* bfd.c (bfd_archive_filename): New function.
[deliverable/binutils-gdb.git] / bfd / elf32-s390.c
1 /* IBM S/390-specific support for 32-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Carl B. Pedersen and Martin Schwidefsky.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static boolean elf_s390_is_local_label_name PARAMS ((bfd *, const char *));
33 static struct bfd_hash_entry *elf_s390_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
35 static struct bfd_link_hash_table *elf_s390_link_hash_table_create
36 PARAMS ((bfd *));
37 static boolean elf_s390_check_relocs
38 PARAMS ((bfd *, struct bfd_link_info *, asection *,
39 const Elf_Internal_Rela *));
40 static asection *elf_s390_gc_mark_hook
41 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
42 struct elf_link_hash_entry *, Elf_Internal_Sym *sym));
43 static boolean elf_s390_gc_sweep_hook
44 PARAMS ((bfd *, struct bfd_link_info *, asection *,
45 const Elf_Internal_Rela *));
46 static boolean elf_s390_adjust_dynamic_symbol
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48 static boolean elf_s390_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_s390_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_s390_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_s390_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
58 static boolean elf_s390_object_p PARAMS ((bfd *));
59 static enum elf_reloc_type_class elf_s390_reloc_type_class PARAMS ((int));
60
61 #define USE_RELA 1 /* We want RELA relocations, not REL. */
62
63 #include "elf/s390.h"
64
65 /* The relocation "howto" table. */
66
67 static reloc_howto_type elf_howto_table[] =
68 {
69 HOWTO (R_390_NONE, /* type */
70 0, /* rightshift */
71 0, /* size (0 = byte, 1 = short, 2 = long) */
72 0, /* bitsize */
73 false, /* pc_relative */
74 0, /* bitpos */
75 complain_overflow_dont, /* complain_on_overflow */
76 bfd_elf_generic_reloc, /* special_function */
77 "R_390_NONE", /* name */
78 false, /* partial_inplace */
79 0, /* src_mask */
80 0, /* dst_mask */
81 false), /* pcrel_offset */
82
83 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
84 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
85 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
86 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
87 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
88 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
89 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
90 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
91 HOWTO(R_390_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,0xffffffff, false),
92 HOWTO(R_390_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,0xffffffff, false),
93 HOWTO(R_390_JMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,0xffffffff, false),
94 HOWTO(R_390_RELATIVE, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,0xffffffff, false),
95 HOWTO(R_390_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,0xffffffff, false),
96 HOWTO(R_390_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,0xffffffff, true),
97 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
98 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
99 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
100 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
101 };
102
103 /* GNU extension to record C++ vtable hierarchy. */
104 static reloc_howto_type elf32_s390_vtinherit_howto =
105 HOWTO (R_390_GNU_VTINHERIT, 0,2,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
106 static reloc_howto_type elf32_s390_vtentry_howto =
107 HOWTO (R_390_GNU_VTENTRY, 0,2,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
108
109 static reloc_howto_type *
110 elf_s390_reloc_type_lookup (abfd, code)
111 bfd *abfd ATTRIBUTE_UNUSED;
112 bfd_reloc_code_real_type code;
113 {
114 switch (code) {
115 case BFD_RELOC_NONE:
116 return &elf_howto_table[(int) R_390_NONE];
117 case BFD_RELOC_8:
118 return &elf_howto_table[(int) R_390_8];
119 case BFD_RELOC_390_12:
120 return &elf_howto_table[(int) R_390_12];
121 case BFD_RELOC_16:
122 return &elf_howto_table[(int) R_390_16];
123 case BFD_RELOC_32:
124 return &elf_howto_table[(int) R_390_32];
125 case BFD_RELOC_CTOR:
126 return &elf_howto_table[(int) R_390_32];
127 case BFD_RELOC_32_PCREL:
128 return &elf_howto_table[(int) R_390_PC32];
129 case BFD_RELOC_390_GOT12:
130 return &elf_howto_table[(int) R_390_GOT12];
131 case BFD_RELOC_32_GOT_PCREL:
132 return &elf_howto_table[(int) R_390_GOT32];
133 case BFD_RELOC_390_PLT32:
134 return &elf_howto_table[(int) R_390_PLT32];
135 case BFD_RELOC_390_COPY:
136 return &elf_howto_table[(int) R_390_COPY];
137 case BFD_RELOC_390_GLOB_DAT:
138 return &elf_howto_table[(int) R_390_GLOB_DAT];
139 case BFD_RELOC_390_JMP_SLOT:
140 return &elf_howto_table[(int) R_390_JMP_SLOT];
141 case BFD_RELOC_390_RELATIVE:
142 return &elf_howto_table[(int) R_390_RELATIVE];
143 case BFD_RELOC_32_GOTOFF:
144 return &elf_howto_table[(int) R_390_GOTOFF];
145 case BFD_RELOC_390_GOTPC:
146 return &elf_howto_table[(int) R_390_GOTPC];
147 case BFD_RELOC_390_GOT16:
148 return &elf_howto_table[(int) R_390_GOT16];
149 case BFD_RELOC_16_PCREL:
150 return &elf_howto_table[(int) R_390_PC16];
151 case BFD_RELOC_390_PC16DBL:
152 return &elf_howto_table[(int) R_390_PC16DBL];
153 case BFD_RELOC_390_PLT16DBL:
154 return &elf_howto_table[(int) R_390_PLT16DBL];
155 case BFD_RELOC_VTABLE_INHERIT:
156 return &elf32_s390_vtinherit_howto;
157 case BFD_RELOC_VTABLE_ENTRY:
158 return &elf32_s390_vtentry_howto;
159 default:
160 break;
161 }
162 return 0;
163 }
164
165 /* We need to use ELF32_R_TYPE so we have our own copy of this function,
166 and elf32-s390.c has its own copy. */
167
168 static void
169 elf_s390_info_to_howto (abfd, cache_ptr, dst)
170 bfd *abfd ATTRIBUTE_UNUSED;
171 arelent *cache_ptr;
172 Elf_Internal_Rela *dst;
173 {
174 switch (ELF32_R_TYPE(dst->r_info))
175 {
176 case R_390_GNU_VTINHERIT:
177 cache_ptr->howto = &elf32_s390_vtinherit_howto;
178 break;
179
180 case R_390_GNU_VTENTRY:
181 cache_ptr->howto = &elf32_s390_vtentry_howto;
182 break;
183
184 default:
185 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
186 cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
187 }
188 }
189
190 static boolean
191 elf_s390_is_local_label_name (abfd, name)
192 bfd *abfd;
193 const char *name;
194 {
195 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
196 return true;
197
198 return _bfd_elf_is_local_label_name (abfd, name);
199 }
200
201 /* Functions for the 390 ELF linker. */
202
203 /* The name of the dynamic interpreter. This is put in the .interp
204 section. */
205
206 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
207
208 /* The nop opcode we use. */
209
210 #define s390_NOP 0x07070707
211
212
213 /* The size in bytes of the first entry in the procedure linkage table. */
214 #define PLT_FIRST_ENTRY_SIZE 32
215 /* The size in bytes of an entry in the procedure linkage table. */
216 #define PLT_ENTRY_SIZE 32
217
218 #define GOT_ENTRY_SIZE 4
219
220 /* The first three entries in a procedure linkage table are reserved,
221 and the initial contents are unimportant (we zero them out).
222 Subsequent entries look like this. See the SVR4 ABI 386
223 supplement to see how this works. */
224
225 /* For the s390, simple addr offset can only be 0 - 4096.
226 To use the full 2 GB address space, several instructions
227 are needed to load an address in a register and execute
228 a branch( or just saving the address)
229
230 Furthermore, only r 0 and 1 are free to use!!! */
231
232 /* The first 3 words in the GOT are then reserved.
233 Word 0 is the address of the dynamic table.
234 Word 1 is a pointer to a structure describing the object
235 Word 2 is used to point to the loader entry address.
236
237 The code for position independand PLT entries looks like this:
238
239 r12 holds addr of the current GOT at entry to the PLT
240
241 The GOT holds the address in the PLT to be executed.
242 The loader then gets:
243 24(15) = Pointer to the structure describing the object.
244 28(15) = Offset in symbol table
245
246 The loader must then find the module where the function is
247 and insert the address in the GOT.
248
249 Note: 390 can only address +- 64 K relative.
250 We check if offset > 65536, then make a relative branch -64xxx
251 back to a previous defined branch
252
253 PLT1: BASR 1,0 # 2 bytes
254 L 1,22(1) # 4 bytes Load offset in GOT in r 1
255 L 1,(1,12) # 4 bytes Load address from GOT in r1
256 BCR 15,1 # 2 bytes Jump to address
257 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
258 L 1,14(1) # 4 bytes Load offset in symol table in r1
259 BRC 15,-x # 4 bytes Jump to start of PLT
260 .word 0 # 2 bytes filler
261 .long ? # 4 bytes offset in GOT
262 .long ? # 4 bytes offset into symbol table
263
264 This was the general case. There are two additional, optimizes PLT
265 definitions. One for GOT offsets < 4096 and one for GOT offsets < 32768.
266 First the one for GOT offsets < 4096:
267
268 PLT1: L 1,<offset>(12) # 4 bytes Load address from GOT in R1
269 BCR 15,1 # 2 bytes Jump to address
270 .word 0,0,0 # 6 bytes filler
271 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
272 L 1,14(1) # 4 bytes Load offset in symbol table in r1
273 BRC 15,-x # 4 bytes Jump to start of PLT
274 .word 0,0,0 # 6 bytes filler
275 .long ? # 4 bytes offset into symbol table
276
277 Second the one for GOT offsets < 32768:
278
279 PLT1: LHI 1,<offset> # 4 bytes Load offset in GOT to r1
280 L 1,(1,12) # 4 bytes Load address from GOT to r1
281 BCR 15,1 # 2 bytes Jump to address
282 .word 0 # 2 bytes filler
283 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
284 L 1,14(1) # 4 bytes Load offset in symbol table in r1
285 BRC 15,-x # 4 bytes Jump to start of PLT
286 .word 0,0,0 # 6 bytes filler
287 .long ? # 4 bytes offset into symbol table
288
289 Total = 32 bytes per PLT entry
290
291 The code for static build PLT entries looks like this:
292
293 PLT1: BASR 1,0 # 2 bytes
294 L 1,22(1) # 4 bytes Load address of GOT entry
295 L 1,0(0,1) # 4 bytes Load address from GOT in r1
296 BCR 15,1 # 2 bytes Jump to address
297 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
298 L 1,14(1) # 4 bytes Load offset in symbol table in r1
299 BRC 15,-x # 4 bytes Jump to start of PLT
300 .word 0 # 2 bytes filler
301 .long ? # 4 bytes address of GOT entry
302 .long ? # 4 bytes offset into symbol table */
303
304 #define PLT_PIC_ENTRY_WORD0 0x0d105810
305 #define PLT_PIC_ENTRY_WORD1 0x10165811
306 #define PLT_PIC_ENTRY_WORD2 0xc00007f1
307 #define PLT_PIC_ENTRY_WORD3 0x0d105810
308 #define PLT_PIC_ENTRY_WORD4 0x100ea7f4
309
310 #define PLT_PIC12_ENTRY_WORD0 0x5810c000
311 #define PLT_PIC12_ENTRY_WORD1 0x07f10000
312 #define PLT_PIC12_ENTRY_WORD2 0x00000000
313 #define PLT_PIC12_ENTRY_WORD3 0x0d105810
314 #define PLT_PIC12_ENTRY_WORD4 0x100ea7f4
315
316 #define PLT_PIC16_ENTRY_WORD0 0xa7180000
317 #define PLT_PIC16_ENTRY_WORD1 0x5811c000
318 #define PLT_PIC16_ENTRY_WORD2 0x07f10000
319 #define PLT_PIC16_ENTRY_WORD3 0x0d105810
320 #define PLT_PIC16_ENTRY_WORD4 0x100ea7f4
321
322 #define PLT_ENTRY_WORD0 0x0d105810
323 #define PLT_ENTRY_WORD1 0x10165810
324 #define PLT_ENTRY_WORD2 0x100007f1
325 #define PLT_ENTRY_WORD3 0x0d105810
326 #define PLT_ENTRY_WORD4 0x100ea7f4
327
328 /* The first PLT entry pushes the offset into the symbol table
329 from R1 onto the stack at 8(15) and the loader object info
330 at 12(15), loads the loader address in R1 and jumps to it. */
331
332 /* The first entry in the PLT for PIC code:
333
334 PLT0:
335 ST 1,28(15) # R1 has offset into symbol table
336 L 1,4(12) # Get loader ino(object struct address)
337 ST 1,24(15) # Store address
338 L 1,8(12) # Entry address of loader in R1
339 BR 1 # Jump to loader
340
341 The first entry in the PLT for static code:
342
343 PLT0:
344 ST 1,28(15) # R1 has offset into symbol table
345 BASR 1,0
346 L 1,18(0,1) # Get address of GOT
347 MVC 24(4,15),4(1) # Move loader ino to stack
348 L 1,8(1) # Get address of loader
349 BR 1 # Jump to loader
350 .word 0 # filler
351 .long got # address of GOT */
352
353 #define PLT_PIC_FIRST_ENTRY_WORD0 0x5010f01c
354 #define PLT_PIC_FIRST_ENTRY_WORD1 0x5810c004
355 #define PLT_PIC_FIRST_ENTRY_WORD2 0x5010f018
356 #define PLT_PIC_FIRST_ENTRY_WORD3 0x5810c008
357 #define PLT_PIC_FIRST_ENTRY_WORD4 0x07f10000
358
359 #define PLT_FIRST_ENTRY_WORD0 0x5010f01c
360 #define PLT_FIRST_ENTRY_WORD1 0x0d105810
361 #define PLT_FIRST_ENTRY_WORD2 0x1012D203
362 #define PLT_FIRST_ENTRY_WORD3 0xf0181004
363 #define PLT_FIRST_ENTRY_WORD4 0x58101008
364 #define PLT_FIRST_ENTRY_WORD5 0x07f10000
365
366 /* The s390 linker needs to keep track of the number of relocs that it
367 decides to copy in check_relocs for each symbol. This is so that
368 it can discard PC relative relocs if it doesn't need them when
369 linking with -Bsymbolic. We store the information in a field
370 extending the regular ELF linker hash table. */
371
372 /* This structure keeps track of the number of PC relative relocs we
373 have copied for a given symbol. */
374
375 struct elf_s390_pcrel_relocs_copied
376 {
377 /* Next section. */
378 struct elf_s390_pcrel_relocs_copied *next;
379 /* A section in dynobj. */
380 asection *section;
381 /* Number of relocs copied in this section. */
382 bfd_size_type count;
383 };
384
385 /* s390 ELF linker hash entry. */
386
387 struct elf_s390_link_hash_entry
388 {
389 struct elf_link_hash_entry root;
390
391 /* Number of PC relative relocs copied for this symbol. */
392 struct elf_s390_pcrel_relocs_copied *pcrel_relocs_copied;
393 };
394
395 /* s390 ELF linker hash table. */
396
397 struct elf_s390_link_hash_table
398 {
399 struct elf_link_hash_table root;
400 };
401
402 /* Declare this now that the above structures are defined. */
403
404 static boolean elf_s390_discard_copies
405 PARAMS ((struct elf_s390_link_hash_entry *, PTR));
406
407 /* Traverse an s390 ELF linker hash table. */
408
409 #define elf_s390_link_hash_traverse(table, func, info) \
410 (elf_link_hash_traverse \
411 (&(table)->root, \
412 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
413 (info)))
414
415 /* Get the s390 ELF linker hash table from a link_info structure. */
416
417 #define elf_s390_hash_table(p) \
418 ((struct elf_s390_link_hash_table *) ((p)->hash))
419
420 /* Create an entry in an s390 ELF linker hash table. */
421
422 static struct bfd_hash_entry *
423 elf_s390_link_hash_newfunc (entry, table, string)
424 struct bfd_hash_entry *entry;
425 struct bfd_hash_table *table;
426 const char *string;
427 {
428 struct elf_s390_link_hash_entry *ret =
429 (struct elf_s390_link_hash_entry *) entry;
430
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (ret == (struct elf_s390_link_hash_entry *) NULL)
434 ret = ((struct elf_s390_link_hash_entry *)
435 bfd_hash_allocate (table,
436 sizeof (struct elf_s390_link_hash_entry)));
437 if (ret == (struct elf_s390_link_hash_entry *) NULL)
438 return (struct bfd_hash_entry *) ret;
439
440 /* Call the allocation method of the superclass. */
441 ret = ((struct elf_s390_link_hash_entry *)
442 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
443 table, string));
444 if (ret != (struct elf_s390_link_hash_entry *) NULL)
445 {
446 ret->pcrel_relocs_copied = NULL;
447 }
448
449 return (struct bfd_hash_entry *) ret;
450 }
451
452 /* Create an s390 ELF linker hash table. */
453
454 static struct bfd_link_hash_table *
455 elf_s390_link_hash_table_create (abfd)
456 bfd *abfd;
457 {
458 struct elf_s390_link_hash_table *ret;
459 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
460
461 ret = (struct elf_s390_link_hash_table *) bfd_alloc (abfd, amt);
462 if (ret == (struct elf_s390_link_hash_table *) NULL)
463 return NULL;
464
465 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
466 elf_s390_link_hash_newfunc))
467 {
468 bfd_release (abfd, ret);
469 return NULL;
470 }
471
472 return &ret->root.root;
473 }
474
475
476 /* Look through the relocs for a section during the first phase, and
477 allocate space in the global offset table or procedure linkage
478 table. */
479
480 static boolean
481 elf_s390_check_relocs (abfd, info, sec, relocs)
482 bfd *abfd;
483 struct bfd_link_info *info;
484 asection *sec;
485 const Elf_Internal_Rela *relocs;
486 {
487 bfd *dynobj;
488 Elf_Internal_Shdr *symtab_hdr;
489 struct elf_link_hash_entry **sym_hashes;
490 bfd_signed_vma *local_got_refcounts;
491 const Elf_Internal_Rela *rel;
492 const Elf_Internal_Rela *rel_end;
493 asection *sgot;
494 asection *srelgot;
495 asection *sreloc;
496
497 if (info->relocateable)
498 return true;
499
500 dynobj = elf_hash_table (info)->dynobj;
501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
502 sym_hashes = elf_sym_hashes (abfd);
503 local_got_refcounts = elf_local_got_offsets (abfd);
504
505 sgot = NULL;
506 srelgot = NULL;
507 sreloc = NULL;
508
509 rel_end = relocs + sec->reloc_count;
510 for (rel = relocs; rel < rel_end; rel++)
511 {
512 unsigned long r_symndx;
513 struct elf_link_hash_entry *h;
514
515 r_symndx = ELF32_R_SYM (rel->r_info);
516
517 if (r_symndx < symtab_hdr->sh_info)
518 h = NULL;
519 else
520 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
521
522 /* Some relocs require a global offset table. */
523 if (dynobj == NULL)
524 {
525 switch (ELF32_R_TYPE (rel->r_info))
526 {
527 case R_390_GOT12:
528 case R_390_GOT16:
529 case R_390_GOT32:
530 case R_390_GOTOFF:
531 case R_390_GOTPC:
532 elf_hash_table (info)->dynobj = dynobj = abfd;
533 if (! _bfd_elf_create_got_section (dynobj, info))
534 return false;
535 break;
536
537 default:
538 break;
539 }
540 }
541
542
543 switch (ELF32_R_TYPE (rel->r_info))
544 {
545 case R_390_GOT12:
546 case R_390_GOT16:
547 case R_390_GOT32:
548 /* This symbol requires a global offset table entry. */
549
550 if (sgot == NULL)
551 {
552 sgot = bfd_get_section_by_name (dynobj, ".got");
553 BFD_ASSERT (sgot != NULL);
554 }
555
556
557 if (srelgot == NULL
558 && (h != NULL || info->shared))
559 {
560 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
561 if (srelgot == NULL)
562 {
563 srelgot = bfd_make_section (dynobj, ".rela.got");
564 if (srelgot == NULL
565 || ! bfd_set_section_flags (dynobj, srelgot,
566 (SEC_ALLOC
567 | SEC_LOAD
568 | SEC_HAS_CONTENTS
569 | SEC_IN_MEMORY
570 | SEC_LINKER_CREATED
571 | SEC_READONLY))
572 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
573 return false;
574 }
575 }
576
577 if (h != NULL)
578 {
579 if (h->got.refcount == -1)
580 {
581 h->got.refcount = 1;
582
583 /* Make sure this symbol is output as a dynamic symbol. */
584 if (h->dynindx == -1)
585 {
586 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
587 return false;
588 }
589
590 sgot->_raw_size += 4;
591 srelgot->_raw_size += sizeof (Elf32_External_Rela);
592 }
593 else
594 h->got.refcount += 1;
595 }
596 else
597 {
598 /* This is a global offset table entry for a local symbol. */
599 if (local_got_refcounts == NULL)
600 {
601 bfd_size_type size;
602
603 size = symtab_hdr->sh_info;
604 size *= sizeof (bfd_signed_vma);
605 local_got_refcounts = (bfd_signed_vma *)
606 bfd_alloc (abfd, size);
607 if (local_got_refcounts == NULL)
608 return false;
609 elf_local_got_refcounts (abfd) = local_got_refcounts;
610 memset (local_got_refcounts, -1, (size_t) size);
611 }
612 if (local_got_refcounts[r_symndx] == -1)
613 {
614 local_got_refcounts[r_symndx] = 1;
615
616 sgot->_raw_size += 4;
617 if (info->shared)
618 {
619 /* If we are generating a shared object, we need to
620 output a R_390_RELATIVE reloc so that the dynamic
621 linker can adjust this GOT entry. */
622 srelgot->_raw_size += sizeof (Elf32_External_Rela);
623 }
624 }
625 else
626 local_got_refcounts[r_symndx] += 1;
627 }
628 break;
629
630 case R_390_PLT16DBL:
631 case R_390_PLT32:
632 /* This symbol requires a procedure linkage table entry. We
633 actually build the entry in adjust_dynamic_symbol,
634 because this might be a case of linking PIC code which is
635 never referenced by a dynamic object, in which case we
636 don't need to generate a procedure linkage table entry
637 after all. */
638
639 /* If this is a local symbol, we resolve it directly without
640 creating a procedure linkage table entry. */
641 if (h == NULL)
642 continue;
643
644 if (h->plt.refcount == -1)
645 {
646 h->plt.refcount = 1;
647 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
648 }
649 else
650 h->plt.refcount += 1;
651 break;
652
653 case R_390_8:
654 case R_390_16:
655 case R_390_32:
656 case R_390_PC16:
657 case R_390_PC16DBL:
658 case R_390_PC32:
659 if (h != NULL)
660 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
661
662 /* If we are creating a shared library, and this is a reloc
663 against a global symbol, or a non PC relative reloc
664 against a local symbol, then we need to copy the reloc
665 into the shared library. However, if we are linking with
666 -Bsymbolic, we do not need to copy a reloc against a
667 global symbol which is defined in an object we are
668 including in the link (i.e., DEF_REGULAR is set). At
669 this point we have not seen all the input files, so it is
670 possible that DEF_REGULAR is not set now but will be set
671 later (it is never cleared). We account for that
672 possibility below by storing information in the
673 pcrel_relocs_copied field of the hash table entry. */
674 if (info->shared
675 && (sec->flags & SEC_ALLOC) != 0
676 && ((ELF32_R_TYPE (rel->r_info) != R_390_PC16 &&
677 ELF32_R_TYPE (rel->r_info) != R_390_PC16DBL &&
678 ELF32_R_TYPE (rel->r_info) != R_390_PC32)
679 || (h != NULL
680 && (! info->symbolic
681 || (h->elf_link_hash_flags
682 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
683 {
684 /* When creating a shared object, we must copy these
685 reloc types into the output file. We create a reloc
686 section in dynobj and make room for this reloc. */
687 if (sreloc == NULL)
688 {
689 const char *name;
690
691 name = (bfd_elf_string_from_elf_section
692 (abfd,
693 elf_elfheader (abfd)->e_shstrndx,
694 elf_section_data (sec)->rel_hdr.sh_name));
695 if (name == NULL)
696 return false;
697
698 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
699 && strcmp (bfd_get_section_name (abfd, sec),
700 name + 5) == 0);
701
702 sreloc = bfd_get_section_by_name (dynobj, name);
703 if (sreloc == NULL)
704 {
705 flagword flags;
706
707 sreloc = bfd_make_section (dynobj, name);
708 flags = (SEC_HAS_CONTENTS | SEC_READONLY
709 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
710 if ((sec->flags & SEC_ALLOC) != 0)
711 flags |= SEC_ALLOC | SEC_LOAD;
712 if (sreloc == NULL
713 || ! bfd_set_section_flags (dynobj, sreloc, flags)
714 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
715 return false;
716 }
717 if (sec->flags & SEC_READONLY)
718 info->flags |= DF_TEXTREL;
719 }
720
721 sreloc->_raw_size += sizeof (Elf32_External_Rela);
722
723 /* If we are linking with -Bsymbolic, and this is a
724 global symbol, we count the number of PC relative
725 relocations we have entered for this symbol, so that
726 we can discard them again if the symbol is later
727 defined by a regular object. Note that this function
728 is only called if we are using an elf_s390 linker
729 hash table, which means that h is really a pointer to
730 an elf_s390_link_hash_entry. */
731 if (h != NULL
732 && (ELF32_R_TYPE (rel->r_info) == R_390_PC16 ||
733 ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL ||
734 ELF32_R_TYPE (rel->r_info) == R_390_PC32))
735 {
736 struct elf_s390_link_hash_entry *eh;
737 struct elf_s390_pcrel_relocs_copied *p;
738
739 eh = (struct elf_s390_link_hash_entry *) h;
740
741 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
742 if (p->section == sreloc)
743 break;
744
745 if (p == NULL)
746 {
747 p = ((struct elf_s390_pcrel_relocs_copied *)
748 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
749 if (p == NULL)
750 return false;
751 p->next = eh->pcrel_relocs_copied;
752 eh->pcrel_relocs_copied = p;
753 p->section = sreloc;
754 p->count = 0;
755 }
756
757 ++p->count;
758 }
759 }
760
761 break;
762
763 /* This relocation describes the C++ object vtable hierarchy.
764 Reconstruct it for later use during GC. */
765 case R_390_GNU_VTINHERIT:
766 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
767 return false;
768 break;
769
770 /* This relocation describes which C++ vtable entries are actually
771 used. Record for later use during GC. */
772 case R_390_GNU_VTENTRY:
773 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
774 return false;
775 break;
776
777 default:
778 break;
779 }
780 }
781
782 return true;
783 }
784
785 /* Return the section that should be marked against GC for a given
786 relocation. */
787
788 static asection *
789 elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
790 bfd *abfd;
791 struct bfd_link_info *info ATTRIBUTE_UNUSED;
792 Elf_Internal_Rela *rel;
793 struct elf_link_hash_entry *h;
794 Elf_Internal_Sym *sym;
795 {
796 if (h != NULL)
797 {
798 switch (ELF32_R_TYPE (rel->r_info))
799 {
800 case R_390_GNU_VTINHERIT:
801 case R_390_GNU_VTENTRY:
802 break;
803
804 default:
805 switch (h->root.type)
806 {
807 case bfd_link_hash_defined:
808 case bfd_link_hash_defweak:
809 return h->root.u.def.section;
810
811 case bfd_link_hash_common:
812 return h->root.u.c.p->section;
813
814 default:
815 break;
816 }
817 }
818 }
819 else
820 {
821 if (!(elf_bad_symtab (abfd)
822 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
823 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
824 && sym->st_shndx != SHN_COMMON))
825 {
826 return bfd_section_from_elf_index (abfd, sym->st_shndx);
827 }
828 }
829
830 return NULL;
831 }
832
833 /* Update the got entry reference counts for the section being removed. */
834
835 static boolean
836 elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
837 bfd *abfd ATTRIBUTE_UNUSED;
838 struct bfd_link_info *info ATTRIBUTE_UNUSED;
839 asection *sec ATTRIBUTE_UNUSED;
840 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
841 {
842 Elf_Internal_Shdr *symtab_hdr;
843 struct elf_link_hash_entry **sym_hashes;
844 bfd_signed_vma *local_got_refcounts;
845 const Elf_Internal_Rela *rel, *relend;
846 unsigned long r_symndx;
847 struct elf_link_hash_entry *h;
848 bfd *dynobj;
849 asection *sgot;
850 asection *srelgot;
851
852 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
853 sym_hashes = elf_sym_hashes (abfd);
854 local_got_refcounts = elf_local_got_refcounts (abfd);
855
856 dynobj = elf_hash_table (info)->dynobj;
857 if (dynobj == NULL)
858 return true;
859
860 sgot = bfd_get_section_by_name (dynobj, ".got");
861 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
862
863 relend = relocs + sec->reloc_count;
864 for (rel = relocs; rel < relend; rel++)
865 switch (ELF32_R_TYPE (rel->r_info))
866 {
867 case R_390_GOT12:
868 case R_390_GOT16:
869 case R_390_GOT32:
870 case R_390_GOTOFF:
871 case R_390_GOTPC:
872 r_symndx = ELF32_R_SYM (rel->r_info);
873 if (r_symndx >= symtab_hdr->sh_info)
874 {
875 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
876 if (h->got.refcount > 0)
877 {
878 h->got.refcount -= 1;
879 if (h->got.refcount == 0)
880 {
881 sgot->_raw_size -= 4;
882 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
883 }
884 }
885 }
886 else if (local_got_refcounts != NULL)
887 {
888 if (local_got_refcounts[r_symndx] > 0)
889 {
890 local_got_refcounts[r_symndx] -= 1;
891 if (local_got_refcounts[r_symndx] == 0)
892 {
893 sgot->_raw_size -= 4;
894 if (info->shared)
895 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
896 }
897 }
898 }
899 break;
900
901 case R_390_PLT16DBL:
902 case R_390_PLT32:
903 r_symndx = ELF32_R_SYM (rel->r_info);
904 if (r_symndx >= symtab_hdr->sh_info)
905 {
906 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
907 if (h->plt.refcount > 0)
908 h->plt.refcount -= 1;
909 }
910 break;
911
912 default:
913 break;
914 }
915
916 return true;
917 }
918
919 /* Adjust a symbol defined by a dynamic object and referenced by a
920 regular object. The current definition is in some section of the
921 dynamic object, but we're not including those sections. We have to
922 change the definition to something the rest of the link can
923 understand. */
924
925 static boolean
926 elf_s390_adjust_dynamic_symbol (info, h)
927 struct bfd_link_info *info;
928 struct elf_link_hash_entry *h;
929 {
930 bfd *dynobj;
931 asection *s;
932 unsigned int power_of_two;
933
934 dynobj = elf_hash_table (info)->dynobj;
935
936 /* Make sure we know what is going on here. */
937 BFD_ASSERT (dynobj != NULL
938 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
939 || h->weakdef != NULL
940 || ((h->elf_link_hash_flags
941 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
942 && (h->elf_link_hash_flags
943 & ELF_LINK_HASH_REF_REGULAR) != 0
944 && (h->elf_link_hash_flags
945 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
946
947 /* If this is a function, put it in the procedure linkage table. We
948 will fill in the contents of the procedure linkage table later
949 (although we could actually do it here). */
950 if (h->type == STT_FUNC
951 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
952 {
953 if ((! info->shared
954 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
955 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
956 || (info->shared && h->plt.refcount <= 0))
957 {
958 /* This case can occur if we saw a PLT32 reloc in an input
959 file, but the symbol was never referred to by a dynamic
960 object, or if all references were garbage collected. In
961 such a case, we don't actually need to build a procedure
962 linkage table, and we can just do a PC32 reloc instead. */
963 h->plt.offset = (bfd_vma) -1;
964 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
965 return true;
966 }
967
968 /* Make sure this symbol is output as a dynamic symbol. */
969 if (h->dynindx == -1)
970 {
971 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
972 return false;
973 }
974
975 s = bfd_get_section_by_name (dynobj, ".plt");
976 BFD_ASSERT (s != NULL);
977
978 /* The first entry in .plt is reserved. */
979 if (s->_raw_size == 0)
980 s->_raw_size = PLT_FIRST_ENTRY_SIZE;
981
982 /* If this symbol is not defined in a regular file, and we are
983 not generating a shared library, then set the symbol to this
984 location in the .plt. This is required to make function
985 pointers compare as equal between the normal executable and
986 the shared library. */
987 if (! info->shared
988 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
989 {
990 h->root.u.def.section = s;
991 h->root.u.def.value = s->_raw_size;
992 }
993
994 h->plt.offset = s->_raw_size;
995
996 /* Make room for this entry. */
997 s->_raw_size += PLT_ENTRY_SIZE;
998
999 /* We also need to make an entry in the .got.plt section, which
1000 will be placed in the .got section by the linker script. */
1001 s = bfd_get_section_by_name (dynobj, ".got.plt");
1002 BFD_ASSERT (s != NULL);
1003 s->_raw_size += GOT_ENTRY_SIZE;
1004
1005 /* We also need to make an entry in the .rela.plt section. */
1006 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1007 BFD_ASSERT (s != NULL);
1008 s->_raw_size += sizeof (Elf32_External_Rela);
1009
1010 return true;
1011 }
1012
1013 /* If this is a weak symbol, and there is a real definition, the
1014 processor independent code will have arranged for us to see the
1015 real definition first, and we can just use the same value. */
1016 if (h->weakdef != NULL)
1017 {
1018 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1019 || h->weakdef->root.type == bfd_link_hash_defweak);
1020 h->root.u.def.section = h->weakdef->root.u.def.section;
1021 h->root.u.def.value = h->weakdef->root.u.def.value;
1022 return true;
1023 }
1024
1025 /* This is a reference to a symbol defined by a dynamic object which
1026 is not a function. */
1027
1028 /* If we are creating a shared library, we must presume that the
1029 only references to the symbol are via the global offset table.
1030 For such cases we need not do anything here; the relocations will
1031 be handled correctly by relocate_section. */
1032 if (info->shared)
1033 return true;
1034
1035 /* If there are no references to this symbol that do not use the
1036 GOT, we don't need to generate a copy reloc. */
1037 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1038 return true;
1039
1040 /* We must allocate the symbol in our .dynbss section, which will
1041 become part of the .bss section of the executable. There will be
1042 an entry for this symbol in the .dynsym section. The dynamic
1043 object will contain position independent code, so all references
1044 from the dynamic object to this symbol will go through the global
1045 offset table. The dynamic linker will use the .dynsym entry to
1046 determine the address it must put in the global offset table, so
1047 both the dynamic object and the regular object will refer to the
1048 same memory location for the variable. */
1049
1050 s = bfd_get_section_by_name (dynobj, ".dynbss");
1051 BFD_ASSERT (s != NULL);
1052
1053 /* We must generate a R_390_COPY reloc to tell the dynamic linker
1054 to copy the initial value out of the dynamic object and into the
1055 runtime process image. We need to remember the offset into the
1056 .rel.bss section we are going to use. */
1057 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1058 {
1059 asection *srel;
1060
1061 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1062 BFD_ASSERT (srel != NULL);
1063 srel->_raw_size += sizeof (Elf32_External_Rela);
1064 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1065 }
1066
1067 /* We need to figure out the alignment required for this symbol. I
1068 have no idea how ELF linkers handle this. */
1069 power_of_two = bfd_log2 (h->size);
1070 if (power_of_two > 3)
1071 power_of_two = 3;
1072
1073 /* Apply the required alignment. */
1074 s->_raw_size = BFD_ALIGN (s->_raw_size,
1075 (bfd_size_type) (1 << power_of_two));
1076 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1077 {
1078 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1079 return false;
1080 }
1081
1082 /* Define the symbol as being at this point in the section. */
1083 h->root.u.def.section = s;
1084 h->root.u.def.value = s->_raw_size;
1085
1086 /* Increment the section size to make room for the symbol. */
1087 s->_raw_size += h->size;
1088
1089 return true;
1090 }
1091
1092 /* Set the sizes of the dynamic sections. */
1093
1094 static boolean
1095 elf_s390_size_dynamic_sections (output_bfd, info)
1096 bfd *output_bfd ATTRIBUTE_UNUSED;
1097 struct bfd_link_info *info;
1098 {
1099 bfd *dynobj;
1100 asection *s;
1101 boolean relocs;
1102 boolean plt;
1103
1104 dynobj = elf_hash_table (info)->dynobj;
1105 BFD_ASSERT (dynobj != NULL);
1106
1107 if (elf_hash_table (info)->dynamic_sections_created)
1108 {
1109 /* Set the contents of the .interp section to the interpreter. */
1110 if (! info->shared)
1111 {
1112 s = bfd_get_section_by_name (dynobj, ".interp");
1113 BFD_ASSERT (s != NULL);
1114 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1115 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1116 }
1117 }
1118 else
1119 {
1120 /* We may have created entries in the .rela.got section.
1121 However, if we are not creating the dynamic sections, we will
1122 not actually use these entries. Reset the size of .rela.got,
1123 which will cause it to get stripped from the output file
1124 below. */
1125 s = bfd_get_section_by_name (dynobj, ".rela.got");
1126 if (s != NULL)
1127 s->_raw_size = 0;
1128 }
1129
1130 /* If this is a -Bsymbolic shared link, then we need to discard all
1131 PC relative relocs against symbols defined in a regular object.
1132 We allocated space for them in the check_relocs routine, but we
1133 will not fill them in in the relocate_section routine. */
1134 if (info->shared)
1135 elf_s390_link_hash_traverse (elf_s390_hash_table (info),
1136 elf_s390_discard_copies,
1137 (PTR) info);
1138
1139 /* The check_relocs and adjust_dynamic_symbol entry points have
1140 determined the sizes of the various dynamic sections. Allocate
1141 memory for them. */
1142 plt = false;
1143 relocs = false;
1144 for (s = dynobj->sections; s != NULL; s = s->next)
1145 {
1146 const char *name;
1147 boolean strip;
1148
1149 if ((s->flags & SEC_LINKER_CREATED) == 0)
1150 continue;
1151
1152 /* It's OK to base decisions on the section name, because none
1153 of the dynobj section names depend upon the input files. */
1154 name = bfd_get_section_name (dynobj, s);
1155
1156 strip = false;
1157
1158 if (strcmp (name, ".plt") == 0)
1159 {
1160 if (s->_raw_size == 0)
1161 {
1162 /* Strip this section if we don't need it; see the
1163 comment below. */
1164 strip = true;
1165 }
1166 else
1167 {
1168 /* Remember whether there is a PLT. */
1169 plt = true;
1170 }
1171 }
1172 else if (strncmp (name, ".rela", 5) == 0)
1173 {
1174 if (s->_raw_size == 0)
1175 {
1176 /* If we don't need this section, strip it from the
1177 output file. This is to handle .rela.bss and
1178 .rel.plt. We must create it in
1179 create_dynamic_sections, because it must be created
1180 before the linker maps input sections to output
1181 sections. The linker does that before
1182 adjust_dynamic_symbol is called, and it is that
1183 function which decides whether anything needs to go
1184 into these sections. */
1185 strip = true;
1186 }
1187 else
1188 {
1189 /* Remember whether there are any reloc sections other
1190 than .rela.plt. */
1191 if (strcmp (name, ".rela.plt") != 0)
1192 relocs = true;
1193
1194 /* We use the reloc_count field as a counter if we need
1195 to copy relocs into the output file. */
1196 s->reloc_count = 0;
1197 }
1198 }
1199 else if (strncmp (name, ".got", 4) != 0)
1200 {
1201 /* It's not one of our sections, so don't allocate space. */
1202 continue;
1203 }
1204
1205 if (strip)
1206 {
1207 _bfd_strip_section_from_output (info, s);
1208 continue;
1209 }
1210
1211 /* Allocate memory for the section contents. */
1212 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1213 if (s->contents == NULL && s->_raw_size != 0)
1214 return false;
1215 }
1216
1217 if (elf_hash_table (info)->dynamic_sections_created)
1218 {
1219 /* Add some entries to the .dynamic section. We fill in the
1220 values later, in elf_s390_finish_dynamic_sections, but we
1221 must add the entries now so that we get the correct size for
1222 the .dynamic section. The DT_DEBUG entry is filled in by the
1223 dynamic linker and used by the debugger. */
1224 #define add_dynamic_entry(TAG, VAL) \
1225 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1226
1227 if (! info->shared)
1228 {
1229 if (!add_dynamic_entry (DT_DEBUG, 0))
1230 return false;
1231 }
1232
1233 if (plt)
1234 {
1235 if (!add_dynamic_entry (DT_PLTGOT, 0)
1236 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1237 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1238 || !add_dynamic_entry (DT_JMPREL, 0))
1239 return false;
1240 }
1241
1242 if (relocs)
1243 {
1244 if (!add_dynamic_entry (DT_RELA, 0)
1245 || !add_dynamic_entry (DT_RELASZ, 0)
1246 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1247 return false;
1248 }
1249
1250 if ((info->flags & DF_TEXTREL) != 0)
1251 {
1252 if (!add_dynamic_entry (DT_TEXTREL, 0))
1253 return false;
1254 info->flags |= DF_TEXTREL;
1255 }
1256 }
1257 #undef add_dynamic_entry
1258
1259 return true;
1260 }
1261
1262 /* This function is called via elf_s390_link_hash_traverse if we are
1263 creating a shared object with -Bsymbolic. It discards the space
1264 allocated to copy PC relative relocs against symbols which are
1265 defined in regular objects. We allocated space for them in the
1266 check_relocs routine, but we won't fill them in in the
1267 relocate_section routine. */
1268
1269 /*ARGSUSED*/
1270 static boolean
1271 elf_s390_discard_copies (h, inf)
1272 struct elf_s390_link_hash_entry *h;
1273 PTR inf;
1274 {
1275 struct elf_s390_pcrel_relocs_copied *s;
1276 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1277
1278 /* If a symbol has been forced local or we have found a regular
1279 definition for the symbolic link case, then we won't be needing
1280 any relocs. */
1281 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1282 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1283 || info->symbolic))
1284 {
1285 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1286 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1287 }
1288 return true;
1289 }
1290 /* Relocate a 390 ELF section. */
1291
1292 static boolean
1293 elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1294 contents, relocs, local_syms, local_sections)
1295 bfd *output_bfd;
1296 struct bfd_link_info *info;
1297 bfd *input_bfd;
1298 asection *input_section;
1299 bfd_byte *contents;
1300 Elf_Internal_Rela *relocs;
1301 Elf_Internal_Sym *local_syms;
1302 asection **local_sections;
1303 {
1304 bfd *dynobj;
1305 Elf_Internal_Shdr *symtab_hdr;
1306 struct elf_link_hash_entry **sym_hashes;
1307 bfd_vma *local_got_offsets;
1308 asection *sgot;
1309 asection *splt;
1310 asection *sreloc;
1311 Elf_Internal_Rela *rel;
1312 Elf_Internal_Rela *relend;
1313
1314 dynobj = elf_hash_table (info)->dynobj;
1315 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1316 sym_hashes = elf_sym_hashes (input_bfd);
1317 local_got_offsets = elf_local_got_offsets (input_bfd);
1318
1319 sgot = NULL;
1320 splt = NULL;
1321 sreloc = NULL;
1322 if (dynobj != NULL)
1323 {
1324 splt = bfd_get_section_by_name (dynobj, ".plt");
1325 sgot = bfd_get_section_by_name (dynobj, ".got");
1326 }
1327
1328 rel = relocs;
1329 relend = relocs + input_section->reloc_count;
1330 for (; rel < relend; rel++)
1331 {
1332 int r_type;
1333 reloc_howto_type *howto;
1334 unsigned long r_symndx;
1335 struct elf_link_hash_entry *h;
1336 Elf_Internal_Sym *sym;
1337 asection *sec;
1338 bfd_vma relocation;
1339 bfd_reloc_status_type r;
1340
1341 r_type = ELF32_R_TYPE (rel->r_info);
1342 if (r_type == (int) R_390_GNU_VTINHERIT
1343 || r_type == (int) R_390_GNU_VTENTRY)
1344 continue;
1345 if (r_type < 0 || r_type >= (int) R_390_max)
1346 {
1347 bfd_set_error (bfd_error_bad_value);
1348 return false;
1349 }
1350 howto = elf_howto_table + r_type;
1351
1352 r_symndx = ELF32_R_SYM (rel->r_info);
1353
1354 if (info->relocateable)
1355 {
1356 /* This is a relocateable link. We don't have to change
1357 anything, unless the reloc is against a section symbol,
1358 in which case we have to adjust according to where the
1359 section symbol winds up in the output section. */
1360 if (r_symndx < symtab_hdr->sh_info)
1361 {
1362 sym = local_syms + r_symndx;
1363 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1364 {
1365 sec = local_sections[r_symndx];
1366 rel->r_addend += sec->output_offset + sym->st_value;
1367 }
1368 }
1369
1370 continue;
1371 }
1372
1373 /* This is a final link. */
1374 h = NULL;
1375 sym = NULL;
1376 sec = NULL;
1377 if (r_symndx < symtab_hdr->sh_info)
1378 {
1379 sym = local_syms + r_symndx;
1380 sec = local_sections[r_symndx];
1381 relocation = (sec->output_section->vma
1382 + sec->output_offset
1383 + sym->st_value);
1384 }
1385 else
1386 {
1387 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1388 while (h->root.type == bfd_link_hash_indirect
1389 || h->root.type == bfd_link_hash_warning)
1390 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1391 if (h->root.type == bfd_link_hash_defined
1392 || h->root.type == bfd_link_hash_defweak)
1393 {
1394 sec = h->root.u.def.section;
1395 if (r_type == R_390_GOTPC
1396 || ((r_type == R_390_PLT16DBL ||
1397 r_type == R_390_PLT32)
1398 && splt != NULL
1399 && h->plt.offset != (bfd_vma) -1)
1400 || ((r_type == R_390_GOT12 ||
1401 r_type == R_390_GOT16 ||
1402 r_type == R_390_GOT32)
1403 && elf_hash_table (info)->dynamic_sections_created
1404 && (! info->shared
1405 || (! info->symbolic && h->dynindx != -1)
1406 || (h->elf_link_hash_flags
1407 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1408 || (info->shared
1409 && ((! info->symbolic && h->dynindx != -1)
1410 || (h->elf_link_hash_flags
1411 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1412 && ( r_type == R_390_8 ||
1413 r_type == R_390_16 ||
1414 r_type == R_390_32 ||
1415 r_type == R_390_PC16 ||
1416 r_type == R_390_PC16DBL ||
1417 r_type == R_390_PC32)
1418 && ((input_section->flags & SEC_ALLOC) != 0
1419 /* DWARF will emit R_386_32 relocations in its
1420 sections against symbols defined externally
1421 in shared libraries. We can't do anything
1422 with them here. */
1423 || ((input_section->flags & SEC_DEBUGGING) != 0
1424 && (h->elf_link_hash_flags
1425 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1426 {
1427 /* In these cases, we don't need the relocation
1428 value. We check specially because in some
1429 obscure cases sec->output_section will be NULL. */
1430 relocation = 0;
1431 }
1432 else if (sec->output_section == NULL)
1433 {
1434 (*_bfd_error_handler)
1435 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1436 bfd_archive_filename (input_bfd), h->root.root.string,
1437 bfd_get_section_name (input_bfd, input_section));
1438 relocation = 0;
1439 }
1440 else
1441 relocation = (h->root.u.def.value
1442 + sec->output_section->vma
1443 + sec->output_offset);
1444 }
1445 else if (h->root.type == bfd_link_hash_undefweak)
1446 relocation = 0;
1447 else if (info->shared
1448 && (!info->symbolic || info->allow_shlib_undefined)
1449 && !info->no_undefined
1450 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1451 relocation = 0;
1452 else
1453 {
1454 if (! ((*info->callbacks->undefined_symbol)
1455 (info, h->root.root.string, input_bfd,
1456 input_section, rel->r_offset,
1457 (!info->shared || info->no_undefined
1458 || ELF_ST_VISIBILITY (h->other)))))
1459 return false;
1460 relocation = 0;
1461 }
1462 }
1463
1464 switch (r_type)
1465 {
1466 case R_390_GOT12:
1467 case R_390_GOT16:
1468 case R_390_GOT32:
1469 /* Relocation is to the entry for this symbol in the global
1470 offset table. */
1471 BFD_ASSERT (sgot != NULL);
1472
1473 if (h != NULL)
1474 {
1475 bfd_vma off;
1476
1477 off = h->got.offset;
1478 BFD_ASSERT (off != (bfd_vma) -1);
1479
1480 if (! elf_hash_table (info)->dynamic_sections_created
1481 || (info->shared
1482 && (info->symbolic || h->dynindx == -1)
1483 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1484 {
1485 /* This is actually a static link, or it is a
1486 -Bsymbolic link and the symbol is defined
1487 locally, or the symbol was forced to be local
1488 because of a version file. We must initialize
1489 this entry in the global offset table. Since the
1490 offset must always be a multiple of 2, we use the
1491 least significant bit to record whether we have
1492 initialized it already.
1493
1494 When doing a dynamic link, we create a .rel.got
1495 relocation entry to initialize the value. This
1496 is done in the finish_dynamic_symbol routine. */
1497 if ((off & 1) != 0)
1498 off &= ~1;
1499 else
1500 {
1501 bfd_put_32 (output_bfd, relocation,
1502 sgot->contents + off);
1503 h->got.offset |= 1;
1504 }
1505 }
1506 relocation = sgot->output_offset + off;
1507 }
1508 else
1509 {
1510 bfd_vma off;
1511
1512 BFD_ASSERT (local_got_offsets != NULL
1513 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1514
1515 off = local_got_offsets[r_symndx];
1516
1517 /* The offset must always be a multiple of 4. We use
1518 the least significant bit to record whether we have
1519 already generated the necessary reloc. */
1520 if ((off & 1) != 0)
1521 off &= ~1;
1522 else
1523 {
1524 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1525
1526 if (info->shared)
1527 {
1528 asection *srelgot;
1529 Elf_Internal_Rela outrel;
1530
1531 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1532 BFD_ASSERT (srelgot != NULL);
1533
1534 outrel.r_offset = (sgot->output_section->vma
1535 + sgot->output_offset
1536 + off);
1537 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1538 outrel.r_addend = relocation;
1539 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1540 (((Elf32_External_Rela *)
1541 srelgot->contents)
1542 + srelgot->reloc_count));
1543 ++srelgot->reloc_count;
1544 }
1545
1546 local_got_offsets[r_symndx] |= 1;
1547 }
1548
1549 relocation = sgot->output_offset + off;
1550 }
1551
1552
1553 break;
1554
1555 case R_390_GOTOFF:
1556 /* Relocation is relative to the start of the global offset
1557 table. */
1558
1559 if (sgot == NULL)
1560 {
1561 sgot = bfd_get_section_by_name (dynobj, ".got");
1562 BFD_ASSERT (sgot != NULL);
1563 }
1564
1565 /* Note that sgot->output_offset is not involved in this
1566 calculation. We always want the start of .got. If we
1567 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1568 permitted by the ABI, we might have to change this
1569 calculation. */
1570 relocation -= sgot->output_section->vma;
1571
1572 break;
1573
1574 case R_390_GOTPC:
1575 /* Use global offset table as symbol value. */
1576
1577 if (sgot == NULL)
1578 {
1579 sgot = bfd_get_section_by_name (dynobj, ".got");
1580 BFD_ASSERT (sgot != NULL);
1581 }
1582
1583 relocation = sgot->output_section->vma;
1584
1585 break;
1586
1587 case R_390_PLT16DBL:
1588 case R_390_PLT32:
1589 /* Relocation is to the entry for this symbol in the
1590 procedure linkage table. */
1591
1592 /* Resolve a PLT32 reloc against a local symbol directly,
1593 without using the procedure linkage table. */
1594 if (h == NULL)
1595 break;
1596
1597 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1598 {
1599 /* We didn't make a PLT entry for this symbol. This
1600 happens when statically linking PIC code, or when
1601 using -Bsymbolic. */
1602 break;
1603 }
1604
1605 relocation = (splt->output_section->vma
1606 + splt->output_offset
1607 + h->plt.offset);
1608
1609 break;
1610
1611 case R_390_8:
1612 case R_390_16:
1613 case R_390_32:
1614 case R_390_PC16:
1615 case R_390_PC16DBL:
1616 case R_390_PC32:
1617 if (info->shared
1618 && (input_section->flags & SEC_ALLOC) != 0
1619 && ((r_type != R_390_PC16 &&
1620 r_type != R_390_PC16DBL &&
1621 r_type != R_390_PC32)
1622 || (h != NULL
1623 && h->dynindx != -1
1624 && (! info->symbolic
1625 || (h->elf_link_hash_flags
1626 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1627 {
1628 Elf_Internal_Rela outrel;
1629 boolean skip, relocate;
1630
1631 /* When generating a shared object, these relocations
1632 are copied into the output file to be resolved at run
1633 time. */
1634
1635 if (sreloc == NULL)
1636 {
1637 const char *name;
1638
1639 name = (bfd_elf_string_from_elf_section
1640 (input_bfd,
1641 elf_elfheader (input_bfd)->e_shstrndx,
1642 elf_section_data (input_section)->rel_hdr.sh_name));
1643 if (name == NULL)
1644 return false;
1645
1646 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1647 && strcmp (bfd_get_section_name (input_bfd,
1648 input_section),
1649 name + 5) == 0);
1650
1651 sreloc = bfd_get_section_by_name (dynobj, name);
1652 BFD_ASSERT (sreloc != NULL);
1653 }
1654
1655 skip = false;
1656
1657 if (elf_section_data (input_section)->stab_info == NULL)
1658 outrel.r_offset = rel->r_offset;
1659 else
1660 {
1661 bfd_vma off;
1662
1663 off = (_bfd_stab_section_offset
1664 (output_bfd, &elf_hash_table (info)->stab_info,
1665 input_section,
1666 &elf_section_data (input_section)->stab_info,
1667 rel->r_offset));
1668 if (off == (bfd_vma) -1)
1669 skip = true;
1670 outrel.r_offset = off;
1671 }
1672
1673 outrel.r_offset += (input_section->output_section->vma
1674 + input_section->output_offset);
1675
1676 if (skip)
1677 {
1678 memset (&outrel, 0, sizeof outrel);
1679 relocate = false;
1680 }
1681 else if (r_type == R_390_PC16 ||
1682 r_type == R_390_PC16DBL ||
1683 r_type == R_390_PC32)
1684 {
1685 BFD_ASSERT (h != NULL && h->dynindx != -1);
1686 relocate = false;
1687 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1688 outrel.r_addend = relocation + rel->r_addend;
1689 }
1690 else
1691 {
1692 /* h->dynindx may be -1 if this symbol was marked to
1693 become local. */
1694 if (h == NULL
1695 || ((info->symbolic || h->dynindx == -1)
1696 && (h->elf_link_hash_flags
1697 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1698 {
1699 relocate = true;
1700 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1701 outrel.r_addend = relocation + rel->r_addend;
1702 }
1703 else
1704 {
1705 BFD_ASSERT (h->dynindx != -1);
1706 relocate = false;
1707 outrel.r_info = ELF32_R_INFO (h->dynindx, R_390_32);
1708 outrel.r_addend = relocation + rel->r_addend;
1709 }
1710 }
1711
1712 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1713 (((Elf32_External_Rela *)
1714 sreloc->contents)
1715 + sreloc->reloc_count));
1716 ++sreloc->reloc_count;
1717
1718 /* If this reloc is against an external symbol, we do
1719 not want to fiddle with the addend. Otherwise, we
1720 need to include the symbol value so that it becomes
1721 an addend for the dynamic reloc. */
1722 if (! relocate)
1723 continue;
1724 }
1725
1726 break;
1727
1728 default:
1729 break;
1730 }
1731
1732 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1733 contents, rel->r_offset,
1734 relocation, rel->r_addend);
1735
1736 if (r != bfd_reloc_ok)
1737 {
1738 switch (r)
1739 {
1740 default:
1741 case bfd_reloc_outofrange:
1742 abort ();
1743 case bfd_reloc_overflow:
1744 {
1745 const char *name;
1746
1747 if (h != NULL)
1748 name = h->root.root.string;
1749 else
1750 {
1751 name = bfd_elf_string_from_elf_section (input_bfd,
1752 symtab_hdr->sh_link,
1753 sym->st_name);
1754 if (name == NULL)
1755 return false;
1756 if (*name == '\0')
1757 name = bfd_section_name (input_bfd, sec);
1758 }
1759 if (! ((*info->callbacks->reloc_overflow)
1760 (info, name, howto->name, (bfd_vma) 0,
1761 input_bfd, input_section, rel->r_offset)))
1762 return false;
1763 }
1764 break;
1765 }
1766 }
1767 }
1768
1769 return true;
1770 }
1771
1772 /* Finish up dynamic symbol handling. We set the contents of various
1773 dynamic sections here. */
1774
1775 static boolean
1776 elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
1777 bfd *output_bfd;
1778 struct bfd_link_info *info;
1779 struct elf_link_hash_entry *h;
1780 Elf_Internal_Sym *sym;
1781 {
1782 bfd *dynobj;
1783
1784 dynobj = elf_hash_table (info)->dynobj;
1785
1786 if (h->plt.offset != (bfd_vma) -1)
1787 {
1788 asection *splt;
1789 asection *srela;
1790 Elf_Internal_Rela rela;
1791 bfd_vma relative_offset;
1792 bfd_vma got_offset;
1793 bfd_vma plt_index;
1794 asection *sgot;
1795
1796 /* This symbol has an entry in the procedure linkage table. Set
1797 it up. */
1798
1799 BFD_ASSERT (h->dynindx != -1);
1800
1801 splt = bfd_get_section_by_name (dynobj, ".plt");
1802 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1803 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1804 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1805
1806 /* Calc. index no.
1807 Current offset - size first entry / entry size. */
1808 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
1809
1810 /* Offset in GOT is PLT index plus GOT headers(3) times 4,
1811 addr & GOT addr. */
1812 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1813
1814 /* S390 uses halfwords for relative branch calc! */
1815 relative_offset = - ((PLT_FIRST_ENTRY_SIZE +
1816 (PLT_ENTRY_SIZE * plt_index) + 18) / 2);
1817 /* If offset is > 32768, branch to a previous branch
1818 390 can only handle +-64 K jumps. */
1819 if ( -32768 > (int) relative_offset )
1820 relative_offset =
1821 -(unsigned) (((65536 / PLT_ENTRY_SIZE - 1) * PLT_ENTRY_SIZE) / 2);
1822
1823 /* Fill in the entry in the procedure linkage table. */
1824 if (!info->shared)
1825 {
1826 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0,
1827 splt->contents + h->plt.offset);
1828 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1,
1829 splt->contents + h->plt.offset + 4);
1830 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2,
1831 splt->contents + h->plt.offset + 8);
1832 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3,
1833 splt->contents + h->plt.offset + 12);
1834 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4,
1835 splt->contents + h->plt.offset + 16);
1836 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
1837 splt->contents + h->plt.offset + 20);
1838 bfd_put_32 (output_bfd,
1839 (sgot->output_section->vma
1840 + sgot->output_offset
1841 + got_offset),
1842 splt->contents + h->plt.offset + 24);
1843 }
1844 else if (got_offset < 4096)
1845 {
1846 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD0 + got_offset,
1847 splt->contents + h->plt.offset);
1848 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD1,
1849 splt->contents + h->plt.offset + 4);
1850 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD2,
1851 splt->contents + h->plt.offset + 8);
1852 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD3,
1853 splt->contents + h->plt.offset + 12);
1854 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD4,
1855 splt->contents + h->plt.offset + 16);
1856 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
1857 splt->contents + h->plt.offset + 20);
1858 bfd_put_32 (output_bfd, (bfd_vma) 0,
1859 splt->contents + h->plt.offset + 24);
1860 }
1861 else if (got_offset < 32768)
1862 {
1863 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD0 + got_offset,
1864 splt->contents + h->plt.offset);
1865 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD1,
1866 splt->contents + h->plt.offset + 4);
1867 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD2,
1868 splt->contents + h->plt.offset + 8);
1869 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD3,
1870 splt->contents + h->plt.offset + 12);
1871 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD4,
1872 splt->contents + h->plt.offset + 16);
1873 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
1874 splt->contents + h->plt.offset + 20);
1875 bfd_put_32 (output_bfd, (bfd_vma) 0,
1876 splt->contents + h->plt.offset + 24);
1877 }
1878 else
1879 {
1880 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD0,
1881 splt->contents + h->plt.offset);
1882 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD1,
1883 splt->contents + h->plt.offset + 4);
1884 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD2,
1885 splt->contents + h->plt.offset + 8);
1886 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD3,
1887 splt->contents + h->plt.offset + 12);
1888 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD4,
1889 splt->contents + h->plt.offset + 16);
1890 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
1891 splt->contents + h->plt.offset + 20);
1892 bfd_put_32 (output_bfd, got_offset,
1893 splt->contents + h->plt.offset + 24);
1894 }
1895 /* Insert offset into reloc. table here. */
1896 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1897 splt->contents + h->plt.offset + 28);
1898 /* Fill in the entry in the .rela.plt section. */
1899 rela.r_offset = (sgot->output_section->vma
1900 + sgot->output_offset
1901 + got_offset);
1902 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_JMP_SLOT);
1903 rela.r_addend = 0;
1904 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1905 ((Elf32_External_Rela *) srela->contents
1906 + plt_index ));
1907
1908 /* Fill in the entry in the global offset table.
1909 Points to instruction after GOT offset. */
1910 bfd_put_32 (output_bfd,
1911 (splt->output_section->vma
1912 + splt->output_offset
1913 + h->plt.offset
1914 + 12),
1915 sgot->contents + got_offset);
1916
1917
1918 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1919 {
1920 /* Mark the symbol as undefined, rather than as defined in
1921 the .plt section. Leave the value alone. */
1922 sym->st_shndx = SHN_UNDEF;
1923 }
1924 }
1925
1926 if (h->got.offset != (bfd_vma) -1)
1927 {
1928 asection *sgot;
1929 asection *srela;
1930 Elf_Internal_Rela rela;
1931
1932 /* This symbol has an entry in the global offset table. Set it
1933 up. */
1934
1935 sgot = bfd_get_section_by_name (dynobj, ".got");
1936 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1937 BFD_ASSERT (sgot != NULL && srela != NULL);
1938
1939 rela.r_offset = (sgot->output_section->vma
1940 + sgot->output_offset
1941 + (h->got.offset &~ (bfd_vma) 1));
1942
1943 /* If this is a static link, or it is a -Bsymbolic link and the
1944 symbol is defined locally or was forced to be local because
1945 of a version file, we just want to emit a RELATIVE reloc.
1946 The entry in the global offset table will already have been
1947 initialized in the relocate_section function. */
1948 if (! elf_hash_table (info)->dynamic_sections_created
1949 || (info->shared
1950 && (info->symbolic || h->dynindx == -1)
1951 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1952 {
1953 rela.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1954 rela.r_addend = (h->root.u.def.value
1955 + h->root.u.def.section->output_section->vma
1956 + h->root.u.def.section->output_offset);
1957 }
1958 else
1959 {
1960 BFD_ASSERT((h->got.offset & 1) == 0);
1961 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1962 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_GLOB_DAT);
1963 rela.r_addend = 0;
1964 }
1965
1966 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1967 ((Elf32_External_Rela *) srela->contents
1968 + srela->reloc_count));
1969 ++srela->reloc_count;
1970 }
1971
1972 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1973 {
1974 asection *s;
1975 Elf_Internal_Rela rela;
1976
1977 /* This symbols needs a copy reloc. Set it up. */
1978
1979 BFD_ASSERT (h->dynindx != -1
1980 && (h->root.type == bfd_link_hash_defined
1981 || h->root.type == bfd_link_hash_defweak));
1982
1983
1984 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1985 ".rela.bss");
1986 BFD_ASSERT (s != NULL);
1987
1988 rela.r_offset = (h->root.u.def.value
1989 + h->root.u.def.section->output_section->vma
1990 + h->root.u.def.section->output_offset);
1991 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_COPY);
1992 rela.r_addend = 0;
1993 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1994 ((Elf32_External_Rela *) s->contents
1995 + s->reloc_count));
1996 ++s->reloc_count;
1997 }
1998
1999 /* Mark some specially defined symbols as absolute. */
2000 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2001 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2002 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2003 sym->st_shndx = SHN_ABS;
2004
2005 return true;
2006 }
2007
2008 /* Finish up the dynamic sections. */
2009
2010 static boolean
2011 elf_s390_finish_dynamic_sections (output_bfd, info)
2012 bfd *output_bfd;
2013 struct bfd_link_info *info;
2014 {
2015 bfd *dynobj;
2016 asection *sdyn;
2017 asection *sgot;
2018
2019 dynobj = elf_hash_table (info)->dynobj;
2020
2021 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2022 BFD_ASSERT (sgot != NULL);
2023 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2024
2025 if (elf_hash_table (info)->dynamic_sections_created)
2026 {
2027 asection *splt;
2028 Elf32_External_Dyn *dyncon, *dynconend;
2029
2030 BFD_ASSERT (sdyn != NULL);
2031
2032 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2033 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2034 for (; dyncon < dynconend; dyncon++)
2035 {
2036 Elf_Internal_Dyn dyn;
2037 const char *name;
2038 asection *s;
2039
2040 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2041
2042 switch (dyn.d_tag)
2043 {
2044 default:
2045 break;
2046
2047 case DT_PLTGOT:
2048 name = ".got";
2049 goto get_vma;
2050 case DT_JMPREL:
2051 name = ".rela.plt";
2052 get_vma:
2053 s = bfd_get_section_by_name(output_bfd, name);
2054 BFD_ASSERT (s != NULL);
2055 dyn.d_un.d_ptr = s->vma;
2056 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2057 break;
2058
2059 case DT_PLTRELSZ:
2060 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2061 BFD_ASSERT (s != NULL);
2062 if (s->_cooked_size != 0)
2063 dyn.d_un.d_val = s->_cooked_size;
2064 else
2065 dyn.d_un.d_val = s->_raw_size;
2066 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2067 break;
2068 }
2069 }
2070
2071 /* Fill in the special first entry in the procedure linkage table. */
2072 splt = bfd_get_section_by_name (dynobj, ".plt");
2073 if (splt && splt->_raw_size > 0)
2074 {
2075 memset (splt->contents, 0, PLT_FIRST_ENTRY_SIZE);
2076 if (info->shared)
2077 {
2078 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD0,
2079 splt->contents );
2080 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD1,
2081 splt->contents + 4 );
2082 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD2,
2083 splt->contents + 8 );
2084 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD3,
2085 splt->contents + 12 );
2086 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD4,
2087 splt->contents + 16 );
2088 }
2089 else
2090 {
2091 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD0,
2092 splt->contents );
2093 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1,
2094 splt->contents + 4 );
2095 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD2,
2096 splt->contents + 8 );
2097 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3,
2098 splt->contents + 12 );
2099 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4,
2100 splt->contents + 16 );
2101 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5,
2102 splt->contents + 20 );
2103 bfd_put_32 (output_bfd,
2104 sgot->output_section->vma + sgot->output_offset,
2105 splt->contents + 24);
2106 }
2107 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
2108 }
2109
2110 }
2111
2112 /* Set the first entry in the global offset table to the address of
2113 the dynamic section. */
2114 if (sgot->_raw_size > 0)
2115 {
2116 if (sdyn == NULL)
2117 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2118 else
2119 bfd_put_32 (output_bfd,
2120 sdyn->output_section->vma + sdyn->output_offset,
2121 sgot->contents);
2122
2123 /* One entry for shared object struct ptr. */
2124 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2125 /* One entry for _dl_runtime_resolve. */
2126 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2127 }
2128
2129 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2130
2131 return true;
2132 }
2133
2134 static boolean
2135 elf_s390_object_p (abfd)
2136 bfd *abfd;
2137 {
2138 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esa);
2139 }
2140
2141 static enum elf_reloc_type_class
2142 elf_s390_reloc_type_class (type)
2143 int type;
2144 {
2145 switch (type)
2146 {
2147 case R_390_RELATIVE:
2148 return reloc_class_relative;
2149 case R_390_JMP_SLOT:
2150 return reloc_class_plt;
2151 case R_390_COPY:
2152 return reloc_class_copy;
2153 default:
2154 return reloc_class_normal;
2155 }
2156 }
2157
2158 #define TARGET_BIG_SYM bfd_elf32_s390_vec
2159 #define TARGET_BIG_NAME "elf32-s390"
2160 #define ELF_ARCH bfd_arch_s390
2161 #define ELF_MACHINE_CODE EM_S390
2162 #define ELF_MACHINE_ALT1 EM_S390_OLD
2163 #define ELF_MAXPAGESIZE 0x1000
2164
2165 #define elf_backend_can_gc_sections 1
2166 #define elf_backend_want_got_plt 1
2167 #define elf_backend_plt_readonly 1
2168 #define elf_backend_want_plt_sym 0
2169 #define elf_backend_got_header_size 12
2170 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2171
2172 #define elf_info_to_howto elf_s390_info_to_howto
2173
2174 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2175 #define bfd_elf32_bfd_is_local_label_name elf_s390_is_local_label_name
2176 #define bfd_elf32_bfd_link_hash_table_create elf_s390_link_hash_table_create
2177 #define bfd_elf32_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2178
2179 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2180 #define elf_backend_check_relocs elf_s390_check_relocs
2181 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2182 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2183 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2184 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2185 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2186 #define elf_backend_relocate_section elf_s390_relocate_section
2187 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2188 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2189
2190 #define elf_backend_object_p elf_s390_object_p
2191
2192 #include "elf32-target.h"
This page took 0.07298 seconds and 5 git commands to generate.