* cofflink.c (_bfd_coff_generic_relocate_section): If doing a
[deliverable/binutils-gdb.git] / bfd / elf32-sparc.c
1 /* SPARC-specific support for 32-bit ELF
2 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26
27 static reloc_howto_type *elf32_sparc_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf32_sparc_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
31 static boolean elf32_sparc_check_relocs
32 PARAMS ((bfd *, struct bfd_link_info *, asection *,
33 const Elf_Internal_Rela *));
34 static boolean elf32_sparc_adjust_dynamic_symbol
35 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
36 static boolean elf32_sparc_adjust_dynindx
37 PARAMS ((struct elf_link_hash_entry *, PTR));
38 static boolean elf32_sparc_size_dynamic_sections
39 PARAMS ((bfd *, struct bfd_link_info *));
40 static boolean elf32_sparc_relocate_section
41 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
42 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
43 static boolean elf32_sparc_finish_dynamic_symbol
44 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
45 Elf_Internal_Sym *));
46 static boolean elf32_sparc_finish_dynamic_sections
47 PARAMS ((bfd *, struct bfd_link_info *));
48 static boolean elf32_sparc_merge_private_bfd_data PARAMS ((bfd *, bfd *));
49 static boolean elf32_sparc_object_p
50 PARAMS ((bfd *));
51 static void elf32_sparc_final_write_processing
52 PARAMS ((bfd *, boolean));
53 \f
54 /* The howto table and associated functions.
55 ??? elf64-sparc.c has its own copy for the moment to ease transition
56 since some of the relocation values have changed. At some point we'll
57 want elf64-sparc.c to switch over and use this table.
58 ??? Do we want to recognize (or flag as errors) some of the 64 bit entries
59 if the target is elf32-sparc.
60 */
61
62 static bfd_reloc_status_type sparc_elf_notsupported_reloc
63 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
64 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
65 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
66
67 reloc_howto_type _bfd_sparc_elf_howto_table[] =
68 {
69 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
70 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
71 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
72 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
73 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
74 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
75 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
76 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
77 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
78 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
79 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
80 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
81 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
82 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
83 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
84 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
85 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
86 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
87 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
88 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
89 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
90 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
91 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
92 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
93 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
94 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
95 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
96 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
97 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
98 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
99 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
100 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
101 /* ??? If we need to handle R_SPARC_64 then we need (figuratively)
102 --enable-64-bit-bfd. That causes objdump to print address as 64 bits
103 which we really don't want on an elf32-sparc system. There may be other
104 consequences which we may not want (at least not until it's proven they're
105 necessary) so for now these are only enabled ifdef BFD64. */
106 #ifdef BFD64
107 HOWTO(R_SPARC_64, 0,4,00,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,~ (bfd_vma) 0, true),
108 /* ??? These don't make sense except in 64 bit systems so they're disabled
109 ifndef BFD64 too (for now). */
110 HOWTO(R_SPARC_OLO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_OLO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
112 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
113 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
115 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
116 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
117 #else
118 HOWTO(R_SPARC_64, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_64", false,0,0x00000000,true),
119 HOWTO(R_SPARC_OLO10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_OLO10", false,0,0x00000000,true),
120 HOWTO(R_SPARC_HH22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_HH22", false,0,0x00000000,true),
121 HOWTO(R_SPARC_HM10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_HM10", false,0,0x00000000,true),
122 HOWTO(R_SPARC_LM22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_LM22", false,0,0x00000000,true),
123 HOWTO(R_SPARC_PC_HH22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PC_HH22", false,0,0x00000000,true),
124 HOWTO(R_SPARC_PC_HM10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PC_HM10", false,0,0x00000000,true),
125 HOWTO(R_SPARC_PC_LM22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsupported_reloc, "R_SPARC_PC_LM22", false,0,0x00000000,true),
126 #endif
127 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
128 HOWTO(R_SPARC_WDISP19, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
129 HOWTO(R_SPARC_GLOB_JMP, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_JMP",false,0,0x00000000,true),
130 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
131 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
132 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
133 };
134
135 struct elf_reloc_map {
136 unsigned char bfd_reloc_val;
137 unsigned char elf_reloc_val;
138 };
139
140 static CONST struct elf_reloc_map sparc_reloc_map[] =
141 {
142 { BFD_RELOC_NONE, R_SPARC_NONE, },
143 { BFD_RELOC_16, R_SPARC_16, },
144 { BFD_RELOC_8, R_SPARC_8 },
145 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
146 /* ??? This might cause us to need separate functions in elf{32,64}-sparc.c
147 (we could still have just one table), but is this reloc ever used? */
148 { BFD_RELOC_CTOR, R_SPARC_32 }, /* @@ Assumes 32 bits. */
149 { BFD_RELOC_32, R_SPARC_32 },
150 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
151 { BFD_RELOC_HI22, R_SPARC_HI22 },
152 { BFD_RELOC_LO10, R_SPARC_LO10, },
153 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
154 { BFD_RELOC_SPARC22, R_SPARC_22 },
155 { BFD_RELOC_SPARC13, R_SPARC_13 },
156 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
157 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
158 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
159 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
160 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
161 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
162 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
163 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
164 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
165 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
166 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
167 /* ??? Doesn't dwarf use this? */
168 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
169 {BFD_RELOC_SPARC_10, R_SPARC_10},
170 {BFD_RELOC_SPARC_11, R_SPARC_11},
171 {BFD_RELOC_SPARC_64, R_SPARC_64},
172 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
173 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
174 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
175 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
176 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
177 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
178 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
179 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
180 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
181 {BFD_RELOC_SPARC_GLOB_JMP, R_SPARC_GLOB_JMP},
182 {BFD_RELOC_SPARC_7, R_SPARC_7},
183 {BFD_RELOC_SPARC_5, R_SPARC_5},
184 {BFD_RELOC_SPARC_6, R_SPARC_6},
185 };
186
187 static reloc_howto_type *
188 elf32_sparc_reloc_type_lookup (abfd, code)
189 bfd *abfd;
190 bfd_reloc_code_real_type code;
191 {
192 unsigned int i;
193 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
194 {
195 if (sparc_reloc_map[i].bfd_reloc_val == code)
196 return &_bfd_sparc_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
197 }
198 return 0;
199 }
200
201 /* We need to use ELF32_R_TYPE so we have our own copy of this function,
202 and elf64-sparc.c has its own copy. */
203
204 static void
205 elf32_sparc_info_to_howto (abfd, cache_ptr, dst)
206 bfd *abfd;
207 arelent *cache_ptr;
208 Elf_Internal_Rela *dst;
209 {
210 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_SPARC_max);
211 cache_ptr->howto = &_bfd_sparc_elf_howto_table[ELF32_R_TYPE(dst->r_info)];
212 }
213 \f
214 /* For unsupported relocs. */
215
216 static bfd_reloc_status_type
217 sparc_elf_notsupported_reloc (abfd,
218 reloc_entry,
219 symbol,
220 data,
221 input_section,
222 output_bfd,
223 error_message)
224 bfd *abfd;
225 arelent *reloc_entry;
226 asymbol *symbol;
227 PTR data;
228 asection *input_section;
229 bfd *output_bfd;
230 char **error_message;
231 {
232 return bfd_reloc_notsupported;
233 }
234
235 /* Handle the WDISP16 reloc. */
236
237 static bfd_reloc_status_type
238 sparc_elf_wdisp16_reloc (abfd,
239 reloc_entry,
240 symbol,
241 data,
242 input_section,
243 output_bfd,
244 error_message)
245 bfd *abfd;
246 arelent *reloc_entry;
247 asymbol *symbol;
248 PTR data;
249 asection *input_section;
250 bfd *output_bfd;
251 char **error_message;
252 {
253 bfd_vma relocation;
254 bfd_vma x;
255
256 if (output_bfd != (bfd *) NULL
257 && (symbol->flags & BSF_SECTION_SYM) == 0
258 && (! reloc_entry->howto->partial_inplace
259 || reloc_entry->addend == 0))
260 {
261 reloc_entry->address += input_section->output_offset;
262 return bfd_reloc_ok;
263 }
264
265 if (output_bfd != NULL)
266 return bfd_reloc_continue;
267
268 if (reloc_entry->address > input_section->_cooked_size)
269 return bfd_reloc_outofrange;
270
271 relocation = (symbol->value
272 + symbol->section->output_section->vma
273 + symbol->section->output_offset);
274 relocation += reloc_entry->addend;
275 relocation -= (input_section->output_section->vma
276 + input_section->output_offset);
277 relocation -= reloc_entry->address;
278
279 x = bfd_get_32 (abfd, (char *) data + reloc_entry->address);
280 x |= ((((relocation >> 2) & 0xc000) << 6)
281 | ((relocation >> 2) & 0x3fff));
282 bfd_put_32 (abfd, x, (char *) data + reloc_entry->address);
283
284 if ((bfd_signed_vma) relocation < - 0x40000
285 || (bfd_signed_vma) relocation > 0x3ffff)
286 return bfd_reloc_overflow;
287 else
288 return bfd_reloc_ok;
289 }
290 \f
291 /* Functions for the SPARC ELF linker. */
292
293 /* The name of the dynamic interpreter. This is put in the .interp
294 section. */
295
296 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
297
298 /* The nop opcode we use. */
299
300 #define SPARC_NOP 0x01000000
301
302 /* The size in bytes of an entry in the procedure linkage table. */
303
304 #define PLT_ENTRY_SIZE 12
305
306 /* The first four entries in a procedure linkage table are reserved,
307 and the initial contents are unimportant (we zero them out).
308 Subsequent entries look like this. See the SVR4 ABI SPARC
309 supplement to see how this works. */
310
311 /* sethi %hi(.-.plt0),%g1. We fill in the address later. */
312 #define PLT_ENTRY_WORD0 0x03000000
313 /* b,a .plt0. We fill in the offset later. */
314 #define PLT_ENTRY_WORD1 0x30800000
315 /* nop. */
316 #define PLT_ENTRY_WORD2 SPARC_NOP
317
318 /* Look through the relocs for a section during the first phase, and
319 allocate space in the global offset table or procedure linkage
320 table. */
321
322 static boolean
323 elf32_sparc_check_relocs (abfd, info, sec, relocs)
324 bfd *abfd;
325 struct bfd_link_info *info;
326 asection *sec;
327 const Elf_Internal_Rela *relocs;
328 {
329 bfd *dynobj;
330 Elf_Internal_Shdr *symtab_hdr;
331 struct elf_link_hash_entry **sym_hashes;
332 bfd_vma *local_got_offsets;
333 const Elf_Internal_Rela *rel;
334 const Elf_Internal_Rela *rel_end;
335 asection *sgot;
336 asection *srelgot;
337 asection *sreloc;
338
339 if (info->relocateable)
340 return true;
341
342 dynobj = elf_hash_table (info)->dynobj;
343 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
344 sym_hashes = elf_sym_hashes (abfd);
345 local_got_offsets = elf_local_got_offsets (abfd);
346
347 sgot = NULL;
348 srelgot = NULL;
349 sreloc = NULL;
350
351 rel_end = relocs + sec->reloc_count;
352 for (rel = relocs; rel < rel_end; rel++)
353 {
354 unsigned long r_symndx;
355 struct elf_link_hash_entry *h;
356
357 r_symndx = ELF32_R_SYM (rel->r_info);
358 if (r_symndx < symtab_hdr->sh_info)
359 h = NULL;
360 else
361 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
362
363 switch (ELF32_R_TYPE (rel->r_info))
364 {
365 case R_SPARC_GOT10:
366 case R_SPARC_GOT13:
367 case R_SPARC_GOT22:
368 /* This symbol requires a global offset table entry. */
369
370 if (dynobj == NULL)
371 {
372 /* Create the .got section. */
373 elf_hash_table (info)->dynobj = dynobj = abfd;
374 if (! _bfd_elf_create_got_section (dynobj, info))
375 return false;
376 }
377
378 if (sgot == NULL)
379 {
380 sgot = bfd_get_section_by_name (dynobj, ".got");
381 BFD_ASSERT (sgot != NULL);
382 }
383
384 if (srelgot == NULL
385 && (h != NULL || info->shared))
386 {
387 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
388 if (srelgot == NULL)
389 {
390 srelgot = bfd_make_section (dynobj, ".rela.got");
391 if (srelgot == NULL
392 || ! bfd_set_section_flags (dynobj, srelgot,
393 (SEC_ALLOC
394 | SEC_LOAD
395 | SEC_HAS_CONTENTS
396 | SEC_IN_MEMORY
397 | SEC_LINKER_CREATED
398 | SEC_READONLY))
399 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
400 return false;
401 }
402 }
403
404 if (h != NULL)
405 {
406 if (h->got_offset != (bfd_vma) -1)
407 {
408 /* We have already allocated space in the .got. */
409 break;
410 }
411 h->got_offset = sgot->_raw_size;
412
413 /* Make sure this symbol is output as a dynamic symbol. */
414 if (h->dynindx == -1)
415 {
416 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
417 return false;
418 }
419
420 srelgot->_raw_size += sizeof (Elf32_External_Rela);
421 }
422 else
423 {
424 /* This is a global offset table entry for a local
425 symbol. */
426 if (local_got_offsets == NULL)
427 {
428 size_t size;
429 register unsigned int i;
430
431 size = symtab_hdr->sh_info * sizeof (bfd_vma);
432 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
433 if (local_got_offsets == NULL)
434 return false;
435 elf_local_got_offsets (abfd) = local_got_offsets;
436 for (i = 0; i < symtab_hdr->sh_info; i++)
437 local_got_offsets[i] = (bfd_vma) -1;
438 }
439 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
440 {
441 /* We have already allocated space in the .got. */
442 break;
443 }
444 local_got_offsets[r_symndx] = sgot->_raw_size;
445
446 if (info->shared)
447 {
448 /* If we are generating a shared object, we need to
449 output a R_SPARC_RELATIVE reloc so that the
450 dynamic linker can adjust this GOT entry. */
451 srelgot->_raw_size += sizeof (Elf32_External_Rela);
452 }
453 }
454
455 sgot->_raw_size += 4;
456
457 /* If the .got section is more than 0x1000 bytes, we add
458 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
459 bit relocations have a greater chance of working. */
460 if (sgot->_raw_size >= 0x1000
461 && elf_hash_table (info)->hgot->root.u.def.value == 0)
462 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
463
464 break;
465
466 case R_SPARC_WPLT30:
467 /* This symbol requires a procedure linkage table entry. We
468 actually build the entry in adjust_dynamic_symbol,
469 because this might be a case of linking PIC code without
470 linking in any dynamic objects, in which case we don't
471 need to generate a procedure linkage table after all. */
472
473 if (h == NULL)
474 {
475 /* It does not make sense to have a procedure linkage
476 table entry for a local symbol. */
477 bfd_set_error (bfd_error_bad_value);
478 return false;
479 }
480
481 /* Make sure this symbol is output as a dynamic symbol. */
482 if (h->dynindx == -1)
483 {
484 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
485 return false;
486 }
487
488 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
489
490 break;
491
492 case R_SPARC_PC10:
493 case R_SPARC_PC22:
494 if (h != NULL
495 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
496 break;
497 /* Fall through. */
498 case R_SPARC_DISP8:
499 case R_SPARC_DISP16:
500 case R_SPARC_DISP32:
501 case R_SPARC_WDISP30:
502 case R_SPARC_WDISP22:
503 case R_SPARC_WDISP19:
504 case R_SPARC_WDISP16:
505 if (h == NULL)
506 break;
507 /* Fall through. */
508 case R_SPARC_8:
509 case R_SPARC_16:
510 case R_SPARC_32:
511 case R_SPARC_HI22:
512 case R_SPARC_22:
513 case R_SPARC_13:
514 case R_SPARC_LO10:
515 case R_SPARC_UA32:
516 if (info->shared)
517 {
518 /* When creating a shared object, we must copy these
519 relocs into the output file. We create a reloc
520 section in dynobj and make room for the reloc. */
521 if (sreloc == NULL)
522 {
523 const char *name;
524
525 name = (bfd_elf_string_from_elf_section
526 (abfd,
527 elf_elfheader (abfd)->e_shstrndx,
528 elf_section_data (sec)->rel_hdr.sh_name));
529 if (name == NULL)
530 return false;
531
532 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
533 && strcmp (bfd_get_section_name (abfd, sec),
534 name + 5) == 0);
535
536 sreloc = bfd_get_section_by_name (dynobj, name);
537 if (sreloc == NULL)
538 {
539 flagword flags;
540
541 sreloc = bfd_make_section (dynobj, name);
542 flags = (SEC_HAS_CONTENTS | SEC_READONLY
543 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
544 if ((sec->flags & SEC_ALLOC) != 0)
545 flags |= SEC_ALLOC | SEC_LOAD;
546 if (sreloc == NULL
547 || ! bfd_set_section_flags (dynobj, sreloc, flags)
548 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
549 return false;
550 }
551 }
552
553 sreloc->_raw_size += sizeof (Elf32_External_Rela);
554 }
555
556 break;
557
558 default:
559 break;
560 }
561 }
562
563 return true;
564 }
565
566 /* Adjust a symbol defined by a dynamic object and referenced by a
567 regular object. The current definition is in some section of the
568 dynamic object, but we're not including those sections. We have to
569 change the definition to something the rest of the link can
570 understand. */
571
572 static boolean
573 elf32_sparc_adjust_dynamic_symbol (info, h)
574 struct bfd_link_info *info;
575 struct elf_link_hash_entry *h;
576 {
577 bfd *dynobj;
578 asection *s;
579 unsigned int power_of_two;
580
581 dynobj = elf_hash_table (info)->dynobj;
582
583 /* Make sure we know what is going on here. */
584 BFD_ASSERT (dynobj != NULL
585 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
586 || h->weakdef != NULL
587 || ((h->elf_link_hash_flags
588 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
589 && (h->elf_link_hash_flags
590 & ELF_LINK_HASH_REF_REGULAR) != 0
591 && (h->elf_link_hash_flags
592 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
593
594 /* If this is a function, put it in the procedure linkage table. We
595 will fill in the contents of the procedure linkage table later
596 (although we could actually do it here). */
597 if (h->type == STT_FUNC
598 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
599 {
600 if (! elf_hash_table (info)->dynamic_sections_created)
601 {
602 /* This case can occur if we saw a WPLT30 reloc in an input
603 file, but none of the input files were dynamic objects.
604 In such a case, we don't actually need to build a
605 procedure linkage table, and we can just do a WDISP30
606 reloc instead. */
607 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
608 return true;
609 }
610
611 s = bfd_get_section_by_name (dynobj, ".plt");
612 BFD_ASSERT (s != NULL);
613
614 /* The first four entries in .plt are reserved. */
615 if (s->_raw_size == 0)
616 s->_raw_size = 4 * PLT_ENTRY_SIZE;
617
618 /* The procedure linkage table has a maximum size. */
619 if (s->_raw_size >= 0x400000)
620 {
621 bfd_set_error (bfd_error_bad_value);
622 return false;
623 }
624
625 /* If this symbol is not defined in a regular file, and we are
626 not generating a shared library, then set the symbol to this
627 location in the .plt. This is required to make function
628 pointers compare as equal between the normal executable and
629 the shared library. */
630 if (! info->shared
631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
632 {
633 h->root.u.def.section = s;
634 h->root.u.def.value = s->_raw_size;
635 }
636
637 h->plt_offset = s->_raw_size;
638
639 /* Make room for this entry. */
640 s->_raw_size += PLT_ENTRY_SIZE;
641
642 /* We also need to make an entry in the .rela.plt section. */
643
644 s = bfd_get_section_by_name (dynobj, ".rela.plt");
645 BFD_ASSERT (s != NULL);
646 s->_raw_size += sizeof (Elf32_External_Rela);
647
648 return true;
649 }
650
651 /* If this is a weak symbol, and there is a real definition, the
652 processor independent code will have arranged for us to see the
653 real definition first, and we can just use the same value. */
654 if (h->weakdef != NULL)
655 {
656 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
657 || h->weakdef->root.type == bfd_link_hash_defweak);
658 h->root.u.def.section = h->weakdef->root.u.def.section;
659 h->root.u.def.value = h->weakdef->root.u.def.value;
660 return true;
661 }
662
663 /* This is a reference to a symbol defined by a dynamic object which
664 is not a function. */
665
666 /* If we are creating a shared library, we must presume that the
667 only references to the symbol are via the global offset table.
668 For such cases we need not do anything here; the relocations will
669 be handled correctly by relocate_section. */
670 if (info->shared)
671 return true;
672
673 /* We must allocate the symbol in our .dynbss section, which will
674 become part of the .bss section of the executable. There will be
675 an entry for this symbol in the .dynsym section. The dynamic
676 object will contain position independent code, so all references
677 from the dynamic object to this symbol will go through the global
678 offset table. The dynamic linker will use the .dynsym entry to
679 determine the address it must put in the global offset table, so
680 both the dynamic object and the regular object will refer to the
681 same memory location for the variable. */
682
683 s = bfd_get_section_by_name (dynobj, ".dynbss");
684 BFD_ASSERT (s != NULL);
685
686 /* If the symbol is currently defined in the .bss section of the
687 dynamic object, then it is OK to simply initialize it to zero.
688 If the symbol is in some other section, we must generate a
689 R_SPARC_COPY reloc to tell the dynamic linker to copy the initial
690 value out of the dynamic object and into the runtime process
691 image. We need to remember the offset into the .rel.bss section
692 we are going to use. */
693 if ((h->root.u.def.section->flags & SEC_LOAD) != 0)
694 {
695 asection *srel;
696
697 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
698 BFD_ASSERT (srel != NULL);
699 srel->_raw_size += sizeof (Elf32_External_Rela);
700 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
701 }
702
703 /* We need to figure out the alignment required for this symbol. I
704 have no idea how ELF linkers handle this. */
705 power_of_two = bfd_log2 (h->size);
706 if (power_of_two > 3)
707 power_of_two = 3;
708
709 /* Apply the required alignment. */
710 s->_raw_size = BFD_ALIGN (s->_raw_size,
711 (bfd_size_type) (1 << power_of_two));
712 if (power_of_two > bfd_get_section_alignment (dynobj, s))
713 {
714 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
715 return false;
716 }
717
718 /* Define the symbol as being at this point in the section. */
719 h->root.u.def.section = s;
720 h->root.u.def.value = s->_raw_size;
721
722 /* Increment the section size to make room for the symbol. */
723 s->_raw_size += h->size;
724
725 return true;
726 }
727
728 /* Set the sizes of the dynamic sections. */
729
730 static boolean
731 elf32_sparc_size_dynamic_sections (output_bfd, info)
732 bfd *output_bfd;
733 struct bfd_link_info *info;
734 {
735 bfd *dynobj;
736 asection *s;
737 boolean reltext;
738 boolean relplt;
739
740 dynobj = elf_hash_table (info)->dynobj;
741 BFD_ASSERT (dynobj != NULL);
742
743 if (elf_hash_table (info)->dynamic_sections_created)
744 {
745 /* Set the contents of the .interp section to the interpreter. */
746 if (! info->shared)
747 {
748 s = bfd_get_section_by_name (dynobj, ".interp");
749 BFD_ASSERT (s != NULL);
750 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
751 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
752 }
753
754 /* Make space for the trailing nop in .plt. */
755 s = bfd_get_section_by_name (dynobj, ".plt");
756 BFD_ASSERT (s != NULL);
757 if (s->_raw_size > 0)
758 s->_raw_size += 4;
759 }
760 else
761 {
762 /* We may have created entries in the .rela.got section.
763 However, if we are not creating the dynamic sections, we will
764 not actually use these entries. Reset the size of .rela.got,
765 which will cause it to get stripped from the output file
766 below. */
767 s = bfd_get_section_by_name (dynobj, ".rela.got");
768 if (s != NULL)
769 s->_raw_size = 0;
770 }
771
772 /* The check_relocs and adjust_dynamic_symbol entry points have
773 determined the sizes of the various dynamic sections. Allocate
774 memory for them. */
775 reltext = false;
776 relplt = false;
777 for (s = dynobj->sections; s != NULL; s = s->next)
778 {
779 const char *name;
780 boolean strip;
781
782 if ((s->flags & SEC_LINKER_CREATED) == 0)
783 continue;
784
785 /* It's OK to base decisions on the section name, because none
786 of the dynobj section names depend upon the input files. */
787 name = bfd_get_section_name (dynobj, s);
788
789 strip = false;
790
791 if (strncmp (name, ".rela", 5) == 0)
792 {
793 if (s->_raw_size == 0)
794 {
795 /* If we don't need this section, strip it from the
796 output file. This is to handle .rela.bss and
797 .rel.plt. We must create it in
798 create_dynamic_sections, because it must be created
799 before the linker maps input sections to output
800 sections. The linker does that before
801 adjust_dynamic_symbol is called, and it is that
802 function which decides whether anything needs to go
803 into these sections. */
804 strip = true;
805 }
806 else
807 {
808 asection *target;
809
810 /* If this relocation section applies to a read only
811 section, then we probably need a DT_TEXTREL entry. */
812 target = bfd_get_section_by_name (output_bfd, name + 5);
813 if (target != NULL
814 && (target->flags & SEC_READONLY) != 0)
815 reltext = true;
816
817 if (strcmp (name, ".rela.plt") == 0)
818 relplt = true;
819
820 /* We use the reloc_count field as a counter if we need
821 to copy relocs into the output file. */
822 s->reloc_count = 0;
823 }
824 }
825 else if (strcmp (name, ".plt") != 0
826 && strcmp (name, ".got") != 0)
827 {
828 /* It's not one of our sections, so don't allocate space. */
829 continue;
830 }
831
832 if (strip)
833 {
834 asection **spp;
835
836 for (spp = &s->output_section->owner->sections;
837 *spp != s->output_section;
838 spp = &(*spp)->next)
839 ;
840 *spp = s->output_section->next;
841 --s->output_section->owner->section_count;
842
843 continue;
844 }
845
846 /* Allocate memory for the section contents. */
847 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
848 if (s->contents == NULL && s->_raw_size != 0)
849 return false;
850 }
851
852 if (elf_hash_table (info)->dynamic_sections_created)
853 {
854 /* Add some entries to the .dynamic section. We fill in the
855 values later, in elf32_sparc_finish_dynamic_sections, but we
856 must add the entries now so that we get the correct size for
857 the .dynamic section. The DT_DEBUG entry is filled in by the
858 dynamic linker and used by the debugger. */
859 if (! info->shared)
860 {
861 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
862 return false;
863 }
864
865 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
866 return false;
867
868 if (relplt)
869 {
870 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
871 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
872 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
873 return false;
874 }
875
876 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
877 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
878 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
879 sizeof (Elf32_External_Rela)))
880 return false;
881
882 if (reltext)
883 {
884 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
885 return false;
886 }
887 }
888
889 /* If we are generating a shared library, we generate a section
890 symbol for each output section. These are local symbols, which
891 means that they must come first in the dynamic symbol table.
892 That means we must increment the dynamic symbol index of every
893 other dynamic symbol. */
894 if (info->shared)
895 {
896 int c, i;
897
898 c = bfd_count_sections (output_bfd);
899 elf_link_hash_traverse (elf_hash_table (info),
900 elf32_sparc_adjust_dynindx,
901 (PTR) &c);
902 elf_hash_table (info)->dynsymcount += c;
903
904 for (i = 1, s = output_bfd->sections; s != NULL; s = s->next, i++)
905 {
906 elf_section_data (s)->dynindx = i;
907 /* These symbols will have no names, so we don't need to
908 fiddle with dynstr_index. */
909 }
910 }
911
912 return true;
913 }
914
915 /* Increment the index of a dynamic symbol by a given amount. Called
916 via elf_link_hash_traverse. */
917
918 static boolean
919 elf32_sparc_adjust_dynindx (h, cparg)
920 struct elf_link_hash_entry *h;
921 PTR cparg;
922 {
923 int *cp = (int *) cparg;
924
925 if (h->dynindx != -1)
926 h->dynindx += *cp;
927 return true;
928 }
929
930 /* Relocate a SPARC ELF section. */
931
932 static boolean
933 elf32_sparc_relocate_section (output_bfd, info, input_bfd, input_section,
934 contents, relocs, local_syms, local_sections)
935 bfd *output_bfd;
936 struct bfd_link_info *info;
937 bfd *input_bfd;
938 asection *input_section;
939 bfd_byte *contents;
940 Elf_Internal_Rela *relocs;
941 Elf_Internal_Sym *local_syms;
942 asection **local_sections;
943 {
944 bfd *dynobj;
945 Elf_Internal_Shdr *symtab_hdr;
946 struct elf_link_hash_entry **sym_hashes;
947 bfd_vma *local_got_offsets;
948 bfd_vma got_base;
949 asection *sgot;
950 asection *splt;
951 asection *sreloc;
952 Elf_Internal_Rela *rel;
953 Elf_Internal_Rela *relend;
954
955 dynobj = elf_hash_table (info)->dynobj;
956 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
957 sym_hashes = elf_sym_hashes (input_bfd);
958 local_got_offsets = elf_local_got_offsets (input_bfd);
959
960 if (elf_hash_table (info)->hgot == NULL)
961 got_base = 0;
962 else
963 got_base = elf_hash_table (info)->hgot->root.u.def.value;
964
965 sgot = NULL;
966 splt = NULL;
967 sreloc = NULL;
968
969 rel = relocs;
970 relend = relocs + input_section->reloc_count;
971 for (; rel < relend; rel++)
972 {
973 int r_type;
974 reloc_howto_type *howto;
975 unsigned long r_symndx;
976 struct elf_link_hash_entry *h;
977 Elf_Internal_Sym *sym;
978 asection *sec;
979 bfd_vma relocation;
980 bfd_reloc_status_type r;
981
982 r_type = ELF32_R_TYPE (rel->r_info);
983 if (r_type < 0 || r_type >= (int) R_SPARC_max)
984 {
985 bfd_set_error (bfd_error_bad_value);
986 return false;
987 }
988 howto = _bfd_sparc_elf_howto_table + r_type;
989
990 r_symndx = ELF32_R_SYM (rel->r_info);
991
992 if (info->relocateable)
993 {
994 /* This is a relocateable link. We don't have to change
995 anything, unless the reloc is against a section symbol,
996 in which case we have to adjust according to where the
997 section symbol winds up in the output section. */
998 if (r_symndx < symtab_hdr->sh_info)
999 {
1000 sym = local_syms + r_symndx;
1001 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1002 {
1003 sec = local_sections[r_symndx];
1004 rel->r_addend += sec->output_offset + sym->st_value;
1005 }
1006 }
1007
1008 continue;
1009 }
1010
1011 /* This is a final link. */
1012 h = NULL;
1013 sym = NULL;
1014 sec = NULL;
1015 if (r_symndx < symtab_hdr->sh_info)
1016 {
1017 sym = local_syms + r_symndx;
1018 sec = local_sections[r_symndx];
1019 relocation = (sec->output_section->vma
1020 + sec->output_offset
1021 + sym->st_value);
1022 }
1023 else
1024 {
1025 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1026 while (h->root.type == bfd_link_hash_indirect
1027 || h->root.type == bfd_link_hash_warning)
1028 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1029 if (h->root.type == bfd_link_hash_defined
1030 || h->root.type == bfd_link_hash_defweak)
1031 {
1032 sec = h->root.u.def.section;
1033 if ((r_type == R_SPARC_WPLT30
1034 && h->plt_offset != (bfd_vma) -1)
1035 || ((r_type == R_SPARC_GOT10
1036 || r_type == R_SPARC_GOT13
1037 || r_type == R_SPARC_GOT22)
1038 && elf_hash_table (info)->dynamic_sections_created
1039 && (! info->shared
1040 || ! info->symbolic
1041 || (h->elf_link_hash_flags
1042 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1043 || (info->shared
1044 && (! info->symbolic
1045 || (h->elf_link_hash_flags
1046 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1047 && (r_type == R_SPARC_8
1048 || r_type == R_SPARC_16
1049 || r_type == R_SPARC_32
1050 || r_type == R_SPARC_DISP8
1051 || r_type == R_SPARC_DISP16
1052 || r_type == R_SPARC_DISP32
1053 || r_type == R_SPARC_WDISP30
1054 || r_type == R_SPARC_WDISP22
1055 || r_type == R_SPARC_WDISP19
1056 || r_type == R_SPARC_WDISP16
1057 || r_type == R_SPARC_HI22
1058 || r_type == R_SPARC_22
1059 || r_type == R_SPARC_13
1060 || r_type == R_SPARC_LO10
1061 || r_type == R_SPARC_UA32
1062 || ((r_type == R_SPARC_PC10
1063 || r_type == R_SPARC_PC22)
1064 && strcmp (h->root.root.string,
1065 "_GLOBAL_OFFSET_TABLE_") != 0))))
1066 {
1067 /* In these cases, we don't need the relocation
1068 value. We check specially because in some
1069 obscure cases sec->output_section will be NULL. */
1070 relocation = 0;
1071 }
1072 else
1073 relocation = (h->root.u.def.value
1074 + sec->output_section->vma
1075 + sec->output_offset);
1076 }
1077 else if (h->root.type == bfd_link_hash_undefweak)
1078 relocation = 0;
1079 else if (info->shared && !info->symbolic)
1080 relocation = 0;
1081 else
1082 {
1083 if (! ((*info->callbacks->undefined_symbol)
1084 (info, h->root.root.string, input_bfd,
1085 input_section, rel->r_offset)))
1086 return false;
1087 relocation = 0;
1088 }
1089 }
1090
1091 switch (r_type)
1092 {
1093 case R_SPARC_GOT10:
1094 case R_SPARC_GOT13:
1095 case R_SPARC_GOT22:
1096 /* Relocation is to the entry for this symbol in the global
1097 offset table. */
1098 if (sgot == NULL)
1099 {
1100 sgot = bfd_get_section_by_name (dynobj, ".got");
1101 BFD_ASSERT (sgot != NULL);
1102 }
1103
1104 if (h != NULL)
1105 {
1106 bfd_vma off;
1107
1108 off = h->got_offset;
1109 BFD_ASSERT (off != (bfd_vma) -1);
1110
1111 if (! elf_hash_table (info)->dynamic_sections_created
1112 || (info->shared
1113 && info->symbolic
1114 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1115 {
1116 /* This is actually a static link, or it is a
1117 -Bsymbolic link and the symbol is defined
1118 locally. We must initialize this entry in the
1119 global offset table. Since the offset must
1120 always be a multiple of 4, we use the least
1121 significant bit to record whether we have
1122 initialized it already.
1123
1124 When doing a dynamic link, we create a .rela.got
1125 relocation entry to initialize the value. This
1126 is done in the finish_dynamic_symbol routine. */
1127 if ((off & 1) != 0)
1128 off &= ~1;
1129 else
1130 {
1131 bfd_put_32 (output_bfd, relocation,
1132 sgot->contents + off);
1133 h->got_offset |= 1;
1134 }
1135 }
1136
1137 relocation = sgot->output_offset + off - got_base;
1138 }
1139 else
1140 {
1141 bfd_vma off;
1142
1143 BFD_ASSERT (local_got_offsets != NULL
1144 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1145
1146 off = local_got_offsets[r_symndx];
1147
1148 /* The offset must always be a multiple of 4. We use
1149 the least significant bit to record whether we have
1150 already processed this entry. */
1151 if ((off & 1) != 0)
1152 off &= ~1;
1153 else
1154 {
1155 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1156
1157 if (info->shared)
1158 {
1159 asection *srelgot;
1160 Elf_Internal_Rela outrel;
1161
1162 /* We need to generate a R_SPARC_RELATIVE reloc
1163 for the dynamic linker. */
1164 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1165 BFD_ASSERT (srelgot != NULL);
1166
1167 outrel.r_offset = (sgot->output_section->vma
1168 + sgot->output_offset
1169 + off);
1170 outrel.r_info = ELF32_R_INFO (0, R_SPARC_RELATIVE);
1171 outrel.r_addend = 0;
1172 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1173 (((Elf32_External_Rela *)
1174 srelgot->contents)
1175 + srelgot->reloc_count));
1176 ++srelgot->reloc_count;
1177 }
1178
1179 local_got_offsets[r_symndx] |= 1;
1180 }
1181
1182 relocation = sgot->output_offset + off - got_base;
1183 }
1184
1185 break;
1186
1187 case R_SPARC_WPLT30:
1188 /* Relocation is to the entry for this symbol in the
1189 procedure linkage table. */
1190 BFD_ASSERT (h != NULL);
1191
1192 if (h->plt_offset == (bfd_vma) -1)
1193 {
1194 /* We didn't make a PLT entry for this symbol. This
1195 happens when statically linking PIC code, or when
1196 using -Bsymbolic. */
1197 break;
1198 }
1199
1200 if (splt == NULL)
1201 {
1202 splt = bfd_get_section_by_name (dynobj, ".plt");
1203 BFD_ASSERT (splt != NULL);
1204 }
1205
1206 relocation = (splt->output_section->vma
1207 + splt->output_offset
1208 + h->plt_offset);
1209 break;
1210
1211 case R_SPARC_PC10:
1212 case R_SPARC_PC22:
1213 if (h != NULL
1214 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1215 break;
1216 /* Fall through. */
1217 case R_SPARC_DISP8:
1218 case R_SPARC_DISP16:
1219 case R_SPARC_DISP32:
1220 case R_SPARC_WDISP30:
1221 case R_SPARC_WDISP22:
1222 case R_SPARC_WDISP19:
1223 case R_SPARC_WDISP16:
1224 if (h == NULL)
1225 break;
1226 /* Fall through. */
1227 case R_SPARC_8:
1228 case R_SPARC_16:
1229 case R_SPARC_32:
1230 case R_SPARC_HI22:
1231 case R_SPARC_22:
1232 case R_SPARC_13:
1233 case R_SPARC_LO10:
1234 case R_SPARC_UA32:
1235 if (info->shared)
1236 {
1237 Elf_Internal_Rela outrel;
1238
1239 /* When generating a shared object, these relocations
1240 are copied into the output file to be resolved at run
1241 time. */
1242
1243 if (sreloc == NULL)
1244 {
1245 const char *name;
1246
1247 name = (bfd_elf_string_from_elf_section
1248 (input_bfd,
1249 elf_elfheader (input_bfd)->e_shstrndx,
1250 elf_section_data (input_section)->rel_hdr.sh_name));
1251 if (name == NULL)
1252 return false;
1253
1254 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1255 && strcmp (bfd_get_section_name (input_bfd,
1256 input_section),
1257 name + 5) == 0);
1258
1259 sreloc = bfd_get_section_by_name (dynobj, name);
1260 BFD_ASSERT (sreloc != NULL);
1261 }
1262
1263 outrel.r_offset = (rel->r_offset
1264 + input_section->output_section->vma
1265 + input_section->output_offset);
1266 if (h != NULL
1267 && (! info->symbolic
1268 || (h->elf_link_hash_flags
1269 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1270 {
1271 BFD_ASSERT (h->dynindx != -1);
1272 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1273 outrel.r_addend = rel->r_addend;
1274 }
1275 else
1276 {
1277 if (r_type == R_SPARC_32)
1278 {
1279 outrel.r_info = ELF32_R_INFO (0, R_SPARC_RELATIVE);
1280 outrel.r_addend = relocation + rel->r_addend;
1281 }
1282 else
1283 {
1284 long indx;
1285
1286 if (h == NULL)
1287 sec = local_sections[r_symndx];
1288 else
1289 {
1290 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1291 || (h->root.type
1292 == bfd_link_hash_defweak));
1293 sec = h->root.u.def.section;
1294 }
1295 if (sec != NULL && bfd_is_abs_section (sec))
1296 indx = 0;
1297 else if (sec == NULL || sec->owner == NULL)
1298 {
1299 bfd_set_error (bfd_error_bad_value);
1300 return false;
1301 }
1302 else
1303 {
1304 asection *osec;
1305
1306 osec = sec->output_section;
1307 indx = elf_section_data (osec)->dynindx;
1308 if (indx == 0)
1309 abort ();
1310 }
1311
1312 outrel.r_info = ELF32_R_INFO (indx, r_type);
1313 outrel.r_addend = relocation + rel->r_addend;
1314 }
1315 }
1316
1317 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1318 (((Elf32_External_Rela *)
1319 sreloc->contents)
1320 + sreloc->reloc_count));
1321 ++sreloc->reloc_count;
1322
1323 /* This reloc will be computed at runtime, so there's no
1324 need to do anything now. */
1325 continue;
1326 }
1327
1328 default:
1329 break;
1330 }
1331
1332 if (r_type != R_SPARC_WDISP16)
1333 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1334 contents, rel->r_offset,
1335 relocation, rel->r_addend);
1336 else
1337 {
1338 bfd_vma x;
1339
1340 relocation += rel->r_addend;
1341 relocation -= (input_section->output_section->vma
1342 + input_section->output_offset);
1343 relocation -= rel->r_offset;
1344
1345 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
1346 x |= ((((relocation >> 2) & 0xc000) << 6)
1347 | ((relocation >> 2) & 0x3fff));
1348 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
1349
1350 if ((bfd_signed_vma) relocation < - 0x40000
1351 || (bfd_signed_vma) relocation > 0x3ffff)
1352 r = bfd_reloc_overflow;
1353 else
1354 r = bfd_reloc_ok;
1355 }
1356
1357 if (r != bfd_reloc_ok)
1358 {
1359 switch (r)
1360 {
1361 default:
1362 case bfd_reloc_outofrange:
1363 abort ();
1364 case bfd_reloc_overflow:
1365 {
1366 const char *name;
1367
1368 if (h != NULL)
1369 name = h->root.root.string;
1370 else
1371 {
1372 name = bfd_elf_string_from_elf_section (input_bfd,
1373 symtab_hdr->sh_link,
1374 sym->st_name);
1375 if (name == NULL)
1376 return false;
1377 if (*name == '\0')
1378 name = bfd_section_name (input_bfd, sec);
1379 }
1380 if (! ((*info->callbacks->reloc_overflow)
1381 (info, name, howto->name, (bfd_vma) 0,
1382 input_bfd, input_section, rel->r_offset)))
1383 return false;
1384 }
1385 break;
1386 }
1387 }
1388 }
1389
1390 return true;
1391 }
1392
1393 /* Finish up dynamic symbol handling. We set the contents of various
1394 dynamic sections here. */
1395
1396 static boolean
1397 elf32_sparc_finish_dynamic_symbol (output_bfd, info, h, sym)
1398 bfd *output_bfd;
1399 struct bfd_link_info *info;
1400 struct elf_link_hash_entry *h;
1401 Elf_Internal_Sym *sym;
1402 {
1403 bfd *dynobj;
1404
1405 dynobj = elf_hash_table (info)->dynobj;
1406
1407 if (h->plt_offset != (bfd_vma) -1)
1408 {
1409 asection *splt;
1410 asection *srela;
1411 Elf_Internal_Rela rela;
1412
1413 /* This symbol has an entry in the procedure linkage table. Set
1414 it up. */
1415
1416 BFD_ASSERT (h->dynindx != -1);
1417
1418 splt = bfd_get_section_by_name (dynobj, ".plt");
1419 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1420 BFD_ASSERT (splt != NULL && srela != NULL);
1421
1422 /* Fill in the entry in the procedure linkage table. */
1423 bfd_put_32 (output_bfd,
1424 PLT_ENTRY_WORD0 + h->plt_offset,
1425 splt->contents + h->plt_offset);
1426 bfd_put_32 (output_bfd,
1427 (PLT_ENTRY_WORD1
1428 + (((- (h->plt_offset + 4)) >> 2) & 0x3fffff)),
1429 splt->contents + h->plt_offset + 4);
1430 bfd_put_32 (output_bfd, PLT_ENTRY_WORD2,
1431 splt->contents + h->plt_offset + 8);
1432
1433 /* Fill in the entry in the .rela.plt section. */
1434 rela.r_offset = (splt->output_section->vma
1435 + splt->output_offset
1436 + h->plt_offset);
1437 rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
1438 rela.r_addend = 0;
1439 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1440 ((Elf32_External_Rela *) srela->contents
1441 + h->plt_offset / PLT_ENTRY_SIZE - 4));
1442
1443 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1444 {
1445 /* Mark the symbol as undefined, rather than as defined in
1446 the .plt section. Leave the value alone. */
1447 sym->st_shndx = SHN_UNDEF;
1448 }
1449 }
1450
1451 if (h->got_offset != (bfd_vma) -1)
1452 {
1453 asection *sgot;
1454 asection *srela;
1455 Elf_Internal_Rela rela;
1456
1457 /* This symbol has an entry in the global offset table. Set it
1458 up. */
1459
1460 BFD_ASSERT (h->dynindx != -1);
1461
1462 sgot = bfd_get_section_by_name (dynobj, ".got");
1463 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1464 BFD_ASSERT (sgot != NULL && srela != NULL);
1465
1466 rela.r_offset = (sgot->output_section->vma
1467 + sgot->output_offset
1468 + (h->got_offset &~ 1));
1469
1470 /* If this is a -Bsymbolic link, and the symbol is defined
1471 locally, we just want to emit a RELATIVE reloc. The entry in
1472 the global offset table will already have been initialized in
1473 the relocate_section function. */
1474 if (info->shared
1475 && info->symbolic
1476 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1477 rela.r_info = ELF32_R_INFO (0, R_SPARC_RELATIVE);
1478 else
1479 {
1480 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset);
1481 rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
1482 }
1483
1484 rela.r_addend = 0;
1485 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1486 ((Elf32_External_Rela *) srela->contents
1487 + srela->reloc_count));
1488 ++srela->reloc_count;
1489 }
1490
1491 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1492 {
1493 asection *s;
1494 Elf_Internal_Rela rela;
1495
1496 /* This symbols needs a copy reloc. Set it up. */
1497
1498 BFD_ASSERT (h->dynindx != -1);
1499
1500 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1501 ".rela.bss");
1502 BFD_ASSERT (s != NULL);
1503
1504 rela.r_offset = (h->root.u.def.value
1505 + h->root.u.def.section->output_section->vma
1506 + h->root.u.def.section->output_offset);
1507 rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_COPY);
1508 rela.r_addend = 0;
1509 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1510 ((Elf32_External_Rela *) s->contents
1511 + s->reloc_count));
1512 ++s->reloc_count;
1513 }
1514
1515 /* Mark some specially defined symbols as absolute. */
1516 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1517 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
1518 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
1519 sym->st_shndx = SHN_ABS;
1520
1521 return true;
1522 }
1523
1524 /* Finish up the dynamic sections. */
1525
1526 static boolean
1527 elf32_sparc_finish_dynamic_sections (output_bfd, info)
1528 bfd *output_bfd;
1529 struct bfd_link_info *info;
1530 {
1531 bfd *dynobj;
1532 asection *sdyn;
1533 asection *sgot;
1534
1535 dynobj = elf_hash_table (info)->dynobj;
1536
1537 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1538
1539 if (elf_hash_table (info)->dynamic_sections_created)
1540 {
1541 asection *splt;
1542 Elf32_External_Dyn *dyncon, *dynconend;
1543
1544 splt = bfd_get_section_by_name (dynobj, ".plt");
1545 BFD_ASSERT (splt != NULL && sdyn != NULL);
1546
1547 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1548 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1549 for (; dyncon < dynconend; dyncon++)
1550 {
1551 Elf_Internal_Dyn dyn;
1552 const char *name;
1553 boolean size;
1554
1555 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1556
1557 switch (dyn.d_tag)
1558 {
1559 case DT_PLTGOT: name = ".plt"; size = false; break;
1560 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
1561 case DT_JMPREL: name = ".rela.plt"; size = false; break;
1562 default: name = NULL; size = false; break;
1563 }
1564
1565 if (name != NULL)
1566 {
1567 asection *s;
1568
1569 s = bfd_get_section_by_name (output_bfd, name);
1570 if (s == NULL)
1571 dyn.d_un.d_val = 0;
1572 else
1573 {
1574 if (! size)
1575 dyn.d_un.d_ptr = s->vma;
1576 else
1577 {
1578 if (s->_cooked_size != 0)
1579 dyn.d_un.d_val = s->_cooked_size;
1580 else
1581 dyn.d_un.d_val = s->_raw_size;
1582 }
1583 }
1584 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1585 }
1586 }
1587
1588 /* Clear the first four entries in the procedure linkage table,
1589 and put a nop in the last four bytes. */
1590 if (splt->_raw_size > 0)
1591 {
1592 memset (splt->contents, 0, 4 * PLT_ENTRY_SIZE);
1593 bfd_put_32 (output_bfd, SPARC_NOP,
1594 splt->contents + splt->_raw_size - 4);
1595 }
1596
1597 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1598 PLT_ENTRY_SIZE;
1599 }
1600
1601 /* Set the first entry in the global offset table to the address of
1602 the dynamic section. */
1603 sgot = bfd_get_section_by_name (dynobj, ".got");
1604 BFD_ASSERT (sgot != NULL);
1605 if (sgot->_raw_size > 0)
1606 {
1607 if (sdyn == NULL)
1608 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
1609 else
1610 bfd_put_32 (output_bfd,
1611 sdyn->output_section->vma + sdyn->output_offset,
1612 sgot->contents);
1613 }
1614
1615 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
1616
1617 if (info->shared)
1618 {
1619 asection *sdynsym;
1620 asection *s;
1621 Elf_Internal_Sym sym;
1622
1623 /* Set up the section symbols for the output sections. */
1624
1625 sdynsym = bfd_get_section_by_name (dynobj, ".dynsym");
1626 BFD_ASSERT (sdynsym != NULL);
1627
1628 sym.st_size = 0;
1629 sym.st_name = 0;
1630 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
1631 sym.st_other = 0;
1632
1633 for (s = output_bfd->sections; s != NULL; s = s->next)
1634 {
1635 int indx;
1636
1637 sym.st_value = s->vma;
1638
1639 indx = elf_section_data (s)->this_idx;
1640 BFD_ASSERT (indx > 0);
1641 sym.st_shndx = indx;
1642
1643 bfd_elf32_swap_symbol_out (output_bfd, &sym,
1644 (PTR) (((Elf32_External_Sym *)
1645 sdynsym->contents)
1646 + elf_section_data (s)->dynindx));
1647 }
1648
1649 /* Set the sh_info field of the output .dynsym section to the
1650 index of the first global symbol. */
1651 elf_section_data (sdynsym->output_section)->this_hdr.sh_info =
1652 bfd_count_sections (output_bfd) + 1;
1653 }
1654
1655 return true;
1656 }
1657 \f
1658 /* Functions for dealing with the e_flags field.
1659
1660 We don't define set_private_flags or copy_private_bfd_data because
1661 the only currently defined values are based on the bfd mach number,
1662 so we use the latter instead and defer setting e_flags until the
1663 file is written out. */
1664
1665 /* Merge backend specific data from an object file to the output
1666 object file when linking. */
1667
1668 static boolean
1669 elf32_sparc_merge_private_bfd_data (ibfd, obfd)
1670 bfd *ibfd;
1671 bfd *obfd;
1672 {
1673 boolean error;
1674
1675 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1676 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1677 return true;
1678
1679 error = false;
1680
1681 #if 0
1682 /* ??? The native linker doesn't do this so we can't (otherwise gcc would
1683 have to know which linker is being used). Instead, the native linker
1684 bumps up the architecture level when it has to. However, I still think
1685 warnings like these are good, so it would be nice to have them turned on
1686 by some option. */
1687
1688 /* If the output machine is normal sparc, we can't allow v9 input files. */
1689 if (bfd_get_mach (obfd) == bfd_mach_sparc
1690 && (bfd_get_mach (ibfd) == bfd_mach_sparc_v8plus
1691 || bfd_get_mach (ibfd) == bfd_mach_sparc_v8plusa))
1692 {
1693 error = true;
1694 (*_bfd_error_handler)
1695 ("%s: compiled for a v8plus system and target is v8",
1696 bfd_get_filename (ibfd));
1697 }
1698 /* If the output machine is v9, we can't allow v9+vis input files. */
1699 if (bfd_get_mach (obfd) == bfd_mach_sparc_v8plus
1700 && bfd_get_mach (ibfd) == bfd_mach_sparc_v8plusa)
1701 {
1702 error = true;
1703 (*_bfd_error_handler)
1704 ("%s: compiled for a v8plusa system and target is v8plus",
1705 bfd_get_filename (ibfd));
1706 }
1707 #else
1708 if (bfd_get_mach (ibfd) >= bfd_mach_sparc_v9)
1709 {
1710 error = true;
1711 (*_bfd_error_handler)
1712 ("%s: compiled for a 64 bit system and target is 32 bit",
1713 bfd_get_filename (ibfd));
1714 }
1715 else if (bfd_get_mach (obfd) < bfd_get_mach (ibfd))
1716 bfd_set_arch_mach (obfd, bfd_arch_sparc, bfd_get_mach (ibfd));
1717 #endif
1718
1719 if (error)
1720 {
1721 bfd_set_error (bfd_error_bad_value);
1722 return false;
1723 }
1724
1725 return true;
1726 }
1727 \f
1728 /* Set the right machine number. */
1729
1730 static boolean
1731 elf32_sparc_object_p (abfd)
1732 bfd *abfd;
1733 {
1734 if (elf_elfheader (abfd)->e_machine == EM_SPARC32PLUS)
1735 {
1736 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
1737 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
1738 bfd_mach_sparc_v8plusa);
1739 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_32PLUS)
1740 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
1741 bfd_mach_sparc_v8plus);
1742 else
1743 return false;
1744 }
1745 else
1746 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc);
1747 }
1748
1749 /* The final processing done just before writing out the object file.
1750 We need to set the e_machine field appropriately. */
1751
1752 static void
1753 elf32_sparc_final_write_processing (abfd, linker)
1754 bfd *abfd;
1755 boolean linker;
1756 {
1757 switch (bfd_get_mach (abfd))
1758 {
1759 case bfd_mach_sparc :
1760 break; /* nothing to do */
1761 case bfd_mach_sparc_v8plus :
1762 elf_elfheader (abfd)->e_machine = EM_SPARC32PLUS;
1763 elf_elfheader (abfd)->e_flags &=~ EF_SPARC_32PLUS_MASK;
1764 elf_elfheader (abfd)->e_flags |= EF_SPARC_32PLUS;
1765 break;
1766 case bfd_mach_sparc_v8plusa :
1767 elf_elfheader (abfd)->e_machine = EM_SPARC32PLUS;
1768 elf_elfheader (abfd)->e_flags &=~ EF_SPARC_32PLUS_MASK;
1769 elf_elfheader (abfd)->e_flags |= EF_SPARC_32PLUS | EF_SPARC_SUN_US1;
1770 break;
1771 default :
1772 abort ();
1773 }
1774 }
1775 \f
1776 #define TARGET_BIG_SYM bfd_elf32_sparc_vec
1777 #define TARGET_BIG_NAME "elf32-sparc"
1778 #define ELF_ARCH bfd_arch_sparc
1779 #define ELF_MACHINE_CODE EM_SPARC
1780 #define ELF_MACHINE_ALT1 EM_SPARC32PLUS
1781 #define ELF_MAXPAGESIZE 0x10000
1782
1783 #define bfd_elf32_bfd_reloc_type_lookup elf32_sparc_reloc_type_lookup
1784 #define elf_info_to_howto elf32_sparc_info_to_howto
1785 #define elf_backend_create_dynamic_sections \
1786 _bfd_elf_create_dynamic_sections
1787 #define elf_backend_check_relocs elf32_sparc_check_relocs
1788 #define elf_backend_adjust_dynamic_symbol \
1789 elf32_sparc_adjust_dynamic_symbol
1790 #define elf_backend_size_dynamic_sections \
1791 elf32_sparc_size_dynamic_sections
1792 #define elf_backend_relocate_section elf32_sparc_relocate_section
1793 #define elf_backend_finish_dynamic_symbol \
1794 elf32_sparc_finish_dynamic_symbol
1795 #define elf_backend_finish_dynamic_sections \
1796 elf32_sparc_finish_dynamic_sections
1797 #define bfd_elf32_bfd_merge_private_bfd_data \
1798 elf32_sparc_merge_private_bfd_data
1799 #define elf_backend_object_p elf32_sparc_object_p
1800 #define elf_backend_final_write_processing \
1801 elf32_sparc_final_write_processing
1802 #define elf_backend_want_got_plt 0
1803 #define elf_backend_plt_readonly 0
1804 #define elf_backend_want_plt_sym 1
1805
1806 #include "elf32-target.h"
This page took 0.105616 seconds and 4 git commands to generate.