xtensa: optimize find_removed_literal
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Rename one of the generic section flags to better document how it
158 is used here. */
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
161 \f
162 static reloc_howto_type elf_howto_table[] =
163 {
164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 FALSE, 0, 0, FALSE),
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
170
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 FALSE, 0, 0xffffffff, FALSE),
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 FALSE, 0, 0xffffffff, FALSE),
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 FALSE, 0, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 FALSE, 0, 0xffffffff, FALSE),
191
192 EMPTY_HOWTO (7),
193
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
209 EMPTY_HOWTO (13),
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
214
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
218 FALSE, 0, 0, FALSE),
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 FALSE, 0, 0, FALSE),
223
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
318 };
319
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
330 {
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
433 default:
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455 }
456
457 static reloc_howto_type *
458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460 {
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469 }
470
471
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475 static void
476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
479 {
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
482 if (r_type >= (unsigned int) R_XTENSA_max)
483 {
484 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
485 r_type = 0;
486 }
487 cache_ptr->howto = &elf_howto_table[r_type];
488 }
489
490 \f
491 /* Functions for the Xtensa ELF linker. */
492
493 /* The name of the dynamic interpreter. This is put in the .interp
494 section. */
495
496 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
497
498 /* The size in bytes of an entry in the procedure linkage table.
499 (This does _not_ include the space for the literals associated with
500 the PLT entry.) */
501
502 #define PLT_ENTRY_SIZE 16
503
504 /* For _really_ large PLTs, we may need to alternate between literals
505 and code to keep the literals within the 256K range of the L32R
506 instructions in the code. It's unlikely that anyone would ever need
507 such a big PLT, but an arbitrary limit on the PLT size would be bad.
508 Thus, we split the PLT into chunks. Since there's very little
509 overhead (2 extra literals) for each chunk, the chunk size is kept
510 small so that the code for handling multiple chunks get used and
511 tested regularly. With 254 entries, there are 1K of literals for
512 each chunk, and that seems like a nice round number. */
513
514 #define PLT_ENTRIES_PER_CHUNK 254
515
516 /* PLT entries are actually used as stub functions for lazy symbol
517 resolution. Once the symbol is resolved, the stub function is never
518 invoked. Note: the 32-byte frame size used here cannot be changed
519 without a corresponding change in the runtime linker. */
520
521 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
522 {
523 0x6c, 0x10, 0x04, /* entry sp, 32 */
524 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
525 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
526 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
527 0x0a, 0x80, 0x00, /* jx a8 */
528 0 /* unused */
529 };
530
531 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
532 {
533 0x36, 0x41, 0x00, /* entry sp, 32 */
534 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
535 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
536 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
537 0xa0, 0x08, 0x00, /* jx a8 */
538 0 /* unused */
539 };
540
541 /* The size of the thread control block. */
542 #define TCB_SIZE 8
543
544 struct elf_xtensa_link_hash_entry
545 {
546 struct elf_link_hash_entry elf;
547
548 bfd_signed_vma tlsfunc_refcount;
549
550 #define GOT_UNKNOWN 0
551 #define GOT_NORMAL 1
552 #define GOT_TLS_GD 2 /* global or local dynamic */
553 #define GOT_TLS_IE 4 /* initial or local exec */
554 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
555 unsigned char tls_type;
556 };
557
558 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
559
560 struct elf_xtensa_obj_tdata
561 {
562 struct elf_obj_tdata root;
563
564 /* tls_type for each local got entry. */
565 char *local_got_tls_type;
566
567 bfd_signed_vma *local_tlsfunc_refcounts;
568 };
569
570 #define elf_xtensa_tdata(abfd) \
571 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
572
573 #define elf_xtensa_local_got_tls_type(abfd) \
574 (elf_xtensa_tdata (abfd)->local_got_tls_type)
575
576 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
577 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
578
579 #define is_xtensa_elf(bfd) \
580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
581 && elf_tdata (bfd) != NULL \
582 && elf_object_id (bfd) == XTENSA_ELF_DATA)
583
584 static bfd_boolean
585 elf_xtensa_mkobject (bfd *abfd)
586 {
587 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
588 XTENSA_ELF_DATA);
589 }
590
591 /* Xtensa ELF linker hash table. */
592
593 struct elf_xtensa_link_hash_table
594 {
595 struct elf_link_hash_table elf;
596
597 /* Short-cuts to get to dynamic linker sections. */
598 asection *sgot;
599 asection *sgotplt;
600 asection *srelgot;
601 asection *splt;
602 asection *srelplt;
603 asection *sgotloc;
604 asection *spltlittbl;
605
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
612 int plt_reloc_count;
613
614 struct elf_xtensa_link_hash_entry *tlsbase;
615 };
616
617 /* Get the Xtensa ELF linker hash table from a link_info structure. */
618
619 #define elf_xtensa_hash_table(p) \
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
622
623 /* Create an entry in an Xtensa ELF linker hash table. */
624
625 static struct bfd_hash_entry *
626 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
628 const char *string)
629 {
630 /* Allocate the structure if it has not already been allocated by a
631 subclass. */
632 if (entry == NULL)
633 {
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
636 if (entry == NULL)
637 return entry;
638 }
639
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642 if (entry != NULL)
643 {
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
647 }
648
649 return entry;
650 }
651
652 /* Create an Xtensa ELF linker hash table. */
653
654 static struct bfd_link_hash_table *
655 elf_xtensa_link_hash_table_create (bfd *abfd)
656 {
657 struct elf_link_hash_entry *tlsbase;
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660
661 ret = bfd_zmalloc (amt);
662 if (ret == NULL)
663 return NULL;
664
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
666 elf_xtensa_link_hash_newfunc,
667 sizeof (struct elf_xtensa_link_hash_entry),
668 XTENSA_ELF_DATA))
669 {
670 free (ret);
671 return NULL;
672 }
673
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
684 return &ret->elf.root;
685 }
686
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689 static void
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693 {
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 }
713
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
717 {
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 }
726
727 \f
728 static int
729 property_table_compare (const void *ap, const void *bp)
730 {
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
734 if (a->address == b->address)
735 {
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
748
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758 }
759
760
761 static int
762 property_table_matches (const void *ap, const void *bp)
763 {
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773 }
774
775
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
779
780 static int
781 xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
786 {
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
805
806 table_section = xtensa_get_property_section (section, sec_name);
807 if (table_section)
808 table_size = table_section->size;
809
810 if (table_size == 0)
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
831
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
834 {
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
845 for (off = 0; off < table_size; off += table_entry_size)
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
861
862 if (irel && irel->r_offset == off)
863 {
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
867
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
869 continue;
870
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
874 }
875 else
876 {
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
880 }
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
894 if (block_count > 0)
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
912 abfd, section);
913 bfd_set_error (bfd_error_bad_value);
914 free (blocks);
915 return -1;
916 }
917 }
918 }
919
920 *table_p = blocks;
921 return block_count;
922 }
923
924
925 static property_table_entry *
926 elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
928 bfd_vma addr)
929 {
930 property_table_entry entry;
931 property_table_entry *rv;
932
933 if (property_table_size == 0)
934 return NULL;
935
936 entry.address = addr;
937 entry.size = 1;
938 entry.flags = 0;
939
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
942 return rv;
943 }
944
945
946 static bfd_boolean
947 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 int lit_table_size,
949 bfd_vma addr)
950 {
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
952 return TRUE;
953
954 return FALSE;
955 }
956
957 \f
958 /* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
960
961 static bfd_boolean
962 elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
964 asection *sec,
965 const Elf_Internal_Rela *relocs)
966 {
967 struct elf_xtensa_link_hash_table *htab;
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
972
973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
974 return TRUE;
975
976 BFD_ASSERT (is_xtensa_elf (abfd));
977
978 htab = elf_xtensa_hash_table (info);
979 if (htab == NULL)
980 return FALSE;
981
982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
983 sym_hashes = elf_sym_hashes (abfd);
984
985 rel_end = relocs + sec->reloc_count;
986 for (rel = relocs; rel < rel_end; rel++)
987 {
988 unsigned int r_type;
989 unsigned long r_symndx;
990 struct elf_link_hash_entry *h = NULL;
991 struct elf_xtensa_link_hash_entry *eh;
992 int tls_type, old_tls_type;
993 bfd_boolean is_got = FALSE;
994 bfd_boolean is_plt = FALSE;
995 bfd_boolean is_tlsfunc = FALSE;
996
997 r_symndx = ELF32_R_SYM (rel->r_info);
998 r_type = ELF32_R_TYPE (rel->r_info);
999
1000 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1001 {
1002 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1003 abfd, r_symndx);
1004 return FALSE;
1005 }
1006
1007 if (r_symndx >= symtab_hdr->sh_info)
1008 {
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010 while (h->root.type == bfd_link_hash_indirect
1011 || h->root.type == bfd_link_hash_warning)
1012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1013
1014 /* PR15323, ref flags aren't set for references in the same
1015 object. */
1016 h->root.non_ir_ref = 1;
1017 }
1018 eh = elf_xtensa_hash_entry (h);
1019
1020 switch (r_type)
1021 {
1022 case R_XTENSA_TLSDESC_FN:
1023 if (info->shared)
1024 {
1025 tls_type = GOT_TLS_GD;
1026 is_got = TRUE;
1027 is_tlsfunc = TRUE;
1028 }
1029 else
1030 tls_type = GOT_TLS_IE;
1031 break;
1032
1033 case R_XTENSA_TLSDESC_ARG:
1034 if (info->shared)
1035 {
1036 tls_type = GOT_TLS_GD;
1037 is_got = TRUE;
1038 }
1039 else
1040 {
1041 tls_type = GOT_TLS_IE;
1042 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1043 is_got = TRUE;
1044 }
1045 break;
1046
1047 case R_XTENSA_TLS_DTPOFF:
1048 if (info->shared)
1049 tls_type = GOT_TLS_GD;
1050 else
1051 tls_type = GOT_TLS_IE;
1052 break;
1053
1054 case R_XTENSA_TLS_TPOFF:
1055 tls_type = GOT_TLS_IE;
1056 if (info->shared)
1057 info->flags |= DF_STATIC_TLS;
1058 if (info->shared || h)
1059 is_got = TRUE;
1060 break;
1061
1062 case R_XTENSA_32:
1063 tls_type = GOT_NORMAL;
1064 is_got = TRUE;
1065 break;
1066
1067 case R_XTENSA_PLT:
1068 tls_type = GOT_NORMAL;
1069 is_plt = TRUE;
1070 break;
1071
1072 case R_XTENSA_GNU_VTINHERIT:
1073 /* This relocation describes the C++ object vtable hierarchy.
1074 Reconstruct it for later use during GC. */
1075 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1076 return FALSE;
1077 continue;
1078
1079 case R_XTENSA_GNU_VTENTRY:
1080 /* This relocation describes which C++ vtable entries are actually
1081 used. Record for later use during GC. */
1082 BFD_ASSERT (h != NULL);
1083 if (h != NULL
1084 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1085 return FALSE;
1086 continue;
1087
1088 default:
1089 /* Nothing to do for any other relocations. */
1090 continue;
1091 }
1092
1093 if (h)
1094 {
1095 if (is_plt)
1096 {
1097 if (h->plt.refcount <= 0)
1098 {
1099 h->needs_plt = 1;
1100 h->plt.refcount = 1;
1101 }
1102 else
1103 h->plt.refcount += 1;
1104
1105 /* Keep track of the total PLT relocation count even if we
1106 don't yet know whether the dynamic sections will be
1107 created. */
1108 htab->plt_reloc_count += 1;
1109
1110 if (elf_hash_table (info)->dynamic_sections_created)
1111 {
1112 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1113 return FALSE;
1114 }
1115 }
1116 else if (is_got)
1117 {
1118 if (h->got.refcount <= 0)
1119 h->got.refcount = 1;
1120 else
1121 h->got.refcount += 1;
1122 }
1123
1124 if (is_tlsfunc)
1125 eh->tlsfunc_refcount += 1;
1126
1127 old_tls_type = eh->tls_type;
1128 }
1129 else
1130 {
1131 /* Allocate storage the first time. */
1132 if (elf_local_got_refcounts (abfd) == NULL)
1133 {
1134 bfd_size_type size = symtab_hdr->sh_info;
1135 void *mem;
1136
1137 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1138 if (mem == NULL)
1139 return FALSE;
1140 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1141
1142 mem = bfd_zalloc (abfd, size);
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1146
1147 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_tlsfunc_refcounts (abfd)
1151 = (bfd_signed_vma *) mem;
1152 }
1153
1154 /* This is a global offset table entry for a local symbol. */
1155 if (is_got || is_plt)
1156 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1157
1158 if (is_tlsfunc)
1159 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1160
1161 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1162 }
1163
1164 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1165 tls_type |= old_tls_type;
1166 /* If a TLS symbol is accessed using IE at least once,
1167 there is no point to use a dynamic model for it. */
1168 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1169 && ((old_tls_type & GOT_TLS_GD) == 0
1170 || (tls_type & GOT_TLS_IE) == 0))
1171 {
1172 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1173 tls_type = old_tls_type;
1174 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1175 tls_type |= old_tls_type;
1176 else
1177 {
1178 (*_bfd_error_handler)
1179 (_("%B: `%s' accessed both as normal and thread local symbol"),
1180 abfd,
1181 h ? h->root.root.string : "<local>");
1182 return FALSE;
1183 }
1184 }
1185
1186 if (old_tls_type != tls_type)
1187 {
1188 if (eh)
1189 eh->tls_type = tls_type;
1190 else
1191 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1192 }
1193 }
1194
1195 return TRUE;
1196 }
1197
1198
1199 static void
1200 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1201 struct elf_link_hash_entry *h)
1202 {
1203 if (info->shared)
1204 {
1205 if (h->plt.refcount > 0)
1206 {
1207 /* For shared objects, there's no need for PLT entries for local
1208 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1209 if (h->got.refcount < 0)
1210 h->got.refcount = 0;
1211 h->got.refcount += h->plt.refcount;
1212 h->plt.refcount = 0;
1213 }
1214 }
1215 else
1216 {
1217 /* Don't need any dynamic relocations at all. */
1218 h->plt.refcount = 0;
1219 h->got.refcount = 0;
1220 }
1221 }
1222
1223
1224 static void
1225 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1226 struct elf_link_hash_entry *h,
1227 bfd_boolean force_local)
1228 {
1229 /* For a shared link, move the plt refcount to the got refcount to leave
1230 space for RELATIVE relocs. */
1231 elf_xtensa_make_sym_local (info, h);
1232
1233 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1234 }
1235
1236
1237 /* Return the section that should be marked against GC for a given
1238 relocation. */
1239
1240 static asection *
1241 elf_xtensa_gc_mark_hook (asection *sec,
1242 struct bfd_link_info *info,
1243 Elf_Internal_Rela *rel,
1244 struct elf_link_hash_entry *h,
1245 Elf_Internal_Sym *sym)
1246 {
1247 /* Property sections are marked "KEEP" in the linker scripts, but they
1248 should not cause other sections to be marked. (This approach relies
1249 on elf_xtensa_discard_info to remove property table entries that
1250 describe discarded sections. Alternatively, it might be more
1251 efficient to avoid using "KEEP" in the linker scripts and instead use
1252 the gc_mark_extra_sections hook to mark only the property sections
1253 that describe marked sections. That alternative does not work well
1254 with the current property table sections, which do not correspond
1255 one-to-one with the sections they describe, but that should be fixed
1256 someday.) */
1257 if (xtensa_is_property_section (sec))
1258 return NULL;
1259
1260 if (h != NULL)
1261 switch (ELF32_R_TYPE (rel->r_info))
1262 {
1263 case R_XTENSA_GNU_VTINHERIT:
1264 case R_XTENSA_GNU_VTENTRY:
1265 return NULL;
1266 }
1267
1268 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1269 }
1270
1271
1272 /* Update the GOT & PLT entry reference counts
1273 for the section being removed. */
1274
1275 static bfd_boolean
1276 elf_xtensa_gc_sweep_hook (bfd *abfd,
1277 struct bfd_link_info *info,
1278 asection *sec,
1279 const Elf_Internal_Rela *relocs)
1280 {
1281 Elf_Internal_Shdr *symtab_hdr;
1282 struct elf_link_hash_entry **sym_hashes;
1283 const Elf_Internal_Rela *rel, *relend;
1284 struct elf_xtensa_link_hash_table *htab;
1285
1286 htab = elf_xtensa_hash_table (info);
1287 if (htab == NULL)
1288 return FALSE;
1289
1290 if (info->relocatable)
1291 return TRUE;
1292
1293 if ((sec->flags & SEC_ALLOC) == 0)
1294 return TRUE;
1295
1296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1297 sym_hashes = elf_sym_hashes (abfd);
1298
1299 relend = relocs + sec->reloc_count;
1300 for (rel = relocs; rel < relend; rel++)
1301 {
1302 unsigned long r_symndx;
1303 unsigned int r_type;
1304 struct elf_link_hash_entry *h = NULL;
1305 struct elf_xtensa_link_hash_entry *eh;
1306 bfd_boolean is_got = FALSE;
1307 bfd_boolean is_plt = FALSE;
1308 bfd_boolean is_tlsfunc = FALSE;
1309
1310 r_symndx = ELF32_R_SYM (rel->r_info);
1311 if (r_symndx >= symtab_hdr->sh_info)
1312 {
1313 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1314 while (h->root.type == bfd_link_hash_indirect
1315 || h->root.type == bfd_link_hash_warning)
1316 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1317 }
1318 eh = elf_xtensa_hash_entry (h);
1319
1320 r_type = ELF32_R_TYPE (rel->r_info);
1321 switch (r_type)
1322 {
1323 case R_XTENSA_TLSDESC_FN:
1324 if (info->shared)
1325 {
1326 is_got = TRUE;
1327 is_tlsfunc = TRUE;
1328 }
1329 break;
1330
1331 case R_XTENSA_TLSDESC_ARG:
1332 if (info->shared)
1333 is_got = TRUE;
1334 else
1335 {
1336 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1337 is_got = TRUE;
1338 }
1339 break;
1340
1341 case R_XTENSA_TLS_TPOFF:
1342 if (info->shared || h)
1343 is_got = TRUE;
1344 break;
1345
1346 case R_XTENSA_32:
1347 is_got = TRUE;
1348 break;
1349
1350 case R_XTENSA_PLT:
1351 is_plt = TRUE;
1352 break;
1353
1354 default:
1355 continue;
1356 }
1357
1358 if (h)
1359 {
1360 if (is_plt)
1361 {
1362 if (h->plt.refcount > 0)
1363 h->plt.refcount--;
1364 }
1365 else if (is_got)
1366 {
1367 if (h->got.refcount > 0)
1368 h->got.refcount--;
1369 }
1370 if (is_tlsfunc)
1371 {
1372 if (eh->tlsfunc_refcount > 0)
1373 eh->tlsfunc_refcount--;
1374 }
1375 }
1376 else
1377 {
1378 if (is_got || is_plt)
1379 {
1380 bfd_signed_vma *got_refcount
1381 = &elf_local_got_refcounts (abfd) [r_symndx];
1382 if (*got_refcount > 0)
1383 *got_refcount -= 1;
1384 }
1385 if (is_tlsfunc)
1386 {
1387 bfd_signed_vma *tlsfunc_refcount
1388 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1389 if (*tlsfunc_refcount > 0)
1390 *tlsfunc_refcount -= 1;
1391 }
1392 }
1393 }
1394
1395 return TRUE;
1396 }
1397
1398
1399 /* Create all the dynamic sections. */
1400
1401 static bfd_boolean
1402 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1403 {
1404 struct elf_xtensa_link_hash_table *htab;
1405 flagword flags, noalloc_flags;
1406
1407 htab = elf_xtensa_hash_table (info);
1408 if (htab == NULL)
1409 return FALSE;
1410
1411 /* First do all the standard stuff. */
1412 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1413 return FALSE;
1414 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1415 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1416 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1417 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1418 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1419
1420 /* Create any extra PLT sections in case check_relocs has already
1421 been called on all the non-dynamic input files. */
1422 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1423 return FALSE;
1424
1425 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1427 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1428
1429 /* Mark the ".got.plt" section READONLY. */
1430 if (htab->sgotplt == NULL
1431 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1432 return FALSE;
1433
1434 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1435 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1436 flags);
1437 if (htab->sgotloc == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1439 return FALSE;
1440
1441 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1442 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1443 noalloc_flags);
1444 if (htab->spltlittbl == NULL
1445 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1446 return FALSE;
1447
1448 return TRUE;
1449 }
1450
1451
1452 static bfd_boolean
1453 add_extra_plt_sections (struct bfd_link_info *info, int count)
1454 {
1455 bfd *dynobj = elf_hash_table (info)->dynobj;
1456 int chunk;
1457
1458 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1459 ".got.plt" sections. */
1460 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1461 {
1462 char *sname;
1463 flagword flags;
1464 asection *s;
1465
1466 /* Stop when we find a section has already been created. */
1467 if (elf_xtensa_get_plt_section (info, chunk))
1468 break;
1469
1470 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1471 | SEC_LINKER_CREATED | SEC_READONLY);
1472
1473 sname = (char *) bfd_malloc (10);
1474 sprintf (sname, ".plt.%u", chunk);
1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1476 if (s == NULL
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479
1480 sname = (char *) bfd_malloc (14);
1481 sprintf (sname, ".got.plt.%u", chunk);
1482 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1483 if (s == NULL
1484 || ! bfd_set_section_alignment (dynobj, s, 2))
1485 return FALSE;
1486 }
1487
1488 return TRUE;
1489 }
1490
1491
1492 /* Adjust a symbol defined by a dynamic object and referenced by a
1493 regular object. The current definition is in some section of the
1494 dynamic object, but we're not including those sections. We have to
1495 change the definition to something the rest of the link can
1496 understand. */
1497
1498 static bfd_boolean
1499 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 struct elf_link_hash_entry *h)
1501 {
1502 /* If this is a weak symbol, and there is a real definition, the
1503 processor independent code will have arranged for us to see the
1504 real definition first, and we can just use the same value. */
1505 if (h->u.weakdef)
1506 {
1507 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1508 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1509 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1510 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1511 return TRUE;
1512 }
1513
1514 /* This is a reference to a symbol defined by a dynamic object. The
1515 reference must go through the GOT, so there's no need for COPY relocs,
1516 .dynbss, etc. */
1517
1518 return TRUE;
1519 }
1520
1521
1522 static bfd_boolean
1523 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1524 {
1525 struct bfd_link_info *info;
1526 struct elf_xtensa_link_hash_table *htab;
1527 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1528
1529 if (h->root.type == bfd_link_hash_indirect)
1530 return TRUE;
1531
1532 info = (struct bfd_link_info *) arg;
1533 htab = elf_xtensa_hash_table (info);
1534 if (htab == NULL)
1535 return FALSE;
1536
1537 /* If we saw any use of an IE model for this symbol, we can then optimize
1538 away GOT entries for any TLSDESC_FN relocs. */
1539 if ((eh->tls_type & GOT_TLS_IE) != 0)
1540 {
1541 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1542 h->got.refcount -= eh->tlsfunc_refcount;
1543 }
1544
1545 if (! elf_xtensa_dynamic_symbol_p (h, info))
1546 elf_xtensa_make_sym_local (info, h);
1547
1548 if (h->plt.refcount > 0)
1549 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1550
1551 if (h->got.refcount > 0)
1552 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1553
1554 return TRUE;
1555 }
1556
1557
1558 static void
1559 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1560 {
1561 struct elf_xtensa_link_hash_table *htab;
1562 bfd *i;
1563
1564 htab = elf_xtensa_hash_table (info);
1565 if (htab == NULL)
1566 return;
1567
1568 for (i = info->input_bfds; i; i = i->link.next)
1569 {
1570 bfd_signed_vma *local_got_refcounts;
1571 bfd_size_type j, cnt;
1572 Elf_Internal_Shdr *symtab_hdr;
1573
1574 local_got_refcounts = elf_local_got_refcounts (i);
1575 if (!local_got_refcounts)
1576 continue;
1577
1578 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1579 cnt = symtab_hdr->sh_info;
1580
1581 for (j = 0; j < cnt; ++j)
1582 {
1583 /* If we saw any use of an IE model for this symbol, we can
1584 then optimize away GOT entries for any TLSDESC_FN relocs. */
1585 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1586 {
1587 bfd_signed_vma *tlsfunc_refcount
1588 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1589 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1590 local_got_refcounts[j] -= *tlsfunc_refcount;
1591 }
1592
1593 if (local_got_refcounts[j] > 0)
1594 htab->srelgot->size += (local_got_refcounts[j]
1595 * sizeof (Elf32_External_Rela));
1596 }
1597 }
1598 }
1599
1600
1601 /* Set the sizes of the dynamic sections. */
1602
1603 static bfd_boolean
1604 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1605 struct bfd_link_info *info)
1606 {
1607 struct elf_xtensa_link_hash_table *htab;
1608 bfd *dynobj, *abfd;
1609 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1610 bfd_boolean relplt, relgot;
1611 int plt_entries, plt_chunks, chunk;
1612
1613 plt_entries = 0;
1614 plt_chunks = 0;
1615
1616 htab = elf_xtensa_hash_table (info);
1617 if (htab == NULL)
1618 return FALSE;
1619
1620 dynobj = elf_hash_table (info)->dynobj;
1621 if (dynobj == NULL)
1622 abort ();
1623 srelgot = htab->srelgot;
1624 srelplt = htab->srelplt;
1625
1626 if (elf_hash_table (info)->dynamic_sections_created)
1627 {
1628 BFD_ASSERT (htab->srelgot != NULL
1629 && htab->srelplt != NULL
1630 && htab->sgot != NULL
1631 && htab->spltlittbl != NULL
1632 && htab->sgotloc != NULL);
1633
1634 /* Set the contents of the .interp section to the interpreter. */
1635 if (info->executable)
1636 {
1637 s = bfd_get_linker_section (dynobj, ".interp");
1638 if (s == NULL)
1639 abort ();
1640 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1641 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1642 }
1643
1644 /* Allocate room for one word in ".got". */
1645 htab->sgot->size = 4;
1646
1647 /* Allocate space in ".rela.got" for literals that reference global
1648 symbols and space in ".rela.plt" for literals that have PLT
1649 entries. */
1650 elf_link_hash_traverse (elf_hash_table (info),
1651 elf_xtensa_allocate_dynrelocs,
1652 (void *) info);
1653
1654 /* If we are generating a shared object, we also need space in
1655 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1656 reference local symbols. */
1657 if (info->shared)
1658 elf_xtensa_allocate_local_got_size (info);
1659
1660 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1661 each PLT entry, we need the PLT code plus a 4-byte literal.
1662 For each chunk of ".plt", we also need two more 4-byte
1663 literals, two corresponding entries in ".rela.got", and an
1664 8-byte entry in ".xt.lit.plt". */
1665 spltlittbl = htab->spltlittbl;
1666 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1667 plt_chunks =
1668 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1669
1670 /* Iterate over all the PLT chunks, including any extra sections
1671 created earlier because the initial count of PLT relocations
1672 was an overestimate. */
1673 for (chunk = 0;
1674 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1675 chunk++)
1676 {
1677 int chunk_entries;
1678
1679 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1680 BFD_ASSERT (sgotplt != NULL);
1681
1682 if (chunk < plt_chunks - 1)
1683 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1684 else if (chunk == plt_chunks - 1)
1685 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1686 else
1687 chunk_entries = 0;
1688
1689 if (chunk_entries != 0)
1690 {
1691 sgotplt->size = 4 * (chunk_entries + 2);
1692 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1693 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1694 spltlittbl->size += 8;
1695 }
1696 else
1697 {
1698 sgotplt->size = 0;
1699 splt->size = 0;
1700 }
1701 }
1702
1703 /* Allocate space in ".got.loc" to match the total size of all the
1704 literal tables. */
1705 sgotloc = htab->sgotloc;
1706 sgotloc->size = spltlittbl->size;
1707 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1708 {
1709 if (abfd->flags & DYNAMIC)
1710 continue;
1711 for (s = abfd->sections; s != NULL; s = s->next)
1712 {
1713 if (! discarded_section (s)
1714 && xtensa_is_littable_section (s)
1715 && s != spltlittbl)
1716 sgotloc->size += s->size;
1717 }
1718 }
1719 }
1720
1721 /* Allocate memory for dynamic sections. */
1722 relplt = FALSE;
1723 relgot = FALSE;
1724 for (s = dynobj->sections; s != NULL; s = s->next)
1725 {
1726 const char *name;
1727
1728 if ((s->flags & SEC_LINKER_CREATED) == 0)
1729 continue;
1730
1731 /* It's OK to base decisions on the section name, because none
1732 of the dynobj section names depend upon the input files. */
1733 name = bfd_get_section_name (dynobj, s);
1734
1735 if (CONST_STRNEQ (name, ".rela"))
1736 {
1737 if (s->size != 0)
1738 {
1739 if (strcmp (name, ".rela.plt") == 0)
1740 relplt = TRUE;
1741 else if (strcmp (name, ".rela.got") == 0)
1742 relgot = TRUE;
1743
1744 /* We use the reloc_count field as a counter if we need
1745 to copy relocs into the output file. */
1746 s->reloc_count = 0;
1747 }
1748 }
1749 else if (! CONST_STRNEQ (name, ".plt.")
1750 && ! CONST_STRNEQ (name, ".got.plt.")
1751 && strcmp (name, ".got") != 0
1752 && strcmp (name, ".plt") != 0
1753 && strcmp (name, ".got.plt") != 0
1754 && strcmp (name, ".xt.lit.plt") != 0
1755 && strcmp (name, ".got.loc") != 0)
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
1761 if (s->size == 0)
1762 {
1763 /* If we don't need this section, strip it from the output
1764 file. We must create the ".plt*" and ".got.plt*"
1765 sections in create_dynamic_sections and/or check_relocs
1766 based on a conservative estimate of the PLT relocation
1767 count, because the sections must be created before the
1768 linker maps input sections to output sections. The
1769 linker does that before size_dynamic_sections, where we
1770 compute the exact size of the PLT, so there may be more
1771 of these sections than are actually needed. */
1772 s->flags |= SEC_EXCLUDE;
1773 }
1774 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1775 {
1776 /* Allocate memory for the section contents. */
1777 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1778 if (s->contents == NULL)
1779 return FALSE;
1780 }
1781 }
1782
1783 if (elf_hash_table (info)->dynamic_sections_created)
1784 {
1785 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1786 known until finish_dynamic_sections, but we need to get the relocs
1787 in place before they are sorted. */
1788 for (chunk = 0; chunk < plt_chunks; chunk++)
1789 {
1790 Elf_Internal_Rela irela;
1791 bfd_byte *loc;
1792
1793 irela.r_offset = 0;
1794 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1795 irela.r_addend = 0;
1796
1797 loc = (srelgot->contents
1798 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1799 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1800 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1801 loc + sizeof (Elf32_External_Rela));
1802 srelgot->reloc_count += 2;
1803 }
1804
1805 /* Add some entries to the .dynamic section. We fill in the
1806 values later, in elf_xtensa_finish_dynamic_sections, but we
1807 must add the entries now so that we get the correct size for
1808 the .dynamic section. The DT_DEBUG entry is filled in by the
1809 dynamic linker and used by the debugger. */
1810 #define add_dynamic_entry(TAG, VAL) \
1811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1812
1813 if (info->executable)
1814 {
1815 if (!add_dynamic_entry (DT_DEBUG, 0))
1816 return FALSE;
1817 }
1818
1819 if (relplt)
1820 {
1821 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1822 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1823 || !add_dynamic_entry (DT_JMPREL, 0))
1824 return FALSE;
1825 }
1826
1827 if (relgot)
1828 {
1829 if (!add_dynamic_entry (DT_RELA, 0)
1830 || !add_dynamic_entry (DT_RELASZ, 0)
1831 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1832 return FALSE;
1833 }
1834
1835 if (!add_dynamic_entry (DT_PLTGOT, 0)
1836 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1837 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1838 return FALSE;
1839 }
1840 #undef add_dynamic_entry
1841
1842 return TRUE;
1843 }
1844
1845 static bfd_boolean
1846 elf_xtensa_always_size_sections (bfd *output_bfd,
1847 struct bfd_link_info *info)
1848 {
1849 struct elf_xtensa_link_hash_table *htab;
1850 asection *tls_sec;
1851
1852 htab = elf_xtensa_hash_table (info);
1853 if (htab == NULL)
1854 return FALSE;
1855
1856 tls_sec = htab->elf.tls_sec;
1857
1858 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1859 {
1860 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1861 struct bfd_link_hash_entry *bh = &tlsbase->root;
1862 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1863
1864 tlsbase->type = STT_TLS;
1865 if (!(_bfd_generic_link_add_one_symbol
1866 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1867 tls_sec, 0, NULL, FALSE,
1868 bed->collect, &bh)))
1869 return FALSE;
1870 tlsbase->def_regular = 1;
1871 tlsbase->other = STV_HIDDEN;
1872 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1873 }
1874
1875 return TRUE;
1876 }
1877
1878 \f
1879 /* Return the base VMA address which should be subtracted from real addresses
1880 when resolving @dtpoff relocation.
1881 This is PT_TLS segment p_vaddr. */
1882
1883 static bfd_vma
1884 dtpoff_base (struct bfd_link_info *info)
1885 {
1886 /* If tls_sec is NULL, we should have signalled an error already. */
1887 if (elf_hash_table (info)->tls_sec == NULL)
1888 return 0;
1889 return elf_hash_table (info)->tls_sec->vma;
1890 }
1891
1892 /* Return the relocation value for @tpoff relocation
1893 if STT_TLS virtual address is ADDRESS. */
1894
1895 static bfd_vma
1896 tpoff (struct bfd_link_info *info, bfd_vma address)
1897 {
1898 struct elf_link_hash_table *htab = elf_hash_table (info);
1899 bfd_vma base;
1900
1901 /* If tls_sec is NULL, we should have signalled an error already. */
1902 if (htab->tls_sec == NULL)
1903 return 0;
1904 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1905 return address - htab->tls_sec->vma + base;
1906 }
1907
1908 /* Perform the specified relocation. The instruction at (contents + address)
1909 is modified to set one operand to represent the value in "relocation". The
1910 operand position is determined by the relocation type recorded in the
1911 howto. */
1912
1913 #define CALL_SEGMENT_BITS (30)
1914 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1915
1916 static bfd_reloc_status_type
1917 elf_xtensa_do_reloc (reloc_howto_type *howto,
1918 bfd *abfd,
1919 asection *input_section,
1920 bfd_vma relocation,
1921 bfd_byte *contents,
1922 bfd_vma address,
1923 bfd_boolean is_weak_undef,
1924 char **error_message)
1925 {
1926 xtensa_format fmt;
1927 xtensa_opcode opcode;
1928 xtensa_isa isa = xtensa_default_isa;
1929 static xtensa_insnbuf ibuff = NULL;
1930 static xtensa_insnbuf sbuff = NULL;
1931 bfd_vma self_address;
1932 bfd_size_type input_size;
1933 int opnd, slot;
1934 uint32 newval;
1935
1936 if (!ibuff)
1937 {
1938 ibuff = xtensa_insnbuf_alloc (isa);
1939 sbuff = xtensa_insnbuf_alloc (isa);
1940 }
1941
1942 input_size = bfd_get_section_limit (abfd, input_section);
1943
1944 /* Calculate the PC address for this instruction. */
1945 self_address = (input_section->output_section->vma
1946 + input_section->output_offset
1947 + address);
1948
1949 switch (howto->type)
1950 {
1951 case R_XTENSA_NONE:
1952 case R_XTENSA_DIFF8:
1953 case R_XTENSA_DIFF16:
1954 case R_XTENSA_DIFF32:
1955 case R_XTENSA_TLS_FUNC:
1956 case R_XTENSA_TLS_ARG:
1957 case R_XTENSA_TLS_CALL:
1958 return bfd_reloc_ok;
1959
1960 case R_XTENSA_ASM_EXPAND:
1961 if (!is_weak_undef)
1962 {
1963 /* Check for windowed CALL across a 1GB boundary. */
1964 opcode = get_expanded_call_opcode (contents + address,
1965 input_size - address, 0);
1966 if (is_windowed_call_opcode (opcode))
1967 {
1968 if ((self_address >> CALL_SEGMENT_BITS)
1969 != (relocation >> CALL_SEGMENT_BITS))
1970 {
1971 *error_message = "windowed longcall crosses 1GB boundary; "
1972 "return may fail";
1973 return bfd_reloc_dangerous;
1974 }
1975 }
1976 }
1977 return bfd_reloc_ok;
1978
1979 case R_XTENSA_ASM_SIMPLIFY:
1980 {
1981 /* Convert the L32R/CALLX to CALL. */
1982 bfd_reloc_status_type retval =
1983 elf_xtensa_do_asm_simplify (contents, address, input_size,
1984 error_message);
1985 if (retval != bfd_reloc_ok)
1986 return bfd_reloc_dangerous;
1987
1988 /* The CALL needs to be relocated. Continue below for that part. */
1989 address += 3;
1990 self_address += 3;
1991 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1992 }
1993 break;
1994
1995 case R_XTENSA_32:
1996 {
1997 bfd_vma x;
1998 x = bfd_get_32 (abfd, contents + address);
1999 x = x + relocation;
2000 bfd_put_32 (abfd, x, contents + address);
2001 }
2002 return bfd_reloc_ok;
2003
2004 case R_XTENSA_32_PCREL:
2005 bfd_put_32 (abfd, relocation - self_address, contents + address);
2006 return bfd_reloc_ok;
2007
2008 case R_XTENSA_PLT:
2009 case R_XTENSA_TLSDESC_FN:
2010 case R_XTENSA_TLSDESC_ARG:
2011 case R_XTENSA_TLS_DTPOFF:
2012 case R_XTENSA_TLS_TPOFF:
2013 bfd_put_32 (abfd, relocation, contents + address);
2014 return bfd_reloc_ok;
2015 }
2016
2017 /* Only instruction slot-specific relocations handled below.... */
2018 slot = get_relocation_slot (howto->type);
2019 if (slot == XTENSA_UNDEFINED)
2020 {
2021 *error_message = "unexpected relocation";
2022 return bfd_reloc_dangerous;
2023 }
2024
2025 /* Read the instruction into a buffer and decode the opcode. */
2026 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2027 input_size - address);
2028 fmt = xtensa_format_decode (isa, ibuff);
2029 if (fmt == XTENSA_UNDEFINED)
2030 {
2031 *error_message = "cannot decode instruction format";
2032 return bfd_reloc_dangerous;
2033 }
2034
2035 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2036
2037 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2038 if (opcode == XTENSA_UNDEFINED)
2039 {
2040 *error_message = "cannot decode instruction opcode";
2041 return bfd_reloc_dangerous;
2042 }
2043
2044 /* Check for opcode-specific "alternate" relocations. */
2045 if (is_alt_relocation (howto->type))
2046 {
2047 if (opcode == get_l32r_opcode ())
2048 {
2049 /* Handle the special-case of non-PC-relative L32R instructions. */
2050 bfd *output_bfd = input_section->output_section->owner;
2051 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2052 if (!lit4_sec)
2053 {
2054 *error_message = "relocation references missing .lit4 section";
2055 return bfd_reloc_dangerous;
2056 }
2057 self_address = ((lit4_sec->vma & ~0xfff)
2058 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2059 newval = relocation;
2060 opnd = 1;
2061 }
2062 else if (opcode == get_const16_opcode ())
2063 {
2064 /* ALT used for high 16 bits. */
2065 newval = relocation >> 16;
2066 opnd = 1;
2067 }
2068 else
2069 {
2070 /* No other "alternate" relocations currently defined. */
2071 *error_message = "unexpected relocation";
2072 return bfd_reloc_dangerous;
2073 }
2074 }
2075 else /* Not an "alternate" relocation.... */
2076 {
2077 if (opcode == get_const16_opcode ())
2078 {
2079 newval = relocation & 0xffff;
2080 opnd = 1;
2081 }
2082 else
2083 {
2084 /* ...normal PC-relative relocation.... */
2085
2086 /* Determine which operand is being relocated. */
2087 opnd = get_relocation_opnd (opcode, howto->type);
2088 if (opnd == XTENSA_UNDEFINED)
2089 {
2090 *error_message = "unexpected relocation";
2091 return bfd_reloc_dangerous;
2092 }
2093
2094 if (!howto->pc_relative)
2095 {
2096 *error_message = "expected PC-relative relocation";
2097 return bfd_reloc_dangerous;
2098 }
2099
2100 newval = relocation;
2101 }
2102 }
2103
2104 /* Apply the relocation. */
2105 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2106 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2107 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2108 sbuff, newval))
2109 {
2110 const char *opname = xtensa_opcode_name (isa, opcode);
2111 const char *msg;
2112
2113 msg = "cannot encode";
2114 if (is_direct_call_opcode (opcode))
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned call target";
2118 else
2119 msg = "call target out of range";
2120 }
2121 else if (opcode == get_l32r_opcode ())
2122 {
2123 if ((relocation & 0x3) != 0)
2124 msg = "misaligned literal target";
2125 else if (is_alt_relocation (howto->type))
2126 msg = "literal target out of range (too many literals)";
2127 else if (self_address > relocation)
2128 msg = "literal target out of range (try using text-section-literals)";
2129 else
2130 msg = "literal placed after use";
2131 }
2132
2133 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2134 return bfd_reloc_dangerous;
2135 }
2136
2137 /* Check for calls across 1GB boundaries. */
2138 if (is_direct_call_opcode (opcode)
2139 && is_windowed_call_opcode (opcode))
2140 {
2141 if ((self_address >> CALL_SEGMENT_BITS)
2142 != (relocation >> CALL_SEGMENT_BITS))
2143 {
2144 *error_message =
2145 "windowed call crosses 1GB boundary; return may fail";
2146 return bfd_reloc_dangerous;
2147 }
2148 }
2149
2150 /* Write the modified instruction back out of the buffer. */
2151 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2152 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2153 input_size - address);
2154 return bfd_reloc_ok;
2155 }
2156
2157
2158 static char *
2159 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2160 {
2161 /* To reduce the size of the memory leak,
2162 we only use a single message buffer. */
2163 static bfd_size_type alloc_size = 0;
2164 static char *message = NULL;
2165 bfd_size_type orig_len, len = 0;
2166 bfd_boolean is_append;
2167 va_list ap;
2168
2169 va_start (ap, arglen);
2170
2171 is_append = (origmsg == message);
2172
2173 orig_len = strlen (origmsg);
2174 len = orig_len + strlen (fmt) + arglen + 20;
2175 if (len > alloc_size)
2176 {
2177 message = (char *) bfd_realloc_or_free (message, len);
2178 alloc_size = len;
2179 }
2180 if (message != NULL)
2181 {
2182 if (!is_append)
2183 memcpy (message, origmsg, orig_len);
2184 vsprintf (message + orig_len, fmt, ap);
2185 }
2186 va_end (ap);
2187 return message;
2188 }
2189
2190
2191 /* This function is registered as the "special_function" in the
2192 Xtensa howto for handling simplify operations.
2193 bfd_perform_relocation / bfd_install_relocation use it to
2194 perform (install) the specified relocation. Since this replaces the code
2195 in bfd_perform_relocation, it is basically an Xtensa-specific,
2196 stripped-down version of bfd_perform_relocation. */
2197
2198 static bfd_reloc_status_type
2199 bfd_elf_xtensa_reloc (bfd *abfd,
2200 arelent *reloc_entry,
2201 asymbol *symbol,
2202 void *data,
2203 asection *input_section,
2204 bfd *output_bfd,
2205 char **error_message)
2206 {
2207 bfd_vma relocation;
2208 bfd_reloc_status_type flag;
2209 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2210 bfd_vma output_base = 0;
2211 reloc_howto_type *howto = reloc_entry->howto;
2212 asection *reloc_target_output_section;
2213 bfd_boolean is_weak_undef;
2214
2215 if (!xtensa_default_isa)
2216 xtensa_default_isa = xtensa_isa_init (0, 0);
2217
2218 /* ELF relocs are against symbols. If we are producing relocatable
2219 output, and the reloc is against an external symbol, the resulting
2220 reloc will also be against the same symbol. In such a case, we
2221 don't want to change anything about the way the reloc is handled,
2222 since it will all be done at final link time. This test is similar
2223 to what bfd_elf_generic_reloc does except that it lets relocs with
2224 howto->partial_inplace go through even if the addend is non-zero.
2225 (The real problem is that partial_inplace is set for XTENSA_32
2226 relocs to begin with, but that's a long story and there's little we
2227 can do about it now....) */
2228
2229 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2230 {
2231 reloc_entry->address += input_section->output_offset;
2232 return bfd_reloc_ok;
2233 }
2234
2235 /* Is the address of the relocation really within the section? */
2236 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2237 return bfd_reloc_outofrange;
2238
2239 /* Work out which section the relocation is targeted at and the
2240 initial relocation command value. */
2241
2242 /* Get symbol value. (Common symbols are special.) */
2243 if (bfd_is_com_section (symbol->section))
2244 relocation = 0;
2245 else
2246 relocation = symbol->value;
2247
2248 reloc_target_output_section = symbol->section->output_section;
2249
2250 /* Convert input-section-relative symbol value to absolute. */
2251 if ((output_bfd && !howto->partial_inplace)
2252 || reloc_target_output_section == NULL)
2253 output_base = 0;
2254 else
2255 output_base = reloc_target_output_section->vma;
2256
2257 relocation += output_base + symbol->section->output_offset;
2258
2259 /* Add in supplied addend. */
2260 relocation += reloc_entry->addend;
2261
2262 /* Here the variable relocation holds the final address of the
2263 symbol we are relocating against, plus any addend. */
2264 if (output_bfd)
2265 {
2266 if (!howto->partial_inplace)
2267 {
2268 /* This is a partial relocation, and we want to apply the relocation
2269 to the reloc entry rather than the raw data. Everything except
2270 relocations against section symbols has already been handled
2271 above. */
2272
2273 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2274 reloc_entry->addend = relocation;
2275 reloc_entry->address += input_section->output_offset;
2276 return bfd_reloc_ok;
2277 }
2278 else
2279 {
2280 reloc_entry->address += input_section->output_offset;
2281 reloc_entry->addend = 0;
2282 }
2283 }
2284
2285 is_weak_undef = (bfd_is_und_section (symbol->section)
2286 && (symbol->flags & BSF_WEAK) != 0);
2287 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2288 (bfd_byte *) data, (bfd_vma) octets,
2289 is_weak_undef, error_message);
2290
2291 if (flag == bfd_reloc_dangerous)
2292 {
2293 /* Add the symbol name to the error message. */
2294 if (! *error_message)
2295 *error_message = "";
2296 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2297 strlen (symbol->name) + 17,
2298 symbol->name,
2299 (unsigned long) reloc_entry->addend);
2300 }
2301
2302 return flag;
2303 }
2304
2305
2306 /* Set up an entry in the procedure linkage table. */
2307
2308 static bfd_vma
2309 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2310 bfd *output_bfd,
2311 unsigned reloc_index)
2312 {
2313 asection *splt, *sgotplt;
2314 bfd_vma plt_base, got_base;
2315 bfd_vma code_offset, lit_offset;
2316 int chunk;
2317
2318 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2319 splt = elf_xtensa_get_plt_section (info, chunk);
2320 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2321 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2322
2323 plt_base = splt->output_section->vma + splt->output_offset;
2324 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2325
2326 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2327 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2328
2329 /* Fill in the literal entry. This is the offset of the dynamic
2330 relocation entry. */
2331 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2332 sgotplt->contents + lit_offset);
2333
2334 /* Fill in the entry in the procedure linkage table. */
2335 memcpy (splt->contents + code_offset,
2336 (bfd_big_endian (output_bfd)
2337 ? elf_xtensa_be_plt_entry
2338 : elf_xtensa_le_plt_entry),
2339 PLT_ENTRY_SIZE);
2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2341 plt_base + code_offset + 3),
2342 splt->contents + code_offset + 4);
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2344 plt_base + code_offset + 6),
2345 splt->contents + code_offset + 7);
2346 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2347 plt_base + code_offset + 9),
2348 splt->contents + code_offset + 10);
2349
2350 return plt_base + code_offset;
2351 }
2352
2353
2354 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2355
2356 static bfd_boolean
2357 replace_tls_insn (Elf_Internal_Rela *rel,
2358 bfd *abfd,
2359 asection *input_section,
2360 bfd_byte *contents,
2361 bfd_boolean is_ld_model,
2362 char **error_message)
2363 {
2364 static xtensa_insnbuf ibuff = NULL;
2365 static xtensa_insnbuf sbuff = NULL;
2366 xtensa_isa isa = xtensa_default_isa;
2367 xtensa_format fmt;
2368 xtensa_opcode old_op, new_op;
2369 bfd_size_type input_size;
2370 int r_type;
2371 unsigned dest_reg, src_reg;
2372
2373 if (ibuff == NULL)
2374 {
2375 ibuff = xtensa_insnbuf_alloc (isa);
2376 sbuff = xtensa_insnbuf_alloc (isa);
2377 }
2378
2379 input_size = bfd_get_section_limit (abfd, input_section);
2380
2381 /* Read the instruction into a buffer and decode the opcode. */
2382 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2383 input_size - rel->r_offset);
2384 fmt = xtensa_format_decode (isa, ibuff);
2385 if (fmt == XTENSA_UNDEFINED)
2386 {
2387 *error_message = "cannot decode instruction format";
2388 return FALSE;
2389 }
2390
2391 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2392 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2393
2394 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2395 if (old_op == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction opcode";
2398 return FALSE;
2399 }
2400
2401 r_type = ELF32_R_TYPE (rel->r_info);
2402 switch (r_type)
2403 {
2404 case R_XTENSA_TLS_FUNC:
2405 case R_XTENSA_TLS_ARG:
2406 if (old_op != get_l32r_opcode ()
2407 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2408 sbuff, &dest_reg) != 0)
2409 {
2410 *error_message = "cannot extract L32R destination for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414
2415 case R_XTENSA_TLS_CALL:
2416 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &src_reg) != 0)
2419 {
2420 *error_message = "cannot extract CALLXn operands for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 default:
2426 abort ();
2427 }
2428
2429 if (is_ld_model)
2430 {
2431 switch (r_type)
2432 {
2433 case R_XTENSA_TLS_FUNC:
2434 case R_XTENSA_TLS_ARG:
2435 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2436 versions of Xtensa). */
2437 new_op = xtensa_opcode_lookup (isa, "nop");
2438 if (new_op == XTENSA_UNDEFINED)
2439 {
2440 new_op = xtensa_opcode_lookup (isa, "or");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, 1) != 0
2445 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2446 sbuff, 1) != 0
2447 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2448 sbuff, 1) != 0)
2449 {
2450 *error_message = "cannot encode OR for TLS access";
2451 return FALSE;
2452 }
2453 }
2454 else
2455 {
2456 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2457 {
2458 *error_message = "cannot encode NOP for TLS access";
2459 return FALSE;
2460 }
2461 }
2462 break;
2463
2464 case R_XTENSA_TLS_CALL:
2465 /* Read THREADPTR into the CALLX's return value register. */
2466 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2467 if (new_op == XTENSA_UNDEFINED
2468 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2469 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2470 sbuff, dest_reg + 2) != 0)
2471 {
2472 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2473 return FALSE;
2474 }
2475 break;
2476 }
2477 }
2478 else
2479 {
2480 switch (r_type)
2481 {
2482 case R_XTENSA_TLS_FUNC:
2483 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2484 if (new_op == XTENSA_UNDEFINED
2485 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2486 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2487 sbuff, dest_reg) != 0)
2488 {
2489 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2490 return FALSE;
2491 }
2492 break;
2493
2494 case R_XTENSA_TLS_ARG:
2495 /* Nothing to do. Keep the original L32R instruction. */
2496 return TRUE;
2497
2498 case R_XTENSA_TLS_CALL:
2499 /* Add the CALLX's src register (holding the THREADPTR value)
2500 to the first argument register (holding the offset) and put
2501 the result in the CALLX's return value register. */
2502 new_op = xtensa_opcode_lookup (isa, "add");
2503 if (new_op == XTENSA_UNDEFINED
2504 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2505 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2506 sbuff, dest_reg + 2) != 0
2507 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2508 sbuff, dest_reg + 2) != 0
2509 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2510 sbuff, src_reg) != 0)
2511 {
2512 *error_message = "cannot encode ADD for TLS access";
2513 return FALSE;
2514 }
2515 break;
2516 }
2517 }
2518
2519 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2520 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2521 input_size - rel->r_offset);
2522
2523 return TRUE;
2524 }
2525
2526
2527 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2528 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2529 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2530 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2531 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2532 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2533 || (R_TYPE) == R_XTENSA_TLS_ARG \
2534 || (R_TYPE) == R_XTENSA_TLS_CALL)
2535
2536 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2537 both relocatable and final links. */
2538
2539 static bfd_boolean
2540 elf_xtensa_relocate_section (bfd *output_bfd,
2541 struct bfd_link_info *info,
2542 bfd *input_bfd,
2543 asection *input_section,
2544 bfd_byte *contents,
2545 Elf_Internal_Rela *relocs,
2546 Elf_Internal_Sym *local_syms,
2547 asection **local_sections)
2548 {
2549 struct elf_xtensa_link_hash_table *htab;
2550 Elf_Internal_Shdr *symtab_hdr;
2551 Elf_Internal_Rela *rel;
2552 Elf_Internal_Rela *relend;
2553 struct elf_link_hash_entry **sym_hashes;
2554 property_table_entry *lit_table = 0;
2555 int ltblsize = 0;
2556 char *local_got_tls_types;
2557 char *error_message = NULL;
2558 bfd_size_type input_size;
2559 int tls_type;
2560
2561 if (!xtensa_default_isa)
2562 xtensa_default_isa = xtensa_isa_init (0, 0);
2563
2564 BFD_ASSERT (is_xtensa_elf (input_bfd));
2565
2566 htab = elf_xtensa_hash_table (info);
2567 if (htab == NULL)
2568 return FALSE;
2569
2570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2571 sym_hashes = elf_sym_hashes (input_bfd);
2572 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2573
2574 if (elf_hash_table (info)->dynamic_sections_created)
2575 {
2576 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2577 &lit_table, XTENSA_LIT_SEC_NAME,
2578 TRUE);
2579 if (ltblsize < 0)
2580 return FALSE;
2581 }
2582
2583 input_size = bfd_get_section_limit (input_bfd, input_section);
2584
2585 rel = relocs;
2586 relend = relocs + input_section->reloc_count;
2587 for (; rel < relend; rel++)
2588 {
2589 int r_type;
2590 reloc_howto_type *howto;
2591 unsigned long r_symndx;
2592 struct elf_link_hash_entry *h;
2593 Elf_Internal_Sym *sym;
2594 char sym_type;
2595 const char *name;
2596 asection *sec;
2597 bfd_vma relocation;
2598 bfd_reloc_status_type r;
2599 bfd_boolean is_weak_undef;
2600 bfd_boolean unresolved_reloc;
2601 bfd_boolean warned;
2602 bfd_boolean dynamic_symbol;
2603
2604 r_type = ELF32_R_TYPE (rel->r_info);
2605 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2606 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2607 continue;
2608
2609 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2610 {
2611 bfd_set_error (bfd_error_bad_value);
2612 return FALSE;
2613 }
2614 howto = &elf_howto_table[r_type];
2615
2616 r_symndx = ELF32_R_SYM (rel->r_info);
2617
2618 h = NULL;
2619 sym = NULL;
2620 sec = NULL;
2621 is_weak_undef = FALSE;
2622 unresolved_reloc = FALSE;
2623 warned = FALSE;
2624
2625 if (howto->partial_inplace && !info->relocatable)
2626 {
2627 /* Because R_XTENSA_32 was made partial_inplace to fix some
2628 problems with DWARF info in partial links, there may be
2629 an addend stored in the contents. Take it out of there
2630 and move it back into the addend field of the reloc. */
2631 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2632 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2633 }
2634
2635 if (r_symndx < symtab_hdr->sh_info)
2636 {
2637 sym = local_syms + r_symndx;
2638 sym_type = ELF32_ST_TYPE (sym->st_info);
2639 sec = local_sections[r_symndx];
2640 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2641 }
2642 else
2643 {
2644 bfd_boolean ignored;
2645
2646 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2647 r_symndx, symtab_hdr, sym_hashes,
2648 h, sec, relocation,
2649 unresolved_reloc, warned, ignored);
2650
2651 if (relocation == 0
2652 && !unresolved_reloc
2653 && h->root.type == bfd_link_hash_undefweak)
2654 is_weak_undef = TRUE;
2655
2656 sym_type = h->type;
2657 }
2658
2659 if (sec != NULL && discarded_section (sec))
2660 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2661 rel, 1, relend, howto, 0, contents);
2662
2663 if (info->relocatable)
2664 {
2665 bfd_vma dest_addr;
2666 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2667
2668 /* This is a relocatable link.
2669 1) If the reloc is against a section symbol, adjust
2670 according to the output section.
2671 2) If there is a new target for this relocation,
2672 the new target will be in the same output section.
2673 We adjust the relocation by the output section
2674 difference. */
2675
2676 if (relaxing_section)
2677 {
2678 /* Check if this references a section in another input file. */
2679 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2680 contents))
2681 return FALSE;
2682 }
2683
2684 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2685 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2686
2687 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2688 {
2689 error_message = NULL;
2690 /* Convert ASM_SIMPLIFY into the simpler relocation
2691 so that they never escape a relaxing link. */
2692 r = contract_asm_expansion (contents, input_size, rel,
2693 &error_message);
2694 if (r != bfd_reloc_ok)
2695 {
2696 if (!((*info->callbacks->reloc_dangerous)
2697 (info, error_message, input_bfd, input_section,
2698 rel->r_offset)))
2699 return FALSE;
2700 }
2701 r_type = ELF32_R_TYPE (rel->r_info);
2702 }
2703
2704 /* This is a relocatable link, so we don't have to change
2705 anything unless the reloc is against a section symbol,
2706 in which case we have to adjust according to where the
2707 section symbol winds up in the output section. */
2708 if (r_symndx < symtab_hdr->sh_info)
2709 {
2710 sym = local_syms + r_symndx;
2711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2712 {
2713 sec = local_sections[r_symndx];
2714 rel->r_addend += sec->output_offset + sym->st_value;
2715 }
2716 }
2717
2718 /* If there is an addend with a partial_inplace howto,
2719 then move the addend to the contents. This is a hack
2720 to work around problems with DWARF in relocatable links
2721 with some previous version of BFD. Now we can't easily get
2722 rid of the hack without breaking backward compatibility.... */
2723 r = bfd_reloc_ok;
2724 howto = &elf_howto_table[r_type];
2725 if (howto->partial_inplace && rel->r_addend)
2726 {
2727 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2728 rel->r_addend, contents,
2729 rel->r_offset, FALSE,
2730 &error_message);
2731 rel->r_addend = 0;
2732 }
2733 else
2734 {
2735 /* Put the correct bits in the target instruction, even
2736 though the relocation will still be present in the output
2737 file. This makes disassembly clearer, as well as
2738 allowing loadable kernel modules to work without needing
2739 relocations on anything other than calls and l32r's. */
2740
2741 /* If it is not in the same section, there is nothing we can do. */
2742 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2743 sym_sec->output_section == input_section->output_section)
2744 {
2745 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2746 dest_addr, contents,
2747 rel->r_offset, FALSE,
2748 &error_message);
2749 }
2750 }
2751 if (r != bfd_reloc_ok)
2752 {
2753 if (!((*info->callbacks->reloc_dangerous)
2754 (info, error_message, input_bfd, input_section,
2755 rel->r_offset)))
2756 return FALSE;
2757 }
2758
2759 /* Done with work for relocatable link; continue with next reloc. */
2760 continue;
2761 }
2762
2763 /* This is a final link. */
2764
2765 if (relaxing_section)
2766 {
2767 /* Check if this references a section in another input file. */
2768 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2769 &relocation);
2770 }
2771
2772 /* Sanity check the address. */
2773 if (rel->r_offset >= input_size
2774 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2775 {
2776 (*_bfd_error_handler)
2777 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2778 input_bfd, input_section, rel->r_offset, input_size);
2779 bfd_set_error (bfd_error_bad_value);
2780 return FALSE;
2781 }
2782
2783 if (h != NULL)
2784 name = h->root.root.string;
2785 else
2786 {
2787 name = (bfd_elf_string_from_elf_section
2788 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2789 if (name == NULL || *name == '\0')
2790 name = bfd_section_name (input_bfd, sec);
2791 }
2792
2793 if (r_symndx != STN_UNDEF
2794 && r_type != R_XTENSA_NONE
2795 && (h == NULL
2796 || h->root.type == bfd_link_hash_defined
2797 || h->root.type == bfd_link_hash_defweak)
2798 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2799 {
2800 (*_bfd_error_handler)
2801 ((sym_type == STT_TLS
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2804 input_bfd,
2805 input_section,
2806 (long) rel->r_offset,
2807 howto->name,
2808 name);
2809 }
2810
2811 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2812
2813 tls_type = GOT_UNKNOWN;
2814 if (h)
2815 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2816 else if (local_got_tls_types)
2817 tls_type = local_got_tls_types [r_symndx];
2818
2819 switch (r_type)
2820 {
2821 case R_XTENSA_32:
2822 case R_XTENSA_PLT:
2823 if (elf_hash_table (info)->dynamic_sections_created
2824 && (input_section->flags & SEC_ALLOC) != 0
2825 && (dynamic_symbol || info->shared))
2826 {
2827 Elf_Internal_Rela outrel;
2828 bfd_byte *loc;
2829 asection *srel;
2830
2831 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2832 srel = htab->srelplt;
2833 else
2834 srel = htab->srelgot;
2835
2836 BFD_ASSERT (srel != NULL);
2837
2838 outrel.r_offset =
2839 _bfd_elf_section_offset (output_bfd, info,
2840 input_section, rel->r_offset);
2841
2842 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2843 memset (&outrel, 0, sizeof outrel);
2844 else
2845 {
2846 outrel.r_offset += (input_section->output_section->vma
2847 + input_section->output_offset);
2848
2849 /* Complain if the relocation is in a read-only section
2850 and not in a literal pool. */
2851 if ((input_section->flags & SEC_READONLY) != 0
2852 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2853 outrel.r_offset))
2854 {
2855 error_message =
2856 _("dynamic relocation in read-only section");
2857 if (!((*info->callbacks->reloc_dangerous)
2858 (info, error_message, input_bfd, input_section,
2859 rel->r_offset)))
2860 return FALSE;
2861 }
2862
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
2882 relocation =
2883 elf_xtensa_create_plt_entry (info, output_bfd,
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2900 <= srel->size);
2901 }
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! info->shared && ! dynamic_symbol)
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
2925 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
2930 if (info->shared)
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
2954 if (!((*info->callbacks->reloc_dangerous)
2955 (info, error_message, input_bfd, input_section,
2956 rel->r_offset)))
2957 return FALSE;
2958 }
2959 else
2960 {
2961 Elf_Internal_Rela outrel;
2962 bfd_byte *loc;
2963 asection *srel = htab->srelgot;
2964 int indx;
2965
2966 outrel.r_offset = (input_section->output_section->vma
2967 + input_section->output_offset
2968 + rel->r_offset);
2969
2970 /* Complain if the relocation is in a read-only section
2971 and not in a literal pool. */
2972 if ((input_section->flags & SEC_READONLY) != 0
2973 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2974 outrel.r_offset))
2975 {
2976 error_message =
2977 _("dynamic relocation in read-only section");
2978 if (!((*info->callbacks->reloc_dangerous)
2979 (info, error_message, input_bfd, input_section,
2980 rel->r_offset)))
2981 return FALSE;
2982 }
2983
2984 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2985 if (indx == 0)
2986 outrel.r_addend = relocation - dtpoff_base (info);
2987 else
2988 outrel.r_addend = 0;
2989 rel->r_addend = 0;
2990
2991 outrel.r_info = ELF32_R_INFO (indx, r_type);
2992 relocation = 0;
2993 unresolved_reloc = FALSE;
2994
2995 BFD_ASSERT (srel);
2996 loc = (srel->contents
2997 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2999 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3000 <= srel->size);
3001 }
3002 }
3003 break;
3004
3005 case R_XTENSA_TLS_DTPOFF:
3006 if (! info->shared)
3007 /* Switch from LD model to LE model. */
3008 relocation = tpoff (info, relocation);
3009 else
3010 relocation -= dtpoff_base (info);
3011 break;
3012
3013 case R_XTENSA_TLS_FUNC:
3014 case R_XTENSA_TLS_ARG:
3015 case R_XTENSA_TLS_CALL:
3016 /* Check if optimizing to IE or LE model. */
3017 if ((tls_type & GOT_TLS_IE) != 0)
3018 {
3019 bfd_boolean is_ld_model =
3020 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3021 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3022 is_ld_model, &error_message))
3023 {
3024 if (!((*info->callbacks->reloc_dangerous)
3025 (info, error_message, input_bfd, input_section,
3026 rel->r_offset)))
3027 return FALSE;
3028 }
3029
3030 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3031 {
3032 /* Skip subsequent relocations on the same instruction. */
3033 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3034 rel++;
3035 }
3036 }
3037 continue;
3038
3039 default:
3040 if (elf_hash_table (info)->dynamic_sections_created
3041 && dynamic_symbol && (is_operand_relocation (r_type)
3042 || r_type == R_XTENSA_32_PCREL))
3043 {
3044 error_message =
3045 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3046 strlen (name) + 2, name);
3047 if (!((*info->callbacks->reloc_dangerous)
3048 (info, error_message, input_bfd, input_section,
3049 rel->r_offset)))
3050 return FALSE;
3051 continue;
3052 }
3053 break;
3054 }
3055
3056 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3057 because such sections are not SEC_ALLOC and thus ld.so will
3058 not process them. */
3059 if (unresolved_reloc
3060 && !((input_section->flags & SEC_DEBUGGING) != 0
3061 && h->def_dynamic)
3062 && _bfd_elf_section_offset (output_bfd, info, input_section,
3063 rel->r_offset) != (bfd_vma) -1)
3064 {
3065 (*_bfd_error_handler)
3066 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3067 input_bfd,
3068 input_section,
3069 (long) rel->r_offset,
3070 howto->name,
3071 name);
3072 return FALSE;
3073 }
3074
3075 /* TLS optimizations may have changed r_type; update "howto". */
3076 howto = &elf_howto_table[r_type];
3077
3078 /* There's no point in calling bfd_perform_relocation here.
3079 Just go directly to our "special function". */
3080 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3081 relocation + rel->r_addend,
3082 contents, rel->r_offset, is_weak_undef,
3083 &error_message);
3084
3085 if (r != bfd_reloc_ok && !warned)
3086 {
3087 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3088 BFD_ASSERT (error_message != NULL);
3089
3090 if (rel->r_addend == 0)
3091 error_message = vsprint_msg (error_message, ": %s",
3092 strlen (name) + 2, name);
3093 else
3094 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3095 strlen (name) + 22,
3096 name, (int) rel->r_addend);
3097
3098 if (!((*info->callbacks->reloc_dangerous)
3099 (info, error_message, input_bfd, input_section,
3100 rel->r_offset)))
3101 return FALSE;
3102 }
3103 }
3104
3105 if (lit_table)
3106 free (lit_table);
3107
3108 input_section->reloc_done = TRUE;
3109
3110 return TRUE;
3111 }
3112
3113
3114 /* Finish up dynamic symbol handling. There's not much to do here since
3115 the PLT and GOT entries are all set up by relocate_section. */
3116
3117 static bfd_boolean
3118 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3119 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3120 struct elf_link_hash_entry *h,
3121 Elf_Internal_Sym *sym)
3122 {
3123 if (h->needs_plt && !h->def_regular)
3124 {
3125 /* Mark the symbol as undefined, rather than as defined in
3126 the .plt section. Leave the value alone. */
3127 sym->st_shndx = SHN_UNDEF;
3128 /* If the symbol is weak, we do need to clear the value.
3129 Otherwise, the PLT entry would provide a definition for
3130 the symbol even if the symbol wasn't defined anywhere,
3131 and so the symbol would never be NULL. */
3132 if (!h->ref_regular_nonweak)
3133 sym->st_value = 0;
3134 }
3135
3136 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3137 if (h == elf_hash_table (info)->hdynamic
3138 || h == elf_hash_table (info)->hgot)
3139 sym->st_shndx = SHN_ABS;
3140
3141 return TRUE;
3142 }
3143
3144
3145 /* Combine adjacent literal table entries in the output. Adjacent
3146 entries within each input section may have been removed during
3147 relaxation, but we repeat the process here, even though it's too late
3148 to shrink the output section, because it's important to minimize the
3149 number of literal table entries to reduce the start-up work for the
3150 runtime linker. Returns the number of remaining table entries or -1
3151 on error. */
3152
3153 static int
3154 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3155 asection *sxtlit,
3156 asection *sgotloc)
3157 {
3158 bfd_byte *contents;
3159 property_table_entry *table;
3160 bfd_size_type section_size, sgotloc_size;
3161 bfd_vma offset;
3162 int n, m, num;
3163
3164 section_size = sxtlit->size;
3165 BFD_ASSERT (section_size % 8 == 0);
3166 num = section_size / 8;
3167
3168 sgotloc_size = sgotloc->size;
3169 if (sgotloc_size != section_size)
3170 {
3171 (*_bfd_error_handler)
3172 (_("internal inconsistency in size of .got.loc section"));
3173 return -1;
3174 }
3175
3176 table = bfd_malloc (num * sizeof (property_table_entry));
3177 if (table == 0)
3178 return -1;
3179
3180 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3181 propagates to the output section, where it doesn't really apply and
3182 where it breaks the following call to bfd_malloc_and_get_section. */
3183 sxtlit->flags &= ~SEC_IN_MEMORY;
3184
3185 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3186 {
3187 if (contents != 0)
3188 free (contents);
3189 free (table);
3190 return -1;
3191 }
3192
3193 /* There should never be any relocations left at this point, so this
3194 is quite a bit easier than what is done during relaxation. */
3195
3196 /* Copy the raw contents into a property table array and sort it. */
3197 offset = 0;
3198 for (n = 0; n < num; n++)
3199 {
3200 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3201 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3202 offset += 8;
3203 }
3204 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3205
3206 for (n = 0; n < num; n++)
3207 {
3208 bfd_boolean remove_entry = FALSE;
3209
3210 if (table[n].size == 0)
3211 remove_entry = TRUE;
3212 else if (n > 0
3213 && (table[n-1].address + table[n-1].size == table[n].address))
3214 {
3215 table[n-1].size += table[n].size;
3216 remove_entry = TRUE;
3217 }
3218
3219 if (remove_entry)
3220 {
3221 for (m = n; m < num - 1; m++)
3222 {
3223 table[m].address = table[m+1].address;
3224 table[m].size = table[m+1].size;
3225 }
3226
3227 n--;
3228 num--;
3229 }
3230 }
3231
3232 /* Copy the data back to the raw contents. */
3233 offset = 0;
3234 for (n = 0; n < num; n++)
3235 {
3236 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3237 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3238 offset += 8;
3239 }
3240
3241 /* Clear the removed bytes. */
3242 if ((bfd_size_type) (num * 8) < section_size)
3243 memset (&contents[num * 8], 0, section_size - num * 8);
3244
3245 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3246 section_size))
3247 return -1;
3248
3249 /* Copy the contents to ".got.loc". */
3250 memcpy (sgotloc->contents, contents, section_size);
3251
3252 free (contents);
3253 free (table);
3254 return num;
3255 }
3256
3257
3258 /* Finish up the dynamic sections. */
3259
3260 static bfd_boolean
3261 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3262 struct bfd_link_info *info)
3263 {
3264 struct elf_xtensa_link_hash_table *htab;
3265 bfd *dynobj;
3266 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3267 Elf32_External_Dyn *dyncon, *dynconend;
3268 int num_xtlit_entries = 0;
3269
3270 if (! elf_hash_table (info)->dynamic_sections_created)
3271 return TRUE;
3272
3273 htab = elf_xtensa_hash_table (info);
3274 if (htab == NULL)
3275 return FALSE;
3276
3277 dynobj = elf_hash_table (info)->dynobj;
3278 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3279 BFD_ASSERT (sdyn != NULL);
3280
3281 /* Set the first entry in the global offset table to the address of
3282 the dynamic section. */
3283 sgot = htab->sgot;
3284 if (sgot)
3285 {
3286 BFD_ASSERT (sgot->size == 4);
3287 if (sdyn == NULL)
3288 bfd_put_32 (output_bfd, 0, sgot->contents);
3289 else
3290 bfd_put_32 (output_bfd,
3291 sdyn->output_section->vma + sdyn->output_offset,
3292 sgot->contents);
3293 }
3294
3295 srelplt = htab->srelplt;
3296 if (srelplt && srelplt->size != 0)
3297 {
3298 asection *sgotplt, *srelgot, *spltlittbl;
3299 int chunk, plt_chunks, plt_entries;
3300 Elf_Internal_Rela irela;
3301 bfd_byte *loc;
3302 unsigned rtld_reloc;
3303
3304 srelgot = htab->srelgot;
3305 spltlittbl = htab->spltlittbl;
3306 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3307
3308 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3309 of them follow immediately after.... */
3310 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3311 {
3312 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3313 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3314 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3315 break;
3316 }
3317 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3318
3319 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3320 plt_chunks =
3321 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3322
3323 for (chunk = 0; chunk < plt_chunks; chunk++)
3324 {
3325 int chunk_entries = 0;
3326
3327 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3328 BFD_ASSERT (sgotplt != NULL);
3329
3330 /* Emit special RTLD relocations for the first two entries in
3331 each chunk of the .got.plt section. */
3332
3333 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3334 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3335 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3336 irela.r_offset = (sgotplt->output_section->vma
3337 + sgotplt->output_offset);
3338 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3339 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3340 rtld_reloc += 1;
3341 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3342
3343 /* Next literal immediately follows the first. */
3344 loc += sizeof (Elf32_External_Rela);
3345 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3346 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3347 irela.r_offset = (sgotplt->output_section->vma
3348 + sgotplt->output_offset + 4);
3349 /* Tell rtld to set value to object's link map. */
3350 irela.r_addend = 2;
3351 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3352 rtld_reloc += 1;
3353 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3354
3355 /* Fill in the literal table. */
3356 if (chunk < plt_chunks - 1)
3357 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3358 else
3359 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3360
3361 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3362 bfd_put_32 (output_bfd,
3363 sgotplt->output_section->vma + sgotplt->output_offset,
3364 spltlittbl->contents + (chunk * 8) + 0);
3365 bfd_put_32 (output_bfd,
3366 8 + (chunk_entries * 4),
3367 spltlittbl->contents + (chunk * 8) + 4);
3368 }
3369
3370 /* All the dynamic relocations have been emitted at this point.
3371 Make sure the relocation sections are the correct size. */
3372 if (srelgot->size != (sizeof (Elf32_External_Rela)
3373 * srelgot->reloc_count)
3374 || srelplt->size != (sizeof (Elf32_External_Rela)
3375 * srelplt->reloc_count))
3376 abort ();
3377
3378 /* The .xt.lit.plt section has just been modified. This must
3379 happen before the code below which combines adjacent literal
3380 table entries, and the .xt.lit.plt contents have to be forced to
3381 the output here. */
3382 if (! bfd_set_section_contents (output_bfd,
3383 spltlittbl->output_section,
3384 spltlittbl->contents,
3385 spltlittbl->output_offset,
3386 spltlittbl->size))
3387 return FALSE;
3388 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3389 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3390 }
3391
3392 /* Combine adjacent literal table entries. */
3393 BFD_ASSERT (! info->relocatable);
3394 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3395 sgotloc = htab->sgotloc;
3396 BFD_ASSERT (sgotloc);
3397 if (sxtlit)
3398 {
3399 num_xtlit_entries =
3400 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3401 if (num_xtlit_entries < 0)
3402 return FALSE;
3403 }
3404
3405 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3406 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3407 for (; dyncon < dynconend; dyncon++)
3408 {
3409 Elf_Internal_Dyn dyn;
3410
3411 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3412
3413 switch (dyn.d_tag)
3414 {
3415 default:
3416 break;
3417
3418 case DT_XTENSA_GOT_LOC_SZ:
3419 dyn.d_un.d_val = num_xtlit_entries;
3420 break;
3421
3422 case DT_XTENSA_GOT_LOC_OFF:
3423 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3424 break;
3425
3426 case DT_PLTGOT:
3427 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3428 break;
3429
3430 case DT_JMPREL:
3431 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3432 break;
3433
3434 case DT_PLTRELSZ:
3435 dyn.d_un.d_val = htab->srelplt->output_section->size;
3436 break;
3437
3438 case DT_RELASZ:
3439 /* Adjust RELASZ to not include JMPREL. This matches what
3440 glibc expects and what is done for several other ELF
3441 targets (e.g., i386, alpha), but the "correct" behavior
3442 seems to be unresolved. Since the linker script arranges
3443 for .rela.plt to follow all other relocation sections, we
3444 don't have to worry about changing the DT_RELA entry. */
3445 if (htab->srelplt)
3446 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3447 break;
3448 }
3449
3450 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3451 }
3452
3453 return TRUE;
3454 }
3455
3456 \f
3457 /* Functions for dealing with the e_flags field. */
3458
3459 /* Merge backend specific data from an object file to the output
3460 object file when linking. */
3461
3462 static bfd_boolean
3463 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3464 {
3465 unsigned out_mach, in_mach;
3466 flagword out_flag, in_flag;
3467
3468 /* Check if we have the same endianness. */
3469 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3470 return FALSE;
3471
3472 /* Don't even pretend to support mixed-format linking. */
3473 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3474 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3475 return FALSE;
3476
3477 out_flag = elf_elfheader (obfd)->e_flags;
3478 in_flag = elf_elfheader (ibfd)->e_flags;
3479
3480 out_mach = out_flag & EF_XTENSA_MACH;
3481 in_mach = in_flag & EF_XTENSA_MACH;
3482 if (out_mach != in_mach)
3483 {
3484 (*_bfd_error_handler)
3485 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3486 ibfd, out_mach, in_mach);
3487 bfd_set_error (bfd_error_wrong_format);
3488 return FALSE;
3489 }
3490
3491 if (! elf_flags_init (obfd))
3492 {
3493 elf_flags_init (obfd) = TRUE;
3494 elf_elfheader (obfd)->e_flags = in_flag;
3495
3496 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3497 && bfd_get_arch_info (obfd)->the_default)
3498 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3499 bfd_get_mach (ibfd));
3500
3501 return TRUE;
3502 }
3503
3504 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3506
3507 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3508 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3509
3510 return TRUE;
3511 }
3512
3513
3514 static bfd_boolean
3515 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3516 {
3517 BFD_ASSERT (!elf_flags_init (abfd)
3518 || elf_elfheader (abfd)->e_flags == flags);
3519
3520 elf_elfheader (abfd)->e_flags |= flags;
3521 elf_flags_init (abfd) = TRUE;
3522
3523 return TRUE;
3524 }
3525
3526
3527 static bfd_boolean
3528 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3529 {
3530 FILE *f = (FILE *) farg;
3531 flagword e_flags = elf_elfheader (abfd)->e_flags;
3532
3533 fprintf (f, "\nXtensa header:\n");
3534 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3535 fprintf (f, "\nMachine = Base\n");
3536 else
3537 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3538
3539 fprintf (f, "Insn tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3541
3542 fprintf (f, "Literal tables = %s\n",
3543 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3544
3545 return _bfd_elf_print_private_bfd_data (abfd, farg);
3546 }
3547
3548
3549 /* Set the right machine number for an Xtensa ELF file. */
3550
3551 static bfd_boolean
3552 elf_xtensa_object_p (bfd *abfd)
3553 {
3554 int mach;
3555 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3556
3557 switch (arch)
3558 {
3559 case E_XTENSA_MACH:
3560 mach = bfd_mach_xtensa;
3561 break;
3562 default:
3563 return FALSE;
3564 }
3565
3566 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3567 return TRUE;
3568 }
3569
3570
3571 /* The final processing done just before writing out an Xtensa ELF object
3572 file. This gets the Xtensa architecture right based on the machine
3573 number. */
3574
3575 static void
3576 elf_xtensa_final_write_processing (bfd *abfd,
3577 bfd_boolean linker ATTRIBUTE_UNUSED)
3578 {
3579 int mach;
3580 unsigned long val;
3581
3582 switch (mach = bfd_get_mach (abfd))
3583 {
3584 case bfd_mach_xtensa:
3585 val = E_XTENSA_MACH;
3586 break;
3587 default:
3588 return;
3589 }
3590
3591 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3592 elf_elfheader (abfd)->e_flags |= val;
3593 }
3594
3595
3596 static enum elf_reloc_type_class
3597 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3598 const asection *rel_sec ATTRIBUTE_UNUSED,
3599 const Elf_Internal_Rela *rela)
3600 {
3601 switch ((int) ELF32_R_TYPE (rela->r_info))
3602 {
3603 case R_XTENSA_RELATIVE:
3604 return reloc_class_relative;
3605 case R_XTENSA_JMP_SLOT:
3606 return reloc_class_plt;
3607 default:
3608 return reloc_class_normal;
3609 }
3610 }
3611
3612 \f
3613 static bfd_boolean
3614 elf_xtensa_discard_info_for_section (bfd *abfd,
3615 struct elf_reloc_cookie *cookie,
3616 struct bfd_link_info *info,
3617 asection *sec)
3618 {
3619 bfd_byte *contents;
3620 bfd_vma offset, actual_offset;
3621 bfd_size_type removed_bytes = 0;
3622 bfd_size_type entry_size;
3623
3624 if (sec->output_section
3625 && bfd_is_abs_section (sec->output_section))
3626 return FALSE;
3627
3628 if (xtensa_is_proptable_section (sec))
3629 entry_size = 12;
3630 else
3631 entry_size = 8;
3632
3633 if (sec->size == 0 || sec->size % entry_size != 0)
3634 return FALSE;
3635
3636 contents = retrieve_contents (abfd, sec, info->keep_memory);
3637 if (!contents)
3638 return FALSE;
3639
3640 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3641 if (!cookie->rels)
3642 {
3643 release_contents (sec, contents);
3644 return FALSE;
3645 }
3646
3647 /* Sort the relocations. They should already be in order when
3648 relaxation is enabled, but it might not be. */
3649 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3650 internal_reloc_compare);
3651
3652 cookie->rel = cookie->rels;
3653 cookie->relend = cookie->rels + sec->reloc_count;
3654
3655 for (offset = 0; offset < sec->size; offset += entry_size)
3656 {
3657 actual_offset = offset - removed_bytes;
3658
3659 /* The ...symbol_deleted_p function will skip over relocs but it
3660 won't adjust their offsets, so do that here. */
3661 while (cookie->rel < cookie->relend
3662 && cookie->rel->r_offset < offset)
3663 {
3664 cookie->rel->r_offset -= removed_bytes;
3665 cookie->rel++;
3666 }
3667
3668 while (cookie->rel < cookie->relend
3669 && cookie->rel->r_offset == offset)
3670 {
3671 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3672 {
3673 /* Remove the table entry. (If the reloc type is NONE, then
3674 the entry has already been merged with another and deleted
3675 during relaxation.) */
3676 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3677 {
3678 /* Shift the contents up. */
3679 if (offset + entry_size < sec->size)
3680 memmove (&contents[actual_offset],
3681 &contents[actual_offset + entry_size],
3682 sec->size - offset - entry_size);
3683 removed_bytes += entry_size;
3684 }
3685
3686 /* Remove this relocation. */
3687 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3688 }
3689
3690 /* Adjust the relocation offset for previous removals. This
3691 should not be done before calling ...symbol_deleted_p
3692 because it might mess up the offset comparisons there.
3693 Make sure the offset doesn't underflow in the case where
3694 the first entry is removed. */
3695 if (cookie->rel->r_offset >= removed_bytes)
3696 cookie->rel->r_offset -= removed_bytes;
3697 else
3698 cookie->rel->r_offset = 0;
3699
3700 cookie->rel++;
3701 }
3702 }
3703
3704 if (removed_bytes != 0)
3705 {
3706 /* Adjust any remaining relocs (shouldn't be any). */
3707 for (; cookie->rel < cookie->relend; cookie->rel++)
3708 {
3709 if (cookie->rel->r_offset >= removed_bytes)
3710 cookie->rel->r_offset -= removed_bytes;
3711 else
3712 cookie->rel->r_offset = 0;
3713 }
3714
3715 /* Clear the removed bytes. */
3716 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3717
3718 pin_contents (sec, contents);
3719 pin_internal_relocs (sec, cookie->rels);
3720
3721 /* Shrink size. */
3722 if (sec->rawsize == 0)
3723 sec->rawsize = sec->size;
3724 sec->size -= removed_bytes;
3725
3726 if (xtensa_is_littable_section (sec))
3727 {
3728 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3729 if (sgotloc)
3730 sgotloc->size -= removed_bytes;
3731 }
3732 }
3733 else
3734 {
3735 release_contents (sec, contents);
3736 release_internal_relocs (sec, cookie->rels);
3737 }
3738
3739 return (removed_bytes != 0);
3740 }
3741
3742
3743 static bfd_boolean
3744 elf_xtensa_discard_info (bfd *abfd,
3745 struct elf_reloc_cookie *cookie,
3746 struct bfd_link_info *info)
3747 {
3748 asection *sec;
3749 bfd_boolean changed = FALSE;
3750
3751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3752 {
3753 if (xtensa_is_property_section (sec))
3754 {
3755 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3756 changed = TRUE;
3757 }
3758 }
3759
3760 return changed;
3761 }
3762
3763
3764 static bfd_boolean
3765 elf_xtensa_ignore_discarded_relocs (asection *sec)
3766 {
3767 return xtensa_is_property_section (sec);
3768 }
3769
3770
3771 static unsigned int
3772 elf_xtensa_action_discarded (asection *sec)
3773 {
3774 if (strcmp (".xt_except_table", sec->name) == 0)
3775 return 0;
3776
3777 if (strcmp (".xt_except_desc", sec->name) == 0)
3778 return 0;
3779
3780 return _bfd_elf_default_action_discarded (sec);
3781 }
3782
3783 \f
3784 /* Support for core dump NOTE sections. */
3785
3786 static bfd_boolean
3787 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3788 {
3789 int offset;
3790 unsigned int size;
3791
3792 /* The size for Xtensa is variable, so don't try to recognize the format
3793 based on the size. Just assume this is GNU/Linux. */
3794
3795 /* pr_cursig */
3796 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3797
3798 /* pr_pid */
3799 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3800
3801 /* pr_reg */
3802 offset = 72;
3803 size = note->descsz - offset - 4;
3804
3805 /* Make a ".reg/999" section. */
3806 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3807 size, note->descpos + offset);
3808 }
3809
3810
3811 static bfd_boolean
3812 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3813 {
3814 switch (note->descsz)
3815 {
3816 default:
3817 return FALSE;
3818
3819 case 128: /* GNU/Linux elf_prpsinfo */
3820 elf_tdata (abfd)->core->program
3821 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3822 elf_tdata (abfd)->core->command
3823 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3824 }
3825
3826 /* Note that for some reason, a spurious space is tacked
3827 onto the end of the args in some (at least one anyway)
3828 implementations, so strip it off if it exists. */
3829
3830 {
3831 char *command = elf_tdata (abfd)->core->command;
3832 int n = strlen (command);
3833
3834 if (0 < n && command[n - 1] == ' ')
3835 command[n - 1] = '\0';
3836 }
3837
3838 return TRUE;
3839 }
3840
3841 \f
3842 /* Generic Xtensa configurability stuff. */
3843
3844 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3847 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3848 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3849 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3850 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3851 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3852
3853 static void
3854 init_call_opcodes (void)
3855 {
3856 if (callx0_op == XTENSA_UNDEFINED)
3857 {
3858 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3859 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3860 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3861 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3862 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3863 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3864 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3865 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3866 }
3867 }
3868
3869
3870 static bfd_boolean
3871 is_indirect_call_opcode (xtensa_opcode opcode)
3872 {
3873 init_call_opcodes ();
3874 return (opcode == callx0_op
3875 || opcode == callx4_op
3876 || opcode == callx8_op
3877 || opcode == callx12_op);
3878 }
3879
3880
3881 static bfd_boolean
3882 is_direct_call_opcode (xtensa_opcode opcode)
3883 {
3884 init_call_opcodes ();
3885 return (opcode == call0_op
3886 || opcode == call4_op
3887 || opcode == call8_op
3888 || opcode == call12_op);
3889 }
3890
3891
3892 static bfd_boolean
3893 is_windowed_call_opcode (xtensa_opcode opcode)
3894 {
3895 init_call_opcodes ();
3896 return (opcode == call4_op
3897 || opcode == call8_op
3898 || opcode == call12_op
3899 || opcode == callx4_op
3900 || opcode == callx8_op
3901 || opcode == callx12_op);
3902 }
3903
3904
3905 static bfd_boolean
3906 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3907 {
3908 unsigned dst = (unsigned) -1;
3909
3910 init_call_opcodes ();
3911 if (opcode == callx0_op)
3912 dst = 0;
3913 else if (opcode == callx4_op)
3914 dst = 4;
3915 else if (opcode == callx8_op)
3916 dst = 8;
3917 else if (opcode == callx12_op)
3918 dst = 12;
3919
3920 if (dst == (unsigned) -1)
3921 return FALSE;
3922
3923 *pdst = dst;
3924 return TRUE;
3925 }
3926
3927
3928 static xtensa_opcode
3929 get_const16_opcode (void)
3930 {
3931 static bfd_boolean done_lookup = FALSE;
3932 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3933 if (!done_lookup)
3934 {
3935 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3936 done_lookup = TRUE;
3937 }
3938 return const16_opcode;
3939 }
3940
3941
3942 static xtensa_opcode
3943 get_l32r_opcode (void)
3944 {
3945 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3946 static bfd_boolean done_lookup = FALSE;
3947
3948 if (!done_lookup)
3949 {
3950 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3951 done_lookup = TRUE;
3952 }
3953 return l32r_opcode;
3954 }
3955
3956
3957 static bfd_vma
3958 l32r_offset (bfd_vma addr, bfd_vma pc)
3959 {
3960 bfd_vma offset;
3961
3962 offset = addr - ((pc+3) & -4);
3963 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3964 offset = (signed int) offset >> 2;
3965 BFD_ASSERT ((signed int) offset >> 16 == -1);
3966 return offset;
3967 }
3968
3969
3970 static int
3971 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3972 {
3973 xtensa_isa isa = xtensa_default_isa;
3974 int last_immed, last_opnd, opi;
3975
3976 if (opcode == XTENSA_UNDEFINED)
3977 return XTENSA_UNDEFINED;
3978
3979 /* Find the last visible PC-relative immediate operand for the opcode.
3980 If there are no PC-relative immediates, then choose the last visible
3981 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3982 last_immed = XTENSA_UNDEFINED;
3983 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3984 for (opi = last_opnd - 1; opi >= 0; opi--)
3985 {
3986 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3987 continue;
3988 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3989 {
3990 last_immed = opi;
3991 break;
3992 }
3993 if (last_immed == XTENSA_UNDEFINED
3994 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3995 last_immed = opi;
3996 }
3997 if (last_immed < 0)
3998 return XTENSA_UNDEFINED;
3999
4000 /* If the operand number was specified in an old-style relocation,
4001 check for consistency with the operand computed above. */
4002 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4003 {
4004 int reloc_opnd = r_type - R_XTENSA_OP0;
4005 if (reloc_opnd != last_immed)
4006 return XTENSA_UNDEFINED;
4007 }
4008
4009 return last_immed;
4010 }
4011
4012
4013 int
4014 get_relocation_slot (int r_type)
4015 {
4016 switch (r_type)
4017 {
4018 case R_XTENSA_OP0:
4019 case R_XTENSA_OP1:
4020 case R_XTENSA_OP2:
4021 return 0;
4022
4023 default:
4024 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4025 return r_type - R_XTENSA_SLOT0_OP;
4026 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4027 return r_type - R_XTENSA_SLOT0_ALT;
4028 break;
4029 }
4030
4031 return XTENSA_UNDEFINED;
4032 }
4033
4034
4035 /* Get the opcode for a relocation. */
4036
4037 static xtensa_opcode
4038 get_relocation_opcode (bfd *abfd,
4039 asection *sec,
4040 bfd_byte *contents,
4041 Elf_Internal_Rela *irel)
4042 {
4043 static xtensa_insnbuf ibuff = NULL;
4044 static xtensa_insnbuf sbuff = NULL;
4045 xtensa_isa isa = xtensa_default_isa;
4046 xtensa_format fmt;
4047 int slot;
4048
4049 if (contents == NULL)
4050 return XTENSA_UNDEFINED;
4051
4052 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4053 return XTENSA_UNDEFINED;
4054
4055 if (ibuff == NULL)
4056 {
4057 ibuff = xtensa_insnbuf_alloc (isa);
4058 sbuff = xtensa_insnbuf_alloc (isa);
4059 }
4060
4061 /* Decode the instruction. */
4062 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4063 sec->size - irel->r_offset);
4064 fmt = xtensa_format_decode (isa, ibuff);
4065 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4066 if (slot == XTENSA_UNDEFINED)
4067 return XTENSA_UNDEFINED;
4068 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4069 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4070 }
4071
4072
4073 bfd_boolean
4074 is_l32r_relocation (bfd *abfd,
4075 asection *sec,
4076 bfd_byte *contents,
4077 Elf_Internal_Rela *irel)
4078 {
4079 xtensa_opcode opcode;
4080 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4081 return FALSE;
4082 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4083 return (opcode == get_l32r_opcode ());
4084 }
4085
4086
4087 static bfd_size_type
4088 get_asm_simplify_size (bfd_byte *contents,
4089 bfd_size_type content_len,
4090 bfd_size_type offset)
4091 {
4092 bfd_size_type insnlen, size = 0;
4093
4094 /* Decode the size of the next two instructions. */
4095 insnlen = insn_decode_len (contents, content_len, offset);
4096 if (insnlen == 0)
4097 return 0;
4098
4099 size += insnlen;
4100
4101 insnlen = insn_decode_len (contents, content_len, offset + size);
4102 if (insnlen == 0)
4103 return 0;
4104
4105 size += insnlen;
4106 return size;
4107 }
4108
4109
4110 bfd_boolean
4111 is_alt_relocation (int r_type)
4112 {
4113 return (r_type >= R_XTENSA_SLOT0_ALT
4114 && r_type <= R_XTENSA_SLOT14_ALT);
4115 }
4116
4117
4118 bfd_boolean
4119 is_operand_relocation (int r_type)
4120 {
4121 switch (r_type)
4122 {
4123 case R_XTENSA_OP0:
4124 case R_XTENSA_OP1:
4125 case R_XTENSA_OP2:
4126 return TRUE;
4127
4128 default:
4129 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4130 return TRUE;
4131 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4132 return TRUE;
4133 break;
4134 }
4135
4136 return FALSE;
4137 }
4138
4139
4140 #define MIN_INSN_LENGTH 2
4141
4142 /* Return 0 if it fails to decode. */
4143
4144 bfd_size_type
4145 insn_decode_len (bfd_byte *contents,
4146 bfd_size_type content_len,
4147 bfd_size_type offset)
4148 {
4149 int insn_len;
4150 xtensa_isa isa = xtensa_default_isa;
4151 xtensa_format fmt;
4152 static xtensa_insnbuf ibuff = NULL;
4153
4154 if (offset + MIN_INSN_LENGTH > content_len)
4155 return 0;
4156
4157 if (ibuff == NULL)
4158 ibuff = xtensa_insnbuf_alloc (isa);
4159 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4160 content_len - offset);
4161 fmt = xtensa_format_decode (isa, ibuff);
4162 if (fmt == XTENSA_UNDEFINED)
4163 return 0;
4164 insn_len = xtensa_format_length (isa, fmt);
4165 if (insn_len == XTENSA_UNDEFINED)
4166 return 0;
4167 return insn_len;
4168 }
4169
4170
4171 /* Decode the opcode for a single slot instruction.
4172 Return 0 if it fails to decode or the instruction is multi-slot. */
4173
4174 xtensa_opcode
4175 insn_decode_opcode (bfd_byte *contents,
4176 bfd_size_type content_len,
4177 bfd_size_type offset,
4178 int slot)
4179 {
4180 xtensa_isa isa = xtensa_default_isa;
4181 xtensa_format fmt;
4182 static xtensa_insnbuf insnbuf = NULL;
4183 static xtensa_insnbuf slotbuf = NULL;
4184
4185 if (offset + MIN_INSN_LENGTH > content_len)
4186 return XTENSA_UNDEFINED;
4187
4188 if (insnbuf == NULL)
4189 {
4190 insnbuf = xtensa_insnbuf_alloc (isa);
4191 slotbuf = xtensa_insnbuf_alloc (isa);
4192 }
4193
4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4195 content_len - offset);
4196 fmt = xtensa_format_decode (isa, insnbuf);
4197 if (fmt == XTENSA_UNDEFINED)
4198 return XTENSA_UNDEFINED;
4199
4200 if (slot >= xtensa_format_num_slots (isa, fmt))
4201 return XTENSA_UNDEFINED;
4202
4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4205 }
4206
4207
4208 /* The offset is the offset in the contents.
4209 The address is the address of that offset. */
4210
4211 static bfd_boolean
4212 check_branch_target_aligned (bfd_byte *contents,
4213 bfd_size_type content_length,
4214 bfd_vma offset,
4215 bfd_vma address)
4216 {
4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4218 if (insn_len == 0)
4219 return FALSE;
4220 return check_branch_target_aligned_address (address, insn_len);
4221 }
4222
4223
4224 static bfd_boolean
4225 check_loop_aligned (bfd_byte *contents,
4226 bfd_size_type content_length,
4227 bfd_vma offset,
4228 bfd_vma address)
4229 {
4230 bfd_size_type loop_len, insn_len;
4231 xtensa_opcode opcode;
4232
4233 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4234 if (opcode == XTENSA_UNDEFINED
4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4236 {
4237 BFD_ASSERT (FALSE);
4238 return FALSE;
4239 }
4240
4241 loop_len = insn_decode_len (contents, content_length, offset);
4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4243 if (loop_len == 0 || insn_len == 0)
4244 {
4245 BFD_ASSERT (FALSE);
4246 return FALSE;
4247 }
4248
4249 return check_branch_target_aligned_address (address + loop_len, insn_len);
4250 }
4251
4252
4253 static bfd_boolean
4254 check_branch_target_aligned_address (bfd_vma addr, int len)
4255 {
4256 if (len == 8)
4257 return (addr % 8 == 0);
4258 return ((addr >> 2) == ((addr + len - 1) >> 2));
4259 }
4260
4261 \f
4262 /* Instruction widening and narrowing. */
4263
4264 /* When FLIX is available we need to access certain instructions only
4265 when they are 16-bit or 24-bit instructions. This table caches
4266 information about such instructions by walking through all the
4267 opcodes and finding the smallest single-slot format into which each
4268 can be encoded. */
4269
4270 static xtensa_format *op_single_fmt_table = NULL;
4271
4272
4273 static void
4274 init_op_single_format_table (void)
4275 {
4276 xtensa_isa isa = xtensa_default_isa;
4277 xtensa_insnbuf ibuf;
4278 xtensa_opcode opcode;
4279 xtensa_format fmt;
4280 int num_opcodes;
4281
4282 if (op_single_fmt_table)
4283 return;
4284
4285 ibuf = xtensa_insnbuf_alloc (isa);
4286 num_opcodes = xtensa_isa_num_opcodes (isa);
4287
4288 op_single_fmt_table = (xtensa_format *)
4289 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4290 for (opcode = 0; opcode < num_opcodes; opcode++)
4291 {
4292 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4293 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4294 {
4295 if (xtensa_format_num_slots (isa, fmt) == 1
4296 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4297 {
4298 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4299 int fmt_length = xtensa_format_length (isa, fmt);
4300 if (old_fmt == XTENSA_UNDEFINED
4301 || fmt_length < xtensa_format_length (isa, old_fmt))
4302 op_single_fmt_table[opcode] = fmt;
4303 }
4304 }
4305 }
4306 xtensa_insnbuf_free (isa, ibuf);
4307 }
4308
4309
4310 static xtensa_format
4311 get_single_format (xtensa_opcode opcode)
4312 {
4313 init_op_single_format_table ();
4314 return op_single_fmt_table[opcode];
4315 }
4316
4317
4318 /* For the set of narrowable instructions we do NOT include the
4319 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4320 involved during linker relaxation that may require these to
4321 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4322 requires special case code to ensure it only works when op1 == op2. */
4323
4324 struct string_pair
4325 {
4326 const char *wide;
4327 const char *narrow;
4328 };
4329
4330 struct string_pair narrowable[] =
4331 {
4332 { "add", "add.n" },
4333 { "addi", "addi.n" },
4334 { "addmi", "addi.n" },
4335 { "l32i", "l32i.n" },
4336 { "movi", "movi.n" },
4337 { "ret", "ret.n" },
4338 { "retw", "retw.n" },
4339 { "s32i", "s32i.n" },
4340 { "or", "mov.n" } /* special case only when op1 == op2 */
4341 };
4342
4343 struct string_pair widenable[] =
4344 {
4345 { "add", "add.n" },
4346 { "addi", "addi.n" },
4347 { "addmi", "addi.n" },
4348 { "beqz", "beqz.n" },
4349 { "bnez", "bnez.n" },
4350 { "l32i", "l32i.n" },
4351 { "movi", "movi.n" },
4352 { "ret", "ret.n" },
4353 { "retw", "retw.n" },
4354 { "s32i", "s32i.n" },
4355 { "or", "mov.n" } /* special case only when op1 == op2 */
4356 };
4357
4358
4359 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4360 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4361 return the instruction buffer holding the narrow instruction. Otherwise,
4362 return 0. The set of valid narrowing are specified by a string table
4363 but require some special case operand checks in some cases. */
4364
4365 static xtensa_insnbuf
4366 can_narrow_instruction (xtensa_insnbuf slotbuf,
4367 xtensa_format fmt,
4368 xtensa_opcode opcode)
4369 {
4370 xtensa_isa isa = xtensa_default_isa;
4371 xtensa_format o_fmt;
4372 unsigned opi;
4373
4374 static xtensa_insnbuf o_insnbuf = NULL;
4375 static xtensa_insnbuf o_slotbuf = NULL;
4376
4377 if (o_insnbuf == NULL)
4378 {
4379 o_insnbuf = xtensa_insnbuf_alloc (isa);
4380 o_slotbuf = xtensa_insnbuf_alloc (isa);
4381 }
4382
4383 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4384 {
4385 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4386
4387 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4388 {
4389 uint32 value, newval;
4390 int i, operand_count, o_operand_count;
4391 xtensa_opcode o_opcode;
4392
4393 /* Address does not matter in this case. We might need to
4394 fix it to handle branches/jumps. */
4395 bfd_vma self_address = 0;
4396
4397 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4398 if (o_opcode == XTENSA_UNDEFINED)
4399 return 0;
4400 o_fmt = get_single_format (o_opcode);
4401 if (o_fmt == XTENSA_UNDEFINED)
4402 return 0;
4403
4404 if (xtensa_format_length (isa, fmt) != 3
4405 || xtensa_format_length (isa, o_fmt) != 2)
4406 return 0;
4407
4408 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4409 operand_count = xtensa_opcode_num_operands (isa, opcode);
4410 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4411
4412 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4413 return 0;
4414
4415 if (!is_or)
4416 {
4417 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4418 return 0;
4419 }
4420 else
4421 {
4422 uint32 rawval0, rawval1, rawval2;
4423
4424 if (o_operand_count + 1 != operand_count
4425 || xtensa_operand_get_field (isa, opcode, 0,
4426 fmt, 0, slotbuf, &rawval0) != 0
4427 || xtensa_operand_get_field (isa, opcode, 1,
4428 fmt, 0, slotbuf, &rawval1) != 0
4429 || xtensa_operand_get_field (isa, opcode, 2,
4430 fmt, 0, slotbuf, &rawval2) != 0
4431 || rawval1 != rawval2
4432 || rawval0 == rawval1 /* it is a nop */)
4433 return 0;
4434 }
4435
4436 for (i = 0; i < o_operand_count; ++i)
4437 {
4438 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4439 slotbuf, &value)
4440 || xtensa_operand_decode (isa, opcode, i, &value))
4441 return 0;
4442
4443 /* PC-relative branches need adjustment, but
4444 the PC-rel operand will always have a relocation. */
4445 newval = value;
4446 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4447 self_address)
4448 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4449 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4450 o_slotbuf, newval))
4451 return 0;
4452 }
4453
4454 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4455 return 0;
4456
4457 return o_insnbuf;
4458 }
4459 }
4460 return 0;
4461 }
4462
4463
4464 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4465 the action in-place directly into the contents and return TRUE. Otherwise,
4466 the return value is FALSE and the contents are not modified. */
4467
4468 static bfd_boolean
4469 narrow_instruction (bfd_byte *contents,
4470 bfd_size_type content_length,
4471 bfd_size_type offset)
4472 {
4473 xtensa_opcode opcode;
4474 bfd_size_type insn_len;
4475 xtensa_isa isa = xtensa_default_isa;
4476 xtensa_format fmt;
4477 xtensa_insnbuf o_insnbuf;
4478
4479 static xtensa_insnbuf insnbuf = NULL;
4480 static xtensa_insnbuf slotbuf = NULL;
4481
4482 if (insnbuf == NULL)
4483 {
4484 insnbuf = xtensa_insnbuf_alloc (isa);
4485 slotbuf = xtensa_insnbuf_alloc (isa);
4486 }
4487
4488 BFD_ASSERT (offset < content_length);
4489
4490 if (content_length < 2)
4491 return FALSE;
4492
4493 /* We will hand-code a few of these for a little while.
4494 These have all been specified in the assembler aleady. */
4495 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4496 content_length - offset);
4497 fmt = xtensa_format_decode (isa, insnbuf);
4498 if (xtensa_format_num_slots (isa, fmt) != 1)
4499 return FALSE;
4500
4501 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4502 return FALSE;
4503
4504 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4505 if (opcode == XTENSA_UNDEFINED)
4506 return FALSE;
4507 insn_len = xtensa_format_length (isa, fmt);
4508 if (insn_len > content_length)
4509 return FALSE;
4510
4511 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4512 if (o_insnbuf)
4513 {
4514 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4515 content_length - offset);
4516 return TRUE;
4517 }
4518
4519 return FALSE;
4520 }
4521
4522
4523 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4524 "density" instruction to a standard 3-byte instruction. If it is valid,
4525 return the instruction buffer holding the wide instruction. Otherwise,
4526 return 0. The set of valid widenings are specified by a string table
4527 but require some special case operand checks in some cases. */
4528
4529 static xtensa_insnbuf
4530 can_widen_instruction (xtensa_insnbuf slotbuf,
4531 xtensa_format fmt,
4532 xtensa_opcode opcode)
4533 {
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format o_fmt;
4536 unsigned opi;
4537
4538 static xtensa_insnbuf o_insnbuf = NULL;
4539 static xtensa_insnbuf o_slotbuf = NULL;
4540
4541 if (o_insnbuf == NULL)
4542 {
4543 o_insnbuf = xtensa_insnbuf_alloc (isa);
4544 o_slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4548 {
4549 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4550 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4551 || strcmp ("bnez", widenable[opi].wide) == 0);
4552
4553 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4554 {
4555 uint32 value, newval;
4556 int i, operand_count, o_operand_count, check_operand_count;
4557 xtensa_opcode o_opcode;
4558
4559 /* Address does not matter in this case. We might need to fix it
4560 to handle branches/jumps. */
4561 bfd_vma self_address = 0;
4562
4563 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4564 if (o_opcode == XTENSA_UNDEFINED)
4565 return 0;
4566 o_fmt = get_single_format (o_opcode);
4567 if (o_fmt == XTENSA_UNDEFINED)
4568 return 0;
4569
4570 if (xtensa_format_length (isa, fmt) != 2
4571 || xtensa_format_length (isa, o_fmt) != 3)
4572 return 0;
4573
4574 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4575 operand_count = xtensa_opcode_num_operands (isa, opcode);
4576 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4577 check_operand_count = o_operand_count;
4578
4579 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4580 return 0;
4581
4582 if (!is_or)
4583 {
4584 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4585 return 0;
4586 }
4587 else
4588 {
4589 uint32 rawval0, rawval1;
4590
4591 if (o_operand_count != operand_count + 1
4592 || xtensa_operand_get_field (isa, opcode, 0,
4593 fmt, 0, slotbuf, &rawval0) != 0
4594 || xtensa_operand_get_field (isa, opcode, 1,
4595 fmt, 0, slotbuf, &rawval1) != 0
4596 || rawval0 == rawval1 /* it is a nop */)
4597 return 0;
4598 }
4599 if (is_branch)
4600 check_operand_count--;
4601
4602 for (i = 0; i < check_operand_count; i++)
4603 {
4604 int new_i = i;
4605 if (is_or && i == o_operand_count - 1)
4606 new_i = i - 1;
4607 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4608 slotbuf, &value)
4609 || xtensa_operand_decode (isa, opcode, new_i, &value))
4610 return 0;
4611
4612 /* PC-relative branches need adjustment, but
4613 the PC-rel operand will always have a relocation. */
4614 newval = value;
4615 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4616 self_address)
4617 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4618 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4619 o_slotbuf, newval))
4620 return 0;
4621 }
4622
4623 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4624 return 0;
4625
4626 return o_insnbuf;
4627 }
4628 }
4629 return 0;
4630 }
4631
4632
4633 /* Attempt to widen an instruction. If the widening is valid, perform
4634 the action in-place directly into the contents and return TRUE. Otherwise,
4635 the return value is FALSE and the contents are not modified. */
4636
4637 static bfd_boolean
4638 widen_instruction (bfd_byte *contents,
4639 bfd_size_type content_length,
4640 bfd_size_type offset)
4641 {
4642 xtensa_opcode opcode;
4643 bfd_size_type insn_len;
4644 xtensa_isa isa = xtensa_default_isa;
4645 xtensa_format fmt;
4646 xtensa_insnbuf o_insnbuf;
4647
4648 static xtensa_insnbuf insnbuf = NULL;
4649 static xtensa_insnbuf slotbuf = NULL;
4650
4651 if (insnbuf == NULL)
4652 {
4653 insnbuf = xtensa_insnbuf_alloc (isa);
4654 slotbuf = xtensa_insnbuf_alloc (isa);
4655 }
4656
4657 BFD_ASSERT (offset < content_length);
4658
4659 if (content_length < 2)
4660 return FALSE;
4661
4662 /* We will hand-code a few of these for a little while.
4663 These have all been specified in the assembler aleady. */
4664 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4665 content_length - offset);
4666 fmt = xtensa_format_decode (isa, insnbuf);
4667 if (xtensa_format_num_slots (isa, fmt) != 1)
4668 return FALSE;
4669
4670 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4671 return FALSE;
4672
4673 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4674 if (opcode == XTENSA_UNDEFINED)
4675 return FALSE;
4676 insn_len = xtensa_format_length (isa, fmt);
4677 if (insn_len > content_length)
4678 return FALSE;
4679
4680 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4681 if (o_insnbuf)
4682 {
4683 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4684 content_length - offset);
4685 return TRUE;
4686 }
4687 return FALSE;
4688 }
4689
4690 \f
4691 /* Code for transforming CALLs at link-time. */
4692
4693 static bfd_reloc_status_type
4694 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4695 bfd_vma address,
4696 bfd_vma content_length,
4697 char **error_message)
4698 {
4699 static xtensa_insnbuf insnbuf = NULL;
4700 static xtensa_insnbuf slotbuf = NULL;
4701 xtensa_format core_format = XTENSA_UNDEFINED;
4702 xtensa_opcode opcode;
4703 xtensa_opcode direct_call_opcode;
4704 xtensa_isa isa = xtensa_default_isa;
4705 bfd_byte *chbuf = contents + address;
4706 int opn;
4707
4708 if (insnbuf == NULL)
4709 {
4710 insnbuf = xtensa_insnbuf_alloc (isa);
4711 slotbuf = xtensa_insnbuf_alloc (isa);
4712 }
4713
4714 if (content_length < address)
4715 {
4716 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4717 return bfd_reloc_other;
4718 }
4719
4720 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4721 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4722 if (direct_call_opcode == XTENSA_UNDEFINED)
4723 {
4724 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4725 return bfd_reloc_other;
4726 }
4727
4728 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4729 core_format = xtensa_format_lookup (isa, "x24");
4730 opcode = xtensa_opcode_lookup (isa, "or");
4731 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4732 for (opn = 0; opn < 3; opn++)
4733 {
4734 uint32 regno = 1;
4735 xtensa_operand_encode (isa, opcode, opn, &regno);
4736 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4737 slotbuf, regno);
4738 }
4739 xtensa_format_encode (isa, core_format, insnbuf);
4740 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4741 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4742
4743 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4744 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4745 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4746
4747 xtensa_format_encode (isa, core_format, insnbuf);
4748 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4749 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4750 content_length - address - 3);
4751
4752 return bfd_reloc_ok;
4753 }
4754
4755
4756 static bfd_reloc_status_type
4757 contract_asm_expansion (bfd_byte *contents,
4758 bfd_vma content_length,
4759 Elf_Internal_Rela *irel,
4760 char **error_message)
4761 {
4762 bfd_reloc_status_type retval =
4763 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4764 error_message);
4765
4766 if (retval != bfd_reloc_ok)
4767 return bfd_reloc_dangerous;
4768
4769 /* Update the irel->r_offset field so that the right immediate and
4770 the right instruction are modified during the relocation. */
4771 irel->r_offset += 3;
4772 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4773 return bfd_reloc_ok;
4774 }
4775
4776
4777 static xtensa_opcode
4778 swap_callx_for_call_opcode (xtensa_opcode opcode)
4779 {
4780 init_call_opcodes ();
4781
4782 if (opcode == callx0_op) return call0_op;
4783 if (opcode == callx4_op) return call4_op;
4784 if (opcode == callx8_op) return call8_op;
4785 if (opcode == callx12_op) return call12_op;
4786
4787 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4788 return XTENSA_UNDEFINED;
4789 }
4790
4791
4792 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4793 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4794 If not, return XTENSA_UNDEFINED. */
4795
4796 #define L32R_TARGET_REG_OPERAND 0
4797 #define CONST16_TARGET_REG_OPERAND 0
4798 #define CALLN_SOURCE_OPERAND 0
4799
4800 static xtensa_opcode
4801 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4802 {
4803 static xtensa_insnbuf insnbuf = NULL;
4804 static xtensa_insnbuf slotbuf = NULL;
4805 xtensa_format fmt;
4806 xtensa_opcode opcode;
4807 xtensa_isa isa = xtensa_default_isa;
4808 uint32 regno, const16_regno, call_regno;
4809 int offset = 0;
4810
4811 if (insnbuf == NULL)
4812 {
4813 insnbuf = xtensa_insnbuf_alloc (isa);
4814 slotbuf = xtensa_insnbuf_alloc (isa);
4815 }
4816
4817 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4818 fmt = xtensa_format_decode (isa, insnbuf);
4819 if (fmt == XTENSA_UNDEFINED
4820 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4821 return XTENSA_UNDEFINED;
4822
4823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4824 if (opcode == XTENSA_UNDEFINED)
4825 return XTENSA_UNDEFINED;
4826
4827 if (opcode == get_l32r_opcode ())
4828 {
4829 if (p_uses_l32r)
4830 *p_uses_l32r = TRUE;
4831 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 fmt, 0, slotbuf, &regno)
4833 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4834 &regno))
4835 return XTENSA_UNDEFINED;
4836 }
4837 else if (opcode == get_const16_opcode ())
4838 {
4839 if (p_uses_l32r)
4840 *p_uses_l32r = FALSE;
4841 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 fmt, 0, slotbuf, &regno)
4843 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4844 &regno))
4845 return XTENSA_UNDEFINED;
4846
4847 /* Check that the next instruction is also CONST16. */
4848 offset += xtensa_format_length (isa, fmt);
4849 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4850 fmt = xtensa_format_decode (isa, insnbuf);
4851 if (fmt == XTENSA_UNDEFINED
4852 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4853 return XTENSA_UNDEFINED;
4854 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4855 if (opcode != get_const16_opcode ())
4856 return XTENSA_UNDEFINED;
4857
4858 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 fmt, 0, slotbuf, &const16_regno)
4860 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4861 &const16_regno)
4862 || const16_regno != regno)
4863 return XTENSA_UNDEFINED;
4864 }
4865 else
4866 return XTENSA_UNDEFINED;
4867
4868 /* Next instruction should be an CALLXn with operand 0 == regno. */
4869 offset += xtensa_format_length (isa, fmt);
4870 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4871 fmt = xtensa_format_decode (isa, insnbuf);
4872 if (fmt == XTENSA_UNDEFINED
4873 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4874 return XTENSA_UNDEFINED;
4875 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4876 if (opcode == XTENSA_UNDEFINED
4877 || !is_indirect_call_opcode (opcode))
4878 return XTENSA_UNDEFINED;
4879
4880 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4881 fmt, 0, slotbuf, &call_regno)
4882 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4883 &call_regno))
4884 return XTENSA_UNDEFINED;
4885
4886 if (call_regno != regno)
4887 return XTENSA_UNDEFINED;
4888
4889 return opcode;
4890 }
4891
4892 \f
4893 /* Data structures used during relaxation. */
4894
4895 /* r_reloc: relocation values. */
4896
4897 /* Through the relaxation process, we need to keep track of the values
4898 that will result from evaluating relocations. The standard ELF
4899 relocation structure is not sufficient for this purpose because we're
4900 operating on multiple input files at once, so we need to know which
4901 input file a relocation refers to. The r_reloc structure thus
4902 records both the input file (bfd) and ELF relocation.
4903
4904 For efficiency, an r_reloc also contains a "target_offset" field to
4905 cache the target-section-relative offset value that is represented by
4906 the relocation.
4907
4908 The r_reloc also contains a virtual offset that allows multiple
4909 inserted literals to be placed at the same "address" with
4910 different offsets. */
4911
4912 typedef struct r_reloc_struct r_reloc;
4913
4914 struct r_reloc_struct
4915 {
4916 bfd *abfd;
4917 Elf_Internal_Rela rela;
4918 bfd_vma target_offset;
4919 bfd_vma virtual_offset;
4920 };
4921
4922
4923 /* The r_reloc structure is included by value in literal_value, but not
4924 every literal_value has an associated relocation -- some are simple
4925 constants. In such cases, we set all the fields in the r_reloc
4926 struct to zero. The r_reloc_is_const function should be used to
4927 detect this case. */
4928
4929 static bfd_boolean
4930 r_reloc_is_const (const r_reloc *r_rel)
4931 {
4932 return (r_rel->abfd == NULL);
4933 }
4934
4935
4936 static bfd_vma
4937 r_reloc_get_target_offset (const r_reloc *r_rel)
4938 {
4939 bfd_vma target_offset;
4940 unsigned long r_symndx;
4941
4942 BFD_ASSERT (!r_reloc_is_const (r_rel));
4943 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4945 return (target_offset + r_rel->rela.r_addend);
4946 }
4947
4948
4949 static struct elf_link_hash_entry *
4950 r_reloc_get_hash_entry (const r_reloc *r_rel)
4951 {
4952 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4953 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4954 }
4955
4956
4957 static asection *
4958 r_reloc_get_section (const r_reloc *r_rel)
4959 {
4960 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4961 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4962 }
4963
4964
4965 static bfd_boolean
4966 r_reloc_is_defined (const r_reloc *r_rel)
4967 {
4968 asection *sec;
4969 if (r_rel == NULL)
4970 return FALSE;
4971
4972 sec = r_reloc_get_section (r_rel);
4973 if (sec == bfd_abs_section_ptr
4974 || sec == bfd_com_section_ptr
4975 || sec == bfd_und_section_ptr)
4976 return FALSE;
4977 return TRUE;
4978 }
4979
4980
4981 static void
4982 r_reloc_init (r_reloc *r_rel,
4983 bfd *abfd,
4984 Elf_Internal_Rela *irel,
4985 bfd_byte *contents,
4986 bfd_size_type content_length)
4987 {
4988 int r_type;
4989 reloc_howto_type *howto;
4990
4991 if (irel)
4992 {
4993 r_rel->rela = *irel;
4994 r_rel->abfd = abfd;
4995 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4996 r_rel->virtual_offset = 0;
4997 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4998 howto = &elf_howto_table[r_type];
4999 if (howto->partial_inplace)
5000 {
5001 bfd_vma inplace_val;
5002 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5003
5004 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5005 r_rel->target_offset += inplace_val;
5006 }
5007 }
5008 else
5009 memset (r_rel, 0, sizeof (r_reloc));
5010 }
5011
5012
5013 #if DEBUG
5014
5015 static void
5016 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5017 {
5018 if (r_reloc_is_defined (r_rel))
5019 {
5020 asection *sec = r_reloc_get_section (r_rel);
5021 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5022 }
5023 else if (r_reloc_get_hash_entry (r_rel))
5024 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5025 else
5026 fprintf (fp, " ?? + ");
5027
5028 fprintf_vma (fp, r_rel->target_offset);
5029 if (r_rel->virtual_offset)
5030 {
5031 fprintf (fp, " + ");
5032 fprintf_vma (fp, r_rel->virtual_offset);
5033 }
5034
5035 fprintf (fp, ")");
5036 }
5037
5038 #endif /* DEBUG */
5039
5040 \f
5041 /* source_reloc: relocations that reference literals. */
5042
5043 /* To determine whether literals can be coalesced, we need to first
5044 record all the relocations that reference the literals. The
5045 source_reloc structure below is used for this purpose. The
5046 source_reloc entries are kept in a per-literal-section array, sorted
5047 by offset within the literal section (i.e., target offset).
5048
5049 The source_sec and r_rel.rela.r_offset fields identify the source of
5050 the relocation. The r_rel field records the relocation value, i.e.,
5051 the offset of the literal being referenced. The opnd field is needed
5052 to determine the range of the immediate field to which the relocation
5053 applies, so we can determine whether another literal with the same
5054 value is within range. The is_null field is true when the relocation
5055 is being removed (e.g., when an L32R is being removed due to a CALLX
5056 that is converted to a direct CALL). */
5057
5058 typedef struct source_reloc_struct source_reloc;
5059
5060 struct source_reloc_struct
5061 {
5062 asection *source_sec;
5063 r_reloc r_rel;
5064 xtensa_opcode opcode;
5065 int opnd;
5066 bfd_boolean is_null;
5067 bfd_boolean is_abs_literal;
5068 };
5069
5070
5071 static void
5072 init_source_reloc (source_reloc *reloc,
5073 asection *source_sec,
5074 const r_reloc *r_rel,
5075 xtensa_opcode opcode,
5076 int opnd,
5077 bfd_boolean is_abs_literal)
5078 {
5079 reloc->source_sec = source_sec;
5080 reloc->r_rel = *r_rel;
5081 reloc->opcode = opcode;
5082 reloc->opnd = opnd;
5083 reloc->is_null = FALSE;
5084 reloc->is_abs_literal = is_abs_literal;
5085 }
5086
5087
5088 /* Find the source_reloc for a particular source offset and relocation
5089 type. Note that the array is sorted by _target_ offset, so this is
5090 just a linear search. */
5091
5092 static source_reloc *
5093 find_source_reloc (source_reloc *src_relocs,
5094 int src_count,
5095 asection *sec,
5096 Elf_Internal_Rela *irel)
5097 {
5098 int i;
5099
5100 for (i = 0; i < src_count; i++)
5101 {
5102 if (src_relocs[i].source_sec == sec
5103 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5104 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5105 == ELF32_R_TYPE (irel->r_info)))
5106 return &src_relocs[i];
5107 }
5108
5109 return NULL;
5110 }
5111
5112
5113 static int
5114 source_reloc_compare (const void *ap, const void *bp)
5115 {
5116 const source_reloc *a = (const source_reloc *) ap;
5117 const source_reloc *b = (const source_reloc *) bp;
5118
5119 if (a->r_rel.target_offset != b->r_rel.target_offset)
5120 return (a->r_rel.target_offset - b->r_rel.target_offset);
5121
5122 /* We don't need to sort on these criteria for correctness,
5123 but enforcing a more strict ordering prevents unstable qsort
5124 from behaving differently with different implementations.
5125 Without the code below we get correct but different results
5126 on Solaris 2.7 and 2.8. We would like to always produce the
5127 same results no matter the host. */
5128
5129 if ((!a->is_null) - (!b->is_null))
5130 return ((!a->is_null) - (!b->is_null));
5131 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5132 }
5133
5134 \f
5135 /* Literal values and value hash tables. */
5136
5137 /* Literals with the same value can be coalesced. The literal_value
5138 structure records the value of a literal: the "r_rel" field holds the
5139 information from the relocation on the literal (if there is one) and
5140 the "value" field holds the contents of the literal word itself.
5141
5142 The value_map structure records a literal value along with the
5143 location of a literal holding that value. The value_map hash table
5144 is indexed by the literal value, so that we can quickly check if a
5145 particular literal value has been seen before and is thus a candidate
5146 for coalescing. */
5147
5148 typedef struct literal_value_struct literal_value;
5149 typedef struct value_map_struct value_map;
5150 typedef struct value_map_hash_table_struct value_map_hash_table;
5151
5152 struct literal_value_struct
5153 {
5154 r_reloc r_rel;
5155 unsigned long value;
5156 bfd_boolean is_abs_literal;
5157 };
5158
5159 struct value_map_struct
5160 {
5161 literal_value val; /* The literal value. */
5162 r_reloc loc; /* Location of the literal. */
5163 value_map *next;
5164 };
5165
5166 struct value_map_hash_table_struct
5167 {
5168 unsigned bucket_count;
5169 value_map **buckets;
5170 unsigned count;
5171 bfd_boolean has_last_loc;
5172 r_reloc last_loc;
5173 };
5174
5175
5176 static void
5177 init_literal_value (literal_value *lit,
5178 const r_reloc *r_rel,
5179 unsigned long value,
5180 bfd_boolean is_abs_literal)
5181 {
5182 lit->r_rel = *r_rel;
5183 lit->value = value;
5184 lit->is_abs_literal = is_abs_literal;
5185 }
5186
5187
5188 static bfd_boolean
5189 literal_value_equal (const literal_value *src1,
5190 const literal_value *src2,
5191 bfd_boolean final_static_link)
5192 {
5193 struct elf_link_hash_entry *h1, *h2;
5194
5195 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5196 return FALSE;
5197
5198 if (r_reloc_is_const (&src1->r_rel))
5199 return (src1->value == src2->value);
5200
5201 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5202 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5203 return FALSE;
5204
5205 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5206 return FALSE;
5207
5208 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5209 return FALSE;
5210
5211 if (src1->value != src2->value)
5212 return FALSE;
5213
5214 /* Now check for the same section (if defined) or the same elf_hash
5215 (if undefined or weak). */
5216 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5217 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5218 if (r_reloc_is_defined (&src1->r_rel)
5219 && (final_static_link
5220 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5221 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5222 {
5223 if (r_reloc_get_section (&src1->r_rel)
5224 != r_reloc_get_section (&src2->r_rel))
5225 return FALSE;
5226 }
5227 else
5228 {
5229 /* Require that the hash entries (i.e., symbols) be identical. */
5230 if (h1 != h2 || h1 == 0)
5231 return FALSE;
5232 }
5233
5234 if (src1->is_abs_literal != src2->is_abs_literal)
5235 return FALSE;
5236
5237 return TRUE;
5238 }
5239
5240
5241 /* Must be power of 2. */
5242 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5243
5244 static value_map_hash_table *
5245 value_map_hash_table_init (void)
5246 {
5247 value_map_hash_table *values;
5248
5249 values = (value_map_hash_table *)
5250 bfd_zmalloc (sizeof (value_map_hash_table));
5251 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5252 values->count = 0;
5253 values->buckets = (value_map **)
5254 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5255 if (values->buckets == NULL)
5256 {
5257 free (values);
5258 return NULL;
5259 }
5260 values->has_last_loc = FALSE;
5261
5262 return values;
5263 }
5264
5265
5266 static void
5267 value_map_hash_table_delete (value_map_hash_table *table)
5268 {
5269 free (table->buckets);
5270 free (table);
5271 }
5272
5273
5274 static unsigned
5275 hash_bfd_vma (bfd_vma val)
5276 {
5277 return (val >> 2) + (val >> 10);
5278 }
5279
5280
5281 static unsigned
5282 literal_value_hash (const literal_value *src)
5283 {
5284 unsigned hash_val;
5285
5286 hash_val = hash_bfd_vma (src->value);
5287 if (!r_reloc_is_const (&src->r_rel))
5288 {
5289 void *sec_or_hash;
5290
5291 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5292 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5293 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5294
5295 /* Now check for the same section and the same elf_hash. */
5296 if (r_reloc_is_defined (&src->r_rel))
5297 sec_or_hash = r_reloc_get_section (&src->r_rel);
5298 else
5299 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5300 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5301 }
5302 return hash_val;
5303 }
5304
5305
5306 /* Check if the specified literal_value has been seen before. */
5307
5308 static value_map *
5309 value_map_get_cached_value (value_map_hash_table *map,
5310 const literal_value *val,
5311 bfd_boolean final_static_link)
5312 {
5313 value_map *map_e;
5314 value_map *bucket;
5315 unsigned idx;
5316
5317 idx = literal_value_hash (val);
5318 idx = idx & (map->bucket_count - 1);
5319 bucket = map->buckets[idx];
5320 for (map_e = bucket; map_e; map_e = map_e->next)
5321 {
5322 if (literal_value_equal (&map_e->val, val, final_static_link))
5323 return map_e;
5324 }
5325 return NULL;
5326 }
5327
5328
5329 /* Record a new literal value. It is illegal to call this if VALUE
5330 already has an entry here. */
5331
5332 static value_map *
5333 add_value_map (value_map_hash_table *map,
5334 const literal_value *val,
5335 const r_reloc *loc,
5336 bfd_boolean final_static_link)
5337 {
5338 value_map **bucket_p;
5339 unsigned idx;
5340
5341 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5342 if (val_e == NULL)
5343 {
5344 bfd_set_error (bfd_error_no_memory);
5345 return NULL;
5346 }
5347
5348 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5349 val_e->val = *val;
5350 val_e->loc = *loc;
5351
5352 idx = literal_value_hash (val);
5353 idx = idx & (map->bucket_count - 1);
5354 bucket_p = &map->buckets[idx];
5355
5356 val_e->next = *bucket_p;
5357 *bucket_p = val_e;
5358 map->count++;
5359 /* FIXME: Consider resizing the hash table if we get too many entries. */
5360
5361 return val_e;
5362 }
5363
5364 \f
5365 /* Lists of text actions (ta_) for narrowing, widening, longcall
5366 conversion, space fill, code & literal removal, etc. */
5367
5368 /* The following text actions are generated:
5369
5370 "ta_remove_insn" remove an instruction or instructions
5371 "ta_remove_longcall" convert longcall to call
5372 "ta_convert_longcall" convert longcall to nop/call
5373 "ta_narrow_insn" narrow a wide instruction
5374 "ta_widen" widen a narrow instruction
5375 "ta_fill" add fill or remove fill
5376 removed < 0 is a fill; branches to the fill address will be
5377 changed to address + fill size (e.g., address - removed)
5378 removed >= 0 branches to the fill address will stay unchanged
5379 "ta_remove_literal" remove a literal; this action is
5380 indicated when a literal is removed
5381 or replaced.
5382 "ta_add_literal" insert a new literal; this action is
5383 indicated when a literal has been moved.
5384 It may use a virtual_offset because
5385 multiple literals can be placed at the
5386 same location.
5387
5388 For each of these text actions, we also record the number of bytes
5389 removed by performing the text action. In the case of a "ta_widen"
5390 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5391
5392 typedef struct text_action_struct text_action;
5393 typedef struct text_action_list_struct text_action_list;
5394 typedef enum text_action_enum_t text_action_t;
5395
5396 enum text_action_enum_t
5397 {
5398 ta_none,
5399 ta_remove_insn, /* removed = -size */
5400 ta_remove_longcall, /* removed = -size */
5401 ta_convert_longcall, /* removed = 0 */
5402 ta_narrow_insn, /* removed = -1 */
5403 ta_widen_insn, /* removed = +1 */
5404 ta_fill, /* removed = +size */
5405 ta_remove_literal,
5406 ta_add_literal
5407 };
5408
5409
5410 /* Structure for a text action record. */
5411 struct text_action_struct
5412 {
5413 text_action_t action;
5414 asection *sec; /* Optional */
5415 bfd_vma offset;
5416 bfd_vma virtual_offset; /* Zero except for adding literals. */
5417 int removed_bytes;
5418 literal_value value; /* Only valid when adding literals. */
5419
5420 text_action *next;
5421 };
5422
5423 struct removal_by_action_entry_struct
5424 {
5425 bfd_vma offset;
5426 int removed;
5427 int eq_removed;
5428 int eq_removed_before_fill;
5429 };
5430 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5431
5432 struct removal_by_action_map_struct
5433 {
5434 unsigned n_entries;
5435 removal_by_action_entry *entry;
5436 };
5437 typedef struct removal_by_action_map_struct removal_by_action_map;
5438
5439
5440 /* List of all of the actions taken on a text section. */
5441 struct text_action_list_struct
5442 {
5443 text_action *head;
5444 removal_by_action_map map;
5445 };
5446
5447
5448 static text_action *
5449 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5450 {
5451 text_action **m_p;
5452
5453 /* It is not necessary to fill at the end of a section. */
5454 if (sec->size == offset)
5455 return NULL;
5456
5457 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5458 {
5459 text_action *t = *m_p;
5460 /* When the action is another fill at the same address,
5461 just increase the size. */
5462 if (t->offset == offset && t->action == ta_fill)
5463 return t;
5464 }
5465 return NULL;
5466 }
5467
5468
5469 static int
5470 compute_removed_action_diff (const text_action *ta,
5471 asection *sec,
5472 bfd_vma offset,
5473 int removed,
5474 int removable_space)
5475 {
5476 int new_removed;
5477 int current_removed = 0;
5478
5479 if (ta)
5480 current_removed = ta->removed_bytes;
5481
5482 BFD_ASSERT (ta == NULL || ta->offset == offset);
5483 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5484
5485 /* It is not necessary to fill at the end of a section. Clean this up. */
5486 if (sec->size == offset)
5487 new_removed = removable_space - 0;
5488 else
5489 {
5490 int space;
5491 int added = -removed - current_removed;
5492 /* Ignore multiples of the section alignment. */
5493 added = ((1 << sec->alignment_power) - 1) & added;
5494 new_removed = (-added);
5495
5496 /* Modify for removable. */
5497 space = removable_space - new_removed;
5498 new_removed = (removable_space
5499 - (((1 << sec->alignment_power) - 1) & space));
5500 }
5501 return (new_removed - current_removed);
5502 }
5503
5504
5505 static void
5506 adjust_fill_action (text_action *ta, int fill_diff)
5507 {
5508 ta->removed_bytes += fill_diff;
5509 }
5510
5511
5512 /* Add a modification action to the text. For the case of adding or
5513 removing space, modify any current fill and assume that
5514 "unreachable_space" bytes can be freely contracted. Note that a
5515 negative removed value is a fill. */
5516
5517 static void
5518 text_action_add (text_action_list *l,
5519 text_action_t action,
5520 asection *sec,
5521 bfd_vma offset,
5522 int removed)
5523 {
5524 text_action **m_p;
5525 text_action *ta;
5526
5527 /* It is not necessary to fill at the end of a section. */
5528 if (action == ta_fill && sec->size == offset)
5529 return;
5530
5531 /* It is not necessary to fill 0 bytes. */
5532 if (action == ta_fill && removed == 0)
5533 return;
5534
5535 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5536 {
5537 text_action *t = *m_p;
5538
5539 if (action == ta_fill)
5540 {
5541 /* When the action is another fill at the same address,
5542 just increase the size. */
5543 if (t->offset == offset && t->action == ta_fill)
5544 {
5545 t->removed_bytes += removed;
5546 return;
5547 }
5548 /* Fills need to happen before widens so that we don't
5549 insert fill bytes into the instruction stream. */
5550 if (t->offset == offset && t->action == ta_widen_insn)
5551 break;
5552 }
5553 }
5554
5555 /* Create a new record and fill it up. */
5556 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5557 ta->action = action;
5558 ta->sec = sec;
5559 ta->offset = offset;
5560 ta->removed_bytes = removed;
5561 ta->next = (*m_p);
5562 *m_p = ta;
5563 }
5564
5565
5566 static void
5567 text_action_add_literal (text_action_list *l,
5568 text_action_t action,
5569 const r_reloc *loc,
5570 const literal_value *value,
5571 int removed)
5572 {
5573 text_action **m_p;
5574 text_action *ta;
5575 asection *sec = r_reloc_get_section (loc);
5576 bfd_vma offset = loc->target_offset;
5577 bfd_vma virtual_offset = loc->virtual_offset;
5578
5579 BFD_ASSERT (action == ta_add_literal);
5580
5581 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5582 {
5583 if ((*m_p)->offset > offset
5584 && ((*m_p)->offset != offset
5585 || (*m_p)->virtual_offset > virtual_offset))
5586 break;
5587 }
5588
5589 /* Create a new record and fill it up. */
5590 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5591 ta->action = action;
5592 ta->sec = sec;
5593 ta->offset = offset;
5594 ta->virtual_offset = virtual_offset;
5595 ta->value = *value;
5596 ta->removed_bytes = removed;
5597 ta->next = (*m_p);
5598 *m_p = ta;
5599 }
5600
5601
5602 /* Find the total offset adjustment for the relaxations specified by
5603 text_actions, beginning from a particular starting action. This is
5604 typically used from offset_with_removed_text to search an entire list of
5605 actions, but it may also be called directly when adjusting adjacent offsets
5606 so that each search may begin where the previous one left off. */
5607
5608 static int
5609 removed_by_actions (text_action **p_start_action,
5610 bfd_vma offset,
5611 bfd_boolean before_fill)
5612 {
5613 text_action *r;
5614 int removed = 0;
5615
5616 r = *p_start_action;
5617 while (r)
5618 {
5619 if (r->offset > offset)
5620 break;
5621
5622 if (r->offset == offset
5623 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5624 break;
5625
5626 removed += r->removed_bytes;
5627
5628 r = r->next;
5629 }
5630
5631 *p_start_action = r;
5632 return removed;
5633 }
5634
5635
5636 static bfd_vma
5637 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5638 {
5639 text_action *r = action_list->head;
5640 return offset - removed_by_actions (&r, offset, FALSE);
5641 }
5642
5643
5644 static unsigned
5645 action_list_count (text_action_list *action_list)
5646 {
5647 text_action *r = action_list->head;
5648 unsigned count = 0;
5649 for (r = action_list->head; r != NULL; r = r->next)
5650 {
5651 count++;
5652 }
5653 return count;
5654 }
5655
5656 static void
5657 map_removal_by_action (text_action_list *action_list)
5658 {
5659 text_action *r;
5660 int removed = 0;
5661 removal_by_action_map map;
5662 bfd_boolean eq_complete;
5663
5664 map.n_entries = 0;
5665 map.entry = bfd_malloc (action_list_count (action_list) *
5666 sizeof (removal_by_action_entry));
5667 eq_complete = FALSE;
5668
5669 for (r = action_list->head; r;)
5670 {
5671 removal_by_action_entry *ientry = map.entry + map.n_entries;
5672
5673 if (map.n_entries && (ientry - 1)->offset == r->offset)
5674 {
5675 --ientry;
5676 }
5677 else
5678 {
5679 ++map.n_entries;
5680 eq_complete = FALSE;
5681 ientry->offset = r->offset;
5682 ientry->eq_removed_before_fill = removed;
5683 }
5684
5685 if (!eq_complete)
5686 {
5687 if (r->action != ta_fill || r->removed_bytes >= 0)
5688 {
5689 ientry->eq_removed = removed;
5690 eq_complete = TRUE;
5691 }
5692 else
5693 ientry->eq_removed = removed + r->removed_bytes;
5694 }
5695
5696 removed += r->removed_bytes;
5697 ientry->removed = removed;
5698 r = r->next;
5699 }
5700 action_list->map = map;
5701 }
5702
5703 static int
5704 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5705 bfd_boolean before_fill)
5706 {
5707 unsigned a, b;
5708
5709 if (!action_list->map.entry)
5710 map_removal_by_action (action_list);
5711
5712 if (!action_list->map.n_entries)
5713 return 0;
5714
5715 a = 0;
5716 b = action_list->map.n_entries;
5717
5718 while (b - a > 1)
5719 {
5720 unsigned c = (a + b) / 2;
5721
5722 if (action_list->map.entry[c].offset <= offset)
5723 a = c;
5724 else
5725 b = c;
5726 }
5727
5728 if (action_list->map.entry[a].offset < offset)
5729 {
5730 return action_list->map.entry[a].removed;
5731 }
5732 else if (action_list->map.entry[a].offset == offset)
5733 {
5734 return before_fill ?
5735 action_list->map.entry[a].eq_removed_before_fill :
5736 action_list->map.entry[a].eq_removed;
5737 }
5738 else
5739 {
5740 return 0;
5741 }
5742 }
5743
5744 static bfd_vma
5745 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5746 {
5747 int removed = removed_by_actions_map (action_list, offset, FALSE);
5748 return offset - removed;
5749 }
5750
5751
5752 /* The find_insn_action routine will only find non-fill actions. */
5753
5754 static text_action *
5755 find_insn_action (text_action_list *action_list, bfd_vma offset)
5756 {
5757 text_action *t;
5758 for (t = action_list->head; t; t = t->next)
5759 {
5760 if (t->offset == offset)
5761 {
5762 switch (t->action)
5763 {
5764 case ta_none:
5765 case ta_fill:
5766 break;
5767 case ta_remove_insn:
5768 case ta_remove_longcall:
5769 case ta_convert_longcall:
5770 case ta_narrow_insn:
5771 case ta_widen_insn:
5772 return t;
5773 case ta_remove_literal:
5774 case ta_add_literal:
5775 BFD_ASSERT (0);
5776 break;
5777 }
5778 }
5779 }
5780 return NULL;
5781 }
5782
5783
5784 #if DEBUG
5785
5786 static void
5787 print_action_list (FILE *fp, text_action_list *action_list)
5788 {
5789 text_action *r;
5790
5791 fprintf (fp, "Text Action\n");
5792 for (r = action_list->head; r != NULL; r = r->next)
5793 {
5794 const char *t = "unknown";
5795 switch (r->action)
5796 {
5797 case ta_remove_insn:
5798 t = "remove_insn"; break;
5799 case ta_remove_longcall:
5800 t = "remove_longcall"; break;
5801 case ta_convert_longcall:
5802 t = "convert_longcall"; break;
5803 case ta_narrow_insn:
5804 t = "narrow_insn"; break;
5805 case ta_widen_insn:
5806 t = "widen_insn"; break;
5807 case ta_fill:
5808 t = "fill"; break;
5809 case ta_none:
5810 t = "none"; break;
5811 case ta_remove_literal:
5812 t = "remove_literal"; break;
5813 case ta_add_literal:
5814 t = "add_literal"; break;
5815 }
5816
5817 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5818 r->sec->owner->filename,
5819 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5820 }
5821 }
5822
5823 #endif /* DEBUG */
5824
5825 \f
5826 /* Lists of literals being coalesced or removed. */
5827
5828 /* In the usual case, the literal identified by "from" is being
5829 coalesced with another literal identified by "to". If the literal is
5830 unused and is being removed altogether, "to.abfd" will be NULL.
5831 The removed_literal entries are kept on a per-section list, sorted
5832 by the "from" offset field. */
5833
5834 typedef struct removed_literal_struct removed_literal;
5835 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5836 typedef struct removed_literal_list_struct removed_literal_list;
5837
5838 struct removed_literal_struct
5839 {
5840 r_reloc from;
5841 r_reloc to;
5842 removed_literal *next;
5843 };
5844
5845 struct removed_literal_map_entry_struct
5846 {
5847 bfd_vma addr;
5848 removed_literal *literal;
5849 };
5850
5851 struct removed_literal_list_struct
5852 {
5853 removed_literal *head;
5854 removed_literal *tail;
5855
5856 unsigned n_map;
5857 removed_literal_map_entry *map;
5858 };
5859
5860
5861 /* Record that the literal at "from" is being removed. If "to" is not
5862 NULL, the "from" literal is being coalesced with the "to" literal. */
5863
5864 static void
5865 add_removed_literal (removed_literal_list *removed_list,
5866 const r_reloc *from,
5867 const r_reloc *to)
5868 {
5869 removed_literal *r, *new_r, *next_r;
5870
5871 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5872
5873 new_r->from = *from;
5874 if (to)
5875 new_r->to = *to;
5876 else
5877 new_r->to.abfd = NULL;
5878 new_r->next = NULL;
5879
5880 r = removed_list->head;
5881 if (r == NULL)
5882 {
5883 removed_list->head = new_r;
5884 removed_list->tail = new_r;
5885 }
5886 /* Special check for common case of append. */
5887 else if (removed_list->tail->from.target_offset < from->target_offset)
5888 {
5889 removed_list->tail->next = new_r;
5890 removed_list->tail = new_r;
5891 }
5892 else
5893 {
5894 while (r->from.target_offset < from->target_offset && r->next)
5895 {
5896 r = r->next;
5897 }
5898 next_r = r->next;
5899 r->next = new_r;
5900 new_r->next = next_r;
5901 if (next_r == NULL)
5902 removed_list->tail = new_r;
5903 }
5904 }
5905
5906 static void
5907 map_removed_literal (removed_literal_list *removed_list)
5908 {
5909 unsigned n_map = 0;
5910 unsigned i;
5911 removed_literal_map_entry *map = NULL;
5912 removed_literal *r = removed_list->head;
5913
5914 for (i = 0; r; ++i, r = r->next)
5915 {
5916 if (i == n_map)
5917 {
5918 n_map = (n_map * 2) + 2;
5919 map = bfd_realloc (map, n_map * sizeof (*map));
5920 }
5921 map[i].addr = r->from.target_offset;
5922 map[i].literal = r;
5923 }
5924 removed_list->map = map;
5925 removed_list->n_map = i;
5926 }
5927
5928 static int
5929 removed_literal_compare (const void *a, const void *b)
5930 {
5931 const removed_literal_map_entry *pa = a;
5932 const removed_literal_map_entry *pb = b;
5933
5934 if (pa->addr == pb->addr)
5935 return 0;
5936 else
5937 return pa->addr < pb->addr ? -1 : 1;
5938 }
5939
5940 /* Check if the list of removed literals contains an entry for the
5941 given address. Return the entry if found. */
5942
5943 static removed_literal *
5944 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5945 {
5946 removed_literal_map_entry *p;
5947 removed_literal *r = NULL;
5948
5949 if (removed_list->map == NULL)
5950 map_removed_literal (removed_list);
5951
5952 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5953 sizeof (*removed_list->map), removed_literal_compare);
5954 if (p)
5955 {
5956 while (p != removed_list->map && (p - 1)->addr == addr)
5957 --p;
5958 r = p->literal;
5959 }
5960 return r;
5961 }
5962
5963
5964 #if DEBUG
5965
5966 static void
5967 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5968 {
5969 removed_literal *r;
5970 r = removed_list->head;
5971 if (r)
5972 fprintf (fp, "Removed Literals\n");
5973 for (; r != NULL; r = r->next)
5974 {
5975 print_r_reloc (fp, &r->from);
5976 fprintf (fp, " => ");
5977 if (r->to.abfd == NULL)
5978 fprintf (fp, "REMOVED");
5979 else
5980 print_r_reloc (fp, &r->to);
5981 fprintf (fp, "\n");
5982 }
5983 }
5984
5985 #endif /* DEBUG */
5986
5987 \f
5988 /* Per-section data for relaxation. */
5989
5990 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5991
5992 struct xtensa_relax_info_struct
5993 {
5994 bfd_boolean is_relaxable_literal_section;
5995 bfd_boolean is_relaxable_asm_section;
5996 int visited; /* Number of times visited. */
5997
5998 source_reloc *src_relocs; /* Array[src_count]. */
5999 int src_count;
6000 int src_next; /* Next src_relocs entry to assign. */
6001
6002 removed_literal_list removed_list;
6003 text_action_list action_list;
6004
6005 reloc_bfd_fix *fix_list;
6006 reloc_bfd_fix *fix_array;
6007 unsigned fix_array_count;
6008
6009 /* Support for expanding the reloc array that is stored
6010 in the section structure. If the relocations have been
6011 reallocated, the newly allocated relocations will be referenced
6012 here along with the actual size allocated. The relocation
6013 count will always be found in the section structure. */
6014 Elf_Internal_Rela *allocated_relocs;
6015 unsigned relocs_count;
6016 unsigned allocated_relocs_count;
6017 };
6018
6019 struct elf_xtensa_section_data
6020 {
6021 struct bfd_elf_section_data elf;
6022 xtensa_relax_info relax_info;
6023 };
6024
6025
6026 static bfd_boolean
6027 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6028 {
6029 if (!sec->used_by_bfd)
6030 {
6031 struct elf_xtensa_section_data *sdata;
6032 bfd_size_type amt = sizeof (*sdata);
6033
6034 sdata = bfd_zalloc (abfd, amt);
6035 if (sdata == NULL)
6036 return FALSE;
6037 sec->used_by_bfd = sdata;
6038 }
6039
6040 return _bfd_elf_new_section_hook (abfd, sec);
6041 }
6042
6043
6044 static xtensa_relax_info *
6045 get_xtensa_relax_info (asection *sec)
6046 {
6047 struct elf_xtensa_section_data *section_data;
6048
6049 /* No info available if no section or if it is an output section. */
6050 if (!sec || sec == sec->output_section)
6051 return NULL;
6052
6053 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6054 return &section_data->relax_info;
6055 }
6056
6057
6058 static void
6059 init_xtensa_relax_info (asection *sec)
6060 {
6061 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6062
6063 relax_info->is_relaxable_literal_section = FALSE;
6064 relax_info->is_relaxable_asm_section = FALSE;
6065 relax_info->visited = 0;
6066
6067 relax_info->src_relocs = NULL;
6068 relax_info->src_count = 0;
6069 relax_info->src_next = 0;
6070
6071 relax_info->removed_list.head = NULL;
6072 relax_info->removed_list.tail = NULL;
6073
6074 relax_info->action_list.head = NULL;
6075
6076 relax_info->action_list.map.n_entries = 0;
6077 relax_info->action_list.map.entry = NULL;
6078
6079 relax_info->fix_list = NULL;
6080 relax_info->fix_array = NULL;
6081 relax_info->fix_array_count = 0;
6082
6083 relax_info->allocated_relocs = NULL;
6084 relax_info->relocs_count = 0;
6085 relax_info->allocated_relocs_count = 0;
6086 }
6087
6088 \f
6089 /* Coalescing literals may require a relocation to refer to a section in
6090 a different input file, but the standard relocation information
6091 cannot express that. Instead, the reloc_bfd_fix structures are used
6092 to "fix" the relocations that refer to sections in other input files.
6093 These structures are kept on per-section lists. The "src_type" field
6094 records the relocation type in case there are multiple relocations on
6095 the same location. FIXME: This is ugly; an alternative might be to
6096 add new symbols with the "owner" field to some other input file. */
6097
6098 struct reloc_bfd_fix_struct
6099 {
6100 asection *src_sec;
6101 bfd_vma src_offset;
6102 unsigned src_type; /* Relocation type. */
6103
6104 asection *target_sec;
6105 bfd_vma target_offset;
6106 bfd_boolean translated;
6107
6108 reloc_bfd_fix *next;
6109 };
6110
6111
6112 static reloc_bfd_fix *
6113 reloc_bfd_fix_init (asection *src_sec,
6114 bfd_vma src_offset,
6115 unsigned src_type,
6116 asection *target_sec,
6117 bfd_vma target_offset,
6118 bfd_boolean translated)
6119 {
6120 reloc_bfd_fix *fix;
6121
6122 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6123 fix->src_sec = src_sec;
6124 fix->src_offset = src_offset;
6125 fix->src_type = src_type;
6126 fix->target_sec = target_sec;
6127 fix->target_offset = target_offset;
6128 fix->translated = translated;
6129
6130 return fix;
6131 }
6132
6133
6134 static void
6135 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6136 {
6137 xtensa_relax_info *relax_info;
6138
6139 relax_info = get_xtensa_relax_info (src_sec);
6140 fix->next = relax_info->fix_list;
6141 relax_info->fix_list = fix;
6142 }
6143
6144
6145 static int
6146 fix_compare (const void *ap, const void *bp)
6147 {
6148 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6149 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6150
6151 if (a->src_offset != b->src_offset)
6152 return (a->src_offset - b->src_offset);
6153 return (a->src_type - b->src_type);
6154 }
6155
6156
6157 static void
6158 cache_fix_array (asection *sec)
6159 {
6160 unsigned i, count = 0;
6161 reloc_bfd_fix *r;
6162 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6163
6164 if (relax_info == NULL)
6165 return;
6166 if (relax_info->fix_list == NULL)
6167 return;
6168
6169 for (r = relax_info->fix_list; r != NULL; r = r->next)
6170 count++;
6171
6172 relax_info->fix_array =
6173 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6174 relax_info->fix_array_count = count;
6175
6176 r = relax_info->fix_list;
6177 for (i = 0; i < count; i++, r = r->next)
6178 {
6179 relax_info->fix_array[count - 1 - i] = *r;
6180 relax_info->fix_array[count - 1 - i].next = NULL;
6181 }
6182
6183 qsort (relax_info->fix_array, relax_info->fix_array_count,
6184 sizeof (reloc_bfd_fix), fix_compare);
6185 }
6186
6187
6188 static reloc_bfd_fix *
6189 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6190 {
6191 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6192 reloc_bfd_fix *rv;
6193 reloc_bfd_fix key;
6194
6195 if (relax_info == NULL)
6196 return NULL;
6197 if (relax_info->fix_list == NULL)
6198 return NULL;
6199
6200 if (relax_info->fix_array == NULL)
6201 cache_fix_array (sec);
6202
6203 key.src_offset = offset;
6204 key.src_type = type;
6205 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6206 sizeof (reloc_bfd_fix), fix_compare);
6207 return rv;
6208 }
6209
6210 \f
6211 /* Section caching. */
6212
6213 typedef struct section_cache_struct section_cache_t;
6214
6215 struct section_cache_struct
6216 {
6217 asection *sec;
6218
6219 bfd_byte *contents; /* Cache of the section contents. */
6220 bfd_size_type content_length;
6221
6222 property_table_entry *ptbl; /* Cache of the section property table. */
6223 unsigned pte_count;
6224
6225 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6226 unsigned reloc_count;
6227 };
6228
6229
6230 static void
6231 init_section_cache (section_cache_t *sec_cache)
6232 {
6233 memset (sec_cache, 0, sizeof (*sec_cache));
6234 }
6235
6236
6237 static void
6238 free_section_cache (section_cache_t *sec_cache)
6239 {
6240 if (sec_cache->sec)
6241 {
6242 release_contents (sec_cache->sec, sec_cache->contents);
6243 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6244 if (sec_cache->ptbl)
6245 free (sec_cache->ptbl);
6246 }
6247 }
6248
6249
6250 static bfd_boolean
6251 section_cache_section (section_cache_t *sec_cache,
6252 asection *sec,
6253 struct bfd_link_info *link_info)
6254 {
6255 bfd *abfd;
6256 property_table_entry *prop_table = NULL;
6257 int ptblsize = 0;
6258 bfd_byte *contents = NULL;
6259 Elf_Internal_Rela *internal_relocs = NULL;
6260 bfd_size_type sec_size;
6261
6262 if (sec == NULL)
6263 return FALSE;
6264 if (sec == sec_cache->sec)
6265 return TRUE;
6266
6267 abfd = sec->owner;
6268 sec_size = bfd_get_section_limit (abfd, sec);
6269
6270 /* Get the contents. */
6271 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6272 if (contents == NULL && sec_size != 0)
6273 goto err;
6274
6275 /* Get the relocations. */
6276 internal_relocs = retrieve_internal_relocs (abfd, sec,
6277 link_info->keep_memory);
6278
6279 /* Get the entry table. */
6280 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6281 XTENSA_PROP_SEC_NAME, FALSE);
6282 if (ptblsize < 0)
6283 goto err;
6284
6285 /* Fill in the new section cache. */
6286 free_section_cache (sec_cache);
6287 init_section_cache (sec_cache);
6288
6289 sec_cache->sec = sec;
6290 sec_cache->contents = contents;
6291 sec_cache->content_length = sec_size;
6292 sec_cache->relocs = internal_relocs;
6293 sec_cache->reloc_count = sec->reloc_count;
6294 sec_cache->pte_count = ptblsize;
6295 sec_cache->ptbl = prop_table;
6296
6297 return TRUE;
6298
6299 err:
6300 release_contents (sec, contents);
6301 release_internal_relocs (sec, internal_relocs);
6302 if (prop_table)
6303 free (prop_table);
6304 return FALSE;
6305 }
6306
6307 \f
6308 /* Extended basic blocks. */
6309
6310 /* An ebb_struct represents an Extended Basic Block. Within this
6311 range, we guarantee that all instructions are decodable, the
6312 property table entries are contiguous, and no property table
6313 specifies a segment that cannot have instructions moved. This
6314 structure contains caches of the contents, property table and
6315 relocations for the specified section for easy use. The range is
6316 specified by ranges of indices for the byte offset, property table
6317 offsets and relocation offsets. These must be consistent. */
6318
6319 typedef struct ebb_struct ebb_t;
6320
6321 struct ebb_struct
6322 {
6323 asection *sec;
6324
6325 bfd_byte *contents; /* Cache of the section contents. */
6326 bfd_size_type content_length;
6327
6328 property_table_entry *ptbl; /* Cache of the section property table. */
6329 unsigned pte_count;
6330
6331 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6332 unsigned reloc_count;
6333
6334 bfd_vma start_offset; /* Offset in section. */
6335 unsigned start_ptbl_idx; /* Offset in the property table. */
6336 unsigned start_reloc_idx; /* Offset in the relocations. */
6337
6338 bfd_vma end_offset;
6339 unsigned end_ptbl_idx;
6340 unsigned end_reloc_idx;
6341
6342 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6343
6344 /* The unreachable property table at the end of this set of blocks;
6345 NULL if the end is not an unreachable block. */
6346 property_table_entry *ends_unreachable;
6347 };
6348
6349
6350 enum ebb_target_enum
6351 {
6352 EBB_NO_ALIGN = 0,
6353 EBB_DESIRE_TGT_ALIGN,
6354 EBB_REQUIRE_TGT_ALIGN,
6355 EBB_REQUIRE_LOOP_ALIGN,
6356 EBB_REQUIRE_ALIGN
6357 };
6358
6359
6360 /* proposed_action_struct is similar to the text_action_struct except
6361 that is represents a potential transformation, not one that will
6362 occur. We build a list of these for an extended basic block
6363 and use them to compute the actual actions desired. We must be
6364 careful that the entire set of actual actions we perform do not
6365 break any relocations that would fit if the actions were not
6366 performed. */
6367
6368 typedef struct proposed_action_struct proposed_action;
6369
6370 struct proposed_action_struct
6371 {
6372 enum ebb_target_enum align_type; /* for the target alignment */
6373 bfd_vma alignment_pow;
6374 text_action_t action;
6375 bfd_vma offset;
6376 int removed_bytes;
6377 bfd_boolean do_action; /* If false, then we will not perform the action. */
6378 };
6379
6380
6381 /* The ebb_constraint_struct keeps a set of proposed actions for an
6382 extended basic block. */
6383
6384 typedef struct ebb_constraint_struct ebb_constraint;
6385
6386 struct ebb_constraint_struct
6387 {
6388 ebb_t ebb;
6389 bfd_boolean start_movable;
6390
6391 /* Bytes of extra space at the beginning if movable. */
6392 int start_extra_space;
6393
6394 enum ebb_target_enum start_align;
6395
6396 bfd_boolean end_movable;
6397
6398 /* Bytes of extra space at the end if movable. */
6399 int end_extra_space;
6400
6401 unsigned action_count;
6402 unsigned action_allocated;
6403
6404 /* Array of proposed actions. */
6405 proposed_action *actions;
6406
6407 /* Action alignments -- one for each proposed action. */
6408 enum ebb_target_enum *action_aligns;
6409 };
6410
6411
6412 static void
6413 init_ebb_constraint (ebb_constraint *c)
6414 {
6415 memset (c, 0, sizeof (ebb_constraint));
6416 }
6417
6418
6419 static void
6420 free_ebb_constraint (ebb_constraint *c)
6421 {
6422 if (c->actions)
6423 free (c->actions);
6424 }
6425
6426
6427 static void
6428 init_ebb (ebb_t *ebb,
6429 asection *sec,
6430 bfd_byte *contents,
6431 bfd_size_type content_length,
6432 property_table_entry *prop_table,
6433 unsigned ptblsize,
6434 Elf_Internal_Rela *internal_relocs,
6435 unsigned reloc_count)
6436 {
6437 memset (ebb, 0, sizeof (ebb_t));
6438 ebb->sec = sec;
6439 ebb->contents = contents;
6440 ebb->content_length = content_length;
6441 ebb->ptbl = prop_table;
6442 ebb->pte_count = ptblsize;
6443 ebb->relocs = internal_relocs;
6444 ebb->reloc_count = reloc_count;
6445 ebb->start_offset = 0;
6446 ebb->end_offset = ebb->content_length - 1;
6447 ebb->start_ptbl_idx = 0;
6448 ebb->end_ptbl_idx = ptblsize;
6449 ebb->start_reloc_idx = 0;
6450 ebb->end_reloc_idx = reloc_count;
6451 }
6452
6453
6454 /* Extend the ebb to all decodable contiguous sections. The algorithm
6455 for building a basic block around an instruction is to push it
6456 forward until we hit the end of a section, an unreachable block or
6457 a block that cannot be transformed. Then we push it backwards
6458 searching for similar conditions. */
6459
6460 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6461 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6462 static bfd_size_type insn_block_decodable_len
6463 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6464
6465 static bfd_boolean
6466 extend_ebb_bounds (ebb_t *ebb)
6467 {
6468 if (!extend_ebb_bounds_forward (ebb))
6469 return FALSE;
6470 if (!extend_ebb_bounds_backward (ebb))
6471 return FALSE;
6472 return TRUE;
6473 }
6474
6475
6476 static bfd_boolean
6477 extend_ebb_bounds_forward (ebb_t *ebb)
6478 {
6479 property_table_entry *the_entry, *new_entry;
6480
6481 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6482
6483 /* Stop when (1) we cannot decode an instruction, (2) we are at
6484 the end of the property tables, (3) we hit a non-contiguous property
6485 table entry, (4) we hit a NO_TRANSFORM region. */
6486
6487 while (1)
6488 {
6489 bfd_vma entry_end;
6490 bfd_size_type insn_block_len;
6491
6492 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6493 insn_block_len =
6494 insn_block_decodable_len (ebb->contents, ebb->content_length,
6495 ebb->end_offset,
6496 entry_end - ebb->end_offset);
6497 if (insn_block_len != (entry_end - ebb->end_offset))
6498 {
6499 (*_bfd_error_handler)
6500 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6501 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6502 return FALSE;
6503 }
6504 ebb->end_offset += insn_block_len;
6505
6506 if (ebb->end_offset == ebb->sec->size)
6507 ebb->ends_section = TRUE;
6508
6509 /* Update the reloc counter. */
6510 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6511 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6512 < ebb->end_offset))
6513 {
6514 ebb->end_reloc_idx++;
6515 }
6516
6517 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6518 return TRUE;
6519
6520 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6521 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6522 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6523 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6524 break;
6525
6526 if (the_entry->address + the_entry->size != new_entry->address)
6527 break;
6528
6529 the_entry = new_entry;
6530 ebb->end_ptbl_idx++;
6531 }
6532
6533 /* Quick check for an unreachable or end of file just at the end. */
6534 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6535 {
6536 if (ebb->end_offset == ebb->content_length)
6537 ebb->ends_section = TRUE;
6538 }
6539 else
6540 {
6541 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6542 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6543 && the_entry->address + the_entry->size == new_entry->address)
6544 ebb->ends_unreachable = new_entry;
6545 }
6546
6547 /* Any other ending requires exact alignment. */
6548 return TRUE;
6549 }
6550
6551
6552 static bfd_boolean
6553 extend_ebb_bounds_backward (ebb_t *ebb)
6554 {
6555 property_table_entry *the_entry, *new_entry;
6556
6557 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6558
6559 /* Stop when (1) we cannot decode the instructions in the current entry.
6560 (2) we are at the beginning of the property tables, (3) we hit a
6561 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6562
6563 while (1)
6564 {
6565 bfd_vma block_begin;
6566 bfd_size_type insn_block_len;
6567
6568 block_begin = the_entry->address - ebb->sec->vma;
6569 insn_block_len =
6570 insn_block_decodable_len (ebb->contents, ebb->content_length,
6571 block_begin,
6572 ebb->start_offset - block_begin);
6573 if (insn_block_len != ebb->start_offset - block_begin)
6574 {
6575 (*_bfd_error_handler)
6576 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6577 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6578 return FALSE;
6579 }
6580 ebb->start_offset -= insn_block_len;
6581
6582 /* Update the reloc counter. */
6583 while (ebb->start_reloc_idx > 0
6584 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6585 >= ebb->start_offset))
6586 {
6587 ebb->start_reloc_idx--;
6588 }
6589
6590 if (ebb->start_ptbl_idx == 0)
6591 return TRUE;
6592
6593 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6594 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6595 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6596 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6597 return TRUE;
6598 if (new_entry->address + new_entry->size != the_entry->address)
6599 return TRUE;
6600
6601 the_entry = new_entry;
6602 ebb->start_ptbl_idx--;
6603 }
6604 return TRUE;
6605 }
6606
6607
6608 static bfd_size_type
6609 insn_block_decodable_len (bfd_byte *contents,
6610 bfd_size_type content_len,
6611 bfd_vma block_offset,
6612 bfd_size_type block_len)
6613 {
6614 bfd_vma offset = block_offset;
6615
6616 while (offset < block_offset + block_len)
6617 {
6618 bfd_size_type insn_len = 0;
6619
6620 insn_len = insn_decode_len (contents, content_len, offset);
6621 if (insn_len == 0)
6622 return (offset - block_offset);
6623 offset += insn_len;
6624 }
6625 return (offset - block_offset);
6626 }
6627
6628
6629 static void
6630 ebb_propose_action (ebb_constraint *c,
6631 enum ebb_target_enum align_type,
6632 bfd_vma alignment_pow,
6633 text_action_t action,
6634 bfd_vma offset,
6635 int removed_bytes,
6636 bfd_boolean do_action)
6637 {
6638 proposed_action *act;
6639
6640 if (c->action_allocated <= c->action_count)
6641 {
6642 unsigned new_allocated, i;
6643 proposed_action *new_actions;
6644
6645 new_allocated = (c->action_count + 2) * 2;
6646 new_actions = (proposed_action *)
6647 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6648
6649 for (i = 0; i < c->action_count; i++)
6650 new_actions[i] = c->actions[i];
6651 if (c->actions)
6652 free (c->actions);
6653 c->actions = new_actions;
6654 c->action_allocated = new_allocated;
6655 }
6656
6657 act = &c->actions[c->action_count];
6658 act->align_type = align_type;
6659 act->alignment_pow = alignment_pow;
6660 act->action = action;
6661 act->offset = offset;
6662 act->removed_bytes = removed_bytes;
6663 act->do_action = do_action;
6664
6665 c->action_count++;
6666 }
6667
6668 \f
6669 /* Access to internal relocations, section contents and symbols. */
6670
6671 /* During relaxation, we need to modify relocations, section contents,
6672 and symbol definitions, and we need to keep the original values from
6673 being reloaded from the input files, i.e., we need to "pin" the
6674 modified values in memory. We also want to continue to observe the
6675 setting of the "keep-memory" flag. The following functions wrap the
6676 standard BFD functions to take care of this for us. */
6677
6678 static Elf_Internal_Rela *
6679 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6680 {
6681 Elf_Internal_Rela *internal_relocs;
6682
6683 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6684 return NULL;
6685
6686 internal_relocs = elf_section_data (sec)->relocs;
6687 if (internal_relocs == NULL)
6688 internal_relocs = (_bfd_elf_link_read_relocs
6689 (abfd, sec, NULL, NULL, keep_memory));
6690 return internal_relocs;
6691 }
6692
6693
6694 static void
6695 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6696 {
6697 elf_section_data (sec)->relocs = internal_relocs;
6698 }
6699
6700
6701 static void
6702 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6703 {
6704 if (internal_relocs
6705 && elf_section_data (sec)->relocs != internal_relocs)
6706 free (internal_relocs);
6707 }
6708
6709
6710 static bfd_byte *
6711 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6712 {
6713 bfd_byte *contents;
6714 bfd_size_type sec_size;
6715
6716 sec_size = bfd_get_section_limit (abfd, sec);
6717 contents = elf_section_data (sec)->this_hdr.contents;
6718
6719 if (contents == NULL && sec_size != 0)
6720 {
6721 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6722 {
6723 if (contents)
6724 free (contents);
6725 return NULL;
6726 }
6727 if (keep_memory)
6728 elf_section_data (sec)->this_hdr.contents = contents;
6729 }
6730 return contents;
6731 }
6732
6733
6734 static void
6735 pin_contents (asection *sec, bfd_byte *contents)
6736 {
6737 elf_section_data (sec)->this_hdr.contents = contents;
6738 }
6739
6740
6741 static void
6742 release_contents (asection *sec, bfd_byte *contents)
6743 {
6744 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6745 free (contents);
6746 }
6747
6748
6749 static Elf_Internal_Sym *
6750 retrieve_local_syms (bfd *input_bfd)
6751 {
6752 Elf_Internal_Shdr *symtab_hdr;
6753 Elf_Internal_Sym *isymbuf;
6754 size_t locsymcount;
6755
6756 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6757 locsymcount = symtab_hdr->sh_info;
6758
6759 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6760 if (isymbuf == NULL && locsymcount != 0)
6761 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6762 NULL, NULL, NULL);
6763
6764 /* Save the symbols for this input file so they won't be read again. */
6765 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6766 symtab_hdr->contents = (unsigned char *) isymbuf;
6767
6768 return isymbuf;
6769 }
6770
6771 \f
6772 /* Code for link-time relaxation. */
6773
6774 /* Initialization for relaxation: */
6775 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6776 static bfd_boolean find_relaxable_sections
6777 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6778 static bfd_boolean collect_source_relocs
6779 (bfd *, asection *, struct bfd_link_info *);
6780 static bfd_boolean is_resolvable_asm_expansion
6781 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6782 bfd_boolean *);
6783 static Elf_Internal_Rela *find_associated_l32r_irel
6784 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6785 static bfd_boolean compute_text_actions
6786 (bfd *, asection *, struct bfd_link_info *);
6787 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6788 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6789 typedef struct reloc_range_list_struct reloc_range_list;
6790 static bfd_boolean check_section_ebb_pcrels_fit
6791 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6792 reloc_range_list *, const ebb_constraint *,
6793 const xtensa_opcode *);
6794 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6795 static void text_action_add_proposed
6796 (text_action_list *, const ebb_constraint *, asection *);
6797 static int compute_fill_extra_space (property_table_entry *);
6798
6799 /* First pass: */
6800 static bfd_boolean compute_removed_literals
6801 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6802 static Elf_Internal_Rela *get_irel_at_offset
6803 (asection *, Elf_Internal_Rela *, bfd_vma);
6804 static bfd_boolean is_removable_literal
6805 (const source_reloc *, int, const source_reloc *, int, asection *,
6806 property_table_entry *, int);
6807 static bfd_boolean remove_dead_literal
6808 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6809 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6810 static bfd_boolean identify_literal_placement
6811 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6812 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6813 source_reloc *, property_table_entry *, int, section_cache_t *,
6814 bfd_boolean);
6815 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6816 static bfd_boolean coalesce_shared_literal
6817 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6818 static bfd_boolean move_shared_literal
6819 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6820 int, const r_reloc *, const literal_value *, section_cache_t *);
6821
6822 /* Second pass: */
6823 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6824 static bfd_boolean translate_section_fixes (asection *);
6825 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6826 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6827 static void shrink_dynamic_reloc_sections
6828 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6829 static bfd_boolean move_literal
6830 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6831 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6832 static bfd_boolean relax_property_section
6833 (bfd *, asection *, struct bfd_link_info *);
6834
6835 /* Third pass: */
6836 static bfd_boolean relax_section_symbols (bfd *, asection *);
6837
6838
6839 static bfd_boolean
6840 elf_xtensa_relax_section (bfd *abfd,
6841 asection *sec,
6842 struct bfd_link_info *link_info,
6843 bfd_boolean *again)
6844 {
6845 static value_map_hash_table *values = NULL;
6846 static bfd_boolean relocations_analyzed = FALSE;
6847 xtensa_relax_info *relax_info;
6848
6849 if (!relocations_analyzed)
6850 {
6851 /* Do some overall initialization for relaxation. */
6852 values = value_map_hash_table_init ();
6853 if (values == NULL)
6854 return FALSE;
6855 relaxing_section = TRUE;
6856 if (!analyze_relocations (link_info))
6857 return FALSE;
6858 relocations_analyzed = TRUE;
6859 }
6860 *again = FALSE;
6861
6862 /* Don't mess with linker-created sections. */
6863 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6864 return TRUE;
6865
6866 relax_info = get_xtensa_relax_info (sec);
6867 BFD_ASSERT (relax_info != NULL);
6868
6869 switch (relax_info->visited)
6870 {
6871 case 0:
6872 /* Note: It would be nice to fold this pass into
6873 analyze_relocations, but it is important for this step that the
6874 sections be examined in link order. */
6875 if (!compute_removed_literals (abfd, sec, link_info, values))
6876 return FALSE;
6877 *again = TRUE;
6878 break;
6879
6880 case 1:
6881 if (values)
6882 value_map_hash_table_delete (values);
6883 values = NULL;
6884 if (!relax_section (abfd, sec, link_info))
6885 return FALSE;
6886 *again = TRUE;
6887 break;
6888
6889 case 2:
6890 if (!relax_section_symbols (abfd, sec))
6891 return FALSE;
6892 break;
6893 }
6894
6895 relax_info->visited++;
6896 return TRUE;
6897 }
6898
6899 \f
6900 /* Initialization for relaxation. */
6901
6902 /* This function is called once at the start of relaxation. It scans
6903 all the input sections and marks the ones that are relaxable (i.e.,
6904 literal sections with L32R relocations against them), and then
6905 collects source_reloc information for all the relocations against
6906 those relaxable sections. During this process, it also detects
6907 longcalls, i.e., calls relaxed by the assembler into indirect
6908 calls, that can be optimized back into direct calls. Within each
6909 extended basic block (ebb) containing an optimized longcall, it
6910 computes a set of "text actions" that can be performed to remove
6911 the L32R associated with the longcall while optionally preserving
6912 branch target alignments. */
6913
6914 static bfd_boolean
6915 analyze_relocations (struct bfd_link_info *link_info)
6916 {
6917 bfd *abfd;
6918 asection *sec;
6919 bfd_boolean is_relaxable = FALSE;
6920
6921 /* Initialize the per-section relaxation info. */
6922 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6923 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6924 {
6925 init_xtensa_relax_info (sec);
6926 }
6927
6928 /* Mark relaxable sections (and count relocations against each one). */
6929 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6930 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6931 {
6932 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6933 return FALSE;
6934 }
6935
6936 /* Bail out if there are no relaxable sections. */
6937 if (!is_relaxable)
6938 return TRUE;
6939
6940 /* Allocate space for source_relocs. */
6941 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6942 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6943 {
6944 xtensa_relax_info *relax_info;
6945
6946 relax_info = get_xtensa_relax_info (sec);
6947 if (relax_info->is_relaxable_literal_section
6948 || relax_info->is_relaxable_asm_section)
6949 {
6950 relax_info->src_relocs = (source_reloc *)
6951 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6952 }
6953 else
6954 relax_info->src_count = 0;
6955 }
6956
6957 /* Collect info on relocations against each relaxable section. */
6958 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6959 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6960 {
6961 if (!collect_source_relocs (abfd, sec, link_info))
6962 return FALSE;
6963 }
6964
6965 /* Compute the text actions. */
6966 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6967 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6968 {
6969 if (!compute_text_actions (abfd, sec, link_info))
6970 return FALSE;
6971 }
6972
6973 return TRUE;
6974 }
6975
6976
6977 /* Find all the sections that might be relaxed. The motivation for
6978 this pass is that collect_source_relocs() needs to record _all_ the
6979 relocations that target each relaxable section. That is expensive
6980 and unnecessary unless the target section is actually going to be
6981 relaxed. This pass identifies all such sections by checking if
6982 they have L32Rs pointing to them. In the process, the total number
6983 of relocations targeting each section is also counted so that we
6984 know how much space to allocate for source_relocs against each
6985 relaxable literal section. */
6986
6987 static bfd_boolean
6988 find_relaxable_sections (bfd *abfd,
6989 asection *sec,
6990 struct bfd_link_info *link_info,
6991 bfd_boolean *is_relaxable_p)
6992 {
6993 Elf_Internal_Rela *internal_relocs;
6994 bfd_byte *contents;
6995 bfd_boolean ok = TRUE;
6996 unsigned i;
6997 xtensa_relax_info *source_relax_info;
6998 bfd_boolean is_l32r_reloc;
6999
7000 internal_relocs = retrieve_internal_relocs (abfd, sec,
7001 link_info->keep_memory);
7002 if (internal_relocs == NULL)
7003 return ok;
7004
7005 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7006 if (contents == NULL && sec->size != 0)
7007 {
7008 ok = FALSE;
7009 goto error_return;
7010 }
7011
7012 source_relax_info = get_xtensa_relax_info (sec);
7013 for (i = 0; i < sec->reloc_count; i++)
7014 {
7015 Elf_Internal_Rela *irel = &internal_relocs[i];
7016 r_reloc r_rel;
7017 asection *target_sec;
7018 xtensa_relax_info *target_relax_info;
7019
7020 /* If this section has not already been marked as "relaxable", and
7021 if it contains any ASM_EXPAND relocations (marking expanded
7022 longcalls) that can be optimized into direct calls, then mark
7023 the section as "relaxable". */
7024 if (source_relax_info
7025 && !source_relax_info->is_relaxable_asm_section
7026 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7027 {
7028 bfd_boolean is_reachable = FALSE;
7029 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7030 link_info, &is_reachable)
7031 && is_reachable)
7032 {
7033 source_relax_info->is_relaxable_asm_section = TRUE;
7034 *is_relaxable_p = TRUE;
7035 }
7036 }
7037
7038 r_reloc_init (&r_rel, abfd, irel, contents,
7039 bfd_get_section_limit (abfd, sec));
7040
7041 target_sec = r_reloc_get_section (&r_rel);
7042 target_relax_info = get_xtensa_relax_info (target_sec);
7043 if (!target_relax_info)
7044 continue;
7045
7046 /* Count PC-relative operand relocations against the target section.
7047 Note: The conditions tested here must match the conditions under
7048 which init_source_reloc is called in collect_source_relocs(). */
7049 is_l32r_reloc = FALSE;
7050 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7051 {
7052 xtensa_opcode opcode =
7053 get_relocation_opcode (abfd, sec, contents, irel);
7054 if (opcode != XTENSA_UNDEFINED)
7055 {
7056 is_l32r_reloc = (opcode == get_l32r_opcode ());
7057 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7058 || is_l32r_reloc)
7059 target_relax_info->src_count++;
7060 }
7061 }
7062
7063 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7064 {
7065 /* Mark the target section as relaxable. */
7066 target_relax_info->is_relaxable_literal_section = TRUE;
7067 *is_relaxable_p = TRUE;
7068 }
7069 }
7070
7071 error_return:
7072 release_contents (sec, contents);
7073 release_internal_relocs (sec, internal_relocs);
7074 return ok;
7075 }
7076
7077
7078 /* Record _all_ the relocations that point to relaxable sections, and
7079 get rid of ASM_EXPAND relocs by either converting them to
7080 ASM_SIMPLIFY or by removing them. */
7081
7082 static bfd_boolean
7083 collect_source_relocs (bfd *abfd,
7084 asection *sec,
7085 struct bfd_link_info *link_info)
7086 {
7087 Elf_Internal_Rela *internal_relocs;
7088 bfd_byte *contents;
7089 bfd_boolean ok = TRUE;
7090 unsigned i;
7091 bfd_size_type sec_size;
7092
7093 internal_relocs = retrieve_internal_relocs (abfd, sec,
7094 link_info->keep_memory);
7095 if (internal_relocs == NULL)
7096 return ok;
7097
7098 sec_size = bfd_get_section_limit (abfd, sec);
7099 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7100 if (contents == NULL && sec_size != 0)
7101 {
7102 ok = FALSE;
7103 goto error_return;
7104 }
7105
7106 /* Record relocations against relaxable literal sections. */
7107 for (i = 0; i < sec->reloc_count; i++)
7108 {
7109 Elf_Internal_Rela *irel = &internal_relocs[i];
7110 r_reloc r_rel;
7111 asection *target_sec;
7112 xtensa_relax_info *target_relax_info;
7113
7114 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7115
7116 target_sec = r_reloc_get_section (&r_rel);
7117 target_relax_info = get_xtensa_relax_info (target_sec);
7118
7119 if (target_relax_info
7120 && (target_relax_info->is_relaxable_literal_section
7121 || target_relax_info->is_relaxable_asm_section))
7122 {
7123 xtensa_opcode opcode = XTENSA_UNDEFINED;
7124 int opnd = -1;
7125 bfd_boolean is_abs_literal = FALSE;
7126
7127 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7128 {
7129 /* None of the current alternate relocs are PC-relative,
7130 and only PC-relative relocs matter here. However, we
7131 still need to record the opcode for literal
7132 coalescing. */
7133 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7134 if (opcode == get_l32r_opcode ())
7135 {
7136 is_abs_literal = TRUE;
7137 opnd = 1;
7138 }
7139 else
7140 opcode = XTENSA_UNDEFINED;
7141 }
7142 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7143 {
7144 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7145 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7146 }
7147
7148 if (opcode != XTENSA_UNDEFINED)
7149 {
7150 int src_next = target_relax_info->src_next++;
7151 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7152
7153 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7154 is_abs_literal);
7155 }
7156 }
7157 }
7158
7159 /* Now get rid of ASM_EXPAND relocations. At this point, the
7160 src_relocs array for the target literal section may still be
7161 incomplete, but it must at least contain the entries for the L32R
7162 relocations associated with ASM_EXPANDs because they were just
7163 added in the preceding loop over the relocations. */
7164
7165 for (i = 0; i < sec->reloc_count; i++)
7166 {
7167 Elf_Internal_Rela *irel = &internal_relocs[i];
7168 bfd_boolean is_reachable;
7169
7170 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7171 &is_reachable))
7172 continue;
7173
7174 if (is_reachable)
7175 {
7176 Elf_Internal_Rela *l32r_irel;
7177 r_reloc r_rel;
7178 asection *target_sec;
7179 xtensa_relax_info *target_relax_info;
7180
7181 /* Mark the source_reloc for the L32R so that it will be
7182 removed in compute_removed_literals(), along with the
7183 associated literal. */
7184 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7185 irel, internal_relocs);
7186 if (l32r_irel == NULL)
7187 continue;
7188
7189 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7190
7191 target_sec = r_reloc_get_section (&r_rel);
7192 target_relax_info = get_xtensa_relax_info (target_sec);
7193
7194 if (target_relax_info
7195 && (target_relax_info->is_relaxable_literal_section
7196 || target_relax_info->is_relaxable_asm_section))
7197 {
7198 source_reloc *s_reloc;
7199
7200 /* Search the source_relocs for the entry corresponding to
7201 the l32r_irel. Note: The src_relocs array is not yet
7202 sorted, but it wouldn't matter anyway because we're
7203 searching by source offset instead of target offset. */
7204 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7205 target_relax_info->src_next,
7206 sec, l32r_irel);
7207 BFD_ASSERT (s_reloc);
7208 s_reloc->is_null = TRUE;
7209 }
7210
7211 /* Convert this reloc to ASM_SIMPLIFY. */
7212 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7213 R_XTENSA_ASM_SIMPLIFY);
7214 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7215
7216 pin_internal_relocs (sec, internal_relocs);
7217 }
7218 else
7219 {
7220 /* It is resolvable but doesn't reach. We resolve now
7221 by eliminating the relocation -- the call will remain
7222 expanded into L32R/CALLX. */
7223 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7224 pin_internal_relocs (sec, internal_relocs);
7225 }
7226 }
7227
7228 error_return:
7229 release_contents (sec, contents);
7230 release_internal_relocs (sec, internal_relocs);
7231 return ok;
7232 }
7233
7234
7235 /* Return TRUE if the asm expansion can be resolved. Generally it can
7236 be resolved on a final link or when a partial link locates it in the
7237 same section as the target. Set "is_reachable" flag if the target of
7238 the call is within the range of a direct call, given the current VMA
7239 for this section and the target section. */
7240
7241 bfd_boolean
7242 is_resolvable_asm_expansion (bfd *abfd,
7243 asection *sec,
7244 bfd_byte *contents,
7245 Elf_Internal_Rela *irel,
7246 struct bfd_link_info *link_info,
7247 bfd_boolean *is_reachable_p)
7248 {
7249 asection *target_sec;
7250 bfd_vma target_offset;
7251 r_reloc r_rel;
7252 xtensa_opcode opcode, direct_call_opcode;
7253 bfd_vma self_address;
7254 bfd_vma dest_address;
7255 bfd_boolean uses_l32r;
7256 bfd_size_type sec_size;
7257
7258 *is_reachable_p = FALSE;
7259
7260 if (contents == NULL)
7261 return FALSE;
7262
7263 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7264 return FALSE;
7265
7266 sec_size = bfd_get_section_limit (abfd, sec);
7267 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7268 sec_size - irel->r_offset, &uses_l32r);
7269 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7270 if (!uses_l32r)
7271 return FALSE;
7272
7273 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7274 if (direct_call_opcode == XTENSA_UNDEFINED)
7275 return FALSE;
7276
7277 /* Check and see that the target resolves. */
7278 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7279 if (!r_reloc_is_defined (&r_rel))
7280 return FALSE;
7281
7282 target_sec = r_reloc_get_section (&r_rel);
7283 target_offset = r_rel.target_offset;
7284
7285 /* If the target is in a shared library, then it doesn't reach. This
7286 isn't supposed to come up because the compiler should never generate
7287 non-PIC calls on systems that use shared libraries, but the linker
7288 shouldn't crash regardless. */
7289 if (!target_sec->output_section)
7290 return FALSE;
7291
7292 /* For relocatable sections, we can only simplify when the output
7293 section of the target is the same as the output section of the
7294 source. */
7295 if (link_info->relocatable
7296 && (target_sec->output_section != sec->output_section
7297 || is_reloc_sym_weak (abfd, irel)))
7298 return FALSE;
7299
7300 if (target_sec->output_section != sec->output_section)
7301 {
7302 /* If the two sections are sufficiently far away that relaxation
7303 might take the call out of range, we can't simplify. For
7304 example, a positive displacement call into another memory
7305 could get moved to a lower address due to literal removal,
7306 but the destination won't move, and so the displacment might
7307 get larger.
7308
7309 If the displacement is negative, assume the destination could
7310 move as far back as the start of the output section. The
7311 self_address will be at least as far into the output section
7312 as it is prior to relaxation.
7313
7314 If the displacement is postive, assume the destination will be in
7315 it's pre-relaxed location (because relaxation only makes sections
7316 smaller). The self_address could go all the way to the beginning
7317 of the output section. */
7318
7319 dest_address = target_sec->output_section->vma;
7320 self_address = sec->output_section->vma;
7321
7322 if (sec->output_section->vma > target_sec->output_section->vma)
7323 self_address += sec->output_offset + irel->r_offset + 3;
7324 else
7325 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7326 /* Call targets should be four-byte aligned. */
7327 dest_address = (dest_address + 3) & ~3;
7328 }
7329 else
7330 {
7331
7332 self_address = (sec->output_section->vma
7333 + sec->output_offset + irel->r_offset + 3);
7334 dest_address = (target_sec->output_section->vma
7335 + target_sec->output_offset + target_offset);
7336 }
7337
7338 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7339 self_address, dest_address);
7340
7341 if ((self_address >> CALL_SEGMENT_BITS) !=
7342 (dest_address >> CALL_SEGMENT_BITS))
7343 return FALSE;
7344
7345 return TRUE;
7346 }
7347
7348
7349 static Elf_Internal_Rela *
7350 find_associated_l32r_irel (bfd *abfd,
7351 asection *sec,
7352 bfd_byte *contents,
7353 Elf_Internal_Rela *other_irel,
7354 Elf_Internal_Rela *internal_relocs)
7355 {
7356 unsigned i;
7357
7358 for (i = 0; i < sec->reloc_count; i++)
7359 {
7360 Elf_Internal_Rela *irel = &internal_relocs[i];
7361
7362 if (irel == other_irel)
7363 continue;
7364 if (irel->r_offset != other_irel->r_offset)
7365 continue;
7366 if (is_l32r_relocation (abfd, sec, contents, irel))
7367 return irel;
7368 }
7369
7370 return NULL;
7371 }
7372
7373
7374 static xtensa_opcode *
7375 build_reloc_opcodes (bfd *abfd,
7376 asection *sec,
7377 bfd_byte *contents,
7378 Elf_Internal_Rela *internal_relocs)
7379 {
7380 unsigned i;
7381 xtensa_opcode *reloc_opcodes =
7382 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7383 for (i = 0; i < sec->reloc_count; i++)
7384 {
7385 Elf_Internal_Rela *irel = &internal_relocs[i];
7386 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7387 }
7388 return reloc_opcodes;
7389 }
7390
7391 struct reloc_range_struct
7392 {
7393 bfd_vma addr;
7394 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7395 /* Original irel index in the array of relocations for a section. */
7396 unsigned irel_index;
7397 };
7398 typedef struct reloc_range_struct reloc_range;
7399
7400 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7401 struct reloc_range_list_entry_struct
7402 {
7403 reloc_range_list_entry *next;
7404 reloc_range_list_entry *prev;
7405 Elf_Internal_Rela *irel;
7406 xtensa_opcode opcode;
7407 int opnum;
7408 };
7409
7410 struct reloc_range_list_struct
7411 {
7412 /* The rest of the structure is only meaningful when ok is TRUE. */
7413 bfd_boolean ok;
7414
7415 unsigned n_range; /* Number of range markers. */
7416 reloc_range *range; /* Sorted range markers. */
7417
7418 unsigned first; /* Index of a first range element in the list. */
7419 unsigned last; /* One past index of a last range element in the list. */
7420
7421 unsigned n_list; /* Number of list elements. */
7422 reloc_range_list_entry *reloc; /* */
7423 reloc_range_list_entry list_root;
7424 };
7425
7426 static int
7427 reloc_range_compare (const void *a, const void *b)
7428 {
7429 const reloc_range *ra = a;
7430 const reloc_range *rb = b;
7431
7432 if (ra->addr != rb->addr)
7433 return ra->addr < rb->addr ? -1 : 1;
7434 if (ra->add != rb->add)
7435 return ra->add ? -1 : 1;
7436 return 0;
7437 }
7438
7439 static void
7440 build_reloc_ranges (bfd *abfd, asection *sec,
7441 bfd_byte *contents,
7442 Elf_Internal_Rela *internal_relocs,
7443 xtensa_opcode *reloc_opcodes,
7444 reloc_range_list *list)
7445 {
7446 unsigned i;
7447 size_t n = 0;
7448 size_t max_n = 0;
7449 reloc_range *ranges = NULL;
7450 reloc_range_list_entry *reloc =
7451 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7452
7453 memset (list, 0, sizeof (*list));
7454 list->ok = TRUE;
7455
7456 for (i = 0; i < sec->reloc_count; i++)
7457 {
7458 Elf_Internal_Rela *irel = &internal_relocs[i];
7459 int r_type = ELF32_R_TYPE (irel->r_info);
7460 reloc_howto_type *howto = &elf_howto_table[r_type];
7461 r_reloc r_rel;
7462
7463 if (r_type == R_XTENSA_ASM_SIMPLIFY
7464 || r_type == R_XTENSA_32_PCREL
7465 || !howto->pc_relative)
7466 continue;
7467
7468 r_reloc_init (&r_rel, abfd, irel, contents,
7469 bfd_get_section_limit (abfd, sec));
7470
7471 if (r_reloc_get_section (&r_rel) != sec)
7472 continue;
7473
7474 if (n + 2 > max_n)
7475 {
7476 max_n = (max_n + 2) * 2;
7477 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7478 }
7479
7480 ranges[n].addr = irel->r_offset;
7481 ranges[n + 1].addr = r_rel.target_offset;
7482
7483 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7484 ranges[n + 1].add = !ranges[n].add;
7485
7486 ranges[n].irel_index = i;
7487 ranges[n + 1].irel_index = i;
7488
7489 n += 2;
7490
7491 reloc[i].irel = irel;
7492
7493 /* Every relocation won't possibly be checked in the optimized version of
7494 check_section_ebb_pcrels_fit, so this needs to be done here. */
7495 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7496 {
7497 /* None of the current alternate relocs are PC-relative,
7498 and only PC-relative relocs matter here. */
7499 }
7500 else
7501 {
7502 xtensa_opcode opcode;
7503 int opnum;
7504
7505 if (reloc_opcodes)
7506 opcode = reloc_opcodes[i];
7507 else
7508 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7509
7510 if (opcode == XTENSA_UNDEFINED)
7511 {
7512 list->ok = FALSE;
7513 break;
7514 }
7515
7516 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7517 if (opnum == XTENSA_UNDEFINED)
7518 {
7519 list->ok = FALSE;
7520 break;
7521 }
7522
7523 /* Record relocation opcode and opnum as we've calculated them
7524 anyway and they won't change. */
7525 reloc[i].opcode = opcode;
7526 reloc[i].opnum = opnum;
7527 }
7528 }
7529
7530 if (list->ok)
7531 {
7532 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7533 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7534
7535 list->n_range = n;
7536 list->range = ranges;
7537 list->reloc = reloc;
7538 list->list_root.prev = &list->list_root;
7539 list->list_root.next = &list->list_root;
7540 }
7541 else
7542 {
7543 free (ranges);
7544 free (reloc);
7545 }
7546 }
7547
7548 static void reloc_range_list_append (reloc_range_list *list,
7549 unsigned irel_index)
7550 {
7551 reloc_range_list_entry *entry = list->reloc + irel_index;
7552
7553 entry->prev = list->list_root.prev;
7554 entry->next = &list->list_root;
7555 entry->prev->next = entry;
7556 entry->next->prev = entry;
7557 ++list->n_list;
7558 }
7559
7560 static void reloc_range_list_remove (reloc_range_list *list,
7561 unsigned irel_index)
7562 {
7563 reloc_range_list_entry *entry = list->reloc + irel_index;
7564
7565 entry->next->prev = entry->prev;
7566 entry->prev->next = entry->next;
7567 --list->n_list;
7568 }
7569
7570 /* Update relocation list object so that it lists all relocations that cross
7571 [first; last] range. Range bounds should not decrease with successive
7572 invocations. */
7573 static void reloc_range_list_update_range (reloc_range_list *list,
7574 bfd_vma first, bfd_vma last)
7575 {
7576 /* This should not happen: EBBs are iterated from lower addresses to higher.
7577 But even if that happens there's no need to break: just flush current list
7578 and start from scratch. */
7579 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7580 (list->first > 0 && list->range[list->first - 1].addr >= first))
7581 {
7582 list->first = 0;
7583 list->last = 0;
7584 list->n_list = 0;
7585 list->list_root.next = &list->list_root;
7586 list->list_root.prev = &list->list_root;
7587 fprintf (stderr, "%s: move backwards requested\n", __func__);
7588 }
7589
7590 for (; list->last < list->n_range &&
7591 list->range[list->last].addr <= last; ++list->last)
7592 if (list->range[list->last].add)
7593 reloc_range_list_append (list, list->range[list->last].irel_index);
7594
7595 for (; list->first < list->n_range &&
7596 list->range[list->first].addr < first; ++list->first)
7597 if (!list->range[list->first].add)
7598 reloc_range_list_remove (list, list->range[list->first].irel_index);
7599 }
7600
7601 static void free_reloc_range_list (reloc_range_list *list)
7602 {
7603 free (list->range);
7604 free (list->reloc);
7605 }
7606
7607 /* The compute_text_actions function will build a list of potential
7608 transformation actions for code in the extended basic block of each
7609 longcall that is optimized to a direct call. From this list we
7610 generate a set of actions to actually perform that optimizes for
7611 space and, if not using size_opt, maintains branch target
7612 alignments.
7613
7614 These actions to be performed are placed on a per-section list.
7615 The actual changes are performed by relax_section() in the second
7616 pass. */
7617
7618 bfd_boolean
7619 compute_text_actions (bfd *abfd,
7620 asection *sec,
7621 struct bfd_link_info *link_info)
7622 {
7623 xtensa_opcode *reloc_opcodes = NULL;
7624 xtensa_relax_info *relax_info;
7625 bfd_byte *contents;
7626 Elf_Internal_Rela *internal_relocs;
7627 bfd_boolean ok = TRUE;
7628 unsigned i;
7629 property_table_entry *prop_table = 0;
7630 int ptblsize = 0;
7631 bfd_size_type sec_size;
7632 reloc_range_list relevant_relocs;
7633
7634 relax_info = get_xtensa_relax_info (sec);
7635 BFD_ASSERT (relax_info);
7636 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7637
7638 /* Do nothing if the section contains no optimized longcalls. */
7639 if (!relax_info->is_relaxable_asm_section)
7640 return ok;
7641
7642 internal_relocs = retrieve_internal_relocs (abfd, sec,
7643 link_info->keep_memory);
7644
7645 if (internal_relocs)
7646 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7647 internal_reloc_compare);
7648
7649 sec_size = bfd_get_section_limit (abfd, sec);
7650 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7651 if (contents == NULL && sec_size != 0)
7652 {
7653 ok = FALSE;
7654 goto error_return;
7655 }
7656
7657 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7658 XTENSA_PROP_SEC_NAME, FALSE);
7659 if (ptblsize < 0)
7660 {
7661 ok = FALSE;
7662 goto error_return;
7663 }
7664
7665 /* Precompute the opcode for each relocation. */
7666 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7667
7668 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7669 &relevant_relocs);
7670
7671 for (i = 0; i < sec->reloc_count; i++)
7672 {
7673 Elf_Internal_Rela *irel = &internal_relocs[i];
7674 bfd_vma r_offset;
7675 property_table_entry *the_entry;
7676 int ptbl_idx;
7677 ebb_t *ebb;
7678 ebb_constraint ebb_table;
7679 bfd_size_type simplify_size;
7680
7681 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7682 continue;
7683 r_offset = irel->r_offset;
7684
7685 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7686 if (simplify_size == 0)
7687 {
7688 (*_bfd_error_handler)
7689 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7690 sec->owner, sec, r_offset);
7691 continue;
7692 }
7693
7694 /* If the instruction table is not around, then don't do this
7695 relaxation. */
7696 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7697 sec->vma + irel->r_offset);
7698 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7699 {
7700 text_action_add (&relax_info->action_list,
7701 ta_convert_longcall, sec, r_offset,
7702 0);
7703 continue;
7704 }
7705
7706 /* If the next longcall happens to be at the same address as an
7707 unreachable section of size 0, then skip forward. */
7708 ptbl_idx = the_entry - prop_table;
7709 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7710 && the_entry->size == 0
7711 && ptbl_idx + 1 < ptblsize
7712 && (prop_table[ptbl_idx + 1].address
7713 == prop_table[ptbl_idx].address))
7714 {
7715 ptbl_idx++;
7716 the_entry++;
7717 }
7718
7719 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7720 /* NO_REORDER is OK */
7721 continue;
7722
7723 init_ebb_constraint (&ebb_table);
7724 ebb = &ebb_table.ebb;
7725 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7726 internal_relocs, sec->reloc_count);
7727 ebb->start_offset = r_offset + simplify_size;
7728 ebb->end_offset = r_offset + simplify_size;
7729 ebb->start_ptbl_idx = ptbl_idx;
7730 ebb->end_ptbl_idx = ptbl_idx;
7731 ebb->start_reloc_idx = i;
7732 ebb->end_reloc_idx = i;
7733
7734 if (!extend_ebb_bounds (ebb)
7735 || !compute_ebb_proposed_actions (&ebb_table)
7736 || !compute_ebb_actions (&ebb_table)
7737 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7738 internal_relocs,
7739 &relevant_relocs,
7740 &ebb_table, reloc_opcodes)
7741 || !check_section_ebb_reduces (&ebb_table))
7742 {
7743 /* If anything goes wrong or we get unlucky and something does
7744 not fit, with our plan because of expansion between
7745 critical branches, just convert to a NOP. */
7746
7747 text_action_add (&relax_info->action_list,
7748 ta_convert_longcall, sec, r_offset, 0);
7749 i = ebb_table.ebb.end_reloc_idx;
7750 free_ebb_constraint (&ebb_table);
7751 continue;
7752 }
7753
7754 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7755
7756 /* Update the index so we do not go looking at the relocations
7757 we have already processed. */
7758 i = ebb_table.ebb.end_reloc_idx;
7759 free_ebb_constraint (&ebb_table);
7760 }
7761
7762 free_reloc_range_list (&relevant_relocs);
7763
7764 #if DEBUG
7765 if (relax_info->action_list.head)
7766 print_action_list (stderr, &relax_info->action_list);
7767 #endif
7768
7769 error_return:
7770 release_contents (sec, contents);
7771 release_internal_relocs (sec, internal_relocs);
7772 if (prop_table)
7773 free (prop_table);
7774 if (reloc_opcodes)
7775 free (reloc_opcodes);
7776
7777 return ok;
7778 }
7779
7780
7781 /* Do not widen an instruction if it is preceeded by a
7782 loop opcode. It might cause misalignment. */
7783
7784 static bfd_boolean
7785 prev_instr_is_a_loop (bfd_byte *contents,
7786 bfd_size_type content_length,
7787 bfd_size_type offset)
7788 {
7789 xtensa_opcode prev_opcode;
7790
7791 if (offset < 3)
7792 return FALSE;
7793 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7794 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7795 }
7796
7797
7798 /* Find all of the possible actions for an extended basic block. */
7799
7800 bfd_boolean
7801 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7802 {
7803 const ebb_t *ebb = &ebb_table->ebb;
7804 unsigned rel_idx = ebb->start_reloc_idx;
7805 property_table_entry *entry, *start_entry, *end_entry;
7806 bfd_vma offset = 0;
7807 xtensa_isa isa = xtensa_default_isa;
7808 xtensa_format fmt;
7809 static xtensa_insnbuf insnbuf = NULL;
7810 static xtensa_insnbuf slotbuf = NULL;
7811
7812 if (insnbuf == NULL)
7813 {
7814 insnbuf = xtensa_insnbuf_alloc (isa);
7815 slotbuf = xtensa_insnbuf_alloc (isa);
7816 }
7817
7818 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7819 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7820
7821 for (entry = start_entry; entry <= end_entry; entry++)
7822 {
7823 bfd_vma start_offset, end_offset;
7824 bfd_size_type insn_len;
7825
7826 start_offset = entry->address - ebb->sec->vma;
7827 end_offset = entry->address + entry->size - ebb->sec->vma;
7828
7829 if (entry == start_entry)
7830 start_offset = ebb->start_offset;
7831 if (entry == end_entry)
7832 end_offset = ebb->end_offset;
7833 offset = start_offset;
7834
7835 if (offset == entry->address - ebb->sec->vma
7836 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7837 {
7838 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7839 BFD_ASSERT (offset != end_offset);
7840 if (offset == end_offset)
7841 return FALSE;
7842
7843 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7844 offset);
7845 if (insn_len == 0)
7846 goto decode_error;
7847
7848 if (check_branch_target_aligned_address (offset, insn_len))
7849 align_type = EBB_REQUIRE_TGT_ALIGN;
7850
7851 ebb_propose_action (ebb_table, align_type, 0,
7852 ta_none, offset, 0, TRUE);
7853 }
7854
7855 while (offset != end_offset)
7856 {
7857 Elf_Internal_Rela *irel;
7858 xtensa_opcode opcode;
7859
7860 while (rel_idx < ebb->end_reloc_idx
7861 && (ebb->relocs[rel_idx].r_offset < offset
7862 || (ebb->relocs[rel_idx].r_offset == offset
7863 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7864 != R_XTENSA_ASM_SIMPLIFY))))
7865 rel_idx++;
7866
7867 /* Check for longcall. */
7868 irel = &ebb->relocs[rel_idx];
7869 if (irel->r_offset == offset
7870 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7871 {
7872 bfd_size_type simplify_size;
7873
7874 simplify_size = get_asm_simplify_size (ebb->contents,
7875 ebb->content_length,
7876 irel->r_offset);
7877 if (simplify_size == 0)
7878 goto decode_error;
7879
7880 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7881 ta_convert_longcall, offset, 0, TRUE);
7882
7883 offset += simplify_size;
7884 continue;
7885 }
7886
7887 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7888 goto decode_error;
7889 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7890 ebb->content_length - offset);
7891 fmt = xtensa_format_decode (isa, insnbuf);
7892 if (fmt == XTENSA_UNDEFINED)
7893 goto decode_error;
7894 insn_len = xtensa_format_length (isa, fmt);
7895 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7896 goto decode_error;
7897
7898 if (xtensa_format_num_slots (isa, fmt) != 1)
7899 {
7900 offset += insn_len;
7901 continue;
7902 }
7903
7904 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7905 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7906 if (opcode == XTENSA_UNDEFINED)
7907 goto decode_error;
7908
7909 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7910 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7911 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7912 {
7913 /* Add an instruction narrow action. */
7914 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7915 ta_narrow_insn, offset, 0, FALSE);
7916 }
7917 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7918 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7919 && ! prev_instr_is_a_loop (ebb->contents,
7920 ebb->content_length, offset))
7921 {
7922 /* Add an instruction widen action. */
7923 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7924 ta_widen_insn, offset, 0, FALSE);
7925 }
7926 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7927 {
7928 /* Check for branch targets. */
7929 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7930 ta_none, offset, 0, TRUE);
7931 }
7932
7933 offset += insn_len;
7934 }
7935 }
7936
7937 if (ebb->ends_unreachable)
7938 {
7939 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7940 ta_fill, ebb->end_offset, 0, TRUE);
7941 }
7942
7943 return TRUE;
7944
7945 decode_error:
7946 (*_bfd_error_handler)
7947 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7948 ebb->sec->owner, ebb->sec, offset);
7949 return FALSE;
7950 }
7951
7952
7953 /* After all of the information has collected about the
7954 transformations possible in an EBB, compute the appropriate actions
7955 here in compute_ebb_actions. We still must check later to make
7956 sure that the actions do not break any relocations. The algorithm
7957 used here is pretty greedy. Basically, it removes as many no-ops
7958 as possible so that the end of the EBB has the same alignment
7959 characteristics as the original. First, it uses narrowing, then
7960 fill space at the end of the EBB, and finally widenings. If that
7961 does not work, it tries again with one fewer no-op removed. The
7962 optimization will only be performed if all of the branch targets
7963 that were aligned before transformation are also aligned after the
7964 transformation.
7965
7966 When the size_opt flag is set, ignore the branch target alignments,
7967 narrow all wide instructions, and remove all no-ops unless the end
7968 of the EBB prevents it. */
7969
7970 bfd_boolean
7971 compute_ebb_actions (ebb_constraint *ebb_table)
7972 {
7973 unsigned i = 0;
7974 unsigned j;
7975 int removed_bytes = 0;
7976 ebb_t *ebb = &ebb_table->ebb;
7977 unsigned seg_idx_start = 0;
7978 unsigned seg_idx_end = 0;
7979
7980 /* We perform this like the assembler relaxation algorithm: Start by
7981 assuming all instructions are narrow and all no-ops removed; then
7982 walk through.... */
7983
7984 /* For each segment of this that has a solid constraint, check to
7985 see if there are any combinations that will keep the constraint.
7986 If so, use it. */
7987 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7988 {
7989 bfd_boolean requires_text_end_align = FALSE;
7990 unsigned longcall_count = 0;
7991 unsigned longcall_convert_count = 0;
7992 unsigned narrowable_count = 0;
7993 unsigned narrowable_convert_count = 0;
7994 unsigned widenable_count = 0;
7995 unsigned widenable_convert_count = 0;
7996
7997 proposed_action *action = NULL;
7998 int align = (1 << ebb_table->ebb.sec->alignment_power);
7999
8000 seg_idx_start = seg_idx_end;
8001
8002 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8003 {
8004 action = &ebb_table->actions[i];
8005 if (action->action == ta_convert_longcall)
8006 longcall_count++;
8007 if (action->action == ta_narrow_insn)
8008 narrowable_count++;
8009 if (action->action == ta_widen_insn)
8010 widenable_count++;
8011 if (action->action == ta_fill)
8012 break;
8013 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8014 break;
8015 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8016 && !elf32xtensa_size_opt)
8017 break;
8018 }
8019 seg_idx_end = i;
8020
8021 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8022 requires_text_end_align = TRUE;
8023
8024 if (elf32xtensa_size_opt && !requires_text_end_align
8025 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8026 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8027 {
8028 longcall_convert_count = longcall_count;
8029 narrowable_convert_count = narrowable_count;
8030 widenable_convert_count = 0;
8031 }
8032 else
8033 {
8034 /* There is a constraint. Convert the max number of longcalls. */
8035 narrowable_convert_count = 0;
8036 longcall_convert_count = 0;
8037 widenable_convert_count = 0;
8038
8039 for (j = 0; j < longcall_count; j++)
8040 {
8041 int removed = (longcall_count - j) * 3 & (align - 1);
8042 unsigned desire_narrow = (align - removed) & (align - 1);
8043 unsigned desire_widen = removed;
8044 if (desire_narrow <= narrowable_count)
8045 {
8046 narrowable_convert_count = desire_narrow;
8047 narrowable_convert_count +=
8048 (align * ((narrowable_count - narrowable_convert_count)
8049 / align));
8050 longcall_convert_count = (longcall_count - j);
8051 widenable_convert_count = 0;
8052 break;
8053 }
8054 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8055 {
8056 narrowable_convert_count = 0;
8057 longcall_convert_count = longcall_count - j;
8058 widenable_convert_count = desire_widen;
8059 break;
8060 }
8061 }
8062 }
8063
8064 /* Now the number of conversions are saved. Do them. */
8065 for (i = seg_idx_start; i < seg_idx_end; i++)
8066 {
8067 action = &ebb_table->actions[i];
8068 switch (action->action)
8069 {
8070 case ta_convert_longcall:
8071 if (longcall_convert_count != 0)
8072 {
8073 action->action = ta_remove_longcall;
8074 action->do_action = TRUE;
8075 action->removed_bytes += 3;
8076 longcall_convert_count--;
8077 }
8078 break;
8079 case ta_narrow_insn:
8080 if (narrowable_convert_count != 0)
8081 {
8082 action->do_action = TRUE;
8083 action->removed_bytes += 1;
8084 narrowable_convert_count--;
8085 }
8086 break;
8087 case ta_widen_insn:
8088 if (widenable_convert_count != 0)
8089 {
8090 action->do_action = TRUE;
8091 action->removed_bytes -= 1;
8092 widenable_convert_count--;
8093 }
8094 break;
8095 default:
8096 break;
8097 }
8098 }
8099 }
8100
8101 /* Now we move on to some local opts. Try to remove each of the
8102 remaining longcalls. */
8103
8104 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8105 {
8106 removed_bytes = 0;
8107 for (i = 0; i < ebb_table->action_count; i++)
8108 {
8109 int old_removed_bytes = removed_bytes;
8110 proposed_action *action = &ebb_table->actions[i];
8111
8112 if (action->do_action && action->action == ta_convert_longcall)
8113 {
8114 bfd_boolean bad_alignment = FALSE;
8115 removed_bytes += 3;
8116 for (j = i + 1; j < ebb_table->action_count; j++)
8117 {
8118 proposed_action *new_action = &ebb_table->actions[j];
8119 bfd_vma offset = new_action->offset;
8120 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8121 {
8122 if (!check_branch_target_aligned
8123 (ebb_table->ebb.contents,
8124 ebb_table->ebb.content_length,
8125 offset, offset - removed_bytes))
8126 {
8127 bad_alignment = TRUE;
8128 break;
8129 }
8130 }
8131 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8132 {
8133 if (!check_loop_aligned (ebb_table->ebb.contents,
8134 ebb_table->ebb.content_length,
8135 offset,
8136 offset - removed_bytes))
8137 {
8138 bad_alignment = TRUE;
8139 break;
8140 }
8141 }
8142 if (new_action->action == ta_narrow_insn
8143 && !new_action->do_action
8144 && ebb_table->ebb.sec->alignment_power == 2)
8145 {
8146 /* Narrow an instruction and we are done. */
8147 new_action->do_action = TRUE;
8148 new_action->removed_bytes += 1;
8149 bad_alignment = FALSE;
8150 break;
8151 }
8152 if (new_action->action == ta_widen_insn
8153 && new_action->do_action
8154 && ebb_table->ebb.sec->alignment_power == 2)
8155 {
8156 /* Narrow an instruction and we are done. */
8157 new_action->do_action = FALSE;
8158 new_action->removed_bytes += 1;
8159 bad_alignment = FALSE;
8160 break;
8161 }
8162 if (new_action->do_action)
8163 removed_bytes += new_action->removed_bytes;
8164 }
8165 if (!bad_alignment)
8166 {
8167 action->removed_bytes += 3;
8168 action->action = ta_remove_longcall;
8169 action->do_action = TRUE;
8170 }
8171 }
8172 removed_bytes = old_removed_bytes;
8173 if (action->do_action)
8174 removed_bytes += action->removed_bytes;
8175 }
8176 }
8177
8178 removed_bytes = 0;
8179 for (i = 0; i < ebb_table->action_count; ++i)
8180 {
8181 proposed_action *action = &ebb_table->actions[i];
8182 if (action->do_action)
8183 removed_bytes += action->removed_bytes;
8184 }
8185
8186 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8187 && ebb->ends_unreachable)
8188 {
8189 proposed_action *action;
8190 int br;
8191 int extra_space;
8192
8193 BFD_ASSERT (ebb_table->action_count != 0);
8194 action = &ebb_table->actions[ebb_table->action_count - 1];
8195 BFD_ASSERT (action->action == ta_fill);
8196 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8197
8198 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8199 br = action->removed_bytes + removed_bytes + extra_space;
8200 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8201
8202 action->removed_bytes = extra_space - br;
8203 }
8204 return TRUE;
8205 }
8206
8207
8208 /* The xlate_map is a sorted array of address mappings designed to
8209 answer the offset_with_removed_text() query with a binary search instead
8210 of a linear search through the section's action_list. */
8211
8212 typedef struct xlate_map_entry xlate_map_entry_t;
8213 typedef struct xlate_map xlate_map_t;
8214
8215 struct xlate_map_entry
8216 {
8217 unsigned orig_address;
8218 unsigned new_address;
8219 unsigned size;
8220 };
8221
8222 struct xlate_map
8223 {
8224 unsigned entry_count;
8225 xlate_map_entry_t *entry;
8226 };
8227
8228
8229 static int
8230 xlate_compare (const void *a_v, const void *b_v)
8231 {
8232 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8233 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8234 if (a->orig_address < b->orig_address)
8235 return -1;
8236 if (a->orig_address > (b->orig_address + b->size - 1))
8237 return 1;
8238 return 0;
8239 }
8240
8241
8242 static bfd_vma
8243 xlate_offset_with_removed_text (const xlate_map_t *map,
8244 text_action_list *action_list,
8245 bfd_vma offset)
8246 {
8247 void *r;
8248 xlate_map_entry_t *e;
8249
8250 if (map == NULL)
8251 return offset_with_removed_text (action_list, offset);
8252
8253 if (map->entry_count == 0)
8254 return offset;
8255
8256 r = bsearch (&offset, map->entry, map->entry_count,
8257 sizeof (xlate_map_entry_t), &xlate_compare);
8258 e = (xlate_map_entry_t *) r;
8259
8260 BFD_ASSERT (e != NULL);
8261 if (e == NULL)
8262 return offset;
8263 return e->new_address - e->orig_address + offset;
8264 }
8265
8266
8267 /* Build a binary searchable offset translation map from a section's
8268 action list. */
8269
8270 static xlate_map_t *
8271 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8272 {
8273 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8274 text_action_list *action_list = &relax_info->action_list;
8275 unsigned num_actions = 0;
8276 text_action *r;
8277 int removed;
8278 xlate_map_entry_t *current_entry;
8279
8280 if (map == NULL)
8281 return NULL;
8282
8283 num_actions = action_list_count (action_list);
8284 map->entry = (xlate_map_entry_t *)
8285 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8286 if (map->entry == NULL)
8287 {
8288 free (map);
8289 return NULL;
8290 }
8291 map->entry_count = 0;
8292
8293 removed = 0;
8294 current_entry = &map->entry[0];
8295
8296 current_entry->orig_address = 0;
8297 current_entry->new_address = 0;
8298 current_entry->size = 0;
8299
8300 for (r = action_list->head; r != NULL; r = r->next)
8301 {
8302 unsigned orig_size = 0;
8303 switch (r->action)
8304 {
8305 case ta_none:
8306 case ta_remove_insn:
8307 case ta_convert_longcall:
8308 case ta_remove_literal:
8309 case ta_add_literal:
8310 break;
8311 case ta_remove_longcall:
8312 orig_size = 6;
8313 break;
8314 case ta_narrow_insn:
8315 orig_size = 3;
8316 break;
8317 case ta_widen_insn:
8318 orig_size = 2;
8319 break;
8320 case ta_fill:
8321 break;
8322 }
8323 current_entry->size =
8324 r->offset + orig_size - current_entry->orig_address;
8325 if (current_entry->size != 0)
8326 {
8327 current_entry++;
8328 map->entry_count++;
8329 }
8330 current_entry->orig_address = r->offset + orig_size;
8331 removed += r->removed_bytes;
8332 current_entry->new_address = r->offset + orig_size - removed;
8333 current_entry->size = 0;
8334 }
8335
8336 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8337 - current_entry->orig_address);
8338 if (current_entry->size != 0)
8339 map->entry_count++;
8340
8341 return map;
8342 }
8343
8344
8345 /* Free an offset translation map. */
8346
8347 static void
8348 free_xlate_map (xlate_map_t *map)
8349 {
8350 if (map && map->entry)
8351 free (map->entry);
8352 if (map)
8353 free (map);
8354 }
8355
8356
8357 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8358 relocations in a section will fit if a proposed set of actions
8359 are performed. */
8360
8361 static bfd_boolean
8362 check_section_ebb_pcrels_fit (bfd *abfd,
8363 asection *sec,
8364 bfd_byte *contents,
8365 Elf_Internal_Rela *internal_relocs,
8366 reloc_range_list *relevant_relocs,
8367 const ebb_constraint *constraint,
8368 const xtensa_opcode *reloc_opcodes)
8369 {
8370 unsigned i, j;
8371 unsigned n = sec->reloc_count;
8372 Elf_Internal_Rela *irel;
8373 xlate_map_t *xmap = NULL;
8374 bfd_boolean ok = TRUE;
8375 xtensa_relax_info *relax_info;
8376 reloc_range_list_entry *entry = NULL;
8377
8378 relax_info = get_xtensa_relax_info (sec);
8379
8380 if (relax_info && sec->reloc_count > 100)
8381 {
8382 xmap = build_xlate_map (sec, relax_info);
8383 /* NULL indicates out of memory, but the slow version
8384 can still be used. */
8385 }
8386
8387 if (relevant_relocs && constraint->action_count)
8388 {
8389 if (!relevant_relocs->ok)
8390 {
8391 ok = FALSE;
8392 n = 0;
8393 }
8394 else
8395 {
8396 bfd_vma min_offset, max_offset;
8397 min_offset = max_offset = constraint->actions[0].offset;
8398
8399 for (i = 1; i < constraint->action_count; ++i)
8400 {
8401 proposed_action *action = &constraint->actions[i];
8402 bfd_vma offset = action->offset;
8403
8404 if (offset < min_offset)
8405 min_offset = offset;
8406 if (offset > max_offset)
8407 max_offset = offset;
8408 }
8409 reloc_range_list_update_range (relevant_relocs, min_offset,
8410 max_offset);
8411 n = relevant_relocs->n_list;
8412 entry = &relevant_relocs->list_root;
8413 }
8414 }
8415 else
8416 {
8417 relevant_relocs = NULL;
8418 }
8419
8420 for (i = 0; i < n; i++)
8421 {
8422 r_reloc r_rel;
8423 bfd_vma orig_self_offset, orig_target_offset;
8424 bfd_vma self_offset, target_offset;
8425 int r_type;
8426 reloc_howto_type *howto;
8427 int self_removed_bytes, target_removed_bytes;
8428
8429 if (relevant_relocs)
8430 {
8431 entry = entry->next;
8432 irel = entry->irel;
8433 }
8434 else
8435 {
8436 irel = internal_relocs + i;
8437 }
8438 r_type = ELF32_R_TYPE (irel->r_info);
8439
8440 howto = &elf_howto_table[r_type];
8441 /* We maintain the required invariant: PC-relative relocations
8442 that fit before linking must fit after linking. Thus we only
8443 need to deal with relocations to the same section that are
8444 PC-relative. */
8445 if (r_type == R_XTENSA_ASM_SIMPLIFY
8446 || r_type == R_XTENSA_32_PCREL
8447 || !howto->pc_relative)
8448 continue;
8449
8450 r_reloc_init (&r_rel, abfd, irel, contents,
8451 bfd_get_section_limit (abfd, sec));
8452
8453 if (r_reloc_get_section (&r_rel) != sec)
8454 continue;
8455
8456 orig_self_offset = irel->r_offset;
8457 orig_target_offset = r_rel.target_offset;
8458
8459 self_offset = orig_self_offset;
8460 target_offset = orig_target_offset;
8461
8462 if (relax_info)
8463 {
8464 self_offset =
8465 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8466 orig_self_offset);
8467 target_offset =
8468 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8469 orig_target_offset);
8470 }
8471
8472 self_removed_bytes = 0;
8473 target_removed_bytes = 0;
8474
8475 for (j = 0; j < constraint->action_count; ++j)
8476 {
8477 proposed_action *action = &constraint->actions[j];
8478 bfd_vma offset = action->offset;
8479 int removed_bytes = action->removed_bytes;
8480 if (offset < orig_self_offset
8481 || (offset == orig_self_offset && action->action == ta_fill
8482 && action->removed_bytes < 0))
8483 self_removed_bytes += removed_bytes;
8484 if (offset < orig_target_offset
8485 || (offset == orig_target_offset && action->action == ta_fill
8486 && action->removed_bytes < 0))
8487 target_removed_bytes += removed_bytes;
8488 }
8489 self_offset -= self_removed_bytes;
8490 target_offset -= target_removed_bytes;
8491
8492 /* Try to encode it. Get the operand and check. */
8493 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8494 {
8495 /* None of the current alternate relocs are PC-relative,
8496 and only PC-relative relocs matter here. */
8497 }
8498 else
8499 {
8500 xtensa_opcode opcode;
8501 int opnum;
8502
8503 if (relevant_relocs)
8504 {
8505 opcode = entry->opcode;
8506 opnum = entry->opnum;
8507 }
8508 else
8509 {
8510 if (reloc_opcodes)
8511 opcode = reloc_opcodes[relevant_relocs ?
8512 (unsigned)(entry - relevant_relocs->reloc) : i];
8513 else
8514 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8515 if (opcode == XTENSA_UNDEFINED)
8516 {
8517 ok = FALSE;
8518 break;
8519 }
8520
8521 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8522 if (opnum == XTENSA_UNDEFINED)
8523 {
8524 ok = FALSE;
8525 break;
8526 }
8527 }
8528
8529 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8530 {
8531 ok = FALSE;
8532 break;
8533 }
8534 }
8535 }
8536
8537 if (xmap)
8538 free_xlate_map (xmap);
8539
8540 return ok;
8541 }
8542
8543
8544 static bfd_boolean
8545 check_section_ebb_reduces (const ebb_constraint *constraint)
8546 {
8547 int removed = 0;
8548 unsigned i;
8549
8550 for (i = 0; i < constraint->action_count; i++)
8551 {
8552 const proposed_action *action = &constraint->actions[i];
8553 if (action->do_action)
8554 removed += action->removed_bytes;
8555 }
8556 if (removed < 0)
8557 return FALSE;
8558
8559 return TRUE;
8560 }
8561
8562
8563 void
8564 text_action_add_proposed (text_action_list *l,
8565 const ebb_constraint *ebb_table,
8566 asection *sec)
8567 {
8568 unsigned i;
8569
8570 for (i = 0; i < ebb_table->action_count; i++)
8571 {
8572 proposed_action *action = &ebb_table->actions[i];
8573
8574 if (!action->do_action)
8575 continue;
8576 switch (action->action)
8577 {
8578 case ta_remove_insn:
8579 case ta_remove_longcall:
8580 case ta_convert_longcall:
8581 case ta_narrow_insn:
8582 case ta_widen_insn:
8583 case ta_fill:
8584 case ta_remove_literal:
8585 text_action_add (l, action->action, sec, action->offset,
8586 action->removed_bytes);
8587 break;
8588 case ta_none:
8589 break;
8590 default:
8591 BFD_ASSERT (0);
8592 break;
8593 }
8594 }
8595 }
8596
8597
8598 int
8599 compute_fill_extra_space (property_table_entry *entry)
8600 {
8601 int fill_extra_space;
8602
8603 if (!entry)
8604 return 0;
8605
8606 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8607 return 0;
8608
8609 fill_extra_space = entry->size;
8610 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8611 {
8612 /* Fill bytes for alignment:
8613 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8614 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8615 int nsm = (1 << pow) - 1;
8616 bfd_vma addr = entry->address + entry->size;
8617 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8618 fill_extra_space += align_fill;
8619 }
8620 return fill_extra_space;
8621 }
8622
8623 \f
8624 /* First relaxation pass. */
8625
8626 /* If the section contains relaxable literals, check each literal to
8627 see if it has the same value as another literal that has already
8628 been seen, either in the current section or a previous one. If so,
8629 add an entry to the per-section list of removed literals. The
8630 actual changes are deferred until the next pass. */
8631
8632 static bfd_boolean
8633 compute_removed_literals (bfd *abfd,
8634 asection *sec,
8635 struct bfd_link_info *link_info,
8636 value_map_hash_table *values)
8637 {
8638 xtensa_relax_info *relax_info;
8639 bfd_byte *contents;
8640 Elf_Internal_Rela *internal_relocs;
8641 source_reloc *src_relocs, *rel;
8642 bfd_boolean ok = TRUE;
8643 property_table_entry *prop_table = NULL;
8644 int ptblsize;
8645 int i, prev_i;
8646 bfd_boolean last_loc_is_prev = FALSE;
8647 bfd_vma last_target_offset = 0;
8648 section_cache_t target_sec_cache;
8649 bfd_size_type sec_size;
8650
8651 init_section_cache (&target_sec_cache);
8652
8653 /* Do nothing if it is not a relaxable literal section. */
8654 relax_info = get_xtensa_relax_info (sec);
8655 BFD_ASSERT (relax_info);
8656 if (!relax_info->is_relaxable_literal_section)
8657 return ok;
8658
8659 internal_relocs = retrieve_internal_relocs (abfd, sec,
8660 link_info->keep_memory);
8661
8662 sec_size = bfd_get_section_limit (abfd, sec);
8663 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8664 if (contents == NULL && sec_size != 0)
8665 {
8666 ok = FALSE;
8667 goto error_return;
8668 }
8669
8670 /* Sort the source_relocs by target offset. */
8671 src_relocs = relax_info->src_relocs;
8672 qsort (src_relocs, relax_info->src_count,
8673 sizeof (source_reloc), source_reloc_compare);
8674 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8675 internal_reloc_compare);
8676
8677 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8678 XTENSA_PROP_SEC_NAME, FALSE);
8679 if (ptblsize < 0)
8680 {
8681 ok = FALSE;
8682 goto error_return;
8683 }
8684
8685 prev_i = -1;
8686 for (i = 0; i < relax_info->src_count; i++)
8687 {
8688 Elf_Internal_Rela *irel = NULL;
8689
8690 rel = &src_relocs[i];
8691 if (get_l32r_opcode () != rel->opcode)
8692 continue;
8693 irel = get_irel_at_offset (sec, internal_relocs,
8694 rel->r_rel.target_offset);
8695
8696 /* If the relocation on this is not a simple R_XTENSA_32 or
8697 R_XTENSA_PLT then do not consider it. This may happen when
8698 the difference of two symbols is used in a literal. */
8699 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8700 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8701 continue;
8702
8703 /* If the target_offset for this relocation is the same as the
8704 previous relocation, then we've already considered whether the
8705 literal can be coalesced. Skip to the next one.... */
8706 if (i != 0 && prev_i != -1
8707 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8708 continue;
8709 prev_i = i;
8710
8711 if (last_loc_is_prev &&
8712 last_target_offset + 4 != rel->r_rel.target_offset)
8713 last_loc_is_prev = FALSE;
8714
8715 /* Check if the relocation was from an L32R that is being removed
8716 because a CALLX was converted to a direct CALL, and check if
8717 there are no other relocations to the literal. */
8718 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8719 sec, prop_table, ptblsize))
8720 {
8721 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8722 irel, rel, prop_table, ptblsize))
8723 {
8724 ok = FALSE;
8725 goto error_return;
8726 }
8727 last_target_offset = rel->r_rel.target_offset;
8728 continue;
8729 }
8730
8731 if (!identify_literal_placement (abfd, sec, contents, link_info,
8732 values,
8733 &last_loc_is_prev, irel,
8734 relax_info->src_count - i, rel,
8735 prop_table, ptblsize,
8736 &target_sec_cache, rel->is_abs_literal))
8737 {
8738 ok = FALSE;
8739 goto error_return;
8740 }
8741 last_target_offset = rel->r_rel.target_offset;
8742 }
8743
8744 #if DEBUG
8745 print_removed_literals (stderr, &relax_info->removed_list);
8746 print_action_list (stderr, &relax_info->action_list);
8747 #endif /* DEBUG */
8748
8749 error_return:
8750 if (prop_table)
8751 free (prop_table);
8752 free_section_cache (&target_sec_cache);
8753
8754 release_contents (sec, contents);
8755 release_internal_relocs (sec, internal_relocs);
8756 return ok;
8757 }
8758
8759
8760 static Elf_Internal_Rela *
8761 get_irel_at_offset (asection *sec,
8762 Elf_Internal_Rela *internal_relocs,
8763 bfd_vma offset)
8764 {
8765 unsigned i;
8766 Elf_Internal_Rela *irel;
8767 unsigned r_type;
8768 Elf_Internal_Rela key;
8769
8770 if (!internal_relocs)
8771 return NULL;
8772
8773 key.r_offset = offset;
8774 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8775 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8776 if (!irel)
8777 return NULL;
8778
8779 /* bsearch does not guarantee which will be returned if there are
8780 multiple matches. We need the first that is not an alignment. */
8781 i = irel - internal_relocs;
8782 while (i > 0)
8783 {
8784 if (internal_relocs[i-1].r_offset != offset)
8785 break;
8786 i--;
8787 }
8788 for ( ; i < sec->reloc_count; i++)
8789 {
8790 irel = &internal_relocs[i];
8791 r_type = ELF32_R_TYPE (irel->r_info);
8792 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8793 return irel;
8794 }
8795
8796 return NULL;
8797 }
8798
8799
8800 bfd_boolean
8801 is_removable_literal (const source_reloc *rel,
8802 int i,
8803 const source_reloc *src_relocs,
8804 int src_count,
8805 asection *sec,
8806 property_table_entry *prop_table,
8807 int ptblsize)
8808 {
8809 const source_reloc *curr_rel;
8810 property_table_entry *entry;
8811
8812 if (!rel->is_null)
8813 return FALSE;
8814
8815 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8816 sec->vma + rel->r_rel.target_offset);
8817 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8818 return FALSE;
8819
8820 for (++i; i < src_count; ++i)
8821 {
8822 curr_rel = &src_relocs[i];
8823 /* If all others have the same target offset.... */
8824 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8825 return TRUE;
8826
8827 if (!curr_rel->is_null
8828 && !xtensa_is_property_section (curr_rel->source_sec)
8829 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8830 return FALSE;
8831 }
8832 return TRUE;
8833 }
8834
8835
8836 bfd_boolean
8837 remove_dead_literal (bfd *abfd,
8838 asection *sec,
8839 struct bfd_link_info *link_info,
8840 Elf_Internal_Rela *internal_relocs,
8841 Elf_Internal_Rela *irel,
8842 source_reloc *rel,
8843 property_table_entry *prop_table,
8844 int ptblsize)
8845 {
8846 property_table_entry *entry;
8847 xtensa_relax_info *relax_info;
8848
8849 relax_info = get_xtensa_relax_info (sec);
8850 if (!relax_info)
8851 return FALSE;
8852
8853 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8854 sec->vma + rel->r_rel.target_offset);
8855
8856 /* Mark the unused literal so that it will be removed. */
8857 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8858
8859 text_action_add (&relax_info->action_list,
8860 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8861
8862 /* If the section is 4-byte aligned, do not add fill. */
8863 if (sec->alignment_power > 2)
8864 {
8865 int fill_extra_space;
8866 bfd_vma entry_sec_offset;
8867 text_action *fa;
8868 property_table_entry *the_add_entry;
8869 int removed_diff;
8870
8871 if (entry)
8872 entry_sec_offset = entry->address - sec->vma + entry->size;
8873 else
8874 entry_sec_offset = rel->r_rel.target_offset + 4;
8875
8876 /* If the literal range is at the end of the section,
8877 do not add fill. */
8878 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8879 entry_sec_offset);
8880 fill_extra_space = compute_fill_extra_space (the_add_entry);
8881
8882 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8883 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8884 -4, fill_extra_space);
8885 if (fa)
8886 adjust_fill_action (fa, removed_diff);
8887 else
8888 text_action_add (&relax_info->action_list,
8889 ta_fill, sec, entry_sec_offset, removed_diff);
8890 }
8891
8892 /* Zero out the relocation on this literal location. */
8893 if (irel)
8894 {
8895 if (elf_hash_table (link_info)->dynamic_sections_created)
8896 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8897
8898 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8899 pin_internal_relocs (sec, internal_relocs);
8900 }
8901
8902 /* Do not modify "last_loc_is_prev". */
8903 return TRUE;
8904 }
8905
8906
8907 bfd_boolean
8908 identify_literal_placement (bfd *abfd,
8909 asection *sec,
8910 bfd_byte *contents,
8911 struct bfd_link_info *link_info,
8912 value_map_hash_table *values,
8913 bfd_boolean *last_loc_is_prev_p,
8914 Elf_Internal_Rela *irel,
8915 int remaining_src_rels,
8916 source_reloc *rel,
8917 property_table_entry *prop_table,
8918 int ptblsize,
8919 section_cache_t *target_sec_cache,
8920 bfd_boolean is_abs_literal)
8921 {
8922 literal_value val;
8923 value_map *val_map;
8924 xtensa_relax_info *relax_info;
8925 bfd_boolean literal_placed = FALSE;
8926 r_reloc r_rel;
8927 unsigned long value;
8928 bfd_boolean final_static_link;
8929 bfd_size_type sec_size;
8930
8931 relax_info = get_xtensa_relax_info (sec);
8932 if (!relax_info)
8933 return FALSE;
8934
8935 sec_size = bfd_get_section_limit (abfd, sec);
8936
8937 final_static_link =
8938 (!link_info->relocatable
8939 && !elf_hash_table (link_info)->dynamic_sections_created);
8940
8941 /* The placement algorithm first checks to see if the literal is
8942 already in the value map. If so and the value map is reachable
8943 from all uses, then the literal is moved to that location. If
8944 not, then we identify the last location where a fresh literal was
8945 placed. If the literal can be safely moved there, then we do so.
8946 If not, then we assume that the literal is not to move and leave
8947 the literal where it is, marking it as the last literal
8948 location. */
8949
8950 /* Find the literal value. */
8951 value = 0;
8952 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8953 if (!irel)
8954 {
8955 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8956 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8957 }
8958 init_literal_value (&val, &r_rel, value, is_abs_literal);
8959
8960 /* Check if we've seen another literal with the same value that
8961 is in the same output section. */
8962 val_map = value_map_get_cached_value (values, &val, final_static_link);
8963
8964 if (val_map
8965 && (r_reloc_get_section (&val_map->loc)->output_section
8966 == sec->output_section)
8967 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8968 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8969 {
8970 /* No change to last_loc_is_prev. */
8971 literal_placed = TRUE;
8972 }
8973
8974 /* For relocatable links, do not try to move literals. To do it
8975 correctly might increase the number of relocations in an input
8976 section making the default relocatable linking fail. */
8977 if (!link_info->relocatable && !literal_placed
8978 && values->has_last_loc && !(*last_loc_is_prev_p))
8979 {
8980 asection *target_sec = r_reloc_get_section (&values->last_loc);
8981 if (target_sec && target_sec->output_section == sec->output_section)
8982 {
8983 /* Increment the virtual offset. */
8984 r_reloc try_loc = values->last_loc;
8985 try_loc.virtual_offset += 4;
8986
8987 /* There is a last loc that was in the same output section. */
8988 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8989 && move_shared_literal (sec, link_info, rel,
8990 prop_table, ptblsize,
8991 &try_loc, &val, target_sec_cache))
8992 {
8993 values->last_loc.virtual_offset += 4;
8994 literal_placed = TRUE;
8995 if (!val_map)
8996 val_map = add_value_map (values, &val, &try_loc,
8997 final_static_link);
8998 else
8999 val_map->loc = try_loc;
9000 }
9001 }
9002 }
9003
9004 if (!literal_placed)
9005 {
9006 /* Nothing worked, leave the literal alone but update the last loc. */
9007 values->has_last_loc = TRUE;
9008 values->last_loc = rel->r_rel;
9009 if (!val_map)
9010 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9011 else
9012 val_map->loc = rel->r_rel;
9013 *last_loc_is_prev_p = TRUE;
9014 }
9015
9016 return TRUE;
9017 }
9018
9019
9020 /* Check if the original relocations (presumably on L32R instructions)
9021 identified by reloc[0..N] can be changed to reference the literal
9022 identified by r_rel. If r_rel is out of range for any of the
9023 original relocations, then we don't want to coalesce the original
9024 literal with the one at r_rel. We only check reloc[0..N], where the
9025 offsets are all the same as for reloc[0] (i.e., they're all
9026 referencing the same literal) and where N is also bounded by the
9027 number of remaining entries in the "reloc" array. The "reloc" array
9028 is sorted by target offset so we know all the entries for the same
9029 literal will be contiguous. */
9030
9031 static bfd_boolean
9032 relocations_reach (source_reloc *reloc,
9033 int remaining_relocs,
9034 const r_reloc *r_rel)
9035 {
9036 bfd_vma from_offset, source_address, dest_address;
9037 asection *sec;
9038 int i;
9039
9040 if (!r_reloc_is_defined (r_rel))
9041 return FALSE;
9042
9043 sec = r_reloc_get_section (r_rel);
9044 from_offset = reloc[0].r_rel.target_offset;
9045
9046 for (i = 0; i < remaining_relocs; i++)
9047 {
9048 if (reloc[i].r_rel.target_offset != from_offset)
9049 break;
9050
9051 /* Ignore relocations that have been removed. */
9052 if (reloc[i].is_null)
9053 continue;
9054
9055 /* The original and new output section for these must be the same
9056 in order to coalesce. */
9057 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9058 != sec->output_section)
9059 return FALSE;
9060
9061 /* Absolute literals in the same output section can always be
9062 combined. */
9063 if (reloc[i].is_abs_literal)
9064 continue;
9065
9066 /* A literal with no PC-relative relocations can be moved anywhere. */
9067 if (reloc[i].opnd != -1)
9068 {
9069 /* Otherwise, check to see that it fits. */
9070 source_address = (reloc[i].source_sec->output_section->vma
9071 + reloc[i].source_sec->output_offset
9072 + reloc[i].r_rel.rela.r_offset);
9073 dest_address = (sec->output_section->vma
9074 + sec->output_offset
9075 + r_rel->target_offset);
9076
9077 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9078 source_address, dest_address))
9079 return FALSE;
9080 }
9081 }
9082
9083 return TRUE;
9084 }
9085
9086
9087 /* Move a literal to another literal location because it is
9088 the same as the other literal value. */
9089
9090 static bfd_boolean
9091 coalesce_shared_literal (asection *sec,
9092 source_reloc *rel,
9093 property_table_entry *prop_table,
9094 int ptblsize,
9095 value_map *val_map)
9096 {
9097 property_table_entry *entry;
9098 text_action *fa;
9099 property_table_entry *the_add_entry;
9100 int removed_diff;
9101 xtensa_relax_info *relax_info;
9102
9103 relax_info = get_xtensa_relax_info (sec);
9104 if (!relax_info)
9105 return FALSE;
9106
9107 entry = elf_xtensa_find_property_entry
9108 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9109 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9110 return TRUE;
9111
9112 /* Mark that the literal will be coalesced. */
9113 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9114
9115 text_action_add (&relax_info->action_list,
9116 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9117
9118 /* If the section is 4-byte aligned, do not add fill. */
9119 if (sec->alignment_power > 2)
9120 {
9121 int fill_extra_space;
9122 bfd_vma entry_sec_offset;
9123
9124 if (entry)
9125 entry_sec_offset = entry->address - sec->vma + entry->size;
9126 else
9127 entry_sec_offset = rel->r_rel.target_offset + 4;
9128
9129 /* If the literal range is at the end of the section,
9130 do not add fill. */
9131 fill_extra_space = 0;
9132 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9133 entry_sec_offset);
9134 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9135 fill_extra_space = the_add_entry->size;
9136
9137 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9138 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9139 -4, fill_extra_space);
9140 if (fa)
9141 adjust_fill_action (fa, removed_diff);
9142 else
9143 text_action_add (&relax_info->action_list,
9144 ta_fill, sec, entry_sec_offset, removed_diff);
9145 }
9146
9147 return TRUE;
9148 }
9149
9150
9151 /* Move a literal to another location. This may actually increase the
9152 total amount of space used because of alignments so we need to do
9153 this carefully. Also, it may make a branch go out of range. */
9154
9155 static bfd_boolean
9156 move_shared_literal (asection *sec,
9157 struct bfd_link_info *link_info,
9158 source_reloc *rel,
9159 property_table_entry *prop_table,
9160 int ptblsize,
9161 const r_reloc *target_loc,
9162 const literal_value *lit_value,
9163 section_cache_t *target_sec_cache)
9164 {
9165 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9166 text_action *fa, *target_fa;
9167 int removed_diff;
9168 xtensa_relax_info *relax_info, *target_relax_info;
9169 asection *target_sec;
9170 ebb_t *ebb;
9171 ebb_constraint ebb_table;
9172 bfd_boolean relocs_fit;
9173
9174 /* If this routine always returns FALSE, the literals that cannot be
9175 coalesced will not be moved. */
9176 if (elf32xtensa_no_literal_movement)
9177 return FALSE;
9178
9179 relax_info = get_xtensa_relax_info (sec);
9180 if (!relax_info)
9181 return FALSE;
9182
9183 target_sec = r_reloc_get_section (target_loc);
9184 target_relax_info = get_xtensa_relax_info (target_sec);
9185
9186 /* Literals to undefined sections may not be moved because they
9187 must report an error. */
9188 if (bfd_is_und_section (target_sec))
9189 return FALSE;
9190
9191 src_entry = elf_xtensa_find_property_entry
9192 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9193
9194 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9195 return FALSE;
9196
9197 target_entry = elf_xtensa_find_property_entry
9198 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9199 target_sec->vma + target_loc->target_offset);
9200
9201 if (!target_entry)
9202 return FALSE;
9203
9204 /* Make sure that we have not broken any branches. */
9205 relocs_fit = FALSE;
9206
9207 init_ebb_constraint (&ebb_table);
9208 ebb = &ebb_table.ebb;
9209 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9210 target_sec_cache->content_length,
9211 target_sec_cache->ptbl, target_sec_cache->pte_count,
9212 target_sec_cache->relocs, target_sec_cache->reloc_count);
9213
9214 /* Propose to add 4 bytes + worst-case alignment size increase to
9215 destination. */
9216 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9217 ta_fill, target_loc->target_offset,
9218 -4 - (1 << target_sec->alignment_power), TRUE);
9219
9220 /* Check all of the PC-relative relocations to make sure they still fit. */
9221 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9222 target_sec_cache->contents,
9223 target_sec_cache->relocs, NULL,
9224 &ebb_table, NULL);
9225
9226 if (!relocs_fit)
9227 return FALSE;
9228
9229 text_action_add_literal (&target_relax_info->action_list,
9230 ta_add_literal, target_loc, lit_value, -4);
9231
9232 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9233 {
9234 /* May need to add or remove some fill to maintain alignment. */
9235 int fill_extra_space;
9236 bfd_vma entry_sec_offset;
9237
9238 entry_sec_offset =
9239 target_entry->address - target_sec->vma + target_entry->size;
9240
9241 /* If the literal range is at the end of the section,
9242 do not add fill. */
9243 fill_extra_space = 0;
9244 the_add_entry =
9245 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9246 target_sec_cache->pte_count,
9247 entry_sec_offset);
9248 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9249 fill_extra_space = the_add_entry->size;
9250
9251 target_fa = find_fill_action (&target_relax_info->action_list,
9252 target_sec, entry_sec_offset);
9253 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9254 entry_sec_offset, 4,
9255 fill_extra_space);
9256 if (target_fa)
9257 adjust_fill_action (target_fa, removed_diff);
9258 else
9259 text_action_add (&target_relax_info->action_list,
9260 ta_fill, target_sec, entry_sec_offset, removed_diff);
9261 }
9262
9263 /* Mark that the literal will be moved to the new location. */
9264 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9265
9266 /* Remove the literal. */
9267 text_action_add (&relax_info->action_list,
9268 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9269
9270 /* If the section is 4-byte aligned, do not add fill. */
9271 if (sec->alignment_power > 2 && target_entry != src_entry)
9272 {
9273 int fill_extra_space;
9274 bfd_vma entry_sec_offset;
9275
9276 if (src_entry)
9277 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9278 else
9279 entry_sec_offset = rel->r_rel.target_offset+4;
9280
9281 /* If the literal range is at the end of the section,
9282 do not add fill. */
9283 fill_extra_space = 0;
9284 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9285 entry_sec_offset);
9286 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9287 fill_extra_space = the_add_entry->size;
9288
9289 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9290 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9291 -4, fill_extra_space);
9292 if (fa)
9293 adjust_fill_action (fa, removed_diff);
9294 else
9295 text_action_add (&relax_info->action_list,
9296 ta_fill, sec, entry_sec_offset, removed_diff);
9297 }
9298
9299 return TRUE;
9300 }
9301
9302 \f
9303 /* Second relaxation pass. */
9304
9305 /* Modify all of the relocations to point to the right spot, and if this
9306 is a relaxable section, delete the unwanted literals and fix the
9307 section size. */
9308
9309 bfd_boolean
9310 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9311 {
9312 Elf_Internal_Rela *internal_relocs;
9313 xtensa_relax_info *relax_info;
9314 bfd_byte *contents;
9315 bfd_boolean ok = TRUE;
9316 unsigned i;
9317 bfd_boolean rv = FALSE;
9318 bfd_boolean virtual_action;
9319 bfd_size_type sec_size;
9320
9321 sec_size = bfd_get_section_limit (abfd, sec);
9322 relax_info = get_xtensa_relax_info (sec);
9323 BFD_ASSERT (relax_info);
9324
9325 /* First translate any of the fixes that have been added already. */
9326 translate_section_fixes (sec);
9327
9328 /* Handle property sections (e.g., literal tables) specially. */
9329 if (xtensa_is_property_section (sec))
9330 {
9331 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9332 return relax_property_section (abfd, sec, link_info);
9333 }
9334
9335 internal_relocs = retrieve_internal_relocs (abfd, sec,
9336 link_info->keep_memory);
9337 if (!internal_relocs && !relax_info->action_list.head)
9338 return TRUE;
9339
9340 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9341 if (contents == NULL && sec_size != 0)
9342 {
9343 ok = FALSE;
9344 goto error_return;
9345 }
9346
9347 if (internal_relocs)
9348 {
9349 for (i = 0; i < sec->reloc_count; i++)
9350 {
9351 Elf_Internal_Rela *irel;
9352 xtensa_relax_info *target_relax_info;
9353 bfd_vma source_offset, old_source_offset;
9354 r_reloc r_rel;
9355 unsigned r_type;
9356 asection *target_sec;
9357
9358 /* Locally change the source address.
9359 Translate the target to the new target address.
9360 If it points to this section and has been removed,
9361 NULLify it.
9362 Write it back. */
9363
9364 irel = &internal_relocs[i];
9365 source_offset = irel->r_offset;
9366 old_source_offset = source_offset;
9367
9368 r_type = ELF32_R_TYPE (irel->r_info);
9369 r_reloc_init (&r_rel, abfd, irel, contents,
9370 bfd_get_section_limit (abfd, sec));
9371
9372 /* If this section could have changed then we may need to
9373 change the relocation's offset. */
9374
9375 if (relax_info->is_relaxable_literal_section
9376 || relax_info->is_relaxable_asm_section)
9377 {
9378 pin_internal_relocs (sec, internal_relocs);
9379
9380 if (r_type != R_XTENSA_NONE
9381 && find_removed_literal (&relax_info->removed_list,
9382 irel->r_offset))
9383 {
9384 /* Remove this relocation. */
9385 if (elf_hash_table (link_info)->dynamic_sections_created)
9386 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9387 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9388 irel->r_offset = offset_with_removed_text_map
9389 (&relax_info->action_list, irel->r_offset);
9390 continue;
9391 }
9392
9393 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9394 {
9395 text_action *action =
9396 find_insn_action (&relax_info->action_list,
9397 irel->r_offset);
9398 if (action && (action->action == ta_convert_longcall
9399 || action->action == ta_remove_longcall))
9400 {
9401 bfd_reloc_status_type retval;
9402 char *error_message = NULL;
9403
9404 retval = contract_asm_expansion (contents, sec_size,
9405 irel, &error_message);
9406 if (retval != bfd_reloc_ok)
9407 {
9408 (*link_info->callbacks->reloc_dangerous)
9409 (link_info, error_message, abfd, sec,
9410 irel->r_offset);
9411 goto error_return;
9412 }
9413 /* Update the action so that the code that moves
9414 the contents will do the right thing. */
9415 if (action->action == ta_remove_longcall)
9416 action->action = ta_remove_insn;
9417 else
9418 action->action = ta_none;
9419 /* Refresh the info in the r_rel. */
9420 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9421 r_type = ELF32_R_TYPE (irel->r_info);
9422 }
9423 }
9424
9425 source_offset = offset_with_removed_text_map
9426 (&relax_info->action_list, irel->r_offset);
9427 irel->r_offset = source_offset;
9428 }
9429
9430 /* If the target section could have changed then
9431 we may need to change the relocation's target offset. */
9432
9433 target_sec = r_reloc_get_section (&r_rel);
9434
9435 /* For a reference to a discarded section from a DWARF section,
9436 i.e., where action_discarded is PRETEND, the symbol will
9437 eventually be modified to refer to the kept section (at least if
9438 the kept and discarded sections are the same size). Anticipate
9439 that here and adjust things accordingly. */
9440 if (! elf_xtensa_ignore_discarded_relocs (sec)
9441 && elf_xtensa_action_discarded (sec) == PRETEND
9442 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9443 && target_sec != NULL
9444 && discarded_section (target_sec))
9445 {
9446 /* It would be natural to call _bfd_elf_check_kept_section
9447 here, but it's not exported from elflink.c. It's also a
9448 fairly expensive check. Adjusting the relocations to the
9449 discarded section is fairly harmless; it will only adjust
9450 some addends and difference values. If it turns out that
9451 _bfd_elf_check_kept_section fails later, it won't matter,
9452 so just compare the section names to find the right group
9453 member. */
9454 asection *kept = target_sec->kept_section;
9455 if (kept != NULL)
9456 {
9457 if ((kept->flags & SEC_GROUP) != 0)
9458 {
9459 asection *first = elf_next_in_group (kept);
9460 asection *s = first;
9461
9462 kept = NULL;
9463 while (s != NULL)
9464 {
9465 if (strcmp (s->name, target_sec->name) == 0)
9466 {
9467 kept = s;
9468 break;
9469 }
9470 s = elf_next_in_group (s);
9471 if (s == first)
9472 break;
9473 }
9474 }
9475 }
9476 if (kept != NULL
9477 && ((target_sec->rawsize != 0
9478 ? target_sec->rawsize : target_sec->size)
9479 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9480 target_sec = kept;
9481 }
9482
9483 target_relax_info = get_xtensa_relax_info (target_sec);
9484 if (target_relax_info
9485 && (target_relax_info->is_relaxable_literal_section
9486 || target_relax_info->is_relaxable_asm_section))
9487 {
9488 r_reloc new_reloc;
9489 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9490
9491 if (r_type == R_XTENSA_DIFF8
9492 || r_type == R_XTENSA_DIFF16
9493 || r_type == R_XTENSA_DIFF32)
9494 {
9495 bfd_signed_vma diff_value = 0;
9496 bfd_vma new_end_offset, diff_mask = 0;
9497
9498 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9499 {
9500 (*link_info->callbacks->reloc_dangerous)
9501 (link_info, _("invalid relocation address"),
9502 abfd, sec, old_source_offset);
9503 goto error_return;
9504 }
9505
9506 switch (r_type)
9507 {
9508 case R_XTENSA_DIFF8:
9509 diff_value =
9510 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9511 break;
9512 case R_XTENSA_DIFF16:
9513 diff_value =
9514 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9515 break;
9516 case R_XTENSA_DIFF32:
9517 diff_value =
9518 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9519 break;
9520 }
9521
9522 new_end_offset = offset_with_removed_text_map
9523 (&target_relax_info->action_list,
9524 r_rel.target_offset + diff_value);
9525 diff_value = new_end_offset - new_reloc.target_offset;
9526
9527 switch (r_type)
9528 {
9529 case R_XTENSA_DIFF8:
9530 diff_mask = 0x7f;
9531 bfd_put_signed_8 (abfd, diff_value,
9532 &contents[old_source_offset]);
9533 break;
9534 case R_XTENSA_DIFF16:
9535 diff_mask = 0x7fff;
9536 bfd_put_signed_16 (abfd, diff_value,
9537 &contents[old_source_offset]);
9538 break;
9539 case R_XTENSA_DIFF32:
9540 diff_mask = 0x7fffffff;
9541 bfd_put_signed_32 (abfd, diff_value,
9542 &contents[old_source_offset]);
9543 break;
9544 }
9545
9546 /* Check for overflow. Sign bits must be all zeroes or all ones */
9547 if ((diff_value & ~diff_mask) != 0 &&
9548 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9549 {
9550 (*link_info->callbacks->reloc_dangerous)
9551 (link_info, _("overflow after relaxation"),
9552 abfd, sec, old_source_offset);
9553 goto error_return;
9554 }
9555
9556 pin_contents (sec, contents);
9557 }
9558
9559 /* If the relocation still references a section in the same
9560 input file, modify the relocation directly instead of
9561 adding a "fix" record. */
9562 if (target_sec->owner == abfd)
9563 {
9564 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9565 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9566 irel->r_addend = new_reloc.rela.r_addend;
9567 pin_internal_relocs (sec, internal_relocs);
9568 }
9569 else
9570 {
9571 bfd_vma addend_displacement;
9572 reloc_bfd_fix *fix;
9573
9574 addend_displacement =
9575 new_reloc.target_offset + new_reloc.virtual_offset;
9576 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9577 target_sec,
9578 addend_displacement, TRUE);
9579 add_fix (sec, fix);
9580 }
9581 }
9582 }
9583 }
9584
9585 if ((relax_info->is_relaxable_literal_section
9586 || relax_info->is_relaxable_asm_section)
9587 && relax_info->action_list.head)
9588 {
9589 /* Walk through the planned actions and build up a table
9590 of move, copy and fill records. Use the move, copy and
9591 fill records to perform the actions once. */
9592
9593 int removed = 0;
9594 bfd_size_type final_size, copy_size, orig_insn_size;
9595 bfd_byte *scratch = NULL;
9596 bfd_byte *dup_contents = NULL;
9597 bfd_size_type orig_size = sec->size;
9598 bfd_vma orig_dot = 0;
9599 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9600 orig dot in physical memory. */
9601 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9602 bfd_vma dup_dot = 0;
9603
9604 text_action *action = relax_info->action_list.head;
9605
9606 final_size = sec->size;
9607 for (action = relax_info->action_list.head; action;
9608 action = action->next)
9609 {
9610 final_size -= action->removed_bytes;
9611 }
9612
9613 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9614 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9615
9616 /* The dot is the current fill location. */
9617 #if DEBUG
9618 print_action_list (stderr, &relax_info->action_list);
9619 #endif
9620
9621 for (action = relax_info->action_list.head; action;
9622 action = action->next)
9623 {
9624 virtual_action = FALSE;
9625 if (action->offset > orig_dot)
9626 {
9627 orig_dot += orig_dot_copied;
9628 orig_dot_copied = 0;
9629 orig_dot_vo = 0;
9630 /* Out of the virtual world. */
9631 }
9632
9633 if (action->offset > orig_dot)
9634 {
9635 copy_size = action->offset - orig_dot;
9636 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9637 orig_dot += copy_size;
9638 dup_dot += copy_size;
9639 BFD_ASSERT (action->offset == orig_dot);
9640 }
9641 else if (action->offset < orig_dot)
9642 {
9643 if (action->action == ta_fill
9644 && action->offset - action->removed_bytes == orig_dot)
9645 {
9646 /* This is OK because the fill only effects the dup_dot. */
9647 }
9648 else if (action->action == ta_add_literal)
9649 {
9650 /* TBD. Might need to handle this. */
9651 }
9652 }
9653 if (action->offset == orig_dot)
9654 {
9655 if (action->virtual_offset > orig_dot_vo)
9656 {
9657 if (orig_dot_vo == 0)
9658 {
9659 /* Need to copy virtual_offset bytes. Probably four. */
9660 copy_size = action->virtual_offset - orig_dot_vo;
9661 memmove (&dup_contents[dup_dot],
9662 &contents[orig_dot], copy_size);
9663 orig_dot_copied = copy_size;
9664 dup_dot += copy_size;
9665 }
9666 virtual_action = TRUE;
9667 }
9668 else
9669 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9670 }
9671 switch (action->action)
9672 {
9673 case ta_remove_literal:
9674 case ta_remove_insn:
9675 BFD_ASSERT (action->removed_bytes >= 0);
9676 orig_dot += action->removed_bytes;
9677 break;
9678
9679 case ta_narrow_insn:
9680 orig_insn_size = 3;
9681 copy_size = 2;
9682 memmove (scratch, &contents[orig_dot], orig_insn_size);
9683 BFD_ASSERT (action->removed_bytes == 1);
9684 rv = narrow_instruction (scratch, final_size, 0);
9685 BFD_ASSERT (rv);
9686 memmove (&dup_contents[dup_dot], scratch, copy_size);
9687 orig_dot += orig_insn_size;
9688 dup_dot += copy_size;
9689 break;
9690
9691 case ta_fill:
9692 if (action->removed_bytes >= 0)
9693 orig_dot += action->removed_bytes;
9694 else
9695 {
9696 /* Already zeroed in dup_contents. Just bump the
9697 counters. */
9698 dup_dot += (-action->removed_bytes);
9699 }
9700 break;
9701
9702 case ta_none:
9703 BFD_ASSERT (action->removed_bytes == 0);
9704 break;
9705
9706 case ta_convert_longcall:
9707 case ta_remove_longcall:
9708 /* These will be removed or converted before we get here. */
9709 BFD_ASSERT (0);
9710 break;
9711
9712 case ta_widen_insn:
9713 orig_insn_size = 2;
9714 copy_size = 3;
9715 memmove (scratch, &contents[orig_dot], orig_insn_size);
9716 BFD_ASSERT (action->removed_bytes == -1);
9717 rv = widen_instruction (scratch, final_size, 0);
9718 BFD_ASSERT (rv);
9719 memmove (&dup_contents[dup_dot], scratch, copy_size);
9720 orig_dot += orig_insn_size;
9721 dup_dot += copy_size;
9722 break;
9723
9724 case ta_add_literal:
9725 orig_insn_size = 0;
9726 copy_size = 4;
9727 BFD_ASSERT (action->removed_bytes == -4);
9728 /* TBD -- place the literal value here and insert
9729 into the table. */
9730 memset (&dup_contents[dup_dot], 0, 4);
9731 pin_internal_relocs (sec, internal_relocs);
9732 pin_contents (sec, contents);
9733
9734 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9735 relax_info, &internal_relocs, &action->value))
9736 goto error_return;
9737
9738 if (virtual_action)
9739 orig_dot_vo += copy_size;
9740
9741 orig_dot += orig_insn_size;
9742 dup_dot += copy_size;
9743 break;
9744
9745 default:
9746 /* Not implemented yet. */
9747 BFD_ASSERT (0);
9748 break;
9749 }
9750
9751 removed += action->removed_bytes;
9752 BFD_ASSERT (dup_dot <= final_size);
9753 BFD_ASSERT (orig_dot <= orig_size);
9754 }
9755
9756 orig_dot += orig_dot_copied;
9757 orig_dot_copied = 0;
9758
9759 if (orig_dot != orig_size)
9760 {
9761 copy_size = orig_size - orig_dot;
9762 BFD_ASSERT (orig_size > orig_dot);
9763 BFD_ASSERT (dup_dot + copy_size == final_size);
9764 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9765 orig_dot += copy_size;
9766 dup_dot += copy_size;
9767 }
9768 BFD_ASSERT (orig_size == orig_dot);
9769 BFD_ASSERT (final_size == dup_dot);
9770
9771 /* Move the dup_contents back. */
9772 if (final_size > orig_size)
9773 {
9774 /* Contents need to be reallocated. Swap the dup_contents into
9775 contents. */
9776 sec->contents = dup_contents;
9777 free (contents);
9778 contents = dup_contents;
9779 pin_contents (sec, contents);
9780 }
9781 else
9782 {
9783 BFD_ASSERT (final_size <= orig_size);
9784 memset (contents, 0, orig_size);
9785 memcpy (contents, dup_contents, final_size);
9786 free (dup_contents);
9787 }
9788 free (scratch);
9789 pin_contents (sec, contents);
9790
9791 if (sec->rawsize == 0)
9792 sec->rawsize = sec->size;
9793 sec->size = final_size;
9794 }
9795
9796 error_return:
9797 release_internal_relocs (sec, internal_relocs);
9798 release_contents (sec, contents);
9799 return ok;
9800 }
9801
9802
9803 static bfd_boolean
9804 translate_section_fixes (asection *sec)
9805 {
9806 xtensa_relax_info *relax_info;
9807 reloc_bfd_fix *r;
9808
9809 relax_info = get_xtensa_relax_info (sec);
9810 if (!relax_info)
9811 return TRUE;
9812
9813 for (r = relax_info->fix_list; r != NULL; r = r->next)
9814 if (!translate_reloc_bfd_fix (r))
9815 return FALSE;
9816
9817 return TRUE;
9818 }
9819
9820
9821 /* Translate a fix given the mapping in the relax info for the target
9822 section. If it has already been translated, no work is required. */
9823
9824 static bfd_boolean
9825 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9826 {
9827 reloc_bfd_fix new_fix;
9828 asection *sec;
9829 xtensa_relax_info *relax_info;
9830 removed_literal *removed;
9831 bfd_vma new_offset, target_offset;
9832
9833 if (fix->translated)
9834 return TRUE;
9835
9836 sec = fix->target_sec;
9837 target_offset = fix->target_offset;
9838
9839 relax_info = get_xtensa_relax_info (sec);
9840 if (!relax_info)
9841 {
9842 fix->translated = TRUE;
9843 return TRUE;
9844 }
9845
9846 new_fix = *fix;
9847
9848 /* The fix does not need to be translated if the section cannot change. */
9849 if (!relax_info->is_relaxable_literal_section
9850 && !relax_info->is_relaxable_asm_section)
9851 {
9852 fix->translated = TRUE;
9853 return TRUE;
9854 }
9855
9856 /* If the literal has been moved and this relocation was on an
9857 opcode, then the relocation should move to the new literal
9858 location. Otherwise, the relocation should move within the
9859 section. */
9860
9861 removed = FALSE;
9862 if (is_operand_relocation (fix->src_type))
9863 {
9864 /* Check if the original relocation is against a literal being
9865 removed. */
9866 removed = find_removed_literal (&relax_info->removed_list,
9867 target_offset);
9868 }
9869
9870 if (removed)
9871 {
9872 asection *new_sec;
9873
9874 /* The fact that there is still a relocation to this literal indicates
9875 that the literal is being coalesced, not simply removed. */
9876 BFD_ASSERT (removed->to.abfd != NULL);
9877
9878 /* This was moved to some other address (possibly another section). */
9879 new_sec = r_reloc_get_section (&removed->to);
9880 if (new_sec != sec)
9881 {
9882 sec = new_sec;
9883 relax_info = get_xtensa_relax_info (sec);
9884 if (!relax_info ||
9885 (!relax_info->is_relaxable_literal_section
9886 && !relax_info->is_relaxable_asm_section))
9887 {
9888 target_offset = removed->to.target_offset;
9889 new_fix.target_sec = new_sec;
9890 new_fix.target_offset = target_offset;
9891 new_fix.translated = TRUE;
9892 *fix = new_fix;
9893 return TRUE;
9894 }
9895 }
9896 target_offset = removed->to.target_offset;
9897 new_fix.target_sec = new_sec;
9898 }
9899
9900 /* The target address may have been moved within its section. */
9901 new_offset = offset_with_removed_text (&relax_info->action_list,
9902 target_offset);
9903
9904 new_fix.target_offset = new_offset;
9905 new_fix.target_offset = new_offset;
9906 new_fix.translated = TRUE;
9907 *fix = new_fix;
9908 return TRUE;
9909 }
9910
9911
9912 /* Fix up a relocation to take account of removed literals. */
9913
9914 static asection *
9915 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9916 {
9917 xtensa_relax_info *relax_info;
9918 removed_literal *removed;
9919 bfd_vma target_offset, base_offset;
9920
9921 *new_rel = *orig_rel;
9922
9923 if (!r_reloc_is_defined (orig_rel))
9924 return sec ;
9925
9926 relax_info = get_xtensa_relax_info (sec);
9927 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9928 || relax_info->is_relaxable_asm_section));
9929
9930 target_offset = orig_rel->target_offset;
9931
9932 removed = FALSE;
9933 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9934 {
9935 /* Check if the original relocation is against a literal being
9936 removed. */
9937 removed = find_removed_literal (&relax_info->removed_list,
9938 target_offset);
9939 }
9940 if (removed && removed->to.abfd)
9941 {
9942 asection *new_sec;
9943
9944 /* The fact that there is still a relocation to this literal indicates
9945 that the literal is being coalesced, not simply removed. */
9946 BFD_ASSERT (removed->to.abfd != NULL);
9947
9948 /* This was moved to some other address
9949 (possibly in another section). */
9950 *new_rel = removed->to;
9951 new_sec = r_reloc_get_section (new_rel);
9952 if (new_sec != sec)
9953 {
9954 sec = new_sec;
9955 relax_info = get_xtensa_relax_info (sec);
9956 if (!relax_info
9957 || (!relax_info->is_relaxable_literal_section
9958 && !relax_info->is_relaxable_asm_section))
9959 return sec;
9960 }
9961 target_offset = new_rel->target_offset;
9962 }
9963
9964 /* Find the base offset of the reloc symbol, excluding any addend from the
9965 reloc or from the section contents (for a partial_inplace reloc). Then
9966 find the adjusted values of the offsets due to relaxation. The base
9967 offset is needed to determine the change to the reloc's addend; the reloc
9968 addend should not be adjusted due to relaxations located before the base
9969 offset. */
9970
9971 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9972 if (base_offset <= target_offset)
9973 {
9974 int base_removed = removed_by_actions_map (&relax_info->action_list,
9975 base_offset, FALSE);
9976 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9977 target_offset, FALSE) -
9978 base_removed;
9979
9980 new_rel->target_offset = target_offset - base_removed - addend_removed;
9981 new_rel->rela.r_addend -= addend_removed;
9982 }
9983 else
9984 {
9985 /* Handle a negative addend. The base offset comes first. */
9986 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
9987 target_offset, FALSE);
9988 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9989 base_offset, FALSE) -
9990 tgt_removed;
9991
9992 new_rel->target_offset = target_offset - tgt_removed;
9993 new_rel->rela.r_addend += addend_removed;
9994 }
9995
9996 return sec;
9997 }
9998
9999
10000 /* For dynamic links, there may be a dynamic relocation for each
10001 literal. The number of dynamic relocations must be computed in
10002 size_dynamic_sections, which occurs before relaxation. When a
10003 literal is removed, this function checks if there is a corresponding
10004 dynamic relocation and shrinks the size of the appropriate dynamic
10005 relocation section accordingly. At this point, the contents of the
10006 dynamic relocation sections have not yet been filled in, so there's
10007 nothing else that needs to be done. */
10008
10009 static void
10010 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10011 bfd *abfd,
10012 asection *input_section,
10013 Elf_Internal_Rela *rel)
10014 {
10015 struct elf_xtensa_link_hash_table *htab;
10016 Elf_Internal_Shdr *symtab_hdr;
10017 struct elf_link_hash_entry **sym_hashes;
10018 unsigned long r_symndx;
10019 int r_type;
10020 struct elf_link_hash_entry *h;
10021 bfd_boolean dynamic_symbol;
10022
10023 htab = elf_xtensa_hash_table (info);
10024 if (htab == NULL)
10025 return;
10026
10027 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10028 sym_hashes = elf_sym_hashes (abfd);
10029
10030 r_type = ELF32_R_TYPE (rel->r_info);
10031 r_symndx = ELF32_R_SYM (rel->r_info);
10032
10033 if (r_symndx < symtab_hdr->sh_info)
10034 h = NULL;
10035 else
10036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10037
10038 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10039
10040 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10041 && (input_section->flags & SEC_ALLOC) != 0
10042 && (dynamic_symbol || info->shared))
10043 {
10044 asection *srel;
10045 bfd_boolean is_plt = FALSE;
10046
10047 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10048 {
10049 srel = htab->srelplt;
10050 is_plt = TRUE;
10051 }
10052 else
10053 srel = htab->srelgot;
10054
10055 /* Reduce size of the .rela.* section by one reloc. */
10056 BFD_ASSERT (srel != NULL);
10057 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10058 srel->size -= sizeof (Elf32_External_Rela);
10059
10060 if (is_plt)
10061 {
10062 asection *splt, *sgotplt, *srelgot;
10063 int reloc_index, chunk;
10064
10065 /* Find the PLT reloc index of the entry being removed. This
10066 is computed from the size of ".rela.plt". It is needed to
10067 figure out which PLT chunk to resize. Usually "last index
10068 = size - 1" since the index starts at zero, but in this
10069 context, the size has just been decremented so there's no
10070 need to subtract one. */
10071 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10072
10073 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10074 splt = elf_xtensa_get_plt_section (info, chunk);
10075 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10076 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10077
10078 /* Check if an entire PLT chunk has just been eliminated. */
10079 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10080 {
10081 /* The two magic GOT entries for that chunk can go away. */
10082 srelgot = htab->srelgot;
10083 BFD_ASSERT (srelgot != NULL);
10084 srelgot->reloc_count -= 2;
10085 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10086 sgotplt->size -= 8;
10087
10088 /* There should be only one entry left (and it will be
10089 removed below). */
10090 BFD_ASSERT (sgotplt->size == 4);
10091 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10092 }
10093
10094 BFD_ASSERT (sgotplt->size >= 4);
10095 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10096
10097 sgotplt->size -= 4;
10098 splt->size -= PLT_ENTRY_SIZE;
10099 }
10100 }
10101 }
10102
10103
10104 /* Take an r_rel and move it to another section. This usually
10105 requires extending the interal_relocation array and pinning it. If
10106 the original r_rel is from the same BFD, we can complete this here.
10107 Otherwise, we add a fix record to let the final link fix the
10108 appropriate address. Contents and internal relocations for the
10109 section must be pinned after calling this routine. */
10110
10111 static bfd_boolean
10112 move_literal (bfd *abfd,
10113 struct bfd_link_info *link_info,
10114 asection *sec,
10115 bfd_vma offset,
10116 bfd_byte *contents,
10117 xtensa_relax_info *relax_info,
10118 Elf_Internal_Rela **internal_relocs_p,
10119 const literal_value *lit)
10120 {
10121 Elf_Internal_Rela *new_relocs = NULL;
10122 size_t new_relocs_count = 0;
10123 Elf_Internal_Rela this_rela;
10124 const r_reloc *r_rel;
10125
10126 r_rel = &lit->r_rel;
10127 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10128
10129 if (r_reloc_is_const (r_rel))
10130 bfd_put_32 (abfd, lit->value, contents + offset);
10131 else
10132 {
10133 int r_type;
10134 unsigned i;
10135 reloc_bfd_fix *fix;
10136 unsigned insert_at;
10137
10138 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10139
10140 /* This is the difficult case. We have to create a fix up. */
10141 this_rela.r_offset = offset;
10142 this_rela.r_info = ELF32_R_INFO (0, r_type);
10143 this_rela.r_addend =
10144 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10145 bfd_put_32 (abfd, lit->value, contents + offset);
10146
10147 /* Currently, we cannot move relocations during a relocatable link. */
10148 BFD_ASSERT (!link_info->relocatable);
10149 fix = reloc_bfd_fix_init (sec, offset, r_type,
10150 r_reloc_get_section (r_rel),
10151 r_rel->target_offset + r_rel->virtual_offset,
10152 FALSE);
10153 /* We also need to mark that relocations are needed here. */
10154 sec->flags |= SEC_RELOC;
10155
10156 translate_reloc_bfd_fix (fix);
10157 /* This fix has not yet been translated. */
10158 add_fix (sec, fix);
10159
10160 /* Add the relocation. If we have already allocated our own
10161 space for the relocations and we have room for more, then use
10162 it. Otherwise, allocate new space and move the literals. */
10163 insert_at = sec->reloc_count;
10164 for (i = 0; i < sec->reloc_count; ++i)
10165 {
10166 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10167 {
10168 insert_at = i;
10169 break;
10170 }
10171 }
10172
10173 if (*internal_relocs_p != relax_info->allocated_relocs
10174 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10175 {
10176 BFD_ASSERT (relax_info->allocated_relocs == NULL
10177 || sec->reloc_count == relax_info->relocs_count);
10178
10179 if (relax_info->allocated_relocs_count == 0)
10180 new_relocs_count = (sec->reloc_count + 2) * 2;
10181 else
10182 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10183
10184 new_relocs = (Elf_Internal_Rela *)
10185 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10186 if (!new_relocs)
10187 return FALSE;
10188
10189 /* We could handle this more quickly by finding the split point. */
10190 if (insert_at != 0)
10191 memcpy (new_relocs, *internal_relocs_p,
10192 insert_at * sizeof (Elf_Internal_Rela));
10193
10194 new_relocs[insert_at] = this_rela;
10195
10196 if (insert_at != sec->reloc_count)
10197 memcpy (new_relocs + insert_at + 1,
10198 (*internal_relocs_p) + insert_at,
10199 (sec->reloc_count - insert_at)
10200 * sizeof (Elf_Internal_Rela));
10201
10202 if (*internal_relocs_p != relax_info->allocated_relocs)
10203 {
10204 /* The first time we re-allocate, we can only free the
10205 old relocs if they were allocated with bfd_malloc.
10206 This is not true when keep_memory is in effect. */
10207 if (!link_info->keep_memory)
10208 free (*internal_relocs_p);
10209 }
10210 else
10211 free (*internal_relocs_p);
10212 relax_info->allocated_relocs = new_relocs;
10213 relax_info->allocated_relocs_count = new_relocs_count;
10214 elf_section_data (sec)->relocs = new_relocs;
10215 sec->reloc_count++;
10216 relax_info->relocs_count = sec->reloc_count;
10217 *internal_relocs_p = new_relocs;
10218 }
10219 else
10220 {
10221 if (insert_at != sec->reloc_count)
10222 {
10223 unsigned idx;
10224 for (idx = sec->reloc_count; idx > insert_at; idx--)
10225 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10226 }
10227 (*internal_relocs_p)[insert_at] = this_rela;
10228 sec->reloc_count++;
10229 if (relax_info->allocated_relocs)
10230 relax_info->relocs_count = sec->reloc_count;
10231 }
10232 }
10233 return TRUE;
10234 }
10235
10236
10237 /* This is similar to relax_section except that when a target is moved,
10238 we shift addresses up. We also need to modify the size. This
10239 algorithm does NOT allow for relocations into the middle of the
10240 property sections. */
10241
10242 static bfd_boolean
10243 relax_property_section (bfd *abfd,
10244 asection *sec,
10245 struct bfd_link_info *link_info)
10246 {
10247 Elf_Internal_Rela *internal_relocs;
10248 bfd_byte *contents;
10249 unsigned i;
10250 bfd_boolean ok = TRUE;
10251 bfd_boolean is_full_prop_section;
10252 size_t last_zfill_target_offset = 0;
10253 asection *last_zfill_target_sec = NULL;
10254 bfd_size_type sec_size;
10255 bfd_size_type entry_size;
10256
10257 sec_size = bfd_get_section_limit (abfd, sec);
10258 internal_relocs = retrieve_internal_relocs (abfd, sec,
10259 link_info->keep_memory);
10260 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10261 if (contents == NULL && sec_size != 0)
10262 {
10263 ok = FALSE;
10264 goto error_return;
10265 }
10266
10267 is_full_prop_section = xtensa_is_proptable_section (sec);
10268 if (is_full_prop_section)
10269 entry_size = 12;
10270 else
10271 entry_size = 8;
10272
10273 if (internal_relocs)
10274 {
10275 for (i = 0; i < sec->reloc_count; i++)
10276 {
10277 Elf_Internal_Rela *irel;
10278 xtensa_relax_info *target_relax_info;
10279 unsigned r_type;
10280 asection *target_sec;
10281 literal_value val;
10282 bfd_byte *size_p, *flags_p;
10283
10284 /* Locally change the source address.
10285 Translate the target to the new target address.
10286 If it points to this section and has been removed, MOVE IT.
10287 Also, don't forget to modify the associated SIZE at
10288 (offset + 4). */
10289
10290 irel = &internal_relocs[i];
10291 r_type = ELF32_R_TYPE (irel->r_info);
10292 if (r_type == R_XTENSA_NONE)
10293 continue;
10294
10295 /* Find the literal value. */
10296 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10297 size_p = &contents[irel->r_offset + 4];
10298 flags_p = NULL;
10299 if (is_full_prop_section)
10300 flags_p = &contents[irel->r_offset + 8];
10301 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10302
10303 target_sec = r_reloc_get_section (&val.r_rel);
10304 target_relax_info = get_xtensa_relax_info (target_sec);
10305
10306 if (target_relax_info
10307 && (target_relax_info->is_relaxable_literal_section
10308 || target_relax_info->is_relaxable_asm_section ))
10309 {
10310 /* Translate the relocation's destination. */
10311 bfd_vma old_offset = val.r_rel.target_offset;
10312 bfd_vma new_offset;
10313 long old_size, new_size;
10314 int removed_by_old_offset =
10315 removed_by_actions_map (&target_relax_info->action_list,
10316 old_offset, FALSE);
10317 new_offset = old_offset - removed_by_old_offset;
10318
10319 /* Assert that we are not out of bounds. */
10320 old_size = bfd_get_32 (abfd, size_p);
10321 new_size = old_size;
10322
10323 if (old_size == 0)
10324 {
10325 /* Only the first zero-sized unreachable entry is
10326 allowed to expand. In this case the new offset
10327 should be the offset before the fill and the new
10328 size is the expansion size. For other zero-sized
10329 entries the resulting size should be zero with an
10330 offset before or after the fill address depending
10331 on whether the expanding unreachable entry
10332 preceeds it. */
10333 if (last_zfill_target_sec == 0
10334 || last_zfill_target_sec != target_sec
10335 || last_zfill_target_offset != old_offset)
10336 {
10337 bfd_vma new_end_offset = new_offset;
10338
10339 /* Recompute the new_offset, but this time don't
10340 include any fill inserted by relaxation. */
10341 removed_by_old_offset =
10342 removed_by_actions_map (&target_relax_info->action_list,
10343 old_offset, TRUE);
10344 new_offset = old_offset - removed_by_old_offset;
10345
10346 /* If it is not unreachable and we have not yet
10347 seen an unreachable at this address, place it
10348 before the fill address. */
10349 if (flags_p && (bfd_get_32 (abfd, flags_p)
10350 & XTENSA_PROP_UNREACHABLE) != 0)
10351 {
10352 new_size = new_end_offset - new_offset;
10353
10354 last_zfill_target_sec = target_sec;
10355 last_zfill_target_offset = old_offset;
10356 }
10357 }
10358 }
10359 else
10360 {
10361 int removed_by_old_offset_size =
10362 removed_by_actions_map (&target_relax_info->action_list,
10363 old_offset + old_size, TRUE);
10364 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10365 }
10366
10367 if (new_size != old_size)
10368 {
10369 bfd_put_32 (abfd, new_size, size_p);
10370 pin_contents (sec, contents);
10371 }
10372
10373 if (new_offset != old_offset)
10374 {
10375 bfd_vma diff = new_offset - old_offset;
10376 irel->r_addend += diff;
10377 pin_internal_relocs (sec, internal_relocs);
10378 }
10379 }
10380 }
10381 }
10382
10383 /* Combine adjacent property table entries. This is also done in
10384 finish_dynamic_sections() but at that point it's too late to
10385 reclaim the space in the output section, so we do this twice. */
10386
10387 if (internal_relocs && (!link_info->relocatable
10388 || xtensa_is_littable_section (sec)))
10389 {
10390 Elf_Internal_Rela *last_irel = NULL;
10391 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10392 int removed_bytes = 0;
10393 bfd_vma offset;
10394 flagword predef_flags;
10395
10396 predef_flags = xtensa_get_property_predef_flags (sec);
10397
10398 /* Walk over memory and relocations at the same time.
10399 This REQUIRES that the internal_relocs be sorted by offset. */
10400 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10401 internal_reloc_compare);
10402
10403 pin_internal_relocs (sec, internal_relocs);
10404 pin_contents (sec, contents);
10405
10406 next_rel = internal_relocs;
10407 rel_end = internal_relocs + sec->reloc_count;
10408
10409 BFD_ASSERT (sec->size % entry_size == 0);
10410
10411 for (offset = 0; offset < sec->size; offset += entry_size)
10412 {
10413 Elf_Internal_Rela *offset_rel, *extra_rel;
10414 bfd_vma bytes_to_remove, size, actual_offset;
10415 bfd_boolean remove_this_rel;
10416 flagword flags;
10417
10418 /* Find the first relocation for the entry at the current offset.
10419 Adjust the offsets of any extra relocations for the previous
10420 entry. */
10421 offset_rel = NULL;
10422 if (next_rel)
10423 {
10424 for (irel = next_rel; irel < rel_end; irel++)
10425 {
10426 if ((irel->r_offset == offset
10427 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10428 || irel->r_offset > offset)
10429 {
10430 offset_rel = irel;
10431 break;
10432 }
10433 irel->r_offset -= removed_bytes;
10434 }
10435 }
10436
10437 /* Find the next relocation (if there are any left). */
10438 extra_rel = NULL;
10439 if (offset_rel)
10440 {
10441 for (irel = offset_rel + 1; irel < rel_end; irel++)
10442 {
10443 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10444 {
10445 extra_rel = irel;
10446 break;
10447 }
10448 }
10449 }
10450
10451 /* Check if there are relocations on the current entry. There
10452 should usually be a relocation on the offset field. If there
10453 are relocations on the size or flags, then we can't optimize
10454 this entry. Also, find the next relocation to examine on the
10455 next iteration. */
10456 if (offset_rel)
10457 {
10458 if (offset_rel->r_offset >= offset + entry_size)
10459 {
10460 next_rel = offset_rel;
10461 /* There are no relocations on the current entry, but we
10462 might still be able to remove it if the size is zero. */
10463 offset_rel = NULL;
10464 }
10465 else if (offset_rel->r_offset > offset
10466 || (extra_rel
10467 && extra_rel->r_offset < offset + entry_size))
10468 {
10469 /* There is a relocation on the size or flags, so we can't
10470 do anything with this entry. Continue with the next. */
10471 next_rel = offset_rel;
10472 continue;
10473 }
10474 else
10475 {
10476 BFD_ASSERT (offset_rel->r_offset == offset);
10477 offset_rel->r_offset -= removed_bytes;
10478 next_rel = offset_rel + 1;
10479 }
10480 }
10481 else
10482 next_rel = NULL;
10483
10484 remove_this_rel = FALSE;
10485 bytes_to_remove = 0;
10486 actual_offset = offset - removed_bytes;
10487 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10488
10489 if (is_full_prop_section)
10490 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10491 else
10492 flags = predef_flags;
10493
10494 if (size == 0
10495 && (flags & XTENSA_PROP_ALIGN) == 0
10496 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10497 {
10498 /* Always remove entries with zero size and no alignment. */
10499 bytes_to_remove = entry_size;
10500 if (offset_rel)
10501 remove_this_rel = TRUE;
10502 }
10503 else if (offset_rel
10504 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10505 {
10506 if (last_irel)
10507 {
10508 flagword old_flags;
10509 bfd_vma old_size =
10510 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10511 bfd_vma old_address =
10512 (last_irel->r_addend
10513 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10514 bfd_vma new_address =
10515 (offset_rel->r_addend
10516 + bfd_get_32 (abfd, &contents[actual_offset]));
10517 if (is_full_prop_section)
10518 old_flags = bfd_get_32
10519 (abfd, &contents[last_irel->r_offset + 8]);
10520 else
10521 old_flags = predef_flags;
10522
10523 if ((ELF32_R_SYM (offset_rel->r_info)
10524 == ELF32_R_SYM (last_irel->r_info))
10525 && old_address + old_size == new_address
10526 && old_flags == flags
10527 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10528 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10529 {
10530 /* Fix the old size. */
10531 bfd_put_32 (abfd, old_size + size,
10532 &contents[last_irel->r_offset + 4]);
10533 bytes_to_remove = entry_size;
10534 remove_this_rel = TRUE;
10535 }
10536 else
10537 last_irel = offset_rel;
10538 }
10539 else
10540 last_irel = offset_rel;
10541 }
10542
10543 if (remove_this_rel)
10544 {
10545 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10546 offset_rel->r_offset = 0;
10547 }
10548
10549 if (bytes_to_remove != 0)
10550 {
10551 removed_bytes += bytes_to_remove;
10552 if (offset + bytes_to_remove < sec->size)
10553 memmove (&contents[actual_offset],
10554 &contents[actual_offset + bytes_to_remove],
10555 sec->size - offset - bytes_to_remove);
10556 }
10557 }
10558
10559 if (removed_bytes)
10560 {
10561 /* Fix up any extra relocations on the last entry. */
10562 for (irel = next_rel; irel < rel_end; irel++)
10563 irel->r_offset -= removed_bytes;
10564
10565 /* Clear the removed bytes. */
10566 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10567
10568 if (sec->rawsize == 0)
10569 sec->rawsize = sec->size;
10570 sec->size -= removed_bytes;
10571
10572 if (xtensa_is_littable_section (sec))
10573 {
10574 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10575 if (sgotloc)
10576 sgotloc->size -= removed_bytes;
10577 }
10578 }
10579 }
10580
10581 error_return:
10582 release_internal_relocs (sec, internal_relocs);
10583 release_contents (sec, contents);
10584 return ok;
10585 }
10586
10587 \f
10588 /* Third relaxation pass. */
10589
10590 /* Change symbol values to account for removed literals. */
10591
10592 bfd_boolean
10593 relax_section_symbols (bfd *abfd, asection *sec)
10594 {
10595 xtensa_relax_info *relax_info;
10596 unsigned int sec_shndx;
10597 Elf_Internal_Shdr *symtab_hdr;
10598 Elf_Internal_Sym *isymbuf;
10599 unsigned i, num_syms, num_locals;
10600
10601 relax_info = get_xtensa_relax_info (sec);
10602 BFD_ASSERT (relax_info);
10603
10604 if (!relax_info->is_relaxable_literal_section
10605 && !relax_info->is_relaxable_asm_section)
10606 return TRUE;
10607
10608 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10609
10610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10611 isymbuf = retrieve_local_syms (abfd);
10612
10613 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10614 num_locals = symtab_hdr->sh_info;
10615
10616 /* Adjust the local symbols defined in this section. */
10617 for (i = 0; i < num_locals; i++)
10618 {
10619 Elf_Internal_Sym *isym = &isymbuf[i];
10620
10621 if (isym->st_shndx == sec_shndx)
10622 {
10623 bfd_vma orig_addr = isym->st_value;
10624 int removed = removed_by_actions_map (&relax_info->action_list,
10625 orig_addr, FALSE);
10626
10627 isym->st_value -= removed;
10628 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10629 isym->st_size -=
10630 removed_by_actions_map (&relax_info->action_list,
10631 orig_addr + isym->st_size, FALSE) -
10632 removed;
10633 }
10634 }
10635
10636 /* Now adjust the global symbols defined in this section. */
10637 for (i = 0; i < (num_syms - num_locals); i++)
10638 {
10639 struct elf_link_hash_entry *sym_hash;
10640
10641 sym_hash = elf_sym_hashes (abfd)[i];
10642
10643 if (sym_hash->root.type == bfd_link_hash_warning)
10644 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10645
10646 if ((sym_hash->root.type == bfd_link_hash_defined
10647 || sym_hash->root.type == bfd_link_hash_defweak)
10648 && sym_hash->root.u.def.section == sec)
10649 {
10650 bfd_vma orig_addr = sym_hash->root.u.def.value;
10651 int removed = removed_by_actions_map (&relax_info->action_list,
10652 orig_addr, FALSE);
10653
10654 sym_hash->root.u.def.value -= removed;
10655
10656 if (sym_hash->type == STT_FUNC)
10657 sym_hash->size -=
10658 removed_by_actions_map (&relax_info->action_list,
10659 orig_addr + sym_hash->size, FALSE) -
10660 removed;
10661 }
10662 }
10663
10664 return TRUE;
10665 }
10666
10667 \f
10668 /* "Fix" handling functions, called while performing relocations. */
10669
10670 static bfd_boolean
10671 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10672 bfd *input_bfd,
10673 asection *input_section,
10674 bfd_byte *contents)
10675 {
10676 r_reloc r_rel;
10677 asection *sec, *old_sec;
10678 bfd_vma old_offset;
10679 int r_type = ELF32_R_TYPE (rel->r_info);
10680 reloc_bfd_fix *fix;
10681
10682 if (r_type == R_XTENSA_NONE)
10683 return TRUE;
10684
10685 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10686 if (!fix)
10687 return TRUE;
10688
10689 r_reloc_init (&r_rel, input_bfd, rel, contents,
10690 bfd_get_section_limit (input_bfd, input_section));
10691 old_sec = r_reloc_get_section (&r_rel);
10692 old_offset = r_rel.target_offset;
10693
10694 if (!old_sec || !r_reloc_is_defined (&r_rel))
10695 {
10696 if (r_type != R_XTENSA_ASM_EXPAND)
10697 {
10698 (*_bfd_error_handler)
10699 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10700 input_bfd, input_section, rel->r_offset,
10701 elf_howto_table[r_type].name);
10702 return FALSE;
10703 }
10704 /* Leave it be. Resolution will happen in a later stage. */
10705 }
10706 else
10707 {
10708 sec = fix->target_sec;
10709 rel->r_addend += ((sec->output_offset + fix->target_offset)
10710 - (old_sec->output_offset + old_offset));
10711 }
10712 return TRUE;
10713 }
10714
10715
10716 static void
10717 do_fix_for_final_link (Elf_Internal_Rela *rel,
10718 bfd *input_bfd,
10719 asection *input_section,
10720 bfd_byte *contents,
10721 bfd_vma *relocationp)
10722 {
10723 asection *sec;
10724 int r_type = ELF32_R_TYPE (rel->r_info);
10725 reloc_bfd_fix *fix;
10726 bfd_vma fixup_diff;
10727
10728 if (r_type == R_XTENSA_NONE)
10729 return;
10730
10731 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10732 if (!fix)
10733 return;
10734
10735 sec = fix->target_sec;
10736
10737 fixup_diff = rel->r_addend;
10738 if (elf_howto_table[fix->src_type].partial_inplace)
10739 {
10740 bfd_vma inplace_val;
10741 BFD_ASSERT (fix->src_offset
10742 < bfd_get_section_limit (input_bfd, input_section));
10743 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10744 fixup_diff += inplace_val;
10745 }
10746
10747 *relocationp = (sec->output_section->vma
10748 + sec->output_offset
10749 + fix->target_offset - fixup_diff);
10750 }
10751
10752 \f
10753 /* Miscellaneous utility functions.... */
10754
10755 static asection *
10756 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10757 {
10758 struct elf_xtensa_link_hash_table *htab;
10759 bfd *dynobj;
10760 char plt_name[10];
10761
10762 if (chunk == 0)
10763 {
10764 htab = elf_xtensa_hash_table (info);
10765 if (htab == NULL)
10766 return NULL;
10767
10768 return htab->splt;
10769 }
10770
10771 dynobj = elf_hash_table (info)->dynobj;
10772 sprintf (plt_name, ".plt.%u", chunk);
10773 return bfd_get_linker_section (dynobj, plt_name);
10774 }
10775
10776
10777 static asection *
10778 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10779 {
10780 struct elf_xtensa_link_hash_table *htab;
10781 bfd *dynobj;
10782 char got_name[14];
10783
10784 if (chunk == 0)
10785 {
10786 htab = elf_xtensa_hash_table (info);
10787 if (htab == NULL)
10788 return NULL;
10789 return htab->sgotplt;
10790 }
10791
10792 dynobj = elf_hash_table (info)->dynobj;
10793 sprintf (got_name, ".got.plt.%u", chunk);
10794 return bfd_get_linker_section (dynobj, got_name);
10795 }
10796
10797
10798 /* Get the input section for a given symbol index.
10799 If the symbol is:
10800 . a section symbol, return the section;
10801 . a common symbol, return the common section;
10802 . an undefined symbol, return the undefined section;
10803 . an indirect symbol, follow the links;
10804 . an absolute value, return the absolute section. */
10805
10806 static asection *
10807 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10808 {
10809 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10810 asection *target_sec = NULL;
10811 if (r_symndx < symtab_hdr->sh_info)
10812 {
10813 Elf_Internal_Sym *isymbuf;
10814 unsigned int section_index;
10815
10816 isymbuf = retrieve_local_syms (abfd);
10817 section_index = isymbuf[r_symndx].st_shndx;
10818
10819 if (section_index == SHN_UNDEF)
10820 target_sec = bfd_und_section_ptr;
10821 else if (section_index == SHN_ABS)
10822 target_sec = bfd_abs_section_ptr;
10823 else if (section_index == SHN_COMMON)
10824 target_sec = bfd_com_section_ptr;
10825 else
10826 target_sec = bfd_section_from_elf_index (abfd, section_index);
10827 }
10828 else
10829 {
10830 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10831 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10832
10833 while (h->root.type == bfd_link_hash_indirect
10834 || h->root.type == bfd_link_hash_warning)
10835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10836
10837 switch (h->root.type)
10838 {
10839 case bfd_link_hash_defined:
10840 case bfd_link_hash_defweak:
10841 target_sec = h->root.u.def.section;
10842 break;
10843 case bfd_link_hash_common:
10844 target_sec = bfd_com_section_ptr;
10845 break;
10846 case bfd_link_hash_undefined:
10847 case bfd_link_hash_undefweak:
10848 target_sec = bfd_und_section_ptr;
10849 break;
10850 default: /* New indirect warning. */
10851 target_sec = bfd_und_section_ptr;
10852 break;
10853 }
10854 }
10855 return target_sec;
10856 }
10857
10858
10859 static struct elf_link_hash_entry *
10860 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10861 {
10862 unsigned long indx;
10863 struct elf_link_hash_entry *h;
10864 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10865
10866 if (r_symndx < symtab_hdr->sh_info)
10867 return NULL;
10868
10869 indx = r_symndx - symtab_hdr->sh_info;
10870 h = elf_sym_hashes (abfd)[indx];
10871 while (h->root.type == bfd_link_hash_indirect
10872 || h->root.type == bfd_link_hash_warning)
10873 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10874 return h;
10875 }
10876
10877
10878 /* Get the section-relative offset for a symbol number. */
10879
10880 static bfd_vma
10881 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10882 {
10883 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10884 bfd_vma offset = 0;
10885
10886 if (r_symndx < symtab_hdr->sh_info)
10887 {
10888 Elf_Internal_Sym *isymbuf;
10889 isymbuf = retrieve_local_syms (abfd);
10890 offset = isymbuf[r_symndx].st_value;
10891 }
10892 else
10893 {
10894 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10895 struct elf_link_hash_entry *h =
10896 elf_sym_hashes (abfd)[indx];
10897
10898 while (h->root.type == bfd_link_hash_indirect
10899 || h->root.type == bfd_link_hash_warning)
10900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10901 if (h->root.type == bfd_link_hash_defined
10902 || h->root.type == bfd_link_hash_defweak)
10903 offset = h->root.u.def.value;
10904 }
10905 return offset;
10906 }
10907
10908
10909 static bfd_boolean
10910 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10911 {
10912 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10913 struct elf_link_hash_entry *h;
10914
10915 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10916 if (h && h->root.type == bfd_link_hash_defweak)
10917 return TRUE;
10918 return FALSE;
10919 }
10920
10921
10922 static bfd_boolean
10923 pcrel_reloc_fits (xtensa_opcode opc,
10924 int opnd,
10925 bfd_vma self_address,
10926 bfd_vma dest_address)
10927 {
10928 xtensa_isa isa = xtensa_default_isa;
10929 uint32 valp = dest_address;
10930 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10931 || xtensa_operand_encode (isa, opc, opnd, &valp))
10932 return FALSE;
10933 return TRUE;
10934 }
10935
10936
10937 static bfd_boolean
10938 xtensa_is_property_section (asection *sec)
10939 {
10940 if (xtensa_is_insntable_section (sec)
10941 || xtensa_is_littable_section (sec)
10942 || xtensa_is_proptable_section (sec))
10943 return TRUE;
10944
10945 return FALSE;
10946 }
10947
10948
10949 static bfd_boolean
10950 xtensa_is_insntable_section (asection *sec)
10951 {
10952 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10953 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10954 return TRUE;
10955
10956 return FALSE;
10957 }
10958
10959
10960 static bfd_boolean
10961 xtensa_is_littable_section (asection *sec)
10962 {
10963 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10964 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10965 return TRUE;
10966
10967 return FALSE;
10968 }
10969
10970
10971 static bfd_boolean
10972 xtensa_is_proptable_section (asection *sec)
10973 {
10974 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10975 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10976 return TRUE;
10977
10978 return FALSE;
10979 }
10980
10981
10982 static int
10983 internal_reloc_compare (const void *ap, const void *bp)
10984 {
10985 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10986 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10987
10988 if (a->r_offset != b->r_offset)
10989 return (a->r_offset - b->r_offset);
10990
10991 /* We don't need to sort on these criteria for correctness,
10992 but enforcing a more strict ordering prevents unstable qsort
10993 from behaving differently with different implementations.
10994 Without the code below we get correct but different results
10995 on Solaris 2.7 and 2.8. We would like to always produce the
10996 same results no matter the host. */
10997
10998 if (a->r_info != b->r_info)
10999 return (a->r_info - b->r_info);
11000
11001 return (a->r_addend - b->r_addend);
11002 }
11003
11004
11005 static int
11006 internal_reloc_matches (const void *ap, const void *bp)
11007 {
11008 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11009 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11010
11011 /* Check if one entry overlaps with the other; this shouldn't happen
11012 except when searching for a match. */
11013 return (a->r_offset - b->r_offset);
11014 }
11015
11016
11017 /* Predicate function used to look up a section in a particular group. */
11018
11019 static bfd_boolean
11020 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11021 {
11022 const char *gname = inf;
11023 const char *group_name = elf_group_name (sec);
11024
11025 return (group_name == gname
11026 || (group_name != NULL
11027 && gname != NULL
11028 && strcmp (group_name, gname) == 0));
11029 }
11030
11031
11032 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11033
11034 static char *
11035 xtensa_property_section_name (asection *sec, const char *base_name)
11036 {
11037 const char *suffix, *group_name;
11038 char *prop_sec_name;
11039
11040 group_name = elf_group_name (sec);
11041 if (group_name)
11042 {
11043 suffix = strrchr (sec->name, '.');
11044 if (suffix == sec->name)
11045 suffix = 0;
11046 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11047 + (suffix ? strlen (suffix) : 0));
11048 strcpy (prop_sec_name, base_name);
11049 if (suffix)
11050 strcat (prop_sec_name, suffix);
11051 }
11052 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11053 {
11054 char *linkonce_kind = 0;
11055
11056 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11057 linkonce_kind = "x.";
11058 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11059 linkonce_kind = "p.";
11060 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11061 linkonce_kind = "prop.";
11062 else
11063 abort ();
11064
11065 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11066 + strlen (linkonce_kind) + 1);
11067 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11068 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11069
11070 suffix = sec->name + linkonce_len;
11071 /* For backward compatibility, replace "t." instead of inserting
11072 the new linkonce_kind (but not for "prop" sections). */
11073 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11074 suffix += 2;
11075 strcat (prop_sec_name + linkonce_len, suffix);
11076 }
11077 else
11078 prop_sec_name = strdup (base_name);
11079
11080 return prop_sec_name;
11081 }
11082
11083
11084 static asection *
11085 xtensa_get_property_section (asection *sec, const char *base_name)
11086 {
11087 char *prop_sec_name;
11088 asection *prop_sec;
11089
11090 prop_sec_name = xtensa_property_section_name (sec, base_name);
11091 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11092 match_section_group,
11093 (void *) elf_group_name (sec));
11094 free (prop_sec_name);
11095 return prop_sec;
11096 }
11097
11098
11099 asection *
11100 xtensa_make_property_section (asection *sec, const char *base_name)
11101 {
11102 char *prop_sec_name;
11103 asection *prop_sec;
11104
11105 /* Check if the section already exists. */
11106 prop_sec_name = xtensa_property_section_name (sec, base_name);
11107 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11108 match_section_group,
11109 (void *) elf_group_name (sec));
11110 /* If not, create it. */
11111 if (! prop_sec)
11112 {
11113 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11114 flags |= (bfd_get_section_flags (sec->owner, sec)
11115 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11116
11117 prop_sec = bfd_make_section_anyway_with_flags
11118 (sec->owner, strdup (prop_sec_name), flags);
11119 if (! prop_sec)
11120 return 0;
11121
11122 elf_group_name (prop_sec) = elf_group_name (sec);
11123 }
11124
11125 free (prop_sec_name);
11126 return prop_sec;
11127 }
11128
11129
11130 flagword
11131 xtensa_get_property_predef_flags (asection *sec)
11132 {
11133 if (xtensa_is_insntable_section (sec))
11134 return (XTENSA_PROP_INSN
11135 | XTENSA_PROP_NO_TRANSFORM
11136 | XTENSA_PROP_INSN_NO_REORDER);
11137
11138 if (xtensa_is_littable_section (sec))
11139 return (XTENSA_PROP_LITERAL
11140 | XTENSA_PROP_NO_TRANSFORM
11141 | XTENSA_PROP_INSN_NO_REORDER);
11142
11143 return 0;
11144 }
11145
11146 \f
11147 /* Other functions called directly by the linker. */
11148
11149 bfd_boolean
11150 xtensa_callback_required_dependence (bfd *abfd,
11151 asection *sec,
11152 struct bfd_link_info *link_info,
11153 deps_callback_t callback,
11154 void *closure)
11155 {
11156 Elf_Internal_Rela *internal_relocs;
11157 bfd_byte *contents;
11158 unsigned i;
11159 bfd_boolean ok = TRUE;
11160 bfd_size_type sec_size;
11161
11162 sec_size = bfd_get_section_limit (abfd, sec);
11163
11164 /* ".plt*" sections have no explicit relocations but they contain L32R
11165 instructions that reference the corresponding ".got.plt*" sections. */
11166 if ((sec->flags & SEC_LINKER_CREATED) != 0
11167 && CONST_STRNEQ (sec->name, ".plt"))
11168 {
11169 asection *sgotplt;
11170
11171 /* Find the corresponding ".got.plt*" section. */
11172 if (sec->name[4] == '\0')
11173 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
11174 else
11175 {
11176 char got_name[14];
11177 int chunk = 0;
11178
11179 BFD_ASSERT (sec->name[4] == '.');
11180 chunk = strtol (&sec->name[5], NULL, 10);
11181
11182 sprintf (got_name, ".got.plt.%u", chunk);
11183 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11184 }
11185 BFD_ASSERT (sgotplt);
11186
11187 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11188 section referencing a literal at the very beginning of
11189 ".got.plt". This is very close to the real dependence, anyway. */
11190 (*callback) (sec, sec_size, sgotplt, 0, closure);
11191 }
11192
11193 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11194 when building uclibc, which runs "ld -b binary /dev/null". */
11195 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11196 return ok;
11197
11198 internal_relocs = retrieve_internal_relocs (abfd, sec,
11199 link_info->keep_memory);
11200 if (internal_relocs == NULL
11201 || sec->reloc_count == 0)
11202 return ok;
11203
11204 /* Cache the contents for the duration of this scan. */
11205 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11206 if (contents == NULL && sec_size != 0)
11207 {
11208 ok = FALSE;
11209 goto error_return;
11210 }
11211
11212 if (!xtensa_default_isa)
11213 xtensa_default_isa = xtensa_isa_init (0, 0);
11214
11215 for (i = 0; i < sec->reloc_count; i++)
11216 {
11217 Elf_Internal_Rela *irel = &internal_relocs[i];
11218 if (is_l32r_relocation (abfd, sec, contents, irel))
11219 {
11220 r_reloc l32r_rel;
11221 asection *target_sec;
11222 bfd_vma target_offset;
11223
11224 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11225 target_sec = NULL;
11226 target_offset = 0;
11227 /* L32Rs must be local to the input file. */
11228 if (r_reloc_is_defined (&l32r_rel))
11229 {
11230 target_sec = r_reloc_get_section (&l32r_rel);
11231 target_offset = l32r_rel.target_offset;
11232 }
11233 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11234 closure);
11235 }
11236 }
11237
11238 error_return:
11239 release_internal_relocs (sec, internal_relocs);
11240 release_contents (sec, contents);
11241 return ok;
11242 }
11243
11244 /* The default literal sections should always be marked as "code" (i.e.,
11245 SHF_EXECINSTR). This is particularly important for the Linux kernel
11246 module loader so that the literals are not placed after the text. */
11247 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11248 {
11249 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11250 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11251 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11252 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11253 { NULL, 0, 0, 0, 0 }
11254 };
11255 \f
11256 #define ELF_TARGET_ID XTENSA_ELF_DATA
11257 #ifndef ELF_ARCH
11258 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11259 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11260 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11261 #define TARGET_BIG_NAME "elf32-xtensa-be"
11262 #define ELF_ARCH bfd_arch_xtensa
11263
11264 #define ELF_MACHINE_CODE EM_XTENSA
11265 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11266
11267 #if XCHAL_HAVE_MMU
11268 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11269 #else /* !XCHAL_HAVE_MMU */
11270 #define ELF_MAXPAGESIZE 1
11271 #endif /* !XCHAL_HAVE_MMU */
11272 #endif /* ELF_ARCH */
11273
11274 #define elf_backend_can_gc_sections 1
11275 #define elf_backend_can_refcount 1
11276 #define elf_backend_plt_readonly 1
11277 #define elf_backend_got_header_size 4
11278 #define elf_backend_want_dynbss 0
11279 #define elf_backend_want_got_plt 1
11280
11281 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11282
11283 #define bfd_elf32_mkobject elf_xtensa_mkobject
11284
11285 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11286 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11287 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11288 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11289 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11290 #define bfd_elf32_bfd_reloc_name_lookup \
11291 elf_xtensa_reloc_name_lookup
11292 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11293 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11294
11295 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11296 #define elf_backend_check_relocs elf_xtensa_check_relocs
11297 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11298 #define elf_backend_discard_info elf_xtensa_discard_info
11299 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11300 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11301 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11302 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11303 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11304 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11305 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11306 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11307 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11308 #define elf_backend_object_p elf_xtensa_object_p
11309 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11310 #define elf_backend_relocate_section elf_xtensa_relocate_section
11311 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11312 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11313 #define elf_backend_omit_section_dynsym \
11314 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11315 #define elf_backend_special_sections elf_xtensa_special_sections
11316 #define elf_backend_action_discarded elf_xtensa_action_discarded
11317 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11318
11319 #include "elf32-target.h"
This page took 0.483705 seconds and 4 git commands to generate.