Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
36 #define OCTETS_PER_BYTE(ABFD, SEC) 1
37
38 #define XTENSA_NO_NOP_REMOVAL 0
39
40 #ifndef XSHAL_ABI
41 #define XSHAL_ABI 0
42 #endif
43
44 #ifndef XTHAL_ABI_UNDEFINED
45 #define XTHAL_ABI_UNDEFINED -1
46 #endif
47
48 #ifndef XTHAL_ABI_WINDOWED
49 #define XTHAL_ABI_WINDOWED 0
50 #endif
51
52 #ifndef XTHAL_ABI_CALL0
53 #define XTHAL_ABI_CALL0 1
54 #endif
55
56 /* Local helper functions. */
57
58 static bool add_extra_plt_sections (struct bfd_link_info *, int);
59 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
60 static bfd_reloc_status_type bfd_elf_xtensa_reloc
61 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
62 static bool do_fix_for_relocatable_link
63 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
64 static void do_fix_for_final_link
65 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
66
67 /* Local functions to handle Xtensa configurability. */
68
69 static bool is_indirect_call_opcode (xtensa_opcode);
70 static bool is_direct_call_opcode (xtensa_opcode);
71 static bool is_windowed_call_opcode (xtensa_opcode);
72 static xtensa_opcode get_const16_opcode (void);
73 static xtensa_opcode get_l32r_opcode (void);
74 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
75 static int get_relocation_opnd (xtensa_opcode, int);
76 static int get_relocation_slot (int);
77 static xtensa_opcode get_relocation_opcode
78 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
79 static bool is_l32r_relocation
80 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
81 static bool is_alt_relocation (int);
82 static bool is_operand_relocation (int);
83 static bfd_size_type insn_decode_len
84 (bfd_byte *, bfd_size_type, bfd_size_type);
85 static int insn_num_slots
86 (bfd_byte *, bfd_size_type, bfd_size_type);
87 static xtensa_opcode insn_decode_opcode
88 (bfd_byte *, bfd_size_type, bfd_size_type, int);
89 static bool check_branch_target_aligned
90 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
91 static bool check_loop_aligned
92 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
93 static bool check_branch_target_aligned_address (bfd_vma, int);
94 static bfd_size_type get_asm_simplify_size
95 (bfd_byte *, bfd_size_type, bfd_size_type);
96
97 /* Functions for link-time code simplifications. */
98
99 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
100 (bfd_byte *, bfd_vma, bfd_vma, char **);
101 static bfd_reloc_status_type contract_asm_expansion
102 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
103 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
104 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bool *);
105
106 /* Access to internal relocations, section contents and symbols. */
107
108 static Elf_Internal_Rela *retrieve_internal_relocs
109 (bfd *, asection *, bool);
110 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
111 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
112 static bfd_byte *retrieve_contents (bfd *, asection *, bool);
113 static void pin_contents (asection *, bfd_byte *);
114 static void release_contents (asection *, bfd_byte *);
115 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
116
117 /* Miscellaneous utility functions. */
118
119 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
120 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
121 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
122 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
123 (bfd *, unsigned long);
124 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
125 static bool is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
126 static bool pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
127 static bool xtensa_is_property_section (asection *);
128 static bool xtensa_is_insntable_section (asection *);
129 static bool xtensa_is_littable_section (asection *);
130 static bool xtensa_is_proptable_section (asection *);
131 static int internal_reloc_compare (const void *, const void *);
132 static int internal_reloc_matches (const void *, const void *);
133 static asection *xtensa_get_property_section (asection *, const char *);
134 static flagword xtensa_get_property_predef_flags (asection *);
135
136 /* Other functions called directly by the linker. */
137
138 typedef void (*deps_callback_t)
139 (asection *, bfd_vma, asection *, bfd_vma, void *);
140 extern bool xtensa_callback_required_dependence
141 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
142
143
144 /* Globally visible flag for choosing size optimization of NOP removal
145 instead of branch-target-aware minimization for NOP removal.
146 When nonzero, narrow all instructions and remove all NOPs possible
147 around longcall expansions. */
148
149 int elf32xtensa_size_opt;
150
151
152 /* The "new_section_hook" is used to set up a per-section
153 "xtensa_relax_info" data structure with additional information used
154 during relaxation. */
155
156 typedef struct xtensa_relax_info_struct xtensa_relax_info;
157
158
159 /* The GNU tools do not easily allow extending interfaces to pass around
160 the pointer to the Xtensa ISA information, so instead we add a global
161 variable here (in BFD) that can be used by any of the tools that need
162 this information. */
163
164 xtensa_isa xtensa_default_isa;
165
166
167 /* When this is true, relocations may have been modified to refer to
168 symbols from other input files. The per-section list of "fix"
169 records needs to be checked when resolving relocations. */
170
171 static bool relaxing_section = false;
172
173 /* When this is true, during final links, literals that cannot be
174 coalesced and their relocations may be moved to other sections. */
175
176 int elf32xtensa_no_literal_movement = 1;
177
178 /* Place property records for a section into individual property section
179 with xt.prop. prefix. */
180
181 bool elf32xtensa_separate_props = false;
182
183 /* Xtensa ABI. It affects PLT entry code. */
184
185 int elf32xtensa_abi = XTHAL_ABI_UNDEFINED;
186
187 /* Rename one of the generic section flags to better document how it
188 is used here. */
189 /* Whether relocations have been processed. */
190 #define reloc_done sec_flg0
191 \f
192 static reloc_howto_type elf_howto_table[] =
193 {
194 HOWTO (R_XTENSA_NONE, 0, 3, 0, false, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
196 false, 0, 0, false),
197 HOWTO (R_XTENSA_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
198 bfd_elf_xtensa_reloc, "R_XTENSA_32",
199 true, 0xffffffff, 0xffffffff, false),
200
201 /* Replace a 32-bit value with a value from the runtime linker (only
202 used by linker-generated stub functions). The r_addend value is
203 special: 1 means to substitute a pointer to the runtime linker's
204 dynamic resolver function; 2 means to substitute the link map for
205 the shared object. */
206 HOWTO (R_XTENSA_RTLD, 0, 2, 32, false, 0, complain_overflow_dont,
207 NULL, "R_XTENSA_RTLD", false, 0, 0, false),
208
209 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
210 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
211 false, 0, 0xffffffff, false),
212 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
213 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
214 false, 0, 0xffffffff, false),
215 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
216 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
217 false, 0, 0xffffffff, false),
218 HOWTO (R_XTENSA_PLT, 0, 2, 32, false, 0, complain_overflow_bitfield,
219 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
220 false, 0, 0xffffffff, false),
221
222 EMPTY_HOWTO (7),
223
224 /* Old relocations for backward compatibility. */
225 HOWTO (R_XTENSA_OP0, 0, 0, 0, true, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", false, 0, 0, true),
227 HOWTO (R_XTENSA_OP1, 0, 0, 0, true, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", false, 0, 0, true),
229 HOWTO (R_XTENSA_OP2, 0, 0, 0, true, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", false, 0, 0, true),
231
232 /* Assembly auto-expansion. */
233 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, true, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", false, 0, 0, true),
235 /* Relax assembly auto-expansion. */
236 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, true, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", false, 0, 0, true),
238
239 EMPTY_HOWTO (13),
240
241 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, true, 0, complain_overflow_bitfield,
242 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
243 false, 0, 0xffffffff, true),
244
245 /* GNU extension to record C++ vtable hierarchy. */
246 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, false, 0, complain_overflow_dont,
247 NULL, "R_XTENSA_GNU_VTINHERIT",
248 false, 0, 0, false),
249 /* GNU extension to record C++ vtable member usage. */
250 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, false, 0, complain_overflow_dont,
251 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
252 false, 0, 0, false),
253
254 /* Relocations for supporting difference of symbols. */
255 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, false, 0, complain_overflow_signed,
256 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", false, 0, 0xff, false),
257 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, false, 0, complain_overflow_signed,
258 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", false, 0, 0xffff, false),
259 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, false, 0, complain_overflow_signed,
260 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", false, 0, 0xffffffff, false),
261
262 /* General immediate operand relocations. */
263 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, true, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", false, 0, 0, true),
265 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, true, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", false, 0, 0, true),
267 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, true, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", false, 0, 0, true),
269 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, true, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", false, 0, 0, true),
271 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, true, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", false, 0, 0, true),
273 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, true, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", false, 0, 0, true),
275 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, true, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", false, 0, 0, true),
277 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, true, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", false, 0, 0, true),
279 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, true, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", false, 0, 0, true),
281 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, true, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", false, 0, 0, true),
283 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, true, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", false, 0, 0, true),
285 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, true, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", false, 0, 0, true),
287 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, true, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", false, 0, 0, true),
289 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, true, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", false, 0, 0, true),
291 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, true, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", false, 0, 0, true),
293
294 /* "Alternate" relocations. The meaning of these is opcode-specific. */
295 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
296 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", false, 0, 0, true),
297 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", false, 0, 0, true),
299 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", false, 0, 0, true),
301 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", false, 0, 0, true),
303 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", false, 0, 0, true),
305 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", false, 0, 0, true),
307 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", false, 0, 0, true),
309 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", false, 0, 0, true),
311 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", false, 0, 0, true),
313 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", false, 0, 0, true),
315 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", false, 0, 0, true),
317 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", false, 0, 0, true),
319 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
320 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", false, 0, 0, true),
321 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
322 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", false, 0, 0, true),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", false, 0, 0, true),
325
326 /* TLS relocations. */
327 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, false, 0, complain_overflow_dont,
328 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
329 false, 0, 0xffffffff, false),
330 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, false, 0, complain_overflow_dont,
331 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
332 false, 0, 0xffffffff, false),
333 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, false, 0, complain_overflow_dont,
334 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
335 false, 0, 0xffffffff, false),
336 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, false, 0, complain_overflow_dont,
337 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
338 false, 0, 0xffffffff, false),
339 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, false, 0, complain_overflow_dont,
340 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
341 false, 0, 0, false),
342 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, false, 0, complain_overflow_dont,
343 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
344 false, 0, 0, false),
345 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, false, 0, complain_overflow_dont,
346 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
347 false, 0, 0, false),
348
349 HOWTO (R_XTENSA_PDIFF8, 0, 0, 8, false, 0, complain_overflow_bitfield,
350 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", false, 0, 0xff, false),
351 HOWTO (R_XTENSA_PDIFF16, 0, 1, 16, false, 0, complain_overflow_bitfield,
352 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", false, 0, 0xffff, false),
353 HOWTO (R_XTENSA_PDIFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
354 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", false, 0, 0xffffffff, false),
355
356 HOWTO (R_XTENSA_NDIFF8, 0, 0, 8, false, 0, complain_overflow_bitfield,
357 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", false, 0, 0xff, false),
358 HOWTO (R_XTENSA_NDIFF16, 0, 1, 16, false, 0, complain_overflow_bitfield,
359 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", false, 0, 0xffff, false),
360 HOWTO (R_XTENSA_NDIFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
361 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", false, 0, 0xffffffff, false),
362 };
363
364 #if DEBUG_GEN_RELOC
365 #define TRACE(str) \
366 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
367 #else
368 #define TRACE(str)
369 #endif
370
371 static reloc_howto_type *
372 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
373 bfd_reloc_code_real_type code)
374 {
375 switch (code)
376 {
377 case BFD_RELOC_NONE:
378 TRACE ("BFD_RELOC_NONE");
379 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
380
381 case BFD_RELOC_32:
382 TRACE ("BFD_RELOC_32");
383 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
384
385 case BFD_RELOC_32_PCREL:
386 TRACE ("BFD_RELOC_32_PCREL");
387 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
388
389 case BFD_RELOC_XTENSA_DIFF8:
390 TRACE ("BFD_RELOC_XTENSA_DIFF8");
391 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
392
393 case BFD_RELOC_XTENSA_DIFF16:
394 TRACE ("BFD_RELOC_XTENSA_DIFF16");
395 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
396
397 case BFD_RELOC_XTENSA_DIFF32:
398 TRACE ("BFD_RELOC_XTENSA_DIFF32");
399 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
400
401 case BFD_RELOC_XTENSA_PDIFF8:
402 TRACE ("BFD_RELOC_XTENSA_PDIFF8");
403 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ];
404
405 case BFD_RELOC_XTENSA_PDIFF16:
406 TRACE ("BFD_RELOC_XTENSA_PDIFF16");
407 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ];
408
409 case BFD_RELOC_XTENSA_PDIFF32:
410 TRACE ("BFD_RELOC_XTENSA_PDIFF32");
411 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ];
412
413 case BFD_RELOC_XTENSA_NDIFF8:
414 TRACE ("BFD_RELOC_XTENSA_NDIFF8");
415 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ];
416
417 case BFD_RELOC_XTENSA_NDIFF16:
418 TRACE ("BFD_RELOC_XTENSA_NDIFF16");
419 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ];
420
421 case BFD_RELOC_XTENSA_NDIFF32:
422 TRACE ("BFD_RELOC_XTENSA_NDIFF32");
423 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ];
424
425 case BFD_RELOC_XTENSA_RTLD:
426 TRACE ("BFD_RELOC_XTENSA_RTLD");
427 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
428
429 case BFD_RELOC_XTENSA_GLOB_DAT:
430 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
431 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
432
433 case BFD_RELOC_XTENSA_JMP_SLOT:
434 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
435 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
436
437 case BFD_RELOC_XTENSA_RELATIVE:
438 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
439 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
440
441 case BFD_RELOC_XTENSA_PLT:
442 TRACE ("BFD_RELOC_XTENSA_PLT");
443 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
444
445 case BFD_RELOC_XTENSA_OP0:
446 TRACE ("BFD_RELOC_XTENSA_OP0");
447 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
448
449 case BFD_RELOC_XTENSA_OP1:
450 TRACE ("BFD_RELOC_XTENSA_OP1");
451 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
452
453 case BFD_RELOC_XTENSA_OP2:
454 TRACE ("BFD_RELOC_XTENSA_OP2");
455 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
456
457 case BFD_RELOC_XTENSA_ASM_EXPAND:
458 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
459 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
460
461 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
462 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
463 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
464
465 case BFD_RELOC_VTABLE_INHERIT:
466 TRACE ("BFD_RELOC_VTABLE_INHERIT");
467 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
468
469 case BFD_RELOC_VTABLE_ENTRY:
470 TRACE ("BFD_RELOC_VTABLE_ENTRY");
471 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
472
473 case BFD_RELOC_XTENSA_TLSDESC_FN:
474 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
475 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
476
477 case BFD_RELOC_XTENSA_TLSDESC_ARG:
478 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
479 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
480
481 case BFD_RELOC_XTENSA_TLS_DTPOFF:
482 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
483 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
484
485 case BFD_RELOC_XTENSA_TLS_TPOFF:
486 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
487 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
488
489 case BFD_RELOC_XTENSA_TLS_FUNC:
490 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
491 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
492
493 case BFD_RELOC_XTENSA_TLS_ARG:
494 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
495 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
496
497 case BFD_RELOC_XTENSA_TLS_CALL:
498 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
499 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
500
501 default:
502 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
503 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
504 {
505 unsigned n = (R_XTENSA_SLOT0_OP +
506 (code - BFD_RELOC_XTENSA_SLOT0_OP));
507 return &elf_howto_table[n];
508 }
509
510 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
511 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
512 {
513 unsigned n = (R_XTENSA_SLOT0_ALT +
514 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
515 return &elf_howto_table[n];
516 }
517
518 break;
519 }
520
521 /* xgettext:c-format */
522 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
523 bfd_set_error (bfd_error_bad_value);
524 TRACE ("Unknown");
525 return NULL;
526 }
527
528 static reloc_howto_type *
529 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
530 const char *r_name)
531 {
532 unsigned int i;
533
534 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
535 if (elf_howto_table[i].name != NULL
536 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
537 return &elf_howto_table[i];
538
539 return NULL;
540 }
541
542
543 /* Given an ELF "rela" relocation, find the corresponding howto and record
544 it in the BFD internal arelent representation of the relocation. */
545
546 static bool
547 elf_xtensa_info_to_howto_rela (bfd *abfd,
548 arelent *cache_ptr,
549 Elf_Internal_Rela *dst)
550 {
551 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
552
553 if (r_type >= (unsigned int) R_XTENSA_max)
554 {
555 /* xgettext:c-format */
556 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
557 abfd, r_type);
558 bfd_set_error (bfd_error_bad_value);
559 return false;
560 }
561 cache_ptr->howto = &elf_howto_table[r_type];
562 return true;
563 }
564
565 \f
566 /* Functions for the Xtensa ELF linker. */
567
568 /* The name of the dynamic interpreter. This is put in the .interp
569 section. */
570
571 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
572
573 /* The size in bytes of an entry in the procedure linkage table.
574 (This does _not_ include the space for the literals associated with
575 the PLT entry.) */
576
577 #define PLT_ENTRY_SIZE 16
578
579 /* For _really_ large PLTs, we may need to alternate between literals
580 and code to keep the literals within the 256K range of the L32R
581 instructions in the code. It's unlikely that anyone would ever need
582 such a big PLT, but an arbitrary limit on the PLT size would be bad.
583 Thus, we split the PLT into chunks. Since there's very little
584 overhead (2 extra literals) for each chunk, the chunk size is kept
585 small so that the code for handling multiple chunks get used and
586 tested regularly. With 254 entries, there are 1K of literals for
587 each chunk, and that seems like a nice round number. */
588
589 #define PLT_ENTRIES_PER_CHUNK 254
590
591 /* PLT entries are actually used as stub functions for lazy symbol
592 resolution. Once the symbol is resolved, the stub function is never
593 invoked. Note: the 32-byte frame size used here cannot be changed
594 without a corresponding change in the runtime linker. */
595
596 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
597 {
598 {
599 0x6c, 0x10, 0x04, /* entry sp, 32 */
600 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
601 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
602 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
603 0x0a, 0x80, 0x00, /* jx a8 */
604 0 /* unused */
605 },
606 {
607 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
608 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
609 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
610 0x0a, 0x80, 0x00, /* jx a8 */
611 0 /* unused */
612 }
613 };
614
615 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
616 {
617 {
618 0x36, 0x41, 0x00, /* entry sp, 32 */
619 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
620 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
621 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
622 0xa0, 0x08, 0x00, /* jx a8 */
623 0 /* unused */
624 },
625 {
626 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
627 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
628 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
629 0xa0, 0x08, 0x00, /* jx a8 */
630 0 /* unused */
631 }
632 };
633
634 /* The size of the thread control block. */
635 #define TCB_SIZE 8
636
637 struct elf_xtensa_link_hash_entry
638 {
639 struct elf_link_hash_entry elf;
640
641 bfd_signed_vma tlsfunc_refcount;
642
643 #define GOT_UNKNOWN 0
644 #define GOT_NORMAL 1
645 #define GOT_TLS_GD 2 /* global or local dynamic */
646 #define GOT_TLS_IE 4 /* initial or local exec */
647 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
648 unsigned char tls_type;
649 };
650
651 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
652
653 struct elf_xtensa_obj_tdata
654 {
655 struct elf_obj_tdata root;
656
657 /* tls_type for each local got entry. */
658 char *local_got_tls_type;
659
660 bfd_signed_vma *local_tlsfunc_refcounts;
661 };
662
663 #define elf_xtensa_tdata(abfd) \
664 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
665
666 #define elf_xtensa_local_got_tls_type(abfd) \
667 (elf_xtensa_tdata (abfd)->local_got_tls_type)
668
669 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
670 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
671
672 #define is_xtensa_elf(bfd) \
673 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
674 && elf_tdata (bfd) != NULL \
675 && elf_object_id (bfd) == XTENSA_ELF_DATA)
676
677 static bool
678 elf_xtensa_mkobject (bfd *abfd)
679 {
680 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
681 XTENSA_ELF_DATA);
682 }
683
684 /* Xtensa ELF linker hash table. */
685
686 struct elf_xtensa_link_hash_table
687 {
688 struct elf_link_hash_table elf;
689
690 /* Short-cuts to get to dynamic linker sections. */
691 asection *sgotloc;
692 asection *spltlittbl;
693
694 /* Total count of PLT relocations seen during check_relocs.
695 The actual PLT code must be split into multiple sections and all
696 the sections have to be created before size_dynamic_sections,
697 where we figure out the exact number of PLT entries that will be
698 needed. It is OK if this count is an overestimate, e.g., some
699 relocations may be removed by GC. */
700 int plt_reloc_count;
701
702 struct elf_xtensa_link_hash_entry *tlsbase;
703 };
704
705 /* Get the Xtensa ELF linker hash table from a link_info structure. */
706
707 #define elf_xtensa_hash_table(p) \
708 ((is_elf_hash_table ((p)->hash) \
709 && elf_hash_table_id (elf_hash_table (p)) == XTENSA_ELF_DATA) \
710 ? (struct elf_xtensa_link_hash_table *) (p)->hash : NULL)
711
712 /* Create an entry in an Xtensa ELF linker hash table. */
713
714 static struct bfd_hash_entry *
715 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
717 const char *string)
718 {
719 /* Allocate the structure if it has not already been allocated by a
720 subclass. */
721 if (entry == NULL)
722 {
723 entry = bfd_hash_allocate (table,
724 sizeof (struct elf_xtensa_link_hash_entry));
725 if (entry == NULL)
726 return entry;
727 }
728
729 /* Call the allocation method of the superclass. */
730 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
731 if (entry != NULL)
732 {
733 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
734 eh->tlsfunc_refcount = 0;
735 eh->tls_type = GOT_UNKNOWN;
736 }
737
738 return entry;
739 }
740
741 /* Create an Xtensa ELF linker hash table. */
742
743 static struct bfd_link_hash_table *
744 elf_xtensa_link_hash_table_create (bfd *abfd)
745 {
746 struct elf_link_hash_entry *tlsbase;
747 struct elf_xtensa_link_hash_table *ret;
748 size_t amt = sizeof (struct elf_xtensa_link_hash_table);
749
750 ret = bfd_zmalloc (amt);
751 if (ret == NULL)
752 return NULL;
753
754 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
755 elf_xtensa_link_hash_newfunc,
756 sizeof (struct elf_xtensa_link_hash_entry),
757 XTENSA_ELF_DATA))
758 {
759 free (ret);
760 return NULL;
761 }
762
763 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
764 for it later. */
765 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
766 true, false, false);
767 tlsbase->root.type = bfd_link_hash_new;
768 tlsbase->root.u.undef.abfd = NULL;
769 tlsbase->non_elf = 0;
770 ret->elf.dt_pltgot_required = true;
771 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
772 ret->tlsbase->tls_type = GOT_UNKNOWN;
773
774 return &ret->elf.root;
775 }
776
777 /* Copy the extra info we tack onto an elf_link_hash_entry. */
778
779 static void
780 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
781 struct elf_link_hash_entry *dir,
782 struct elf_link_hash_entry *ind)
783 {
784 struct elf_xtensa_link_hash_entry *edir, *eind;
785
786 edir = elf_xtensa_hash_entry (dir);
787 eind = elf_xtensa_hash_entry (ind);
788
789 if (ind->root.type == bfd_link_hash_indirect)
790 {
791 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
792 eind->tlsfunc_refcount = 0;
793
794 if (dir->got.refcount <= 0)
795 {
796 edir->tls_type = eind->tls_type;
797 eind->tls_type = GOT_UNKNOWN;
798 }
799 }
800
801 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
802 }
803
804 static inline bool
805 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
806 struct bfd_link_info *info)
807 {
808 /* Check if we should do dynamic things to this symbol. The
809 "ignore_protected" argument need not be set, because Xtensa code
810 does not require special handling of STV_PROTECTED to make function
811 pointer comparisons work properly. The PLT addresses are never
812 used for function pointers. */
813
814 return _bfd_elf_dynamic_symbol_p (h, info, 0);
815 }
816
817 \f
818 static int
819 property_table_compare (const void *ap, const void *bp)
820 {
821 const property_table_entry *a = (const property_table_entry *) ap;
822 const property_table_entry *b = (const property_table_entry *) bp;
823
824 if (a->address == b->address)
825 {
826 if (a->size != b->size)
827 return (a->size - b->size);
828
829 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
830 return ((b->flags & XTENSA_PROP_ALIGN)
831 - (a->flags & XTENSA_PROP_ALIGN));
832
833 if ((a->flags & XTENSA_PROP_ALIGN)
834 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
835 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
836 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
837 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
838
839 if ((a->flags & XTENSA_PROP_UNREACHABLE)
840 != (b->flags & XTENSA_PROP_UNREACHABLE))
841 return ((b->flags & XTENSA_PROP_UNREACHABLE)
842 - (a->flags & XTENSA_PROP_UNREACHABLE));
843
844 return (a->flags - b->flags);
845 }
846
847 return (a->address - b->address);
848 }
849
850
851 static int
852 property_table_matches (const void *ap, const void *bp)
853 {
854 const property_table_entry *a = (const property_table_entry *) ap;
855 const property_table_entry *b = (const property_table_entry *) bp;
856
857 /* Check if one entry overlaps with the other. */
858 if ((b->address >= a->address && b->address < (a->address + a->size))
859 || (a->address >= b->address && a->address < (b->address + b->size)))
860 return 0;
861
862 return (a->address - b->address);
863 }
864
865
866 /* Get the literal table or property table entries for the given
867 section. Sets TABLE_P and returns the number of entries. On
868 error, returns a negative value. */
869
870 int
871 xtensa_read_table_entries (bfd *abfd,
872 asection *section,
873 property_table_entry **table_p,
874 const char *sec_name,
875 bool output_addr)
876 {
877 asection *table_section;
878 bfd_size_type table_size = 0;
879 bfd_byte *table_data;
880 property_table_entry *blocks;
881 int blk, block_count;
882 bfd_size_type num_records;
883 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
884 bfd_vma section_addr, off;
885 flagword predef_flags;
886 bfd_size_type table_entry_size, section_limit;
887
888 if (!section
889 || !(section->flags & SEC_ALLOC)
890 || (section->flags & SEC_DEBUGGING))
891 {
892 *table_p = NULL;
893 return 0;
894 }
895
896 table_section = xtensa_get_property_section (section, sec_name);
897 if (table_section)
898 table_size = table_section->size;
899
900 if (table_size == 0)
901 {
902 *table_p = NULL;
903 return 0;
904 }
905
906 predef_flags = xtensa_get_property_predef_flags (table_section);
907 table_entry_size = 12;
908 if (predef_flags)
909 table_entry_size -= 4;
910
911 num_records = table_size / table_entry_size;
912 table_data = retrieve_contents (abfd, table_section, true);
913 blocks = (property_table_entry *)
914 bfd_malloc (num_records * sizeof (property_table_entry));
915 block_count = 0;
916
917 if (output_addr)
918 section_addr = section->output_section->vma + section->output_offset;
919 else
920 section_addr = section->vma;
921
922 internal_relocs = retrieve_internal_relocs (abfd, table_section, true);
923 if (internal_relocs && !table_section->reloc_done)
924 {
925 qsort (internal_relocs, table_section->reloc_count,
926 sizeof (Elf_Internal_Rela), internal_reloc_compare);
927 irel = internal_relocs;
928 }
929 else
930 irel = NULL;
931
932 section_limit = bfd_get_section_limit (abfd, section);
933 rel_end = internal_relocs + table_section->reloc_count;
934
935 for (off = 0; off < table_size; off += table_entry_size)
936 {
937 bfd_vma address = bfd_get_32 (abfd, table_data + off);
938
939 /* Skip any relocations before the current offset. This should help
940 avoid confusion caused by unexpected relocations for the preceding
941 table entry. */
942 while (irel &&
943 (irel->r_offset < off
944 || (irel->r_offset == off
945 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
946 {
947 irel += 1;
948 if (irel >= rel_end)
949 irel = 0;
950 }
951
952 if (irel && irel->r_offset == off)
953 {
954 bfd_vma sym_off;
955 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
956 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
957
958 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
959 continue;
960
961 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
962 BFD_ASSERT (sym_off == 0);
963 address += (section_addr + sym_off + irel->r_addend);
964 }
965 else
966 {
967 if (address < section_addr
968 || address >= section_addr + section_limit)
969 continue;
970 }
971
972 blocks[block_count].address = address;
973 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
974 if (predef_flags)
975 blocks[block_count].flags = predef_flags;
976 else
977 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
978 block_count++;
979 }
980
981 release_contents (table_section, table_data);
982 release_internal_relocs (table_section, internal_relocs);
983
984 if (block_count > 0)
985 {
986 /* Now sort them into address order for easy reference. */
987 qsort (blocks, block_count, sizeof (property_table_entry),
988 property_table_compare);
989
990 /* Check that the table contents are valid. Problems may occur,
991 for example, if an unrelocated object file is stripped. */
992 for (blk = 1; blk < block_count; blk++)
993 {
994 /* The only circumstance where two entries may legitimately
995 have the same address is when one of them is a zero-size
996 placeholder to mark a place where fill can be inserted.
997 The zero-size entry should come first. */
998 if (blocks[blk - 1].address == blocks[blk].address &&
999 blocks[blk - 1].size != 0)
1000 {
1001 /* xgettext:c-format */
1002 _bfd_error_handler (_("%pB(%pA): invalid property table"),
1003 abfd, section);
1004 bfd_set_error (bfd_error_bad_value);
1005 free (blocks);
1006 return -1;
1007 }
1008 }
1009 }
1010
1011 *table_p = blocks;
1012 return block_count;
1013 }
1014
1015
1016 static property_table_entry *
1017 elf_xtensa_find_property_entry (property_table_entry *property_table,
1018 int property_table_size,
1019 bfd_vma addr)
1020 {
1021 property_table_entry entry;
1022 property_table_entry *rv;
1023
1024 if (property_table_size == 0)
1025 return NULL;
1026
1027 entry.address = addr;
1028 entry.size = 1;
1029 entry.flags = 0;
1030
1031 rv = bsearch (&entry, property_table, property_table_size,
1032 sizeof (property_table_entry), property_table_matches);
1033 return rv;
1034 }
1035
1036
1037 static bool
1038 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
1039 int lit_table_size,
1040 bfd_vma addr)
1041 {
1042 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
1043 return true;
1044
1045 return false;
1046 }
1047
1048 \f
1049 /* Look through the relocs for a section during the first phase, and
1050 calculate needed space in the dynamic reloc sections. */
1051
1052 static bool
1053 elf_xtensa_check_relocs (bfd *abfd,
1054 struct bfd_link_info *info,
1055 asection *sec,
1056 const Elf_Internal_Rela *relocs)
1057 {
1058 struct elf_xtensa_link_hash_table *htab;
1059 Elf_Internal_Shdr *symtab_hdr;
1060 struct elf_link_hash_entry **sym_hashes;
1061 const Elf_Internal_Rela *rel;
1062 const Elf_Internal_Rela *rel_end;
1063
1064 if (bfd_link_relocatable (info))
1065 return true;
1066
1067 BFD_ASSERT (is_xtensa_elf (abfd));
1068
1069 htab = elf_xtensa_hash_table (info);
1070 if (htab == NULL)
1071 return false;
1072
1073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074 sym_hashes = elf_sym_hashes (abfd);
1075
1076 rel_end = relocs + sec->reloc_count;
1077 for (rel = relocs; rel < rel_end; rel++)
1078 {
1079 unsigned int r_type;
1080 unsigned r_symndx;
1081 struct elf_link_hash_entry *h = NULL;
1082 struct elf_xtensa_link_hash_entry *eh;
1083 int tls_type, old_tls_type;
1084 bool is_got = false;
1085 bool is_plt = false;
1086 bool is_tlsfunc = false;
1087
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089 r_type = ELF32_R_TYPE (rel->r_info);
1090
1091 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1092 {
1093 /* xgettext:c-format */
1094 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1095 abfd, r_symndx);
1096 return false;
1097 }
1098
1099 if (r_symndx >= symtab_hdr->sh_info)
1100 {
1101 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1102 while (h->root.type == bfd_link_hash_indirect
1103 || h->root.type == bfd_link_hash_warning)
1104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1105 }
1106 eh = elf_xtensa_hash_entry (h);
1107
1108 switch (r_type)
1109 {
1110 case R_XTENSA_TLSDESC_FN:
1111 if (bfd_link_pic (info))
1112 {
1113 tls_type = GOT_TLS_GD;
1114 is_got = true;
1115 is_tlsfunc = true;
1116 }
1117 else
1118 tls_type = GOT_TLS_IE;
1119 break;
1120
1121 case R_XTENSA_TLSDESC_ARG:
1122 if (bfd_link_pic (info))
1123 {
1124 tls_type = GOT_TLS_GD;
1125 is_got = true;
1126 }
1127 else
1128 {
1129 tls_type = GOT_TLS_IE;
1130 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1131 is_got = true;
1132 }
1133 break;
1134
1135 case R_XTENSA_TLS_DTPOFF:
1136 if (bfd_link_pic (info))
1137 tls_type = GOT_TLS_GD;
1138 else
1139 tls_type = GOT_TLS_IE;
1140 break;
1141
1142 case R_XTENSA_TLS_TPOFF:
1143 tls_type = GOT_TLS_IE;
1144 if (bfd_link_pic (info))
1145 info->flags |= DF_STATIC_TLS;
1146 if (bfd_link_pic (info) || h)
1147 is_got = true;
1148 break;
1149
1150 case R_XTENSA_32:
1151 tls_type = GOT_NORMAL;
1152 is_got = true;
1153 break;
1154
1155 case R_XTENSA_PLT:
1156 tls_type = GOT_NORMAL;
1157 is_plt = true;
1158 break;
1159
1160 case R_XTENSA_GNU_VTINHERIT:
1161 /* This relocation describes the C++ object vtable hierarchy.
1162 Reconstruct it for later use during GC. */
1163 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1164 return false;
1165 continue;
1166
1167 case R_XTENSA_GNU_VTENTRY:
1168 /* This relocation describes which C++ vtable entries are actually
1169 used. Record for later use during GC. */
1170 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1171 return false;
1172 continue;
1173
1174 default:
1175 /* Nothing to do for any other relocations. */
1176 continue;
1177 }
1178
1179 if (h)
1180 {
1181 if (is_plt)
1182 {
1183 if (h->plt.refcount <= 0)
1184 {
1185 h->needs_plt = 1;
1186 h->plt.refcount = 1;
1187 }
1188 else
1189 h->plt.refcount += 1;
1190
1191 /* Keep track of the total PLT relocation count even if we
1192 don't yet know whether the dynamic sections will be
1193 created. */
1194 htab->plt_reloc_count += 1;
1195
1196 if (elf_hash_table (info)->dynamic_sections_created)
1197 {
1198 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1199 return false;
1200 }
1201 }
1202 else if (is_got)
1203 {
1204 if (h->got.refcount <= 0)
1205 h->got.refcount = 1;
1206 else
1207 h->got.refcount += 1;
1208 }
1209
1210 if (is_tlsfunc)
1211 eh->tlsfunc_refcount += 1;
1212
1213 old_tls_type = eh->tls_type;
1214 }
1215 else
1216 {
1217 /* Allocate storage the first time. */
1218 if (elf_local_got_refcounts (abfd) == NULL)
1219 {
1220 bfd_size_type size = symtab_hdr->sh_info;
1221 void *mem;
1222
1223 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1224 if (mem == NULL)
1225 return false;
1226 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1227
1228 mem = bfd_zalloc (abfd, size);
1229 if (mem == NULL)
1230 return false;
1231 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1232
1233 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1234 if (mem == NULL)
1235 return false;
1236 elf_xtensa_local_tlsfunc_refcounts (abfd)
1237 = (bfd_signed_vma *) mem;
1238 }
1239
1240 /* This is a global offset table entry for a local symbol. */
1241 if (is_got || is_plt)
1242 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1243
1244 if (is_tlsfunc)
1245 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1246
1247 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1248 }
1249
1250 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1251 tls_type |= old_tls_type;
1252 /* If a TLS symbol is accessed using IE at least once,
1253 there is no point to use a dynamic model for it. */
1254 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1255 && ((old_tls_type & GOT_TLS_GD) == 0
1256 || (tls_type & GOT_TLS_IE) == 0))
1257 {
1258 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1259 tls_type = old_tls_type;
1260 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1261 tls_type |= old_tls_type;
1262 else
1263 {
1264 _bfd_error_handler
1265 /* xgettext:c-format */
1266 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1267 abfd,
1268 h ? h->root.root.string : "<local>");
1269 return false;
1270 }
1271 }
1272
1273 if (old_tls_type != tls_type)
1274 {
1275 if (eh)
1276 eh->tls_type = tls_type;
1277 else
1278 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1279 }
1280 }
1281
1282 return true;
1283 }
1284
1285
1286 static void
1287 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1288 struct elf_link_hash_entry *h)
1289 {
1290 if (bfd_link_pic (info))
1291 {
1292 if (h->plt.refcount > 0)
1293 {
1294 /* For shared objects, there's no need for PLT entries for local
1295 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1296 if (h->got.refcount < 0)
1297 h->got.refcount = 0;
1298 h->got.refcount += h->plt.refcount;
1299 h->plt.refcount = 0;
1300 }
1301 }
1302 else
1303 {
1304 /* Don't need any dynamic relocations at all. */
1305 h->plt.refcount = 0;
1306 h->got.refcount = 0;
1307 }
1308 }
1309
1310
1311 static void
1312 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1313 struct elf_link_hash_entry *h,
1314 bool force_local)
1315 {
1316 /* For a shared link, move the plt refcount to the got refcount to leave
1317 space for RELATIVE relocs. */
1318 elf_xtensa_make_sym_local (info, h);
1319
1320 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1321 }
1322
1323
1324 /* Return the section that should be marked against GC for a given
1325 relocation. */
1326
1327 static asection *
1328 elf_xtensa_gc_mark_hook (asection *sec,
1329 struct bfd_link_info *info,
1330 Elf_Internal_Rela *rel,
1331 struct elf_link_hash_entry *h,
1332 Elf_Internal_Sym *sym)
1333 {
1334 /* Property sections are marked "KEEP" in the linker scripts, but they
1335 should not cause other sections to be marked. (This approach relies
1336 on elf_xtensa_discard_info to remove property table entries that
1337 describe discarded sections. Alternatively, it might be more
1338 efficient to avoid using "KEEP" in the linker scripts and instead use
1339 the gc_mark_extra_sections hook to mark only the property sections
1340 that describe marked sections. That alternative does not work well
1341 with the current property table sections, which do not correspond
1342 one-to-one with the sections they describe, but that should be fixed
1343 someday.) */
1344 if (xtensa_is_property_section (sec))
1345 return NULL;
1346
1347 if (h != NULL)
1348 switch (ELF32_R_TYPE (rel->r_info))
1349 {
1350 case R_XTENSA_GNU_VTINHERIT:
1351 case R_XTENSA_GNU_VTENTRY:
1352 return NULL;
1353 }
1354
1355 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1356 }
1357
1358
1359 /* Create all the dynamic sections. */
1360
1361 static bool
1362 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1363 {
1364 struct elf_xtensa_link_hash_table *htab;
1365 flagword flags, noalloc_flags;
1366
1367 htab = elf_xtensa_hash_table (info);
1368 if (htab == NULL)
1369 return false;
1370
1371 /* First do all the standard stuff. */
1372 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1373 return false;
1374
1375 /* Create any extra PLT sections in case check_relocs has already
1376 been called on all the non-dynamic input files. */
1377 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1378 return false;
1379
1380 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1381 | SEC_LINKER_CREATED | SEC_READONLY);
1382 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1383
1384 /* Mark the ".got.plt" section READONLY. */
1385 if (htab->elf.sgotplt == NULL
1386 || !bfd_set_section_flags (htab->elf.sgotplt, flags))
1387 return false;
1388
1389 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1390 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1391 flags);
1392 if (htab->sgotloc == NULL
1393 || !bfd_set_section_alignment (htab->sgotloc, 2))
1394 return false;
1395
1396 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1397 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1398 noalloc_flags);
1399 if (htab->spltlittbl == NULL
1400 || !bfd_set_section_alignment (htab->spltlittbl, 2))
1401 return false;
1402
1403 return true;
1404 }
1405
1406
1407 static bool
1408 add_extra_plt_sections (struct bfd_link_info *info, int count)
1409 {
1410 bfd *dynobj = elf_hash_table (info)->dynobj;
1411 int chunk;
1412
1413 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1414 ".got.plt" sections. */
1415 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1416 {
1417 char *sname;
1418 flagword flags;
1419 asection *s;
1420
1421 /* Stop when we find a section has already been created. */
1422 if (elf_xtensa_get_plt_section (info, chunk))
1423 break;
1424
1425 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1427
1428 sname = (char *) bfd_malloc (10);
1429 sprintf (sname, ".plt.%u", chunk);
1430 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1431 if (s == NULL
1432 || !bfd_set_section_alignment (s, 2))
1433 return false;
1434
1435 sname = (char *) bfd_malloc (14);
1436 sprintf (sname, ".got.plt.%u", chunk);
1437 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1438 if (s == NULL
1439 || !bfd_set_section_alignment (s, 2))
1440 return false;
1441 }
1442
1443 return true;
1444 }
1445
1446
1447 /* Adjust a symbol defined by a dynamic object and referenced by a
1448 regular object. The current definition is in some section of the
1449 dynamic object, but we're not including those sections. We have to
1450 change the definition to something the rest of the link can
1451 understand. */
1452
1453 static bool
1454 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1455 struct elf_link_hash_entry *h)
1456 {
1457 /* If this is a weak symbol, and there is a real definition, the
1458 processor independent code will have arranged for us to see the
1459 real definition first, and we can just use the same value. */
1460 if (h->is_weakalias)
1461 {
1462 struct elf_link_hash_entry *def = weakdef (h);
1463 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1464 h->root.u.def.section = def->root.u.def.section;
1465 h->root.u.def.value = def->root.u.def.value;
1466 return true;
1467 }
1468
1469 /* This is a reference to a symbol defined by a dynamic object. The
1470 reference must go through the GOT, so there's no need for COPY relocs,
1471 .dynbss, etc. */
1472
1473 return true;
1474 }
1475
1476
1477 static bool
1478 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1479 {
1480 struct bfd_link_info *info;
1481 struct elf_xtensa_link_hash_table *htab;
1482 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1483
1484 if (h->root.type == bfd_link_hash_indirect)
1485 return true;
1486
1487 info = (struct bfd_link_info *) arg;
1488 htab = elf_xtensa_hash_table (info);
1489 if (htab == NULL)
1490 return false;
1491
1492 /* If we saw any use of an IE model for this symbol, we can then optimize
1493 away GOT entries for any TLSDESC_FN relocs. */
1494 if ((eh->tls_type & GOT_TLS_IE) != 0)
1495 {
1496 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1497 h->got.refcount -= eh->tlsfunc_refcount;
1498 }
1499
1500 if (! elf_xtensa_dynamic_symbol_p (h, info))
1501 elf_xtensa_make_sym_local (info, h);
1502
1503 if (! elf_xtensa_dynamic_symbol_p (h, info)
1504 && h->root.type == bfd_link_hash_undefweak)
1505 return true;
1506
1507 if (h->plt.refcount > 0)
1508 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1509
1510 if (h->got.refcount > 0)
1511 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1512
1513 return true;
1514 }
1515
1516
1517 static void
1518 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1519 {
1520 struct elf_xtensa_link_hash_table *htab;
1521 bfd *i;
1522
1523 htab = elf_xtensa_hash_table (info);
1524 if (htab == NULL)
1525 return;
1526
1527 for (i = info->input_bfds; i; i = i->link.next)
1528 {
1529 bfd_signed_vma *local_got_refcounts;
1530 bfd_size_type j, cnt;
1531 Elf_Internal_Shdr *symtab_hdr;
1532
1533 local_got_refcounts = elf_local_got_refcounts (i);
1534 if (!local_got_refcounts)
1535 continue;
1536
1537 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1538 cnt = symtab_hdr->sh_info;
1539
1540 for (j = 0; j < cnt; ++j)
1541 {
1542 /* If we saw any use of an IE model for this symbol, we can
1543 then optimize away GOT entries for any TLSDESC_FN relocs. */
1544 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1545 {
1546 bfd_signed_vma *tlsfunc_refcount
1547 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1548 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1549 local_got_refcounts[j] -= *tlsfunc_refcount;
1550 }
1551
1552 if (local_got_refcounts[j] > 0)
1553 htab->elf.srelgot->size += (local_got_refcounts[j]
1554 * sizeof (Elf32_External_Rela));
1555 }
1556 }
1557 }
1558
1559
1560 /* Set the sizes of the dynamic sections. */
1561
1562 static bool
1563 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1564 struct bfd_link_info *info)
1565 {
1566 struct elf_xtensa_link_hash_table *htab;
1567 bfd *dynobj, *abfd;
1568 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1569 bool relplt, relgot;
1570 int plt_entries, plt_chunks, chunk;
1571
1572 plt_entries = 0;
1573 plt_chunks = 0;
1574
1575 htab = elf_xtensa_hash_table (info);
1576 if (htab == NULL)
1577 return false;
1578
1579 dynobj = elf_hash_table (info)->dynobj;
1580 if (dynobj == NULL)
1581 abort ();
1582 srelgot = htab->elf.srelgot;
1583 srelplt = htab->elf.srelplt;
1584
1585 if (elf_hash_table (info)->dynamic_sections_created)
1586 {
1587 BFD_ASSERT (htab->elf.srelgot != NULL
1588 && htab->elf.srelplt != NULL
1589 && htab->elf.sgot != NULL
1590 && htab->spltlittbl != NULL
1591 && htab->sgotloc != NULL);
1592
1593 /* Set the contents of the .interp section to the interpreter. */
1594 if (bfd_link_executable (info) && !info->nointerp)
1595 {
1596 s = bfd_get_linker_section (dynobj, ".interp");
1597 if (s == NULL)
1598 abort ();
1599 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1600 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1601 }
1602
1603 /* Allocate room for one word in ".got". */
1604 htab->elf.sgot->size = 4;
1605
1606 /* Allocate space in ".rela.got" for literals that reference global
1607 symbols and space in ".rela.plt" for literals that have PLT
1608 entries. */
1609 elf_link_hash_traverse (elf_hash_table (info),
1610 elf_xtensa_allocate_dynrelocs,
1611 (void *) info);
1612
1613 /* If we are generating a shared object, we also need space in
1614 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1615 reference local symbols. */
1616 if (bfd_link_pic (info))
1617 elf_xtensa_allocate_local_got_size (info);
1618
1619 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1620 each PLT entry, we need the PLT code plus a 4-byte literal.
1621 For each chunk of ".plt", we also need two more 4-byte
1622 literals, two corresponding entries in ".rela.got", and an
1623 8-byte entry in ".xt.lit.plt". */
1624 spltlittbl = htab->spltlittbl;
1625 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1626 plt_chunks =
1627 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1628
1629 /* Iterate over all the PLT chunks, including any extra sections
1630 created earlier because the initial count of PLT relocations
1631 was an overestimate. */
1632 for (chunk = 0;
1633 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1634 chunk++)
1635 {
1636 int chunk_entries;
1637
1638 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1639 BFD_ASSERT (sgotplt != NULL);
1640
1641 if (chunk < plt_chunks - 1)
1642 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1643 else if (chunk == plt_chunks - 1)
1644 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1645 else
1646 chunk_entries = 0;
1647
1648 if (chunk_entries != 0)
1649 {
1650 sgotplt->size = 4 * (chunk_entries + 2);
1651 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1652 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1653 spltlittbl->size += 8;
1654 }
1655 else
1656 {
1657 sgotplt->size = 0;
1658 splt->size = 0;
1659 }
1660 }
1661
1662 /* Allocate space in ".got.loc" to match the total size of all the
1663 literal tables. */
1664 sgotloc = htab->sgotloc;
1665 sgotloc->size = spltlittbl->size;
1666 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1667 {
1668 if (abfd->flags & DYNAMIC)
1669 continue;
1670 for (s = abfd->sections; s != NULL; s = s->next)
1671 {
1672 if (! discarded_section (s)
1673 && xtensa_is_littable_section (s)
1674 && s != spltlittbl)
1675 sgotloc->size += s->size;
1676 }
1677 }
1678 }
1679
1680 /* Allocate memory for dynamic sections. */
1681 relplt = false;
1682 relgot = false;
1683 for (s = dynobj->sections; s != NULL; s = s->next)
1684 {
1685 const char *name;
1686
1687 if ((s->flags & SEC_LINKER_CREATED) == 0)
1688 continue;
1689
1690 /* It's OK to base decisions on the section name, because none
1691 of the dynobj section names depend upon the input files. */
1692 name = bfd_section_name (s);
1693
1694 if (startswith (name, ".rela"))
1695 {
1696 if (s->size != 0)
1697 {
1698 if (strcmp (name, ".rela.plt") == 0)
1699 relplt = true;
1700 else if (strcmp (name, ".rela.got") == 0)
1701 relgot = true;
1702
1703 /* We use the reloc_count field as a counter if we need
1704 to copy relocs into the output file. */
1705 s->reloc_count = 0;
1706 }
1707 }
1708 else if (! startswith (name, ".plt.")
1709 && ! startswith (name, ".got.plt.")
1710 && strcmp (name, ".got") != 0
1711 && strcmp (name, ".plt") != 0
1712 && strcmp (name, ".got.plt") != 0
1713 && strcmp (name, ".xt.lit.plt") != 0
1714 && strcmp (name, ".got.loc") != 0)
1715 {
1716 /* It's not one of our sections, so don't allocate space. */
1717 continue;
1718 }
1719
1720 if (s->size == 0)
1721 {
1722 /* If we don't need this section, strip it from the output
1723 file. We must create the ".plt*" and ".got.plt*"
1724 sections in create_dynamic_sections and/or check_relocs
1725 based on a conservative estimate of the PLT relocation
1726 count, because the sections must be created before the
1727 linker maps input sections to output sections. The
1728 linker does that before size_dynamic_sections, where we
1729 compute the exact size of the PLT, so there may be more
1730 of these sections than are actually needed. */
1731 s->flags |= SEC_EXCLUDE;
1732 }
1733 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1734 {
1735 /* Allocate memory for the section contents. */
1736 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1737 if (s->contents == NULL)
1738 return false;
1739 }
1740 }
1741
1742 if (elf_hash_table (info)->dynamic_sections_created)
1743 {
1744 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1745 known until finish_dynamic_sections, but we need to get the relocs
1746 in place before they are sorted. */
1747 for (chunk = 0; chunk < plt_chunks; chunk++)
1748 {
1749 Elf_Internal_Rela irela;
1750 bfd_byte *loc;
1751
1752 irela.r_offset = 0;
1753 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1754 irela.r_addend = 0;
1755
1756 loc = (srelgot->contents
1757 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1758 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1759 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1760 loc + sizeof (Elf32_External_Rela));
1761 srelgot->reloc_count += 2;
1762 }
1763
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in elf_xtensa_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1769 #define add_dynamic_entry(TAG, VAL) \
1770 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1771
1772 if (!_bfd_elf_add_dynamic_tags (output_bfd, info,
1773 relplt || relgot))
1774 return false;
1775
1776 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1777 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1778 return false;
1779 }
1780 #undef add_dynamic_entry
1781
1782 return true;
1783 }
1784
1785 static bool
1786 elf_xtensa_always_size_sections (bfd *output_bfd,
1787 struct bfd_link_info *info)
1788 {
1789 struct elf_xtensa_link_hash_table *htab;
1790 asection *tls_sec;
1791
1792 htab = elf_xtensa_hash_table (info);
1793 if (htab == NULL)
1794 return false;
1795
1796 tls_sec = htab->elf.tls_sec;
1797
1798 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1799 {
1800 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1801 struct bfd_link_hash_entry *bh = &tlsbase->root;
1802 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1803
1804 tlsbase->type = STT_TLS;
1805 if (!(_bfd_generic_link_add_one_symbol
1806 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1807 tls_sec, 0, NULL, false,
1808 bed->collect, &bh)))
1809 return false;
1810 tlsbase->def_regular = 1;
1811 tlsbase->other = STV_HIDDEN;
1812 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
1813 }
1814
1815 return true;
1816 }
1817
1818 \f
1819 /* Return the base VMA address which should be subtracted from real addresses
1820 when resolving @dtpoff relocation.
1821 This is PT_TLS segment p_vaddr. */
1822
1823 static bfd_vma
1824 dtpoff_base (struct bfd_link_info *info)
1825 {
1826 /* If tls_sec is NULL, we should have signalled an error already. */
1827 if (elf_hash_table (info)->tls_sec == NULL)
1828 return 0;
1829 return elf_hash_table (info)->tls_sec->vma;
1830 }
1831
1832 /* Return the relocation value for @tpoff relocation
1833 if STT_TLS virtual address is ADDRESS. */
1834
1835 static bfd_vma
1836 tpoff (struct bfd_link_info *info, bfd_vma address)
1837 {
1838 struct elf_link_hash_table *htab = elf_hash_table (info);
1839 bfd_vma base;
1840
1841 /* If tls_sec is NULL, we should have signalled an error already. */
1842 if (htab->tls_sec == NULL)
1843 return 0;
1844 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1845 return address - htab->tls_sec->vma + base;
1846 }
1847
1848 /* Perform the specified relocation. The instruction at (contents + address)
1849 is modified to set one operand to represent the value in "relocation". The
1850 operand position is determined by the relocation type recorded in the
1851 howto. */
1852
1853 #define CALL_SEGMENT_BITS (30)
1854 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1855
1856 static bfd_reloc_status_type
1857 elf_xtensa_do_reloc (reloc_howto_type *howto,
1858 bfd *abfd,
1859 asection *input_section,
1860 bfd_vma relocation,
1861 bfd_byte *contents,
1862 bfd_vma address,
1863 bool is_weak_undef,
1864 char **error_message)
1865 {
1866 xtensa_format fmt;
1867 xtensa_opcode opcode;
1868 xtensa_isa isa = xtensa_default_isa;
1869 static xtensa_insnbuf ibuff = NULL;
1870 static xtensa_insnbuf sbuff = NULL;
1871 bfd_vma self_address;
1872 bfd_size_type input_size;
1873 int opnd, slot;
1874 uint32 newval;
1875
1876 if (!ibuff)
1877 {
1878 ibuff = xtensa_insnbuf_alloc (isa);
1879 sbuff = xtensa_insnbuf_alloc (isa);
1880 }
1881
1882 input_size = bfd_get_section_limit (abfd, input_section);
1883
1884 /* Calculate the PC address for this instruction. */
1885 self_address = (input_section->output_section->vma
1886 + input_section->output_offset
1887 + address);
1888
1889 switch (howto->type)
1890 {
1891 case R_XTENSA_NONE:
1892 case R_XTENSA_DIFF8:
1893 case R_XTENSA_DIFF16:
1894 case R_XTENSA_DIFF32:
1895 case R_XTENSA_PDIFF8:
1896 case R_XTENSA_PDIFF16:
1897 case R_XTENSA_PDIFF32:
1898 case R_XTENSA_NDIFF8:
1899 case R_XTENSA_NDIFF16:
1900 case R_XTENSA_NDIFF32:
1901 case R_XTENSA_TLS_FUNC:
1902 case R_XTENSA_TLS_ARG:
1903 case R_XTENSA_TLS_CALL:
1904 return bfd_reloc_ok;
1905
1906 case R_XTENSA_ASM_EXPAND:
1907 if (!is_weak_undef)
1908 {
1909 /* Check for windowed CALL across a 1GB boundary. */
1910 opcode = get_expanded_call_opcode (contents + address,
1911 input_size - address, 0);
1912 if (is_windowed_call_opcode (opcode))
1913 {
1914 if ((self_address >> CALL_SEGMENT_BITS)
1915 != (relocation >> CALL_SEGMENT_BITS))
1916 {
1917 *error_message = "windowed longcall crosses 1GB boundary; "
1918 "return may fail";
1919 return bfd_reloc_dangerous;
1920 }
1921 }
1922 }
1923 return bfd_reloc_ok;
1924
1925 case R_XTENSA_ASM_SIMPLIFY:
1926 {
1927 /* Convert the L32R/CALLX to CALL. */
1928 bfd_reloc_status_type retval =
1929 elf_xtensa_do_asm_simplify (contents, address, input_size,
1930 error_message);
1931 if (retval != bfd_reloc_ok)
1932 return bfd_reloc_dangerous;
1933
1934 /* The CALL needs to be relocated. Continue below for that part. */
1935 address += 3;
1936 self_address += 3;
1937 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1938 }
1939 break;
1940
1941 case R_XTENSA_32:
1942 {
1943 bfd_vma x;
1944 x = bfd_get_32 (abfd, contents + address);
1945 x = x + relocation;
1946 bfd_put_32 (abfd, x, contents + address);
1947 }
1948 return bfd_reloc_ok;
1949
1950 case R_XTENSA_32_PCREL:
1951 bfd_put_32 (abfd, relocation - self_address, contents + address);
1952 return bfd_reloc_ok;
1953
1954 case R_XTENSA_PLT:
1955 case R_XTENSA_TLSDESC_FN:
1956 case R_XTENSA_TLSDESC_ARG:
1957 case R_XTENSA_TLS_DTPOFF:
1958 case R_XTENSA_TLS_TPOFF:
1959 bfd_put_32 (abfd, relocation, contents + address);
1960 return bfd_reloc_ok;
1961 }
1962
1963 /* Only instruction slot-specific relocations handled below.... */
1964 slot = get_relocation_slot (howto->type);
1965 if (slot == XTENSA_UNDEFINED)
1966 {
1967 *error_message = "unexpected relocation";
1968 return bfd_reloc_dangerous;
1969 }
1970
1971 /* Read the instruction into a buffer and decode the opcode. */
1972 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1973 input_size - address);
1974 fmt = xtensa_format_decode (isa, ibuff);
1975 if (fmt == XTENSA_UNDEFINED)
1976 {
1977 *error_message = "cannot decode instruction format";
1978 return bfd_reloc_dangerous;
1979 }
1980
1981 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1982
1983 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1984 if (opcode == XTENSA_UNDEFINED)
1985 {
1986 *error_message = "cannot decode instruction opcode";
1987 return bfd_reloc_dangerous;
1988 }
1989
1990 /* Check for opcode-specific "alternate" relocations. */
1991 if (is_alt_relocation (howto->type))
1992 {
1993 if (opcode == get_l32r_opcode ())
1994 {
1995 /* Handle the special-case of non-PC-relative L32R instructions. */
1996 bfd *output_bfd = input_section->output_section->owner;
1997 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1998 if (!lit4_sec)
1999 {
2000 *error_message = "relocation references missing .lit4 section";
2001 return bfd_reloc_dangerous;
2002 }
2003 self_address = ((lit4_sec->vma & ~0xfff)
2004 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2005 newval = relocation;
2006 opnd = 1;
2007 }
2008 else if (opcode == get_const16_opcode ())
2009 {
2010 /* ALT used for high 16 bits.
2011 Ignore 32-bit overflow. */
2012 newval = (relocation >> 16) & 0xffff;
2013 opnd = 1;
2014 }
2015 else
2016 {
2017 /* No other "alternate" relocations currently defined. */
2018 *error_message = "unexpected relocation";
2019 return bfd_reloc_dangerous;
2020 }
2021 }
2022 else /* Not an "alternate" relocation.... */
2023 {
2024 if (opcode == get_const16_opcode ())
2025 {
2026 newval = relocation & 0xffff;
2027 opnd = 1;
2028 }
2029 else
2030 {
2031 /* ...normal PC-relative relocation.... */
2032
2033 /* Determine which operand is being relocated. */
2034 opnd = get_relocation_opnd (opcode, howto->type);
2035 if (opnd == XTENSA_UNDEFINED)
2036 {
2037 *error_message = "unexpected relocation";
2038 return bfd_reloc_dangerous;
2039 }
2040
2041 if (!howto->pc_relative)
2042 {
2043 *error_message = "expected PC-relative relocation";
2044 return bfd_reloc_dangerous;
2045 }
2046
2047 newval = relocation;
2048 }
2049 }
2050
2051 /* Apply the relocation. */
2052 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2053 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2054 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2055 sbuff, newval))
2056 {
2057 const char *opname = xtensa_opcode_name (isa, opcode);
2058 const char *msg;
2059
2060 msg = "cannot encode";
2061 if (is_direct_call_opcode (opcode))
2062 {
2063 if ((relocation & 0x3) != 0)
2064 msg = "misaligned call target";
2065 else
2066 msg = "call target out of range";
2067 }
2068 else if (opcode == get_l32r_opcode ())
2069 {
2070 if ((relocation & 0x3) != 0)
2071 msg = "misaligned literal target";
2072 else if (is_alt_relocation (howto->type))
2073 msg = "literal target out of range (too many literals)";
2074 else if (self_address > relocation)
2075 msg = "literal target out of range (try using text-section-literals)";
2076 else
2077 msg = "literal placed after use";
2078 }
2079
2080 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2081 return bfd_reloc_dangerous;
2082 }
2083
2084 /* Check for calls across 1GB boundaries. */
2085 if (is_direct_call_opcode (opcode)
2086 && is_windowed_call_opcode (opcode))
2087 {
2088 if ((self_address >> CALL_SEGMENT_BITS)
2089 != (relocation >> CALL_SEGMENT_BITS))
2090 {
2091 *error_message =
2092 "windowed call crosses 1GB boundary; return may fail";
2093 return bfd_reloc_dangerous;
2094 }
2095 }
2096
2097 /* Write the modified instruction back out of the buffer. */
2098 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2099 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2100 input_size - address);
2101 return bfd_reloc_ok;
2102 }
2103
2104
2105 static char *
2106 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2107 {
2108 /* To reduce the size of the memory leak,
2109 we only use a single message buffer. */
2110 static bfd_size_type alloc_size = 0;
2111 static char *message = NULL;
2112 bfd_size_type orig_len, len = 0;
2113 bool is_append;
2114 va_list ap;
2115
2116 va_start (ap, arglen);
2117
2118 is_append = (origmsg == message);
2119
2120 orig_len = strlen (origmsg);
2121 len = orig_len + strlen (fmt) + arglen + 20;
2122 if (len > alloc_size)
2123 {
2124 message = (char *) bfd_realloc_or_free (message, len);
2125 alloc_size = len;
2126 }
2127 if (message != NULL)
2128 {
2129 if (!is_append)
2130 memcpy (message, origmsg, orig_len);
2131 vsprintf (message + orig_len, fmt, ap);
2132 }
2133 va_end (ap);
2134 return message;
2135 }
2136
2137
2138 /* This function is registered as the "special_function" in the
2139 Xtensa howto for handling simplify operations.
2140 bfd_perform_relocation / bfd_install_relocation use it to
2141 perform (install) the specified relocation. Since this replaces the code
2142 in bfd_perform_relocation, it is basically an Xtensa-specific,
2143 stripped-down version of bfd_perform_relocation. */
2144
2145 static bfd_reloc_status_type
2146 bfd_elf_xtensa_reloc (bfd *abfd,
2147 arelent *reloc_entry,
2148 asymbol *symbol,
2149 void *data,
2150 asection *input_section,
2151 bfd *output_bfd,
2152 char **error_message)
2153 {
2154 bfd_vma relocation;
2155 bfd_reloc_status_type flag;
2156 bfd_size_type octets = (reloc_entry->address
2157 * OCTETS_PER_BYTE (abfd, input_section));
2158 bfd_vma output_base = 0;
2159 reloc_howto_type *howto = reloc_entry->howto;
2160 asection *reloc_target_output_section;
2161 bool is_weak_undef;
2162
2163 if (!xtensa_default_isa)
2164 xtensa_default_isa = xtensa_isa_init (0, 0);
2165
2166 /* ELF relocs are against symbols. If we are producing relocatable
2167 output, and the reloc is against an external symbol, the resulting
2168 reloc will also be against the same symbol. In such a case, we
2169 don't want to change anything about the way the reloc is handled,
2170 since it will all be done at final link time. This test is similar
2171 to what bfd_elf_generic_reloc does except that it lets relocs with
2172 howto->partial_inplace go through even if the addend is non-zero.
2173 (The real problem is that partial_inplace is set for XTENSA_32
2174 relocs to begin with, but that's a long story and there's little we
2175 can do about it now....) */
2176
2177 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2178 {
2179 reloc_entry->address += input_section->output_offset;
2180 return bfd_reloc_ok;
2181 }
2182
2183 /* Is the address of the relocation really within the section? */
2184 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2185 return bfd_reloc_outofrange;
2186
2187 /* Work out which section the relocation is targeted at and the
2188 initial relocation command value. */
2189
2190 /* Get symbol value. (Common symbols are special.) */
2191 if (bfd_is_com_section (symbol->section))
2192 relocation = 0;
2193 else
2194 relocation = symbol->value;
2195
2196 reloc_target_output_section = symbol->section->output_section;
2197
2198 /* Convert input-section-relative symbol value to absolute. */
2199 if ((output_bfd && !howto->partial_inplace)
2200 || reloc_target_output_section == NULL)
2201 output_base = 0;
2202 else
2203 output_base = reloc_target_output_section->vma;
2204
2205 relocation += output_base + symbol->section->output_offset;
2206
2207 /* Add in supplied addend. */
2208 relocation += reloc_entry->addend;
2209
2210 /* Here the variable relocation holds the final address of the
2211 symbol we are relocating against, plus any addend. */
2212 if (output_bfd)
2213 {
2214 if (!howto->partial_inplace)
2215 {
2216 /* This is a partial relocation, and we want to apply the relocation
2217 to the reloc entry rather than the raw data. Everything except
2218 relocations against section symbols has already been handled
2219 above. */
2220
2221 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2222 reloc_entry->addend = relocation;
2223 reloc_entry->address += input_section->output_offset;
2224 return bfd_reloc_ok;
2225 }
2226 else
2227 {
2228 reloc_entry->address += input_section->output_offset;
2229 reloc_entry->addend = 0;
2230 }
2231 }
2232
2233 is_weak_undef = (bfd_is_und_section (symbol->section)
2234 && (symbol->flags & BSF_WEAK) != 0);
2235 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2236 (bfd_byte *) data, (bfd_vma) octets,
2237 is_weak_undef, error_message);
2238
2239 if (flag == bfd_reloc_dangerous)
2240 {
2241 /* Add the symbol name to the error message. */
2242 if (! *error_message)
2243 *error_message = "";
2244 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2245 strlen (symbol->name) + 17,
2246 symbol->name,
2247 (unsigned long) reloc_entry->addend);
2248 }
2249
2250 return flag;
2251 }
2252
2253 int xtensa_abi_choice (void)
2254 {
2255 if (elf32xtensa_abi == XTHAL_ABI_UNDEFINED)
2256 return XSHAL_ABI;
2257 else
2258 return elf32xtensa_abi;
2259 }
2260
2261 /* Set up an entry in the procedure linkage table. */
2262
2263 static bfd_vma
2264 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2265 bfd *output_bfd,
2266 unsigned reloc_index)
2267 {
2268 asection *splt, *sgotplt;
2269 bfd_vma plt_base, got_base;
2270 bfd_vma code_offset, lit_offset, abi_offset;
2271 int chunk;
2272 int abi = xtensa_abi_choice ();
2273
2274 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2275 splt = elf_xtensa_get_plt_section (info, chunk);
2276 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2277 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2278
2279 plt_base = splt->output_section->vma + splt->output_offset;
2280 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2281
2282 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2283 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2284
2285 /* Fill in the literal entry. This is the offset of the dynamic
2286 relocation entry. */
2287 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2288 sgotplt->contents + lit_offset);
2289
2290 /* Fill in the entry in the procedure linkage table. */
2291 memcpy (splt->contents + code_offset,
2292 (bfd_big_endian (output_bfd)
2293 ? elf_xtensa_be_plt_entry[abi != XTHAL_ABI_WINDOWED]
2294 : elf_xtensa_le_plt_entry[abi != XTHAL_ABI_WINDOWED]),
2295 PLT_ENTRY_SIZE);
2296 abi_offset = abi == XTHAL_ABI_WINDOWED ? 3 : 0;
2297 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2298 plt_base + code_offset + abi_offset),
2299 splt->contents + code_offset + abi_offset + 1);
2300 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2301 plt_base + code_offset + abi_offset + 3),
2302 splt->contents + code_offset + abi_offset + 4);
2303 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2304 plt_base + code_offset + abi_offset + 6),
2305 splt->contents + code_offset + abi_offset + 7);
2306
2307 return plt_base + code_offset;
2308 }
2309
2310
2311 static bool get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2312
2313 static bool
2314 replace_tls_insn (Elf_Internal_Rela *rel,
2315 bfd *abfd,
2316 asection *input_section,
2317 bfd_byte *contents,
2318 bool is_ld_model,
2319 char **error_message)
2320 {
2321 static xtensa_insnbuf ibuff = NULL;
2322 static xtensa_insnbuf sbuff = NULL;
2323 xtensa_isa isa = xtensa_default_isa;
2324 xtensa_format fmt;
2325 xtensa_opcode old_op, new_op;
2326 bfd_size_type input_size;
2327 int r_type;
2328 unsigned dest_reg, src_reg;
2329
2330 if (ibuff == NULL)
2331 {
2332 ibuff = xtensa_insnbuf_alloc (isa);
2333 sbuff = xtensa_insnbuf_alloc (isa);
2334 }
2335
2336 input_size = bfd_get_section_limit (abfd, input_section);
2337
2338 /* Read the instruction into a buffer and decode the opcode. */
2339 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2340 input_size - rel->r_offset);
2341 fmt = xtensa_format_decode (isa, ibuff);
2342 if (fmt == XTENSA_UNDEFINED)
2343 {
2344 *error_message = "cannot decode instruction format";
2345 return false;
2346 }
2347
2348 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2349 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2350
2351 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2352 if (old_op == XTENSA_UNDEFINED)
2353 {
2354 *error_message = "cannot decode instruction opcode";
2355 return false;
2356 }
2357
2358 r_type = ELF32_R_TYPE (rel->r_info);
2359 switch (r_type)
2360 {
2361 case R_XTENSA_TLS_FUNC:
2362 case R_XTENSA_TLS_ARG:
2363 if (old_op != get_l32r_opcode ()
2364 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2365 sbuff, &dest_reg) != 0)
2366 {
2367 *error_message = "cannot extract L32R destination for TLS access";
2368 return false;
2369 }
2370 break;
2371
2372 case R_XTENSA_TLS_CALL:
2373 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2374 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2375 sbuff, &src_reg) != 0)
2376 {
2377 *error_message = "cannot extract CALLXn operands for TLS access";
2378 return false;
2379 }
2380 break;
2381
2382 default:
2383 abort ();
2384 }
2385
2386 if (is_ld_model)
2387 {
2388 switch (r_type)
2389 {
2390 case R_XTENSA_TLS_FUNC:
2391 case R_XTENSA_TLS_ARG:
2392 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2393 versions of Xtensa). */
2394 new_op = xtensa_opcode_lookup (isa, "nop");
2395 if (new_op == XTENSA_UNDEFINED)
2396 {
2397 new_op = xtensa_opcode_lookup (isa, "or");
2398 if (new_op == XTENSA_UNDEFINED
2399 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2400 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2401 sbuff, 1) != 0
2402 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2403 sbuff, 1) != 0
2404 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2405 sbuff, 1) != 0)
2406 {
2407 *error_message = "cannot encode OR for TLS access";
2408 return false;
2409 }
2410 }
2411 else
2412 {
2413 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2414 {
2415 *error_message = "cannot encode NOP for TLS access";
2416 return false;
2417 }
2418 }
2419 break;
2420
2421 case R_XTENSA_TLS_CALL:
2422 /* Read THREADPTR into the CALLX's return value register. */
2423 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2424 if (new_op == XTENSA_UNDEFINED
2425 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2426 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2427 sbuff, dest_reg + 2) != 0)
2428 {
2429 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2430 return false;
2431 }
2432 break;
2433 }
2434 }
2435 else
2436 {
2437 switch (r_type)
2438 {
2439 case R_XTENSA_TLS_FUNC:
2440 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, dest_reg) != 0)
2445 {
2446 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2447 return false;
2448 }
2449 break;
2450
2451 case R_XTENSA_TLS_ARG:
2452 /* Nothing to do. Keep the original L32R instruction. */
2453 return true;
2454
2455 case R_XTENSA_TLS_CALL:
2456 /* Add the CALLX's src register (holding the THREADPTR value)
2457 to the first argument register (holding the offset) and put
2458 the result in the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "add");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0
2464 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2465 sbuff, dest_reg + 2) != 0
2466 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2467 sbuff, src_reg) != 0)
2468 {
2469 *error_message = "cannot encode ADD for TLS access";
2470 return false;
2471 }
2472 break;
2473 }
2474 }
2475
2476 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2477 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2478 input_size - rel->r_offset);
2479
2480 return true;
2481 }
2482
2483
2484 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2485 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2486 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2487 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2488 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2489 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2490 || (R_TYPE) == R_XTENSA_TLS_ARG \
2491 || (R_TYPE) == R_XTENSA_TLS_CALL)
2492
2493 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2494 both relocatable and final links. */
2495
2496 static int
2497 elf_xtensa_relocate_section (bfd *output_bfd,
2498 struct bfd_link_info *info,
2499 bfd *input_bfd,
2500 asection *input_section,
2501 bfd_byte *contents,
2502 Elf_Internal_Rela *relocs,
2503 Elf_Internal_Sym *local_syms,
2504 asection **local_sections)
2505 {
2506 struct elf_xtensa_link_hash_table *htab;
2507 Elf_Internal_Shdr *symtab_hdr;
2508 Elf_Internal_Rela *rel;
2509 Elf_Internal_Rela *relend;
2510 struct elf_link_hash_entry **sym_hashes;
2511 property_table_entry *lit_table = 0;
2512 int ltblsize = 0;
2513 char *local_got_tls_types;
2514 char *error_message = NULL;
2515 bfd_size_type input_size;
2516 int tls_type;
2517
2518 if (!xtensa_default_isa)
2519 xtensa_default_isa = xtensa_isa_init (0, 0);
2520
2521 if (!is_xtensa_elf (input_bfd))
2522 {
2523 bfd_set_error (bfd_error_wrong_format);
2524 return false;
2525 }
2526
2527 htab = elf_xtensa_hash_table (info);
2528 if (htab == NULL)
2529 return false;
2530
2531 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2532 sym_hashes = elf_sym_hashes (input_bfd);
2533 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2534
2535 if (elf_hash_table (info)->dynamic_sections_created)
2536 {
2537 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2538 &lit_table, XTENSA_LIT_SEC_NAME,
2539 true);
2540 if (ltblsize < 0)
2541 return false;
2542 }
2543
2544 input_size = bfd_get_section_limit (input_bfd, input_section);
2545
2546 rel = relocs;
2547 relend = relocs + input_section->reloc_count;
2548 for (; rel < relend; rel++)
2549 {
2550 int r_type;
2551 reloc_howto_type *howto;
2552 unsigned long r_symndx;
2553 struct elf_link_hash_entry *h;
2554 Elf_Internal_Sym *sym;
2555 char sym_type;
2556 const char *name;
2557 asection *sec;
2558 bfd_vma relocation;
2559 bfd_reloc_status_type r;
2560 bool is_weak_undef;
2561 bool unresolved_reloc;
2562 bool warned;
2563 bool dynamic_symbol;
2564
2565 r_type = ELF32_R_TYPE (rel->r_info);
2566 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2567 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2568 continue;
2569
2570 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2571 {
2572 bfd_set_error (bfd_error_bad_value);
2573 return false;
2574 }
2575 howto = &elf_howto_table[r_type];
2576
2577 r_symndx = ELF32_R_SYM (rel->r_info);
2578
2579 h = NULL;
2580 sym = NULL;
2581 sec = NULL;
2582 is_weak_undef = false;
2583 unresolved_reloc = false;
2584 warned = false;
2585
2586 if (howto->partial_inplace && !bfd_link_relocatable (info))
2587 {
2588 /* Because R_XTENSA_32 was made partial_inplace to fix some
2589 problems with DWARF info in partial links, there may be
2590 an addend stored in the contents. Take it out of there
2591 and move it back into the addend field of the reloc. */
2592 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2593 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2594 }
2595
2596 if (r_symndx < symtab_hdr->sh_info)
2597 {
2598 sym = local_syms + r_symndx;
2599 sym_type = ELF32_ST_TYPE (sym->st_info);
2600 sec = local_sections[r_symndx];
2601 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2602 }
2603 else
2604 {
2605 bool ignored;
2606
2607 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2608 r_symndx, symtab_hdr, sym_hashes,
2609 h, sec, relocation,
2610 unresolved_reloc, warned, ignored);
2611
2612 if (relocation == 0
2613 && !unresolved_reloc
2614 && h->root.type == bfd_link_hash_undefweak)
2615 is_weak_undef = true;
2616
2617 sym_type = h->type;
2618 }
2619
2620 if (sec != NULL && discarded_section (sec))
2621 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2622 rel, 1, relend, howto, 0, contents);
2623
2624 if (bfd_link_relocatable (info))
2625 {
2626 bfd_vma dest_addr;
2627 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2628
2629 /* This is a relocatable link.
2630 1) If the reloc is against a section symbol, adjust
2631 according to the output section.
2632 2) If there is a new target for this relocation,
2633 the new target will be in the same output section.
2634 We adjust the relocation by the output section
2635 difference. */
2636
2637 if (relaxing_section)
2638 {
2639 /* Check if this references a section in another input file. */
2640 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2641 contents))
2642 return false;
2643 }
2644
2645 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2646 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2647
2648 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2649 {
2650 error_message = NULL;
2651 /* Convert ASM_SIMPLIFY into the simpler relocation
2652 so that they never escape a relaxing link. */
2653 r = contract_asm_expansion (contents, input_size, rel,
2654 &error_message);
2655 if (r != bfd_reloc_ok)
2656 (*info->callbacks->reloc_dangerous)
2657 (info, error_message,
2658 input_bfd, input_section, rel->r_offset);
2659
2660 r_type = ELF32_R_TYPE (rel->r_info);
2661 }
2662
2663 /* This is a relocatable link, so we don't have to change
2664 anything unless the reloc is against a section symbol,
2665 in which case we have to adjust according to where the
2666 section symbol winds up in the output section. */
2667 if (r_symndx < symtab_hdr->sh_info)
2668 {
2669 sym = local_syms + r_symndx;
2670 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2671 {
2672 sec = local_sections[r_symndx];
2673 rel->r_addend += sec->output_offset + sym->st_value;
2674 }
2675 }
2676
2677 /* If there is an addend with a partial_inplace howto,
2678 then move the addend to the contents. This is a hack
2679 to work around problems with DWARF in relocatable links
2680 with some previous version of BFD. Now we can't easily get
2681 rid of the hack without breaking backward compatibility.... */
2682 r = bfd_reloc_ok;
2683 howto = &elf_howto_table[r_type];
2684 if (howto->partial_inplace && rel->r_addend)
2685 {
2686 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2687 rel->r_addend, contents,
2688 rel->r_offset, false,
2689 &error_message);
2690 rel->r_addend = 0;
2691 }
2692 else
2693 {
2694 /* Put the correct bits in the target instruction, even
2695 though the relocation will still be present in the output
2696 file. This makes disassembly clearer, as well as
2697 allowing loadable kernel modules to work without needing
2698 relocations on anything other than calls and l32r's. */
2699
2700 /* If it is not in the same section, there is nothing we can do. */
2701 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2702 sym_sec->output_section == input_section->output_section)
2703 {
2704 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2705 dest_addr, contents,
2706 rel->r_offset, false,
2707 &error_message);
2708 }
2709 }
2710 if (r != bfd_reloc_ok)
2711 (*info->callbacks->reloc_dangerous)
2712 (info, error_message,
2713 input_bfd, input_section, rel->r_offset);
2714
2715 /* Done with work for relocatable link; continue with next reloc. */
2716 continue;
2717 }
2718
2719 /* This is a final link. */
2720
2721 if (relaxing_section)
2722 {
2723 /* Check if this references a section in another input file. */
2724 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2725 &relocation);
2726 }
2727
2728 /* Sanity check the address. */
2729 if (rel->r_offset >= input_size
2730 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2731 {
2732 _bfd_error_handler
2733 /* xgettext:c-format */
2734 (_("%pB(%pA+%#" PRIx64 "): "
2735 "relocation offset out of range (size=%#" PRIx64 ")"),
2736 input_bfd, input_section, (uint64_t) rel->r_offset,
2737 (uint64_t) input_size);
2738 bfd_set_error (bfd_error_bad_value);
2739 return false;
2740 }
2741
2742 if (h != NULL)
2743 name = h->root.root.string;
2744 else
2745 {
2746 name = (bfd_elf_string_from_elf_section
2747 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2748 if (name == NULL || *name == '\0')
2749 name = bfd_section_name (sec);
2750 }
2751
2752 if (r_symndx != STN_UNDEF
2753 && r_type != R_XTENSA_NONE
2754 && (h == NULL
2755 || h->root.type == bfd_link_hash_defined
2756 || h->root.type == bfd_link_hash_defweak)
2757 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2758 {
2759 _bfd_error_handler
2760 ((sym_type == STT_TLS
2761 /* xgettext:c-format */
2762 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2763 /* xgettext:c-format */
2764 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2765 input_bfd,
2766 input_section,
2767 (uint64_t) rel->r_offset,
2768 howto->name,
2769 name);
2770 }
2771
2772 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2773
2774 tls_type = GOT_UNKNOWN;
2775 if (h)
2776 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2777 else if (local_got_tls_types)
2778 tls_type = local_got_tls_types [r_symndx];
2779
2780 switch (r_type)
2781 {
2782 case R_XTENSA_32:
2783 case R_XTENSA_PLT:
2784 if (elf_hash_table (info)->dynamic_sections_created
2785 && (input_section->flags & SEC_ALLOC) != 0
2786 && (dynamic_symbol || bfd_link_pic (info)))
2787 {
2788 Elf_Internal_Rela outrel;
2789 bfd_byte *loc;
2790 asection *srel;
2791
2792 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2793 srel = htab->elf.srelplt;
2794 else
2795 srel = htab->elf.srelgot;
2796
2797 BFD_ASSERT (srel != NULL);
2798
2799 outrel.r_offset =
2800 _bfd_elf_section_offset (output_bfd, info,
2801 input_section, rel->r_offset);
2802
2803 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2804 memset (&outrel, 0, sizeof outrel);
2805 else
2806 {
2807 outrel.r_offset += (input_section->output_section->vma
2808 + input_section->output_offset);
2809
2810 /* Complain if the relocation is in a read-only section
2811 and not in a literal pool. */
2812 if ((input_section->flags & SEC_READONLY) != 0
2813 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2814 outrel.r_offset))
2815 {
2816 error_message =
2817 _("dynamic relocation in read-only section");
2818 (*info->callbacks->reloc_dangerous)
2819 (info, error_message,
2820 input_bfd, input_section, rel->r_offset);
2821 }
2822
2823 if (dynamic_symbol)
2824 {
2825 outrel.r_addend = rel->r_addend;
2826 rel->r_addend = 0;
2827
2828 if (r_type == R_XTENSA_32)
2829 {
2830 outrel.r_info =
2831 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2832 relocation = 0;
2833 }
2834 else /* r_type == R_XTENSA_PLT */
2835 {
2836 outrel.r_info =
2837 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2838
2839 /* Create the PLT entry and set the initial
2840 contents of the literal entry to the address of
2841 the PLT entry. */
2842 relocation =
2843 elf_xtensa_create_plt_entry (info, output_bfd,
2844 srel->reloc_count);
2845 }
2846 unresolved_reloc = false;
2847 }
2848 else if (!is_weak_undef)
2849 {
2850 /* Generate a RELATIVE relocation. */
2851 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2852 outrel.r_addend = 0;
2853 }
2854 else
2855 {
2856 continue;
2857 }
2858 }
2859
2860 loc = (srel->contents
2861 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2862 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2863 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2864 <= srel->size);
2865 }
2866 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2867 {
2868 /* This should only happen for non-PIC code, which is not
2869 supposed to be used on systems with dynamic linking.
2870 Just ignore these relocations. */
2871 continue;
2872 }
2873 break;
2874
2875 case R_XTENSA_TLS_TPOFF:
2876 /* Switch to LE model for local symbols in an executable. */
2877 if (! bfd_link_pic (info) && ! dynamic_symbol)
2878 {
2879 relocation = tpoff (info, relocation);
2880 break;
2881 }
2882 /* fall through */
2883
2884 case R_XTENSA_TLSDESC_FN:
2885 case R_XTENSA_TLSDESC_ARG:
2886 {
2887 if (r_type == R_XTENSA_TLSDESC_FN)
2888 {
2889 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2890 r_type = R_XTENSA_NONE;
2891 }
2892 else if (r_type == R_XTENSA_TLSDESC_ARG)
2893 {
2894 if (bfd_link_pic (info))
2895 {
2896 if ((tls_type & GOT_TLS_IE) != 0)
2897 r_type = R_XTENSA_TLS_TPOFF;
2898 }
2899 else
2900 {
2901 r_type = R_XTENSA_TLS_TPOFF;
2902 if (! dynamic_symbol)
2903 {
2904 relocation = tpoff (info, relocation);
2905 break;
2906 }
2907 }
2908 }
2909
2910 if (r_type == R_XTENSA_NONE)
2911 /* Nothing to do here; skip to the next reloc. */
2912 continue;
2913
2914 if (! elf_hash_table (info)->dynamic_sections_created)
2915 {
2916 error_message =
2917 _("TLS relocation invalid without dynamic sections");
2918 (*info->callbacks->reloc_dangerous)
2919 (info, error_message,
2920 input_bfd, input_section, rel->r_offset);
2921 }
2922 else
2923 {
2924 Elf_Internal_Rela outrel;
2925 bfd_byte *loc;
2926 asection *srel = htab->elf.srelgot;
2927 int indx;
2928
2929 outrel.r_offset = (input_section->output_section->vma
2930 + input_section->output_offset
2931 + rel->r_offset);
2932
2933 /* Complain if the relocation is in a read-only section
2934 and not in a literal pool. */
2935 if ((input_section->flags & SEC_READONLY) != 0
2936 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2937 outrel.r_offset))
2938 {
2939 error_message =
2940 _("dynamic relocation in read-only section");
2941 (*info->callbacks->reloc_dangerous)
2942 (info, error_message,
2943 input_bfd, input_section, rel->r_offset);
2944 }
2945
2946 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2947 if (indx == 0)
2948 outrel.r_addend = relocation - dtpoff_base (info);
2949 else
2950 outrel.r_addend = 0;
2951 rel->r_addend = 0;
2952
2953 outrel.r_info = ELF32_R_INFO (indx, r_type);
2954 relocation = 0;
2955 unresolved_reloc = false;
2956
2957 BFD_ASSERT (srel);
2958 loc = (srel->contents
2959 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2961 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2962 <= srel->size);
2963 }
2964 }
2965 break;
2966
2967 case R_XTENSA_TLS_DTPOFF:
2968 if (! bfd_link_pic (info))
2969 /* Switch from LD model to LE model. */
2970 relocation = tpoff (info, relocation);
2971 else
2972 relocation -= dtpoff_base (info);
2973 break;
2974
2975 case R_XTENSA_TLS_FUNC:
2976 case R_XTENSA_TLS_ARG:
2977 case R_XTENSA_TLS_CALL:
2978 /* Check if optimizing to IE or LE model. */
2979 if ((tls_type & GOT_TLS_IE) != 0)
2980 {
2981 bool is_ld_model =
2982 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2983 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2984 is_ld_model, &error_message))
2985 (*info->callbacks->reloc_dangerous)
2986 (info, error_message,
2987 input_bfd, input_section, rel->r_offset);
2988
2989 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2990 {
2991 /* Skip subsequent relocations on the same instruction. */
2992 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2993 rel++;
2994 }
2995 }
2996 continue;
2997
2998 default:
2999 if (elf_hash_table (info)->dynamic_sections_created
3000 && dynamic_symbol && (is_operand_relocation (r_type)
3001 || r_type == R_XTENSA_32_PCREL))
3002 {
3003 error_message =
3004 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3005 strlen (name) + 2, name);
3006 (*info->callbacks->reloc_dangerous)
3007 (info, error_message, input_bfd, input_section, rel->r_offset);
3008 continue;
3009 }
3010 break;
3011 }
3012
3013 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3014 because such sections are not SEC_ALLOC and thus ld.so will
3015 not process them. */
3016 if (unresolved_reloc
3017 && !((input_section->flags & SEC_DEBUGGING) != 0
3018 && h->def_dynamic)
3019 && _bfd_elf_section_offset (output_bfd, info, input_section,
3020 rel->r_offset) != (bfd_vma) -1)
3021 {
3022 _bfd_error_handler
3023 /* xgettext:c-format */
3024 (_("%pB(%pA+%#" PRIx64 "): "
3025 "unresolvable %s relocation against symbol `%s'"),
3026 input_bfd,
3027 input_section,
3028 (uint64_t) rel->r_offset,
3029 howto->name,
3030 name);
3031 return false;
3032 }
3033
3034 /* TLS optimizations may have changed r_type; update "howto". */
3035 howto = &elf_howto_table[r_type];
3036
3037 /* There's no point in calling bfd_perform_relocation here.
3038 Just go directly to our "special function". */
3039 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3040 relocation + rel->r_addend,
3041 contents, rel->r_offset, is_weak_undef,
3042 &error_message);
3043
3044 if (r != bfd_reloc_ok && !warned)
3045 {
3046 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3047 BFD_ASSERT (error_message != NULL);
3048
3049 if (rel->r_addend == 0)
3050 error_message = vsprint_msg (error_message, ": %s",
3051 strlen (name) + 2, name);
3052 else
3053 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3054 strlen (name) + 22,
3055 name, (int) rel->r_addend);
3056
3057 (*info->callbacks->reloc_dangerous)
3058 (info, error_message, input_bfd, input_section, rel->r_offset);
3059 }
3060 }
3061
3062 free (lit_table);
3063 input_section->reloc_done = true;
3064
3065 return true;
3066 }
3067
3068
3069 /* Finish up dynamic symbol handling. There's not much to do here since
3070 the PLT and GOT entries are all set up by relocate_section. */
3071
3072 static bool
3073 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3074 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3075 struct elf_link_hash_entry *h,
3076 Elf_Internal_Sym *sym)
3077 {
3078 if (h->needs_plt && !h->def_regular)
3079 {
3080 /* Mark the symbol as undefined, rather than as defined in
3081 the .plt section. Leave the value alone. */
3082 sym->st_shndx = SHN_UNDEF;
3083 /* If the symbol is weak, we do need to clear the value.
3084 Otherwise, the PLT entry would provide a definition for
3085 the symbol even if the symbol wasn't defined anywhere,
3086 and so the symbol would never be NULL. */
3087 if (!h->ref_regular_nonweak)
3088 sym->st_value = 0;
3089 }
3090
3091 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3092 if (h == elf_hash_table (info)->hdynamic
3093 || h == elf_hash_table (info)->hgot)
3094 sym->st_shndx = SHN_ABS;
3095
3096 return true;
3097 }
3098
3099
3100 /* Combine adjacent literal table entries in the output. Adjacent
3101 entries within each input section may have been removed during
3102 relaxation, but we repeat the process here, even though it's too late
3103 to shrink the output section, because it's important to minimize the
3104 number of literal table entries to reduce the start-up work for the
3105 runtime linker. Returns the number of remaining table entries or -1
3106 on error. */
3107
3108 static int
3109 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3110 asection *sxtlit,
3111 asection *sgotloc)
3112 {
3113 bfd_byte *contents;
3114 property_table_entry *table;
3115 bfd_size_type section_size, sgotloc_size;
3116 bfd_vma offset;
3117 int n, m, num;
3118
3119 section_size = sxtlit->size;
3120 if (section_size == 0)
3121 return 0;
3122
3123 BFD_ASSERT (section_size % 8 == 0);
3124 num = section_size / 8;
3125
3126 sgotloc_size = sgotloc->size;
3127 if (sgotloc_size != section_size)
3128 {
3129 _bfd_error_handler
3130 (_("internal inconsistency in size of .got.loc section"));
3131 return -1;
3132 }
3133
3134 table = bfd_malloc (num * sizeof (property_table_entry));
3135 if (table == 0)
3136 return -1;
3137
3138 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3139 propagates to the output section, where it doesn't really apply and
3140 where it breaks the following call to bfd_malloc_and_get_section. */
3141 sxtlit->flags &= ~SEC_IN_MEMORY;
3142
3143 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3144 {
3145 free (contents);
3146 free (table);
3147 return -1;
3148 }
3149
3150 /* There should never be any relocations left at this point, so this
3151 is quite a bit easier than what is done during relaxation. */
3152
3153 /* Copy the raw contents into a property table array and sort it. */
3154 offset = 0;
3155 for (n = 0; n < num; n++)
3156 {
3157 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3158 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3159 offset += 8;
3160 }
3161 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3162
3163 for (n = 0; n < num; n++)
3164 {
3165 bool remove_entry = false;
3166
3167 if (table[n].size == 0)
3168 remove_entry = true;
3169 else if (n > 0
3170 && (table[n-1].address + table[n-1].size == table[n].address))
3171 {
3172 table[n-1].size += table[n].size;
3173 remove_entry = true;
3174 }
3175
3176 if (remove_entry)
3177 {
3178 for (m = n; m < num - 1; m++)
3179 {
3180 table[m].address = table[m+1].address;
3181 table[m].size = table[m+1].size;
3182 }
3183
3184 n--;
3185 num--;
3186 }
3187 }
3188
3189 /* Copy the data back to the raw contents. */
3190 offset = 0;
3191 for (n = 0; n < num; n++)
3192 {
3193 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3194 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3195 offset += 8;
3196 }
3197
3198 /* Clear the removed bytes. */
3199 if ((bfd_size_type) (num * 8) < section_size)
3200 memset (&contents[num * 8], 0, section_size - num * 8);
3201
3202 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3203 section_size))
3204 return -1;
3205
3206 /* Copy the contents to ".got.loc". */
3207 memcpy (sgotloc->contents, contents, section_size);
3208
3209 free (contents);
3210 free (table);
3211 return num;
3212 }
3213
3214
3215 /* Finish up the dynamic sections. */
3216
3217 static bool
3218 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3219 struct bfd_link_info *info)
3220 {
3221 struct elf_xtensa_link_hash_table *htab;
3222 bfd *dynobj;
3223 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3224 Elf32_External_Dyn *dyncon, *dynconend;
3225 int num_xtlit_entries = 0;
3226
3227 if (! elf_hash_table (info)->dynamic_sections_created)
3228 return true;
3229
3230 htab = elf_xtensa_hash_table (info);
3231 if (htab == NULL)
3232 return false;
3233
3234 dynobj = elf_hash_table (info)->dynobj;
3235 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3236 BFD_ASSERT (sdyn != NULL);
3237
3238 /* Set the first entry in the global offset table to the address of
3239 the dynamic section. */
3240 sgot = htab->elf.sgot;
3241 if (sgot)
3242 {
3243 BFD_ASSERT (sgot->size == 4);
3244 if (sdyn == NULL)
3245 bfd_put_32 (output_bfd, 0, sgot->contents);
3246 else
3247 bfd_put_32 (output_bfd,
3248 sdyn->output_section->vma + sdyn->output_offset,
3249 sgot->contents);
3250 }
3251
3252 srelplt = htab->elf.srelplt;
3253 srelgot = htab->elf.srelgot;
3254 if (srelplt && srelplt->size != 0)
3255 {
3256 asection *sgotplt, *spltlittbl;
3257 int chunk, plt_chunks, plt_entries;
3258 Elf_Internal_Rela irela;
3259 bfd_byte *loc;
3260 unsigned rtld_reloc;
3261
3262 spltlittbl = htab->spltlittbl;
3263 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3264
3265 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3266 of them follow immediately after.... */
3267 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3268 {
3269 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3270 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3271 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3272 break;
3273 }
3274 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3275
3276 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3277 plt_chunks =
3278 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3279
3280 for (chunk = 0; chunk < plt_chunks; chunk++)
3281 {
3282 int chunk_entries = 0;
3283
3284 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3285 BFD_ASSERT (sgotplt != NULL);
3286
3287 /* Emit special RTLD relocations for the first two entries in
3288 each chunk of the .got.plt section. */
3289
3290 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3291 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3292 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3293 irela.r_offset = (sgotplt->output_section->vma
3294 + sgotplt->output_offset);
3295 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3296 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3297 rtld_reloc += 1;
3298 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3299
3300 /* Next literal immediately follows the first. */
3301 loc += sizeof (Elf32_External_Rela);
3302 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3303 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3304 irela.r_offset = (sgotplt->output_section->vma
3305 + sgotplt->output_offset + 4);
3306 /* Tell rtld to set value to object's link map. */
3307 irela.r_addend = 2;
3308 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3309 rtld_reloc += 1;
3310 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3311
3312 /* Fill in the literal table. */
3313 if (chunk < plt_chunks - 1)
3314 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3315 else
3316 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3317
3318 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3319 bfd_put_32 (output_bfd,
3320 sgotplt->output_section->vma + sgotplt->output_offset,
3321 spltlittbl->contents + (chunk * 8) + 0);
3322 bfd_put_32 (output_bfd,
3323 8 + (chunk_entries * 4),
3324 spltlittbl->contents + (chunk * 8) + 4);
3325 }
3326
3327 /* The .xt.lit.plt section has just been modified. This must
3328 happen before the code below which combines adjacent literal
3329 table entries, and the .xt.lit.plt contents have to be forced to
3330 the output here. */
3331 if (! bfd_set_section_contents (output_bfd,
3332 spltlittbl->output_section,
3333 spltlittbl->contents,
3334 spltlittbl->output_offset,
3335 spltlittbl->size))
3336 return false;
3337 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3338 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3339 }
3340
3341 /* All the dynamic relocations have been emitted at this point.
3342 Make sure the relocation sections are the correct size. */
3343 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3344 * srelgot->reloc_count))
3345 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3346 * srelplt->reloc_count)))
3347 abort ();
3348
3349 /* Combine adjacent literal table entries. */
3350 BFD_ASSERT (! bfd_link_relocatable (info));
3351 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3352 sgotloc = htab->sgotloc;
3353 BFD_ASSERT (sgotloc);
3354 if (sxtlit)
3355 {
3356 num_xtlit_entries =
3357 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3358 if (num_xtlit_entries < 0)
3359 return false;
3360 }
3361
3362 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3363 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3364 for (; dyncon < dynconend; dyncon++)
3365 {
3366 Elf_Internal_Dyn dyn;
3367
3368 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3369
3370 switch (dyn.d_tag)
3371 {
3372 default:
3373 break;
3374
3375 case DT_XTENSA_GOT_LOC_SZ:
3376 dyn.d_un.d_val = num_xtlit_entries;
3377 break;
3378
3379 case DT_XTENSA_GOT_LOC_OFF:
3380 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3381 + htab->sgotloc->output_offset);
3382 break;
3383
3384 case DT_PLTGOT:
3385 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3386 + htab->elf.sgot->output_offset);
3387 break;
3388
3389 case DT_JMPREL:
3390 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3391 + htab->elf.srelplt->output_offset);
3392 break;
3393
3394 case DT_PLTRELSZ:
3395 dyn.d_un.d_val = htab->elf.srelplt->size;
3396 break;
3397 }
3398
3399 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3400 }
3401
3402 return true;
3403 }
3404
3405 \f
3406 /* Functions for dealing with the e_flags field. */
3407
3408 /* Merge backend specific data from an object file to the output
3409 object file when linking. */
3410
3411 static bool
3412 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3413 {
3414 bfd *obfd = info->output_bfd;
3415 unsigned out_mach, in_mach;
3416 flagword out_flag, in_flag;
3417
3418 /* Check if we have the same endianness. */
3419 if (!_bfd_generic_verify_endian_match (ibfd, info))
3420 return false;
3421
3422 /* Don't even pretend to support mixed-format linking. */
3423 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3424 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3425 return false;
3426
3427 out_flag = elf_elfheader (obfd)->e_flags;
3428 in_flag = elf_elfheader (ibfd)->e_flags;
3429
3430 out_mach = out_flag & EF_XTENSA_MACH;
3431 in_mach = in_flag & EF_XTENSA_MACH;
3432 if (out_mach != in_mach)
3433 {
3434 _bfd_error_handler
3435 /* xgettext:c-format */
3436 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3437 ibfd, out_mach, in_mach);
3438 bfd_set_error (bfd_error_wrong_format);
3439 return false;
3440 }
3441
3442 if (! elf_flags_init (obfd))
3443 {
3444 elf_flags_init (obfd) = true;
3445 elf_elfheader (obfd)->e_flags = in_flag;
3446
3447 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3448 && bfd_get_arch_info (obfd)->the_default)
3449 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3450 bfd_get_mach (ibfd));
3451
3452 return true;
3453 }
3454
3455 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3456 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3457
3458 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3459 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3460
3461 return true;
3462 }
3463
3464
3465 static bool
3466 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3467 {
3468 BFD_ASSERT (!elf_flags_init (abfd)
3469 || elf_elfheader (abfd)->e_flags == flags);
3470
3471 elf_elfheader (abfd)->e_flags |= flags;
3472 elf_flags_init (abfd) = true;
3473
3474 return true;
3475 }
3476
3477
3478 static bool
3479 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3480 {
3481 FILE *f = (FILE *) farg;
3482 flagword e_flags = elf_elfheader (abfd)->e_flags;
3483
3484 fprintf (f, "\nXtensa header:\n");
3485 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3486 fprintf (f, "\nMachine = Base\n");
3487 else
3488 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3489
3490 fprintf (f, "Insn tables = %s\n",
3491 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3492
3493 fprintf (f, "Literal tables = %s\n",
3494 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3495
3496 return _bfd_elf_print_private_bfd_data (abfd, farg);
3497 }
3498
3499
3500 /* Set the right machine number for an Xtensa ELF file. */
3501
3502 static bool
3503 elf_xtensa_object_p (bfd *abfd)
3504 {
3505 int mach;
3506 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3507
3508 switch (arch)
3509 {
3510 case E_XTENSA_MACH:
3511 mach = bfd_mach_xtensa;
3512 break;
3513 default:
3514 return false;
3515 }
3516
3517 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3518 return true;
3519 }
3520
3521
3522 /* The final processing done just before writing out an Xtensa ELF object
3523 file. This gets the Xtensa architecture right based on the machine
3524 number. */
3525
3526 static bool
3527 elf_xtensa_final_write_processing (bfd *abfd)
3528 {
3529 int mach;
3530 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3531
3532 switch (mach = bfd_get_mach (abfd))
3533 {
3534 case bfd_mach_xtensa:
3535 val = E_XTENSA_MACH;
3536 break;
3537 default:
3538 break;
3539 }
3540
3541 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3542 elf_elfheader (abfd)->e_flags |= val;
3543 return _bfd_elf_final_write_processing (abfd);
3544 }
3545
3546
3547 static enum elf_reloc_type_class
3548 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3549 const asection *rel_sec ATTRIBUTE_UNUSED,
3550 const Elf_Internal_Rela *rela)
3551 {
3552 switch ((int) ELF32_R_TYPE (rela->r_info))
3553 {
3554 case R_XTENSA_RELATIVE:
3555 return reloc_class_relative;
3556 case R_XTENSA_JMP_SLOT:
3557 return reloc_class_plt;
3558 default:
3559 return reloc_class_normal;
3560 }
3561 }
3562
3563 \f
3564 static bool
3565 elf_xtensa_discard_info_for_section (bfd *abfd,
3566 struct elf_reloc_cookie *cookie,
3567 struct bfd_link_info *info,
3568 asection *sec)
3569 {
3570 bfd_byte *contents;
3571 bfd_vma offset, actual_offset;
3572 bfd_size_type removed_bytes = 0;
3573 bfd_size_type entry_size;
3574
3575 if (sec->output_section
3576 && bfd_is_abs_section (sec->output_section))
3577 return false;
3578
3579 if (xtensa_is_proptable_section (sec))
3580 entry_size = 12;
3581 else
3582 entry_size = 8;
3583
3584 if (sec->size == 0 || sec->size % entry_size != 0)
3585 return false;
3586
3587 contents = retrieve_contents (abfd, sec, info->keep_memory);
3588 if (!contents)
3589 return false;
3590
3591 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3592 if (!cookie->rels)
3593 {
3594 release_contents (sec, contents);
3595 return false;
3596 }
3597
3598 /* Sort the relocations. They should already be in order when
3599 relaxation is enabled, but it might not be. */
3600 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3601 internal_reloc_compare);
3602
3603 cookie->rel = cookie->rels;
3604 cookie->relend = cookie->rels + sec->reloc_count;
3605
3606 for (offset = 0; offset < sec->size; offset += entry_size)
3607 {
3608 actual_offset = offset - removed_bytes;
3609
3610 /* The ...symbol_deleted_p function will skip over relocs but it
3611 won't adjust their offsets, so do that here. */
3612 while (cookie->rel < cookie->relend
3613 && cookie->rel->r_offset < offset)
3614 {
3615 cookie->rel->r_offset -= removed_bytes;
3616 cookie->rel++;
3617 }
3618
3619 while (cookie->rel < cookie->relend
3620 && cookie->rel->r_offset == offset)
3621 {
3622 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3623 {
3624 /* Remove the table entry. (If the reloc type is NONE, then
3625 the entry has already been merged with another and deleted
3626 during relaxation.) */
3627 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3628 {
3629 /* Shift the contents up. */
3630 if (offset + entry_size < sec->size)
3631 memmove (&contents[actual_offset],
3632 &contents[actual_offset + entry_size],
3633 sec->size - offset - entry_size);
3634 removed_bytes += entry_size;
3635 }
3636
3637 /* Remove this relocation. */
3638 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3639 }
3640
3641 /* Adjust the relocation offset for previous removals. This
3642 should not be done before calling ...symbol_deleted_p
3643 because it might mess up the offset comparisons there.
3644 Make sure the offset doesn't underflow in the case where
3645 the first entry is removed. */
3646 if (cookie->rel->r_offset >= removed_bytes)
3647 cookie->rel->r_offset -= removed_bytes;
3648 else
3649 cookie->rel->r_offset = 0;
3650
3651 cookie->rel++;
3652 }
3653 }
3654
3655 if (removed_bytes != 0)
3656 {
3657 /* Adjust any remaining relocs (shouldn't be any). */
3658 for (; cookie->rel < cookie->relend; cookie->rel++)
3659 {
3660 if (cookie->rel->r_offset >= removed_bytes)
3661 cookie->rel->r_offset -= removed_bytes;
3662 else
3663 cookie->rel->r_offset = 0;
3664 }
3665
3666 /* Clear the removed bytes. */
3667 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3668
3669 pin_contents (sec, contents);
3670 pin_internal_relocs (sec, cookie->rels);
3671
3672 /* Shrink size. */
3673 if (sec->rawsize == 0)
3674 sec->rawsize = sec->size;
3675 sec->size -= removed_bytes;
3676
3677 if (xtensa_is_littable_section (sec))
3678 {
3679 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3680 if (sgotloc)
3681 sgotloc->size -= removed_bytes;
3682 }
3683 }
3684 else
3685 {
3686 release_contents (sec, contents);
3687 release_internal_relocs (sec, cookie->rels);
3688 }
3689
3690 return (removed_bytes != 0);
3691 }
3692
3693
3694 static bool
3695 elf_xtensa_discard_info (bfd *abfd,
3696 struct elf_reloc_cookie *cookie,
3697 struct bfd_link_info *info)
3698 {
3699 asection *sec;
3700 bool changed = false;
3701
3702 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3703 {
3704 if (xtensa_is_property_section (sec))
3705 {
3706 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3707 changed = true;
3708 }
3709 }
3710
3711 return changed;
3712 }
3713
3714
3715 static bool
3716 elf_xtensa_ignore_discarded_relocs (asection *sec)
3717 {
3718 return xtensa_is_property_section (sec);
3719 }
3720
3721
3722 static unsigned int
3723 elf_xtensa_action_discarded (asection *sec)
3724 {
3725 if (strcmp (".xt_except_table", sec->name) == 0)
3726 return 0;
3727
3728 if (strcmp (".xt_except_desc", sec->name) == 0)
3729 return 0;
3730
3731 return _bfd_elf_default_action_discarded (sec);
3732 }
3733
3734 \f
3735 /* Support for core dump NOTE sections. */
3736
3737 static bool
3738 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3739 {
3740 int offset;
3741 unsigned int size;
3742
3743 if (elf_tdata (abfd) == NULL
3744 || elf_tdata (abfd)->core == NULL)
3745 return false;
3746
3747 /* The size for Xtensa is variable, so don't try to recognize the format
3748 based on the size. Just assume this is GNU/Linux. */
3749 if (note == NULL || note->descsz < 28)
3750 return false;
3751
3752 /* pr_cursig */
3753 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3754
3755 /* pr_pid */
3756 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3757
3758 /* pr_reg */
3759 offset = 72;
3760 size = note->descsz - offset - 4;
3761
3762 /* Make a ".reg/999" section. */
3763 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3764 size, note->descpos + offset);
3765 }
3766
3767 static bool
3768 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3769 {
3770 switch (note->descsz)
3771 {
3772 default:
3773 return false;
3774
3775 case 128: /* GNU/Linux elf_prpsinfo */
3776 elf_tdata (abfd)->core->program
3777 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3778 elf_tdata (abfd)->core->command
3779 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3780 }
3781
3782 /* Note that for some reason, a spurious space is tacked
3783 onto the end of the args in some (at least one anyway)
3784 implementations, so strip it off if it exists. */
3785
3786 {
3787 char *command = elf_tdata (abfd)->core->command;
3788 int n = strlen (command);
3789
3790 if (0 < n && command[n - 1] == ' ')
3791 command[n - 1] = '\0';
3792 }
3793
3794 return true;
3795 }
3796
3797 \f
3798 /* Generic Xtensa configurability stuff. */
3799
3800 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3801 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3802 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3803 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3804 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3805 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3806 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3807 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3808
3809 static void
3810 init_call_opcodes (void)
3811 {
3812 if (callx0_op == XTENSA_UNDEFINED)
3813 {
3814 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3815 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3816 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3817 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3818 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3819 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3820 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3821 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3822 }
3823 }
3824
3825
3826 static bool
3827 is_indirect_call_opcode (xtensa_opcode opcode)
3828 {
3829 init_call_opcodes ();
3830 return (opcode == callx0_op
3831 || opcode == callx4_op
3832 || opcode == callx8_op
3833 || opcode == callx12_op);
3834 }
3835
3836
3837 static bool
3838 is_direct_call_opcode (xtensa_opcode opcode)
3839 {
3840 init_call_opcodes ();
3841 return (opcode == call0_op
3842 || opcode == call4_op
3843 || opcode == call8_op
3844 || opcode == call12_op);
3845 }
3846
3847
3848 static bool
3849 is_windowed_call_opcode (xtensa_opcode opcode)
3850 {
3851 init_call_opcodes ();
3852 return (opcode == call4_op
3853 || opcode == call8_op
3854 || opcode == call12_op
3855 || opcode == callx4_op
3856 || opcode == callx8_op
3857 || opcode == callx12_op);
3858 }
3859
3860
3861 static bool
3862 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3863 {
3864 unsigned dst = (unsigned) -1;
3865
3866 init_call_opcodes ();
3867 if (opcode == callx0_op)
3868 dst = 0;
3869 else if (opcode == callx4_op)
3870 dst = 4;
3871 else if (opcode == callx8_op)
3872 dst = 8;
3873 else if (opcode == callx12_op)
3874 dst = 12;
3875
3876 if (dst == (unsigned) -1)
3877 return false;
3878
3879 *pdst = dst;
3880 return true;
3881 }
3882
3883
3884 static xtensa_opcode
3885 get_const16_opcode (void)
3886 {
3887 static bool done_lookup = false;
3888 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3889 if (!done_lookup)
3890 {
3891 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3892 done_lookup = true;
3893 }
3894 return const16_opcode;
3895 }
3896
3897
3898 static xtensa_opcode
3899 get_l32r_opcode (void)
3900 {
3901 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3902 static bool done_lookup = false;
3903
3904 if (!done_lookup)
3905 {
3906 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3907 done_lookup = true;
3908 }
3909 return l32r_opcode;
3910 }
3911
3912
3913 static bfd_vma
3914 l32r_offset (bfd_vma addr, bfd_vma pc)
3915 {
3916 bfd_vma offset;
3917
3918 offset = addr - ((pc+3) & -4);
3919 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3920 offset = (signed int) offset >> 2;
3921 BFD_ASSERT ((signed int) offset >> 16 == -1);
3922 return offset;
3923 }
3924
3925
3926 static xtensa_opcode
3927 get_rsr_lend_opcode (void)
3928 {
3929 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3930 static bool done_lookup = false;
3931 if (!done_lookup)
3932 {
3933 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3934 done_lookup = true;
3935 }
3936 return rsr_lend_opcode;
3937 }
3938
3939 static xtensa_opcode
3940 get_wsr_lbeg_opcode (void)
3941 {
3942 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3943 static bool done_lookup = false;
3944 if (!done_lookup)
3945 {
3946 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3947 done_lookup = true;
3948 }
3949 return wsr_lbeg_opcode;
3950 }
3951
3952
3953 static int
3954 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3955 {
3956 xtensa_isa isa = xtensa_default_isa;
3957 int last_immed, last_opnd, opi;
3958
3959 if (opcode == XTENSA_UNDEFINED)
3960 return XTENSA_UNDEFINED;
3961
3962 /* Find the last visible PC-relative immediate operand for the opcode.
3963 If there are no PC-relative immediates, then choose the last visible
3964 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3965 last_immed = XTENSA_UNDEFINED;
3966 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3967 for (opi = last_opnd - 1; opi >= 0; opi--)
3968 {
3969 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3970 continue;
3971 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3972 {
3973 last_immed = opi;
3974 break;
3975 }
3976 if (last_immed == XTENSA_UNDEFINED
3977 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3978 last_immed = opi;
3979 }
3980 if (last_immed < 0)
3981 return XTENSA_UNDEFINED;
3982
3983 /* If the operand number was specified in an old-style relocation,
3984 check for consistency with the operand computed above. */
3985 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3986 {
3987 int reloc_opnd = r_type - R_XTENSA_OP0;
3988 if (reloc_opnd != last_immed)
3989 return XTENSA_UNDEFINED;
3990 }
3991
3992 return last_immed;
3993 }
3994
3995
3996 int
3997 get_relocation_slot (int r_type)
3998 {
3999 switch (r_type)
4000 {
4001 case R_XTENSA_OP0:
4002 case R_XTENSA_OP1:
4003 case R_XTENSA_OP2:
4004 return 0;
4005
4006 default:
4007 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4008 return r_type - R_XTENSA_SLOT0_OP;
4009 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4010 return r_type - R_XTENSA_SLOT0_ALT;
4011 break;
4012 }
4013
4014 return XTENSA_UNDEFINED;
4015 }
4016
4017
4018 /* Get the opcode for a relocation. */
4019
4020 static xtensa_opcode
4021 get_relocation_opcode (bfd *abfd,
4022 asection *sec,
4023 bfd_byte *contents,
4024 Elf_Internal_Rela *irel)
4025 {
4026 static xtensa_insnbuf ibuff = NULL;
4027 static xtensa_insnbuf sbuff = NULL;
4028 xtensa_isa isa = xtensa_default_isa;
4029 xtensa_format fmt;
4030 int slot;
4031
4032 if (contents == NULL)
4033 return XTENSA_UNDEFINED;
4034
4035 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4036 return XTENSA_UNDEFINED;
4037
4038 if (ibuff == NULL)
4039 {
4040 ibuff = xtensa_insnbuf_alloc (isa);
4041 sbuff = xtensa_insnbuf_alloc (isa);
4042 }
4043
4044 /* Decode the instruction. */
4045 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4046 sec->size - irel->r_offset);
4047 fmt = xtensa_format_decode (isa, ibuff);
4048 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4049 if (slot == XTENSA_UNDEFINED)
4050 return XTENSA_UNDEFINED;
4051 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4052 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4053 }
4054
4055
4056 bool
4057 is_l32r_relocation (bfd *abfd,
4058 asection *sec,
4059 bfd_byte *contents,
4060 Elf_Internal_Rela *irel)
4061 {
4062 xtensa_opcode opcode;
4063 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4064 return false;
4065 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4066 return (opcode == get_l32r_opcode ());
4067 }
4068
4069
4070 static bfd_size_type
4071 get_asm_simplify_size (bfd_byte *contents,
4072 bfd_size_type content_len,
4073 bfd_size_type offset)
4074 {
4075 bfd_size_type insnlen, size = 0;
4076
4077 /* Decode the size of the next two instructions. */
4078 insnlen = insn_decode_len (contents, content_len, offset);
4079 if (insnlen == 0)
4080 return 0;
4081
4082 size += insnlen;
4083
4084 insnlen = insn_decode_len (contents, content_len, offset + size);
4085 if (insnlen == 0)
4086 return 0;
4087
4088 size += insnlen;
4089 return size;
4090 }
4091
4092
4093 bool
4094 is_alt_relocation (int r_type)
4095 {
4096 return (r_type >= R_XTENSA_SLOT0_ALT
4097 && r_type <= R_XTENSA_SLOT14_ALT);
4098 }
4099
4100
4101 bool
4102 is_operand_relocation (int r_type)
4103 {
4104 switch (r_type)
4105 {
4106 case R_XTENSA_OP0:
4107 case R_XTENSA_OP1:
4108 case R_XTENSA_OP2:
4109 return true;
4110
4111 default:
4112 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4113 return true;
4114 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4115 return true;
4116 break;
4117 }
4118
4119 return false;
4120 }
4121
4122
4123 #define MIN_INSN_LENGTH 2
4124
4125 /* Return 0 if it fails to decode. */
4126
4127 bfd_size_type
4128 insn_decode_len (bfd_byte *contents,
4129 bfd_size_type content_len,
4130 bfd_size_type offset)
4131 {
4132 int insn_len;
4133 xtensa_isa isa = xtensa_default_isa;
4134 xtensa_format fmt;
4135 static xtensa_insnbuf ibuff = NULL;
4136
4137 if (offset + MIN_INSN_LENGTH > content_len)
4138 return 0;
4139
4140 if (ibuff == NULL)
4141 ibuff = xtensa_insnbuf_alloc (isa);
4142 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4143 content_len - offset);
4144 fmt = xtensa_format_decode (isa, ibuff);
4145 if (fmt == XTENSA_UNDEFINED)
4146 return 0;
4147 insn_len = xtensa_format_length (isa, fmt);
4148 if (insn_len == XTENSA_UNDEFINED)
4149 return 0;
4150 return insn_len;
4151 }
4152
4153 int
4154 insn_num_slots (bfd_byte *contents,
4155 bfd_size_type content_len,
4156 bfd_size_type offset)
4157 {
4158 xtensa_isa isa = xtensa_default_isa;
4159 xtensa_format fmt;
4160 static xtensa_insnbuf ibuff = NULL;
4161
4162 if (offset + MIN_INSN_LENGTH > content_len)
4163 return XTENSA_UNDEFINED;
4164
4165 if (ibuff == NULL)
4166 ibuff = xtensa_insnbuf_alloc (isa);
4167 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4168 content_len - offset);
4169 fmt = xtensa_format_decode (isa, ibuff);
4170 if (fmt == XTENSA_UNDEFINED)
4171 return XTENSA_UNDEFINED;
4172 return xtensa_format_num_slots (isa, fmt);
4173 }
4174
4175
4176 /* Decode the opcode for a single slot instruction.
4177 Return 0 if it fails to decode or the instruction is multi-slot. */
4178
4179 xtensa_opcode
4180 insn_decode_opcode (bfd_byte *contents,
4181 bfd_size_type content_len,
4182 bfd_size_type offset,
4183 int slot)
4184 {
4185 xtensa_isa isa = xtensa_default_isa;
4186 xtensa_format fmt;
4187 static xtensa_insnbuf insnbuf = NULL;
4188 static xtensa_insnbuf slotbuf = NULL;
4189
4190 if (offset + MIN_INSN_LENGTH > content_len)
4191 return XTENSA_UNDEFINED;
4192
4193 if (insnbuf == NULL)
4194 {
4195 insnbuf = xtensa_insnbuf_alloc (isa);
4196 slotbuf = xtensa_insnbuf_alloc (isa);
4197 }
4198
4199 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4200 content_len - offset);
4201 fmt = xtensa_format_decode (isa, insnbuf);
4202 if (fmt == XTENSA_UNDEFINED)
4203 return XTENSA_UNDEFINED;
4204
4205 if (slot >= xtensa_format_num_slots (isa, fmt))
4206 return XTENSA_UNDEFINED;
4207
4208 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4209 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4210 }
4211
4212
4213 /* The offset is the offset in the contents.
4214 The address is the address of that offset. */
4215
4216 static bool
4217 check_branch_target_aligned (bfd_byte *contents,
4218 bfd_size_type content_length,
4219 bfd_vma offset,
4220 bfd_vma address)
4221 {
4222 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4223 if (insn_len == 0)
4224 return false;
4225 return check_branch_target_aligned_address (address, insn_len);
4226 }
4227
4228
4229 static bool
4230 check_loop_aligned (bfd_byte *contents,
4231 bfd_size_type content_length,
4232 bfd_vma offset,
4233 bfd_vma address)
4234 {
4235 bfd_size_type loop_len, insn_len;
4236 xtensa_opcode opcode;
4237
4238 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4239 if (opcode == XTENSA_UNDEFINED
4240 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4241 {
4242 BFD_ASSERT (false);
4243 return false;
4244 }
4245
4246 loop_len = insn_decode_len (contents, content_length, offset);
4247 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4248 if (loop_len == 0 || insn_len == 0)
4249 {
4250 BFD_ASSERT (false);
4251 return false;
4252 }
4253
4254 /* If this is relaxed loop, analyze first instruction of the actual loop
4255 body. It must be at offset 27 from the loop instruction address. */
4256 if (insn_len == 3
4257 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4258 && insn_decode_opcode (contents, content_length,
4259 offset + loop_len, 0) == get_rsr_lend_opcode()
4260 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4261 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4262 && insn_decode_opcode (contents, content_length,
4263 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4264 {
4265 loop_len = 27;
4266 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4267 }
4268 return check_branch_target_aligned_address (address + loop_len, insn_len);
4269 }
4270
4271
4272 static bool
4273 check_branch_target_aligned_address (bfd_vma addr, int len)
4274 {
4275 if (len == 8)
4276 return (addr % 8 == 0);
4277 return ((addr >> 2) == ((addr + len - 1) >> 2));
4278 }
4279
4280 \f
4281 /* Instruction widening and narrowing. */
4282
4283 /* When FLIX is available we need to access certain instructions only
4284 when they are 16-bit or 24-bit instructions. This table caches
4285 information about such instructions by walking through all the
4286 opcodes and finding the smallest single-slot format into which each
4287 can be encoded. */
4288
4289 static xtensa_format *op_single_fmt_table = NULL;
4290
4291
4292 static void
4293 init_op_single_format_table (void)
4294 {
4295 xtensa_isa isa = xtensa_default_isa;
4296 xtensa_insnbuf ibuf;
4297 xtensa_opcode opcode;
4298 xtensa_format fmt;
4299 int num_opcodes;
4300
4301 if (op_single_fmt_table)
4302 return;
4303
4304 ibuf = xtensa_insnbuf_alloc (isa);
4305 num_opcodes = xtensa_isa_num_opcodes (isa);
4306
4307 op_single_fmt_table = (xtensa_format *)
4308 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4309 for (opcode = 0; opcode < num_opcodes; opcode++)
4310 {
4311 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4312 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4313 {
4314 if (xtensa_format_num_slots (isa, fmt) == 1
4315 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4316 {
4317 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4318 int fmt_length = xtensa_format_length (isa, fmt);
4319 if (old_fmt == XTENSA_UNDEFINED
4320 || fmt_length < xtensa_format_length (isa, old_fmt))
4321 op_single_fmt_table[opcode] = fmt;
4322 }
4323 }
4324 }
4325 xtensa_insnbuf_free (isa, ibuf);
4326 }
4327
4328
4329 static xtensa_format
4330 get_single_format (xtensa_opcode opcode)
4331 {
4332 init_op_single_format_table ();
4333 return op_single_fmt_table[opcode];
4334 }
4335
4336
4337 /* For the set of narrowable instructions we do NOT include the
4338 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4339 involved during linker relaxation that may require these to
4340 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4341 requires special case code to ensure it only works when op1 == op2. */
4342
4343 struct string_pair
4344 {
4345 const char *wide;
4346 const char *narrow;
4347 };
4348
4349 const struct string_pair narrowable[] =
4350 {
4351 { "add", "add.n" },
4352 { "addi", "addi.n" },
4353 { "addmi", "addi.n" },
4354 { "l32i", "l32i.n" },
4355 { "movi", "movi.n" },
4356 { "ret", "ret.n" },
4357 { "retw", "retw.n" },
4358 { "s32i", "s32i.n" },
4359 { "or", "mov.n" } /* special case only when op1 == op2 */
4360 };
4361
4362 const struct string_pair widenable[] =
4363 {
4364 { "add", "add.n" },
4365 { "addi", "addi.n" },
4366 { "addmi", "addi.n" },
4367 { "beqz", "beqz.n" },
4368 { "bnez", "bnez.n" },
4369 { "l32i", "l32i.n" },
4370 { "movi", "movi.n" },
4371 { "ret", "ret.n" },
4372 { "retw", "retw.n" },
4373 { "s32i", "s32i.n" },
4374 { "or", "mov.n" } /* special case only when op1 == op2 */
4375 };
4376
4377
4378 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4379 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4380 return the instruction buffer holding the narrow instruction. Otherwise,
4381 return 0. The set of valid narrowing are specified by a string table
4382 but require some special case operand checks in some cases. */
4383
4384 static xtensa_insnbuf
4385 can_narrow_instruction (xtensa_insnbuf slotbuf,
4386 xtensa_format fmt,
4387 xtensa_opcode opcode)
4388 {
4389 xtensa_isa isa = xtensa_default_isa;
4390 xtensa_format o_fmt;
4391 unsigned opi;
4392
4393 static xtensa_insnbuf o_insnbuf = NULL;
4394 static xtensa_insnbuf o_slotbuf = NULL;
4395
4396 if (o_insnbuf == NULL)
4397 {
4398 o_insnbuf = xtensa_insnbuf_alloc (isa);
4399 o_slotbuf = xtensa_insnbuf_alloc (isa);
4400 }
4401
4402 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4403 {
4404 bool is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4405
4406 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4407 {
4408 uint32 value, newval;
4409 int i, operand_count, o_operand_count;
4410 xtensa_opcode o_opcode;
4411
4412 /* Address does not matter in this case. We might need to
4413 fix it to handle branches/jumps. */
4414 bfd_vma self_address = 0;
4415
4416 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4417 if (o_opcode == XTENSA_UNDEFINED)
4418 return 0;
4419 o_fmt = get_single_format (o_opcode);
4420 if (o_fmt == XTENSA_UNDEFINED)
4421 return 0;
4422
4423 if (xtensa_format_length (isa, fmt) != 3
4424 || xtensa_format_length (isa, o_fmt) != 2)
4425 return 0;
4426
4427 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4428 operand_count = xtensa_opcode_num_operands (isa, opcode);
4429 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4430
4431 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4432 return 0;
4433
4434 if (!is_or)
4435 {
4436 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4437 return 0;
4438 }
4439 else
4440 {
4441 uint32 rawval0, rawval1, rawval2;
4442
4443 if (o_operand_count + 1 != operand_count
4444 || xtensa_operand_get_field (isa, opcode, 0,
4445 fmt, 0, slotbuf, &rawval0) != 0
4446 || xtensa_operand_get_field (isa, opcode, 1,
4447 fmt, 0, slotbuf, &rawval1) != 0
4448 || xtensa_operand_get_field (isa, opcode, 2,
4449 fmt, 0, slotbuf, &rawval2) != 0
4450 || rawval1 != rawval2
4451 || rawval0 == rawval1 /* it is a nop */)
4452 return 0;
4453 }
4454
4455 for (i = 0; i < o_operand_count; ++i)
4456 {
4457 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4458 slotbuf, &value)
4459 || xtensa_operand_decode (isa, opcode, i, &value))
4460 return 0;
4461
4462 /* PC-relative branches need adjustment, but
4463 the PC-rel operand will always have a relocation. */
4464 newval = value;
4465 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4466 self_address)
4467 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4468 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4469 o_slotbuf, newval))
4470 return 0;
4471 }
4472
4473 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4474 return 0;
4475
4476 return o_insnbuf;
4477 }
4478 }
4479 return 0;
4480 }
4481
4482
4483 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4484 the action in-place directly into the contents and return TRUE. Otherwise,
4485 the return value is FALSE and the contents are not modified. */
4486
4487 static bool
4488 narrow_instruction (bfd_byte *contents,
4489 bfd_size_type content_length,
4490 bfd_size_type offset)
4491 {
4492 xtensa_opcode opcode;
4493 bfd_size_type insn_len;
4494 xtensa_isa isa = xtensa_default_isa;
4495 xtensa_format fmt;
4496 xtensa_insnbuf o_insnbuf;
4497
4498 static xtensa_insnbuf insnbuf = NULL;
4499 static xtensa_insnbuf slotbuf = NULL;
4500
4501 if (insnbuf == NULL)
4502 {
4503 insnbuf = xtensa_insnbuf_alloc (isa);
4504 slotbuf = xtensa_insnbuf_alloc (isa);
4505 }
4506
4507 BFD_ASSERT (offset < content_length);
4508
4509 if (content_length < 2)
4510 return false;
4511
4512 /* We will hand-code a few of these for a little while.
4513 These have all been specified in the assembler aleady. */
4514 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4515 content_length - offset);
4516 fmt = xtensa_format_decode (isa, insnbuf);
4517 if (xtensa_format_num_slots (isa, fmt) != 1)
4518 return false;
4519
4520 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4521 return false;
4522
4523 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4524 if (opcode == XTENSA_UNDEFINED)
4525 return false;
4526 insn_len = xtensa_format_length (isa, fmt);
4527 if (insn_len > content_length)
4528 return false;
4529
4530 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4531 if (o_insnbuf)
4532 {
4533 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4534 content_length - offset);
4535 return true;
4536 }
4537
4538 return false;
4539 }
4540
4541
4542 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4543 "density" instruction to a standard 3-byte instruction. If it is valid,
4544 return the instruction buffer holding the wide instruction. Otherwise,
4545 return 0. The set of valid widenings are specified by a string table
4546 but require some special case operand checks in some cases. */
4547
4548 static xtensa_insnbuf
4549 can_widen_instruction (xtensa_insnbuf slotbuf,
4550 xtensa_format fmt,
4551 xtensa_opcode opcode)
4552 {
4553 xtensa_isa isa = xtensa_default_isa;
4554 xtensa_format o_fmt;
4555 unsigned opi;
4556
4557 static xtensa_insnbuf o_insnbuf = NULL;
4558 static xtensa_insnbuf o_slotbuf = NULL;
4559
4560 if (o_insnbuf == NULL)
4561 {
4562 o_insnbuf = xtensa_insnbuf_alloc (isa);
4563 o_slotbuf = xtensa_insnbuf_alloc (isa);
4564 }
4565
4566 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4567 {
4568 bool is_or = (strcmp ("or", widenable[opi].wide) == 0);
4569 bool is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4570 || strcmp ("bnez", widenable[opi].wide) == 0);
4571
4572 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4573 {
4574 uint32 value, newval;
4575 int i, operand_count, o_operand_count, check_operand_count;
4576 xtensa_opcode o_opcode;
4577
4578 /* Address does not matter in this case. We might need to fix it
4579 to handle branches/jumps. */
4580 bfd_vma self_address = 0;
4581
4582 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4583 if (o_opcode == XTENSA_UNDEFINED)
4584 return 0;
4585 o_fmt = get_single_format (o_opcode);
4586 if (o_fmt == XTENSA_UNDEFINED)
4587 return 0;
4588
4589 if (xtensa_format_length (isa, fmt) != 2
4590 || xtensa_format_length (isa, o_fmt) != 3)
4591 return 0;
4592
4593 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4594 operand_count = xtensa_opcode_num_operands (isa, opcode);
4595 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4596 check_operand_count = o_operand_count;
4597
4598 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4599 return 0;
4600
4601 if (!is_or)
4602 {
4603 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4604 return 0;
4605 }
4606 else
4607 {
4608 uint32 rawval0, rawval1;
4609
4610 if (o_operand_count != operand_count + 1
4611 || xtensa_operand_get_field (isa, opcode, 0,
4612 fmt, 0, slotbuf, &rawval0) != 0
4613 || xtensa_operand_get_field (isa, opcode, 1,
4614 fmt, 0, slotbuf, &rawval1) != 0
4615 || rawval0 == rawval1 /* it is a nop */)
4616 return 0;
4617 }
4618 if (is_branch)
4619 check_operand_count--;
4620
4621 for (i = 0; i < check_operand_count; i++)
4622 {
4623 int new_i = i;
4624 if (is_or && i == o_operand_count - 1)
4625 new_i = i - 1;
4626 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4627 slotbuf, &value)
4628 || xtensa_operand_decode (isa, opcode, new_i, &value))
4629 return 0;
4630
4631 /* PC-relative branches need adjustment, but
4632 the PC-rel operand will always have a relocation. */
4633 newval = value;
4634 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4635 self_address)
4636 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4637 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4638 o_slotbuf, newval))
4639 return 0;
4640 }
4641
4642 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4643 return 0;
4644
4645 return o_insnbuf;
4646 }
4647 }
4648 return 0;
4649 }
4650
4651
4652 /* Attempt to widen an instruction. If the widening is valid, perform
4653 the action in-place directly into the contents and return TRUE. Otherwise,
4654 the return value is FALSE and the contents are not modified. */
4655
4656 static bool
4657 widen_instruction (bfd_byte *contents,
4658 bfd_size_type content_length,
4659 bfd_size_type offset)
4660 {
4661 xtensa_opcode opcode;
4662 bfd_size_type insn_len;
4663 xtensa_isa isa = xtensa_default_isa;
4664 xtensa_format fmt;
4665 xtensa_insnbuf o_insnbuf;
4666
4667 static xtensa_insnbuf insnbuf = NULL;
4668 static xtensa_insnbuf slotbuf = NULL;
4669
4670 if (insnbuf == NULL)
4671 {
4672 insnbuf = xtensa_insnbuf_alloc (isa);
4673 slotbuf = xtensa_insnbuf_alloc (isa);
4674 }
4675
4676 BFD_ASSERT (offset < content_length);
4677
4678 if (content_length < 2)
4679 return false;
4680
4681 /* We will hand-code a few of these for a little while.
4682 These have all been specified in the assembler aleady. */
4683 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4684 content_length - offset);
4685 fmt = xtensa_format_decode (isa, insnbuf);
4686 if (xtensa_format_num_slots (isa, fmt) != 1)
4687 return false;
4688
4689 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4690 return false;
4691
4692 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4693 if (opcode == XTENSA_UNDEFINED)
4694 return false;
4695 insn_len = xtensa_format_length (isa, fmt);
4696 if (insn_len > content_length)
4697 return false;
4698
4699 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4700 if (o_insnbuf)
4701 {
4702 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4703 content_length - offset);
4704 return true;
4705 }
4706 return false;
4707 }
4708
4709 \f
4710 /* Code for transforming CALLs at link-time. */
4711
4712 static bfd_reloc_status_type
4713 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4714 bfd_vma address,
4715 bfd_vma content_length,
4716 char **error_message)
4717 {
4718 static xtensa_insnbuf insnbuf = NULL;
4719 static xtensa_insnbuf slotbuf = NULL;
4720 xtensa_format core_format = XTENSA_UNDEFINED;
4721 xtensa_opcode opcode;
4722 xtensa_opcode direct_call_opcode;
4723 xtensa_isa isa = xtensa_default_isa;
4724 bfd_byte *chbuf = contents + address;
4725 int opn;
4726
4727 if (insnbuf == NULL)
4728 {
4729 insnbuf = xtensa_insnbuf_alloc (isa);
4730 slotbuf = xtensa_insnbuf_alloc (isa);
4731 }
4732
4733 if (content_length < address)
4734 {
4735 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4736 return bfd_reloc_other;
4737 }
4738
4739 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4740 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4741 if (direct_call_opcode == XTENSA_UNDEFINED)
4742 {
4743 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4744 return bfd_reloc_other;
4745 }
4746
4747 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4748 core_format = xtensa_format_lookup (isa, "x24");
4749 opcode = xtensa_opcode_lookup (isa, "or");
4750 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4751 for (opn = 0; opn < 3; opn++)
4752 {
4753 uint32 regno = 1;
4754 xtensa_operand_encode (isa, opcode, opn, &regno);
4755 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4756 slotbuf, regno);
4757 }
4758 xtensa_format_encode (isa, core_format, insnbuf);
4759 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4760 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4761
4762 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4763 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4764 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4765
4766 xtensa_format_encode (isa, core_format, insnbuf);
4767 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4768 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4769 content_length - address - 3);
4770
4771 return bfd_reloc_ok;
4772 }
4773
4774
4775 static bfd_reloc_status_type
4776 contract_asm_expansion (bfd_byte *contents,
4777 bfd_vma content_length,
4778 Elf_Internal_Rela *irel,
4779 char **error_message)
4780 {
4781 bfd_reloc_status_type retval =
4782 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4783 error_message);
4784
4785 if (retval != bfd_reloc_ok)
4786 return bfd_reloc_dangerous;
4787
4788 /* Update the irel->r_offset field so that the right immediate and
4789 the right instruction are modified during the relocation. */
4790 irel->r_offset += 3;
4791 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4792 return bfd_reloc_ok;
4793 }
4794
4795
4796 static xtensa_opcode
4797 swap_callx_for_call_opcode (xtensa_opcode opcode)
4798 {
4799 init_call_opcodes ();
4800
4801 if (opcode == callx0_op) return call0_op;
4802 if (opcode == callx4_op) return call4_op;
4803 if (opcode == callx8_op) return call8_op;
4804 if (opcode == callx12_op) return call12_op;
4805
4806 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4807 return XTENSA_UNDEFINED;
4808 }
4809
4810
4811 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4812 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4813 If not, return XTENSA_UNDEFINED. */
4814
4815 #define L32R_TARGET_REG_OPERAND 0
4816 #define CONST16_TARGET_REG_OPERAND 0
4817 #define CALLN_SOURCE_OPERAND 0
4818
4819 static xtensa_opcode
4820 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bool *p_uses_l32r)
4821 {
4822 static xtensa_insnbuf insnbuf = NULL;
4823 static xtensa_insnbuf slotbuf = NULL;
4824 xtensa_format fmt;
4825 xtensa_opcode opcode;
4826 xtensa_isa isa = xtensa_default_isa;
4827 uint32 regno, const16_regno, call_regno;
4828 int offset = 0;
4829
4830 if (insnbuf == NULL)
4831 {
4832 insnbuf = xtensa_insnbuf_alloc (isa);
4833 slotbuf = xtensa_insnbuf_alloc (isa);
4834 }
4835
4836 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4837 fmt = xtensa_format_decode (isa, insnbuf);
4838 if (fmt == XTENSA_UNDEFINED
4839 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4840 return XTENSA_UNDEFINED;
4841
4842 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4843 if (opcode == XTENSA_UNDEFINED)
4844 return XTENSA_UNDEFINED;
4845
4846 if (opcode == get_l32r_opcode ())
4847 {
4848 if (p_uses_l32r)
4849 *p_uses_l32r = true;
4850 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4851 fmt, 0, slotbuf, &regno)
4852 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4853 &regno))
4854 return XTENSA_UNDEFINED;
4855 }
4856 else if (opcode == get_const16_opcode ())
4857 {
4858 if (p_uses_l32r)
4859 *p_uses_l32r = false;
4860 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4861 fmt, 0, slotbuf, &regno)
4862 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4863 &regno))
4864 return XTENSA_UNDEFINED;
4865
4866 /* Check that the next instruction is also CONST16. */
4867 offset += xtensa_format_length (isa, fmt);
4868 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4869 fmt = xtensa_format_decode (isa, insnbuf);
4870 if (fmt == XTENSA_UNDEFINED
4871 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4872 return XTENSA_UNDEFINED;
4873 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4874 if (opcode != get_const16_opcode ())
4875 return XTENSA_UNDEFINED;
4876
4877 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4878 fmt, 0, slotbuf, &const16_regno)
4879 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4880 &const16_regno)
4881 || const16_regno != regno)
4882 return XTENSA_UNDEFINED;
4883 }
4884 else
4885 return XTENSA_UNDEFINED;
4886
4887 /* Next instruction should be an CALLXn with operand 0 == regno. */
4888 offset += xtensa_format_length (isa, fmt);
4889 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4890 fmt = xtensa_format_decode (isa, insnbuf);
4891 if (fmt == XTENSA_UNDEFINED
4892 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4893 return XTENSA_UNDEFINED;
4894 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4895 if (opcode == XTENSA_UNDEFINED
4896 || !is_indirect_call_opcode (opcode))
4897 return XTENSA_UNDEFINED;
4898
4899 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4900 fmt, 0, slotbuf, &call_regno)
4901 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4902 &call_regno))
4903 return XTENSA_UNDEFINED;
4904
4905 if (call_regno != regno)
4906 return XTENSA_UNDEFINED;
4907
4908 return opcode;
4909 }
4910
4911 \f
4912 /* Data structures used during relaxation. */
4913
4914 /* r_reloc: relocation values. */
4915
4916 /* Through the relaxation process, we need to keep track of the values
4917 that will result from evaluating relocations. The standard ELF
4918 relocation structure is not sufficient for this purpose because we're
4919 operating on multiple input files at once, so we need to know which
4920 input file a relocation refers to. The r_reloc structure thus
4921 records both the input file (bfd) and ELF relocation.
4922
4923 For efficiency, an r_reloc also contains a "target_offset" field to
4924 cache the target-section-relative offset value that is represented by
4925 the relocation.
4926
4927 The r_reloc also contains a virtual offset that allows multiple
4928 inserted literals to be placed at the same "address" with
4929 different offsets. */
4930
4931 typedef struct r_reloc_struct r_reloc;
4932
4933 struct r_reloc_struct
4934 {
4935 bfd *abfd;
4936 Elf_Internal_Rela rela;
4937 bfd_vma target_offset;
4938 bfd_vma virtual_offset;
4939 };
4940
4941
4942 /* The r_reloc structure is included by value in literal_value, but not
4943 every literal_value has an associated relocation -- some are simple
4944 constants. In such cases, we set all the fields in the r_reloc
4945 struct to zero. The r_reloc_is_const function should be used to
4946 detect this case. */
4947
4948 static bool
4949 r_reloc_is_const (const r_reloc *r_rel)
4950 {
4951 return (r_rel->abfd == NULL);
4952 }
4953
4954
4955 static bfd_vma
4956 r_reloc_get_target_offset (const r_reloc *r_rel)
4957 {
4958 bfd_vma target_offset;
4959 unsigned long r_symndx;
4960
4961 BFD_ASSERT (!r_reloc_is_const (r_rel));
4962 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4963 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4964 return (target_offset + r_rel->rela.r_addend);
4965 }
4966
4967
4968 static struct elf_link_hash_entry *
4969 r_reloc_get_hash_entry (const r_reloc *r_rel)
4970 {
4971 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4972 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4973 }
4974
4975
4976 static asection *
4977 r_reloc_get_section (const r_reloc *r_rel)
4978 {
4979 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4980 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4981 }
4982
4983
4984 static bool
4985 r_reloc_is_defined (const r_reloc *r_rel)
4986 {
4987 asection *sec;
4988 if (r_rel == NULL)
4989 return false;
4990
4991 sec = r_reloc_get_section (r_rel);
4992 if (sec == bfd_abs_section_ptr
4993 || sec == bfd_com_section_ptr
4994 || sec == bfd_und_section_ptr)
4995 return false;
4996 return true;
4997 }
4998
4999
5000 static void
5001 r_reloc_init (r_reloc *r_rel,
5002 bfd *abfd,
5003 Elf_Internal_Rela *irel,
5004 bfd_byte *contents,
5005 bfd_size_type content_length)
5006 {
5007 int r_type;
5008 reloc_howto_type *howto;
5009
5010 if (irel)
5011 {
5012 r_rel->rela = *irel;
5013 r_rel->abfd = abfd;
5014 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
5015 r_rel->virtual_offset = 0;
5016 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
5017 howto = &elf_howto_table[r_type];
5018 if (howto->partial_inplace)
5019 {
5020 bfd_vma inplace_val;
5021 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5022
5023 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5024 r_rel->target_offset += inplace_val;
5025 }
5026 }
5027 else
5028 memset (r_rel, 0, sizeof (r_reloc));
5029 }
5030
5031
5032 #if DEBUG
5033
5034 static void
5035 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5036 {
5037 if (r_reloc_is_defined (r_rel))
5038 {
5039 asection *sec = r_reloc_get_section (r_rel);
5040 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5041 }
5042 else if (r_reloc_get_hash_entry (r_rel))
5043 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5044 else
5045 fprintf (fp, " ?? + ");
5046
5047 fprintf_vma (fp, r_rel->target_offset);
5048 if (r_rel->virtual_offset)
5049 {
5050 fprintf (fp, " + ");
5051 fprintf_vma (fp, r_rel->virtual_offset);
5052 }
5053
5054 fprintf (fp, ")");
5055 }
5056
5057 #endif /* DEBUG */
5058
5059 \f
5060 /* source_reloc: relocations that reference literals. */
5061
5062 /* To determine whether literals can be coalesced, we need to first
5063 record all the relocations that reference the literals. The
5064 source_reloc structure below is used for this purpose. The
5065 source_reloc entries are kept in a per-literal-section array, sorted
5066 by offset within the literal section (i.e., target offset).
5067
5068 The source_sec and r_rel.rela.r_offset fields identify the source of
5069 the relocation. The r_rel field records the relocation value, i.e.,
5070 the offset of the literal being referenced. The opnd field is needed
5071 to determine the range of the immediate field to which the relocation
5072 applies, so we can determine whether another literal with the same
5073 value is within range. The is_null field is true when the relocation
5074 is being removed (e.g., when an L32R is being removed due to a CALLX
5075 that is converted to a direct CALL). */
5076
5077 typedef struct source_reloc_struct source_reloc;
5078
5079 struct source_reloc_struct
5080 {
5081 asection *source_sec;
5082 r_reloc r_rel;
5083 xtensa_opcode opcode;
5084 int opnd;
5085 bool is_null;
5086 bool is_abs_literal;
5087 };
5088
5089
5090 static void
5091 init_source_reloc (source_reloc *reloc,
5092 asection *source_sec,
5093 const r_reloc *r_rel,
5094 xtensa_opcode opcode,
5095 int opnd,
5096 bool is_abs_literal)
5097 {
5098 reloc->source_sec = source_sec;
5099 reloc->r_rel = *r_rel;
5100 reloc->opcode = opcode;
5101 reloc->opnd = opnd;
5102 reloc->is_null = false;
5103 reloc->is_abs_literal = is_abs_literal;
5104 }
5105
5106
5107 /* Find the source_reloc for a particular source offset and relocation
5108 type. Note that the array is sorted by _target_ offset, so this is
5109 just a linear search. */
5110
5111 static source_reloc *
5112 find_source_reloc (source_reloc *src_relocs,
5113 int src_count,
5114 asection *sec,
5115 Elf_Internal_Rela *irel)
5116 {
5117 int i;
5118
5119 for (i = 0; i < src_count; i++)
5120 {
5121 if (src_relocs[i].source_sec == sec
5122 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5123 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5124 == ELF32_R_TYPE (irel->r_info)))
5125 return &src_relocs[i];
5126 }
5127
5128 return NULL;
5129 }
5130
5131
5132 static int
5133 source_reloc_compare (const void *ap, const void *bp)
5134 {
5135 const source_reloc *a = (const source_reloc *) ap;
5136 const source_reloc *b = (const source_reloc *) bp;
5137
5138 if (a->r_rel.target_offset != b->r_rel.target_offset)
5139 return (a->r_rel.target_offset - b->r_rel.target_offset);
5140
5141 /* We don't need to sort on these criteria for correctness,
5142 but enforcing a more strict ordering prevents unstable qsort
5143 from behaving differently with different implementations.
5144 Without the code below we get correct but different results
5145 on Solaris 2.7 and 2.8. We would like to always produce the
5146 same results no matter the host. */
5147
5148 if ((!a->is_null) - (!b->is_null))
5149 return ((!a->is_null) - (!b->is_null));
5150 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5151 }
5152
5153 \f
5154 /* Literal values and value hash tables. */
5155
5156 /* Literals with the same value can be coalesced. The literal_value
5157 structure records the value of a literal: the "r_rel" field holds the
5158 information from the relocation on the literal (if there is one) and
5159 the "value" field holds the contents of the literal word itself.
5160
5161 The value_map structure records a literal value along with the
5162 location of a literal holding that value. The value_map hash table
5163 is indexed by the literal value, so that we can quickly check if a
5164 particular literal value has been seen before and is thus a candidate
5165 for coalescing. */
5166
5167 typedef struct literal_value_struct literal_value;
5168 typedef struct value_map_struct value_map;
5169 typedef struct value_map_hash_table_struct value_map_hash_table;
5170
5171 struct literal_value_struct
5172 {
5173 r_reloc r_rel;
5174 unsigned long value;
5175 bool is_abs_literal;
5176 };
5177
5178 struct value_map_struct
5179 {
5180 literal_value val; /* The literal value. */
5181 r_reloc loc; /* Location of the literal. */
5182 value_map *next;
5183 };
5184
5185 struct value_map_hash_table_struct
5186 {
5187 unsigned bucket_count;
5188 value_map **buckets;
5189 unsigned count;
5190 bool has_last_loc;
5191 r_reloc last_loc;
5192 };
5193
5194
5195 static void
5196 init_literal_value (literal_value *lit,
5197 const r_reloc *r_rel,
5198 unsigned long value,
5199 bool is_abs_literal)
5200 {
5201 lit->r_rel = *r_rel;
5202 lit->value = value;
5203 lit->is_abs_literal = is_abs_literal;
5204 }
5205
5206
5207 static bool
5208 literal_value_equal (const literal_value *src1,
5209 const literal_value *src2,
5210 bool final_static_link)
5211 {
5212 struct elf_link_hash_entry *h1, *h2;
5213
5214 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5215 return false;
5216
5217 if (r_reloc_is_const (&src1->r_rel))
5218 return (src1->value == src2->value);
5219
5220 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5221 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5222 return false;
5223
5224 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5225 return false;
5226
5227 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5228 return false;
5229
5230 if (src1->value != src2->value)
5231 return false;
5232
5233 /* Now check for the same section (if defined) or the same elf_hash
5234 (if undefined or weak). */
5235 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5236 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5237 if (r_reloc_is_defined (&src1->r_rel)
5238 && (final_static_link
5239 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5240 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5241 {
5242 if (r_reloc_get_section (&src1->r_rel)
5243 != r_reloc_get_section (&src2->r_rel))
5244 return false;
5245 }
5246 else
5247 {
5248 /* Require that the hash entries (i.e., symbols) be identical. */
5249 if (h1 != h2 || h1 == 0)
5250 return false;
5251 }
5252
5253 if (src1->is_abs_literal != src2->is_abs_literal)
5254 return false;
5255
5256 return true;
5257 }
5258
5259
5260 /* Must be power of 2. */
5261 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5262
5263 static value_map_hash_table *
5264 value_map_hash_table_init (void)
5265 {
5266 value_map_hash_table *values;
5267
5268 values = (value_map_hash_table *)
5269 bfd_zmalloc (sizeof (value_map_hash_table));
5270 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5271 values->count = 0;
5272 values->buckets = (value_map **)
5273 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5274 if (values->buckets == NULL)
5275 {
5276 free (values);
5277 return NULL;
5278 }
5279 values->has_last_loc = false;
5280
5281 return values;
5282 }
5283
5284
5285 static void
5286 value_map_hash_table_delete (value_map_hash_table *table)
5287 {
5288 free (table->buckets);
5289 free (table);
5290 }
5291
5292
5293 static unsigned
5294 hash_bfd_vma (bfd_vma val)
5295 {
5296 return (val >> 2) + (val >> 10);
5297 }
5298
5299
5300 static unsigned
5301 literal_value_hash (const literal_value *src)
5302 {
5303 unsigned hash_val;
5304
5305 hash_val = hash_bfd_vma (src->value);
5306 if (!r_reloc_is_const (&src->r_rel))
5307 {
5308 void *sec_or_hash;
5309
5310 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5311 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5312 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5313
5314 /* Now check for the same section and the same elf_hash. */
5315 if (r_reloc_is_defined (&src->r_rel))
5316 sec_or_hash = r_reloc_get_section (&src->r_rel);
5317 else
5318 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5319 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5320 }
5321 return hash_val;
5322 }
5323
5324
5325 /* Check if the specified literal_value has been seen before. */
5326
5327 static value_map *
5328 value_map_get_cached_value (value_map_hash_table *map,
5329 const literal_value *val,
5330 bool final_static_link)
5331 {
5332 value_map *map_e;
5333 value_map *bucket;
5334 unsigned idx;
5335
5336 idx = literal_value_hash (val);
5337 idx = idx & (map->bucket_count - 1);
5338 bucket = map->buckets[idx];
5339 for (map_e = bucket; map_e; map_e = map_e->next)
5340 {
5341 if (literal_value_equal (&map_e->val, val, final_static_link))
5342 return map_e;
5343 }
5344 return NULL;
5345 }
5346
5347
5348 /* Record a new literal value. It is illegal to call this if VALUE
5349 already has an entry here. */
5350
5351 static value_map *
5352 add_value_map (value_map_hash_table *map,
5353 const literal_value *val,
5354 const r_reloc *loc,
5355 bool final_static_link)
5356 {
5357 value_map **bucket_p;
5358 unsigned idx;
5359
5360 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5361 if (val_e == NULL)
5362 {
5363 bfd_set_error (bfd_error_no_memory);
5364 return NULL;
5365 }
5366
5367 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5368 val_e->val = *val;
5369 val_e->loc = *loc;
5370
5371 idx = literal_value_hash (val);
5372 idx = idx & (map->bucket_count - 1);
5373 bucket_p = &map->buckets[idx];
5374
5375 val_e->next = *bucket_p;
5376 *bucket_p = val_e;
5377 map->count++;
5378 /* FIXME: Consider resizing the hash table if we get too many entries. */
5379
5380 return val_e;
5381 }
5382
5383 \f
5384 /* Lists of text actions (ta_) for narrowing, widening, longcall
5385 conversion, space fill, code & literal removal, etc. */
5386
5387 /* The following text actions are generated:
5388
5389 "ta_remove_insn" remove an instruction or instructions
5390 "ta_remove_longcall" convert longcall to call
5391 "ta_convert_longcall" convert longcall to nop/call
5392 "ta_narrow_insn" narrow a wide instruction
5393 "ta_widen" widen a narrow instruction
5394 "ta_fill" add fill or remove fill
5395 removed < 0 is a fill; branches to the fill address will be
5396 changed to address + fill size (e.g., address - removed)
5397 removed >= 0 branches to the fill address will stay unchanged
5398 "ta_remove_literal" remove a literal; this action is
5399 indicated when a literal is removed
5400 or replaced.
5401 "ta_add_literal" insert a new literal; this action is
5402 indicated when a literal has been moved.
5403 It may use a virtual_offset because
5404 multiple literals can be placed at the
5405 same location.
5406
5407 For each of these text actions, we also record the number of bytes
5408 removed by performing the text action. In the case of a "ta_widen"
5409 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5410
5411 typedef struct text_action_struct text_action;
5412 typedef struct text_action_list_struct text_action_list;
5413 typedef enum text_action_enum_t text_action_t;
5414
5415 enum text_action_enum_t
5416 {
5417 ta_none,
5418 ta_remove_insn, /* removed = -size */
5419 ta_remove_longcall, /* removed = -size */
5420 ta_convert_longcall, /* removed = 0 */
5421 ta_narrow_insn, /* removed = -1 */
5422 ta_widen_insn, /* removed = +1 */
5423 ta_fill, /* removed = +size */
5424 ta_remove_literal,
5425 ta_add_literal
5426 };
5427
5428
5429 /* Structure for a text action record. */
5430 struct text_action_struct
5431 {
5432 text_action_t action;
5433 asection *sec; /* Optional */
5434 bfd_vma offset;
5435 bfd_vma virtual_offset; /* Zero except for adding literals. */
5436 int removed_bytes;
5437 literal_value value; /* Only valid when adding literals. */
5438 };
5439
5440 struct removal_by_action_entry_struct
5441 {
5442 bfd_vma offset;
5443 int removed;
5444 int eq_removed;
5445 int eq_removed_before_fill;
5446 };
5447 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5448
5449 struct removal_by_action_map_struct
5450 {
5451 unsigned n_entries;
5452 removal_by_action_entry *entry;
5453 };
5454 typedef struct removal_by_action_map_struct removal_by_action_map;
5455
5456
5457 /* List of all of the actions taken on a text section. */
5458 struct text_action_list_struct
5459 {
5460 unsigned count;
5461 splay_tree tree;
5462 removal_by_action_map map;
5463 };
5464
5465
5466 static text_action *
5467 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5468 {
5469 text_action a;
5470
5471 /* It is not necessary to fill at the end of a section. */
5472 if (sec->size == offset)
5473 return NULL;
5474
5475 a.offset = offset;
5476 a.action = ta_fill;
5477
5478 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5479 if (node)
5480 return (text_action *)node->value;
5481 return NULL;
5482 }
5483
5484
5485 static int
5486 compute_removed_action_diff (const text_action *ta,
5487 asection *sec,
5488 bfd_vma offset,
5489 int removed,
5490 int removable_space)
5491 {
5492 int new_removed;
5493 int current_removed = 0;
5494
5495 if (ta)
5496 current_removed = ta->removed_bytes;
5497
5498 BFD_ASSERT (ta == NULL || ta->offset == offset);
5499 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5500
5501 /* It is not necessary to fill at the end of a section. Clean this up. */
5502 if (sec->size == offset)
5503 new_removed = removable_space - 0;
5504 else
5505 {
5506 int space;
5507 int added = -removed - current_removed;
5508 /* Ignore multiples of the section alignment. */
5509 added = ((1 << sec->alignment_power) - 1) & added;
5510 new_removed = (-added);
5511
5512 /* Modify for removable. */
5513 space = removable_space - new_removed;
5514 new_removed = (removable_space
5515 - (((1 << sec->alignment_power) - 1) & space));
5516 }
5517 return (new_removed - current_removed);
5518 }
5519
5520
5521 static void
5522 adjust_fill_action (text_action *ta, int fill_diff)
5523 {
5524 ta->removed_bytes += fill_diff;
5525 }
5526
5527
5528 static int
5529 text_action_compare (splay_tree_key a, splay_tree_key b)
5530 {
5531 text_action *pa = (text_action *)a;
5532 text_action *pb = (text_action *)b;
5533 static const int action_priority[] =
5534 {
5535 [ta_fill] = 0,
5536 [ta_none] = 1,
5537 [ta_convert_longcall] = 2,
5538 [ta_narrow_insn] = 3,
5539 [ta_remove_insn] = 4,
5540 [ta_remove_longcall] = 5,
5541 [ta_remove_literal] = 6,
5542 [ta_widen_insn] = 7,
5543 [ta_add_literal] = 8,
5544 };
5545
5546 if (pa->offset == pb->offset)
5547 {
5548 if (pa->action == pb->action)
5549 return 0;
5550 return action_priority[pa->action] - action_priority[pb->action];
5551 }
5552 else
5553 return pa->offset < pb->offset ? -1 : 1;
5554 }
5555
5556 static text_action *
5557 action_first (text_action_list *action_list)
5558 {
5559 splay_tree_node node = splay_tree_min (action_list->tree);
5560 return node ? (text_action *)node->value : NULL;
5561 }
5562
5563 static text_action *
5564 action_next (text_action_list *action_list, text_action *action)
5565 {
5566 splay_tree_node node = splay_tree_successor (action_list->tree,
5567 (splay_tree_key)action);
5568 return node ? (text_action *)node->value : NULL;
5569 }
5570
5571 /* Add a modification action to the text. For the case of adding or
5572 removing space, modify any current fill and assume that
5573 "unreachable_space" bytes can be freely contracted. Note that a
5574 negative removed value is a fill. */
5575
5576 static void
5577 text_action_add (text_action_list *l,
5578 text_action_t action,
5579 asection *sec,
5580 bfd_vma offset,
5581 int removed)
5582 {
5583 text_action *ta;
5584 text_action a;
5585
5586 /* It is not necessary to fill at the end of a section. */
5587 if (action == ta_fill && sec->size == offset)
5588 return;
5589
5590 /* It is not necessary to fill 0 bytes. */
5591 if (action == ta_fill && removed == 0)
5592 return;
5593
5594 a.action = action;
5595 a.offset = offset;
5596
5597 if (action == ta_fill)
5598 {
5599 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5600
5601 if (node)
5602 {
5603 ta = (text_action *)node->value;
5604 ta->removed_bytes += removed;
5605 return;
5606 }
5607 }
5608 else
5609 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5610
5611 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5612 ta->action = action;
5613 ta->sec = sec;
5614 ta->offset = offset;
5615 ta->removed_bytes = removed;
5616 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5617 ++l->count;
5618 }
5619
5620
5621 static void
5622 text_action_add_literal (text_action_list *l,
5623 text_action_t action,
5624 const r_reloc *loc,
5625 const literal_value *value,
5626 int removed)
5627 {
5628 text_action *ta;
5629 asection *sec = r_reloc_get_section (loc);
5630 bfd_vma offset = loc->target_offset;
5631 bfd_vma virtual_offset = loc->virtual_offset;
5632
5633 BFD_ASSERT (action == ta_add_literal);
5634
5635 /* Create a new record and fill it up. */
5636 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5637 ta->action = action;
5638 ta->sec = sec;
5639 ta->offset = offset;
5640 ta->virtual_offset = virtual_offset;
5641 ta->value = *value;
5642 ta->removed_bytes = removed;
5643
5644 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5645 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5646 ++l->count;
5647 }
5648
5649
5650 /* Find the total offset adjustment for the relaxations specified by
5651 text_actions, beginning from a particular starting action. This is
5652 typically used from offset_with_removed_text to search an entire list of
5653 actions, but it may also be called directly when adjusting adjacent offsets
5654 so that each search may begin where the previous one left off. */
5655
5656 static int
5657 removed_by_actions (text_action_list *action_list,
5658 text_action **p_start_action,
5659 bfd_vma offset,
5660 bool before_fill)
5661 {
5662 text_action *r;
5663 int removed = 0;
5664
5665 r = *p_start_action;
5666 if (r)
5667 {
5668 splay_tree_node node = splay_tree_lookup (action_list->tree,
5669 (splay_tree_key)r);
5670 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5671 }
5672
5673 while (r)
5674 {
5675 if (r->offset > offset)
5676 break;
5677
5678 if (r->offset == offset
5679 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5680 break;
5681
5682 removed += r->removed_bytes;
5683
5684 r = action_next (action_list, r);
5685 }
5686
5687 *p_start_action = r;
5688 return removed;
5689 }
5690
5691
5692 static bfd_vma
5693 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5694 {
5695 text_action *r = action_first (action_list);
5696
5697 return offset - removed_by_actions (action_list, &r, offset, false);
5698 }
5699
5700
5701 static unsigned
5702 action_list_count (text_action_list *action_list)
5703 {
5704 return action_list->count;
5705 }
5706
5707 typedef struct map_action_fn_context_struct map_action_fn_context;
5708 struct map_action_fn_context_struct
5709 {
5710 int removed;
5711 removal_by_action_map map;
5712 bool eq_complete;
5713 };
5714
5715 static int
5716 map_action_fn (splay_tree_node node, void *p)
5717 {
5718 map_action_fn_context *ctx = p;
5719 text_action *r = (text_action *)node->value;
5720 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5721
5722 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5723 {
5724 --ientry;
5725 }
5726 else
5727 {
5728 ++ctx->map.n_entries;
5729 ctx->eq_complete = false;
5730 ientry->offset = r->offset;
5731 ientry->eq_removed_before_fill = ctx->removed;
5732 }
5733
5734 if (!ctx->eq_complete)
5735 {
5736 if (r->action != ta_fill || r->removed_bytes >= 0)
5737 {
5738 ientry->eq_removed = ctx->removed;
5739 ctx->eq_complete = true;
5740 }
5741 else
5742 ientry->eq_removed = ctx->removed + r->removed_bytes;
5743 }
5744
5745 ctx->removed += r->removed_bytes;
5746 ientry->removed = ctx->removed;
5747 return 0;
5748 }
5749
5750 static void
5751 map_removal_by_action (text_action_list *action_list)
5752 {
5753 map_action_fn_context ctx;
5754
5755 ctx.removed = 0;
5756 ctx.map.n_entries = 0;
5757 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5758 sizeof (removal_by_action_entry));
5759 ctx.eq_complete = false;
5760
5761 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5762 action_list->map = ctx.map;
5763 }
5764
5765 static int
5766 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5767 bool before_fill)
5768 {
5769 unsigned a, b;
5770
5771 if (!action_list->map.entry)
5772 map_removal_by_action (action_list);
5773
5774 if (!action_list->map.n_entries)
5775 return 0;
5776
5777 a = 0;
5778 b = action_list->map.n_entries;
5779
5780 while (b - a > 1)
5781 {
5782 unsigned c = (a + b) / 2;
5783
5784 if (action_list->map.entry[c].offset <= offset)
5785 a = c;
5786 else
5787 b = c;
5788 }
5789
5790 if (action_list->map.entry[a].offset < offset)
5791 {
5792 return action_list->map.entry[a].removed;
5793 }
5794 else if (action_list->map.entry[a].offset == offset)
5795 {
5796 return before_fill ?
5797 action_list->map.entry[a].eq_removed_before_fill :
5798 action_list->map.entry[a].eq_removed;
5799 }
5800 else
5801 {
5802 return 0;
5803 }
5804 }
5805
5806 static bfd_vma
5807 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5808 {
5809 int removed = removed_by_actions_map (action_list, offset, false);
5810 return offset - removed;
5811 }
5812
5813
5814 /* The find_insn_action routine will only find non-fill actions. */
5815
5816 static text_action *
5817 find_insn_action (text_action_list *action_list, bfd_vma offset)
5818 {
5819 static const text_action_t action[] =
5820 {
5821 ta_convert_longcall,
5822 ta_remove_longcall,
5823 ta_widen_insn,
5824 ta_narrow_insn,
5825 ta_remove_insn,
5826 };
5827 text_action a;
5828 unsigned i;
5829
5830 a.offset = offset;
5831 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5832 {
5833 splay_tree_node node;
5834
5835 a.action = action[i];
5836 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5837 if (node)
5838 return (text_action *)node->value;
5839 }
5840 return NULL;
5841 }
5842
5843
5844 #if DEBUG
5845
5846 static void
5847 print_action (FILE *fp, text_action *r)
5848 {
5849 const char *t = "unknown";
5850 switch (r->action)
5851 {
5852 case ta_remove_insn:
5853 t = "remove_insn"; break;
5854 case ta_remove_longcall:
5855 t = "remove_longcall"; break;
5856 case ta_convert_longcall:
5857 t = "convert_longcall"; break;
5858 case ta_narrow_insn:
5859 t = "narrow_insn"; break;
5860 case ta_widen_insn:
5861 t = "widen_insn"; break;
5862 case ta_fill:
5863 t = "fill"; break;
5864 case ta_none:
5865 t = "none"; break;
5866 case ta_remove_literal:
5867 t = "remove_literal"; break;
5868 case ta_add_literal:
5869 t = "add_literal"; break;
5870 }
5871
5872 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5873 r->sec->owner->filename,
5874 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5875 }
5876
5877 static int
5878 print_action_list_fn (splay_tree_node node, void *p)
5879 {
5880 text_action *r = (text_action *)node->value;
5881
5882 print_action (p, r);
5883 return 0;
5884 }
5885
5886 static void
5887 print_action_list (FILE *fp, text_action_list *action_list)
5888 {
5889 fprintf (fp, "Text Action\n");
5890 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5891 }
5892
5893 #endif /* DEBUG */
5894
5895 \f
5896 /* Lists of literals being coalesced or removed. */
5897
5898 /* In the usual case, the literal identified by "from" is being
5899 coalesced with another literal identified by "to". If the literal is
5900 unused and is being removed altogether, "to.abfd" will be NULL.
5901 The removed_literal entries are kept on a per-section list, sorted
5902 by the "from" offset field. */
5903
5904 typedef struct removed_literal_struct removed_literal;
5905 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5906 typedef struct removed_literal_list_struct removed_literal_list;
5907
5908 struct removed_literal_struct
5909 {
5910 r_reloc from;
5911 r_reloc to;
5912 removed_literal *next;
5913 };
5914
5915 struct removed_literal_map_entry_struct
5916 {
5917 bfd_vma addr;
5918 removed_literal *literal;
5919 };
5920
5921 struct removed_literal_list_struct
5922 {
5923 removed_literal *head;
5924 removed_literal *tail;
5925
5926 unsigned n_map;
5927 removed_literal_map_entry *map;
5928 };
5929
5930
5931 /* Record that the literal at "from" is being removed. If "to" is not
5932 NULL, the "from" literal is being coalesced with the "to" literal. */
5933
5934 static void
5935 add_removed_literal (removed_literal_list *removed_list,
5936 const r_reloc *from,
5937 const r_reloc *to)
5938 {
5939 removed_literal *r, *new_r, *next_r;
5940
5941 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5942
5943 new_r->from = *from;
5944 if (to)
5945 new_r->to = *to;
5946 else
5947 new_r->to.abfd = NULL;
5948 new_r->next = NULL;
5949
5950 r = removed_list->head;
5951 if (r == NULL)
5952 {
5953 removed_list->head = new_r;
5954 removed_list->tail = new_r;
5955 }
5956 /* Special check for common case of append. */
5957 else if (removed_list->tail->from.target_offset < from->target_offset)
5958 {
5959 removed_list->tail->next = new_r;
5960 removed_list->tail = new_r;
5961 }
5962 else
5963 {
5964 while (r->from.target_offset < from->target_offset && r->next)
5965 {
5966 r = r->next;
5967 }
5968 next_r = r->next;
5969 r->next = new_r;
5970 new_r->next = next_r;
5971 if (next_r == NULL)
5972 removed_list->tail = new_r;
5973 }
5974 }
5975
5976 static void
5977 map_removed_literal (removed_literal_list *removed_list)
5978 {
5979 unsigned n_map = 0;
5980 unsigned i;
5981 removed_literal_map_entry *map = NULL;
5982 removed_literal *r = removed_list->head;
5983
5984 for (i = 0; r; ++i, r = r->next)
5985 {
5986 if (i == n_map)
5987 {
5988 n_map = (n_map * 2) + 2;
5989 map = bfd_realloc (map, n_map * sizeof (*map));
5990 }
5991 map[i].addr = r->from.target_offset;
5992 map[i].literal = r;
5993 }
5994 removed_list->map = map;
5995 removed_list->n_map = i;
5996 }
5997
5998 static int
5999 removed_literal_compare (const void *a, const void *b)
6000 {
6001 const bfd_vma *key = a;
6002 const removed_literal_map_entry *memb = b;
6003
6004 if (*key == memb->addr)
6005 return 0;
6006 else
6007 return *key < memb->addr ? -1 : 1;
6008 }
6009
6010 /* Check if the list of removed literals contains an entry for the
6011 given address. Return the entry if found. */
6012
6013 static removed_literal *
6014 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
6015 {
6016 removed_literal_map_entry *p;
6017 removed_literal *r = NULL;
6018
6019 if (removed_list->map == NULL)
6020 map_removed_literal (removed_list);
6021
6022 if (removed_list->map != NULL)
6023 {
6024 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6025 sizeof (*removed_list->map), removed_literal_compare);
6026 if (p)
6027 {
6028 while (p != removed_list->map && (p - 1)->addr == addr)
6029 --p;
6030 r = p->literal;
6031 }
6032 }
6033 return r;
6034 }
6035
6036
6037 #if DEBUG
6038
6039 static void
6040 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6041 {
6042 removed_literal *r;
6043 r = removed_list->head;
6044 if (r)
6045 fprintf (fp, "Removed Literals\n");
6046 for (; r != NULL; r = r->next)
6047 {
6048 print_r_reloc (fp, &r->from);
6049 fprintf (fp, " => ");
6050 if (r->to.abfd == NULL)
6051 fprintf (fp, "REMOVED");
6052 else
6053 print_r_reloc (fp, &r->to);
6054 fprintf (fp, "\n");
6055 }
6056 }
6057
6058 #endif /* DEBUG */
6059
6060 \f
6061 /* Per-section data for relaxation. */
6062
6063 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6064
6065 struct xtensa_relax_info_struct
6066 {
6067 bool is_relaxable_literal_section;
6068 bool is_relaxable_asm_section;
6069 int visited; /* Number of times visited. */
6070
6071 source_reloc *src_relocs; /* Array[src_count]. */
6072 int src_count;
6073 int src_next; /* Next src_relocs entry to assign. */
6074
6075 removed_literal_list removed_list;
6076 text_action_list action_list;
6077
6078 reloc_bfd_fix *fix_list;
6079 reloc_bfd_fix *fix_array;
6080 unsigned fix_array_count;
6081
6082 /* Support for expanding the reloc array that is stored
6083 in the section structure. If the relocations have been
6084 reallocated, the newly allocated relocations will be referenced
6085 here along with the actual size allocated. The relocation
6086 count will always be found in the section structure. */
6087 Elf_Internal_Rela *allocated_relocs;
6088 unsigned relocs_count;
6089 unsigned allocated_relocs_count;
6090 };
6091
6092 struct elf_xtensa_section_data
6093 {
6094 struct bfd_elf_section_data elf;
6095 xtensa_relax_info relax_info;
6096 };
6097
6098
6099 static bool
6100 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6101 {
6102 if (!sec->used_by_bfd)
6103 {
6104 struct elf_xtensa_section_data *sdata;
6105 size_t amt = sizeof (*sdata);
6106
6107 sdata = bfd_zalloc (abfd, amt);
6108 if (sdata == NULL)
6109 return false;
6110 sec->used_by_bfd = sdata;
6111 }
6112
6113 return _bfd_elf_new_section_hook (abfd, sec);
6114 }
6115
6116
6117 static xtensa_relax_info *
6118 get_xtensa_relax_info (asection *sec)
6119 {
6120 struct elf_xtensa_section_data *section_data;
6121
6122 /* No info available if no section or if it is an output section. */
6123 if (!sec || sec == sec->output_section)
6124 return NULL;
6125
6126 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6127 return &section_data->relax_info;
6128 }
6129
6130
6131 static void
6132 init_xtensa_relax_info (asection *sec)
6133 {
6134 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6135
6136 relax_info->is_relaxable_literal_section = false;
6137 relax_info->is_relaxable_asm_section = false;
6138 relax_info->visited = 0;
6139
6140 relax_info->src_relocs = NULL;
6141 relax_info->src_count = 0;
6142 relax_info->src_next = 0;
6143
6144 relax_info->removed_list.head = NULL;
6145 relax_info->removed_list.tail = NULL;
6146
6147 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6148 NULL, NULL);
6149 relax_info->action_list.map.n_entries = 0;
6150 relax_info->action_list.map.entry = NULL;
6151
6152 relax_info->fix_list = NULL;
6153 relax_info->fix_array = NULL;
6154 relax_info->fix_array_count = 0;
6155
6156 relax_info->allocated_relocs = NULL;
6157 relax_info->relocs_count = 0;
6158 relax_info->allocated_relocs_count = 0;
6159 }
6160
6161 \f
6162 /* Coalescing literals may require a relocation to refer to a section in
6163 a different input file, but the standard relocation information
6164 cannot express that. Instead, the reloc_bfd_fix structures are used
6165 to "fix" the relocations that refer to sections in other input files.
6166 These structures are kept on per-section lists. The "src_type" field
6167 records the relocation type in case there are multiple relocations on
6168 the same location. FIXME: This is ugly; an alternative might be to
6169 add new symbols with the "owner" field to some other input file. */
6170
6171 struct reloc_bfd_fix_struct
6172 {
6173 asection *src_sec;
6174 bfd_vma src_offset;
6175 unsigned src_type; /* Relocation type. */
6176
6177 asection *target_sec;
6178 bfd_vma target_offset;
6179 bool translated;
6180
6181 reloc_bfd_fix *next;
6182 };
6183
6184
6185 static reloc_bfd_fix *
6186 reloc_bfd_fix_init (asection *src_sec,
6187 bfd_vma src_offset,
6188 unsigned src_type,
6189 asection *target_sec,
6190 bfd_vma target_offset,
6191 bool translated)
6192 {
6193 reloc_bfd_fix *fix;
6194
6195 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6196 fix->src_sec = src_sec;
6197 fix->src_offset = src_offset;
6198 fix->src_type = src_type;
6199 fix->target_sec = target_sec;
6200 fix->target_offset = target_offset;
6201 fix->translated = translated;
6202
6203 return fix;
6204 }
6205
6206
6207 static void
6208 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6209 {
6210 xtensa_relax_info *relax_info;
6211
6212 relax_info = get_xtensa_relax_info (src_sec);
6213 fix->next = relax_info->fix_list;
6214 relax_info->fix_list = fix;
6215 }
6216
6217
6218 static int
6219 fix_compare (const void *ap, const void *bp)
6220 {
6221 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6222 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6223
6224 if (a->src_offset != b->src_offset)
6225 return (a->src_offset - b->src_offset);
6226 return (a->src_type - b->src_type);
6227 }
6228
6229
6230 static void
6231 cache_fix_array (asection *sec)
6232 {
6233 unsigned i, count = 0;
6234 reloc_bfd_fix *r;
6235 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6236
6237 if (relax_info == NULL)
6238 return;
6239 if (relax_info->fix_list == NULL)
6240 return;
6241
6242 for (r = relax_info->fix_list; r != NULL; r = r->next)
6243 count++;
6244
6245 relax_info->fix_array =
6246 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6247 relax_info->fix_array_count = count;
6248
6249 r = relax_info->fix_list;
6250 for (i = 0; i < count; i++, r = r->next)
6251 {
6252 relax_info->fix_array[count - 1 - i] = *r;
6253 relax_info->fix_array[count - 1 - i].next = NULL;
6254 }
6255
6256 qsort (relax_info->fix_array, relax_info->fix_array_count,
6257 sizeof (reloc_bfd_fix), fix_compare);
6258 }
6259
6260
6261 static reloc_bfd_fix *
6262 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6263 {
6264 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6265 reloc_bfd_fix *rv;
6266 reloc_bfd_fix key;
6267
6268 if (relax_info == NULL)
6269 return NULL;
6270 if (relax_info->fix_list == NULL)
6271 return NULL;
6272
6273 if (relax_info->fix_array == NULL)
6274 cache_fix_array (sec);
6275
6276 key.src_offset = offset;
6277 key.src_type = type;
6278 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6279 sizeof (reloc_bfd_fix), fix_compare);
6280 return rv;
6281 }
6282
6283 \f
6284 /* Section caching. */
6285
6286 typedef struct section_cache_struct section_cache_t;
6287
6288 struct section_cache_struct
6289 {
6290 asection *sec;
6291
6292 bfd_byte *contents; /* Cache of the section contents. */
6293 bfd_size_type content_length;
6294
6295 property_table_entry *ptbl; /* Cache of the section property table. */
6296 unsigned pte_count;
6297
6298 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6299 unsigned reloc_count;
6300 };
6301
6302
6303 static void
6304 init_section_cache (section_cache_t *sec_cache)
6305 {
6306 memset (sec_cache, 0, sizeof (*sec_cache));
6307 }
6308
6309
6310 static void
6311 free_section_cache (section_cache_t *sec_cache)
6312 {
6313 if (sec_cache->sec)
6314 {
6315 release_contents (sec_cache->sec, sec_cache->contents);
6316 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6317 free (sec_cache->ptbl);
6318 }
6319 }
6320
6321
6322 static bool
6323 section_cache_section (section_cache_t *sec_cache,
6324 asection *sec,
6325 struct bfd_link_info *link_info)
6326 {
6327 bfd *abfd;
6328 property_table_entry *prop_table = NULL;
6329 int ptblsize = 0;
6330 bfd_byte *contents = NULL;
6331 Elf_Internal_Rela *internal_relocs = NULL;
6332 bfd_size_type sec_size;
6333
6334 if (sec == NULL)
6335 return false;
6336 if (sec == sec_cache->sec)
6337 return true;
6338
6339 abfd = sec->owner;
6340 sec_size = bfd_get_section_limit (abfd, sec);
6341
6342 /* Get the contents. */
6343 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6344 if (contents == NULL && sec_size != 0)
6345 goto err;
6346
6347 /* Get the relocations. */
6348 internal_relocs = retrieve_internal_relocs (abfd, sec,
6349 link_info->keep_memory);
6350
6351 /* Get the entry table. */
6352 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6353 XTENSA_PROP_SEC_NAME, false);
6354 if (ptblsize < 0)
6355 goto err;
6356
6357 /* Fill in the new section cache. */
6358 free_section_cache (sec_cache);
6359 init_section_cache (sec_cache);
6360
6361 sec_cache->sec = sec;
6362 sec_cache->contents = contents;
6363 sec_cache->content_length = sec_size;
6364 sec_cache->relocs = internal_relocs;
6365 sec_cache->reloc_count = sec->reloc_count;
6366 sec_cache->pte_count = ptblsize;
6367 sec_cache->ptbl = prop_table;
6368
6369 return true;
6370
6371 err:
6372 release_contents (sec, contents);
6373 release_internal_relocs (sec, internal_relocs);
6374 free (prop_table);
6375 return false;
6376 }
6377
6378 \f
6379 /* Extended basic blocks. */
6380
6381 /* An ebb_struct represents an Extended Basic Block. Within this
6382 range, we guarantee that all instructions are decodable, the
6383 property table entries are contiguous, and no property table
6384 specifies a segment that cannot have instructions moved. This
6385 structure contains caches of the contents, property table and
6386 relocations for the specified section for easy use. The range is
6387 specified by ranges of indices for the byte offset, property table
6388 offsets and relocation offsets. These must be consistent. */
6389
6390 typedef struct ebb_struct ebb_t;
6391
6392 struct ebb_struct
6393 {
6394 asection *sec;
6395
6396 bfd_byte *contents; /* Cache of the section contents. */
6397 bfd_size_type content_length;
6398
6399 property_table_entry *ptbl; /* Cache of the section property table. */
6400 unsigned pte_count;
6401
6402 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6403 unsigned reloc_count;
6404
6405 bfd_vma start_offset; /* Offset in section. */
6406 unsigned start_ptbl_idx; /* Offset in the property table. */
6407 unsigned start_reloc_idx; /* Offset in the relocations. */
6408
6409 bfd_vma end_offset;
6410 unsigned end_ptbl_idx;
6411 unsigned end_reloc_idx;
6412
6413 bool ends_section; /* Is this the last ebb in a section? */
6414
6415 /* The unreachable property table at the end of this set of blocks;
6416 NULL if the end is not an unreachable block. */
6417 property_table_entry *ends_unreachable;
6418 };
6419
6420
6421 enum ebb_target_enum
6422 {
6423 EBB_NO_ALIGN = 0,
6424 EBB_DESIRE_TGT_ALIGN,
6425 EBB_REQUIRE_TGT_ALIGN,
6426 EBB_REQUIRE_LOOP_ALIGN,
6427 EBB_REQUIRE_ALIGN
6428 };
6429
6430
6431 /* proposed_action_struct is similar to the text_action_struct except
6432 that is represents a potential transformation, not one that will
6433 occur. We build a list of these for an extended basic block
6434 and use them to compute the actual actions desired. We must be
6435 careful that the entire set of actual actions we perform do not
6436 break any relocations that would fit if the actions were not
6437 performed. */
6438
6439 typedef struct proposed_action_struct proposed_action;
6440
6441 struct proposed_action_struct
6442 {
6443 enum ebb_target_enum align_type; /* for the target alignment */
6444 bfd_vma alignment_pow;
6445 text_action_t action;
6446 bfd_vma offset;
6447 int removed_bytes;
6448 bool do_action; /* If false, then we will not perform the action. */
6449 };
6450
6451
6452 /* The ebb_constraint_struct keeps a set of proposed actions for an
6453 extended basic block. */
6454
6455 typedef struct ebb_constraint_struct ebb_constraint;
6456
6457 struct ebb_constraint_struct
6458 {
6459 ebb_t ebb;
6460 bool start_movable;
6461
6462 /* Bytes of extra space at the beginning if movable. */
6463 int start_extra_space;
6464
6465 enum ebb_target_enum start_align;
6466
6467 bool end_movable;
6468
6469 /* Bytes of extra space at the end if movable. */
6470 int end_extra_space;
6471
6472 unsigned action_count;
6473 unsigned action_allocated;
6474
6475 /* Array of proposed actions. */
6476 proposed_action *actions;
6477
6478 /* Action alignments -- one for each proposed action. */
6479 enum ebb_target_enum *action_aligns;
6480 };
6481
6482
6483 static void
6484 init_ebb_constraint (ebb_constraint *c)
6485 {
6486 memset (c, 0, sizeof (ebb_constraint));
6487 }
6488
6489
6490 static void
6491 free_ebb_constraint (ebb_constraint *c)
6492 {
6493 free (c->actions);
6494 }
6495
6496
6497 static void
6498 init_ebb (ebb_t *ebb,
6499 asection *sec,
6500 bfd_byte *contents,
6501 bfd_size_type content_length,
6502 property_table_entry *prop_table,
6503 unsigned ptblsize,
6504 Elf_Internal_Rela *internal_relocs,
6505 unsigned reloc_count)
6506 {
6507 memset (ebb, 0, sizeof (ebb_t));
6508 ebb->sec = sec;
6509 ebb->contents = contents;
6510 ebb->content_length = content_length;
6511 ebb->ptbl = prop_table;
6512 ebb->pte_count = ptblsize;
6513 ebb->relocs = internal_relocs;
6514 ebb->reloc_count = reloc_count;
6515 ebb->start_offset = 0;
6516 ebb->end_offset = ebb->content_length - 1;
6517 ebb->start_ptbl_idx = 0;
6518 ebb->end_ptbl_idx = ptblsize;
6519 ebb->start_reloc_idx = 0;
6520 ebb->end_reloc_idx = reloc_count;
6521 }
6522
6523
6524 /* Extend the ebb to all decodable contiguous sections. The algorithm
6525 for building a basic block around an instruction is to push it
6526 forward until we hit the end of a section, an unreachable block or
6527 a block that cannot be transformed. Then we push it backwards
6528 searching for similar conditions. */
6529
6530 static bool extend_ebb_bounds_forward (ebb_t *);
6531 static bool extend_ebb_bounds_backward (ebb_t *);
6532 static bfd_size_type insn_block_decodable_len
6533 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6534
6535 static bool
6536 extend_ebb_bounds (ebb_t *ebb)
6537 {
6538 if (!extend_ebb_bounds_forward (ebb))
6539 return false;
6540 if (!extend_ebb_bounds_backward (ebb))
6541 return false;
6542 return true;
6543 }
6544
6545
6546 static bool
6547 extend_ebb_bounds_forward (ebb_t *ebb)
6548 {
6549 property_table_entry *the_entry, *new_entry;
6550
6551 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6552
6553 /* Stop when (1) we cannot decode an instruction, (2) we are at
6554 the end of the property tables, (3) we hit a non-contiguous property
6555 table entry, (4) we hit a NO_TRANSFORM region. */
6556
6557 while (1)
6558 {
6559 bfd_vma entry_end;
6560 bfd_size_type insn_block_len;
6561
6562 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6563 insn_block_len =
6564 insn_block_decodable_len (ebb->contents, ebb->content_length,
6565 ebb->end_offset,
6566 entry_end - ebb->end_offset);
6567 if (insn_block_len != (entry_end - ebb->end_offset))
6568 {
6569 _bfd_error_handler
6570 /* xgettext:c-format */
6571 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6572 "possible configuration mismatch"),
6573 ebb->sec->owner, ebb->sec,
6574 (uint64_t) (ebb->end_offset + insn_block_len));
6575 return false;
6576 }
6577 ebb->end_offset += insn_block_len;
6578
6579 if (ebb->end_offset == ebb->sec->size)
6580 ebb->ends_section = true;
6581
6582 /* Update the reloc counter. */
6583 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6584 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6585 < ebb->end_offset))
6586 {
6587 ebb->end_reloc_idx++;
6588 }
6589
6590 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6591 return true;
6592
6593 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6594 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6595 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6596 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6597 break;
6598
6599 if (the_entry->address + the_entry->size != new_entry->address)
6600 break;
6601
6602 the_entry = new_entry;
6603 ebb->end_ptbl_idx++;
6604 }
6605
6606 /* Quick check for an unreachable or end of file just at the end. */
6607 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6608 {
6609 if (ebb->end_offset == ebb->content_length)
6610 ebb->ends_section = true;
6611 }
6612 else
6613 {
6614 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6615 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6616 && the_entry->address + the_entry->size == new_entry->address)
6617 ebb->ends_unreachable = new_entry;
6618 }
6619
6620 /* Any other ending requires exact alignment. */
6621 return true;
6622 }
6623
6624
6625 static bool
6626 extend_ebb_bounds_backward (ebb_t *ebb)
6627 {
6628 property_table_entry *the_entry, *new_entry;
6629
6630 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6631
6632 /* Stop when (1) we cannot decode the instructions in the current entry.
6633 (2) we are at the beginning of the property tables, (3) we hit a
6634 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6635
6636 while (1)
6637 {
6638 bfd_vma block_begin;
6639 bfd_size_type insn_block_len;
6640
6641 block_begin = the_entry->address - ebb->sec->vma;
6642 insn_block_len =
6643 insn_block_decodable_len (ebb->contents, ebb->content_length,
6644 block_begin,
6645 ebb->start_offset - block_begin);
6646 if (insn_block_len != ebb->start_offset - block_begin)
6647 {
6648 _bfd_error_handler
6649 /* xgettext:c-format */
6650 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6651 "possible configuration mismatch"),
6652 ebb->sec->owner, ebb->sec,
6653 (uint64_t) (ebb->end_offset + insn_block_len));
6654 return false;
6655 }
6656 ebb->start_offset -= insn_block_len;
6657
6658 /* Update the reloc counter. */
6659 while (ebb->start_reloc_idx > 0
6660 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6661 >= ebb->start_offset))
6662 {
6663 ebb->start_reloc_idx--;
6664 }
6665
6666 if (ebb->start_ptbl_idx == 0)
6667 return true;
6668
6669 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6670 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6671 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6672 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6673 return true;
6674 if (new_entry->address + new_entry->size != the_entry->address)
6675 return true;
6676
6677 the_entry = new_entry;
6678 ebb->start_ptbl_idx--;
6679 }
6680 return true;
6681 }
6682
6683
6684 static bfd_size_type
6685 insn_block_decodable_len (bfd_byte *contents,
6686 bfd_size_type content_len,
6687 bfd_vma block_offset,
6688 bfd_size_type block_len)
6689 {
6690 bfd_vma offset = block_offset;
6691
6692 while (offset < block_offset + block_len)
6693 {
6694 bfd_size_type insn_len = 0;
6695
6696 insn_len = insn_decode_len (contents, content_len, offset);
6697 if (insn_len == 0)
6698 return (offset - block_offset);
6699 offset += insn_len;
6700 }
6701 return (offset - block_offset);
6702 }
6703
6704
6705 static void
6706 ebb_propose_action (ebb_constraint *c,
6707 enum ebb_target_enum align_type,
6708 bfd_vma alignment_pow,
6709 text_action_t action,
6710 bfd_vma offset,
6711 int removed_bytes,
6712 bool do_action)
6713 {
6714 proposed_action *act;
6715
6716 if (c->action_allocated <= c->action_count)
6717 {
6718 unsigned new_allocated, i;
6719 proposed_action *new_actions;
6720
6721 new_allocated = (c->action_count + 2) * 2;
6722 new_actions = (proposed_action *)
6723 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6724
6725 for (i = 0; i < c->action_count; i++)
6726 new_actions[i] = c->actions[i];
6727 free (c->actions);
6728 c->actions = new_actions;
6729 c->action_allocated = new_allocated;
6730 }
6731
6732 act = &c->actions[c->action_count];
6733 act->align_type = align_type;
6734 act->alignment_pow = alignment_pow;
6735 act->action = action;
6736 act->offset = offset;
6737 act->removed_bytes = removed_bytes;
6738 act->do_action = do_action;
6739
6740 c->action_count++;
6741 }
6742
6743 \f
6744 /* Access to internal relocations, section contents and symbols. */
6745
6746 /* During relaxation, we need to modify relocations, section contents,
6747 and symbol definitions, and we need to keep the original values from
6748 being reloaded from the input files, i.e., we need to "pin" the
6749 modified values in memory. We also want to continue to observe the
6750 setting of the "keep-memory" flag. The following functions wrap the
6751 standard BFD functions to take care of this for us. */
6752
6753 static Elf_Internal_Rela *
6754 retrieve_internal_relocs (bfd *abfd, asection *sec, bool keep_memory)
6755 {
6756 Elf_Internal_Rela *internal_relocs;
6757
6758 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6759 return NULL;
6760
6761 internal_relocs = elf_section_data (sec)->relocs;
6762 if (internal_relocs == NULL)
6763 internal_relocs = (_bfd_elf_link_read_relocs
6764 (abfd, sec, NULL, NULL, keep_memory));
6765 return internal_relocs;
6766 }
6767
6768
6769 static void
6770 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6771 {
6772 elf_section_data (sec)->relocs = internal_relocs;
6773 }
6774
6775
6776 static void
6777 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6778 {
6779 if (elf_section_data (sec)->relocs != internal_relocs)
6780 free (internal_relocs);
6781 }
6782
6783
6784 static bfd_byte *
6785 retrieve_contents (bfd *abfd, asection *sec, bool keep_memory)
6786 {
6787 bfd_byte *contents;
6788 bfd_size_type sec_size;
6789
6790 sec_size = bfd_get_section_limit (abfd, sec);
6791 contents = elf_section_data (sec)->this_hdr.contents;
6792
6793 if (contents == NULL && sec_size != 0)
6794 {
6795 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6796 {
6797 free (contents);
6798 return NULL;
6799 }
6800 if (keep_memory)
6801 elf_section_data (sec)->this_hdr.contents = contents;
6802 }
6803 return contents;
6804 }
6805
6806
6807 static void
6808 pin_contents (asection *sec, bfd_byte *contents)
6809 {
6810 elf_section_data (sec)->this_hdr.contents = contents;
6811 }
6812
6813
6814 static void
6815 release_contents (asection *sec, bfd_byte *contents)
6816 {
6817 if (elf_section_data (sec)->this_hdr.contents != contents)
6818 free (contents);
6819 }
6820
6821
6822 static Elf_Internal_Sym *
6823 retrieve_local_syms (bfd *input_bfd)
6824 {
6825 Elf_Internal_Shdr *symtab_hdr;
6826 Elf_Internal_Sym *isymbuf;
6827 size_t locsymcount;
6828
6829 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6830 locsymcount = symtab_hdr->sh_info;
6831
6832 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6833 if (isymbuf == NULL && locsymcount != 0)
6834 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6835 NULL, NULL, NULL);
6836
6837 /* Save the symbols for this input file so they won't be read again. */
6838 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6839 symtab_hdr->contents = (unsigned char *) isymbuf;
6840
6841 return isymbuf;
6842 }
6843
6844 \f
6845 /* Code for link-time relaxation. */
6846
6847 /* Initialization for relaxation: */
6848 static bool analyze_relocations (struct bfd_link_info *);
6849 static bool find_relaxable_sections
6850 (bfd *, asection *, struct bfd_link_info *, bool *);
6851 static bool collect_source_relocs
6852 (bfd *, asection *, struct bfd_link_info *);
6853 static bool is_resolvable_asm_expansion
6854 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6855 bool *);
6856 static Elf_Internal_Rela *find_associated_l32r_irel
6857 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6858 static bool compute_text_actions
6859 (bfd *, asection *, struct bfd_link_info *);
6860 static bool compute_ebb_proposed_actions (ebb_constraint *);
6861 static bool compute_ebb_actions (ebb_constraint *);
6862 typedef struct reloc_range_list_struct reloc_range_list;
6863 static bool check_section_ebb_pcrels_fit
6864 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6865 reloc_range_list *, const ebb_constraint *,
6866 const xtensa_opcode *);
6867 static bool check_section_ebb_reduces (const ebb_constraint *);
6868 static void text_action_add_proposed
6869 (text_action_list *, const ebb_constraint *, asection *);
6870
6871 /* First pass: */
6872 static bool compute_removed_literals
6873 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6874 static Elf_Internal_Rela *get_irel_at_offset
6875 (asection *, Elf_Internal_Rela *, bfd_vma);
6876 static bool is_removable_literal
6877 (const source_reloc *, int, const source_reloc *, int, asection *,
6878 property_table_entry *, int);
6879 static bool remove_dead_literal
6880 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6881 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6882 static bool identify_literal_placement
6883 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6884 value_map_hash_table *, bool *, Elf_Internal_Rela *, int,
6885 source_reloc *, property_table_entry *, int, section_cache_t *,
6886 bool);
6887 static bool relocations_reach (source_reloc *, int, const r_reloc *);
6888 static bool coalesce_shared_literal
6889 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6890 static bool move_shared_literal
6891 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6892 int, const r_reloc *, const literal_value *, section_cache_t *);
6893
6894 /* Second pass: */
6895 static bool relax_section (bfd *, asection *, struct bfd_link_info *);
6896 static bool translate_section_fixes (asection *);
6897 static bool translate_reloc_bfd_fix (reloc_bfd_fix *);
6898 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6899 static void shrink_dynamic_reloc_sections
6900 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6901 static bool move_literal
6902 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6903 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6904 static bool relax_property_section
6905 (bfd *, asection *, struct bfd_link_info *);
6906
6907 /* Third pass: */
6908 static bool relax_section_symbols (bfd *, asection *);
6909
6910
6911 static bool
6912 elf_xtensa_relax_section (bfd *abfd,
6913 asection *sec,
6914 struct bfd_link_info *link_info,
6915 bool *again)
6916 {
6917 static value_map_hash_table *values = NULL;
6918 static bool relocations_analyzed = false;
6919 xtensa_relax_info *relax_info;
6920
6921 if (!relocations_analyzed)
6922 {
6923 /* Do some overall initialization for relaxation. */
6924 values = value_map_hash_table_init ();
6925 if (values == NULL)
6926 return false;
6927 relaxing_section = true;
6928 if (!analyze_relocations (link_info))
6929 return false;
6930 relocations_analyzed = true;
6931 }
6932 *again = false;
6933
6934 /* Don't mess with linker-created sections. */
6935 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6936 return true;
6937
6938 relax_info = get_xtensa_relax_info (sec);
6939 BFD_ASSERT (relax_info != NULL);
6940
6941 switch (relax_info->visited)
6942 {
6943 case 0:
6944 /* Note: It would be nice to fold this pass into
6945 analyze_relocations, but it is important for this step that the
6946 sections be examined in link order. */
6947 if (!compute_removed_literals (abfd, sec, link_info, values))
6948 return false;
6949 *again = true;
6950 break;
6951
6952 case 1:
6953 if (values)
6954 value_map_hash_table_delete (values);
6955 values = NULL;
6956 if (!relax_section (abfd, sec, link_info))
6957 return false;
6958 *again = true;
6959 break;
6960
6961 case 2:
6962 if (!relax_section_symbols (abfd, sec))
6963 return false;
6964 break;
6965 }
6966
6967 relax_info->visited++;
6968 return true;
6969 }
6970
6971 \f
6972 /* Initialization for relaxation. */
6973
6974 /* This function is called once at the start of relaxation. It scans
6975 all the input sections and marks the ones that are relaxable (i.e.,
6976 literal sections with L32R relocations against them), and then
6977 collects source_reloc information for all the relocations against
6978 those relaxable sections. During this process, it also detects
6979 longcalls, i.e., calls relaxed by the assembler into indirect
6980 calls, that can be optimized back into direct calls. Within each
6981 extended basic block (ebb) containing an optimized longcall, it
6982 computes a set of "text actions" that can be performed to remove
6983 the L32R associated with the longcall while optionally preserving
6984 branch target alignments. */
6985
6986 static bool
6987 analyze_relocations (struct bfd_link_info *link_info)
6988 {
6989 bfd *abfd;
6990 asection *sec;
6991 bool is_relaxable = false;
6992
6993 /* Initialize the per-section relaxation info. */
6994 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6995 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6996 {
6997 init_xtensa_relax_info (sec);
6998 }
6999
7000 /* Mark relaxable sections (and count relocations against each one). */
7001 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7002 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7003 {
7004 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
7005 return false;
7006 }
7007
7008 /* Bail out if there are no relaxable sections. */
7009 if (!is_relaxable)
7010 return true;
7011
7012 /* Allocate space for source_relocs. */
7013 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7014 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7015 {
7016 xtensa_relax_info *relax_info;
7017
7018 relax_info = get_xtensa_relax_info (sec);
7019 if (relax_info->is_relaxable_literal_section
7020 || relax_info->is_relaxable_asm_section)
7021 {
7022 relax_info->src_relocs = (source_reloc *)
7023 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7024 }
7025 else
7026 relax_info->src_count = 0;
7027 }
7028
7029 /* Collect info on relocations against each relaxable section. */
7030 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7031 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7032 {
7033 if (!collect_source_relocs (abfd, sec, link_info))
7034 return false;
7035 }
7036
7037 /* Compute the text actions. */
7038 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7039 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7040 {
7041 if (!compute_text_actions (abfd, sec, link_info))
7042 return false;
7043 }
7044
7045 return true;
7046 }
7047
7048
7049 /* Find all the sections that might be relaxed. The motivation for
7050 this pass is that collect_source_relocs() needs to record _all_ the
7051 relocations that target each relaxable section. That is expensive
7052 and unnecessary unless the target section is actually going to be
7053 relaxed. This pass identifies all such sections by checking if
7054 they have L32Rs pointing to them. In the process, the total number
7055 of relocations targeting each section is also counted so that we
7056 know how much space to allocate for source_relocs against each
7057 relaxable literal section. */
7058
7059 static bool
7060 find_relaxable_sections (bfd *abfd,
7061 asection *sec,
7062 struct bfd_link_info *link_info,
7063 bool *is_relaxable_p)
7064 {
7065 Elf_Internal_Rela *internal_relocs;
7066 bfd_byte *contents;
7067 bool ok = true;
7068 unsigned i;
7069 xtensa_relax_info *source_relax_info;
7070 bool is_l32r_reloc;
7071
7072 internal_relocs = retrieve_internal_relocs (abfd, sec,
7073 link_info->keep_memory);
7074 if (internal_relocs == NULL)
7075 return ok;
7076
7077 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7078 if (contents == NULL && sec->size != 0)
7079 {
7080 ok = false;
7081 goto error_return;
7082 }
7083
7084 source_relax_info = get_xtensa_relax_info (sec);
7085 for (i = 0; i < sec->reloc_count; i++)
7086 {
7087 Elf_Internal_Rela *irel = &internal_relocs[i];
7088 r_reloc r_rel;
7089 asection *target_sec;
7090 xtensa_relax_info *target_relax_info;
7091
7092 /* If this section has not already been marked as "relaxable", and
7093 if it contains any ASM_EXPAND relocations (marking expanded
7094 longcalls) that can be optimized into direct calls, then mark
7095 the section as "relaxable". */
7096 if (source_relax_info
7097 && !source_relax_info->is_relaxable_asm_section
7098 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7099 {
7100 bool is_reachable = false;
7101 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7102 link_info, &is_reachable)
7103 && is_reachable)
7104 {
7105 source_relax_info->is_relaxable_asm_section = true;
7106 *is_relaxable_p = true;
7107 }
7108 }
7109
7110 r_reloc_init (&r_rel, abfd, irel, contents,
7111 bfd_get_section_limit (abfd, sec));
7112
7113 target_sec = r_reloc_get_section (&r_rel);
7114 target_relax_info = get_xtensa_relax_info (target_sec);
7115 if (!target_relax_info)
7116 continue;
7117
7118 /* Count PC-relative operand relocations against the target section.
7119 Note: The conditions tested here must match the conditions under
7120 which init_source_reloc is called in collect_source_relocs(). */
7121 is_l32r_reloc = false;
7122 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7123 {
7124 xtensa_opcode opcode =
7125 get_relocation_opcode (abfd, sec, contents, irel);
7126 if (opcode != XTENSA_UNDEFINED)
7127 {
7128 is_l32r_reloc = (opcode == get_l32r_opcode ());
7129 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7130 || is_l32r_reloc)
7131 target_relax_info->src_count++;
7132 }
7133 }
7134
7135 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7136 {
7137 /* Mark the target section as relaxable. */
7138 target_relax_info->is_relaxable_literal_section = true;
7139 *is_relaxable_p = true;
7140 }
7141 }
7142
7143 error_return:
7144 release_contents (sec, contents);
7145 release_internal_relocs (sec, internal_relocs);
7146 return ok;
7147 }
7148
7149
7150 /* Record _all_ the relocations that point to relaxable sections, and
7151 get rid of ASM_EXPAND relocs by either converting them to
7152 ASM_SIMPLIFY or by removing them. */
7153
7154 static bool
7155 collect_source_relocs (bfd *abfd,
7156 asection *sec,
7157 struct bfd_link_info *link_info)
7158 {
7159 Elf_Internal_Rela *internal_relocs;
7160 bfd_byte *contents;
7161 bool ok = true;
7162 unsigned i;
7163 bfd_size_type sec_size;
7164
7165 internal_relocs = retrieve_internal_relocs (abfd, sec,
7166 link_info->keep_memory);
7167 if (internal_relocs == NULL)
7168 return ok;
7169
7170 sec_size = bfd_get_section_limit (abfd, sec);
7171 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7172 if (contents == NULL && sec_size != 0)
7173 {
7174 ok = false;
7175 goto error_return;
7176 }
7177
7178 /* Record relocations against relaxable literal sections. */
7179 for (i = 0; i < sec->reloc_count; i++)
7180 {
7181 Elf_Internal_Rela *irel = &internal_relocs[i];
7182 r_reloc r_rel;
7183 asection *target_sec;
7184 xtensa_relax_info *target_relax_info;
7185
7186 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7187
7188 target_sec = r_reloc_get_section (&r_rel);
7189 target_relax_info = get_xtensa_relax_info (target_sec);
7190
7191 if (target_relax_info
7192 && (target_relax_info->is_relaxable_literal_section
7193 || target_relax_info->is_relaxable_asm_section))
7194 {
7195 xtensa_opcode opcode = XTENSA_UNDEFINED;
7196 int opnd = -1;
7197 bool is_abs_literal = false;
7198
7199 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7200 {
7201 /* None of the current alternate relocs are PC-relative,
7202 and only PC-relative relocs matter here. However, we
7203 still need to record the opcode for literal
7204 coalescing. */
7205 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7206 if (opcode == get_l32r_opcode ())
7207 {
7208 is_abs_literal = true;
7209 opnd = 1;
7210 }
7211 else
7212 opcode = XTENSA_UNDEFINED;
7213 }
7214 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7215 {
7216 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7217 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7218 }
7219
7220 if (opcode != XTENSA_UNDEFINED)
7221 {
7222 int src_next = target_relax_info->src_next++;
7223 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7224
7225 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7226 is_abs_literal);
7227 }
7228 }
7229 }
7230
7231 /* Now get rid of ASM_EXPAND relocations. At this point, the
7232 src_relocs array for the target literal section may still be
7233 incomplete, but it must at least contain the entries for the L32R
7234 relocations associated with ASM_EXPANDs because they were just
7235 added in the preceding loop over the relocations. */
7236
7237 for (i = 0; i < sec->reloc_count; i++)
7238 {
7239 Elf_Internal_Rela *irel = &internal_relocs[i];
7240 bool is_reachable;
7241
7242 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7243 &is_reachable))
7244 continue;
7245
7246 if (is_reachable)
7247 {
7248 Elf_Internal_Rela *l32r_irel;
7249 r_reloc r_rel;
7250 asection *target_sec;
7251 xtensa_relax_info *target_relax_info;
7252
7253 /* Mark the source_reloc for the L32R so that it will be
7254 removed in compute_removed_literals(), along with the
7255 associated literal. */
7256 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7257 irel, internal_relocs);
7258 if (l32r_irel == NULL)
7259 continue;
7260
7261 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7262
7263 target_sec = r_reloc_get_section (&r_rel);
7264 target_relax_info = get_xtensa_relax_info (target_sec);
7265
7266 if (target_relax_info
7267 && (target_relax_info->is_relaxable_literal_section
7268 || target_relax_info->is_relaxable_asm_section))
7269 {
7270 source_reloc *s_reloc;
7271
7272 /* Search the source_relocs for the entry corresponding to
7273 the l32r_irel. Note: The src_relocs array is not yet
7274 sorted, but it wouldn't matter anyway because we're
7275 searching by source offset instead of target offset. */
7276 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7277 target_relax_info->src_next,
7278 sec, l32r_irel);
7279 BFD_ASSERT (s_reloc);
7280 s_reloc->is_null = true;
7281 }
7282
7283 /* Convert this reloc to ASM_SIMPLIFY. */
7284 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7285 R_XTENSA_ASM_SIMPLIFY);
7286 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7287
7288 pin_internal_relocs (sec, internal_relocs);
7289 }
7290 else
7291 {
7292 /* It is resolvable but doesn't reach. We resolve now
7293 by eliminating the relocation -- the call will remain
7294 expanded into L32R/CALLX. */
7295 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7296 pin_internal_relocs (sec, internal_relocs);
7297 }
7298 }
7299
7300 error_return:
7301 release_contents (sec, contents);
7302 release_internal_relocs (sec, internal_relocs);
7303 return ok;
7304 }
7305
7306
7307 /* Return TRUE if the asm expansion can be resolved. Generally it can
7308 be resolved on a final link or when a partial link locates it in the
7309 same section as the target. Set "is_reachable" flag if the target of
7310 the call is within the range of a direct call, given the current VMA
7311 for this section and the target section. */
7312
7313 bool
7314 is_resolvable_asm_expansion (bfd *abfd,
7315 asection *sec,
7316 bfd_byte *contents,
7317 Elf_Internal_Rela *irel,
7318 struct bfd_link_info *link_info,
7319 bool *is_reachable_p)
7320 {
7321 asection *target_sec;
7322 asection *s;
7323 bfd_vma first_vma;
7324 bfd_vma last_vma;
7325 unsigned int first_align;
7326 unsigned int adjust;
7327 bfd_vma target_offset;
7328 r_reloc r_rel;
7329 xtensa_opcode opcode, direct_call_opcode;
7330 bfd_vma self_address;
7331 bfd_vma dest_address;
7332 bool uses_l32r;
7333 bfd_size_type sec_size;
7334
7335 *is_reachable_p = false;
7336
7337 if (contents == NULL)
7338 return false;
7339
7340 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7341 return false;
7342
7343 sec_size = bfd_get_section_limit (abfd, sec);
7344 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7345 sec_size - irel->r_offset, &uses_l32r);
7346 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7347 if (!uses_l32r)
7348 return false;
7349
7350 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7351 if (direct_call_opcode == XTENSA_UNDEFINED)
7352 return false;
7353
7354 /* Check and see that the target resolves. */
7355 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7356 if (!r_reloc_is_defined (&r_rel))
7357 return false;
7358
7359 target_sec = r_reloc_get_section (&r_rel);
7360 target_offset = r_rel.target_offset;
7361
7362 /* If the target is in a shared library, then it doesn't reach. This
7363 isn't supposed to come up because the compiler should never generate
7364 non-PIC calls on systems that use shared libraries, but the linker
7365 shouldn't crash regardless. */
7366 if (!target_sec->output_section)
7367 return false;
7368
7369 /* For relocatable sections, we can only simplify when the output
7370 section of the target is the same as the output section of the
7371 source. */
7372 if (bfd_link_relocatable (link_info)
7373 && (target_sec->output_section != sec->output_section
7374 || is_reloc_sym_weak (abfd, irel)))
7375 return false;
7376
7377 if (target_sec->output_section != sec->output_section)
7378 {
7379 /* If the two sections are sufficiently far away that relaxation
7380 might take the call out of range, we can't simplify. For
7381 example, a positive displacement call into another memory
7382 could get moved to a lower address due to literal removal,
7383 but the destination won't move, and so the displacment might
7384 get larger.
7385
7386 If the displacement is negative, assume the destination could
7387 move as far back as the start of the output section. The
7388 self_address will be at least as far into the output section
7389 as it is prior to relaxation.
7390
7391 If the displacement is postive, assume the destination will be in
7392 it's pre-relaxed location (because relaxation only makes sections
7393 smaller). The self_address could go all the way to the beginning
7394 of the output section. */
7395
7396 dest_address = target_sec->output_section->vma;
7397 self_address = sec->output_section->vma;
7398
7399 if (sec->output_section->vma > target_sec->output_section->vma)
7400 self_address += sec->output_offset + irel->r_offset + 3;
7401 else
7402 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7403 /* Call targets should be four-byte aligned. */
7404 dest_address = (dest_address + 3) & ~3;
7405 }
7406 else
7407 {
7408
7409 self_address = (sec->output_section->vma
7410 + sec->output_offset + irel->r_offset + 3);
7411 dest_address = (target_sec->output_section->vma
7412 + target_sec->output_offset + target_offset);
7413 }
7414
7415 /* Adjust addresses with alignments for the worst case to see if call insn
7416 can fit. Don't relax l32r + callx to call if the target can be out of
7417 range due to alignment.
7418 Caller and target addresses are highest and lowest address.
7419 Search all sections between caller and target, looking for max alignment.
7420 The adjustment is max alignment bytes. If the alignment at the lowest
7421 address is less than the adjustment, apply the adjustment to highest
7422 address. */
7423
7424 /* Start from lowest address.
7425 Lowest address aligmnet is from input section.
7426 Initial alignment (adjust) is from input section. */
7427 if (dest_address > self_address)
7428 {
7429 s = sec->output_section;
7430 last_vma = dest_address;
7431 first_align = sec->alignment_power;
7432 adjust = target_sec->alignment_power;
7433 }
7434 else
7435 {
7436 s = target_sec->output_section;
7437 last_vma = self_address;
7438 first_align = target_sec->alignment_power;
7439 adjust = sec->alignment_power;
7440 }
7441
7442 first_vma = s->vma;
7443
7444 /* Find the largest alignment in output section list. */
7445 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7446 {
7447 if (s->alignment_power > adjust)
7448 adjust = s->alignment_power;
7449 }
7450
7451 if (adjust > first_align)
7452 {
7453 /* Alignment may enlarge the range, adjust highest address. */
7454 adjust = 1 << adjust;
7455 if (dest_address > self_address)
7456 {
7457 dest_address += adjust;
7458 }
7459 else
7460 {
7461 self_address += adjust;
7462 }
7463 }
7464
7465 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7466 self_address, dest_address);
7467
7468 if ((self_address >> CALL_SEGMENT_BITS) !=
7469 (dest_address >> CALL_SEGMENT_BITS))
7470 return false;
7471
7472 return true;
7473 }
7474
7475
7476 static Elf_Internal_Rela *
7477 find_associated_l32r_irel (bfd *abfd,
7478 asection *sec,
7479 bfd_byte *contents,
7480 Elf_Internal_Rela *other_irel,
7481 Elf_Internal_Rela *internal_relocs)
7482 {
7483 unsigned i;
7484
7485 for (i = 0; i < sec->reloc_count; i++)
7486 {
7487 Elf_Internal_Rela *irel = &internal_relocs[i];
7488
7489 if (irel == other_irel)
7490 continue;
7491 if (irel->r_offset != other_irel->r_offset)
7492 continue;
7493 if (is_l32r_relocation (abfd, sec, contents, irel))
7494 return irel;
7495 }
7496
7497 return NULL;
7498 }
7499
7500
7501 static xtensa_opcode *
7502 build_reloc_opcodes (bfd *abfd,
7503 asection *sec,
7504 bfd_byte *contents,
7505 Elf_Internal_Rela *internal_relocs)
7506 {
7507 unsigned i;
7508 xtensa_opcode *reloc_opcodes =
7509 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7510 for (i = 0; i < sec->reloc_count; i++)
7511 {
7512 Elf_Internal_Rela *irel = &internal_relocs[i];
7513 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7514 }
7515 return reloc_opcodes;
7516 }
7517
7518 struct reloc_range_struct
7519 {
7520 bfd_vma addr;
7521 bool add; /* TRUE if start of a range, FALSE otherwise. */
7522 /* Original irel index in the array of relocations for a section. */
7523 unsigned irel_index;
7524 };
7525 typedef struct reloc_range_struct reloc_range;
7526
7527 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7528 struct reloc_range_list_entry_struct
7529 {
7530 reloc_range_list_entry *next;
7531 reloc_range_list_entry *prev;
7532 Elf_Internal_Rela *irel;
7533 xtensa_opcode opcode;
7534 int opnum;
7535 };
7536
7537 struct reloc_range_list_struct
7538 {
7539 /* The rest of the structure is only meaningful when ok is TRUE. */
7540 bool ok;
7541
7542 unsigned n_range; /* Number of range markers. */
7543 reloc_range *range; /* Sorted range markers. */
7544
7545 unsigned first; /* Index of a first range element in the list. */
7546 unsigned last; /* One past index of a last range element in the list. */
7547
7548 unsigned n_list; /* Number of list elements. */
7549 reloc_range_list_entry *reloc; /* */
7550 reloc_range_list_entry list_root;
7551 };
7552
7553 static int
7554 reloc_range_compare (const void *a, const void *b)
7555 {
7556 const reloc_range *ra = a;
7557 const reloc_range *rb = b;
7558
7559 if (ra->addr != rb->addr)
7560 return ra->addr < rb->addr ? -1 : 1;
7561 if (ra->add != rb->add)
7562 return ra->add ? -1 : 1;
7563 return 0;
7564 }
7565
7566 static void
7567 build_reloc_ranges (bfd *abfd, asection *sec,
7568 bfd_byte *contents,
7569 Elf_Internal_Rela *internal_relocs,
7570 xtensa_opcode *reloc_opcodes,
7571 reloc_range_list *list)
7572 {
7573 unsigned i;
7574 size_t n = 0;
7575 size_t max_n = 0;
7576 reloc_range *ranges = NULL;
7577 reloc_range_list_entry *reloc =
7578 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7579
7580 memset (list, 0, sizeof (*list));
7581 list->ok = true;
7582
7583 for (i = 0; i < sec->reloc_count; i++)
7584 {
7585 Elf_Internal_Rela *irel = &internal_relocs[i];
7586 int r_type = ELF32_R_TYPE (irel->r_info);
7587 reloc_howto_type *howto = &elf_howto_table[r_type];
7588 r_reloc r_rel;
7589
7590 if (r_type == R_XTENSA_ASM_SIMPLIFY
7591 || r_type == R_XTENSA_32_PCREL
7592 || !howto->pc_relative)
7593 continue;
7594
7595 r_reloc_init (&r_rel, abfd, irel, contents,
7596 bfd_get_section_limit (abfd, sec));
7597
7598 if (r_reloc_get_section (&r_rel) != sec)
7599 continue;
7600
7601 if (n + 2 > max_n)
7602 {
7603 max_n = (max_n + 2) * 2;
7604 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7605 }
7606
7607 ranges[n].addr = irel->r_offset;
7608 ranges[n + 1].addr = r_rel.target_offset;
7609
7610 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7611 ranges[n + 1].add = !ranges[n].add;
7612
7613 ranges[n].irel_index = i;
7614 ranges[n + 1].irel_index = i;
7615
7616 n += 2;
7617
7618 reloc[i].irel = irel;
7619
7620 /* Every relocation won't possibly be checked in the optimized version of
7621 check_section_ebb_pcrels_fit, so this needs to be done here. */
7622 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7623 {
7624 /* None of the current alternate relocs are PC-relative,
7625 and only PC-relative relocs matter here. */
7626 }
7627 else
7628 {
7629 xtensa_opcode opcode;
7630 int opnum;
7631
7632 if (reloc_opcodes)
7633 opcode = reloc_opcodes[i];
7634 else
7635 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7636
7637 if (opcode == XTENSA_UNDEFINED)
7638 {
7639 list->ok = false;
7640 break;
7641 }
7642
7643 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7644 if (opnum == XTENSA_UNDEFINED)
7645 {
7646 list->ok = false;
7647 break;
7648 }
7649
7650 /* Record relocation opcode and opnum as we've calculated them
7651 anyway and they won't change. */
7652 reloc[i].opcode = opcode;
7653 reloc[i].opnum = opnum;
7654 }
7655 }
7656
7657 if (list->ok)
7658 {
7659 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7660 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7661
7662 list->n_range = n;
7663 list->range = ranges;
7664 list->reloc = reloc;
7665 list->list_root.prev = &list->list_root;
7666 list->list_root.next = &list->list_root;
7667 }
7668 else
7669 {
7670 free (ranges);
7671 free (reloc);
7672 }
7673 }
7674
7675 static void reloc_range_list_append (reloc_range_list *list,
7676 unsigned irel_index)
7677 {
7678 reloc_range_list_entry *entry = list->reloc + irel_index;
7679
7680 entry->prev = list->list_root.prev;
7681 entry->next = &list->list_root;
7682 entry->prev->next = entry;
7683 entry->next->prev = entry;
7684 ++list->n_list;
7685 }
7686
7687 static void reloc_range_list_remove (reloc_range_list *list,
7688 unsigned irel_index)
7689 {
7690 reloc_range_list_entry *entry = list->reloc + irel_index;
7691
7692 entry->next->prev = entry->prev;
7693 entry->prev->next = entry->next;
7694 --list->n_list;
7695 }
7696
7697 /* Update relocation list object so that it lists all relocations that cross
7698 [first; last] range. Range bounds should not decrease with successive
7699 invocations. */
7700 static void reloc_range_list_update_range (reloc_range_list *list,
7701 bfd_vma first, bfd_vma last)
7702 {
7703 /* This should not happen: EBBs are iterated from lower addresses to higher.
7704 But even if that happens there's no need to break: just flush current list
7705 and start from scratch. */
7706 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7707 (list->first > 0 && list->range[list->first - 1].addr >= first))
7708 {
7709 list->first = 0;
7710 list->last = 0;
7711 list->n_list = 0;
7712 list->list_root.next = &list->list_root;
7713 list->list_root.prev = &list->list_root;
7714 fprintf (stderr, "%s: move backwards requested\n", __func__);
7715 }
7716
7717 for (; list->last < list->n_range &&
7718 list->range[list->last].addr <= last; ++list->last)
7719 if (list->range[list->last].add)
7720 reloc_range_list_append (list, list->range[list->last].irel_index);
7721
7722 for (; list->first < list->n_range &&
7723 list->range[list->first].addr < first; ++list->first)
7724 if (!list->range[list->first].add)
7725 reloc_range_list_remove (list, list->range[list->first].irel_index);
7726 }
7727
7728 static void free_reloc_range_list (reloc_range_list *list)
7729 {
7730 free (list->range);
7731 free (list->reloc);
7732 }
7733
7734 /* The compute_text_actions function will build a list of potential
7735 transformation actions for code in the extended basic block of each
7736 longcall that is optimized to a direct call. From this list we
7737 generate a set of actions to actually perform that optimizes for
7738 space and, if not using size_opt, maintains branch target
7739 alignments.
7740
7741 These actions to be performed are placed on a per-section list.
7742 The actual changes are performed by relax_section() in the second
7743 pass. */
7744
7745 bool
7746 compute_text_actions (bfd *abfd,
7747 asection *sec,
7748 struct bfd_link_info *link_info)
7749 {
7750 xtensa_opcode *reloc_opcodes = NULL;
7751 xtensa_relax_info *relax_info;
7752 bfd_byte *contents;
7753 Elf_Internal_Rela *internal_relocs;
7754 bool ok = true;
7755 unsigned i;
7756 property_table_entry *prop_table = 0;
7757 int ptblsize = 0;
7758 bfd_size_type sec_size;
7759 reloc_range_list relevant_relocs;
7760
7761 relax_info = get_xtensa_relax_info (sec);
7762 BFD_ASSERT (relax_info);
7763 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7764
7765 /* Do nothing if the section contains no optimized longcalls. */
7766 if (!relax_info->is_relaxable_asm_section)
7767 return ok;
7768
7769 internal_relocs = retrieve_internal_relocs (abfd, sec,
7770 link_info->keep_memory);
7771
7772 if (internal_relocs)
7773 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7774 internal_reloc_compare);
7775
7776 sec_size = bfd_get_section_limit (abfd, sec);
7777 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7778 if (contents == NULL && sec_size != 0)
7779 {
7780 ok = false;
7781 goto error_return;
7782 }
7783
7784 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7785 XTENSA_PROP_SEC_NAME, false);
7786 if (ptblsize < 0)
7787 {
7788 ok = false;
7789 goto error_return;
7790 }
7791
7792 /* Precompute the opcode for each relocation. */
7793 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7794
7795 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7796 &relevant_relocs);
7797
7798 for (i = 0; i < sec->reloc_count; i++)
7799 {
7800 Elf_Internal_Rela *irel = &internal_relocs[i];
7801 bfd_vma r_offset;
7802 property_table_entry *the_entry;
7803 int ptbl_idx;
7804 ebb_t *ebb;
7805 ebb_constraint ebb_table;
7806 bfd_size_type simplify_size;
7807
7808 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7809 continue;
7810 r_offset = irel->r_offset;
7811
7812 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7813 if (simplify_size == 0)
7814 {
7815 _bfd_error_handler
7816 /* xgettext:c-format */
7817 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7818 "XTENSA_ASM_SIMPLIFY relocation; "
7819 "possible configuration mismatch"),
7820 sec->owner, sec, (uint64_t) r_offset);
7821 continue;
7822 }
7823
7824 /* If the instruction table is not around, then don't do this
7825 relaxation. */
7826 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7827 sec->vma + irel->r_offset);
7828 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7829 {
7830 text_action_add (&relax_info->action_list,
7831 ta_convert_longcall, sec, r_offset,
7832 0);
7833 continue;
7834 }
7835
7836 /* If the next longcall happens to be at the same address as an
7837 unreachable section of size 0, then skip forward. */
7838 ptbl_idx = the_entry - prop_table;
7839 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7840 && the_entry->size == 0
7841 && ptbl_idx + 1 < ptblsize
7842 && (prop_table[ptbl_idx + 1].address
7843 == prop_table[ptbl_idx].address))
7844 {
7845 ptbl_idx++;
7846 the_entry++;
7847 }
7848
7849 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7850 /* NO_REORDER is OK */
7851 continue;
7852
7853 init_ebb_constraint (&ebb_table);
7854 ebb = &ebb_table.ebb;
7855 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7856 internal_relocs, sec->reloc_count);
7857 ebb->start_offset = r_offset + simplify_size;
7858 ebb->end_offset = r_offset + simplify_size;
7859 ebb->start_ptbl_idx = ptbl_idx;
7860 ebb->end_ptbl_idx = ptbl_idx;
7861 ebb->start_reloc_idx = i;
7862 ebb->end_reloc_idx = i;
7863
7864 if (!extend_ebb_bounds (ebb)
7865 || !compute_ebb_proposed_actions (&ebb_table)
7866 || !compute_ebb_actions (&ebb_table)
7867 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7868 internal_relocs,
7869 &relevant_relocs,
7870 &ebb_table, reloc_opcodes)
7871 || !check_section_ebb_reduces (&ebb_table))
7872 {
7873 /* If anything goes wrong or we get unlucky and something does
7874 not fit, with our plan because of expansion between
7875 critical branches, just convert to a NOP. */
7876
7877 text_action_add (&relax_info->action_list,
7878 ta_convert_longcall, sec, r_offset, 0);
7879 i = ebb_table.ebb.end_reloc_idx;
7880 free_ebb_constraint (&ebb_table);
7881 continue;
7882 }
7883
7884 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7885
7886 /* Update the index so we do not go looking at the relocations
7887 we have already processed. */
7888 i = ebb_table.ebb.end_reloc_idx;
7889 free_ebb_constraint (&ebb_table);
7890 }
7891
7892 free_reloc_range_list (&relevant_relocs);
7893
7894 #if DEBUG
7895 if (action_list_count (&relax_info->action_list))
7896 print_action_list (stderr, &relax_info->action_list);
7897 #endif
7898
7899 error_return:
7900 release_contents (sec, contents);
7901 release_internal_relocs (sec, internal_relocs);
7902 free (prop_table);
7903 free (reloc_opcodes);
7904
7905 return ok;
7906 }
7907
7908
7909 /* Do not widen an instruction if it is preceeded by a
7910 loop opcode. It might cause misalignment. */
7911
7912 static bool
7913 prev_instr_is_a_loop (bfd_byte *contents,
7914 bfd_size_type content_length,
7915 bfd_size_type offset)
7916 {
7917 xtensa_opcode prev_opcode;
7918
7919 if (offset < 3)
7920 return false;
7921 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7922 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7923 }
7924
7925
7926 /* Find all of the possible actions for an extended basic block. */
7927
7928 bool
7929 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7930 {
7931 const ebb_t *ebb = &ebb_table->ebb;
7932 unsigned rel_idx = ebb->start_reloc_idx;
7933 property_table_entry *entry, *start_entry, *end_entry;
7934 bfd_vma offset = 0;
7935 xtensa_isa isa = xtensa_default_isa;
7936 xtensa_format fmt;
7937 static xtensa_insnbuf insnbuf = NULL;
7938 static xtensa_insnbuf slotbuf = NULL;
7939
7940 if (insnbuf == NULL)
7941 {
7942 insnbuf = xtensa_insnbuf_alloc (isa);
7943 slotbuf = xtensa_insnbuf_alloc (isa);
7944 }
7945
7946 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7947 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7948
7949 for (entry = start_entry; entry <= end_entry; entry++)
7950 {
7951 bfd_vma start_offset, end_offset;
7952 bfd_size_type insn_len;
7953
7954 start_offset = entry->address - ebb->sec->vma;
7955 end_offset = entry->address + entry->size - ebb->sec->vma;
7956
7957 if (entry == start_entry)
7958 start_offset = ebb->start_offset;
7959 if (entry == end_entry)
7960 end_offset = ebb->end_offset;
7961 offset = start_offset;
7962
7963 if (offset == entry->address - ebb->sec->vma
7964 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7965 {
7966 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7967 BFD_ASSERT (offset != end_offset);
7968 if (offset == end_offset)
7969 return false;
7970
7971 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7972 offset);
7973 if (insn_len == 0)
7974 goto decode_error;
7975
7976 if (check_branch_target_aligned_address (offset, insn_len))
7977 align_type = EBB_REQUIRE_TGT_ALIGN;
7978
7979 ebb_propose_action (ebb_table, align_type, 0,
7980 ta_none, offset, 0, true);
7981 }
7982
7983 while (offset != end_offset)
7984 {
7985 Elf_Internal_Rela *irel;
7986 xtensa_opcode opcode;
7987
7988 while (rel_idx < ebb->end_reloc_idx
7989 && (ebb->relocs[rel_idx].r_offset < offset
7990 || (ebb->relocs[rel_idx].r_offset == offset
7991 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7992 != R_XTENSA_ASM_SIMPLIFY))))
7993 rel_idx++;
7994
7995 /* Check for longcall. */
7996 irel = &ebb->relocs[rel_idx];
7997 if (irel->r_offset == offset
7998 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7999 {
8000 bfd_size_type simplify_size;
8001
8002 simplify_size = get_asm_simplify_size (ebb->contents,
8003 ebb->content_length,
8004 irel->r_offset);
8005 if (simplify_size == 0)
8006 goto decode_error;
8007
8008 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8009 ta_convert_longcall, offset, 0, true);
8010
8011 offset += simplify_size;
8012 continue;
8013 }
8014
8015 if (offset + MIN_INSN_LENGTH > ebb->content_length)
8016 goto decode_error;
8017 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
8018 ebb->content_length - offset);
8019 fmt = xtensa_format_decode (isa, insnbuf);
8020 if (fmt == XTENSA_UNDEFINED)
8021 goto decode_error;
8022 insn_len = xtensa_format_length (isa, fmt);
8023 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
8024 goto decode_error;
8025
8026 if (xtensa_format_num_slots (isa, fmt) != 1)
8027 {
8028 offset += insn_len;
8029 continue;
8030 }
8031
8032 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8033 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8034 if (opcode == XTENSA_UNDEFINED)
8035 goto decode_error;
8036
8037 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
8038 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8039 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
8040 {
8041 /* Add an instruction narrow action. */
8042 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8043 ta_narrow_insn, offset, 0, false);
8044 }
8045 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8046 && can_widen_instruction (slotbuf, fmt, opcode) != 0
8047 && ! prev_instr_is_a_loop (ebb->contents,
8048 ebb->content_length, offset))
8049 {
8050 /* Add an instruction widen action. */
8051 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8052 ta_widen_insn, offset, 0, false);
8053 }
8054 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
8055 {
8056 /* Check for branch targets. */
8057 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
8058 ta_none, offset, 0, true);
8059 }
8060
8061 offset += insn_len;
8062 }
8063 }
8064
8065 if (ebb->ends_unreachable)
8066 {
8067 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8068 ta_fill, ebb->end_offset, 0, true);
8069 }
8070
8071 return true;
8072
8073 decode_error:
8074 _bfd_error_handler
8075 /* xgettext:c-format */
8076 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8077 "possible configuration mismatch"),
8078 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8079 return false;
8080 }
8081
8082
8083 /* After all of the information has collected about the
8084 transformations possible in an EBB, compute the appropriate actions
8085 here in compute_ebb_actions. We still must check later to make
8086 sure that the actions do not break any relocations. The algorithm
8087 used here is pretty greedy. Basically, it removes as many no-ops
8088 as possible so that the end of the EBB has the same alignment
8089 characteristics as the original. First, it uses narrowing, then
8090 fill space at the end of the EBB, and finally widenings. If that
8091 does not work, it tries again with one fewer no-op removed. The
8092 optimization will only be performed if all of the branch targets
8093 that were aligned before transformation are also aligned after the
8094 transformation.
8095
8096 When the size_opt flag is set, ignore the branch target alignments,
8097 narrow all wide instructions, and remove all no-ops unless the end
8098 of the EBB prevents it. */
8099
8100 bool
8101 compute_ebb_actions (ebb_constraint *ebb_table)
8102 {
8103 unsigned i = 0;
8104 unsigned j;
8105 int removed_bytes = 0;
8106 ebb_t *ebb = &ebb_table->ebb;
8107 unsigned seg_idx_start = 0;
8108 unsigned seg_idx_end = 0;
8109
8110 /* We perform this like the assembler relaxation algorithm: Start by
8111 assuming all instructions are narrow and all no-ops removed; then
8112 walk through.... */
8113
8114 /* For each segment of this that has a solid constraint, check to
8115 see if there are any combinations that will keep the constraint.
8116 If so, use it. */
8117 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8118 {
8119 bool requires_text_end_align = false;
8120 unsigned longcall_count = 0;
8121 unsigned longcall_convert_count = 0;
8122 unsigned narrowable_count = 0;
8123 unsigned narrowable_convert_count = 0;
8124 unsigned widenable_count = 0;
8125 unsigned widenable_convert_count = 0;
8126
8127 proposed_action *action = NULL;
8128 int align = (1 << ebb_table->ebb.sec->alignment_power);
8129
8130 seg_idx_start = seg_idx_end;
8131
8132 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8133 {
8134 action = &ebb_table->actions[i];
8135 if (action->action == ta_convert_longcall)
8136 longcall_count++;
8137 if (action->action == ta_narrow_insn)
8138 narrowable_count++;
8139 if (action->action == ta_widen_insn)
8140 widenable_count++;
8141 if (action->action == ta_fill)
8142 break;
8143 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8144 break;
8145 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8146 && !elf32xtensa_size_opt)
8147 break;
8148 }
8149 seg_idx_end = i;
8150
8151 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8152 requires_text_end_align = true;
8153
8154 if (elf32xtensa_size_opt && !requires_text_end_align
8155 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8156 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8157 {
8158 longcall_convert_count = longcall_count;
8159 narrowable_convert_count = narrowable_count;
8160 widenable_convert_count = 0;
8161 }
8162 else
8163 {
8164 /* There is a constraint. Convert the max number of longcalls. */
8165 narrowable_convert_count = 0;
8166 longcall_convert_count = 0;
8167 widenable_convert_count = 0;
8168
8169 for (j = 0; j < longcall_count; j++)
8170 {
8171 int removed = (longcall_count - j) * 3 & (align - 1);
8172 unsigned desire_narrow = (align - removed) & (align - 1);
8173 unsigned desire_widen = removed;
8174 if (desire_narrow <= narrowable_count)
8175 {
8176 narrowable_convert_count = desire_narrow;
8177 narrowable_convert_count +=
8178 (align * ((narrowable_count - narrowable_convert_count)
8179 / align));
8180 longcall_convert_count = (longcall_count - j);
8181 widenable_convert_count = 0;
8182 break;
8183 }
8184 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8185 {
8186 narrowable_convert_count = 0;
8187 longcall_convert_count = longcall_count - j;
8188 widenable_convert_count = desire_widen;
8189 break;
8190 }
8191 }
8192 }
8193
8194 /* Now the number of conversions are saved. Do them. */
8195 for (i = seg_idx_start; i < seg_idx_end; i++)
8196 {
8197 action = &ebb_table->actions[i];
8198 switch (action->action)
8199 {
8200 case ta_convert_longcall:
8201 if (longcall_convert_count != 0)
8202 {
8203 action->action = ta_remove_longcall;
8204 action->do_action = true;
8205 action->removed_bytes += 3;
8206 longcall_convert_count--;
8207 }
8208 break;
8209 case ta_narrow_insn:
8210 if (narrowable_convert_count != 0)
8211 {
8212 action->do_action = true;
8213 action->removed_bytes += 1;
8214 narrowable_convert_count--;
8215 }
8216 break;
8217 case ta_widen_insn:
8218 if (widenable_convert_count != 0)
8219 {
8220 action->do_action = true;
8221 action->removed_bytes -= 1;
8222 widenable_convert_count--;
8223 }
8224 break;
8225 default:
8226 break;
8227 }
8228 }
8229 }
8230
8231 /* Now we move on to some local opts. Try to remove each of the
8232 remaining longcalls. */
8233
8234 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8235 {
8236 removed_bytes = 0;
8237 for (i = 0; i < ebb_table->action_count; i++)
8238 {
8239 int old_removed_bytes = removed_bytes;
8240 proposed_action *action = &ebb_table->actions[i];
8241
8242 if (action->do_action && action->action == ta_convert_longcall)
8243 {
8244 bool bad_alignment = false;
8245 removed_bytes += 3;
8246 for (j = i + 1; j < ebb_table->action_count; j++)
8247 {
8248 proposed_action *new_action = &ebb_table->actions[j];
8249 bfd_vma offset = new_action->offset;
8250 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8251 {
8252 if (!check_branch_target_aligned
8253 (ebb_table->ebb.contents,
8254 ebb_table->ebb.content_length,
8255 offset, offset - removed_bytes))
8256 {
8257 bad_alignment = true;
8258 break;
8259 }
8260 }
8261 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8262 {
8263 if (!check_loop_aligned (ebb_table->ebb.contents,
8264 ebb_table->ebb.content_length,
8265 offset,
8266 offset - removed_bytes))
8267 {
8268 bad_alignment = true;
8269 break;
8270 }
8271 }
8272 if (new_action->action == ta_narrow_insn
8273 && !new_action->do_action
8274 && ebb_table->ebb.sec->alignment_power == 2)
8275 {
8276 /* Narrow an instruction and we are done. */
8277 new_action->do_action = true;
8278 new_action->removed_bytes += 1;
8279 bad_alignment = false;
8280 break;
8281 }
8282 if (new_action->action == ta_widen_insn
8283 && new_action->do_action
8284 && ebb_table->ebb.sec->alignment_power == 2)
8285 {
8286 /* Narrow an instruction and we are done. */
8287 new_action->do_action = false;
8288 new_action->removed_bytes += 1;
8289 bad_alignment = false;
8290 break;
8291 }
8292 if (new_action->do_action)
8293 removed_bytes += new_action->removed_bytes;
8294 }
8295 if (!bad_alignment)
8296 {
8297 action->removed_bytes += 3;
8298 action->action = ta_remove_longcall;
8299 action->do_action = true;
8300 }
8301 }
8302 removed_bytes = old_removed_bytes;
8303 if (action->do_action)
8304 removed_bytes += action->removed_bytes;
8305 }
8306 }
8307
8308 removed_bytes = 0;
8309 for (i = 0; i < ebb_table->action_count; ++i)
8310 {
8311 proposed_action *action = &ebb_table->actions[i];
8312 if (action->do_action)
8313 removed_bytes += action->removed_bytes;
8314 }
8315
8316 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8317 && ebb->ends_unreachable)
8318 {
8319 proposed_action *action;
8320 int br;
8321 int extra_space;
8322
8323 BFD_ASSERT (ebb_table->action_count != 0);
8324 action = &ebb_table->actions[ebb_table->action_count - 1];
8325 BFD_ASSERT (action->action == ta_fill);
8326 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8327
8328 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8329 br = action->removed_bytes + removed_bytes + extra_space;
8330 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8331
8332 action->removed_bytes = extra_space - br;
8333 }
8334 return true;
8335 }
8336
8337
8338 /* The xlate_map is a sorted array of address mappings designed to
8339 answer the offset_with_removed_text() query with a binary search instead
8340 of a linear search through the section's action_list. */
8341
8342 typedef struct xlate_map_entry xlate_map_entry_t;
8343 typedef struct xlate_map xlate_map_t;
8344
8345 struct xlate_map_entry
8346 {
8347 bfd_vma orig_address;
8348 bfd_vma new_address;
8349 unsigned size;
8350 };
8351
8352 struct xlate_map
8353 {
8354 unsigned entry_count;
8355 xlate_map_entry_t *entry;
8356 };
8357
8358
8359 static int
8360 xlate_compare (const void *a_v, const void *b_v)
8361 {
8362 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8363 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8364 if (a->orig_address < b->orig_address)
8365 return -1;
8366 if (a->orig_address > (b->orig_address + b->size - 1))
8367 return 1;
8368 return 0;
8369 }
8370
8371
8372 static bfd_vma
8373 xlate_offset_with_removed_text (const xlate_map_t *map,
8374 text_action_list *action_list,
8375 bfd_vma offset)
8376 {
8377 void *r;
8378 xlate_map_entry_t *e;
8379 struct xlate_map_entry se;
8380
8381 if (map == NULL)
8382 return offset_with_removed_text (action_list, offset);
8383
8384 if (map->entry_count == 0)
8385 return offset;
8386
8387 se.orig_address = offset;
8388 r = bsearch (&se, map->entry, map->entry_count,
8389 sizeof (xlate_map_entry_t), &xlate_compare);
8390 e = (xlate_map_entry_t *) r;
8391
8392 /* There could be a jump past the end of the section,
8393 allow it using the last xlate map entry to translate its address. */
8394 if (e == NULL)
8395 {
8396 e = map->entry + map->entry_count - 1;
8397 if (xlate_compare (&se, e) <= 0)
8398 e = NULL;
8399 }
8400 BFD_ASSERT (e != NULL);
8401 if (e == NULL)
8402 return offset;
8403 return e->new_address - e->orig_address + offset;
8404 }
8405
8406 typedef struct xlate_map_context_struct xlate_map_context;
8407 struct xlate_map_context_struct
8408 {
8409 xlate_map_t *map;
8410 xlate_map_entry_t *current_entry;
8411 int removed;
8412 };
8413
8414 static int
8415 xlate_map_fn (splay_tree_node node, void *p)
8416 {
8417 text_action *r = (text_action *)node->value;
8418 xlate_map_context *ctx = p;
8419 unsigned orig_size = 0;
8420
8421 switch (r->action)
8422 {
8423 case ta_none:
8424 case ta_remove_insn:
8425 case ta_convert_longcall:
8426 case ta_remove_literal:
8427 case ta_add_literal:
8428 break;
8429 case ta_remove_longcall:
8430 orig_size = 6;
8431 break;
8432 case ta_narrow_insn:
8433 orig_size = 3;
8434 break;
8435 case ta_widen_insn:
8436 orig_size = 2;
8437 break;
8438 case ta_fill:
8439 break;
8440 }
8441 ctx->current_entry->size =
8442 r->offset + orig_size - ctx->current_entry->orig_address;
8443 if (ctx->current_entry->size != 0)
8444 {
8445 ctx->current_entry++;
8446 ctx->map->entry_count++;
8447 }
8448 ctx->current_entry->orig_address = r->offset + orig_size;
8449 ctx->removed += r->removed_bytes;
8450 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8451 ctx->current_entry->size = 0;
8452 return 0;
8453 }
8454
8455 /* Build a binary searchable offset translation map from a section's
8456 action list. */
8457
8458 static xlate_map_t *
8459 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8460 {
8461 text_action_list *action_list = &relax_info->action_list;
8462 unsigned num_actions = 0;
8463 xlate_map_context ctx;
8464
8465 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8466
8467 if (ctx.map == NULL)
8468 return NULL;
8469
8470 num_actions = action_list_count (action_list);
8471 ctx.map->entry = (xlate_map_entry_t *)
8472 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8473 if (ctx.map->entry == NULL)
8474 {
8475 free (ctx.map);
8476 return NULL;
8477 }
8478 ctx.map->entry_count = 0;
8479
8480 ctx.removed = 0;
8481 ctx.current_entry = &ctx.map->entry[0];
8482
8483 ctx.current_entry->orig_address = 0;
8484 ctx.current_entry->new_address = 0;
8485 ctx.current_entry->size = 0;
8486
8487 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8488
8489 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8490 - ctx.current_entry->orig_address);
8491 if (ctx.current_entry->size != 0)
8492 ctx.map->entry_count++;
8493
8494 return ctx.map;
8495 }
8496
8497
8498 /* Free an offset translation map. */
8499
8500 static void
8501 free_xlate_map (xlate_map_t *map)
8502 {
8503 if (map)
8504 {
8505 free (map->entry);
8506 free (map);
8507 }
8508 }
8509
8510
8511 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8512 relocations in a section will fit if a proposed set of actions
8513 are performed. */
8514
8515 static bool
8516 check_section_ebb_pcrels_fit (bfd *abfd,
8517 asection *sec,
8518 bfd_byte *contents,
8519 Elf_Internal_Rela *internal_relocs,
8520 reloc_range_list *relevant_relocs,
8521 const ebb_constraint *constraint,
8522 const xtensa_opcode *reloc_opcodes)
8523 {
8524 unsigned i, j;
8525 unsigned n = sec->reloc_count;
8526 Elf_Internal_Rela *irel;
8527 xlate_map_t *xmap = NULL;
8528 bool ok = true;
8529 xtensa_relax_info *relax_info;
8530 reloc_range_list_entry *entry = NULL;
8531
8532 relax_info = get_xtensa_relax_info (sec);
8533
8534 if (relax_info && sec->reloc_count > 100)
8535 {
8536 xmap = build_xlate_map (sec, relax_info);
8537 /* NULL indicates out of memory, but the slow version
8538 can still be used. */
8539 }
8540
8541 if (relevant_relocs && constraint->action_count)
8542 {
8543 if (!relevant_relocs->ok)
8544 {
8545 ok = false;
8546 n = 0;
8547 }
8548 else
8549 {
8550 bfd_vma min_offset, max_offset;
8551 min_offset = max_offset = constraint->actions[0].offset;
8552
8553 for (i = 1; i < constraint->action_count; ++i)
8554 {
8555 proposed_action *action = &constraint->actions[i];
8556 bfd_vma offset = action->offset;
8557
8558 if (offset < min_offset)
8559 min_offset = offset;
8560 if (offset > max_offset)
8561 max_offset = offset;
8562 }
8563 reloc_range_list_update_range (relevant_relocs, min_offset,
8564 max_offset);
8565 n = relevant_relocs->n_list;
8566 entry = &relevant_relocs->list_root;
8567 }
8568 }
8569 else
8570 {
8571 relevant_relocs = NULL;
8572 }
8573
8574 for (i = 0; i < n; i++)
8575 {
8576 r_reloc r_rel;
8577 bfd_vma orig_self_offset, orig_target_offset;
8578 bfd_vma self_offset, target_offset;
8579 int r_type;
8580 reloc_howto_type *howto;
8581 int self_removed_bytes, target_removed_bytes;
8582
8583 if (relevant_relocs)
8584 {
8585 entry = entry->next;
8586 irel = entry->irel;
8587 }
8588 else
8589 {
8590 irel = internal_relocs + i;
8591 }
8592 r_type = ELF32_R_TYPE (irel->r_info);
8593
8594 howto = &elf_howto_table[r_type];
8595 /* We maintain the required invariant: PC-relative relocations
8596 that fit before linking must fit after linking. Thus we only
8597 need to deal with relocations to the same section that are
8598 PC-relative. */
8599 if (r_type == R_XTENSA_ASM_SIMPLIFY
8600 || r_type == R_XTENSA_32_PCREL
8601 || !howto->pc_relative)
8602 continue;
8603
8604 r_reloc_init (&r_rel, abfd, irel, contents,
8605 bfd_get_section_limit (abfd, sec));
8606
8607 if (r_reloc_get_section (&r_rel) != sec)
8608 continue;
8609
8610 orig_self_offset = irel->r_offset;
8611 orig_target_offset = r_rel.target_offset;
8612
8613 self_offset = orig_self_offset;
8614 target_offset = orig_target_offset;
8615
8616 if (relax_info)
8617 {
8618 self_offset =
8619 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8620 orig_self_offset);
8621 target_offset =
8622 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8623 orig_target_offset);
8624 }
8625
8626 self_removed_bytes = 0;
8627 target_removed_bytes = 0;
8628
8629 for (j = 0; j < constraint->action_count; ++j)
8630 {
8631 proposed_action *action = &constraint->actions[j];
8632 bfd_vma offset = action->offset;
8633 int removed_bytes = action->removed_bytes;
8634 if (offset < orig_self_offset
8635 || (offset == orig_self_offset && action->action == ta_fill
8636 && action->removed_bytes < 0))
8637 self_removed_bytes += removed_bytes;
8638 if (offset < orig_target_offset
8639 || (offset == orig_target_offset && action->action == ta_fill
8640 && action->removed_bytes < 0))
8641 target_removed_bytes += removed_bytes;
8642 }
8643 self_offset -= self_removed_bytes;
8644 target_offset -= target_removed_bytes;
8645
8646 /* Try to encode it. Get the operand and check. */
8647 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8648 {
8649 /* None of the current alternate relocs are PC-relative,
8650 and only PC-relative relocs matter here. */
8651 }
8652 else
8653 {
8654 xtensa_opcode opcode;
8655 int opnum;
8656
8657 if (relevant_relocs)
8658 {
8659 opcode = entry->opcode;
8660 opnum = entry->opnum;
8661 }
8662 else
8663 {
8664 if (reloc_opcodes)
8665 opcode = reloc_opcodes[relevant_relocs ?
8666 (unsigned)(entry - relevant_relocs->reloc) : i];
8667 else
8668 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8669 if (opcode == XTENSA_UNDEFINED)
8670 {
8671 ok = false;
8672 break;
8673 }
8674
8675 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8676 if (opnum == XTENSA_UNDEFINED)
8677 {
8678 ok = false;
8679 break;
8680 }
8681 }
8682
8683 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8684 {
8685 ok = false;
8686 break;
8687 }
8688 }
8689 }
8690
8691 free_xlate_map (xmap);
8692
8693 return ok;
8694 }
8695
8696
8697 static bool
8698 check_section_ebb_reduces (const ebb_constraint *constraint)
8699 {
8700 int removed = 0;
8701 unsigned i;
8702
8703 for (i = 0; i < constraint->action_count; i++)
8704 {
8705 const proposed_action *action = &constraint->actions[i];
8706 if (action->do_action)
8707 removed += action->removed_bytes;
8708 }
8709 if (removed < 0)
8710 return false;
8711
8712 return true;
8713 }
8714
8715
8716 void
8717 text_action_add_proposed (text_action_list *l,
8718 const ebb_constraint *ebb_table,
8719 asection *sec)
8720 {
8721 unsigned i;
8722
8723 for (i = 0; i < ebb_table->action_count; i++)
8724 {
8725 proposed_action *action = &ebb_table->actions[i];
8726
8727 if (!action->do_action)
8728 continue;
8729 switch (action->action)
8730 {
8731 case ta_remove_insn:
8732 case ta_remove_longcall:
8733 case ta_convert_longcall:
8734 case ta_narrow_insn:
8735 case ta_widen_insn:
8736 case ta_fill:
8737 case ta_remove_literal:
8738 text_action_add (l, action->action, sec, action->offset,
8739 action->removed_bytes);
8740 break;
8741 case ta_none:
8742 break;
8743 default:
8744 BFD_ASSERT (0);
8745 break;
8746 }
8747 }
8748 }
8749
8750
8751 int
8752 xtensa_compute_fill_extra_space (property_table_entry *entry)
8753 {
8754 int fill_extra_space;
8755
8756 if (!entry)
8757 return 0;
8758
8759 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8760 return 0;
8761
8762 fill_extra_space = entry->size;
8763 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8764 {
8765 /* Fill bytes for alignment:
8766 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8767 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8768 int nsm = (1 << pow) - 1;
8769 bfd_vma addr = entry->address + entry->size;
8770 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8771 fill_extra_space += align_fill;
8772 }
8773 return fill_extra_space;
8774 }
8775
8776 \f
8777 /* First relaxation pass. */
8778
8779 /* If the section contains relaxable literals, check each literal to
8780 see if it has the same value as another literal that has already
8781 been seen, either in the current section or a previous one. If so,
8782 add an entry to the per-section list of removed literals. The
8783 actual changes are deferred until the next pass. */
8784
8785 static bool
8786 compute_removed_literals (bfd *abfd,
8787 asection *sec,
8788 struct bfd_link_info *link_info,
8789 value_map_hash_table *values)
8790 {
8791 xtensa_relax_info *relax_info;
8792 bfd_byte *contents;
8793 Elf_Internal_Rela *internal_relocs;
8794 source_reloc *src_relocs, *rel;
8795 bool ok = true;
8796 property_table_entry *prop_table = NULL;
8797 int ptblsize;
8798 int i, prev_i;
8799 bool last_loc_is_prev = false;
8800 bfd_vma last_target_offset = 0;
8801 section_cache_t target_sec_cache;
8802 bfd_size_type sec_size;
8803
8804 init_section_cache (&target_sec_cache);
8805
8806 /* Do nothing if it is not a relaxable literal section. */
8807 relax_info = get_xtensa_relax_info (sec);
8808 BFD_ASSERT (relax_info);
8809 if (!relax_info->is_relaxable_literal_section)
8810 return ok;
8811
8812 internal_relocs = retrieve_internal_relocs (abfd, sec,
8813 link_info->keep_memory);
8814
8815 sec_size = bfd_get_section_limit (abfd, sec);
8816 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8817 if (contents == NULL && sec_size != 0)
8818 {
8819 ok = false;
8820 goto error_return;
8821 }
8822
8823 /* Sort the source_relocs by target offset. */
8824 src_relocs = relax_info->src_relocs;
8825 qsort (src_relocs, relax_info->src_count,
8826 sizeof (source_reloc), source_reloc_compare);
8827 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8828 internal_reloc_compare);
8829
8830 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8831 XTENSA_PROP_SEC_NAME, false);
8832 if (ptblsize < 0)
8833 {
8834 ok = false;
8835 goto error_return;
8836 }
8837
8838 prev_i = -1;
8839 for (i = 0; i < relax_info->src_count; i++)
8840 {
8841 Elf_Internal_Rela *irel = NULL;
8842
8843 rel = &src_relocs[i];
8844 if (get_l32r_opcode () != rel->opcode)
8845 continue;
8846 irel = get_irel_at_offset (sec, internal_relocs,
8847 rel->r_rel.target_offset);
8848
8849 /* If the relocation on this is not a simple R_XTENSA_32 or
8850 R_XTENSA_PLT then do not consider it. This may happen when
8851 the difference of two symbols is used in a literal. */
8852 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8853 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8854 continue;
8855
8856 /* If the target_offset for this relocation is the same as the
8857 previous relocation, then we've already considered whether the
8858 literal can be coalesced. Skip to the next one.... */
8859 if (i != 0 && prev_i != -1
8860 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8861 continue;
8862 prev_i = i;
8863
8864 if (last_loc_is_prev &&
8865 last_target_offset + 4 != rel->r_rel.target_offset)
8866 last_loc_is_prev = false;
8867
8868 /* Check if the relocation was from an L32R that is being removed
8869 because a CALLX was converted to a direct CALL, and check if
8870 there are no other relocations to the literal. */
8871 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8872 sec, prop_table, ptblsize))
8873 {
8874 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8875 irel, rel, prop_table, ptblsize))
8876 {
8877 ok = false;
8878 goto error_return;
8879 }
8880 last_target_offset = rel->r_rel.target_offset;
8881 continue;
8882 }
8883
8884 if (!identify_literal_placement (abfd, sec, contents, link_info,
8885 values,
8886 &last_loc_is_prev, irel,
8887 relax_info->src_count - i, rel,
8888 prop_table, ptblsize,
8889 &target_sec_cache, rel->is_abs_literal))
8890 {
8891 ok = false;
8892 goto error_return;
8893 }
8894 last_target_offset = rel->r_rel.target_offset;
8895 }
8896
8897 #if DEBUG
8898 print_removed_literals (stderr, &relax_info->removed_list);
8899 print_action_list (stderr, &relax_info->action_list);
8900 #endif /* DEBUG */
8901
8902 error_return:
8903 free (prop_table);
8904 free_section_cache (&target_sec_cache);
8905
8906 release_contents (sec, contents);
8907 release_internal_relocs (sec, internal_relocs);
8908 return ok;
8909 }
8910
8911
8912 static Elf_Internal_Rela *
8913 get_irel_at_offset (asection *sec,
8914 Elf_Internal_Rela *internal_relocs,
8915 bfd_vma offset)
8916 {
8917 unsigned i;
8918 Elf_Internal_Rela *irel;
8919 unsigned r_type;
8920 Elf_Internal_Rela key;
8921
8922 if (!internal_relocs)
8923 return NULL;
8924
8925 key.r_offset = offset;
8926 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8927 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8928 if (!irel)
8929 return NULL;
8930
8931 /* bsearch does not guarantee which will be returned if there are
8932 multiple matches. We need the first that is not an alignment. */
8933 i = irel - internal_relocs;
8934 while (i > 0)
8935 {
8936 if (internal_relocs[i-1].r_offset != offset)
8937 break;
8938 i--;
8939 }
8940 for ( ; i < sec->reloc_count; i++)
8941 {
8942 irel = &internal_relocs[i];
8943 r_type = ELF32_R_TYPE (irel->r_info);
8944 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8945 return irel;
8946 }
8947
8948 return NULL;
8949 }
8950
8951
8952 bool
8953 is_removable_literal (const source_reloc *rel,
8954 int i,
8955 const source_reloc *src_relocs,
8956 int src_count,
8957 asection *sec,
8958 property_table_entry *prop_table,
8959 int ptblsize)
8960 {
8961 const source_reloc *curr_rel;
8962 property_table_entry *entry;
8963
8964 if (!rel->is_null)
8965 return false;
8966
8967 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8968 sec->vma + rel->r_rel.target_offset);
8969 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8970 return false;
8971
8972 for (++i; i < src_count; ++i)
8973 {
8974 curr_rel = &src_relocs[i];
8975 /* If all others have the same target offset.... */
8976 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8977 return true;
8978
8979 if (!curr_rel->is_null
8980 && !xtensa_is_property_section (curr_rel->source_sec)
8981 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8982 return false;
8983 }
8984 return true;
8985 }
8986
8987
8988 bool
8989 remove_dead_literal (bfd *abfd,
8990 asection *sec,
8991 struct bfd_link_info *link_info,
8992 Elf_Internal_Rela *internal_relocs,
8993 Elf_Internal_Rela *irel,
8994 source_reloc *rel,
8995 property_table_entry *prop_table,
8996 int ptblsize)
8997 {
8998 property_table_entry *entry;
8999 xtensa_relax_info *relax_info;
9000
9001 relax_info = get_xtensa_relax_info (sec);
9002 if (!relax_info)
9003 return false;
9004
9005 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9006 sec->vma + rel->r_rel.target_offset);
9007
9008 /* Mark the unused literal so that it will be removed. */
9009 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
9010
9011 text_action_add (&relax_info->action_list,
9012 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9013
9014 /* If the section is 4-byte aligned, do not add fill. */
9015 if (sec->alignment_power > 2)
9016 {
9017 int fill_extra_space;
9018 bfd_vma entry_sec_offset;
9019 text_action *fa;
9020 property_table_entry *the_add_entry;
9021 int removed_diff;
9022
9023 if (entry)
9024 entry_sec_offset = entry->address - sec->vma + entry->size;
9025 else
9026 entry_sec_offset = rel->r_rel.target_offset + 4;
9027
9028 /* If the literal range is at the end of the section,
9029 do not add fill. */
9030 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9031 entry_sec_offset);
9032 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
9033
9034 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9035 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9036 -4, fill_extra_space);
9037 if (fa)
9038 adjust_fill_action (fa, removed_diff);
9039 else
9040 text_action_add (&relax_info->action_list,
9041 ta_fill, sec, entry_sec_offset, removed_diff);
9042 }
9043
9044 /* Zero out the relocation on this literal location. */
9045 if (irel)
9046 {
9047 if (elf_hash_table (link_info)->dynamic_sections_created)
9048 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9049
9050 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9051 pin_internal_relocs (sec, internal_relocs);
9052 }
9053
9054 /* Do not modify "last_loc_is_prev". */
9055 return true;
9056 }
9057
9058
9059 bool
9060 identify_literal_placement (bfd *abfd,
9061 asection *sec,
9062 bfd_byte *contents,
9063 struct bfd_link_info *link_info,
9064 value_map_hash_table *values,
9065 bool *last_loc_is_prev_p,
9066 Elf_Internal_Rela *irel,
9067 int remaining_src_rels,
9068 source_reloc *rel,
9069 property_table_entry *prop_table,
9070 int ptblsize,
9071 section_cache_t *target_sec_cache,
9072 bool is_abs_literal)
9073 {
9074 literal_value val;
9075 value_map *val_map;
9076 xtensa_relax_info *relax_info;
9077 bool literal_placed = false;
9078 r_reloc r_rel;
9079 unsigned long value;
9080 bool final_static_link;
9081 bfd_size_type sec_size;
9082
9083 relax_info = get_xtensa_relax_info (sec);
9084 if (!relax_info)
9085 return false;
9086
9087 sec_size = bfd_get_section_limit (abfd, sec);
9088
9089 final_static_link =
9090 (!bfd_link_relocatable (link_info)
9091 && !elf_hash_table (link_info)->dynamic_sections_created);
9092
9093 /* The placement algorithm first checks to see if the literal is
9094 already in the value map. If so and the value map is reachable
9095 from all uses, then the literal is moved to that location. If
9096 not, then we identify the last location where a fresh literal was
9097 placed. If the literal can be safely moved there, then we do so.
9098 If not, then we assume that the literal is not to move and leave
9099 the literal where it is, marking it as the last literal
9100 location. */
9101
9102 /* Find the literal value. */
9103 value = 0;
9104 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9105 if (!irel)
9106 {
9107 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9108 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9109 }
9110 init_literal_value (&val, &r_rel, value, is_abs_literal);
9111
9112 /* Check if we've seen another literal with the same value that
9113 is in the same output section. */
9114 val_map = value_map_get_cached_value (values, &val, final_static_link);
9115
9116 if (val_map
9117 && (r_reloc_get_section (&val_map->loc)->output_section
9118 == sec->output_section)
9119 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9120 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9121 {
9122 /* No change to last_loc_is_prev. */
9123 literal_placed = true;
9124 }
9125
9126 /* For relocatable links, do not try to move literals. To do it
9127 correctly might increase the number of relocations in an input
9128 section making the default relocatable linking fail. */
9129 if (!bfd_link_relocatable (link_info) && !literal_placed
9130 && values->has_last_loc && !(*last_loc_is_prev_p))
9131 {
9132 asection *target_sec = r_reloc_get_section (&values->last_loc);
9133 if (target_sec && target_sec->output_section == sec->output_section)
9134 {
9135 /* Increment the virtual offset. */
9136 r_reloc try_loc = values->last_loc;
9137 try_loc.virtual_offset += 4;
9138
9139 /* There is a last loc that was in the same output section. */
9140 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9141 && move_shared_literal (sec, link_info, rel,
9142 prop_table, ptblsize,
9143 &try_loc, &val, target_sec_cache))
9144 {
9145 values->last_loc.virtual_offset += 4;
9146 literal_placed = true;
9147 if (!val_map)
9148 val_map = add_value_map (values, &val, &try_loc,
9149 final_static_link);
9150 else
9151 val_map->loc = try_loc;
9152 }
9153 }
9154 }
9155
9156 if (!literal_placed)
9157 {
9158 /* Nothing worked, leave the literal alone but update the last loc. */
9159 values->has_last_loc = true;
9160 values->last_loc = rel->r_rel;
9161 if (!val_map)
9162 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9163 else
9164 val_map->loc = rel->r_rel;
9165 *last_loc_is_prev_p = true;
9166 }
9167
9168 return true;
9169 }
9170
9171
9172 /* Check if the original relocations (presumably on L32R instructions)
9173 identified by reloc[0..N] can be changed to reference the literal
9174 identified by r_rel. If r_rel is out of range for any of the
9175 original relocations, then we don't want to coalesce the original
9176 literal with the one at r_rel. We only check reloc[0..N], where the
9177 offsets are all the same as for reloc[0] (i.e., they're all
9178 referencing the same literal) and where N is also bounded by the
9179 number of remaining entries in the "reloc" array. The "reloc" array
9180 is sorted by target offset so we know all the entries for the same
9181 literal will be contiguous. */
9182
9183 static bool
9184 relocations_reach (source_reloc *reloc,
9185 int remaining_relocs,
9186 const r_reloc *r_rel)
9187 {
9188 bfd_vma from_offset, source_address, dest_address;
9189 asection *sec;
9190 int i;
9191
9192 if (!r_reloc_is_defined (r_rel))
9193 return false;
9194
9195 sec = r_reloc_get_section (r_rel);
9196 from_offset = reloc[0].r_rel.target_offset;
9197
9198 for (i = 0; i < remaining_relocs; i++)
9199 {
9200 if (reloc[i].r_rel.target_offset != from_offset)
9201 break;
9202
9203 /* Ignore relocations that have been removed. */
9204 if (reloc[i].is_null)
9205 continue;
9206
9207 /* The original and new output section for these must be the same
9208 in order to coalesce. */
9209 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9210 != sec->output_section)
9211 return false;
9212
9213 /* Absolute literals in the same output section can always be
9214 combined. */
9215 if (reloc[i].is_abs_literal)
9216 continue;
9217
9218 /* A literal with no PC-relative relocations can be moved anywhere. */
9219 if (reloc[i].opnd != -1)
9220 {
9221 /* Otherwise, check to see that it fits. */
9222 source_address = (reloc[i].source_sec->output_section->vma
9223 + reloc[i].source_sec->output_offset
9224 + reloc[i].r_rel.rela.r_offset);
9225 dest_address = (sec->output_section->vma
9226 + sec->output_offset
9227 + r_rel->target_offset);
9228
9229 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9230 source_address, dest_address))
9231 return false;
9232 }
9233 }
9234
9235 return true;
9236 }
9237
9238
9239 /* Move a literal to another literal location because it is
9240 the same as the other literal value. */
9241
9242 static bool
9243 coalesce_shared_literal (asection *sec,
9244 source_reloc *rel,
9245 property_table_entry *prop_table,
9246 int ptblsize,
9247 value_map *val_map)
9248 {
9249 property_table_entry *entry;
9250 text_action *fa;
9251 property_table_entry *the_add_entry;
9252 int removed_diff;
9253 xtensa_relax_info *relax_info;
9254
9255 relax_info = get_xtensa_relax_info (sec);
9256 if (!relax_info)
9257 return false;
9258
9259 entry = elf_xtensa_find_property_entry
9260 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9261 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9262 return true;
9263
9264 /* Mark that the literal will be coalesced. */
9265 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9266
9267 text_action_add (&relax_info->action_list,
9268 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9269
9270 /* If the section is 4-byte aligned, do not add fill. */
9271 if (sec->alignment_power > 2)
9272 {
9273 int fill_extra_space;
9274 bfd_vma entry_sec_offset;
9275
9276 if (entry)
9277 entry_sec_offset = entry->address - sec->vma + entry->size;
9278 else
9279 entry_sec_offset = rel->r_rel.target_offset + 4;
9280
9281 /* If the literal range is at the end of the section,
9282 do not add fill. */
9283 fill_extra_space = 0;
9284 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9285 entry_sec_offset);
9286 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9287 fill_extra_space = the_add_entry->size;
9288
9289 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9290 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9291 -4, fill_extra_space);
9292 if (fa)
9293 adjust_fill_action (fa, removed_diff);
9294 else
9295 text_action_add (&relax_info->action_list,
9296 ta_fill, sec, entry_sec_offset, removed_diff);
9297 }
9298
9299 return true;
9300 }
9301
9302
9303 /* Move a literal to another location. This may actually increase the
9304 total amount of space used because of alignments so we need to do
9305 this carefully. Also, it may make a branch go out of range. */
9306
9307 static bool
9308 move_shared_literal (asection *sec,
9309 struct bfd_link_info *link_info,
9310 source_reloc *rel,
9311 property_table_entry *prop_table,
9312 int ptblsize,
9313 const r_reloc *target_loc,
9314 const literal_value *lit_value,
9315 section_cache_t *target_sec_cache)
9316 {
9317 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9318 text_action *fa, *target_fa;
9319 int removed_diff;
9320 xtensa_relax_info *relax_info, *target_relax_info;
9321 asection *target_sec;
9322 ebb_t *ebb;
9323 ebb_constraint ebb_table;
9324 bool relocs_fit;
9325
9326 /* If this routine always returns FALSE, the literals that cannot be
9327 coalesced will not be moved. */
9328 if (elf32xtensa_no_literal_movement)
9329 return false;
9330
9331 relax_info = get_xtensa_relax_info (sec);
9332 if (!relax_info)
9333 return false;
9334
9335 target_sec = r_reloc_get_section (target_loc);
9336 target_relax_info = get_xtensa_relax_info (target_sec);
9337
9338 /* Literals to undefined sections may not be moved because they
9339 must report an error. */
9340 if (bfd_is_und_section (target_sec))
9341 return false;
9342
9343 src_entry = elf_xtensa_find_property_entry
9344 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9345
9346 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9347 return false;
9348
9349 target_entry = elf_xtensa_find_property_entry
9350 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9351 target_sec->vma + target_loc->target_offset);
9352
9353 if (!target_entry)
9354 return false;
9355
9356 /* Make sure that we have not broken any branches. */
9357 relocs_fit = false;
9358
9359 init_ebb_constraint (&ebb_table);
9360 ebb = &ebb_table.ebb;
9361 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9362 target_sec_cache->content_length,
9363 target_sec_cache->ptbl, target_sec_cache->pte_count,
9364 target_sec_cache->relocs, target_sec_cache->reloc_count);
9365
9366 /* Propose to add 4 bytes + worst-case alignment size increase to
9367 destination. */
9368 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9369 ta_fill, target_loc->target_offset,
9370 -4 - (1 << target_sec->alignment_power), true);
9371
9372 /* Check all of the PC-relative relocations to make sure they still fit. */
9373 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9374 target_sec_cache->contents,
9375 target_sec_cache->relocs, NULL,
9376 &ebb_table, NULL);
9377
9378 if (!relocs_fit)
9379 return false;
9380
9381 text_action_add_literal (&target_relax_info->action_list,
9382 ta_add_literal, target_loc, lit_value, -4);
9383
9384 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9385 {
9386 /* May need to add or remove some fill to maintain alignment. */
9387 int fill_extra_space;
9388 bfd_vma entry_sec_offset;
9389
9390 entry_sec_offset =
9391 target_entry->address - target_sec->vma + target_entry->size;
9392
9393 /* If the literal range is at the end of the section,
9394 do not add fill. */
9395 fill_extra_space = 0;
9396 the_add_entry =
9397 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9398 target_sec_cache->pte_count,
9399 entry_sec_offset);
9400 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9401 fill_extra_space = the_add_entry->size;
9402
9403 target_fa = find_fill_action (&target_relax_info->action_list,
9404 target_sec, entry_sec_offset);
9405 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9406 entry_sec_offset, 4,
9407 fill_extra_space);
9408 if (target_fa)
9409 adjust_fill_action (target_fa, removed_diff);
9410 else
9411 text_action_add (&target_relax_info->action_list,
9412 ta_fill, target_sec, entry_sec_offset, removed_diff);
9413 }
9414
9415 /* Mark that the literal will be moved to the new location. */
9416 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9417
9418 /* Remove the literal. */
9419 text_action_add (&relax_info->action_list,
9420 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9421
9422 /* If the section is 4-byte aligned, do not add fill. */
9423 if (sec->alignment_power > 2 && target_entry != src_entry)
9424 {
9425 int fill_extra_space;
9426 bfd_vma entry_sec_offset;
9427
9428 if (src_entry)
9429 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9430 else
9431 entry_sec_offset = rel->r_rel.target_offset+4;
9432
9433 /* If the literal range is at the end of the section,
9434 do not add fill. */
9435 fill_extra_space = 0;
9436 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9437 entry_sec_offset);
9438 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9439 fill_extra_space = the_add_entry->size;
9440
9441 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9442 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9443 -4, fill_extra_space);
9444 if (fa)
9445 adjust_fill_action (fa, removed_diff);
9446 else
9447 text_action_add (&relax_info->action_list,
9448 ta_fill, sec, entry_sec_offset, removed_diff);
9449 }
9450
9451 return true;
9452 }
9453
9454 \f
9455 /* Second relaxation pass. */
9456
9457 static int
9458 action_remove_bytes_fn (splay_tree_node node, void *p)
9459 {
9460 bfd_size_type *final_size = p;
9461 text_action *action = (text_action *)node->value;
9462
9463 *final_size -= action->removed_bytes;
9464 return 0;
9465 }
9466
9467 /* Modify all of the relocations to point to the right spot, and if this
9468 is a relaxable section, delete the unwanted literals and fix the
9469 section size. */
9470
9471 bool
9472 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9473 {
9474 Elf_Internal_Rela *internal_relocs;
9475 xtensa_relax_info *relax_info;
9476 bfd_byte *contents;
9477 bool ok = true;
9478 unsigned i;
9479 bool rv = false;
9480 bool virtual_action;
9481 bfd_size_type sec_size;
9482
9483 sec_size = bfd_get_section_limit (abfd, sec);
9484 relax_info = get_xtensa_relax_info (sec);
9485 BFD_ASSERT (relax_info);
9486
9487 /* First translate any of the fixes that have been added already. */
9488 translate_section_fixes (sec);
9489
9490 /* Handle property sections (e.g., literal tables) specially. */
9491 if (xtensa_is_property_section (sec))
9492 {
9493 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9494 return relax_property_section (abfd, sec, link_info);
9495 }
9496
9497 internal_relocs = retrieve_internal_relocs (abfd, sec,
9498 link_info->keep_memory);
9499 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9500 return true;
9501
9502 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9503 if (contents == NULL && sec_size != 0)
9504 {
9505 ok = false;
9506 goto error_return;
9507 }
9508
9509 if (internal_relocs)
9510 {
9511 for (i = 0; i < sec->reloc_count; i++)
9512 {
9513 Elf_Internal_Rela *irel;
9514 xtensa_relax_info *target_relax_info;
9515 bfd_vma source_offset, old_source_offset;
9516 r_reloc r_rel;
9517 unsigned r_type;
9518 asection *target_sec;
9519
9520 /* Locally change the source address.
9521 Translate the target to the new target address.
9522 If it points to this section and has been removed,
9523 NULLify it.
9524 Write it back. */
9525
9526 irel = &internal_relocs[i];
9527 source_offset = irel->r_offset;
9528 old_source_offset = source_offset;
9529
9530 r_type = ELF32_R_TYPE (irel->r_info);
9531 r_reloc_init (&r_rel, abfd, irel, contents,
9532 bfd_get_section_limit (abfd, sec));
9533
9534 /* If this section could have changed then we may need to
9535 change the relocation's offset. */
9536
9537 if (relax_info->is_relaxable_literal_section
9538 || relax_info->is_relaxable_asm_section)
9539 {
9540 pin_internal_relocs (sec, internal_relocs);
9541
9542 if (r_type != R_XTENSA_NONE
9543 && find_removed_literal (&relax_info->removed_list,
9544 irel->r_offset))
9545 {
9546 /* Remove this relocation. */
9547 if (elf_hash_table (link_info)->dynamic_sections_created)
9548 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9549 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9550 irel->r_offset = offset_with_removed_text_map
9551 (&relax_info->action_list, irel->r_offset);
9552 continue;
9553 }
9554
9555 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9556 {
9557 text_action *action =
9558 find_insn_action (&relax_info->action_list,
9559 irel->r_offset);
9560 if (action && (action->action == ta_convert_longcall
9561 || action->action == ta_remove_longcall))
9562 {
9563 bfd_reloc_status_type retval;
9564 char *error_message = NULL;
9565
9566 retval = contract_asm_expansion (contents, sec_size,
9567 irel, &error_message);
9568 if (retval != bfd_reloc_ok)
9569 {
9570 (*link_info->callbacks->reloc_dangerous)
9571 (link_info, error_message, abfd, sec,
9572 irel->r_offset);
9573 goto error_return;
9574 }
9575 /* Update the action so that the code that moves
9576 the contents will do the right thing. */
9577 /* ta_remove_longcall and ta_remove_insn actions are
9578 grouped together in the tree as well as
9579 ta_convert_longcall and ta_none, so that changes below
9580 can be done w/o removing and reinserting action into
9581 the tree. */
9582
9583 if (action->action == ta_remove_longcall)
9584 action->action = ta_remove_insn;
9585 else
9586 action->action = ta_none;
9587 /* Refresh the info in the r_rel. */
9588 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9589 r_type = ELF32_R_TYPE (irel->r_info);
9590 }
9591 }
9592
9593 source_offset = offset_with_removed_text_map
9594 (&relax_info->action_list, irel->r_offset);
9595 irel->r_offset = source_offset;
9596 }
9597
9598 /* If the target section could have changed then
9599 we may need to change the relocation's target offset. */
9600
9601 target_sec = r_reloc_get_section (&r_rel);
9602
9603 /* For a reference to a discarded section from a DWARF section,
9604 i.e., where action_discarded is PRETEND, the symbol will
9605 eventually be modified to refer to the kept section (at least if
9606 the kept and discarded sections are the same size). Anticipate
9607 that here and adjust things accordingly. */
9608 if (! elf_xtensa_ignore_discarded_relocs (sec)
9609 && elf_xtensa_action_discarded (sec) == PRETEND
9610 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9611 && target_sec != NULL
9612 && discarded_section (target_sec))
9613 {
9614 /* It would be natural to call _bfd_elf_check_kept_section
9615 here, but it's not exported from elflink.c. It's also a
9616 fairly expensive check. Adjusting the relocations to the
9617 discarded section is fairly harmless; it will only adjust
9618 some addends and difference values. If it turns out that
9619 _bfd_elf_check_kept_section fails later, it won't matter,
9620 so just compare the section names to find the right group
9621 member. */
9622 asection *kept = target_sec->kept_section;
9623 if (kept != NULL)
9624 {
9625 if ((kept->flags & SEC_GROUP) != 0)
9626 {
9627 asection *first = elf_next_in_group (kept);
9628 asection *s = first;
9629
9630 kept = NULL;
9631 while (s != NULL)
9632 {
9633 if (strcmp (s->name, target_sec->name) == 0)
9634 {
9635 kept = s;
9636 break;
9637 }
9638 s = elf_next_in_group (s);
9639 if (s == first)
9640 break;
9641 }
9642 }
9643 }
9644 if (kept != NULL
9645 && ((target_sec->rawsize != 0
9646 ? target_sec->rawsize : target_sec->size)
9647 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9648 target_sec = kept;
9649 }
9650
9651 target_relax_info = get_xtensa_relax_info (target_sec);
9652 if (target_relax_info
9653 && (target_relax_info->is_relaxable_literal_section
9654 || target_relax_info->is_relaxable_asm_section))
9655 {
9656 r_reloc new_reloc;
9657 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9658
9659 if (r_type == R_XTENSA_DIFF8
9660 || r_type == R_XTENSA_DIFF16
9661 || r_type == R_XTENSA_DIFF32
9662 || r_type == R_XTENSA_PDIFF8
9663 || r_type == R_XTENSA_PDIFF16
9664 || r_type == R_XTENSA_PDIFF32
9665 || r_type == R_XTENSA_NDIFF8
9666 || r_type == R_XTENSA_NDIFF16
9667 || r_type == R_XTENSA_NDIFF32)
9668 {
9669 bfd_signed_vma diff_value = 0;
9670 bfd_vma new_end_offset, diff_mask = 0;
9671
9672 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9673 {
9674 (*link_info->callbacks->reloc_dangerous)
9675 (link_info, _("invalid relocation address"),
9676 abfd, sec, old_source_offset);
9677 goto error_return;
9678 }
9679
9680 switch (r_type)
9681 {
9682 case R_XTENSA_DIFF8:
9683 diff_mask = 0x7f;
9684 diff_value =
9685 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9686 break;
9687 case R_XTENSA_DIFF16:
9688 diff_mask = 0x7fff;
9689 diff_value =
9690 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9691 break;
9692 case R_XTENSA_DIFF32:
9693 diff_mask = 0x7fffffff;
9694 diff_value =
9695 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9696 break;
9697 case R_XTENSA_PDIFF8:
9698 case R_XTENSA_NDIFF8:
9699 diff_mask = 0xff;
9700 diff_value =
9701 bfd_get_8 (abfd, &contents[old_source_offset]);
9702 break;
9703 case R_XTENSA_PDIFF16:
9704 case R_XTENSA_NDIFF16:
9705 diff_mask = 0xffff;
9706 diff_value =
9707 bfd_get_16 (abfd, &contents[old_source_offset]);
9708 break;
9709 case R_XTENSA_PDIFF32:
9710 case R_XTENSA_NDIFF32:
9711 diff_mask = 0xffffffff;
9712 diff_value =
9713 bfd_get_32 (abfd, &contents[old_source_offset]);
9714 break;
9715 }
9716
9717 if (r_type >= R_XTENSA_NDIFF8
9718 && r_type <= R_XTENSA_NDIFF32
9719 && diff_value)
9720 diff_value |= ~diff_mask;
9721
9722 new_end_offset = offset_with_removed_text_map
9723 (&target_relax_info->action_list,
9724 r_rel.target_offset + diff_value);
9725 diff_value = new_end_offset - new_reloc.target_offset;
9726
9727 switch (r_type)
9728 {
9729 case R_XTENSA_DIFF8:
9730 bfd_put_signed_8 (abfd, diff_value,
9731 &contents[old_source_offset]);
9732 break;
9733 case R_XTENSA_DIFF16:
9734 bfd_put_signed_16 (abfd, diff_value,
9735 &contents[old_source_offset]);
9736 break;
9737 case R_XTENSA_DIFF32:
9738 bfd_put_signed_32 (abfd, diff_value,
9739 &contents[old_source_offset]);
9740 break;
9741 case R_XTENSA_PDIFF8:
9742 case R_XTENSA_NDIFF8:
9743 bfd_put_8 (abfd, diff_value,
9744 &contents[old_source_offset]);
9745 break;
9746 case R_XTENSA_PDIFF16:
9747 case R_XTENSA_NDIFF16:
9748 bfd_put_16 (abfd, diff_value,
9749 &contents[old_source_offset]);
9750 break;
9751 case R_XTENSA_PDIFF32:
9752 case R_XTENSA_NDIFF32:
9753 bfd_put_32 (abfd, diff_value,
9754 &contents[old_source_offset]);
9755 break;
9756 }
9757
9758 /* Check for overflow. Sign bits must be all zeroes or
9759 all ones. When sign bits are all ones diff_value
9760 may not be zero. */
9761 if (((diff_value & ~diff_mask) != 0
9762 && (diff_value & ~diff_mask) != ~diff_mask)
9763 || (diff_value && (bfd_vma) diff_value == ~diff_mask))
9764 {
9765 (*link_info->callbacks->reloc_dangerous)
9766 (link_info, _("overflow after relaxation"),
9767 abfd, sec, old_source_offset);
9768 goto error_return;
9769 }
9770
9771 pin_contents (sec, contents);
9772 }
9773
9774 /* If the relocation still references a section in the same
9775 input file, modify the relocation directly instead of
9776 adding a "fix" record. */
9777 if (target_sec->owner == abfd)
9778 {
9779 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9780 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9781 irel->r_addend = new_reloc.rela.r_addend;
9782 pin_internal_relocs (sec, internal_relocs);
9783 }
9784 else
9785 {
9786 bfd_vma addend_displacement;
9787 reloc_bfd_fix *fix;
9788
9789 addend_displacement =
9790 new_reloc.target_offset + new_reloc.virtual_offset;
9791 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9792 target_sec,
9793 addend_displacement, true);
9794 add_fix (sec, fix);
9795 }
9796 }
9797 }
9798 }
9799
9800 if ((relax_info->is_relaxable_literal_section
9801 || relax_info->is_relaxable_asm_section)
9802 && action_list_count (&relax_info->action_list))
9803 {
9804 /* Walk through the planned actions and build up a table
9805 of move, copy and fill records. Use the move, copy and
9806 fill records to perform the actions once. */
9807
9808 bfd_size_type final_size, copy_size, orig_insn_size;
9809 bfd_byte *scratch = NULL;
9810 bfd_byte *dup_contents = NULL;
9811 bfd_size_type orig_size = sec->size;
9812 bfd_vma orig_dot = 0;
9813 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9814 orig dot in physical memory. */
9815 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9816 bfd_vma dup_dot = 0;
9817
9818 text_action *action;
9819
9820 final_size = sec->size;
9821
9822 splay_tree_foreach (relax_info->action_list.tree,
9823 action_remove_bytes_fn, &final_size);
9824 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9825 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9826
9827 /* The dot is the current fill location. */
9828 #if DEBUG
9829 print_action_list (stderr, &relax_info->action_list);
9830 #endif
9831
9832 for (action = action_first (&relax_info->action_list); action;
9833 action = action_next (&relax_info->action_list, action))
9834 {
9835 virtual_action = false;
9836 if (action->offset > orig_dot)
9837 {
9838 orig_dot += orig_dot_copied;
9839 orig_dot_copied = 0;
9840 orig_dot_vo = 0;
9841 /* Out of the virtual world. */
9842 }
9843
9844 if (action->offset > orig_dot)
9845 {
9846 copy_size = action->offset - orig_dot;
9847 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9848 orig_dot += copy_size;
9849 dup_dot += copy_size;
9850 BFD_ASSERT (action->offset == orig_dot);
9851 }
9852 else if (action->offset < orig_dot)
9853 {
9854 if (action->action == ta_fill
9855 && action->offset - action->removed_bytes == orig_dot)
9856 {
9857 /* This is OK because the fill only effects the dup_dot. */
9858 }
9859 else if (action->action == ta_add_literal)
9860 {
9861 /* TBD. Might need to handle this. */
9862 }
9863 }
9864 if (action->offset == orig_dot)
9865 {
9866 if (action->virtual_offset > orig_dot_vo)
9867 {
9868 if (orig_dot_vo == 0)
9869 {
9870 /* Need to copy virtual_offset bytes. Probably four. */
9871 copy_size = action->virtual_offset - orig_dot_vo;
9872 memmove (&dup_contents[dup_dot],
9873 &contents[orig_dot], copy_size);
9874 orig_dot_copied = copy_size;
9875 dup_dot += copy_size;
9876 }
9877 virtual_action = true;
9878 }
9879 else
9880 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9881 }
9882 switch (action->action)
9883 {
9884 case ta_remove_literal:
9885 case ta_remove_insn:
9886 BFD_ASSERT (action->removed_bytes >= 0);
9887 orig_dot += action->removed_bytes;
9888 break;
9889
9890 case ta_narrow_insn:
9891 orig_insn_size = 3;
9892 copy_size = 2;
9893 memmove (scratch, &contents[orig_dot], orig_insn_size);
9894 BFD_ASSERT (action->removed_bytes == 1);
9895 rv = narrow_instruction (scratch, final_size, 0);
9896 BFD_ASSERT (rv);
9897 memmove (&dup_contents[dup_dot], scratch, copy_size);
9898 orig_dot += orig_insn_size;
9899 dup_dot += copy_size;
9900 break;
9901
9902 case ta_fill:
9903 if (action->removed_bytes >= 0)
9904 orig_dot += action->removed_bytes;
9905 else
9906 {
9907 /* Already zeroed in dup_contents. Just bump the
9908 counters. */
9909 dup_dot += (-action->removed_bytes);
9910 }
9911 break;
9912
9913 case ta_none:
9914 BFD_ASSERT (action->removed_bytes == 0);
9915 break;
9916
9917 case ta_convert_longcall:
9918 case ta_remove_longcall:
9919 /* These will be removed or converted before we get here. */
9920 BFD_ASSERT (0);
9921 break;
9922
9923 case ta_widen_insn:
9924 orig_insn_size = 2;
9925 copy_size = 3;
9926 memmove (scratch, &contents[orig_dot], orig_insn_size);
9927 BFD_ASSERT (action->removed_bytes == -1);
9928 rv = widen_instruction (scratch, final_size, 0);
9929 BFD_ASSERT (rv);
9930 memmove (&dup_contents[dup_dot], scratch, copy_size);
9931 orig_dot += orig_insn_size;
9932 dup_dot += copy_size;
9933 break;
9934
9935 case ta_add_literal:
9936 orig_insn_size = 0;
9937 copy_size = 4;
9938 BFD_ASSERT (action->removed_bytes == -4);
9939 /* TBD -- place the literal value here and insert
9940 into the table. */
9941 memset (&dup_contents[dup_dot], 0, 4);
9942 pin_internal_relocs (sec, internal_relocs);
9943 pin_contents (sec, contents);
9944
9945 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9946 relax_info, &internal_relocs, &action->value))
9947 goto error_return;
9948
9949 if (virtual_action)
9950 orig_dot_vo += copy_size;
9951
9952 orig_dot += orig_insn_size;
9953 dup_dot += copy_size;
9954 break;
9955
9956 default:
9957 /* Not implemented yet. */
9958 BFD_ASSERT (0);
9959 break;
9960 }
9961
9962 BFD_ASSERT (dup_dot <= final_size);
9963 BFD_ASSERT (orig_dot <= orig_size);
9964 }
9965
9966 orig_dot += orig_dot_copied;
9967 orig_dot_copied = 0;
9968
9969 if (orig_dot != orig_size)
9970 {
9971 copy_size = orig_size - orig_dot;
9972 BFD_ASSERT (orig_size > orig_dot);
9973 BFD_ASSERT (dup_dot + copy_size == final_size);
9974 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9975 orig_dot += copy_size;
9976 dup_dot += copy_size;
9977 }
9978 BFD_ASSERT (orig_size == orig_dot);
9979 BFD_ASSERT (final_size == dup_dot);
9980
9981 /* Move the dup_contents back. */
9982 if (final_size > orig_size)
9983 {
9984 /* Contents need to be reallocated. Swap the dup_contents into
9985 contents. */
9986 sec->contents = dup_contents;
9987 free (contents);
9988 contents = dup_contents;
9989 pin_contents (sec, contents);
9990 }
9991 else
9992 {
9993 BFD_ASSERT (final_size <= orig_size);
9994 memset (contents, 0, orig_size);
9995 memcpy (contents, dup_contents, final_size);
9996 free (dup_contents);
9997 }
9998 free (scratch);
9999 pin_contents (sec, contents);
10000
10001 if (sec->rawsize == 0)
10002 sec->rawsize = sec->size;
10003 sec->size = final_size;
10004 }
10005
10006 error_return:
10007 release_internal_relocs (sec, internal_relocs);
10008 release_contents (sec, contents);
10009 return ok;
10010 }
10011
10012
10013 static bool
10014 translate_section_fixes (asection *sec)
10015 {
10016 xtensa_relax_info *relax_info;
10017 reloc_bfd_fix *r;
10018
10019 relax_info = get_xtensa_relax_info (sec);
10020 if (!relax_info)
10021 return true;
10022
10023 for (r = relax_info->fix_list; r != NULL; r = r->next)
10024 if (!translate_reloc_bfd_fix (r))
10025 return false;
10026
10027 return true;
10028 }
10029
10030
10031 /* Translate a fix given the mapping in the relax info for the target
10032 section. If it has already been translated, no work is required. */
10033
10034 static bool
10035 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
10036 {
10037 reloc_bfd_fix new_fix;
10038 asection *sec;
10039 xtensa_relax_info *relax_info;
10040 removed_literal *removed;
10041 bfd_vma new_offset, target_offset;
10042
10043 if (fix->translated)
10044 return true;
10045
10046 sec = fix->target_sec;
10047 target_offset = fix->target_offset;
10048
10049 relax_info = get_xtensa_relax_info (sec);
10050 if (!relax_info)
10051 {
10052 fix->translated = true;
10053 return true;
10054 }
10055
10056 new_fix = *fix;
10057
10058 /* The fix does not need to be translated if the section cannot change. */
10059 if (!relax_info->is_relaxable_literal_section
10060 && !relax_info->is_relaxable_asm_section)
10061 {
10062 fix->translated = true;
10063 return true;
10064 }
10065
10066 /* If the literal has been moved and this relocation was on an
10067 opcode, then the relocation should move to the new literal
10068 location. Otherwise, the relocation should move within the
10069 section. */
10070
10071 removed = false;
10072 if (is_operand_relocation (fix->src_type))
10073 {
10074 /* Check if the original relocation is against a literal being
10075 removed. */
10076 removed = find_removed_literal (&relax_info->removed_list,
10077 target_offset);
10078 }
10079
10080 if (removed)
10081 {
10082 asection *new_sec;
10083
10084 /* The fact that there is still a relocation to this literal indicates
10085 that the literal is being coalesced, not simply removed. */
10086 BFD_ASSERT (removed->to.abfd != NULL);
10087
10088 /* This was moved to some other address (possibly another section). */
10089 new_sec = r_reloc_get_section (&removed->to);
10090 if (new_sec != sec)
10091 {
10092 sec = new_sec;
10093 relax_info = get_xtensa_relax_info (sec);
10094 if (!relax_info ||
10095 (!relax_info->is_relaxable_literal_section
10096 && !relax_info->is_relaxable_asm_section))
10097 {
10098 target_offset = removed->to.target_offset;
10099 new_fix.target_sec = new_sec;
10100 new_fix.target_offset = target_offset;
10101 new_fix.translated = true;
10102 *fix = new_fix;
10103 return true;
10104 }
10105 }
10106 target_offset = removed->to.target_offset;
10107 new_fix.target_sec = new_sec;
10108 }
10109
10110 /* The target address may have been moved within its section. */
10111 new_offset = offset_with_removed_text (&relax_info->action_list,
10112 target_offset);
10113
10114 new_fix.target_offset = new_offset;
10115 new_fix.target_offset = new_offset;
10116 new_fix.translated = true;
10117 *fix = new_fix;
10118 return true;
10119 }
10120
10121
10122 /* Fix up a relocation to take account of removed literals. */
10123
10124 static asection *
10125 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10126 {
10127 xtensa_relax_info *relax_info;
10128 removed_literal *removed;
10129 bfd_vma target_offset, base_offset;
10130
10131 *new_rel = *orig_rel;
10132
10133 if (!r_reloc_is_defined (orig_rel))
10134 return sec ;
10135
10136 relax_info = get_xtensa_relax_info (sec);
10137 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10138 || relax_info->is_relaxable_asm_section));
10139
10140 target_offset = orig_rel->target_offset;
10141
10142 removed = false;
10143 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10144 {
10145 /* Check if the original relocation is against a literal being
10146 removed. */
10147 removed = find_removed_literal (&relax_info->removed_list,
10148 target_offset);
10149 }
10150 if (removed && removed->to.abfd)
10151 {
10152 asection *new_sec;
10153
10154 /* The fact that there is still a relocation to this literal indicates
10155 that the literal is being coalesced, not simply removed. */
10156 BFD_ASSERT (removed->to.abfd != NULL);
10157
10158 /* This was moved to some other address
10159 (possibly in another section). */
10160 *new_rel = removed->to;
10161 new_sec = r_reloc_get_section (new_rel);
10162 if (new_sec != sec)
10163 {
10164 sec = new_sec;
10165 relax_info = get_xtensa_relax_info (sec);
10166 if (!relax_info
10167 || (!relax_info->is_relaxable_literal_section
10168 && !relax_info->is_relaxable_asm_section))
10169 return sec;
10170 }
10171 target_offset = new_rel->target_offset;
10172 }
10173
10174 /* Find the base offset of the reloc symbol, excluding any addend from the
10175 reloc or from the section contents (for a partial_inplace reloc). Then
10176 find the adjusted values of the offsets due to relaxation. The base
10177 offset is needed to determine the change to the reloc's addend; the reloc
10178 addend should not be adjusted due to relaxations located before the base
10179 offset. */
10180
10181 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10182 if (base_offset <= target_offset)
10183 {
10184 int base_removed = removed_by_actions_map (&relax_info->action_list,
10185 base_offset, false);
10186 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10187 target_offset, false) -
10188 base_removed;
10189
10190 new_rel->target_offset = target_offset - base_removed - addend_removed;
10191 new_rel->rela.r_addend -= addend_removed;
10192 }
10193 else
10194 {
10195 /* Handle a negative addend. The base offset comes first. */
10196 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10197 target_offset, false);
10198 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10199 base_offset, false) -
10200 tgt_removed;
10201
10202 new_rel->target_offset = target_offset - tgt_removed;
10203 new_rel->rela.r_addend += addend_removed;
10204 }
10205
10206 return sec;
10207 }
10208
10209
10210 /* For dynamic links, there may be a dynamic relocation for each
10211 literal. The number of dynamic relocations must be computed in
10212 size_dynamic_sections, which occurs before relaxation. When a
10213 literal is removed, this function checks if there is a corresponding
10214 dynamic relocation and shrinks the size of the appropriate dynamic
10215 relocation section accordingly. At this point, the contents of the
10216 dynamic relocation sections have not yet been filled in, so there's
10217 nothing else that needs to be done. */
10218
10219 static void
10220 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10221 bfd *abfd,
10222 asection *input_section,
10223 Elf_Internal_Rela *rel)
10224 {
10225 struct elf_xtensa_link_hash_table *htab;
10226 Elf_Internal_Shdr *symtab_hdr;
10227 struct elf_link_hash_entry **sym_hashes;
10228 unsigned long r_symndx;
10229 int r_type;
10230 struct elf_link_hash_entry *h;
10231 bool dynamic_symbol;
10232
10233 htab = elf_xtensa_hash_table (info);
10234 if (htab == NULL)
10235 return;
10236
10237 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10238 sym_hashes = elf_sym_hashes (abfd);
10239
10240 r_type = ELF32_R_TYPE (rel->r_info);
10241 r_symndx = ELF32_R_SYM (rel->r_info);
10242
10243 if (r_symndx < symtab_hdr->sh_info)
10244 h = NULL;
10245 else
10246 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10247
10248 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10249
10250 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10251 && (input_section->flags & SEC_ALLOC) != 0
10252 && (dynamic_symbol
10253 || (bfd_link_pic (info)
10254 && (!h || h->root.type != bfd_link_hash_undefweak))))
10255 {
10256 asection *srel;
10257 bool is_plt = false;
10258
10259 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10260 {
10261 srel = htab->elf.srelplt;
10262 is_plt = true;
10263 }
10264 else
10265 srel = htab->elf.srelgot;
10266
10267 /* Reduce size of the .rela.* section by one reloc. */
10268 BFD_ASSERT (srel != NULL);
10269 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10270 srel->size -= sizeof (Elf32_External_Rela);
10271
10272 if (is_plt)
10273 {
10274 asection *splt, *sgotplt, *srelgot;
10275 int reloc_index, chunk;
10276
10277 /* Find the PLT reloc index of the entry being removed. This
10278 is computed from the size of ".rela.plt". It is needed to
10279 figure out which PLT chunk to resize. Usually "last index
10280 = size - 1" since the index starts at zero, but in this
10281 context, the size has just been decremented so there's no
10282 need to subtract one. */
10283 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10284
10285 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10286 splt = elf_xtensa_get_plt_section (info, chunk);
10287 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10288 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10289
10290 /* Check if an entire PLT chunk has just been eliminated. */
10291 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10292 {
10293 /* The two magic GOT entries for that chunk can go away. */
10294 srelgot = htab->elf.srelgot;
10295 BFD_ASSERT (srelgot != NULL);
10296 srelgot->reloc_count -= 2;
10297 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10298 sgotplt->size -= 8;
10299
10300 /* There should be only one entry left (and it will be
10301 removed below). */
10302 BFD_ASSERT (sgotplt->size == 4);
10303 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10304 }
10305
10306 BFD_ASSERT (sgotplt->size >= 4);
10307 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10308
10309 sgotplt->size -= 4;
10310 splt->size -= PLT_ENTRY_SIZE;
10311 }
10312 }
10313 }
10314
10315
10316 /* Take an r_rel and move it to another section. This usually
10317 requires extending the interal_relocation array and pinning it. If
10318 the original r_rel is from the same BFD, we can complete this here.
10319 Otherwise, we add a fix record to let the final link fix the
10320 appropriate address. Contents and internal relocations for the
10321 section must be pinned after calling this routine. */
10322
10323 static bool
10324 move_literal (bfd *abfd,
10325 struct bfd_link_info *link_info,
10326 asection *sec,
10327 bfd_vma offset,
10328 bfd_byte *contents,
10329 xtensa_relax_info *relax_info,
10330 Elf_Internal_Rela **internal_relocs_p,
10331 const literal_value *lit)
10332 {
10333 Elf_Internal_Rela *new_relocs = NULL;
10334 size_t new_relocs_count = 0;
10335 Elf_Internal_Rela this_rela;
10336 const r_reloc *r_rel;
10337
10338 r_rel = &lit->r_rel;
10339 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10340
10341 if (r_reloc_is_const (r_rel))
10342 bfd_put_32 (abfd, lit->value, contents + offset);
10343 else
10344 {
10345 int r_type;
10346 unsigned i;
10347 reloc_bfd_fix *fix;
10348 unsigned insert_at;
10349
10350 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10351
10352 /* This is the difficult case. We have to create a fix up. */
10353 this_rela.r_offset = offset;
10354 this_rela.r_info = ELF32_R_INFO (0, r_type);
10355 this_rela.r_addend =
10356 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10357 bfd_put_32 (abfd, lit->value, contents + offset);
10358
10359 /* Currently, we cannot move relocations during a relocatable link. */
10360 BFD_ASSERT (!bfd_link_relocatable (link_info));
10361 fix = reloc_bfd_fix_init (sec, offset, r_type,
10362 r_reloc_get_section (r_rel),
10363 r_rel->target_offset + r_rel->virtual_offset,
10364 false);
10365 /* We also need to mark that relocations are needed here. */
10366 sec->flags |= SEC_RELOC;
10367
10368 translate_reloc_bfd_fix (fix);
10369 /* This fix has not yet been translated. */
10370 add_fix (sec, fix);
10371
10372 /* Add the relocation. If we have already allocated our own
10373 space for the relocations and we have room for more, then use
10374 it. Otherwise, allocate new space and move the literals. */
10375 insert_at = sec->reloc_count;
10376 for (i = 0; i < sec->reloc_count; ++i)
10377 {
10378 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10379 {
10380 insert_at = i;
10381 break;
10382 }
10383 }
10384
10385 if (*internal_relocs_p != relax_info->allocated_relocs
10386 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10387 {
10388 BFD_ASSERT (relax_info->allocated_relocs == NULL
10389 || sec->reloc_count == relax_info->relocs_count);
10390
10391 if (relax_info->allocated_relocs_count == 0)
10392 new_relocs_count = (sec->reloc_count + 2) * 2;
10393 else
10394 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10395
10396 new_relocs = (Elf_Internal_Rela *)
10397 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10398 if (!new_relocs)
10399 return false;
10400
10401 /* We could handle this more quickly by finding the split point. */
10402 if (insert_at != 0)
10403 memcpy (new_relocs, *internal_relocs_p,
10404 insert_at * sizeof (Elf_Internal_Rela));
10405
10406 new_relocs[insert_at] = this_rela;
10407
10408 if (insert_at != sec->reloc_count)
10409 memcpy (new_relocs + insert_at + 1,
10410 (*internal_relocs_p) + insert_at,
10411 (sec->reloc_count - insert_at)
10412 * sizeof (Elf_Internal_Rela));
10413
10414 if (*internal_relocs_p != relax_info->allocated_relocs)
10415 {
10416 /* The first time we re-allocate, we can only free the
10417 old relocs if they were allocated with bfd_malloc.
10418 This is not true when keep_memory is in effect. */
10419 if (!link_info->keep_memory)
10420 free (*internal_relocs_p);
10421 }
10422 else
10423 free (*internal_relocs_p);
10424 relax_info->allocated_relocs = new_relocs;
10425 relax_info->allocated_relocs_count = new_relocs_count;
10426 elf_section_data (sec)->relocs = new_relocs;
10427 sec->reloc_count++;
10428 relax_info->relocs_count = sec->reloc_count;
10429 *internal_relocs_p = new_relocs;
10430 }
10431 else
10432 {
10433 if (insert_at != sec->reloc_count)
10434 {
10435 unsigned idx;
10436 for (idx = sec->reloc_count; idx > insert_at; idx--)
10437 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10438 }
10439 (*internal_relocs_p)[insert_at] = this_rela;
10440 sec->reloc_count++;
10441 if (relax_info->allocated_relocs)
10442 relax_info->relocs_count = sec->reloc_count;
10443 }
10444 }
10445 return true;
10446 }
10447
10448
10449 /* This is similar to relax_section except that when a target is moved,
10450 we shift addresses up. We also need to modify the size. This
10451 algorithm does NOT allow for relocations into the middle of the
10452 property sections. */
10453
10454 static bool
10455 relax_property_section (bfd *abfd,
10456 asection *sec,
10457 struct bfd_link_info *link_info)
10458 {
10459 Elf_Internal_Rela *internal_relocs;
10460 bfd_byte *contents;
10461 unsigned i;
10462 bool ok = true;
10463 bool is_full_prop_section;
10464 size_t last_zfill_target_offset = 0;
10465 asection *last_zfill_target_sec = NULL;
10466 bfd_size_type sec_size;
10467 bfd_size_type entry_size;
10468
10469 sec_size = bfd_get_section_limit (abfd, sec);
10470 internal_relocs = retrieve_internal_relocs (abfd, sec,
10471 link_info->keep_memory);
10472 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10473 if (contents == NULL && sec_size != 0)
10474 {
10475 ok = false;
10476 goto error_return;
10477 }
10478
10479 is_full_prop_section = xtensa_is_proptable_section (sec);
10480 if (is_full_prop_section)
10481 entry_size = 12;
10482 else
10483 entry_size = 8;
10484
10485 if (internal_relocs)
10486 {
10487 for (i = 0; i < sec->reloc_count; i++)
10488 {
10489 Elf_Internal_Rela *irel;
10490 xtensa_relax_info *target_relax_info;
10491 unsigned r_type;
10492 asection *target_sec;
10493 literal_value val;
10494 bfd_byte *size_p, *flags_p;
10495
10496 /* Locally change the source address.
10497 Translate the target to the new target address.
10498 If it points to this section and has been removed, MOVE IT.
10499 Also, don't forget to modify the associated SIZE at
10500 (offset + 4). */
10501
10502 irel = &internal_relocs[i];
10503 r_type = ELF32_R_TYPE (irel->r_info);
10504 if (r_type == R_XTENSA_NONE)
10505 continue;
10506
10507 /* Find the literal value. */
10508 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10509 size_p = &contents[irel->r_offset + 4];
10510 flags_p = NULL;
10511 if (is_full_prop_section)
10512 flags_p = &contents[irel->r_offset + 8];
10513 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10514
10515 target_sec = r_reloc_get_section (&val.r_rel);
10516 target_relax_info = get_xtensa_relax_info (target_sec);
10517
10518 if (target_relax_info
10519 && (target_relax_info->is_relaxable_literal_section
10520 || target_relax_info->is_relaxable_asm_section ))
10521 {
10522 /* Translate the relocation's destination. */
10523 bfd_vma old_offset = val.r_rel.target_offset;
10524 bfd_vma new_offset;
10525 long old_size, new_size;
10526 int removed_by_old_offset =
10527 removed_by_actions_map (&target_relax_info->action_list,
10528 old_offset, false);
10529 new_offset = old_offset - removed_by_old_offset;
10530
10531 /* Assert that we are not out of bounds. */
10532 old_size = bfd_get_32 (abfd, size_p);
10533 new_size = old_size;
10534
10535 if (old_size == 0)
10536 {
10537 /* Only the first zero-sized unreachable entry is
10538 allowed to expand. In this case the new offset
10539 should be the offset before the fill and the new
10540 size is the expansion size. For other zero-sized
10541 entries the resulting size should be zero with an
10542 offset before or after the fill address depending
10543 on whether the expanding unreachable entry
10544 preceeds it. */
10545 if (last_zfill_target_sec == 0
10546 || last_zfill_target_sec != target_sec
10547 || last_zfill_target_offset != old_offset)
10548 {
10549 bfd_vma new_end_offset = new_offset;
10550
10551 /* Recompute the new_offset, but this time don't
10552 include any fill inserted by relaxation. */
10553 removed_by_old_offset =
10554 removed_by_actions_map (&target_relax_info->action_list,
10555 old_offset, true);
10556 new_offset = old_offset - removed_by_old_offset;
10557
10558 /* If it is not unreachable and we have not yet
10559 seen an unreachable at this address, place it
10560 before the fill address. */
10561 if (flags_p && (bfd_get_32 (abfd, flags_p)
10562 & XTENSA_PROP_UNREACHABLE) != 0)
10563 {
10564 new_size = new_end_offset - new_offset;
10565
10566 last_zfill_target_sec = target_sec;
10567 last_zfill_target_offset = old_offset;
10568 }
10569 }
10570 }
10571 else
10572 {
10573 int removed_by_old_offset_size =
10574 removed_by_actions_map (&target_relax_info->action_list,
10575 old_offset + old_size, true);
10576 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10577 }
10578
10579 if (new_size != old_size)
10580 {
10581 bfd_put_32 (abfd, new_size, size_p);
10582 pin_contents (sec, contents);
10583 }
10584
10585 if (new_offset != old_offset)
10586 {
10587 bfd_vma diff = new_offset - old_offset;
10588 irel->r_addend += diff;
10589 pin_internal_relocs (sec, internal_relocs);
10590 }
10591 }
10592 }
10593 }
10594
10595 /* Combine adjacent property table entries. This is also done in
10596 finish_dynamic_sections() but at that point it's too late to
10597 reclaim the space in the output section, so we do this twice. */
10598
10599 if (internal_relocs && (!bfd_link_relocatable (link_info)
10600 || xtensa_is_littable_section (sec)))
10601 {
10602 Elf_Internal_Rela *last_irel = NULL;
10603 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10604 int removed_bytes = 0;
10605 bfd_vma offset;
10606 flagword predef_flags;
10607
10608 predef_flags = xtensa_get_property_predef_flags (sec);
10609
10610 /* Walk over memory and relocations at the same time.
10611 This REQUIRES that the internal_relocs be sorted by offset. */
10612 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10613 internal_reloc_compare);
10614
10615 pin_internal_relocs (sec, internal_relocs);
10616 pin_contents (sec, contents);
10617
10618 next_rel = internal_relocs;
10619 rel_end = internal_relocs + sec->reloc_count;
10620
10621 BFD_ASSERT (sec->size % entry_size == 0);
10622
10623 for (offset = 0; offset < sec->size; offset += entry_size)
10624 {
10625 Elf_Internal_Rela *offset_rel, *extra_rel;
10626 bfd_vma bytes_to_remove, size, actual_offset;
10627 bool remove_this_rel;
10628 flagword flags;
10629
10630 /* Find the first relocation for the entry at the current offset.
10631 Adjust the offsets of any extra relocations for the previous
10632 entry. */
10633 offset_rel = NULL;
10634 if (next_rel)
10635 {
10636 for (irel = next_rel; irel < rel_end; irel++)
10637 {
10638 if ((irel->r_offset == offset
10639 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10640 || irel->r_offset > offset)
10641 {
10642 offset_rel = irel;
10643 break;
10644 }
10645 irel->r_offset -= removed_bytes;
10646 }
10647 }
10648
10649 /* Find the next relocation (if there are any left). */
10650 extra_rel = NULL;
10651 if (offset_rel)
10652 {
10653 for (irel = offset_rel + 1; irel < rel_end; irel++)
10654 {
10655 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10656 {
10657 extra_rel = irel;
10658 break;
10659 }
10660 }
10661 }
10662
10663 /* Check if there are relocations on the current entry. There
10664 should usually be a relocation on the offset field. If there
10665 are relocations on the size or flags, then we can't optimize
10666 this entry. Also, find the next relocation to examine on the
10667 next iteration. */
10668 if (offset_rel)
10669 {
10670 if (offset_rel->r_offset >= offset + entry_size)
10671 {
10672 next_rel = offset_rel;
10673 /* There are no relocations on the current entry, but we
10674 might still be able to remove it if the size is zero. */
10675 offset_rel = NULL;
10676 }
10677 else if (offset_rel->r_offset > offset
10678 || (extra_rel
10679 && extra_rel->r_offset < offset + entry_size))
10680 {
10681 /* There is a relocation on the size or flags, so we can't
10682 do anything with this entry. Continue with the next. */
10683 next_rel = offset_rel;
10684 continue;
10685 }
10686 else
10687 {
10688 BFD_ASSERT (offset_rel->r_offset == offset);
10689 offset_rel->r_offset -= removed_bytes;
10690 next_rel = offset_rel + 1;
10691 }
10692 }
10693 else
10694 next_rel = NULL;
10695
10696 remove_this_rel = false;
10697 bytes_to_remove = 0;
10698 actual_offset = offset - removed_bytes;
10699 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10700
10701 if (is_full_prop_section)
10702 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10703 else
10704 flags = predef_flags;
10705
10706 if (size == 0
10707 && (flags & XTENSA_PROP_ALIGN) == 0
10708 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10709 {
10710 /* Always remove entries with zero size and no alignment. */
10711 bytes_to_remove = entry_size;
10712 if (offset_rel)
10713 remove_this_rel = true;
10714 }
10715 else if (offset_rel
10716 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10717 {
10718 if (last_irel)
10719 {
10720 flagword old_flags;
10721 bfd_vma old_size =
10722 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10723 bfd_vma old_address =
10724 (last_irel->r_addend
10725 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10726 bfd_vma new_address =
10727 (offset_rel->r_addend
10728 + bfd_get_32 (abfd, &contents[actual_offset]));
10729 if (is_full_prop_section)
10730 old_flags = bfd_get_32
10731 (abfd, &contents[last_irel->r_offset + 8]);
10732 else
10733 old_flags = predef_flags;
10734
10735 if ((ELF32_R_SYM (offset_rel->r_info)
10736 == ELF32_R_SYM (last_irel->r_info))
10737 && old_address + old_size == new_address
10738 && old_flags == flags
10739 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10740 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10741 {
10742 /* Fix the old size. */
10743 bfd_put_32 (abfd, old_size + size,
10744 &contents[last_irel->r_offset + 4]);
10745 bytes_to_remove = entry_size;
10746 remove_this_rel = true;
10747 }
10748 else
10749 last_irel = offset_rel;
10750 }
10751 else
10752 last_irel = offset_rel;
10753 }
10754
10755 if (remove_this_rel)
10756 {
10757 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10758 offset_rel->r_offset = 0;
10759 }
10760
10761 if (bytes_to_remove != 0)
10762 {
10763 removed_bytes += bytes_to_remove;
10764 if (offset + bytes_to_remove < sec->size)
10765 memmove (&contents[actual_offset],
10766 &contents[actual_offset + bytes_to_remove],
10767 sec->size - offset - bytes_to_remove);
10768 }
10769 }
10770
10771 if (removed_bytes)
10772 {
10773 /* Fix up any extra relocations on the last entry. */
10774 for (irel = next_rel; irel < rel_end; irel++)
10775 irel->r_offset -= removed_bytes;
10776
10777 /* Clear the removed bytes. */
10778 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10779
10780 if (sec->rawsize == 0)
10781 sec->rawsize = sec->size;
10782 sec->size -= removed_bytes;
10783
10784 if (xtensa_is_littable_section (sec))
10785 {
10786 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10787 if (sgotloc)
10788 sgotloc->size -= removed_bytes;
10789 }
10790 }
10791 }
10792
10793 error_return:
10794 release_internal_relocs (sec, internal_relocs);
10795 release_contents (sec, contents);
10796 return ok;
10797 }
10798
10799 \f
10800 /* Third relaxation pass. */
10801
10802 /* Change symbol values to account for removed literals. */
10803
10804 bool
10805 relax_section_symbols (bfd *abfd, asection *sec)
10806 {
10807 xtensa_relax_info *relax_info;
10808 unsigned int sec_shndx;
10809 Elf_Internal_Shdr *symtab_hdr;
10810 Elf_Internal_Sym *isymbuf;
10811 unsigned i, num_syms, num_locals;
10812
10813 relax_info = get_xtensa_relax_info (sec);
10814 BFD_ASSERT (relax_info);
10815
10816 if (!relax_info->is_relaxable_literal_section
10817 && !relax_info->is_relaxable_asm_section)
10818 return true;
10819
10820 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10821
10822 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10823 isymbuf = retrieve_local_syms (abfd);
10824
10825 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10826 num_locals = symtab_hdr->sh_info;
10827
10828 /* Adjust the local symbols defined in this section. */
10829 for (i = 0; i < num_locals; i++)
10830 {
10831 Elf_Internal_Sym *isym = &isymbuf[i];
10832
10833 if (isym->st_shndx == sec_shndx)
10834 {
10835 bfd_vma orig_addr = isym->st_value;
10836 int removed = removed_by_actions_map (&relax_info->action_list,
10837 orig_addr, false);
10838
10839 isym->st_value -= removed;
10840 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10841 isym->st_size -=
10842 removed_by_actions_map (&relax_info->action_list,
10843 orig_addr + isym->st_size, false) -
10844 removed;
10845 }
10846 }
10847
10848 /* Now adjust the global symbols defined in this section. */
10849 for (i = 0; i < (num_syms - num_locals); i++)
10850 {
10851 struct elf_link_hash_entry *sym_hash;
10852
10853 sym_hash = elf_sym_hashes (abfd)[i];
10854
10855 if (sym_hash->root.type == bfd_link_hash_warning)
10856 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10857
10858 if ((sym_hash->root.type == bfd_link_hash_defined
10859 || sym_hash->root.type == bfd_link_hash_defweak)
10860 && sym_hash->root.u.def.section == sec)
10861 {
10862 bfd_vma orig_addr = sym_hash->root.u.def.value;
10863 int removed = removed_by_actions_map (&relax_info->action_list,
10864 orig_addr, false);
10865
10866 sym_hash->root.u.def.value -= removed;
10867
10868 if (sym_hash->type == STT_FUNC)
10869 sym_hash->size -=
10870 removed_by_actions_map (&relax_info->action_list,
10871 orig_addr + sym_hash->size, false) -
10872 removed;
10873 }
10874 }
10875
10876 return true;
10877 }
10878
10879 \f
10880 /* "Fix" handling functions, called while performing relocations. */
10881
10882 static bool
10883 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10884 bfd *input_bfd,
10885 asection *input_section,
10886 bfd_byte *contents)
10887 {
10888 r_reloc r_rel;
10889 asection *sec, *old_sec;
10890 bfd_vma old_offset;
10891 int r_type = ELF32_R_TYPE (rel->r_info);
10892 reloc_bfd_fix *fix;
10893
10894 if (r_type == R_XTENSA_NONE)
10895 return true;
10896
10897 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10898 if (!fix)
10899 return true;
10900
10901 r_reloc_init (&r_rel, input_bfd, rel, contents,
10902 bfd_get_section_limit (input_bfd, input_section));
10903 old_sec = r_reloc_get_section (&r_rel);
10904 old_offset = r_rel.target_offset;
10905
10906 if (!old_sec || !r_reloc_is_defined (&r_rel))
10907 {
10908 if (r_type != R_XTENSA_ASM_EXPAND)
10909 {
10910 _bfd_error_handler
10911 /* xgettext:c-format */
10912 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10913 input_bfd, input_section, (uint64_t) rel->r_offset,
10914 elf_howto_table[r_type].name);
10915 return false;
10916 }
10917 /* Leave it be. Resolution will happen in a later stage. */
10918 }
10919 else
10920 {
10921 sec = fix->target_sec;
10922 rel->r_addend += ((sec->output_offset + fix->target_offset)
10923 - (old_sec->output_offset + old_offset));
10924 }
10925 return true;
10926 }
10927
10928
10929 static void
10930 do_fix_for_final_link (Elf_Internal_Rela *rel,
10931 bfd *input_bfd,
10932 asection *input_section,
10933 bfd_byte *contents,
10934 bfd_vma *relocationp)
10935 {
10936 asection *sec;
10937 int r_type = ELF32_R_TYPE (rel->r_info);
10938 reloc_bfd_fix *fix;
10939 bfd_vma fixup_diff;
10940
10941 if (r_type == R_XTENSA_NONE)
10942 return;
10943
10944 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10945 if (!fix)
10946 return;
10947
10948 sec = fix->target_sec;
10949
10950 fixup_diff = rel->r_addend;
10951 if (elf_howto_table[fix->src_type].partial_inplace)
10952 {
10953 bfd_vma inplace_val;
10954 BFD_ASSERT (fix->src_offset
10955 < bfd_get_section_limit (input_bfd, input_section));
10956 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10957 fixup_diff += inplace_val;
10958 }
10959
10960 *relocationp = (sec->output_section->vma
10961 + sec->output_offset
10962 + fix->target_offset - fixup_diff);
10963 }
10964
10965 \f
10966 /* Miscellaneous utility functions.... */
10967
10968 static asection *
10969 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10970 {
10971 bfd *dynobj;
10972 char plt_name[17];
10973
10974 if (chunk == 0)
10975 return elf_hash_table (info)->splt;
10976
10977 dynobj = elf_hash_table (info)->dynobj;
10978 sprintf (plt_name, ".plt.%u", chunk);
10979 return bfd_get_linker_section (dynobj, plt_name);
10980 }
10981
10982
10983 static asection *
10984 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10985 {
10986 bfd *dynobj;
10987 char got_name[21];
10988
10989 if (chunk == 0)
10990 return elf_hash_table (info)->sgotplt;
10991
10992 dynobj = elf_hash_table (info)->dynobj;
10993 sprintf (got_name, ".got.plt.%u", chunk);
10994 return bfd_get_linker_section (dynobj, got_name);
10995 }
10996
10997
10998 /* Get the input section for a given symbol index.
10999 If the symbol is:
11000 . a section symbol, return the section;
11001 . a common symbol, return the common section;
11002 . an undefined symbol, return the undefined section;
11003 . an indirect symbol, follow the links;
11004 . an absolute value, return the absolute section. */
11005
11006 static asection *
11007 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
11008 {
11009 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11010 asection *target_sec = NULL;
11011 if (r_symndx < symtab_hdr->sh_info)
11012 {
11013 Elf_Internal_Sym *isymbuf;
11014 unsigned int section_index;
11015
11016 isymbuf = retrieve_local_syms (abfd);
11017 section_index = isymbuf[r_symndx].st_shndx;
11018
11019 if (section_index == SHN_UNDEF)
11020 target_sec = bfd_und_section_ptr;
11021 else if (section_index == SHN_ABS)
11022 target_sec = bfd_abs_section_ptr;
11023 else if (section_index == SHN_COMMON)
11024 target_sec = bfd_com_section_ptr;
11025 else
11026 target_sec = bfd_section_from_elf_index (abfd, section_index);
11027 }
11028 else
11029 {
11030 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11031 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
11032
11033 while (h->root.type == bfd_link_hash_indirect
11034 || h->root.type == bfd_link_hash_warning)
11035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11036
11037 switch (h->root.type)
11038 {
11039 case bfd_link_hash_defined:
11040 case bfd_link_hash_defweak:
11041 target_sec = h->root.u.def.section;
11042 break;
11043 case bfd_link_hash_common:
11044 target_sec = bfd_com_section_ptr;
11045 break;
11046 case bfd_link_hash_undefined:
11047 case bfd_link_hash_undefweak:
11048 target_sec = bfd_und_section_ptr;
11049 break;
11050 default: /* New indirect warning. */
11051 target_sec = bfd_und_section_ptr;
11052 break;
11053 }
11054 }
11055 return target_sec;
11056 }
11057
11058
11059 static struct elf_link_hash_entry *
11060 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
11061 {
11062 unsigned long indx;
11063 struct elf_link_hash_entry *h;
11064 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11065
11066 if (r_symndx < symtab_hdr->sh_info)
11067 return NULL;
11068
11069 indx = r_symndx - symtab_hdr->sh_info;
11070 h = elf_sym_hashes (abfd)[indx];
11071 while (h->root.type == bfd_link_hash_indirect
11072 || h->root.type == bfd_link_hash_warning)
11073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11074 return h;
11075 }
11076
11077
11078 /* Get the section-relative offset for a symbol number. */
11079
11080 static bfd_vma
11081 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
11082 {
11083 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11084 bfd_vma offset = 0;
11085
11086 if (r_symndx < symtab_hdr->sh_info)
11087 {
11088 Elf_Internal_Sym *isymbuf;
11089 isymbuf = retrieve_local_syms (abfd);
11090 offset = isymbuf[r_symndx].st_value;
11091 }
11092 else
11093 {
11094 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11095 struct elf_link_hash_entry *h =
11096 elf_sym_hashes (abfd)[indx];
11097
11098 while (h->root.type == bfd_link_hash_indirect
11099 || h->root.type == bfd_link_hash_warning)
11100 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11101 if (h->root.type == bfd_link_hash_defined
11102 || h->root.type == bfd_link_hash_defweak)
11103 offset = h->root.u.def.value;
11104 }
11105 return offset;
11106 }
11107
11108
11109 static bool
11110 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11111 {
11112 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11113 struct elf_link_hash_entry *h;
11114
11115 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11116 if (h && h->root.type == bfd_link_hash_defweak)
11117 return true;
11118 return false;
11119 }
11120
11121
11122 static bool
11123 pcrel_reloc_fits (xtensa_opcode opc,
11124 int opnd,
11125 bfd_vma self_address,
11126 bfd_vma dest_address)
11127 {
11128 xtensa_isa isa = xtensa_default_isa;
11129 uint32 valp = dest_address;
11130 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11131 || xtensa_operand_encode (isa, opc, opnd, &valp))
11132 return false;
11133 return true;
11134 }
11135
11136
11137 static bool
11138 xtensa_is_property_section (asection *sec)
11139 {
11140 if (xtensa_is_insntable_section (sec)
11141 || xtensa_is_littable_section (sec)
11142 || xtensa_is_proptable_section (sec))
11143 return true;
11144
11145 return false;
11146 }
11147
11148
11149 static bool
11150 xtensa_is_insntable_section (asection *sec)
11151 {
11152 if (startswith (sec->name, XTENSA_INSN_SEC_NAME)
11153 || startswith (sec->name, ".gnu.linkonce.x."))
11154 return true;
11155
11156 return false;
11157 }
11158
11159
11160 static bool
11161 xtensa_is_littable_section (asection *sec)
11162 {
11163 if (startswith (sec->name, XTENSA_LIT_SEC_NAME)
11164 || startswith (sec->name, ".gnu.linkonce.p."))
11165 return true;
11166
11167 return false;
11168 }
11169
11170
11171 static bool
11172 xtensa_is_proptable_section (asection *sec)
11173 {
11174 if (startswith (sec->name, XTENSA_PROP_SEC_NAME)
11175 || startswith (sec->name, ".gnu.linkonce.prop."))
11176 return true;
11177
11178 return false;
11179 }
11180
11181
11182 static int
11183 internal_reloc_compare (const void *ap, const void *bp)
11184 {
11185 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11186 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11187
11188 if (a->r_offset != b->r_offset)
11189 return (a->r_offset - b->r_offset);
11190
11191 /* We don't need to sort on these criteria for correctness,
11192 but enforcing a more strict ordering prevents unstable qsort
11193 from behaving differently with different implementations.
11194 Without the code below we get correct but different results
11195 on Solaris 2.7 and 2.8. We would like to always produce the
11196 same results no matter the host. */
11197
11198 if (a->r_info != b->r_info)
11199 return (a->r_info - b->r_info);
11200
11201 return (a->r_addend - b->r_addend);
11202 }
11203
11204
11205 static int
11206 internal_reloc_matches (const void *ap, const void *bp)
11207 {
11208 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11209 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11210
11211 /* Check if one entry overlaps with the other; this shouldn't happen
11212 except when searching for a match. */
11213 return (a->r_offset - b->r_offset);
11214 }
11215
11216
11217 /* Predicate function used to look up a section in a particular group. */
11218
11219 static bool
11220 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11221 {
11222 const char *gname = inf;
11223 const char *group_name = elf_group_name (sec);
11224
11225 return (group_name == gname
11226 || (group_name != NULL
11227 && gname != NULL
11228 && strcmp (group_name, gname) == 0));
11229 }
11230
11231
11232 static char *
11233 xtensa_add_names (const char *base, const char *suffix)
11234 {
11235 if (suffix)
11236 {
11237 size_t base_len = strlen (base);
11238 size_t suffix_len = strlen (suffix);
11239 char *str = bfd_malloc (base_len + suffix_len + 1);
11240
11241 memcpy (str, base, base_len);
11242 memcpy (str + base_len, suffix, suffix_len + 1);
11243 return str;
11244 }
11245 else
11246 {
11247 return strdup (base);
11248 }
11249 }
11250
11251 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11252
11253 static char *
11254 xtensa_property_section_name (asection *sec, const char *base_name,
11255 bool separate_sections)
11256 {
11257 const char *suffix, *group_name;
11258 char *prop_sec_name;
11259
11260 group_name = elf_group_name (sec);
11261 if (group_name)
11262 {
11263 suffix = strrchr (sec->name, '.');
11264 if (suffix == sec->name)
11265 suffix = 0;
11266 prop_sec_name = xtensa_add_names (base_name, suffix);
11267 }
11268 else if (startswith (sec->name, ".gnu.linkonce."))
11269 {
11270 char *linkonce_kind = 0;
11271
11272 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11273 linkonce_kind = "x.";
11274 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11275 linkonce_kind = "p.";
11276 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11277 linkonce_kind = "prop.";
11278 else
11279 abort ();
11280
11281 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11282 + strlen (linkonce_kind) + 1);
11283 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11284 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11285
11286 suffix = sec->name + linkonce_len;
11287 /* For backward compatibility, replace "t." instead of inserting
11288 the new linkonce_kind (but not for "prop" sections). */
11289 if (startswith (suffix, "t.") && linkonce_kind[1] == '.')
11290 suffix += 2;
11291 strcat (prop_sec_name + linkonce_len, suffix);
11292 }
11293 else
11294 {
11295 prop_sec_name = xtensa_add_names (base_name,
11296 separate_sections ? sec->name : NULL);
11297 }
11298
11299 return prop_sec_name;
11300 }
11301
11302
11303 static asection *
11304 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11305 bool separate_section)
11306 {
11307 char *prop_sec_name;
11308 asection *prop_sec;
11309
11310 prop_sec_name = xtensa_property_section_name (sec, base_name,
11311 separate_section);
11312 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11313 match_section_group,
11314 (void *) elf_group_name (sec));
11315 free (prop_sec_name);
11316 return prop_sec;
11317 }
11318
11319 static asection *
11320 xtensa_get_property_section (asection *sec, const char *base_name)
11321 {
11322 asection *prop_sec;
11323
11324 /* Try individual property section first. */
11325 prop_sec = xtensa_get_separate_property_section (sec, base_name, true);
11326
11327 /* Refer to a common property section if individual is not present. */
11328 if (!prop_sec)
11329 prop_sec = xtensa_get_separate_property_section (sec, base_name, false);
11330
11331 return prop_sec;
11332 }
11333
11334
11335 asection *
11336 xtensa_make_property_section (asection *sec, const char *base_name)
11337 {
11338 char *prop_sec_name;
11339 asection *prop_sec;
11340
11341 /* Check if the section already exists. */
11342 prop_sec_name = xtensa_property_section_name (sec, base_name,
11343 elf32xtensa_separate_props);
11344 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11345 match_section_group,
11346 (void *) elf_group_name (sec));
11347 /* If not, create it. */
11348 if (! prop_sec)
11349 {
11350 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11351 flags |= (bfd_section_flags (sec)
11352 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11353
11354 prop_sec = bfd_make_section_anyway_with_flags
11355 (sec->owner, strdup (prop_sec_name), flags);
11356 if (! prop_sec)
11357 return 0;
11358
11359 elf_group_name (prop_sec) = elf_group_name (sec);
11360 }
11361
11362 free (prop_sec_name);
11363 return prop_sec;
11364 }
11365
11366
11367 flagword
11368 xtensa_get_property_predef_flags (asection *sec)
11369 {
11370 if (xtensa_is_insntable_section (sec))
11371 return (XTENSA_PROP_INSN
11372 | XTENSA_PROP_NO_TRANSFORM
11373 | XTENSA_PROP_INSN_NO_REORDER);
11374
11375 if (xtensa_is_littable_section (sec))
11376 return (XTENSA_PROP_LITERAL
11377 | XTENSA_PROP_NO_TRANSFORM
11378 | XTENSA_PROP_INSN_NO_REORDER);
11379
11380 return 0;
11381 }
11382
11383 \f
11384 /* Other functions called directly by the linker. */
11385
11386 bool
11387 xtensa_callback_required_dependence (bfd *abfd,
11388 asection *sec,
11389 struct bfd_link_info *link_info,
11390 deps_callback_t callback,
11391 void *closure)
11392 {
11393 Elf_Internal_Rela *internal_relocs;
11394 bfd_byte *contents;
11395 unsigned i;
11396 bool ok = true;
11397 bfd_size_type sec_size;
11398
11399 sec_size = bfd_get_section_limit (abfd, sec);
11400
11401 /* ".plt*" sections have no explicit relocations but they contain L32R
11402 instructions that reference the corresponding ".got.plt*" sections. */
11403 if ((sec->flags & SEC_LINKER_CREATED) != 0
11404 && startswith (sec->name, ".plt"))
11405 {
11406 asection *sgotplt;
11407
11408 /* Find the corresponding ".got.plt*" section. */
11409 if (sec->name[4] == '\0')
11410 sgotplt = elf_hash_table (link_info)->sgotplt;
11411 else
11412 {
11413 char got_name[14];
11414 int chunk = 0;
11415
11416 BFD_ASSERT (sec->name[4] == '.');
11417 chunk = strtol (&sec->name[5], NULL, 10);
11418
11419 sprintf (got_name, ".got.plt.%u", chunk);
11420 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11421 }
11422 BFD_ASSERT (sgotplt);
11423
11424 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11425 section referencing a literal at the very beginning of
11426 ".got.plt". This is very close to the real dependence, anyway. */
11427 (*callback) (sec, sec_size, sgotplt, 0, closure);
11428 }
11429
11430 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11431 when building uclibc, which runs "ld -b binary /dev/null". */
11432 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11433 return ok;
11434
11435 internal_relocs = retrieve_internal_relocs (abfd, sec,
11436 link_info->keep_memory);
11437 if (internal_relocs == NULL
11438 || sec->reloc_count == 0)
11439 return ok;
11440
11441 /* Cache the contents for the duration of this scan. */
11442 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11443 if (contents == NULL && sec_size != 0)
11444 {
11445 ok = false;
11446 goto error_return;
11447 }
11448
11449 if (!xtensa_default_isa)
11450 xtensa_default_isa = xtensa_isa_init (0, 0);
11451
11452 for (i = 0; i < sec->reloc_count; i++)
11453 {
11454 Elf_Internal_Rela *irel = &internal_relocs[i];
11455 if (is_l32r_relocation (abfd, sec, contents, irel))
11456 {
11457 r_reloc l32r_rel;
11458 asection *target_sec;
11459 bfd_vma target_offset;
11460
11461 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11462 target_sec = NULL;
11463 target_offset = 0;
11464 /* L32Rs must be local to the input file. */
11465 if (r_reloc_is_defined (&l32r_rel))
11466 {
11467 target_sec = r_reloc_get_section (&l32r_rel);
11468 target_offset = l32r_rel.target_offset;
11469 }
11470 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11471 closure);
11472 }
11473 }
11474
11475 error_return:
11476 release_internal_relocs (sec, internal_relocs);
11477 release_contents (sec, contents);
11478 return ok;
11479 }
11480
11481 /* The default literal sections should always be marked as "code" (i.e.,
11482 SHF_EXECINSTR). This is particularly important for the Linux kernel
11483 module loader so that the literals are not placed after the text. */
11484 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11485 {
11486 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11487 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11488 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11489 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11490 { NULL, 0, 0, 0, 0 }
11491 };
11492 \f
11493 #define ELF_TARGET_ID XTENSA_ELF_DATA
11494 #ifndef ELF_ARCH
11495 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11496 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11497 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11498 #define TARGET_BIG_NAME "elf32-xtensa-be"
11499 #define ELF_ARCH bfd_arch_xtensa
11500
11501 #define ELF_MACHINE_CODE EM_XTENSA
11502 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11503
11504 #define ELF_MAXPAGESIZE 0x1000
11505 #endif /* ELF_ARCH */
11506
11507 #define elf_backend_can_gc_sections 1
11508 #define elf_backend_can_refcount 1
11509 #define elf_backend_plt_readonly 1
11510 #define elf_backend_got_header_size 4
11511 #define elf_backend_want_dynbss 0
11512 #define elf_backend_want_got_plt 1
11513 #define elf_backend_dtrel_excludes_plt 1
11514
11515 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11516
11517 #define bfd_elf32_mkobject elf_xtensa_mkobject
11518
11519 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11520 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11521 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11522 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11523 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11524 #define bfd_elf32_bfd_reloc_name_lookup \
11525 elf_xtensa_reloc_name_lookup
11526 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11527 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11528
11529 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11530 #define elf_backend_check_relocs elf_xtensa_check_relocs
11531 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11532 #define elf_backend_discard_info elf_xtensa_discard_info
11533 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11534 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11535 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11536 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11537 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11538 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11539 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11540 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11541 #define elf_backend_object_p elf_xtensa_object_p
11542 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11543 #define elf_backend_relocate_section elf_xtensa_relocate_section
11544 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11545 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11546 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11547 #define elf_backend_special_sections elf_xtensa_special_sections
11548 #define elf_backend_action_discarded elf_xtensa_action_discarded
11549 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11550
11551 #include "elf32-target.h"
This page took 0.268887 seconds and 4 git commands to generate.