return true;
8111 }
8112
8113 /* Set the sizes of the dynamic sections. */
8114
8115 boolean
8116 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8117 bfd *output_bfd;
8118 struct bfd_link_info *info;
8119 {
8120 bfd *dynobj;
8121 asection *s;
8122 boolean reltext;
8123 struct mips_got_info *g = NULL;
8124
8125 dynobj = elf_hash_table (info)->dynobj;
8126 BFD_ASSERT (dynobj != NULL);
8127
8128 if (elf_hash_table (info)->dynamic_sections_created)
8129 {
8130 /* Set the contents of the .interp section to the interpreter. */
8131 if (! info->shared)
8132 {
8133 s = bfd_get_section_by_name (dynobj, ".interp");
8134 BFD_ASSERT (s != NULL);
8135 s->_raw_size
8136 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8137 s->contents
8138 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8139 }
8140 }
8141
8142 /* The check_relocs and adjust_dynamic_symbol entry points have
8143 determined the sizes of the various dynamic sections. Allocate
8144 memory for them. */
8145 reltext = false;
8146 for (s = dynobj->sections; s != NULL; s = s->next)
8147 {
8148 const char *name;
8149 boolean strip;
8150
8151 /* It's OK to base decisions on the section name, because none
8152 of the dynobj section names depend upon the input files. */
8153 name = bfd_get_section_name (dynobj, s);
8154
8155 if ((s->flags & SEC_LINKER_CREATED) == 0)
8156 continue;
8157
8158 strip = false;
8159
8160 if (strncmp (name, ".rel", 4) == 0)
8161 {
8162 if (s->_raw_size == 0)
8163 {
8164 /* We only strip the section if the output section name
8165 has the same name. Otherwise, there might be several
8166 input sections for this output section. FIXME: This
8167 code is probably not needed these days anyhow, since
8168 the linker now does not create empty output sections. */
8169 if (s->output_section != NULL
8170 && strcmp (name,
8171 bfd_get_section_name (s->output_section->owner,
8172 s->output_section)) == 0)
8173 strip = true;
8174 }
8175 else
8176 {
8177 const char *outname;
8178 asection *target;
8179
8180 /* If this relocation section applies to a read only
8181 section, then we probably need a DT_TEXTREL entry.
8182 If the relocation section is .rel.dyn, we always
8183 assert a DT_TEXTREL entry rather than testing whether
8184 there exists a relocation to a read only section or
8185 not. */
8186 outname = bfd_get_section_name (output_bfd,
8187 s->output_section);
8188 target = bfd_get_section_by_name (output_bfd, outname + 4);
8189 if ((target != NULL
8190 && (target->flags & SEC_READONLY) != 0
8191 && (target->flags & SEC_ALLOC) != 0)
8192 || strcmp (outname,
8193 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8194 reltext = true;
8195
8196 /* We use the reloc_count field as a counter if we need
8197 to copy relocs into the output file. */
8198 if (strcmp (name,
8199 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8200 s->reloc_count = 0;
8201 }
8202 }
8203 else if (strncmp (name, ".got", 4) == 0)
8204 {
8205 int i;
8206 bfd_size_type loadable_size = 0;
8207 bfd_size_type local_gotno;
8208 struct _bfd *sub;
8209
8210 BFD_ASSERT (elf_section_data (s) != NULL);
8211 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8212 BFD_ASSERT (g != NULL);
8213
8214 /* Calculate the total loadable size of the output. That
8215 will give us the maximum number of GOT_PAGE entries
8216 required. */
8217 for (sub = info->input_bfds; sub; sub = sub->link_next)
8218 {
8219 asection *subsection;
8220
8221 for (subsection = sub->sections;
8222 subsection;
8223 subsection = subsection->next)
8224 {
8225 if ((subsection->flags & SEC_ALLOC) == 0)
8226 continue;
8227 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8228 }
8229 }
8230 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8231
8232 /* Assume there are two loadable segments consisting of
8233 contiguous sections. Is 5 enough? */
8234 local_gotno = (loadable_size >> 16) + 5;
8235 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8236 /* It's possible we will need GOT_PAGE entries as well as
8237 GOT16 entries. Often, these will be able to share GOT
8238 entries, but not always. */
8239 local_gotno *= 2;
8240
8241 g->local_gotno += local_gotno;
8242 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8243
8244 /* There has to be a global GOT entry for every symbol with
8245 a dynamic symbol table index of DT_MIPS_GOTSYM or
8246 higher. Therefore, it make sense to put those symbols
8247 that need GOT entries at the end of the symbol table. We
8248 do that here. */
8249 if (!mips_elf_sort_hash_table (info, 1))
8250 return false;
8251
8252 if (g->global_gotsym != NULL)
8253 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8254 else
8255 /* If there are no global symbols, or none requiring
8256 relocations, then GLOBAL_GOTSYM will be NULL. */
8257 i = 0;
8258 g->global_gotno = i;
8259 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8260 }
8261 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8262 {
8263 /* Irix rld assumes that the function stub isn't at the end
8264 of .text section. So put a dummy. XXX */
8265 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8266 }
8267 else if (! info->shared
8268 && ! mips_elf_hash_table (info)->use_rld_obj_head
8269 && strncmp (name, ".rld_map", 8) == 0)
8270 {
8271 /* We add a room for __rld_map. It will be filled in by the
8272 rtld to contain a pointer to the _r_debug structure. */
8273 s->_raw_size += 4;
8274 }
8275 else if (SGI_COMPAT (output_bfd)
8276 && strncmp (name, ".compact_rel", 12) == 0)
8277 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8278 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8279 == 0)
8280 s->_raw_size = (sizeof (Elf32_External_Msym)
8281 * (elf_hash_table (info)->dynsymcount
8282 + bfd_count_sections (output_bfd)));
8283 else if (strncmp (name, ".init", 5) != 0)
8284 {
8285 /* It's not one of our sections, so don't allocate space. */
8286 continue;
8287 }
8288
8289 if (strip)
8290 {
8291 _bfd_strip_section_from_output (info, s);
8292 continue;
8293 }
8294
8295 /* Allocate memory for the section contents. */
8296 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8297 if (s->contents == NULL && s->_raw_size != 0)
8298 {
8299 bfd_set_error (bfd_error_no_memory);
8300 return false;
8301 }
8302 }
8303
8304 if (elf_hash_table (info)->dynamic_sections_created)
8305 {
8306 /* Add some entries to the .dynamic section. We fill in the
8307 values later, in elf_mips_finish_dynamic_sections, but we
8308 must add the entries now so that we get the correct size for
8309 the .dynamic section. The DT_DEBUG entry is filled in by the
8310 dynamic linker and used by the debugger. */
8311 if (! info->shared)
8312 {
8313 /* SGI object has the equivalence of DT_DEBUG in the
8314 DT_MIPS_RLD_MAP entry. */
8315 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8316 return false;
8317 if (!SGI_COMPAT (output_bfd))
8318 {
8319 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8320 return false;
8321 }
8322 }
8323 else
8324 {
8325 /* Shared libraries on traditional mips have DT_DEBUG. */
8326 if (!SGI_COMPAT (output_bfd))
8327 {
8328 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8329 return false;
8330 }
8331 }
8332 if (reltext && SGI_COMPAT(output_bfd))
8333 {
8334 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8335 return false;
8336 info->flags |= DF_TEXTREL;
8337 }
8338
8339 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8340 return false;
8341
8342 if (bfd_get_section_by_name (dynobj,
8343 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8344 {
8345 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8346 return false;
8347
8348 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8349 return false;
8350
8351 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8352 return false;
8353 }
8354
8355 if (SGI_COMPAT (output_bfd))
8356 {
8357 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8358 return false;
8359 }
8360
8361 if (SGI_COMPAT (output_bfd))
8362 {
8363 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8364 return false;
8365 }
8366
8367 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8368 {
8369 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8370 return false;
8371
8372 s = bfd_get_section_by_name (dynobj, ".liblist");
8373 BFD_ASSERT (s != NULL);
8374
8375 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8376 return false;
8377 }
8378
8379 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8380 return false;
8381
8382 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8383 return false;
8384
8385 #if 0
8386 /* Time stamps in executable files are a bad idea. */
8387 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8388 return false;
8389 #endif
8390
8391 #if 0 /* FIXME */
8392 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8393 return false;
8394 #endif
8395
8396 #if 0 /* FIXME */
8397 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8398 return false;
8399 #endif
8400
8401 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8402 return false;
8403
8404 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8405 return false;
8406
8407 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8408 return false;
8409
8410 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8411 return false;
8412
8413 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8414 return false;
8415
8416 if (IRIX_COMPAT (dynobj) == ict_irix5
8417 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8418 return false;
8419
8420 if (IRIX_COMPAT (dynobj) == ict_irix6
8421 && (bfd_get_section_by_name
8422 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8423 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8424 return false;
8425
8426 if (bfd_get_section_by_name (dynobj,
8427 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8428 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8429 return false;
8430 }
8431
8432 return true;
8433 }
8434
8435 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8436 adjust it appropriately now. */
8437
8438 static void
8439 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8440 bfd *abfd ATTRIBUTE_UNUSED;
8441 const char *name;
8442 Elf_Internal_Sym *sym;
8443 {
8444 /* The linker script takes care of providing names and values for
8445 these, but we must place them into the right sections. */
8446 static const char* const text_section_symbols[] = {
8447 "_ftext",
8448 "_etext",
8449 "__dso_displacement",
8450 "__elf_header",
8451 "__program_header_table",
8452 NULL
8453 };
8454
8455 static const char* const data_section_symbols[] = {
8456 "_fdata",
8457 "_edata",
8458 "_end",
8459 "_fbss",
8460 NULL
8461 };
8462
8463 const char* const *p;
8464 int i;
8465
8466 for (i = 0; i < 2; ++i)
8467 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8468 *p;
8469 ++p)
8470 if (strcmp (*p, name) == 0)
8471 {
8472 /* All of these symbols are given type STT_SECTION by the
8473 IRIX6 linker. */
8474 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8475
8476 /* The IRIX linker puts these symbols in special sections. */
8477 if (i == 0)
8478 sym->st_shndx = SHN_MIPS_TEXT;
8479 else
8480 sym->st_shndx = SHN_MIPS_DATA;
8481
8482 break;
8483 }
8484 }
8485
8486 /* Finish up dynamic symbol handling. We set the contents of various
8487 dynamic sections here. */
8488
8489 boolean
8490 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8491 bfd *output_bfd;
8492 struct bfd_link_info *info;
8493 struct elf_link_hash_entry *h;
8494 Elf_Internal_Sym *sym;
8495 {
8496 bfd *dynobj;
8497 bfd_vma gval;
8498 asection *sgot;
8499 asection *smsym;
8500 struct mips_got_info *g;
8501 const char *name;
8502 struct mips_elf_link_hash_entry *mh;
8503
8504 dynobj = elf_hash_table (info)->dynobj;
8505 gval = sym->st_value;
8506 mh = (struct mips_elf_link_hash_entry *) h;
8507
8508 if (h->plt.offset != (bfd_vma) -1)
8509 {
8510 asection *s;
8511 bfd_byte *p;
8512 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8513
8514 /* This symbol has a stub. Set it up. */
8515
8516 BFD_ASSERT (h->dynindx != -1);
8517
8518 s = bfd_get_section_by_name (dynobj,
8519 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8520 BFD_ASSERT (s != NULL);
8521
8522 /* Fill the stub. */
8523 p = stub;
8524 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8525 p += 4;
8526 bfd_put_32 (output_bfd, STUB_MOVE(output_bfd), p);
8527 p += 4;
8528
8529 /* FIXME: Can h->dynindex be more than 64K? */
8530 if (h->dynindx & 0xffff0000)
8531 return false;
8532
8533 bfd_put_32 (output_bfd, STUB_JALR, p);
8534 p += 4;
8535 bfd_put_32 (output_bfd, STUB_LI16(output_bfd) + h->dynindx, p);
8536
8537 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8538 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8539
8540 /* Mark the symbol as undefined. plt.offset != -1 occurs
8541 only for the referenced symbol. */
8542 sym->st_shndx = SHN_UNDEF;
8543
8544 /* The run-time linker uses the st_value field of the symbol
8545 to reset the global offset table entry for this external
8546 to its stub address when unlinking a shared object. */
8547 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8548 sym->st_value = gval;
8549 }
8550
8551 BFD_ASSERT (h->dynindx != -1
8552 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8553
8554 sgot = mips_elf_got_section (dynobj);
8555 BFD_ASSERT (sgot != NULL);
8556 BFD_ASSERT (elf_section_data (sgot) != NULL);
8557 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8558 BFD_ASSERT (g != NULL);
8559
8560 /* Run through the global symbol table, creating GOT entries for all
8561 the symbols that need them. */
8562 if (g->global_gotsym != NULL
8563 && h->dynindx >= g->global_gotsym->dynindx)
8564 {
8565 bfd_vma offset;
8566 bfd_vma value;
8567
8568 if (sym->st_value)
8569 value = sym->st_value;
8570 else
8571 {
8572 /* For an entity defined in a shared object, this will be
8573 NULL. (For functions in shared objects for
8574 which we have created stubs, ST_VALUE will be non-NULL.
8575 That's because such the functions are now no longer defined
8576 in a shared object.) */
8577
8578 if (info->shared && h->root.type == bfd_link_hash_undefined)
8579 value = 0;
8580 else
8581 value = h->root.u.def.value;
8582 }
8583 offset = mips_elf_global_got_index (dynobj, h);
8584 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8585 }
8586
8587 /* Create a .msym entry, if appropriate. */
8588 smsym = bfd_get_section_by_name (dynobj,
8589 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8590 if (smsym)
8591 {
8592 Elf32_Internal_Msym msym;
8593
8594 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8595 /* It is undocumented what the `1' indicates, but IRIX6 uses
8596 this value. */
8597 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8598 bfd_mips_elf_swap_msym_out
8599 (dynobj, &msym,
8600 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8601 }
8602
8603 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8604 name = h->root.root.string;
8605 if (strcmp (name, "_DYNAMIC") == 0
8606 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8607 sym->st_shndx = SHN_ABS;
8608 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8609 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8610 {
8611 sym->st_shndx = SHN_ABS;
8612 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8613 sym->st_value = 1;
8614 }
8615 else if (strcmp (name, "_gp_disp") == 0)
8616 {
8617 sym->st_shndx = SHN_ABS;
8618 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8619 sym->st_value = elf_gp (output_bfd);
8620 }
8621 else if (SGI_COMPAT (output_bfd))
8622 {
8623 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8624 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8625 {
8626 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8627 sym->st_other = STO_PROTECTED;
8628 sym->st_value = 0;
8629 sym->st_shndx = SHN_MIPS_DATA;
8630 }
8631 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8632 {
8633 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8634 sym->st_other = STO_PROTECTED;
8635 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8636 sym->st_shndx = SHN_ABS;
8637 }
8638 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8639 {
8640 if (h->type == STT_FUNC)
8641 sym->st_shndx = SHN_MIPS_TEXT;
8642 else if (h->type == STT_OBJECT)
8643 sym->st_shndx = SHN_MIPS_DATA;
8644 }
8645 }
8646
8647 /* Handle the IRIX6-specific symbols. */
8648 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8649 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8650
8651 if (! info->shared)
8652 {
8653 if (! mips_elf_hash_table (info)->use_rld_obj_head
8654 && (strcmp (name, "__rld_map") == 0
8655 || strcmp (name, "__RLD_MAP") == 0))
8656 {
8657 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8658 BFD_ASSERT (s != NULL);
8659 sym->st_value = s->output_section->vma + s->output_offset;
8660 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8661 if (mips_elf_hash_table (info)->rld_value == 0)
8662 mips_elf_hash_table (info)->rld_value = sym->st_value;
8663 }
8664 else if (mips_elf_hash_table (info)->use_rld_obj_head
8665 && strcmp (name, "__rld_obj_head") == 0)
8666 {
8667 /* IRIX6 does not use a .rld_map section. */
8668 if (IRIX_COMPAT (output_bfd) == ict_irix5
8669 || IRIX_COMPAT (output_bfd) == ict_none)
8670 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8671 != NULL);
8672 mips_elf_hash_table (info)->rld_value = sym->st_value;
8673 }
8674 }
8675
8676 /* If this is a mips16 symbol, force the value to be even. */
8677 if (sym->st_other == STO_MIPS16
8678 && (sym->st_value & 1) != 0)
8679 --sym->st_value;
8680
8681 return true;
8682 }
8683
8684 /* Finish up the dynamic sections. */
8685
8686 boolean
8687 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8688 bfd *output_bfd;
8689 struct bfd_link_info *info;
8690 {
8691 bfd *dynobj;
8692 asection *sdyn;
8693 asection *sgot;
8694 struct mips_got_info *g;
8695
8696 dynobj = elf_hash_table (info)->dynobj;
8697
8698 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8699
8700 sgot = mips_elf_got_section (dynobj);
8701 if (sgot == NULL)
8702 g = NULL;
8703 else
8704 {
8705 BFD_ASSERT (elf_section_data (sgot) != NULL);
8706 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8707 BFD_ASSERT (g != NULL);
8708 }
8709
8710 if (elf_hash_table (info)->dynamic_sections_created)
8711 {
8712 bfd_byte *b;
8713
8714 BFD_ASSERT (sdyn != NULL);
8715 BFD_ASSERT (g != NULL);
8716
8717 for (b = sdyn->contents;
8718 b < sdyn->contents + sdyn->_raw_size;
8719 b += MIPS_ELF_DYN_SIZE (dynobj))
8720 {
8721 Elf_Internal_Dyn dyn;
8722 const char *name;
8723 size_t elemsize;
8724 asection *s;
8725 boolean swap_out_p;
8726
8727 /* Read in the current dynamic entry. */
8728 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8729
8730 /* Assume that we're going to modify it and write it out. */
8731 swap_out_p = true;
8732
8733 switch (dyn.d_tag)
8734 {
8735 case DT_RELENT:
8736 s = (bfd_get_section_by_name
8737 (dynobj,
8738 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8739 BFD_ASSERT (s != NULL);
8740 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8741 break;
8742
8743 case DT_STRSZ:
8744 /* Rewrite DT_STRSZ. */
8745 dyn.d_un.d_val =
8746 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8747 break;
8748
8749 case DT_PLTGOT:
8750 name = ".got";
8751 goto get_vma;
8752 case DT_MIPS_CONFLICT:
8753 name = ".conflict";
8754 goto get_vma;
8755 case DT_MIPS_LIBLIST:
8756 name = ".liblist";
8757 get_vma:
8758 s = bfd_get_section_by_name (output_bfd, name);
8759 BFD_ASSERT (s != NULL);
8760 dyn.d_un.d_ptr = s->vma;
8761 break;
8762
8763 case DT_MIPS_RLD_VERSION:
8764 dyn.d_un.d_val = 1; /* XXX */
8765 break;
8766
8767 case DT_MIPS_FLAGS:
8768 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8769 break;
8770
8771 case DT_MIPS_CONFLICTNO:
8772 name = ".conflict";
8773 elemsize = sizeof (Elf32_Conflict);
8774 goto set_elemno;
8775
8776 case DT_MIPS_LIBLISTNO:
8777 name = ".liblist";
8778 elemsize = sizeof (Elf32_Lib);
8779 set_elemno:
8780 s = bfd_get_section_by_name (output_bfd, name);
8781 if (s != NULL)
8782 {
8783 if (s->_cooked_size != 0)
8784 dyn.d_un.d_val = s->_cooked_size / elemsize;
8785 else
8786 dyn.d_un.d_val = s->_raw_size / elemsize;
8787 }
8788 else
8789 dyn.d_un.d_val = 0;
8790 break;
8791
8792 case DT_MIPS_TIME_STAMP:
8793 time ((time_t *) &dyn.d_un.d_val);
8794 break;
8795
8796 case DT_MIPS_ICHECKSUM:
8797 /* XXX FIXME: */
8798 swap_out_p = false;
8799 break;
8800
8801 case DT_MIPS_IVERSION:
8802 /* XXX FIXME: */
8803 swap_out_p = false;
8804 break;
8805
8806 case DT_MIPS_BASE_ADDRESS:
8807 s = output_bfd->sections;
8808 BFD_ASSERT (s != NULL);
8809 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8810 break;
8811
8812 case DT_MIPS_LOCAL_GOTNO:
8813 dyn.d_un.d_val = g->local_gotno;
8814 break;
8815
8816 case DT_MIPS_UNREFEXTNO:
8817 /* The index into the dynamic symbol table which is the
8818 entry of the first external symbol that is not
8819 referenced within the same object. */
8820 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8821 break;
8822
8823 case DT_MIPS_GOTSYM:
8824 if (g->global_gotsym)
8825 {
8826 dyn.d_un.d_val = g->global_gotsym->dynindx;
8827 break;
8828 }
8829 /* In case if we don't have global got symbols we default
8830 to setting DT_MIPS_GOTSYM to the same value as
8831 DT_MIPS_SYMTABNO, so we just fall through. */
8832
8833 case DT_MIPS_SYMTABNO:
8834 name = ".dynsym";
8835 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8836 s = bfd_get_section_by_name (output_bfd, name);
8837 BFD_ASSERT (s != NULL);
8838
8839 if (s->_cooked_size != 0)
8840 dyn.d_un.d_val = s->_cooked_size / elemsize;
8841 else
8842 dyn.d_un.d_val = s->_raw_size / elemsize;
8843 break;
8844
8845 case DT_MIPS_HIPAGENO:
8846 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8847 break;
8848
8849 case DT_MIPS_RLD_MAP:
8850 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8851 break;
8852
8853 case DT_MIPS_OPTIONS:
8854 s = (bfd_get_section_by_name
8855 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8856 dyn.d_un.d_ptr = s->vma;
8857 break;
8858
8859 case DT_MIPS_MSYM:
8860 s = (bfd_get_section_by_name
8861 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8862 dyn.d_un.d_ptr = s->vma;
8863 break;
8864
8865 default:
8866 swap_out_p = false;
8867 break;
8868 }
8869
8870 if (swap_out_p)
8871 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8872 (dynobj, &dyn, b);
8873 }
8874 }
8875
8876 /* The first entry of the global offset table will be filled at
8877 runtime. The second entry will be used by some runtime loaders.
8878 This isn't the case of Irix rld. */
8879 if (sgot != NULL && sgot->_raw_size > 0)
8880 {
8881 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8882 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000001,
8883 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8884 }
8885
8886 if (sgot != NULL)
8887 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8888 = MIPS_ELF_GOT_SIZE (output_bfd);
8889
8890 {
8891 asection *smsym;
8892 asection *s;
8893 Elf32_compact_rel cpt;
8894
8895 /* ??? The section symbols for the output sections were set up in
8896 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8897 symbols. Should we do so? */
8898
8899 smsym = bfd_get_section_by_name (dynobj,
8900 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8901 if (smsym != NULL)
8902 {
8903 Elf32_Internal_Msym msym;
8904
8905 msym.ms_hash_value = 0;
8906 msym.ms_info = ELF32_MS_INFO (0, 1);
8907
8908 for (s = output_bfd->sections; s != NULL; s = s->next)
8909 {
8910 long dynindx = elf_section_data (s)->dynindx;
8911
8912 bfd_mips_elf_swap_msym_out
8913 (output_bfd, &msym,
8914 (((Elf32_External_Msym *) smsym->contents)
8915 + dynindx));
8916 }
8917 }
8918
8919 if (SGI_COMPAT (output_bfd))
8920 {
8921 /* Write .compact_rel section out. */
8922 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8923 if (s != NULL)
8924 {
8925 cpt.id1 = 1;
8926 cpt.num = s->reloc_count;
8927 cpt.id2 = 2;
8928 cpt.offset = (s->output_section->filepos
8929 + sizeof (Elf32_External_compact_rel));
8930 cpt.reserved0 = 0;
8931 cpt.reserved1 = 0;
8932 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8933 ((Elf32_External_compact_rel *)
8934 s->contents));
8935
8936 /* Clean up a dummy stub function entry in .text. */
8937 s = bfd_get_section_by_name (dynobj,
8938 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8939 if (s != NULL)
8940 {
8941 file_ptr dummy_offset;
8942
8943 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8944 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8945 memset (s->contents + dummy_offset, 0,
8946 MIPS_FUNCTION_STUB_SIZE);
8947 }
8948 }
8949 }
8950
8951 /* We need to sort the entries of the dynamic relocation section. */
8952
8953 if (!ABI_64_P (output_bfd))
8954 {
8955 asection *reldyn;
8956
8957 reldyn = bfd_get_section_by_name (dynobj,
8958 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8959 if (reldyn != NULL && reldyn->reloc_count > 2)
8960 {
8961 reldyn_sorting_bfd = output_bfd;
8962 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
8963 (size_t) reldyn->reloc_count - 1,
8964 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
8965 }
8966 }
8967
8968 /* Clean up a first relocation in .rel.dyn. */
8969 s = bfd_get_section_by_name (dynobj,
8970 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8971 if (s != NULL && s->_raw_size > 0)
8972 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
8973 }
8974
8975 return true;
8976 }
8977 \f
8978 /* This is almost identical to bfd_generic_get_... except that some
8979 MIPS relocations need to be handled specially. Sigh. */
8980
8981 static bfd_byte *
8982 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8983 relocateable, symbols)
8984 bfd *abfd;
8985 struct bfd_link_info *link_info;
8986 struct bfd_link_order *link_order;
8987 bfd_byte *data;
8988 boolean relocateable;
8989 asymbol **symbols;
8990 {
8991 /* Get enough memory to hold the stuff */
8992 bfd *input_bfd = link_order->u.indirect.section->owner;
8993 asection *input_section = link_order->u.indirect.section;
8994
8995 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8996 arelent **reloc_vector = NULL;
8997 long reloc_count;
8998
8999 if (reloc_size < 0)
9000 goto error_return;
9001
9002 reloc_vector = (arelent **) bfd_malloc (reloc_size);
9003 if (reloc_vector == NULL && reloc_size != 0)
9004 goto error_return;
9005
9006 /* read in the section */
9007 if (!bfd_get_section_contents (input_bfd,
9008 input_section,
9009 (PTR) data,
9010 0,
9011 input_section->_raw_size))
9012 goto error_return;
9013
9014 /* We're not relaxing the section, so just copy the size info */
9015 input_section->_cooked_size = input_section->_raw_size;
9016 input_section->reloc_done = true;
9017
9018 reloc_count = bfd_canonicalize_reloc (input_bfd,
9019 input_section,
9020 reloc_vector,
9021 symbols);
9022 if (reloc_count < 0)
9023 goto error_return;
9024
9025 if (reloc_count > 0)
9026 {
9027 arelent **parent;
9028 /* for mips */
9029 int gp_found;
9030 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9031
9032 {
9033 struct bfd_hash_entry *h;
9034 struct bfd_link_hash_entry *lh;
9035 /* Skip all this stuff if we aren't mixing formats. */
9036 if (abfd && input_bfd
9037 && abfd->xvec == input_bfd->xvec)
9038 lh = 0;
9039 else
9040 {
9041 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9042 lh = (struct bfd_link_hash_entry *) h;
9043 }
9044 lookup:
9045 if (lh)
9046 {
9047 switch (lh->type)
9048 {
9049 case bfd_link_hash_undefined:
9050 case bfd_link_hash_undefweak:
9051 case bfd_link_hash_common:
9052 gp_found = 0;
9053 break;
9054 case bfd_link_hash_defined:
9055 case bfd_link_hash_defweak:
9056 gp_found = 1;
9057 gp = lh->u.def.value;
9058 break;
9059 case bfd_link_hash_indirect:
9060 case bfd_link_hash_warning:
9061 lh = lh->u.i.link;
9062 /* @@FIXME ignoring warning for now */
9063 goto lookup;
9064 case bfd_link_hash_new:
9065 default:
9066 abort ();
9067 }
9068 }
9069 else
9070 gp_found = 0;
9071 }
9072 /* end mips */
9073 for (parent = reloc_vector; *parent != (arelent *) NULL;
9074 parent++)
9075 {
9076 char *error_message = (char *) NULL;
9077 bfd_reloc_status_type r;
9078
9079 /* Specific to MIPS: Deal with relocation types that require
9080 knowing the gp of the output bfd. */
9081 asymbol *sym = *(*parent)->sym_ptr_ptr;
9082 if (bfd_is_abs_section (sym->section) && abfd)
9083 {
9084 /* The special_function wouldn't get called anyways. */
9085 }
9086 else if (!gp_found)
9087 {
9088 /* The gp isn't there; let the special function code
9089 fall over on its own. */
9090 }
9091 else if ((*parent)->howto->special_function
9092 == _bfd_mips_elf_gprel16_reloc)
9093 {
9094 /* bypass special_function call */
9095 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9096 relocateable, (PTR) data, gp);
9097 goto skip_bfd_perform_relocation;
9098 }
9099 /* end mips specific stuff */
9100
9101 r = bfd_perform_relocation (input_bfd,
9102 *parent,
9103 (PTR) data,
9104 input_section,
9105 relocateable ? abfd : (bfd *) NULL,
9106 &error_message);
9107 skip_bfd_perform_relocation:
9108
9109 if (relocateable)
9110 {
9111 asection *os = input_section->output_section;
9112
9113 /* A partial link, so keep the relocs */
9114 os->orelocation[os->reloc_count] = *parent;
9115 os->reloc_count++;
9116 }
9117
9118 if (r != bfd_reloc_ok)
9119 {
9120 switch (r)
9121 {
9122 case bfd_reloc_undefined:
9123 if (!((*link_info->callbacks->undefined_symbol)
9124 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9125 input_bfd, input_section, (*parent)->address,
9126 true)))
9127 goto error_return;
9128 break;
9129 case bfd_reloc_dangerous:
9130 BFD_ASSERT (error_message != (char *) NULL);
9131 if (!((*link_info->callbacks->reloc_dangerous)
9132 (link_info, error_message, input_bfd, input_section,
9133 (*parent)->address)))
9134 goto error_return;
9135 break;
9136 case bfd_reloc_overflow:
9137 if (!((*link_info->callbacks->reloc_overflow)
9138 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9139 (*parent)->howto->name, (*parent)->addend,
9140 input_bfd, input_section, (*parent)->address)))
9141 goto error_return;
9142 break;
9143 case bfd_reloc_outofrange:
9144 default:
9145 abort ();
9146 break;
9147 }
9148
9149 }
9150 }
9151 }
9152 if (reloc_vector != NULL)
9153 free (reloc_vector);
9154 return data;
9155
9156 error_return:
9157 if (reloc_vector != NULL)
9158 free (reloc_vector);
9159 return NULL;
9160 }
9161 #define bfd_elf32_bfd_get_relocated_section_contents \
9162 elf32_mips_get_relocated_section_contents
9163 \f
9164 /* ECOFF swapping routines. These are used when dealing with the
9165 .mdebug section, which is in the ECOFF debugging format. */
9166 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
9167 {
9168 /* Symbol table magic number. */
9169 magicSym,
9170 /* Alignment of debugging information. E.g., 4. */
9171 4,
9172 /* Sizes of external symbolic information. */
9173 sizeof (struct hdr_ext),
9174 sizeof (struct dnr_ext),
9175 sizeof (struct pdr_ext),
9176 sizeof (struct sym_ext),
9177 sizeof (struct opt_ext),
9178 sizeof (struct fdr_ext),
9179 sizeof (struct rfd_ext),
9180 sizeof (struct ext_ext),
9181 /* Functions to swap in external symbolic data. */
9182 ecoff_swap_hdr_in,
9183 ecoff_swap_dnr_in,
9184 ecoff_swap_pdr_in,
9185 ecoff_swap_sym_in,
9186 ecoff_swap_opt_in,
9187 ecoff_swap_fdr_in,
9188 ecoff_swap_rfd_in,
9189 ecoff_swap_ext_in,
9190 _bfd_ecoff_swap_tir_in,
9191 _bfd_ecoff_swap_rndx_in,
9192 /* Functions to swap out external symbolic data. */
9193 ecoff_swap_hdr_out,
9194 ecoff_swap_dnr_out,
9195 ecoff_swap_pdr_out,
9196 ecoff_swap_sym_out,
9197 ecoff_swap_opt_out,
9198 ecoff_swap_fdr_out,
9199 ecoff_swap_rfd_out,
9200 ecoff_swap_ext_out,
9201 _bfd_ecoff_swap_tir_out,
9202 _bfd_ecoff_swap_rndx_out,
9203 /* Function to read in symbolic data. */
9204 _bfd_mips_elf_read_ecoff_info
9205 };
9206 \f
9207 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9208 #define TARGET_LITTLE_NAME "elf32-littlemips"
9209 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9210 #define TARGET_BIG_NAME "elf32-bigmips"
9211 #define ELF_ARCH bfd_arch_mips
9212 #define ELF_MACHINE_CODE EM_MIPS
9213
9214 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9215 a value of 0x1000, and we are compatible. */
9216 #define ELF_MAXPAGESIZE 0x1000
9217
9218 #define elf_backend_collect true
9219 #define elf_backend_type_change_ok true
9220 #define elf_backend_can_gc_sections true
9221 #define elf_backend_sign_extend_vma true
9222 #define elf_info_to_howto mips_info_to_howto_rela
9223 #define elf_info_to_howto_rel mips_info_to_howto_rel
9224 #define elf_backend_sym_is_global mips_elf_sym_is_global
9225 #define elf_backend_object_p _bfd_mips_elf_object_p
9226 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9227 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9228 #define elf_backend_section_from_bfd_section \
9229 _bfd_mips_elf_section_from_bfd_section
9230 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9231 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9232 #define elf_backend_additional_program_headers \
9233 _bfd_mips_elf_additional_program_headers
9234 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9235 #define elf_backend_final_write_processing \
9236 _bfd_mips_elf_final_write_processing
9237 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9238 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9239 #define elf_backend_create_dynamic_sections \
9240 _bfd_mips_elf_create_dynamic_sections
9241 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9242 #define elf_backend_adjust_dynamic_symbol \
9243 _bfd_mips_elf_adjust_dynamic_symbol
9244 #define elf_backend_always_size_sections \
9245 _bfd_mips_elf_always_size_sections
9246 #define elf_backend_size_dynamic_sections \
9247 _bfd_mips_elf_size_dynamic_sections
9248 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9249 #define elf_backend_link_output_symbol_hook \
9250 _bfd_mips_elf_link_output_symbol_hook
9251 #define elf_backend_finish_dynamic_symbol \
9252 _bfd_mips_elf_finish_dynamic_symbol
9253 #define elf_backend_finish_dynamic_sections \
9254 _bfd_mips_elf_finish_dynamic_sections
9255 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9256 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9257
9258 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9259 #define elf_backend_plt_header_size 0
9260
9261 #define elf_backend_copy_indirect_symbol \
9262 _bfd_mips_elf_copy_indirect_symbol
9263
9264 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9265
9266 #define bfd_elf32_bfd_is_local_label_name \
9267 mips_elf_is_local_label_name
9268 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9269 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9270 #define bfd_elf32_bfd_link_hash_table_create \
9271 _bfd_mips_elf_link_hash_table_create
9272 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9273 #define bfd_elf32_bfd_copy_private_bfd_data \
9274 _bfd_mips_elf_copy_private_bfd_data
9275 #define bfd_elf32_bfd_merge_private_bfd_data \
9276 _bfd_mips_elf_merge_private_bfd_data
9277 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9278 #define bfd_elf32_bfd_print_private_bfd_data \
9279 _bfd_mips_elf_print_private_bfd_data
9280 #include "elf32-target.h"
9281
9282 /* Support for traditional mips targets */
9283
9284 #define INCLUDED_TARGET_FILE /* More a type of flag */
9285
9286 #undef TARGET_LITTLE_SYM
9287 #undef TARGET_LITTLE_NAME
9288 #undef TARGET_BIG_SYM
9289 #undef TARGET_BIG_NAME
9290
9291 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9292 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9293 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9294 #define TARGET_BIG_NAME "elf32-tradbigmips"
9295
9296 /* Include the target file again for this target */
9297 #include "elf32-target.h"
This page took 0.206815 seconds and 5 git commands to generate.