1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean
add_extra_plt_sections (struct bfd_link_info
*, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
52 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
53 static xtensa_opcode
get_const16_opcode (void);
54 static xtensa_opcode
get_l32r_opcode (void);
55 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
56 static int get_relocation_opnd (xtensa_opcode
, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
60 static bfd_boolean is_l32r_relocation
61 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
62 static bfd_boolean
is_alt_relocation (int);
63 static bfd_boolean
is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
72 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
82 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
83 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela
*retrieve_internal_relocs
88 (bfd
*, asection
*, bfd_boolean
);
89 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
91 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
92 static void pin_contents (asection
*, bfd_byte
*);
93 static void release_contents (asection
*, bfd_byte
*);
94 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
96 /* Miscellaneous utility functions. */
98 static asection
*elf_xtensa_get_plt_section (struct bfd_link_info
*, int);
99 static asection
*elf_xtensa_get_gotplt_section (struct bfd_link_info
*, int);
100 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
101 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
102 (bfd
*, unsigned long);
103 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
104 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
105 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
106 static bfd_boolean
xtensa_is_property_section (asection
*);
107 static bfd_boolean
xtensa_is_insntable_section (asection
*);
108 static bfd_boolean
xtensa_is_littable_section (asection
*);
109 static bfd_boolean
xtensa_is_proptable_section (asection
*);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection
*xtensa_get_property_section (asection
*, const char *);
113 extern asection
*xtensa_make_property_section (asection
*, const char *);
114 static flagword
xtensa_get_property_predef_flags (asection
*);
116 /* Other functions called directly by the linker. */
118 typedef void (*deps_callback_t
)
119 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
129 int elf32xtensa_size_opt
;
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
136 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
144 xtensa_isa xtensa_default_isa
;
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
151 static bfd_boolean relaxing_section
= FALSE
;
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
156 int elf32xtensa_no_literal_movement
= 1;
158 /* Rename one of the generic section flags to better document how it
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
163 static reloc_howto_type elf_howto_table
[] =
165 HOWTO (R_XTENSA_NONE
, 0, 3, 0, FALSE
, 0, complain_overflow_dont
,
166 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
168 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
169 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
170 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
178 NULL
, "R_XTENSA_RTLD", FALSE
, 0, 0, FALSE
),
180 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
181 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
182 FALSE
, 0, 0xffffffff, FALSE
),
183 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
184 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
185 FALSE
, 0, 0xffffffff, FALSE
),
186 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
187 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
188 FALSE
, 0, 0xffffffff, FALSE
),
189 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
190 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
191 FALSE
, 0, 0xffffffff, FALSE
),
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
197 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0", FALSE
, 0, 0, TRUE
),
198 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
199 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1", FALSE
, 0, 0, TRUE
),
200 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
201 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2", FALSE
, 0, 0, TRUE
),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
205 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND", FALSE
, 0, 0, TRUE
),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
208 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY", FALSE
, 0, 0, TRUE
),
212 HOWTO (R_XTENSA_32_PCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_bitfield
,
213 bfd_elf_xtensa_reloc
, "R_XTENSA_32_PCREL",
214 FALSE
, 0, 0xffffffff, TRUE
),
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
218 NULL
, "R_XTENSA_GNU_VTINHERIT",
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
222 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_signed
,
227 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8", FALSE
, 0, 0xff, FALSE
),
228 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_signed
,
229 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16", FALSE
, 0, 0xffff, FALSE
),
230 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
231 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32", FALSE
, 0, 0xffffffff, FALSE
),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
235 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP", FALSE
, 0, 0, TRUE
),
236 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
237 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP", FALSE
, 0, 0, TRUE
),
238 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
239 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP", FALSE
, 0, 0, TRUE
),
240 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
241 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP", FALSE
, 0, 0, TRUE
),
242 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
243 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP", FALSE
, 0, 0, TRUE
),
244 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
245 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP", FALSE
, 0, 0, TRUE
),
246 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
247 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP", FALSE
, 0, 0, TRUE
),
248 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
249 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP", FALSE
, 0, 0, TRUE
),
250 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
251 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP", FALSE
, 0, 0, TRUE
),
252 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
253 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP", FALSE
, 0, 0, TRUE
),
254 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
255 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP", FALSE
, 0, 0, TRUE
),
256 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
257 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP", FALSE
, 0, 0, TRUE
),
258 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
259 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP", FALSE
, 0, 0, TRUE
),
260 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
261 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP", FALSE
, 0, 0, TRUE
),
262 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
263 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP", FALSE
, 0, 0, TRUE
),
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
267 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT", FALSE
, 0, 0, TRUE
),
268 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
269 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT", FALSE
, 0, 0, TRUE
),
270 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
271 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT", FALSE
, 0, 0, TRUE
),
272 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
273 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT", FALSE
, 0, 0, TRUE
),
274 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
275 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT", FALSE
, 0, 0, TRUE
),
276 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
277 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT", FALSE
, 0, 0, TRUE
),
278 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
279 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT", FALSE
, 0, 0, TRUE
),
280 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
281 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT", FALSE
, 0, 0, TRUE
),
282 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
283 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT", FALSE
, 0, 0, TRUE
),
284 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
285 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT", FALSE
, 0, 0, TRUE
),
286 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
287 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT", FALSE
, 0, 0, TRUE
),
288 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
289 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT", FALSE
, 0, 0, TRUE
),
290 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
291 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT", FALSE
, 0, 0, TRUE
),
292 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
293 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT", FALSE
, 0, 0, TRUE
),
294 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
295 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT", FALSE
, 0, 0, TRUE
),
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
299 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_FN",
300 FALSE
, 0, 0xffffffff, FALSE
),
301 HOWTO (R_XTENSA_TLSDESC_ARG
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
302 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_ARG",
303 FALSE
, 0, 0xffffffff, FALSE
),
304 HOWTO (R_XTENSA_TLS_DTPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
305 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_DTPOFF",
306 FALSE
, 0, 0xffffffff, FALSE
),
307 HOWTO (R_XTENSA_TLS_TPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
308 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_TPOFF",
309 FALSE
, 0, 0xffffffff, FALSE
),
310 HOWTO (R_XTENSA_TLS_FUNC
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
311 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_FUNC",
313 HOWTO (R_XTENSA_TLS_ARG
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
314 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_ARG",
316 HOWTO (R_XTENSA_TLS_CALL
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
317 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_CALL",
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328 static reloc_howto_type
*
329 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
330 bfd_reloc_code_real_type code
)
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
342 case BFD_RELOC_32_PCREL
:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table
[(unsigned) R_XTENSA_32_PCREL
];
346 case BFD_RELOC_XTENSA_DIFF8
:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
350 case BFD_RELOC_XTENSA_DIFF16
:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
354 case BFD_RELOC_XTENSA_DIFF32
:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
358 case BFD_RELOC_XTENSA_RTLD
:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
362 case BFD_RELOC_XTENSA_GLOB_DAT
:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
366 case BFD_RELOC_XTENSA_JMP_SLOT
:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
370 case BFD_RELOC_XTENSA_RELATIVE
:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
374 case BFD_RELOC_XTENSA_PLT
:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
378 case BFD_RELOC_XTENSA_OP0
:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
382 case BFD_RELOC_XTENSA_OP1
:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
386 case BFD_RELOC_XTENSA_OP2
:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
390 case BFD_RELOC_XTENSA_ASM_EXPAND
:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
398 case BFD_RELOC_VTABLE_INHERIT
:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
402 case BFD_RELOC_VTABLE_ENTRY
:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
406 case BFD_RELOC_XTENSA_TLSDESC_FN
:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_FN
];
410 case BFD_RELOC_XTENSA_TLSDESC_ARG
:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_ARG
];
414 case BFD_RELOC_XTENSA_TLS_DTPOFF
:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_DTPOFF
];
418 case BFD_RELOC_XTENSA_TLS_TPOFF
:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_TPOFF
];
422 case BFD_RELOC_XTENSA_TLS_FUNC
:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_FUNC
];
426 case BFD_RELOC_XTENSA_TLS_ARG
:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_ARG
];
430 case BFD_RELOC_XTENSA_TLS_CALL
:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_CALL
];
435 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
436 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
438 unsigned n
= (R_XTENSA_SLOT0_OP
+
439 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
440 return &elf_howto_table
[n
];
443 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
446 unsigned n
= (R_XTENSA_SLOT0_ALT
+
447 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
448 return &elf_howto_table
[n
];
458 static reloc_howto_type
*
459 elf_xtensa_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
464 for (i
= 0; i
< sizeof (elf_howto_table
) / sizeof (elf_howto_table
[0]); i
++)
465 if (elf_howto_table
[i
].name
!= NULL
466 && strcasecmp (elf_howto_table
[i
].name
, r_name
) == 0)
467 return &elf_howto_table
[i
];
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
477 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
479 Elf_Internal_Rela
*dst
)
481 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
483 if (r_type
>= (unsigned int) R_XTENSA_max
)
485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd
, r_type
);
488 cache_ptr
->howto
= &elf_howto_table
[r_type
];
492 /* Functions for the Xtensa ELF linker. */
494 /* The name of the dynamic interpreter. This is put in the .interp
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
499 /* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
503 #define PLT_ENTRY_SIZE 16
505 /* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
515 #define PLT_ENTRIES_PER_CHUNK 254
517 /* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
522 static const bfd_byte elf_xtensa_be_plt_entry
[PLT_ENTRY_SIZE
] =
524 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
525 0x6c, 0x10, 0x04, /* entry sp, 32 */
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
534 static const bfd_byte elf_xtensa_le_plt_entry
[PLT_ENTRY_SIZE
] =
536 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
537 0x36, 0x41, 0x00, /* entry sp, 32 */
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
546 /* The size of the thread control block. */
549 struct elf_xtensa_link_hash_entry
551 struct elf_link_hash_entry elf
;
553 bfd_signed_vma tlsfunc_refcount
;
555 #define GOT_UNKNOWN 0
557 #define GOT_TLS_GD 2 /* global or local dynamic */
558 #define GOT_TLS_IE 4 /* initial or local exec */
559 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type
;
563 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
565 struct elf_xtensa_obj_tdata
567 struct elf_obj_tdata root
;
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type
;
572 bfd_signed_vma
*local_tlsfunc_refcounts
;
575 #define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
578 #define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
581 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
584 #define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
590 elf_xtensa_mkobject (bfd
*abfd
)
592 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_xtensa_obj_tdata
),
596 /* Xtensa ELF linker hash table. */
598 struct elf_xtensa_link_hash_table
600 struct elf_link_hash_table elf
;
602 /* Short-cuts to get to dynamic linker sections. */
609 asection
*spltlittbl
;
611 /* Total count of PLT relocations seen during check_relocs.
612 The actual PLT code must be split into multiple sections and all
613 the sections have to be created before size_dynamic_sections,
614 where we figure out the exact number of PLT entries that will be
615 needed. It is OK if this count is an overestimate, e.g., some
616 relocations may be removed by GC. */
619 struct elf_xtensa_link_hash_entry
*tlsbase
;
622 /* Get the Xtensa ELF linker hash table from a link_info structure. */
624 #define elf_xtensa_hash_table(p) \
625 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
626 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
628 /* Create an entry in an Xtensa ELF linker hash table. */
630 static struct bfd_hash_entry
*
631 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
632 struct bfd_hash_table
*table
,
635 /* Allocate the structure if it has not already been allocated by a
639 entry
= bfd_hash_allocate (table
,
640 sizeof (struct elf_xtensa_link_hash_entry
));
645 /* Call the allocation method of the superclass. */
646 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
649 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (entry
);
650 eh
->tlsfunc_refcount
= 0;
651 eh
->tls_type
= GOT_UNKNOWN
;
657 /* Create an Xtensa ELF linker hash table. */
659 static struct bfd_link_hash_table
*
660 elf_xtensa_link_hash_table_create (bfd
*abfd
)
662 struct elf_link_hash_entry
*tlsbase
;
663 struct elf_xtensa_link_hash_table
*ret
;
664 bfd_size_type amt
= sizeof (struct elf_xtensa_link_hash_table
);
666 ret
= bfd_zmalloc (amt
);
670 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
671 elf_xtensa_link_hash_newfunc
,
672 sizeof (struct elf_xtensa_link_hash_entry
),
679 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
681 tlsbase
= elf_link_hash_lookup (&ret
->elf
, "_TLS_MODULE_BASE_",
683 tlsbase
->root
.type
= bfd_link_hash_new
;
684 tlsbase
->root
.u
.undef
.abfd
= NULL
;
685 tlsbase
->non_elf
= 0;
686 ret
->tlsbase
= elf_xtensa_hash_entry (tlsbase
);
687 ret
->tlsbase
->tls_type
= GOT_UNKNOWN
;
689 return &ret
->elf
.root
;
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
695 elf_xtensa_copy_indirect_symbol (struct bfd_link_info
*info
,
696 struct elf_link_hash_entry
*dir
,
697 struct elf_link_hash_entry
*ind
)
699 struct elf_xtensa_link_hash_entry
*edir
, *eind
;
701 edir
= elf_xtensa_hash_entry (dir
);
702 eind
= elf_xtensa_hash_entry (ind
);
704 if (ind
->root
.type
== bfd_link_hash_indirect
)
706 edir
->tlsfunc_refcount
+= eind
->tlsfunc_refcount
;
707 eind
->tlsfunc_refcount
= 0;
709 if (dir
->got
.refcount
<= 0)
711 edir
->tls_type
= eind
->tls_type
;
712 eind
->tls_type
= GOT_UNKNOWN
;
716 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
719 static inline bfd_boolean
720 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
721 struct bfd_link_info
*info
)
723 /* Check if we should do dynamic things to this symbol. The
724 "ignore_protected" argument need not be set, because Xtensa code
725 does not require special handling of STV_PROTECTED to make function
726 pointer comparisons work properly. The PLT addresses are never
727 used for function pointers. */
729 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
734 property_table_compare (const void *ap
, const void *bp
)
736 const property_table_entry
*a
= (const property_table_entry
*) ap
;
737 const property_table_entry
*b
= (const property_table_entry
*) bp
;
739 if (a
->address
== b
->address
)
741 if (a
->size
!= b
->size
)
742 return (a
->size
- b
->size
);
744 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
745 return ((b
->flags
& XTENSA_PROP_ALIGN
)
746 - (a
->flags
& XTENSA_PROP_ALIGN
));
748 if ((a
->flags
& XTENSA_PROP_ALIGN
)
749 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
750 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
751 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
752 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
754 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
755 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
756 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
757 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
759 return (a
->flags
- b
->flags
);
762 return (a
->address
- b
->address
);
767 property_table_matches (const void *ap
, const void *bp
)
769 const property_table_entry
*a
= (const property_table_entry
*) ap
;
770 const property_table_entry
*b
= (const property_table_entry
*) bp
;
772 /* Check if one entry overlaps with the other. */
773 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
774 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
777 return (a
->address
- b
->address
);
781 /* Get the literal table or property table entries for the given
782 section. Sets TABLE_P and returns the number of entries. On
783 error, returns a negative value. */
786 xtensa_read_table_entries (bfd
*abfd
,
788 property_table_entry
**table_p
,
789 const char *sec_name
,
790 bfd_boolean output_addr
)
792 asection
*table_section
;
793 bfd_size_type table_size
= 0;
794 bfd_byte
*table_data
;
795 property_table_entry
*blocks
;
796 int blk
, block_count
;
797 bfd_size_type num_records
;
798 Elf_Internal_Rela
*internal_relocs
, *irel
, *rel_end
;
799 bfd_vma section_addr
, off
;
800 flagword predef_flags
;
801 bfd_size_type table_entry_size
, section_limit
;
804 || !(section
->flags
& SEC_ALLOC
)
805 || (section
->flags
& SEC_DEBUGGING
))
811 table_section
= xtensa_get_property_section (section
, sec_name
);
813 table_size
= table_section
->size
;
821 predef_flags
= xtensa_get_property_predef_flags (table_section
);
822 table_entry_size
= 12;
824 table_entry_size
-= 4;
826 num_records
= table_size
/ table_entry_size
;
827 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
828 blocks
= (property_table_entry
*)
829 bfd_malloc (num_records
* sizeof (property_table_entry
));
833 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
835 section_addr
= section
->vma
;
837 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
838 if (internal_relocs
&& !table_section
->reloc_done
)
840 qsort (internal_relocs
, table_section
->reloc_count
,
841 sizeof (Elf_Internal_Rela
), internal_reloc_compare
);
842 irel
= internal_relocs
;
847 section_limit
= bfd_get_section_limit (abfd
, section
);
848 rel_end
= internal_relocs
+ table_section
->reloc_count
;
850 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
852 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
854 /* Skip any relocations before the current offset. This should help
855 avoid confusion caused by unexpected relocations for the preceding
858 (irel
->r_offset
< off
859 || (irel
->r_offset
== off
860 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_NONE
)))
867 if (irel
&& irel
->r_offset
== off
)
870 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
871 BFD_ASSERT (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
);
873 if (get_elf_r_symndx_section (abfd
, r_symndx
) != section
)
876 sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
877 BFD_ASSERT (sym_off
== 0);
878 address
+= (section_addr
+ sym_off
+ irel
->r_addend
);
882 if (address
< section_addr
883 || address
>= section_addr
+ section_limit
)
887 blocks
[block_count
].address
= address
;
888 blocks
[block_count
].size
= bfd_get_32 (abfd
, table_data
+ off
+ 4);
890 blocks
[block_count
].flags
= predef_flags
;
892 blocks
[block_count
].flags
= bfd_get_32 (abfd
, table_data
+ off
+ 8);
896 release_contents (table_section
, table_data
);
897 release_internal_relocs (table_section
, internal_relocs
);
901 /* Now sort them into address order for easy reference. */
902 qsort (blocks
, block_count
, sizeof (property_table_entry
),
903 property_table_compare
);
905 /* Check that the table contents are valid. Problems may occur,
906 for example, if an unrelocated object file is stripped. */
907 for (blk
= 1; blk
< block_count
; blk
++)
909 /* The only circumstance where two entries may legitimately
910 have the same address is when one of them is a zero-size
911 placeholder to mark a place where fill can be inserted.
912 The zero-size entry should come first. */
913 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
914 blocks
[blk
- 1].size
!= 0)
916 (*_bfd_error_handler
) (_("%B(%A): invalid property table"),
918 bfd_set_error (bfd_error_bad_value
);
930 static property_table_entry
*
931 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
932 int property_table_size
,
935 property_table_entry entry
;
936 property_table_entry
*rv
;
938 if (property_table_size
== 0)
941 entry
.address
= addr
;
945 rv
= bsearch (&entry
, property_table
, property_table_size
,
946 sizeof (property_table_entry
), property_table_matches
);
952 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
956 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
963 /* Look through the relocs for a section during the first phase, and
964 calculate needed space in the dynamic reloc sections. */
967 elf_xtensa_check_relocs (bfd
*abfd
,
968 struct bfd_link_info
*info
,
970 const Elf_Internal_Rela
*relocs
)
972 struct elf_xtensa_link_hash_table
*htab
;
973 Elf_Internal_Shdr
*symtab_hdr
;
974 struct elf_link_hash_entry
**sym_hashes
;
975 const Elf_Internal_Rela
*rel
;
976 const Elf_Internal_Rela
*rel_end
;
978 if (bfd_link_relocatable (info
) || (sec
->flags
& SEC_ALLOC
) == 0)
981 BFD_ASSERT (is_xtensa_elf (abfd
));
983 htab
= elf_xtensa_hash_table (info
);
987 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
988 sym_hashes
= elf_sym_hashes (abfd
);
990 rel_end
= relocs
+ sec
->reloc_count
;
991 for (rel
= relocs
; rel
< rel_end
; rel
++)
994 unsigned long r_symndx
;
995 struct elf_link_hash_entry
*h
= NULL
;
996 struct elf_xtensa_link_hash_entry
*eh
;
997 int tls_type
, old_tls_type
;
998 bfd_boolean is_got
= FALSE
;
999 bfd_boolean is_plt
= FALSE
;
1000 bfd_boolean is_tlsfunc
= FALSE
;
1002 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1003 r_type
= ELF32_R_TYPE (rel
->r_info
);
1005 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1007 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1012 if (r_symndx
>= symtab_hdr
->sh_info
)
1014 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1015 while (h
->root
.type
== bfd_link_hash_indirect
1016 || h
->root
.type
== bfd_link_hash_warning
)
1017 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1019 /* PR15323, ref flags aren't set for references in the same
1021 h
->root
.non_ir_ref
= 1;
1023 eh
= elf_xtensa_hash_entry (h
);
1027 case R_XTENSA_TLSDESC_FN
:
1028 if (bfd_link_pic (info
))
1030 tls_type
= GOT_TLS_GD
;
1035 tls_type
= GOT_TLS_IE
;
1038 case R_XTENSA_TLSDESC_ARG
:
1039 if (bfd_link_pic (info
))
1041 tls_type
= GOT_TLS_GD
;
1046 tls_type
= GOT_TLS_IE
;
1047 if (h
&& elf_xtensa_hash_entry (h
) != htab
->tlsbase
)
1052 case R_XTENSA_TLS_DTPOFF
:
1053 if (bfd_link_pic (info
))
1054 tls_type
= GOT_TLS_GD
;
1056 tls_type
= GOT_TLS_IE
;
1059 case R_XTENSA_TLS_TPOFF
:
1060 tls_type
= GOT_TLS_IE
;
1061 if (bfd_link_pic (info
))
1062 info
->flags
|= DF_STATIC_TLS
;
1063 if (bfd_link_pic (info
) || h
)
1068 tls_type
= GOT_NORMAL
;
1073 tls_type
= GOT_NORMAL
;
1077 case R_XTENSA_GNU_VTINHERIT
:
1078 /* This relocation describes the C++ object vtable hierarchy.
1079 Reconstruct it for later use during GC. */
1080 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1084 case R_XTENSA_GNU_VTENTRY
:
1085 /* This relocation describes which C++ vtable entries are actually
1086 used. Record for later use during GC. */
1087 BFD_ASSERT (h
!= NULL
);
1089 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1094 /* Nothing to do for any other relocations. */
1102 if (h
->plt
.refcount
<= 0)
1105 h
->plt
.refcount
= 1;
1108 h
->plt
.refcount
+= 1;
1110 /* Keep track of the total PLT relocation count even if we
1111 don't yet know whether the dynamic sections will be
1113 htab
->plt_reloc_count
+= 1;
1115 if (elf_hash_table (info
)->dynamic_sections_created
)
1117 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1123 if (h
->got
.refcount
<= 0)
1124 h
->got
.refcount
= 1;
1126 h
->got
.refcount
+= 1;
1130 eh
->tlsfunc_refcount
+= 1;
1132 old_tls_type
= eh
->tls_type
;
1136 /* Allocate storage the first time. */
1137 if (elf_local_got_refcounts (abfd
) == NULL
)
1139 bfd_size_type size
= symtab_hdr
->sh_info
;
1142 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1145 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) mem
;
1147 mem
= bfd_zalloc (abfd
, size
);
1150 elf_xtensa_local_got_tls_type (abfd
) = (char *) mem
;
1152 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1155 elf_xtensa_local_tlsfunc_refcounts (abfd
)
1156 = (bfd_signed_vma
*) mem
;
1159 /* This is a global offset table entry for a local symbol. */
1160 if (is_got
|| is_plt
)
1161 elf_local_got_refcounts (abfd
) [r_symndx
] += 1;
1164 elf_xtensa_local_tlsfunc_refcounts (abfd
) [r_symndx
] += 1;
1166 old_tls_type
= elf_xtensa_local_got_tls_type (abfd
) [r_symndx
];
1169 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_IE
))
1170 tls_type
|= old_tls_type
;
1171 /* If a TLS symbol is accessed using IE at least once,
1172 there is no point to use a dynamic model for it. */
1173 else if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1174 && ((old_tls_type
& GOT_TLS_GD
) == 0
1175 || (tls_type
& GOT_TLS_IE
) == 0))
1177 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GD
))
1178 tls_type
= old_tls_type
;
1179 else if ((old_tls_type
& GOT_TLS_GD
) && (tls_type
& GOT_TLS_GD
))
1180 tls_type
|= old_tls_type
;
1183 (*_bfd_error_handler
)
1184 (_("%B: `%s' accessed both as normal and thread local symbol"),
1186 h
? h
->root
.root
.string
: "<local>");
1191 if (old_tls_type
!= tls_type
)
1194 eh
->tls_type
= tls_type
;
1196 elf_xtensa_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1205 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
1206 struct elf_link_hash_entry
*h
)
1208 if (bfd_link_pic (info
))
1210 if (h
->plt
.refcount
> 0)
1212 /* For shared objects, there's no need for PLT entries for local
1213 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1214 if (h
->got
.refcount
< 0)
1215 h
->got
.refcount
= 0;
1216 h
->got
.refcount
+= h
->plt
.refcount
;
1217 h
->plt
.refcount
= 0;
1222 /* Don't need any dynamic relocations at all. */
1223 h
->plt
.refcount
= 0;
1224 h
->got
.refcount
= 0;
1230 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
1231 struct elf_link_hash_entry
*h
,
1232 bfd_boolean force_local
)
1234 /* For a shared link, move the plt refcount to the got refcount to leave
1235 space for RELATIVE relocs. */
1236 elf_xtensa_make_sym_local (info
, h
);
1238 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
1242 /* Return the section that should be marked against GC for a given
1246 elf_xtensa_gc_mark_hook (asection
*sec
,
1247 struct bfd_link_info
*info
,
1248 Elf_Internal_Rela
*rel
,
1249 struct elf_link_hash_entry
*h
,
1250 Elf_Internal_Sym
*sym
)
1252 /* Property sections are marked "KEEP" in the linker scripts, but they
1253 should not cause other sections to be marked. (This approach relies
1254 on elf_xtensa_discard_info to remove property table entries that
1255 describe discarded sections. Alternatively, it might be more
1256 efficient to avoid using "KEEP" in the linker scripts and instead use
1257 the gc_mark_extra_sections hook to mark only the property sections
1258 that describe marked sections. That alternative does not work well
1259 with the current property table sections, which do not correspond
1260 one-to-one with the sections they describe, but that should be fixed
1262 if (xtensa_is_property_section (sec
))
1266 switch (ELF32_R_TYPE (rel
->r_info
))
1268 case R_XTENSA_GNU_VTINHERIT
:
1269 case R_XTENSA_GNU_VTENTRY
:
1273 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1277 /* Update the GOT & PLT entry reference counts
1278 for the section being removed. */
1281 elf_xtensa_gc_sweep_hook (bfd
*abfd
,
1282 struct bfd_link_info
*info
,
1284 const Elf_Internal_Rela
*relocs
)
1286 Elf_Internal_Shdr
*symtab_hdr
;
1287 struct elf_link_hash_entry
**sym_hashes
;
1288 const Elf_Internal_Rela
*rel
, *relend
;
1289 struct elf_xtensa_link_hash_table
*htab
;
1291 htab
= elf_xtensa_hash_table (info
);
1295 if (bfd_link_relocatable (info
))
1298 if ((sec
->flags
& SEC_ALLOC
) == 0)
1301 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1302 sym_hashes
= elf_sym_hashes (abfd
);
1304 relend
= relocs
+ sec
->reloc_count
;
1305 for (rel
= relocs
; rel
< relend
; rel
++)
1307 unsigned long r_symndx
;
1308 unsigned int r_type
;
1309 struct elf_link_hash_entry
*h
= NULL
;
1310 struct elf_xtensa_link_hash_entry
*eh
;
1311 bfd_boolean is_got
= FALSE
;
1312 bfd_boolean is_plt
= FALSE
;
1313 bfd_boolean is_tlsfunc
= FALSE
;
1315 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1316 if (r_symndx
>= symtab_hdr
->sh_info
)
1318 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1319 while (h
->root
.type
== bfd_link_hash_indirect
1320 || h
->root
.type
== bfd_link_hash_warning
)
1321 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1323 eh
= elf_xtensa_hash_entry (h
);
1325 r_type
= ELF32_R_TYPE (rel
->r_info
);
1328 case R_XTENSA_TLSDESC_FN
:
1329 if (bfd_link_pic (info
))
1336 case R_XTENSA_TLSDESC_ARG
:
1337 if (bfd_link_pic (info
))
1341 if (h
&& elf_xtensa_hash_entry (h
) != htab
->tlsbase
)
1346 case R_XTENSA_TLS_TPOFF
:
1347 if (bfd_link_pic (info
) || h
)
1367 /* If the symbol has been localized its plt.refcount got moved
1368 to got.refcount. Handle it as GOT. */
1369 if (h
->plt
.refcount
> 0)
1376 if (h
->got
.refcount
> 0)
1381 if (eh
->tlsfunc_refcount
> 0)
1382 eh
->tlsfunc_refcount
--;
1387 if (is_got
|| is_plt
)
1389 bfd_signed_vma
*got_refcount
1390 = &elf_local_got_refcounts (abfd
) [r_symndx
];
1391 if (*got_refcount
> 0)
1396 bfd_signed_vma
*tlsfunc_refcount
1397 = &elf_xtensa_local_tlsfunc_refcounts (abfd
) [r_symndx
];
1398 if (*tlsfunc_refcount
> 0)
1399 *tlsfunc_refcount
-= 1;
1408 /* Create all the dynamic sections. */
1411 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1413 struct elf_xtensa_link_hash_table
*htab
;
1414 flagword flags
, noalloc_flags
;
1416 htab
= elf_xtensa_hash_table (info
);
1420 /* First do all the standard stuff. */
1421 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1423 htab
->splt
= bfd_get_linker_section (dynobj
, ".plt");
1424 htab
->srelplt
= bfd_get_linker_section (dynobj
, ".rela.plt");
1425 htab
->sgot
= bfd_get_linker_section (dynobj
, ".got");
1426 htab
->sgotplt
= bfd_get_linker_section (dynobj
, ".got.plt");
1427 htab
->srelgot
= bfd_get_linker_section (dynobj
, ".rela.got");
1429 /* Create any extra PLT sections in case check_relocs has already
1430 been called on all the non-dynamic input files. */
1431 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1434 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1435 | SEC_LINKER_CREATED
| SEC_READONLY
);
1436 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1438 /* Mark the ".got.plt" section READONLY. */
1439 if (htab
->sgotplt
== NULL
1440 || ! bfd_set_section_flags (dynobj
, htab
->sgotplt
, flags
))
1443 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1444 htab
->sgotloc
= bfd_make_section_anyway_with_flags (dynobj
, ".got.loc",
1446 if (htab
->sgotloc
== NULL
1447 || ! bfd_set_section_alignment (dynobj
, htab
->sgotloc
, 2))
1450 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1451 htab
->spltlittbl
= bfd_make_section_anyway_with_flags (dynobj
, ".xt.lit.plt",
1453 if (htab
->spltlittbl
== NULL
1454 || ! bfd_set_section_alignment (dynobj
, htab
->spltlittbl
, 2))
1462 add_extra_plt_sections (struct bfd_link_info
*info
, int count
)
1464 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
1467 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1468 ".got.plt" sections. */
1469 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1475 /* Stop when we find a section has already been created. */
1476 if (elf_xtensa_get_plt_section (info
, chunk
))
1479 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1480 | SEC_LINKER_CREATED
| SEC_READONLY
);
1482 sname
= (char *) bfd_malloc (10);
1483 sprintf (sname
, ".plt.%u", chunk
);
1484 s
= bfd_make_section_anyway_with_flags (dynobj
, sname
, flags
| SEC_CODE
);
1486 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1489 sname
= (char *) bfd_malloc (14);
1490 sprintf (sname
, ".got.plt.%u", chunk
);
1491 s
= bfd_make_section_anyway_with_flags (dynobj
, sname
, flags
);
1493 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1501 /* Adjust a symbol defined by a dynamic object and referenced by a
1502 regular object. The current definition is in some section of the
1503 dynamic object, but we're not including those sections. We have to
1504 change the definition to something the rest of the link can
1508 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1509 struct elf_link_hash_entry
*h
)
1511 /* If this is a weak symbol, and there is a real definition, the
1512 processor independent code will have arranged for us to see the
1513 real definition first, and we can just use the same value. */
1516 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1517 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1518 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1519 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1523 /* This is a reference to a symbol defined by a dynamic object. The
1524 reference must go through the GOT, so there's no need for COPY relocs,
1532 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *arg
)
1534 struct bfd_link_info
*info
;
1535 struct elf_xtensa_link_hash_table
*htab
;
1536 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (h
);
1538 if (h
->root
.type
== bfd_link_hash_indirect
)
1541 info
= (struct bfd_link_info
*) arg
;
1542 htab
= elf_xtensa_hash_table (info
);
1546 /* If we saw any use of an IE model for this symbol, we can then optimize
1547 away GOT entries for any TLSDESC_FN relocs. */
1548 if ((eh
->tls_type
& GOT_TLS_IE
) != 0)
1550 BFD_ASSERT (h
->got
.refcount
>= eh
->tlsfunc_refcount
);
1551 h
->got
.refcount
-= eh
->tlsfunc_refcount
;
1554 if (! elf_xtensa_dynamic_symbol_p (h
, info
))
1555 elf_xtensa_make_sym_local (info
, h
);
1557 if (h
->plt
.refcount
> 0)
1558 htab
->srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1560 if (h
->got
.refcount
> 0)
1561 htab
->srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1568 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
)
1570 struct elf_xtensa_link_hash_table
*htab
;
1573 htab
= elf_xtensa_hash_table (info
);
1577 for (i
= info
->input_bfds
; i
; i
= i
->link
.next
)
1579 bfd_signed_vma
*local_got_refcounts
;
1580 bfd_size_type j
, cnt
;
1581 Elf_Internal_Shdr
*symtab_hdr
;
1583 local_got_refcounts
= elf_local_got_refcounts (i
);
1584 if (!local_got_refcounts
)
1587 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1588 cnt
= symtab_hdr
->sh_info
;
1590 for (j
= 0; j
< cnt
; ++j
)
1592 /* If we saw any use of an IE model for this symbol, we can
1593 then optimize away GOT entries for any TLSDESC_FN relocs. */
1594 if ((elf_xtensa_local_got_tls_type (i
) [j
] & GOT_TLS_IE
) != 0)
1596 bfd_signed_vma
*tlsfunc_refcount
1597 = &elf_xtensa_local_tlsfunc_refcounts (i
) [j
];
1598 BFD_ASSERT (local_got_refcounts
[j
] >= *tlsfunc_refcount
);
1599 local_got_refcounts
[j
] -= *tlsfunc_refcount
;
1602 if (local_got_refcounts
[j
] > 0)
1603 htab
->srelgot
->size
+= (local_got_refcounts
[j
]
1604 * sizeof (Elf32_External_Rela
));
1610 /* Set the sizes of the dynamic sections. */
1613 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1614 struct bfd_link_info
*info
)
1616 struct elf_xtensa_link_hash_table
*htab
;
1618 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1619 bfd_boolean relplt
, relgot
;
1620 int plt_entries
, plt_chunks
, chunk
;
1625 htab
= elf_xtensa_hash_table (info
);
1629 dynobj
= elf_hash_table (info
)->dynobj
;
1632 srelgot
= htab
->srelgot
;
1633 srelplt
= htab
->srelplt
;
1635 if (elf_hash_table (info
)->dynamic_sections_created
)
1637 BFD_ASSERT (htab
->srelgot
!= NULL
1638 && htab
->srelplt
!= NULL
1639 && htab
->sgot
!= NULL
1640 && htab
->spltlittbl
!= NULL
1641 && htab
->sgotloc
!= NULL
);
1643 /* Set the contents of the .interp section to the interpreter. */
1644 if (bfd_link_executable (info
) && !info
->nointerp
)
1646 s
= bfd_get_linker_section (dynobj
, ".interp");
1649 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1650 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1653 /* Allocate room for one word in ".got". */
1654 htab
->sgot
->size
= 4;
1656 /* Allocate space in ".rela.got" for literals that reference global
1657 symbols and space in ".rela.plt" for literals that have PLT
1659 elf_link_hash_traverse (elf_hash_table (info
),
1660 elf_xtensa_allocate_dynrelocs
,
1663 /* If we are generating a shared object, we also need space in
1664 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1665 reference local symbols. */
1666 if (bfd_link_pic (info
))
1667 elf_xtensa_allocate_local_got_size (info
);
1669 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1670 each PLT entry, we need the PLT code plus a 4-byte literal.
1671 For each chunk of ".plt", we also need two more 4-byte
1672 literals, two corresponding entries in ".rela.got", and an
1673 8-byte entry in ".xt.lit.plt". */
1674 spltlittbl
= htab
->spltlittbl
;
1675 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1677 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1679 /* Iterate over all the PLT chunks, including any extra sections
1680 created earlier because the initial count of PLT relocations
1681 was an overestimate. */
1683 (splt
= elf_xtensa_get_plt_section (info
, chunk
)) != NULL
;
1688 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
1689 BFD_ASSERT (sgotplt
!= NULL
);
1691 if (chunk
< plt_chunks
- 1)
1692 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1693 else if (chunk
== plt_chunks
- 1)
1694 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1698 if (chunk_entries
!= 0)
1700 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1701 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1702 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1703 spltlittbl
->size
+= 8;
1712 /* Allocate space in ".got.loc" to match the total size of all the
1714 sgotloc
= htab
->sgotloc
;
1715 sgotloc
->size
= spltlittbl
->size
;
1716 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
1718 if (abfd
->flags
& DYNAMIC
)
1720 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1722 if (! discarded_section (s
)
1723 && xtensa_is_littable_section (s
)
1725 sgotloc
->size
+= s
->size
;
1730 /* Allocate memory for dynamic sections. */
1733 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1737 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1740 /* It's OK to base decisions on the section name, because none
1741 of the dynobj section names depend upon the input files. */
1742 name
= bfd_get_section_name (dynobj
, s
);
1744 if (CONST_STRNEQ (name
, ".rela"))
1748 if (strcmp (name
, ".rela.plt") == 0)
1750 else if (strcmp (name
, ".rela.got") == 0)
1753 /* We use the reloc_count field as a counter if we need
1754 to copy relocs into the output file. */
1758 else if (! CONST_STRNEQ (name
, ".plt.")
1759 && ! CONST_STRNEQ (name
, ".got.plt.")
1760 && strcmp (name
, ".got") != 0
1761 && strcmp (name
, ".plt") != 0
1762 && strcmp (name
, ".got.plt") != 0
1763 && strcmp (name
, ".xt.lit.plt") != 0
1764 && strcmp (name
, ".got.loc") != 0)
1766 /* It's not one of our sections, so don't allocate space. */
1772 /* If we don't need this section, strip it from the output
1773 file. We must create the ".plt*" and ".got.plt*"
1774 sections in create_dynamic_sections and/or check_relocs
1775 based on a conservative estimate of the PLT relocation
1776 count, because the sections must be created before the
1777 linker maps input sections to output sections. The
1778 linker does that before size_dynamic_sections, where we
1779 compute the exact size of the PLT, so there may be more
1780 of these sections than are actually needed. */
1781 s
->flags
|= SEC_EXCLUDE
;
1783 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1785 /* Allocate memory for the section contents. */
1786 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1787 if (s
->contents
== NULL
)
1792 if (elf_hash_table (info
)->dynamic_sections_created
)
1794 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1795 known until finish_dynamic_sections, but we need to get the relocs
1796 in place before they are sorted. */
1797 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1799 Elf_Internal_Rela irela
;
1803 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1806 loc
= (srelgot
->contents
1807 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1808 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1809 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1810 loc
+ sizeof (Elf32_External_Rela
));
1811 srelgot
->reloc_count
+= 2;
1814 /* Add some entries to the .dynamic section. We fill in the
1815 values later, in elf_xtensa_finish_dynamic_sections, but we
1816 must add the entries now so that we get the correct size for
1817 the .dynamic section. The DT_DEBUG entry is filled in by the
1818 dynamic linker and used by the debugger. */
1819 #define add_dynamic_entry(TAG, VAL) \
1820 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1822 if (bfd_link_executable (info
))
1824 if (!add_dynamic_entry (DT_DEBUG
, 0))
1830 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1831 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1832 || !add_dynamic_entry (DT_JMPREL
, 0))
1838 if (!add_dynamic_entry (DT_RELA
, 0)
1839 || !add_dynamic_entry (DT_RELASZ
, 0)
1840 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1844 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1845 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1846 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1849 #undef add_dynamic_entry
1855 elf_xtensa_always_size_sections (bfd
*output_bfd
,
1856 struct bfd_link_info
*info
)
1858 struct elf_xtensa_link_hash_table
*htab
;
1861 htab
= elf_xtensa_hash_table (info
);
1865 tls_sec
= htab
->elf
.tls_sec
;
1867 if (tls_sec
&& (htab
->tlsbase
->tls_type
& GOT_TLS_ANY
) != 0)
1869 struct elf_link_hash_entry
*tlsbase
= &htab
->tlsbase
->elf
;
1870 struct bfd_link_hash_entry
*bh
= &tlsbase
->root
;
1871 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
1873 tlsbase
->type
= STT_TLS
;
1874 if (!(_bfd_generic_link_add_one_symbol
1875 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
1876 tls_sec
, 0, NULL
, FALSE
,
1877 bed
->collect
, &bh
)))
1879 tlsbase
->def_regular
= 1;
1880 tlsbase
->other
= STV_HIDDEN
;
1881 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
1888 /* Return the base VMA address which should be subtracted from real addresses
1889 when resolving @dtpoff relocation.
1890 This is PT_TLS segment p_vaddr. */
1893 dtpoff_base (struct bfd_link_info
*info
)
1895 /* If tls_sec is NULL, we should have signalled an error already. */
1896 if (elf_hash_table (info
)->tls_sec
== NULL
)
1898 return elf_hash_table (info
)->tls_sec
->vma
;
1901 /* Return the relocation value for @tpoff relocation
1902 if STT_TLS virtual address is ADDRESS. */
1905 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
1907 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
1910 /* If tls_sec is NULL, we should have signalled an error already. */
1911 if (htab
->tls_sec
== NULL
)
1913 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
1914 return address
- htab
->tls_sec
->vma
+ base
;
1917 /* Perform the specified relocation. The instruction at (contents + address)
1918 is modified to set one operand to represent the value in "relocation". The
1919 operand position is determined by the relocation type recorded in the
1922 #define CALL_SEGMENT_BITS (30)
1923 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1925 static bfd_reloc_status_type
1926 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1928 asection
*input_section
,
1932 bfd_boolean is_weak_undef
,
1933 char **error_message
)
1936 xtensa_opcode opcode
;
1937 xtensa_isa isa
= xtensa_default_isa
;
1938 static xtensa_insnbuf ibuff
= NULL
;
1939 static xtensa_insnbuf sbuff
= NULL
;
1940 bfd_vma self_address
;
1941 bfd_size_type input_size
;
1947 ibuff
= xtensa_insnbuf_alloc (isa
);
1948 sbuff
= xtensa_insnbuf_alloc (isa
);
1951 input_size
= bfd_get_section_limit (abfd
, input_section
);
1953 /* Calculate the PC address for this instruction. */
1954 self_address
= (input_section
->output_section
->vma
1955 + input_section
->output_offset
1958 switch (howto
->type
)
1961 case R_XTENSA_DIFF8
:
1962 case R_XTENSA_DIFF16
:
1963 case R_XTENSA_DIFF32
:
1964 case R_XTENSA_TLS_FUNC
:
1965 case R_XTENSA_TLS_ARG
:
1966 case R_XTENSA_TLS_CALL
:
1967 return bfd_reloc_ok
;
1969 case R_XTENSA_ASM_EXPAND
:
1972 /* Check for windowed CALL across a 1GB boundary. */
1973 opcode
= get_expanded_call_opcode (contents
+ address
,
1974 input_size
- address
, 0);
1975 if (is_windowed_call_opcode (opcode
))
1977 if ((self_address
>> CALL_SEGMENT_BITS
)
1978 != (relocation
>> CALL_SEGMENT_BITS
))
1980 *error_message
= "windowed longcall crosses 1GB boundary; "
1982 return bfd_reloc_dangerous
;
1986 return bfd_reloc_ok
;
1988 case R_XTENSA_ASM_SIMPLIFY
:
1990 /* Convert the L32R/CALLX to CALL. */
1991 bfd_reloc_status_type retval
=
1992 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1994 if (retval
!= bfd_reloc_ok
)
1995 return bfd_reloc_dangerous
;
1997 /* The CALL needs to be relocated. Continue below for that part. */
2000 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
2007 x
= bfd_get_32 (abfd
, contents
+ address
);
2009 bfd_put_32 (abfd
, x
, contents
+ address
);
2011 return bfd_reloc_ok
;
2013 case R_XTENSA_32_PCREL
:
2014 bfd_put_32 (abfd
, relocation
- self_address
, contents
+ address
);
2015 return bfd_reloc_ok
;
2018 case R_XTENSA_TLSDESC_FN
:
2019 case R_XTENSA_TLSDESC_ARG
:
2020 case R_XTENSA_TLS_DTPOFF
:
2021 case R_XTENSA_TLS_TPOFF
:
2022 bfd_put_32 (abfd
, relocation
, contents
+ address
);
2023 return bfd_reloc_ok
;
2026 /* Only instruction slot-specific relocations handled below.... */
2027 slot
= get_relocation_slot (howto
->type
);
2028 if (slot
== XTENSA_UNDEFINED
)
2030 *error_message
= "unexpected relocation";
2031 return bfd_reloc_dangerous
;
2034 /* Read the instruction into a buffer and decode the opcode. */
2035 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
2036 input_size
- address
);
2037 fmt
= xtensa_format_decode (isa
, ibuff
);
2038 if (fmt
== XTENSA_UNDEFINED
)
2040 *error_message
= "cannot decode instruction format";
2041 return bfd_reloc_dangerous
;
2044 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
2046 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
2047 if (opcode
== XTENSA_UNDEFINED
)
2049 *error_message
= "cannot decode instruction opcode";
2050 return bfd_reloc_dangerous
;
2053 /* Check for opcode-specific "alternate" relocations. */
2054 if (is_alt_relocation (howto
->type
))
2056 if (opcode
== get_l32r_opcode ())
2058 /* Handle the special-case of non-PC-relative L32R instructions. */
2059 bfd
*output_bfd
= input_section
->output_section
->owner
;
2060 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
2063 *error_message
= "relocation references missing .lit4 section";
2064 return bfd_reloc_dangerous
;
2066 self_address
= ((lit4_sec
->vma
& ~0xfff)
2067 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2068 newval
= relocation
;
2071 else if (opcode
== get_const16_opcode ())
2073 /* ALT used for high 16 bits. */
2074 newval
= relocation
>> 16;
2079 /* No other "alternate" relocations currently defined. */
2080 *error_message
= "unexpected relocation";
2081 return bfd_reloc_dangerous
;
2084 else /* Not an "alternate" relocation.... */
2086 if (opcode
== get_const16_opcode ())
2088 newval
= relocation
& 0xffff;
2093 /* ...normal PC-relative relocation.... */
2095 /* Determine which operand is being relocated. */
2096 opnd
= get_relocation_opnd (opcode
, howto
->type
);
2097 if (opnd
== XTENSA_UNDEFINED
)
2099 *error_message
= "unexpected relocation";
2100 return bfd_reloc_dangerous
;
2103 if (!howto
->pc_relative
)
2105 *error_message
= "expected PC-relative relocation";
2106 return bfd_reloc_dangerous
;
2109 newval
= relocation
;
2113 /* Apply the relocation. */
2114 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
2115 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
2116 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
2119 const char *opname
= xtensa_opcode_name (isa
, opcode
);
2122 msg
= "cannot encode";
2123 if (is_direct_call_opcode (opcode
))
2125 if ((relocation
& 0x3) != 0)
2126 msg
= "misaligned call target";
2128 msg
= "call target out of range";
2130 else if (opcode
== get_l32r_opcode ())
2132 if ((relocation
& 0x3) != 0)
2133 msg
= "misaligned literal target";
2134 else if (is_alt_relocation (howto
->type
))
2135 msg
= "literal target out of range (too many literals)";
2136 else if (self_address
> relocation
)
2137 msg
= "literal target out of range (try using text-section-literals)";
2139 msg
= "literal placed after use";
2142 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
2143 return bfd_reloc_dangerous
;
2146 /* Check for calls across 1GB boundaries. */
2147 if (is_direct_call_opcode (opcode
)
2148 && is_windowed_call_opcode (opcode
))
2150 if ((self_address
>> CALL_SEGMENT_BITS
)
2151 != (relocation
>> CALL_SEGMENT_BITS
))
2154 "windowed call crosses 1GB boundary; return may fail";
2155 return bfd_reloc_dangerous
;
2159 /* Write the modified instruction back out of the buffer. */
2160 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
2161 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
2162 input_size
- address
);
2163 return bfd_reloc_ok
;
2168 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
2170 /* To reduce the size of the memory leak,
2171 we only use a single message buffer. */
2172 static bfd_size_type alloc_size
= 0;
2173 static char *message
= NULL
;
2174 bfd_size_type orig_len
, len
= 0;
2175 bfd_boolean is_append
;
2178 va_start (ap
, arglen
);
2180 is_append
= (origmsg
== message
);
2182 orig_len
= strlen (origmsg
);
2183 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
2184 if (len
> alloc_size
)
2186 message
= (char *) bfd_realloc_or_free (message
, len
);
2189 if (message
!= NULL
)
2192 memcpy (message
, origmsg
, orig_len
);
2193 vsprintf (message
+ orig_len
, fmt
, ap
);
2200 /* This function is registered as the "special_function" in the
2201 Xtensa howto for handling simplify operations.
2202 bfd_perform_relocation / bfd_install_relocation use it to
2203 perform (install) the specified relocation. Since this replaces the code
2204 in bfd_perform_relocation, it is basically an Xtensa-specific,
2205 stripped-down version of bfd_perform_relocation. */
2207 static bfd_reloc_status_type
2208 bfd_elf_xtensa_reloc (bfd
*abfd
,
2209 arelent
*reloc_entry
,
2212 asection
*input_section
,
2214 char **error_message
)
2217 bfd_reloc_status_type flag
;
2218 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
2219 bfd_vma output_base
= 0;
2220 reloc_howto_type
*howto
= reloc_entry
->howto
;
2221 asection
*reloc_target_output_section
;
2222 bfd_boolean is_weak_undef
;
2224 if (!xtensa_default_isa
)
2225 xtensa_default_isa
= xtensa_isa_init (0, 0);
2227 /* ELF relocs are against symbols. If we are producing relocatable
2228 output, and the reloc is against an external symbol, the resulting
2229 reloc will also be against the same symbol. In such a case, we
2230 don't want to change anything about the way the reloc is handled,
2231 since it will all be done at final link time. This test is similar
2232 to what bfd_elf_generic_reloc does except that it lets relocs with
2233 howto->partial_inplace go through even if the addend is non-zero.
2234 (The real problem is that partial_inplace is set for XTENSA_32
2235 relocs to begin with, but that's a long story and there's little we
2236 can do about it now....) */
2238 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
2240 reloc_entry
->address
+= input_section
->output_offset
;
2241 return bfd_reloc_ok
;
2244 /* Is the address of the relocation really within the section? */
2245 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2246 return bfd_reloc_outofrange
;
2248 /* Work out which section the relocation is targeted at and the
2249 initial relocation command value. */
2251 /* Get symbol value. (Common symbols are special.) */
2252 if (bfd_is_com_section (symbol
->section
))
2255 relocation
= symbol
->value
;
2257 reloc_target_output_section
= symbol
->section
->output_section
;
2259 /* Convert input-section-relative symbol value to absolute. */
2260 if ((output_bfd
&& !howto
->partial_inplace
)
2261 || reloc_target_output_section
== NULL
)
2264 output_base
= reloc_target_output_section
->vma
;
2266 relocation
+= output_base
+ symbol
->section
->output_offset
;
2268 /* Add in supplied addend. */
2269 relocation
+= reloc_entry
->addend
;
2271 /* Here the variable relocation holds the final address of the
2272 symbol we are relocating against, plus any addend. */
2275 if (!howto
->partial_inplace
)
2277 /* This is a partial relocation, and we want to apply the relocation
2278 to the reloc entry rather than the raw data. Everything except
2279 relocations against section symbols has already been handled
2282 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
2283 reloc_entry
->addend
= relocation
;
2284 reloc_entry
->address
+= input_section
->output_offset
;
2285 return bfd_reloc_ok
;
2289 reloc_entry
->address
+= input_section
->output_offset
;
2290 reloc_entry
->addend
= 0;
2294 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
2295 && (symbol
->flags
& BSF_WEAK
) != 0);
2296 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
2297 (bfd_byte
*) data
, (bfd_vma
) octets
,
2298 is_weak_undef
, error_message
);
2300 if (flag
== bfd_reloc_dangerous
)
2302 /* Add the symbol name to the error message. */
2303 if (! *error_message
)
2304 *error_message
= "";
2305 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
2306 strlen (symbol
->name
) + 17,
2308 (unsigned long) reloc_entry
->addend
);
2315 /* Set up an entry in the procedure linkage table. */
2318 elf_xtensa_create_plt_entry (struct bfd_link_info
*info
,
2320 unsigned reloc_index
)
2322 asection
*splt
, *sgotplt
;
2323 bfd_vma plt_base
, got_base
;
2324 bfd_vma code_offset
, lit_offset
, abi_offset
;
2327 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
2328 splt
= elf_xtensa_get_plt_section (info
, chunk
);
2329 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
2330 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
2332 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
2333 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
2335 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
2336 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
2338 /* Fill in the literal entry. This is the offset of the dynamic
2339 relocation entry. */
2340 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
2341 sgotplt
->contents
+ lit_offset
);
2343 /* Fill in the entry in the procedure linkage table. */
2344 memcpy (splt
->contents
+ code_offset
,
2345 (bfd_big_endian (output_bfd
)
2346 ? elf_xtensa_be_plt_entry
2347 : elf_xtensa_le_plt_entry
),
2349 abi_offset
= XSHAL_ABI
== XTHAL_ABI_WINDOWED
? 3 : 0;
2350 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
2351 plt_base
+ code_offset
+ abi_offset
),
2352 splt
->contents
+ code_offset
+ abi_offset
+ 1);
2353 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
2354 plt_base
+ code_offset
+ abi_offset
+ 3),
2355 splt
->contents
+ code_offset
+ abi_offset
+ 4);
2356 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
2357 plt_base
+ code_offset
+ abi_offset
+ 6),
2358 splt
->contents
+ code_offset
+ abi_offset
+ 7);
2360 return plt_base
+ code_offset
;
2364 static bfd_boolean
get_indirect_call_dest_reg (xtensa_opcode
, unsigned *);
2367 replace_tls_insn (Elf_Internal_Rela
*rel
,
2369 asection
*input_section
,
2371 bfd_boolean is_ld_model
,
2372 char **error_message
)
2374 static xtensa_insnbuf ibuff
= NULL
;
2375 static xtensa_insnbuf sbuff
= NULL
;
2376 xtensa_isa isa
= xtensa_default_isa
;
2378 xtensa_opcode old_op
, new_op
;
2379 bfd_size_type input_size
;
2381 unsigned dest_reg
, src_reg
;
2385 ibuff
= xtensa_insnbuf_alloc (isa
);
2386 sbuff
= xtensa_insnbuf_alloc (isa
);
2389 input_size
= bfd_get_section_limit (abfd
, input_section
);
2391 /* Read the instruction into a buffer and decode the opcode. */
2392 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2393 input_size
- rel
->r_offset
);
2394 fmt
= xtensa_format_decode (isa
, ibuff
);
2395 if (fmt
== XTENSA_UNDEFINED
)
2397 *error_message
= "cannot decode instruction format";
2401 BFD_ASSERT (xtensa_format_num_slots (isa
, fmt
) == 1);
2402 xtensa_format_get_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2404 old_op
= xtensa_opcode_decode (isa
, fmt
, 0, sbuff
);
2405 if (old_op
== XTENSA_UNDEFINED
)
2407 *error_message
= "cannot decode instruction opcode";
2411 r_type
= ELF32_R_TYPE (rel
->r_info
);
2414 case R_XTENSA_TLS_FUNC
:
2415 case R_XTENSA_TLS_ARG
:
2416 if (old_op
!= get_l32r_opcode ()
2417 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2418 sbuff
, &dest_reg
) != 0)
2420 *error_message
= "cannot extract L32R destination for TLS access";
2425 case R_XTENSA_TLS_CALL
:
2426 if (! get_indirect_call_dest_reg (old_op
, &dest_reg
)
2427 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2428 sbuff
, &src_reg
) != 0)
2430 *error_message
= "cannot extract CALLXn operands for TLS access";
2443 case R_XTENSA_TLS_FUNC
:
2444 case R_XTENSA_TLS_ARG
:
2445 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2446 versions of Xtensa). */
2447 new_op
= xtensa_opcode_lookup (isa
, "nop");
2448 if (new_op
== XTENSA_UNDEFINED
)
2450 new_op
= xtensa_opcode_lookup (isa
, "or");
2451 if (new_op
== XTENSA_UNDEFINED
2452 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2453 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2455 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2457 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2460 *error_message
= "cannot encode OR for TLS access";
2466 if (xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0)
2468 *error_message
= "cannot encode NOP for TLS access";
2474 case R_XTENSA_TLS_CALL
:
2475 /* Read THREADPTR into the CALLX's return value register. */
2476 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2477 if (new_op
== XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2479 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2480 sbuff
, dest_reg
+ 2) != 0)
2482 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2492 case R_XTENSA_TLS_FUNC
:
2493 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2494 if (new_op
== XTENSA_UNDEFINED
2495 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2496 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2497 sbuff
, dest_reg
) != 0)
2499 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2504 case R_XTENSA_TLS_ARG
:
2505 /* Nothing to do. Keep the original L32R instruction. */
2508 case R_XTENSA_TLS_CALL
:
2509 /* Add the CALLX's src register (holding the THREADPTR value)
2510 to the first argument register (holding the offset) and put
2511 the result in the CALLX's return value register. */
2512 new_op
= xtensa_opcode_lookup (isa
, "add");
2513 if (new_op
== XTENSA_UNDEFINED
2514 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2515 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2516 sbuff
, dest_reg
+ 2) != 0
2517 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2518 sbuff
, dest_reg
+ 2) != 0
2519 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2520 sbuff
, src_reg
) != 0)
2522 *error_message
= "cannot encode ADD for TLS access";
2529 xtensa_format_set_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2530 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2531 input_size
- rel
->r_offset
);
2537 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2538 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2539 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2540 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2541 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2542 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2543 || (R_TYPE) == R_XTENSA_TLS_ARG \
2544 || (R_TYPE) == R_XTENSA_TLS_CALL)
2546 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2547 both relocatable and final links. */
2550 elf_xtensa_relocate_section (bfd
*output_bfd
,
2551 struct bfd_link_info
*info
,
2553 asection
*input_section
,
2555 Elf_Internal_Rela
*relocs
,
2556 Elf_Internal_Sym
*local_syms
,
2557 asection
**local_sections
)
2559 struct elf_xtensa_link_hash_table
*htab
;
2560 Elf_Internal_Shdr
*symtab_hdr
;
2561 Elf_Internal_Rela
*rel
;
2562 Elf_Internal_Rela
*relend
;
2563 struct elf_link_hash_entry
**sym_hashes
;
2564 property_table_entry
*lit_table
= 0;
2566 char *local_got_tls_types
;
2567 char *error_message
= NULL
;
2568 bfd_size_type input_size
;
2571 if (!xtensa_default_isa
)
2572 xtensa_default_isa
= xtensa_isa_init (0, 0);
2574 BFD_ASSERT (is_xtensa_elf (input_bfd
));
2576 htab
= elf_xtensa_hash_table (info
);
2580 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2581 sym_hashes
= elf_sym_hashes (input_bfd
);
2582 local_got_tls_types
= elf_xtensa_local_got_tls_type (input_bfd
);
2584 if (elf_hash_table (info
)->dynamic_sections_created
)
2586 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2587 &lit_table
, XTENSA_LIT_SEC_NAME
,
2593 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2596 relend
= relocs
+ input_section
->reloc_count
;
2597 for (; rel
< relend
; rel
++)
2600 reloc_howto_type
*howto
;
2601 unsigned long r_symndx
;
2602 struct elf_link_hash_entry
*h
;
2603 Elf_Internal_Sym
*sym
;
2608 bfd_reloc_status_type r
;
2609 bfd_boolean is_weak_undef
;
2610 bfd_boolean unresolved_reloc
;
2612 bfd_boolean dynamic_symbol
;
2614 r_type
= ELF32_R_TYPE (rel
->r_info
);
2615 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2616 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2619 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2621 bfd_set_error (bfd_error_bad_value
);
2624 howto
= &elf_howto_table
[r_type
];
2626 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2631 is_weak_undef
= FALSE
;
2632 unresolved_reloc
= FALSE
;
2635 if (howto
->partial_inplace
&& !bfd_link_relocatable (info
))
2637 /* Because R_XTENSA_32 was made partial_inplace to fix some
2638 problems with DWARF info in partial links, there may be
2639 an addend stored in the contents. Take it out of there
2640 and move it back into the addend field of the reloc. */
2641 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2642 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2645 if (r_symndx
< symtab_hdr
->sh_info
)
2647 sym
= local_syms
+ r_symndx
;
2648 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
2649 sec
= local_sections
[r_symndx
];
2650 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2654 bfd_boolean ignored
;
2656 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2657 r_symndx
, symtab_hdr
, sym_hashes
,
2659 unresolved_reloc
, warned
, ignored
);
2662 && !unresolved_reloc
2663 && h
->root
.type
== bfd_link_hash_undefweak
)
2664 is_weak_undef
= TRUE
;
2669 if (sec
!= NULL
&& discarded_section (sec
))
2670 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
2671 rel
, 1, relend
, howto
, 0, contents
);
2673 if (bfd_link_relocatable (info
))
2676 asection
* sym_sec
= get_elf_r_symndx_section (input_bfd
, r_symndx
);
2678 /* This is a relocatable link.
2679 1) If the reloc is against a section symbol, adjust
2680 according to the output section.
2681 2) If there is a new target for this relocation,
2682 the new target will be in the same output section.
2683 We adjust the relocation by the output section
2686 if (relaxing_section
)
2688 /* Check if this references a section in another input file. */
2689 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2694 dest_addr
= sym_sec
->output_section
->vma
+ sym_sec
->output_offset
2695 + get_elf_r_symndx_offset (input_bfd
, r_symndx
) + rel
->r_addend
;
2697 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2699 error_message
= NULL
;
2700 /* Convert ASM_SIMPLIFY into the simpler relocation
2701 so that they never escape a relaxing link. */
2702 r
= contract_asm_expansion (contents
, input_size
, rel
,
2704 if (r
!= bfd_reloc_ok
)
2706 if (!((*info
->callbacks
->reloc_dangerous
)
2707 (info
, error_message
, input_bfd
, input_section
,
2711 r_type
= ELF32_R_TYPE (rel
->r_info
);
2714 /* This is a relocatable link, so we don't have to change
2715 anything unless the reloc is against a section symbol,
2716 in which case we have to adjust according to where the
2717 section symbol winds up in the output section. */
2718 if (r_symndx
< symtab_hdr
->sh_info
)
2720 sym
= local_syms
+ r_symndx
;
2721 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2723 sec
= local_sections
[r_symndx
];
2724 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2728 /* If there is an addend with a partial_inplace howto,
2729 then move the addend to the contents. This is a hack
2730 to work around problems with DWARF in relocatable links
2731 with some previous version of BFD. Now we can't easily get
2732 rid of the hack without breaking backward compatibility.... */
2734 howto
= &elf_howto_table
[r_type
];
2735 if (howto
->partial_inplace
&& rel
->r_addend
)
2737 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2738 rel
->r_addend
, contents
,
2739 rel
->r_offset
, FALSE
,
2745 /* Put the correct bits in the target instruction, even
2746 though the relocation will still be present in the output
2747 file. This makes disassembly clearer, as well as
2748 allowing loadable kernel modules to work without needing
2749 relocations on anything other than calls and l32r's. */
2751 /* If it is not in the same section, there is nothing we can do. */
2752 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
&&
2753 sym_sec
->output_section
== input_section
->output_section
)
2755 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2756 dest_addr
, contents
,
2757 rel
->r_offset
, FALSE
,
2761 if (r
!= bfd_reloc_ok
)
2763 if (!((*info
->callbacks
->reloc_dangerous
)
2764 (info
, error_message
, input_bfd
, input_section
,
2769 /* Done with work for relocatable link; continue with next reloc. */
2773 /* This is a final link. */
2775 if (relaxing_section
)
2777 /* Check if this references a section in another input file. */
2778 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2782 /* Sanity check the address. */
2783 if (rel
->r_offset
>= input_size
2784 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2786 (*_bfd_error_handler
)
2787 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2788 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2789 bfd_set_error (bfd_error_bad_value
);
2794 name
= h
->root
.root
.string
;
2797 name
= (bfd_elf_string_from_elf_section
2798 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
2799 if (name
== NULL
|| *name
== '\0')
2800 name
= bfd_section_name (input_bfd
, sec
);
2803 if (r_symndx
!= STN_UNDEF
2804 && r_type
!= R_XTENSA_NONE
2806 || h
->root
.type
== bfd_link_hash_defined
2807 || h
->root
.type
== bfd_link_hash_defweak
)
2808 && IS_XTENSA_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
2810 (*_bfd_error_handler
)
2811 ((sym_type
== STT_TLS
2812 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2813 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2816 (long) rel
->r_offset
,
2821 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
2823 tls_type
= GOT_UNKNOWN
;
2825 tls_type
= elf_xtensa_hash_entry (h
)->tls_type
;
2826 else if (local_got_tls_types
)
2827 tls_type
= local_got_tls_types
[r_symndx
];
2833 if (elf_hash_table (info
)->dynamic_sections_created
2834 && (input_section
->flags
& SEC_ALLOC
) != 0
2835 && (dynamic_symbol
|| bfd_link_pic (info
)))
2837 Elf_Internal_Rela outrel
;
2841 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2842 srel
= htab
->srelplt
;
2844 srel
= htab
->srelgot
;
2846 BFD_ASSERT (srel
!= NULL
);
2849 _bfd_elf_section_offset (output_bfd
, info
,
2850 input_section
, rel
->r_offset
);
2852 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2853 memset (&outrel
, 0, sizeof outrel
);
2856 outrel
.r_offset
+= (input_section
->output_section
->vma
2857 + input_section
->output_offset
);
2859 /* Complain if the relocation is in a read-only section
2860 and not in a literal pool. */
2861 if ((input_section
->flags
& SEC_READONLY
) != 0
2862 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2866 _("dynamic relocation in read-only section");
2867 if (!((*info
->callbacks
->reloc_dangerous
)
2868 (info
, error_message
, input_bfd
, input_section
,
2875 outrel
.r_addend
= rel
->r_addend
;
2878 if (r_type
== R_XTENSA_32
)
2881 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2884 else /* r_type == R_XTENSA_PLT */
2887 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2889 /* Create the PLT entry and set the initial
2890 contents of the literal entry to the address of
2893 elf_xtensa_create_plt_entry (info
, output_bfd
,
2896 unresolved_reloc
= FALSE
;
2900 /* Generate a RELATIVE relocation. */
2901 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2902 outrel
.r_addend
= 0;
2906 loc
= (srel
->contents
2907 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2908 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2909 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2912 else if (r_type
== R_XTENSA_ASM_EXPAND
&& dynamic_symbol
)
2914 /* This should only happen for non-PIC code, which is not
2915 supposed to be used on systems with dynamic linking.
2916 Just ignore these relocations. */
2921 case R_XTENSA_TLS_TPOFF
:
2922 /* Switch to LE model for local symbols in an executable. */
2923 if (! bfd_link_pic (info
) && ! dynamic_symbol
)
2925 relocation
= tpoff (info
, relocation
);
2930 case R_XTENSA_TLSDESC_FN
:
2931 case R_XTENSA_TLSDESC_ARG
:
2933 if (r_type
== R_XTENSA_TLSDESC_FN
)
2935 if (! bfd_link_pic (info
) || (tls_type
& GOT_TLS_IE
) != 0)
2936 r_type
= R_XTENSA_NONE
;
2938 else if (r_type
== R_XTENSA_TLSDESC_ARG
)
2940 if (bfd_link_pic (info
))
2942 if ((tls_type
& GOT_TLS_IE
) != 0)
2943 r_type
= R_XTENSA_TLS_TPOFF
;
2947 r_type
= R_XTENSA_TLS_TPOFF
;
2948 if (! dynamic_symbol
)
2950 relocation
= tpoff (info
, relocation
);
2956 if (r_type
== R_XTENSA_NONE
)
2957 /* Nothing to do here; skip to the next reloc. */
2960 if (! elf_hash_table (info
)->dynamic_sections_created
)
2963 _("TLS relocation invalid without dynamic sections");
2964 if (!((*info
->callbacks
->reloc_dangerous
)
2965 (info
, error_message
, input_bfd
, input_section
,
2971 Elf_Internal_Rela outrel
;
2973 asection
*srel
= htab
->srelgot
;
2976 outrel
.r_offset
= (input_section
->output_section
->vma
2977 + input_section
->output_offset
2980 /* Complain if the relocation is in a read-only section
2981 and not in a literal pool. */
2982 if ((input_section
->flags
& SEC_READONLY
) != 0
2983 && ! elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2987 _("dynamic relocation in read-only section");
2988 if (!((*info
->callbacks
->reloc_dangerous
)
2989 (info
, error_message
, input_bfd
, input_section
,
2994 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2996 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2998 outrel
.r_addend
= 0;
3001 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
3003 unresolved_reloc
= FALSE
;
3006 loc
= (srel
->contents
3007 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3008 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3009 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
3015 case R_XTENSA_TLS_DTPOFF
:
3016 if (! bfd_link_pic (info
))
3017 /* Switch from LD model to LE model. */
3018 relocation
= tpoff (info
, relocation
);
3020 relocation
-= dtpoff_base (info
);
3023 case R_XTENSA_TLS_FUNC
:
3024 case R_XTENSA_TLS_ARG
:
3025 case R_XTENSA_TLS_CALL
:
3026 /* Check if optimizing to IE or LE model. */
3027 if ((tls_type
& GOT_TLS_IE
) != 0)
3029 bfd_boolean is_ld_model
=
3030 (h
&& elf_xtensa_hash_entry (h
) == htab
->tlsbase
);
3031 if (! replace_tls_insn (rel
, input_bfd
, input_section
, contents
,
3032 is_ld_model
, &error_message
))
3034 if (!((*info
->callbacks
->reloc_dangerous
)
3035 (info
, error_message
, input_bfd
, input_section
,
3040 if (r_type
!= R_XTENSA_TLS_ARG
|| is_ld_model
)
3042 /* Skip subsequent relocations on the same instruction. */
3043 while (rel
+ 1 < relend
&& rel
[1].r_offset
== rel
->r_offset
)
3050 if (elf_hash_table (info
)->dynamic_sections_created
3051 && dynamic_symbol
&& (is_operand_relocation (r_type
)
3052 || r_type
== R_XTENSA_32_PCREL
))
3055 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3056 strlen (name
) + 2, name
);
3057 if (!((*info
->callbacks
->reloc_dangerous
)
3058 (info
, error_message
, input_bfd
, input_section
,
3066 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3067 because such sections are not SEC_ALLOC and thus ld.so will
3068 not process them. */
3069 if (unresolved_reloc
3070 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3072 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3073 rel
->r_offset
) != (bfd_vma
) -1)
3075 (*_bfd_error_handler
)
3076 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3079 (long) rel
->r_offset
,
3085 /* TLS optimizations may have changed r_type; update "howto". */
3086 howto
= &elf_howto_table
[r_type
];
3088 /* There's no point in calling bfd_perform_relocation here.
3089 Just go directly to our "special function". */
3090 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
3091 relocation
+ rel
->r_addend
,
3092 contents
, rel
->r_offset
, is_weak_undef
,
3095 if (r
!= bfd_reloc_ok
&& !warned
)
3097 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
3098 BFD_ASSERT (error_message
!= NULL
);
3100 if (rel
->r_addend
== 0)
3101 error_message
= vsprint_msg (error_message
, ": %s",
3102 strlen (name
) + 2, name
);
3104 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
3106 name
, (int) rel
->r_addend
);
3108 if (!((*info
->callbacks
->reloc_dangerous
)
3109 (info
, error_message
, input_bfd
, input_section
,
3118 input_section
->reloc_done
= TRUE
;
3124 /* Finish up dynamic symbol handling. There's not much to do here since
3125 the PLT and GOT entries are all set up by relocate_section. */
3128 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
3129 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3130 struct elf_link_hash_entry
*h
,
3131 Elf_Internal_Sym
*sym
)
3133 if (h
->needs_plt
&& !h
->def_regular
)
3135 /* Mark the symbol as undefined, rather than as defined in
3136 the .plt section. Leave the value alone. */
3137 sym
->st_shndx
= SHN_UNDEF
;
3138 /* If the symbol is weak, we do need to clear the value.
3139 Otherwise, the PLT entry would provide a definition for
3140 the symbol even if the symbol wasn't defined anywhere,
3141 and so the symbol would never be NULL. */
3142 if (!h
->ref_regular_nonweak
)
3146 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3147 if (h
== elf_hash_table (info
)->hdynamic
3148 || h
== elf_hash_table (info
)->hgot
)
3149 sym
->st_shndx
= SHN_ABS
;
3155 /* Combine adjacent literal table entries in the output. Adjacent
3156 entries within each input section may have been removed during
3157 relaxation, but we repeat the process here, even though it's too late
3158 to shrink the output section, because it's important to minimize the
3159 number of literal table entries to reduce the start-up work for the
3160 runtime linker. Returns the number of remaining table entries or -1
3164 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
3169 property_table_entry
*table
;
3170 bfd_size_type section_size
, sgotloc_size
;
3174 section_size
= sxtlit
->size
;
3175 BFD_ASSERT (section_size
% 8 == 0);
3176 num
= section_size
/ 8;
3178 sgotloc_size
= sgotloc
->size
;
3179 if (sgotloc_size
!= section_size
)
3181 (*_bfd_error_handler
)
3182 (_("internal inconsistency in size of .got.loc section"));
3186 table
= bfd_malloc (num
* sizeof (property_table_entry
));
3190 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3191 propagates to the output section, where it doesn't really apply and
3192 where it breaks the following call to bfd_malloc_and_get_section. */
3193 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
3195 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
3203 /* There should never be any relocations left at this point, so this
3204 is quite a bit easier than what is done during relaxation. */
3206 /* Copy the raw contents into a property table array and sort it. */
3208 for (n
= 0; n
< num
; n
++)
3210 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
3211 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
3214 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
3216 for (n
= 0; n
< num
; n
++)
3218 bfd_boolean remove_entry
= FALSE
;
3220 if (table
[n
].size
== 0)
3221 remove_entry
= TRUE
;
3223 && (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
3225 table
[n
-1].size
+= table
[n
].size
;
3226 remove_entry
= TRUE
;
3231 for (m
= n
; m
< num
- 1; m
++)
3233 table
[m
].address
= table
[m
+1].address
;
3234 table
[m
].size
= table
[m
+1].size
;
3242 /* Copy the data back to the raw contents. */
3244 for (n
= 0; n
< num
; n
++)
3246 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
3247 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
3251 /* Clear the removed bytes. */
3252 if ((bfd_size_type
) (num
* 8) < section_size
)
3253 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
3255 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
3259 /* Copy the contents to ".got.loc". */
3260 memcpy (sgotloc
->contents
, contents
, section_size
);
3268 /* Finish up the dynamic sections. */
3271 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
3272 struct bfd_link_info
*info
)
3274 struct elf_xtensa_link_hash_table
*htab
;
3276 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
3277 Elf32_External_Dyn
*dyncon
, *dynconend
;
3278 int num_xtlit_entries
= 0;
3280 if (! elf_hash_table (info
)->dynamic_sections_created
)
3283 htab
= elf_xtensa_hash_table (info
);
3287 dynobj
= elf_hash_table (info
)->dynobj
;
3288 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3289 BFD_ASSERT (sdyn
!= NULL
);
3291 /* Set the first entry in the global offset table to the address of
3292 the dynamic section. */
3296 BFD_ASSERT (sgot
->size
== 4);
3298 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
3300 bfd_put_32 (output_bfd
,
3301 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3305 srelplt
= htab
->srelplt
;
3306 if (srelplt
&& srelplt
->size
!= 0)
3308 asection
*sgotplt
, *srelgot
, *spltlittbl
;
3309 int chunk
, plt_chunks
, plt_entries
;
3310 Elf_Internal_Rela irela
;
3312 unsigned rtld_reloc
;
3314 srelgot
= htab
->srelgot
;
3315 spltlittbl
= htab
->spltlittbl
;
3316 BFD_ASSERT (srelgot
!= NULL
&& spltlittbl
!= NULL
);
3318 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3319 of them follow immediately after.... */
3320 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
3322 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3323 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3324 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
3327 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
3329 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
3331 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
3333 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
3335 int chunk_entries
= 0;
3337 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
3338 BFD_ASSERT (sgotplt
!= NULL
);
3340 /* Emit special RTLD relocations for the first two entries in
3341 each chunk of the .got.plt section. */
3343 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3344 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3345 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3346 irela
.r_offset
= (sgotplt
->output_section
->vma
3347 + sgotplt
->output_offset
);
3348 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
3349 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3351 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3353 /* Next literal immediately follows the first. */
3354 loc
+= sizeof (Elf32_External_Rela
);
3355 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3356 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3357 irela
.r_offset
= (sgotplt
->output_section
->vma
3358 + sgotplt
->output_offset
+ 4);
3359 /* Tell rtld to set value to object's link map. */
3361 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3363 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3365 /* Fill in the literal table. */
3366 if (chunk
< plt_chunks
- 1)
3367 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
3369 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
3371 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
3372 bfd_put_32 (output_bfd
,
3373 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
3374 spltlittbl
->contents
+ (chunk
* 8) + 0);
3375 bfd_put_32 (output_bfd
,
3376 8 + (chunk_entries
* 4),
3377 spltlittbl
->contents
+ (chunk
* 8) + 4);
3380 /* All the dynamic relocations have been emitted at this point.
3381 Make sure the relocation sections are the correct size. */
3382 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
3383 * srelgot
->reloc_count
)
3384 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
3385 * srelplt
->reloc_count
))
3388 /* The .xt.lit.plt section has just been modified. This must
3389 happen before the code below which combines adjacent literal
3390 table entries, and the .xt.lit.plt contents have to be forced to
3392 if (! bfd_set_section_contents (output_bfd
,
3393 spltlittbl
->output_section
,
3394 spltlittbl
->contents
,
3395 spltlittbl
->output_offset
,
3398 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3399 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
3402 /* Combine adjacent literal table entries. */
3403 BFD_ASSERT (! bfd_link_relocatable (info
));
3404 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
3405 sgotloc
= htab
->sgotloc
;
3406 BFD_ASSERT (sgotloc
);
3410 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
3411 if (num_xtlit_entries
< 0)
3415 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3416 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3417 for (; dyncon
< dynconend
; dyncon
++)
3419 Elf_Internal_Dyn dyn
;
3421 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3428 case DT_XTENSA_GOT_LOC_SZ
:
3429 dyn
.d_un
.d_val
= num_xtlit_entries
;
3432 case DT_XTENSA_GOT_LOC_OFF
:
3433 dyn
.d_un
.d_ptr
= htab
->sgotloc
->output_section
->vma
;
3437 dyn
.d_un
.d_ptr
= htab
->sgot
->output_section
->vma
;
3441 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
3445 dyn
.d_un
.d_val
= htab
->srelplt
->output_section
->size
;
3449 /* Adjust RELASZ to not include JMPREL. This matches what
3450 glibc expects and what is done for several other ELF
3451 targets (e.g., i386, alpha), but the "correct" behavior
3452 seems to be unresolved. Since the linker script arranges
3453 for .rela.plt to follow all other relocation sections, we
3454 don't have to worry about changing the DT_RELA entry. */
3456 dyn
.d_un
.d_val
-= htab
->srelplt
->output_section
->size
;
3460 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3467 /* Functions for dealing with the e_flags field. */
3469 /* Merge backend specific data from an object file to the output
3470 object file when linking. */
3473 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
3475 unsigned out_mach
, in_mach
;
3476 flagword out_flag
, in_flag
;
3478 /* Check if we have the same endianness. */
3479 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
3482 /* Don't even pretend to support mixed-format linking. */
3483 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
3484 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
3487 out_flag
= elf_elfheader (obfd
)->e_flags
;
3488 in_flag
= elf_elfheader (ibfd
)->e_flags
;
3490 out_mach
= out_flag
& EF_XTENSA_MACH
;
3491 in_mach
= in_flag
& EF_XTENSA_MACH
;
3492 if (out_mach
!= in_mach
)
3494 (*_bfd_error_handler
)
3495 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3496 ibfd
, out_mach
, in_mach
);
3497 bfd_set_error (bfd_error_wrong_format
);
3501 if (! elf_flags_init (obfd
))
3503 elf_flags_init (obfd
) = TRUE
;
3504 elf_elfheader (obfd
)->e_flags
= in_flag
;
3506 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
3507 && bfd_get_arch_info (obfd
)->the_default
)
3508 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
3509 bfd_get_mach (ibfd
));
3514 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
3515 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
3517 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
3518 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
3525 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
3527 BFD_ASSERT (!elf_flags_init (abfd
)
3528 || elf_elfheader (abfd
)->e_flags
== flags
);
3530 elf_elfheader (abfd
)->e_flags
|= flags
;
3531 elf_flags_init (abfd
) = TRUE
;
3538 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
3540 FILE *f
= (FILE *) farg
;
3541 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
3543 fprintf (f
, "\nXtensa header:\n");
3544 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
3545 fprintf (f
, "\nMachine = Base\n");
3547 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
3549 fprintf (f
, "Insn tables = %s\n",
3550 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
3552 fprintf (f
, "Literal tables = %s\n",
3553 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
3555 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
3559 /* Set the right machine number for an Xtensa ELF file. */
3562 elf_xtensa_object_p (bfd
*abfd
)
3565 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
3570 mach
= bfd_mach_xtensa
;
3576 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
3581 /* The final processing done just before writing out an Xtensa ELF object
3582 file. This gets the Xtensa architecture right based on the machine
3586 elf_xtensa_final_write_processing (bfd
*abfd
,
3587 bfd_boolean linker ATTRIBUTE_UNUSED
)
3592 switch (mach
= bfd_get_mach (abfd
))
3594 case bfd_mach_xtensa
:
3595 val
= E_XTENSA_MACH
;
3601 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
3602 elf_elfheader (abfd
)->e_flags
|= val
;
3606 static enum elf_reloc_type_class
3607 elf_xtensa_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3608 const asection
*rel_sec ATTRIBUTE_UNUSED
,
3609 const Elf_Internal_Rela
*rela
)
3611 switch ((int) ELF32_R_TYPE (rela
->r_info
))
3613 case R_XTENSA_RELATIVE
:
3614 return reloc_class_relative
;
3615 case R_XTENSA_JMP_SLOT
:
3616 return reloc_class_plt
;
3618 return reloc_class_normal
;
3624 elf_xtensa_discard_info_for_section (bfd
*abfd
,
3625 struct elf_reloc_cookie
*cookie
,
3626 struct bfd_link_info
*info
,
3630 bfd_vma offset
, actual_offset
;
3631 bfd_size_type removed_bytes
= 0;
3632 bfd_size_type entry_size
;
3634 if (sec
->output_section
3635 && bfd_is_abs_section (sec
->output_section
))
3638 if (xtensa_is_proptable_section (sec
))
3643 if (sec
->size
== 0 || sec
->size
% entry_size
!= 0)
3646 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
3650 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
3653 release_contents (sec
, contents
);
3657 /* Sort the relocations. They should already be in order when
3658 relaxation is enabled, but it might not be. */
3659 qsort (cookie
->rels
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
3660 internal_reloc_compare
);
3662 cookie
->rel
= cookie
->rels
;
3663 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
3665 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
3667 actual_offset
= offset
- removed_bytes
;
3669 /* The ...symbol_deleted_p function will skip over relocs but it
3670 won't adjust their offsets, so do that here. */
3671 while (cookie
->rel
< cookie
->relend
3672 && cookie
->rel
->r_offset
< offset
)
3674 cookie
->rel
->r_offset
-= removed_bytes
;
3678 while (cookie
->rel
< cookie
->relend
3679 && cookie
->rel
->r_offset
== offset
)
3681 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
3683 /* Remove the table entry. (If the reloc type is NONE, then
3684 the entry has already been merged with another and deleted
3685 during relaxation.) */
3686 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
3688 /* Shift the contents up. */
3689 if (offset
+ entry_size
< sec
->size
)
3690 memmove (&contents
[actual_offset
],
3691 &contents
[actual_offset
+ entry_size
],
3692 sec
->size
- offset
- entry_size
);
3693 removed_bytes
+= entry_size
;
3696 /* Remove this relocation. */
3697 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
3700 /* Adjust the relocation offset for previous removals. This
3701 should not be done before calling ...symbol_deleted_p
3702 because it might mess up the offset comparisons there.
3703 Make sure the offset doesn't underflow in the case where
3704 the first entry is removed. */
3705 if (cookie
->rel
->r_offset
>= removed_bytes
)
3706 cookie
->rel
->r_offset
-= removed_bytes
;
3708 cookie
->rel
->r_offset
= 0;
3714 if (removed_bytes
!= 0)
3716 /* Adjust any remaining relocs (shouldn't be any). */
3717 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
3719 if (cookie
->rel
->r_offset
>= removed_bytes
)
3720 cookie
->rel
->r_offset
-= removed_bytes
;
3722 cookie
->rel
->r_offset
= 0;
3725 /* Clear the removed bytes. */
3726 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
3728 pin_contents (sec
, contents
);
3729 pin_internal_relocs (sec
, cookie
->rels
);
3732 if (sec
->rawsize
== 0)
3733 sec
->rawsize
= sec
->size
;
3734 sec
->size
-= removed_bytes
;
3736 if (xtensa_is_littable_section (sec
))
3738 asection
*sgotloc
= elf_xtensa_hash_table (info
)->sgotloc
;
3740 sgotloc
->size
-= removed_bytes
;
3745 release_contents (sec
, contents
);
3746 release_internal_relocs (sec
, cookie
->rels
);
3749 return (removed_bytes
!= 0);
3754 elf_xtensa_discard_info (bfd
*abfd
,
3755 struct elf_reloc_cookie
*cookie
,
3756 struct bfd_link_info
*info
)
3759 bfd_boolean changed
= FALSE
;
3761 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3763 if (xtensa_is_property_section (sec
))
3765 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3775 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3777 return xtensa_is_property_section (sec
);
3782 elf_xtensa_action_discarded (asection
*sec
)
3784 if (strcmp (".xt_except_table", sec
->name
) == 0)
3787 if (strcmp (".xt_except_desc", sec
->name
) == 0)
3790 return _bfd_elf_default_action_discarded (sec
);
3794 /* Support for core dump NOTE sections. */
3797 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3802 /* The size for Xtensa is variable, so don't try to recognize the format
3803 based on the size. Just assume this is GNU/Linux. */
3806 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3809 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3813 size
= note
->descsz
- offset
- 4;
3815 /* Make a ".reg/999" section. */
3816 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3817 size
, note
->descpos
+ offset
);
3822 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3824 switch (note
->descsz
)
3829 case 128: /* GNU/Linux elf_prpsinfo */
3830 elf_tdata (abfd
)->core
->program
3831 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3832 elf_tdata (abfd
)->core
->command
3833 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3836 /* Note that for some reason, a spurious space is tacked
3837 onto the end of the args in some (at least one anyway)
3838 implementations, so strip it off if it exists. */
3841 char *command
= elf_tdata (abfd
)->core
->command
;
3842 int n
= strlen (command
);
3844 if (0 < n
&& command
[n
- 1] == ' ')
3845 command
[n
- 1] = '\0';
3852 /* Generic Xtensa configurability stuff. */
3854 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3855 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3856 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3857 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3858 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3859 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3860 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3861 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3864 init_call_opcodes (void)
3866 if (callx0_op
== XTENSA_UNDEFINED
)
3868 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3869 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3870 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3871 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3872 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3873 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3874 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3875 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3881 is_indirect_call_opcode (xtensa_opcode opcode
)
3883 init_call_opcodes ();
3884 return (opcode
== callx0_op
3885 || opcode
== callx4_op
3886 || opcode
== callx8_op
3887 || opcode
== callx12_op
);
3892 is_direct_call_opcode (xtensa_opcode opcode
)
3894 init_call_opcodes ();
3895 return (opcode
== call0_op
3896 || opcode
== call4_op
3897 || opcode
== call8_op
3898 || opcode
== call12_op
);
3903 is_windowed_call_opcode (xtensa_opcode opcode
)
3905 init_call_opcodes ();
3906 return (opcode
== call4_op
3907 || opcode
== call8_op
3908 || opcode
== call12_op
3909 || opcode
== callx4_op
3910 || opcode
== callx8_op
3911 || opcode
== callx12_op
);
3916 get_indirect_call_dest_reg (xtensa_opcode opcode
, unsigned *pdst
)
3918 unsigned dst
= (unsigned) -1;
3920 init_call_opcodes ();
3921 if (opcode
== callx0_op
)
3923 else if (opcode
== callx4_op
)
3925 else if (opcode
== callx8_op
)
3927 else if (opcode
== callx12_op
)
3930 if (dst
== (unsigned) -1)
3938 static xtensa_opcode
3939 get_const16_opcode (void)
3941 static bfd_boolean done_lookup
= FALSE
;
3942 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3945 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3948 return const16_opcode
;
3952 static xtensa_opcode
3953 get_l32r_opcode (void)
3955 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3956 static bfd_boolean done_lookup
= FALSE
;
3960 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3968 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3972 offset
= addr
- ((pc
+3) & -4);
3973 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3974 offset
= (signed int) offset
>> 2;
3975 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3981 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3983 xtensa_isa isa
= xtensa_default_isa
;
3984 int last_immed
, last_opnd
, opi
;
3986 if (opcode
== XTENSA_UNDEFINED
)
3987 return XTENSA_UNDEFINED
;
3989 /* Find the last visible PC-relative immediate operand for the opcode.
3990 If there are no PC-relative immediates, then choose the last visible
3991 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3992 last_immed
= XTENSA_UNDEFINED
;
3993 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3994 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3996 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3998 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
4003 if (last_immed
== XTENSA_UNDEFINED
4004 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
4008 return XTENSA_UNDEFINED
;
4010 /* If the operand number was specified in an old-style relocation,
4011 check for consistency with the operand computed above. */
4012 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
4014 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
4015 if (reloc_opnd
!= last_immed
)
4016 return XTENSA_UNDEFINED
;
4024 get_relocation_slot (int r_type
)
4034 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
4035 return r_type
- R_XTENSA_SLOT0_OP
;
4036 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
4037 return r_type
- R_XTENSA_SLOT0_ALT
;
4041 return XTENSA_UNDEFINED
;
4045 /* Get the opcode for a relocation. */
4047 static xtensa_opcode
4048 get_relocation_opcode (bfd
*abfd
,
4051 Elf_Internal_Rela
*irel
)
4053 static xtensa_insnbuf ibuff
= NULL
;
4054 static xtensa_insnbuf sbuff
= NULL
;
4055 xtensa_isa isa
= xtensa_default_isa
;
4059 if (contents
== NULL
)
4060 return XTENSA_UNDEFINED
;
4062 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
4063 return XTENSA_UNDEFINED
;
4067 ibuff
= xtensa_insnbuf_alloc (isa
);
4068 sbuff
= xtensa_insnbuf_alloc (isa
);
4071 /* Decode the instruction. */
4072 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
4073 sec
->size
- irel
->r_offset
);
4074 fmt
= xtensa_format_decode (isa
, ibuff
);
4075 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
4076 if (slot
== XTENSA_UNDEFINED
)
4077 return XTENSA_UNDEFINED
;
4078 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
4079 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
4084 is_l32r_relocation (bfd
*abfd
,
4087 Elf_Internal_Rela
*irel
)
4089 xtensa_opcode opcode
;
4090 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
4092 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
4093 return (opcode
== get_l32r_opcode ());
4097 static bfd_size_type
4098 get_asm_simplify_size (bfd_byte
*contents
,
4099 bfd_size_type content_len
,
4100 bfd_size_type offset
)
4102 bfd_size_type insnlen
, size
= 0;
4104 /* Decode the size of the next two instructions. */
4105 insnlen
= insn_decode_len (contents
, content_len
, offset
);
4111 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
4121 is_alt_relocation (int r_type
)
4123 return (r_type
>= R_XTENSA_SLOT0_ALT
4124 && r_type
<= R_XTENSA_SLOT14_ALT
);
4129 is_operand_relocation (int r_type
)
4139 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
4141 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
4150 #define MIN_INSN_LENGTH 2
4152 /* Return 0 if it fails to decode. */
4155 insn_decode_len (bfd_byte
*contents
,
4156 bfd_size_type content_len
,
4157 bfd_size_type offset
)
4160 xtensa_isa isa
= xtensa_default_isa
;
4162 static xtensa_insnbuf ibuff
= NULL
;
4164 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4168 ibuff
= xtensa_insnbuf_alloc (isa
);
4169 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
4170 content_len
- offset
);
4171 fmt
= xtensa_format_decode (isa
, ibuff
);
4172 if (fmt
== XTENSA_UNDEFINED
)
4174 insn_len
= xtensa_format_length (isa
, fmt
);
4175 if (insn_len
== XTENSA_UNDEFINED
)
4181 /* Decode the opcode for a single slot instruction.
4182 Return 0 if it fails to decode or the instruction is multi-slot. */
4185 insn_decode_opcode (bfd_byte
*contents
,
4186 bfd_size_type content_len
,
4187 bfd_size_type offset
,
4190 xtensa_isa isa
= xtensa_default_isa
;
4192 static xtensa_insnbuf insnbuf
= NULL
;
4193 static xtensa_insnbuf slotbuf
= NULL
;
4195 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4196 return XTENSA_UNDEFINED
;
4198 if (insnbuf
== NULL
)
4200 insnbuf
= xtensa_insnbuf_alloc (isa
);
4201 slotbuf
= xtensa_insnbuf_alloc (isa
);
4204 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4205 content_len
- offset
);
4206 fmt
= xtensa_format_decode (isa
, insnbuf
);
4207 if (fmt
== XTENSA_UNDEFINED
)
4208 return XTENSA_UNDEFINED
;
4210 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
4211 return XTENSA_UNDEFINED
;
4213 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
4214 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
4218 /* The offset is the offset in the contents.
4219 The address is the address of that offset. */
4222 check_branch_target_aligned (bfd_byte
*contents
,
4223 bfd_size_type content_length
,
4227 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
4230 return check_branch_target_aligned_address (address
, insn_len
);
4235 check_loop_aligned (bfd_byte
*contents
,
4236 bfd_size_type content_length
,
4240 bfd_size_type loop_len
, insn_len
;
4241 xtensa_opcode opcode
;
4243 opcode
= insn_decode_opcode (contents
, content_length
, offset
, 0);
4244 if (opcode
== XTENSA_UNDEFINED
4245 || xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) != 1)
4251 loop_len
= insn_decode_len (contents
, content_length
, offset
);
4252 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
4253 if (loop_len
== 0 || insn_len
== 0)
4259 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
4264 check_branch_target_aligned_address (bfd_vma addr
, int len
)
4267 return (addr
% 8 == 0);
4268 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
4272 /* Instruction widening and narrowing. */
4274 /* When FLIX is available we need to access certain instructions only
4275 when they are 16-bit or 24-bit instructions. This table caches
4276 information about such instructions by walking through all the
4277 opcodes and finding the smallest single-slot format into which each
4280 static xtensa_format
*op_single_fmt_table
= NULL
;
4284 init_op_single_format_table (void)
4286 xtensa_isa isa
= xtensa_default_isa
;
4287 xtensa_insnbuf ibuf
;
4288 xtensa_opcode opcode
;
4292 if (op_single_fmt_table
)
4295 ibuf
= xtensa_insnbuf_alloc (isa
);
4296 num_opcodes
= xtensa_isa_num_opcodes (isa
);
4298 op_single_fmt_table
= (xtensa_format
*)
4299 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
4300 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
4302 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
4303 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
4305 if (xtensa_format_num_slots (isa
, fmt
) == 1
4306 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
4308 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
4309 int fmt_length
= xtensa_format_length (isa
, fmt
);
4310 if (old_fmt
== XTENSA_UNDEFINED
4311 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
4312 op_single_fmt_table
[opcode
] = fmt
;
4316 xtensa_insnbuf_free (isa
, ibuf
);
4320 static xtensa_format
4321 get_single_format (xtensa_opcode opcode
)
4323 init_op_single_format_table ();
4324 return op_single_fmt_table
[opcode
];
4328 /* For the set of narrowable instructions we do NOT include the
4329 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4330 involved during linker relaxation that may require these to
4331 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4332 requires special case code to ensure it only works when op1 == op2. */
4340 struct string_pair narrowable
[] =
4343 { "addi", "addi.n" },
4344 { "addmi", "addi.n" },
4345 { "l32i", "l32i.n" },
4346 { "movi", "movi.n" },
4348 { "retw", "retw.n" },
4349 { "s32i", "s32i.n" },
4350 { "or", "mov.n" } /* special case only when op1 == op2 */
4353 struct string_pair widenable
[] =
4356 { "addi", "addi.n" },
4357 { "addmi", "addi.n" },
4358 { "beqz", "beqz.n" },
4359 { "bnez", "bnez.n" },
4360 { "l32i", "l32i.n" },
4361 { "movi", "movi.n" },
4363 { "retw", "retw.n" },
4364 { "s32i", "s32i.n" },
4365 { "or", "mov.n" } /* special case only when op1 == op2 */
4369 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4370 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4371 return the instruction buffer holding the narrow instruction. Otherwise,
4372 return 0. The set of valid narrowing are specified by a string table
4373 but require some special case operand checks in some cases. */
4375 static xtensa_insnbuf
4376 can_narrow_instruction (xtensa_insnbuf slotbuf
,
4378 xtensa_opcode opcode
)
4380 xtensa_isa isa
= xtensa_default_isa
;
4381 xtensa_format o_fmt
;
4384 static xtensa_insnbuf o_insnbuf
= NULL
;
4385 static xtensa_insnbuf o_slotbuf
= NULL
;
4387 if (o_insnbuf
== NULL
)
4389 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4390 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4393 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); opi
++)
4395 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
4397 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
4399 uint32 value
, newval
;
4400 int i
, operand_count
, o_operand_count
;
4401 xtensa_opcode o_opcode
;
4403 /* Address does not matter in this case. We might need to
4404 fix it to handle branches/jumps. */
4405 bfd_vma self_address
= 0;
4407 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
4408 if (o_opcode
== XTENSA_UNDEFINED
)
4410 o_fmt
= get_single_format (o_opcode
);
4411 if (o_fmt
== XTENSA_UNDEFINED
)
4414 if (xtensa_format_length (isa
, fmt
) != 3
4415 || xtensa_format_length (isa
, o_fmt
) != 2)
4418 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4419 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4420 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4422 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4427 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4432 uint32 rawval0
, rawval1
, rawval2
;
4434 if (o_operand_count
+ 1 != operand_count
4435 || xtensa_operand_get_field (isa
, opcode
, 0,
4436 fmt
, 0, slotbuf
, &rawval0
) != 0
4437 || xtensa_operand_get_field (isa
, opcode
, 1,
4438 fmt
, 0, slotbuf
, &rawval1
) != 0
4439 || xtensa_operand_get_field (isa
, opcode
, 2,
4440 fmt
, 0, slotbuf
, &rawval2
) != 0
4441 || rawval1
!= rawval2
4442 || rawval0
== rawval1
/* it is a nop */)
4446 for (i
= 0; i
< o_operand_count
; ++i
)
4448 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
4450 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
4453 /* PC-relative branches need adjustment, but
4454 the PC-rel operand will always have a relocation. */
4456 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4458 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4459 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4464 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4474 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4475 the action in-place directly into the contents and return TRUE. Otherwise,
4476 the return value is FALSE and the contents are not modified. */
4479 narrow_instruction (bfd_byte
*contents
,
4480 bfd_size_type content_length
,
4481 bfd_size_type offset
)
4483 xtensa_opcode opcode
;
4484 bfd_size_type insn_len
;
4485 xtensa_isa isa
= xtensa_default_isa
;
4487 xtensa_insnbuf o_insnbuf
;
4489 static xtensa_insnbuf insnbuf
= NULL
;
4490 static xtensa_insnbuf slotbuf
= NULL
;
4492 if (insnbuf
== NULL
)
4494 insnbuf
= xtensa_insnbuf_alloc (isa
);
4495 slotbuf
= xtensa_insnbuf_alloc (isa
);
4498 BFD_ASSERT (offset
< content_length
);
4500 if (content_length
< 2)
4503 /* We will hand-code a few of these for a little while.
4504 These have all been specified in the assembler aleady. */
4505 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4506 content_length
- offset
);
4507 fmt
= xtensa_format_decode (isa
, insnbuf
);
4508 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4511 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4514 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4515 if (opcode
== XTENSA_UNDEFINED
)
4517 insn_len
= xtensa_format_length (isa
, fmt
);
4518 if (insn_len
> content_length
)
4521 o_insnbuf
= can_narrow_instruction (slotbuf
, fmt
, opcode
);
4524 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4525 content_length
- offset
);
4533 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4534 "density" instruction to a standard 3-byte instruction. If it is valid,
4535 return the instruction buffer holding the wide instruction. Otherwise,
4536 return 0. The set of valid widenings are specified by a string table
4537 but require some special case operand checks in some cases. */
4539 static xtensa_insnbuf
4540 can_widen_instruction (xtensa_insnbuf slotbuf
,
4542 xtensa_opcode opcode
)
4544 xtensa_isa isa
= xtensa_default_isa
;
4545 xtensa_format o_fmt
;
4548 static xtensa_insnbuf o_insnbuf
= NULL
;
4549 static xtensa_insnbuf o_slotbuf
= NULL
;
4551 if (o_insnbuf
== NULL
)
4553 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4554 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4557 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); opi
++)
4559 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
4560 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
4561 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
4563 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
4565 uint32 value
, newval
;
4566 int i
, operand_count
, o_operand_count
, check_operand_count
;
4567 xtensa_opcode o_opcode
;
4569 /* Address does not matter in this case. We might need to fix it
4570 to handle branches/jumps. */
4571 bfd_vma self_address
= 0;
4573 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
4574 if (o_opcode
== XTENSA_UNDEFINED
)
4576 o_fmt
= get_single_format (o_opcode
);
4577 if (o_fmt
== XTENSA_UNDEFINED
)
4580 if (xtensa_format_length (isa
, fmt
) != 2
4581 || xtensa_format_length (isa
, o_fmt
) != 3)
4584 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4585 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4586 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4587 check_operand_count
= o_operand_count
;
4589 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4594 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4599 uint32 rawval0
, rawval1
;
4601 if (o_operand_count
!= operand_count
+ 1
4602 || xtensa_operand_get_field (isa
, opcode
, 0,
4603 fmt
, 0, slotbuf
, &rawval0
) != 0
4604 || xtensa_operand_get_field (isa
, opcode
, 1,
4605 fmt
, 0, slotbuf
, &rawval1
) != 0
4606 || rawval0
== rawval1
/* it is a nop */)
4610 check_operand_count
--;
4612 for (i
= 0; i
< check_operand_count
; i
++)
4615 if (is_or
&& i
== o_operand_count
- 1)
4617 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
4619 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
4622 /* PC-relative branches need adjustment, but
4623 the PC-rel operand will always have a relocation. */
4625 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4627 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4628 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4633 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4643 /* Attempt to widen an instruction. If the widening is valid, perform
4644 the action in-place directly into the contents and return TRUE. Otherwise,
4645 the return value is FALSE and the contents are not modified. */
4648 widen_instruction (bfd_byte
*contents
,
4649 bfd_size_type content_length
,
4650 bfd_size_type offset
)
4652 xtensa_opcode opcode
;
4653 bfd_size_type insn_len
;
4654 xtensa_isa isa
= xtensa_default_isa
;
4656 xtensa_insnbuf o_insnbuf
;
4658 static xtensa_insnbuf insnbuf
= NULL
;
4659 static xtensa_insnbuf slotbuf
= NULL
;
4661 if (insnbuf
== NULL
)
4663 insnbuf
= xtensa_insnbuf_alloc (isa
);
4664 slotbuf
= xtensa_insnbuf_alloc (isa
);
4667 BFD_ASSERT (offset
< content_length
);
4669 if (content_length
< 2)
4672 /* We will hand-code a few of these for a little while.
4673 These have all been specified in the assembler aleady. */
4674 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4675 content_length
- offset
);
4676 fmt
= xtensa_format_decode (isa
, insnbuf
);
4677 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4680 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4683 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4684 if (opcode
== XTENSA_UNDEFINED
)
4686 insn_len
= xtensa_format_length (isa
, fmt
);
4687 if (insn_len
> content_length
)
4690 o_insnbuf
= can_widen_instruction (slotbuf
, fmt
, opcode
);
4693 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4694 content_length
- offset
);
4701 /* Code for transforming CALLs at link-time. */
4703 static bfd_reloc_status_type
4704 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
4706 bfd_vma content_length
,
4707 char **error_message
)
4709 static xtensa_insnbuf insnbuf
= NULL
;
4710 static xtensa_insnbuf slotbuf
= NULL
;
4711 xtensa_format core_format
= XTENSA_UNDEFINED
;
4712 xtensa_opcode opcode
;
4713 xtensa_opcode direct_call_opcode
;
4714 xtensa_isa isa
= xtensa_default_isa
;
4715 bfd_byte
*chbuf
= contents
+ address
;
4718 if (insnbuf
== NULL
)
4720 insnbuf
= xtensa_insnbuf_alloc (isa
);
4721 slotbuf
= xtensa_insnbuf_alloc (isa
);
4724 if (content_length
< address
)
4726 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
4727 return bfd_reloc_other
;
4730 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
4731 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
4732 if (direct_call_opcode
== XTENSA_UNDEFINED
)
4734 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
4735 return bfd_reloc_other
;
4738 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4739 core_format
= xtensa_format_lookup (isa
, "x24");
4740 opcode
= xtensa_opcode_lookup (isa
, "or");
4741 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
4742 for (opn
= 0; opn
< 3; opn
++)
4745 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
4746 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
4749 xtensa_format_encode (isa
, core_format
, insnbuf
);
4750 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4751 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
4753 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4754 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
4755 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
4757 xtensa_format_encode (isa
, core_format
, insnbuf
);
4758 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4759 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
4760 content_length
- address
- 3);
4762 return bfd_reloc_ok
;
4766 static bfd_reloc_status_type
4767 contract_asm_expansion (bfd_byte
*contents
,
4768 bfd_vma content_length
,
4769 Elf_Internal_Rela
*irel
,
4770 char **error_message
)
4772 bfd_reloc_status_type retval
=
4773 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
4776 if (retval
!= bfd_reloc_ok
)
4777 return bfd_reloc_dangerous
;
4779 /* Update the irel->r_offset field so that the right immediate and
4780 the right instruction are modified during the relocation. */
4781 irel
->r_offset
+= 3;
4782 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
4783 return bfd_reloc_ok
;
4787 static xtensa_opcode
4788 swap_callx_for_call_opcode (xtensa_opcode opcode
)
4790 init_call_opcodes ();
4792 if (opcode
== callx0_op
) return call0_op
;
4793 if (opcode
== callx4_op
) return call4_op
;
4794 if (opcode
== callx8_op
) return call8_op
;
4795 if (opcode
== callx12_op
) return call12_op
;
4797 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4798 return XTENSA_UNDEFINED
;
4802 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4803 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4804 If not, return XTENSA_UNDEFINED. */
4806 #define L32R_TARGET_REG_OPERAND 0
4807 #define CONST16_TARGET_REG_OPERAND 0
4808 #define CALLN_SOURCE_OPERAND 0
4810 static xtensa_opcode
4811 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
4813 static xtensa_insnbuf insnbuf
= NULL
;
4814 static xtensa_insnbuf slotbuf
= NULL
;
4816 xtensa_opcode opcode
;
4817 xtensa_isa isa
= xtensa_default_isa
;
4818 uint32 regno
, const16_regno
, call_regno
;
4821 if (insnbuf
== NULL
)
4823 insnbuf
= xtensa_insnbuf_alloc (isa
);
4824 slotbuf
= xtensa_insnbuf_alloc (isa
);
4827 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
4828 fmt
= xtensa_format_decode (isa
, insnbuf
);
4829 if (fmt
== XTENSA_UNDEFINED
4830 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4831 return XTENSA_UNDEFINED
;
4833 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4834 if (opcode
== XTENSA_UNDEFINED
)
4835 return XTENSA_UNDEFINED
;
4837 if (opcode
== get_l32r_opcode ())
4840 *p_uses_l32r
= TRUE
;
4841 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4842 fmt
, 0, slotbuf
, ®no
)
4843 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4845 return XTENSA_UNDEFINED
;
4847 else if (opcode
== get_const16_opcode ())
4850 *p_uses_l32r
= FALSE
;
4851 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4852 fmt
, 0, slotbuf
, ®no
)
4853 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4855 return XTENSA_UNDEFINED
;
4857 /* Check that the next instruction is also CONST16. */
4858 offset
+= xtensa_format_length (isa
, fmt
);
4859 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4860 fmt
= xtensa_format_decode (isa
, insnbuf
);
4861 if (fmt
== XTENSA_UNDEFINED
4862 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4863 return XTENSA_UNDEFINED
;
4864 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4865 if (opcode
!= get_const16_opcode ())
4866 return XTENSA_UNDEFINED
;
4868 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4869 fmt
, 0, slotbuf
, &const16_regno
)
4870 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4872 || const16_regno
!= regno
)
4873 return XTENSA_UNDEFINED
;
4876 return XTENSA_UNDEFINED
;
4878 /* Next instruction should be an CALLXn with operand 0 == regno. */
4879 offset
+= xtensa_format_length (isa
, fmt
);
4880 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4881 fmt
= xtensa_format_decode (isa
, insnbuf
);
4882 if (fmt
== XTENSA_UNDEFINED
4883 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4884 return XTENSA_UNDEFINED
;
4885 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4886 if (opcode
== XTENSA_UNDEFINED
4887 || !is_indirect_call_opcode (opcode
))
4888 return XTENSA_UNDEFINED
;
4890 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4891 fmt
, 0, slotbuf
, &call_regno
)
4892 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4894 return XTENSA_UNDEFINED
;
4896 if (call_regno
!= regno
)
4897 return XTENSA_UNDEFINED
;
4903 /* Data structures used during relaxation. */
4905 /* r_reloc: relocation values. */
4907 /* Through the relaxation process, we need to keep track of the values
4908 that will result from evaluating relocations. The standard ELF
4909 relocation structure is not sufficient for this purpose because we're
4910 operating on multiple input files at once, so we need to know which
4911 input file a relocation refers to. The r_reloc structure thus
4912 records both the input file (bfd) and ELF relocation.
4914 For efficiency, an r_reloc also contains a "target_offset" field to
4915 cache the target-section-relative offset value that is represented by
4918 The r_reloc also contains a virtual offset that allows multiple
4919 inserted literals to be placed at the same "address" with
4920 different offsets. */
4922 typedef struct r_reloc_struct r_reloc
;
4924 struct r_reloc_struct
4927 Elf_Internal_Rela rela
;
4928 bfd_vma target_offset
;
4929 bfd_vma virtual_offset
;
4933 /* The r_reloc structure is included by value in literal_value, but not
4934 every literal_value has an associated relocation -- some are simple
4935 constants. In such cases, we set all the fields in the r_reloc
4936 struct to zero. The r_reloc_is_const function should be used to
4937 detect this case. */
4940 r_reloc_is_const (const r_reloc
*r_rel
)
4942 return (r_rel
->abfd
== NULL
);
4947 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4949 bfd_vma target_offset
;
4950 unsigned long r_symndx
;
4952 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4953 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4954 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4955 return (target_offset
+ r_rel
->rela
.r_addend
);
4959 static struct elf_link_hash_entry
*
4960 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4962 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4963 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4968 r_reloc_get_section (const r_reloc
*r_rel
)
4970 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4971 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4976 r_reloc_is_defined (const r_reloc
*r_rel
)
4982 sec
= r_reloc_get_section (r_rel
);
4983 if (sec
== bfd_abs_section_ptr
4984 || sec
== bfd_com_section_ptr
4985 || sec
== bfd_und_section_ptr
)
4992 r_reloc_init (r_reloc
*r_rel
,
4994 Elf_Internal_Rela
*irel
,
4996 bfd_size_type content_length
)
4999 reloc_howto_type
*howto
;
5003 r_rel
->rela
= *irel
;
5005 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
5006 r_rel
->virtual_offset
= 0;
5007 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
5008 howto
= &elf_howto_table
[r_type
];
5009 if (howto
->partial_inplace
)
5011 bfd_vma inplace_val
;
5012 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
5014 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
5015 r_rel
->target_offset
+= inplace_val
;
5019 memset (r_rel
, 0, sizeof (r_reloc
));
5026 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
5028 if (r_reloc_is_defined (r_rel
))
5030 asection
*sec
= r_reloc_get_section (r_rel
);
5031 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
5033 else if (r_reloc_get_hash_entry (r_rel
))
5034 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
5036 fprintf (fp
, " ?? + ");
5038 fprintf_vma (fp
, r_rel
->target_offset
);
5039 if (r_rel
->virtual_offset
)
5041 fprintf (fp
, " + ");
5042 fprintf_vma (fp
, r_rel
->virtual_offset
);
5051 /* source_reloc: relocations that reference literals. */
5053 /* To determine whether literals can be coalesced, we need to first
5054 record all the relocations that reference the literals. The
5055 source_reloc structure below is used for this purpose. The
5056 source_reloc entries are kept in a per-literal-section array, sorted
5057 by offset within the literal section (i.e., target offset).
5059 The source_sec and r_rel.rela.r_offset fields identify the source of
5060 the relocation. The r_rel field records the relocation value, i.e.,
5061 the offset of the literal being referenced. The opnd field is needed
5062 to determine the range of the immediate field to which the relocation
5063 applies, so we can determine whether another literal with the same
5064 value is within range. The is_null field is true when the relocation
5065 is being removed (e.g., when an L32R is being removed due to a CALLX
5066 that is converted to a direct CALL). */
5068 typedef struct source_reloc_struct source_reloc
;
5070 struct source_reloc_struct
5072 asection
*source_sec
;
5074 xtensa_opcode opcode
;
5076 bfd_boolean is_null
;
5077 bfd_boolean is_abs_literal
;
5082 init_source_reloc (source_reloc
*reloc
,
5083 asection
*source_sec
,
5084 const r_reloc
*r_rel
,
5085 xtensa_opcode opcode
,
5087 bfd_boolean is_abs_literal
)
5089 reloc
->source_sec
= source_sec
;
5090 reloc
->r_rel
= *r_rel
;
5091 reloc
->opcode
= opcode
;
5093 reloc
->is_null
= FALSE
;
5094 reloc
->is_abs_literal
= is_abs_literal
;
5098 /* Find the source_reloc for a particular source offset and relocation
5099 type. Note that the array is sorted by _target_ offset, so this is
5100 just a linear search. */
5102 static source_reloc
*
5103 find_source_reloc (source_reloc
*src_relocs
,
5106 Elf_Internal_Rela
*irel
)
5110 for (i
= 0; i
< src_count
; i
++)
5112 if (src_relocs
[i
].source_sec
== sec
5113 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
5114 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
5115 == ELF32_R_TYPE (irel
->r_info
)))
5116 return &src_relocs
[i
];
5124 source_reloc_compare (const void *ap
, const void *bp
)
5126 const source_reloc
*a
= (const source_reloc
*) ap
;
5127 const source_reloc
*b
= (const source_reloc
*) bp
;
5129 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
5130 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
5132 /* We don't need to sort on these criteria for correctness,
5133 but enforcing a more strict ordering prevents unstable qsort
5134 from behaving differently with different implementations.
5135 Without the code below we get correct but different results
5136 on Solaris 2.7 and 2.8. We would like to always produce the
5137 same results no matter the host. */
5139 if ((!a
->is_null
) - (!b
->is_null
))
5140 return ((!a
->is_null
) - (!b
->is_null
));
5141 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
5145 /* Literal values and value hash tables. */
5147 /* Literals with the same value can be coalesced. The literal_value
5148 structure records the value of a literal: the "r_rel" field holds the
5149 information from the relocation on the literal (if there is one) and
5150 the "value" field holds the contents of the literal word itself.
5152 The value_map structure records a literal value along with the
5153 location of a literal holding that value. The value_map hash table
5154 is indexed by the literal value, so that we can quickly check if a
5155 particular literal value has been seen before and is thus a candidate
5158 typedef struct literal_value_struct literal_value
;
5159 typedef struct value_map_struct value_map
;
5160 typedef struct value_map_hash_table_struct value_map_hash_table
;
5162 struct literal_value_struct
5165 unsigned long value
;
5166 bfd_boolean is_abs_literal
;
5169 struct value_map_struct
5171 literal_value val
; /* The literal value. */
5172 r_reloc loc
; /* Location of the literal. */
5176 struct value_map_hash_table_struct
5178 unsigned bucket_count
;
5179 value_map
**buckets
;
5181 bfd_boolean has_last_loc
;
5187 init_literal_value (literal_value
*lit
,
5188 const r_reloc
*r_rel
,
5189 unsigned long value
,
5190 bfd_boolean is_abs_literal
)
5192 lit
->r_rel
= *r_rel
;
5194 lit
->is_abs_literal
= is_abs_literal
;
5199 literal_value_equal (const literal_value
*src1
,
5200 const literal_value
*src2
,
5201 bfd_boolean final_static_link
)
5203 struct elf_link_hash_entry
*h1
, *h2
;
5205 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
5208 if (r_reloc_is_const (&src1
->r_rel
))
5209 return (src1
->value
== src2
->value
);
5211 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
5212 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
5215 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
5218 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
5221 if (src1
->value
!= src2
->value
)
5224 /* Now check for the same section (if defined) or the same elf_hash
5225 (if undefined or weak). */
5226 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
5227 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
5228 if (r_reloc_is_defined (&src1
->r_rel
)
5229 && (final_static_link
5230 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
5231 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
5233 if (r_reloc_get_section (&src1
->r_rel
)
5234 != r_reloc_get_section (&src2
->r_rel
))
5239 /* Require that the hash entries (i.e., symbols) be identical. */
5240 if (h1
!= h2
|| h1
== 0)
5244 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
5251 /* Must be power of 2. */
5252 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5254 static value_map_hash_table
*
5255 value_map_hash_table_init (void)
5257 value_map_hash_table
*values
;
5259 values
= (value_map_hash_table
*)
5260 bfd_zmalloc (sizeof (value_map_hash_table
));
5261 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
5263 values
->buckets
= (value_map
**)
5264 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
5265 if (values
->buckets
== NULL
)
5270 values
->has_last_loc
= FALSE
;
5277 value_map_hash_table_delete (value_map_hash_table
*table
)
5279 free (table
->buckets
);
5285 hash_bfd_vma (bfd_vma val
)
5287 return (val
>> 2) + (val
>> 10);
5292 literal_value_hash (const literal_value
*src
)
5296 hash_val
= hash_bfd_vma (src
->value
);
5297 if (!r_reloc_is_const (&src
->r_rel
))
5301 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
5302 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
5303 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
5305 /* Now check for the same section and the same elf_hash. */
5306 if (r_reloc_is_defined (&src
->r_rel
))
5307 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
5309 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
5310 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
5316 /* Check if the specified literal_value has been seen before. */
5319 value_map_get_cached_value (value_map_hash_table
*map
,
5320 const literal_value
*val
,
5321 bfd_boolean final_static_link
)
5327 idx
= literal_value_hash (val
);
5328 idx
= idx
& (map
->bucket_count
- 1);
5329 bucket
= map
->buckets
[idx
];
5330 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
5332 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
5339 /* Record a new literal value. It is illegal to call this if VALUE
5340 already has an entry here. */
5343 add_value_map (value_map_hash_table
*map
,
5344 const literal_value
*val
,
5346 bfd_boolean final_static_link
)
5348 value_map
**bucket_p
;
5351 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
5354 bfd_set_error (bfd_error_no_memory
);
5358 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
5362 idx
= literal_value_hash (val
);
5363 idx
= idx
& (map
->bucket_count
- 1);
5364 bucket_p
= &map
->buckets
[idx
];
5366 val_e
->next
= *bucket_p
;
5369 /* FIXME: Consider resizing the hash table if we get too many entries. */
5375 /* Lists of text actions (ta_) for narrowing, widening, longcall
5376 conversion, space fill, code & literal removal, etc. */
5378 /* The following text actions are generated:
5380 "ta_remove_insn" remove an instruction or instructions
5381 "ta_remove_longcall" convert longcall to call
5382 "ta_convert_longcall" convert longcall to nop/call
5383 "ta_narrow_insn" narrow a wide instruction
5384 "ta_widen" widen a narrow instruction
5385 "ta_fill" add fill or remove fill
5386 removed < 0 is a fill; branches to the fill address will be
5387 changed to address + fill size (e.g., address - removed)
5388 removed >= 0 branches to the fill address will stay unchanged
5389 "ta_remove_literal" remove a literal; this action is
5390 indicated when a literal is removed
5392 "ta_add_literal" insert a new literal; this action is
5393 indicated when a literal has been moved.
5394 It may use a virtual_offset because
5395 multiple literals can be placed at the
5398 For each of these text actions, we also record the number of bytes
5399 removed by performing the text action. In the case of a "ta_widen"
5400 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5402 typedef struct text_action_struct text_action
;
5403 typedef struct text_action_list_struct text_action_list
;
5404 typedef enum text_action_enum_t text_action_t
;
5406 enum text_action_enum_t
5409 ta_remove_insn
, /* removed = -size */
5410 ta_remove_longcall
, /* removed = -size */
5411 ta_convert_longcall
, /* removed = 0 */
5412 ta_narrow_insn
, /* removed = -1 */
5413 ta_widen_insn
, /* removed = +1 */
5414 ta_fill
, /* removed = +size */
5420 /* Structure for a text action record. */
5421 struct text_action_struct
5423 text_action_t action
;
5424 asection
*sec
; /* Optional */
5426 bfd_vma virtual_offset
; /* Zero except for adding literals. */
5428 literal_value value
; /* Only valid when adding literals. */
5431 struct removal_by_action_entry_struct
5436 int eq_removed_before_fill
;
5438 typedef struct removal_by_action_entry_struct removal_by_action_entry
;
5440 struct removal_by_action_map_struct
5443 removal_by_action_entry
*entry
;
5445 typedef struct removal_by_action_map_struct removal_by_action_map
;
5448 /* List of all of the actions taken on a text section. */
5449 struct text_action_list_struct
5453 removal_by_action_map map
;
5457 static text_action
*
5458 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
5462 /* It is not necessary to fill at the end of a section. */
5463 if (sec
->size
== offset
)
5469 splay_tree_node node
= splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
);
5471 return (text_action
*)node
->value
;
5477 compute_removed_action_diff (const text_action
*ta
,
5481 int removable_space
)
5484 int current_removed
= 0;
5487 current_removed
= ta
->removed_bytes
;
5489 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
5490 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
5492 /* It is not necessary to fill at the end of a section. Clean this up. */
5493 if (sec
->size
== offset
)
5494 new_removed
= removable_space
- 0;
5498 int added
= -removed
- current_removed
;
5499 /* Ignore multiples of the section alignment. */
5500 added
= ((1 << sec
->alignment_power
) - 1) & added
;
5501 new_removed
= (-added
);
5503 /* Modify for removable. */
5504 space
= removable_space
- new_removed
;
5505 new_removed
= (removable_space
5506 - (((1 << sec
->alignment_power
) - 1) & space
));
5508 return (new_removed
- current_removed
);
5513 adjust_fill_action (text_action
*ta
, int fill_diff
)
5515 ta
->removed_bytes
+= fill_diff
;
5520 text_action_compare (splay_tree_key a
, splay_tree_key b
)
5522 text_action
*pa
= (text_action
*)a
;
5523 text_action
*pb
= (text_action
*)b
;
5524 static const int action_priority
[] =
5528 [ta_convert_longcall
] = 2,
5529 [ta_narrow_insn
] = 3,
5530 [ta_remove_insn
] = 4,
5531 [ta_remove_longcall
] = 5,
5532 [ta_remove_literal
] = 6,
5533 [ta_widen_insn
] = 7,
5534 [ta_add_literal
] = 8,
5537 if (pa
->offset
== pb
->offset
)
5539 if (pa
->action
== pb
->action
)
5541 return action_priority
[pa
->action
] - action_priority
[pb
->action
];
5544 return pa
->offset
< pb
->offset
? -1 : 1;
5547 static text_action
*
5548 action_first (text_action_list
*action_list
)
5550 splay_tree_node node
= splay_tree_min (action_list
->tree
);
5551 return node
? (text_action
*)node
->value
: NULL
;
5554 static text_action
*
5555 action_next (text_action_list
*action_list
, text_action
*action
)
5557 splay_tree_node node
= splay_tree_successor (action_list
->tree
,
5558 (splay_tree_key
)action
);
5559 return node
? (text_action
*)node
->value
: NULL
;
5562 /* Add a modification action to the text. For the case of adding or
5563 removing space, modify any current fill and assume that
5564 "unreachable_space" bytes can be freely contracted. Note that a
5565 negative removed value is a fill. */
5568 text_action_add (text_action_list
*l
,
5569 text_action_t action
,
5577 /* It is not necessary to fill at the end of a section. */
5578 if (action
== ta_fill
&& sec
->size
== offset
)
5581 /* It is not necessary to fill 0 bytes. */
5582 if (action
== ta_fill
&& removed
== 0)
5588 if (action
== ta_fill
)
5590 splay_tree_node node
= splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
);
5594 ta
= (text_action
*)node
->value
;
5595 ta
->removed_bytes
+= removed
;
5600 BFD_ASSERT (splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
) == NULL
);
5602 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5603 ta
->action
= action
;
5605 ta
->offset
= offset
;
5606 ta
->removed_bytes
= removed
;
5607 splay_tree_insert (l
->tree
, (splay_tree_key
)ta
, (splay_tree_value
)ta
);
5613 text_action_add_literal (text_action_list
*l
,
5614 text_action_t action
,
5616 const literal_value
*value
,
5620 asection
*sec
= r_reloc_get_section (loc
);
5621 bfd_vma offset
= loc
->target_offset
;
5622 bfd_vma virtual_offset
= loc
->virtual_offset
;
5624 BFD_ASSERT (action
== ta_add_literal
);
5626 /* Create a new record and fill it up. */
5627 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5628 ta
->action
= action
;
5630 ta
->offset
= offset
;
5631 ta
->virtual_offset
= virtual_offset
;
5633 ta
->removed_bytes
= removed
;
5635 BFD_ASSERT (splay_tree_lookup (l
->tree
, (splay_tree_key
)ta
) == NULL
);
5636 splay_tree_insert (l
->tree
, (splay_tree_key
)ta
, (splay_tree_value
)ta
);
5641 /* Find the total offset adjustment for the relaxations specified by
5642 text_actions, beginning from a particular starting action. This is
5643 typically used from offset_with_removed_text to search an entire list of
5644 actions, but it may also be called directly when adjusting adjacent offsets
5645 so that each search may begin where the previous one left off. */
5648 removed_by_actions (text_action_list
*action_list
,
5649 text_action
**p_start_action
,
5651 bfd_boolean before_fill
)
5656 r
= *p_start_action
;
5659 splay_tree_node node
= splay_tree_lookup (action_list
->tree
,
5661 BFD_ASSERT (node
!= NULL
&& r
== (text_action
*)node
->value
);
5666 if (r
->offset
> offset
)
5669 if (r
->offset
== offset
5670 && (before_fill
|| r
->action
!= ta_fill
|| r
->removed_bytes
>= 0))
5673 removed
+= r
->removed_bytes
;
5675 r
= action_next (action_list
, r
);
5678 *p_start_action
= r
;
5684 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
5686 text_action
*r
= action_first (action_list
);
5688 return offset
- removed_by_actions (action_list
, &r
, offset
, FALSE
);
5693 action_list_count (text_action_list
*action_list
)
5695 return action_list
->count
;
5698 typedef struct map_action_fn_context_struct map_action_fn_context
;
5699 struct map_action_fn_context_struct
5702 removal_by_action_map map
;
5703 bfd_boolean eq_complete
;
5707 map_action_fn (splay_tree_node node
, void *p
)
5709 map_action_fn_context
*ctx
= p
;
5710 text_action
*r
= (text_action
*)node
->value
;
5711 removal_by_action_entry
*ientry
= ctx
->map
.entry
+ ctx
->map
.n_entries
;
5713 if (ctx
->map
.n_entries
&& (ientry
- 1)->offset
== r
->offset
)
5719 ++ctx
->map
.n_entries
;
5720 ctx
->eq_complete
= FALSE
;
5721 ientry
->offset
= r
->offset
;
5722 ientry
->eq_removed_before_fill
= ctx
->removed
;
5725 if (!ctx
->eq_complete
)
5727 if (r
->action
!= ta_fill
|| r
->removed_bytes
>= 0)
5729 ientry
->eq_removed
= ctx
->removed
;
5730 ctx
->eq_complete
= TRUE
;
5733 ientry
->eq_removed
= ctx
->removed
+ r
->removed_bytes
;
5736 ctx
->removed
+= r
->removed_bytes
;
5737 ientry
->removed
= ctx
->removed
;
5742 map_removal_by_action (text_action_list
*action_list
)
5744 map_action_fn_context ctx
;
5747 ctx
.map
.n_entries
= 0;
5748 ctx
.map
.entry
= bfd_malloc (action_list_count (action_list
) *
5749 sizeof (removal_by_action_entry
));
5750 ctx
.eq_complete
= FALSE
;
5752 splay_tree_foreach (action_list
->tree
, map_action_fn
, &ctx
);
5753 action_list
->map
= ctx
.map
;
5757 removed_by_actions_map (text_action_list
*action_list
, bfd_vma offset
,
5758 bfd_boolean before_fill
)
5762 if (!action_list
->map
.entry
)
5763 map_removal_by_action (action_list
);
5765 if (!action_list
->map
.n_entries
)
5769 b
= action_list
->map
.n_entries
;
5773 unsigned c
= (a
+ b
) / 2;
5775 if (action_list
->map
.entry
[c
].offset
<= offset
)
5781 if (action_list
->map
.entry
[a
].offset
< offset
)
5783 return action_list
->map
.entry
[a
].removed
;
5785 else if (action_list
->map
.entry
[a
].offset
== offset
)
5787 return before_fill
?
5788 action_list
->map
.entry
[a
].eq_removed_before_fill
:
5789 action_list
->map
.entry
[a
].eq_removed
;
5798 offset_with_removed_text_map (text_action_list
*action_list
, bfd_vma offset
)
5800 int removed
= removed_by_actions_map (action_list
, offset
, FALSE
);
5801 return offset
- removed
;
5805 /* The find_insn_action routine will only find non-fill actions. */
5807 static text_action
*
5808 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
5810 static const text_action_t action
[] =
5812 ta_convert_longcall
,
5822 for (i
= 0; i
< sizeof (action
) / sizeof (*action
); ++i
)
5824 splay_tree_node node
;
5826 a
.action
= action
[i
];
5827 node
= splay_tree_lookup (action_list
->tree
, (splay_tree_key
)&a
);
5829 return (text_action
*)node
->value
;
5838 print_action (FILE *fp
, text_action
*r
)
5840 const char *t
= "unknown";
5843 case ta_remove_insn
:
5844 t
= "remove_insn"; break;
5845 case ta_remove_longcall
:
5846 t
= "remove_longcall"; break;
5847 case ta_convert_longcall
:
5848 t
= "convert_longcall"; break;
5849 case ta_narrow_insn
:
5850 t
= "narrow_insn"; break;
5852 t
= "widen_insn"; break;
5857 case ta_remove_literal
:
5858 t
= "remove_literal"; break;
5859 case ta_add_literal
:
5860 t
= "add_literal"; break;
5863 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
5864 r
->sec
->owner
->filename
,
5865 r
->sec
->name
, (unsigned long) r
->offset
, t
, r
->removed_bytes
);
5869 print_action_list_fn (splay_tree_node node
, void *p
)
5871 text_action
*r
= (text_action
*)node
->value
;
5873 print_action (p
, r
);
5878 print_action_list (FILE *fp
, text_action_list
*action_list
)
5880 fprintf (fp
, "Text Action\n");
5881 splay_tree_foreach (action_list
->tree
, print_action_list_fn
, fp
);
5887 /* Lists of literals being coalesced or removed. */
5889 /* In the usual case, the literal identified by "from" is being
5890 coalesced with another literal identified by "to". If the literal is
5891 unused and is being removed altogether, "to.abfd" will be NULL.
5892 The removed_literal entries are kept on a per-section list, sorted
5893 by the "from" offset field. */
5895 typedef struct removed_literal_struct removed_literal
;
5896 typedef struct removed_literal_map_entry_struct removed_literal_map_entry
;
5897 typedef struct removed_literal_list_struct removed_literal_list
;
5899 struct removed_literal_struct
5903 removed_literal
*next
;
5906 struct removed_literal_map_entry_struct
5909 removed_literal
*literal
;
5912 struct removed_literal_list_struct
5914 removed_literal
*head
;
5915 removed_literal
*tail
;
5918 removed_literal_map_entry
*map
;
5922 /* Record that the literal at "from" is being removed. If "to" is not
5923 NULL, the "from" literal is being coalesced with the "to" literal. */
5926 add_removed_literal (removed_literal_list
*removed_list
,
5927 const r_reloc
*from
,
5930 removed_literal
*r
, *new_r
, *next_r
;
5932 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
5934 new_r
->from
= *from
;
5938 new_r
->to
.abfd
= NULL
;
5941 r
= removed_list
->head
;
5944 removed_list
->head
= new_r
;
5945 removed_list
->tail
= new_r
;
5947 /* Special check for common case of append. */
5948 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
5950 removed_list
->tail
->next
= new_r
;
5951 removed_list
->tail
= new_r
;
5955 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
5961 new_r
->next
= next_r
;
5963 removed_list
->tail
= new_r
;
5968 map_removed_literal (removed_literal_list
*removed_list
)
5972 removed_literal_map_entry
*map
= NULL
;
5973 removed_literal
*r
= removed_list
->head
;
5975 for (i
= 0; r
; ++i
, r
= r
->next
)
5979 n_map
= (n_map
* 2) + 2;
5980 map
= bfd_realloc (map
, n_map
* sizeof (*map
));
5982 map
[i
].addr
= r
->from
.target_offset
;
5985 removed_list
->map
= map
;
5986 removed_list
->n_map
= i
;
5990 removed_literal_compare (const void *a
, const void *b
)
5992 const removed_literal_map_entry
*pa
= a
;
5993 const removed_literal_map_entry
*pb
= b
;
5995 if (pa
->addr
== pb
->addr
)
5998 return pa
->addr
< pb
->addr
? -1 : 1;
6001 /* Check if the list of removed literals contains an entry for the
6002 given address. Return the entry if found. */
6004 static removed_literal
*
6005 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
6007 removed_literal_map_entry
*p
;
6008 removed_literal
*r
= NULL
;
6010 if (removed_list
->map
== NULL
)
6011 map_removed_literal (removed_list
);
6013 p
= bsearch (&addr
, removed_list
->map
, removed_list
->n_map
,
6014 sizeof (*removed_list
->map
), removed_literal_compare
);
6017 while (p
!= removed_list
->map
&& (p
- 1)->addr
== addr
)
6028 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
6031 r
= removed_list
->head
;
6033 fprintf (fp
, "Removed Literals\n");
6034 for (; r
!= NULL
; r
= r
->next
)
6036 print_r_reloc (fp
, &r
->from
);
6037 fprintf (fp
, " => ");
6038 if (r
->to
.abfd
== NULL
)
6039 fprintf (fp
, "REMOVED");
6041 print_r_reloc (fp
, &r
->to
);
6049 /* Per-section data for relaxation. */
6051 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
6053 struct xtensa_relax_info_struct
6055 bfd_boolean is_relaxable_literal_section
;
6056 bfd_boolean is_relaxable_asm_section
;
6057 int visited
; /* Number of times visited. */
6059 source_reloc
*src_relocs
; /* Array[src_count]. */
6061 int src_next
; /* Next src_relocs entry to assign. */
6063 removed_literal_list removed_list
;
6064 text_action_list action_list
;
6066 reloc_bfd_fix
*fix_list
;
6067 reloc_bfd_fix
*fix_array
;
6068 unsigned fix_array_count
;
6070 /* Support for expanding the reloc array that is stored
6071 in the section structure. If the relocations have been
6072 reallocated, the newly allocated relocations will be referenced
6073 here along with the actual size allocated. The relocation
6074 count will always be found in the section structure. */
6075 Elf_Internal_Rela
*allocated_relocs
;
6076 unsigned relocs_count
;
6077 unsigned allocated_relocs_count
;
6080 struct elf_xtensa_section_data
6082 struct bfd_elf_section_data elf
;
6083 xtensa_relax_info relax_info
;
6088 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
6090 if (!sec
->used_by_bfd
)
6092 struct elf_xtensa_section_data
*sdata
;
6093 bfd_size_type amt
= sizeof (*sdata
);
6095 sdata
= bfd_zalloc (abfd
, amt
);
6098 sec
->used_by_bfd
= sdata
;
6101 return _bfd_elf_new_section_hook (abfd
, sec
);
6105 static xtensa_relax_info
*
6106 get_xtensa_relax_info (asection
*sec
)
6108 struct elf_xtensa_section_data
*section_data
;
6110 /* No info available if no section or if it is an output section. */
6111 if (!sec
|| sec
== sec
->output_section
)
6114 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
6115 return §ion_data
->relax_info
;
6120 init_xtensa_relax_info (asection
*sec
)
6122 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6124 relax_info
->is_relaxable_literal_section
= FALSE
;
6125 relax_info
->is_relaxable_asm_section
= FALSE
;
6126 relax_info
->visited
= 0;
6128 relax_info
->src_relocs
= NULL
;
6129 relax_info
->src_count
= 0;
6130 relax_info
->src_next
= 0;
6132 relax_info
->removed_list
.head
= NULL
;
6133 relax_info
->removed_list
.tail
= NULL
;
6135 relax_info
->action_list
.tree
= splay_tree_new (text_action_compare
,
6137 relax_info
->action_list
.map
.n_entries
= 0;
6138 relax_info
->action_list
.map
.entry
= NULL
;
6140 relax_info
->fix_list
= NULL
;
6141 relax_info
->fix_array
= NULL
;
6142 relax_info
->fix_array_count
= 0;
6144 relax_info
->allocated_relocs
= NULL
;
6145 relax_info
->relocs_count
= 0;
6146 relax_info
->allocated_relocs_count
= 0;
6150 /* Coalescing literals may require a relocation to refer to a section in
6151 a different input file, but the standard relocation information
6152 cannot express that. Instead, the reloc_bfd_fix structures are used
6153 to "fix" the relocations that refer to sections in other input files.
6154 These structures are kept on per-section lists. The "src_type" field
6155 records the relocation type in case there are multiple relocations on
6156 the same location. FIXME: This is ugly; an alternative might be to
6157 add new symbols with the "owner" field to some other input file. */
6159 struct reloc_bfd_fix_struct
6163 unsigned src_type
; /* Relocation type. */
6165 asection
*target_sec
;
6166 bfd_vma target_offset
;
6167 bfd_boolean translated
;
6169 reloc_bfd_fix
*next
;
6173 static reloc_bfd_fix
*
6174 reloc_bfd_fix_init (asection
*src_sec
,
6177 asection
*target_sec
,
6178 bfd_vma target_offset
,
6179 bfd_boolean translated
)
6183 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
6184 fix
->src_sec
= src_sec
;
6185 fix
->src_offset
= src_offset
;
6186 fix
->src_type
= src_type
;
6187 fix
->target_sec
= target_sec
;
6188 fix
->target_offset
= target_offset
;
6189 fix
->translated
= translated
;
6196 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
6198 xtensa_relax_info
*relax_info
;
6200 relax_info
= get_xtensa_relax_info (src_sec
);
6201 fix
->next
= relax_info
->fix_list
;
6202 relax_info
->fix_list
= fix
;
6207 fix_compare (const void *ap
, const void *bp
)
6209 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
6210 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
6212 if (a
->src_offset
!= b
->src_offset
)
6213 return (a
->src_offset
- b
->src_offset
);
6214 return (a
->src_type
- b
->src_type
);
6219 cache_fix_array (asection
*sec
)
6221 unsigned i
, count
= 0;
6223 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6225 if (relax_info
== NULL
)
6227 if (relax_info
->fix_list
== NULL
)
6230 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
6233 relax_info
->fix_array
=
6234 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
6235 relax_info
->fix_array_count
= count
;
6237 r
= relax_info
->fix_list
;
6238 for (i
= 0; i
< count
; i
++, r
= r
->next
)
6240 relax_info
->fix_array
[count
- 1 - i
] = *r
;
6241 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
6244 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
6245 sizeof (reloc_bfd_fix
), fix_compare
);
6249 static reloc_bfd_fix
*
6250 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
6252 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6256 if (relax_info
== NULL
)
6258 if (relax_info
->fix_list
== NULL
)
6261 if (relax_info
->fix_array
== NULL
)
6262 cache_fix_array (sec
);
6264 key
.src_offset
= offset
;
6265 key
.src_type
= type
;
6266 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
6267 sizeof (reloc_bfd_fix
), fix_compare
);
6272 /* Section caching. */
6274 typedef struct section_cache_struct section_cache_t
;
6276 struct section_cache_struct
6280 bfd_byte
*contents
; /* Cache of the section contents. */
6281 bfd_size_type content_length
;
6283 property_table_entry
*ptbl
; /* Cache of the section property table. */
6286 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6287 unsigned reloc_count
;
6292 init_section_cache (section_cache_t
*sec_cache
)
6294 memset (sec_cache
, 0, sizeof (*sec_cache
));
6299 free_section_cache (section_cache_t
*sec_cache
)
6303 release_contents (sec_cache
->sec
, sec_cache
->contents
);
6304 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
6305 if (sec_cache
->ptbl
)
6306 free (sec_cache
->ptbl
);
6312 section_cache_section (section_cache_t
*sec_cache
,
6314 struct bfd_link_info
*link_info
)
6317 property_table_entry
*prop_table
= NULL
;
6319 bfd_byte
*contents
= NULL
;
6320 Elf_Internal_Rela
*internal_relocs
= NULL
;
6321 bfd_size_type sec_size
;
6325 if (sec
== sec_cache
->sec
)
6329 sec_size
= bfd_get_section_limit (abfd
, sec
);
6331 /* Get the contents. */
6332 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6333 if (contents
== NULL
&& sec_size
!= 0)
6336 /* Get the relocations. */
6337 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6338 link_info
->keep_memory
);
6340 /* Get the entry table. */
6341 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6342 XTENSA_PROP_SEC_NAME
, FALSE
);
6346 /* Fill in the new section cache. */
6347 free_section_cache (sec_cache
);
6348 init_section_cache (sec_cache
);
6350 sec_cache
->sec
= sec
;
6351 sec_cache
->contents
= contents
;
6352 sec_cache
->content_length
= sec_size
;
6353 sec_cache
->relocs
= internal_relocs
;
6354 sec_cache
->reloc_count
= sec
->reloc_count
;
6355 sec_cache
->pte_count
= ptblsize
;
6356 sec_cache
->ptbl
= prop_table
;
6361 release_contents (sec
, contents
);
6362 release_internal_relocs (sec
, internal_relocs
);
6369 /* Extended basic blocks. */
6371 /* An ebb_struct represents an Extended Basic Block. Within this
6372 range, we guarantee that all instructions are decodable, the
6373 property table entries are contiguous, and no property table
6374 specifies a segment that cannot have instructions moved. This
6375 structure contains caches of the contents, property table and
6376 relocations for the specified section for easy use. The range is
6377 specified by ranges of indices for the byte offset, property table
6378 offsets and relocation offsets. These must be consistent. */
6380 typedef struct ebb_struct ebb_t
;
6386 bfd_byte
*contents
; /* Cache of the section contents. */
6387 bfd_size_type content_length
;
6389 property_table_entry
*ptbl
; /* Cache of the section property table. */
6392 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6393 unsigned reloc_count
;
6395 bfd_vma start_offset
; /* Offset in section. */
6396 unsigned start_ptbl_idx
; /* Offset in the property table. */
6397 unsigned start_reloc_idx
; /* Offset in the relocations. */
6400 unsigned end_ptbl_idx
;
6401 unsigned end_reloc_idx
;
6403 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
6405 /* The unreachable property table at the end of this set of blocks;
6406 NULL if the end is not an unreachable block. */
6407 property_table_entry
*ends_unreachable
;
6411 enum ebb_target_enum
6414 EBB_DESIRE_TGT_ALIGN
,
6415 EBB_REQUIRE_TGT_ALIGN
,
6416 EBB_REQUIRE_LOOP_ALIGN
,
6421 /* proposed_action_struct is similar to the text_action_struct except
6422 that is represents a potential transformation, not one that will
6423 occur. We build a list of these for an extended basic block
6424 and use them to compute the actual actions desired. We must be
6425 careful that the entire set of actual actions we perform do not
6426 break any relocations that would fit if the actions were not
6429 typedef struct proposed_action_struct proposed_action
;
6431 struct proposed_action_struct
6433 enum ebb_target_enum align_type
; /* for the target alignment */
6434 bfd_vma alignment_pow
;
6435 text_action_t action
;
6438 bfd_boolean do_action
; /* If false, then we will not perform the action. */
6442 /* The ebb_constraint_struct keeps a set of proposed actions for an
6443 extended basic block. */
6445 typedef struct ebb_constraint_struct ebb_constraint
;
6447 struct ebb_constraint_struct
6450 bfd_boolean start_movable
;
6452 /* Bytes of extra space at the beginning if movable. */
6453 int start_extra_space
;
6455 enum ebb_target_enum start_align
;
6457 bfd_boolean end_movable
;
6459 /* Bytes of extra space at the end if movable. */
6460 int end_extra_space
;
6462 unsigned action_count
;
6463 unsigned action_allocated
;
6465 /* Array of proposed actions. */
6466 proposed_action
*actions
;
6468 /* Action alignments -- one for each proposed action. */
6469 enum ebb_target_enum
*action_aligns
;
6474 init_ebb_constraint (ebb_constraint
*c
)
6476 memset (c
, 0, sizeof (ebb_constraint
));
6481 free_ebb_constraint (ebb_constraint
*c
)
6489 init_ebb (ebb_t
*ebb
,
6492 bfd_size_type content_length
,
6493 property_table_entry
*prop_table
,
6495 Elf_Internal_Rela
*internal_relocs
,
6496 unsigned reloc_count
)
6498 memset (ebb
, 0, sizeof (ebb_t
));
6500 ebb
->contents
= contents
;
6501 ebb
->content_length
= content_length
;
6502 ebb
->ptbl
= prop_table
;
6503 ebb
->pte_count
= ptblsize
;
6504 ebb
->relocs
= internal_relocs
;
6505 ebb
->reloc_count
= reloc_count
;
6506 ebb
->start_offset
= 0;
6507 ebb
->end_offset
= ebb
->content_length
- 1;
6508 ebb
->start_ptbl_idx
= 0;
6509 ebb
->end_ptbl_idx
= ptblsize
;
6510 ebb
->start_reloc_idx
= 0;
6511 ebb
->end_reloc_idx
= reloc_count
;
6515 /* Extend the ebb to all decodable contiguous sections. The algorithm
6516 for building a basic block around an instruction is to push it
6517 forward until we hit the end of a section, an unreachable block or
6518 a block that cannot be transformed. Then we push it backwards
6519 searching for similar conditions. */
6521 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
6522 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
6523 static bfd_size_type insn_block_decodable_len
6524 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
6527 extend_ebb_bounds (ebb_t
*ebb
)
6529 if (!extend_ebb_bounds_forward (ebb
))
6531 if (!extend_ebb_bounds_backward (ebb
))
6538 extend_ebb_bounds_forward (ebb_t
*ebb
)
6540 property_table_entry
*the_entry
, *new_entry
;
6542 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6544 /* Stop when (1) we cannot decode an instruction, (2) we are at
6545 the end of the property tables, (3) we hit a non-contiguous property
6546 table entry, (4) we hit a NO_TRANSFORM region. */
6551 bfd_size_type insn_block_len
;
6553 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
6555 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6557 entry_end
- ebb
->end_offset
);
6558 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
6560 (*_bfd_error_handler
)
6561 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6562 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
6565 ebb
->end_offset
+= insn_block_len
;
6567 if (ebb
->end_offset
== ebb
->sec
->size
)
6568 ebb
->ends_section
= TRUE
;
6570 /* Update the reloc counter. */
6571 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
6572 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
6575 ebb
->end_reloc_idx
++;
6578 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6581 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6582 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
6583 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6584 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6587 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
6590 the_entry
= new_entry
;
6591 ebb
->end_ptbl_idx
++;
6594 /* Quick check for an unreachable or end of file just at the end. */
6595 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6597 if (ebb
->end_offset
== ebb
->content_length
)
6598 ebb
->ends_section
= TRUE
;
6602 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6603 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
6604 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
6605 ebb
->ends_unreachable
= new_entry
;
6608 /* Any other ending requires exact alignment. */
6614 extend_ebb_bounds_backward (ebb_t
*ebb
)
6616 property_table_entry
*the_entry
, *new_entry
;
6618 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6620 /* Stop when (1) we cannot decode the instructions in the current entry.
6621 (2) we are at the beginning of the property tables, (3) we hit a
6622 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6626 bfd_vma block_begin
;
6627 bfd_size_type insn_block_len
;
6629 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
6631 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6633 ebb
->start_offset
- block_begin
);
6634 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
6636 (*_bfd_error_handler
)
6637 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6638 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
6641 ebb
->start_offset
-= insn_block_len
;
6643 /* Update the reloc counter. */
6644 while (ebb
->start_reloc_idx
> 0
6645 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
6646 >= ebb
->start_offset
))
6648 ebb
->start_reloc_idx
--;
6651 if (ebb
->start_ptbl_idx
== 0)
6654 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
6655 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
6656 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6657 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6659 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
6662 the_entry
= new_entry
;
6663 ebb
->start_ptbl_idx
--;
6669 static bfd_size_type
6670 insn_block_decodable_len (bfd_byte
*contents
,
6671 bfd_size_type content_len
,
6672 bfd_vma block_offset
,
6673 bfd_size_type block_len
)
6675 bfd_vma offset
= block_offset
;
6677 while (offset
< block_offset
+ block_len
)
6679 bfd_size_type insn_len
= 0;
6681 insn_len
= insn_decode_len (contents
, content_len
, offset
);
6683 return (offset
- block_offset
);
6686 return (offset
- block_offset
);
6691 ebb_propose_action (ebb_constraint
*c
,
6692 enum ebb_target_enum align_type
,
6693 bfd_vma alignment_pow
,
6694 text_action_t action
,
6697 bfd_boolean do_action
)
6699 proposed_action
*act
;
6701 if (c
->action_allocated
<= c
->action_count
)
6703 unsigned new_allocated
, i
;
6704 proposed_action
*new_actions
;
6706 new_allocated
= (c
->action_count
+ 2) * 2;
6707 new_actions
= (proposed_action
*)
6708 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
6710 for (i
= 0; i
< c
->action_count
; i
++)
6711 new_actions
[i
] = c
->actions
[i
];
6714 c
->actions
= new_actions
;
6715 c
->action_allocated
= new_allocated
;
6718 act
= &c
->actions
[c
->action_count
];
6719 act
->align_type
= align_type
;
6720 act
->alignment_pow
= alignment_pow
;
6721 act
->action
= action
;
6722 act
->offset
= offset
;
6723 act
->removed_bytes
= removed_bytes
;
6724 act
->do_action
= do_action
;
6730 /* Access to internal relocations, section contents and symbols. */
6732 /* During relaxation, we need to modify relocations, section contents,
6733 and symbol definitions, and we need to keep the original values from
6734 being reloaded from the input files, i.e., we need to "pin" the
6735 modified values in memory. We also want to continue to observe the
6736 setting of the "keep-memory" flag. The following functions wrap the
6737 standard BFD functions to take care of this for us. */
6739 static Elf_Internal_Rela
*
6740 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6742 Elf_Internal_Rela
*internal_relocs
;
6744 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6747 internal_relocs
= elf_section_data (sec
)->relocs
;
6748 if (internal_relocs
== NULL
)
6749 internal_relocs
= (_bfd_elf_link_read_relocs
6750 (abfd
, sec
, NULL
, NULL
, keep_memory
));
6751 return internal_relocs
;
6756 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6758 elf_section_data (sec
)->relocs
= internal_relocs
;
6763 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6766 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6767 free (internal_relocs
);
6772 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6775 bfd_size_type sec_size
;
6777 sec_size
= bfd_get_section_limit (abfd
, sec
);
6778 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6780 if (contents
== NULL
&& sec_size
!= 0)
6782 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6789 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6796 pin_contents (asection
*sec
, bfd_byte
*contents
)
6798 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6803 release_contents (asection
*sec
, bfd_byte
*contents
)
6805 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6810 static Elf_Internal_Sym
*
6811 retrieve_local_syms (bfd
*input_bfd
)
6813 Elf_Internal_Shdr
*symtab_hdr
;
6814 Elf_Internal_Sym
*isymbuf
;
6817 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6818 locsymcount
= symtab_hdr
->sh_info
;
6820 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6821 if (isymbuf
== NULL
&& locsymcount
!= 0)
6822 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6825 /* Save the symbols for this input file so they won't be read again. */
6826 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
6827 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
6833 /* Code for link-time relaxation. */
6835 /* Initialization for relaxation: */
6836 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
6837 static bfd_boolean find_relaxable_sections
6838 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
6839 static bfd_boolean collect_source_relocs
6840 (bfd
*, asection
*, struct bfd_link_info
*);
6841 static bfd_boolean is_resolvable_asm_expansion
6842 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
6844 static Elf_Internal_Rela
*find_associated_l32r_irel
6845 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
6846 static bfd_boolean compute_text_actions
6847 (bfd
*, asection
*, struct bfd_link_info
*);
6848 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
6849 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
6850 typedef struct reloc_range_list_struct reloc_range_list
;
6851 static bfd_boolean check_section_ebb_pcrels_fit
6852 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*,
6853 reloc_range_list
*, const ebb_constraint
*,
6854 const xtensa_opcode
*);
6855 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
6856 static void text_action_add_proposed
6857 (text_action_list
*, const ebb_constraint
*, asection
*);
6858 static int compute_fill_extra_space (property_table_entry
*);
6861 static bfd_boolean compute_removed_literals
6862 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
6863 static Elf_Internal_Rela
*get_irel_at_offset
6864 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
6865 static bfd_boolean is_removable_literal
6866 (const source_reloc
*, int, const source_reloc
*, int, asection
*,
6867 property_table_entry
*, int);
6868 static bfd_boolean remove_dead_literal
6869 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
6870 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
6871 static bfd_boolean identify_literal_placement
6872 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
6873 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
6874 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
6876 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
6877 static bfd_boolean coalesce_shared_literal
6878 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
6879 static bfd_boolean move_shared_literal
6880 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
6881 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
6884 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
6885 static bfd_boolean
translate_section_fixes (asection
*);
6886 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
6887 static asection
*translate_reloc (const r_reloc
*, r_reloc
*, asection
*);
6888 static void shrink_dynamic_reloc_sections
6889 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
6890 static bfd_boolean move_literal
6891 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
6892 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
6893 static bfd_boolean relax_property_section
6894 (bfd
*, asection
*, struct bfd_link_info
*);
6897 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
6901 elf_xtensa_relax_section (bfd
*abfd
,
6903 struct bfd_link_info
*link_info
,
6906 static value_map_hash_table
*values
= NULL
;
6907 static bfd_boolean relocations_analyzed
= FALSE
;
6908 xtensa_relax_info
*relax_info
;
6910 if (!relocations_analyzed
)
6912 /* Do some overall initialization for relaxation. */
6913 values
= value_map_hash_table_init ();
6916 relaxing_section
= TRUE
;
6917 if (!analyze_relocations (link_info
))
6919 relocations_analyzed
= TRUE
;
6923 /* Don't mess with linker-created sections. */
6924 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6927 relax_info
= get_xtensa_relax_info (sec
);
6928 BFD_ASSERT (relax_info
!= NULL
);
6930 switch (relax_info
->visited
)
6933 /* Note: It would be nice to fold this pass into
6934 analyze_relocations, but it is important for this step that the
6935 sections be examined in link order. */
6936 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
6943 value_map_hash_table_delete (values
);
6945 if (!relax_section (abfd
, sec
, link_info
))
6951 if (!relax_section_symbols (abfd
, sec
))
6956 relax_info
->visited
++;
6961 /* Initialization for relaxation. */
6963 /* This function is called once at the start of relaxation. It scans
6964 all the input sections and marks the ones that are relaxable (i.e.,
6965 literal sections with L32R relocations against them), and then
6966 collects source_reloc information for all the relocations against
6967 those relaxable sections. During this process, it also detects
6968 longcalls, i.e., calls relaxed by the assembler into indirect
6969 calls, that can be optimized back into direct calls. Within each
6970 extended basic block (ebb) containing an optimized longcall, it
6971 computes a set of "text actions" that can be performed to remove
6972 the L32R associated with the longcall while optionally preserving
6973 branch target alignments. */
6976 analyze_relocations (struct bfd_link_info
*link_info
)
6980 bfd_boolean is_relaxable
= FALSE
;
6982 /* Initialize the per-section relaxation info. */
6983 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6984 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6986 init_xtensa_relax_info (sec
);
6989 /* Mark relaxable sections (and count relocations against each one). */
6990 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6991 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6993 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
6997 /* Bail out if there are no relaxable sections. */
7001 /* Allocate space for source_relocs. */
7002 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
7003 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7005 xtensa_relax_info
*relax_info
;
7007 relax_info
= get_xtensa_relax_info (sec
);
7008 if (relax_info
->is_relaxable_literal_section
7009 || relax_info
->is_relaxable_asm_section
)
7011 relax_info
->src_relocs
= (source_reloc
*)
7012 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
7015 relax_info
->src_count
= 0;
7018 /* Collect info on relocations against each relaxable section. */
7019 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
7020 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7022 if (!collect_source_relocs (abfd
, sec
, link_info
))
7026 /* Compute the text actions. */
7027 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
7028 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7030 if (!compute_text_actions (abfd
, sec
, link_info
))
7038 /* Find all the sections that might be relaxed. The motivation for
7039 this pass is that collect_source_relocs() needs to record _all_ the
7040 relocations that target each relaxable section. That is expensive
7041 and unnecessary unless the target section is actually going to be
7042 relaxed. This pass identifies all such sections by checking if
7043 they have L32Rs pointing to them. In the process, the total number
7044 of relocations targeting each section is also counted so that we
7045 know how much space to allocate for source_relocs against each
7046 relaxable literal section. */
7049 find_relaxable_sections (bfd
*abfd
,
7051 struct bfd_link_info
*link_info
,
7052 bfd_boolean
*is_relaxable_p
)
7054 Elf_Internal_Rela
*internal_relocs
;
7056 bfd_boolean ok
= TRUE
;
7058 xtensa_relax_info
*source_relax_info
;
7059 bfd_boolean is_l32r_reloc
;
7061 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7062 link_info
->keep_memory
);
7063 if (internal_relocs
== NULL
)
7066 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7067 if (contents
== NULL
&& sec
->size
!= 0)
7073 source_relax_info
= get_xtensa_relax_info (sec
);
7074 for (i
= 0; i
< sec
->reloc_count
; i
++)
7076 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7078 asection
*target_sec
;
7079 xtensa_relax_info
*target_relax_info
;
7081 /* If this section has not already been marked as "relaxable", and
7082 if it contains any ASM_EXPAND relocations (marking expanded
7083 longcalls) that can be optimized into direct calls, then mark
7084 the section as "relaxable". */
7085 if (source_relax_info
7086 && !source_relax_info
->is_relaxable_asm_section
7087 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
7089 bfd_boolean is_reachable
= FALSE
;
7090 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
7091 link_info
, &is_reachable
)
7094 source_relax_info
->is_relaxable_asm_section
= TRUE
;
7095 *is_relaxable_p
= TRUE
;
7099 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7100 bfd_get_section_limit (abfd
, sec
));
7102 target_sec
= r_reloc_get_section (&r_rel
);
7103 target_relax_info
= get_xtensa_relax_info (target_sec
);
7104 if (!target_relax_info
)
7107 /* Count PC-relative operand relocations against the target section.
7108 Note: The conditions tested here must match the conditions under
7109 which init_source_reloc is called in collect_source_relocs(). */
7110 is_l32r_reloc
= FALSE
;
7111 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
7113 xtensa_opcode opcode
=
7114 get_relocation_opcode (abfd
, sec
, contents
, irel
);
7115 if (opcode
!= XTENSA_UNDEFINED
)
7117 is_l32r_reloc
= (opcode
== get_l32r_opcode ());
7118 if (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
7120 target_relax_info
->src_count
++;
7124 if (is_l32r_reloc
&& r_reloc_is_defined (&r_rel
))
7126 /* Mark the target section as relaxable. */
7127 target_relax_info
->is_relaxable_literal_section
= TRUE
;
7128 *is_relaxable_p
= TRUE
;
7133 release_contents (sec
, contents
);
7134 release_internal_relocs (sec
, internal_relocs
);
7139 /* Record _all_ the relocations that point to relaxable sections, and
7140 get rid of ASM_EXPAND relocs by either converting them to
7141 ASM_SIMPLIFY or by removing them. */
7144 collect_source_relocs (bfd
*abfd
,
7146 struct bfd_link_info
*link_info
)
7148 Elf_Internal_Rela
*internal_relocs
;
7150 bfd_boolean ok
= TRUE
;
7152 bfd_size_type sec_size
;
7154 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7155 link_info
->keep_memory
);
7156 if (internal_relocs
== NULL
)
7159 sec_size
= bfd_get_section_limit (abfd
, sec
);
7160 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7161 if (contents
== NULL
&& sec_size
!= 0)
7167 /* Record relocations against relaxable literal sections. */
7168 for (i
= 0; i
< sec
->reloc_count
; i
++)
7170 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7172 asection
*target_sec
;
7173 xtensa_relax_info
*target_relax_info
;
7175 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7177 target_sec
= r_reloc_get_section (&r_rel
);
7178 target_relax_info
= get_xtensa_relax_info (target_sec
);
7180 if (target_relax_info
7181 && (target_relax_info
->is_relaxable_literal_section
7182 || target_relax_info
->is_relaxable_asm_section
))
7184 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
7186 bfd_boolean is_abs_literal
= FALSE
;
7188 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7190 /* None of the current alternate relocs are PC-relative,
7191 and only PC-relative relocs matter here. However, we
7192 still need to record the opcode for literal
7194 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7195 if (opcode
== get_l32r_opcode ())
7197 is_abs_literal
= TRUE
;
7201 opcode
= XTENSA_UNDEFINED
;
7203 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
7205 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7206 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7209 if (opcode
!= XTENSA_UNDEFINED
)
7211 int src_next
= target_relax_info
->src_next
++;
7212 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
7214 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
7220 /* Now get rid of ASM_EXPAND relocations. At this point, the
7221 src_relocs array for the target literal section may still be
7222 incomplete, but it must at least contain the entries for the L32R
7223 relocations associated with ASM_EXPANDs because they were just
7224 added in the preceding loop over the relocations. */
7226 for (i
= 0; i
< sec
->reloc_count
; i
++)
7228 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7229 bfd_boolean is_reachable
;
7231 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
7237 Elf_Internal_Rela
*l32r_irel
;
7239 asection
*target_sec
;
7240 xtensa_relax_info
*target_relax_info
;
7242 /* Mark the source_reloc for the L32R so that it will be
7243 removed in compute_removed_literals(), along with the
7244 associated literal. */
7245 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
7246 irel
, internal_relocs
);
7247 if (l32r_irel
== NULL
)
7250 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
7252 target_sec
= r_reloc_get_section (&r_rel
);
7253 target_relax_info
= get_xtensa_relax_info (target_sec
);
7255 if (target_relax_info
7256 && (target_relax_info
->is_relaxable_literal_section
7257 || target_relax_info
->is_relaxable_asm_section
))
7259 source_reloc
*s_reloc
;
7261 /* Search the source_relocs for the entry corresponding to
7262 the l32r_irel. Note: The src_relocs array is not yet
7263 sorted, but it wouldn't matter anyway because we're
7264 searching by source offset instead of target offset. */
7265 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
7266 target_relax_info
->src_next
,
7268 BFD_ASSERT (s_reloc
);
7269 s_reloc
->is_null
= TRUE
;
7272 /* Convert this reloc to ASM_SIMPLIFY. */
7273 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
7274 R_XTENSA_ASM_SIMPLIFY
);
7275 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7277 pin_internal_relocs (sec
, internal_relocs
);
7281 /* It is resolvable but doesn't reach. We resolve now
7282 by eliminating the relocation -- the call will remain
7283 expanded into L32R/CALLX. */
7284 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7285 pin_internal_relocs (sec
, internal_relocs
);
7290 release_contents (sec
, contents
);
7291 release_internal_relocs (sec
, internal_relocs
);
7296 /* Return TRUE if the asm expansion can be resolved. Generally it can
7297 be resolved on a final link or when a partial link locates it in the
7298 same section as the target. Set "is_reachable" flag if the target of
7299 the call is within the range of a direct call, given the current VMA
7300 for this section and the target section. */
7303 is_resolvable_asm_expansion (bfd
*abfd
,
7306 Elf_Internal_Rela
*irel
,
7307 struct bfd_link_info
*link_info
,
7308 bfd_boolean
*is_reachable_p
)
7310 asection
*target_sec
;
7311 bfd_vma target_offset
;
7313 xtensa_opcode opcode
, direct_call_opcode
;
7314 bfd_vma self_address
;
7315 bfd_vma dest_address
;
7316 bfd_boolean uses_l32r
;
7317 bfd_size_type sec_size
;
7319 *is_reachable_p
= FALSE
;
7321 if (contents
== NULL
)
7324 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
7327 sec_size
= bfd_get_section_limit (abfd
, sec
);
7328 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
7329 sec_size
- irel
->r_offset
, &uses_l32r
);
7330 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7334 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
7335 if (direct_call_opcode
== XTENSA_UNDEFINED
)
7338 /* Check and see that the target resolves. */
7339 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7340 if (!r_reloc_is_defined (&r_rel
))
7343 target_sec
= r_reloc_get_section (&r_rel
);
7344 target_offset
= r_rel
.target_offset
;
7346 /* If the target is in a shared library, then it doesn't reach. This
7347 isn't supposed to come up because the compiler should never generate
7348 non-PIC calls on systems that use shared libraries, but the linker
7349 shouldn't crash regardless. */
7350 if (!target_sec
->output_section
)
7353 /* For relocatable sections, we can only simplify when the output
7354 section of the target is the same as the output section of the
7356 if (bfd_link_relocatable (link_info
)
7357 && (target_sec
->output_section
!= sec
->output_section
7358 || is_reloc_sym_weak (abfd
, irel
)))
7361 if (target_sec
->output_section
!= sec
->output_section
)
7363 /* If the two sections are sufficiently far away that relaxation
7364 might take the call out of range, we can't simplify. For
7365 example, a positive displacement call into another memory
7366 could get moved to a lower address due to literal removal,
7367 but the destination won't move, and so the displacment might
7370 If the displacement is negative, assume the destination could
7371 move as far back as the start of the output section. The
7372 self_address will be at least as far into the output section
7373 as it is prior to relaxation.
7375 If the displacement is postive, assume the destination will be in
7376 it's pre-relaxed location (because relaxation only makes sections
7377 smaller). The self_address could go all the way to the beginning
7378 of the output section. */
7380 dest_address
= target_sec
->output_section
->vma
;
7381 self_address
= sec
->output_section
->vma
;
7383 if (sec
->output_section
->vma
> target_sec
->output_section
->vma
)
7384 self_address
+= sec
->output_offset
+ irel
->r_offset
+ 3;
7386 dest_address
+= bfd_get_section_limit (abfd
, target_sec
->output_section
);
7387 /* Call targets should be four-byte aligned. */
7388 dest_address
= (dest_address
+ 3) & ~3;
7393 self_address
= (sec
->output_section
->vma
7394 + sec
->output_offset
+ irel
->r_offset
+ 3);
7395 dest_address
= (target_sec
->output_section
->vma
7396 + target_sec
->output_offset
+ target_offset
);
7399 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
7400 self_address
, dest_address
);
7402 if ((self_address
>> CALL_SEGMENT_BITS
) !=
7403 (dest_address
>> CALL_SEGMENT_BITS
))
7410 static Elf_Internal_Rela
*
7411 find_associated_l32r_irel (bfd
*abfd
,
7414 Elf_Internal_Rela
*other_irel
,
7415 Elf_Internal_Rela
*internal_relocs
)
7419 for (i
= 0; i
< sec
->reloc_count
; i
++)
7421 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7423 if (irel
== other_irel
)
7425 if (irel
->r_offset
!= other_irel
->r_offset
)
7427 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
7435 static xtensa_opcode
*
7436 build_reloc_opcodes (bfd
*abfd
,
7439 Elf_Internal_Rela
*internal_relocs
)
7442 xtensa_opcode
*reloc_opcodes
=
7443 (xtensa_opcode
*) bfd_malloc (sizeof (xtensa_opcode
) * sec
->reloc_count
);
7444 for (i
= 0; i
< sec
->reloc_count
; i
++)
7446 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7447 reloc_opcodes
[i
] = get_relocation_opcode (abfd
, sec
, contents
, irel
);
7449 return reloc_opcodes
;
7452 struct reloc_range_struct
7455 bfd_boolean add
; /* TRUE if start of a range, FALSE otherwise. */
7456 /* Original irel index in the array of relocations for a section. */
7457 unsigned irel_index
;
7459 typedef struct reloc_range_struct reloc_range
;
7461 typedef struct reloc_range_list_entry_struct reloc_range_list_entry
;
7462 struct reloc_range_list_entry_struct
7464 reloc_range_list_entry
*next
;
7465 reloc_range_list_entry
*prev
;
7466 Elf_Internal_Rela
*irel
;
7467 xtensa_opcode opcode
;
7471 struct reloc_range_list_struct
7473 /* The rest of the structure is only meaningful when ok is TRUE. */
7476 unsigned n_range
; /* Number of range markers. */
7477 reloc_range
*range
; /* Sorted range markers. */
7479 unsigned first
; /* Index of a first range element in the list. */
7480 unsigned last
; /* One past index of a last range element in the list. */
7482 unsigned n_list
; /* Number of list elements. */
7483 reloc_range_list_entry
*reloc
; /* */
7484 reloc_range_list_entry list_root
;
7488 reloc_range_compare (const void *a
, const void *b
)
7490 const reloc_range
*ra
= a
;
7491 const reloc_range
*rb
= b
;
7493 if (ra
->addr
!= rb
->addr
)
7494 return ra
->addr
< rb
->addr
? -1 : 1;
7495 if (ra
->add
!= rb
->add
)
7496 return ra
->add
? -1 : 1;
7501 build_reloc_ranges (bfd
*abfd
, asection
*sec
,
7503 Elf_Internal_Rela
*internal_relocs
,
7504 xtensa_opcode
*reloc_opcodes
,
7505 reloc_range_list
*list
)
7510 reloc_range
*ranges
= NULL
;
7511 reloc_range_list_entry
*reloc
=
7512 bfd_malloc (sec
->reloc_count
* sizeof (*reloc
));
7514 memset (list
, 0, sizeof (*list
));
7517 for (i
= 0; i
< sec
->reloc_count
; i
++)
7519 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7520 int r_type
= ELF32_R_TYPE (irel
->r_info
);
7521 reloc_howto_type
*howto
= &elf_howto_table
[r_type
];
7524 if (r_type
== R_XTENSA_ASM_SIMPLIFY
7525 || r_type
== R_XTENSA_32_PCREL
7526 || !howto
->pc_relative
)
7529 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7530 bfd_get_section_limit (abfd
, sec
));
7532 if (r_reloc_get_section (&r_rel
) != sec
)
7537 max_n
= (max_n
+ 2) * 2;
7538 ranges
= bfd_realloc (ranges
, max_n
* sizeof (*ranges
));
7541 ranges
[n
].addr
= irel
->r_offset
;
7542 ranges
[n
+ 1].addr
= r_rel
.target_offset
;
7544 ranges
[n
].add
= ranges
[n
].addr
< ranges
[n
+ 1].addr
;
7545 ranges
[n
+ 1].add
= !ranges
[n
].add
;
7547 ranges
[n
].irel_index
= i
;
7548 ranges
[n
+ 1].irel_index
= i
;
7552 reloc
[i
].irel
= irel
;
7554 /* Every relocation won't possibly be checked in the optimized version of
7555 check_section_ebb_pcrels_fit, so this needs to be done here. */
7556 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7558 /* None of the current alternate relocs are PC-relative,
7559 and only PC-relative relocs matter here. */
7563 xtensa_opcode opcode
;
7567 opcode
= reloc_opcodes
[i
];
7569 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7571 if (opcode
== XTENSA_UNDEFINED
)
7577 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7578 if (opnum
== XTENSA_UNDEFINED
)
7584 /* Record relocation opcode and opnum as we've calculated them
7585 anyway and they won't change. */
7586 reloc
[i
].opcode
= opcode
;
7587 reloc
[i
].opnum
= opnum
;
7593 ranges
= bfd_realloc (ranges
, n
* sizeof (*ranges
));
7594 qsort (ranges
, n
, sizeof (*ranges
), reloc_range_compare
);
7597 list
->range
= ranges
;
7598 list
->reloc
= reloc
;
7599 list
->list_root
.prev
= &list
->list_root
;
7600 list
->list_root
.next
= &list
->list_root
;
7609 static void reloc_range_list_append (reloc_range_list
*list
,
7610 unsigned irel_index
)
7612 reloc_range_list_entry
*entry
= list
->reloc
+ irel_index
;
7614 entry
->prev
= list
->list_root
.prev
;
7615 entry
->next
= &list
->list_root
;
7616 entry
->prev
->next
= entry
;
7617 entry
->next
->prev
= entry
;
7621 static void reloc_range_list_remove (reloc_range_list
*list
,
7622 unsigned irel_index
)
7624 reloc_range_list_entry
*entry
= list
->reloc
+ irel_index
;
7626 entry
->next
->prev
= entry
->prev
;
7627 entry
->prev
->next
= entry
->next
;
7631 /* Update relocation list object so that it lists all relocations that cross
7632 [first; last] range. Range bounds should not decrease with successive
7634 static void reloc_range_list_update_range (reloc_range_list
*list
,
7635 bfd_vma first
, bfd_vma last
)
7637 /* This should not happen: EBBs are iterated from lower addresses to higher.
7638 But even if that happens there's no need to break: just flush current list
7639 and start from scratch. */
7640 if ((list
->last
> 0 && list
->range
[list
->last
- 1].addr
> last
) ||
7641 (list
->first
> 0 && list
->range
[list
->first
- 1].addr
>= first
))
7646 list
->list_root
.next
= &list
->list_root
;
7647 list
->list_root
.prev
= &list
->list_root
;
7648 fprintf (stderr
, "%s: move backwards requested\n", __func__
);
7651 for (; list
->last
< list
->n_range
&&
7652 list
->range
[list
->last
].addr
<= last
; ++list
->last
)
7653 if (list
->range
[list
->last
].add
)
7654 reloc_range_list_append (list
, list
->range
[list
->last
].irel_index
);
7656 for (; list
->first
< list
->n_range
&&
7657 list
->range
[list
->first
].addr
< first
; ++list
->first
)
7658 if (!list
->range
[list
->first
].add
)
7659 reloc_range_list_remove (list
, list
->range
[list
->first
].irel_index
);
7662 static void free_reloc_range_list (reloc_range_list
*list
)
7668 /* The compute_text_actions function will build a list of potential
7669 transformation actions for code in the extended basic block of each
7670 longcall that is optimized to a direct call. From this list we
7671 generate a set of actions to actually perform that optimizes for
7672 space and, if not using size_opt, maintains branch target
7675 These actions to be performed are placed on a per-section list.
7676 The actual changes are performed by relax_section() in the second
7680 compute_text_actions (bfd
*abfd
,
7682 struct bfd_link_info
*link_info
)
7684 xtensa_opcode
*reloc_opcodes
= NULL
;
7685 xtensa_relax_info
*relax_info
;
7687 Elf_Internal_Rela
*internal_relocs
;
7688 bfd_boolean ok
= TRUE
;
7690 property_table_entry
*prop_table
= 0;
7692 bfd_size_type sec_size
;
7693 reloc_range_list relevant_relocs
;
7695 relax_info
= get_xtensa_relax_info (sec
);
7696 BFD_ASSERT (relax_info
);
7697 BFD_ASSERT (relax_info
->src_next
== relax_info
->src_count
);
7699 /* Do nothing if the section contains no optimized longcalls. */
7700 if (!relax_info
->is_relaxable_asm_section
)
7703 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7704 link_info
->keep_memory
);
7706 if (internal_relocs
)
7707 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7708 internal_reloc_compare
);
7710 sec_size
= bfd_get_section_limit (abfd
, sec
);
7711 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7712 if (contents
== NULL
&& sec_size
!= 0)
7718 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7719 XTENSA_PROP_SEC_NAME
, FALSE
);
7726 /* Precompute the opcode for each relocation. */
7727 reloc_opcodes
= build_reloc_opcodes (abfd
, sec
, contents
, internal_relocs
);
7729 build_reloc_ranges (abfd
, sec
, contents
, internal_relocs
, reloc_opcodes
,
7732 for (i
= 0; i
< sec
->reloc_count
; i
++)
7734 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7736 property_table_entry
*the_entry
;
7739 ebb_constraint ebb_table
;
7740 bfd_size_type simplify_size
;
7742 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
7744 r_offset
= irel
->r_offset
;
7746 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
7747 if (simplify_size
== 0)
7749 (*_bfd_error_handler
)
7750 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7751 sec
->owner
, sec
, r_offset
);
7755 /* If the instruction table is not around, then don't do this
7757 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7758 sec
->vma
+ irel
->r_offset
);
7759 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
7761 text_action_add (&relax_info
->action_list
,
7762 ta_convert_longcall
, sec
, r_offset
,
7767 /* If the next longcall happens to be at the same address as an
7768 unreachable section of size 0, then skip forward. */
7769 ptbl_idx
= the_entry
- prop_table
;
7770 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
7771 && the_entry
->size
== 0
7772 && ptbl_idx
+ 1 < ptblsize
7773 && (prop_table
[ptbl_idx
+ 1].address
7774 == prop_table
[ptbl_idx
].address
))
7780 if (the_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
)
7781 /* NO_REORDER is OK */
7784 init_ebb_constraint (&ebb_table
);
7785 ebb
= &ebb_table
.ebb
;
7786 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
7787 internal_relocs
, sec
->reloc_count
);
7788 ebb
->start_offset
= r_offset
+ simplify_size
;
7789 ebb
->end_offset
= r_offset
+ simplify_size
;
7790 ebb
->start_ptbl_idx
= ptbl_idx
;
7791 ebb
->end_ptbl_idx
= ptbl_idx
;
7792 ebb
->start_reloc_idx
= i
;
7793 ebb
->end_reloc_idx
= i
;
7795 if (!extend_ebb_bounds (ebb
)
7796 || !compute_ebb_proposed_actions (&ebb_table
)
7797 || !compute_ebb_actions (&ebb_table
)
7798 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
7801 &ebb_table
, reloc_opcodes
)
7802 || !check_section_ebb_reduces (&ebb_table
))
7804 /* If anything goes wrong or we get unlucky and something does
7805 not fit, with our plan because of expansion between
7806 critical branches, just convert to a NOP. */
7808 text_action_add (&relax_info
->action_list
,
7809 ta_convert_longcall
, sec
, r_offset
, 0);
7810 i
= ebb_table
.ebb
.end_reloc_idx
;
7811 free_ebb_constraint (&ebb_table
);
7815 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
7817 /* Update the index so we do not go looking at the relocations
7818 we have already processed. */
7819 i
= ebb_table
.ebb
.end_reloc_idx
;
7820 free_ebb_constraint (&ebb_table
);
7823 free_reloc_range_list (&relevant_relocs
);
7826 if (action_list_count (&relax_info
->action_list
))
7827 print_action_list (stderr
, &relax_info
->action_list
);
7831 release_contents (sec
, contents
);
7832 release_internal_relocs (sec
, internal_relocs
);
7836 free (reloc_opcodes
);
7842 /* Do not widen an instruction if it is preceeded by a
7843 loop opcode. It might cause misalignment. */
7846 prev_instr_is_a_loop (bfd_byte
*contents
,
7847 bfd_size_type content_length
,
7848 bfd_size_type offset
)
7850 xtensa_opcode prev_opcode
;
7854 prev_opcode
= insn_decode_opcode (contents
, content_length
, offset
-3, 0);
7855 return (xtensa_opcode_is_loop (xtensa_default_isa
, prev_opcode
) == 1);
7859 /* Find all of the possible actions for an extended basic block. */
7862 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
7864 const ebb_t
*ebb
= &ebb_table
->ebb
;
7865 unsigned rel_idx
= ebb
->start_reloc_idx
;
7866 property_table_entry
*entry
, *start_entry
, *end_entry
;
7868 xtensa_isa isa
= xtensa_default_isa
;
7870 static xtensa_insnbuf insnbuf
= NULL
;
7871 static xtensa_insnbuf slotbuf
= NULL
;
7873 if (insnbuf
== NULL
)
7875 insnbuf
= xtensa_insnbuf_alloc (isa
);
7876 slotbuf
= xtensa_insnbuf_alloc (isa
);
7879 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
7880 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
7882 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
7884 bfd_vma start_offset
, end_offset
;
7885 bfd_size_type insn_len
;
7887 start_offset
= entry
->address
- ebb
->sec
->vma
;
7888 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
7890 if (entry
== start_entry
)
7891 start_offset
= ebb
->start_offset
;
7892 if (entry
== end_entry
)
7893 end_offset
= ebb
->end_offset
;
7894 offset
= start_offset
;
7896 if (offset
== entry
->address
- ebb
->sec
->vma
7897 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
7899 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
7900 BFD_ASSERT (offset
!= end_offset
);
7901 if (offset
== end_offset
)
7904 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
7909 if (check_branch_target_aligned_address (offset
, insn_len
))
7910 align_type
= EBB_REQUIRE_TGT_ALIGN
;
7912 ebb_propose_action (ebb_table
, align_type
, 0,
7913 ta_none
, offset
, 0, TRUE
);
7916 while (offset
!= end_offset
)
7918 Elf_Internal_Rela
*irel
;
7919 xtensa_opcode opcode
;
7921 while (rel_idx
< ebb
->end_reloc_idx
7922 && (ebb
->relocs
[rel_idx
].r_offset
< offset
7923 || (ebb
->relocs
[rel_idx
].r_offset
== offset
7924 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
7925 != R_XTENSA_ASM_SIMPLIFY
))))
7928 /* Check for longcall. */
7929 irel
= &ebb
->relocs
[rel_idx
];
7930 if (irel
->r_offset
== offset
7931 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
7933 bfd_size_type simplify_size
;
7935 simplify_size
= get_asm_simplify_size (ebb
->contents
,
7936 ebb
->content_length
,
7938 if (simplify_size
== 0)
7941 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7942 ta_convert_longcall
, offset
, 0, TRUE
);
7944 offset
+= simplify_size
;
7948 if (offset
+ MIN_INSN_LENGTH
> ebb
->content_length
)
7950 xtensa_insnbuf_from_chars (isa
, insnbuf
, &ebb
->contents
[offset
],
7951 ebb
->content_length
- offset
);
7952 fmt
= xtensa_format_decode (isa
, insnbuf
);
7953 if (fmt
== XTENSA_UNDEFINED
)
7955 insn_len
= xtensa_format_length (isa
, fmt
);
7956 if (insn_len
== (bfd_size_type
) XTENSA_UNDEFINED
)
7959 if (xtensa_format_num_slots (isa
, fmt
) != 1)
7965 xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
);
7966 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
7967 if (opcode
== XTENSA_UNDEFINED
)
7970 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
7971 && (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7972 && can_narrow_instruction (slotbuf
, fmt
, opcode
) != 0)
7974 /* Add an instruction narrow action. */
7975 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7976 ta_narrow_insn
, offset
, 0, FALSE
);
7978 else if ((entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7979 && can_widen_instruction (slotbuf
, fmt
, opcode
) != 0
7980 && ! prev_instr_is_a_loop (ebb
->contents
,
7981 ebb
->content_length
, offset
))
7983 /* Add an instruction widen action. */
7984 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7985 ta_widen_insn
, offset
, 0, FALSE
);
7987 else if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) == 1)
7989 /* Check for branch targets. */
7990 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
7991 ta_none
, offset
, 0, TRUE
);
7998 if (ebb
->ends_unreachable
)
8000 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
8001 ta_fill
, ebb
->end_offset
, 0, TRUE
);
8007 (*_bfd_error_handler
)
8008 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
8009 ebb
->sec
->owner
, ebb
->sec
, offset
);
8014 /* After all of the information has collected about the
8015 transformations possible in an EBB, compute the appropriate actions
8016 here in compute_ebb_actions. We still must check later to make
8017 sure that the actions do not break any relocations. The algorithm
8018 used here is pretty greedy. Basically, it removes as many no-ops
8019 as possible so that the end of the EBB has the same alignment
8020 characteristics as the original. First, it uses narrowing, then
8021 fill space at the end of the EBB, and finally widenings. If that
8022 does not work, it tries again with one fewer no-op removed. The
8023 optimization will only be performed if all of the branch targets
8024 that were aligned before transformation are also aligned after the
8027 When the size_opt flag is set, ignore the branch target alignments,
8028 narrow all wide instructions, and remove all no-ops unless the end
8029 of the EBB prevents it. */
8032 compute_ebb_actions (ebb_constraint
*ebb_table
)
8036 int removed_bytes
= 0;
8037 ebb_t
*ebb
= &ebb_table
->ebb
;
8038 unsigned seg_idx_start
= 0;
8039 unsigned seg_idx_end
= 0;
8041 /* We perform this like the assembler relaxation algorithm: Start by
8042 assuming all instructions are narrow and all no-ops removed; then
8045 /* For each segment of this that has a solid constraint, check to
8046 see if there are any combinations that will keep the constraint.
8048 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
8050 bfd_boolean requires_text_end_align
= FALSE
;
8051 unsigned longcall_count
= 0;
8052 unsigned longcall_convert_count
= 0;
8053 unsigned narrowable_count
= 0;
8054 unsigned narrowable_convert_count
= 0;
8055 unsigned widenable_count
= 0;
8056 unsigned widenable_convert_count
= 0;
8058 proposed_action
*action
= NULL
;
8059 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
8061 seg_idx_start
= seg_idx_end
;
8063 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
8065 action
= &ebb_table
->actions
[i
];
8066 if (action
->action
== ta_convert_longcall
)
8068 if (action
->action
== ta_narrow_insn
)
8070 if (action
->action
== ta_widen_insn
)
8072 if (action
->action
== ta_fill
)
8074 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
8076 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
8077 && !elf32xtensa_size_opt
)
8082 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
8083 requires_text_end_align
= TRUE
;
8085 if (elf32xtensa_size_opt
&& !requires_text_end_align
8086 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
8087 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
8089 longcall_convert_count
= longcall_count
;
8090 narrowable_convert_count
= narrowable_count
;
8091 widenable_convert_count
= 0;
8095 /* There is a constraint. Convert the max number of longcalls. */
8096 narrowable_convert_count
= 0;
8097 longcall_convert_count
= 0;
8098 widenable_convert_count
= 0;
8100 for (j
= 0; j
< longcall_count
; j
++)
8102 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
8103 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
8104 unsigned desire_widen
= removed
;
8105 if (desire_narrow
<= narrowable_count
)
8107 narrowable_convert_count
= desire_narrow
;
8108 narrowable_convert_count
+=
8109 (align
* ((narrowable_count
- narrowable_convert_count
)
8111 longcall_convert_count
= (longcall_count
- j
);
8112 widenable_convert_count
= 0;
8115 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
8117 narrowable_convert_count
= 0;
8118 longcall_convert_count
= longcall_count
- j
;
8119 widenable_convert_count
= desire_widen
;
8125 /* Now the number of conversions are saved. Do them. */
8126 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
8128 action
= &ebb_table
->actions
[i
];
8129 switch (action
->action
)
8131 case ta_convert_longcall
:
8132 if (longcall_convert_count
!= 0)
8134 action
->action
= ta_remove_longcall
;
8135 action
->do_action
= TRUE
;
8136 action
->removed_bytes
+= 3;
8137 longcall_convert_count
--;
8140 case ta_narrow_insn
:
8141 if (narrowable_convert_count
!= 0)
8143 action
->do_action
= TRUE
;
8144 action
->removed_bytes
+= 1;
8145 narrowable_convert_count
--;
8149 if (widenable_convert_count
!= 0)
8151 action
->do_action
= TRUE
;
8152 action
->removed_bytes
-= 1;
8153 widenable_convert_count
--;
8162 /* Now we move on to some local opts. Try to remove each of the
8163 remaining longcalls. */
8165 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
8168 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8170 int old_removed_bytes
= removed_bytes
;
8171 proposed_action
*action
= &ebb_table
->actions
[i
];
8173 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
8175 bfd_boolean bad_alignment
= FALSE
;
8177 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
8179 proposed_action
*new_action
= &ebb_table
->actions
[j
];
8180 bfd_vma offset
= new_action
->offset
;
8181 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
8183 if (!check_branch_target_aligned
8184 (ebb_table
->ebb
.contents
,
8185 ebb_table
->ebb
.content_length
,
8186 offset
, offset
- removed_bytes
))
8188 bad_alignment
= TRUE
;
8192 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
8194 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
8195 ebb_table
->ebb
.content_length
,
8197 offset
- removed_bytes
))
8199 bad_alignment
= TRUE
;
8203 if (new_action
->action
== ta_narrow_insn
8204 && !new_action
->do_action
8205 && ebb_table
->ebb
.sec
->alignment_power
== 2)
8207 /* Narrow an instruction and we are done. */
8208 new_action
->do_action
= TRUE
;
8209 new_action
->removed_bytes
+= 1;
8210 bad_alignment
= FALSE
;
8213 if (new_action
->action
== ta_widen_insn
8214 && new_action
->do_action
8215 && ebb_table
->ebb
.sec
->alignment_power
== 2)
8217 /* Narrow an instruction and we are done. */
8218 new_action
->do_action
= FALSE
;
8219 new_action
->removed_bytes
+= 1;
8220 bad_alignment
= FALSE
;
8223 if (new_action
->do_action
)
8224 removed_bytes
+= new_action
->removed_bytes
;
8228 action
->removed_bytes
+= 3;
8229 action
->action
= ta_remove_longcall
;
8230 action
->do_action
= TRUE
;
8233 removed_bytes
= old_removed_bytes
;
8234 if (action
->do_action
)
8235 removed_bytes
+= action
->removed_bytes
;
8240 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
8242 proposed_action
*action
= &ebb_table
->actions
[i
];
8243 if (action
->do_action
)
8244 removed_bytes
+= action
->removed_bytes
;
8247 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
8248 && ebb
->ends_unreachable
)
8250 proposed_action
*action
;
8254 BFD_ASSERT (ebb_table
->action_count
!= 0);
8255 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
8256 BFD_ASSERT (action
->action
== ta_fill
);
8257 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
8259 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
8260 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
8261 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
8263 action
->removed_bytes
= extra_space
- br
;
8269 /* The xlate_map is a sorted array of address mappings designed to
8270 answer the offset_with_removed_text() query with a binary search instead
8271 of a linear search through the section's action_list. */
8273 typedef struct xlate_map_entry xlate_map_entry_t
;
8274 typedef struct xlate_map xlate_map_t
;
8276 struct xlate_map_entry
8278 unsigned orig_address
;
8279 unsigned new_address
;
8285 unsigned entry_count
;
8286 xlate_map_entry_t
*entry
;
8291 xlate_compare (const void *a_v
, const void *b_v
)
8293 const xlate_map_entry_t
*a
= (const xlate_map_entry_t
*) a_v
;
8294 const xlate_map_entry_t
*b
= (const xlate_map_entry_t
*) b_v
;
8295 if (a
->orig_address
< b
->orig_address
)
8297 if (a
->orig_address
> (b
->orig_address
+ b
->size
- 1))
8304 xlate_offset_with_removed_text (const xlate_map_t
*map
,
8305 text_action_list
*action_list
,
8309 xlate_map_entry_t
*e
;
8312 return offset_with_removed_text (action_list
, offset
);
8314 if (map
->entry_count
== 0)
8317 r
= bsearch (&offset
, map
->entry
, map
->entry_count
,
8318 sizeof (xlate_map_entry_t
), &xlate_compare
);
8319 e
= (xlate_map_entry_t
*) r
;
8321 BFD_ASSERT (e
!= NULL
);
8324 return e
->new_address
- e
->orig_address
+ offset
;
8327 typedef struct xlate_map_context_struct xlate_map_context
;
8328 struct xlate_map_context_struct
8331 xlate_map_entry_t
*current_entry
;
8336 xlate_map_fn (splay_tree_node node
, void *p
)
8338 text_action
*r
= (text_action
*)node
->value
;
8339 xlate_map_context
*ctx
= p
;
8340 unsigned orig_size
= 0;
8345 case ta_remove_insn
:
8346 case ta_convert_longcall
:
8347 case ta_remove_literal
:
8348 case ta_add_literal
:
8350 case ta_remove_longcall
:
8353 case ta_narrow_insn
:
8362 ctx
->current_entry
->size
=
8363 r
->offset
+ orig_size
- ctx
->current_entry
->orig_address
;
8364 if (ctx
->current_entry
->size
!= 0)
8366 ctx
->current_entry
++;
8367 ctx
->map
->entry_count
++;
8369 ctx
->current_entry
->orig_address
= r
->offset
+ orig_size
;
8370 ctx
->removed
+= r
->removed_bytes
;
8371 ctx
->current_entry
->new_address
= r
->offset
+ orig_size
- ctx
->removed
;
8372 ctx
->current_entry
->size
= 0;
8376 /* Build a binary searchable offset translation map from a section's
8379 static xlate_map_t
*
8380 build_xlate_map (asection
*sec
, xtensa_relax_info
*relax_info
)
8382 text_action_list
*action_list
= &relax_info
->action_list
;
8383 unsigned num_actions
= 0;
8384 xlate_map_context ctx
;
8386 ctx
.map
= (xlate_map_t
*) bfd_malloc (sizeof (xlate_map_t
));
8388 if (ctx
.map
== NULL
)
8391 num_actions
= action_list_count (action_list
);
8392 ctx
.map
->entry
= (xlate_map_entry_t
*)
8393 bfd_malloc (sizeof (xlate_map_entry_t
) * (num_actions
+ 1));
8394 if (ctx
.map
->entry
== NULL
)
8399 ctx
.map
->entry_count
= 0;
8402 ctx
.current_entry
= &ctx
.map
->entry
[0];
8404 ctx
.current_entry
->orig_address
= 0;
8405 ctx
.current_entry
->new_address
= 0;
8406 ctx
.current_entry
->size
= 0;
8408 splay_tree_foreach (action_list
->tree
, xlate_map_fn
, &ctx
);
8410 ctx
.current_entry
->size
= (bfd_get_section_limit (sec
->owner
, sec
)
8411 - ctx
.current_entry
->orig_address
);
8412 if (ctx
.current_entry
->size
!= 0)
8413 ctx
.map
->entry_count
++;
8419 /* Free an offset translation map. */
8422 free_xlate_map (xlate_map_t
*map
)
8424 if (map
&& map
->entry
)
8431 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8432 relocations in a section will fit if a proposed set of actions
8436 check_section_ebb_pcrels_fit (bfd
*abfd
,
8439 Elf_Internal_Rela
*internal_relocs
,
8440 reloc_range_list
*relevant_relocs
,
8441 const ebb_constraint
*constraint
,
8442 const xtensa_opcode
*reloc_opcodes
)
8445 unsigned n
= sec
->reloc_count
;
8446 Elf_Internal_Rela
*irel
;
8447 xlate_map_t
*xmap
= NULL
;
8448 bfd_boolean ok
= TRUE
;
8449 xtensa_relax_info
*relax_info
;
8450 reloc_range_list_entry
*entry
= NULL
;
8452 relax_info
= get_xtensa_relax_info (sec
);
8454 if (relax_info
&& sec
->reloc_count
> 100)
8456 xmap
= build_xlate_map (sec
, relax_info
);
8457 /* NULL indicates out of memory, but the slow version
8458 can still be used. */
8461 if (relevant_relocs
&& constraint
->action_count
)
8463 if (!relevant_relocs
->ok
)
8470 bfd_vma min_offset
, max_offset
;
8471 min_offset
= max_offset
= constraint
->actions
[0].offset
;
8473 for (i
= 1; i
< constraint
->action_count
; ++i
)
8475 proposed_action
*action
= &constraint
->actions
[i
];
8476 bfd_vma offset
= action
->offset
;
8478 if (offset
< min_offset
)
8479 min_offset
= offset
;
8480 if (offset
> max_offset
)
8481 max_offset
= offset
;
8483 reloc_range_list_update_range (relevant_relocs
, min_offset
,
8485 n
= relevant_relocs
->n_list
;
8486 entry
= &relevant_relocs
->list_root
;
8491 relevant_relocs
= NULL
;
8494 for (i
= 0; i
< n
; i
++)
8497 bfd_vma orig_self_offset
, orig_target_offset
;
8498 bfd_vma self_offset
, target_offset
;
8500 reloc_howto_type
*howto
;
8501 int self_removed_bytes
, target_removed_bytes
;
8503 if (relevant_relocs
)
8505 entry
= entry
->next
;
8510 irel
= internal_relocs
+ i
;
8512 r_type
= ELF32_R_TYPE (irel
->r_info
);
8514 howto
= &elf_howto_table
[r_type
];
8515 /* We maintain the required invariant: PC-relative relocations
8516 that fit before linking must fit after linking. Thus we only
8517 need to deal with relocations to the same section that are
8519 if (r_type
== R_XTENSA_ASM_SIMPLIFY
8520 || r_type
== R_XTENSA_32_PCREL
8521 || !howto
->pc_relative
)
8524 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
8525 bfd_get_section_limit (abfd
, sec
));
8527 if (r_reloc_get_section (&r_rel
) != sec
)
8530 orig_self_offset
= irel
->r_offset
;
8531 orig_target_offset
= r_rel
.target_offset
;
8533 self_offset
= orig_self_offset
;
8534 target_offset
= orig_target_offset
;
8539 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
8542 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
8543 orig_target_offset
);
8546 self_removed_bytes
= 0;
8547 target_removed_bytes
= 0;
8549 for (j
= 0; j
< constraint
->action_count
; ++j
)
8551 proposed_action
*action
= &constraint
->actions
[j
];
8552 bfd_vma offset
= action
->offset
;
8553 int removed_bytes
= action
->removed_bytes
;
8554 if (offset
< orig_self_offset
8555 || (offset
== orig_self_offset
&& action
->action
== ta_fill
8556 && action
->removed_bytes
< 0))
8557 self_removed_bytes
+= removed_bytes
;
8558 if (offset
< orig_target_offset
8559 || (offset
== orig_target_offset
&& action
->action
== ta_fill
8560 && action
->removed_bytes
< 0))
8561 target_removed_bytes
+= removed_bytes
;
8563 self_offset
-= self_removed_bytes
;
8564 target_offset
-= target_removed_bytes
;
8566 /* Try to encode it. Get the operand and check. */
8567 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
8569 /* None of the current alternate relocs are PC-relative,
8570 and only PC-relative relocs matter here. */
8574 xtensa_opcode opcode
;
8577 if (relevant_relocs
)
8579 opcode
= entry
->opcode
;
8580 opnum
= entry
->opnum
;
8585 opcode
= reloc_opcodes
[relevant_relocs
?
8586 (unsigned)(entry
- relevant_relocs
->reloc
) : i
];
8588 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
8589 if (opcode
== XTENSA_UNDEFINED
)
8595 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
8596 if (opnum
== XTENSA_UNDEFINED
)
8603 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
8612 free_xlate_map (xmap
);
8619 check_section_ebb_reduces (const ebb_constraint
*constraint
)
8624 for (i
= 0; i
< constraint
->action_count
; i
++)
8626 const proposed_action
*action
= &constraint
->actions
[i
];
8627 if (action
->do_action
)
8628 removed
+= action
->removed_bytes
;
8638 text_action_add_proposed (text_action_list
*l
,
8639 const ebb_constraint
*ebb_table
,
8644 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8646 proposed_action
*action
= &ebb_table
->actions
[i
];
8648 if (!action
->do_action
)
8650 switch (action
->action
)
8652 case ta_remove_insn
:
8653 case ta_remove_longcall
:
8654 case ta_convert_longcall
:
8655 case ta_narrow_insn
:
8658 case ta_remove_literal
:
8659 text_action_add (l
, action
->action
, sec
, action
->offset
,
8660 action
->removed_bytes
);
8673 compute_fill_extra_space (property_table_entry
*entry
)
8675 int fill_extra_space
;
8680 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
8683 fill_extra_space
= entry
->size
;
8684 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
8686 /* Fill bytes for alignment:
8687 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8688 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
8689 int nsm
= (1 << pow
) - 1;
8690 bfd_vma addr
= entry
->address
+ entry
->size
;
8691 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
8692 fill_extra_space
+= align_fill
;
8694 return fill_extra_space
;
8698 /* First relaxation pass. */
8700 /* If the section contains relaxable literals, check each literal to
8701 see if it has the same value as another literal that has already
8702 been seen, either in the current section or a previous one. If so,
8703 add an entry to the per-section list of removed literals. The
8704 actual changes are deferred until the next pass. */
8707 compute_removed_literals (bfd
*abfd
,
8709 struct bfd_link_info
*link_info
,
8710 value_map_hash_table
*values
)
8712 xtensa_relax_info
*relax_info
;
8714 Elf_Internal_Rela
*internal_relocs
;
8715 source_reloc
*src_relocs
, *rel
;
8716 bfd_boolean ok
= TRUE
;
8717 property_table_entry
*prop_table
= NULL
;
8720 bfd_boolean last_loc_is_prev
= FALSE
;
8721 bfd_vma last_target_offset
= 0;
8722 section_cache_t target_sec_cache
;
8723 bfd_size_type sec_size
;
8725 init_section_cache (&target_sec_cache
);
8727 /* Do nothing if it is not a relaxable literal section. */
8728 relax_info
= get_xtensa_relax_info (sec
);
8729 BFD_ASSERT (relax_info
);
8730 if (!relax_info
->is_relaxable_literal_section
)
8733 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8734 link_info
->keep_memory
);
8736 sec_size
= bfd_get_section_limit (abfd
, sec
);
8737 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8738 if (contents
== NULL
&& sec_size
!= 0)
8744 /* Sort the source_relocs by target offset. */
8745 src_relocs
= relax_info
->src_relocs
;
8746 qsort (src_relocs
, relax_info
->src_count
,
8747 sizeof (source_reloc
), source_reloc_compare
);
8748 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8749 internal_reloc_compare
);
8751 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
8752 XTENSA_PROP_SEC_NAME
, FALSE
);
8760 for (i
= 0; i
< relax_info
->src_count
; i
++)
8762 Elf_Internal_Rela
*irel
= NULL
;
8764 rel
= &src_relocs
[i
];
8765 if (get_l32r_opcode () != rel
->opcode
)
8767 irel
= get_irel_at_offset (sec
, internal_relocs
,
8768 rel
->r_rel
.target_offset
);
8770 /* If the relocation on this is not a simple R_XTENSA_32 or
8771 R_XTENSA_PLT then do not consider it. This may happen when
8772 the difference of two symbols is used in a literal. */
8773 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
8774 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
8777 /* If the target_offset for this relocation is the same as the
8778 previous relocation, then we've already considered whether the
8779 literal can be coalesced. Skip to the next one.... */
8780 if (i
!= 0 && prev_i
!= -1
8781 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
8785 if (last_loc_is_prev
&&
8786 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
8787 last_loc_is_prev
= FALSE
;
8789 /* Check if the relocation was from an L32R that is being removed
8790 because a CALLX was converted to a direct CALL, and check if
8791 there are no other relocations to the literal. */
8792 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
,
8793 sec
, prop_table
, ptblsize
))
8795 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
8796 irel
, rel
, prop_table
, ptblsize
))
8801 last_target_offset
= rel
->r_rel
.target_offset
;
8805 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
8807 &last_loc_is_prev
, irel
,
8808 relax_info
->src_count
- i
, rel
,
8809 prop_table
, ptblsize
,
8810 &target_sec_cache
, rel
->is_abs_literal
))
8815 last_target_offset
= rel
->r_rel
.target_offset
;
8819 print_removed_literals (stderr
, &relax_info
->removed_list
);
8820 print_action_list (stderr
, &relax_info
->action_list
);
8826 free_section_cache (&target_sec_cache
);
8828 release_contents (sec
, contents
);
8829 release_internal_relocs (sec
, internal_relocs
);
8834 static Elf_Internal_Rela
*
8835 get_irel_at_offset (asection
*sec
,
8836 Elf_Internal_Rela
*internal_relocs
,
8840 Elf_Internal_Rela
*irel
;
8842 Elf_Internal_Rela key
;
8844 if (!internal_relocs
)
8847 key
.r_offset
= offset
;
8848 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
8849 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
8853 /* bsearch does not guarantee which will be returned if there are
8854 multiple matches. We need the first that is not an alignment. */
8855 i
= irel
- internal_relocs
;
8858 if (internal_relocs
[i
-1].r_offset
!= offset
)
8862 for ( ; i
< sec
->reloc_count
; i
++)
8864 irel
= &internal_relocs
[i
];
8865 r_type
= ELF32_R_TYPE (irel
->r_info
);
8866 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
8875 is_removable_literal (const source_reloc
*rel
,
8877 const source_reloc
*src_relocs
,
8880 property_table_entry
*prop_table
,
8883 const source_reloc
*curr_rel
;
8884 property_table_entry
*entry
;
8889 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8890 sec
->vma
+ rel
->r_rel
.target_offset
);
8891 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
8894 for (++i
; i
< src_count
; ++i
)
8896 curr_rel
= &src_relocs
[i
];
8897 /* If all others have the same target offset.... */
8898 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
8901 if (!curr_rel
->is_null
8902 && !xtensa_is_property_section (curr_rel
->source_sec
)
8903 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
8911 remove_dead_literal (bfd
*abfd
,
8913 struct bfd_link_info
*link_info
,
8914 Elf_Internal_Rela
*internal_relocs
,
8915 Elf_Internal_Rela
*irel
,
8917 property_table_entry
*prop_table
,
8920 property_table_entry
*entry
;
8921 xtensa_relax_info
*relax_info
;
8923 relax_info
= get_xtensa_relax_info (sec
);
8927 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8928 sec
->vma
+ rel
->r_rel
.target_offset
);
8930 /* Mark the unused literal so that it will be removed. */
8931 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
8933 text_action_add (&relax_info
->action_list
,
8934 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
8936 /* If the section is 4-byte aligned, do not add fill. */
8937 if (sec
->alignment_power
> 2)
8939 int fill_extra_space
;
8940 bfd_vma entry_sec_offset
;
8942 property_table_entry
*the_add_entry
;
8946 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
8948 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
8950 /* If the literal range is at the end of the section,
8952 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8954 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
8956 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
8957 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
8958 -4, fill_extra_space
);
8960 adjust_fill_action (fa
, removed_diff
);
8962 text_action_add (&relax_info
->action_list
,
8963 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
8966 /* Zero out the relocation on this literal location. */
8969 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8970 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8972 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8973 pin_internal_relocs (sec
, internal_relocs
);
8976 /* Do not modify "last_loc_is_prev". */
8982 identify_literal_placement (bfd
*abfd
,
8985 struct bfd_link_info
*link_info
,
8986 value_map_hash_table
*values
,
8987 bfd_boolean
*last_loc_is_prev_p
,
8988 Elf_Internal_Rela
*irel
,
8989 int remaining_src_rels
,
8991 property_table_entry
*prop_table
,
8993 section_cache_t
*target_sec_cache
,
8994 bfd_boolean is_abs_literal
)
8998 xtensa_relax_info
*relax_info
;
8999 bfd_boolean literal_placed
= FALSE
;
9001 unsigned long value
;
9002 bfd_boolean final_static_link
;
9003 bfd_size_type sec_size
;
9005 relax_info
= get_xtensa_relax_info (sec
);
9009 sec_size
= bfd_get_section_limit (abfd
, sec
);
9012 (!bfd_link_relocatable (link_info
)
9013 && !elf_hash_table (link_info
)->dynamic_sections_created
);
9015 /* The placement algorithm first checks to see if the literal is
9016 already in the value map. If so and the value map is reachable
9017 from all uses, then the literal is moved to that location. If
9018 not, then we identify the last location where a fresh literal was
9019 placed. If the literal can be safely moved there, then we do so.
9020 If not, then we assume that the literal is not to move and leave
9021 the literal where it is, marking it as the last literal
9024 /* Find the literal value. */
9026 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
9029 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
9030 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
9032 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
9034 /* Check if we've seen another literal with the same value that
9035 is in the same output section. */
9036 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
9039 && (r_reloc_get_section (&val_map
->loc
)->output_section
9040 == sec
->output_section
)
9041 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
9042 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
9044 /* No change to last_loc_is_prev. */
9045 literal_placed
= TRUE
;
9048 /* For relocatable links, do not try to move literals. To do it
9049 correctly might increase the number of relocations in an input
9050 section making the default relocatable linking fail. */
9051 if (!bfd_link_relocatable (link_info
) && !literal_placed
9052 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
9054 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
9055 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
9057 /* Increment the virtual offset. */
9058 r_reloc try_loc
= values
->last_loc
;
9059 try_loc
.virtual_offset
+= 4;
9061 /* There is a last loc that was in the same output section. */
9062 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
9063 && move_shared_literal (sec
, link_info
, rel
,
9064 prop_table
, ptblsize
,
9065 &try_loc
, &val
, target_sec_cache
))
9067 values
->last_loc
.virtual_offset
+= 4;
9068 literal_placed
= TRUE
;
9070 val_map
= add_value_map (values
, &val
, &try_loc
,
9073 val_map
->loc
= try_loc
;
9078 if (!literal_placed
)
9080 /* Nothing worked, leave the literal alone but update the last loc. */
9081 values
->has_last_loc
= TRUE
;
9082 values
->last_loc
= rel
->r_rel
;
9084 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
9086 val_map
->loc
= rel
->r_rel
;
9087 *last_loc_is_prev_p
= TRUE
;
9094 /* Check if the original relocations (presumably on L32R instructions)
9095 identified by reloc[0..N] can be changed to reference the literal
9096 identified by r_rel. If r_rel is out of range for any of the
9097 original relocations, then we don't want to coalesce the original
9098 literal with the one at r_rel. We only check reloc[0..N], where the
9099 offsets are all the same as for reloc[0] (i.e., they're all
9100 referencing the same literal) and where N is also bounded by the
9101 number of remaining entries in the "reloc" array. The "reloc" array
9102 is sorted by target offset so we know all the entries for the same
9103 literal will be contiguous. */
9106 relocations_reach (source_reloc
*reloc
,
9107 int remaining_relocs
,
9108 const r_reloc
*r_rel
)
9110 bfd_vma from_offset
, source_address
, dest_address
;
9114 if (!r_reloc_is_defined (r_rel
))
9117 sec
= r_reloc_get_section (r_rel
);
9118 from_offset
= reloc
[0].r_rel
.target_offset
;
9120 for (i
= 0; i
< remaining_relocs
; i
++)
9122 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
9125 /* Ignore relocations that have been removed. */
9126 if (reloc
[i
].is_null
)
9129 /* The original and new output section for these must be the same
9130 in order to coalesce. */
9131 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
9132 != sec
->output_section
)
9135 /* Absolute literals in the same output section can always be
9137 if (reloc
[i
].is_abs_literal
)
9140 /* A literal with no PC-relative relocations can be moved anywhere. */
9141 if (reloc
[i
].opnd
!= -1)
9143 /* Otherwise, check to see that it fits. */
9144 source_address
= (reloc
[i
].source_sec
->output_section
->vma
9145 + reloc
[i
].source_sec
->output_offset
9146 + reloc
[i
].r_rel
.rela
.r_offset
);
9147 dest_address
= (sec
->output_section
->vma
9148 + sec
->output_offset
9149 + r_rel
->target_offset
);
9151 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
9152 source_address
, dest_address
))
9161 /* Move a literal to another literal location because it is
9162 the same as the other literal value. */
9165 coalesce_shared_literal (asection
*sec
,
9167 property_table_entry
*prop_table
,
9171 property_table_entry
*entry
;
9173 property_table_entry
*the_add_entry
;
9175 xtensa_relax_info
*relax_info
;
9177 relax_info
= get_xtensa_relax_info (sec
);
9181 entry
= elf_xtensa_find_property_entry
9182 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
9183 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
9186 /* Mark that the literal will be coalesced. */
9187 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
9189 text_action_add (&relax_info
->action_list
,
9190 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
9192 /* If the section is 4-byte aligned, do not add fill. */
9193 if (sec
->alignment_power
> 2)
9195 int fill_extra_space
;
9196 bfd_vma entry_sec_offset
;
9199 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
9201 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
9203 /* If the literal range is at the end of the section,
9205 fill_extra_space
= 0;
9206 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
9208 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9209 fill_extra_space
= the_add_entry
->size
;
9211 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
9212 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
9213 -4, fill_extra_space
);
9215 adjust_fill_action (fa
, removed_diff
);
9217 text_action_add (&relax_info
->action_list
,
9218 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
9225 /* Move a literal to another location. This may actually increase the
9226 total amount of space used because of alignments so we need to do
9227 this carefully. Also, it may make a branch go out of range. */
9230 move_shared_literal (asection
*sec
,
9231 struct bfd_link_info
*link_info
,
9233 property_table_entry
*prop_table
,
9235 const r_reloc
*target_loc
,
9236 const literal_value
*lit_value
,
9237 section_cache_t
*target_sec_cache
)
9239 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
9240 text_action
*fa
, *target_fa
;
9242 xtensa_relax_info
*relax_info
, *target_relax_info
;
9243 asection
*target_sec
;
9245 ebb_constraint ebb_table
;
9246 bfd_boolean relocs_fit
;
9248 /* If this routine always returns FALSE, the literals that cannot be
9249 coalesced will not be moved. */
9250 if (elf32xtensa_no_literal_movement
)
9253 relax_info
= get_xtensa_relax_info (sec
);
9257 target_sec
= r_reloc_get_section (target_loc
);
9258 target_relax_info
= get_xtensa_relax_info (target_sec
);
9260 /* Literals to undefined sections may not be moved because they
9261 must report an error. */
9262 if (bfd_is_und_section (target_sec
))
9265 src_entry
= elf_xtensa_find_property_entry
9266 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
9268 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
9271 target_entry
= elf_xtensa_find_property_entry
9272 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
9273 target_sec
->vma
+ target_loc
->target_offset
);
9278 /* Make sure that we have not broken any branches. */
9281 init_ebb_constraint (&ebb_table
);
9282 ebb
= &ebb_table
.ebb
;
9283 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
9284 target_sec_cache
->content_length
,
9285 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
9286 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
9288 /* Propose to add 4 bytes + worst-case alignment size increase to
9290 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
9291 ta_fill
, target_loc
->target_offset
,
9292 -4 - (1 << target_sec
->alignment_power
), TRUE
);
9294 /* Check all of the PC-relative relocations to make sure they still fit. */
9295 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
9296 target_sec_cache
->contents
,
9297 target_sec_cache
->relocs
, NULL
,
9303 text_action_add_literal (&target_relax_info
->action_list
,
9304 ta_add_literal
, target_loc
, lit_value
, -4);
9306 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
9308 /* May need to add or remove some fill to maintain alignment. */
9309 int fill_extra_space
;
9310 bfd_vma entry_sec_offset
;
9313 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
9315 /* If the literal range is at the end of the section,
9317 fill_extra_space
= 0;
9319 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
9320 target_sec_cache
->pte_count
,
9322 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9323 fill_extra_space
= the_add_entry
->size
;
9325 target_fa
= find_fill_action (&target_relax_info
->action_list
,
9326 target_sec
, entry_sec_offset
);
9327 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
9328 entry_sec_offset
, 4,
9331 adjust_fill_action (target_fa
, removed_diff
);
9333 text_action_add (&target_relax_info
->action_list
,
9334 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
9337 /* Mark that the literal will be moved to the new location. */
9338 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
9340 /* Remove the literal. */
9341 text_action_add (&relax_info
->action_list
,
9342 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
9344 /* If the section is 4-byte aligned, do not add fill. */
9345 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
9347 int fill_extra_space
;
9348 bfd_vma entry_sec_offset
;
9351 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
9353 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
9355 /* If the literal range is at the end of the section,
9357 fill_extra_space
= 0;
9358 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
9360 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9361 fill_extra_space
= the_add_entry
->size
;
9363 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
9364 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
9365 -4, fill_extra_space
);
9367 adjust_fill_action (fa
, removed_diff
);
9369 text_action_add (&relax_info
->action_list
,
9370 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
9377 /* Second relaxation pass. */
9380 action_remove_bytes_fn (splay_tree_node node
, void *p
)
9382 bfd_size_type
*final_size
= p
;
9383 text_action
*action
= (text_action
*)node
->value
;
9385 *final_size
-= action
->removed_bytes
;
9389 /* Modify all of the relocations to point to the right spot, and if this
9390 is a relaxable section, delete the unwanted literals and fix the
9394 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
9396 Elf_Internal_Rela
*internal_relocs
;
9397 xtensa_relax_info
*relax_info
;
9399 bfd_boolean ok
= TRUE
;
9401 bfd_boolean rv
= FALSE
;
9402 bfd_boolean virtual_action
;
9403 bfd_size_type sec_size
;
9405 sec_size
= bfd_get_section_limit (abfd
, sec
);
9406 relax_info
= get_xtensa_relax_info (sec
);
9407 BFD_ASSERT (relax_info
);
9409 /* First translate any of the fixes that have been added already. */
9410 translate_section_fixes (sec
);
9412 /* Handle property sections (e.g., literal tables) specially. */
9413 if (xtensa_is_property_section (sec
))
9415 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
9416 return relax_property_section (abfd
, sec
, link_info
);
9419 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9420 link_info
->keep_memory
);
9421 if (!internal_relocs
&& !action_list_count (&relax_info
->action_list
))
9424 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9425 if (contents
== NULL
&& sec_size
!= 0)
9431 if (internal_relocs
)
9433 for (i
= 0; i
< sec
->reloc_count
; i
++)
9435 Elf_Internal_Rela
*irel
;
9436 xtensa_relax_info
*target_relax_info
;
9437 bfd_vma source_offset
, old_source_offset
;
9440 asection
*target_sec
;
9442 /* Locally change the source address.
9443 Translate the target to the new target address.
9444 If it points to this section and has been removed,
9448 irel
= &internal_relocs
[i
];
9449 source_offset
= irel
->r_offset
;
9450 old_source_offset
= source_offset
;
9452 r_type
= ELF32_R_TYPE (irel
->r_info
);
9453 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
9454 bfd_get_section_limit (abfd
, sec
));
9456 /* If this section could have changed then we may need to
9457 change the relocation's offset. */
9459 if (relax_info
->is_relaxable_literal_section
9460 || relax_info
->is_relaxable_asm_section
)
9462 pin_internal_relocs (sec
, internal_relocs
);
9464 if (r_type
!= R_XTENSA_NONE
9465 && find_removed_literal (&relax_info
->removed_list
,
9468 /* Remove this relocation. */
9469 if (elf_hash_table (link_info
)->dynamic_sections_created
)
9470 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
9471 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
9472 irel
->r_offset
= offset_with_removed_text_map
9473 (&relax_info
->action_list
, irel
->r_offset
);
9477 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
9479 text_action
*action
=
9480 find_insn_action (&relax_info
->action_list
,
9482 if (action
&& (action
->action
== ta_convert_longcall
9483 || action
->action
== ta_remove_longcall
))
9485 bfd_reloc_status_type retval
;
9486 char *error_message
= NULL
;
9488 retval
= contract_asm_expansion (contents
, sec_size
,
9489 irel
, &error_message
);
9490 if (retval
!= bfd_reloc_ok
)
9492 (*link_info
->callbacks
->reloc_dangerous
)
9493 (link_info
, error_message
, abfd
, sec
,
9497 /* Update the action so that the code that moves
9498 the contents will do the right thing. */
9499 /* ta_remove_longcall and ta_remove_insn actions are
9500 grouped together in the tree as well as
9501 ta_convert_longcall and ta_none, so that changes below
9502 can be done w/o removing and reinserting action into
9505 if (action
->action
== ta_remove_longcall
)
9506 action
->action
= ta_remove_insn
;
9508 action
->action
= ta_none
;
9509 /* Refresh the info in the r_rel. */
9510 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
9511 r_type
= ELF32_R_TYPE (irel
->r_info
);
9515 source_offset
= offset_with_removed_text_map
9516 (&relax_info
->action_list
, irel
->r_offset
);
9517 irel
->r_offset
= source_offset
;
9520 /* If the target section could have changed then
9521 we may need to change the relocation's target offset. */
9523 target_sec
= r_reloc_get_section (&r_rel
);
9525 /* For a reference to a discarded section from a DWARF section,
9526 i.e., where action_discarded is PRETEND, the symbol will
9527 eventually be modified to refer to the kept section (at least if
9528 the kept and discarded sections are the same size). Anticipate
9529 that here and adjust things accordingly. */
9530 if (! elf_xtensa_ignore_discarded_relocs (sec
)
9531 && elf_xtensa_action_discarded (sec
) == PRETEND
9532 && sec
->sec_info_type
!= SEC_INFO_TYPE_STABS
9533 && target_sec
!= NULL
9534 && discarded_section (target_sec
))
9536 /* It would be natural to call _bfd_elf_check_kept_section
9537 here, but it's not exported from elflink.c. It's also a
9538 fairly expensive check. Adjusting the relocations to the
9539 discarded section is fairly harmless; it will only adjust
9540 some addends and difference values. If it turns out that
9541 _bfd_elf_check_kept_section fails later, it won't matter,
9542 so just compare the section names to find the right group
9544 asection
*kept
= target_sec
->kept_section
;
9547 if ((kept
->flags
& SEC_GROUP
) != 0)
9549 asection
*first
= elf_next_in_group (kept
);
9550 asection
*s
= first
;
9555 if (strcmp (s
->name
, target_sec
->name
) == 0)
9560 s
= elf_next_in_group (s
);
9567 && ((target_sec
->rawsize
!= 0
9568 ? target_sec
->rawsize
: target_sec
->size
)
9569 == (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9573 target_relax_info
= get_xtensa_relax_info (target_sec
);
9574 if (target_relax_info
9575 && (target_relax_info
->is_relaxable_literal_section
9576 || target_relax_info
->is_relaxable_asm_section
))
9579 target_sec
= translate_reloc (&r_rel
, &new_reloc
, target_sec
);
9581 if (r_type
== R_XTENSA_DIFF8
9582 || r_type
== R_XTENSA_DIFF16
9583 || r_type
== R_XTENSA_DIFF32
)
9585 bfd_signed_vma diff_value
= 0;
9586 bfd_vma new_end_offset
, diff_mask
= 0;
9588 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
9590 (*link_info
->callbacks
->reloc_dangerous
)
9591 (link_info
, _("invalid relocation address"),
9592 abfd
, sec
, old_source_offset
);
9598 case R_XTENSA_DIFF8
:
9600 bfd_get_signed_8 (abfd
, &contents
[old_source_offset
]);
9602 case R_XTENSA_DIFF16
:
9604 bfd_get_signed_16 (abfd
, &contents
[old_source_offset
]);
9606 case R_XTENSA_DIFF32
:
9608 bfd_get_signed_32 (abfd
, &contents
[old_source_offset
]);
9612 new_end_offset
= offset_with_removed_text_map
9613 (&target_relax_info
->action_list
,
9614 r_rel
.target_offset
+ diff_value
);
9615 diff_value
= new_end_offset
- new_reloc
.target_offset
;
9619 case R_XTENSA_DIFF8
:
9621 bfd_put_signed_8 (abfd
, diff_value
,
9622 &contents
[old_source_offset
]);
9624 case R_XTENSA_DIFF16
:
9626 bfd_put_signed_16 (abfd
, diff_value
,
9627 &contents
[old_source_offset
]);
9629 case R_XTENSA_DIFF32
:
9630 diff_mask
= 0x7fffffff;
9631 bfd_put_signed_32 (abfd
, diff_value
,
9632 &contents
[old_source_offset
]);
9636 /* Check for overflow. Sign bits must be all zeroes or all ones */
9637 if ((diff_value
& ~diff_mask
) != 0 &&
9638 (diff_value
& ~diff_mask
) != (-1 & ~diff_mask
))
9640 (*link_info
->callbacks
->reloc_dangerous
)
9641 (link_info
, _("overflow after relaxation"),
9642 abfd
, sec
, old_source_offset
);
9646 pin_contents (sec
, contents
);
9649 /* If the relocation still references a section in the same
9650 input file, modify the relocation directly instead of
9651 adding a "fix" record. */
9652 if (target_sec
->owner
== abfd
)
9654 unsigned r_symndx
= ELF32_R_SYM (new_reloc
.rela
.r_info
);
9655 irel
->r_info
= ELF32_R_INFO (r_symndx
, r_type
);
9656 irel
->r_addend
= new_reloc
.rela
.r_addend
;
9657 pin_internal_relocs (sec
, internal_relocs
);
9661 bfd_vma addend_displacement
;
9664 addend_displacement
=
9665 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
9666 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
,
9668 addend_displacement
, TRUE
);
9675 if ((relax_info
->is_relaxable_literal_section
9676 || relax_info
->is_relaxable_asm_section
)
9677 && action_list_count (&relax_info
->action_list
))
9679 /* Walk through the planned actions and build up a table
9680 of move, copy and fill records. Use the move, copy and
9681 fill records to perform the actions once. */
9683 bfd_size_type final_size
, copy_size
, orig_insn_size
;
9684 bfd_byte
*scratch
= NULL
;
9685 bfd_byte
*dup_contents
= NULL
;
9686 bfd_size_type orig_size
= sec
->size
;
9687 bfd_vma orig_dot
= 0;
9688 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
9689 orig dot in physical memory. */
9690 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
9691 bfd_vma dup_dot
= 0;
9693 text_action
*action
;
9695 final_size
= sec
->size
;
9697 splay_tree_foreach (relax_info
->action_list
.tree
,
9698 action_remove_bytes_fn
, &final_size
);
9699 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
9700 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
9702 /* The dot is the current fill location. */
9704 print_action_list (stderr
, &relax_info
->action_list
);
9707 for (action
= action_first (&relax_info
->action_list
); action
;
9708 action
= action_next (&relax_info
->action_list
, action
))
9710 virtual_action
= FALSE
;
9711 if (action
->offset
> orig_dot
)
9713 orig_dot
+= orig_dot_copied
;
9714 orig_dot_copied
= 0;
9716 /* Out of the virtual world. */
9719 if (action
->offset
> orig_dot
)
9721 copy_size
= action
->offset
- orig_dot
;
9722 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9723 orig_dot
+= copy_size
;
9724 dup_dot
+= copy_size
;
9725 BFD_ASSERT (action
->offset
== orig_dot
);
9727 else if (action
->offset
< orig_dot
)
9729 if (action
->action
== ta_fill
9730 && action
->offset
- action
->removed_bytes
== orig_dot
)
9732 /* This is OK because the fill only effects the dup_dot. */
9734 else if (action
->action
== ta_add_literal
)
9736 /* TBD. Might need to handle this. */
9739 if (action
->offset
== orig_dot
)
9741 if (action
->virtual_offset
> orig_dot_vo
)
9743 if (orig_dot_vo
== 0)
9745 /* Need to copy virtual_offset bytes. Probably four. */
9746 copy_size
= action
->virtual_offset
- orig_dot_vo
;
9747 memmove (&dup_contents
[dup_dot
],
9748 &contents
[orig_dot
], copy_size
);
9749 orig_dot_copied
= copy_size
;
9750 dup_dot
+= copy_size
;
9752 virtual_action
= TRUE
;
9755 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
9757 switch (action
->action
)
9759 case ta_remove_literal
:
9760 case ta_remove_insn
:
9761 BFD_ASSERT (action
->removed_bytes
>= 0);
9762 orig_dot
+= action
->removed_bytes
;
9765 case ta_narrow_insn
:
9768 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9769 BFD_ASSERT (action
->removed_bytes
== 1);
9770 rv
= narrow_instruction (scratch
, final_size
, 0);
9772 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9773 orig_dot
+= orig_insn_size
;
9774 dup_dot
+= copy_size
;
9778 if (action
->removed_bytes
>= 0)
9779 orig_dot
+= action
->removed_bytes
;
9782 /* Already zeroed in dup_contents. Just bump the
9784 dup_dot
+= (-action
->removed_bytes
);
9789 BFD_ASSERT (action
->removed_bytes
== 0);
9792 case ta_convert_longcall
:
9793 case ta_remove_longcall
:
9794 /* These will be removed or converted before we get here. */
9801 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9802 BFD_ASSERT (action
->removed_bytes
== -1);
9803 rv
= widen_instruction (scratch
, final_size
, 0);
9805 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9806 orig_dot
+= orig_insn_size
;
9807 dup_dot
+= copy_size
;
9810 case ta_add_literal
:
9813 BFD_ASSERT (action
->removed_bytes
== -4);
9814 /* TBD -- place the literal value here and insert
9816 memset (&dup_contents
[dup_dot
], 0, 4);
9817 pin_internal_relocs (sec
, internal_relocs
);
9818 pin_contents (sec
, contents
);
9820 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
9821 relax_info
, &internal_relocs
, &action
->value
))
9825 orig_dot_vo
+= copy_size
;
9827 orig_dot
+= orig_insn_size
;
9828 dup_dot
+= copy_size
;
9832 /* Not implemented yet. */
9837 BFD_ASSERT (dup_dot
<= final_size
);
9838 BFD_ASSERT (orig_dot
<= orig_size
);
9841 orig_dot
+= orig_dot_copied
;
9842 orig_dot_copied
= 0;
9844 if (orig_dot
!= orig_size
)
9846 copy_size
= orig_size
- orig_dot
;
9847 BFD_ASSERT (orig_size
> orig_dot
);
9848 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
9849 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9850 orig_dot
+= copy_size
;
9851 dup_dot
+= copy_size
;
9853 BFD_ASSERT (orig_size
== orig_dot
);
9854 BFD_ASSERT (final_size
== dup_dot
);
9856 /* Move the dup_contents back. */
9857 if (final_size
> orig_size
)
9859 /* Contents need to be reallocated. Swap the dup_contents into
9861 sec
->contents
= dup_contents
;
9863 contents
= dup_contents
;
9864 pin_contents (sec
, contents
);
9868 BFD_ASSERT (final_size
<= orig_size
);
9869 memset (contents
, 0, orig_size
);
9870 memcpy (contents
, dup_contents
, final_size
);
9871 free (dup_contents
);
9874 pin_contents (sec
, contents
);
9876 if (sec
->rawsize
== 0)
9877 sec
->rawsize
= sec
->size
;
9878 sec
->size
= final_size
;
9882 release_internal_relocs (sec
, internal_relocs
);
9883 release_contents (sec
, contents
);
9889 translate_section_fixes (asection
*sec
)
9891 xtensa_relax_info
*relax_info
;
9894 relax_info
= get_xtensa_relax_info (sec
);
9898 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
9899 if (!translate_reloc_bfd_fix (r
))
9906 /* Translate a fix given the mapping in the relax info for the target
9907 section. If it has already been translated, no work is required. */
9910 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
9912 reloc_bfd_fix new_fix
;
9914 xtensa_relax_info
*relax_info
;
9915 removed_literal
*removed
;
9916 bfd_vma new_offset
, target_offset
;
9918 if (fix
->translated
)
9921 sec
= fix
->target_sec
;
9922 target_offset
= fix
->target_offset
;
9924 relax_info
= get_xtensa_relax_info (sec
);
9927 fix
->translated
= TRUE
;
9933 /* The fix does not need to be translated if the section cannot change. */
9934 if (!relax_info
->is_relaxable_literal_section
9935 && !relax_info
->is_relaxable_asm_section
)
9937 fix
->translated
= TRUE
;
9941 /* If the literal has been moved and this relocation was on an
9942 opcode, then the relocation should move to the new literal
9943 location. Otherwise, the relocation should move within the
9947 if (is_operand_relocation (fix
->src_type
))
9949 /* Check if the original relocation is against a literal being
9951 removed
= find_removed_literal (&relax_info
->removed_list
,
9959 /* The fact that there is still a relocation to this literal indicates
9960 that the literal is being coalesced, not simply removed. */
9961 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9963 /* This was moved to some other address (possibly another section). */
9964 new_sec
= r_reloc_get_section (&removed
->to
);
9968 relax_info
= get_xtensa_relax_info (sec
);
9970 (!relax_info
->is_relaxable_literal_section
9971 && !relax_info
->is_relaxable_asm_section
))
9973 target_offset
= removed
->to
.target_offset
;
9974 new_fix
.target_sec
= new_sec
;
9975 new_fix
.target_offset
= target_offset
;
9976 new_fix
.translated
= TRUE
;
9981 target_offset
= removed
->to
.target_offset
;
9982 new_fix
.target_sec
= new_sec
;
9985 /* The target address may have been moved within its section. */
9986 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
9989 new_fix
.target_offset
= new_offset
;
9990 new_fix
.target_offset
= new_offset
;
9991 new_fix
.translated
= TRUE
;
9997 /* Fix up a relocation to take account of removed literals. */
10000 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
, asection
*sec
)
10002 xtensa_relax_info
*relax_info
;
10003 removed_literal
*removed
;
10004 bfd_vma target_offset
, base_offset
;
10006 *new_rel
= *orig_rel
;
10008 if (!r_reloc_is_defined (orig_rel
))
10011 relax_info
= get_xtensa_relax_info (sec
);
10012 BFD_ASSERT (relax_info
&& (relax_info
->is_relaxable_literal_section
10013 || relax_info
->is_relaxable_asm_section
));
10015 target_offset
= orig_rel
->target_offset
;
10018 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
10020 /* Check if the original relocation is against a literal being
10022 removed
= find_removed_literal (&relax_info
->removed_list
,
10025 if (removed
&& removed
->to
.abfd
)
10029 /* The fact that there is still a relocation to this literal indicates
10030 that the literal is being coalesced, not simply removed. */
10031 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
10033 /* This was moved to some other address
10034 (possibly in another section). */
10035 *new_rel
= removed
->to
;
10036 new_sec
= r_reloc_get_section (new_rel
);
10037 if (new_sec
!= sec
)
10040 relax_info
= get_xtensa_relax_info (sec
);
10042 || (!relax_info
->is_relaxable_literal_section
10043 && !relax_info
->is_relaxable_asm_section
))
10046 target_offset
= new_rel
->target_offset
;
10049 /* Find the base offset of the reloc symbol, excluding any addend from the
10050 reloc or from the section contents (for a partial_inplace reloc). Then
10051 find the adjusted values of the offsets due to relaxation. The base
10052 offset is needed to determine the change to the reloc's addend; the reloc
10053 addend should not be adjusted due to relaxations located before the base
10056 base_offset
= r_reloc_get_target_offset (new_rel
) - new_rel
->rela
.r_addend
;
10057 if (base_offset
<= target_offset
)
10059 int base_removed
= removed_by_actions_map (&relax_info
->action_list
,
10060 base_offset
, FALSE
);
10061 int addend_removed
= removed_by_actions_map (&relax_info
->action_list
,
10062 target_offset
, FALSE
) -
10065 new_rel
->target_offset
= target_offset
- base_removed
- addend_removed
;
10066 new_rel
->rela
.r_addend
-= addend_removed
;
10070 /* Handle a negative addend. The base offset comes first. */
10071 int tgt_removed
= removed_by_actions_map (&relax_info
->action_list
,
10072 target_offset
, FALSE
);
10073 int addend_removed
= removed_by_actions_map (&relax_info
->action_list
,
10074 base_offset
, FALSE
) -
10077 new_rel
->target_offset
= target_offset
- tgt_removed
;
10078 new_rel
->rela
.r_addend
+= addend_removed
;
10085 /* For dynamic links, there may be a dynamic relocation for each
10086 literal. The number of dynamic relocations must be computed in
10087 size_dynamic_sections, which occurs before relaxation. When a
10088 literal is removed, this function checks if there is a corresponding
10089 dynamic relocation and shrinks the size of the appropriate dynamic
10090 relocation section accordingly. At this point, the contents of the
10091 dynamic relocation sections have not yet been filled in, so there's
10092 nothing else that needs to be done. */
10095 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
10097 asection
*input_section
,
10098 Elf_Internal_Rela
*rel
)
10100 struct elf_xtensa_link_hash_table
*htab
;
10101 Elf_Internal_Shdr
*symtab_hdr
;
10102 struct elf_link_hash_entry
**sym_hashes
;
10103 unsigned long r_symndx
;
10105 struct elf_link_hash_entry
*h
;
10106 bfd_boolean dynamic_symbol
;
10108 htab
= elf_xtensa_hash_table (info
);
10112 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10113 sym_hashes
= elf_sym_hashes (abfd
);
10115 r_type
= ELF32_R_TYPE (rel
->r_info
);
10116 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10118 if (r_symndx
< symtab_hdr
->sh_info
)
10121 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10123 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
10125 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
10126 && (input_section
->flags
& SEC_ALLOC
) != 0
10127 && (dynamic_symbol
|| bfd_link_pic (info
)))
10130 bfd_boolean is_plt
= FALSE
;
10132 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
10134 srel
= htab
->srelplt
;
10138 srel
= htab
->srelgot
;
10140 /* Reduce size of the .rela.* section by one reloc. */
10141 BFD_ASSERT (srel
!= NULL
);
10142 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
10143 srel
->size
-= sizeof (Elf32_External_Rela
);
10147 asection
*splt
, *sgotplt
, *srelgot
;
10148 int reloc_index
, chunk
;
10150 /* Find the PLT reloc index of the entry being removed. This
10151 is computed from the size of ".rela.plt". It is needed to
10152 figure out which PLT chunk to resize. Usually "last index
10153 = size - 1" since the index starts at zero, but in this
10154 context, the size has just been decremented so there's no
10155 need to subtract one. */
10156 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
10158 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
10159 splt
= elf_xtensa_get_plt_section (info
, chunk
);
10160 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
10161 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
10163 /* Check if an entire PLT chunk has just been eliminated. */
10164 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
10166 /* The two magic GOT entries for that chunk can go away. */
10167 srelgot
= htab
->srelgot
;
10168 BFD_ASSERT (srelgot
!= NULL
);
10169 srelgot
->reloc_count
-= 2;
10170 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
10171 sgotplt
->size
-= 8;
10173 /* There should be only one entry left (and it will be
10175 BFD_ASSERT (sgotplt
->size
== 4);
10176 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
10179 BFD_ASSERT (sgotplt
->size
>= 4);
10180 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
10182 sgotplt
->size
-= 4;
10183 splt
->size
-= PLT_ENTRY_SIZE
;
10189 /* Take an r_rel and move it to another section. This usually
10190 requires extending the interal_relocation array and pinning it. If
10191 the original r_rel is from the same BFD, we can complete this here.
10192 Otherwise, we add a fix record to let the final link fix the
10193 appropriate address. Contents and internal relocations for the
10194 section must be pinned after calling this routine. */
10197 move_literal (bfd
*abfd
,
10198 struct bfd_link_info
*link_info
,
10201 bfd_byte
*contents
,
10202 xtensa_relax_info
*relax_info
,
10203 Elf_Internal_Rela
**internal_relocs_p
,
10204 const literal_value
*lit
)
10206 Elf_Internal_Rela
*new_relocs
= NULL
;
10207 size_t new_relocs_count
= 0;
10208 Elf_Internal_Rela this_rela
;
10209 const r_reloc
*r_rel
;
10211 r_rel
= &lit
->r_rel
;
10212 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
10214 if (r_reloc_is_const (r_rel
))
10215 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
10220 reloc_bfd_fix
*fix
;
10221 unsigned insert_at
;
10223 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
10225 /* This is the difficult case. We have to create a fix up. */
10226 this_rela
.r_offset
= offset
;
10227 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
10228 this_rela
.r_addend
=
10229 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
10230 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
10232 /* Currently, we cannot move relocations during a relocatable link. */
10233 BFD_ASSERT (!bfd_link_relocatable (link_info
));
10234 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
,
10235 r_reloc_get_section (r_rel
),
10236 r_rel
->target_offset
+ r_rel
->virtual_offset
,
10238 /* We also need to mark that relocations are needed here. */
10239 sec
->flags
|= SEC_RELOC
;
10241 translate_reloc_bfd_fix (fix
);
10242 /* This fix has not yet been translated. */
10243 add_fix (sec
, fix
);
10245 /* Add the relocation. If we have already allocated our own
10246 space for the relocations and we have room for more, then use
10247 it. Otherwise, allocate new space and move the literals. */
10248 insert_at
= sec
->reloc_count
;
10249 for (i
= 0; i
< sec
->reloc_count
; ++i
)
10251 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
10258 if (*internal_relocs_p
!= relax_info
->allocated_relocs
10259 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
10261 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
10262 || sec
->reloc_count
== relax_info
->relocs_count
);
10264 if (relax_info
->allocated_relocs_count
== 0)
10265 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
10267 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
10269 new_relocs
= (Elf_Internal_Rela
*)
10270 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
10274 /* We could handle this more quickly by finding the split point. */
10275 if (insert_at
!= 0)
10276 memcpy (new_relocs
, *internal_relocs_p
,
10277 insert_at
* sizeof (Elf_Internal_Rela
));
10279 new_relocs
[insert_at
] = this_rela
;
10281 if (insert_at
!= sec
->reloc_count
)
10282 memcpy (new_relocs
+ insert_at
+ 1,
10283 (*internal_relocs_p
) + insert_at
,
10284 (sec
->reloc_count
- insert_at
)
10285 * sizeof (Elf_Internal_Rela
));
10287 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
10289 /* The first time we re-allocate, we can only free the
10290 old relocs if they were allocated with bfd_malloc.
10291 This is not true when keep_memory is in effect. */
10292 if (!link_info
->keep_memory
)
10293 free (*internal_relocs_p
);
10296 free (*internal_relocs_p
);
10297 relax_info
->allocated_relocs
= new_relocs
;
10298 relax_info
->allocated_relocs_count
= new_relocs_count
;
10299 elf_section_data (sec
)->relocs
= new_relocs
;
10300 sec
->reloc_count
++;
10301 relax_info
->relocs_count
= sec
->reloc_count
;
10302 *internal_relocs_p
= new_relocs
;
10306 if (insert_at
!= sec
->reloc_count
)
10309 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
10310 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
10312 (*internal_relocs_p
)[insert_at
] = this_rela
;
10313 sec
->reloc_count
++;
10314 if (relax_info
->allocated_relocs
)
10315 relax_info
->relocs_count
= sec
->reloc_count
;
10322 /* This is similar to relax_section except that when a target is moved,
10323 we shift addresses up. We also need to modify the size. This
10324 algorithm does NOT allow for relocations into the middle of the
10325 property sections. */
10328 relax_property_section (bfd
*abfd
,
10330 struct bfd_link_info
*link_info
)
10332 Elf_Internal_Rela
*internal_relocs
;
10333 bfd_byte
*contents
;
10335 bfd_boolean ok
= TRUE
;
10336 bfd_boolean is_full_prop_section
;
10337 size_t last_zfill_target_offset
= 0;
10338 asection
*last_zfill_target_sec
= NULL
;
10339 bfd_size_type sec_size
;
10340 bfd_size_type entry_size
;
10342 sec_size
= bfd_get_section_limit (abfd
, sec
);
10343 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
10344 link_info
->keep_memory
);
10345 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
10346 if (contents
== NULL
&& sec_size
!= 0)
10352 is_full_prop_section
= xtensa_is_proptable_section (sec
);
10353 if (is_full_prop_section
)
10358 if (internal_relocs
)
10360 for (i
= 0; i
< sec
->reloc_count
; i
++)
10362 Elf_Internal_Rela
*irel
;
10363 xtensa_relax_info
*target_relax_info
;
10365 asection
*target_sec
;
10367 bfd_byte
*size_p
, *flags_p
;
10369 /* Locally change the source address.
10370 Translate the target to the new target address.
10371 If it points to this section and has been removed, MOVE IT.
10372 Also, don't forget to modify the associated SIZE at
10375 irel
= &internal_relocs
[i
];
10376 r_type
= ELF32_R_TYPE (irel
->r_info
);
10377 if (r_type
== R_XTENSA_NONE
)
10380 /* Find the literal value. */
10381 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
10382 size_p
= &contents
[irel
->r_offset
+ 4];
10384 if (is_full_prop_section
)
10385 flags_p
= &contents
[irel
->r_offset
+ 8];
10386 BFD_ASSERT (irel
->r_offset
+ entry_size
<= sec_size
);
10388 target_sec
= r_reloc_get_section (&val
.r_rel
);
10389 target_relax_info
= get_xtensa_relax_info (target_sec
);
10391 if (target_relax_info
10392 && (target_relax_info
->is_relaxable_literal_section
10393 || target_relax_info
->is_relaxable_asm_section
))
10395 /* Translate the relocation's destination. */
10396 bfd_vma old_offset
= val
.r_rel
.target_offset
;
10397 bfd_vma new_offset
;
10398 long old_size
, new_size
;
10399 int removed_by_old_offset
=
10400 removed_by_actions_map (&target_relax_info
->action_list
,
10401 old_offset
, FALSE
);
10402 new_offset
= old_offset
- removed_by_old_offset
;
10404 /* Assert that we are not out of bounds. */
10405 old_size
= bfd_get_32 (abfd
, size_p
);
10406 new_size
= old_size
;
10410 /* Only the first zero-sized unreachable entry is
10411 allowed to expand. In this case the new offset
10412 should be the offset before the fill and the new
10413 size is the expansion size. For other zero-sized
10414 entries the resulting size should be zero with an
10415 offset before or after the fill address depending
10416 on whether the expanding unreachable entry
10418 if (last_zfill_target_sec
== 0
10419 || last_zfill_target_sec
!= target_sec
10420 || last_zfill_target_offset
!= old_offset
)
10422 bfd_vma new_end_offset
= new_offset
;
10424 /* Recompute the new_offset, but this time don't
10425 include any fill inserted by relaxation. */
10426 removed_by_old_offset
=
10427 removed_by_actions_map (&target_relax_info
->action_list
,
10429 new_offset
= old_offset
- removed_by_old_offset
;
10431 /* If it is not unreachable and we have not yet
10432 seen an unreachable at this address, place it
10433 before the fill address. */
10434 if (flags_p
&& (bfd_get_32 (abfd
, flags_p
)
10435 & XTENSA_PROP_UNREACHABLE
) != 0)
10437 new_size
= new_end_offset
- new_offset
;
10439 last_zfill_target_sec
= target_sec
;
10440 last_zfill_target_offset
= old_offset
;
10446 int removed_by_old_offset_size
=
10447 removed_by_actions_map (&target_relax_info
->action_list
,
10448 old_offset
+ old_size
, TRUE
);
10449 new_size
-= removed_by_old_offset_size
- removed_by_old_offset
;
10452 if (new_size
!= old_size
)
10454 bfd_put_32 (abfd
, new_size
, size_p
);
10455 pin_contents (sec
, contents
);
10458 if (new_offset
!= old_offset
)
10460 bfd_vma diff
= new_offset
- old_offset
;
10461 irel
->r_addend
+= diff
;
10462 pin_internal_relocs (sec
, internal_relocs
);
10468 /* Combine adjacent property table entries. This is also done in
10469 finish_dynamic_sections() but at that point it's too late to
10470 reclaim the space in the output section, so we do this twice. */
10472 if (internal_relocs
&& (!bfd_link_relocatable (link_info
)
10473 || xtensa_is_littable_section (sec
)))
10475 Elf_Internal_Rela
*last_irel
= NULL
;
10476 Elf_Internal_Rela
*irel
, *next_rel
, *rel_end
;
10477 int removed_bytes
= 0;
10479 flagword predef_flags
;
10481 predef_flags
= xtensa_get_property_predef_flags (sec
);
10483 /* Walk over memory and relocations at the same time.
10484 This REQUIRES that the internal_relocs be sorted by offset. */
10485 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
10486 internal_reloc_compare
);
10488 pin_internal_relocs (sec
, internal_relocs
);
10489 pin_contents (sec
, contents
);
10491 next_rel
= internal_relocs
;
10492 rel_end
= internal_relocs
+ sec
->reloc_count
;
10494 BFD_ASSERT (sec
->size
% entry_size
== 0);
10496 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
10498 Elf_Internal_Rela
*offset_rel
, *extra_rel
;
10499 bfd_vma bytes_to_remove
, size
, actual_offset
;
10500 bfd_boolean remove_this_rel
;
10503 /* Find the first relocation for the entry at the current offset.
10504 Adjust the offsets of any extra relocations for the previous
10509 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10511 if ((irel
->r_offset
== offset
10512 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
10513 || irel
->r_offset
> offset
)
10518 irel
->r_offset
-= removed_bytes
;
10522 /* Find the next relocation (if there are any left). */
10526 for (irel
= offset_rel
+ 1; irel
< rel_end
; irel
++)
10528 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
10536 /* Check if there are relocations on the current entry. There
10537 should usually be a relocation on the offset field. If there
10538 are relocations on the size or flags, then we can't optimize
10539 this entry. Also, find the next relocation to examine on the
10543 if (offset_rel
->r_offset
>= offset
+ entry_size
)
10545 next_rel
= offset_rel
;
10546 /* There are no relocations on the current entry, but we
10547 might still be able to remove it if the size is zero. */
10550 else if (offset_rel
->r_offset
> offset
10552 && extra_rel
->r_offset
< offset
+ entry_size
))
10554 /* There is a relocation on the size or flags, so we can't
10555 do anything with this entry. Continue with the next. */
10556 next_rel
= offset_rel
;
10561 BFD_ASSERT (offset_rel
->r_offset
== offset
);
10562 offset_rel
->r_offset
-= removed_bytes
;
10563 next_rel
= offset_rel
+ 1;
10569 remove_this_rel
= FALSE
;
10570 bytes_to_remove
= 0;
10571 actual_offset
= offset
- removed_bytes
;
10572 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
10574 if (is_full_prop_section
)
10575 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
10577 flags
= predef_flags
;
10580 && (flags
& XTENSA_PROP_ALIGN
) == 0
10581 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
10583 /* Always remove entries with zero size and no alignment. */
10584 bytes_to_remove
= entry_size
;
10586 remove_this_rel
= TRUE
;
10588 else if (offset_rel
10589 && ELF32_R_TYPE (offset_rel
->r_info
) == R_XTENSA_32
)
10593 flagword old_flags
;
10595 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
10596 bfd_vma old_address
=
10597 (last_irel
->r_addend
10598 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
10599 bfd_vma new_address
=
10600 (offset_rel
->r_addend
10601 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
10602 if (is_full_prop_section
)
10603 old_flags
= bfd_get_32
10604 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
10606 old_flags
= predef_flags
;
10608 if ((ELF32_R_SYM (offset_rel
->r_info
)
10609 == ELF32_R_SYM (last_irel
->r_info
))
10610 && old_address
+ old_size
== new_address
10611 && old_flags
== flags
10612 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
10613 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
10615 /* Fix the old size. */
10616 bfd_put_32 (abfd
, old_size
+ size
,
10617 &contents
[last_irel
->r_offset
+ 4]);
10618 bytes_to_remove
= entry_size
;
10619 remove_this_rel
= TRUE
;
10622 last_irel
= offset_rel
;
10625 last_irel
= offset_rel
;
10628 if (remove_this_rel
)
10630 offset_rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
10631 offset_rel
->r_offset
= 0;
10634 if (bytes_to_remove
!= 0)
10636 removed_bytes
+= bytes_to_remove
;
10637 if (offset
+ bytes_to_remove
< sec
->size
)
10638 memmove (&contents
[actual_offset
],
10639 &contents
[actual_offset
+ bytes_to_remove
],
10640 sec
->size
- offset
- bytes_to_remove
);
10646 /* Fix up any extra relocations on the last entry. */
10647 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10648 irel
->r_offset
-= removed_bytes
;
10650 /* Clear the removed bytes. */
10651 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
10653 if (sec
->rawsize
== 0)
10654 sec
->rawsize
= sec
->size
;
10655 sec
->size
-= removed_bytes
;
10657 if (xtensa_is_littable_section (sec
))
10659 asection
*sgotloc
= elf_xtensa_hash_table (link_info
)->sgotloc
;
10661 sgotloc
->size
-= removed_bytes
;
10667 release_internal_relocs (sec
, internal_relocs
);
10668 release_contents (sec
, contents
);
10673 /* Third relaxation pass. */
10675 /* Change symbol values to account for removed literals. */
10678 relax_section_symbols (bfd
*abfd
, asection
*sec
)
10680 xtensa_relax_info
*relax_info
;
10681 unsigned int sec_shndx
;
10682 Elf_Internal_Shdr
*symtab_hdr
;
10683 Elf_Internal_Sym
*isymbuf
;
10684 unsigned i
, num_syms
, num_locals
;
10686 relax_info
= get_xtensa_relax_info (sec
);
10687 BFD_ASSERT (relax_info
);
10689 if (!relax_info
->is_relaxable_literal_section
10690 && !relax_info
->is_relaxable_asm_section
)
10693 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
10695 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10696 isymbuf
= retrieve_local_syms (abfd
);
10698 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
10699 num_locals
= symtab_hdr
->sh_info
;
10701 /* Adjust the local symbols defined in this section. */
10702 for (i
= 0; i
< num_locals
; i
++)
10704 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
10706 if (isym
->st_shndx
== sec_shndx
)
10708 bfd_vma orig_addr
= isym
->st_value
;
10709 int removed
= removed_by_actions_map (&relax_info
->action_list
,
10712 isym
->st_value
-= removed
;
10713 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
10715 removed_by_actions_map (&relax_info
->action_list
,
10716 orig_addr
+ isym
->st_size
, FALSE
) -
10721 /* Now adjust the global symbols defined in this section. */
10722 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
10724 struct elf_link_hash_entry
*sym_hash
;
10726 sym_hash
= elf_sym_hashes (abfd
)[i
];
10728 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
10729 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
10731 if ((sym_hash
->root
.type
== bfd_link_hash_defined
10732 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
10733 && sym_hash
->root
.u
.def
.section
== sec
)
10735 bfd_vma orig_addr
= sym_hash
->root
.u
.def
.value
;
10736 int removed
= removed_by_actions_map (&relax_info
->action_list
,
10739 sym_hash
->root
.u
.def
.value
-= removed
;
10741 if (sym_hash
->type
== STT_FUNC
)
10743 removed_by_actions_map (&relax_info
->action_list
,
10744 orig_addr
+ sym_hash
->size
, FALSE
) -
10753 /* "Fix" handling functions, called while performing relocations. */
10756 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
10758 asection
*input_section
,
10759 bfd_byte
*contents
)
10762 asection
*sec
, *old_sec
;
10763 bfd_vma old_offset
;
10764 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10765 reloc_bfd_fix
*fix
;
10767 if (r_type
== R_XTENSA_NONE
)
10770 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10774 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
10775 bfd_get_section_limit (input_bfd
, input_section
));
10776 old_sec
= r_reloc_get_section (&r_rel
);
10777 old_offset
= r_rel
.target_offset
;
10779 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
10781 if (r_type
!= R_XTENSA_ASM_EXPAND
)
10783 (*_bfd_error_handler
)
10784 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10785 input_bfd
, input_section
, rel
->r_offset
,
10786 elf_howto_table
[r_type
].name
);
10789 /* Leave it be. Resolution will happen in a later stage. */
10793 sec
= fix
->target_sec
;
10794 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
10795 - (old_sec
->output_offset
+ old_offset
));
10802 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
10804 asection
*input_section
,
10805 bfd_byte
*contents
,
10806 bfd_vma
*relocationp
)
10809 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10810 reloc_bfd_fix
*fix
;
10811 bfd_vma fixup_diff
;
10813 if (r_type
== R_XTENSA_NONE
)
10816 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10820 sec
= fix
->target_sec
;
10822 fixup_diff
= rel
->r_addend
;
10823 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
10825 bfd_vma inplace_val
;
10826 BFD_ASSERT (fix
->src_offset
10827 < bfd_get_section_limit (input_bfd
, input_section
));
10828 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
10829 fixup_diff
+= inplace_val
;
10832 *relocationp
= (sec
->output_section
->vma
10833 + sec
->output_offset
10834 + fix
->target_offset
- fixup_diff
);
10838 /* Miscellaneous utility functions.... */
10841 elf_xtensa_get_plt_section (struct bfd_link_info
*info
, int chunk
)
10843 struct elf_xtensa_link_hash_table
*htab
;
10849 htab
= elf_xtensa_hash_table (info
);
10856 dynobj
= elf_hash_table (info
)->dynobj
;
10857 sprintf (plt_name
, ".plt.%u", chunk
);
10858 return bfd_get_linker_section (dynobj
, plt_name
);
10863 elf_xtensa_get_gotplt_section (struct bfd_link_info
*info
, int chunk
)
10865 struct elf_xtensa_link_hash_table
*htab
;
10871 htab
= elf_xtensa_hash_table (info
);
10874 return htab
->sgotplt
;
10877 dynobj
= elf_hash_table (info
)->dynobj
;
10878 sprintf (got_name
, ".got.plt.%u", chunk
);
10879 return bfd_get_linker_section (dynobj
, got_name
);
10883 /* Get the input section for a given symbol index.
10885 . a section symbol, return the section;
10886 . a common symbol, return the common section;
10887 . an undefined symbol, return the undefined section;
10888 . an indirect symbol, follow the links;
10889 . an absolute value, return the absolute section. */
10892 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
10894 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10895 asection
*target_sec
= NULL
;
10896 if (r_symndx
< symtab_hdr
->sh_info
)
10898 Elf_Internal_Sym
*isymbuf
;
10899 unsigned int section_index
;
10901 isymbuf
= retrieve_local_syms (abfd
);
10902 section_index
= isymbuf
[r_symndx
].st_shndx
;
10904 if (section_index
== SHN_UNDEF
)
10905 target_sec
= bfd_und_section_ptr
;
10906 else if (section_index
== SHN_ABS
)
10907 target_sec
= bfd_abs_section_ptr
;
10908 else if (section_index
== SHN_COMMON
)
10909 target_sec
= bfd_com_section_ptr
;
10911 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
10915 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10916 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
10918 while (h
->root
.type
== bfd_link_hash_indirect
10919 || h
->root
.type
== bfd_link_hash_warning
)
10920 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10922 switch (h
->root
.type
)
10924 case bfd_link_hash_defined
:
10925 case bfd_link_hash_defweak
:
10926 target_sec
= h
->root
.u
.def
.section
;
10928 case bfd_link_hash_common
:
10929 target_sec
= bfd_com_section_ptr
;
10931 case bfd_link_hash_undefined
:
10932 case bfd_link_hash_undefweak
:
10933 target_sec
= bfd_und_section_ptr
;
10935 default: /* New indirect warning. */
10936 target_sec
= bfd_und_section_ptr
;
10944 static struct elf_link_hash_entry
*
10945 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
10947 unsigned long indx
;
10948 struct elf_link_hash_entry
*h
;
10949 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10951 if (r_symndx
< symtab_hdr
->sh_info
)
10954 indx
= r_symndx
- symtab_hdr
->sh_info
;
10955 h
= elf_sym_hashes (abfd
)[indx
];
10956 while (h
->root
.type
== bfd_link_hash_indirect
10957 || h
->root
.type
== bfd_link_hash_warning
)
10958 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10963 /* Get the section-relative offset for a symbol number. */
10966 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
10968 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10969 bfd_vma offset
= 0;
10971 if (r_symndx
< symtab_hdr
->sh_info
)
10973 Elf_Internal_Sym
*isymbuf
;
10974 isymbuf
= retrieve_local_syms (abfd
);
10975 offset
= isymbuf
[r_symndx
].st_value
;
10979 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10980 struct elf_link_hash_entry
*h
=
10981 elf_sym_hashes (abfd
)[indx
];
10983 while (h
->root
.type
== bfd_link_hash_indirect
10984 || h
->root
.type
== bfd_link_hash_warning
)
10985 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10986 if (h
->root
.type
== bfd_link_hash_defined
10987 || h
->root
.type
== bfd_link_hash_defweak
)
10988 offset
= h
->root
.u
.def
.value
;
10995 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
10997 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
10998 struct elf_link_hash_entry
*h
;
11000 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
11001 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
11008 pcrel_reloc_fits (xtensa_opcode opc
,
11010 bfd_vma self_address
,
11011 bfd_vma dest_address
)
11013 xtensa_isa isa
= xtensa_default_isa
;
11014 uint32 valp
= dest_address
;
11015 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
11016 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
11023 xtensa_is_property_section (asection
*sec
)
11025 if (xtensa_is_insntable_section (sec
)
11026 || xtensa_is_littable_section (sec
)
11027 || xtensa_is_proptable_section (sec
))
11035 xtensa_is_insntable_section (asection
*sec
)
11037 if (CONST_STRNEQ (sec
->name
, XTENSA_INSN_SEC_NAME
)
11038 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.x."))
11046 xtensa_is_littable_section (asection
*sec
)
11048 if (CONST_STRNEQ (sec
->name
, XTENSA_LIT_SEC_NAME
)
11049 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.p."))
11057 xtensa_is_proptable_section (asection
*sec
)
11059 if (CONST_STRNEQ (sec
->name
, XTENSA_PROP_SEC_NAME
)
11060 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.prop."))
11068 internal_reloc_compare (const void *ap
, const void *bp
)
11070 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
11071 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
11073 if (a
->r_offset
!= b
->r_offset
)
11074 return (a
->r_offset
- b
->r_offset
);
11076 /* We don't need to sort on these criteria for correctness,
11077 but enforcing a more strict ordering prevents unstable qsort
11078 from behaving differently with different implementations.
11079 Without the code below we get correct but different results
11080 on Solaris 2.7 and 2.8. We would like to always produce the
11081 same results no matter the host. */
11083 if (a
->r_info
!= b
->r_info
)
11084 return (a
->r_info
- b
->r_info
);
11086 return (a
->r_addend
- b
->r_addend
);
11091 internal_reloc_matches (const void *ap
, const void *bp
)
11093 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
11094 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
11096 /* Check if one entry overlaps with the other; this shouldn't happen
11097 except when searching for a match. */
11098 return (a
->r_offset
- b
->r_offset
);
11102 /* Predicate function used to look up a section in a particular group. */
11105 match_section_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
, void *inf
)
11107 const char *gname
= inf
;
11108 const char *group_name
= elf_group_name (sec
);
11110 return (group_name
== gname
11111 || (group_name
!= NULL
11113 && strcmp (group_name
, gname
) == 0));
11117 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
11120 xtensa_property_section_name (asection
*sec
, const char *base_name
)
11122 const char *suffix
, *group_name
;
11123 char *prop_sec_name
;
11125 group_name
= elf_group_name (sec
);
11128 suffix
= strrchr (sec
->name
, '.');
11129 if (suffix
== sec
->name
)
11131 prop_sec_name
= (char *) bfd_malloc (strlen (base_name
) + 1
11132 + (suffix
? strlen (suffix
) : 0));
11133 strcpy (prop_sec_name
, base_name
);
11135 strcat (prop_sec_name
, suffix
);
11137 else if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
11139 char *linkonce_kind
= 0;
11141 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
11142 linkonce_kind
= "x.";
11143 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
11144 linkonce_kind
= "p.";
11145 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
11146 linkonce_kind
= "prop.";
11150 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
11151 + strlen (linkonce_kind
) + 1);
11152 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
11153 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
11155 suffix
= sec
->name
+ linkonce_len
;
11156 /* For backward compatibility, replace "t." instead of inserting
11157 the new linkonce_kind (but not for "prop" sections). */
11158 if (CONST_STRNEQ (suffix
, "t.") && linkonce_kind
[1] == '.')
11160 strcat (prop_sec_name
+ linkonce_len
, suffix
);
11163 prop_sec_name
= strdup (base_name
);
11165 return prop_sec_name
;
11170 xtensa_get_property_section (asection
*sec
, const char *base_name
)
11172 char *prop_sec_name
;
11173 asection
*prop_sec
;
11175 prop_sec_name
= xtensa_property_section_name (sec
, base_name
);
11176 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
11177 match_section_group
,
11178 (void *) elf_group_name (sec
));
11179 free (prop_sec_name
);
11185 xtensa_make_property_section (asection
*sec
, const char *base_name
)
11187 char *prop_sec_name
;
11188 asection
*prop_sec
;
11190 /* Check if the section already exists. */
11191 prop_sec_name
= xtensa_property_section_name (sec
, base_name
);
11192 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
11193 match_section_group
,
11194 (void *) elf_group_name (sec
));
11195 /* If not, create it. */
11198 flagword flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
);
11199 flags
|= (bfd_get_section_flags (sec
->owner
, sec
)
11200 & (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
));
11202 prop_sec
= bfd_make_section_anyway_with_flags
11203 (sec
->owner
, strdup (prop_sec_name
), flags
);
11207 elf_group_name (prop_sec
) = elf_group_name (sec
);
11210 free (prop_sec_name
);
11216 xtensa_get_property_predef_flags (asection
*sec
)
11218 if (xtensa_is_insntable_section (sec
))
11219 return (XTENSA_PROP_INSN
11220 | XTENSA_PROP_NO_TRANSFORM
11221 | XTENSA_PROP_INSN_NO_REORDER
);
11223 if (xtensa_is_littable_section (sec
))
11224 return (XTENSA_PROP_LITERAL
11225 | XTENSA_PROP_NO_TRANSFORM
11226 | XTENSA_PROP_INSN_NO_REORDER
);
11232 /* Other functions called directly by the linker. */
11235 xtensa_callback_required_dependence (bfd
*abfd
,
11237 struct bfd_link_info
*link_info
,
11238 deps_callback_t callback
,
11241 Elf_Internal_Rela
*internal_relocs
;
11242 bfd_byte
*contents
;
11244 bfd_boolean ok
= TRUE
;
11245 bfd_size_type sec_size
;
11247 sec_size
= bfd_get_section_limit (abfd
, sec
);
11249 /* ".plt*" sections have no explicit relocations but they contain L32R
11250 instructions that reference the corresponding ".got.plt*" sections. */
11251 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
11252 && CONST_STRNEQ (sec
->name
, ".plt"))
11256 /* Find the corresponding ".got.plt*" section. */
11257 if (sec
->name
[4] == '\0')
11258 sgotplt
= bfd_get_linker_section (sec
->owner
, ".got.plt");
11264 BFD_ASSERT (sec
->name
[4] == '.');
11265 chunk
= strtol (&sec
->name
[5], NULL
, 10);
11267 sprintf (got_name
, ".got.plt.%u", chunk
);
11268 sgotplt
= bfd_get_linker_section (sec
->owner
, got_name
);
11270 BFD_ASSERT (sgotplt
);
11272 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11273 section referencing a literal at the very beginning of
11274 ".got.plt". This is very close to the real dependence, anyway. */
11275 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
11278 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11279 when building uclibc, which runs "ld -b binary /dev/null". */
11280 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
11283 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
11284 link_info
->keep_memory
);
11285 if (internal_relocs
== NULL
11286 || sec
->reloc_count
== 0)
11289 /* Cache the contents for the duration of this scan. */
11290 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
11291 if (contents
== NULL
&& sec_size
!= 0)
11297 if (!xtensa_default_isa
)
11298 xtensa_default_isa
= xtensa_isa_init (0, 0);
11300 for (i
= 0; i
< sec
->reloc_count
; i
++)
11302 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
11303 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
11306 asection
*target_sec
;
11307 bfd_vma target_offset
;
11309 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
11312 /* L32Rs must be local to the input file. */
11313 if (r_reloc_is_defined (&l32r_rel
))
11315 target_sec
= r_reloc_get_section (&l32r_rel
);
11316 target_offset
= l32r_rel
.target_offset
;
11318 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
11324 release_internal_relocs (sec
, internal_relocs
);
11325 release_contents (sec
, contents
);
11329 /* The default literal sections should always be marked as "code" (i.e.,
11330 SHF_EXECINSTR). This is particularly important for the Linux kernel
11331 module loader so that the literals are not placed after the text. */
11332 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
11334 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11335 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11336 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11337 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE
, 0 },
11338 { NULL
, 0, 0, 0, 0 }
11341 #define ELF_TARGET_ID XTENSA_ELF_DATA
11343 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11344 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11345 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11346 #define TARGET_BIG_NAME "elf32-xtensa-be"
11347 #define ELF_ARCH bfd_arch_xtensa
11349 #define ELF_MACHINE_CODE EM_XTENSA
11350 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11353 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11354 #else /* !XCHAL_HAVE_MMU */
11355 #define ELF_MAXPAGESIZE 1
11356 #endif /* !XCHAL_HAVE_MMU */
11357 #endif /* ELF_ARCH */
11359 #define elf_backend_can_gc_sections 1
11360 #define elf_backend_can_refcount 1
11361 #define elf_backend_plt_readonly 1
11362 #define elf_backend_got_header_size 4
11363 #define elf_backend_want_dynbss 0
11364 #define elf_backend_want_got_plt 1
11366 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11368 #define bfd_elf32_mkobject elf_xtensa_mkobject
11370 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11371 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11372 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11373 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11374 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11375 #define bfd_elf32_bfd_reloc_name_lookup \
11376 elf_xtensa_reloc_name_lookup
11377 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11378 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11380 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11381 #define elf_backend_check_relocs elf_xtensa_check_relocs
11382 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11383 #define elf_backend_discard_info elf_xtensa_discard_info
11384 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11385 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11386 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11387 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11388 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11389 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11390 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11391 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11392 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11393 #define elf_backend_object_p elf_xtensa_object_p
11394 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11395 #define elf_backend_relocate_section elf_xtensa_relocate_section
11396 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11397 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11398 #define elf_backend_omit_section_dynsym \
11399 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11400 #define elf_backend_special_sections elf_xtensa_special_sections
11401 #define elf_backend_action_discarded elf_xtensa_action_discarded
11402 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11404 #include "elf32-target.h"