* elf32-mips.c (_bfd_mips_elf_relocate_section): Formatting.
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108 };
109
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
114 static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
124 #if 0
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
127 #endif
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
130 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
134 static INLINE int elf_mips_isa PARAMS ((flagword));
135 static INLINE unsigned long elf_mips_mach PARAMS ((flagword));
136 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
141 static int gptab_compare PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152 static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
155 static asection *mips_elf_create_msym_section
156 PARAMS ((bfd *));
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
175 static const Elf_Internal_Rela *mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
177 const Elf_Internal_Rela *));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
187 const Elf_Internal_Rela *, bfd_vma,
188 bfd *, asection *, bfd_byte *, boolean));
189 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info *, unsigned long));
194 static asection * mips_elf_got_section PARAMS ((bfd *));
195 static struct mips_got_info *mips_elf_got_info
196 PARAMS ((bfd *, asection **));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
205 struct mips_elf_link_hash_entry *, asection *,
206 bfd_vma, bfd_vma *, asection *));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd *, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd *, asection *));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
213 static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
215 static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry *,
217 struct elf_link_hash_entry *));
218 static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd *, Elf_Internal_Note *));
220 static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd *, Elf_Internal_Note *));
222 static boolean _bfd_elf32_mips_discard_info
223 PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *));
224 static boolean _bfd_elf32_mips_ignore_discarded_relocs
225 PARAMS ((asection *));
226 static boolean _bfd_elf32_mips_write_section
227 PARAMS ((bfd *, asection *, bfd_byte *));
228
229 extern const bfd_target bfd_elf32_tradbigmips_vec;
230 extern const bfd_target bfd_elf32_tradlittlemips_vec;
231 #ifdef BFD64
232 extern const bfd_target bfd_elf64_tradbigmips_vec;
233 extern const bfd_target bfd_elf64_tradlittlemips_vec;
234 #endif
235
236 /* The level of IRIX compatibility we're striving for. */
237
238 typedef enum {
239 ict_none,
240 ict_irix5,
241 ict_irix6
242 } irix_compat_t;
243
244 /* This will be used when we sort the dynamic relocation records. */
245 static bfd *reldyn_sorting_bfd;
246
247 /* Nonzero if ABFD is using the N32 ABI. */
248
249 #define ABI_N32_P(abfd) \
250 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
251
252 /* Nonzero if ABFD is using the 64-bit ABI. */
253 #define ABI_64_P(abfd) \
254 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
255
256 /* Depending on the target vector we generate some version of Irix
257 executables or "normal" MIPS ELF ABI executables. */
258 #ifdef BFD64
259 #define IRIX_COMPAT(abfd) \
260 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
261 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
263 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
264 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
265 #else
266 #define IRIX_COMPAT(abfd) \
267 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
268 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
269 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
270 #endif
271
272 #define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
273
274 /* Whether we are trying to be compatible with IRIX at all. */
275 #define SGI_COMPAT(abfd) \
276 (IRIX_COMPAT (abfd) != ict_none)
277
278 /* The name of the msym section. */
279 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
280
281 /* The name of the srdata section. */
282 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
283
284 /* The name of the options section. */
285 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
286 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
287
288 /* The name of the stub section. */
289 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
290 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
291
292 /* The name of the dynamic relocation section. */
293 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
294
295 /* The size of an external REL relocation. */
296 #define MIPS_ELF_REL_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->sizeof_rel)
298
299 /* The size of an external dynamic table entry. */
300 #define MIPS_ELF_DYN_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_dyn)
302
303 /* The size of a GOT entry. */
304 #define MIPS_ELF_GOT_SIZE(abfd) \
305 (get_elf_backend_data (abfd)->s->arch_size / 8)
306
307 /* The size of a symbol-table entry. */
308 #define MIPS_ELF_SYM_SIZE(abfd) \
309 (get_elf_backend_data (abfd)->s->sizeof_sym)
310
311 /* The default alignment for sections, as a power of two. */
312 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
313 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
314
315 /* Get word-sized data. */
316 #define MIPS_ELF_GET_WORD(abfd, ptr) \
317 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
318
319 /* Put out word-sized data. */
320 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
321 (ABI_64_P (abfd) \
322 ? bfd_put_64 (abfd, val, ptr) \
323 : bfd_put_32 (abfd, val, ptr))
324
325 /* Add a dynamic symbol table-entry. */
326 #ifdef BFD64
327 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
328 (ABI_64_P (elf_hash_table (info)->dynobj) \
329 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
330 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
331 #else
332 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
333 (ABI_64_P (elf_hash_table (info)->dynobj) \
334 ? (boolean) (abort (), false) \
335 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
336 #endif
337
338 /* The number of local .got entries we reserve. */
339 #define MIPS_RESERVED_GOTNO (2)
340
341 /* Instructions which appear in a stub. For some reason the stub is
342 slightly different on an SGI system. */
343 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
344 #define STUB_LW(abfd) \
345 (SGI_COMPAT (abfd) \
346 ? (ABI_64_P (abfd) \
347 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
348 : 0x8f998010) /* lw t9,0x8010(gp) */ \
349 : 0x8f998010) /* lw t9,0x8000(gp) */
350 #define STUB_MOVE(abfd) \
351 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
352 #define STUB_JALR 0x0320f809 /* jal t9 */
353 #define STUB_LI16(abfd) \
354 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
355 #define MIPS_FUNCTION_STUB_SIZE (16)
356
357 #if 0
358 /* We no longer try to identify particular sections for the .dynsym
359 section. When we do, we wind up crashing if there are other random
360 sections with relocations. */
361
362 /* Names of sections which appear in the .dynsym section in an Irix 5
363 executable. */
364
365 static const char * const mips_elf_dynsym_sec_names[] =
366 {
367 ".text",
368 ".init",
369 ".fini",
370 ".data",
371 ".rodata",
372 ".sdata",
373 ".sbss",
374 ".bss",
375 NULL
376 };
377
378 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
379 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
380
381 /* The number of entries in mips_elf_dynsym_sec_names which go in the
382 text segment. */
383
384 #define MIPS_TEXT_DYNSYM_SECNO (3)
385
386 #endif /* 0 */
387
388 /* The names of the runtime procedure table symbols used on Irix 5. */
389
390 static const char * const mips_elf_dynsym_rtproc_names[] =
391 {
392 "_procedure_table",
393 "_procedure_string_table",
394 "_procedure_table_size",
395 NULL
396 };
397
398 /* These structures are used to generate the .compact_rel section on
399 Irix 5. */
400
401 typedef struct
402 {
403 unsigned long id1; /* Always one? */
404 unsigned long num; /* Number of compact relocation entries. */
405 unsigned long id2; /* Always two? */
406 unsigned long offset; /* The file offset of the first relocation. */
407 unsigned long reserved0; /* Zero? */
408 unsigned long reserved1; /* Zero? */
409 } Elf32_compact_rel;
410
411 typedef struct
412 {
413 bfd_byte id1[4];
414 bfd_byte num[4];
415 bfd_byte id2[4];
416 bfd_byte offset[4];
417 bfd_byte reserved0[4];
418 bfd_byte reserved1[4];
419 } Elf32_External_compact_rel;
420
421 typedef struct
422 {
423 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
424 unsigned int rtype : 4; /* Relocation types. See below. */
425 unsigned int dist2to : 8;
426 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
427 unsigned long konst; /* KONST field. See below. */
428 unsigned long vaddr; /* VADDR to be relocated. */
429 } Elf32_crinfo;
430
431 typedef struct
432 {
433 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
434 unsigned int rtype : 4; /* Relocation types. See below. */
435 unsigned int dist2to : 8;
436 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
437 unsigned long konst; /* KONST field. See below. */
438 } Elf32_crinfo2;
439
440 typedef struct
441 {
442 bfd_byte info[4];
443 bfd_byte konst[4];
444 bfd_byte vaddr[4];
445 } Elf32_External_crinfo;
446
447 typedef struct
448 {
449 bfd_byte info[4];
450 bfd_byte konst[4];
451 } Elf32_External_crinfo2;
452
453 /* These are the constants used to swap the bitfields in a crinfo. */
454
455 #define CRINFO_CTYPE (0x1)
456 #define CRINFO_CTYPE_SH (31)
457 #define CRINFO_RTYPE (0xf)
458 #define CRINFO_RTYPE_SH (27)
459 #define CRINFO_DIST2TO (0xff)
460 #define CRINFO_DIST2TO_SH (19)
461 #define CRINFO_RELVADDR (0x7ffff)
462 #define CRINFO_RELVADDR_SH (0)
463
464 /* A compact relocation info has long (3 words) or short (2 words)
465 formats. A short format doesn't have VADDR field and relvaddr
466 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
467 #define CRF_MIPS_LONG 1
468 #define CRF_MIPS_SHORT 0
469
470 /* There are 4 types of compact relocation at least. The value KONST
471 has different meaning for each type:
472
473 (type) (konst)
474 CT_MIPS_REL32 Address in data
475 CT_MIPS_WORD Address in word (XXX)
476 CT_MIPS_GPHI_LO GP - vaddr
477 CT_MIPS_JMPAD Address to jump
478 */
479
480 #define CRT_MIPS_REL32 0xa
481 #define CRT_MIPS_WORD 0xb
482 #define CRT_MIPS_GPHI_LO 0xc
483 #define CRT_MIPS_JMPAD 0xd
484
485 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
486 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
487 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
488 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
489
490 static void bfd_elf32_swap_compact_rel_out
491 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
492 static void bfd_elf32_swap_crinfo_out
493 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
494
495 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
496 from smaller values. Start with zero, widen, *then* decrement. */
497 #define MINUS_ONE (((bfd_vma)0) - 1)
498
499 /* The relocation table used for SHT_REL sections. */
500
501 static reloc_howto_type elf_mips_howto_table_rel[] =
502 {
503 /* No relocation. */
504 HOWTO (R_MIPS_NONE, /* type */
505 0, /* rightshift */
506 0, /* size (0 = byte, 1 = short, 2 = long) */
507 0, /* bitsize */
508 false, /* pc_relative */
509 0, /* bitpos */
510 complain_overflow_dont, /* complain_on_overflow */
511 bfd_elf_generic_reloc, /* special_function */
512 "R_MIPS_NONE", /* name */
513 false, /* partial_inplace */
514 0, /* src_mask */
515 0, /* dst_mask */
516 false), /* pcrel_offset */
517
518 /* 16 bit relocation. */
519 HOWTO (R_MIPS_16, /* type */
520 0, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 16, /* bitsize */
523 false, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_signed, /* complain_on_overflow */
526 bfd_elf_generic_reloc, /* special_function */
527 "R_MIPS_16", /* name */
528 true, /* partial_inplace */
529 0x0000ffff, /* src_mask */
530 0x0000ffff, /* dst_mask */
531 false), /* pcrel_offset */
532
533 /* 32 bit relocation. */
534 HOWTO (R_MIPS_32, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 32, /* bitsize */
538 false, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "R_MIPS_32", /* name */
543 true, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 false), /* pcrel_offset */
547
548 /* 32 bit symbol relative relocation. */
549 HOWTO (R_MIPS_REL32, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 32, /* bitsize */
553 false, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_dont, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_MIPS_REL32", /* name */
558 true, /* partial_inplace */
559 0xffffffff, /* src_mask */
560 0xffffffff, /* dst_mask */
561 false), /* pcrel_offset */
562
563 /* 26 bit jump address. */
564 HOWTO (R_MIPS_26, /* type */
565 2, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 26, /* bitsize */
568 false, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 /* This needs complex overflow
572 detection, because the upper four
573 bits must match the PC + 4. */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_MIPS_26", /* name */
576 true, /* partial_inplace */
577 0x03ffffff, /* src_mask */
578 0x03ffffff, /* dst_mask */
579 false), /* pcrel_offset */
580
581 /* High 16 bits of symbol value. */
582 HOWTO (R_MIPS_HI16, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 16, /* bitsize */
586 false, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont, /* complain_on_overflow */
589 _bfd_mips_elf_hi16_reloc, /* special_function */
590 "R_MIPS_HI16", /* name */
591 true, /* partial_inplace */
592 0x0000ffff, /* src_mask */
593 0x0000ffff, /* dst_mask */
594 false), /* pcrel_offset */
595
596 /* Low 16 bits of symbol value. */
597 HOWTO (R_MIPS_LO16, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 16, /* bitsize */
601 false, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 _bfd_mips_elf_lo16_reloc, /* special_function */
605 "R_MIPS_LO16", /* name */
606 true, /* partial_inplace */
607 0x0000ffff, /* src_mask */
608 0x0000ffff, /* dst_mask */
609 false), /* pcrel_offset */
610
611 /* GP relative reference. */
612 HOWTO (R_MIPS_GPREL16, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 16, /* bitsize */
616 false, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_signed, /* complain_on_overflow */
619 _bfd_mips_elf_gprel16_reloc, /* special_function */
620 "R_MIPS_GPREL16", /* name */
621 true, /* partial_inplace */
622 0x0000ffff, /* src_mask */
623 0x0000ffff, /* dst_mask */
624 false), /* pcrel_offset */
625
626 /* Reference to literal section. */
627 HOWTO (R_MIPS_LITERAL, /* type */
628 0, /* rightshift */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 false, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_signed, /* complain_on_overflow */
634 _bfd_mips_elf_gprel16_reloc, /* special_function */
635 "R_MIPS_LITERAL", /* name */
636 true, /* partial_inplace */
637 0x0000ffff, /* src_mask */
638 0x0000ffff, /* dst_mask */
639 false), /* pcrel_offset */
640
641 /* Reference to global offset table. */
642 HOWTO (R_MIPS_GOT16, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 16, /* bitsize */
646 false, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 _bfd_mips_elf_got16_reloc, /* special_function */
650 "R_MIPS_GOT16", /* name */
651 true, /* partial_inplace */
652 0x0000ffff, /* src_mask */
653 0x0000ffff, /* dst_mask */
654 false), /* pcrel_offset */
655
656 /* 16 bit PC relative reference. */
657 HOWTO (R_MIPS_PC16, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 16, /* bitsize */
661 true, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_PC16", /* name */
666 true, /* partial_inplace */
667 0x0000ffff, /* src_mask */
668 0x0000ffff, /* dst_mask */
669 true), /* pcrel_offset */
670
671 /* 16 bit call through global offset table. */
672 HOWTO (R_MIPS_CALL16, /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 16, /* bitsize */
676 false, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 "R_MIPS_CALL16", /* name */
681 true, /* partial_inplace */
682 0x0000ffff, /* src_mask */
683 0x0000ffff, /* dst_mask */
684 false), /* pcrel_offset */
685
686 /* 32 bit GP relative reference. */
687 HOWTO (R_MIPS_GPREL32, /* type */
688 0, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 32, /* bitsize */
691 false, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_dont, /* complain_on_overflow */
694 _bfd_mips_elf_gprel32_reloc, /* special_function */
695 "R_MIPS_GPREL32", /* name */
696 true, /* partial_inplace */
697 0xffffffff, /* src_mask */
698 0xffffffff, /* dst_mask */
699 false), /* pcrel_offset */
700
701 /* The remaining relocs are defined on Irix 5, although they are
702 not defined by the ABI. */
703 EMPTY_HOWTO (13),
704 EMPTY_HOWTO (14),
705 EMPTY_HOWTO (15),
706
707 /* A 5 bit shift field. */
708 HOWTO (R_MIPS_SHIFT5, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 5, /* bitsize */
712 false, /* pc_relative */
713 6, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_SHIFT5", /* name */
717 true, /* partial_inplace */
718 0x000007c0, /* src_mask */
719 0x000007c0, /* dst_mask */
720 false), /* pcrel_offset */
721
722 /* A 6 bit shift field. */
723 /* FIXME: This is not handled correctly; a special function is
724 needed to put the most significant bit in the right place. */
725 HOWTO (R_MIPS_SHIFT6, /* type */
726 0, /* rightshift */
727 2, /* size (0 = byte, 1 = short, 2 = long) */
728 6, /* bitsize */
729 false, /* pc_relative */
730 6, /* bitpos */
731 complain_overflow_bitfield, /* complain_on_overflow */
732 bfd_elf_generic_reloc, /* special_function */
733 "R_MIPS_SHIFT6", /* name */
734 true, /* partial_inplace */
735 0x000007c4, /* src_mask */
736 0x000007c4, /* dst_mask */
737 false), /* pcrel_offset */
738
739 /* A 64 bit relocation. */
740 HOWTO (R_MIPS_64, /* type */
741 0, /* rightshift */
742 4, /* size (0 = byte, 1 = short, 2 = long) */
743 64, /* bitsize */
744 false, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_dont, /* complain_on_overflow */
747 mips32_64bit_reloc, /* special_function */
748 "R_MIPS_64", /* name */
749 true, /* partial_inplace */
750 MINUS_ONE, /* src_mask */
751 MINUS_ONE, /* dst_mask */
752 false), /* pcrel_offset */
753
754 /* Displacement in the global offset table. */
755 HOWTO (R_MIPS_GOT_DISP, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 false, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_MIPS_GOT_DISP", /* name */
764 true, /* partial_inplace */
765 0x0000ffff, /* src_mask */
766 0x0000ffff, /* dst_mask */
767 false), /* pcrel_offset */
768
769 /* Displacement to page pointer in the global offset table. */
770 HOWTO (R_MIPS_GOT_PAGE, /* type */
771 0, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 16, /* bitsize */
774 false, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 "R_MIPS_GOT_PAGE", /* name */
779 true, /* partial_inplace */
780 0x0000ffff, /* src_mask */
781 0x0000ffff, /* dst_mask */
782 false), /* pcrel_offset */
783
784 /* Offset from page pointer in the global offset table. */
785 HOWTO (R_MIPS_GOT_OFST, /* type */
786 0, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 16, /* bitsize */
789 false, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_signed, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_MIPS_GOT_OFST", /* name */
794 true, /* partial_inplace */
795 0x0000ffff, /* src_mask */
796 0x0000ffff, /* dst_mask */
797 false), /* pcrel_offset */
798
799 /* High 16 bits of displacement in global offset table. */
800 HOWTO (R_MIPS_GOT_HI16, /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 false, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_MIPS_GOT_HI16", /* name */
809 true, /* partial_inplace */
810 0x0000ffff, /* src_mask */
811 0x0000ffff, /* dst_mask */
812 false), /* pcrel_offset */
813
814 /* Low 16 bits of displacement in global offset table. */
815 HOWTO (R_MIPS_GOT_LO16, /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 16, /* bitsize */
819 false, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_MIPS_GOT_LO16", /* name */
824 true, /* partial_inplace */
825 0x0000ffff, /* src_mask */
826 0x0000ffff, /* dst_mask */
827 false), /* pcrel_offset */
828
829 /* 64 bit subtraction. Used in the N32 ABI. */
830 HOWTO (R_MIPS_SUB, /* type */
831 0, /* rightshift */
832 4, /* size (0 = byte, 1 = short, 2 = long) */
833 64, /* bitsize */
834 false, /* pc_relative */
835 0, /* bitpos */
836 complain_overflow_dont, /* complain_on_overflow */
837 bfd_elf_generic_reloc, /* special_function */
838 "R_MIPS_SUB", /* name */
839 true, /* partial_inplace */
840 MINUS_ONE, /* src_mask */
841 MINUS_ONE, /* dst_mask */
842 false), /* pcrel_offset */
843
844 /* Used to cause the linker to insert and delete instructions? */
845 EMPTY_HOWTO (R_MIPS_INSERT_A),
846 EMPTY_HOWTO (R_MIPS_INSERT_B),
847 EMPTY_HOWTO (R_MIPS_DELETE),
848
849 /* Get the higher value of a 64 bit addend. */
850 HOWTO (R_MIPS_HIGHER, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 16, /* bitsize */
854 false, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_MIPS_HIGHER", /* name */
859 true, /* partial_inplace */
860 0x0000ffff, /* src_mask */
861 0x0000ffff, /* dst_mask */
862 false), /* pcrel_offset */
863
864 /* Get the highest value of a 64 bit addend. */
865 HOWTO (R_MIPS_HIGHEST, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 16, /* bitsize */
869 false, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_MIPS_HIGHEST", /* name */
874 true, /* partial_inplace */
875 0x0000ffff, /* src_mask */
876 0x0000ffff, /* dst_mask */
877 false), /* pcrel_offset */
878
879 /* High 16 bits of displacement in global offset table. */
880 HOWTO (R_MIPS_CALL_HI16, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 16, /* bitsize */
884 false, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_CALL_HI16", /* name */
889 true, /* partial_inplace */
890 0x0000ffff, /* src_mask */
891 0x0000ffff, /* dst_mask */
892 false), /* pcrel_offset */
893
894 /* Low 16 bits of displacement in global offset table. */
895 HOWTO (R_MIPS_CALL_LO16, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 false, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_MIPS_CALL_LO16", /* name */
904 true, /* partial_inplace */
905 0x0000ffff, /* src_mask */
906 0x0000ffff, /* dst_mask */
907 false), /* pcrel_offset */
908
909 /* Section displacement. */
910 HOWTO (R_MIPS_SCN_DISP, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 false, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_MIPS_SCN_DISP", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false), /* pcrel_offset */
923
924 EMPTY_HOWTO (R_MIPS_REL16),
925 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
926 EMPTY_HOWTO (R_MIPS_PJUMP),
927 EMPTY_HOWTO (R_MIPS_RELGOT),
928
929 /* Protected jump conversion. This is an optimization hint. No
930 relocation is required for correctness. */
931 HOWTO (R_MIPS_JALR, /* type */
932 0, /* rightshift */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
934 32, /* bitsize */
935 false, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 bfd_elf_generic_reloc, /* special_function */
939 "R_MIPS_JALR", /* name */
940 false, /* partial_inplace */
941 0x00000000, /* src_mask */
942 0x00000000, /* dst_mask */
943 false), /* pcrel_offset */
944 };
945
946 /* The relocation table used for SHT_RELA sections. */
947
948 static reloc_howto_type elf_mips_howto_table_rela[] =
949 {
950 /* No relocation. */
951 HOWTO (R_MIPS_NONE, /* type */
952 0, /* rightshift */
953 0, /* size (0 = byte, 1 = short, 2 = long) */
954 0, /* bitsize */
955 false, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_MIPS_NONE", /* name */
960 false, /* partial_inplace */
961 0, /* src_mask */
962 0, /* dst_mask */
963 false), /* pcrel_offset */
964
965 /* 16 bit relocation. */
966 HOWTO (R_MIPS_16, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 16, /* bitsize */
970 false, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_MIPS_16", /* name */
975 false, /* partial_inplace */
976 0, /* src_mask */
977 0x0000, /* dst_mask */
978 false), /* pcrel_offset */
979
980 /* 32 bit relocation. */
981 HOWTO (R_MIPS_32, /* type */
982 0, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 32, /* bitsize */
985 false, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 "R_MIPS_32", /* name */
990 false, /* partial_inplace */
991 0, /* src_mask */
992 0xffffffff, /* dst_mask */
993 false), /* pcrel_offset */
994
995 /* 32 bit symbol relative relocation. */
996 HOWTO (R_MIPS_REL32, /* type */
997 0, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 32, /* bitsize */
1000 false, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 "R_MIPS_REL32", /* name */
1005 false, /* partial_inplace */
1006 0, /* src_mask */
1007 0xffffffff, /* dst_mask */
1008 false), /* pcrel_offset */
1009
1010 /* 26 bit jump address. */
1011 HOWTO (R_MIPS_26, /* type */
1012 2, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 26, /* bitsize */
1015 false, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 /* This needs complex overflow
1019 detection, because the upper 36
1020 bits must match the PC + 4. */
1021 bfd_elf_generic_reloc, /* special_function */
1022 "R_MIPS_26", /* name */
1023 false, /* partial_inplace */
1024 0, /* src_mask */
1025 0x03ffffff, /* dst_mask */
1026 false), /* pcrel_offset */
1027
1028 /* R_MIPS_HI16 and R_MIPS_LO16 are unsupported for 64 bit REL. */
1029 /* High 16 bits of symbol value. */
1030 HOWTO (R_MIPS_HI16, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 16, /* bitsize */
1034 false, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont, /* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_MIPS_HI16", /* name */
1039 false, /* partial_inplace */
1040 0, /* src_mask */
1041 0x0000ffff, /* dst_mask */
1042 false), /* pcrel_offset */
1043
1044 /* Low 16 bits of symbol value. */
1045 HOWTO (R_MIPS_LO16, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 16, /* bitsize */
1049 false, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont, /* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_MIPS_LO16", /* name */
1054 false, /* partial_inplace */
1055 0, /* src_mask */
1056 0x0000ffff, /* dst_mask */
1057 false), /* pcrel_offset */
1058
1059 /* GP relative reference. */
1060 HOWTO (R_MIPS_GPREL16, /* type */
1061 0, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 16, /* bitsize */
1064 false, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_signed, /* complain_on_overflow */
1067 _bfd_mips_elf_gprel16_reloc, /* special_function */
1068 "R_MIPS_GPREL16", /* name */
1069 false, /* partial_inplace */
1070 0, /* src_mask */
1071 0x0000ffff, /* dst_mask */
1072 false), /* pcrel_offset */
1073
1074 /* Reference to literal section. */
1075 HOWTO (R_MIPS_LITERAL, /* type */
1076 0, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 16, /* bitsize */
1079 false, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_signed, /* complain_on_overflow */
1082 _bfd_mips_elf_gprel16_reloc, /* special_function */
1083 "R_MIPS_LITERAL", /* name */
1084 false, /* partial_inplace */
1085 0, /* src_mask */
1086 0x0000ffff, /* dst_mask */
1087 false), /* pcrel_offset */
1088
1089 /* Reference to global offset table. */
1090 /* FIXME: This is not handled correctly. */
1091 HOWTO (R_MIPS_GOT16, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 16, /* bitsize */
1095 false, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_signed, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_MIPS_GOT16", /* name */
1100 false, /* partial_inplace */
1101 0, /* src_mask */
1102 0x0000ffff, /* dst_mask */
1103 false), /* pcrel_offset */
1104
1105 /* 16 bit PC relative reference. */
1106 HOWTO (R_MIPS_PC16, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 16, /* bitsize */
1110 true, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_signed, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_MIPS_PC16", /* name */
1115 false, /* partial_inplace */
1116 0, /* src_mask */
1117 0x0000ffff, /* dst_mask */
1118 true), /* pcrel_offset */
1119
1120 /* 16 bit call through global offset table. */
1121 /* FIXME: This is not handled correctly. */
1122 HOWTO (R_MIPS_CALL16, /* type */
1123 0, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 16, /* bitsize */
1126 false, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_signed, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 "R_MIPS_CALL16", /* name */
1131 false, /* partial_inplace */
1132 0, /* src_mask */
1133 0x0000ffff, /* dst_mask */
1134 false), /* pcrel_offset */
1135
1136 /* 32 bit GP relative reference. */
1137 HOWTO (R_MIPS_GPREL32, /* type */
1138 0, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 32, /* bitsize */
1141 false, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 _bfd_mips_elf_gprel32_reloc, /* special_function */
1145 "R_MIPS_GPREL32", /* name */
1146 false, /* partial_inplace */
1147 0, /* src_mask */
1148 0xffffffff, /* dst_mask */
1149 false), /* pcrel_offset */
1150
1151 EMPTY_HOWTO (13),
1152 EMPTY_HOWTO (14),
1153 EMPTY_HOWTO (15),
1154
1155 /* A 5 bit shift field. */
1156 HOWTO (R_MIPS_SHIFT5, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 5, /* bitsize */
1160 false, /* pc_relative */
1161 6, /* bitpos */
1162 complain_overflow_bitfield, /* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_MIPS_SHIFT5", /* name */
1165 false, /* partial_inplace */
1166 0, /* src_mask */
1167 0x000007c0, /* dst_mask */
1168 false), /* pcrel_offset */
1169
1170 /* A 6 bit shift field. */
1171 /* FIXME: Not handled correctly. */
1172 HOWTO (R_MIPS_SHIFT6, /* type */
1173 0, /* rightshift */
1174 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 6, /* bitsize */
1176 false, /* pc_relative */
1177 6, /* bitpos */
1178 complain_overflow_bitfield, /* complain_on_overflow */
1179 bfd_elf_generic_reloc, /* special_function */
1180 "R_MIPS_SHIFT6", /* name */
1181 false, /* partial_inplace */
1182 0, /* src_mask */
1183 0x000007c4, /* dst_mask */
1184 false), /* pcrel_offset */
1185
1186 /* 64 bit relocation. */
1187 HOWTO (R_MIPS_64, /* type */
1188 0, /* rightshift */
1189 4, /* size (0 = byte, 1 = short, 2 = long) */
1190 64, /* bitsize */
1191 false, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_dont, /* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_MIPS_64", /* name */
1196 false, /* partial_inplace */
1197 0, /* src_mask */
1198 MINUS_ONE, /* dst_mask */
1199 false), /* pcrel_offset */
1200
1201 /* Displacement in the global offset table. */
1202 /* FIXME: Not handled correctly. */
1203 HOWTO (R_MIPS_GOT_DISP, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 16, /* bitsize */
1207 false, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_signed, /* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_MIPS_GOT_DISP", /* name */
1212 false, /* partial_inplace */
1213 0, /* src_mask */
1214 0x0000ffff, /* dst_mask */
1215 false), /* pcrel_offset */
1216
1217 /* Displacement to page pointer in the global offset table. */
1218 /* FIXME: Not handled correctly. */
1219 HOWTO (R_MIPS_GOT_PAGE, /* type */
1220 0, /* rightshift */
1221 2, /* size (0 = byte, 1 = short, 2 = long) */
1222 16, /* bitsize */
1223 false, /* pc_relative */
1224 0, /* bitpos */
1225 complain_overflow_signed, /* complain_on_overflow */
1226 bfd_elf_generic_reloc, /* special_function */
1227 "R_MIPS_GOT_PAGE", /* name */
1228 false, /* partial_inplace */
1229 0, /* src_mask */
1230 0x0000ffff, /* dst_mask */
1231 false), /* pcrel_offset */
1232
1233 /* Offset from page pointer in the global offset table. */
1234 /* FIXME: Not handled correctly. */
1235 HOWTO (R_MIPS_GOT_OFST, /* type */
1236 0, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 false, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_signed, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 "R_MIPS_GOT_OFST", /* name */
1244 false, /* partial_inplace */
1245 0, /* src_mask */
1246 0x0000ffff, /* dst_mask */
1247 false), /* pcrel_offset */
1248
1249 /* High 16 bits of displacement in global offset table. */
1250 /* FIXME: Not handled correctly. */
1251 HOWTO (R_MIPS_GOT_HI16, /* type */
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 16, /* bitsize */
1255 false, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_MIPS_GOT_HI16", /* name */
1260 false, /* partial_inplace */
1261 0, /* src_mask */
1262 0x0000ffff, /* dst_mask */
1263 false), /* pcrel_offset */
1264
1265 /* Low 16 bits of displacement in global offset table. */
1266 /* FIXME: Not handled correctly. */
1267 HOWTO (R_MIPS_GOT_LO16, /* type */
1268 0, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 16, /* bitsize */
1271 false, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 "R_MIPS_GOT_LO16", /* name */
1276 false, /* partial_inplace */
1277 0, /* src_mask */
1278 0x0000ffff, /* dst_mask */
1279 false), /* pcrel_offset */
1280
1281 /* 64 bit substraction. */
1282 /* FIXME: Not handled correctly. */
1283 HOWTO (R_MIPS_SUB, /* type */
1284 0, /* rightshift */
1285 4, /* size (0 = byte, 1 = short, 2 = long) */
1286 64, /* bitsize */
1287 false, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_MIPS_SUB", /* name */
1292 false, /* partial_inplace */
1293 0, /* src_mask */
1294 MINUS_ONE, /* dst_mask */
1295 false), /* pcrel_offset */
1296
1297 /* Insert the addend as an instruction. */
1298 /* FIXME: Not handled correctly. */
1299 HOWTO (R_MIPS_INSERT_A, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 32, /* bitsize */
1303 false, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_MIPS_INSERT_A", /* name */
1308 false, /* partial_inplace */
1309 0, /* src_mask */
1310 0xffffffff, /* dst_mask */
1311 false), /* pcrel_offset */
1312
1313 /* Insert the addend as an instruction, and change all relocations
1314 to refer to the old instruction at the address. */
1315 /* FIXME: Not handled correctly. */
1316 HOWTO (R_MIPS_INSERT_B, /* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 32, /* bitsize */
1320 false, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont, /* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_MIPS_INSERT_B", /* name */
1325 false, /* partial_inplace */
1326 0, /* src_mask */
1327 0xffffffff, /* dst_mask */
1328 false), /* pcrel_offset */
1329
1330 /* Delete a 32 bit instruction. */
1331 /* FIXME: Not handled correctly. */
1332 HOWTO (R_MIPS_DELETE, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 32, /* bitsize */
1336 false, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_MIPS_DELETE", /* name */
1341 false, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffffffff, /* dst_mask */
1344 false), /* pcrel_offset */
1345
1346 /* Get the higher value of a 64 bit addend. */
1347 HOWTO (R_MIPS_HIGHER, /* type */
1348 0, /* rightshift */
1349 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 false, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 bfd_elf_generic_reloc, /* special_function */
1355 "R_MIPS_HIGHER", /* name */
1356 false, /* partial_inplace */
1357 0, /* src_mask */
1358 0x0000ffff, /* dst_mask */
1359 false), /* pcrel_offset */
1360
1361 /* Get the highest value of a 64 bit addend. */
1362 HOWTO (R_MIPS_HIGHEST, /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 false, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_MIPS_HIGHEST", /* name */
1371 false, /* partial_inplace */
1372 0, /* src_mask */
1373 0x0000ffff, /* dst_mask */
1374 false), /* pcrel_offset */
1375
1376 /* High 16 bits of displacement in global offset table. */
1377 /* FIXME: Not handled correctly. */
1378 HOWTO (R_MIPS_CALL_HI16, /* type */
1379 0, /* rightshift */
1380 2, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 false, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_MIPS_CALL_HI16", /* name */
1387 false, /* partial_inplace */
1388 0, /* src_mask */
1389 0x0000ffff, /* dst_mask */
1390 false), /* pcrel_offset */
1391
1392 /* Low 16 bits of displacement in global offset table. */
1393 /* FIXME: Not handled correctly. */
1394 HOWTO (R_MIPS_CALL_LO16, /* type */
1395 0, /* rightshift */
1396 2, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 false, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_dont, /* complain_on_overflow */
1401 bfd_elf_generic_reloc, /* special_function */
1402 "R_MIPS_CALL_LO16", /* name */
1403 false, /* partial_inplace */
1404 0, /* src_mask */
1405 0x0000ffff, /* dst_mask */
1406 false), /* pcrel_offset */
1407
1408 /* Section displacement, used by an associated event location section. */
1409 /* FIXME: Not handled correctly. */
1410 HOWTO (R_MIPS_SCN_DISP, /* type */
1411 0, /* rightshift */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1413 32, /* bitsize */
1414 false, /* pc_relative */
1415 0, /* bitpos */
1416 complain_overflow_dont, /* complain_on_overflow */
1417 bfd_elf_generic_reloc, /* special_function */
1418 "R_MIPS_SCN_DISP", /* name */
1419 false, /* partial_inplace */
1420 0, /* src_mask */
1421 0xffffffff, /* dst_mask */
1422 false), /* pcrel_offset */
1423
1424 HOWTO (R_MIPS_REL16, /* type */
1425 0, /* rightshift */
1426 1, /* size (0 = byte, 1 = short, 2 = long) */
1427 16, /* bitsize */
1428 false, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_signed, /* complain_on_overflow */
1431 bfd_elf_generic_reloc, /* special_function */
1432 "R_MIPS_REL16", /* name */
1433 false, /* partial_inplace */
1434 0, /* src_mask */
1435 0xffff, /* dst_mask */
1436 false), /* pcrel_offset */
1437
1438 /* These two are obsolete. */
1439 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
1440 EMPTY_HOWTO (R_MIPS_PJUMP),
1441
1442 /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section.
1443 It must be used for multigot GOT's (and only there). */
1444 HOWTO (R_MIPS_RELGOT, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 false, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_MIPS_RELGOT", /* name */
1453 false, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 false), /* pcrel_offset */
1457
1458 /* Protected jump conversion. This is an optimization hint. No
1459 relocation is required for correctness. */
1460 HOWTO (R_MIPS_JALR, /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 32, /* bitsize */
1464 false, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 "R_MIPS_JALR", /* name */
1469 false, /* partial_inplace */
1470 0, /* src_mask */
1471 0xffffffff, /* dst_mask */
1472 false), /* pcrel_offset */
1473 };
1474
1475 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
1476 is a hack to make the linker think that we need 64 bit values. */
1477 static reloc_howto_type elf_mips_ctor64_howto =
1478 HOWTO (R_MIPS_64, /* type */
1479 0, /* rightshift */
1480 4, /* size (0 = byte, 1 = short, 2 = long) */
1481 32, /* bitsize */
1482 false, /* pc_relative */
1483 0, /* bitpos */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 mips32_64bit_reloc, /* special_function */
1486 "R_MIPS_64", /* name */
1487 true, /* partial_inplace */
1488 0xffffffff, /* src_mask */
1489 0xffffffff, /* dst_mask */
1490 false); /* pcrel_offset */
1491
1492 /* The reloc used for the mips16 jump instruction. */
1493 static reloc_howto_type elf_mips16_jump_howto =
1494 HOWTO (R_MIPS16_26, /* type */
1495 2, /* rightshift */
1496 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 26, /* bitsize */
1498 false, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_dont, /* complain_on_overflow */
1501 /* This needs complex overflow
1502 detection, because the upper four
1503 bits must match the PC. */
1504 mips16_jump_reloc, /* special_function */
1505 "R_MIPS16_26", /* name */
1506 true, /* partial_inplace */
1507 0x3ffffff, /* src_mask */
1508 0x3ffffff, /* dst_mask */
1509 false); /* pcrel_offset */
1510
1511 /* The reloc used for the mips16 gprel instruction. */
1512 static reloc_howto_type elf_mips16_gprel_howto =
1513 HOWTO (R_MIPS16_GPREL, /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 false, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 mips16_gprel_reloc, /* special_function */
1521 "R_MIPS16_GPREL", /* name */
1522 true, /* partial_inplace */
1523 0x07ff001f, /* src_mask */
1524 0x07ff001f, /* dst_mask */
1525 false); /* pcrel_offset */
1526
1527 /* GNU extensions for embedded-pic. */
1528 /* High 16 bits of symbol value, pc-relative. */
1529 static reloc_howto_type elf_mips_gnu_rel_hi16 =
1530 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
1531 0, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 true, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 _bfd_mips_elf_hi16_reloc, /* special_function */
1538 "R_MIPS_GNU_REL_HI16", /* name */
1539 true, /* partial_inplace */
1540 0xffff, /* src_mask */
1541 0xffff, /* dst_mask */
1542 true); /* pcrel_offset */
1543
1544 /* Low 16 bits of symbol value, pc-relative. */
1545 static reloc_howto_type elf_mips_gnu_rel_lo16 =
1546 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 16, /* bitsize */
1550 true, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_dont, /* complain_on_overflow */
1553 _bfd_mips_elf_lo16_reloc, /* special_function */
1554 "R_MIPS_GNU_REL_LO16", /* name */
1555 true, /* partial_inplace */
1556 0xffff, /* src_mask */
1557 0xffff, /* dst_mask */
1558 true); /* pcrel_offset */
1559
1560 /* 16 bit offset for pc-relative branches. */
1561 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1562 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1563 2, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 true, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_signed, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 "R_MIPS_GNU_REL16_S2", /* name */
1571 true, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 true); /* pcrel_offset */
1575
1576 /* 64 bit pc-relative. */
1577 static reloc_howto_type elf_mips_gnu_pcrel64 =
1578 HOWTO (R_MIPS_PC64, /* type */
1579 0, /* rightshift */
1580 4, /* size (0 = byte, 1 = short, 2 = long) */
1581 64, /* bitsize */
1582 true, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_signed, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 "R_MIPS_PC64", /* name */
1587 true, /* partial_inplace */
1588 MINUS_ONE, /* src_mask */
1589 MINUS_ONE, /* dst_mask */
1590 true); /* pcrel_offset */
1591
1592 /* 32 bit pc-relative. */
1593 static reloc_howto_type elf_mips_gnu_pcrel32 =
1594 HOWTO (R_MIPS_PC32, /* type */
1595 0, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 32, /* bitsize */
1598 true, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_signed, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 "R_MIPS_PC32", /* name */
1603 true, /* partial_inplace */
1604 0xffffffff, /* src_mask */
1605 0xffffffff, /* dst_mask */
1606 true); /* pcrel_offset */
1607
1608 /* GNU extension to record C++ vtable hierarchy */
1609 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1610 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1611 0, /* rightshift */
1612 2, /* size (0 = byte, 1 = short, 2 = long) */
1613 0, /* bitsize */
1614 false, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 NULL, /* special_function */
1618 "R_MIPS_GNU_VTINHERIT", /* name */
1619 false, /* partial_inplace */
1620 0, /* src_mask */
1621 0, /* dst_mask */
1622 false); /* pcrel_offset */
1623
1624 /* GNU extension to record C++ vtable member usage */
1625 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1626 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 false, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont, /* complain_on_overflow */
1633 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1634 "R_MIPS_GNU_VTENTRY", /* name */
1635 false, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 false); /* pcrel_offset */
1639
1640 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1641 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1642 the HI16. Here we just save the information we need; we do the
1643 actual relocation when we see the LO16. MIPS ELF requires that the
1644 LO16 immediately follow the HI16. As a GNU extension, we permit an
1645 arbitrary number of HI16 relocs to be associated with a single LO16
1646 reloc. This extension permits gcc to output the HI and LO relocs
1647 itself. */
1648
1649 struct mips_hi16
1650 {
1651 struct mips_hi16 *next;
1652 bfd_byte *addr;
1653 bfd_vma addend;
1654 };
1655
1656 /* FIXME: This should not be a static variable. */
1657
1658 static struct mips_hi16 *mips_hi16_list;
1659
1660 bfd_reloc_status_type
1661 _bfd_mips_elf_hi16_reloc (abfd,
1662 reloc_entry,
1663 symbol,
1664 data,
1665 input_section,
1666 output_bfd,
1667 error_message)
1668 bfd *abfd ATTRIBUTE_UNUSED;
1669 arelent *reloc_entry;
1670 asymbol *symbol;
1671 PTR data;
1672 asection *input_section;
1673 bfd *output_bfd;
1674 char **error_message;
1675 {
1676 bfd_reloc_status_type ret;
1677 bfd_vma relocation;
1678 struct mips_hi16 *n;
1679
1680 /* If we're relocating, and this an external symbol, we don't want
1681 to change anything. */
1682 if (output_bfd != (bfd *) NULL
1683 && (symbol->flags & BSF_SECTION_SYM) == 0
1684 && reloc_entry->addend == 0)
1685 {
1686 reloc_entry->address += input_section->output_offset;
1687 return bfd_reloc_ok;
1688 }
1689
1690 ret = bfd_reloc_ok;
1691
1692 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1693 {
1694 boolean relocateable;
1695 bfd_vma gp;
1696
1697 if (ret == bfd_reloc_undefined)
1698 abort ();
1699
1700 if (output_bfd != NULL)
1701 relocateable = true;
1702 else
1703 {
1704 relocateable = false;
1705 output_bfd = symbol->section->output_section->owner;
1706 }
1707
1708 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1709 error_message, &gp);
1710 if (ret != bfd_reloc_ok)
1711 return ret;
1712
1713 relocation = gp - reloc_entry->address;
1714 }
1715 else
1716 {
1717 if (bfd_is_und_section (symbol->section)
1718 && output_bfd == (bfd *) NULL)
1719 ret = bfd_reloc_undefined;
1720
1721 if (bfd_is_com_section (symbol->section))
1722 relocation = 0;
1723 else
1724 relocation = symbol->value;
1725 }
1726
1727 relocation += symbol->section->output_section->vma;
1728 relocation += symbol->section->output_offset;
1729 relocation += reloc_entry->addend;
1730 if (reloc_entry->howto->pc_relative)
1731 relocation -= reloc_entry->address;
1732
1733 if (reloc_entry->address > input_section->_cooked_size)
1734 return bfd_reloc_outofrange;
1735
1736 /* Save the information, and let LO16 do the actual relocation. */
1737 n = (struct mips_hi16 *) bfd_malloc ((bfd_size_type) sizeof *n);
1738 if (n == NULL)
1739 return bfd_reloc_outofrange;
1740 n->addr = (bfd_byte *) data + reloc_entry->address;
1741 n->addend = relocation;
1742 n->next = mips_hi16_list;
1743 mips_hi16_list = n;
1744
1745 if (output_bfd != (bfd *) NULL)
1746 reloc_entry->address += input_section->output_offset;
1747
1748 return ret;
1749 }
1750
1751 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1752 inplace relocation; this function exists in order to do the
1753 R_MIPS_HI16 relocation described above. */
1754
1755 bfd_reloc_status_type
1756 _bfd_mips_elf_lo16_reloc (abfd,
1757 reloc_entry,
1758 symbol,
1759 data,
1760 input_section,
1761 output_bfd,
1762 error_message)
1763 bfd *abfd;
1764 arelent *reloc_entry;
1765 asymbol *symbol;
1766 PTR data;
1767 asection *input_section;
1768 bfd *output_bfd;
1769 char **error_message;
1770 {
1771 arelent gp_disp_relent;
1772
1773 if (mips_hi16_list != NULL)
1774 {
1775 struct mips_hi16 *l;
1776
1777 l = mips_hi16_list;
1778 while (l != NULL)
1779 {
1780 unsigned long insn;
1781 unsigned long val;
1782 unsigned long vallo;
1783 struct mips_hi16 *next;
1784
1785 /* Do the HI16 relocation. Note that we actually don't need
1786 to know anything about the LO16 itself, except where to
1787 find the low 16 bits of the addend needed by the LO16. */
1788 insn = bfd_get_32 (abfd, l->addr);
1789 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1790 & 0xffff);
1791 val = ((insn & 0xffff) << 16) + vallo;
1792 val += l->addend;
1793
1794 /* The low order 16 bits are always treated as a signed
1795 value. Therefore, a negative value in the low order bits
1796 requires an adjustment in the high order bits. We need
1797 to make this adjustment in two ways: once for the bits we
1798 took from the data, and once for the bits we are putting
1799 back in to the data. */
1800 if ((vallo & 0x8000) != 0)
1801 val -= 0x10000;
1802 if ((val & 0x8000) != 0)
1803 val += 0x10000;
1804
1805 insn = (insn &~ (bfd_vma) 0xffff) | ((val >> 16) & 0xffff);
1806 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
1807
1808 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1809 {
1810 gp_disp_relent = *reloc_entry;
1811 reloc_entry = &gp_disp_relent;
1812 reloc_entry->addend = l->addend;
1813 }
1814
1815 next = l->next;
1816 free (l);
1817 l = next;
1818 }
1819
1820 mips_hi16_list = NULL;
1821 }
1822 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1823 {
1824 bfd_reloc_status_type ret;
1825 bfd_vma gp, relocation;
1826
1827 /* FIXME: Does this case ever occur? */
1828
1829 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1830 if (ret != bfd_reloc_ok)
1831 return ret;
1832
1833 relocation = gp - reloc_entry->address;
1834 relocation += symbol->section->output_section->vma;
1835 relocation += symbol->section->output_offset;
1836 relocation += reloc_entry->addend;
1837
1838 if (reloc_entry->address > input_section->_cooked_size)
1839 return bfd_reloc_outofrange;
1840
1841 gp_disp_relent = *reloc_entry;
1842 reloc_entry = &gp_disp_relent;
1843 reloc_entry->addend = relocation - 4;
1844 }
1845
1846 /* Now do the LO16 reloc in the usual way. */
1847 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1848 input_section, output_bfd, error_message);
1849 }
1850
1851 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1852 table used for PIC code. If the symbol is an external symbol, the
1853 instruction is modified to contain the offset of the appropriate
1854 entry in the global offset table. If the symbol is a section
1855 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1856 addends are combined to form the real addend against the section
1857 symbol; the GOT16 is modified to contain the offset of an entry in
1858 the global offset table, and the LO16 is modified to offset it
1859 appropriately. Thus an offset larger than 16 bits requires a
1860 modified value in the global offset table.
1861
1862 This implementation suffices for the assembler, but the linker does
1863 not yet know how to create global offset tables. */
1864
1865 bfd_reloc_status_type
1866 _bfd_mips_elf_got16_reloc (abfd,
1867 reloc_entry,
1868 symbol,
1869 data,
1870 input_section,
1871 output_bfd,
1872 error_message)
1873 bfd *abfd;
1874 arelent *reloc_entry;
1875 asymbol *symbol;
1876 PTR data;
1877 asection *input_section;
1878 bfd *output_bfd;
1879 char **error_message;
1880 {
1881 /* If we're relocating, and this an external symbol, we don't want
1882 to change anything. */
1883 if (output_bfd != (bfd *) NULL
1884 && (symbol->flags & BSF_SECTION_SYM) == 0
1885 && reloc_entry->addend == 0)
1886 {
1887 reloc_entry->address += input_section->output_offset;
1888 return bfd_reloc_ok;
1889 }
1890
1891 /* If we're relocating, and this is a local symbol, we can handle it
1892 just like HI16. */
1893 if (output_bfd != (bfd *) NULL
1894 && (symbol->flags & BSF_SECTION_SYM) != 0)
1895 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1896 input_section, output_bfd, error_message);
1897
1898 abort ();
1899 }
1900
1901 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1902 dangerous relocation. */
1903
1904 static boolean
1905 mips_elf_assign_gp (output_bfd, pgp)
1906 bfd *output_bfd;
1907 bfd_vma *pgp;
1908 {
1909 unsigned int count;
1910 asymbol **sym;
1911 unsigned int i;
1912
1913 /* If we've already figured out what GP will be, just return it. */
1914 *pgp = _bfd_get_gp_value (output_bfd);
1915 if (*pgp)
1916 return true;
1917
1918 count = bfd_get_symcount (output_bfd);
1919 sym = bfd_get_outsymbols (output_bfd);
1920
1921 /* The linker script will have created a symbol named `_gp' with the
1922 appropriate value. */
1923 if (sym == (asymbol **) NULL)
1924 i = count;
1925 else
1926 {
1927 for (i = 0; i < count; i++, sym++)
1928 {
1929 register const char *name;
1930
1931 name = bfd_asymbol_name (*sym);
1932 if (*name == '_' && strcmp (name, "_gp") == 0)
1933 {
1934 *pgp = bfd_asymbol_value (*sym);
1935 _bfd_set_gp_value (output_bfd, *pgp);
1936 break;
1937 }
1938 }
1939 }
1940
1941 if (i >= count)
1942 {
1943 /* Only get the error once. */
1944 *pgp = 4;
1945 _bfd_set_gp_value (output_bfd, *pgp);
1946 return false;
1947 }
1948
1949 return true;
1950 }
1951
1952 /* We have to figure out the gp value, so that we can adjust the
1953 symbol value correctly. We look up the symbol _gp in the output
1954 BFD. If we can't find it, we're stuck. We cache it in the ELF
1955 target data. We don't need to adjust the symbol value for an
1956 external symbol if we are producing relocateable output. */
1957
1958 static bfd_reloc_status_type
1959 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1960 bfd *output_bfd;
1961 asymbol *symbol;
1962 boolean relocateable;
1963 char **error_message;
1964 bfd_vma *pgp;
1965 {
1966 if (bfd_is_und_section (symbol->section)
1967 && ! relocateable)
1968 {
1969 *pgp = 0;
1970 return bfd_reloc_undefined;
1971 }
1972
1973 *pgp = _bfd_get_gp_value (output_bfd);
1974 if (*pgp == 0
1975 && (! relocateable
1976 || (symbol->flags & BSF_SECTION_SYM) != 0))
1977 {
1978 if (relocateable)
1979 {
1980 /* Make up a value. */
1981 *pgp = symbol->section->output_section->vma + 0x4000;
1982 _bfd_set_gp_value (output_bfd, *pgp);
1983 }
1984 else if (!mips_elf_assign_gp (output_bfd, pgp))
1985 {
1986 *error_message =
1987 (char *) _("GP relative relocation when _gp not defined");
1988 return bfd_reloc_dangerous;
1989 }
1990 }
1991
1992 return bfd_reloc_ok;
1993 }
1994
1995 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1996 become the offset from the gp register. This function also handles
1997 R_MIPS_LITERAL relocations, although those can be handled more
1998 cleverly because the entries in the .lit8 and .lit4 sections can be
1999 merged. */
2000
2001 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
2002 arelent *, asection *,
2003 boolean, PTR, bfd_vma));
2004
2005 bfd_reloc_status_type
2006 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
2007 output_bfd, error_message)
2008 bfd *abfd;
2009 arelent *reloc_entry;
2010 asymbol *symbol;
2011 PTR data;
2012 asection *input_section;
2013 bfd *output_bfd;
2014 char **error_message;
2015 {
2016 boolean relocateable;
2017 bfd_reloc_status_type ret;
2018 bfd_vma gp;
2019
2020 /* If we're relocating, and this is an external symbol with no
2021 addend, we don't want to change anything. We will only have an
2022 addend if this is a newly created reloc, not read from an ELF
2023 file. */
2024 if (output_bfd != (bfd *) NULL
2025 && (symbol->flags & BSF_SECTION_SYM) == 0
2026 && reloc_entry->addend == 0)
2027 {
2028 reloc_entry->address += input_section->output_offset;
2029 return bfd_reloc_ok;
2030 }
2031
2032 if (output_bfd != (bfd *) NULL)
2033 relocateable = true;
2034 else
2035 {
2036 relocateable = false;
2037 output_bfd = symbol->section->output_section->owner;
2038 }
2039
2040 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2041 &gp);
2042 if (ret != bfd_reloc_ok)
2043 return ret;
2044
2045 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2046 relocateable, data, gp);
2047 }
2048
2049 static bfd_reloc_status_type
2050 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2051 gp)
2052 bfd *abfd;
2053 asymbol *symbol;
2054 arelent *reloc_entry;
2055 asection *input_section;
2056 boolean relocateable;
2057 PTR data;
2058 bfd_vma gp;
2059 {
2060 bfd_vma relocation;
2061 unsigned long insn;
2062 unsigned long val;
2063
2064 if (bfd_is_com_section (symbol->section))
2065 relocation = 0;
2066 else
2067 relocation = symbol->value;
2068
2069 relocation += symbol->section->output_section->vma;
2070 relocation += symbol->section->output_offset;
2071
2072 if (reloc_entry->address > input_section->_cooked_size)
2073 return bfd_reloc_outofrange;
2074
2075 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2076
2077 /* Set val to the offset into the section or symbol. */
2078 if (reloc_entry->howto->src_mask == 0)
2079 {
2080 /* This case occurs with the 64-bit MIPS ELF ABI. */
2081 val = reloc_entry->addend;
2082 }
2083 else
2084 {
2085 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
2086 if (val & 0x8000)
2087 val -= 0x10000;
2088 }
2089
2090 /* Adjust val for the final section location and GP value. If we
2091 are producing relocateable output, we don't want to do this for
2092 an external symbol. */
2093 if (! relocateable
2094 || (symbol->flags & BSF_SECTION_SYM) != 0)
2095 val += relocation - gp;
2096
2097 insn = (insn & ~0xffff) | (val & 0xffff);
2098 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
2099
2100 if (relocateable)
2101 reloc_entry->address += input_section->output_offset;
2102
2103 /* Make sure it fit in 16 bits. */
2104 if ((long) val >= 0x8000 || (long) val < -0x8000)
2105 return bfd_reloc_overflow;
2106
2107 return bfd_reloc_ok;
2108 }
2109
2110 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
2111 from the gp register? XXX */
2112
2113 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
2114 arelent *, asection *,
2115 boolean, PTR, bfd_vma));
2116
2117 bfd_reloc_status_type
2118 _bfd_mips_elf_gprel32_reloc (abfd,
2119 reloc_entry,
2120 symbol,
2121 data,
2122 input_section,
2123 output_bfd,
2124 error_message)
2125 bfd *abfd;
2126 arelent *reloc_entry;
2127 asymbol *symbol;
2128 PTR data;
2129 asection *input_section;
2130 bfd *output_bfd;
2131 char **error_message;
2132 {
2133 boolean relocateable;
2134 bfd_reloc_status_type ret;
2135 bfd_vma gp;
2136
2137 /* If we're relocating, and this is an external symbol with no
2138 addend, we don't want to change anything. We will only have an
2139 addend if this is a newly created reloc, not read from an ELF
2140 file. */
2141 if (output_bfd != (bfd *) NULL
2142 && (symbol->flags & BSF_SECTION_SYM) == 0
2143 && reloc_entry->addend == 0)
2144 {
2145 *error_message = (char *)
2146 _("32bits gp relative relocation occurs for an external symbol");
2147 return bfd_reloc_outofrange;
2148 }
2149
2150 if (output_bfd != (bfd *) NULL)
2151 {
2152 relocateable = true;
2153 gp = _bfd_get_gp_value (output_bfd);
2154 }
2155 else
2156 {
2157 relocateable = false;
2158 output_bfd = symbol->section->output_section->owner;
2159
2160 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
2161 error_message, &gp);
2162 if (ret != bfd_reloc_ok)
2163 return ret;
2164 }
2165
2166 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
2167 relocateable, data, gp);
2168 }
2169
2170 static bfd_reloc_status_type
2171 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2172 gp)
2173 bfd *abfd;
2174 asymbol *symbol;
2175 arelent *reloc_entry;
2176 asection *input_section;
2177 boolean relocateable;
2178 PTR data;
2179 bfd_vma gp;
2180 {
2181 bfd_vma relocation;
2182 unsigned long val;
2183
2184 if (bfd_is_com_section (symbol->section))
2185 relocation = 0;
2186 else
2187 relocation = symbol->value;
2188
2189 relocation += symbol->section->output_section->vma;
2190 relocation += symbol->section->output_offset;
2191
2192 if (reloc_entry->address > input_section->_cooked_size)
2193 return bfd_reloc_outofrange;
2194
2195 if (reloc_entry->howto->src_mask == 0)
2196 {
2197 /* This case arises with the 64-bit MIPS ELF ABI. */
2198 val = 0;
2199 }
2200 else
2201 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2202
2203 /* Set val to the offset into the section or symbol. */
2204 val += reloc_entry->addend;
2205
2206 /* Adjust val for the final section location and GP value. If we
2207 are producing relocateable output, we don't want to do this for
2208 an external symbol. */
2209 if (! relocateable
2210 || (symbol->flags & BSF_SECTION_SYM) != 0)
2211 val += relocation - gp;
2212
2213 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + reloc_entry->address);
2214
2215 if (relocateable)
2216 reloc_entry->address += input_section->output_offset;
2217
2218 return bfd_reloc_ok;
2219 }
2220
2221 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
2222 generated when addresses are 64 bits. The upper 32 bits are a simple
2223 sign extension. */
2224
2225 static bfd_reloc_status_type
2226 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
2227 output_bfd, error_message)
2228 bfd *abfd;
2229 arelent *reloc_entry;
2230 asymbol *symbol;
2231 PTR data;
2232 asection *input_section;
2233 bfd *output_bfd;
2234 char **error_message;
2235 {
2236 bfd_reloc_status_type r;
2237 arelent reloc32;
2238 unsigned long val;
2239 bfd_size_type addr;
2240
2241 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2242 input_section, output_bfd, error_message);
2243 if (r != bfd_reloc_continue)
2244 return r;
2245
2246 /* Do a normal 32 bit relocation on the lower 32 bits. */
2247 reloc32 = *reloc_entry;
2248 if (bfd_big_endian (abfd))
2249 reloc32.address += 4;
2250 reloc32.howto = &elf_mips_howto_table_rel[R_MIPS_32];
2251 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
2252 output_bfd, error_message);
2253
2254 /* Sign extend into the upper 32 bits. */
2255 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
2256 if ((val & 0x80000000) != 0)
2257 val = 0xffffffff;
2258 else
2259 val = 0;
2260 addr = reloc_entry->address;
2261 if (bfd_little_endian (abfd))
2262 addr += 4;
2263 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + addr);
2264
2265 return r;
2266 }
2267
2268 /* Handle a mips16 jump. */
2269
2270 static bfd_reloc_status_type
2271 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
2272 output_bfd, error_message)
2273 bfd *abfd ATTRIBUTE_UNUSED;
2274 arelent *reloc_entry;
2275 asymbol *symbol;
2276 PTR data ATTRIBUTE_UNUSED;
2277 asection *input_section;
2278 bfd *output_bfd;
2279 char **error_message ATTRIBUTE_UNUSED;
2280 {
2281 if (output_bfd != (bfd *) NULL
2282 && (symbol->flags & BSF_SECTION_SYM) == 0
2283 && reloc_entry->addend == 0)
2284 {
2285 reloc_entry->address += input_section->output_offset;
2286 return bfd_reloc_ok;
2287 }
2288
2289 /* FIXME. */
2290 {
2291 static boolean warned;
2292
2293 if (! warned)
2294 (*_bfd_error_handler)
2295 (_("Linking mips16 objects into %s format is not supported"),
2296 bfd_get_target (input_section->output_section->owner));
2297 warned = true;
2298 }
2299
2300 return bfd_reloc_undefined;
2301 }
2302
2303 /* Handle a mips16 GP relative reloc. */
2304
2305 static bfd_reloc_status_type
2306 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
2307 output_bfd, error_message)
2308 bfd *abfd;
2309 arelent *reloc_entry;
2310 asymbol *symbol;
2311 PTR data;
2312 asection *input_section;
2313 bfd *output_bfd;
2314 char **error_message;
2315 {
2316 boolean relocateable;
2317 bfd_reloc_status_type ret;
2318 bfd_vma gp;
2319 unsigned short extend, insn;
2320 unsigned long final;
2321
2322 /* If we're relocating, and this is an external symbol with no
2323 addend, we don't want to change anything. We will only have an
2324 addend if this is a newly created reloc, not read from an ELF
2325 file. */
2326 if (output_bfd != NULL
2327 && (symbol->flags & BSF_SECTION_SYM) == 0
2328 && reloc_entry->addend == 0)
2329 {
2330 reloc_entry->address += input_section->output_offset;
2331 return bfd_reloc_ok;
2332 }
2333
2334 if (output_bfd != NULL)
2335 relocateable = true;
2336 else
2337 {
2338 relocateable = false;
2339 output_bfd = symbol->section->output_section->owner;
2340 }
2341
2342 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2343 &gp);
2344 if (ret != bfd_reloc_ok)
2345 return ret;
2346
2347 if (reloc_entry->address > input_section->_cooked_size)
2348 return bfd_reloc_outofrange;
2349
2350 /* Pick up the mips16 extend instruction and the real instruction. */
2351 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
2352 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
2353
2354 /* Stuff the current addend back as a 32 bit value, do the usual
2355 relocation, and then clean up. */
2356 bfd_put_32 (abfd,
2357 (bfd_vma) (((extend & 0x1f) << 11)
2358 | (extend & 0x7e0)
2359 | (insn & 0x1f)),
2360 (bfd_byte *) data + reloc_entry->address);
2361
2362 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2363 relocateable, data, gp);
2364
2365 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2366 bfd_put_16 (abfd,
2367 (bfd_vma) ((extend & 0xf800)
2368 | ((final >> 11) & 0x1f)
2369 | (final & 0x7e0)),
2370 (bfd_byte *) data + reloc_entry->address);
2371 bfd_put_16 (abfd,
2372 (bfd_vma) ((insn & 0xffe0)
2373 | (final & 0x1f)),
2374 (bfd_byte *) data + reloc_entry->address + 2);
2375
2376 return ret;
2377 }
2378
2379 /* Return the ISA for a MIPS e_flags value. */
2380
2381 static INLINE int
2382 elf_mips_isa (flags)
2383 flagword flags;
2384 {
2385 switch (flags & EF_MIPS_ARCH)
2386 {
2387 case E_MIPS_ARCH_1:
2388 return 1;
2389 case E_MIPS_ARCH_2:
2390 return 2;
2391 case E_MIPS_ARCH_3:
2392 return 3;
2393 case E_MIPS_ARCH_4:
2394 return 4;
2395 case E_MIPS_ARCH_5:
2396 return 5;
2397 case E_MIPS_ARCH_32:
2398 return 32;
2399 case E_MIPS_ARCH_64:
2400 return 64;
2401 }
2402 return 4;
2403 }
2404
2405 /* Return the MACH for a MIPS e_flags value. */
2406
2407 static INLINE unsigned long
2408 elf_mips_mach (flags)
2409 flagword flags;
2410 {
2411 switch (flags & EF_MIPS_MACH)
2412 {
2413 case E_MIPS_MACH_3900:
2414 return bfd_mach_mips3900;
2415
2416 case E_MIPS_MACH_4010:
2417 return bfd_mach_mips4010;
2418
2419 case E_MIPS_MACH_4100:
2420 return bfd_mach_mips4100;
2421
2422 case E_MIPS_MACH_4111:
2423 return bfd_mach_mips4111;
2424
2425 case E_MIPS_MACH_4650:
2426 return bfd_mach_mips4650;
2427
2428 case E_MIPS_MACH_SB1:
2429 return bfd_mach_mips_sb1;
2430
2431 default:
2432 switch (flags & EF_MIPS_ARCH)
2433 {
2434 default:
2435 case E_MIPS_ARCH_1:
2436 return bfd_mach_mips3000;
2437 break;
2438
2439 case E_MIPS_ARCH_2:
2440 return bfd_mach_mips6000;
2441 break;
2442
2443 case E_MIPS_ARCH_3:
2444 return bfd_mach_mips4000;
2445 break;
2446
2447 case E_MIPS_ARCH_4:
2448 return bfd_mach_mips8000;
2449 break;
2450
2451 case E_MIPS_ARCH_5:
2452 return bfd_mach_mips5;
2453 break;
2454
2455 case E_MIPS_ARCH_32:
2456 return bfd_mach_mipsisa32;
2457 break;
2458
2459 case E_MIPS_ARCH_64:
2460 return bfd_mach_mipsisa64;
2461 break;
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
2468 /* Return printable name for ABI. */
2469
2470 static INLINE char *
2471 elf_mips_abi_name (abfd)
2472 bfd *abfd;
2473 {
2474 flagword flags;
2475
2476 flags = elf_elfheader (abfd)->e_flags;
2477 switch (flags & EF_MIPS_ABI)
2478 {
2479 case 0:
2480 if (ABI_N32_P (abfd))
2481 return "N32";
2482 else if (ABI_64_P (abfd))
2483 return "64";
2484 else
2485 return "none";
2486 case E_MIPS_ABI_O32:
2487 return "O32";
2488 case E_MIPS_ABI_O64:
2489 return "O64";
2490 case E_MIPS_ABI_EABI32:
2491 return "EABI32";
2492 case E_MIPS_ABI_EABI64:
2493 return "EABI64";
2494 default:
2495 return "unknown abi";
2496 }
2497 }
2498
2499 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
2500
2501 struct elf_reloc_map {
2502 bfd_reloc_code_real_type bfd_reloc_val;
2503 enum elf_mips_reloc_type elf_reloc_val;
2504 };
2505
2506 static const struct elf_reloc_map mips_reloc_map[] =
2507 {
2508 { BFD_RELOC_NONE, R_MIPS_NONE, },
2509 { BFD_RELOC_16, R_MIPS_16 },
2510 { BFD_RELOC_32, R_MIPS_32 },
2511 { BFD_RELOC_64, R_MIPS_64 },
2512 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
2513 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
2514 { BFD_RELOC_LO16, R_MIPS_LO16 },
2515 { BFD_RELOC_GPREL16, R_MIPS_GPREL16 },
2516 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
2517 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
2518 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
2519 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
2520 { BFD_RELOC_GPREL32, R_MIPS_GPREL32 },
2521 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
2522 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
2523 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
2524 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
2525 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
2526 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
2527 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
2528 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
2529 };
2530
2531 /* Given a BFD reloc type, return a howto structure. */
2532
2533 static reloc_howto_type *
2534 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
2535 bfd *abfd;
2536 bfd_reloc_code_real_type code;
2537 {
2538 unsigned int i;
2539
2540 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
2541 {
2542 if (mips_reloc_map[i].bfd_reloc_val == code)
2543 return &elf_mips_howto_table_rel[(int) mips_reloc_map[i].elf_reloc_val];
2544 }
2545
2546 switch (code)
2547 {
2548 default:
2549 bfd_set_error (bfd_error_bad_value);
2550 return NULL;
2551
2552 case BFD_RELOC_CTOR:
2553 /* We need to handle BFD_RELOC_CTOR specially.
2554 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2555 size of addresses on this architecture. */
2556 if (bfd_arch_bits_per_address (abfd) == 32)
2557 return &elf_mips_howto_table_rel[(int) R_MIPS_32];
2558 else
2559 return &elf_mips_ctor64_howto;
2560
2561 case BFD_RELOC_MIPS16_JMP:
2562 return &elf_mips16_jump_howto;
2563 case BFD_RELOC_MIPS16_GPREL:
2564 return &elf_mips16_gprel_howto;
2565 case BFD_RELOC_VTABLE_INHERIT:
2566 return &elf_mips_gnu_vtinherit_howto;
2567 case BFD_RELOC_VTABLE_ENTRY:
2568 return &elf_mips_gnu_vtentry_howto;
2569 case BFD_RELOC_PCREL_HI16_S:
2570 return &elf_mips_gnu_rel_hi16;
2571 case BFD_RELOC_PCREL_LO16:
2572 return &elf_mips_gnu_rel_lo16;
2573 case BFD_RELOC_16_PCREL_S2:
2574 return &elf_mips_gnu_rel16_s2;
2575 case BFD_RELOC_64_PCREL:
2576 return &elf_mips_gnu_pcrel64;
2577 case BFD_RELOC_32_PCREL:
2578 return &elf_mips_gnu_pcrel32;
2579 }
2580 }
2581
2582 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2583
2584 static reloc_howto_type *
2585 mips_rtype_to_howto (r_type)
2586 unsigned int r_type;
2587 {
2588 switch (r_type)
2589 {
2590 case R_MIPS16_26:
2591 return &elf_mips16_jump_howto;
2592 break;
2593 case R_MIPS16_GPREL:
2594 return &elf_mips16_gprel_howto;
2595 break;
2596 case R_MIPS_GNU_VTINHERIT:
2597 return &elf_mips_gnu_vtinherit_howto;
2598 break;
2599 case R_MIPS_GNU_VTENTRY:
2600 return &elf_mips_gnu_vtentry_howto;
2601 break;
2602 case R_MIPS_GNU_REL_HI16:
2603 return &elf_mips_gnu_rel_hi16;
2604 break;
2605 case R_MIPS_GNU_REL_LO16:
2606 return &elf_mips_gnu_rel_lo16;
2607 break;
2608 case R_MIPS_GNU_REL16_S2:
2609 return &elf_mips_gnu_rel16_s2;
2610 break;
2611 case R_MIPS_PC64:
2612 return &elf_mips_gnu_pcrel64;
2613 break;
2614 case R_MIPS_PC32:
2615 return &elf_mips_gnu_pcrel32;
2616 break;
2617
2618 default:
2619 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2620 return &elf_mips_howto_table_rel[r_type];
2621 break;
2622 }
2623 }
2624
2625 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2626
2627 static void
2628 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2629 bfd *abfd;
2630 arelent *cache_ptr;
2631 Elf32_Internal_Rel *dst;
2632 {
2633 unsigned int r_type;
2634
2635 r_type = ELF32_R_TYPE (dst->r_info);
2636 cache_ptr->howto = mips_rtype_to_howto (r_type);
2637
2638 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2639 value for the object file. We get the addend now, rather than
2640 when we do the relocation, because the symbol manipulations done
2641 by the linker may cause us to lose track of the input BFD. */
2642 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2643 && (r_type == (unsigned int) R_MIPS_GPREL16
2644 || r_type == (unsigned int) R_MIPS_LITERAL))
2645 cache_ptr->addend = elf_gp (abfd);
2646 }
2647
2648 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2649
2650 static void
2651 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2652 bfd *abfd;
2653 arelent *cache_ptr;
2654 Elf32_Internal_Rela *dst;
2655 {
2656 /* Since an Elf32_Internal_Rel is an initial prefix of an
2657 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2658 above. */
2659 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2660
2661 /* If we ever need to do any extra processing with dst->r_addend
2662 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2663 }
2664 \f
2665 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2666 routines swap this structure in and out. They are used outside of
2667 BFD, so they are globally visible. */
2668
2669 void
2670 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2671 bfd *abfd;
2672 const Elf32_External_RegInfo *ex;
2673 Elf32_RegInfo *in;
2674 {
2675 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2676 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2677 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2678 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2679 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2680 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2681 }
2682
2683 void
2684 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2685 bfd *abfd;
2686 const Elf32_RegInfo *in;
2687 Elf32_External_RegInfo *ex;
2688 {
2689 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2690 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2691 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2692 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2693 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2694 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2695 }
2696
2697 /* In the 64 bit ABI, the .MIPS.options section holds register
2698 information in an Elf64_Reginfo structure. These routines swap
2699 them in and out. They are globally visible because they are used
2700 outside of BFD. These routines are here so that gas can call them
2701 without worrying about whether the 64 bit ABI has been included. */
2702
2703 void
2704 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2705 bfd *abfd;
2706 const Elf64_External_RegInfo *ex;
2707 Elf64_Internal_RegInfo *in;
2708 {
2709 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2710 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2711 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2712 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2713 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2714 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2715 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2716 }
2717
2718 void
2719 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2720 bfd *abfd;
2721 const Elf64_Internal_RegInfo *in;
2722 Elf64_External_RegInfo *ex;
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2726 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2727 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2728 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2729 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2730 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2731 }
2732
2733 /* Swap an entry in a .gptab section. Note that these routines rely
2734 on the equivalence of the two elements of the union. */
2735
2736 static void
2737 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2738 bfd *abfd;
2739 const Elf32_External_gptab *ex;
2740 Elf32_gptab *in;
2741 {
2742 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2743 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2744 }
2745
2746 static void
2747 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2748 bfd *abfd;
2749 const Elf32_gptab *in;
2750 Elf32_External_gptab *ex;
2751 {
2752 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2753 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2754 }
2755
2756 static void
2757 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2758 bfd *abfd;
2759 const Elf32_compact_rel *in;
2760 Elf32_External_compact_rel *ex;
2761 {
2762 H_PUT_32 (abfd, in->id1, ex->id1);
2763 H_PUT_32 (abfd, in->num, ex->num);
2764 H_PUT_32 (abfd, in->id2, ex->id2);
2765 H_PUT_32 (abfd, in->offset, ex->offset);
2766 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2767 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2768 }
2769
2770 static void
2771 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2772 bfd *abfd;
2773 const Elf32_crinfo *in;
2774 Elf32_External_crinfo *ex;
2775 {
2776 unsigned long l;
2777
2778 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2779 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2780 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2781 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2782 H_PUT_32 (abfd, l, ex->info);
2783 H_PUT_32 (abfd, in->konst, ex->konst);
2784 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2785 }
2786
2787 /* Swap in an options header. */
2788
2789 void
2790 bfd_mips_elf_swap_options_in (abfd, ex, in)
2791 bfd *abfd;
2792 const Elf_External_Options *ex;
2793 Elf_Internal_Options *in;
2794 {
2795 in->kind = H_GET_8 (abfd, ex->kind);
2796 in->size = H_GET_8 (abfd, ex->size);
2797 in->section = H_GET_16 (abfd, ex->section);
2798 in->info = H_GET_32 (abfd, ex->info);
2799 }
2800
2801 /* Swap out an options header. */
2802
2803 void
2804 bfd_mips_elf_swap_options_out (abfd, in, ex)
2805 bfd *abfd;
2806 const Elf_Internal_Options *in;
2807 Elf_External_Options *ex;
2808 {
2809 H_PUT_8 (abfd, in->kind, ex->kind);
2810 H_PUT_8 (abfd, in->size, ex->size);
2811 H_PUT_16 (abfd, in->section, ex->section);
2812 H_PUT_32 (abfd, in->info, ex->info);
2813 }
2814 #if 0
2815 /* Swap in an MSYM entry. */
2816
2817 static void
2818 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2819 bfd *abfd;
2820 const Elf32_External_Msym *ex;
2821 Elf32_Internal_Msym *in;
2822 {
2823 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
2824 in->ms_info = H_GET_32 (abfd, ex->ms_info);
2825 }
2826 #endif
2827 /* Swap out an MSYM entry. */
2828
2829 static void
2830 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2831 bfd *abfd;
2832 const Elf32_Internal_Msym *in;
2833 Elf32_External_Msym *ex;
2834 {
2835 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2836 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
2837 }
2838 \f
2839 /* Determine whether a symbol is global for the purposes of splitting
2840 the symbol table into global symbols and local symbols. At least
2841 on Irix 5, this split must be between section symbols and all other
2842 symbols. On most ELF targets the split is between static symbols
2843 and externally visible symbols. */
2844
2845 static boolean
2846 mips_elf_sym_is_global (abfd, sym)
2847 bfd *abfd ATTRIBUTE_UNUSED;
2848 asymbol *sym;
2849 {
2850 if (SGI_COMPAT (abfd))
2851 return (sym->flags & BSF_SECTION_SYM) == 0;
2852 else
2853 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2854 || bfd_is_und_section (bfd_get_section (sym))
2855 || bfd_is_com_section (bfd_get_section (sym)));
2856 }
2857 \f
2858 /* Set the right machine number for a MIPS ELF file. This is used for
2859 both the 32-bit and the 64-bit ABI. */
2860
2861 boolean
2862 _bfd_mips_elf_object_p (abfd)
2863 bfd *abfd;
2864 {
2865 /* Irix 5 and 6 are broken. Object file symbol tables are not always
2866 sorted correctly such that local symbols precede global symbols,
2867 and the sh_info field in the symbol table is not always right. */
2868 if (SGI_COMPAT(abfd))
2869 elf_bad_symtab (abfd) = true;
2870
2871 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2872 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2873 return true;
2874 }
2875
2876 /* The final processing done just before writing out a MIPS ELF object
2877 file. This gets the MIPS architecture right based on the machine
2878 number. This is used by both the 32-bit and the 64-bit ABI. */
2879
2880 void
2881 _bfd_mips_elf_final_write_processing (abfd, linker)
2882 bfd *abfd;
2883 boolean linker ATTRIBUTE_UNUSED;
2884 {
2885 unsigned long val;
2886 unsigned int i;
2887 Elf_Internal_Shdr **hdrpp;
2888 const char *name;
2889 asection *sec;
2890
2891 switch (bfd_get_mach (abfd))
2892 {
2893 default:
2894 case bfd_mach_mips3000:
2895 val = E_MIPS_ARCH_1;
2896 break;
2897
2898 case bfd_mach_mips3900:
2899 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2900 break;
2901
2902 case bfd_mach_mips6000:
2903 val = E_MIPS_ARCH_2;
2904 break;
2905
2906 case bfd_mach_mips4000:
2907 case bfd_mach_mips4300:
2908 case bfd_mach_mips4400:
2909 case bfd_mach_mips4600:
2910 val = E_MIPS_ARCH_3;
2911 break;
2912
2913 case bfd_mach_mips4010:
2914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2915 break;
2916
2917 case bfd_mach_mips4100:
2918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2919 break;
2920
2921 case bfd_mach_mips4111:
2922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2923 break;
2924
2925 case bfd_mach_mips4650:
2926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2927 break;
2928
2929 case bfd_mach_mips5000:
2930 case bfd_mach_mips8000:
2931 case bfd_mach_mips10000:
2932 case bfd_mach_mips12000:
2933 val = E_MIPS_ARCH_4;
2934 break;
2935
2936 case bfd_mach_mips5:
2937 val = E_MIPS_ARCH_5;
2938 break;
2939
2940 case bfd_mach_mips_sb1:
2941 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2942 break;
2943
2944 case bfd_mach_mipsisa32:
2945 val = E_MIPS_ARCH_32;
2946 break;
2947
2948 case bfd_mach_mipsisa64:
2949 val = E_MIPS_ARCH_64;
2950 }
2951
2952 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2953 elf_elfheader (abfd)->e_flags |= val;
2954
2955 /* Set the sh_info field for .gptab sections and other appropriate
2956 info for each special section. */
2957 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2958 i < elf_numsections (abfd);
2959 i++, hdrpp++)
2960 {
2961 switch ((*hdrpp)->sh_type)
2962 {
2963 case SHT_MIPS_MSYM:
2964 case SHT_MIPS_LIBLIST:
2965 sec = bfd_get_section_by_name (abfd, ".dynstr");
2966 if (sec != NULL)
2967 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2968 break;
2969
2970 case SHT_MIPS_GPTAB:
2971 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2972 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2973 BFD_ASSERT (name != NULL
2974 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2975 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2976 BFD_ASSERT (sec != NULL);
2977 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2978 break;
2979
2980 case SHT_MIPS_CONTENT:
2981 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2982 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2983 BFD_ASSERT (name != NULL
2984 && strncmp (name, ".MIPS.content",
2985 sizeof ".MIPS.content" - 1) == 0);
2986 sec = bfd_get_section_by_name (abfd,
2987 name + sizeof ".MIPS.content" - 1);
2988 BFD_ASSERT (sec != NULL);
2989 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2990 break;
2991
2992 case SHT_MIPS_SYMBOL_LIB:
2993 sec = bfd_get_section_by_name (abfd, ".dynsym");
2994 if (sec != NULL)
2995 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2996 sec = bfd_get_section_by_name (abfd, ".liblist");
2997 if (sec != NULL)
2998 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2999 break;
3000
3001 case SHT_MIPS_EVENTS:
3002 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
3003 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
3004 BFD_ASSERT (name != NULL);
3005 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
3006 sec = bfd_get_section_by_name (abfd,
3007 name + sizeof ".MIPS.events" - 1);
3008 else
3009 {
3010 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
3011 sizeof ".MIPS.post_rel" - 1) == 0);
3012 sec = bfd_get_section_by_name (abfd,
3013 (name
3014 + sizeof ".MIPS.post_rel" - 1));
3015 }
3016 BFD_ASSERT (sec != NULL);
3017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
3018 break;
3019
3020 }
3021 }
3022 }
3023 \f
3024 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
3025
3026 boolean
3027 _bfd_mips_elf_set_private_flags (abfd, flags)
3028 bfd *abfd;
3029 flagword flags;
3030 {
3031 BFD_ASSERT (!elf_flags_init (abfd)
3032 || elf_elfheader (abfd)->e_flags == flags);
3033
3034 elf_elfheader (abfd)->e_flags = flags;
3035 elf_flags_init (abfd) = true;
3036 return true;
3037 }
3038
3039 /* Copy backend specific data from one object module to another */
3040
3041 boolean
3042 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
3043 bfd *ibfd;
3044 bfd *obfd;
3045 {
3046 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3047 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3048 return true;
3049
3050 BFD_ASSERT (!elf_flags_init (obfd)
3051 || (elf_elfheader (obfd)->e_flags
3052 == elf_elfheader (ibfd)->e_flags));
3053
3054 elf_gp (obfd) = elf_gp (ibfd);
3055 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
3056 elf_flags_init (obfd) = true;
3057 return true;
3058 }
3059
3060 /* Merge backend specific data from an object file to the output
3061 object file when linking. */
3062
3063 boolean
3064 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
3065 bfd *ibfd;
3066 bfd *obfd;
3067 {
3068 flagword old_flags;
3069 flagword new_flags;
3070 boolean ok;
3071 boolean null_input_bfd = true;
3072 asection *sec;
3073
3074 /* Check if we have the same endianess */
3075 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
3076 return false;
3077
3078 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3079 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3080 return true;
3081
3082 new_flags = elf_elfheader (ibfd)->e_flags;
3083 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
3084 old_flags = elf_elfheader (obfd)->e_flags;
3085
3086 if (! elf_flags_init (obfd))
3087 {
3088 elf_flags_init (obfd) = true;
3089 elf_elfheader (obfd)->e_flags = new_flags;
3090 elf_elfheader (obfd)->e_ident[EI_CLASS]
3091 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
3092
3093 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3094 && bfd_get_arch_info (obfd)->the_default)
3095 {
3096 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3097 bfd_get_mach (ibfd)))
3098 return false;
3099 }
3100
3101 return true;
3102 }
3103
3104 /* Check flag compatibility. */
3105
3106 new_flags &= ~EF_MIPS_NOREORDER;
3107 old_flags &= ~EF_MIPS_NOREORDER;
3108
3109 if (new_flags == old_flags)
3110 return true;
3111
3112 /* Check to see if the input BFD actually contains any sections.
3113 If not, its flags may not have been initialised either, but it cannot
3114 actually cause any incompatibility. */
3115 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3116 {
3117 /* Ignore synthetic sections and empty .text, .data and .bss sections
3118 which are automatically generated by gas. */
3119 if (strcmp (sec->name, ".reginfo")
3120 && strcmp (sec->name, ".mdebug")
3121 && ((!strcmp (sec->name, ".text")
3122 || !strcmp (sec->name, ".data")
3123 || !strcmp (sec->name, ".bss"))
3124 && sec->_raw_size != 0))
3125 {
3126 null_input_bfd = false;
3127 break;
3128 }
3129 }
3130 if (null_input_bfd)
3131 return true;
3132
3133 ok = true;
3134
3135 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
3136 {
3137 new_flags &= ~EF_MIPS_PIC;
3138 old_flags &= ~EF_MIPS_PIC;
3139 (*_bfd_error_handler)
3140 (_("%s: linking PIC files with non-PIC files"),
3141 bfd_archive_filename (ibfd));
3142 ok = false;
3143 }
3144
3145 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
3146 {
3147 new_flags &= ~EF_MIPS_CPIC;
3148 old_flags &= ~EF_MIPS_CPIC;
3149 (*_bfd_error_handler)
3150 (_("%s: linking abicalls files with non-abicalls files"),
3151 bfd_archive_filename (ibfd));
3152 ok = false;
3153 }
3154
3155 /* Compare the ISA's. */
3156 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
3157 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
3158 {
3159 int new_mach = new_flags & EF_MIPS_MACH;
3160 int old_mach = old_flags & EF_MIPS_MACH;
3161 int new_isa = elf_mips_isa (new_flags);
3162 int old_isa = elf_mips_isa (old_flags);
3163
3164 /* If either has no machine specified, just compare the general isa's.
3165 Some combinations of machines are ok, if the isa's match. */
3166 if (! new_mach
3167 || ! old_mach
3168 || new_mach == old_mach
3169 )
3170 {
3171 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
3172 using 64-bit ISAs. They will normally use the same data sizes
3173 and calling conventions. */
3174
3175 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
3176 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
3177 {
3178 (*_bfd_error_handler)
3179 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
3180 bfd_archive_filename (ibfd), new_isa, old_isa);
3181 ok = false;
3182 }
3183 }
3184
3185 else
3186 {
3187 (*_bfd_error_handler)
3188 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
3189 bfd_archive_filename (ibfd),
3190 elf_mips_mach (new_flags),
3191 elf_mips_mach (old_flags));
3192 ok = false;
3193 }
3194
3195 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3196 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3197 }
3198
3199 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
3200 does set EI_CLASS differently from any 32-bit ABI. */
3201 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
3202 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3203 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3204 {
3205 /* Only error if both are set (to different values). */
3206 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
3207 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3208 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3209 {
3210 (*_bfd_error_handler)
3211 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
3212 bfd_archive_filename (ibfd),
3213 elf_mips_abi_name (ibfd),
3214 elf_mips_abi_name (obfd));
3215 ok = false;
3216 }
3217 new_flags &= ~EF_MIPS_ABI;
3218 old_flags &= ~EF_MIPS_ABI;
3219 }
3220
3221 /* Warn about any other mismatches */
3222 if (new_flags != old_flags)
3223 {
3224 (*_bfd_error_handler)
3225 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3226 bfd_archive_filename (ibfd), (unsigned long) new_flags,
3227 (unsigned long) old_flags);
3228 ok = false;
3229 }
3230
3231 if (! ok)
3232 {
3233 bfd_set_error (bfd_error_bad_value);
3234 return false;
3235 }
3236
3237 return true;
3238 }
3239 \f
3240 boolean
3241 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
3242 bfd *abfd;
3243 PTR ptr;
3244 {
3245 FILE *file = (FILE *) ptr;
3246
3247 BFD_ASSERT (abfd != NULL && ptr != NULL);
3248
3249 /* Print normal ELF private data. */
3250 _bfd_elf_print_private_bfd_data (abfd, ptr);
3251
3252 /* xgettext:c-format */
3253 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
3254
3255 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
3256 fprintf (file, _(" [abi=O32]"));
3257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
3258 fprintf (file, _(" [abi=O64]"));
3259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
3260 fprintf (file, _(" [abi=EABI32]"));
3261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
3262 fprintf (file, _(" [abi=EABI64]"));
3263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
3264 fprintf (file, _(" [abi unknown]"));
3265 else if (ABI_N32_P (abfd))
3266 fprintf (file, _(" [abi=N32]"));
3267 else if (ABI_64_P (abfd))
3268 fprintf (file, _(" [abi=64]"));
3269 else
3270 fprintf (file, _(" [no abi set]"));
3271
3272 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
3273 fprintf (file, _(" [mips1]"));
3274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
3275 fprintf (file, _(" [mips2]"));
3276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
3277 fprintf (file, _(" [mips3]"));
3278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
3279 fprintf (file, _(" [mips4]"));
3280 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
3281 fprintf (file, _ (" [mips5]"));
3282 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
3283 fprintf (file, _ (" [mips32]"));
3284 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
3285 fprintf (file, _ (" [mips64]"));
3286 else
3287 fprintf (file, _(" [unknown ISA]"));
3288
3289 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
3290 fprintf (file, _(" [32bitmode]"));
3291 else
3292 fprintf (file, _(" [not 32bitmode]"));
3293
3294 fputc ('\n', file);
3295
3296 return true;
3297 }
3298 \f
3299 /* Handle a MIPS specific section when reading an object file. This
3300 is called when elfcode.h finds a section with an unknown type.
3301 This routine supports both the 32-bit and 64-bit ELF ABI.
3302
3303 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3304 how to. */
3305
3306 boolean
3307 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
3308 bfd *abfd;
3309 Elf_Internal_Shdr *hdr;
3310 char *name;
3311 {
3312 flagword flags = 0;
3313
3314 /* There ought to be a place to keep ELF backend specific flags, but
3315 at the moment there isn't one. We just keep track of the
3316 sections by their name, instead. Fortunately, the ABI gives
3317 suggested names for all the MIPS specific sections, so we will
3318 probably get away with this. */
3319 switch (hdr->sh_type)
3320 {
3321 case SHT_MIPS_LIBLIST:
3322 if (strcmp (name, ".liblist") != 0)
3323 return false;
3324 break;
3325 case SHT_MIPS_MSYM:
3326 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
3327 return false;
3328 break;
3329 case SHT_MIPS_CONFLICT:
3330 if (strcmp (name, ".conflict") != 0)
3331 return false;
3332 break;
3333 case SHT_MIPS_GPTAB:
3334 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
3335 return false;
3336 break;
3337 case SHT_MIPS_UCODE:
3338 if (strcmp (name, ".ucode") != 0)
3339 return false;
3340 break;
3341 case SHT_MIPS_DEBUG:
3342 if (strcmp (name, ".mdebug") != 0)
3343 return false;
3344 flags = SEC_DEBUGGING;
3345 break;
3346 case SHT_MIPS_REGINFO:
3347 if (strcmp (name, ".reginfo") != 0
3348 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
3349 return false;
3350 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
3351 break;
3352 case SHT_MIPS_IFACE:
3353 if (strcmp (name, ".MIPS.interfaces") != 0)
3354 return false;
3355 break;
3356 case SHT_MIPS_CONTENT:
3357 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3358 return false;
3359 break;
3360 case SHT_MIPS_OPTIONS:
3361 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
3362 return false;
3363 break;
3364 case SHT_MIPS_DWARF:
3365 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
3366 return false;
3367 break;
3368 case SHT_MIPS_SYMBOL_LIB:
3369 if (strcmp (name, ".MIPS.symlib") != 0)
3370 return false;
3371 break;
3372 case SHT_MIPS_EVENTS:
3373 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3374 && strncmp (name, ".MIPS.post_rel",
3375 sizeof ".MIPS.post_rel" - 1) != 0)
3376 return false;
3377 break;
3378 default:
3379 return false;
3380 }
3381
3382 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
3383 return false;
3384
3385 if (flags)
3386 {
3387 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
3388 (bfd_get_section_flags (abfd,
3389 hdr->bfd_section)
3390 | flags)))
3391 return false;
3392 }
3393
3394 /* FIXME: We should record sh_info for a .gptab section. */
3395
3396 /* For a .reginfo section, set the gp value in the tdata information
3397 from the contents of this section. We need the gp value while
3398 processing relocs, so we just get it now. The .reginfo section
3399 is not used in the 64-bit MIPS ELF ABI. */
3400 if (hdr->sh_type == SHT_MIPS_REGINFO)
3401 {
3402 Elf32_External_RegInfo ext;
3403 Elf32_RegInfo s;
3404
3405 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
3406 (file_ptr) 0,
3407 (bfd_size_type) sizeof ext))
3408 return false;
3409 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
3410 elf_gp (abfd) = s.ri_gp_value;
3411 }
3412
3413 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3414 set the gp value based on what we find. We may see both
3415 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3416 they should agree. */
3417 if (hdr->sh_type == SHT_MIPS_OPTIONS)
3418 {
3419 bfd_byte *contents, *l, *lend;
3420
3421 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3422 if (contents == NULL)
3423 return false;
3424 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
3425 (file_ptr) 0, hdr->sh_size))
3426 {
3427 free (contents);
3428 return false;
3429 }
3430 l = contents;
3431 lend = contents + hdr->sh_size;
3432 while (l + sizeof (Elf_External_Options) <= lend)
3433 {
3434 Elf_Internal_Options intopt;
3435
3436 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3437 &intopt);
3438 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3439 {
3440 Elf64_Internal_RegInfo intreg;
3441
3442 bfd_mips_elf64_swap_reginfo_in
3443 (abfd,
3444 ((Elf64_External_RegInfo *)
3445 (l + sizeof (Elf_External_Options))),
3446 &intreg);
3447 elf_gp (abfd) = intreg.ri_gp_value;
3448 }
3449 else if (intopt.kind == ODK_REGINFO)
3450 {
3451 Elf32_RegInfo intreg;
3452
3453 bfd_mips_elf32_swap_reginfo_in
3454 (abfd,
3455 ((Elf32_External_RegInfo *)
3456 (l + sizeof (Elf_External_Options))),
3457 &intreg);
3458 elf_gp (abfd) = intreg.ri_gp_value;
3459 }
3460 l += intopt.size;
3461 }
3462 free (contents);
3463 }
3464
3465 return true;
3466 }
3467
3468 /* Set the correct type for a MIPS ELF section. We do this by the
3469 section name, which is a hack, but ought to work. This routine is
3470 used by both the 32-bit and the 64-bit ABI. */
3471
3472 boolean
3473 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
3474 bfd *abfd;
3475 Elf32_Internal_Shdr *hdr;
3476 asection *sec;
3477 {
3478 register const char *name;
3479
3480 name = bfd_get_section_name (abfd, sec);
3481
3482 if (strcmp (name, ".liblist") == 0)
3483 {
3484 hdr->sh_type = SHT_MIPS_LIBLIST;
3485 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
3486 /* The sh_link field is set in final_write_processing. */
3487 }
3488 else if (strcmp (name, ".conflict") == 0)
3489 hdr->sh_type = SHT_MIPS_CONFLICT;
3490 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
3491 {
3492 hdr->sh_type = SHT_MIPS_GPTAB;
3493 hdr->sh_entsize = sizeof (Elf32_External_gptab);
3494 /* The sh_info field is set in final_write_processing. */
3495 }
3496 else if (strcmp (name, ".ucode") == 0)
3497 hdr->sh_type = SHT_MIPS_UCODE;
3498 else if (strcmp (name, ".mdebug") == 0)
3499 {
3500 hdr->sh_type = SHT_MIPS_DEBUG;
3501 /* In a shared object on Irix 5.3, the .mdebug section has an
3502 entsize of 0. FIXME: Does this matter? */
3503 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
3504 hdr->sh_entsize = 0;
3505 else
3506 hdr->sh_entsize = 1;
3507 }
3508 else if (strcmp (name, ".reginfo") == 0)
3509 {
3510 hdr->sh_type = SHT_MIPS_REGINFO;
3511 /* In a shared object on Irix 5.3, the .reginfo section has an
3512 entsize of 0x18. FIXME: Does this matter? */
3513 if (SGI_COMPAT (abfd))
3514 {
3515 if ((abfd->flags & DYNAMIC) != 0)
3516 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3517 else
3518 hdr->sh_entsize = 1;
3519 }
3520 else
3521 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3522 }
3523 else if (SGI_COMPAT (abfd)
3524 && (strcmp (name, ".hash") == 0
3525 || strcmp (name, ".dynamic") == 0
3526 || strcmp (name, ".dynstr") == 0))
3527 {
3528 if (SGI_COMPAT (abfd))
3529 hdr->sh_entsize = 0;
3530 #if 0
3531 /* This isn't how the Irix 6 linker behaves. */
3532 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3533 #endif
3534 }
3535 else if (strcmp (name, ".got") == 0
3536 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3537 || strcmp (name, ".sdata") == 0
3538 || strcmp (name, ".sbss") == 0
3539 || strcmp (name, ".lit4") == 0
3540 || strcmp (name, ".lit8") == 0)
3541 hdr->sh_flags |= SHF_MIPS_GPREL;
3542 else if (strcmp (name, ".MIPS.interfaces") == 0)
3543 {
3544 hdr->sh_type = SHT_MIPS_IFACE;
3545 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3546 }
3547 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3548 {
3549 hdr->sh_type = SHT_MIPS_CONTENT;
3550 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3551 /* The sh_info field is set in final_write_processing. */
3552 }
3553 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3554 {
3555 hdr->sh_type = SHT_MIPS_OPTIONS;
3556 hdr->sh_entsize = 1;
3557 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3558 }
3559 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3560 hdr->sh_type = SHT_MIPS_DWARF;
3561 else if (strcmp (name, ".MIPS.symlib") == 0)
3562 {
3563 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3564 /* The sh_link and sh_info fields are set in
3565 final_write_processing. */
3566 }
3567 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3568 || strncmp (name, ".MIPS.post_rel",
3569 sizeof ".MIPS.post_rel" - 1) == 0)
3570 {
3571 hdr->sh_type = SHT_MIPS_EVENTS;
3572 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3573 /* The sh_link field is set in final_write_processing. */
3574 }
3575 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3576 {
3577 hdr->sh_type = SHT_MIPS_MSYM;
3578 hdr->sh_flags |= SHF_ALLOC;
3579 hdr->sh_entsize = 8;
3580 }
3581
3582 /* The generic elf_fake_sections will set up REL_HDR using the
3583 default kind of relocations. But, we may actually need both
3584 kinds of relocations, so we set up the second header here. */
3585 if ((sec->flags & SEC_RELOC) != 0)
3586 {
3587 struct bfd_elf_section_data *esd;
3588 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
3589
3590 esd = elf_section_data (sec);
3591 BFD_ASSERT (esd->rel_hdr2 == NULL);
3592 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
3593 if (!esd->rel_hdr2)
3594 return false;
3595 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3596 !elf_section_data (sec)->use_rela_p);
3597 }
3598
3599 return true;
3600 }
3601
3602 /* Given a BFD section, try to locate the corresponding ELF section
3603 index. This is used by both the 32-bit and the 64-bit ABI.
3604 Actually, it's not clear to me that the 64-bit ABI supports these,
3605 but for non-PIC objects we will certainly want support for at least
3606 the .scommon section. */
3607
3608 boolean
3609 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3610 bfd *abfd ATTRIBUTE_UNUSED;
3611 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3612 asection *sec;
3613 int *retval;
3614 {
3615 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3616 {
3617 *retval = SHN_MIPS_SCOMMON;
3618 return true;
3619 }
3620 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3621 {
3622 *retval = SHN_MIPS_ACOMMON;
3623 return true;
3624 }
3625 return false;
3626 }
3627
3628 /* When are writing out the .options or .MIPS.options section,
3629 remember the bytes we are writing out, so that we can install the
3630 GP value in the section_processing routine. */
3631
3632 boolean
3633 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3634 bfd *abfd;
3635 sec_ptr section;
3636 PTR location;
3637 file_ptr offset;
3638 bfd_size_type count;
3639 {
3640 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3641 {
3642 bfd_byte *c;
3643
3644 if (elf_section_data (section) == NULL)
3645 {
3646 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
3647 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
3648 if (elf_section_data (section) == NULL)
3649 return false;
3650 }
3651 c = (bfd_byte *) elf_section_data (section)->tdata;
3652 if (c == NULL)
3653 {
3654 bfd_size_type size;
3655
3656 if (section->_cooked_size != 0)
3657 size = section->_cooked_size;
3658 else
3659 size = section->_raw_size;
3660 c = (bfd_byte *) bfd_zalloc (abfd, size);
3661 if (c == NULL)
3662 return false;
3663 elf_section_data (section)->tdata = (PTR) c;
3664 }
3665
3666 memcpy (c + offset, location, (size_t) count);
3667 }
3668
3669 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3670 count);
3671 }
3672
3673 /* Work over a section just before writing it out. This routine is
3674 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3675 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3676 a better way. */
3677
3678 boolean
3679 _bfd_mips_elf_section_processing (abfd, hdr)
3680 bfd *abfd;
3681 Elf_Internal_Shdr *hdr;
3682 {
3683 if (hdr->sh_type == SHT_MIPS_REGINFO
3684 && hdr->sh_size > 0)
3685 {
3686 bfd_byte buf[4];
3687
3688 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3689 BFD_ASSERT (hdr->contents == NULL);
3690
3691 if (bfd_seek (abfd,
3692 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3693 SEEK_SET) != 0)
3694 return false;
3695 H_PUT_32 (abfd, elf_gp (abfd), buf);
3696 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3697 return false;
3698 }
3699
3700 if (hdr->sh_type == SHT_MIPS_OPTIONS
3701 && hdr->bfd_section != NULL
3702 && elf_section_data (hdr->bfd_section) != NULL
3703 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3704 {
3705 bfd_byte *contents, *l, *lend;
3706
3707 /* We stored the section contents in the elf_section_data tdata
3708 field in the set_section_contents routine. We save the
3709 section contents so that we don't have to read them again.
3710 At this point we know that elf_gp is set, so we can look
3711 through the section contents to see if there is an
3712 ODK_REGINFO structure. */
3713
3714 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3715 l = contents;
3716 lend = contents + hdr->sh_size;
3717 while (l + sizeof (Elf_External_Options) <= lend)
3718 {
3719 Elf_Internal_Options intopt;
3720
3721 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3722 &intopt);
3723 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3724 {
3725 bfd_byte buf[8];
3726
3727 if (bfd_seek (abfd,
3728 (hdr->sh_offset
3729 + (l - contents)
3730 + sizeof (Elf_External_Options)
3731 + (sizeof (Elf64_External_RegInfo) - 8)),
3732 SEEK_SET) != 0)
3733 return false;
3734 H_PUT_64 (abfd, elf_gp (abfd), buf);
3735 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
3736 return false;
3737 }
3738 else if (intopt.kind == ODK_REGINFO)
3739 {
3740 bfd_byte buf[4];
3741
3742 if (bfd_seek (abfd,
3743 (hdr->sh_offset
3744 + (l - contents)
3745 + sizeof (Elf_External_Options)
3746 + (sizeof (Elf32_External_RegInfo) - 4)),
3747 SEEK_SET) != 0)
3748 return false;
3749 H_PUT_32 (abfd, elf_gp (abfd), buf);
3750 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3751 return false;
3752 }
3753 l += intopt.size;
3754 }
3755 }
3756
3757 if (hdr->bfd_section != NULL)
3758 {
3759 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3760
3761 if (strcmp (name, ".sdata") == 0
3762 || strcmp (name, ".lit8") == 0
3763 || strcmp (name, ".lit4") == 0)
3764 {
3765 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3766 hdr->sh_type = SHT_PROGBITS;
3767 }
3768 else if (strcmp (name, ".sbss") == 0)
3769 {
3770 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3771 hdr->sh_type = SHT_NOBITS;
3772 }
3773 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3774 {
3775 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3776 hdr->sh_type = SHT_PROGBITS;
3777 }
3778 else if (strcmp (name, ".compact_rel") == 0)
3779 {
3780 hdr->sh_flags = 0;
3781 hdr->sh_type = SHT_PROGBITS;
3782 }
3783 else if (strcmp (name, ".rtproc") == 0)
3784 {
3785 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3786 {
3787 unsigned int adjust;
3788
3789 adjust = hdr->sh_size % hdr->sh_addralign;
3790 if (adjust != 0)
3791 hdr->sh_size += hdr->sh_addralign - adjust;
3792 }
3793 }
3794 }
3795
3796 return true;
3797 }
3798 \f
3799 /* MIPS ELF uses two common sections. One is the usual one, and the
3800 other is for small objects. All the small objects are kept
3801 together, and then referenced via the gp pointer, which yields
3802 faster assembler code. This is what we use for the small common
3803 section. This approach is copied from ecoff.c. */
3804 static asection mips_elf_scom_section;
3805 static asymbol mips_elf_scom_symbol;
3806 static asymbol *mips_elf_scom_symbol_ptr;
3807
3808 /* MIPS ELF also uses an acommon section, which represents an
3809 allocated common symbol which may be overridden by a
3810 definition in a shared library. */
3811 static asection mips_elf_acom_section;
3812 static asymbol mips_elf_acom_symbol;
3813 static asymbol *mips_elf_acom_symbol_ptr;
3814
3815 /* Handle the special MIPS section numbers that a symbol may use.
3816 This is used for both the 32-bit and the 64-bit ABI. */
3817
3818 void
3819 _bfd_mips_elf_symbol_processing (abfd, asym)
3820 bfd *abfd;
3821 asymbol *asym;
3822 {
3823 elf_symbol_type *elfsym;
3824
3825 elfsym = (elf_symbol_type *) asym;
3826 switch (elfsym->internal_elf_sym.st_shndx)
3827 {
3828 case SHN_MIPS_ACOMMON:
3829 /* This section is used in a dynamically linked executable file.
3830 It is an allocated common section. The dynamic linker can
3831 either resolve these symbols to something in a shared
3832 library, or it can just leave them here. For our purposes,
3833 we can consider these symbols to be in a new section. */
3834 if (mips_elf_acom_section.name == NULL)
3835 {
3836 /* Initialize the acommon section. */
3837 mips_elf_acom_section.name = ".acommon";
3838 mips_elf_acom_section.flags = SEC_ALLOC;
3839 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3840 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3841 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3842 mips_elf_acom_symbol.name = ".acommon";
3843 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3844 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3845 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3846 }
3847 asym->section = &mips_elf_acom_section;
3848 break;
3849
3850 case SHN_COMMON:
3851 /* Common symbols less than the GP size are automatically
3852 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3853 if (asym->value > elf_gp_size (abfd)
3854 || IRIX_COMPAT (abfd) == ict_irix6)
3855 break;
3856 /* Fall through. */
3857 case SHN_MIPS_SCOMMON:
3858 if (mips_elf_scom_section.name == NULL)
3859 {
3860 /* Initialize the small common section. */
3861 mips_elf_scom_section.name = ".scommon";
3862 mips_elf_scom_section.flags = SEC_IS_COMMON;
3863 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3864 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3865 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3866 mips_elf_scom_symbol.name = ".scommon";
3867 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3868 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3869 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3870 }
3871 asym->section = &mips_elf_scom_section;
3872 asym->value = elfsym->internal_elf_sym.st_size;
3873 break;
3874
3875 case SHN_MIPS_SUNDEFINED:
3876 asym->section = bfd_und_section_ptr;
3877 break;
3878
3879 #if 0 /* for SGI_COMPAT */
3880 case SHN_MIPS_TEXT:
3881 asym->section = mips_elf_text_section_ptr;
3882 break;
3883
3884 case SHN_MIPS_DATA:
3885 asym->section = mips_elf_data_section_ptr;
3886 break;
3887 #endif
3888 }
3889 }
3890 \f
3891 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3892 segments. */
3893
3894 int
3895 _bfd_mips_elf_additional_program_headers (abfd)
3896 bfd *abfd;
3897 {
3898 asection *s;
3899 int ret = 0;
3900
3901 /* See if we need a PT_MIPS_REGINFO segment. */
3902 s = bfd_get_section_by_name (abfd, ".reginfo");
3903 if (s && (s->flags & SEC_LOAD))
3904 ++ret;
3905
3906 /* See if we need a PT_MIPS_OPTIONS segment. */
3907 if (IRIX_COMPAT (abfd) == ict_irix6
3908 && bfd_get_section_by_name (abfd,
3909 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3910 ++ret;
3911
3912 /* See if we need a PT_MIPS_RTPROC segment. */
3913 if (IRIX_COMPAT (abfd) == ict_irix5
3914 && bfd_get_section_by_name (abfd, ".dynamic")
3915 && bfd_get_section_by_name (abfd, ".mdebug"))
3916 ++ret;
3917
3918 return ret;
3919 }
3920
3921 /* Modify the segment map for an Irix 5 executable. */
3922
3923 boolean
3924 _bfd_mips_elf_modify_segment_map (abfd)
3925 bfd *abfd;
3926 {
3927 asection *s;
3928 struct elf_segment_map *m, **pm;
3929 bfd_size_type amt;
3930
3931 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3932 segment. */
3933 s = bfd_get_section_by_name (abfd, ".reginfo");
3934 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3935 {
3936 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3937 if (m->p_type == PT_MIPS_REGINFO)
3938 break;
3939 if (m == NULL)
3940 {
3941 amt = sizeof *m;
3942 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3943 if (m == NULL)
3944 return false;
3945
3946 m->p_type = PT_MIPS_REGINFO;
3947 m->count = 1;
3948 m->sections[0] = s;
3949
3950 /* We want to put it after the PHDR and INTERP segments. */
3951 pm = &elf_tdata (abfd)->segment_map;
3952 while (*pm != NULL
3953 && ((*pm)->p_type == PT_PHDR
3954 || (*pm)->p_type == PT_INTERP))
3955 pm = &(*pm)->next;
3956
3957 m->next = *pm;
3958 *pm = m;
3959 }
3960 }
3961
3962 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3963 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3964 PT_OPTIONS segement immediately following the program header
3965 table. */
3966 if (IRIX_COMPAT (abfd) == ict_irix6)
3967 {
3968 for (s = abfd->sections; s; s = s->next)
3969 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3970 break;
3971
3972 if (s)
3973 {
3974 struct elf_segment_map *options_segment;
3975
3976 /* Usually, there's a program header table. But, sometimes
3977 there's not (like when running the `ld' testsuite). So,
3978 if there's no program header table, we just put the
3979 options segement at the end. */
3980 for (pm = &elf_tdata (abfd)->segment_map;
3981 *pm != NULL;
3982 pm = &(*pm)->next)
3983 if ((*pm)->p_type == PT_PHDR)
3984 break;
3985
3986 amt = sizeof (struct elf_segment_map);
3987 options_segment = bfd_zalloc (abfd, amt);
3988 options_segment->next = *pm;
3989 options_segment->p_type = PT_MIPS_OPTIONS;
3990 options_segment->p_flags = PF_R;
3991 options_segment->p_flags_valid = true;
3992 options_segment->count = 1;
3993 options_segment->sections[0] = s;
3994 *pm = options_segment;
3995 }
3996 }
3997 else
3998 {
3999 if (IRIX_COMPAT (abfd) == ict_irix5)
4000 {
4001 /* If there are .dynamic and .mdebug sections, we make a room
4002 for the RTPROC header. FIXME: Rewrite without section names. */
4003 if (bfd_get_section_by_name (abfd, ".interp") == NULL
4004 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
4005 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
4006 {
4007 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4008 if (m->p_type == PT_MIPS_RTPROC)
4009 break;
4010 if (m == NULL)
4011 {
4012 amt = sizeof *m;
4013 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4014 if (m == NULL)
4015 return false;
4016
4017 m->p_type = PT_MIPS_RTPROC;
4018
4019 s = bfd_get_section_by_name (abfd, ".rtproc");
4020 if (s == NULL)
4021 {
4022 m->count = 0;
4023 m->p_flags = 0;
4024 m->p_flags_valid = 1;
4025 }
4026 else
4027 {
4028 m->count = 1;
4029 m->sections[0] = s;
4030 }
4031
4032 /* We want to put it after the DYNAMIC segment. */
4033 pm = &elf_tdata (abfd)->segment_map;
4034 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
4035 pm = &(*pm)->next;
4036 if (*pm != NULL)
4037 pm = &(*pm)->next;
4038
4039 m->next = *pm;
4040 *pm = m;
4041 }
4042 }
4043 }
4044 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
4045 .dynstr, .dynsym, and .hash sections, and everything in
4046 between. */
4047 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
4048 pm = &(*pm)->next)
4049 if ((*pm)->p_type == PT_DYNAMIC)
4050 break;
4051 m = *pm;
4052 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
4053 {
4054 /* For a normal mips executable the permissions for the PT_DYNAMIC
4055 segment are read, write and execute. We do that here since
4056 the code in elf.c sets only the read permission. This matters
4057 sometimes for the dynamic linker. */
4058 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4059 {
4060 m->p_flags = PF_R | PF_W | PF_X;
4061 m->p_flags_valid = 1;
4062 }
4063 }
4064 if (m != NULL
4065 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
4066 {
4067 static const char *sec_names[] =
4068 {
4069 ".dynamic", ".dynstr", ".dynsym", ".hash"
4070 };
4071 bfd_vma low, high;
4072 unsigned int i, c;
4073 struct elf_segment_map *n;
4074
4075 low = 0xffffffff;
4076 high = 0;
4077 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
4078 {
4079 s = bfd_get_section_by_name (abfd, sec_names[i]);
4080 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4081 {
4082 bfd_size_type sz;
4083
4084 if (low > s->vma)
4085 low = s->vma;
4086 sz = s->_cooked_size;
4087 if (sz == 0)
4088 sz = s->_raw_size;
4089 if (high < s->vma + sz)
4090 high = s->vma + sz;
4091 }
4092 }
4093
4094 c = 0;
4095 for (s = abfd->sections; s != NULL; s = s->next)
4096 if ((s->flags & SEC_LOAD) != 0
4097 && s->vma >= low
4098 && ((s->vma
4099 + (s->_cooked_size !=
4100 0 ? s->_cooked_size : s->_raw_size)) <= high))
4101 ++c;
4102
4103 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
4104 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4105 if (n == NULL)
4106 return false;
4107 *n = *m;
4108 n->count = c;
4109
4110 i = 0;
4111 for (s = abfd->sections; s != NULL; s = s->next)
4112 {
4113 if ((s->flags & SEC_LOAD) != 0
4114 && s->vma >= low
4115 && ((s->vma
4116 + (s->_cooked_size != 0 ?
4117 s->_cooked_size : s->_raw_size)) <= high))
4118 {
4119 n->sections[i] = s;
4120 ++i;
4121 }
4122 }
4123
4124 *pm = n;
4125 }
4126 }
4127
4128 return true;
4129 }
4130 \f
4131 /* The structure of the runtime procedure descriptor created by the
4132 loader for use by the static exception system. */
4133
4134 typedef struct runtime_pdr {
4135 bfd_vma adr; /* memory address of start of procedure */
4136 long regmask; /* save register mask */
4137 long regoffset; /* save register offset */
4138 long fregmask; /* save floating point register mask */
4139 long fregoffset; /* save floating point register offset */
4140 long frameoffset; /* frame size */
4141 short framereg; /* frame pointer register */
4142 short pcreg; /* offset or reg of return pc */
4143 long irpss; /* index into the runtime string table */
4144 long reserved;
4145 struct exception_info *exception_info;/* pointer to exception array */
4146 } RPDR, *pRPDR;
4147 #define cbRPDR sizeof (RPDR)
4148 #define rpdNil ((pRPDR) 0)
4149
4150 /* Swap RPDR (runtime procedure table entry) for output. */
4151
4152 static void ecoff_swap_rpdr_out
4153 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
4154
4155 static void
4156 ecoff_swap_rpdr_out (abfd, in, ex)
4157 bfd *abfd;
4158 const RPDR *in;
4159 struct rpdr_ext *ex;
4160 {
4161 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
4162 ECOFF_PUT_OFF (abfd, in->adr, ex->p_adr);
4163 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
4164 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
4165 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
4166 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
4167 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
4168
4169 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
4170 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
4171
4172 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
4173 #if 0 /* FIXME */
4174 ECOFF_PUT_OFF (abfd, in->exception_info, ex->p_exception_info);
4175 #endif
4176 }
4177 \f
4178 /* Read ECOFF debugging information from a .mdebug section into a
4179 ecoff_debug_info structure. */
4180
4181 boolean
4182 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
4183 bfd *abfd;
4184 asection *section;
4185 struct ecoff_debug_info *debug;
4186 {
4187 HDRR *symhdr;
4188 const struct ecoff_debug_swap *swap;
4189 char *ext_hdr = NULL;
4190
4191 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4192 memset (debug, 0, sizeof (*debug));
4193
4194 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
4195 if (ext_hdr == NULL && swap->external_hdr_size != 0)
4196 goto error_return;
4197
4198 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
4199 swap->external_hdr_size)
4200 == false)
4201 goto error_return;
4202
4203 symhdr = &debug->symbolic_header;
4204 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
4205
4206 /* The symbolic header contains absolute file offsets and sizes to
4207 read. */
4208 #define READ(ptr, offset, count, size, type) \
4209 if (symhdr->count == 0) \
4210 debug->ptr = NULL; \
4211 else \
4212 { \
4213 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
4214 debug->ptr = (type) bfd_malloc (amt); \
4215 if (debug->ptr == NULL) \
4216 goto error_return; \
4217 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
4218 || bfd_bread (debug->ptr, amt, abfd) != amt) \
4219 goto error_return; \
4220 }
4221
4222 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
4223 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
4224 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
4225 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
4226 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
4227 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
4228 union aux_ext *);
4229 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
4230 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
4231 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
4232 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
4233 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
4234 #undef READ
4235
4236 debug->fdr = NULL;
4237 debug->adjust = NULL;
4238
4239 return true;
4240
4241 error_return:
4242 if (ext_hdr != NULL)
4243 free (ext_hdr);
4244 if (debug->line != NULL)
4245 free (debug->line);
4246 if (debug->external_dnr != NULL)
4247 free (debug->external_dnr);
4248 if (debug->external_pdr != NULL)
4249 free (debug->external_pdr);
4250 if (debug->external_sym != NULL)
4251 free (debug->external_sym);
4252 if (debug->external_opt != NULL)
4253 free (debug->external_opt);
4254 if (debug->external_aux != NULL)
4255 free (debug->external_aux);
4256 if (debug->ss != NULL)
4257 free (debug->ss);
4258 if (debug->ssext != NULL)
4259 free (debug->ssext);
4260 if (debug->external_fdr != NULL)
4261 free (debug->external_fdr);
4262 if (debug->external_rfd != NULL)
4263 free (debug->external_rfd);
4264 if (debug->external_ext != NULL)
4265 free (debug->external_ext);
4266 return false;
4267 }
4268 \f
4269 /* MIPS ELF local labels start with '$', not 'L'. */
4270
4271 static boolean
4272 mips_elf_is_local_label_name (abfd, name)
4273 bfd *abfd;
4274 const char *name;
4275 {
4276 if (name[0] == '$')
4277 return true;
4278
4279 /* On Irix 6, the labels go back to starting with '.', so we accept
4280 the generic ELF local label syntax as well. */
4281 return _bfd_elf_is_local_label_name (abfd, name);
4282 }
4283
4284 /* MIPS ELF uses a special find_nearest_line routine in order the
4285 handle the ECOFF debugging information. */
4286
4287 struct mips_elf_find_line
4288 {
4289 struct ecoff_debug_info d;
4290 struct ecoff_find_line i;
4291 };
4292
4293 boolean
4294 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4295 functionname_ptr, line_ptr)
4296 bfd *abfd;
4297 asection *section;
4298 asymbol **symbols;
4299 bfd_vma offset;
4300 const char **filename_ptr;
4301 const char **functionname_ptr;
4302 unsigned int *line_ptr;
4303 {
4304 asection *msec;
4305
4306 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
4307 filename_ptr, functionname_ptr,
4308 line_ptr))
4309 return true;
4310
4311 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
4312 filename_ptr, functionname_ptr,
4313 line_ptr,
4314 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
4315 &elf_tdata (abfd)->dwarf2_find_line_info))
4316 return true;
4317
4318 msec = bfd_get_section_by_name (abfd, ".mdebug");
4319 if (msec != NULL)
4320 {
4321 flagword origflags;
4322 struct mips_elf_find_line *fi;
4323 const struct ecoff_debug_swap * const swap =
4324 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4325
4326 /* If we are called during a link, mips_elf_final_link may have
4327 cleared the SEC_HAS_CONTENTS field. We force it back on here
4328 if appropriate (which it normally will be). */
4329 origflags = msec->flags;
4330 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
4331 msec->flags |= SEC_HAS_CONTENTS;
4332
4333 fi = elf_tdata (abfd)->find_line_info;
4334 if (fi == NULL)
4335 {
4336 bfd_size_type external_fdr_size;
4337 char *fraw_src;
4338 char *fraw_end;
4339 struct fdr *fdr_ptr;
4340 bfd_size_type amt = sizeof (struct mips_elf_find_line);
4341
4342 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
4343 if (fi == NULL)
4344 {
4345 msec->flags = origflags;
4346 return false;
4347 }
4348
4349 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
4350 {
4351 msec->flags = origflags;
4352 return false;
4353 }
4354
4355 /* Swap in the FDR information. */
4356 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
4357 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
4358 if (fi->d.fdr == NULL)
4359 {
4360 msec->flags = origflags;
4361 return false;
4362 }
4363 external_fdr_size = swap->external_fdr_size;
4364 fdr_ptr = fi->d.fdr;
4365 fraw_src = (char *) fi->d.external_fdr;
4366 fraw_end = (fraw_src
4367 + fi->d.symbolic_header.ifdMax * external_fdr_size);
4368 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
4369 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
4370
4371 elf_tdata (abfd)->find_line_info = fi;
4372
4373 /* Note that we don't bother to ever free this information.
4374 find_nearest_line is either called all the time, as in
4375 objdump -l, so the information should be saved, or it is
4376 rarely called, as in ld error messages, so the memory
4377 wasted is unimportant. Still, it would probably be a
4378 good idea for free_cached_info to throw it away. */
4379 }
4380
4381 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
4382 &fi->i, filename_ptr, functionname_ptr,
4383 line_ptr))
4384 {
4385 msec->flags = origflags;
4386 return true;
4387 }
4388
4389 msec->flags = origflags;
4390 }
4391
4392 /* Fall back on the generic ELF find_nearest_line routine. */
4393
4394 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
4395 filename_ptr, functionname_ptr,
4396 line_ptr);
4397 }
4398 \f
4399 /* The mips16 compiler uses a couple of special sections to handle
4400 floating point arguments.
4401
4402 Section names that look like .mips16.fn.FNNAME contain stubs that
4403 copy floating point arguments from the fp regs to the gp regs and
4404 then jump to FNNAME. If any 32 bit function calls FNNAME, the
4405 call should be redirected to the stub instead. If no 32 bit
4406 function calls FNNAME, the stub should be discarded. We need to
4407 consider any reference to the function, not just a call, because
4408 if the address of the function is taken we will need the stub,
4409 since the address might be passed to a 32 bit function.
4410
4411 Section names that look like .mips16.call.FNNAME contain stubs
4412 that copy floating point arguments from the gp regs to the fp
4413 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
4414 then any 16 bit function that calls FNNAME should be redirected
4415 to the stub instead. If FNNAME is not a 32 bit function, the
4416 stub should be discarded.
4417
4418 .mips16.call.fp.FNNAME sections are similar, but contain stubs
4419 which call FNNAME and then copy the return value from the fp regs
4420 to the gp regs. These stubs store the return value in $18 while
4421 calling FNNAME; any function which might call one of these stubs
4422 must arrange to save $18 around the call. (This case is not
4423 needed for 32 bit functions that call 16 bit functions, because
4424 16 bit functions always return floating point values in both
4425 $f0/$f1 and $2/$3.)
4426
4427 Note that in all cases FNNAME might be defined statically.
4428 Therefore, FNNAME is not used literally. Instead, the relocation
4429 information will indicate which symbol the section is for.
4430
4431 We record any stubs that we find in the symbol table. */
4432
4433 #define FN_STUB ".mips16.fn."
4434 #define CALL_STUB ".mips16.call."
4435 #define CALL_FP_STUB ".mips16.call.fp."
4436
4437 /* MIPS ELF linker hash table. */
4438
4439 struct mips_elf_link_hash_table
4440 {
4441 struct elf_link_hash_table root;
4442 #if 0
4443 /* We no longer use this. */
4444 /* String section indices for the dynamic section symbols. */
4445 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
4446 #endif
4447 /* The number of .rtproc entries. */
4448 bfd_size_type procedure_count;
4449 /* The size of the .compact_rel section (if SGI_COMPAT). */
4450 bfd_size_type compact_rel_size;
4451 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
4452 entry is set to the address of __rld_obj_head as in Irix 5. */
4453 boolean use_rld_obj_head;
4454 /* This is the value of the __rld_map or __rld_obj_head symbol. */
4455 bfd_vma rld_value;
4456 /* This is set if we see any mips16 stub sections. */
4457 boolean mips16_stubs_seen;
4458 };
4459
4460 /* Look up an entry in a MIPS ELF linker hash table. */
4461
4462 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
4463 ((struct mips_elf_link_hash_entry *) \
4464 elf_link_hash_lookup (&(table)->root, (string), (create), \
4465 (copy), (follow)))
4466
4467 /* Traverse a MIPS ELF linker hash table. */
4468
4469 #define mips_elf_link_hash_traverse(table, func, info) \
4470 (elf_link_hash_traverse \
4471 (&(table)->root, \
4472 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
4473 (info)))
4474
4475 /* Get the MIPS ELF linker hash table from a link_info structure. */
4476
4477 #define mips_elf_hash_table(p) \
4478 ((struct mips_elf_link_hash_table *) ((p)->hash))
4479
4480 static boolean mips_elf_output_extsym
4481 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
4482
4483 /* Create an entry in a MIPS ELF linker hash table. */
4484
4485 static struct bfd_hash_entry *
4486 mips_elf_link_hash_newfunc (entry, table, string)
4487 struct bfd_hash_entry *entry;
4488 struct bfd_hash_table *table;
4489 const char *string;
4490 {
4491 struct mips_elf_link_hash_entry *ret =
4492 (struct mips_elf_link_hash_entry *) entry;
4493
4494 /* Allocate the structure if it has not already been allocated by a
4495 subclass. */
4496 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4497 ret = ((struct mips_elf_link_hash_entry *)
4498 bfd_hash_allocate (table,
4499 sizeof (struct mips_elf_link_hash_entry)));
4500 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4501 return (struct bfd_hash_entry *) ret;
4502
4503 /* Call the allocation method of the superclass. */
4504 ret = ((struct mips_elf_link_hash_entry *)
4505 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4506 table, string));
4507 if (ret != (struct mips_elf_link_hash_entry *) NULL)
4508 {
4509 /* Set local fields. */
4510 memset (&ret->esym, 0, sizeof (EXTR));
4511 /* We use -2 as a marker to indicate that the information has
4512 not been set. -1 means there is no associated ifd. */
4513 ret->esym.ifd = -2;
4514 ret->possibly_dynamic_relocs = 0;
4515 ret->readonly_reloc = false;
4516 ret->min_dyn_reloc_index = 0;
4517 ret->no_fn_stub = false;
4518 ret->fn_stub = NULL;
4519 ret->need_fn_stub = false;
4520 ret->call_stub = NULL;
4521 ret->call_fp_stub = NULL;
4522 }
4523
4524 return (struct bfd_hash_entry *) ret;
4525 }
4526
4527 static void
4528 _bfd_mips_elf_hide_symbol (info, entry)
4529 struct bfd_link_info *info;
4530 struct elf_link_hash_entry *entry;
4531 {
4532 bfd *dynobj;
4533 asection *got;
4534 struct mips_got_info *g;
4535 struct mips_elf_link_hash_entry *h;
4536 h = (struct mips_elf_link_hash_entry *) entry;
4537 dynobj = elf_hash_table (info)->dynobj;
4538 got = bfd_get_section_by_name (dynobj, ".got");
4539 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4540
4541 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4542 h->root.plt.offset = (bfd_vma) -1;
4543 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4544 h->root.dynindx = -1;
4545
4546 /* FIXME: Do we allocate too much GOT space here? */
4547 g->local_gotno++;
4548 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4549 }
4550
4551 /* Create a MIPS ELF linker hash table. */
4552
4553 struct bfd_link_hash_table *
4554 _bfd_mips_elf_link_hash_table_create (abfd)
4555 bfd *abfd;
4556 {
4557 struct mips_elf_link_hash_table *ret;
4558 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
4559
4560 ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
4561 if (ret == (struct mips_elf_link_hash_table *) NULL)
4562 return NULL;
4563
4564 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4565 mips_elf_link_hash_newfunc))
4566 {
4567 bfd_release (abfd, ret);
4568 return NULL;
4569 }
4570
4571 #if 0
4572 /* We no longer use this. */
4573 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4574 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4575 #endif
4576 ret->procedure_count = 0;
4577 ret->compact_rel_size = 0;
4578 ret->use_rld_obj_head = false;
4579 ret->rld_value = 0;
4580 ret->mips16_stubs_seen = false;
4581
4582 return &ret->root.root;
4583 }
4584
4585 /* Hook called by the linker routine which adds symbols from an object
4586 file. We must handle the special MIPS section numbers here. */
4587
4588 boolean
4589 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4590 bfd *abfd;
4591 struct bfd_link_info *info;
4592 const Elf_Internal_Sym *sym;
4593 const char **namep;
4594 flagword *flagsp ATTRIBUTE_UNUSED;
4595 asection **secp;
4596 bfd_vma *valp;
4597 {
4598 if (SGI_COMPAT (abfd)
4599 && (abfd->flags & DYNAMIC) != 0
4600 && strcmp (*namep, "_rld_new_interface") == 0)
4601 {
4602 /* Skip Irix 5 rld entry name. */
4603 *namep = NULL;
4604 return true;
4605 }
4606
4607 switch (sym->st_shndx)
4608 {
4609 case SHN_COMMON:
4610 /* Common symbols less than the GP size are automatically
4611 treated as SHN_MIPS_SCOMMON symbols. */
4612 if (sym->st_size > elf_gp_size (abfd)
4613 || IRIX_COMPAT (abfd) == ict_irix6)
4614 break;
4615 /* Fall through. */
4616 case SHN_MIPS_SCOMMON:
4617 *secp = bfd_make_section_old_way (abfd, ".scommon");
4618 (*secp)->flags |= SEC_IS_COMMON;
4619 *valp = sym->st_size;
4620 break;
4621
4622 case SHN_MIPS_TEXT:
4623 /* This section is used in a shared object. */
4624 if (elf_tdata (abfd)->elf_text_section == NULL)
4625 {
4626 asymbol *elf_text_symbol;
4627 asection *elf_text_section;
4628 bfd_size_type amt = sizeof (asection);
4629
4630 elf_text_section = bfd_zalloc (abfd, amt);
4631 if (elf_text_section == NULL)
4632 return false;
4633
4634 amt = sizeof (asymbol);
4635 elf_text_symbol = bfd_zalloc (abfd, amt);
4636 if (elf_text_symbol == NULL)
4637 return false;
4638
4639 /* Initialize the section. */
4640
4641 elf_tdata (abfd)->elf_text_section = elf_text_section;
4642 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4643
4644 elf_text_section->symbol = elf_text_symbol;
4645 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4646
4647 elf_text_section->name = ".text";
4648 elf_text_section->flags = SEC_NO_FLAGS;
4649 elf_text_section->output_section = NULL;
4650 elf_text_section->owner = abfd;
4651 elf_text_symbol->name = ".text";
4652 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4653 elf_text_symbol->section = elf_text_section;
4654 }
4655 /* This code used to do *secp = bfd_und_section_ptr if
4656 info->shared. I don't know why, and that doesn't make sense,
4657 so I took it out. */
4658 *secp = elf_tdata (abfd)->elf_text_section;
4659 break;
4660
4661 case SHN_MIPS_ACOMMON:
4662 /* Fall through. XXX Can we treat this as allocated data? */
4663 case SHN_MIPS_DATA:
4664 /* This section is used in a shared object. */
4665 if (elf_tdata (abfd)->elf_data_section == NULL)
4666 {
4667 asymbol *elf_data_symbol;
4668 asection *elf_data_section;
4669 bfd_size_type amt = sizeof (asection);
4670
4671 elf_data_section = bfd_zalloc (abfd, amt);
4672 if (elf_data_section == NULL)
4673 return false;
4674
4675 amt = sizeof (asymbol);
4676 elf_data_symbol = bfd_zalloc (abfd, amt);
4677 if (elf_data_symbol == NULL)
4678 return false;
4679
4680 /* Initialize the section. */
4681
4682 elf_tdata (abfd)->elf_data_section = elf_data_section;
4683 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4684
4685 elf_data_section->symbol = elf_data_symbol;
4686 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4687
4688 elf_data_section->name = ".data";
4689 elf_data_section->flags = SEC_NO_FLAGS;
4690 elf_data_section->output_section = NULL;
4691 elf_data_section->owner = abfd;
4692 elf_data_symbol->name = ".data";
4693 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4694 elf_data_symbol->section = elf_data_section;
4695 }
4696 /* This code used to do *secp = bfd_und_section_ptr if
4697 info->shared. I don't know why, and that doesn't make sense,
4698 so I took it out. */
4699 *secp = elf_tdata (abfd)->elf_data_section;
4700 break;
4701
4702 case SHN_MIPS_SUNDEFINED:
4703 *secp = bfd_und_section_ptr;
4704 break;
4705 }
4706
4707 if (SGI_COMPAT (abfd)
4708 && ! info->shared
4709 && info->hash->creator == abfd->xvec
4710 && strcmp (*namep, "__rld_obj_head") == 0)
4711 {
4712 struct elf_link_hash_entry *h;
4713
4714 /* Mark __rld_obj_head as dynamic. */
4715 h = NULL;
4716 if (! (_bfd_generic_link_add_one_symbol
4717 (info, abfd, *namep, BSF_GLOBAL, *secp,
4718 (bfd_vma) *valp, (const char *) NULL, false,
4719 get_elf_backend_data (abfd)->collect,
4720 (struct bfd_link_hash_entry **) &h)))
4721 return false;
4722 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4723 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4724 h->type = STT_OBJECT;
4725
4726 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4727 return false;
4728
4729 mips_elf_hash_table (info)->use_rld_obj_head = true;
4730 }
4731
4732 /* If this is a mips16 text symbol, add 1 to the value to make it
4733 odd. This will cause something like .word SYM to come up with
4734 the right value when it is loaded into the PC. */
4735 if (sym->st_other == STO_MIPS16)
4736 ++*valp;
4737
4738 return true;
4739 }
4740
4741 /* Structure used to pass information to mips_elf_output_extsym. */
4742
4743 struct extsym_info
4744 {
4745 bfd *abfd;
4746 struct bfd_link_info *info;
4747 struct ecoff_debug_info *debug;
4748 const struct ecoff_debug_swap *swap;
4749 boolean failed;
4750 };
4751
4752 /* This routine is used to write out ECOFF debugging external symbol
4753 information. It is called via mips_elf_link_hash_traverse. The
4754 ECOFF external symbol information must match the ELF external
4755 symbol information. Unfortunately, at this point we don't know
4756 whether a symbol is required by reloc information, so the two
4757 tables may wind up being different. We must sort out the external
4758 symbol information before we can set the final size of the .mdebug
4759 section, and we must set the size of the .mdebug section before we
4760 can relocate any sections, and we can't know which symbols are
4761 required by relocation until we relocate the sections.
4762 Fortunately, it is relatively unlikely that any symbol will be
4763 stripped but required by a reloc. In particular, it can not happen
4764 when generating a final executable. */
4765
4766 static boolean
4767 mips_elf_output_extsym (h, data)
4768 struct mips_elf_link_hash_entry *h;
4769 PTR data;
4770 {
4771 struct extsym_info *einfo = (struct extsym_info *) data;
4772 boolean strip;
4773 asection *sec, *output_section;
4774
4775 if (h->root.indx == -2)
4776 strip = false;
4777 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4778 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4779 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4780 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4781 strip = true;
4782 else if (einfo->info->strip == strip_all
4783 || (einfo->info->strip == strip_some
4784 && bfd_hash_lookup (einfo->info->keep_hash,
4785 h->root.root.root.string,
4786 false, false) == NULL))
4787 strip = true;
4788 else
4789 strip = false;
4790
4791 if (strip)
4792 return true;
4793
4794 if (h->esym.ifd == -2)
4795 {
4796 h->esym.jmptbl = 0;
4797 h->esym.cobol_main = 0;
4798 h->esym.weakext = 0;
4799 h->esym.reserved = 0;
4800 h->esym.ifd = ifdNil;
4801 h->esym.asym.value = 0;
4802 h->esym.asym.st = stGlobal;
4803
4804 if (h->root.root.type == bfd_link_hash_undefined
4805 || h->root.root.type == bfd_link_hash_undefweak)
4806 {
4807 const char *name;
4808
4809 /* Use undefined class. Also, set class and type for some
4810 special symbols. */
4811 name = h->root.root.root.string;
4812 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4813 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4814 {
4815 h->esym.asym.sc = scData;
4816 h->esym.asym.st = stLabel;
4817 h->esym.asym.value = 0;
4818 }
4819 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4820 {
4821 h->esym.asym.sc = scAbs;
4822 h->esym.asym.st = stLabel;
4823 h->esym.asym.value =
4824 mips_elf_hash_table (einfo->info)->procedure_count;
4825 }
4826 else if (strcmp (name, "_gp_disp") == 0)
4827 {
4828 h->esym.asym.sc = scAbs;
4829 h->esym.asym.st = stLabel;
4830 h->esym.asym.value = elf_gp (einfo->abfd);
4831 }
4832 else
4833 h->esym.asym.sc = scUndefined;
4834 }
4835 else if (h->root.root.type != bfd_link_hash_defined
4836 && h->root.root.type != bfd_link_hash_defweak)
4837 h->esym.asym.sc = scAbs;
4838 else
4839 {
4840 const char *name;
4841
4842 sec = h->root.root.u.def.section;
4843 output_section = sec->output_section;
4844
4845 /* When making a shared library and symbol h is the one from
4846 the another shared library, OUTPUT_SECTION may be null. */
4847 if (output_section == NULL)
4848 h->esym.asym.sc = scUndefined;
4849 else
4850 {
4851 name = bfd_section_name (output_section->owner, output_section);
4852
4853 if (strcmp (name, ".text") == 0)
4854 h->esym.asym.sc = scText;
4855 else if (strcmp (name, ".data") == 0)
4856 h->esym.asym.sc = scData;
4857 else if (strcmp (name, ".sdata") == 0)
4858 h->esym.asym.sc = scSData;
4859 else if (strcmp (name, ".rodata") == 0
4860 || strcmp (name, ".rdata") == 0)
4861 h->esym.asym.sc = scRData;
4862 else if (strcmp (name, ".bss") == 0)
4863 h->esym.asym.sc = scBss;
4864 else if (strcmp (name, ".sbss") == 0)
4865 h->esym.asym.sc = scSBss;
4866 else if (strcmp (name, ".init") == 0)
4867 h->esym.asym.sc = scInit;
4868 else if (strcmp (name, ".fini") == 0)
4869 h->esym.asym.sc = scFini;
4870 else
4871 h->esym.asym.sc = scAbs;
4872 }
4873 }
4874
4875 h->esym.asym.reserved = 0;
4876 h->esym.asym.index = indexNil;
4877 }
4878
4879 if (h->root.root.type == bfd_link_hash_common)
4880 h->esym.asym.value = h->root.root.u.c.size;
4881 else if (h->root.root.type == bfd_link_hash_defined
4882 || h->root.root.type == bfd_link_hash_defweak)
4883 {
4884 if (h->esym.asym.sc == scCommon)
4885 h->esym.asym.sc = scBss;
4886 else if (h->esym.asym.sc == scSCommon)
4887 h->esym.asym.sc = scSBss;
4888
4889 sec = h->root.root.u.def.section;
4890 output_section = sec->output_section;
4891 if (output_section != NULL)
4892 h->esym.asym.value = (h->root.root.u.def.value
4893 + sec->output_offset
4894 + output_section->vma);
4895 else
4896 h->esym.asym.value = 0;
4897 }
4898 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4899 {
4900 struct mips_elf_link_hash_entry *hd = h;
4901 boolean no_fn_stub = h->no_fn_stub;
4902
4903 while (hd->root.root.type == bfd_link_hash_indirect)
4904 {
4905 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4906 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4907 }
4908
4909 if (!no_fn_stub)
4910 {
4911 /* Set type and value for a symbol with a function stub. */
4912 h->esym.asym.st = stProc;
4913 sec = hd->root.root.u.def.section;
4914 if (sec == NULL)
4915 h->esym.asym.value = 0;
4916 else
4917 {
4918 output_section = sec->output_section;
4919 if (output_section != NULL)
4920 h->esym.asym.value = (hd->root.plt.offset
4921 + sec->output_offset
4922 + output_section->vma);
4923 else
4924 h->esym.asym.value = 0;
4925 }
4926 #if 0 /* FIXME? */
4927 h->esym.ifd = 0;
4928 #endif
4929 }
4930 }
4931
4932 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4933 h->root.root.root.string,
4934 &h->esym))
4935 {
4936 einfo->failed = true;
4937 return false;
4938 }
4939
4940 return true;
4941 }
4942
4943 /* Create a runtime procedure table from the .mdebug section. */
4944
4945 static boolean
4946 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4947 PTR handle;
4948 bfd *abfd;
4949 struct bfd_link_info *info;
4950 asection *s;
4951 struct ecoff_debug_info *debug;
4952 {
4953 const struct ecoff_debug_swap *swap;
4954 HDRR *hdr = &debug->symbolic_header;
4955 RPDR *rpdr, *rp;
4956 struct rpdr_ext *erp;
4957 PTR rtproc;
4958 struct pdr_ext *epdr;
4959 struct sym_ext *esym;
4960 char *ss, **sv;
4961 char *str;
4962 bfd_size_type size;
4963 bfd_size_type count;
4964 unsigned long sindex;
4965 unsigned long i;
4966 PDR pdr;
4967 SYMR sym;
4968 const char *no_name_func = _("static procedure (no name)");
4969
4970 epdr = NULL;
4971 rpdr = NULL;
4972 esym = NULL;
4973 ss = NULL;
4974 sv = NULL;
4975
4976 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4977
4978 sindex = strlen (no_name_func) + 1;
4979 count = hdr->ipdMax;
4980 if (count > 0)
4981 {
4982 size = swap->external_pdr_size;
4983
4984 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4985 if (epdr == NULL)
4986 goto error_return;
4987
4988 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4989 goto error_return;
4990
4991 size = sizeof (RPDR);
4992 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4993 if (rpdr == NULL)
4994 goto error_return;
4995
4996 size = sizeof (char *);
4997 sv = (char **) bfd_malloc (size * count);
4998 if (sv == NULL)
4999 goto error_return;
5000
5001 count = hdr->isymMax;
5002 size = swap->external_sym_size;
5003 esym = (struct sym_ext *) bfd_malloc (size * count);
5004 if (esym == NULL)
5005 goto error_return;
5006
5007 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
5008 goto error_return;
5009
5010 count = hdr->issMax;
5011 ss = (char *) bfd_malloc (count);
5012 if (ss == NULL)
5013 goto error_return;
5014 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
5015 goto error_return;
5016
5017 count = hdr->ipdMax;
5018 for (i = 0; i < (unsigned long) count; i++, rp++)
5019 {
5020 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
5021 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
5022 rp->adr = sym.value;
5023 rp->regmask = pdr.regmask;
5024 rp->regoffset = pdr.regoffset;
5025 rp->fregmask = pdr.fregmask;
5026 rp->fregoffset = pdr.fregoffset;
5027 rp->frameoffset = pdr.frameoffset;
5028 rp->framereg = pdr.framereg;
5029 rp->pcreg = pdr.pcreg;
5030 rp->irpss = sindex;
5031 sv[i] = ss + sym.iss;
5032 sindex += strlen (sv[i]) + 1;
5033 }
5034 }
5035
5036 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
5037 size = BFD_ALIGN (size, 16);
5038 rtproc = (PTR) bfd_alloc (abfd, size);
5039 if (rtproc == NULL)
5040 {
5041 mips_elf_hash_table (info)->procedure_count = 0;
5042 goto error_return;
5043 }
5044
5045 mips_elf_hash_table (info)->procedure_count = count + 2;
5046
5047 erp = (struct rpdr_ext *) rtproc;
5048 memset (erp, 0, sizeof (struct rpdr_ext));
5049 erp++;
5050 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
5051 strcpy (str, no_name_func);
5052 str += strlen (no_name_func) + 1;
5053 for (i = 0; i < count; i++)
5054 {
5055 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
5056 strcpy (str, sv[i]);
5057 str += strlen (sv[i]) + 1;
5058 }
5059 ECOFF_PUT_OFF (abfd, -1, (erp + count)->p_adr);
5060
5061 /* Set the size and contents of .rtproc section. */
5062 s->_raw_size = size;
5063 s->contents = (bfd_byte *) rtproc;
5064
5065 /* Skip this section later on (I don't think this currently
5066 matters, but someday it might). */
5067 s->link_order_head = (struct bfd_link_order *) NULL;
5068
5069 if (epdr != NULL)
5070 free (epdr);
5071 if (rpdr != NULL)
5072 free (rpdr);
5073 if (esym != NULL)
5074 free (esym);
5075 if (ss != NULL)
5076 free (ss);
5077 if (sv != NULL)
5078 free (sv);
5079
5080 return true;
5081
5082 error_return:
5083 if (epdr != NULL)
5084 free (epdr);
5085 if (rpdr != NULL)
5086 free (rpdr);
5087 if (esym != NULL)
5088 free (esym);
5089 if (ss != NULL)
5090 free (ss);
5091 if (sv != NULL)
5092 free (sv);
5093 return false;
5094 }
5095
5096 /* A comparison routine used to sort .gptab entries. */
5097
5098 static int
5099 gptab_compare (p1, p2)
5100 const PTR p1;
5101 const PTR p2;
5102 {
5103 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
5104 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
5105
5106 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
5107 }
5108
5109 /* We need to use a special link routine to handle the .reginfo and
5110 the .mdebug sections. We need to merge all instances of these
5111 sections together, not write them all out sequentially. */
5112
5113 boolean
5114 _bfd_mips_elf_final_link (abfd, info)
5115 bfd *abfd;
5116 struct bfd_link_info *info;
5117 {
5118 asection **secpp;
5119 asection *o;
5120 struct bfd_link_order *p;
5121 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
5122 asection *rtproc_sec;
5123 Elf32_RegInfo reginfo;
5124 struct ecoff_debug_info debug;
5125 const struct ecoff_debug_swap *swap
5126 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5127 HDRR *symhdr = &debug.symbolic_header;
5128 PTR mdebug_handle = NULL;
5129 asection *s;
5130 EXTR esym;
5131 unsigned int i;
5132 bfd_size_type amt;
5133
5134 static const char * const secname[] =
5135 {
5136 ".text", ".init", ".fini", ".data",
5137 ".rodata", ".sdata", ".sbss", ".bss"
5138 };
5139 static const int sc[] =
5140 {
5141 scText, scInit, scFini, scData,
5142 scRData, scSData, scSBss, scBss
5143 };
5144
5145 /* If all the things we linked together were PIC, but we're
5146 producing an executable (rather than a shared object), then the
5147 resulting file is CPIC (i.e., it calls PIC code.) */
5148 if (!info->shared
5149 && !info->relocateable
5150 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
5151 {
5152 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
5153 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
5154 }
5155
5156 /* We'd carefully arranged the dynamic symbol indices, and then the
5157 generic size_dynamic_sections renumbered them out from under us.
5158 Rather than trying somehow to prevent the renumbering, just do
5159 the sort again. */
5160 if (elf_hash_table (info)->dynamic_sections_created)
5161 {
5162 bfd *dynobj;
5163 asection *got;
5164 struct mips_got_info *g;
5165
5166 /* When we resort, we must tell mips_elf_sort_hash_table what
5167 the lowest index it may use is. That's the number of section
5168 symbols we're going to add. The generic ELF linker only
5169 adds these symbols when building a shared object. Note that
5170 we count the sections after (possibly) removing the .options
5171 section above. */
5172 if (!mips_elf_sort_hash_table (info, (info->shared
5173 ? bfd_count_sections (abfd) + 1
5174 : 1)))
5175 return false;
5176
5177 /* Make sure we didn't grow the global .got region. */
5178 dynobj = elf_hash_table (info)->dynobj;
5179 got = bfd_get_section_by_name (dynobj, ".got");
5180 g = (struct mips_got_info *) elf_section_data (got)->tdata;
5181
5182 if (g->global_gotsym != NULL)
5183 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
5184 - g->global_gotsym->dynindx)
5185 <= g->global_gotno);
5186 }
5187
5188 /* On IRIX5, we omit the .options section. On IRIX6, however, we
5189 include it, even though we don't process it quite right. (Some
5190 entries are supposed to be merged.) Empirically, we seem to be
5191 better off including it then not. */
5192 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5193 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
5194 {
5195 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
5196 {
5197 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
5198 if (p->type == bfd_indirect_link_order)
5199 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
5200 (*secpp)->link_order_head = NULL;
5201 *secpp = (*secpp)->next;
5202 --abfd->section_count;
5203
5204 break;
5205 }
5206 }
5207
5208 /* Get a value for the GP register. */
5209 if (elf_gp (abfd) == 0)
5210 {
5211 struct bfd_link_hash_entry *h;
5212
5213 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
5214 if (h != (struct bfd_link_hash_entry *) NULL
5215 && h->type == bfd_link_hash_defined)
5216 elf_gp (abfd) = (h->u.def.value
5217 + h->u.def.section->output_section->vma
5218 + h->u.def.section->output_offset);
5219 else if (info->relocateable)
5220 {
5221 bfd_vma lo;
5222
5223 /* Find the GP-relative section with the lowest offset. */
5224 lo = (bfd_vma) -1;
5225 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5226 if (o->vma < lo
5227 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
5228 lo = o->vma;
5229
5230 /* And calculate GP relative to that. */
5231 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
5232 }
5233 else
5234 {
5235 /* If the relocate_section function needs to do a reloc
5236 involving the GP value, it should make a reloc_dangerous
5237 callback to warn that GP is not defined. */
5238 }
5239 }
5240
5241 /* Go through the sections and collect the .reginfo and .mdebug
5242 information. */
5243 reginfo_sec = NULL;
5244 mdebug_sec = NULL;
5245 gptab_data_sec = NULL;
5246 gptab_bss_sec = NULL;
5247 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5248 {
5249 if (strcmp (o->name, ".reginfo") == 0)
5250 {
5251 memset (&reginfo, 0, sizeof reginfo);
5252
5253 /* We have found the .reginfo section in the output file.
5254 Look through all the link_orders comprising it and merge
5255 the information together. */
5256 for (p = o->link_order_head;
5257 p != (struct bfd_link_order *) NULL;
5258 p = p->next)
5259 {
5260 asection *input_section;
5261 bfd *input_bfd;
5262 Elf32_External_RegInfo ext;
5263 Elf32_RegInfo sub;
5264
5265 if (p->type != bfd_indirect_link_order)
5266 {
5267 if (p->type == bfd_fill_link_order)
5268 continue;
5269 abort ();
5270 }
5271
5272 input_section = p->u.indirect.section;
5273 input_bfd = input_section->owner;
5274
5275 /* The linker emulation code has probably clobbered the
5276 size to be zero bytes. */
5277 if (input_section->_raw_size == 0)
5278 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
5279
5280 if (! bfd_get_section_contents (input_bfd, input_section,
5281 (PTR) &ext,
5282 (file_ptr) 0,
5283 (bfd_size_type) sizeof ext))
5284 return false;
5285
5286 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
5287
5288 reginfo.ri_gprmask |= sub.ri_gprmask;
5289 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
5290 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
5291 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
5292 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
5293
5294 /* ri_gp_value is set by the function
5295 mips_elf32_section_processing when the section is
5296 finally written out. */
5297
5298 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5299 elf_link_input_bfd ignores this section. */
5300 input_section->flags &= ~SEC_HAS_CONTENTS;
5301 }
5302
5303 /* Size has been set in mips_elf_always_size_sections */
5304 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
5305
5306 /* Skip this section later on (I don't think this currently
5307 matters, but someday it might). */
5308 o->link_order_head = (struct bfd_link_order *) NULL;
5309
5310 reginfo_sec = o;
5311 }
5312
5313 if (strcmp (o->name, ".mdebug") == 0)
5314 {
5315 struct extsym_info einfo;
5316 bfd_vma last;
5317
5318 /* We have found the .mdebug section in the output file.
5319 Look through all the link_orders comprising it and merge
5320 the information together. */
5321 symhdr->magic = swap->sym_magic;
5322 /* FIXME: What should the version stamp be? */
5323 symhdr->vstamp = 0;
5324 symhdr->ilineMax = 0;
5325 symhdr->cbLine = 0;
5326 symhdr->idnMax = 0;
5327 symhdr->ipdMax = 0;
5328 symhdr->isymMax = 0;
5329 symhdr->ioptMax = 0;
5330 symhdr->iauxMax = 0;
5331 symhdr->issMax = 0;
5332 symhdr->issExtMax = 0;
5333 symhdr->ifdMax = 0;
5334 symhdr->crfd = 0;
5335 symhdr->iextMax = 0;
5336
5337 /* We accumulate the debugging information itself in the
5338 debug_info structure. */
5339 debug.line = NULL;
5340 debug.external_dnr = NULL;
5341 debug.external_pdr = NULL;
5342 debug.external_sym = NULL;
5343 debug.external_opt = NULL;
5344 debug.external_aux = NULL;
5345 debug.ss = NULL;
5346 debug.ssext = debug.ssext_end = NULL;
5347 debug.external_fdr = NULL;
5348 debug.external_rfd = NULL;
5349 debug.external_ext = debug.external_ext_end = NULL;
5350
5351 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5352 if (mdebug_handle == (PTR) NULL)
5353 return false;
5354
5355 esym.jmptbl = 0;
5356 esym.cobol_main = 0;
5357 esym.weakext = 0;
5358 esym.reserved = 0;
5359 esym.ifd = ifdNil;
5360 esym.asym.iss = issNil;
5361 esym.asym.st = stLocal;
5362 esym.asym.reserved = 0;
5363 esym.asym.index = indexNil;
5364 last = 0;
5365 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
5366 {
5367 esym.asym.sc = sc[i];
5368 s = bfd_get_section_by_name (abfd, secname[i]);
5369 if (s != NULL)
5370 {
5371 esym.asym.value = s->vma;
5372 last = s->vma + s->_raw_size;
5373 }
5374 else
5375 esym.asym.value = last;
5376 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
5377 secname[i], &esym))
5378 return false;
5379 }
5380
5381 for (p = o->link_order_head;
5382 p != (struct bfd_link_order *) NULL;
5383 p = p->next)
5384 {
5385 asection *input_section;
5386 bfd *input_bfd;
5387 const struct ecoff_debug_swap *input_swap;
5388 struct ecoff_debug_info input_debug;
5389 char *eraw_src;
5390 char *eraw_end;
5391
5392 if (p->type != bfd_indirect_link_order)
5393 {
5394 if (p->type == bfd_fill_link_order)
5395 continue;
5396 abort ();
5397 }
5398
5399 input_section = p->u.indirect.section;
5400 input_bfd = input_section->owner;
5401
5402 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
5403 || (get_elf_backend_data (input_bfd)
5404 ->elf_backend_ecoff_debug_swap) == NULL)
5405 {
5406 /* I don't know what a non MIPS ELF bfd would be
5407 doing with a .mdebug section, but I don't really
5408 want to deal with it. */
5409 continue;
5410 }
5411
5412 input_swap = (get_elf_backend_data (input_bfd)
5413 ->elf_backend_ecoff_debug_swap);
5414
5415 BFD_ASSERT (p->size == input_section->_raw_size);
5416
5417 /* The ECOFF linking code expects that we have already
5418 read in the debugging information and set up an
5419 ecoff_debug_info structure, so we do that now. */
5420 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
5421 &input_debug))
5422 return false;
5423
5424 if (! (bfd_ecoff_debug_accumulate
5425 (mdebug_handle, abfd, &debug, swap, input_bfd,
5426 &input_debug, input_swap, info)))
5427 return false;
5428
5429 /* Loop through the external symbols. For each one with
5430 interesting information, try to find the symbol in
5431 the linker global hash table and save the information
5432 for the output external symbols. */
5433 eraw_src = input_debug.external_ext;
5434 eraw_end = (eraw_src
5435 + (input_debug.symbolic_header.iextMax
5436 * input_swap->external_ext_size));
5437 for (;
5438 eraw_src < eraw_end;
5439 eraw_src += input_swap->external_ext_size)
5440 {
5441 EXTR ext;
5442 const char *name;
5443 struct mips_elf_link_hash_entry *h;
5444
5445 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5446 if (ext.asym.sc == scNil
5447 || ext.asym.sc == scUndefined
5448 || ext.asym.sc == scSUndefined)
5449 continue;
5450
5451 name = input_debug.ssext + ext.asym.iss;
5452 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
5453 name, false, false, true);
5454 if (h == NULL || h->esym.ifd != -2)
5455 continue;
5456
5457 if (ext.ifd != -1)
5458 {
5459 BFD_ASSERT (ext.ifd
5460 < input_debug.symbolic_header.ifdMax);
5461 ext.ifd = input_debug.ifdmap[ext.ifd];
5462 }
5463
5464 h->esym = ext;
5465 }
5466
5467 /* Free up the information we just read. */
5468 free (input_debug.line);
5469 free (input_debug.external_dnr);
5470 free (input_debug.external_pdr);
5471 free (input_debug.external_sym);
5472 free (input_debug.external_opt);
5473 free (input_debug.external_aux);
5474 free (input_debug.ss);
5475 free (input_debug.ssext);
5476 free (input_debug.external_fdr);
5477 free (input_debug.external_rfd);
5478 free (input_debug.external_ext);
5479
5480 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5481 elf_link_input_bfd ignores this section. */
5482 input_section->flags &= ~SEC_HAS_CONTENTS;
5483 }
5484
5485 if (SGI_COMPAT (abfd) && info->shared)
5486 {
5487 /* Create .rtproc section. */
5488 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5489 if (rtproc_sec == NULL)
5490 {
5491 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
5492 | SEC_LINKER_CREATED | SEC_READONLY);
5493
5494 rtproc_sec = bfd_make_section (abfd, ".rtproc");
5495 if (rtproc_sec == NULL
5496 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
5497 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
5498 return false;
5499 }
5500
5501 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
5502 info, rtproc_sec, &debug))
5503 return false;
5504 }
5505
5506 /* Build the external symbol information. */
5507 einfo.abfd = abfd;
5508 einfo.info = info;
5509 einfo.debug = &debug;
5510 einfo.swap = swap;
5511 einfo.failed = false;
5512 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5513 mips_elf_output_extsym,
5514 (PTR) &einfo);
5515 if (einfo.failed)
5516 return false;
5517
5518 /* Set the size of the .mdebug section. */
5519 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
5520
5521 /* Skip this section later on (I don't think this currently
5522 matters, but someday it might). */
5523 o->link_order_head = (struct bfd_link_order *) NULL;
5524
5525 mdebug_sec = o;
5526 }
5527
5528 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
5529 {
5530 const char *subname;
5531 unsigned int c;
5532 Elf32_gptab *tab;
5533 Elf32_External_gptab *ext_tab;
5534 unsigned int j;
5535
5536 /* The .gptab.sdata and .gptab.sbss sections hold
5537 information describing how the small data area would
5538 change depending upon the -G switch. These sections
5539 not used in executables files. */
5540 if (! info->relocateable)
5541 {
5542 for (p = o->link_order_head;
5543 p != (struct bfd_link_order *) NULL;
5544 p = p->next)
5545 {
5546 asection *input_section;
5547
5548 if (p->type != bfd_indirect_link_order)
5549 {
5550 if (p->type == bfd_fill_link_order)
5551 continue;
5552 abort ();
5553 }
5554
5555 input_section = p->u.indirect.section;
5556
5557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5558 elf_link_input_bfd ignores this section. */
5559 input_section->flags &= ~SEC_HAS_CONTENTS;
5560 }
5561
5562 /* Skip this section later on (I don't think this
5563 currently matters, but someday it might). */
5564 o->link_order_head = (struct bfd_link_order *) NULL;
5565
5566 /* Really remove the section. */
5567 for (secpp = &abfd->sections;
5568 *secpp != o;
5569 secpp = &(*secpp)->next)
5570 ;
5571 *secpp = (*secpp)->next;
5572 --abfd->section_count;
5573
5574 continue;
5575 }
5576
5577 /* There is one gptab for initialized data, and one for
5578 uninitialized data. */
5579 if (strcmp (o->name, ".gptab.sdata") == 0)
5580 gptab_data_sec = o;
5581 else if (strcmp (o->name, ".gptab.sbss") == 0)
5582 gptab_bss_sec = o;
5583 else
5584 {
5585 (*_bfd_error_handler)
5586 (_("%s: illegal section name `%s'"),
5587 bfd_get_filename (abfd), o->name);
5588 bfd_set_error (bfd_error_nonrepresentable_section);
5589 return false;
5590 }
5591
5592 /* The linker script always combines .gptab.data and
5593 .gptab.sdata into .gptab.sdata, and likewise for
5594 .gptab.bss and .gptab.sbss. It is possible that there is
5595 no .sdata or .sbss section in the output file, in which
5596 case we must change the name of the output section. */
5597 subname = o->name + sizeof ".gptab" - 1;
5598 if (bfd_get_section_by_name (abfd, subname) == NULL)
5599 {
5600 if (o == gptab_data_sec)
5601 o->name = ".gptab.data";
5602 else
5603 o->name = ".gptab.bss";
5604 subname = o->name + sizeof ".gptab" - 1;
5605 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5606 }
5607
5608 /* Set up the first entry. */
5609 c = 1;
5610 amt = c * sizeof (Elf32_gptab);
5611 tab = (Elf32_gptab *) bfd_malloc (amt);
5612 if (tab == NULL)
5613 return false;
5614 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5615 tab[0].gt_header.gt_unused = 0;
5616
5617 /* Combine the input sections. */
5618 for (p = o->link_order_head;
5619 p != (struct bfd_link_order *) NULL;
5620 p = p->next)
5621 {
5622 asection *input_section;
5623 bfd *input_bfd;
5624 bfd_size_type size;
5625 unsigned long last;
5626 bfd_size_type gpentry;
5627
5628 if (p->type != bfd_indirect_link_order)
5629 {
5630 if (p->type == bfd_fill_link_order)
5631 continue;
5632 abort ();
5633 }
5634
5635 input_section = p->u.indirect.section;
5636 input_bfd = input_section->owner;
5637
5638 /* Combine the gptab entries for this input section one
5639 by one. We know that the input gptab entries are
5640 sorted by ascending -G value. */
5641 size = bfd_section_size (input_bfd, input_section);
5642 last = 0;
5643 for (gpentry = sizeof (Elf32_External_gptab);
5644 gpentry < size;
5645 gpentry += sizeof (Elf32_External_gptab))
5646 {
5647 Elf32_External_gptab ext_gptab;
5648 Elf32_gptab int_gptab;
5649 unsigned long val;
5650 unsigned long add;
5651 boolean exact;
5652 unsigned int look;
5653
5654 if (! (bfd_get_section_contents
5655 (input_bfd, input_section, (PTR) &ext_gptab,
5656 (file_ptr) gpentry,
5657 (bfd_size_type) sizeof (Elf32_External_gptab))))
5658 {
5659 free (tab);
5660 return false;
5661 }
5662
5663 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5664 &int_gptab);
5665 val = int_gptab.gt_entry.gt_g_value;
5666 add = int_gptab.gt_entry.gt_bytes - last;
5667
5668 exact = false;
5669 for (look = 1; look < c; look++)
5670 {
5671 if (tab[look].gt_entry.gt_g_value >= val)
5672 tab[look].gt_entry.gt_bytes += add;
5673
5674 if (tab[look].gt_entry.gt_g_value == val)
5675 exact = true;
5676 }
5677
5678 if (! exact)
5679 {
5680 Elf32_gptab *new_tab;
5681 unsigned int max;
5682
5683 /* We need a new table entry. */
5684 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
5685 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
5686 if (new_tab == NULL)
5687 {
5688 free (tab);
5689 return false;
5690 }
5691 tab = new_tab;
5692 tab[c].gt_entry.gt_g_value = val;
5693 tab[c].gt_entry.gt_bytes = add;
5694
5695 /* Merge in the size for the next smallest -G
5696 value, since that will be implied by this new
5697 value. */
5698 max = 0;
5699 for (look = 1; look < c; look++)
5700 {
5701 if (tab[look].gt_entry.gt_g_value < val
5702 && (max == 0
5703 || (tab[look].gt_entry.gt_g_value
5704 > tab[max].gt_entry.gt_g_value)))
5705 max = look;
5706 }
5707 if (max != 0)
5708 tab[c].gt_entry.gt_bytes +=
5709 tab[max].gt_entry.gt_bytes;
5710
5711 ++c;
5712 }
5713
5714 last = int_gptab.gt_entry.gt_bytes;
5715 }
5716
5717 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5718 elf_link_input_bfd ignores this section. */
5719 input_section->flags &= ~SEC_HAS_CONTENTS;
5720 }
5721
5722 /* The table must be sorted by -G value. */
5723 if (c > 2)
5724 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5725
5726 /* Swap out the table. */
5727 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
5728 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
5729 if (ext_tab == NULL)
5730 {
5731 free (tab);
5732 return false;
5733 }
5734
5735 for (j = 0; j < c; j++)
5736 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
5737 free (tab);
5738
5739 o->_raw_size = c * sizeof (Elf32_External_gptab);
5740 o->contents = (bfd_byte *) ext_tab;
5741
5742 /* Skip this section later on (I don't think this currently
5743 matters, but someday it might). */
5744 o->link_order_head = (struct bfd_link_order *) NULL;
5745 }
5746 }
5747
5748 /* Invoke the regular ELF backend linker to do all the work. */
5749 if (ABI_64_P (abfd))
5750 {
5751 #ifdef BFD64
5752 if (!bfd_elf64_bfd_final_link (abfd, info))
5753 return false;
5754 #else
5755 abort ();
5756 return false;
5757 #endif /* BFD64 */
5758 }
5759 else if (!bfd_elf32_bfd_final_link (abfd, info))
5760 return false;
5761
5762 /* Now write out the computed sections. */
5763
5764 if (reginfo_sec != (asection *) NULL)
5765 {
5766 Elf32_External_RegInfo ext;
5767
5768 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5769 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5770 (file_ptr) 0, (bfd_size_type) sizeof ext))
5771 return false;
5772 }
5773
5774 if (mdebug_sec != (asection *) NULL)
5775 {
5776 BFD_ASSERT (abfd->output_has_begun);
5777 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5778 swap, info,
5779 mdebug_sec->filepos))
5780 return false;
5781
5782 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5783 }
5784
5785 if (gptab_data_sec != (asection *) NULL)
5786 {
5787 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5788 gptab_data_sec->contents,
5789 (file_ptr) 0,
5790 gptab_data_sec->_raw_size))
5791 return false;
5792 }
5793
5794 if (gptab_bss_sec != (asection *) NULL)
5795 {
5796 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5797 gptab_bss_sec->contents,
5798 (file_ptr) 0,
5799 gptab_bss_sec->_raw_size))
5800 return false;
5801 }
5802
5803 if (SGI_COMPAT (abfd))
5804 {
5805 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5806 if (rtproc_sec != NULL)
5807 {
5808 if (! bfd_set_section_contents (abfd, rtproc_sec,
5809 rtproc_sec->contents,
5810 (file_ptr) 0,
5811 rtproc_sec->_raw_size))
5812 return false;
5813 }
5814 }
5815
5816 return true;
5817 }
5818
5819 /* This function is called via qsort() to sort the dynamic relocation
5820 entries by increasing r_symndx value. */
5821
5822 static int
5823 sort_dynamic_relocs (arg1, arg2)
5824 const PTR arg1;
5825 const PTR arg2;
5826 {
5827 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5828 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5829
5830 Elf_Internal_Rel int_reloc1;
5831 Elf_Internal_Rel int_reloc2;
5832
5833 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5834 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5835
5836 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5837 }
5838
5839 /* Returns the GOT section for ABFD. */
5840
5841 static asection *
5842 mips_elf_got_section (abfd)
5843 bfd *abfd;
5844 {
5845 return bfd_get_section_by_name (abfd, ".got");
5846 }
5847
5848 /* Returns the GOT information associated with the link indicated by
5849 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5850 section. */
5851
5852 static struct mips_got_info *
5853 mips_elf_got_info (abfd, sgotp)
5854 bfd *abfd;
5855 asection **sgotp;
5856 {
5857 asection *sgot;
5858 struct mips_got_info *g;
5859
5860 sgot = mips_elf_got_section (abfd);
5861 BFD_ASSERT (sgot != NULL);
5862 BFD_ASSERT (elf_section_data (sgot) != NULL);
5863 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5864 BFD_ASSERT (g != NULL);
5865
5866 if (sgotp)
5867 *sgotp = sgot;
5868 return g;
5869 }
5870
5871 /* Return whether a relocation is against a local symbol. */
5872
5873 static boolean
5874 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5875 check_forced)
5876 bfd *input_bfd;
5877 const Elf_Internal_Rela *relocation;
5878 asection **local_sections;
5879 boolean check_forced;
5880 {
5881 unsigned long r_symndx;
5882 Elf_Internal_Shdr *symtab_hdr;
5883 struct mips_elf_link_hash_entry *h;
5884 size_t extsymoff;
5885
5886 r_symndx = ELF32_R_SYM (relocation->r_info);
5887 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5888 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5889
5890 if (r_symndx < extsymoff)
5891 return true;
5892 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5893 return true;
5894
5895 if (check_forced)
5896 {
5897 /* Look up the hash table to check whether the symbol
5898 was forced local. */
5899 h = (struct mips_elf_link_hash_entry *)
5900 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5901 /* Find the real hash-table entry for this symbol. */
5902 while (h->root.root.type == bfd_link_hash_indirect
5903 || h->root.root.type == bfd_link_hash_warning)
5904 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5905 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5906 return true;
5907 }
5908
5909 return false;
5910 }
5911
5912 /* Sign-extend VALUE, which has the indicated number of BITS. */
5913
5914 static bfd_vma
5915 mips_elf_sign_extend (value, bits)
5916 bfd_vma value;
5917 int bits;
5918 {
5919 if (value & ((bfd_vma) 1 << (bits - 1)))
5920 /* VALUE is negative. */
5921 value |= ((bfd_vma) - 1) << bits;
5922
5923 return value;
5924 }
5925
5926 /* Return non-zero if the indicated VALUE has overflowed the maximum
5927 range expressable by a signed number with the indicated number of
5928 BITS. */
5929
5930 static boolean
5931 mips_elf_overflow_p (value, bits)
5932 bfd_vma value;
5933 int bits;
5934 {
5935 bfd_signed_vma svalue = (bfd_signed_vma) value;
5936
5937 if (svalue > (1 << (bits - 1)) - 1)
5938 /* The value is too big. */
5939 return true;
5940 else if (svalue < -(1 << (bits - 1)))
5941 /* The value is too small. */
5942 return true;
5943
5944 /* All is well. */
5945 return false;
5946 }
5947
5948 /* Calculate the %high function. */
5949
5950 static bfd_vma
5951 mips_elf_high (value)
5952 bfd_vma value;
5953 {
5954 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5955 }
5956
5957 /* Calculate the %higher function. */
5958
5959 static bfd_vma
5960 mips_elf_higher (value)
5961 bfd_vma value ATTRIBUTE_UNUSED;
5962 {
5963 #ifdef BFD64
5964 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5965 #else
5966 abort ();
5967 return (bfd_vma) -1;
5968 #endif
5969 }
5970
5971 /* Calculate the %highest function. */
5972
5973 static bfd_vma
5974 mips_elf_highest (value)
5975 bfd_vma value ATTRIBUTE_UNUSED;
5976 {
5977 #ifdef BFD64
5978 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5979 #else
5980 abort ();
5981 return (bfd_vma) -1;
5982 #endif
5983 }
5984
5985 /* Returns the GOT index for the global symbol indicated by H. */
5986
5987 static bfd_vma
5988 mips_elf_global_got_index (abfd, h)
5989 bfd *abfd;
5990 struct elf_link_hash_entry *h;
5991 {
5992 bfd_vma index;
5993 asection *sgot;
5994 struct mips_got_info *g;
5995
5996 g = mips_elf_got_info (abfd, &sgot);
5997
5998 /* Once we determine the global GOT entry with the lowest dynamic
5999 symbol table index, we must put all dynamic symbols with greater
6000 indices into the GOT. That makes it easy to calculate the GOT
6001 offset. */
6002 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
6003 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
6004 * MIPS_ELF_GOT_SIZE (abfd));
6005 BFD_ASSERT (index < sgot->_raw_size);
6006
6007 return index;
6008 }
6009
6010 /* Returns the offset for the entry at the INDEXth position
6011 in the GOT. */
6012
6013 static bfd_vma
6014 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
6015 bfd *dynobj;
6016 bfd *output_bfd;
6017 bfd_vma index;
6018 {
6019 asection *sgot;
6020 bfd_vma gp;
6021
6022 sgot = mips_elf_got_section (dynobj);
6023 gp = _bfd_get_gp_value (output_bfd);
6024 return (sgot->output_section->vma + sgot->output_offset + index -
6025 gp);
6026 }
6027
6028 /* If H is a symbol that needs a global GOT entry, but has a dynamic
6029 symbol table index lower than any we've seen to date, record it for
6030 posterity. */
6031
6032 static boolean
6033 mips_elf_record_global_got_symbol (h, info, g)
6034 struct elf_link_hash_entry *h;
6035 struct bfd_link_info *info;
6036 struct mips_got_info *g ATTRIBUTE_UNUSED;
6037 {
6038 /* A global symbol in the GOT must also be in the dynamic symbol
6039 table. */
6040 if (h->dynindx == -1
6041 && !bfd_elf32_link_record_dynamic_symbol (info, h))
6042 return false;
6043
6044 /* If we've already marked this entry as needing GOT space, we don't
6045 need to do it again. */
6046 if (h->got.offset != (bfd_vma) -1)
6047 return true;
6048
6049 /* By setting this to a value other than -1, we are indicating that
6050 there needs to be a GOT entry for H. Avoid using zero, as the
6051 generic ELF copy_indirect_symbol tests for <= 0. */
6052 h->got.offset = 1;
6053
6054 return true;
6055 }
6056
6057 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
6058 the dynamic symbols. */
6059
6060 struct mips_elf_hash_sort_data
6061 {
6062 /* The symbol in the global GOT with the lowest dynamic symbol table
6063 index. */
6064 struct elf_link_hash_entry *low;
6065 /* The least dynamic symbol table index corresponding to a symbol
6066 with a GOT entry. */
6067 long min_got_dynindx;
6068 /* The greatest dynamic symbol table index not corresponding to a
6069 symbol without a GOT entry. */
6070 long max_non_got_dynindx;
6071 };
6072
6073 /* If H needs a GOT entry, assign it the highest available dynamic
6074 index. Otherwise, assign it the lowest available dynamic
6075 index. */
6076
6077 static boolean
6078 mips_elf_sort_hash_table_f (h, data)
6079 struct mips_elf_link_hash_entry *h;
6080 PTR data;
6081 {
6082 struct mips_elf_hash_sort_data *hsd
6083 = (struct mips_elf_hash_sort_data *) data;
6084
6085 /* Symbols without dynamic symbol table entries aren't interesting
6086 at all. */
6087 if (h->root.dynindx == -1)
6088 return true;
6089
6090 if (h->root.got.offset != 1)
6091 h->root.dynindx = hsd->max_non_got_dynindx++;
6092 else
6093 {
6094 h->root.dynindx = --hsd->min_got_dynindx;
6095 hsd->low = (struct elf_link_hash_entry *) h;
6096 }
6097
6098 return true;
6099 }
6100
6101 /* Sort the dynamic symbol table so that symbols that need GOT entries
6102 appear towards the end. This reduces the amount of GOT space
6103 required. MAX_LOCAL is used to set the number of local symbols
6104 known to be in the dynamic symbol table. During
6105 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
6106 section symbols are added and the count is higher. */
6107
6108 static boolean
6109 mips_elf_sort_hash_table (info, max_local)
6110 struct bfd_link_info *info;
6111 unsigned long max_local;
6112 {
6113 struct mips_elf_hash_sort_data hsd;
6114 struct mips_got_info *g;
6115 bfd *dynobj;
6116
6117 dynobj = elf_hash_table (info)->dynobj;
6118
6119 hsd.low = NULL;
6120 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
6121 hsd.max_non_got_dynindx = max_local;
6122 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
6123 elf_hash_table (info)),
6124 mips_elf_sort_hash_table_f,
6125 &hsd);
6126
6127 /* There should have been enough room in the symbol table to
6128 accomodate both the GOT and non-GOT symbols. */
6129 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
6130
6131 /* Now we know which dynamic symbol has the lowest dynamic symbol
6132 table index in the GOT. */
6133 g = mips_elf_got_info (dynobj, NULL);
6134 g->global_gotsym = hsd.low;
6135
6136 return true;
6137 }
6138
6139 /* Create a local GOT entry for VALUE. Return the index of the entry,
6140 or -1 if it could not be created. */
6141
6142 static bfd_vma
6143 mips_elf_create_local_got_entry (abfd, g, sgot, value)
6144 bfd *abfd;
6145 struct mips_got_info *g;
6146 asection *sgot;
6147 bfd_vma value;
6148 {
6149 if (g->assigned_gotno >= g->local_gotno)
6150 {
6151 /* We didn't allocate enough space in the GOT. */
6152 (*_bfd_error_handler)
6153 (_("not enough GOT space for local GOT entries"));
6154 bfd_set_error (bfd_error_bad_value);
6155 return (bfd_vma) -1;
6156 }
6157
6158 MIPS_ELF_PUT_WORD (abfd, value,
6159 (sgot->contents
6160 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
6161 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
6162 }
6163
6164 /* Returns the GOT offset at which the indicated address can be found.
6165 If there is not yet a GOT entry for this value, create one. Returns
6166 -1 if no satisfactory GOT offset can be found. */
6167
6168 static bfd_vma
6169 mips_elf_local_got_index (abfd, info, value)
6170 bfd *abfd;
6171 struct bfd_link_info *info;
6172 bfd_vma value;
6173 {
6174 asection *sgot;
6175 struct mips_got_info *g;
6176 bfd_byte *entry;
6177
6178 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6179
6180 /* Look to see if we already have an appropriate entry. */
6181 for (entry = (sgot->contents
6182 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6183 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6184 entry += MIPS_ELF_GOT_SIZE (abfd))
6185 {
6186 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
6187 if (address == value)
6188 return entry - sgot->contents;
6189 }
6190
6191 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
6192 }
6193
6194 /* Find a GOT entry that is within 32KB of the VALUE. These entries
6195 are supposed to be placed at small offsets in the GOT, i.e.,
6196 within 32KB of GP. Return the index into the GOT for this page,
6197 and store the offset from this entry to the desired address in
6198 OFFSETP, if it is non-NULL. */
6199
6200 static bfd_vma
6201 mips_elf_got_page (abfd, info, value, offsetp)
6202 bfd *abfd;
6203 struct bfd_link_info *info;
6204 bfd_vma value;
6205 bfd_vma *offsetp;
6206 {
6207 asection *sgot;
6208 struct mips_got_info *g;
6209 bfd_byte *entry;
6210 bfd_byte *last_entry;
6211 bfd_vma index = 0;
6212 bfd_vma address;
6213
6214 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6215
6216 /* Look to see if we aleady have an appropriate entry. */
6217 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6218 for (entry = (sgot->contents
6219 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6220 entry != last_entry;
6221 entry += MIPS_ELF_GOT_SIZE (abfd))
6222 {
6223 address = MIPS_ELF_GET_WORD (abfd, entry);
6224
6225 if (!mips_elf_overflow_p (value - address, 16))
6226 {
6227 /* This entry will serve as the page pointer. We can add a
6228 16-bit number to it to get the actual address. */
6229 index = entry - sgot->contents;
6230 break;
6231 }
6232 }
6233
6234 /* If we didn't have an appropriate entry, we create one now. */
6235 if (entry == last_entry)
6236 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6237
6238 if (offsetp)
6239 {
6240 address = MIPS_ELF_GET_WORD (abfd, entry);
6241 *offsetp = value - address;
6242 }
6243
6244 return index;
6245 }
6246
6247 /* Find a GOT entry whose higher-order 16 bits are the same as those
6248 for value. Return the index into the GOT for this entry. */
6249
6250 static bfd_vma
6251 mips_elf_got16_entry (abfd, info, value, external)
6252 bfd *abfd;
6253 struct bfd_link_info *info;
6254 bfd_vma value;
6255 boolean external;
6256 {
6257 asection *sgot;
6258 struct mips_got_info *g;
6259 bfd_byte *entry;
6260 bfd_byte *last_entry;
6261 bfd_vma index = 0;
6262 bfd_vma address;
6263
6264 if (! external)
6265 {
6266 /* Although the ABI says that it is "the high-order 16 bits" that we
6267 want, it is really the %high value. The complete value is
6268 calculated with a `addiu' of a LO16 relocation, just as with a
6269 HI16/LO16 pair. */
6270 value = mips_elf_high (value) << 16;
6271 }
6272
6273 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6274
6275 /* Look to see if we already have an appropriate entry. */
6276 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6277 for (entry = (sgot->contents
6278 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6279 entry != last_entry;
6280 entry += MIPS_ELF_GOT_SIZE (abfd))
6281 {
6282 address = MIPS_ELF_GET_WORD (abfd, entry);
6283 if (address == value)
6284 {
6285 /* This entry has the right high-order 16 bits, and the low-order
6286 16 bits are set to zero. */
6287 index = entry - sgot->contents;
6288 break;
6289 }
6290 }
6291
6292 /* If we didn't have an appropriate entry, we create one now. */
6293 if (entry == last_entry)
6294 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6295
6296 return index;
6297 }
6298
6299 /* Returns the first relocation of type r_type found, beginning with
6300 RELOCATION. RELEND is one-past-the-end of the relocation table. */
6301
6302 static const Elf_Internal_Rela *
6303 mips_elf_next_relocation (r_type, relocation, relend)
6304 unsigned int r_type;
6305 const Elf_Internal_Rela *relocation;
6306 const Elf_Internal_Rela *relend;
6307 {
6308 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
6309 immediately following. However, for the IRIX6 ABI, the next
6310 relocation may be a composed relocation consisting of several
6311 relocations for the same address. In that case, the R_MIPS_LO16
6312 relocation may occur as one of these. We permit a similar
6313 extension in general, as that is useful for GCC. */
6314 while (relocation < relend)
6315 {
6316 if (ELF32_R_TYPE (relocation->r_info) == r_type)
6317 return relocation;
6318
6319 ++relocation;
6320 }
6321
6322 /* We didn't find it. */
6323 bfd_set_error (bfd_error_bad_value);
6324 return NULL;
6325 }
6326
6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332 static boolean
6333 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
6334 symbol, addendp, input_section)
6335 bfd *output_bfd;
6336 struct bfd_link_info *info;
6337 const Elf_Internal_Rela *rel;
6338 struct mips_elf_link_hash_entry *h;
6339 asection *sec;
6340 bfd_vma symbol;
6341 bfd_vma *addendp;
6342 asection *input_section;
6343 {
6344 Elf_Internal_Rel outrel;
6345 boolean skip;
6346 asection *sreloc;
6347 bfd *dynobj;
6348 int r_type;
6349
6350 r_type = ELF32_R_TYPE (rel->r_info);
6351 dynobj = elf_hash_table (info)->dynobj;
6352 sreloc
6353 = bfd_get_section_by_name (dynobj,
6354 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
6355 BFD_ASSERT (sreloc != NULL);
6356 BFD_ASSERT (sreloc->contents != NULL);
6357 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6358 < sreloc->_raw_size);
6359
6360 skip = false;
6361 outrel.r_offset =
6362 _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset);
6363 if (outrel.r_offset == (bfd_vma) -1)
6364 skip = true;
6365
6366 /* If we've decided to skip this relocation, just output an empty
6367 record. Note that R_MIPS_NONE == 0, so that this call to memset
6368 is a way of setting R_TYPE to R_MIPS_NONE. */
6369 if (skip)
6370 memset (&outrel, 0, sizeof (outrel));
6371 else
6372 {
6373 long indx;
6374 bfd_vma section_offset;
6375
6376 /* We must now calculate the dynamic symbol table index to use
6377 in the relocation. */
6378 if (h != NULL
6379 && (! info->symbolic || (h->root.elf_link_hash_flags
6380 & ELF_LINK_HASH_DEF_REGULAR) == 0))
6381 {
6382 indx = h->root.dynindx;
6383 /* h->root.dynindx may be -1 if this symbol was marked to
6384 become local. */
6385 if (indx == -1)
6386 indx = 0;
6387 }
6388 else
6389 {
6390 if (sec != NULL && bfd_is_abs_section (sec))
6391 indx = 0;
6392 else if (sec == NULL || sec->owner == NULL)
6393 {
6394 bfd_set_error (bfd_error_bad_value);
6395 return false;
6396 }
6397 else
6398 {
6399 indx = elf_section_data (sec->output_section)->dynindx;
6400 if (indx == 0)
6401 abort ();
6402 }
6403
6404 /* Figure out how far the target of the relocation is from
6405 the beginning of its section. */
6406 section_offset = symbol - sec->output_section->vma;
6407 /* The relocation we're building is section-relative.
6408 Therefore, the original addend must be adjusted by the
6409 section offset. */
6410 *addendp += section_offset;
6411 /* Now, the relocation is just against the section. */
6412 symbol = sec->output_section->vma;
6413 }
6414
6415 /* If the relocation was previously an absolute relocation and
6416 this symbol will not be referred to by the relocation, we must
6417 adjust it by the value we give it in the dynamic symbol table.
6418 Otherwise leave the job up to the dynamic linker. */
6419 if (!indx && r_type != R_MIPS_REL32)
6420 *addendp += symbol;
6421
6422 /* The relocation is always an REL32 relocation because we don't
6423 know where the shared library will wind up at load-time. */
6424 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
6425
6426 /* Adjust the output offset of the relocation to reference the
6427 correct location in the output file. */
6428 outrel.r_offset += (input_section->output_section->vma
6429 + input_section->output_offset);
6430 }
6431
6432 /* Put the relocation back out. We have to use the special
6433 relocation outputter in the 64-bit case since the 64-bit
6434 relocation format is non-standard. */
6435 if (ABI_64_P (output_bfd))
6436 {
6437 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6438 (output_bfd, &outrel,
6439 (sreloc->contents
6440 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6441 }
6442 else
6443 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
6444 (((Elf32_External_Rel *)
6445 sreloc->contents)
6446 + sreloc->reloc_count));
6447
6448 /* Record the index of the first relocation referencing H. This
6449 information is later emitted in the .msym section. */
6450 if (h != NULL
6451 && (h->min_dyn_reloc_index == 0
6452 || sreloc->reloc_count < h->min_dyn_reloc_index))
6453 h->min_dyn_reloc_index = sreloc->reloc_count;
6454
6455 /* We've now added another relocation. */
6456 ++sreloc->reloc_count;
6457
6458 /* Make sure the output section is writable. The dynamic linker
6459 will be writing to it. */
6460 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6461 |= SHF_WRITE;
6462
6463 /* On IRIX5, make an entry of compact relocation info. */
6464 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
6465 {
6466 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6467 bfd_byte *cr;
6468
6469 if (scpt)
6470 {
6471 Elf32_crinfo cptrel;
6472
6473 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6474 cptrel.vaddr = (rel->r_offset
6475 + input_section->output_section->vma
6476 + input_section->output_offset);
6477 if (r_type == R_MIPS_REL32)
6478 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6479 else
6480 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6481 mips_elf_set_cr_dist2to (cptrel, 0);
6482 cptrel.konst = *addendp;
6483
6484 cr = (scpt->contents
6485 + sizeof (Elf32_External_compact_rel));
6486 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6487 ((Elf32_External_crinfo *) cr
6488 + scpt->reloc_count));
6489 ++scpt->reloc_count;
6490 }
6491 }
6492
6493 return true;
6494 }
6495
6496 /* Calculate the value produced by the RELOCATION (which comes from
6497 the INPUT_BFD). The ADDEND is the addend to use for this
6498 RELOCATION; RELOCATION->R_ADDEND is ignored.
6499
6500 The result of the relocation calculation is stored in VALUEP.
6501 REQUIRE_JALXP indicates whether or not the opcode used with this
6502 relocation must be JALX.
6503
6504 This function returns bfd_reloc_continue if the caller need take no
6505 further action regarding this relocation, bfd_reloc_notsupported if
6506 something goes dramatically wrong, bfd_reloc_overflow if an
6507 overflow occurs, and bfd_reloc_ok to indicate success. */
6508
6509 static bfd_reloc_status_type
6510 mips_elf_calculate_relocation (abfd,
6511 input_bfd,
6512 input_section,
6513 info,
6514 relocation,
6515 addend,
6516 howto,
6517 local_syms,
6518 local_sections,
6519 valuep,
6520 namep,
6521 require_jalxp)
6522 bfd *abfd;
6523 bfd *input_bfd;
6524 asection *input_section;
6525 struct bfd_link_info *info;
6526 const Elf_Internal_Rela *relocation;
6527 bfd_vma addend;
6528 reloc_howto_type *howto;
6529 Elf_Internal_Sym *local_syms;
6530 asection **local_sections;
6531 bfd_vma *valuep;
6532 const char **namep;
6533 boolean *require_jalxp;
6534 {
6535 /* The eventual value we will return. */
6536 bfd_vma value;
6537 /* The address of the symbol against which the relocation is
6538 occurring. */
6539 bfd_vma symbol = 0;
6540 /* The final GP value to be used for the relocatable, executable, or
6541 shared object file being produced. */
6542 bfd_vma gp = (bfd_vma) - 1;
6543 /* The place (section offset or address) of the storage unit being
6544 relocated. */
6545 bfd_vma p;
6546 /* The value of GP used to create the relocatable object. */
6547 bfd_vma gp0 = (bfd_vma) - 1;
6548 /* The offset into the global offset table at which the address of
6549 the relocation entry symbol, adjusted by the addend, resides
6550 during execution. */
6551 bfd_vma g = (bfd_vma) - 1;
6552 /* The section in which the symbol referenced by the relocation is
6553 located. */
6554 asection *sec = NULL;
6555 struct mips_elf_link_hash_entry *h = NULL;
6556 /* True if the symbol referred to by this relocation is a local
6557 symbol. */
6558 boolean local_p;
6559 /* True if the symbol referred to by this relocation is "_gp_disp". */
6560 boolean gp_disp_p = false;
6561 Elf_Internal_Shdr *symtab_hdr;
6562 size_t extsymoff;
6563 unsigned long r_symndx;
6564 int r_type;
6565 /* True if overflow occurred during the calculation of the
6566 relocation value. */
6567 boolean overflowed_p;
6568 /* True if this relocation refers to a MIPS16 function. */
6569 boolean target_is_16_bit_code_p = false;
6570
6571 /* Parse the relocation. */
6572 r_symndx = ELF32_R_SYM (relocation->r_info);
6573 r_type = ELF32_R_TYPE (relocation->r_info);
6574 p = (input_section->output_section->vma
6575 + input_section->output_offset
6576 + relocation->r_offset);
6577
6578 /* Assume that there will be no overflow. */
6579 overflowed_p = false;
6580
6581 /* Figure out whether or not the symbol is local, and get the offset
6582 used in the array of hash table entries. */
6583 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6584 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6585 local_sections, false);
6586 if (! elf_bad_symtab (input_bfd))
6587 extsymoff = symtab_hdr->sh_info;
6588 else
6589 {
6590 /* The symbol table does not follow the rule that local symbols
6591 must come before globals. */
6592 extsymoff = 0;
6593 }
6594
6595 /* Figure out the value of the symbol. */
6596 if (local_p)
6597 {
6598 Elf_Internal_Sym *sym;
6599
6600 sym = local_syms + r_symndx;
6601 sec = local_sections[r_symndx];
6602
6603 symbol = sec->output_section->vma + sec->output_offset;
6604 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6605 symbol += sym->st_value;
6606
6607 /* MIPS16 text labels should be treated as odd. */
6608 if (sym->st_other == STO_MIPS16)
6609 ++symbol;
6610
6611 /* Record the name of this symbol, for our caller. */
6612 *namep = bfd_elf_string_from_elf_section (input_bfd,
6613 symtab_hdr->sh_link,
6614 sym->st_name);
6615 if (*namep == '\0')
6616 *namep = bfd_section_name (input_bfd, sec);
6617
6618 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6619 }
6620 else
6621 {
6622 /* For global symbols we look up the symbol in the hash-table. */
6623 h = ((struct mips_elf_link_hash_entry *)
6624 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6625 /* Find the real hash-table entry for this symbol. */
6626 while (h->root.root.type == bfd_link_hash_indirect
6627 || h->root.root.type == bfd_link_hash_warning)
6628 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6629
6630 /* Record the name of this symbol, for our caller. */
6631 *namep = h->root.root.root.string;
6632
6633 /* See if this is the special _gp_disp symbol. Note that such a
6634 symbol must always be a global symbol. */
6635 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6636 {
6637 /* Relocations against _gp_disp are permitted only with
6638 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6639 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6640 return bfd_reloc_notsupported;
6641
6642 gp_disp_p = true;
6643 }
6644 /* If this symbol is defined, calculate its address. Note that
6645 _gp_disp is a magic symbol, always implicitly defined by the
6646 linker, so it's inappropriate to check to see whether or not
6647 its defined. */
6648 else if ((h->root.root.type == bfd_link_hash_defined
6649 || h->root.root.type == bfd_link_hash_defweak)
6650 && h->root.root.u.def.section)
6651 {
6652 sec = h->root.root.u.def.section;
6653 if (sec->output_section)
6654 symbol = (h->root.root.u.def.value
6655 + sec->output_section->vma
6656 + sec->output_offset);
6657 else
6658 symbol = h->root.root.u.def.value;
6659 }
6660 else if (h->root.root.type == bfd_link_hash_undefweak)
6661 /* We allow relocations against undefined weak symbols, giving
6662 it the value zero, so that you can undefined weak functions
6663 and check to see if they exist by looking at their
6664 addresses. */
6665 symbol = 0;
6666 else if (info->shared
6667 && (!info->symbolic || info->allow_shlib_undefined)
6668 && !info->no_undefined
6669 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6670 symbol = 0;
6671 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6672 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6673 {
6674 /* If this is a dynamic link, we should have created a
6675 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6676 in in mips_elf_create_dynamic_sections.
6677 Otherwise, we should define the symbol with a value of 0.
6678 FIXME: It should probably get into the symbol table
6679 somehow as well. */
6680 BFD_ASSERT (! info->shared);
6681 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6682 symbol = 0;
6683 }
6684 else
6685 {
6686 if (! ((*info->callbacks->undefined_symbol)
6687 (info, h->root.root.root.string, input_bfd,
6688 input_section, relocation->r_offset,
6689 (!info->shared || info->no_undefined
6690 || ELF_ST_VISIBILITY (h->root.other)))))
6691 return bfd_reloc_undefined;
6692 symbol = 0;
6693 }
6694
6695 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6696 }
6697
6698 /* If this is a 32-bit call to a 16-bit function with a stub, we
6699 need to redirect the call to the stub, unless we're already *in*
6700 a stub. */
6701 if (r_type != R_MIPS16_26 && !info->relocateable
6702 && ((h != NULL && h->fn_stub != NULL)
6703 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6704 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6705 && !mips_elf_stub_section_p (input_bfd, input_section))
6706 {
6707 /* This is a 32-bit call to a 16-bit function. We should
6708 have already noticed that we were going to need the
6709 stub. */
6710 if (local_p)
6711 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6712 else
6713 {
6714 BFD_ASSERT (h->need_fn_stub);
6715 sec = h->fn_stub;
6716 }
6717
6718 symbol = sec->output_section->vma + sec->output_offset;
6719 }
6720 /* If this is a 16-bit call to a 32-bit function with a stub, we
6721 need to redirect the call to the stub. */
6722 else if (r_type == R_MIPS16_26 && !info->relocateable
6723 && h != NULL
6724 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6725 && !target_is_16_bit_code_p)
6726 {
6727 /* If both call_stub and call_fp_stub are defined, we can figure
6728 out which one to use by seeing which one appears in the input
6729 file. */
6730 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6731 {
6732 asection *o;
6733
6734 sec = NULL;
6735 for (o = input_bfd->sections; o != NULL; o = o->next)
6736 {
6737 if (strncmp (bfd_get_section_name (input_bfd, o),
6738 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6739 {
6740 sec = h->call_fp_stub;
6741 break;
6742 }
6743 }
6744 if (sec == NULL)
6745 sec = h->call_stub;
6746 }
6747 else if (h->call_stub != NULL)
6748 sec = h->call_stub;
6749 else
6750 sec = h->call_fp_stub;
6751
6752 BFD_ASSERT (sec->_raw_size > 0);
6753 symbol = sec->output_section->vma + sec->output_offset;
6754 }
6755
6756 /* Calls from 16-bit code to 32-bit code and vice versa require the
6757 special jalx instruction. */
6758 *require_jalxp = (!info->relocateable
6759 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6760
6761 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6762 local_sections, true);
6763
6764 /* If we haven't already determined the GOT offset, or the GP value,
6765 and we're going to need it, get it now. */
6766 switch (r_type)
6767 {
6768 case R_MIPS_CALL16:
6769 case R_MIPS_GOT16:
6770 case R_MIPS_GOT_DISP:
6771 case R_MIPS_GOT_HI16:
6772 case R_MIPS_CALL_HI16:
6773 case R_MIPS_GOT_LO16:
6774 case R_MIPS_CALL_LO16:
6775 /* Find the index into the GOT where this value is located. */
6776 if (!local_p)
6777 {
6778 BFD_ASSERT (addend == 0);
6779 g = mips_elf_global_got_index
6780 (elf_hash_table (info)->dynobj,
6781 (struct elf_link_hash_entry *) h);
6782 if (! elf_hash_table(info)->dynamic_sections_created
6783 || (info->shared
6784 && (info->symbolic || h->root.dynindx == -1)
6785 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6786 {
6787 /* This is a static link or a -Bsymbolic link. The
6788 symbol is defined locally, or was forced to be local.
6789 We must initialize this entry in the GOT. */
6790 asection *sgot = mips_elf_got_section(elf_hash_table
6791 (info)->dynobj);
6792 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6793 symbol + addend, sgot->contents + g);
6794 }
6795 }
6796 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6797 /* There's no need to create a local GOT entry here; the
6798 calculation for a local GOT16 entry does not involve G. */
6799 break;
6800 else
6801 {
6802 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6803 if (g == (bfd_vma) -1)
6804 return false;
6805 }
6806
6807 /* Convert GOT indices to actual offsets. */
6808 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6809 abfd, g);
6810 break;
6811
6812 case R_MIPS_HI16:
6813 case R_MIPS_LO16:
6814 case R_MIPS_GPREL16:
6815 case R_MIPS_GPREL32:
6816 case R_MIPS_LITERAL:
6817 gp0 = _bfd_get_gp_value (input_bfd);
6818 gp = _bfd_get_gp_value (abfd);
6819 break;
6820
6821 default:
6822 break;
6823 }
6824
6825 /* Figure out what kind of relocation is being performed. */
6826 switch (r_type)
6827 {
6828 case R_MIPS_NONE:
6829 return bfd_reloc_continue;
6830
6831 case R_MIPS_16:
6832 value = symbol + mips_elf_sign_extend (addend, 16);
6833 overflowed_p = mips_elf_overflow_p (value, 16);
6834 break;
6835
6836 case R_MIPS_32:
6837 case R_MIPS_REL32:
6838 case R_MIPS_64:
6839 if ((info->shared
6840 || (elf_hash_table (info)->dynamic_sections_created
6841 && h != NULL
6842 && ((h->root.elf_link_hash_flags
6843 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6844 && ((h->root.elf_link_hash_flags
6845 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6846 && r_symndx != 0
6847 && (input_section->flags & SEC_ALLOC) != 0)
6848 {
6849 /* If we're creating a shared library, or this relocation is
6850 against a symbol in a shared library, then we can't know
6851 where the symbol will end up. So, we create a relocation
6852 record in the output, and leave the job up to the dynamic
6853 linker. */
6854 value = addend;
6855 if (!mips_elf_create_dynamic_relocation (abfd,
6856 info,
6857 relocation,
6858 h,
6859 sec,
6860 symbol,
6861 &value,
6862 input_section))
6863 return false;
6864 }
6865 else
6866 {
6867 if (r_type != R_MIPS_REL32)
6868 value = symbol + addend;
6869 else
6870 value = addend;
6871 }
6872 value &= howto->dst_mask;
6873 break;
6874
6875 case R_MIPS_PC32:
6876 case R_MIPS_PC64:
6877 case R_MIPS_GNU_REL_LO16:
6878 value = symbol + addend - p;
6879 value &= howto->dst_mask;
6880 break;
6881
6882 case R_MIPS_GNU_REL16_S2:
6883 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6884 overflowed_p = mips_elf_overflow_p (value, 18);
6885 value = (value >> 2) & howto->dst_mask;
6886 break;
6887
6888 case R_MIPS_GNU_REL_HI16:
6889 value = mips_elf_high (addend + symbol - p);
6890 value &= howto->dst_mask;
6891 break;
6892
6893 case R_MIPS16_26:
6894 /* The calculation for R_MIPS16_26 is just the same as for an
6895 R_MIPS_26. It's only the storage of the relocated field into
6896 the output file that's different. That's handled in
6897 mips_elf_perform_relocation. So, we just fall through to the
6898 R_MIPS_26 case here. */
6899 case R_MIPS_26:
6900 if (local_p)
6901 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6902 else
6903 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6904 value &= howto->dst_mask;
6905 break;
6906
6907 case R_MIPS_HI16:
6908 if (!gp_disp_p)
6909 {
6910 value = mips_elf_high (addend + symbol);
6911 value &= howto->dst_mask;
6912 }
6913 else
6914 {
6915 value = mips_elf_high (addend + gp - p);
6916 overflowed_p = mips_elf_overflow_p (value, 16);
6917 }
6918 break;
6919
6920 case R_MIPS_LO16:
6921 if (!gp_disp_p)
6922 value = (symbol + addend) & howto->dst_mask;
6923 else
6924 {
6925 value = addend + gp - p + 4;
6926 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6927 for overflow. But, on, say, Irix 5, relocations against
6928 _gp_disp are normally generated from the .cpload
6929 pseudo-op. It generates code that normally looks like
6930 this:
6931
6932 lui $gp,%hi(_gp_disp)
6933 addiu $gp,$gp,%lo(_gp_disp)
6934 addu $gp,$gp,$t9
6935
6936 Here $t9 holds the address of the function being called,
6937 as required by the MIPS ELF ABI. The R_MIPS_LO16
6938 relocation can easily overflow in this situation, but the
6939 R_MIPS_HI16 relocation will handle the overflow.
6940 Therefore, we consider this a bug in the MIPS ABI, and do
6941 not check for overflow here. */
6942 }
6943 break;
6944
6945 case R_MIPS_LITERAL:
6946 /* Because we don't merge literal sections, we can handle this
6947 just like R_MIPS_GPREL16. In the long run, we should merge
6948 shared literals, and then we will need to additional work
6949 here. */
6950
6951 /* Fall through. */
6952
6953 case R_MIPS16_GPREL:
6954 /* The R_MIPS16_GPREL performs the same calculation as
6955 R_MIPS_GPREL16, but stores the relocated bits in a different
6956 order. We don't need to do anything special here; the
6957 differences are handled in mips_elf_perform_relocation. */
6958 case R_MIPS_GPREL16:
6959 if (local_p)
6960 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6961 else
6962 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6963 overflowed_p = mips_elf_overflow_p (value, 16);
6964 break;
6965
6966 case R_MIPS_GOT16:
6967 case R_MIPS_CALL16:
6968 if (local_p)
6969 {
6970 boolean forced;
6971
6972 /* The special case is when the symbol is forced to be local. We
6973 need the full address in the GOT since no R_MIPS_LO16 relocation
6974 follows. */
6975 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6976 local_sections, false);
6977 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6978 if (value == (bfd_vma) -1)
6979 return false;
6980 value
6981 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6982 abfd,
6983 value);
6984 overflowed_p = mips_elf_overflow_p (value, 16);
6985 break;
6986 }
6987
6988 /* Fall through. */
6989
6990 case R_MIPS_GOT_DISP:
6991 value = g;
6992 overflowed_p = mips_elf_overflow_p (value, 16);
6993 break;
6994
6995 case R_MIPS_GPREL32:
6996 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6997 break;
6998
6999 case R_MIPS_PC16:
7000 value = mips_elf_sign_extend (addend, 16) + symbol - p;
7001 overflowed_p = mips_elf_overflow_p (value, 16);
7002 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7003 break;
7004
7005 case R_MIPS_GOT_HI16:
7006 case R_MIPS_CALL_HI16:
7007 /* We're allowed to handle these two relocations identically.
7008 The dynamic linker is allowed to handle the CALL relocations
7009 differently by creating a lazy evaluation stub. */
7010 value = g;
7011 value = mips_elf_high (value);
7012 value &= howto->dst_mask;
7013 break;
7014
7015 case R_MIPS_GOT_LO16:
7016 case R_MIPS_CALL_LO16:
7017 value = g & howto->dst_mask;
7018 break;
7019
7020 case R_MIPS_GOT_PAGE:
7021 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
7022 if (value == (bfd_vma) -1)
7023 return false;
7024 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
7025 abfd,
7026 value);
7027 overflowed_p = mips_elf_overflow_p (value, 16);
7028 break;
7029
7030 case R_MIPS_GOT_OFST:
7031 mips_elf_got_page (abfd, info, symbol + addend, &value);
7032 overflowed_p = mips_elf_overflow_p (value, 16);
7033 break;
7034
7035 case R_MIPS_SUB:
7036 value = symbol - addend;
7037 value &= howto->dst_mask;
7038 break;
7039
7040 case R_MIPS_HIGHER:
7041 value = mips_elf_higher (addend + symbol);
7042 value &= howto->dst_mask;
7043 break;
7044
7045 case R_MIPS_HIGHEST:
7046 value = mips_elf_highest (addend + symbol);
7047 value &= howto->dst_mask;
7048 break;
7049
7050 case R_MIPS_SCN_DISP:
7051 value = symbol + addend - sec->output_offset;
7052 value &= howto->dst_mask;
7053 break;
7054
7055 case R_MIPS_PJUMP:
7056 case R_MIPS_JALR:
7057 /* Both of these may be ignored. R_MIPS_JALR is an optimization
7058 hint; we could improve performance by honoring that hint. */
7059 return bfd_reloc_continue;
7060
7061 case R_MIPS_GNU_VTINHERIT:
7062 case R_MIPS_GNU_VTENTRY:
7063 /* We don't do anything with these at present. */
7064 return bfd_reloc_continue;
7065
7066 default:
7067 /* An unrecognized relocation type. */
7068 return bfd_reloc_notsupported;
7069 }
7070
7071 /* Store the VALUE for our caller. */
7072 *valuep = value;
7073 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
7074 }
7075
7076 /* Obtain the field relocated by RELOCATION. */
7077
7078 static bfd_vma
7079 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
7080 reloc_howto_type *howto;
7081 const Elf_Internal_Rela *relocation;
7082 bfd *input_bfd;
7083 bfd_byte *contents;
7084 {
7085 bfd_vma x;
7086 bfd_byte *location = contents + relocation->r_offset;
7087
7088 /* Obtain the bytes. */
7089 x = bfd_get (((bfd_vma)(8 * bfd_get_reloc_size (howto))), input_bfd, location);
7090
7091 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
7092 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
7093 && bfd_little_endian (input_bfd))
7094 /* The two 16-bit words will be reversed on a little-endian
7095 system. See mips_elf_perform_relocation for more details. */
7096 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7097
7098 return x;
7099 }
7100
7101 /* It has been determined that the result of the RELOCATION is the
7102 VALUE. Use HOWTO to place VALUE into the output file at the
7103 appropriate position. The SECTION is the section to which the
7104 relocation applies. If REQUIRE_JALX is true, then the opcode used
7105 for the relocation must be either JAL or JALX, and it is
7106 unconditionally converted to JALX.
7107
7108 Returns false if anything goes wrong. */
7109
7110 static boolean
7111 mips_elf_perform_relocation (info, howto, relocation, value,
7112 input_bfd, input_section,
7113 contents, require_jalx)
7114 struct bfd_link_info *info;
7115 reloc_howto_type *howto;
7116 const Elf_Internal_Rela *relocation;
7117 bfd_vma value;
7118 bfd *input_bfd;
7119 asection *input_section;
7120 bfd_byte *contents;
7121 boolean require_jalx;
7122 {
7123 bfd_vma x;
7124 bfd_byte *location;
7125 int r_type = ELF32_R_TYPE (relocation->r_info);
7126
7127 /* Figure out where the relocation is occurring. */
7128 location = contents + relocation->r_offset;
7129
7130 /* Obtain the current value. */
7131 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
7132
7133 /* Clear the field we are setting. */
7134 x &= ~howto->dst_mask;
7135
7136 /* If this is the R_MIPS16_26 relocation, we must store the
7137 value in a funny way. */
7138 if (r_type == R_MIPS16_26)
7139 {
7140 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
7141 Most mips16 instructions are 16 bits, but these instructions
7142 are 32 bits.
7143
7144 The format of these instructions is:
7145
7146 +--------------+--------------------------------+
7147 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
7148 +--------------+--------------------------------+
7149 ! Immediate 15:0 !
7150 +-----------------------------------------------+
7151
7152 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
7153 Note that the immediate value in the first word is swapped.
7154
7155 When producing a relocateable object file, R_MIPS16_26 is
7156 handled mostly like R_MIPS_26. In particular, the addend is
7157 stored as a straight 26-bit value in a 32-bit instruction.
7158 (gas makes life simpler for itself by never adjusting a
7159 R_MIPS16_26 reloc to be against a section, so the addend is
7160 always zero). However, the 32 bit instruction is stored as 2
7161 16-bit values, rather than a single 32-bit value. In a
7162 big-endian file, the result is the same; in a little-endian
7163 file, the two 16-bit halves of the 32 bit value are swapped.
7164 This is so that a disassembler can recognize the jal
7165 instruction.
7166
7167 When doing a final link, R_MIPS16_26 is treated as a 32 bit
7168 instruction stored as two 16-bit values. The addend A is the
7169 contents of the targ26 field. The calculation is the same as
7170 R_MIPS_26. When storing the calculated value, reorder the
7171 immediate value as shown above, and don't forget to store the
7172 value as two 16-bit values.
7173
7174 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
7175 defined as
7176
7177 big-endian:
7178 +--------+----------------------+
7179 | | |
7180 | | targ26-16 |
7181 |31 26|25 0|
7182 +--------+----------------------+
7183
7184 little-endian:
7185 +----------+------+-------------+
7186 | | | |
7187 | sub1 | | sub2 |
7188 |0 9|10 15|16 31|
7189 +----------+--------------------+
7190 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
7191 ((sub1 << 16) | sub2)).
7192
7193 When producing a relocateable object file, the calculation is
7194 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7195 When producing a fully linked file, the calculation is
7196 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7197 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
7198
7199 if (!info->relocateable)
7200 /* Shuffle the bits according to the formula above. */
7201 value = (((value & 0x1f0000) << 5)
7202 | ((value & 0x3e00000) >> 5)
7203 | (value & 0xffff));
7204 }
7205 else if (r_type == R_MIPS16_GPREL)
7206 {
7207 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
7208 mode. A typical instruction will have a format like this:
7209
7210 +--------------+--------------------------------+
7211 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
7212 +--------------+--------------------------------+
7213 ! Major ! rx ! ry ! Imm 4:0 !
7214 +--------------+--------------------------------+
7215
7216 EXTEND is the five bit value 11110. Major is the instruction
7217 opcode.
7218
7219 This is handled exactly like R_MIPS_GPREL16, except that the
7220 addend is retrieved and stored as shown in this diagram; that
7221 is, the Imm fields above replace the V-rel16 field.
7222
7223 All we need to do here is shuffle the bits appropriately. As
7224 above, the two 16-bit halves must be swapped on a
7225 little-endian system. */
7226 value = (((value & 0x7e0) << 16)
7227 | ((value & 0xf800) << 5)
7228 | (value & 0x1f));
7229 }
7230
7231 /* Set the field. */
7232 x |= (value & howto->dst_mask);
7233
7234 /* If required, turn JAL into JALX. */
7235 if (require_jalx)
7236 {
7237 boolean ok;
7238 bfd_vma opcode = x >> 26;
7239 bfd_vma jalx_opcode;
7240
7241 /* Check to see if the opcode is already JAL or JALX. */
7242 if (r_type == R_MIPS16_26)
7243 {
7244 ok = ((opcode == 0x6) || (opcode == 0x7));
7245 jalx_opcode = 0x7;
7246 }
7247 else
7248 {
7249 ok = ((opcode == 0x3) || (opcode == 0x1d));
7250 jalx_opcode = 0x1d;
7251 }
7252
7253 /* If the opcode is not JAL or JALX, there's a problem. */
7254 if (!ok)
7255 {
7256 (*_bfd_error_handler)
7257 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
7258 bfd_archive_filename (input_bfd),
7259 input_section->name,
7260 (unsigned long) relocation->r_offset);
7261 bfd_set_error (bfd_error_bad_value);
7262 return false;
7263 }
7264
7265 /* Make this the JALX opcode. */
7266 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
7267 }
7268
7269 /* Swap the high- and low-order 16 bits on little-endian systems
7270 when doing a MIPS16 relocation. */
7271 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
7272 && bfd_little_endian (input_bfd))
7273 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7274
7275 /* Put the value into the output. */
7276 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
7277 return true;
7278 }
7279
7280 /* Returns true if SECTION is a MIPS16 stub section. */
7281
7282 static boolean
7283 mips_elf_stub_section_p (abfd, section)
7284 bfd *abfd ATTRIBUTE_UNUSED;
7285 asection *section;
7286 {
7287 const char *name = bfd_get_section_name (abfd, section);
7288
7289 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
7290 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7291 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7292 }
7293
7294 /* Relocate a MIPS ELF section. */
7295
7296 boolean
7297 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
7298 contents, relocs, local_syms, local_sections)
7299 bfd *output_bfd;
7300 struct bfd_link_info *info;
7301 bfd *input_bfd;
7302 asection *input_section;
7303 bfd_byte *contents;
7304 Elf_Internal_Rela *relocs;
7305 Elf_Internal_Sym *local_syms;
7306 asection **local_sections;
7307 {
7308 Elf_Internal_Rela *rel;
7309 const Elf_Internal_Rela *relend;
7310 bfd_vma addend = 0;
7311 boolean use_saved_addend_p = false;
7312 struct elf_backend_data *bed;
7313
7314 bed = get_elf_backend_data (output_bfd);
7315 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7316 for (rel = relocs; rel < relend; ++rel)
7317 {
7318 const char *name;
7319 bfd_vma value;
7320 reloc_howto_type *howto;
7321 boolean require_jalx;
7322 /* True if the relocation is a RELA relocation, rather than a
7323 REL relocation. */
7324 boolean rela_relocation_p = true;
7325 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
7326 const char * msg = (const char *) NULL;
7327
7328 /* Find the relocation howto for this relocation. */
7329 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7330 {
7331 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7332 64-bit code, but make sure all their addresses are in the
7333 lowermost or uppermost 32-bit section of the 64-bit address
7334 space. Thus, when they use an R_MIPS_64 they mean what is
7335 usually meant by R_MIPS_32, with the exception that the
7336 stored value is sign-extended to 64 bits. */
7337 howto = elf_mips_howto_table_rel + R_MIPS_32;
7338
7339 /* On big-endian systems, we need to lie about the position
7340 of the reloc. */
7341 if (bfd_big_endian (input_bfd))
7342 rel->r_offset += 4;
7343 }
7344 else
7345 howto = mips_rtype_to_howto (r_type);
7346
7347 if (!use_saved_addend_p)
7348 {
7349 Elf_Internal_Shdr *rel_hdr;
7350
7351 /* If these relocations were originally of the REL variety,
7352 we must pull the addend out of the field that will be
7353 relocated. Otherwise, we simply use the contents of the
7354 RELA relocation. To determine which flavor or relocation
7355 this is, we depend on the fact that the INPUT_SECTION's
7356 REL_HDR is read before its REL_HDR2. */
7357 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7358 if ((size_t) (rel - relocs)
7359 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7360 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7361 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7362 {
7363 /* Note that this is a REL relocation. */
7364 rela_relocation_p = false;
7365
7366 /* Get the addend, which is stored in the input file. */
7367 addend = mips_elf_obtain_contents (howto,
7368 rel,
7369 input_bfd,
7370 contents);
7371 addend &= howto->src_mask;
7372
7373 /* For some kinds of relocations, the ADDEND is a
7374 combination of the addend stored in two different
7375 relocations. */
7376 if (r_type == R_MIPS_HI16
7377 || r_type == R_MIPS_GNU_REL_HI16
7378 || (r_type == R_MIPS_GOT16
7379 && mips_elf_local_relocation_p (input_bfd, rel,
7380 local_sections, false)))
7381 {
7382 bfd_vma l;
7383 const Elf_Internal_Rela *lo16_relocation;
7384 reloc_howto_type *lo16_howto;
7385 unsigned int lo;
7386
7387 /* The combined value is the sum of the HI16 addend,
7388 left-shifted by sixteen bits, and the LO16
7389 addend, sign extended. (Usually, the code does
7390 a `lui' of the HI16 value, and then an `addiu' of
7391 the LO16 value.)
7392
7393 Scan ahead to find a matching LO16 relocation. */
7394 if (r_type == R_MIPS_GNU_REL_HI16)
7395 lo = R_MIPS_GNU_REL_LO16;
7396 else
7397 lo = R_MIPS_LO16;
7398 lo16_relocation
7399 = mips_elf_next_relocation (lo, rel, relend);
7400 if (lo16_relocation == NULL)
7401 return false;
7402
7403 /* Obtain the addend kept there. */
7404 lo16_howto = mips_rtype_to_howto (lo);
7405 l = mips_elf_obtain_contents (lo16_howto,
7406 lo16_relocation,
7407 input_bfd, contents);
7408 l &= lo16_howto->src_mask;
7409 l = mips_elf_sign_extend (l, 16);
7410
7411 addend <<= 16;
7412
7413 /* Compute the combined addend. */
7414 addend += l;
7415 }
7416 else if (r_type == R_MIPS16_GPREL)
7417 {
7418 /* The addend is scrambled in the object file. See
7419 mips_elf_perform_relocation for details on the
7420 format. */
7421 addend = (((addend & 0x1f0000) >> 5)
7422 | ((addend & 0x7e00000) >> 16)
7423 | (addend & 0x1f));
7424 }
7425 }
7426 else
7427 addend = rel->r_addend;
7428 }
7429
7430 if (info->relocateable)
7431 {
7432 Elf_Internal_Sym *sym;
7433 unsigned long r_symndx;
7434
7435 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
7436 && bfd_big_endian (input_bfd))
7437 rel->r_offset -= 4;
7438
7439 /* Since we're just relocating, all we need to do is copy
7440 the relocations back out to the object file, unless
7441 they're against a section symbol, in which case we need
7442 to adjust by the section offset, or unless they're GP
7443 relative in which case we need to adjust by the amount
7444 that we're adjusting GP in this relocateable object. */
7445
7446 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
7447 false))
7448 /* There's nothing to do for non-local relocations. */
7449 continue;
7450
7451 if (r_type == R_MIPS16_GPREL
7452 || r_type == R_MIPS_GPREL16
7453 || r_type == R_MIPS_GPREL32
7454 || r_type == R_MIPS_LITERAL)
7455 addend -= (_bfd_get_gp_value (output_bfd)
7456 - _bfd_get_gp_value (input_bfd));
7457 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7458 || r_type == R_MIPS_GNU_REL16_S2)
7459 /* The addend is stored without its two least
7460 significant bits (which are always zero.) In a
7461 non-relocateable link, calculate_relocation will do
7462 this shift; here, we must do it ourselves. */
7463 addend <<= 2;
7464
7465 r_symndx = ELF32_R_SYM (rel->r_info);
7466 sym = local_syms + r_symndx;
7467 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7468 /* Adjust the addend appropriately. */
7469 addend += local_sections[r_symndx]->output_offset;
7470
7471 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
7472 then we only want to write out the high-order 16 bits.
7473 The subsequent R_MIPS_LO16 will handle the low-order bits. */
7474 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
7475 || r_type == R_MIPS_GNU_REL_HI16)
7476 addend = mips_elf_high (addend);
7477 /* If the relocation is for an R_MIPS_26 relocation, then
7478 the two low-order bits are not stored in the object file;
7479 they are implicitly zero. */
7480 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7481 || r_type == R_MIPS_GNU_REL16_S2)
7482 addend >>= 2;
7483
7484 if (rela_relocation_p)
7485 /* If this is a RELA relocation, just update the addend.
7486 We have to cast away constness for REL. */
7487 rel->r_addend = addend;
7488 else
7489 {
7490 /* Otherwise, we have to write the value back out. Note
7491 that we use the source mask, rather than the
7492 destination mask because the place to which we are
7493 writing will be source of the addend in the final
7494 link. */
7495 addend &= howto->src_mask;
7496
7497 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7498 /* See the comment above about using R_MIPS_64 in the 32-bit
7499 ABI. Here, we need to update the addend. It would be
7500 possible to get away with just using the R_MIPS_32 reloc
7501 but for endianness. */
7502 {
7503 bfd_vma sign_bits;
7504 bfd_vma low_bits;
7505 bfd_vma high_bits;
7506
7507 if (addend & ((bfd_vma) 1 << 31))
7508 #ifdef BFD64
7509 sign_bits = ((bfd_vma) 1 << 32) - 1;
7510 #else
7511 sign_bits = -1;
7512 #endif
7513 else
7514 sign_bits = 0;
7515
7516 /* If we don't know that we have a 64-bit type,
7517 do two separate stores. */
7518 if (bfd_big_endian (input_bfd))
7519 {
7520 /* Store the sign-bits (which are most significant)
7521 first. */
7522 low_bits = sign_bits;
7523 high_bits = addend;
7524 }
7525 else
7526 {
7527 low_bits = addend;
7528 high_bits = sign_bits;
7529 }
7530 bfd_put_32 (input_bfd, low_bits,
7531 contents + rel->r_offset);
7532 bfd_put_32 (input_bfd, high_bits,
7533 contents + rel->r_offset + 4);
7534 continue;
7535 }
7536
7537 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7538 input_bfd, input_section,
7539 contents, false))
7540 return false;
7541 }
7542
7543 /* Go on to the next relocation. */
7544 continue;
7545 }
7546
7547 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7548 relocations for the same offset. In that case we are
7549 supposed to treat the output of each relocation as the addend
7550 for the next. */
7551 if (rel + 1 < relend
7552 && rel->r_offset == rel[1].r_offset
7553 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7554 use_saved_addend_p = true;
7555 else
7556 use_saved_addend_p = false;
7557
7558 /* Figure out what value we are supposed to relocate. */
7559 switch (mips_elf_calculate_relocation (output_bfd,
7560 input_bfd,
7561 input_section,
7562 info,
7563 rel,
7564 addend,
7565 howto,
7566 local_syms,
7567 local_sections,
7568 &value,
7569 &name,
7570 &require_jalx))
7571 {
7572 case bfd_reloc_continue:
7573 /* There's nothing to do. */
7574 continue;
7575
7576 case bfd_reloc_undefined:
7577 /* mips_elf_calculate_relocation already called the
7578 undefined_symbol callback. There's no real point in
7579 trying to perform the relocation at this point, so we
7580 just skip ahead to the next relocation. */
7581 continue;
7582
7583 case bfd_reloc_notsupported:
7584 msg = _("internal error: unsupported relocation error");
7585 info->callbacks->warning
7586 (info, msg, name, input_bfd, input_section, rel->r_offset);
7587 return false;
7588
7589 case bfd_reloc_overflow:
7590 if (use_saved_addend_p)
7591 /* Ignore overflow until we reach the last relocation for
7592 a given location. */
7593 ;
7594 else
7595 {
7596 BFD_ASSERT (name != NULL);
7597 if (! ((*info->callbacks->reloc_overflow)
7598 (info, name, howto->name, (bfd_vma) 0,
7599 input_bfd, input_section, rel->r_offset)))
7600 return false;
7601 }
7602 break;
7603
7604 case bfd_reloc_ok:
7605 break;
7606
7607 default:
7608 abort ();
7609 break;
7610 }
7611
7612 /* If we've got another relocation for the address, keep going
7613 until we reach the last one. */
7614 if (use_saved_addend_p)
7615 {
7616 addend = value;
7617 continue;
7618 }
7619
7620 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7621 /* See the comment above about using R_MIPS_64 in the 32-bit
7622 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7623 that calculated the right value. Now, however, we
7624 sign-extend the 32-bit result to 64-bits, and store it as a
7625 64-bit value. We are especially generous here in that we
7626 go to extreme lengths to support this usage on systems with
7627 only a 32-bit VMA. */
7628 {
7629 bfd_vma sign_bits;
7630 bfd_vma low_bits;
7631 bfd_vma high_bits;
7632
7633 if (value & ((bfd_vma) 1 << 31))
7634 #ifdef BFD64
7635 sign_bits = ((bfd_vma) 1 << 32) - 1;
7636 #else
7637 sign_bits = -1;
7638 #endif
7639 else
7640 sign_bits = 0;
7641
7642 /* If we don't know that we have a 64-bit type,
7643 do two separate stores. */
7644 if (bfd_big_endian (input_bfd))
7645 {
7646 /* Undo what we did above. */
7647 rel->r_offset -= 4;
7648 /* Store the sign-bits (which are most significant)
7649 first. */
7650 low_bits = sign_bits;
7651 high_bits = value;
7652 }
7653 else
7654 {
7655 low_bits = value;
7656 high_bits = sign_bits;
7657 }
7658 bfd_put_32 (input_bfd, low_bits,
7659 contents + rel->r_offset);
7660 bfd_put_32 (input_bfd, high_bits,
7661 contents + rel->r_offset + 4);
7662 continue;
7663 }
7664
7665 /* Actually perform the relocation. */
7666 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7667 input_section, contents,
7668 require_jalx))
7669 return false;
7670 }
7671
7672 return true;
7673 }
7674
7675 /* This hook function is called before the linker writes out a global
7676 symbol. We mark symbols as small common if appropriate. This is
7677 also where we undo the increment of the value for a mips16 symbol. */
7678
7679 boolean
7680 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7681 bfd *abfd ATTRIBUTE_UNUSED;
7682 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7683 const char *name ATTRIBUTE_UNUSED;
7684 Elf_Internal_Sym *sym;
7685 asection *input_sec;
7686 {
7687 /* If we see a common symbol, which implies a relocatable link, then
7688 if a symbol was small common in an input file, mark it as small
7689 common in the output file. */
7690 if (sym->st_shndx == SHN_COMMON
7691 && strcmp (input_sec->name, ".scommon") == 0)
7692 sym->st_shndx = SHN_MIPS_SCOMMON;
7693
7694 if (sym->st_other == STO_MIPS16
7695 && (sym->st_value & 1) != 0)
7696 --sym->st_value;
7697
7698 return true;
7699 }
7700 \f
7701 /* Functions for the dynamic linker. */
7702
7703 /* The name of the dynamic interpreter. This is put in the .interp
7704 section. */
7705
7706 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7707 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7708 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7709 : "/usr/lib/libc.so.1")
7710
7711 /* Create dynamic sections when linking against a dynamic object. */
7712
7713 boolean
7714 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7715 bfd *abfd;
7716 struct bfd_link_info *info;
7717 {
7718 struct elf_link_hash_entry *h;
7719 flagword flags;
7720 register asection *s;
7721 const char * const *namep;
7722
7723 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7724 | SEC_LINKER_CREATED | SEC_READONLY);
7725
7726 /* Mips ABI requests the .dynamic section to be read only. */
7727 s = bfd_get_section_by_name (abfd, ".dynamic");
7728 if (s != NULL)
7729 {
7730 if (! bfd_set_section_flags (abfd, s, flags))
7731 return false;
7732 }
7733
7734 /* We need to create .got section. */
7735 if (! mips_elf_create_got_section (abfd, info))
7736 return false;
7737
7738 /* Create the .msym section on IRIX6. It is used by the dynamic
7739 linker to speed up dynamic relocations, and to avoid computing
7740 the ELF hash for symbols. */
7741 if (IRIX_COMPAT (abfd) == ict_irix6
7742 && !mips_elf_create_msym_section (abfd))
7743 return false;
7744
7745 /* Create .stub section. */
7746 if (bfd_get_section_by_name (abfd,
7747 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7748 {
7749 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7750 if (s == NULL
7751 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7752 || ! bfd_set_section_alignment (abfd, s,
7753 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7754 return false;
7755 }
7756
7757 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7758 && !info->shared
7759 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7760 {
7761 s = bfd_make_section (abfd, ".rld_map");
7762 if (s == NULL
7763 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
7764 || ! bfd_set_section_alignment (abfd, s,
7765 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7766 return false;
7767 }
7768
7769 /* On IRIX5, we adjust add some additional symbols and change the
7770 alignments of several sections. There is no ABI documentation
7771 indicating that this is necessary on IRIX6, nor any evidence that
7772 the linker takes such action. */
7773 if (IRIX_COMPAT (abfd) == ict_irix5)
7774 {
7775 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7776 {
7777 h = NULL;
7778 if (! (_bfd_generic_link_add_one_symbol
7779 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7780 (bfd_vma) 0, (const char *) NULL, false,
7781 get_elf_backend_data (abfd)->collect,
7782 (struct bfd_link_hash_entry **) &h)))
7783 return false;
7784 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7785 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7786 h->type = STT_SECTION;
7787
7788 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7789 return false;
7790 }
7791
7792 /* We need to create a .compact_rel section. */
7793 if (SGI_COMPAT (abfd))
7794 {
7795 if (!mips_elf_create_compact_rel_section (abfd, info))
7796 return false;
7797 }
7798
7799 /* Change aligments of some sections. */
7800 s = bfd_get_section_by_name (abfd, ".hash");
7801 if (s != NULL)
7802 bfd_set_section_alignment (abfd, s, 4);
7803 s = bfd_get_section_by_name (abfd, ".dynsym");
7804 if (s != NULL)
7805 bfd_set_section_alignment (abfd, s, 4);
7806 s = bfd_get_section_by_name (abfd, ".dynstr");
7807 if (s != NULL)
7808 bfd_set_section_alignment (abfd, s, 4);
7809 s = bfd_get_section_by_name (abfd, ".reginfo");
7810 if (s != NULL)
7811 bfd_set_section_alignment (abfd, s, 4);
7812 s = bfd_get_section_by_name (abfd, ".dynamic");
7813 if (s != NULL)
7814 bfd_set_section_alignment (abfd, s, 4);
7815 }
7816
7817 if (!info->shared)
7818 {
7819 h = NULL;
7820 if (SGI_COMPAT (abfd))
7821 {
7822 if (!(_bfd_generic_link_add_one_symbol
7823 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7824 (bfd_vma) 0, (const char *) NULL, false,
7825 get_elf_backend_data (abfd)->collect,
7826 (struct bfd_link_hash_entry **) &h)))
7827 return false;
7828 }
7829 else
7830 {
7831 /* For normal mips it is _DYNAMIC_LINKING. */
7832 if (!(_bfd_generic_link_add_one_symbol
7833 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7834 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7835 get_elf_backend_data (abfd)->collect,
7836 (struct bfd_link_hash_entry **) &h)))
7837 return false;
7838 }
7839 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7840 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7841 h->type = STT_SECTION;
7842
7843 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7844 return false;
7845
7846 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7847 {
7848 /* __rld_map is a four byte word located in the .data section
7849 and is filled in by the rtld to contain a pointer to
7850 the _r_debug structure. Its symbol value will be set in
7851 mips_elf_finish_dynamic_symbol. */
7852 s = bfd_get_section_by_name (abfd, ".rld_map");
7853 BFD_ASSERT (s != NULL);
7854
7855 h = NULL;
7856 if (SGI_COMPAT (abfd))
7857 {
7858 if (!(_bfd_generic_link_add_one_symbol
7859 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7860 (bfd_vma) 0, (const char *) NULL, false,
7861 get_elf_backend_data (abfd)->collect,
7862 (struct bfd_link_hash_entry **) &h)))
7863 return false;
7864 }
7865 else
7866 {
7867 /* For normal mips the symbol is __RLD_MAP. */
7868 if (!(_bfd_generic_link_add_one_symbol
7869 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7870 (bfd_vma) 0, (const char *) NULL, false,
7871 get_elf_backend_data (abfd)->collect,
7872 (struct bfd_link_hash_entry **) &h)))
7873 return false;
7874 }
7875 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7876 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7877 h->type = STT_OBJECT;
7878
7879 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7880 return false;
7881 }
7882 }
7883
7884 return true;
7885 }
7886
7887 /* Create the .compact_rel section. */
7888
7889 static boolean
7890 mips_elf_create_compact_rel_section (abfd, info)
7891 bfd *abfd;
7892 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7893 {
7894 flagword flags;
7895 register asection *s;
7896
7897 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7898 {
7899 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7900 | SEC_READONLY);
7901
7902 s = bfd_make_section (abfd, ".compact_rel");
7903 if (s == NULL
7904 || ! bfd_set_section_flags (abfd, s, flags)
7905 || ! bfd_set_section_alignment (abfd, s,
7906 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7907 return false;
7908
7909 s->_raw_size = sizeof (Elf32_External_compact_rel);
7910 }
7911
7912 return true;
7913 }
7914
7915 /* Create the .got section to hold the global offset table. */
7916
7917 static boolean
7918 mips_elf_create_got_section (abfd, info)
7919 bfd *abfd;
7920 struct bfd_link_info *info;
7921 {
7922 flagword flags;
7923 register asection *s;
7924 struct elf_link_hash_entry *h;
7925 struct mips_got_info *g;
7926 bfd_size_type amt;
7927
7928 /* This function may be called more than once. */
7929 if (mips_elf_got_section (abfd))
7930 return true;
7931
7932 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7933 | SEC_LINKER_CREATED);
7934
7935 s = bfd_make_section (abfd, ".got");
7936 if (s == NULL
7937 || ! bfd_set_section_flags (abfd, s, flags)
7938 || ! bfd_set_section_alignment (abfd, s, 4))
7939 return false;
7940
7941 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7942 linker script because we don't want to define the symbol if we
7943 are not creating a global offset table. */
7944 h = NULL;
7945 if (! (_bfd_generic_link_add_one_symbol
7946 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7947 (bfd_vma) 0, (const char *) NULL, false,
7948 get_elf_backend_data (abfd)->collect,
7949 (struct bfd_link_hash_entry **) &h)))
7950 return false;
7951 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7952 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7953 h->type = STT_OBJECT;
7954
7955 if (info->shared
7956 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7957 return false;
7958
7959 /* The first several global offset table entries are reserved. */
7960 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7961
7962 amt = sizeof (struct mips_got_info);
7963 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
7964 if (g == NULL)
7965 return false;
7966 g->global_gotsym = NULL;
7967 g->local_gotno = MIPS_RESERVED_GOTNO;
7968 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7969 if (elf_section_data (s) == NULL)
7970 {
7971 amt = sizeof (struct bfd_elf_section_data);
7972 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7973 if (elf_section_data (s) == NULL)
7974 return false;
7975 }
7976 elf_section_data (s)->tdata = (PTR) g;
7977 elf_section_data (s)->this_hdr.sh_flags
7978 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7979
7980 return true;
7981 }
7982
7983 /* Returns the .msym section for ABFD, creating it if it does not
7984 already exist. Returns NULL to indicate error. */
7985
7986 static asection *
7987 mips_elf_create_msym_section (abfd)
7988 bfd *abfd;
7989 {
7990 asection *s;
7991
7992 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7993 if (!s)
7994 {
7995 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7996 if (!s
7997 || !bfd_set_section_flags (abfd, s,
7998 SEC_ALLOC
7999 | SEC_LOAD
8000 | SEC_HAS_CONTENTS
8001 | SEC_LINKER_CREATED
8002 | SEC_READONLY)
8003 || !bfd_set_section_alignment (abfd, s,
8004 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8005 return NULL;
8006 }
8007
8008 return s;
8009 }
8010
8011 /* Add room for N relocations to the .rel.dyn section in ABFD. */
8012
8013 static void
8014 mips_elf_allocate_dynamic_relocations (abfd, n)
8015 bfd *abfd;
8016 unsigned int n;
8017 {
8018 asection *s;
8019
8020 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
8021 BFD_ASSERT (s != NULL);
8022
8023 if (s->_raw_size == 0)
8024 {
8025 /* Make room for a null element. */
8026 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
8027 ++s->reloc_count;
8028 }
8029 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
8030 }
8031
8032 /* Look through the relocs for a section during the first phase, and
8033 allocate space in the global offset table. */
8034
8035 boolean
8036 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
8037 bfd *abfd;
8038 struct bfd_link_info *info;
8039 asection *sec;
8040 const Elf_Internal_Rela *relocs;
8041 {
8042 const char *name;
8043 bfd *dynobj;
8044 Elf_Internal_Shdr *symtab_hdr;
8045 struct elf_link_hash_entry **sym_hashes;
8046 struct mips_got_info *g;
8047 size_t extsymoff;
8048 const Elf_Internal_Rela *rel;
8049 const Elf_Internal_Rela *rel_end;
8050 asection *sgot;
8051 asection *sreloc;
8052 struct elf_backend_data *bed;
8053
8054 if (info->relocateable)
8055 return true;
8056
8057 dynobj = elf_hash_table (info)->dynobj;
8058 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8059 sym_hashes = elf_sym_hashes (abfd);
8060 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8061
8062 /* Check for the mips16 stub sections. */
8063
8064 name = bfd_get_section_name (abfd, sec);
8065 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
8066 {
8067 unsigned long r_symndx;
8068
8069 /* Look at the relocation information to figure out which symbol
8070 this is for. */
8071
8072 r_symndx = ELF32_R_SYM (relocs->r_info);
8073
8074 if (r_symndx < extsymoff
8075 || sym_hashes[r_symndx - extsymoff] == NULL)
8076 {
8077 asection *o;
8078
8079 /* This stub is for a local symbol. This stub will only be
8080 needed if there is some relocation in this BFD, other
8081 than a 16 bit function call, which refers to this symbol. */
8082 for (o = abfd->sections; o != NULL; o = o->next)
8083 {
8084 Elf_Internal_Rela *sec_relocs;
8085 const Elf_Internal_Rela *r, *rend;
8086
8087 /* We can ignore stub sections when looking for relocs. */
8088 if ((o->flags & SEC_RELOC) == 0
8089 || o->reloc_count == 0
8090 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
8091 sizeof FN_STUB - 1) == 0
8092 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
8093 sizeof CALL_STUB - 1) == 0
8094 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
8095 sizeof CALL_FP_STUB - 1) == 0)
8096 continue;
8097
8098 sec_relocs = (_bfd_elf32_link_read_relocs
8099 (abfd, o, (PTR) NULL,
8100 (Elf_Internal_Rela *) NULL,
8101 info->keep_memory));
8102 if (sec_relocs == NULL)
8103 return false;
8104
8105 rend = sec_relocs + o->reloc_count;
8106 for (r = sec_relocs; r < rend; r++)
8107 if (ELF32_R_SYM (r->r_info) == r_symndx
8108 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
8109 break;
8110
8111 if (! info->keep_memory)
8112 free (sec_relocs);
8113
8114 if (r < rend)
8115 break;
8116 }
8117
8118 if (o == NULL)
8119 {
8120 /* There is no non-call reloc for this stub, so we do
8121 not need it. Since this function is called before
8122 the linker maps input sections to output sections, we
8123 can easily discard it by setting the SEC_EXCLUDE
8124 flag. */
8125 sec->flags |= SEC_EXCLUDE;
8126 return true;
8127 }
8128
8129 /* Record this stub in an array of local symbol stubs for
8130 this BFD. */
8131 if (elf_tdata (abfd)->local_stubs == NULL)
8132 {
8133 unsigned long symcount;
8134 asection **n;
8135 bfd_size_type amt;
8136
8137 if (elf_bad_symtab (abfd))
8138 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8139 else
8140 symcount = symtab_hdr->sh_info;
8141 amt = symcount * sizeof (asection *);
8142 n = (asection **) bfd_zalloc (abfd, amt);
8143 if (n == NULL)
8144 return false;
8145 elf_tdata (abfd)->local_stubs = n;
8146 }
8147
8148 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8149
8150 /* We don't need to set mips16_stubs_seen in this case.
8151 That flag is used to see whether we need to look through
8152 the global symbol table for stubs. We don't need to set
8153 it here, because we just have a local stub. */
8154 }
8155 else
8156 {
8157 struct mips_elf_link_hash_entry *h;
8158
8159 h = ((struct mips_elf_link_hash_entry *)
8160 sym_hashes[r_symndx - extsymoff]);
8161
8162 /* H is the symbol this stub is for. */
8163
8164 h->fn_stub = sec;
8165 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8166 }
8167 }
8168 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
8169 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8170 {
8171 unsigned long r_symndx;
8172 struct mips_elf_link_hash_entry *h;
8173 asection **loc;
8174
8175 /* Look at the relocation information to figure out which symbol
8176 this is for. */
8177
8178 r_symndx = ELF32_R_SYM (relocs->r_info);
8179
8180 if (r_symndx < extsymoff
8181 || sym_hashes[r_symndx - extsymoff] == NULL)
8182 {
8183 /* This stub was actually built for a static symbol defined
8184 in the same file. We assume that all static symbols in
8185 mips16 code are themselves mips16, so we can simply
8186 discard this stub. Since this function is called before
8187 the linker maps input sections to output sections, we can
8188 easily discard it by setting the SEC_EXCLUDE flag. */
8189 sec->flags |= SEC_EXCLUDE;
8190 return true;
8191 }
8192
8193 h = ((struct mips_elf_link_hash_entry *)
8194 sym_hashes[r_symndx - extsymoff]);
8195
8196 /* H is the symbol this stub is for. */
8197
8198 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8199 loc = &h->call_fp_stub;
8200 else
8201 loc = &h->call_stub;
8202
8203 /* If we already have an appropriate stub for this function, we
8204 don't need another one, so we can discard this one. Since
8205 this function is called before the linker maps input sections
8206 to output sections, we can easily discard it by setting the
8207 SEC_EXCLUDE flag. We can also discard this section if we
8208 happen to already know that this is a mips16 function; it is
8209 not necessary to check this here, as it is checked later, but
8210 it is slightly faster to check now. */
8211 if (*loc != NULL || h->root.other == STO_MIPS16)
8212 {
8213 sec->flags |= SEC_EXCLUDE;
8214 return true;
8215 }
8216
8217 *loc = sec;
8218 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8219 }
8220
8221 if (dynobj == NULL)
8222 {
8223 sgot = NULL;
8224 g = NULL;
8225 }
8226 else
8227 {
8228 sgot = mips_elf_got_section (dynobj);
8229 if (sgot == NULL)
8230 g = NULL;
8231 else
8232 {
8233 BFD_ASSERT (elf_section_data (sgot) != NULL);
8234 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8235 BFD_ASSERT (g != NULL);
8236 }
8237 }
8238
8239 sreloc = NULL;
8240 bed = get_elf_backend_data (abfd);
8241 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8242 for (rel = relocs; rel < rel_end; ++rel)
8243 {
8244 unsigned long r_symndx;
8245 unsigned int r_type;
8246 struct elf_link_hash_entry *h;
8247
8248 r_symndx = ELF32_R_SYM (rel->r_info);
8249 r_type = ELF32_R_TYPE (rel->r_info);
8250
8251 if (r_symndx < extsymoff)
8252 h = NULL;
8253 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8254 {
8255 (*_bfd_error_handler)
8256 (_("%s: Malformed reloc detected for section %s"),
8257 bfd_archive_filename (abfd), name);
8258 bfd_set_error (bfd_error_bad_value);
8259 return false;
8260 }
8261 else
8262 {
8263 h = sym_hashes[r_symndx - extsymoff];
8264
8265 /* This may be an indirect symbol created because of a version. */
8266 if (h != NULL)
8267 {
8268 while (h->root.type == bfd_link_hash_indirect)
8269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8270 }
8271 }
8272
8273 /* Some relocs require a global offset table. */
8274 if (dynobj == NULL || sgot == NULL)
8275 {
8276 switch (r_type)
8277 {
8278 case R_MIPS_GOT16:
8279 case R_MIPS_CALL16:
8280 case R_MIPS_CALL_HI16:
8281 case R_MIPS_CALL_LO16:
8282 case R_MIPS_GOT_HI16:
8283 case R_MIPS_GOT_LO16:
8284 case R_MIPS_GOT_PAGE:
8285 case R_MIPS_GOT_OFST:
8286 case R_MIPS_GOT_DISP:
8287 if (dynobj == NULL)
8288 elf_hash_table (info)->dynobj = dynobj = abfd;
8289 if (! mips_elf_create_got_section (dynobj, info))
8290 return false;
8291 g = mips_elf_got_info (dynobj, &sgot);
8292 break;
8293
8294 case R_MIPS_32:
8295 case R_MIPS_REL32:
8296 case R_MIPS_64:
8297 if (dynobj == NULL
8298 && (info->shared || h != NULL)
8299 && (sec->flags & SEC_ALLOC) != 0)
8300 elf_hash_table (info)->dynobj = dynobj = abfd;
8301 break;
8302
8303 default:
8304 break;
8305 }
8306 }
8307
8308 if (!h && (r_type == R_MIPS_CALL_LO16
8309 || r_type == R_MIPS_GOT_LO16
8310 || r_type == R_MIPS_GOT_DISP))
8311 {
8312 /* We may need a local GOT entry for this relocation. We
8313 don't count R_MIPS_GOT_PAGE because we can estimate the
8314 maximum number of pages needed by looking at the size of
8315 the segment. Similar comments apply to R_MIPS_GOT16 and
8316 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
8317 R_MIPS_CALL_HI16 because these are always followed by an
8318 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8319
8320 This estimation is very conservative since we can merge
8321 duplicate entries in the GOT. In order to be less
8322 conservative, we could actually build the GOT here,
8323 rather than in relocate_section. */
8324 g->local_gotno++;
8325 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
8326 }
8327
8328 switch (r_type)
8329 {
8330 case R_MIPS_CALL16:
8331 if (h == NULL)
8332 {
8333 (*_bfd_error_handler)
8334 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
8335 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
8336 bfd_set_error (bfd_error_bad_value);
8337 return false;
8338 }
8339 /* Fall through. */
8340
8341 case R_MIPS_CALL_HI16:
8342 case R_MIPS_CALL_LO16:
8343 if (h != NULL)
8344 {
8345 /* This symbol requires a global offset table entry. */
8346 if (!mips_elf_record_global_got_symbol (h, info, g))
8347 return false;
8348
8349 /* We need a stub, not a plt entry for the undefined
8350 function. But we record it as if it needs plt. See
8351 elf_adjust_dynamic_symbol in elflink.h. */
8352 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
8353 h->type = STT_FUNC;
8354 }
8355 break;
8356
8357 case R_MIPS_GOT16:
8358 case R_MIPS_GOT_HI16:
8359 case R_MIPS_GOT_LO16:
8360 case R_MIPS_GOT_DISP:
8361 /* This symbol requires a global offset table entry. */
8362 if (h && !mips_elf_record_global_got_symbol (h, info, g))
8363 return false;
8364 break;
8365
8366 case R_MIPS_32:
8367 case R_MIPS_REL32:
8368 case R_MIPS_64:
8369 if ((info->shared || h != NULL)
8370 && (sec->flags & SEC_ALLOC) != 0)
8371 {
8372 if (sreloc == NULL)
8373 {
8374 const char *dname = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
8375
8376 sreloc = bfd_get_section_by_name (dynobj, dname);
8377 if (sreloc == NULL)
8378 {
8379 sreloc = bfd_make_section (dynobj, dname);
8380 if (sreloc == NULL
8381 || ! bfd_set_section_flags (dynobj, sreloc,
8382 (SEC_ALLOC
8383 | SEC_LOAD
8384 | SEC_HAS_CONTENTS
8385 | SEC_IN_MEMORY
8386 | SEC_LINKER_CREATED
8387 | SEC_READONLY))
8388 || ! bfd_set_section_alignment (dynobj, sreloc,
8389 4))
8390 return false;
8391 }
8392 }
8393 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
8394 if (info->shared)
8395 {
8396 /* When creating a shared object, we must copy these
8397 reloc types into the output file as R_MIPS_REL32
8398 relocs. We make room for this reloc in the
8399 .rel.dyn reloc section. */
8400 mips_elf_allocate_dynamic_relocations (dynobj, 1);
8401 if ((sec->flags & MIPS_READONLY_SECTION)
8402 == MIPS_READONLY_SECTION)
8403 /* We tell the dynamic linker that there are
8404 relocations against the text segment. */
8405 info->flags |= DF_TEXTREL;
8406 }
8407 else
8408 {
8409 struct mips_elf_link_hash_entry *hmips;
8410
8411 /* We only need to copy this reloc if the symbol is
8412 defined in a dynamic object. */
8413 hmips = (struct mips_elf_link_hash_entry *) h;
8414 ++hmips->possibly_dynamic_relocs;
8415 if ((sec->flags & MIPS_READONLY_SECTION)
8416 == MIPS_READONLY_SECTION)
8417 /* We need it to tell the dynamic linker if there
8418 are relocations against the text segment. */
8419 hmips->readonly_reloc = true;
8420 }
8421
8422 /* Even though we don't directly need a GOT entry for
8423 this symbol, a symbol must have a dynamic symbol
8424 table index greater that DT_MIPS_GOTSYM if there are
8425 dynamic relocations against it. */
8426 if (h != NULL
8427 && !mips_elf_record_global_got_symbol (h, info, g))
8428 return false;
8429 }
8430
8431 if (SGI_COMPAT (abfd))
8432 mips_elf_hash_table (info)->compact_rel_size +=
8433 sizeof (Elf32_External_crinfo);
8434 break;
8435
8436 case R_MIPS_26:
8437 case R_MIPS_GPREL16:
8438 case R_MIPS_LITERAL:
8439 case R_MIPS_GPREL32:
8440 if (SGI_COMPAT (abfd))
8441 mips_elf_hash_table (info)->compact_rel_size +=
8442 sizeof (Elf32_External_crinfo);
8443 break;
8444
8445 /* This relocation describes the C++ object vtable hierarchy.
8446 Reconstruct it for later use during GC. */
8447 case R_MIPS_GNU_VTINHERIT:
8448 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8449 return false;
8450 break;
8451
8452 /* This relocation describes which C++ vtable entries are actually
8453 used. Record for later use during GC. */
8454 case R_MIPS_GNU_VTENTRY:
8455 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8456 return false;
8457 break;
8458
8459 default:
8460 break;
8461 }
8462
8463 /* We must not create a stub for a symbol that has relocations
8464 related to taking the function's address. */
8465 switch (r_type)
8466 {
8467 default:
8468 if (h != NULL)
8469 {
8470 struct mips_elf_link_hash_entry *mh;
8471
8472 mh = (struct mips_elf_link_hash_entry *) h;
8473 mh->no_fn_stub = true;
8474 }
8475 break;
8476 case R_MIPS_CALL16:
8477 case R_MIPS_CALL_HI16:
8478 case R_MIPS_CALL_LO16:
8479 break;
8480 }
8481
8482 /* If this reloc is not a 16 bit call, and it has a global
8483 symbol, then we will need the fn_stub if there is one.
8484 References from a stub section do not count. */
8485 if (h != NULL
8486 && r_type != R_MIPS16_26
8487 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
8488 sizeof FN_STUB - 1) != 0
8489 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
8490 sizeof CALL_STUB - 1) != 0
8491 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
8492 sizeof CALL_FP_STUB - 1) != 0)
8493 {
8494 struct mips_elf_link_hash_entry *mh;
8495
8496 mh = (struct mips_elf_link_hash_entry *) h;
8497 mh->need_fn_stub = true;
8498 }
8499 }
8500
8501 return true;
8502 }
8503
8504 /* Return the section that should be marked against GC for a given
8505 relocation. */
8506
8507 asection *
8508 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
8509 bfd *abfd;
8510 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8511 Elf_Internal_Rela *rel;
8512 struct elf_link_hash_entry *h;
8513 Elf_Internal_Sym *sym;
8514 {
8515 /* ??? Do mips16 stub sections need to be handled special? */
8516
8517 if (h != NULL)
8518 {
8519 switch (ELF32_R_TYPE (rel->r_info))
8520 {
8521 case R_MIPS_GNU_VTINHERIT:
8522 case R_MIPS_GNU_VTENTRY:
8523 break;
8524
8525 default:
8526 switch (h->root.type)
8527 {
8528 case bfd_link_hash_defined:
8529 case bfd_link_hash_defweak:
8530 return h->root.u.def.section;
8531
8532 case bfd_link_hash_common:
8533 return h->root.u.c.p->section;
8534
8535 default:
8536 break;
8537 }
8538 }
8539 }
8540 else
8541 {
8542 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8543 }
8544
8545 return NULL;
8546 }
8547
8548 /* Update the got entry reference counts for the section being removed. */
8549
8550 boolean
8551 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8552 bfd *abfd ATTRIBUTE_UNUSED;
8553 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8554 asection *sec ATTRIBUTE_UNUSED;
8555 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8556 {
8557 #if 0
8558 Elf_Internal_Shdr *symtab_hdr;
8559 struct elf_link_hash_entry **sym_hashes;
8560 bfd_signed_vma *local_got_refcounts;
8561 const Elf_Internal_Rela *rel, *relend;
8562 unsigned long r_symndx;
8563 struct elf_link_hash_entry *h;
8564
8565 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8566 sym_hashes = elf_sym_hashes (abfd);
8567 local_got_refcounts = elf_local_got_refcounts (abfd);
8568
8569 relend = relocs + sec->reloc_count;
8570 for (rel = relocs; rel < relend; rel++)
8571 switch (ELF32_R_TYPE (rel->r_info))
8572 {
8573 case R_MIPS_GOT16:
8574 case R_MIPS_CALL16:
8575 case R_MIPS_CALL_HI16:
8576 case R_MIPS_CALL_LO16:
8577 case R_MIPS_GOT_HI16:
8578 case R_MIPS_GOT_LO16:
8579 /* ??? It would seem that the existing MIPS code does no sort
8580 of reference counting or whatnot on its GOT and PLT entries,
8581 so it is not possible to garbage collect them at this time. */
8582 break;
8583
8584 default:
8585 break;
8586 }
8587 #endif
8588
8589 return true;
8590 }
8591
8592 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8593 hiding the old indirect symbol. Process additional relocation
8594 information. Also called for weakdefs, in which case we just let
8595 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8596
8597 static void
8598 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8599 struct elf_link_hash_entry *dir, *ind;
8600 {
8601 struct mips_elf_link_hash_entry *dirmips, *indmips;
8602
8603 _bfd_elf_link_hash_copy_indirect (dir, ind);
8604
8605 if (ind->root.type != bfd_link_hash_indirect)
8606 return;
8607
8608 dirmips = (struct mips_elf_link_hash_entry *) dir;
8609 indmips = (struct mips_elf_link_hash_entry *) ind;
8610 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8611 if (indmips->readonly_reloc)
8612 dirmips->readonly_reloc = true;
8613 if (dirmips->min_dyn_reloc_index == 0
8614 || (indmips->min_dyn_reloc_index != 0
8615 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8616 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8617 if (indmips->no_fn_stub)
8618 dirmips->no_fn_stub = true;
8619 }
8620
8621 /* Adjust a symbol defined by a dynamic object and referenced by a
8622 regular object. The current definition is in some section of the
8623 dynamic object, but we're not including those sections. We have to
8624 change the definition to something the rest of the link can
8625 understand. */
8626
8627 boolean
8628 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8629 struct bfd_link_info *info;
8630 struct elf_link_hash_entry *h;
8631 {
8632 bfd *dynobj;
8633 struct mips_elf_link_hash_entry *hmips;
8634 asection *s;
8635
8636 dynobj = elf_hash_table (info)->dynobj;
8637
8638 /* Make sure we know what is going on here. */
8639 BFD_ASSERT (dynobj != NULL
8640 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8641 || h->weakdef != NULL
8642 || ((h->elf_link_hash_flags
8643 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8644 && (h->elf_link_hash_flags
8645 & ELF_LINK_HASH_REF_REGULAR) != 0
8646 && (h->elf_link_hash_flags
8647 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8648
8649 /* If this symbol is defined in a dynamic object, we need to copy
8650 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8651 file. */
8652 hmips = (struct mips_elf_link_hash_entry *) h;
8653 if (! info->relocateable
8654 && hmips->possibly_dynamic_relocs != 0
8655 && (h->root.type == bfd_link_hash_defweak
8656 || (h->elf_link_hash_flags
8657 & ELF_LINK_HASH_DEF_REGULAR) == 0))
8658 {
8659 mips_elf_allocate_dynamic_relocations (dynobj,
8660 hmips->possibly_dynamic_relocs);
8661 if (hmips->readonly_reloc)
8662 /* We tell the dynamic linker that there are relocations
8663 against the text segment. */
8664 info->flags |= DF_TEXTREL;
8665 }
8666
8667 /* For a function, create a stub, if allowed. */
8668 if (! hmips->no_fn_stub
8669 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8670 {
8671 if (! elf_hash_table (info)->dynamic_sections_created)
8672 return true;
8673
8674 /* If this symbol is not defined in a regular file, then set
8675 the symbol to the stub location. This is required to make
8676 function pointers compare as equal between the normal
8677 executable and the shared library. */
8678 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8679 {
8680 /* We need .stub section. */
8681 s = bfd_get_section_by_name (dynobj,
8682 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8683 BFD_ASSERT (s != NULL);
8684
8685 h->root.u.def.section = s;
8686 h->root.u.def.value = s->_raw_size;
8687
8688 /* XXX Write this stub address somewhere. */
8689 h->plt.offset = s->_raw_size;
8690
8691 /* Make room for this stub code. */
8692 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8693
8694 /* The last half word of the stub will be filled with the index
8695 of this symbol in .dynsym section. */
8696 return true;
8697 }
8698 }
8699 else if ((h->type == STT_FUNC)
8700 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8701 {
8702 /* This will set the entry for this symbol in the GOT to 0, and
8703 the dynamic linker will take care of this. */
8704 h->root.u.def.value = 0;
8705 return true;
8706 }
8707
8708 /* If this is a weak symbol, and there is a real definition, the
8709 processor independent code will have arranged for us to see the
8710 real definition first, and we can just use the same value. */
8711 if (h->weakdef != NULL)
8712 {
8713 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8714 || h->weakdef->root.type == bfd_link_hash_defweak);
8715 h->root.u.def.section = h->weakdef->root.u.def.section;
8716 h->root.u.def.value = h->weakdef->root.u.def.value;
8717 return true;
8718 }
8719
8720 /* This is a reference to a symbol defined by a dynamic object which
8721 is not a function. */
8722
8723 return true;
8724 }
8725
8726 /* This function is called after all the input files have been read,
8727 and the input sections have been assigned to output sections. We
8728 check for any mips16 stub sections that we can discard. */
8729
8730 static boolean mips_elf_check_mips16_stubs
8731 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8732
8733 boolean
8734 _bfd_mips_elf_always_size_sections (output_bfd, info)
8735 bfd *output_bfd;
8736 struct bfd_link_info *info;
8737 {
8738 asection *ri;
8739
8740 /* The .reginfo section has a fixed size. */
8741 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8742 if (ri != NULL)
8743 bfd_set_section_size (output_bfd, ri,
8744 (bfd_size_type) sizeof (Elf32_External_RegInfo));
8745
8746 if (info->relocateable
8747 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8748 return true;
8749
8750 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8751 mips_elf_check_mips16_stubs,
8752 (PTR) NULL);
8753
8754 return true;
8755 }
8756
8757 /* Check the mips16 stubs for a particular symbol, and see if we can
8758 discard them. */
8759
8760 static boolean
8761 mips_elf_check_mips16_stubs (h, data)
8762 struct mips_elf_link_hash_entry *h;
8763 PTR data ATTRIBUTE_UNUSED;
8764 {
8765 if (h->fn_stub != NULL
8766 && ! h->need_fn_stub)
8767 {
8768 /* We don't need the fn_stub; the only references to this symbol
8769 are 16 bit calls. Clobber the size to 0 to prevent it from
8770 being included in the link. */
8771 h->fn_stub->_raw_size = 0;
8772 h->fn_stub->_cooked_size = 0;
8773 h->fn_stub->flags &= ~SEC_RELOC;
8774 h->fn_stub->reloc_count = 0;
8775 h->fn_stub->flags |= SEC_EXCLUDE;
8776 }
8777
8778 if (h->call_stub != NULL
8779 && h->root.other == STO_MIPS16)
8780 {
8781 /* We don't need the call_stub; this is a 16 bit function, so
8782 calls from other 16 bit functions are OK. Clobber the size
8783 to 0 to prevent it from being included in the link. */
8784 h->call_stub->_raw_size = 0;
8785 h->call_stub->_cooked_size = 0;
8786 h->call_stub->flags &= ~SEC_RELOC;
8787 h->call_stub->reloc_count = 0;
8788 h->call_stub->flags |= SEC_EXCLUDE;
8789 }
8790
8791 if (h->call_fp_stub != NULL
8792 && h->root.other == STO_MIPS16)
8793 {
8794 /* We don't need the call_stub; this is a 16 bit function, so
8795 calls from other 16 bit functions are OK. Clobber the size
8796 to 0 to prevent it from being included in the link. */
8797 h->call_fp_stub->_raw_size = 0;
8798 h->call_fp_stub->_cooked_size = 0;
8799 h->call_fp_stub->flags &= ~SEC_RELOC;
8800 h->call_fp_stub->reloc_count = 0;
8801 h->call_fp_stub->flags |= SEC_EXCLUDE;
8802 }
8803
8804 return true;
8805 }
8806
8807 /* Set the sizes of the dynamic sections. */
8808
8809 boolean
8810 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8811 bfd *output_bfd;
8812 struct bfd_link_info *info;
8813 {
8814 bfd *dynobj;
8815 asection *s;
8816 boolean reltext;
8817 struct mips_got_info *g = NULL;
8818
8819 dynobj = elf_hash_table (info)->dynobj;
8820 BFD_ASSERT (dynobj != NULL);
8821
8822 if (elf_hash_table (info)->dynamic_sections_created)
8823 {
8824 /* Set the contents of the .interp section to the interpreter. */
8825 if (! info->shared)
8826 {
8827 s = bfd_get_section_by_name (dynobj, ".interp");
8828 BFD_ASSERT (s != NULL);
8829 s->_raw_size
8830 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8831 s->contents
8832 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8833 }
8834 }
8835
8836 /* The check_relocs and adjust_dynamic_symbol entry points have
8837 determined the sizes of the various dynamic sections. Allocate
8838 memory for them. */
8839 reltext = false;
8840 for (s = dynobj->sections; s != NULL; s = s->next)
8841 {
8842 const char *name;
8843 boolean strip;
8844
8845 /* It's OK to base decisions on the section name, because none
8846 of the dynobj section names depend upon the input files. */
8847 name = bfd_get_section_name (dynobj, s);
8848
8849 if ((s->flags & SEC_LINKER_CREATED) == 0)
8850 continue;
8851
8852 strip = false;
8853
8854 if (strncmp (name, ".rel", 4) == 0)
8855 {
8856 if (s->_raw_size == 0)
8857 {
8858 /* We only strip the section if the output section name
8859 has the same name. Otherwise, there might be several
8860 input sections for this output section. FIXME: This
8861 code is probably not needed these days anyhow, since
8862 the linker now does not create empty output sections. */
8863 if (s->output_section != NULL
8864 && strcmp (name,
8865 bfd_get_section_name (s->output_section->owner,
8866 s->output_section)) == 0)
8867 strip = true;
8868 }
8869 else
8870 {
8871 const char *outname;
8872 asection *target;
8873
8874 /* If this relocation section applies to a read only
8875 section, then we probably need a DT_TEXTREL entry.
8876 If the relocation section is .rel.dyn, we always
8877 assert a DT_TEXTREL entry rather than testing whether
8878 there exists a relocation to a read only section or
8879 not. */
8880 outname = bfd_get_section_name (output_bfd,
8881 s->output_section);
8882 target = bfd_get_section_by_name (output_bfd, outname + 4);
8883 if ((target != NULL
8884 && (target->flags & SEC_READONLY) != 0
8885 && (target->flags & SEC_ALLOC) != 0)
8886 || strcmp (outname,
8887 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8888 reltext = true;
8889
8890 /* We use the reloc_count field as a counter if we need
8891 to copy relocs into the output file. */
8892 if (strcmp (name,
8893 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8894 s->reloc_count = 0;
8895 }
8896 }
8897 else if (strncmp (name, ".got", 4) == 0)
8898 {
8899 int i;
8900 bfd_size_type loadable_size = 0;
8901 bfd_size_type local_gotno;
8902 bfd *sub;
8903
8904 BFD_ASSERT (elf_section_data (s) != NULL);
8905 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8906 BFD_ASSERT (g != NULL);
8907
8908 /* Calculate the total loadable size of the output. That
8909 will give us the maximum number of GOT_PAGE entries
8910 required. */
8911 for (sub = info->input_bfds; sub; sub = sub->link_next)
8912 {
8913 asection *subsection;
8914
8915 for (subsection = sub->sections;
8916 subsection;
8917 subsection = subsection->next)
8918 {
8919 if ((subsection->flags & SEC_ALLOC) == 0)
8920 continue;
8921 loadable_size += ((subsection->_raw_size + 0xf)
8922 &~ (bfd_size_type) 0xf);
8923 }
8924 }
8925 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8926
8927 /* Assume there are two loadable segments consisting of
8928 contiguous sections. Is 5 enough? */
8929 local_gotno = (loadable_size >> 16) + 5;
8930 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8931 /* It's possible we will need GOT_PAGE entries as well as
8932 GOT16 entries. Often, these will be able to share GOT
8933 entries, but not always. */
8934 local_gotno *= 2;
8935
8936 g->local_gotno += local_gotno;
8937 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8938
8939 /* There has to be a global GOT entry for every symbol with
8940 a dynamic symbol table index of DT_MIPS_GOTSYM or
8941 higher. Therefore, it make sense to put those symbols
8942 that need GOT entries at the end of the symbol table. We
8943 do that here. */
8944 if (!mips_elf_sort_hash_table (info, 1))
8945 return false;
8946
8947 if (g->global_gotsym != NULL)
8948 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8949 else
8950 /* If there are no global symbols, or none requiring
8951 relocations, then GLOBAL_GOTSYM will be NULL. */
8952 i = 0;
8953 g->global_gotno = i;
8954 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8955 }
8956 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8957 {
8958 /* Irix rld assumes that the function stub isn't at the end
8959 of .text section. So put a dummy. XXX */
8960 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8961 }
8962 else if (! info->shared
8963 && ! mips_elf_hash_table (info)->use_rld_obj_head
8964 && strncmp (name, ".rld_map", 8) == 0)
8965 {
8966 /* We add a room for __rld_map. It will be filled in by the
8967 rtld to contain a pointer to the _r_debug structure. */
8968 s->_raw_size += 4;
8969 }
8970 else if (SGI_COMPAT (output_bfd)
8971 && strncmp (name, ".compact_rel", 12) == 0)
8972 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8973 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8974 == 0)
8975 s->_raw_size = (sizeof (Elf32_External_Msym)
8976 * (elf_hash_table (info)->dynsymcount
8977 + bfd_count_sections (output_bfd)));
8978 else if (strncmp (name, ".init", 5) != 0)
8979 {
8980 /* It's not one of our sections, so don't allocate space. */
8981 continue;
8982 }
8983
8984 if (strip)
8985 {
8986 _bfd_strip_section_from_output (info, s);
8987 continue;
8988 }
8989
8990 /* Allocate memory for the section contents. */
8991 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8992 if (s->contents == NULL && s->_raw_size != 0)
8993 {
8994 bfd_set_error (bfd_error_no_memory);
8995 return false;
8996 }
8997 }
8998
8999 if (elf_hash_table (info)->dynamic_sections_created)
9000 {
9001 /* Add some entries to the .dynamic section. We fill in the
9002 values later, in elf_mips_finish_dynamic_sections, but we
9003 must add the entries now so that we get the correct size for
9004 the .dynamic section. The DT_DEBUG entry is filled in by the
9005 dynamic linker and used by the debugger. */
9006 if (! info->shared)
9007 {
9008 /* SGI object has the equivalence of DT_DEBUG in the
9009 DT_MIPS_RLD_MAP entry. */
9010 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9011 return false;
9012 if (!SGI_COMPAT (output_bfd))
9013 {
9014 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9015 return false;
9016 }
9017 }
9018 else
9019 {
9020 /* Shared libraries on traditional mips have DT_DEBUG. */
9021 if (!SGI_COMPAT (output_bfd))
9022 {
9023 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9024 return false;
9025 }
9026 }
9027
9028 if (reltext && SGI_COMPAT (output_bfd))
9029 info->flags |= DF_TEXTREL;
9030
9031 if ((info->flags & DF_TEXTREL) != 0)
9032 {
9033 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9034 return false;
9035 }
9036
9037 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9038 return false;
9039
9040 if (bfd_get_section_by_name (dynobj,
9041 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
9042 {
9043 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9044 return false;
9045
9046 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9047 return false;
9048
9049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9050 return false;
9051 }
9052
9053 if (SGI_COMPAT (output_bfd))
9054 {
9055 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
9056 return false;
9057 }
9058
9059 if (SGI_COMPAT (output_bfd))
9060 {
9061 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
9062 return false;
9063 }
9064
9065 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
9066 {
9067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
9068 return false;
9069
9070 s = bfd_get_section_by_name (dynobj, ".liblist");
9071 BFD_ASSERT (s != NULL);
9072
9073 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
9074 return false;
9075 }
9076
9077 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9078 return false;
9079
9080 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9081 return false;
9082
9083 #if 0
9084 /* Time stamps in executable files are a bad idea. */
9085 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
9086 return false;
9087 #endif
9088
9089 #if 0 /* FIXME */
9090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
9091 return false;
9092 #endif
9093
9094 #if 0 /* FIXME */
9095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
9096 return false;
9097 #endif
9098
9099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9100 return false;
9101
9102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9103 return false;
9104
9105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9106 return false;
9107
9108 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9109 return false;
9110
9111 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9112 return false;
9113
9114 if (IRIX_COMPAT (dynobj) == ict_irix5
9115 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9116 return false;
9117
9118 if (IRIX_COMPAT (dynobj) == ict_irix6
9119 && (bfd_get_section_by_name
9120 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9121 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9122 return false;
9123
9124 if (bfd_get_section_by_name (dynobj,
9125 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
9126 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
9127 return false;
9128 }
9129
9130 return true;
9131 }
9132
9133 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9134 adjust it appropriately now. */
9135
9136 static void
9137 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
9138 bfd *abfd ATTRIBUTE_UNUSED;
9139 const char *name;
9140 Elf_Internal_Sym *sym;
9141 {
9142 /* The linker script takes care of providing names and values for
9143 these, but we must place them into the right sections. */
9144 static const char* const text_section_symbols[] = {
9145 "_ftext",
9146 "_etext",
9147 "__dso_displacement",
9148 "__elf_header",
9149 "__program_header_table",
9150 NULL
9151 };
9152
9153 static const char* const data_section_symbols[] = {
9154 "_fdata",
9155 "_edata",
9156 "_end",
9157 "_fbss",
9158 NULL
9159 };
9160
9161 const char* const *p;
9162 int i;
9163
9164 for (i = 0; i < 2; ++i)
9165 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9166 *p;
9167 ++p)
9168 if (strcmp (*p, name) == 0)
9169 {
9170 /* All of these symbols are given type STT_SECTION by the
9171 IRIX6 linker. */
9172 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9173
9174 /* The IRIX linker puts these symbols in special sections. */
9175 if (i == 0)
9176 sym->st_shndx = SHN_MIPS_TEXT;
9177 else
9178 sym->st_shndx = SHN_MIPS_DATA;
9179
9180 break;
9181 }
9182 }
9183
9184 /* Finish up dynamic symbol handling. We set the contents of various
9185 dynamic sections here. */
9186
9187 boolean
9188 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
9189 bfd *output_bfd;
9190 struct bfd_link_info *info;
9191 struct elf_link_hash_entry *h;
9192 Elf_Internal_Sym *sym;
9193 {
9194 bfd *dynobj;
9195 bfd_vma gval;
9196 asection *sgot;
9197 asection *smsym;
9198 struct mips_got_info *g;
9199 const char *name;
9200 struct mips_elf_link_hash_entry *mh;
9201
9202 dynobj = elf_hash_table (info)->dynobj;
9203 gval = sym->st_value;
9204 mh = (struct mips_elf_link_hash_entry *) h;
9205
9206 if (h->plt.offset != (bfd_vma) -1)
9207 {
9208 asection *s;
9209 bfd_byte *p;
9210 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
9211
9212 /* This symbol has a stub. Set it up. */
9213
9214 BFD_ASSERT (h->dynindx != -1);
9215
9216 s = bfd_get_section_by_name (dynobj,
9217 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9218 BFD_ASSERT (s != NULL);
9219
9220 /* Fill the stub. */
9221 p = stub;
9222 bfd_put_32 (output_bfd, (bfd_vma) STUB_LW (output_bfd), p);
9223 p += 4;
9224 bfd_put_32 (output_bfd, (bfd_vma) STUB_MOVE (output_bfd), p);
9225 p += 4;
9226
9227 /* FIXME: Can h->dynindex be more than 64K? */
9228 if (h->dynindx & 0xffff0000)
9229 return false;
9230
9231 bfd_put_32 (output_bfd, (bfd_vma) STUB_JALR, p);
9232 p += 4;
9233 bfd_put_32 (output_bfd, (bfd_vma) STUB_LI16 (output_bfd) + h->dynindx, p);
9234
9235 BFD_ASSERT (h->plt.offset <= s->_raw_size);
9236 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
9237
9238 /* Mark the symbol as undefined. plt.offset != -1 occurs
9239 only for the referenced symbol. */
9240 sym->st_shndx = SHN_UNDEF;
9241
9242 /* The run-time linker uses the st_value field of the symbol
9243 to reset the global offset table entry for this external
9244 to its stub address when unlinking a shared object. */
9245 gval = s->output_section->vma + s->output_offset + h->plt.offset;
9246 sym->st_value = gval;
9247 }
9248
9249 BFD_ASSERT (h->dynindx != -1
9250 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
9251
9252 sgot = mips_elf_got_section (dynobj);
9253 BFD_ASSERT (sgot != NULL);
9254 BFD_ASSERT (elf_section_data (sgot) != NULL);
9255 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9256 BFD_ASSERT (g != NULL);
9257
9258 /* Run through the global symbol table, creating GOT entries for all
9259 the symbols that need them. */
9260 if (g->global_gotsym != NULL
9261 && h->dynindx >= g->global_gotsym->dynindx)
9262 {
9263 bfd_vma offset;
9264 bfd_vma value;
9265
9266 if (sym->st_value)
9267 value = sym->st_value;
9268 else
9269 {
9270 /* For an entity defined in a shared object, this will be
9271 NULL. (For functions in shared objects for
9272 which we have created stubs, ST_VALUE will be non-NULL.
9273 That's because such the functions are now no longer defined
9274 in a shared object.) */
9275
9276 if (info->shared && h->root.type == bfd_link_hash_undefined)
9277 value = 0;
9278 else
9279 value = h->root.u.def.value;
9280 }
9281 offset = mips_elf_global_got_index (dynobj, h);
9282 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9283 }
9284
9285 /* Create a .msym entry, if appropriate. */
9286 smsym = bfd_get_section_by_name (dynobj,
9287 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9288 if (smsym)
9289 {
9290 Elf32_Internal_Msym msym;
9291
9292 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
9293 /* It is undocumented what the `1' indicates, but IRIX6 uses
9294 this value. */
9295 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
9296 bfd_mips_elf_swap_msym_out
9297 (dynobj, &msym,
9298 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
9299 }
9300
9301 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9302 name = h->root.root.string;
9303 if (strcmp (name, "_DYNAMIC") == 0
9304 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
9305 sym->st_shndx = SHN_ABS;
9306 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9307 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9308 {
9309 sym->st_shndx = SHN_ABS;
9310 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9311 sym->st_value = 1;
9312 }
9313 else if (strcmp (name, "_gp_disp") == 0)
9314 {
9315 sym->st_shndx = SHN_ABS;
9316 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9317 sym->st_value = elf_gp (output_bfd);
9318 }
9319 else if (SGI_COMPAT (output_bfd))
9320 {
9321 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9322 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9323 {
9324 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9325 sym->st_other = STO_PROTECTED;
9326 sym->st_value = 0;
9327 sym->st_shndx = SHN_MIPS_DATA;
9328 }
9329 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9330 {
9331 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9332 sym->st_other = STO_PROTECTED;
9333 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9334 sym->st_shndx = SHN_ABS;
9335 }
9336 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9337 {
9338 if (h->type == STT_FUNC)
9339 sym->st_shndx = SHN_MIPS_TEXT;
9340 else if (h->type == STT_OBJECT)
9341 sym->st_shndx = SHN_MIPS_DATA;
9342 }
9343 }
9344
9345 /* Handle the IRIX6-specific symbols. */
9346 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9347 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9348
9349 if (! info->shared)
9350 {
9351 if (! mips_elf_hash_table (info)->use_rld_obj_head
9352 && (strcmp (name, "__rld_map") == 0
9353 || strcmp (name, "__RLD_MAP") == 0))
9354 {
9355 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9356 BFD_ASSERT (s != NULL);
9357 sym->st_value = s->output_section->vma + s->output_offset;
9358 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
9359 if (mips_elf_hash_table (info)->rld_value == 0)
9360 mips_elf_hash_table (info)->rld_value = sym->st_value;
9361 }
9362 else if (mips_elf_hash_table (info)->use_rld_obj_head
9363 && strcmp (name, "__rld_obj_head") == 0)
9364 {
9365 /* IRIX6 does not use a .rld_map section. */
9366 if (IRIX_COMPAT (output_bfd) == ict_irix5
9367 || IRIX_COMPAT (output_bfd) == ict_none)
9368 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9369 != NULL);
9370 mips_elf_hash_table (info)->rld_value = sym->st_value;
9371 }
9372 }
9373
9374 /* If this is a mips16 symbol, force the value to be even. */
9375 if (sym->st_other == STO_MIPS16
9376 && (sym->st_value & 1) != 0)
9377 --sym->st_value;
9378
9379 return true;
9380 }
9381
9382 /* Finish up the dynamic sections. */
9383
9384 boolean
9385 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
9386 bfd *output_bfd;
9387 struct bfd_link_info *info;
9388 {
9389 bfd *dynobj;
9390 asection *sdyn;
9391 asection *sgot;
9392 struct mips_got_info *g;
9393
9394 dynobj = elf_hash_table (info)->dynobj;
9395
9396 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9397
9398 sgot = mips_elf_got_section (dynobj);
9399 if (sgot == NULL)
9400 g = NULL;
9401 else
9402 {
9403 BFD_ASSERT (elf_section_data (sgot) != NULL);
9404 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9405 BFD_ASSERT (g != NULL);
9406 }
9407
9408 if (elf_hash_table (info)->dynamic_sections_created)
9409 {
9410 bfd_byte *b;
9411
9412 BFD_ASSERT (sdyn != NULL);
9413 BFD_ASSERT (g != NULL);
9414
9415 for (b = sdyn->contents;
9416 b < sdyn->contents + sdyn->_raw_size;
9417 b += MIPS_ELF_DYN_SIZE (dynobj))
9418 {
9419 Elf_Internal_Dyn dyn;
9420 const char *name;
9421 size_t elemsize;
9422 asection *s;
9423 boolean swap_out_p;
9424
9425 /* Read in the current dynamic entry. */
9426 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9427
9428 /* Assume that we're going to modify it and write it out. */
9429 swap_out_p = true;
9430
9431 switch (dyn.d_tag)
9432 {
9433 case DT_RELENT:
9434 s = (bfd_get_section_by_name
9435 (dynobj,
9436 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
9437 BFD_ASSERT (s != NULL);
9438 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9439 break;
9440
9441 case DT_STRSZ:
9442 /* Rewrite DT_STRSZ. */
9443 dyn.d_un.d_val =
9444 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9445 break;
9446
9447 case DT_PLTGOT:
9448 name = ".got";
9449 goto get_vma;
9450 case DT_MIPS_CONFLICT:
9451 name = ".conflict";
9452 goto get_vma;
9453 case DT_MIPS_LIBLIST:
9454 name = ".liblist";
9455 get_vma:
9456 s = bfd_get_section_by_name (output_bfd, name);
9457 BFD_ASSERT (s != NULL);
9458 dyn.d_un.d_ptr = s->vma;
9459 break;
9460
9461 case DT_MIPS_RLD_VERSION:
9462 dyn.d_un.d_val = 1; /* XXX */
9463 break;
9464
9465 case DT_MIPS_FLAGS:
9466 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9467 break;
9468
9469 case DT_MIPS_CONFLICTNO:
9470 name = ".conflict";
9471 elemsize = sizeof (Elf32_Conflict);
9472 goto set_elemno;
9473
9474 case DT_MIPS_LIBLISTNO:
9475 name = ".liblist";
9476 elemsize = sizeof (Elf32_Lib);
9477 set_elemno:
9478 s = bfd_get_section_by_name (output_bfd, name);
9479 if (s != NULL)
9480 {
9481 if (s->_cooked_size != 0)
9482 dyn.d_un.d_val = s->_cooked_size / elemsize;
9483 else
9484 dyn.d_un.d_val = s->_raw_size / elemsize;
9485 }
9486 else
9487 dyn.d_un.d_val = 0;
9488 break;
9489
9490 case DT_MIPS_TIME_STAMP:
9491 time ((time_t *) &dyn.d_un.d_val);
9492 break;
9493
9494 case DT_MIPS_ICHECKSUM:
9495 /* XXX FIXME: */
9496 swap_out_p = false;
9497 break;
9498
9499 case DT_MIPS_IVERSION:
9500 /* XXX FIXME: */
9501 swap_out_p = false;
9502 break;
9503
9504 case DT_MIPS_BASE_ADDRESS:
9505 s = output_bfd->sections;
9506 BFD_ASSERT (s != NULL);
9507 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9508 break;
9509
9510 case DT_MIPS_LOCAL_GOTNO:
9511 dyn.d_un.d_val = g->local_gotno;
9512 break;
9513
9514 case DT_MIPS_UNREFEXTNO:
9515 /* The index into the dynamic symbol table which is the
9516 entry of the first external symbol that is not
9517 referenced within the same object. */
9518 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9519 break;
9520
9521 case DT_MIPS_GOTSYM:
9522 if (g->global_gotsym)
9523 {
9524 dyn.d_un.d_val = g->global_gotsym->dynindx;
9525 break;
9526 }
9527 /* In case if we don't have global got symbols we default
9528 to setting DT_MIPS_GOTSYM to the same value as
9529 DT_MIPS_SYMTABNO, so we just fall through. */
9530
9531 case DT_MIPS_SYMTABNO:
9532 name = ".dynsym";
9533 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9534 s = bfd_get_section_by_name (output_bfd, name);
9535 BFD_ASSERT (s != NULL);
9536
9537 if (s->_cooked_size != 0)
9538 dyn.d_un.d_val = s->_cooked_size / elemsize;
9539 else
9540 dyn.d_un.d_val = s->_raw_size / elemsize;
9541 break;
9542
9543 case DT_MIPS_HIPAGENO:
9544 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
9545 break;
9546
9547 case DT_MIPS_RLD_MAP:
9548 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9549 break;
9550
9551 case DT_MIPS_OPTIONS:
9552 s = (bfd_get_section_by_name
9553 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9554 dyn.d_un.d_ptr = s->vma;
9555 break;
9556
9557 case DT_MIPS_MSYM:
9558 s = (bfd_get_section_by_name
9559 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9560 dyn.d_un.d_ptr = s->vma;
9561 break;
9562
9563 default:
9564 swap_out_p = false;
9565 break;
9566 }
9567
9568 if (swap_out_p)
9569 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9570 (dynobj, &dyn, b);
9571 }
9572 }
9573
9574 /* The first entry of the global offset table will be filled at
9575 runtime. The second entry will be used by some runtime loaders.
9576 This isn't the case of Irix rld. */
9577 if (sgot != NULL && sgot->_raw_size > 0)
9578 {
9579 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9580 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9581 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9582 }
9583
9584 if (sgot != NULL)
9585 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9586 = MIPS_ELF_GOT_SIZE (output_bfd);
9587
9588 {
9589 asection *smsym;
9590 asection *s;
9591 Elf32_compact_rel cpt;
9592
9593 /* ??? The section symbols for the output sections were set up in
9594 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9595 symbols. Should we do so? */
9596
9597 smsym = bfd_get_section_by_name (dynobj,
9598 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9599 if (smsym != NULL)
9600 {
9601 Elf32_Internal_Msym msym;
9602
9603 msym.ms_hash_value = 0;
9604 msym.ms_info = ELF32_MS_INFO (0, 1);
9605
9606 for (s = output_bfd->sections; s != NULL; s = s->next)
9607 {
9608 long dynindx = elf_section_data (s)->dynindx;
9609
9610 bfd_mips_elf_swap_msym_out
9611 (output_bfd, &msym,
9612 (((Elf32_External_Msym *) smsym->contents)
9613 + dynindx));
9614 }
9615 }
9616
9617 if (SGI_COMPAT (output_bfd))
9618 {
9619 /* Write .compact_rel section out. */
9620 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9621 if (s != NULL)
9622 {
9623 cpt.id1 = 1;
9624 cpt.num = s->reloc_count;
9625 cpt.id2 = 2;
9626 cpt.offset = (s->output_section->filepos
9627 + sizeof (Elf32_External_compact_rel));
9628 cpt.reserved0 = 0;
9629 cpt.reserved1 = 0;
9630 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9631 ((Elf32_External_compact_rel *)
9632 s->contents));
9633
9634 /* Clean up a dummy stub function entry in .text. */
9635 s = bfd_get_section_by_name (dynobj,
9636 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9637 if (s != NULL)
9638 {
9639 file_ptr dummy_offset;
9640
9641 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9642 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9643 memset (s->contents + dummy_offset, 0,
9644 MIPS_FUNCTION_STUB_SIZE);
9645 }
9646 }
9647 }
9648
9649 /* We need to sort the entries of the dynamic relocation section. */
9650
9651 if (!ABI_64_P (output_bfd))
9652 {
9653 asection *reldyn;
9654
9655 reldyn = bfd_get_section_by_name (dynobj,
9656 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9657 if (reldyn != NULL && reldyn->reloc_count > 2)
9658 {
9659 reldyn_sorting_bfd = output_bfd;
9660 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9661 (size_t) reldyn->reloc_count - 1,
9662 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9663 }
9664 }
9665
9666 /* Clean up a first relocation in .rel.dyn. */
9667 s = bfd_get_section_by_name (dynobj,
9668 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9669 if (s != NULL && s->_raw_size > 0)
9670 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9671 }
9672
9673 return true;
9674 }
9675 \f
9676 /* Support for core dump NOTE sections */
9677 static boolean
9678 _bfd_elf32_mips_grok_prstatus (abfd, note)
9679 bfd *abfd;
9680 Elf_Internal_Note *note;
9681 {
9682 int offset;
9683 unsigned int raw_size;
9684
9685 switch (note->descsz)
9686 {
9687 default:
9688 return false;
9689
9690 case 256: /* Linux/MIPS */
9691 /* pr_cursig */
9692 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9693
9694 /* pr_pid */
9695 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9696
9697 /* pr_reg */
9698 offset = 72;
9699 raw_size = 180;
9700
9701 break;
9702 }
9703
9704 /* Make a ".reg/999" section. */
9705 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9706 raw_size, note->descpos + offset);
9707 }
9708
9709 static boolean
9710 _bfd_elf32_mips_grok_psinfo (abfd, note)
9711 bfd *abfd;
9712 Elf_Internal_Note *note;
9713 {
9714 switch (note->descsz)
9715 {
9716 default:
9717 return false;
9718
9719 case 128: /* Linux/MIPS elf_prpsinfo */
9720 elf_tdata (abfd)->core_program
9721 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9722 elf_tdata (abfd)->core_command
9723 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9724 }
9725
9726 /* Note that for some reason, a spurious space is tacked
9727 onto the end of the args in some (at least one anyway)
9728 implementations, so strip it off if it exists. */
9729
9730 {
9731 char *command = elf_tdata (abfd)->core_command;
9732 int n = strlen (command);
9733
9734 if (0 < n && command[n - 1] == ' ')
9735 command[n - 1] = '\0';
9736 }
9737
9738 return true;
9739 }
9740 \f
9741 #define PDR_SIZE 32
9742
9743 static boolean
9744 _bfd_elf32_mips_discard_info (abfd, cookie, info)
9745 bfd *abfd;
9746 struct elf_reloc_cookie *cookie;
9747 struct bfd_link_info *info;
9748 {
9749 asection *o;
9750 struct elf_backend_data *bed = get_elf_backend_data (abfd);
9751 boolean ret = false;
9752 unsigned char *tdata;
9753 size_t i, skip;
9754
9755 o = bfd_get_section_by_name (abfd, ".pdr");
9756 if (! o)
9757 return false;
9758 if (o->_raw_size == 0)
9759 return false;
9760 if (o->_raw_size % PDR_SIZE != 0)
9761 return false;
9762 if (o->output_section != NULL
9763 && bfd_is_abs_section (o->output_section))
9764 return false;
9765
9766 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
9767 if (! tdata)
9768 return false;
9769
9770 cookie->rels = _bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL,
9771 (Elf_Internal_Rela *) NULL,
9772 info->keep_memory);
9773 if (!cookie->rels)
9774 {
9775 free (tdata);
9776 return false;
9777 }
9778
9779 cookie->rel = cookie->rels;
9780 cookie->relend =
9781 cookie->rels + o->reloc_count * bed->s->int_rels_per_ext_rel;
9782
9783 for (i = 0, skip = 0; i < o->_raw_size; i ++)
9784 {
9785 if (_bfd_elf32_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9786 {
9787 tdata[i] = 1;
9788 skip ++;
9789 }
9790 }
9791
9792 if (skip != 0)
9793 {
9794 elf_section_data (o)->tdata = tdata;
9795 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
9796 ret = true;
9797 }
9798 else
9799 free (tdata);
9800
9801 if (! info->keep_memory)
9802 free (cookie->rels);
9803
9804 return ret;
9805 }
9806
9807 static boolean
9808 _bfd_elf32_mips_ignore_discarded_relocs (sec)
9809 asection *sec;
9810 {
9811 if (strcmp (sec->name, ".pdr") == 0)
9812 return true;
9813 return false;
9814 }
9815
9816 static boolean
9817 _bfd_elf32_mips_write_section (output_bfd, sec, contents)
9818 bfd *output_bfd;
9819 asection *sec;
9820 bfd_byte *contents;
9821 {
9822 bfd_byte *to, *from, *end;
9823 int i;
9824
9825 if (strcmp (sec->name, ".pdr") != 0)
9826 return false;
9827
9828 if (elf_section_data (sec)->tdata == NULL)
9829 return false;
9830
9831 to = contents;
9832 end = contents + sec->_raw_size;
9833 for (from = contents, i = 0;
9834 from < end;
9835 from += PDR_SIZE, i++)
9836 {
9837 if (((unsigned char *)elf_section_data (sec)->tdata)[i] == 1)
9838 continue;
9839 if (to != from)
9840 memcpy (to, from, PDR_SIZE);
9841 to += PDR_SIZE;
9842 }
9843 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9844 (file_ptr) sec->output_offset,
9845 sec->_cooked_size);
9846 return true;
9847 }
9848 \f
9849 /* This is almost identical to bfd_generic_get_... except that some
9850 MIPS relocations need to be handled specially. Sigh. */
9851
9852 static bfd_byte *
9853 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9854 relocateable, symbols)
9855 bfd *abfd;
9856 struct bfd_link_info *link_info;
9857 struct bfd_link_order *link_order;
9858 bfd_byte *data;
9859 boolean relocateable;
9860 asymbol **symbols;
9861 {
9862 /* Get enough memory to hold the stuff */
9863 bfd *input_bfd = link_order->u.indirect.section->owner;
9864 asection *input_section = link_order->u.indirect.section;
9865
9866 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9867 arelent **reloc_vector = NULL;
9868 long reloc_count;
9869
9870 if (reloc_size < 0)
9871 goto error_return;
9872
9873 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
9874 if (reloc_vector == NULL && reloc_size != 0)
9875 goto error_return;
9876
9877 /* read in the section */
9878 if (!bfd_get_section_contents (input_bfd,
9879 input_section,
9880 (PTR) data,
9881 (file_ptr) 0,
9882 input_section->_raw_size))
9883 goto error_return;
9884
9885 /* We're not relaxing the section, so just copy the size info */
9886 input_section->_cooked_size = input_section->_raw_size;
9887 input_section->reloc_done = true;
9888
9889 reloc_count = bfd_canonicalize_reloc (input_bfd,
9890 input_section,
9891 reloc_vector,
9892 symbols);
9893 if (reloc_count < 0)
9894 goto error_return;
9895
9896 if (reloc_count > 0)
9897 {
9898 arelent **parent;
9899 /* for mips */
9900 int gp_found;
9901 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9902
9903 {
9904 struct bfd_hash_entry *h;
9905 struct bfd_link_hash_entry *lh;
9906 /* Skip all this stuff if we aren't mixing formats. */
9907 if (abfd && input_bfd
9908 && abfd->xvec == input_bfd->xvec)
9909 lh = 0;
9910 else
9911 {
9912 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9913 lh = (struct bfd_link_hash_entry *) h;
9914 }
9915 lookup:
9916 if (lh)
9917 {
9918 switch (lh->type)
9919 {
9920 case bfd_link_hash_undefined:
9921 case bfd_link_hash_undefweak:
9922 case bfd_link_hash_common:
9923 gp_found = 0;
9924 break;
9925 case bfd_link_hash_defined:
9926 case bfd_link_hash_defweak:
9927 gp_found = 1;
9928 gp = lh->u.def.value;
9929 break;
9930 case bfd_link_hash_indirect:
9931 case bfd_link_hash_warning:
9932 lh = lh->u.i.link;
9933 /* @@FIXME ignoring warning for now */
9934 goto lookup;
9935 case bfd_link_hash_new:
9936 default:
9937 abort ();
9938 }
9939 }
9940 else
9941 gp_found = 0;
9942 }
9943 /* end mips */
9944 for (parent = reloc_vector; *parent != (arelent *) NULL;
9945 parent++)
9946 {
9947 char *error_message = (char *) NULL;
9948 bfd_reloc_status_type r;
9949
9950 /* Specific to MIPS: Deal with relocation types that require
9951 knowing the gp of the output bfd. */
9952 asymbol *sym = *(*parent)->sym_ptr_ptr;
9953 if (bfd_is_abs_section (sym->section) && abfd)
9954 {
9955 /* The special_function wouldn't get called anyways. */
9956 }
9957 else if (!gp_found)
9958 {
9959 /* The gp isn't there; let the special function code
9960 fall over on its own. */
9961 }
9962 else if ((*parent)->howto->special_function
9963 == _bfd_mips_elf_gprel16_reloc)
9964 {
9965 /* bypass special_function call */
9966 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9967 relocateable, (PTR) data, gp);
9968 goto skip_bfd_perform_relocation;
9969 }
9970 /* end mips specific stuff */
9971
9972 r = bfd_perform_relocation (input_bfd,
9973 *parent,
9974 (PTR) data,
9975 input_section,
9976 relocateable ? abfd : (bfd *) NULL,
9977 &error_message);
9978 skip_bfd_perform_relocation:
9979
9980 if (relocateable)
9981 {
9982 asection *os = input_section->output_section;
9983
9984 /* A partial link, so keep the relocs */
9985 os->orelocation[os->reloc_count] = *parent;
9986 os->reloc_count++;
9987 }
9988
9989 if (r != bfd_reloc_ok)
9990 {
9991 switch (r)
9992 {
9993 case bfd_reloc_undefined:
9994 if (!((*link_info->callbacks->undefined_symbol)
9995 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9996 input_bfd, input_section, (*parent)->address,
9997 true)))
9998 goto error_return;
9999 break;
10000 case bfd_reloc_dangerous:
10001 BFD_ASSERT (error_message != (char *) NULL);
10002 if (!((*link_info->callbacks->reloc_dangerous)
10003 (link_info, error_message, input_bfd, input_section,
10004 (*parent)->address)))
10005 goto error_return;
10006 break;
10007 case bfd_reloc_overflow:
10008 if (!((*link_info->callbacks->reloc_overflow)
10009 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10010 (*parent)->howto->name, (*parent)->addend,
10011 input_bfd, input_section, (*parent)->address)))
10012 goto error_return;
10013 break;
10014 case bfd_reloc_outofrange:
10015 default:
10016 abort ();
10017 break;
10018 }
10019
10020 }
10021 }
10022 }
10023 if (reloc_vector != NULL)
10024 free (reloc_vector);
10025 return data;
10026
10027 error_return:
10028 if (reloc_vector != NULL)
10029 free (reloc_vector);
10030 return NULL;
10031 }
10032
10033 #define bfd_elf32_bfd_get_relocated_section_contents \
10034 elf32_mips_get_relocated_section_contents
10035 \f
10036 /* ECOFF swapping routines. These are used when dealing with the
10037 .mdebug section, which is in the ECOFF debugging format. */
10038 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
10039 /* Symbol table magic number. */
10040 magicSym,
10041 /* Alignment of debugging information. E.g., 4. */
10042 4,
10043 /* Sizes of external symbolic information. */
10044 sizeof (struct hdr_ext),
10045 sizeof (struct dnr_ext),
10046 sizeof (struct pdr_ext),
10047 sizeof (struct sym_ext),
10048 sizeof (struct opt_ext),
10049 sizeof (struct fdr_ext),
10050 sizeof (struct rfd_ext),
10051 sizeof (struct ext_ext),
10052 /* Functions to swap in external symbolic data. */
10053 ecoff_swap_hdr_in,
10054 ecoff_swap_dnr_in,
10055 ecoff_swap_pdr_in,
10056 ecoff_swap_sym_in,
10057 ecoff_swap_opt_in,
10058 ecoff_swap_fdr_in,
10059 ecoff_swap_rfd_in,
10060 ecoff_swap_ext_in,
10061 _bfd_ecoff_swap_tir_in,
10062 _bfd_ecoff_swap_rndx_in,
10063 /* Functions to swap out external symbolic data. */
10064 ecoff_swap_hdr_out,
10065 ecoff_swap_dnr_out,
10066 ecoff_swap_pdr_out,
10067 ecoff_swap_sym_out,
10068 ecoff_swap_opt_out,
10069 ecoff_swap_fdr_out,
10070 ecoff_swap_rfd_out,
10071 ecoff_swap_ext_out,
10072 _bfd_ecoff_swap_tir_out,
10073 _bfd_ecoff_swap_rndx_out,
10074 /* Function to read in symbolic data. */
10075 _bfd_mips_elf_read_ecoff_info
10076 };
10077 \f
10078 #define ELF_ARCH bfd_arch_mips
10079 #define ELF_MACHINE_CODE EM_MIPS
10080
10081 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
10082 a value of 0x1000, and we are compatible. */
10083 #define ELF_MAXPAGESIZE 0x1000
10084
10085 #define elf_backend_collect true
10086 #define elf_backend_type_change_ok true
10087 #define elf_backend_can_gc_sections true
10088 #define elf_info_to_howto mips_info_to_howto_rela
10089 #define elf_info_to_howto_rel mips_info_to_howto_rel
10090 #define elf_backend_sym_is_global mips_elf_sym_is_global
10091 #define elf_backend_object_p _bfd_mips_elf_object_p
10092 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
10093 #define elf_backend_section_processing _bfd_mips_elf_section_processing
10094 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
10095 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
10096 #define elf_backend_section_from_bfd_section \
10097 _bfd_mips_elf_section_from_bfd_section
10098 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
10099 #define elf_backend_link_output_symbol_hook \
10100 _bfd_mips_elf_link_output_symbol_hook
10101 #define elf_backend_create_dynamic_sections \
10102 _bfd_mips_elf_create_dynamic_sections
10103 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
10104 #define elf_backend_adjust_dynamic_symbol \
10105 _bfd_mips_elf_adjust_dynamic_symbol
10106 #define elf_backend_always_size_sections \
10107 _bfd_mips_elf_always_size_sections
10108 #define elf_backend_size_dynamic_sections \
10109 _bfd_mips_elf_size_dynamic_sections
10110 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
10111 #define elf_backend_finish_dynamic_symbol \
10112 _bfd_mips_elf_finish_dynamic_symbol
10113 #define elf_backend_finish_dynamic_sections \
10114 _bfd_mips_elf_finish_dynamic_sections
10115 #define elf_backend_final_write_processing \
10116 _bfd_mips_elf_final_write_processing
10117 #define elf_backend_additional_program_headers \
10118 _bfd_mips_elf_additional_program_headers
10119 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
10120 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
10121 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
10122 #define elf_backend_copy_indirect_symbol \
10123 _bfd_mips_elf_copy_indirect_symbol
10124 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
10125 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
10126 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
10127 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
10128
10129 #define elf_backend_got_header_size (4 * MIPS_RESERVED_GOTNO)
10130 #define elf_backend_plt_header_size 0
10131 #define elf_backend_may_use_rel_p 1
10132 #define elf_backend_may_use_rela_p 0
10133 #define elf_backend_default_use_rela_p 0
10134 #define elf_backend_sign_extend_vma true
10135
10136 #define elf_backend_discard_info _bfd_elf32_mips_discard_info
10137 #define elf_backend_ignore_discarded_relocs \
10138 _bfd_elf32_mips_ignore_discarded_relocs
10139 #define elf_backend_write_section _bfd_elf32_mips_write_section
10140
10141 #define bfd_elf32_bfd_is_local_label_name \
10142 mips_elf_is_local_label_name
10143 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
10144 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
10145 #define bfd_elf32_bfd_link_hash_table_create \
10146 _bfd_mips_elf_link_hash_table_create
10147 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
10148 #define bfd_elf32_bfd_copy_private_bfd_data \
10149 _bfd_mips_elf_copy_private_bfd_data
10150 #define bfd_elf32_bfd_merge_private_bfd_data \
10151 _bfd_mips_elf_merge_private_bfd_data
10152 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
10153 #define bfd_elf32_bfd_print_private_bfd_data \
10154 _bfd_mips_elf_print_private_bfd_data
10155
10156 /* Support for SGI-ish mips targets. */
10157 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
10158 #define TARGET_LITTLE_NAME "elf32-littlemips"
10159 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
10160 #define TARGET_BIG_NAME "elf32-bigmips"
10161
10162 #include "elf32-target.h"
10163
10164 /* Support for traditional mips targets. */
10165 #define INCLUDED_TARGET_FILE /* More a type of flag. */
10166
10167 #undef TARGET_LITTLE_SYM
10168 #undef TARGET_LITTLE_NAME
10169 #undef TARGET_BIG_SYM
10170 #undef TARGET_BIG_NAME
10171
10172 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
10173 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
10174 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
10175 #define TARGET_BIG_NAME "elf32-tradbigmips"
10176
10177 /* Include the target file again for this target */
10178 #include "elf32-target.h"
This page took 0.230454 seconds and 5 git commands to generate.