* elfcode.h (elf_map_symbols): Only use section symbols whose
[deliverable/binutils-gdb.git] / bfd / elf32-sparc.c
1 /* SPARC-specific support for 32-bit ELF
2 Copyright 1993 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "libelf.h"
25
26 static CONST struct reloc_howto_struct *bfd_elf32_bfd_reloc_type_lookup
27 PARAMS ((bfd *, bfd_reloc_code_real_type));
28 static void elf_info_to_howto
29 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
30 static boolean elf32_sparc_create_dynamic_sections
31 PARAMS ((bfd *, struct bfd_link_info *));
32 static boolean elf32_sparc_create_got_section
33 PARAMS ((bfd *, struct bfd_link_info *));
34 static boolean elf32_sparc_check_relocs
35 PARAMS ((bfd *, struct bfd_link_info *, asection *,
36 const Elf_Internal_Rela *));
37 static boolean elf32_sparc_adjust_dynamic_symbol
38 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
39 static boolean elf32_sparc_adjust_dynindx
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf32_sparc_size_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *));
43 static boolean elf32_sparc_relocate_section
44 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
45 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
46 static boolean elf32_sparc_finish_dynamic_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 Elf_Internal_Sym *));
49 static boolean elf32_sparc_finish_dynamic_sections
50 PARAMS ((bfd *, struct bfd_link_info *));
51
52 enum reloc_type
53 {
54 R_SPARC_NONE = 0,
55 R_SPARC_8, R_SPARC_16, R_SPARC_32,
56 R_SPARC_DISP8, R_SPARC_DISP16, R_SPARC_DISP32,
57 R_SPARC_WDISP30, R_SPARC_WDISP22,
58 R_SPARC_HI22, R_SPARC_22,
59 R_SPARC_13, R_SPARC_LO10,
60 R_SPARC_GOT10, R_SPARC_GOT13, R_SPARC_GOT22,
61 R_SPARC_PC10, R_SPARC_PC22,
62 R_SPARC_WPLT30,
63 R_SPARC_COPY,
64 R_SPARC_GLOB_DAT, R_SPARC_JMP_SLOT,
65 R_SPARC_RELATIVE,
66 R_SPARC_UA32,
67 R_SPARC_max
68 };
69
70 #if 0
71 static CONST char *CONST reloc_type_names[] =
72 {
73 "R_SPARC_NONE",
74 "R_SPARC_8", "R_SPARC_16", "R_SPARC_32",
75 "R_SPARC_DISP8", "R_SPARC_DISP16", "R_SPARC_DISP32",
76 "R_SPARC_WDISP30", "R_SPARC_WDISP22",
77 "R_SPARC_HI22", "R_SPARC_22",
78 "R_SPARC_13", "R_SPARC_LO10",
79 "R_SPARC_GOT10", "R_SPARC_GOT13", "R_SPARC_GOT22",
80 "R_SPARC_PC10", "R_SPARC_PC22",
81 "R_SPARC_WPLT30",
82 "R_SPARC_COPY",
83 "R_SPARC_GLOB_DAT", "R_SPARC_JMP_SLOT",
84 "R_SPARC_RELATIVE",
85 "R_SPARC_UA32",
86 };
87 #endif
88
89 static reloc_howto_type elf_sparc_howto_table[] =
90 {
91 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_NONE", false,0,0x00000000,true),
92 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_8", false,0,0x000000ff,true),
93 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_16", false,0,0x0000ffff,true),
94 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_32", false,0,0xffffffff,true),
95 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_DISP8", false,0,0x000000ff,true),
96 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_DISP16", false,0,0x0000ffff,true),
97 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_DISP32", false,0,0x00ffffff,true),
98 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_WDISP30", false,0,0x3fffffff,true),
99 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_WDISP22", false,0,0x003fffff,true),
100 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_HI22", false,0,0x003fffff,true),
101 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_22", false,0,0x003fffff,true),
102 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_13", false,0,0x00001fff,true),
103 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_LO10", false,0,0x000003ff,true),
104 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_GOT10", false,0,0x000003ff,true),
105 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_GOT13", false,0,0x00001fff,true),
106 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_GOT22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_PC10", false,0,0x000003ff,true),
108 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_PC22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_WPLT30", false,0,0x3fffffff,true),
110 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_COPY", false,0,0x00000000,true),
111 HOWTO(R_SPARC_GLOB_DAT,0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_GLOB_DAT",false,0,0x00000000,true),
112 HOWTO(R_SPARC_JMP_SLOT,0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_JMP_SLOT",false,0,0x00000000,true),
113 HOWTO(R_SPARC_RELATIVE,0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_RELATIVE",false,0,0x00000000,true),
114 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_UA32", false,0,0x00000000,true),
115 };
116
117 struct elf_reloc_map {
118 unsigned char bfd_reloc_val;
119 unsigned char elf_reloc_val;
120 };
121
122 static CONST struct elf_reloc_map sparc_reloc_map[] =
123 {
124 { BFD_RELOC_NONE, R_SPARC_NONE, },
125 { BFD_RELOC_16, R_SPARC_16, },
126 { BFD_RELOC_8, R_SPARC_8 },
127 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
128 { BFD_RELOC_CTOR, R_SPARC_32 }, /* @@ Assumes 32 bits. */
129 { BFD_RELOC_32, R_SPARC_32 },
130 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
131 { BFD_RELOC_HI22, R_SPARC_HI22 },
132 { BFD_RELOC_LO10, R_SPARC_LO10, },
133 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
134 { BFD_RELOC_SPARC22, R_SPARC_22 },
135 { BFD_RELOC_SPARC13, R_SPARC_13 },
136 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
137 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
138 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
139 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
140 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
141 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
142 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
143 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
144 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
145 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
146 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
147 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
148 };
149
150 static CONST struct reloc_howto_struct *
151 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
152 bfd *abfd;
153 bfd_reloc_code_real_type code;
154 {
155 int i;
156 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
157 {
158 if (sparc_reloc_map[i].bfd_reloc_val == code)
159 return &elf_sparc_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
160 }
161 return 0;
162 }
163
164 static void
165 elf_info_to_howto (abfd, cache_ptr, dst)
166 bfd *abfd;
167 arelent *cache_ptr;
168 Elf_Internal_Rela *dst;
169 {
170 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_SPARC_max);
171 cache_ptr->howto = &elf_sparc_howto_table[ELF32_R_TYPE(dst->r_info)];
172 }
173
174 \f
175 /* Functions for the SPARC ELF linker. */
176
177 /* The name of the dynamic interpreter. This is put in the .interp
178 section. */
179
180 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
181
182 /* The nop opcode we use. */
183
184 #define SPARC_NOP 0x01000000
185
186 /* The size in bytes of an entry in the procedure linkage table. */
187
188 #define PLT_ENTRY_SIZE 12
189
190 /* The first four entries in a procedure linkage table are reserved,
191 and the initial contents are unimportant (we zero them out).
192 Subsequent entries look like this. See the SVR4 ABI SPARC
193 supplement to see how this works. */
194
195 /* sethi %hi(.-.plt0),%g1. We fill in the address later. */
196 #define PLT_ENTRY_WORD0 0x03000000
197 /* b,a .plt0. We fill in the offset later. */
198 #define PLT_ENTRY_WORD1 0x30800000
199 /* nop. */
200 #define PLT_ENTRY_WORD2 SPARC_NOP
201
202 /* Create dynamic sections when linking against a dynamic object. */
203
204 static boolean
205 elf32_sparc_create_dynamic_sections (abfd, info)
206 bfd *abfd;
207 struct bfd_link_info *info;
208 {
209 flagword flags;
210 register asection *s;
211 struct elf_link_hash_entry *h;
212
213 /* We need to create .plt, .rela.plt, .got, .dynbss, and .rela.bss
214 sections. */
215
216 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
217
218 s = bfd_make_section (abfd, ".plt");
219 if (s == NULL
220 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
221 || ! bfd_set_section_alignment (abfd, s, 2))
222 return false;
223
224 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
225 .plt section. */
226 h = NULL;
227 if (! (_bfd_generic_link_add_one_symbol
228 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0,
229 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
230 (struct bfd_link_hash_entry **) &h)))
231 return false;
232 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
233 h->type = STT_OBJECT;
234
235 if (info->shared
236 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
237 return false;
238
239 s = bfd_make_section (abfd, ".rela.plt");
240 if (s == NULL
241 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
242 || ! bfd_set_section_alignment (abfd, s, 2))
243 return false;
244
245 if (! elf32_sparc_create_got_section (abfd, info))
246 return false;
247
248 /* The .dynbss section is a place to put symbols which are defined
249 by dynamic objects, are referenced by regular objects, and are
250 not functions. We must allocate space for them in the process
251 image and use a R_SPARC_COPY reloc to tell the dynamic linker to
252 initialize them at run time. The linker script puts the .dynbss
253 section into the .bss section of the final image. */
254 s = bfd_make_section (abfd, ".dynbss");
255 if (s == NULL
256 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC))
257 return false;
258
259 /* The .rela.bss section holds copy relocs. */
260 if (! info->shared)
261 {
262 s = bfd_make_section (abfd, ".rela.bss");
263 if (s == NULL
264 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
265 || ! bfd_set_section_alignment (abfd, s, 2))
266 return false;
267 }
268
269 return true;
270 }
271
272 /* Create the .got section to hold the global offset table. */
273
274 static boolean
275 elf32_sparc_create_got_section (abfd, info)
276 bfd *abfd;
277 struct bfd_link_info *info;
278 {
279 register asection *s;
280 struct elf_link_hash_entry *h;
281
282 /* This function may be called more than once. */
283 if (bfd_get_section_by_name (abfd, ".got") != NULL)
284 return true;
285
286 s = bfd_make_section (abfd, ".got");
287 if (s == NULL
288 || ! bfd_set_section_flags (abfd, s,
289 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
290 | SEC_IN_MEMORY))
291 || ! bfd_set_section_alignment (abfd, s, 2))
292 return false;
293
294 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
295 section. We don't do this in the linker script because we don't
296 want to define the symbol if we are not creating a global offset
297 table. FIXME: The Solaris linker puts _GLOBAL_OFFSET_TABLE_ at
298 the start of the .got section, but when using the small PIC model
299 the .got is accessed using a signed 13 bit offset. Shouldn't
300 _GLOBAL_OFFSET_TABLE_ be located at .got + 4096? */
301 h = NULL;
302 if (! (_bfd_generic_link_add_one_symbol
303 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0,
304 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
305 (struct bfd_link_hash_entry **) &h)))
306 return false;
307 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
308 h->type = STT_OBJECT;
309
310 if (info->shared
311 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
312 return false;
313
314 /* The first global offset table entry is reserved. */
315 s->_raw_size += 4;
316
317 return true;
318 }
319
320 /* Look through the relocs for a section during the first phase, and
321 allocate space in the global offset table or procedure linkage
322 table. */
323
324 static boolean
325 elf32_sparc_check_relocs (abfd, info, sec, relocs)
326 bfd *abfd;
327 struct bfd_link_info *info;
328 asection *sec;
329 const Elf_Internal_Rela *relocs;
330 {
331 bfd *dynobj;
332 Elf_Internal_Shdr *symtab_hdr;
333 struct elf_link_hash_entry **sym_hashes;
334 bfd_vma *local_got_offsets;
335 const Elf_Internal_Rela *rel;
336 const Elf_Internal_Rela *rel_end;
337 asection *sgot;
338 asection *srelgot;
339 asection *sreloc;
340
341 if (info->relocateable)
342 return true;
343
344 dynobj = elf_hash_table (info)->dynobj;
345 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
346 sym_hashes = elf_sym_hashes (abfd);
347 local_got_offsets = elf_local_got_offsets (abfd);
348
349 sgot = NULL;
350 srelgot = NULL;
351 sreloc = NULL;
352
353 rel_end = relocs + sec->reloc_count;
354 for (rel = relocs; rel < rel_end; rel++)
355 {
356 long r_symndx;
357 struct elf_link_hash_entry *h;
358
359 r_symndx = ELF32_R_SYM (rel->r_info);
360 if (r_symndx < symtab_hdr->sh_info)
361 h = NULL;
362 else
363 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
364
365 switch (ELF32_R_TYPE (rel->r_info))
366 {
367 case R_SPARC_GOT10:
368 case R_SPARC_GOT13:
369 case R_SPARC_GOT22:
370 /* This symbol requires a global offset table entry. */
371
372 if (dynobj == NULL)
373 {
374 /* Create the .got section. */
375 elf_hash_table (info)->dynobj = dynobj = abfd;
376 if (! elf32_sparc_create_got_section (dynobj, info))
377 return false;
378 }
379
380 if (sgot == NULL)
381 {
382 sgot = bfd_get_section_by_name (dynobj, ".got");
383 BFD_ASSERT (sgot != NULL);
384 }
385
386 if (srelgot == NULL
387 && (h != NULL || info->shared))
388 {
389 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
390 if (srelgot == NULL)
391 {
392 srelgot = bfd_make_section (dynobj, ".rela.got");
393 if (srelgot == NULL
394 || ! bfd_set_section_flags (dynobj, srelgot,
395 (SEC_ALLOC
396 | SEC_LOAD
397 | SEC_HAS_CONTENTS
398 | SEC_IN_MEMORY
399 | SEC_READONLY))
400 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
401 return false;
402 }
403 }
404
405 if (h != NULL)
406 {
407 if (h->got_offset != (bfd_vma) -1)
408 {
409 /* We have already allocated space in the .got. */
410 break;
411 }
412 h->got_offset = sgot->_raw_size;
413
414 /* Make sure this symbol is output as a dynamic symbol. */
415 if (h->dynindx == -1)
416 {
417 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
418 return false;
419 }
420
421 srelgot->_raw_size += sizeof (Elf32_External_Rela);
422 }
423 else
424 {
425 /* This is a global offset table entry for a local
426 symbol. */
427 if (local_got_offsets == NULL)
428 {
429 size_t size;
430 register int i;
431
432 size = symtab_hdr->sh_info * sizeof (bfd_vma);
433 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
434 if (local_got_offsets == NULL)
435 {
436 bfd_set_error (bfd_error_no_memory);
437 return false;
438 }
439 elf_local_got_offsets (abfd) = local_got_offsets;
440 for (i = 0; i < symtab_hdr->sh_info; i++)
441 local_got_offsets[i] = (bfd_vma) -1;
442 }
443 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
444 {
445 /* We have already allocated space in the .got. */
446 break;
447 }
448 local_got_offsets[r_symndx] = sgot->_raw_size;
449
450 if (info->shared)
451 {
452 /* If we are generating a shared object, we need to
453 output a R_SPARC_RELATIVE reloc so that the
454 dynamic linker can adjust this GOT entry. */
455 srelgot->_raw_size += sizeof (Elf32_External_Rela);
456 }
457 }
458
459 sgot->_raw_size += 4;
460
461 break;
462
463 case R_SPARC_WPLT30:
464 /* This symbol requires a procedure linkage table entry. We
465 actually build the entry in adjust_dynamic_symbol,
466 because this might be a case of linking PIC code without
467 linking in any dynamic objects, in which case we don't
468 need to generate a procedure linkage table after all. */
469
470 if (h == NULL)
471 {
472 /* It does not make sense to have a procedure linkage
473 table entry for a local symbol. */
474 bfd_set_error (bfd_error_bad_value);
475 return false;
476 }
477
478 /* Make sure this symbol is output as a dynamic symbol. */
479 if (h->dynindx == -1)
480 {
481 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
482 return false;
483 }
484
485 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
486
487 break;
488
489 case R_SPARC_PC10:
490 case R_SPARC_PC22:
491 if (h != NULL
492 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
493 break;
494 /* Fall through. */
495 case R_SPARC_8:
496 case R_SPARC_16:
497 case R_SPARC_32:
498 case R_SPARC_DISP8:
499 case R_SPARC_DISP16:
500 case R_SPARC_DISP32:
501 case R_SPARC_WDISP30:
502 case R_SPARC_WDISP22:
503 case R_SPARC_HI22:
504 case R_SPARC_22:
505 case R_SPARC_13:
506 case R_SPARC_LO10:
507 case R_SPARC_UA32:
508 if (info->shared
509 && (sec->flags & SEC_ALLOC) != 0)
510 {
511 /* When creating a shared object, we must copy these
512 relocs into the output file. We create a reloc
513 section in dynobj and make room for the reloc. */
514 if (sreloc == NULL)
515 {
516 const char *name;
517
518 name = (elf_string_from_elf_section
519 (abfd,
520 elf_elfheader (abfd)->e_shstrndx,
521 elf_section_data (sec)->rel_hdr.sh_name));
522 if (name == NULL)
523 return false;
524
525 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
526 && strcmp (bfd_get_section_name (abfd, sec),
527 name + 5) == 0);
528
529 sreloc = bfd_get_section_by_name (dynobj, name);
530 if (sreloc == NULL)
531 {
532 sreloc = bfd_make_section (dynobj, name);
533 if (sreloc == NULL
534 || ! bfd_set_section_flags (dynobj, sreloc,
535 (SEC_ALLOC
536 | SEC_LOAD
537 | SEC_HAS_CONTENTS
538 | SEC_IN_MEMORY
539 | SEC_READONLY))
540 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
541 return false;
542 }
543 }
544
545 sreloc->_raw_size += sizeof (Elf32_External_Rela);
546 }
547
548 break;
549
550 default:
551 break;
552 }
553 }
554
555 return true;
556 }
557
558 /* Adjust a symbol defined by a dynamic object and referenced by a
559 regular object. The current definition is in some section of the
560 dynamic object, but we're not including those sections. We have to
561 change the definition to something the rest of the link can
562 understand. */
563
564 static boolean
565 elf32_sparc_adjust_dynamic_symbol (info, h)
566 struct bfd_link_info *info;
567 struct elf_link_hash_entry *h;
568 {
569 bfd *dynobj;
570 asection *s;
571 unsigned int power_of_two;
572
573 dynobj = elf_hash_table (info)->dynobj;
574
575 /* Make sure we know what is going on here. */
576 BFD_ASSERT (dynobj != NULL
577 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
578 || ((h->elf_link_hash_flags
579 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
580 && (h->elf_link_hash_flags
581 & ELF_LINK_HASH_REF_REGULAR) != 0
582 && (h->elf_link_hash_flags
583 & ELF_LINK_HASH_DEF_REGULAR) == 0
584 && h->root.type == bfd_link_hash_defined
585 && (bfd_get_flavour (h->root.u.def.section->owner)
586 == bfd_target_elf_flavour)
587 && (elf_elfheader (h->root.u.def.section->owner)->e_type
588 == ET_DYN)
589 && h->root.u.def.section->output_section == NULL)));
590
591 /* If this is a function, put it in the procedure linkage table. We
592 will fill in the contents of the procedure linkage table later
593 (although we could actually do it here). */
594 if (h->type == STT_FUNC
595 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
596 {
597 if (! elf_hash_table (info)->dynamic_sections_created)
598 {
599 /* This case can occur if we saw a WPLT30 reloc in an input
600 file, but none of the input files were dynamic objects.
601 In such a case, we don't actually need to build a
602 procedure linkage table, and we can just do a WDISP30
603 reloc instead. */
604 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
605 return true;
606 }
607
608 s = bfd_get_section_by_name (dynobj, ".plt");
609 BFD_ASSERT (s != NULL);
610
611 /* The first four entries in .plt are reserved. */
612 if (s->_raw_size == 0)
613 s->_raw_size = 4 * PLT_ENTRY_SIZE;
614
615 /* The procedure linkage table has a maximum size. */
616 if (s->_raw_size >= 0x400000)
617 {
618 bfd_set_error (bfd_error_bad_value);
619 return false;
620 }
621
622 /* If we are not generating a shared library, or if the symbol
623 is not defined, set the symbol to this location in the .plt.
624 This is required to make function pointers compare as equal
625 between the normal executable and the shared library. */
626 if (! info->shared || h->root.type != bfd_link_hash_defined)
627 {
628 h->root.u.def.section = s;
629 h->root.u.def.value = s->_raw_size;
630 }
631
632 h->plt_offset = s->_raw_size;
633
634 /* Make room for this entry. */
635 s->_raw_size += PLT_ENTRY_SIZE;
636
637 /* We also need to make an entry in the .rela.plt section. */
638
639 s = bfd_get_section_by_name (dynobj, ".rela.plt");
640 BFD_ASSERT (s != NULL);
641 s->_raw_size += sizeof (Elf32_External_Rela);
642
643 return true;
644 }
645
646 /* If this is a weak symbol, and there is a real definition, the
647 processor independent code will have arranged for us to see the
648 real definition first, and we can just use the same value. */
649 if (h->weakdef != NULL)
650 {
651 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined);
652 h->root.u.def.section = h->weakdef->root.u.def.section;
653 h->root.u.def.value = h->weakdef->root.u.def.value;
654 return true;
655 }
656
657 /* This is a reference to a symbol defined by a dynamic object which
658 is not a function. */
659
660 /* If we are creating a shared library, we must presume that the
661 only references to the symbol are via the global offset table.
662 For such cases we need not do anything here; the relocations will
663 be handled correctly by relocate_section. */
664 if (info->shared)
665 return true;
666
667 /* We must allocate the symbol in our .dynbss section, which will
668 become part of the .bss section of the executable. There will be
669 an entry for this symbol in the .dynsym section. The dynamic
670 object will contain position independent code, so all references
671 from the dynamic object to this symbol will go through the global
672 offset table. The dynamic linker will use the .dynsym entry to
673 determine the address it must put in the global offset table, so
674 both the dynamic object and the regular object will refer to the
675 same memory location for the variable. */
676
677 s = bfd_get_section_by_name (dynobj, ".dynbss");
678 BFD_ASSERT (s != NULL);
679
680 /* If the symbol is currently defined in the .bss section of the
681 dynamic object, then it is OK to simply initialize it to zero.
682 If the symbol is in some other section, we must generate a
683 R_SPARC_COPY reloc to tell the dynamic linker to copy the initial
684 value out of the dynamic object and into the runtime process
685 image. We need to remember the offset into the .rel.bss section
686 we are going to use. */
687 if ((h->root.u.def.section->flags & SEC_LOAD) != 0)
688 {
689 asection *srel;
690
691 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
692 BFD_ASSERT (srel != NULL);
693 srel->_raw_size += sizeof (Elf32_External_Rela);
694 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
695 }
696
697 /* We need to figure out the alignment required for this symbol. I
698 have no idea how ELF linkers handle this. */
699 power_of_two = bfd_log2 (h->size);
700 if (power_of_two > 3)
701 power_of_two = 3;
702
703 /* Apply the required alignment. */
704 s->_raw_size = BFD_ALIGN (s->_raw_size,
705 (bfd_size_type) (1 << power_of_two));
706 if (power_of_two > bfd_get_section_alignment (dynobj, s))
707 {
708 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
709 return false;
710 }
711
712 /* Define the symbol as being at this point in the section. */
713 h->root.u.def.section = s;
714 h->root.u.def.value = s->_raw_size;
715
716 /* Increment the section size to make room for the symbol. */
717 s->_raw_size += h->size;
718
719 return true;
720 }
721
722 /* Set the sizes of the dynamic sections. */
723
724 static boolean
725 elf32_sparc_size_dynamic_sections (output_bfd, info)
726 bfd *output_bfd;
727 struct bfd_link_info *info;
728 {
729 bfd *dynobj;
730 asection *s;
731 boolean reltext;
732
733 dynobj = elf_hash_table (info)->dynobj;
734 BFD_ASSERT (dynobj != NULL);
735
736 if (elf_hash_table (info)->dynamic_sections_created)
737 {
738 /* Set the contents of the .interp section to the interpreter. */
739 if (! info->shared)
740 {
741 s = bfd_get_section_by_name (dynobj, ".interp");
742 BFD_ASSERT (s != NULL);
743 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
744 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
745 }
746
747 /* Make space for the trailing nop in .plt. */
748 s = bfd_get_section_by_name (dynobj, ".plt");
749 BFD_ASSERT (s != NULL);
750 if (s->_raw_size > 0)
751 s->_raw_size += 4;
752 }
753 else
754 {
755 /* We may have created entries in the .rela.got section.
756 However, if we are not creating the dynamic sections, we will
757 not actually use these entries. Reset the size of .rela.got,
758 which will cause it to get stripped from the output file
759 below. */
760 s = bfd_get_section_by_name (dynobj, ".rela.got");
761 if (s != NULL)
762 s->_raw_size = 0;
763 }
764
765 /* The check_relocs and adjust_dynamic_symbol entry points have
766 determined the sizes of the various dynamic sections. Allocate
767 memory for them. */
768 reltext = false;
769 for (s = dynobj->sections; s != NULL; s = s->next)
770 {
771 const char *name;
772 boolean strip;
773
774 if ((s->flags & SEC_IN_MEMORY) == 0)
775 continue;
776
777 /* It's OK to base decisions on the section name, because none
778 of the dynobj section names depend upon the input files. */
779 name = bfd_get_section_name (dynobj, s);
780
781 strip = false;
782
783 if (strncmp (name, ".rela", 5) == 0)
784 {
785 if (s->_raw_size == 0)
786 {
787 /* If we don't need this section, strip it from the
788 output file. This is to handle .rela.bss and
789 .rel.plt. We must create it in
790 create_dynamic_sections, because it must be created
791 before the linker maps input sections to output
792 sections. The linker does that before
793 adjust_dynamic_symbol is called, and it is that
794 function which decides whether anything needs to go
795 into these sections. */
796 strip = true;
797 }
798 else
799 {
800 asection *target;
801
802 /* If this relocation section applies to a read only
803 section, then we probably need a DT_TEXTREL entry. */
804 target = bfd_get_section_by_name (output_bfd, name + 5);
805 if (target != NULL
806 && (target->flags & SEC_READONLY) != 0)
807 reltext = true;
808
809 /* We use the reloc_count field as a counter if we need
810 to copy relocs into the output file. */
811 s->reloc_count = 0;
812 }
813 }
814 else if (strcmp (name, ".plt") != 0
815 && strcmp (name, ".got") != 0)
816 {
817 /* It's not one of our sections, so don't allocate space. */
818 continue;
819 }
820
821 if (strip)
822 {
823 asection **spp;
824
825 for (spp = &s->output_section->owner->sections;
826 *spp != s->output_section;
827 spp = &(*spp)->next)
828 ;
829 *spp = s->output_section->next;
830 --s->output_section->owner->section_count;
831
832 continue;
833 }
834
835 /* Allocate memory for the section contents. */
836 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
837 if (s->contents == NULL && s->_raw_size != 0)
838 {
839 bfd_set_error (bfd_error_no_memory);
840 return false;
841 }
842 }
843
844 if (elf_hash_table (info)->dynamic_sections_created)
845 {
846 /* Add some entries to the .dynamic section. We fill in the
847 values later, in elf32_sparc_finish_dynamic_sections, but we
848 must add the entries now so that we get the correct size for
849 the .dynamic section. The DT_DEBUG entry is filled in by the
850 dynamic linker and used by the debugger. */
851 if (! info->shared)
852 {
853 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
854 return false;
855 }
856
857 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
858 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
859 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
860 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0)
861 || ! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
862 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
863 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
864 sizeof (Elf32_External_Rela)))
865 return false;
866
867 if (reltext)
868 {
869 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
870 return false;
871 }
872 }
873
874 /* If we are generating a shared library, we generate a section
875 symbol for each output section. These are local symbols, which
876 means that they must come first in the dynamic symbol table.
877 That means we must increment the dynamic symbol index of every
878 other dynamic symbol. */
879 if (info->shared)
880 {
881 int c, i;
882
883 c = bfd_count_sections (output_bfd);
884 elf_link_hash_traverse (elf_hash_table (info),
885 elf32_sparc_adjust_dynindx,
886 (PTR) &c);
887 elf_hash_table (info)->dynsymcount += c;
888
889 for (i = 1, s = output_bfd->sections; s != NULL; s = s->next, i++)
890 {
891 elf_section_data (s)->dynindx = i;
892 /* These symbols will have no names, so we don't need to
893 fiddle with dynstr_index. */
894 }
895 }
896
897 return true;
898 }
899
900 /* Increment the index of a dynamic symbol by a given amount. Called
901 via elf_link_hash_traverse. */
902
903 static boolean
904 elf32_sparc_adjust_dynindx (h, cparg)
905 struct elf_link_hash_entry *h;
906 PTR cparg;
907 {
908 int *cp = (int *) cparg;
909
910 if (h->dynindx != -1)
911 h->dynindx += *cp;
912 return true;
913 }
914
915 /* Relocate a SPARC ELF section. */
916
917 static boolean
918 elf32_sparc_relocate_section (output_bfd, info, input_bfd, input_section,
919 contents, relocs, local_syms, local_sections)
920 bfd *output_bfd;
921 struct bfd_link_info *info;
922 bfd *input_bfd;
923 asection *input_section;
924 bfd_byte *contents;
925 Elf_Internal_Rela *relocs;
926 Elf_Internal_Sym *local_syms;
927 asection **local_sections;
928 {
929 bfd *dynobj;
930 Elf_Internal_Shdr *symtab_hdr;
931 struct elf_link_hash_entry **sym_hashes;
932 bfd_vma *local_got_offsets;
933 asection *sgot;
934 asection *splt;
935 asection *sreloc;
936 Elf_Internal_Rela *rel;
937 Elf_Internal_Rela *relend;
938
939 dynobj = elf_hash_table (info)->dynobj;
940 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
941 sym_hashes = elf_sym_hashes (input_bfd);
942 local_got_offsets = elf_local_got_offsets (input_bfd);
943
944 sgot = NULL;
945 splt = NULL;
946 sreloc = NULL;
947
948 rel = relocs;
949 relend = relocs + input_section->reloc_count;
950 for (; rel < relend; rel++)
951 {
952 int r_type;
953 const reloc_howto_type *howto;
954 long r_symndx;
955 struct elf_link_hash_entry *h;
956 Elf_Internal_Sym *sym;
957 asection *sec;
958 bfd_vma relocation;
959 bfd_reloc_status_type r;
960
961 r_type = ELF32_R_TYPE (rel->r_info);
962 if (r_type < 0 || r_type >= (int) R_SPARC_max)
963 {
964 bfd_set_error (bfd_error_bad_value);
965 return false;
966 }
967 howto = elf_sparc_howto_table + r_type;
968
969 r_symndx = ELF32_R_SYM (rel->r_info);
970
971 if (info->relocateable)
972 {
973 /* This is a relocateable link. We don't have to change
974 anything, unless the reloc is against a section symbol,
975 in which case we have to adjust according to where the
976 section symbol winds up in the output section. */
977 if (r_symndx < symtab_hdr->sh_info)
978 {
979 sym = local_syms + r_symndx;
980 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
981 {
982 sec = local_sections[r_symndx];
983 rel->r_addend += sec->output_offset + sym->st_value;
984 }
985 }
986
987 continue;
988 }
989
990 /* This is a final link. */
991 h = NULL;
992 sym = NULL;
993 sec = NULL;
994 if (r_symndx < symtab_hdr->sh_info)
995 {
996 sym = local_syms + r_symndx;
997 sec = local_sections[r_symndx];
998 relocation = (sec->output_section->vma
999 + sec->output_offset
1000 + sym->st_value);
1001 }
1002 else
1003 {
1004 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1005 if (h->root.type == bfd_link_hash_defined)
1006 {
1007 sec = h->root.u.def.section;
1008 relocation = (h->root.u.def.value
1009 + sec->output_section->vma
1010 + sec->output_offset);
1011 }
1012 else if (h->root.type == bfd_link_hash_weak)
1013 relocation = 0;
1014 else if (info->shared)
1015 relocation = 0;
1016 else
1017 {
1018 if (! ((*info->callbacks->undefined_symbol)
1019 (info, h->root.root.string, input_bfd,
1020 input_section, rel->r_offset)))
1021 return false;
1022 relocation = 0;
1023 }
1024 }
1025
1026 switch (r_type)
1027 {
1028 case R_SPARC_GOT10:
1029 case R_SPARC_GOT13:
1030 case R_SPARC_GOT22:
1031 /* Relocation is to the entry for this symbol in the global
1032 offset table. */
1033 if (sgot == NULL)
1034 {
1035 sgot = bfd_get_section_by_name (dynobj, ".got");
1036 BFD_ASSERT (sgot != NULL);
1037 }
1038
1039 if (h != NULL)
1040 {
1041 bfd_vma off;
1042
1043 off = h->got_offset;
1044 BFD_ASSERT (off != (bfd_vma) -1);
1045
1046 if (! elf_hash_table (info)->dynamic_sections_created)
1047 {
1048 /* This is actually a static link. We must
1049 initialize this entry in the global offset table.
1050 Since the offset must always be a multiple of 4,
1051 we use the least significant bit to record
1052 whether we have initialized it already.
1053
1054 When doing a dynamic link, we create a .rela.got
1055 relocation entry to initialize the value. This
1056 is done in the finish_dynamic_symbol routine. */
1057 if ((off & 1) != 0)
1058 off &= ~1;
1059 else
1060 {
1061 bfd_put_32 (output_bfd, relocation,
1062 sgot->contents + off);
1063 h->got_offset |= 1;
1064 }
1065 }
1066
1067 relocation = sgot->output_offset + off;
1068 }
1069 else
1070 {
1071 bfd_vma off;
1072
1073 BFD_ASSERT (local_got_offsets != NULL
1074 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1075
1076 off = local_got_offsets[r_symndx];
1077
1078 /* The offset must always be a multiple of 4. We use
1079 the least significant bit to record whether we have
1080 already processed this entry. */
1081 if ((off & 1) != 0)
1082 off &= ~1;
1083 else
1084 {
1085 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1086
1087 if (info->shared)
1088 {
1089 asection *srelgot;
1090 Elf_Internal_Rela outrel;
1091
1092 /* We need to generate a R_SPARC_RELATIVE reloc
1093 for the dynamic linker. */
1094 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1095 BFD_ASSERT (srelgot != NULL);
1096
1097 outrel.r_offset = (sgot->output_section->vma
1098 + sgot->output_offset
1099 + off);
1100 outrel.r_info = ELF32_R_INFO (0, R_SPARC_RELATIVE);
1101 outrel.r_addend = 0;
1102 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1103 (((Elf32_External_Rela *)
1104 srelgot->contents)
1105 + srelgot->reloc_count));
1106 ++srelgot->reloc_count;
1107 }
1108
1109 local_got_offsets[r_symndx] |= 1;
1110 }
1111
1112 relocation = sgot->output_offset + off;
1113 }
1114
1115 break;
1116
1117 case R_SPARC_WPLT30:
1118 /* Relocation is to the entry for this symbol in the
1119 procedure linkage table. */
1120 BFD_ASSERT (h != NULL);
1121
1122 if (h->plt_offset == (bfd_vma) -1)
1123 {
1124 /* We didn't make a PLT entry for this symbol. This
1125 happens when statically linking PIC code. */
1126 break;
1127 }
1128
1129 if (splt == NULL)
1130 {
1131 splt = bfd_get_section_by_name (dynobj, ".plt");
1132 BFD_ASSERT (splt != NULL);
1133 }
1134
1135 relocation = (splt->output_section->vma
1136 + splt->output_offset
1137 + h->plt_offset);
1138 break;
1139
1140 case R_SPARC_PC10:
1141 case R_SPARC_PC22:
1142 if (h != NULL
1143 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1144 break;
1145 /* Fall through. */
1146 case R_SPARC_8:
1147 case R_SPARC_16:
1148 case R_SPARC_32:
1149 case R_SPARC_DISP8:
1150 case R_SPARC_DISP16:
1151 case R_SPARC_DISP32:
1152 case R_SPARC_WDISP30:
1153 case R_SPARC_WDISP22:
1154 case R_SPARC_HI22:
1155 case R_SPARC_22:
1156 case R_SPARC_13:
1157 case R_SPARC_LO10:
1158 case R_SPARC_UA32:
1159 if (info->shared
1160 && (input_section->flags & SEC_ALLOC) != 0)
1161 {
1162 Elf_Internal_Rela outrel;
1163
1164 /* When generating a shared object, these relocations
1165 are copied into the output file to be resolved at run
1166 time. */
1167
1168 if (sreloc == NULL)
1169 {
1170 const char *name;
1171
1172 name = (elf_string_from_elf_section
1173 (input_bfd,
1174 elf_elfheader (input_bfd)->e_shstrndx,
1175 elf_section_data (input_section)->rel_hdr.sh_name));
1176 if (name == NULL)
1177 return false;
1178
1179 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1180 && strcmp (bfd_get_section_name (input_bfd,
1181 input_section),
1182 name + 5) == 0);
1183
1184 sreloc = bfd_get_section_by_name (dynobj, name);
1185 BFD_ASSERT (sreloc != NULL);
1186 }
1187
1188 outrel.r_offset = (rel->r_offset
1189 + input_section->output_section->vma
1190 + input_section->output_offset);
1191 if (h != NULL)
1192 {
1193 BFD_ASSERT (h->dynindx != -1);
1194 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1195 outrel.r_addend = rel->r_addend;
1196 }
1197 else
1198 {
1199 if (r_type == R_SPARC_32)
1200 {
1201 outrel.r_info = ELF32_R_INFO (0, R_SPARC_RELATIVE);
1202 outrel.r_addend = relocation + rel->r_addend;
1203 }
1204 else
1205 {
1206 long indx;
1207
1208 sym = local_syms + r_symndx;
1209
1210 BFD_ASSERT (ELF_ST_TYPE (sym->st_info) == STT_SECTION);
1211
1212 sec = local_sections[r_symndx];
1213 if (sec != NULL && bfd_is_abs_section (sec))
1214 indx = 0;
1215 else if (sec == NULL || sec->owner == NULL)
1216 {
1217 bfd_set_error (bfd_error_bad_value);
1218 return false;
1219 }
1220 else
1221 {
1222 asection *osec;
1223
1224 osec = sec->output_section;
1225 indx = elf_section_data (osec)->dynindx;
1226 if (indx == 0)
1227 abort ();
1228 }
1229
1230 outrel.r_info = ELF32_R_INFO (indx, r_type);
1231 outrel.r_addend = relocation + rel->r_addend;
1232 }
1233 }
1234
1235 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1236 (((Elf32_External_Rela *)
1237 sreloc->contents)
1238 + sreloc->reloc_count));
1239 ++sreloc->reloc_count;
1240
1241 /* This reloc will be computed at runtime, so there's no
1242 need to do anything now. */
1243 continue;
1244 }
1245
1246 default:
1247 break;
1248 }
1249
1250 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1251 contents, rel->r_offset,
1252 relocation, rel->r_addend);
1253
1254 if (r != bfd_reloc_ok)
1255 {
1256 switch (r)
1257 {
1258 default:
1259 case bfd_reloc_outofrange:
1260 abort ();
1261 case bfd_reloc_overflow:
1262 {
1263 const char *name;
1264
1265 if (h != NULL)
1266 name = h->root.root.string;
1267 else
1268 {
1269 name = elf_string_from_elf_section (input_bfd,
1270 symtab_hdr->sh_link,
1271 sym->st_name);
1272 if (name == NULL)
1273 return false;
1274 if (*name == '\0')
1275 name = bfd_section_name (input_bfd, sec);
1276 }
1277 if (! ((*info->callbacks->reloc_overflow)
1278 (info, name, howto->name, (bfd_vma) 0,
1279 input_bfd, input_section, rel->r_offset)))
1280 return false;
1281 }
1282 break;
1283 }
1284 }
1285 }
1286
1287 return true;
1288 }
1289
1290 /* Finish up dynamic symbol handling. We set the contents of various
1291 dynamic sections here. */
1292
1293 static boolean
1294 elf32_sparc_finish_dynamic_symbol (output_bfd, info, h, sym)
1295 bfd *output_bfd;
1296 struct bfd_link_info *info;
1297 struct elf_link_hash_entry *h;
1298 Elf_Internal_Sym *sym;
1299 {
1300 bfd *dynobj;
1301
1302 dynobj = elf_hash_table (info)->dynobj;
1303
1304 if (h->plt_offset != (bfd_vma) -1)
1305 {
1306 asection *splt;
1307 asection *srela;
1308 Elf_Internal_Rela rela;
1309
1310 /* This symbol has an entry in the procedure linkage table. Set
1311 it up. */
1312
1313 BFD_ASSERT (h->dynindx != -1);
1314
1315 splt = bfd_get_section_by_name (dynobj, ".plt");
1316 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1317 BFD_ASSERT (splt != NULL && srela != NULL);
1318
1319 /* Fill in the entry in the procedure linkage table. */
1320 bfd_put_32 (output_bfd,
1321 PLT_ENTRY_WORD0 + h->plt_offset,
1322 splt->contents + h->plt_offset);
1323 bfd_put_32 (output_bfd,
1324 (PLT_ENTRY_WORD1
1325 + (((- (h->plt_offset + 4)) >> 2) & 0x3fffff)),
1326 splt->contents + h->plt_offset + 4);
1327 bfd_put_32 (output_bfd, PLT_ENTRY_WORD2,
1328 splt->contents + h->plt_offset + 8);
1329
1330 /* Fill in the entry in the .rela.plt section. */
1331 rela.r_offset = (splt->output_section->vma
1332 + splt->output_offset
1333 + h->plt_offset);
1334 rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
1335 rela.r_addend = 0;
1336 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1337 ((Elf32_External_Rela *) srela->contents
1338 + h->plt_offset / PLT_ENTRY_SIZE - 4));
1339
1340 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1341 {
1342 /* Mark the symbol as undefined, rather than as defined in
1343 the .plt section. Leave the value alone. */
1344 sym->st_shndx = SHN_UNDEF;
1345 }
1346 }
1347
1348 if (h->got_offset != (bfd_vma) -1)
1349 {
1350 asection *sgot;
1351 asection *srela;
1352 Elf_Internal_Rela rela;
1353
1354 /* This symbol has an entry in the global offset table. Set it
1355 up. */
1356
1357 BFD_ASSERT (h->dynindx != -1);
1358
1359 sgot = bfd_get_section_by_name (dynobj, ".got");
1360 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1361 BFD_ASSERT (sgot != NULL && srela != NULL);
1362
1363 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset);
1364
1365 rela.r_offset = (sgot->output_section->vma
1366 + sgot->output_offset
1367 + h->got_offset);
1368 rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
1369 rela.r_addend = 0;
1370 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1371 ((Elf32_External_Rela *) srela->contents
1372 + srela->reloc_count));
1373 ++srela->reloc_count;
1374 }
1375
1376 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1377 {
1378 asection *s;
1379 Elf_Internal_Rela rela;
1380
1381 /* This symbols needs a copy reloc. Set it up. */
1382
1383 BFD_ASSERT (h->dynindx != -1);
1384
1385 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1386 ".rela.bss");
1387 BFD_ASSERT (s != NULL);
1388
1389 rela.r_offset = (h->root.u.def.value
1390 + h->root.u.def.section->output_section->vma
1391 + h->root.u.def.section->output_offset);
1392 rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_COPY);
1393 rela.r_addend = 0;
1394 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1395 ((Elf32_External_Rela *) s->contents
1396 + s->reloc_count));
1397 ++s->reloc_count;
1398 }
1399
1400 /* Mark some specially defined symbols as absolute. */
1401 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1402 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
1403 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
1404 sym->st_shndx = SHN_ABS;
1405
1406 return true;
1407 }
1408
1409 /* Finish up the dynamic sections. */
1410
1411 static boolean
1412 elf32_sparc_finish_dynamic_sections (output_bfd, info)
1413 bfd *output_bfd;
1414 struct bfd_link_info *info;
1415 {
1416 bfd *dynobj;
1417 asection *sdyn;
1418 asection *sgot;
1419
1420 dynobj = elf_hash_table (info)->dynobj;
1421
1422 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1423
1424 if (elf_hash_table (info)->dynamic_sections_created)
1425 {
1426 asection *splt;
1427 Elf32_External_Dyn *dyncon, *dynconend;
1428
1429 splt = bfd_get_section_by_name (dynobj, ".plt");
1430 BFD_ASSERT (splt != NULL && sdyn != NULL);
1431
1432 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1433 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1434 for (; dyncon < dynconend; dyncon++)
1435 {
1436 Elf_Internal_Dyn dyn;
1437 const char *name;
1438 boolean size;
1439
1440 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1441
1442 switch (dyn.d_tag)
1443 {
1444 case DT_PLTGOT: name = ".plt"; size = false; break;
1445 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
1446 case DT_JMPREL: name = ".rela.plt"; size = false; break;
1447 default: name = NULL; size = false; break;
1448 }
1449
1450 if (name != NULL)
1451 {
1452 asection *s;
1453
1454 s = bfd_get_section_by_name (output_bfd, name);
1455 if (s == NULL)
1456 dyn.d_un.d_val = 0;
1457 else
1458 {
1459 if (! size)
1460 dyn.d_un.d_ptr = s->vma;
1461 else
1462 {
1463 if (s->_cooked_size != 0)
1464 dyn.d_un.d_val = s->_cooked_size;
1465 else
1466 dyn.d_un.d_val = s->_raw_size;
1467 }
1468 }
1469 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1470 }
1471 }
1472
1473 /* Clear the first four entries in the procedure linkage table,
1474 and put a nop in the last four bytes. */
1475 if (splt->_raw_size > 0)
1476 {
1477 memset (splt->contents, 0, 4 * PLT_ENTRY_SIZE);
1478 bfd_put_32 (output_bfd, SPARC_NOP,
1479 splt->contents + splt->_raw_size - 4);
1480 }
1481
1482 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1483 PLT_ENTRY_SIZE;
1484 }
1485
1486 /* Set the first entry in the global offset table to the address of
1487 the dynamic section. */
1488 sgot = bfd_get_section_by_name (dynobj, ".got");
1489 BFD_ASSERT (sgot != NULL);
1490 if (sgot->_raw_size > 0)
1491 {
1492 if (sdyn == NULL)
1493 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
1494 else
1495 bfd_put_32 (output_bfd,
1496 sdyn->output_section->vma + sdyn->output_offset,
1497 sgot->contents);
1498 }
1499
1500 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
1501
1502 if (info->shared)
1503 {
1504 asection *sdynsym;
1505 asection *s;
1506 Elf_Internal_Sym sym;
1507
1508 /* Set up the section symbols for the output sections. */
1509
1510 sdynsym = bfd_get_section_by_name (dynobj, ".dynsym");
1511 BFD_ASSERT (sdynsym != NULL);
1512
1513 sym.st_size = 0;
1514 sym.st_name = 0;
1515 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
1516 sym.st_other = 0;
1517
1518 for (s = output_bfd->sections; s != NULL; s = s->next)
1519 {
1520 int indx;
1521
1522 sym.st_value = s->vma;
1523
1524 indx = elf_section_data (s)->this_idx;
1525 BFD_ASSERT (indx > 0);
1526 sym.st_shndx = indx;
1527
1528 bfd_elf32_swap_symbol_out (output_bfd, &sym,
1529 ((Elf32_External_Sym *) sdynsym->contents
1530 + elf_section_data (s)->dynindx));
1531 }
1532
1533 /* Set the sh_info field of the output .dynsym section to the
1534 index of the first global symbol. */
1535 elf_section_data (sdynsym->output_section)->this_hdr.sh_info =
1536 bfd_count_sections (output_bfd) + 1;
1537 }
1538
1539 return true;
1540 }
1541
1542 #define TARGET_BIG_SYM bfd_elf32_sparc_vec
1543 #define TARGET_BIG_NAME "elf32-sparc"
1544 #define ELF_ARCH bfd_arch_sparc
1545 #define ELF_MACHINE_CODE EM_SPARC
1546 #define ELF_MAXPAGESIZE 0x10000
1547 #define elf_backend_create_dynamic_sections \
1548 elf32_sparc_create_dynamic_sections
1549 #define elf_backend_check_relocs elf32_sparc_check_relocs
1550 #define elf_backend_adjust_dynamic_symbol \
1551 elf32_sparc_adjust_dynamic_symbol
1552 #define elf_backend_size_dynamic_sections \
1553 elf32_sparc_size_dynamic_sections
1554 #define elf_backend_relocate_section elf32_sparc_relocate_section
1555 #define elf_backend_finish_dynamic_symbol \
1556 elf32_sparc_finish_dynamic_symbol
1557 #define elf_backend_finish_dynamic_sections \
1558 elf32_sparc_finish_dynamic_sections
1559
1560 #include "elf32-target.h"
This page took 0.084026 seconds and 4 git commands to generate.