Delete duplicate target short-cuts to dynamic sections
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Rename one of the generic section flags to better document how it
158 is used here. */
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
161 \f
162 static reloc_howto_type elf_howto_table[] =
163 {
164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 FALSE, 0, 0, FALSE),
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
170
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 FALSE, 0, 0xffffffff, FALSE),
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 FALSE, 0, 0xffffffff, FALSE),
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 FALSE, 0, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 FALSE, 0, 0xffffffff, FALSE),
191
192 EMPTY_HOWTO (7),
193
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
209 EMPTY_HOWTO (13),
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
214
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
218 FALSE, 0, 0, FALSE),
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 FALSE, 0, 0, FALSE),
223
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
318 };
319
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
330 {
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
433 default:
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455 }
456
457 static reloc_howto_type *
458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460 {
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469 }
470
471
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475 static void
476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
479 {
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
482 if (r_type >= (unsigned int) R_XTENSA_max)
483 {
484 /* xgettext:c-format */
485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
486 r_type = 0;
487 }
488 cache_ptr->howto = &elf_howto_table[r_type];
489 }
490
491 \f
492 /* Functions for the Xtensa ELF linker. */
493
494 /* The name of the dynamic interpreter. This is put in the .interp
495 section. */
496
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
498
499 /* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
501 the PLT entry.) */
502
503 #define PLT_ENTRY_SIZE 16
504
505 /* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
514
515 #define PLT_ENTRIES_PER_CHUNK 254
516
517 /* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
521
522 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
523 {
524 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
525 0x6c, 0x10, 0x04, /* entry sp, 32 */
526 #endif
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
531 0 /* unused */
532 };
533
534 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
535 {
536 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
537 0x36, 0x41, 0x00, /* entry sp, 32 */
538 #endif
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
543 0 /* unused */
544 };
545
546 /* The size of the thread control block. */
547 #define TCB_SIZE 8
548
549 struct elf_xtensa_link_hash_entry
550 {
551 struct elf_link_hash_entry elf;
552
553 bfd_signed_vma tlsfunc_refcount;
554
555 #define GOT_UNKNOWN 0
556 #define GOT_NORMAL 1
557 #define GOT_TLS_GD 2 /* global or local dynamic */
558 #define GOT_TLS_IE 4 /* initial or local exec */
559 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type;
561 };
562
563 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
564
565 struct elf_xtensa_obj_tdata
566 {
567 struct elf_obj_tdata root;
568
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type;
571
572 bfd_signed_vma *local_tlsfunc_refcounts;
573 };
574
575 #define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
577
578 #define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
580
581 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
583
584 #define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
588
589 static bfd_boolean
590 elf_xtensa_mkobject (bfd *abfd)
591 {
592 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
593 XTENSA_ELF_DATA);
594 }
595
596 /* Xtensa ELF linker hash table. */
597
598 struct elf_xtensa_link_hash_table
599 {
600 struct elf_link_hash_table elf;
601
602 /* Short-cuts to get to dynamic linker sections. */
603 asection *sgotloc;
604 asection *spltlittbl;
605
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
612 int plt_reloc_count;
613
614 struct elf_xtensa_link_hash_entry *tlsbase;
615 };
616
617 /* Get the Xtensa ELF linker hash table from a link_info structure. */
618
619 #define elf_xtensa_hash_table(p) \
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
622
623 /* Create an entry in an Xtensa ELF linker hash table. */
624
625 static struct bfd_hash_entry *
626 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
628 const char *string)
629 {
630 /* Allocate the structure if it has not already been allocated by a
631 subclass. */
632 if (entry == NULL)
633 {
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
636 if (entry == NULL)
637 return entry;
638 }
639
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642 if (entry != NULL)
643 {
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
647 }
648
649 return entry;
650 }
651
652 /* Create an Xtensa ELF linker hash table. */
653
654 static struct bfd_link_hash_table *
655 elf_xtensa_link_hash_table_create (bfd *abfd)
656 {
657 struct elf_link_hash_entry *tlsbase;
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660
661 ret = bfd_zmalloc (amt);
662 if (ret == NULL)
663 return NULL;
664
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
666 elf_xtensa_link_hash_newfunc,
667 sizeof (struct elf_xtensa_link_hash_entry),
668 XTENSA_ELF_DATA))
669 {
670 free (ret);
671 return NULL;
672 }
673
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
684 return &ret->elf.root;
685 }
686
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689 static void
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693 {
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 }
713
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
717 {
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 }
726
727 \f
728 static int
729 property_table_compare (const void *ap, const void *bp)
730 {
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
734 if (a->address == b->address)
735 {
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
748
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758 }
759
760
761 static int
762 property_table_matches (const void *ap, const void *bp)
763 {
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773 }
774
775
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
779
780 static int
781 xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
786 {
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
805
806 table_section = xtensa_get_property_section (section, sec_name);
807 if (table_section)
808 table_size = table_section->size;
809
810 if (table_size == 0)
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
831
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
834 {
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
845 for (off = 0; off < table_size; off += table_entry_size)
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
861
862 if (irel && irel->r_offset == off)
863 {
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
867
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
869 continue;
870
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
874 }
875 else
876 {
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
880 }
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
894 if (block_count > 0)
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 /* xgettext:c-format */
912 _bfd_error_handler (_("%B(%A): invalid property table"),
913 abfd, section);
914 bfd_set_error (bfd_error_bad_value);
915 free (blocks);
916 return -1;
917 }
918 }
919 }
920
921 *table_p = blocks;
922 return block_count;
923 }
924
925
926 static property_table_entry *
927 elf_xtensa_find_property_entry (property_table_entry *property_table,
928 int property_table_size,
929 bfd_vma addr)
930 {
931 property_table_entry entry;
932 property_table_entry *rv;
933
934 if (property_table_size == 0)
935 return NULL;
936
937 entry.address = addr;
938 entry.size = 1;
939 entry.flags = 0;
940
941 rv = bsearch (&entry, property_table, property_table_size,
942 sizeof (property_table_entry), property_table_matches);
943 return rv;
944 }
945
946
947 static bfd_boolean
948 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
949 int lit_table_size,
950 bfd_vma addr)
951 {
952 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
953 return TRUE;
954
955 return FALSE;
956 }
957
958 \f
959 /* Look through the relocs for a section during the first phase, and
960 calculate needed space in the dynamic reloc sections. */
961
962 static bfd_boolean
963 elf_xtensa_check_relocs (bfd *abfd,
964 struct bfd_link_info *info,
965 asection *sec,
966 const Elf_Internal_Rela *relocs)
967 {
968 struct elf_xtensa_link_hash_table *htab;
969 Elf_Internal_Shdr *symtab_hdr;
970 struct elf_link_hash_entry **sym_hashes;
971 const Elf_Internal_Rela *rel;
972 const Elf_Internal_Rela *rel_end;
973
974 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
975 return TRUE;
976
977 BFD_ASSERT (is_xtensa_elf (abfd));
978
979 htab = elf_xtensa_hash_table (info);
980 if (htab == NULL)
981 return FALSE;
982
983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
984 sym_hashes = elf_sym_hashes (abfd);
985
986 rel_end = relocs + sec->reloc_count;
987 for (rel = relocs; rel < rel_end; rel++)
988 {
989 unsigned int r_type;
990 unsigned long r_symndx;
991 struct elf_link_hash_entry *h = NULL;
992 struct elf_xtensa_link_hash_entry *eh;
993 int tls_type, old_tls_type;
994 bfd_boolean is_got = FALSE;
995 bfd_boolean is_plt = FALSE;
996 bfd_boolean is_tlsfunc = FALSE;
997
998 r_symndx = ELF32_R_SYM (rel->r_info);
999 r_type = ELF32_R_TYPE (rel->r_info);
1000
1001 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1002 {
1003 /* xgettext:c-format */
1004 _bfd_error_handler (_("%B: bad symbol index: %d"),
1005 abfd, r_symndx);
1006 return FALSE;
1007 }
1008
1009 if (r_symndx >= symtab_hdr->sh_info)
1010 {
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 while (h->root.type == bfd_link_hash_indirect
1013 || h->root.type == bfd_link_hash_warning)
1014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1015
1016 /* PR15323, ref flags aren't set for references in the same
1017 object. */
1018 h->root.non_ir_ref = 1;
1019 }
1020 eh = elf_xtensa_hash_entry (h);
1021
1022 switch (r_type)
1023 {
1024 case R_XTENSA_TLSDESC_FN:
1025 if (bfd_link_pic (info))
1026 {
1027 tls_type = GOT_TLS_GD;
1028 is_got = TRUE;
1029 is_tlsfunc = TRUE;
1030 }
1031 else
1032 tls_type = GOT_TLS_IE;
1033 break;
1034
1035 case R_XTENSA_TLSDESC_ARG:
1036 if (bfd_link_pic (info))
1037 {
1038 tls_type = GOT_TLS_GD;
1039 is_got = TRUE;
1040 }
1041 else
1042 {
1043 tls_type = GOT_TLS_IE;
1044 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1045 is_got = TRUE;
1046 }
1047 break;
1048
1049 case R_XTENSA_TLS_DTPOFF:
1050 if (bfd_link_pic (info))
1051 tls_type = GOT_TLS_GD;
1052 else
1053 tls_type = GOT_TLS_IE;
1054 break;
1055
1056 case R_XTENSA_TLS_TPOFF:
1057 tls_type = GOT_TLS_IE;
1058 if (bfd_link_pic (info))
1059 info->flags |= DF_STATIC_TLS;
1060 if (bfd_link_pic (info) || h)
1061 is_got = TRUE;
1062 break;
1063
1064 case R_XTENSA_32:
1065 tls_type = GOT_NORMAL;
1066 is_got = TRUE;
1067 break;
1068
1069 case R_XTENSA_PLT:
1070 tls_type = GOT_NORMAL;
1071 is_plt = TRUE;
1072 break;
1073
1074 case R_XTENSA_GNU_VTINHERIT:
1075 /* This relocation describes the C++ object vtable hierarchy.
1076 Reconstruct it for later use during GC. */
1077 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1078 return FALSE;
1079 continue;
1080
1081 case R_XTENSA_GNU_VTENTRY:
1082 /* This relocation describes which C++ vtable entries are actually
1083 used. Record for later use during GC. */
1084 BFD_ASSERT (h != NULL);
1085 if (h != NULL
1086 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1087 return FALSE;
1088 continue;
1089
1090 default:
1091 /* Nothing to do for any other relocations. */
1092 continue;
1093 }
1094
1095 if (h)
1096 {
1097 if (is_plt)
1098 {
1099 if (h->plt.refcount <= 0)
1100 {
1101 h->needs_plt = 1;
1102 h->plt.refcount = 1;
1103 }
1104 else
1105 h->plt.refcount += 1;
1106
1107 /* Keep track of the total PLT relocation count even if we
1108 don't yet know whether the dynamic sections will be
1109 created. */
1110 htab->plt_reloc_count += 1;
1111
1112 if (elf_hash_table (info)->dynamic_sections_created)
1113 {
1114 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1115 return FALSE;
1116 }
1117 }
1118 else if (is_got)
1119 {
1120 if (h->got.refcount <= 0)
1121 h->got.refcount = 1;
1122 else
1123 h->got.refcount += 1;
1124 }
1125
1126 if (is_tlsfunc)
1127 eh->tlsfunc_refcount += 1;
1128
1129 old_tls_type = eh->tls_type;
1130 }
1131 else
1132 {
1133 /* Allocate storage the first time. */
1134 if (elf_local_got_refcounts (abfd) == NULL)
1135 {
1136 bfd_size_type size = symtab_hdr->sh_info;
1137 void *mem;
1138
1139 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1140 if (mem == NULL)
1141 return FALSE;
1142 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1143
1144 mem = bfd_zalloc (abfd, size);
1145 if (mem == NULL)
1146 return FALSE;
1147 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1148
1149 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1150 if (mem == NULL)
1151 return FALSE;
1152 elf_xtensa_local_tlsfunc_refcounts (abfd)
1153 = (bfd_signed_vma *) mem;
1154 }
1155
1156 /* This is a global offset table entry for a local symbol. */
1157 if (is_got || is_plt)
1158 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1159
1160 if (is_tlsfunc)
1161 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1162
1163 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1164 }
1165
1166 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1167 tls_type |= old_tls_type;
1168 /* If a TLS symbol is accessed using IE at least once,
1169 there is no point to use a dynamic model for it. */
1170 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1171 && ((old_tls_type & GOT_TLS_GD) == 0
1172 || (tls_type & GOT_TLS_IE) == 0))
1173 {
1174 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1175 tls_type = old_tls_type;
1176 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1177 tls_type |= old_tls_type;
1178 else
1179 {
1180 _bfd_error_handler
1181 /* xgettext:c-format */
1182 (_("%B: `%s' accessed both as normal and thread local symbol"),
1183 abfd,
1184 h ? h->root.root.string : "<local>");
1185 return FALSE;
1186 }
1187 }
1188
1189 if (old_tls_type != tls_type)
1190 {
1191 if (eh)
1192 eh->tls_type = tls_type;
1193 else
1194 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1195 }
1196 }
1197
1198 return TRUE;
1199 }
1200
1201
1202 static void
1203 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1204 struct elf_link_hash_entry *h)
1205 {
1206 if (bfd_link_pic (info))
1207 {
1208 if (h->plt.refcount > 0)
1209 {
1210 /* For shared objects, there's no need for PLT entries for local
1211 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1212 if (h->got.refcount < 0)
1213 h->got.refcount = 0;
1214 h->got.refcount += h->plt.refcount;
1215 h->plt.refcount = 0;
1216 }
1217 }
1218 else
1219 {
1220 /* Don't need any dynamic relocations at all. */
1221 h->plt.refcount = 0;
1222 h->got.refcount = 0;
1223 }
1224 }
1225
1226
1227 static void
1228 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1229 struct elf_link_hash_entry *h,
1230 bfd_boolean force_local)
1231 {
1232 /* For a shared link, move the plt refcount to the got refcount to leave
1233 space for RELATIVE relocs. */
1234 elf_xtensa_make_sym_local (info, h);
1235
1236 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1237 }
1238
1239
1240 /* Return the section that should be marked against GC for a given
1241 relocation. */
1242
1243 static asection *
1244 elf_xtensa_gc_mark_hook (asection *sec,
1245 struct bfd_link_info *info,
1246 Elf_Internal_Rela *rel,
1247 struct elf_link_hash_entry *h,
1248 Elf_Internal_Sym *sym)
1249 {
1250 /* Property sections are marked "KEEP" in the linker scripts, but they
1251 should not cause other sections to be marked. (This approach relies
1252 on elf_xtensa_discard_info to remove property table entries that
1253 describe discarded sections. Alternatively, it might be more
1254 efficient to avoid using "KEEP" in the linker scripts and instead use
1255 the gc_mark_extra_sections hook to mark only the property sections
1256 that describe marked sections. That alternative does not work well
1257 with the current property table sections, which do not correspond
1258 one-to-one with the sections they describe, but that should be fixed
1259 someday.) */
1260 if (xtensa_is_property_section (sec))
1261 return NULL;
1262
1263 if (h != NULL)
1264 switch (ELF32_R_TYPE (rel->r_info))
1265 {
1266 case R_XTENSA_GNU_VTINHERIT:
1267 case R_XTENSA_GNU_VTENTRY:
1268 return NULL;
1269 }
1270
1271 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1272 }
1273
1274
1275 /* Update the GOT & PLT entry reference counts
1276 for the section being removed. */
1277
1278 static bfd_boolean
1279 elf_xtensa_gc_sweep_hook (bfd *abfd,
1280 struct bfd_link_info *info,
1281 asection *sec,
1282 const Elf_Internal_Rela *relocs)
1283 {
1284 Elf_Internal_Shdr *symtab_hdr;
1285 struct elf_link_hash_entry **sym_hashes;
1286 const Elf_Internal_Rela *rel, *relend;
1287 struct elf_xtensa_link_hash_table *htab;
1288
1289 htab = elf_xtensa_hash_table (info);
1290 if (htab == NULL)
1291 return FALSE;
1292
1293 if (bfd_link_relocatable (info))
1294 return TRUE;
1295
1296 if ((sec->flags & SEC_ALLOC) == 0)
1297 return TRUE;
1298
1299 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1300 sym_hashes = elf_sym_hashes (abfd);
1301
1302 relend = relocs + sec->reloc_count;
1303 for (rel = relocs; rel < relend; rel++)
1304 {
1305 unsigned long r_symndx;
1306 unsigned int r_type;
1307 struct elf_link_hash_entry *h = NULL;
1308 struct elf_xtensa_link_hash_entry *eh;
1309 bfd_boolean is_got = FALSE;
1310 bfd_boolean is_plt = FALSE;
1311 bfd_boolean is_tlsfunc = FALSE;
1312
1313 r_symndx = ELF32_R_SYM (rel->r_info);
1314 if (r_symndx >= symtab_hdr->sh_info)
1315 {
1316 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1317 while (h->root.type == bfd_link_hash_indirect
1318 || h->root.type == bfd_link_hash_warning)
1319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1320 }
1321 eh = elf_xtensa_hash_entry (h);
1322
1323 r_type = ELF32_R_TYPE (rel->r_info);
1324 switch (r_type)
1325 {
1326 case R_XTENSA_TLSDESC_FN:
1327 if (bfd_link_pic (info))
1328 {
1329 is_got = TRUE;
1330 is_tlsfunc = TRUE;
1331 }
1332 break;
1333
1334 case R_XTENSA_TLSDESC_ARG:
1335 if (bfd_link_pic (info))
1336 is_got = TRUE;
1337 else
1338 {
1339 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1340 is_got = TRUE;
1341 }
1342 break;
1343
1344 case R_XTENSA_TLS_TPOFF:
1345 if (bfd_link_pic (info) || h)
1346 is_got = TRUE;
1347 break;
1348
1349 case R_XTENSA_32:
1350 is_got = TRUE;
1351 break;
1352
1353 case R_XTENSA_PLT:
1354 is_plt = TRUE;
1355 break;
1356
1357 default:
1358 continue;
1359 }
1360
1361 if (h)
1362 {
1363 if (is_plt)
1364 {
1365 /* If the symbol has been localized its plt.refcount got moved
1366 to got.refcount. Handle it as GOT. */
1367 if (h->plt.refcount > 0)
1368 h->plt.refcount--;
1369 else
1370 is_got = TRUE;
1371 }
1372 if (is_got)
1373 {
1374 if (h->got.refcount > 0)
1375 h->got.refcount--;
1376 }
1377 if (is_tlsfunc)
1378 {
1379 if (eh->tlsfunc_refcount > 0)
1380 eh->tlsfunc_refcount--;
1381 }
1382 }
1383 else
1384 {
1385 if (is_got || is_plt)
1386 {
1387 bfd_signed_vma *got_refcount
1388 = &elf_local_got_refcounts (abfd) [r_symndx];
1389 if (*got_refcount > 0)
1390 *got_refcount -= 1;
1391 }
1392 if (is_tlsfunc)
1393 {
1394 bfd_signed_vma *tlsfunc_refcount
1395 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1396 if (*tlsfunc_refcount > 0)
1397 *tlsfunc_refcount -= 1;
1398 }
1399 }
1400 }
1401
1402 return TRUE;
1403 }
1404
1405
1406 /* Create all the dynamic sections. */
1407
1408 static bfd_boolean
1409 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1410 {
1411 struct elf_xtensa_link_hash_table *htab;
1412 flagword flags, noalloc_flags;
1413
1414 htab = elf_xtensa_hash_table (info);
1415 if (htab == NULL)
1416 return FALSE;
1417
1418 /* First do all the standard stuff. */
1419 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1420 return FALSE;
1421
1422 /* Create any extra PLT sections in case check_relocs has already
1423 been called on all the non-dynamic input files. */
1424 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1425 return FALSE;
1426
1427 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1428 | SEC_LINKER_CREATED | SEC_READONLY);
1429 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1430
1431 /* Mark the ".got.plt" section READONLY. */
1432 if (htab->elf.sgotplt == NULL
1433 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1434 return FALSE;
1435
1436 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1437 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1438 flags);
1439 if (htab->sgotloc == NULL
1440 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1441 return FALSE;
1442
1443 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1444 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1445 noalloc_flags);
1446 if (htab->spltlittbl == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1448 return FALSE;
1449
1450 return TRUE;
1451 }
1452
1453
1454 static bfd_boolean
1455 add_extra_plt_sections (struct bfd_link_info *info, int count)
1456 {
1457 bfd *dynobj = elf_hash_table (info)->dynobj;
1458 int chunk;
1459
1460 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1461 ".got.plt" sections. */
1462 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1463 {
1464 char *sname;
1465 flagword flags;
1466 asection *s;
1467
1468 /* Stop when we find a section has already been created. */
1469 if (elf_xtensa_get_plt_section (info, chunk))
1470 break;
1471
1472 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1473 | SEC_LINKER_CREATED | SEC_READONLY);
1474
1475 sname = (char *) bfd_malloc (10);
1476 sprintf (sname, ".plt.%u", chunk);
1477 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1478 if (s == NULL
1479 || ! bfd_set_section_alignment (dynobj, s, 2))
1480 return FALSE;
1481
1482 sname = (char *) bfd_malloc (14);
1483 sprintf (sname, ".got.plt.%u", chunk);
1484 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1485 if (s == NULL
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488 }
1489
1490 return TRUE;
1491 }
1492
1493
1494 /* Adjust a symbol defined by a dynamic object and referenced by a
1495 regular object. The current definition is in some section of the
1496 dynamic object, but we're not including those sections. We have to
1497 change the definition to something the rest of the link can
1498 understand. */
1499
1500 static bfd_boolean
1501 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 struct elf_link_hash_entry *h)
1503 {
1504 /* If this is a weak symbol, and there is a real definition, the
1505 processor independent code will have arranged for us to see the
1506 real definition first, and we can just use the same value. */
1507 if (h->u.weakdef)
1508 {
1509 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1510 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1511 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1512 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1513 return TRUE;
1514 }
1515
1516 /* This is a reference to a symbol defined by a dynamic object. The
1517 reference must go through the GOT, so there's no need for COPY relocs,
1518 .dynbss, etc. */
1519
1520 return TRUE;
1521 }
1522
1523
1524 static bfd_boolean
1525 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1526 {
1527 struct bfd_link_info *info;
1528 struct elf_xtensa_link_hash_table *htab;
1529 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1530
1531 if (h->root.type == bfd_link_hash_indirect)
1532 return TRUE;
1533
1534 info = (struct bfd_link_info *) arg;
1535 htab = elf_xtensa_hash_table (info);
1536 if (htab == NULL)
1537 return FALSE;
1538
1539 /* If we saw any use of an IE model for this symbol, we can then optimize
1540 away GOT entries for any TLSDESC_FN relocs. */
1541 if ((eh->tls_type & GOT_TLS_IE) != 0)
1542 {
1543 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1544 h->got.refcount -= eh->tlsfunc_refcount;
1545 }
1546
1547 if (! elf_xtensa_dynamic_symbol_p (h, info))
1548 elf_xtensa_make_sym_local (info, h);
1549
1550 if (h->plt.refcount > 0)
1551 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1552
1553 if (h->got.refcount > 0)
1554 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1555
1556 return TRUE;
1557 }
1558
1559
1560 static void
1561 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1562 {
1563 struct elf_xtensa_link_hash_table *htab;
1564 bfd *i;
1565
1566 htab = elf_xtensa_hash_table (info);
1567 if (htab == NULL)
1568 return;
1569
1570 for (i = info->input_bfds; i; i = i->link.next)
1571 {
1572 bfd_signed_vma *local_got_refcounts;
1573 bfd_size_type j, cnt;
1574 Elf_Internal_Shdr *symtab_hdr;
1575
1576 local_got_refcounts = elf_local_got_refcounts (i);
1577 if (!local_got_refcounts)
1578 continue;
1579
1580 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1581 cnt = symtab_hdr->sh_info;
1582
1583 for (j = 0; j < cnt; ++j)
1584 {
1585 /* If we saw any use of an IE model for this symbol, we can
1586 then optimize away GOT entries for any TLSDESC_FN relocs. */
1587 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1588 {
1589 bfd_signed_vma *tlsfunc_refcount
1590 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1591 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1592 local_got_refcounts[j] -= *tlsfunc_refcount;
1593 }
1594
1595 if (local_got_refcounts[j] > 0)
1596 htab->elf.srelgot->size += (local_got_refcounts[j]
1597 * sizeof (Elf32_External_Rela));
1598 }
1599 }
1600 }
1601
1602
1603 /* Set the sizes of the dynamic sections. */
1604
1605 static bfd_boolean
1606 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1607 struct bfd_link_info *info)
1608 {
1609 struct elf_xtensa_link_hash_table *htab;
1610 bfd *dynobj, *abfd;
1611 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1612 bfd_boolean relplt, relgot;
1613 int plt_entries, plt_chunks, chunk;
1614
1615 plt_entries = 0;
1616 plt_chunks = 0;
1617
1618 htab = elf_xtensa_hash_table (info);
1619 if (htab == NULL)
1620 return FALSE;
1621
1622 dynobj = elf_hash_table (info)->dynobj;
1623 if (dynobj == NULL)
1624 abort ();
1625 srelgot = htab->elf.srelgot;
1626 srelplt = htab->elf.srelplt;
1627
1628 if (elf_hash_table (info)->dynamic_sections_created)
1629 {
1630 BFD_ASSERT (htab->elf.srelgot != NULL
1631 && htab->elf.srelplt != NULL
1632 && htab->elf.sgot != NULL
1633 && htab->spltlittbl != NULL
1634 && htab->sgotloc != NULL);
1635
1636 /* Set the contents of the .interp section to the interpreter. */
1637 if (bfd_link_executable (info) && !info->nointerp)
1638 {
1639 s = bfd_get_linker_section (dynobj, ".interp");
1640 if (s == NULL)
1641 abort ();
1642 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1643 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1644 }
1645
1646 /* Allocate room for one word in ".got". */
1647 htab->elf.sgot->size = 4;
1648
1649 /* Allocate space in ".rela.got" for literals that reference global
1650 symbols and space in ".rela.plt" for literals that have PLT
1651 entries. */
1652 elf_link_hash_traverse (elf_hash_table (info),
1653 elf_xtensa_allocate_dynrelocs,
1654 (void *) info);
1655
1656 /* If we are generating a shared object, we also need space in
1657 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1658 reference local symbols. */
1659 if (bfd_link_pic (info))
1660 elf_xtensa_allocate_local_got_size (info);
1661
1662 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1663 each PLT entry, we need the PLT code plus a 4-byte literal.
1664 For each chunk of ".plt", we also need two more 4-byte
1665 literals, two corresponding entries in ".rela.got", and an
1666 8-byte entry in ".xt.lit.plt". */
1667 spltlittbl = htab->spltlittbl;
1668 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1669 plt_chunks =
1670 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1671
1672 /* Iterate over all the PLT chunks, including any extra sections
1673 created earlier because the initial count of PLT relocations
1674 was an overestimate. */
1675 for (chunk = 0;
1676 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1677 chunk++)
1678 {
1679 int chunk_entries;
1680
1681 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1682 BFD_ASSERT (sgotplt != NULL);
1683
1684 if (chunk < plt_chunks - 1)
1685 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1686 else if (chunk == plt_chunks - 1)
1687 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1688 else
1689 chunk_entries = 0;
1690
1691 if (chunk_entries != 0)
1692 {
1693 sgotplt->size = 4 * (chunk_entries + 2);
1694 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1695 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1696 spltlittbl->size += 8;
1697 }
1698 else
1699 {
1700 sgotplt->size = 0;
1701 splt->size = 0;
1702 }
1703 }
1704
1705 /* Allocate space in ".got.loc" to match the total size of all the
1706 literal tables. */
1707 sgotloc = htab->sgotloc;
1708 sgotloc->size = spltlittbl->size;
1709 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1710 {
1711 if (abfd->flags & DYNAMIC)
1712 continue;
1713 for (s = abfd->sections; s != NULL; s = s->next)
1714 {
1715 if (! discarded_section (s)
1716 && xtensa_is_littable_section (s)
1717 && s != spltlittbl)
1718 sgotloc->size += s->size;
1719 }
1720 }
1721 }
1722
1723 /* Allocate memory for dynamic sections. */
1724 relplt = FALSE;
1725 relgot = FALSE;
1726 for (s = dynobj->sections; s != NULL; s = s->next)
1727 {
1728 const char *name;
1729
1730 if ((s->flags & SEC_LINKER_CREATED) == 0)
1731 continue;
1732
1733 /* It's OK to base decisions on the section name, because none
1734 of the dynobj section names depend upon the input files. */
1735 name = bfd_get_section_name (dynobj, s);
1736
1737 if (CONST_STRNEQ (name, ".rela"))
1738 {
1739 if (s->size != 0)
1740 {
1741 if (strcmp (name, ".rela.plt") == 0)
1742 relplt = TRUE;
1743 else if (strcmp (name, ".rela.got") == 0)
1744 relgot = TRUE;
1745
1746 /* We use the reloc_count field as a counter if we need
1747 to copy relocs into the output file. */
1748 s->reloc_count = 0;
1749 }
1750 }
1751 else if (! CONST_STRNEQ (name, ".plt.")
1752 && ! CONST_STRNEQ (name, ".got.plt.")
1753 && strcmp (name, ".got") != 0
1754 && strcmp (name, ".plt") != 0
1755 && strcmp (name, ".got.plt") != 0
1756 && strcmp (name, ".xt.lit.plt") != 0
1757 && strcmp (name, ".got.loc") != 0)
1758 {
1759 /* It's not one of our sections, so don't allocate space. */
1760 continue;
1761 }
1762
1763 if (s->size == 0)
1764 {
1765 /* If we don't need this section, strip it from the output
1766 file. We must create the ".plt*" and ".got.plt*"
1767 sections in create_dynamic_sections and/or check_relocs
1768 based on a conservative estimate of the PLT relocation
1769 count, because the sections must be created before the
1770 linker maps input sections to output sections. The
1771 linker does that before size_dynamic_sections, where we
1772 compute the exact size of the PLT, so there may be more
1773 of these sections than are actually needed. */
1774 s->flags |= SEC_EXCLUDE;
1775 }
1776 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1777 {
1778 /* Allocate memory for the section contents. */
1779 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1780 if (s->contents == NULL)
1781 return FALSE;
1782 }
1783 }
1784
1785 if (elf_hash_table (info)->dynamic_sections_created)
1786 {
1787 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1788 known until finish_dynamic_sections, but we need to get the relocs
1789 in place before they are sorted. */
1790 for (chunk = 0; chunk < plt_chunks; chunk++)
1791 {
1792 Elf_Internal_Rela irela;
1793 bfd_byte *loc;
1794
1795 irela.r_offset = 0;
1796 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1797 irela.r_addend = 0;
1798
1799 loc = (srelgot->contents
1800 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1801 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1802 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1803 loc + sizeof (Elf32_External_Rela));
1804 srelgot->reloc_count += 2;
1805 }
1806
1807 /* Add some entries to the .dynamic section. We fill in the
1808 values later, in elf_xtensa_finish_dynamic_sections, but we
1809 must add the entries now so that we get the correct size for
1810 the .dynamic section. The DT_DEBUG entry is filled in by the
1811 dynamic linker and used by the debugger. */
1812 #define add_dynamic_entry(TAG, VAL) \
1813 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1814
1815 if (bfd_link_executable (info))
1816 {
1817 if (!add_dynamic_entry (DT_DEBUG, 0))
1818 return FALSE;
1819 }
1820
1821 if (relplt)
1822 {
1823 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1824 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1825 || !add_dynamic_entry (DT_JMPREL, 0))
1826 return FALSE;
1827 }
1828
1829 if (relgot)
1830 {
1831 if (!add_dynamic_entry (DT_RELA, 0)
1832 || !add_dynamic_entry (DT_RELASZ, 0)
1833 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1834 return FALSE;
1835 }
1836
1837 if (!add_dynamic_entry (DT_PLTGOT, 0)
1838 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1839 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1840 return FALSE;
1841 }
1842 #undef add_dynamic_entry
1843
1844 return TRUE;
1845 }
1846
1847 static bfd_boolean
1848 elf_xtensa_always_size_sections (bfd *output_bfd,
1849 struct bfd_link_info *info)
1850 {
1851 struct elf_xtensa_link_hash_table *htab;
1852 asection *tls_sec;
1853
1854 htab = elf_xtensa_hash_table (info);
1855 if (htab == NULL)
1856 return FALSE;
1857
1858 tls_sec = htab->elf.tls_sec;
1859
1860 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1861 {
1862 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1863 struct bfd_link_hash_entry *bh = &tlsbase->root;
1864 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1865
1866 tlsbase->type = STT_TLS;
1867 if (!(_bfd_generic_link_add_one_symbol
1868 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1869 tls_sec, 0, NULL, FALSE,
1870 bed->collect, &bh)))
1871 return FALSE;
1872 tlsbase->def_regular = 1;
1873 tlsbase->other = STV_HIDDEN;
1874 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1875 }
1876
1877 return TRUE;
1878 }
1879
1880 \f
1881 /* Return the base VMA address which should be subtracted from real addresses
1882 when resolving @dtpoff relocation.
1883 This is PT_TLS segment p_vaddr. */
1884
1885 static bfd_vma
1886 dtpoff_base (struct bfd_link_info *info)
1887 {
1888 /* If tls_sec is NULL, we should have signalled an error already. */
1889 if (elf_hash_table (info)->tls_sec == NULL)
1890 return 0;
1891 return elf_hash_table (info)->tls_sec->vma;
1892 }
1893
1894 /* Return the relocation value for @tpoff relocation
1895 if STT_TLS virtual address is ADDRESS. */
1896
1897 static bfd_vma
1898 tpoff (struct bfd_link_info *info, bfd_vma address)
1899 {
1900 struct elf_link_hash_table *htab = elf_hash_table (info);
1901 bfd_vma base;
1902
1903 /* If tls_sec is NULL, we should have signalled an error already. */
1904 if (htab->tls_sec == NULL)
1905 return 0;
1906 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1907 return address - htab->tls_sec->vma + base;
1908 }
1909
1910 /* Perform the specified relocation. The instruction at (contents + address)
1911 is modified to set one operand to represent the value in "relocation". The
1912 operand position is determined by the relocation type recorded in the
1913 howto. */
1914
1915 #define CALL_SEGMENT_BITS (30)
1916 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1917
1918 static bfd_reloc_status_type
1919 elf_xtensa_do_reloc (reloc_howto_type *howto,
1920 bfd *abfd,
1921 asection *input_section,
1922 bfd_vma relocation,
1923 bfd_byte *contents,
1924 bfd_vma address,
1925 bfd_boolean is_weak_undef,
1926 char **error_message)
1927 {
1928 xtensa_format fmt;
1929 xtensa_opcode opcode;
1930 xtensa_isa isa = xtensa_default_isa;
1931 static xtensa_insnbuf ibuff = NULL;
1932 static xtensa_insnbuf sbuff = NULL;
1933 bfd_vma self_address;
1934 bfd_size_type input_size;
1935 int opnd, slot;
1936 uint32 newval;
1937
1938 if (!ibuff)
1939 {
1940 ibuff = xtensa_insnbuf_alloc (isa);
1941 sbuff = xtensa_insnbuf_alloc (isa);
1942 }
1943
1944 input_size = bfd_get_section_limit (abfd, input_section);
1945
1946 /* Calculate the PC address for this instruction. */
1947 self_address = (input_section->output_section->vma
1948 + input_section->output_offset
1949 + address);
1950
1951 switch (howto->type)
1952 {
1953 case R_XTENSA_NONE:
1954 case R_XTENSA_DIFF8:
1955 case R_XTENSA_DIFF16:
1956 case R_XTENSA_DIFF32:
1957 case R_XTENSA_TLS_FUNC:
1958 case R_XTENSA_TLS_ARG:
1959 case R_XTENSA_TLS_CALL:
1960 return bfd_reloc_ok;
1961
1962 case R_XTENSA_ASM_EXPAND:
1963 if (!is_weak_undef)
1964 {
1965 /* Check for windowed CALL across a 1GB boundary. */
1966 opcode = get_expanded_call_opcode (contents + address,
1967 input_size - address, 0);
1968 if (is_windowed_call_opcode (opcode))
1969 {
1970 if ((self_address >> CALL_SEGMENT_BITS)
1971 != (relocation >> CALL_SEGMENT_BITS))
1972 {
1973 *error_message = "windowed longcall crosses 1GB boundary; "
1974 "return may fail";
1975 return bfd_reloc_dangerous;
1976 }
1977 }
1978 }
1979 return bfd_reloc_ok;
1980
1981 case R_XTENSA_ASM_SIMPLIFY:
1982 {
1983 /* Convert the L32R/CALLX to CALL. */
1984 bfd_reloc_status_type retval =
1985 elf_xtensa_do_asm_simplify (contents, address, input_size,
1986 error_message);
1987 if (retval != bfd_reloc_ok)
1988 return bfd_reloc_dangerous;
1989
1990 /* The CALL needs to be relocated. Continue below for that part. */
1991 address += 3;
1992 self_address += 3;
1993 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1994 }
1995 break;
1996
1997 case R_XTENSA_32:
1998 {
1999 bfd_vma x;
2000 x = bfd_get_32 (abfd, contents + address);
2001 x = x + relocation;
2002 bfd_put_32 (abfd, x, contents + address);
2003 }
2004 return bfd_reloc_ok;
2005
2006 case R_XTENSA_32_PCREL:
2007 bfd_put_32 (abfd, relocation - self_address, contents + address);
2008 return bfd_reloc_ok;
2009
2010 case R_XTENSA_PLT:
2011 case R_XTENSA_TLSDESC_FN:
2012 case R_XTENSA_TLSDESC_ARG:
2013 case R_XTENSA_TLS_DTPOFF:
2014 case R_XTENSA_TLS_TPOFF:
2015 bfd_put_32 (abfd, relocation, contents + address);
2016 return bfd_reloc_ok;
2017 }
2018
2019 /* Only instruction slot-specific relocations handled below.... */
2020 slot = get_relocation_slot (howto->type);
2021 if (slot == XTENSA_UNDEFINED)
2022 {
2023 *error_message = "unexpected relocation";
2024 return bfd_reloc_dangerous;
2025 }
2026
2027 /* Read the instruction into a buffer and decode the opcode. */
2028 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2029 input_size - address);
2030 fmt = xtensa_format_decode (isa, ibuff);
2031 if (fmt == XTENSA_UNDEFINED)
2032 {
2033 *error_message = "cannot decode instruction format";
2034 return bfd_reloc_dangerous;
2035 }
2036
2037 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2038
2039 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2040 if (opcode == XTENSA_UNDEFINED)
2041 {
2042 *error_message = "cannot decode instruction opcode";
2043 return bfd_reloc_dangerous;
2044 }
2045
2046 /* Check for opcode-specific "alternate" relocations. */
2047 if (is_alt_relocation (howto->type))
2048 {
2049 if (opcode == get_l32r_opcode ())
2050 {
2051 /* Handle the special-case of non-PC-relative L32R instructions. */
2052 bfd *output_bfd = input_section->output_section->owner;
2053 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2054 if (!lit4_sec)
2055 {
2056 *error_message = "relocation references missing .lit4 section";
2057 return bfd_reloc_dangerous;
2058 }
2059 self_address = ((lit4_sec->vma & ~0xfff)
2060 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2061 newval = relocation;
2062 opnd = 1;
2063 }
2064 else if (opcode == get_const16_opcode ())
2065 {
2066 /* ALT used for high 16 bits. */
2067 newval = relocation >> 16;
2068 opnd = 1;
2069 }
2070 else
2071 {
2072 /* No other "alternate" relocations currently defined. */
2073 *error_message = "unexpected relocation";
2074 return bfd_reloc_dangerous;
2075 }
2076 }
2077 else /* Not an "alternate" relocation.... */
2078 {
2079 if (opcode == get_const16_opcode ())
2080 {
2081 newval = relocation & 0xffff;
2082 opnd = 1;
2083 }
2084 else
2085 {
2086 /* ...normal PC-relative relocation.... */
2087
2088 /* Determine which operand is being relocated. */
2089 opnd = get_relocation_opnd (opcode, howto->type);
2090 if (opnd == XTENSA_UNDEFINED)
2091 {
2092 *error_message = "unexpected relocation";
2093 return bfd_reloc_dangerous;
2094 }
2095
2096 if (!howto->pc_relative)
2097 {
2098 *error_message = "expected PC-relative relocation";
2099 return bfd_reloc_dangerous;
2100 }
2101
2102 newval = relocation;
2103 }
2104 }
2105
2106 /* Apply the relocation. */
2107 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2108 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2109 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2110 sbuff, newval))
2111 {
2112 const char *opname = xtensa_opcode_name (isa, opcode);
2113 const char *msg;
2114
2115 msg = "cannot encode";
2116 if (is_direct_call_opcode (opcode))
2117 {
2118 if ((relocation & 0x3) != 0)
2119 msg = "misaligned call target";
2120 else
2121 msg = "call target out of range";
2122 }
2123 else if (opcode == get_l32r_opcode ())
2124 {
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned literal target";
2127 else if (is_alt_relocation (howto->type))
2128 msg = "literal target out of range (too many literals)";
2129 else if (self_address > relocation)
2130 msg = "literal target out of range (try using text-section-literals)";
2131 else
2132 msg = "literal placed after use";
2133 }
2134
2135 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2136 return bfd_reloc_dangerous;
2137 }
2138
2139 /* Check for calls across 1GB boundaries. */
2140 if (is_direct_call_opcode (opcode)
2141 && is_windowed_call_opcode (opcode))
2142 {
2143 if ((self_address >> CALL_SEGMENT_BITS)
2144 != (relocation >> CALL_SEGMENT_BITS))
2145 {
2146 *error_message =
2147 "windowed call crosses 1GB boundary; return may fail";
2148 return bfd_reloc_dangerous;
2149 }
2150 }
2151
2152 /* Write the modified instruction back out of the buffer. */
2153 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2154 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2155 input_size - address);
2156 return bfd_reloc_ok;
2157 }
2158
2159
2160 static char *
2161 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2162 {
2163 /* To reduce the size of the memory leak,
2164 we only use a single message buffer. */
2165 static bfd_size_type alloc_size = 0;
2166 static char *message = NULL;
2167 bfd_size_type orig_len, len = 0;
2168 bfd_boolean is_append;
2169 va_list ap;
2170
2171 va_start (ap, arglen);
2172
2173 is_append = (origmsg == message);
2174
2175 orig_len = strlen (origmsg);
2176 len = orig_len + strlen (fmt) + arglen + 20;
2177 if (len > alloc_size)
2178 {
2179 message = (char *) bfd_realloc_or_free (message, len);
2180 alloc_size = len;
2181 }
2182 if (message != NULL)
2183 {
2184 if (!is_append)
2185 memcpy (message, origmsg, orig_len);
2186 vsprintf (message + orig_len, fmt, ap);
2187 }
2188 va_end (ap);
2189 return message;
2190 }
2191
2192
2193 /* This function is registered as the "special_function" in the
2194 Xtensa howto for handling simplify operations.
2195 bfd_perform_relocation / bfd_install_relocation use it to
2196 perform (install) the specified relocation. Since this replaces the code
2197 in bfd_perform_relocation, it is basically an Xtensa-specific,
2198 stripped-down version of bfd_perform_relocation. */
2199
2200 static bfd_reloc_status_type
2201 bfd_elf_xtensa_reloc (bfd *abfd,
2202 arelent *reloc_entry,
2203 asymbol *symbol,
2204 void *data,
2205 asection *input_section,
2206 bfd *output_bfd,
2207 char **error_message)
2208 {
2209 bfd_vma relocation;
2210 bfd_reloc_status_type flag;
2211 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2212 bfd_vma output_base = 0;
2213 reloc_howto_type *howto = reloc_entry->howto;
2214 asection *reloc_target_output_section;
2215 bfd_boolean is_weak_undef;
2216
2217 if (!xtensa_default_isa)
2218 xtensa_default_isa = xtensa_isa_init (0, 0);
2219
2220 /* ELF relocs are against symbols. If we are producing relocatable
2221 output, and the reloc is against an external symbol, the resulting
2222 reloc will also be against the same symbol. In such a case, we
2223 don't want to change anything about the way the reloc is handled,
2224 since it will all be done at final link time. This test is similar
2225 to what bfd_elf_generic_reloc does except that it lets relocs with
2226 howto->partial_inplace go through even if the addend is non-zero.
2227 (The real problem is that partial_inplace is set for XTENSA_32
2228 relocs to begin with, but that's a long story and there's little we
2229 can do about it now....) */
2230
2231 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2232 {
2233 reloc_entry->address += input_section->output_offset;
2234 return bfd_reloc_ok;
2235 }
2236
2237 /* Is the address of the relocation really within the section? */
2238 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2239 return bfd_reloc_outofrange;
2240
2241 /* Work out which section the relocation is targeted at and the
2242 initial relocation command value. */
2243
2244 /* Get symbol value. (Common symbols are special.) */
2245 if (bfd_is_com_section (symbol->section))
2246 relocation = 0;
2247 else
2248 relocation = symbol->value;
2249
2250 reloc_target_output_section = symbol->section->output_section;
2251
2252 /* Convert input-section-relative symbol value to absolute. */
2253 if ((output_bfd && !howto->partial_inplace)
2254 || reloc_target_output_section == NULL)
2255 output_base = 0;
2256 else
2257 output_base = reloc_target_output_section->vma;
2258
2259 relocation += output_base + symbol->section->output_offset;
2260
2261 /* Add in supplied addend. */
2262 relocation += reloc_entry->addend;
2263
2264 /* Here the variable relocation holds the final address of the
2265 symbol we are relocating against, plus any addend. */
2266 if (output_bfd)
2267 {
2268 if (!howto->partial_inplace)
2269 {
2270 /* This is a partial relocation, and we want to apply the relocation
2271 to the reloc entry rather than the raw data. Everything except
2272 relocations against section symbols has already been handled
2273 above. */
2274
2275 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2276 reloc_entry->addend = relocation;
2277 reloc_entry->address += input_section->output_offset;
2278 return bfd_reloc_ok;
2279 }
2280 else
2281 {
2282 reloc_entry->address += input_section->output_offset;
2283 reloc_entry->addend = 0;
2284 }
2285 }
2286
2287 is_weak_undef = (bfd_is_und_section (symbol->section)
2288 && (symbol->flags & BSF_WEAK) != 0);
2289 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2290 (bfd_byte *) data, (bfd_vma) octets,
2291 is_weak_undef, error_message);
2292
2293 if (flag == bfd_reloc_dangerous)
2294 {
2295 /* Add the symbol name to the error message. */
2296 if (! *error_message)
2297 *error_message = "";
2298 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2299 strlen (symbol->name) + 17,
2300 symbol->name,
2301 (unsigned long) reloc_entry->addend);
2302 }
2303
2304 return flag;
2305 }
2306
2307
2308 /* Set up an entry in the procedure linkage table. */
2309
2310 static bfd_vma
2311 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2312 bfd *output_bfd,
2313 unsigned reloc_index)
2314 {
2315 asection *splt, *sgotplt;
2316 bfd_vma plt_base, got_base;
2317 bfd_vma code_offset, lit_offset, abi_offset;
2318 int chunk;
2319
2320 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2321 splt = elf_xtensa_get_plt_section (info, chunk);
2322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2323 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2324
2325 plt_base = splt->output_section->vma + splt->output_offset;
2326 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2327
2328 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2329 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2330
2331 /* Fill in the literal entry. This is the offset of the dynamic
2332 relocation entry. */
2333 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2334 sgotplt->contents + lit_offset);
2335
2336 /* Fill in the entry in the procedure linkage table. */
2337 memcpy (splt->contents + code_offset,
2338 (bfd_big_endian (output_bfd)
2339 ? elf_xtensa_be_plt_entry
2340 : elf_xtensa_le_plt_entry),
2341 PLT_ENTRY_SIZE);
2342 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2344 plt_base + code_offset + abi_offset),
2345 splt->contents + code_offset + abi_offset + 1);
2346 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2347 plt_base + code_offset + abi_offset + 3),
2348 splt->contents + code_offset + abi_offset + 4);
2349 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2350 plt_base + code_offset + abi_offset + 6),
2351 splt->contents + code_offset + abi_offset + 7);
2352
2353 return plt_base + code_offset;
2354 }
2355
2356
2357 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2358
2359 static bfd_boolean
2360 replace_tls_insn (Elf_Internal_Rela *rel,
2361 bfd *abfd,
2362 asection *input_section,
2363 bfd_byte *contents,
2364 bfd_boolean is_ld_model,
2365 char **error_message)
2366 {
2367 static xtensa_insnbuf ibuff = NULL;
2368 static xtensa_insnbuf sbuff = NULL;
2369 xtensa_isa isa = xtensa_default_isa;
2370 xtensa_format fmt;
2371 xtensa_opcode old_op, new_op;
2372 bfd_size_type input_size;
2373 int r_type;
2374 unsigned dest_reg, src_reg;
2375
2376 if (ibuff == NULL)
2377 {
2378 ibuff = xtensa_insnbuf_alloc (isa);
2379 sbuff = xtensa_insnbuf_alloc (isa);
2380 }
2381
2382 input_size = bfd_get_section_limit (abfd, input_section);
2383
2384 /* Read the instruction into a buffer and decode the opcode. */
2385 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2386 input_size - rel->r_offset);
2387 fmt = xtensa_format_decode (isa, ibuff);
2388 if (fmt == XTENSA_UNDEFINED)
2389 {
2390 *error_message = "cannot decode instruction format";
2391 return FALSE;
2392 }
2393
2394 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2395 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2396
2397 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2398 if (old_op == XTENSA_UNDEFINED)
2399 {
2400 *error_message = "cannot decode instruction opcode";
2401 return FALSE;
2402 }
2403
2404 r_type = ELF32_R_TYPE (rel->r_info);
2405 switch (r_type)
2406 {
2407 case R_XTENSA_TLS_FUNC:
2408 case R_XTENSA_TLS_ARG:
2409 if (old_op != get_l32r_opcode ()
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &dest_reg) != 0)
2412 {
2413 *error_message = "cannot extract L32R destination for TLS access";
2414 return FALSE;
2415 }
2416 break;
2417
2418 case R_XTENSA_TLS_CALL:
2419 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2420 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2421 sbuff, &src_reg) != 0)
2422 {
2423 *error_message = "cannot extract CALLXn operands for TLS access";
2424 return FALSE;
2425 }
2426 break;
2427
2428 default:
2429 abort ();
2430 }
2431
2432 if (is_ld_model)
2433 {
2434 switch (r_type)
2435 {
2436 case R_XTENSA_TLS_FUNC:
2437 case R_XTENSA_TLS_ARG:
2438 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2439 versions of Xtensa). */
2440 new_op = xtensa_opcode_lookup (isa, "nop");
2441 if (new_op == XTENSA_UNDEFINED)
2442 {
2443 new_op = xtensa_opcode_lookup (isa, "or");
2444 if (new_op == XTENSA_UNDEFINED
2445 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2446 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2447 sbuff, 1) != 0
2448 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2449 sbuff, 1) != 0
2450 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2451 sbuff, 1) != 0)
2452 {
2453 *error_message = "cannot encode OR for TLS access";
2454 return FALSE;
2455 }
2456 }
2457 else
2458 {
2459 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2460 {
2461 *error_message = "cannot encode NOP for TLS access";
2462 return FALSE;
2463 }
2464 }
2465 break;
2466
2467 case R_XTENSA_TLS_CALL:
2468 /* Read THREADPTR into the CALLX's return value register. */
2469 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2470 if (new_op == XTENSA_UNDEFINED
2471 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2472 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2473 sbuff, dest_reg + 2) != 0)
2474 {
2475 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2476 return FALSE;
2477 }
2478 break;
2479 }
2480 }
2481 else
2482 {
2483 switch (r_type)
2484 {
2485 case R_XTENSA_TLS_FUNC:
2486 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2487 if (new_op == XTENSA_UNDEFINED
2488 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2489 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2490 sbuff, dest_reg) != 0)
2491 {
2492 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2493 return FALSE;
2494 }
2495 break;
2496
2497 case R_XTENSA_TLS_ARG:
2498 /* Nothing to do. Keep the original L32R instruction. */
2499 return TRUE;
2500
2501 case R_XTENSA_TLS_CALL:
2502 /* Add the CALLX's src register (holding the THREADPTR value)
2503 to the first argument register (holding the offset) and put
2504 the result in the CALLX's return value register. */
2505 new_op = xtensa_opcode_lookup (isa, "add");
2506 if (new_op == XTENSA_UNDEFINED
2507 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2508 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2509 sbuff, dest_reg + 2) != 0
2510 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2511 sbuff, dest_reg + 2) != 0
2512 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2513 sbuff, src_reg) != 0)
2514 {
2515 *error_message = "cannot encode ADD for TLS access";
2516 return FALSE;
2517 }
2518 break;
2519 }
2520 }
2521
2522 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2523 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2524 input_size - rel->r_offset);
2525
2526 return TRUE;
2527 }
2528
2529
2530 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2531 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2532 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2533 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2534 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2535 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2536 || (R_TYPE) == R_XTENSA_TLS_ARG \
2537 || (R_TYPE) == R_XTENSA_TLS_CALL)
2538
2539 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2540 both relocatable and final links. */
2541
2542 static bfd_boolean
2543 elf_xtensa_relocate_section (bfd *output_bfd,
2544 struct bfd_link_info *info,
2545 bfd *input_bfd,
2546 asection *input_section,
2547 bfd_byte *contents,
2548 Elf_Internal_Rela *relocs,
2549 Elf_Internal_Sym *local_syms,
2550 asection **local_sections)
2551 {
2552 struct elf_xtensa_link_hash_table *htab;
2553 Elf_Internal_Shdr *symtab_hdr;
2554 Elf_Internal_Rela *rel;
2555 Elf_Internal_Rela *relend;
2556 struct elf_link_hash_entry **sym_hashes;
2557 property_table_entry *lit_table = 0;
2558 int ltblsize = 0;
2559 char *local_got_tls_types;
2560 char *error_message = NULL;
2561 bfd_size_type input_size;
2562 int tls_type;
2563
2564 if (!xtensa_default_isa)
2565 xtensa_default_isa = xtensa_isa_init (0, 0);
2566
2567 BFD_ASSERT (is_xtensa_elf (input_bfd));
2568
2569 htab = elf_xtensa_hash_table (info);
2570 if (htab == NULL)
2571 return FALSE;
2572
2573 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2574 sym_hashes = elf_sym_hashes (input_bfd);
2575 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2576
2577 if (elf_hash_table (info)->dynamic_sections_created)
2578 {
2579 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2580 &lit_table, XTENSA_LIT_SEC_NAME,
2581 TRUE);
2582 if (ltblsize < 0)
2583 return FALSE;
2584 }
2585
2586 input_size = bfd_get_section_limit (input_bfd, input_section);
2587
2588 rel = relocs;
2589 relend = relocs + input_section->reloc_count;
2590 for (; rel < relend; rel++)
2591 {
2592 int r_type;
2593 reloc_howto_type *howto;
2594 unsigned long r_symndx;
2595 struct elf_link_hash_entry *h;
2596 Elf_Internal_Sym *sym;
2597 char sym_type;
2598 const char *name;
2599 asection *sec;
2600 bfd_vma relocation;
2601 bfd_reloc_status_type r;
2602 bfd_boolean is_weak_undef;
2603 bfd_boolean unresolved_reloc;
2604 bfd_boolean warned;
2605 bfd_boolean dynamic_symbol;
2606
2607 r_type = ELF32_R_TYPE (rel->r_info);
2608 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2609 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2610 continue;
2611
2612 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2613 {
2614 bfd_set_error (bfd_error_bad_value);
2615 return FALSE;
2616 }
2617 howto = &elf_howto_table[r_type];
2618
2619 r_symndx = ELF32_R_SYM (rel->r_info);
2620
2621 h = NULL;
2622 sym = NULL;
2623 sec = NULL;
2624 is_weak_undef = FALSE;
2625 unresolved_reloc = FALSE;
2626 warned = FALSE;
2627
2628 if (howto->partial_inplace && !bfd_link_relocatable (info))
2629 {
2630 /* Because R_XTENSA_32 was made partial_inplace to fix some
2631 problems with DWARF info in partial links, there may be
2632 an addend stored in the contents. Take it out of there
2633 and move it back into the addend field of the reloc. */
2634 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2635 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2636 }
2637
2638 if (r_symndx < symtab_hdr->sh_info)
2639 {
2640 sym = local_syms + r_symndx;
2641 sym_type = ELF32_ST_TYPE (sym->st_info);
2642 sec = local_sections[r_symndx];
2643 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2644 }
2645 else
2646 {
2647 bfd_boolean ignored;
2648
2649 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2650 r_symndx, symtab_hdr, sym_hashes,
2651 h, sec, relocation,
2652 unresolved_reloc, warned, ignored);
2653
2654 if (relocation == 0
2655 && !unresolved_reloc
2656 && h->root.type == bfd_link_hash_undefweak)
2657 is_weak_undef = TRUE;
2658
2659 sym_type = h->type;
2660 }
2661
2662 if (sec != NULL && discarded_section (sec))
2663 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2664 rel, 1, relend, howto, 0, contents);
2665
2666 if (bfd_link_relocatable (info))
2667 {
2668 bfd_vma dest_addr;
2669 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2670
2671 /* This is a relocatable link.
2672 1) If the reloc is against a section symbol, adjust
2673 according to the output section.
2674 2) If there is a new target for this relocation,
2675 the new target will be in the same output section.
2676 We adjust the relocation by the output section
2677 difference. */
2678
2679 if (relaxing_section)
2680 {
2681 /* Check if this references a section in another input file. */
2682 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2683 contents))
2684 return FALSE;
2685 }
2686
2687 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2688 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2689
2690 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2691 {
2692 error_message = NULL;
2693 /* Convert ASM_SIMPLIFY into the simpler relocation
2694 so that they never escape a relaxing link. */
2695 r = contract_asm_expansion (contents, input_size, rel,
2696 &error_message);
2697 if (r != bfd_reloc_ok)
2698 (*info->callbacks->reloc_dangerous)
2699 (info, error_message,
2700 input_bfd, input_section, rel->r_offset);
2701
2702 r_type = ELF32_R_TYPE (rel->r_info);
2703 }
2704
2705 /* This is a relocatable link, so we don't have to change
2706 anything unless the reloc is against a section symbol,
2707 in which case we have to adjust according to where the
2708 section symbol winds up in the output section. */
2709 if (r_symndx < symtab_hdr->sh_info)
2710 {
2711 sym = local_syms + r_symndx;
2712 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2713 {
2714 sec = local_sections[r_symndx];
2715 rel->r_addend += sec->output_offset + sym->st_value;
2716 }
2717 }
2718
2719 /* If there is an addend with a partial_inplace howto,
2720 then move the addend to the contents. This is a hack
2721 to work around problems with DWARF in relocatable links
2722 with some previous version of BFD. Now we can't easily get
2723 rid of the hack without breaking backward compatibility.... */
2724 r = bfd_reloc_ok;
2725 howto = &elf_howto_table[r_type];
2726 if (howto->partial_inplace && rel->r_addend)
2727 {
2728 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2729 rel->r_addend, contents,
2730 rel->r_offset, FALSE,
2731 &error_message);
2732 rel->r_addend = 0;
2733 }
2734 else
2735 {
2736 /* Put the correct bits in the target instruction, even
2737 though the relocation will still be present in the output
2738 file. This makes disassembly clearer, as well as
2739 allowing loadable kernel modules to work without needing
2740 relocations on anything other than calls and l32r's. */
2741
2742 /* If it is not in the same section, there is nothing we can do. */
2743 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2744 sym_sec->output_section == input_section->output_section)
2745 {
2746 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2747 dest_addr, contents,
2748 rel->r_offset, FALSE,
2749 &error_message);
2750 }
2751 }
2752 if (r != bfd_reloc_ok)
2753 (*info->callbacks->reloc_dangerous)
2754 (info, error_message,
2755 input_bfd, input_section, rel->r_offset);
2756
2757 /* Done with work for relocatable link; continue with next reloc. */
2758 continue;
2759 }
2760
2761 /* This is a final link. */
2762
2763 if (relaxing_section)
2764 {
2765 /* Check if this references a section in another input file. */
2766 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2767 &relocation);
2768 }
2769
2770 /* Sanity check the address. */
2771 if (rel->r_offset >= input_size
2772 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2773 {
2774 _bfd_error_handler
2775 /* xgettext:c-format */
2776 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2777 input_bfd, input_section, rel->r_offset, input_size);
2778 bfd_set_error (bfd_error_bad_value);
2779 return FALSE;
2780 }
2781
2782 if (h != NULL)
2783 name = h->root.root.string;
2784 else
2785 {
2786 name = (bfd_elf_string_from_elf_section
2787 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2788 if (name == NULL || *name == '\0')
2789 name = bfd_section_name (input_bfd, sec);
2790 }
2791
2792 if (r_symndx != STN_UNDEF
2793 && r_type != R_XTENSA_NONE
2794 && (h == NULL
2795 || h->root.type == bfd_link_hash_defined
2796 || h->root.type == bfd_link_hash_defweak)
2797 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2798 {
2799 _bfd_error_handler
2800 ((sym_type == STT_TLS
2801 /* xgettext:c-format */
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 /* xgettext:c-format */
2804 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2805 input_bfd,
2806 input_section,
2807 (long) rel->r_offset,
2808 howto->name,
2809 name);
2810 }
2811
2812 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2813
2814 tls_type = GOT_UNKNOWN;
2815 if (h)
2816 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2817 else if (local_got_tls_types)
2818 tls_type = local_got_tls_types [r_symndx];
2819
2820 switch (r_type)
2821 {
2822 case R_XTENSA_32:
2823 case R_XTENSA_PLT:
2824 if (elf_hash_table (info)->dynamic_sections_created
2825 && (input_section->flags & SEC_ALLOC) != 0
2826 && (dynamic_symbol || bfd_link_pic (info)))
2827 {
2828 Elf_Internal_Rela outrel;
2829 bfd_byte *loc;
2830 asection *srel;
2831
2832 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2833 srel = htab->elf.srelplt;
2834 else
2835 srel = htab->elf.srelgot;
2836
2837 BFD_ASSERT (srel != NULL);
2838
2839 outrel.r_offset =
2840 _bfd_elf_section_offset (output_bfd, info,
2841 input_section, rel->r_offset);
2842
2843 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2844 memset (&outrel, 0, sizeof outrel);
2845 else
2846 {
2847 outrel.r_offset += (input_section->output_section->vma
2848 + input_section->output_offset);
2849
2850 /* Complain if the relocation is in a read-only section
2851 and not in a literal pool. */
2852 if ((input_section->flags & SEC_READONLY) != 0
2853 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2854 outrel.r_offset))
2855 {
2856 error_message =
2857 _("dynamic relocation in read-only section");
2858 (*info->callbacks->reloc_dangerous)
2859 (info, error_message,
2860 input_bfd, input_section, rel->r_offset);
2861 }
2862
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
2882 relocation =
2883 elf_xtensa_create_plt_entry (info, output_bfd,
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2900 <= srel->size);
2901 }
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! bfd_link_pic (info) && ! dynamic_symbol)
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
2925 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
2930 if (bfd_link_pic (info))
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
2954 (*info->callbacks->reloc_dangerous)
2955 (info, error_message,
2956 input_bfd, input_section, rel->r_offset);
2957 }
2958 else
2959 {
2960 Elf_Internal_Rela outrel;
2961 bfd_byte *loc;
2962 asection *srel = htab->elf.srelgot;
2963 int indx;
2964
2965 outrel.r_offset = (input_section->output_section->vma
2966 + input_section->output_offset
2967 + rel->r_offset);
2968
2969 /* Complain if the relocation is in a read-only section
2970 and not in a literal pool. */
2971 if ((input_section->flags & SEC_READONLY) != 0
2972 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2973 outrel.r_offset))
2974 {
2975 error_message =
2976 _("dynamic relocation in read-only section");
2977 (*info->callbacks->reloc_dangerous)
2978 (info, error_message,
2979 input_bfd, input_section, rel->r_offset);
2980 }
2981
2982 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2983 if (indx == 0)
2984 outrel.r_addend = relocation - dtpoff_base (info);
2985 else
2986 outrel.r_addend = 0;
2987 rel->r_addend = 0;
2988
2989 outrel.r_info = ELF32_R_INFO (indx, r_type);
2990 relocation = 0;
2991 unresolved_reloc = FALSE;
2992
2993 BFD_ASSERT (srel);
2994 loc = (srel->contents
2995 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2996 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2997 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2998 <= srel->size);
2999 }
3000 }
3001 break;
3002
3003 case R_XTENSA_TLS_DTPOFF:
3004 if (! bfd_link_pic (info))
3005 /* Switch from LD model to LE model. */
3006 relocation = tpoff (info, relocation);
3007 else
3008 relocation -= dtpoff_base (info);
3009 break;
3010
3011 case R_XTENSA_TLS_FUNC:
3012 case R_XTENSA_TLS_ARG:
3013 case R_XTENSA_TLS_CALL:
3014 /* Check if optimizing to IE or LE model. */
3015 if ((tls_type & GOT_TLS_IE) != 0)
3016 {
3017 bfd_boolean is_ld_model =
3018 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3019 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3020 is_ld_model, &error_message))
3021 (*info->callbacks->reloc_dangerous)
3022 (info, error_message,
3023 input_bfd, input_section, rel->r_offset);
3024
3025 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3026 {
3027 /* Skip subsequent relocations on the same instruction. */
3028 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3029 rel++;
3030 }
3031 }
3032 continue;
3033
3034 default:
3035 if (elf_hash_table (info)->dynamic_sections_created
3036 && dynamic_symbol && (is_operand_relocation (r_type)
3037 || r_type == R_XTENSA_32_PCREL))
3038 {
3039 error_message =
3040 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3041 strlen (name) + 2, name);
3042 (*info->callbacks->reloc_dangerous)
3043 (info, error_message, input_bfd, input_section, rel->r_offset);
3044 continue;
3045 }
3046 break;
3047 }
3048
3049 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3050 because such sections are not SEC_ALLOC and thus ld.so will
3051 not process them. */
3052 if (unresolved_reloc
3053 && !((input_section->flags & SEC_DEBUGGING) != 0
3054 && h->def_dynamic)
3055 && _bfd_elf_section_offset (output_bfd, info, input_section,
3056 rel->r_offset) != (bfd_vma) -1)
3057 {
3058 _bfd_error_handler
3059 /* xgettext:c-format */
3060 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3061 input_bfd,
3062 input_section,
3063 (long) rel->r_offset,
3064 howto->name,
3065 name);
3066 return FALSE;
3067 }
3068
3069 /* TLS optimizations may have changed r_type; update "howto". */
3070 howto = &elf_howto_table[r_type];
3071
3072 /* There's no point in calling bfd_perform_relocation here.
3073 Just go directly to our "special function". */
3074 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3075 relocation + rel->r_addend,
3076 contents, rel->r_offset, is_weak_undef,
3077 &error_message);
3078
3079 if (r != bfd_reloc_ok && !warned)
3080 {
3081 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3082 BFD_ASSERT (error_message != NULL);
3083
3084 if (rel->r_addend == 0)
3085 error_message = vsprint_msg (error_message, ": %s",
3086 strlen (name) + 2, name);
3087 else
3088 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3089 strlen (name) + 22,
3090 name, (int) rel->r_addend);
3091
3092 (*info->callbacks->reloc_dangerous)
3093 (info, error_message, input_bfd, input_section, rel->r_offset);
3094 }
3095 }
3096
3097 if (lit_table)
3098 free (lit_table);
3099
3100 input_section->reloc_done = TRUE;
3101
3102 return TRUE;
3103 }
3104
3105
3106 /* Finish up dynamic symbol handling. There's not much to do here since
3107 the PLT and GOT entries are all set up by relocate_section. */
3108
3109 static bfd_boolean
3110 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3111 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3112 struct elf_link_hash_entry *h,
3113 Elf_Internal_Sym *sym)
3114 {
3115 if (h->needs_plt && !h->def_regular)
3116 {
3117 /* Mark the symbol as undefined, rather than as defined in
3118 the .plt section. Leave the value alone. */
3119 sym->st_shndx = SHN_UNDEF;
3120 /* If the symbol is weak, we do need to clear the value.
3121 Otherwise, the PLT entry would provide a definition for
3122 the symbol even if the symbol wasn't defined anywhere,
3123 and so the symbol would never be NULL. */
3124 if (!h->ref_regular_nonweak)
3125 sym->st_value = 0;
3126 }
3127
3128 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3129 if (h == elf_hash_table (info)->hdynamic
3130 || h == elf_hash_table (info)->hgot)
3131 sym->st_shndx = SHN_ABS;
3132
3133 return TRUE;
3134 }
3135
3136
3137 /* Combine adjacent literal table entries in the output. Adjacent
3138 entries within each input section may have been removed during
3139 relaxation, but we repeat the process here, even though it's too late
3140 to shrink the output section, because it's important to minimize the
3141 number of literal table entries to reduce the start-up work for the
3142 runtime linker. Returns the number of remaining table entries or -1
3143 on error. */
3144
3145 static int
3146 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3147 asection *sxtlit,
3148 asection *sgotloc)
3149 {
3150 bfd_byte *contents;
3151 property_table_entry *table;
3152 bfd_size_type section_size, sgotloc_size;
3153 bfd_vma offset;
3154 int n, m, num;
3155
3156 section_size = sxtlit->size;
3157 BFD_ASSERT (section_size % 8 == 0);
3158 num = section_size / 8;
3159
3160 sgotloc_size = sgotloc->size;
3161 if (sgotloc_size != section_size)
3162 {
3163 _bfd_error_handler
3164 (_("internal inconsistency in size of .got.loc section"));
3165 return -1;
3166 }
3167
3168 table = bfd_malloc (num * sizeof (property_table_entry));
3169 if (table == 0)
3170 return -1;
3171
3172 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3173 propagates to the output section, where it doesn't really apply and
3174 where it breaks the following call to bfd_malloc_and_get_section. */
3175 sxtlit->flags &= ~SEC_IN_MEMORY;
3176
3177 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3178 {
3179 if (contents != 0)
3180 free (contents);
3181 free (table);
3182 return -1;
3183 }
3184
3185 /* There should never be any relocations left at this point, so this
3186 is quite a bit easier than what is done during relaxation. */
3187
3188 /* Copy the raw contents into a property table array and sort it. */
3189 offset = 0;
3190 for (n = 0; n < num; n++)
3191 {
3192 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3193 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3194 offset += 8;
3195 }
3196 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3197
3198 for (n = 0; n < num; n++)
3199 {
3200 bfd_boolean remove_entry = FALSE;
3201
3202 if (table[n].size == 0)
3203 remove_entry = TRUE;
3204 else if (n > 0
3205 && (table[n-1].address + table[n-1].size == table[n].address))
3206 {
3207 table[n-1].size += table[n].size;
3208 remove_entry = TRUE;
3209 }
3210
3211 if (remove_entry)
3212 {
3213 for (m = n; m < num - 1; m++)
3214 {
3215 table[m].address = table[m+1].address;
3216 table[m].size = table[m+1].size;
3217 }
3218
3219 n--;
3220 num--;
3221 }
3222 }
3223
3224 /* Copy the data back to the raw contents. */
3225 offset = 0;
3226 for (n = 0; n < num; n++)
3227 {
3228 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3229 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3230 offset += 8;
3231 }
3232
3233 /* Clear the removed bytes. */
3234 if ((bfd_size_type) (num * 8) < section_size)
3235 memset (&contents[num * 8], 0, section_size - num * 8);
3236
3237 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3238 section_size))
3239 return -1;
3240
3241 /* Copy the contents to ".got.loc". */
3242 memcpy (sgotloc->contents, contents, section_size);
3243
3244 free (contents);
3245 free (table);
3246 return num;
3247 }
3248
3249
3250 /* Finish up the dynamic sections. */
3251
3252 static bfd_boolean
3253 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3254 struct bfd_link_info *info)
3255 {
3256 struct elf_xtensa_link_hash_table *htab;
3257 bfd *dynobj;
3258 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3259 Elf32_External_Dyn *dyncon, *dynconend;
3260 int num_xtlit_entries = 0;
3261
3262 if (! elf_hash_table (info)->dynamic_sections_created)
3263 return TRUE;
3264
3265 htab = elf_xtensa_hash_table (info);
3266 if (htab == NULL)
3267 return FALSE;
3268
3269 dynobj = elf_hash_table (info)->dynobj;
3270 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3271 BFD_ASSERT (sdyn != NULL);
3272
3273 /* Set the first entry in the global offset table to the address of
3274 the dynamic section. */
3275 sgot = htab->elf.sgot;
3276 if (sgot)
3277 {
3278 BFD_ASSERT (sgot->size == 4);
3279 if (sdyn == NULL)
3280 bfd_put_32 (output_bfd, 0, sgot->contents);
3281 else
3282 bfd_put_32 (output_bfd,
3283 sdyn->output_section->vma + sdyn->output_offset,
3284 sgot->contents);
3285 }
3286
3287 srelplt = htab->elf.srelplt;
3288 if (srelplt && srelplt->size != 0)
3289 {
3290 asection *sgotplt, *srelgot, *spltlittbl;
3291 int chunk, plt_chunks, plt_entries;
3292 Elf_Internal_Rela irela;
3293 bfd_byte *loc;
3294 unsigned rtld_reloc;
3295
3296 srelgot = htab->elf.srelgot;
3297 spltlittbl = htab->spltlittbl;
3298 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3299
3300 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3301 of them follow immediately after.... */
3302 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3303 {
3304 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3305 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3306 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3307 break;
3308 }
3309 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3310
3311 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3312 plt_chunks =
3313 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3314
3315 for (chunk = 0; chunk < plt_chunks; chunk++)
3316 {
3317 int chunk_entries = 0;
3318
3319 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3320 BFD_ASSERT (sgotplt != NULL);
3321
3322 /* Emit special RTLD relocations for the first two entries in
3323 each chunk of the .got.plt section. */
3324
3325 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3326 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3327 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3328 irela.r_offset = (sgotplt->output_section->vma
3329 + sgotplt->output_offset);
3330 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3331 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3332 rtld_reloc += 1;
3333 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3334
3335 /* Next literal immediately follows the first. */
3336 loc += sizeof (Elf32_External_Rela);
3337 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3338 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3339 irela.r_offset = (sgotplt->output_section->vma
3340 + sgotplt->output_offset + 4);
3341 /* Tell rtld to set value to object's link map. */
3342 irela.r_addend = 2;
3343 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3344 rtld_reloc += 1;
3345 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3346
3347 /* Fill in the literal table. */
3348 if (chunk < plt_chunks - 1)
3349 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3350 else
3351 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3352
3353 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3354 bfd_put_32 (output_bfd,
3355 sgotplt->output_section->vma + sgotplt->output_offset,
3356 spltlittbl->contents + (chunk * 8) + 0);
3357 bfd_put_32 (output_bfd,
3358 8 + (chunk_entries * 4),
3359 spltlittbl->contents + (chunk * 8) + 4);
3360 }
3361
3362 /* All the dynamic relocations have been emitted at this point.
3363 Make sure the relocation sections are the correct size. */
3364 if (srelgot->size != (sizeof (Elf32_External_Rela)
3365 * srelgot->reloc_count)
3366 || srelplt->size != (sizeof (Elf32_External_Rela)
3367 * srelplt->reloc_count))
3368 abort ();
3369
3370 /* The .xt.lit.plt section has just been modified. This must
3371 happen before the code below which combines adjacent literal
3372 table entries, and the .xt.lit.plt contents have to be forced to
3373 the output here. */
3374 if (! bfd_set_section_contents (output_bfd,
3375 spltlittbl->output_section,
3376 spltlittbl->contents,
3377 spltlittbl->output_offset,
3378 spltlittbl->size))
3379 return FALSE;
3380 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3381 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3382 }
3383
3384 /* Combine adjacent literal table entries. */
3385 BFD_ASSERT (! bfd_link_relocatable (info));
3386 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3387 sgotloc = htab->sgotloc;
3388 BFD_ASSERT (sgotloc);
3389 if (sxtlit)
3390 {
3391 num_xtlit_entries =
3392 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3393 if (num_xtlit_entries < 0)
3394 return FALSE;
3395 }
3396
3397 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3398 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3399 for (; dyncon < dynconend; dyncon++)
3400 {
3401 Elf_Internal_Dyn dyn;
3402
3403 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3404
3405 switch (dyn.d_tag)
3406 {
3407 default:
3408 break;
3409
3410 case DT_XTENSA_GOT_LOC_SZ:
3411 dyn.d_un.d_val = num_xtlit_entries;
3412 break;
3413
3414 case DT_XTENSA_GOT_LOC_OFF:
3415 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3416 + htab->sgotloc->output_offset);
3417 break;
3418
3419 case DT_PLTGOT:
3420 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3421 + htab->elf.sgot->output_offset);
3422 break;
3423
3424 case DT_JMPREL:
3425 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3426 + htab->elf.srelplt->output_offset);
3427 break;
3428
3429 case DT_PLTRELSZ:
3430 dyn.d_un.d_val = htab->elf.srelplt->size;
3431 break;
3432
3433 case DT_RELASZ:
3434 /* Adjust RELASZ to not include JMPREL. This matches what
3435 glibc expects and what is done for several other ELF
3436 targets (e.g., i386, alpha), but the "correct" behavior
3437 seems to be unresolved. Since the linker script arranges
3438 for .rela.plt to follow all other relocation sections, we
3439 don't have to worry about changing the DT_RELA entry. */
3440 if (htab->elf.srelplt)
3441 dyn.d_un.d_val -= htab->elf.srelplt->size;
3442 break;
3443 }
3444
3445 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3446 }
3447
3448 return TRUE;
3449 }
3450
3451 \f
3452 /* Functions for dealing with the e_flags field. */
3453
3454 /* Merge backend specific data from an object file to the output
3455 object file when linking. */
3456
3457 static bfd_boolean
3458 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3459 {
3460 bfd *obfd = info->output_bfd;
3461 unsigned out_mach, in_mach;
3462 flagword out_flag, in_flag;
3463
3464 /* Check if we have the same endianness. */
3465 if (!_bfd_generic_verify_endian_match (ibfd, info))
3466 return FALSE;
3467
3468 /* Don't even pretend to support mixed-format linking. */
3469 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3470 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3471 return FALSE;
3472
3473 out_flag = elf_elfheader (obfd)->e_flags;
3474 in_flag = elf_elfheader (ibfd)->e_flags;
3475
3476 out_mach = out_flag & EF_XTENSA_MACH;
3477 in_mach = in_flag & EF_XTENSA_MACH;
3478 if (out_mach != in_mach)
3479 {
3480 _bfd_error_handler
3481 /* xgettext:c-format */
3482 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3483 ibfd, out_mach, in_mach);
3484 bfd_set_error (bfd_error_wrong_format);
3485 return FALSE;
3486 }
3487
3488 if (! elf_flags_init (obfd))
3489 {
3490 elf_flags_init (obfd) = TRUE;
3491 elf_elfheader (obfd)->e_flags = in_flag;
3492
3493 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3494 && bfd_get_arch_info (obfd)->the_default)
3495 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3496 bfd_get_mach (ibfd));
3497
3498 return TRUE;
3499 }
3500
3501 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3502 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3503
3504 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3506
3507 return TRUE;
3508 }
3509
3510
3511 static bfd_boolean
3512 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3513 {
3514 BFD_ASSERT (!elf_flags_init (abfd)
3515 || elf_elfheader (abfd)->e_flags == flags);
3516
3517 elf_elfheader (abfd)->e_flags |= flags;
3518 elf_flags_init (abfd) = TRUE;
3519
3520 return TRUE;
3521 }
3522
3523
3524 static bfd_boolean
3525 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3526 {
3527 FILE *f = (FILE *) farg;
3528 flagword e_flags = elf_elfheader (abfd)->e_flags;
3529
3530 fprintf (f, "\nXtensa header:\n");
3531 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3532 fprintf (f, "\nMachine = Base\n");
3533 else
3534 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3535
3536 fprintf (f, "Insn tables = %s\n",
3537 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3538
3539 fprintf (f, "Literal tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3541
3542 return _bfd_elf_print_private_bfd_data (abfd, farg);
3543 }
3544
3545
3546 /* Set the right machine number for an Xtensa ELF file. */
3547
3548 static bfd_boolean
3549 elf_xtensa_object_p (bfd *abfd)
3550 {
3551 int mach;
3552 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3553
3554 switch (arch)
3555 {
3556 case E_XTENSA_MACH:
3557 mach = bfd_mach_xtensa;
3558 break;
3559 default:
3560 return FALSE;
3561 }
3562
3563 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3564 return TRUE;
3565 }
3566
3567
3568 /* The final processing done just before writing out an Xtensa ELF object
3569 file. This gets the Xtensa architecture right based on the machine
3570 number. */
3571
3572 static void
3573 elf_xtensa_final_write_processing (bfd *abfd,
3574 bfd_boolean linker ATTRIBUTE_UNUSED)
3575 {
3576 int mach;
3577 unsigned long val;
3578
3579 switch (mach = bfd_get_mach (abfd))
3580 {
3581 case bfd_mach_xtensa:
3582 val = E_XTENSA_MACH;
3583 break;
3584 default:
3585 return;
3586 }
3587
3588 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3589 elf_elfheader (abfd)->e_flags |= val;
3590 }
3591
3592
3593 static enum elf_reloc_type_class
3594 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3595 const asection *rel_sec ATTRIBUTE_UNUSED,
3596 const Elf_Internal_Rela *rela)
3597 {
3598 switch ((int) ELF32_R_TYPE (rela->r_info))
3599 {
3600 case R_XTENSA_RELATIVE:
3601 return reloc_class_relative;
3602 case R_XTENSA_JMP_SLOT:
3603 return reloc_class_plt;
3604 default:
3605 return reloc_class_normal;
3606 }
3607 }
3608
3609 \f
3610 static bfd_boolean
3611 elf_xtensa_discard_info_for_section (bfd *abfd,
3612 struct elf_reloc_cookie *cookie,
3613 struct bfd_link_info *info,
3614 asection *sec)
3615 {
3616 bfd_byte *contents;
3617 bfd_vma offset, actual_offset;
3618 bfd_size_type removed_bytes = 0;
3619 bfd_size_type entry_size;
3620
3621 if (sec->output_section
3622 && bfd_is_abs_section (sec->output_section))
3623 return FALSE;
3624
3625 if (xtensa_is_proptable_section (sec))
3626 entry_size = 12;
3627 else
3628 entry_size = 8;
3629
3630 if (sec->size == 0 || sec->size % entry_size != 0)
3631 return FALSE;
3632
3633 contents = retrieve_contents (abfd, sec, info->keep_memory);
3634 if (!contents)
3635 return FALSE;
3636
3637 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3638 if (!cookie->rels)
3639 {
3640 release_contents (sec, contents);
3641 return FALSE;
3642 }
3643
3644 /* Sort the relocations. They should already be in order when
3645 relaxation is enabled, but it might not be. */
3646 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3647 internal_reloc_compare);
3648
3649 cookie->rel = cookie->rels;
3650 cookie->relend = cookie->rels + sec->reloc_count;
3651
3652 for (offset = 0; offset < sec->size; offset += entry_size)
3653 {
3654 actual_offset = offset - removed_bytes;
3655
3656 /* The ...symbol_deleted_p function will skip over relocs but it
3657 won't adjust their offsets, so do that here. */
3658 while (cookie->rel < cookie->relend
3659 && cookie->rel->r_offset < offset)
3660 {
3661 cookie->rel->r_offset -= removed_bytes;
3662 cookie->rel++;
3663 }
3664
3665 while (cookie->rel < cookie->relend
3666 && cookie->rel->r_offset == offset)
3667 {
3668 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3669 {
3670 /* Remove the table entry. (If the reloc type is NONE, then
3671 the entry has already been merged with another and deleted
3672 during relaxation.) */
3673 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3674 {
3675 /* Shift the contents up. */
3676 if (offset + entry_size < sec->size)
3677 memmove (&contents[actual_offset],
3678 &contents[actual_offset + entry_size],
3679 sec->size - offset - entry_size);
3680 removed_bytes += entry_size;
3681 }
3682
3683 /* Remove this relocation. */
3684 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3685 }
3686
3687 /* Adjust the relocation offset for previous removals. This
3688 should not be done before calling ...symbol_deleted_p
3689 because it might mess up the offset comparisons there.
3690 Make sure the offset doesn't underflow in the case where
3691 the first entry is removed. */
3692 if (cookie->rel->r_offset >= removed_bytes)
3693 cookie->rel->r_offset -= removed_bytes;
3694 else
3695 cookie->rel->r_offset = 0;
3696
3697 cookie->rel++;
3698 }
3699 }
3700
3701 if (removed_bytes != 0)
3702 {
3703 /* Adjust any remaining relocs (shouldn't be any). */
3704 for (; cookie->rel < cookie->relend; cookie->rel++)
3705 {
3706 if (cookie->rel->r_offset >= removed_bytes)
3707 cookie->rel->r_offset -= removed_bytes;
3708 else
3709 cookie->rel->r_offset = 0;
3710 }
3711
3712 /* Clear the removed bytes. */
3713 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3714
3715 pin_contents (sec, contents);
3716 pin_internal_relocs (sec, cookie->rels);
3717
3718 /* Shrink size. */
3719 if (sec->rawsize == 0)
3720 sec->rawsize = sec->size;
3721 sec->size -= removed_bytes;
3722
3723 if (xtensa_is_littable_section (sec))
3724 {
3725 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3726 if (sgotloc)
3727 sgotloc->size -= removed_bytes;
3728 }
3729 }
3730 else
3731 {
3732 release_contents (sec, contents);
3733 release_internal_relocs (sec, cookie->rels);
3734 }
3735
3736 return (removed_bytes != 0);
3737 }
3738
3739
3740 static bfd_boolean
3741 elf_xtensa_discard_info (bfd *abfd,
3742 struct elf_reloc_cookie *cookie,
3743 struct bfd_link_info *info)
3744 {
3745 asection *sec;
3746 bfd_boolean changed = FALSE;
3747
3748 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3749 {
3750 if (xtensa_is_property_section (sec))
3751 {
3752 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3753 changed = TRUE;
3754 }
3755 }
3756
3757 return changed;
3758 }
3759
3760
3761 static bfd_boolean
3762 elf_xtensa_ignore_discarded_relocs (asection *sec)
3763 {
3764 return xtensa_is_property_section (sec);
3765 }
3766
3767
3768 static unsigned int
3769 elf_xtensa_action_discarded (asection *sec)
3770 {
3771 if (strcmp (".xt_except_table", sec->name) == 0)
3772 return 0;
3773
3774 if (strcmp (".xt_except_desc", sec->name) == 0)
3775 return 0;
3776
3777 return _bfd_elf_default_action_discarded (sec);
3778 }
3779
3780 \f
3781 /* Support for core dump NOTE sections. */
3782
3783 static bfd_boolean
3784 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3785 {
3786 int offset;
3787 unsigned int size;
3788
3789 /* The size for Xtensa is variable, so don't try to recognize the format
3790 based on the size. Just assume this is GNU/Linux. */
3791
3792 /* pr_cursig */
3793 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3794
3795 /* pr_pid */
3796 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3797
3798 /* pr_reg */
3799 offset = 72;
3800 size = note->descsz - offset - 4;
3801
3802 /* Make a ".reg/999" section. */
3803 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3804 size, note->descpos + offset);
3805 }
3806
3807
3808 static bfd_boolean
3809 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3810 {
3811 switch (note->descsz)
3812 {
3813 default:
3814 return FALSE;
3815
3816 case 128: /* GNU/Linux elf_prpsinfo */
3817 elf_tdata (abfd)->core->program
3818 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3819 elf_tdata (abfd)->core->command
3820 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3821 }
3822
3823 /* Note that for some reason, a spurious space is tacked
3824 onto the end of the args in some (at least one anyway)
3825 implementations, so strip it off if it exists. */
3826
3827 {
3828 char *command = elf_tdata (abfd)->core->command;
3829 int n = strlen (command);
3830
3831 if (0 < n && command[n - 1] == ' ')
3832 command[n - 1] = '\0';
3833 }
3834
3835 return TRUE;
3836 }
3837
3838 \f
3839 /* Generic Xtensa configurability stuff. */
3840
3841 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3842 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3843 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3844 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3847 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3848 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3849
3850 static void
3851 init_call_opcodes (void)
3852 {
3853 if (callx0_op == XTENSA_UNDEFINED)
3854 {
3855 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3856 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3857 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3858 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3859 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3860 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3861 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3862 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3863 }
3864 }
3865
3866
3867 static bfd_boolean
3868 is_indirect_call_opcode (xtensa_opcode opcode)
3869 {
3870 init_call_opcodes ();
3871 return (opcode == callx0_op
3872 || opcode == callx4_op
3873 || opcode == callx8_op
3874 || opcode == callx12_op);
3875 }
3876
3877
3878 static bfd_boolean
3879 is_direct_call_opcode (xtensa_opcode opcode)
3880 {
3881 init_call_opcodes ();
3882 return (opcode == call0_op
3883 || opcode == call4_op
3884 || opcode == call8_op
3885 || opcode == call12_op);
3886 }
3887
3888
3889 static bfd_boolean
3890 is_windowed_call_opcode (xtensa_opcode opcode)
3891 {
3892 init_call_opcodes ();
3893 return (opcode == call4_op
3894 || opcode == call8_op
3895 || opcode == call12_op
3896 || opcode == callx4_op
3897 || opcode == callx8_op
3898 || opcode == callx12_op);
3899 }
3900
3901
3902 static bfd_boolean
3903 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3904 {
3905 unsigned dst = (unsigned) -1;
3906
3907 init_call_opcodes ();
3908 if (opcode == callx0_op)
3909 dst = 0;
3910 else if (opcode == callx4_op)
3911 dst = 4;
3912 else if (opcode == callx8_op)
3913 dst = 8;
3914 else if (opcode == callx12_op)
3915 dst = 12;
3916
3917 if (dst == (unsigned) -1)
3918 return FALSE;
3919
3920 *pdst = dst;
3921 return TRUE;
3922 }
3923
3924
3925 static xtensa_opcode
3926 get_const16_opcode (void)
3927 {
3928 static bfd_boolean done_lookup = FALSE;
3929 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3930 if (!done_lookup)
3931 {
3932 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3933 done_lookup = TRUE;
3934 }
3935 return const16_opcode;
3936 }
3937
3938
3939 static xtensa_opcode
3940 get_l32r_opcode (void)
3941 {
3942 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3943 static bfd_boolean done_lookup = FALSE;
3944
3945 if (!done_lookup)
3946 {
3947 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3948 done_lookup = TRUE;
3949 }
3950 return l32r_opcode;
3951 }
3952
3953
3954 static bfd_vma
3955 l32r_offset (bfd_vma addr, bfd_vma pc)
3956 {
3957 bfd_vma offset;
3958
3959 offset = addr - ((pc+3) & -4);
3960 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3961 offset = (signed int) offset >> 2;
3962 BFD_ASSERT ((signed int) offset >> 16 == -1);
3963 return offset;
3964 }
3965
3966
3967 static int
3968 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3969 {
3970 xtensa_isa isa = xtensa_default_isa;
3971 int last_immed, last_opnd, opi;
3972
3973 if (opcode == XTENSA_UNDEFINED)
3974 return XTENSA_UNDEFINED;
3975
3976 /* Find the last visible PC-relative immediate operand for the opcode.
3977 If there are no PC-relative immediates, then choose the last visible
3978 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3979 last_immed = XTENSA_UNDEFINED;
3980 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3981 for (opi = last_opnd - 1; opi >= 0; opi--)
3982 {
3983 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3984 continue;
3985 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3986 {
3987 last_immed = opi;
3988 break;
3989 }
3990 if (last_immed == XTENSA_UNDEFINED
3991 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3992 last_immed = opi;
3993 }
3994 if (last_immed < 0)
3995 return XTENSA_UNDEFINED;
3996
3997 /* If the operand number was specified in an old-style relocation,
3998 check for consistency with the operand computed above. */
3999 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4000 {
4001 int reloc_opnd = r_type - R_XTENSA_OP0;
4002 if (reloc_opnd != last_immed)
4003 return XTENSA_UNDEFINED;
4004 }
4005
4006 return last_immed;
4007 }
4008
4009
4010 int
4011 get_relocation_slot (int r_type)
4012 {
4013 switch (r_type)
4014 {
4015 case R_XTENSA_OP0:
4016 case R_XTENSA_OP1:
4017 case R_XTENSA_OP2:
4018 return 0;
4019
4020 default:
4021 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4022 return r_type - R_XTENSA_SLOT0_OP;
4023 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4024 return r_type - R_XTENSA_SLOT0_ALT;
4025 break;
4026 }
4027
4028 return XTENSA_UNDEFINED;
4029 }
4030
4031
4032 /* Get the opcode for a relocation. */
4033
4034 static xtensa_opcode
4035 get_relocation_opcode (bfd *abfd,
4036 asection *sec,
4037 bfd_byte *contents,
4038 Elf_Internal_Rela *irel)
4039 {
4040 static xtensa_insnbuf ibuff = NULL;
4041 static xtensa_insnbuf sbuff = NULL;
4042 xtensa_isa isa = xtensa_default_isa;
4043 xtensa_format fmt;
4044 int slot;
4045
4046 if (contents == NULL)
4047 return XTENSA_UNDEFINED;
4048
4049 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4050 return XTENSA_UNDEFINED;
4051
4052 if (ibuff == NULL)
4053 {
4054 ibuff = xtensa_insnbuf_alloc (isa);
4055 sbuff = xtensa_insnbuf_alloc (isa);
4056 }
4057
4058 /* Decode the instruction. */
4059 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4060 sec->size - irel->r_offset);
4061 fmt = xtensa_format_decode (isa, ibuff);
4062 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4063 if (slot == XTENSA_UNDEFINED)
4064 return XTENSA_UNDEFINED;
4065 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4066 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4067 }
4068
4069
4070 bfd_boolean
4071 is_l32r_relocation (bfd *abfd,
4072 asection *sec,
4073 bfd_byte *contents,
4074 Elf_Internal_Rela *irel)
4075 {
4076 xtensa_opcode opcode;
4077 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4078 return FALSE;
4079 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4080 return (opcode == get_l32r_opcode ());
4081 }
4082
4083
4084 static bfd_size_type
4085 get_asm_simplify_size (bfd_byte *contents,
4086 bfd_size_type content_len,
4087 bfd_size_type offset)
4088 {
4089 bfd_size_type insnlen, size = 0;
4090
4091 /* Decode the size of the next two instructions. */
4092 insnlen = insn_decode_len (contents, content_len, offset);
4093 if (insnlen == 0)
4094 return 0;
4095
4096 size += insnlen;
4097
4098 insnlen = insn_decode_len (contents, content_len, offset + size);
4099 if (insnlen == 0)
4100 return 0;
4101
4102 size += insnlen;
4103 return size;
4104 }
4105
4106
4107 bfd_boolean
4108 is_alt_relocation (int r_type)
4109 {
4110 return (r_type >= R_XTENSA_SLOT0_ALT
4111 && r_type <= R_XTENSA_SLOT14_ALT);
4112 }
4113
4114
4115 bfd_boolean
4116 is_operand_relocation (int r_type)
4117 {
4118 switch (r_type)
4119 {
4120 case R_XTENSA_OP0:
4121 case R_XTENSA_OP1:
4122 case R_XTENSA_OP2:
4123 return TRUE;
4124
4125 default:
4126 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4127 return TRUE;
4128 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4129 return TRUE;
4130 break;
4131 }
4132
4133 return FALSE;
4134 }
4135
4136
4137 #define MIN_INSN_LENGTH 2
4138
4139 /* Return 0 if it fails to decode. */
4140
4141 bfd_size_type
4142 insn_decode_len (bfd_byte *contents,
4143 bfd_size_type content_len,
4144 bfd_size_type offset)
4145 {
4146 int insn_len;
4147 xtensa_isa isa = xtensa_default_isa;
4148 xtensa_format fmt;
4149 static xtensa_insnbuf ibuff = NULL;
4150
4151 if (offset + MIN_INSN_LENGTH > content_len)
4152 return 0;
4153
4154 if (ibuff == NULL)
4155 ibuff = xtensa_insnbuf_alloc (isa);
4156 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4157 content_len - offset);
4158 fmt = xtensa_format_decode (isa, ibuff);
4159 if (fmt == XTENSA_UNDEFINED)
4160 return 0;
4161 insn_len = xtensa_format_length (isa, fmt);
4162 if (insn_len == XTENSA_UNDEFINED)
4163 return 0;
4164 return insn_len;
4165 }
4166
4167
4168 /* Decode the opcode for a single slot instruction.
4169 Return 0 if it fails to decode or the instruction is multi-slot. */
4170
4171 xtensa_opcode
4172 insn_decode_opcode (bfd_byte *contents,
4173 bfd_size_type content_len,
4174 bfd_size_type offset,
4175 int slot)
4176 {
4177 xtensa_isa isa = xtensa_default_isa;
4178 xtensa_format fmt;
4179 static xtensa_insnbuf insnbuf = NULL;
4180 static xtensa_insnbuf slotbuf = NULL;
4181
4182 if (offset + MIN_INSN_LENGTH > content_len)
4183 return XTENSA_UNDEFINED;
4184
4185 if (insnbuf == NULL)
4186 {
4187 insnbuf = xtensa_insnbuf_alloc (isa);
4188 slotbuf = xtensa_insnbuf_alloc (isa);
4189 }
4190
4191 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4192 content_len - offset);
4193 fmt = xtensa_format_decode (isa, insnbuf);
4194 if (fmt == XTENSA_UNDEFINED)
4195 return XTENSA_UNDEFINED;
4196
4197 if (slot >= xtensa_format_num_slots (isa, fmt))
4198 return XTENSA_UNDEFINED;
4199
4200 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4201 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4202 }
4203
4204
4205 /* The offset is the offset in the contents.
4206 The address is the address of that offset. */
4207
4208 static bfd_boolean
4209 check_branch_target_aligned (bfd_byte *contents,
4210 bfd_size_type content_length,
4211 bfd_vma offset,
4212 bfd_vma address)
4213 {
4214 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4215 if (insn_len == 0)
4216 return FALSE;
4217 return check_branch_target_aligned_address (address, insn_len);
4218 }
4219
4220
4221 static bfd_boolean
4222 check_loop_aligned (bfd_byte *contents,
4223 bfd_size_type content_length,
4224 bfd_vma offset,
4225 bfd_vma address)
4226 {
4227 bfd_size_type loop_len, insn_len;
4228 xtensa_opcode opcode;
4229
4230 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4231 if (opcode == XTENSA_UNDEFINED
4232 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4233 {
4234 BFD_ASSERT (FALSE);
4235 return FALSE;
4236 }
4237
4238 loop_len = insn_decode_len (contents, content_length, offset);
4239 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4240 if (loop_len == 0 || insn_len == 0)
4241 {
4242 BFD_ASSERT (FALSE);
4243 return FALSE;
4244 }
4245
4246 return check_branch_target_aligned_address (address + loop_len, insn_len);
4247 }
4248
4249
4250 static bfd_boolean
4251 check_branch_target_aligned_address (bfd_vma addr, int len)
4252 {
4253 if (len == 8)
4254 return (addr % 8 == 0);
4255 return ((addr >> 2) == ((addr + len - 1) >> 2));
4256 }
4257
4258 \f
4259 /* Instruction widening and narrowing. */
4260
4261 /* When FLIX is available we need to access certain instructions only
4262 when they are 16-bit or 24-bit instructions. This table caches
4263 information about such instructions by walking through all the
4264 opcodes and finding the smallest single-slot format into which each
4265 can be encoded. */
4266
4267 static xtensa_format *op_single_fmt_table = NULL;
4268
4269
4270 static void
4271 init_op_single_format_table (void)
4272 {
4273 xtensa_isa isa = xtensa_default_isa;
4274 xtensa_insnbuf ibuf;
4275 xtensa_opcode opcode;
4276 xtensa_format fmt;
4277 int num_opcodes;
4278
4279 if (op_single_fmt_table)
4280 return;
4281
4282 ibuf = xtensa_insnbuf_alloc (isa);
4283 num_opcodes = xtensa_isa_num_opcodes (isa);
4284
4285 op_single_fmt_table = (xtensa_format *)
4286 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4287 for (opcode = 0; opcode < num_opcodes; opcode++)
4288 {
4289 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4290 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4291 {
4292 if (xtensa_format_num_slots (isa, fmt) == 1
4293 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4294 {
4295 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4296 int fmt_length = xtensa_format_length (isa, fmt);
4297 if (old_fmt == XTENSA_UNDEFINED
4298 || fmt_length < xtensa_format_length (isa, old_fmt))
4299 op_single_fmt_table[opcode] = fmt;
4300 }
4301 }
4302 }
4303 xtensa_insnbuf_free (isa, ibuf);
4304 }
4305
4306
4307 static xtensa_format
4308 get_single_format (xtensa_opcode opcode)
4309 {
4310 init_op_single_format_table ();
4311 return op_single_fmt_table[opcode];
4312 }
4313
4314
4315 /* For the set of narrowable instructions we do NOT include the
4316 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4317 involved during linker relaxation that may require these to
4318 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4319 requires special case code to ensure it only works when op1 == op2. */
4320
4321 struct string_pair
4322 {
4323 const char *wide;
4324 const char *narrow;
4325 };
4326
4327 struct string_pair narrowable[] =
4328 {
4329 { "add", "add.n" },
4330 { "addi", "addi.n" },
4331 { "addmi", "addi.n" },
4332 { "l32i", "l32i.n" },
4333 { "movi", "movi.n" },
4334 { "ret", "ret.n" },
4335 { "retw", "retw.n" },
4336 { "s32i", "s32i.n" },
4337 { "or", "mov.n" } /* special case only when op1 == op2 */
4338 };
4339
4340 struct string_pair widenable[] =
4341 {
4342 { "add", "add.n" },
4343 { "addi", "addi.n" },
4344 { "addmi", "addi.n" },
4345 { "beqz", "beqz.n" },
4346 { "bnez", "bnez.n" },
4347 { "l32i", "l32i.n" },
4348 { "movi", "movi.n" },
4349 { "ret", "ret.n" },
4350 { "retw", "retw.n" },
4351 { "s32i", "s32i.n" },
4352 { "or", "mov.n" } /* special case only when op1 == op2 */
4353 };
4354
4355
4356 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4357 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4358 return the instruction buffer holding the narrow instruction. Otherwise,
4359 return 0. The set of valid narrowing are specified by a string table
4360 but require some special case operand checks in some cases. */
4361
4362 static xtensa_insnbuf
4363 can_narrow_instruction (xtensa_insnbuf slotbuf,
4364 xtensa_format fmt,
4365 xtensa_opcode opcode)
4366 {
4367 xtensa_isa isa = xtensa_default_isa;
4368 xtensa_format o_fmt;
4369 unsigned opi;
4370
4371 static xtensa_insnbuf o_insnbuf = NULL;
4372 static xtensa_insnbuf o_slotbuf = NULL;
4373
4374 if (o_insnbuf == NULL)
4375 {
4376 o_insnbuf = xtensa_insnbuf_alloc (isa);
4377 o_slotbuf = xtensa_insnbuf_alloc (isa);
4378 }
4379
4380 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4381 {
4382 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4383
4384 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4385 {
4386 uint32 value, newval;
4387 int i, operand_count, o_operand_count;
4388 xtensa_opcode o_opcode;
4389
4390 /* Address does not matter in this case. We might need to
4391 fix it to handle branches/jumps. */
4392 bfd_vma self_address = 0;
4393
4394 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4395 if (o_opcode == XTENSA_UNDEFINED)
4396 return 0;
4397 o_fmt = get_single_format (o_opcode);
4398 if (o_fmt == XTENSA_UNDEFINED)
4399 return 0;
4400
4401 if (xtensa_format_length (isa, fmt) != 3
4402 || xtensa_format_length (isa, o_fmt) != 2)
4403 return 0;
4404
4405 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4406 operand_count = xtensa_opcode_num_operands (isa, opcode);
4407 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4408
4409 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4410 return 0;
4411
4412 if (!is_or)
4413 {
4414 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4415 return 0;
4416 }
4417 else
4418 {
4419 uint32 rawval0, rawval1, rawval2;
4420
4421 if (o_operand_count + 1 != operand_count
4422 || xtensa_operand_get_field (isa, opcode, 0,
4423 fmt, 0, slotbuf, &rawval0) != 0
4424 || xtensa_operand_get_field (isa, opcode, 1,
4425 fmt, 0, slotbuf, &rawval1) != 0
4426 || xtensa_operand_get_field (isa, opcode, 2,
4427 fmt, 0, slotbuf, &rawval2) != 0
4428 || rawval1 != rawval2
4429 || rawval0 == rawval1 /* it is a nop */)
4430 return 0;
4431 }
4432
4433 for (i = 0; i < o_operand_count; ++i)
4434 {
4435 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4436 slotbuf, &value)
4437 || xtensa_operand_decode (isa, opcode, i, &value))
4438 return 0;
4439
4440 /* PC-relative branches need adjustment, but
4441 the PC-rel operand will always have a relocation. */
4442 newval = value;
4443 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4444 self_address)
4445 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4446 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4447 o_slotbuf, newval))
4448 return 0;
4449 }
4450
4451 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4452 return 0;
4453
4454 return o_insnbuf;
4455 }
4456 }
4457 return 0;
4458 }
4459
4460
4461 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4462 the action in-place directly into the contents and return TRUE. Otherwise,
4463 the return value is FALSE and the contents are not modified. */
4464
4465 static bfd_boolean
4466 narrow_instruction (bfd_byte *contents,
4467 bfd_size_type content_length,
4468 bfd_size_type offset)
4469 {
4470 xtensa_opcode opcode;
4471 bfd_size_type insn_len;
4472 xtensa_isa isa = xtensa_default_isa;
4473 xtensa_format fmt;
4474 xtensa_insnbuf o_insnbuf;
4475
4476 static xtensa_insnbuf insnbuf = NULL;
4477 static xtensa_insnbuf slotbuf = NULL;
4478
4479 if (insnbuf == NULL)
4480 {
4481 insnbuf = xtensa_insnbuf_alloc (isa);
4482 slotbuf = xtensa_insnbuf_alloc (isa);
4483 }
4484
4485 BFD_ASSERT (offset < content_length);
4486
4487 if (content_length < 2)
4488 return FALSE;
4489
4490 /* We will hand-code a few of these for a little while.
4491 These have all been specified in the assembler aleady. */
4492 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4493 content_length - offset);
4494 fmt = xtensa_format_decode (isa, insnbuf);
4495 if (xtensa_format_num_slots (isa, fmt) != 1)
4496 return FALSE;
4497
4498 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4499 return FALSE;
4500
4501 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4502 if (opcode == XTENSA_UNDEFINED)
4503 return FALSE;
4504 insn_len = xtensa_format_length (isa, fmt);
4505 if (insn_len > content_length)
4506 return FALSE;
4507
4508 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4509 if (o_insnbuf)
4510 {
4511 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4512 content_length - offset);
4513 return TRUE;
4514 }
4515
4516 return FALSE;
4517 }
4518
4519
4520 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4521 "density" instruction to a standard 3-byte instruction. If it is valid,
4522 return the instruction buffer holding the wide instruction. Otherwise,
4523 return 0. The set of valid widenings are specified by a string table
4524 but require some special case operand checks in some cases. */
4525
4526 static xtensa_insnbuf
4527 can_widen_instruction (xtensa_insnbuf slotbuf,
4528 xtensa_format fmt,
4529 xtensa_opcode opcode)
4530 {
4531 xtensa_isa isa = xtensa_default_isa;
4532 xtensa_format o_fmt;
4533 unsigned opi;
4534
4535 static xtensa_insnbuf o_insnbuf = NULL;
4536 static xtensa_insnbuf o_slotbuf = NULL;
4537
4538 if (o_insnbuf == NULL)
4539 {
4540 o_insnbuf = xtensa_insnbuf_alloc (isa);
4541 o_slotbuf = xtensa_insnbuf_alloc (isa);
4542 }
4543
4544 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4545 {
4546 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4547 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4548 || strcmp ("bnez", widenable[opi].wide) == 0);
4549
4550 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4551 {
4552 uint32 value, newval;
4553 int i, operand_count, o_operand_count, check_operand_count;
4554 xtensa_opcode o_opcode;
4555
4556 /* Address does not matter in this case. We might need to fix it
4557 to handle branches/jumps. */
4558 bfd_vma self_address = 0;
4559
4560 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4561 if (o_opcode == XTENSA_UNDEFINED)
4562 return 0;
4563 o_fmt = get_single_format (o_opcode);
4564 if (o_fmt == XTENSA_UNDEFINED)
4565 return 0;
4566
4567 if (xtensa_format_length (isa, fmt) != 2
4568 || xtensa_format_length (isa, o_fmt) != 3)
4569 return 0;
4570
4571 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4572 operand_count = xtensa_opcode_num_operands (isa, opcode);
4573 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4574 check_operand_count = o_operand_count;
4575
4576 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4577 return 0;
4578
4579 if (!is_or)
4580 {
4581 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4582 return 0;
4583 }
4584 else
4585 {
4586 uint32 rawval0, rawval1;
4587
4588 if (o_operand_count != operand_count + 1
4589 || xtensa_operand_get_field (isa, opcode, 0,
4590 fmt, 0, slotbuf, &rawval0) != 0
4591 || xtensa_operand_get_field (isa, opcode, 1,
4592 fmt, 0, slotbuf, &rawval1) != 0
4593 || rawval0 == rawval1 /* it is a nop */)
4594 return 0;
4595 }
4596 if (is_branch)
4597 check_operand_count--;
4598
4599 for (i = 0; i < check_operand_count; i++)
4600 {
4601 int new_i = i;
4602 if (is_or && i == o_operand_count - 1)
4603 new_i = i - 1;
4604 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4605 slotbuf, &value)
4606 || xtensa_operand_decode (isa, opcode, new_i, &value))
4607 return 0;
4608
4609 /* PC-relative branches need adjustment, but
4610 the PC-rel operand will always have a relocation. */
4611 newval = value;
4612 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4613 self_address)
4614 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4615 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4616 o_slotbuf, newval))
4617 return 0;
4618 }
4619
4620 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4621 return 0;
4622
4623 return o_insnbuf;
4624 }
4625 }
4626 return 0;
4627 }
4628
4629
4630 /* Attempt to widen an instruction. If the widening is valid, perform
4631 the action in-place directly into the contents and return TRUE. Otherwise,
4632 the return value is FALSE and the contents are not modified. */
4633
4634 static bfd_boolean
4635 widen_instruction (bfd_byte *contents,
4636 bfd_size_type content_length,
4637 bfd_size_type offset)
4638 {
4639 xtensa_opcode opcode;
4640 bfd_size_type insn_len;
4641 xtensa_isa isa = xtensa_default_isa;
4642 xtensa_format fmt;
4643 xtensa_insnbuf o_insnbuf;
4644
4645 static xtensa_insnbuf insnbuf = NULL;
4646 static xtensa_insnbuf slotbuf = NULL;
4647
4648 if (insnbuf == NULL)
4649 {
4650 insnbuf = xtensa_insnbuf_alloc (isa);
4651 slotbuf = xtensa_insnbuf_alloc (isa);
4652 }
4653
4654 BFD_ASSERT (offset < content_length);
4655
4656 if (content_length < 2)
4657 return FALSE;
4658
4659 /* We will hand-code a few of these for a little while.
4660 These have all been specified in the assembler aleady. */
4661 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4662 content_length - offset);
4663 fmt = xtensa_format_decode (isa, insnbuf);
4664 if (xtensa_format_num_slots (isa, fmt) != 1)
4665 return FALSE;
4666
4667 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4668 return FALSE;
4669
4670 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4671 if (opcode == XTENSA_UNDEFINED)
4672 return FALSE;
4673 insn_len = xtensa_format_length (isa, fmt);
4674 if (insn_len > content_length)
4675 return FALSE;
4676
4677 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4678 if (o_insnbuf)
4679 {
4680 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4681 content_length - offset);
4682 return TRUE;
4683 }
4684 return FALSE;
4685 }
4686
4687 \f
4688 /* Code for transforming CALLs at link-time. */
4689
4690 static bfd_reloc_status_type
4691 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4692 bfd_vma address,
4693 bfd_vma content_length,
4694 char **error_message)
4695 {
4696 static xtensa_insnbuf insnbuf = NULL;
4697 static xtensa_insnbuf slotbuf = NULL;
4698 xtensa_format core_format = XTENSA_UNDEFINED;
4699 xtensa_opcode opcode;
4700 xtensa_opcode direct_call_opcode;
4701 xtensa_isa isa = xtensa_default_isa;
4702 bfd_byte *chbuf = contents + address;
4703 int opn;
4704
4705 if (insnbuf == NULL)
4706 {
4707 insnbuf = xtensa_insnbuf_alloc (isa);
4708 slotbuf = xtensa_insnbuf_alloc (isa);
4709 }
4710
4711 if (content_length < address)
4712 {
4713 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4714 return bfd_reloc_other;
4715 }
4716
4717 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4718 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4719 if (direct_call_opcode == XTENSA_UNDEFINED)
4720 {
4721 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4722 return bfd_reloc_other;
4723 }
4724
4725 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4726 core_format = xtensa_format_lookup (isa, "x24");
4727 opcode = xtensa_opcode_lookup (isa, "or");
4728 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4729 for (opn = 0; opn < 3; opn++)
4730 {
4731 uint32 regno = 1;
4732 xtensa_operand_encode (isa, opcode, opn, &regno);
4733 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4734 slotbuf, regno);
4735 }
4736 xtensa_format_encode (isa, core_format, insnbuf);
4737 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4738 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4739
4740 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4741 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4742 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4743
4744 xtensa_format_encode (isa, core_format, insnbuf);
4745 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4746 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4747 content_length - address - 3);
4748
4749 return bfd_reloc_ok;
4750 }
4751
4752
4753 static bfd_reloc_status_type
4754 contract_asm_expansion (bfd_byte *contents,
4755 bfd_vma content_length,
4756 Elf_Internal_Rela *irel,
4757 char **error_message)
4758 {
4759 bfd_reloc_status_type retval =
4760 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4761 error_message);
4762
4763 if (retval != bfd_reloc_ok)
4764 return bfd_reloc_dangerous;
4765
4766 /* Update the irel->r_offset field so that the right immediate and
4767 the right instruction are modified during the relocation. */
4768 irel->r_offset += 3;
4769 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4770 return bfd_reloc_ok;
4771 }
4772
4773
4774 static xtensa_opcode
4775 swap_callx_for_call_opcode (xtensa_opcode opcode)
4776 {
4777 init_call_opcodes ();
4778
4779 if (opcode == callx0_op) return call0_op;
4780 if (opcode == callx4_op) return call4_op;
4781 if (opcode == callx8_op) return call8_op;
4782 if (opcode == callx12_op) return call12_op;
4783
4784 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4785 return XTENSA_UNDEFINED;
4786 }
4787
4788
4789 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4790 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4791 If not, return XTENSA_UNDEFINED. */
4792
4793 #define L32R_TARGET_REG_OPERAND 0
4794 #define CONST16_TARGET_REG_OPERAND 0
4795 #define CALLN_SOURCE_OPERAND 0
4796
4797 static xtensa_opcode
4798 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4799 {
4800 static xtensa_insnbuf insnbuf = NULL;
4801 static xtensa_insnbuf slotbuf = NULL;
4802 xtensa_format fmt;
4803 xtensa_opcode opcode;
4804 xtensa_isa isa = xtensa_default_isa;
4805 uint32 regno, const16_regno, call_regno;
4806 int offset = 0;
4807
4808 if (insnbuf == NULL)
4809 {
4810 insnbuf = xtensa_insnbuf_alloc (isa);
4811 slotbuf = xtensa_insnbuf_alloc (isa);
4812 }
4813
4814 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4815 fmt = xtensa_format_decode (isa, insnbuf);
4816 if (fmt == XTENSA_UNDEFINED
4817 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4818 return XTENSA_UNDEFINED;
4819
4820 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4821 if (opcode == XTENSA_UNDEFINED)
4822 return XTENSA_UNDEFINED;
4823
4824 if (opcode == get_l32r_opcode ())
4825 {
4826 if (p_uses_l32r)
4827 *p_uses_l32r = TRUE;
4828 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4829 fmt, 0, slotbuf, &regno)
4830 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4831 &regno))
4832 return XTENSA_UNDEFINED;
4833 }
4834 else if (opcode == get_const16_opcode ())
4835 {
4836 if (p_uses_l32r)
4837 *p_uses_l32r = FALSE;
4838 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4839 fmt, 0, slotbuf, &regno)
4840 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4841 &regno))
4842 return XTENSA_UNDEFINED;
4843
4844 /* Check that the next instruction is also CONST16. */
4845 offset += xtensa_format_length (isa, fmt);
4846 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4847 fmt = xtensa_format_decode (isa, insnbuf);
4848 if (fmt == XTENSA_UNDEFINED
4849 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4850 return XTENSA_UNDEFINED;
4851 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4852 if (opcode != get_const16_opcode ())
4853 return XTENSA_UNDEFINED;
4854
4855 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 fmt, 0, slotbuf, &const16_regno)
4857 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4858 &const16_regno)
4859 || const16_regno != regno)
4860 return XTENSA_UNDEFINED;
4861 }
4862 else
4863 return XTENSA_UNDEFINED;
4864
4865 /* Next instruction should be an CALLXn with operand 0 == regno. */
4866 offset += xtensa_format_length (isa, fmt);
4867 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4868 fmt = xtensa_format_decode (isa, insnbuf);
4869 if (fmt == XTENSA_UNDEFINED
4870 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4871 return XTENSA_UNDEFINED;
4872 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4873 if (opcode == XTENSA_UNDEFINED
4874 || !is_indirect_call_opcode (opcode))
4875 return XTENSA_UNDEFINED;
4876
4877 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4878 fmt, 0, slotbuf, &call_regno)
4879 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4880 &call_regno))
4881 return XTENSA_UNDEFINED;
4882
4883 if (call_regno != regno)
4884 return XTENSA_UNDEFINED;
4885
4886 return opcode;
4887 }
4888
4889 \f
4890 /* Data structures used during relaxation. */
4891
4892 /* r_reloc: relocation values. */
4893
4894 /* Through the relaxation process, we need to keep track of the values
4895 that will result from evaluating relocations. The standard ELF
4896 relocation structure is not sufficient for this purpose because we're
4897 operating on multiple input files at once, so we need to know which
4898 input file a relocation refers to. The r_reloc structure thus
4899 records both the input file (bfd) and ELF relocation.
4900
4901 For efficiency, an r_reloc also contains a "target_offset" field to
4902 cache the target-section-relative offset value that is represented by
4903 the relocation.
4904
4905 The r_reloc also contains a virtual offset that allows multiple
4906 inserted literals to be placed at the same "address" with
4907 different offsets. */
4908
4909 typedef struct r_reloc_struct r_reloc;
4910
4911 struct r_reloc_struct
4912 {
4913 bfd *abfd;
4914 Elf_Internal_Rela rela;
4915 bfd_vma target_offset;
4916 bfd_vma virtual_offset;
4917 };
4918
4919
4920 /* The r_reloc structure is included by value in literal_value, but not
4921 every literal_value has an associated relocation -- some are simple
4922 constants. In such cases, we set all the fields in the r_reloc
4923 struct to zero. The r_reloc_is_const function should be used to
4924 detect this case. */
4925
4926 static bfd_boolean
4927 r_reloc_is_const (const r_reloc *r_rel)
4928 {
4929 return (r_rel->abfd == NULL);
4930 }
4931
4932
4933 static bfd_vma
4934 r_reloc_get_target_offset (const r_reloc *r_rel)
4935 {
4936 bfd_vma target_offset;
4937 unsigned long r_symndx;
4938
4939 BFD_ASSERT (!r_reloc_is_const (r_rel));
4940 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4941 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4942 return (target_offset + r_rel->rela.r_addend);
4943 }
4944
4945
4946 static struct elf_link_hash_entry *
4947 r_reloc_get_hash_entry (const r_reloc *r_rel)
4948 {
4949 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4950 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4951 }
4952
4953
4954 static asection *
4955 r_reloc_get_section (const r_reloc *r_rel)
4956 {
4957 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4958 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4959 }
4960
4961
4962 static bfd_boolean
4963 r_reloc_is_defined (const r_reloc *r_rel)
4964 {
4965 asection *sec;
4966 if (r_rel == NULL)
4967 return FALSE;
4968
4969 sec = r_reloc_get_section (r_rel);
4970 if (sec == bfd_abs_section_ptr
4971 || sec == bfd_com_section_ptr
4972 || sec == bfd_und_section_ptr)
4973 return FALSE;
4974 return TRUE;
4975 }
4976
4977
4978 static void
4979 r_reloc_init (r_reloc *r_rel,
4980 bfd *abfd,
4981 Elf_Internal_Rela *irel,
4982 bfd_byte *contents,
4983 bfd_size_type content_length)
4984 {
4985 int r_type;
4986 reloc_howto_type *howto;
4987
4988 if (irel)
4989 {
4990 r_rel->rela = *irel;
4991 r_rel->abfd = abfd;
4992 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4993 r_rel->virtual_offset = 0;
4994 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4995 howto = &elf_howto_table[r_type];
4996 if (howto->partial_inplace)
4997 {
4998 bfd_vma inplace_val;
4999 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5000
5001 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5002 r_rel->target_offset += inplace_val;
5003 }
5004 }
5005 else
5006 memset (r_rel, 0, sizeof (r_reloc));
5007 }
5008
5009
5010 #if DEBUG
5011
5012 static void
5013 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5014 {
5015 if (r_reloc_is_defined (r_rel))
5016 {
5017 asection *sec = r_reloc_get_section (r_rel);
5018 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5019 }
5020 else if (r_reloc_get_hash_entry (r_rel))
5021 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5022 else
5023 fprintf (fp, " ?? + ");
5024
5025 fprintf_vma (fp, r_rel->target_offset);
5026 if (r_rel->virtual_offset)
5027 {
5028 fprintf (fp, " + ");
5029 fprintf_vma (fp, r_rel->virtual_offset);
5030 }
5031
5032 fprintf (fp, ")");
5033 }
5034
5035 #endif /* DEBUG */
5036
5037 \f
5038 /* source_reloc: relocations that reference literals. */
5039
5040 /* To determine whether literals can be coalesced, we need to first
5041 record all the relocations that reference the literals. The
5042 source_reloc structure below is used for this purpose. The
5043 source_reloc entries are kept in a per-literal-section array, sorted
5044 by offset within the literal section (i.e., target offset).
5045
5046 The source_sec and r_rel.rela.r_offset fields identify the source of
5047 the relocation. The r_rel field records the relocation value, i.e.,
5048 the offset of the literal being referenced. The opnd field is needed
5049 to determine the range of the immediate field to which the relocation
5050 applies, so we can determine whether another literal with the same
5051 value is within range. The is_null field is true when the relocation
5052 is being removed (e.g., when an L32R is being removed due to a CALLX
5053 that is converted to a direct CALL). */
5054
5055 typedef struct source_reloc_struct source_reloc;
5056
5057 struct source_reloc_struct
5058 {
5059 asection *source_sec;
5060 r_reloc r_rel;
5061 xtensa_opcode opcode;
5062 int opnd;
5063 bfd_boolean is_null;
5064 bfd_boolean is_abs_literal;
5065 };
5066
5067
5068 static void
5069 init_source_reloc (source_reloc *reloc,
5070 asection *source_sec,
5071 const r_reloc *r_rel,
5072 xtensa_opcode opcode,
5073 int opnd,
5074 bfd_boolean is_abs_literal)
5075 {
5076 reloc->source_sec = source_sec;
5077 reloc->r_rel = *r_rel;
5078 reloc->opcode = opcode;
5079 reloc->opnd = opnd;
5080 reloc->is_null = FALSE;
5081 reloc->is_abs_literal = is_abs_literal;
5082 }
5083
5084
5085 /* Find the source_reloc for a particular source offset and relocation
5086 type. Note that the array is sorted by _target_ offset, so this is
5087 just a linear search. */
5088
5089 static source_reloc *
5090 find_source_reloc (source_reloc *src_relocs,
5091 int src_count,
5092 asection *sec,
5093 Elf_Internal_Rela *irel)
5094 {
5095 int i;
5096
5097 for (i = 0; i < src_count; i++)
5098 {
5099 if (src_relocs[i].source_sec == sec
5100 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5101 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5102 == ELF32_R_TYPE (irel->r_info)))
5103 return &src_relocs[i];
5104 }
5105
5106 return NULL;
5107 }
5108
5109
5110 static int
5111 source_reloc_compare (const void *ap, const void *bp)
5112 {
5113 const source_reloc *a = (const source_reloc *) ap;
5114 const source_reloc *b = (const source_reloc *) bp;
5115
5116 if (a->r_rel.target_offset != b->r_rel.target_offset)
5117 return (a->r_rel.target_offset - b->r_rel.target_offset);
5118
5119 /* We don't need to sort on these criteria for correctness,
5120 but enforcing a more strict ordering prevents unstable qsort
5121 from behaving differently with different implementations.
5122 Without the code below we get correct but different results
5123 on Solaris 2.7 and 2.8. We would like to always produce the
5124 same results no matter the host. */
5125
5126 if ((!a->is_null) - (!b->is_null))
5127 return ((!a->is_null) - (!b->is_null));
5128 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5129 }
5130
5131 \f
5132 /* Literal values and value hash tables. */
5133
5134 /* Literals with the same value can be coalesced. The literal_value
5135 structure records the value of a literal: the "r_rel" field holds the
5136 information from the relocation on the literal (if there is one) and
5137 the "value" field holds the contents of the literal word itself.
5138
5139 The value_map structure records a literal value along with the
5140 location of a literal holding that value. The value_map hash table
5141 is indexed by the literal value, so that we can quickly check if a
5142 particular literal value has been seen before and is thus a candidate
5143 for coalescing. */
5144
5145 typedef struct literal_value_struct literal_value;
5146 typedef struct value_map_struct value_map;
5147 typedef struct value_map_hash_table_struct value_map_hash_table;
5148
5149 struct literal_value_struct
5150 {
5151 r_reloc r_rel;
5152 unsigned long value;
5153 bfd_boolean is_abs_literal;
5154 };
5155
5156 struct value_map_struct
5157 {
5158 literal_value val; /* The literal value. */
5159 r_reloc loc; /* Location of the literal. */
5160 value_map *next;
5161 };
5162
5163 struct value_map_hash_table_struct
5164 {
5165 unsigned bucket_count;
5166 value_map **buckets;
5167 unsigned count;
5168 bfd_boolean has_last_loc;
5169 r_reloc last_loc;
5170 };
5171
5172
5173 static void
5174 init_literal_value (literal_value *lit,
5175 const r_reloc *r_rel,
5176 unsigned long value,
5177 bfd_boolean is_abs_literal)
5178 {
5179 lit->r_rel = *r_rel;
5180 lit->value = value;
5181 lit->is_abs_literal = is_abs_literal;
5182 }
5183
5184
5185 static bfd_boolean
5186 literal_value_equal (const literal_value *src1,
5187 const literal_value *src2,
5188 bfd_boolean final_static_link)
5189 {
5190 struct elf_link_hash_entry *h1, *h2;
5191
5192 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5193 return FALSE;
5194
5195 if (r_reloc_is_const (&src1->r_rel))
5196 return (src1->value == src2->value);
5197
5198 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5199 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5200 return FALSE;
5201
5202 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5203 return FALSE;
5204
5205 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5206 return FALSE;
5207
5208 if (src1->value != src2->value)
5209 return FALSE;
5210
5211 /* Now check for the same section (if defined) or the same elf_hash
5212 (if undefined or weak). */
5213 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5214 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5215 if (r_reloc_is_defined (&src1->r_rel)
5216 && (final_static_link
5217 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5218 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5219 {
5220 if (r_reloc_get_section (&src1->r_rel)
5221 != r_reloc_get_section (&src2->r_rel))
5222 return FALSE;
5223 }
5224 else
5225 {
5226 /* Require that the hash entries (i.e., symbols) be identical. */
5227 if (h1 != h2 || h1 == 0)
5228 return FALSE;
5229 }
5230
5231 if (src1->is_abs_literal != src2->is_abs_literal)
5232 return FALSE;
5233
5234 return TRUE;
5235 }
5236
5237
5238 /* Must be power of 2. */
5239 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5240
5241 static value_map_hash_table *
5242 value_map_hash_table_init (void)
5243 {
5244 value_map_hash_table *values;
5245
5246 values = (value_map_hash_table *)
5247 bfd_zmalloc (sizeof (value_map_hash_table));
5248 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5249 values->count = 0;
5250 values->buckets = (value_map **)
5251 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5252 if (values->buckets == NULL)
5253 {
5254 free (values);
5255 return NULL;
5256 }
5257 values->has_last_loc = FALSE;
5258
5259 return values;
5260 }
5261
5262
5263 static void
5264 value_map_hash_table_delete (value_map_hash_table *table)
5265 {
5266 free (table->buckets);
5267 free (table);
5268 }
5269
5270
5271 static unsigned
5272 hash_bfd_vma (bfd_vma val)
5273 {
5274 return (val >> 2) + (val >> 10);
5275 }
5276
5277
5278 static unsigned
5279 literal_value_hash (const literal_value *src)
5280 {
5281 unsigned hash_val;
5282
5283 hash_val = hash_bfd_vma (src->value);
5284 if (!r_reloc_is_const (&src->r_rel))
5285 {
5286 void *sec_or_hash;
5287
5288 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5289 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5290 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5291
5292 /* Now check for the same section and the same elf_hash. */
5293 if (r_reloc_is_defined (&src->r_rel))
5294 sec_or_hash = r_reloc_get_section (&src->r_rel);
5295 else
5296 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5297 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5298 }
5299 return hash_val;
5300 }
5301
5302
5303 /* Check if the specified literal_value has been seen before. */
5304
5305 static value_map *
5306 value_map_get_cached_value (value_map_hash_table *map,
5307 const literal_value *val,
5308 bfd_boolean final_static_link)
5309 {
5310 value_map *map_e;
5311 value_map *bucket;
5312 unsigned idx;
5313
5314 idx = literal_value_hash (val);
5315 idx = idx & (map->bucket_count - 1);
5316 bucket = map->buckets[idx];
5317 for (map_e = bucket; map_e; map_e = map_e->next)
5318 {
5319 if (literal_value_equal (&map_e->val, val, final_static_link))
5320 return map_e;
5321 }
5322 return NULL;
5323 }
5324
5325
5326 /* Record a new literal value. It is illegal to call this if VALUE
5327 already has an entry here. */
5328
5329 static value_map *
5330 add_value_map (value_map_hash_table *map,
5331 const literal_value *val,
5332 const r_reloc *loc,
5333 bfd_boolean final_static_link)
5334 {
5335 value_map **bucket_p;
5336 unsigned idx;
5337
5338 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5339 if (val_e == NULL)
5340 {
5341 bfd_set_error (bfd_error_no_memory);
5342 return NULL;
5343 }
5344
5345 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5346 val_e->val = *val;
5347 val_e->loc = *loc;
5348
5349 idx = literal_value_hash (val);
5350 idx = idx & (map->bucket_count - 1);
5351 bucket_p = &map->buckets[idx];
5352
5353 val_e->next = *bucket_p;
5354 *bucket_p = val_e;
5355 map->count++;
5356 /* FIXME: Consider resizing the hash table if we get too many entries. */
5357
5358 return val_e;
5359 }
5360
5361 \f
5362 /* Lists of text actions (ta_) for narrowing, widening, longcall
5363 conversion, space fill, code & literal removal, etc. */
5364
5365 /* The following text actions are generated:
5366
5367 "ta_remove_insn" remove an instruction or instructions
5368 "ta_remove_longcall" convert longcall to call
5369 "ta_convert_longcall" convert longcall to nop/call
5370 "ta_narrow_insn" narrow a wide instruction
5371 "ta_widen" widen a narrow instruction
5372 "ta_fill" add fill or remove fill
5373 removed < 0 is a fill; branches to the fill address will be
5374 changed to address + fill size (e.g., address - removed)
5375 removed >= 0 branches to the fill address will stay unchanged
5376 "ta_remove_literal" remove a literal; this action is
5377 indicated when a literal is removed
5378 or replaced.
5379 "ta_add_literal" insert a new literal; this action is
5380 indicated when a literal has been moved.
5381 It may use a virtual_offset because
5382 multiple literals can be placed at the
5383 same location.
5384
5385 For each of these text actions, we also record the number of bytes
5386 removed by performing the text action. In the case of a "ta_widen"
5387 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5388
5389 typedef struct text_action_struct text_action;
5390 typedef struct text_action_list_struct text_action_list;
5391 typedef enum text_action_enum_t text_action_t;
5392
5393 enum text_action_enum_t
5394 {
5395 ta_none,
5396 ta_remove_insn, /* removed = -size */
5397 ta_remove_longcall, /* removed = -size */
5398 ta_convert_longcall, /* removed = 0 */
5399 ta_narrow_insn, /* removed = -1 */
5400 ta_widen_insn, /* removed = +1 */
5401 ta_fill, /* removed = +size */
5402 ta_remove_literal,
5403 ta_add_literal
5404 };
5405
5406
5407 /* Structure for a text action record. */
5408 struct text_action_struct
5409 {
5410 text_action_t action;
5411 asection *sec; /* Optional */
5412 bfd_vma offset;
5413 bfd_vma virtual_offset; /* Zero except for adding literals. */
5414 int removed_bytes;
5415 literal_value value; /* Only valid when adding literals. */
5416 };
5417
5418 struct removal_by_action_entry_struct
5419 {
5420 bfd_vma offset;
5421 int removed;
5422 int eq_removed;
5423 int eq_removed_before_fill;
5424 };
5425 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5426
5427 struct removal_by_action_map_struct
5428 {
5429 unsigned n_entries;
5430 removal_by_action_entry *entry;
5431 };
5432 typedef struct removal_by_action_map_struct removal_by_action_map;
5433
5434
5435 /* List of all of the actions taken on a text section. */
5436 struct text_action_list_struct
5437 {
5438 unsigned count;
5439 splay_tree tree;
5440 removal_by_action_map map;
5441 };
5442
5443
5444 static text_action *
5445 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5446 {
5447 text_action a;
5448
5449 /* It is not necessary to fill at the end of a section. */
5450 if (sec->size == offset)
5451 return NULL;
5452
5453 a.offset = offset;
5454 a.action = ta_fill;
5455
5456 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5457 if (node)
5458 return (text_action *)node->value;
5459 return NULL;
5460 }
5461
5462
5463 static int
5464 compute_removed_action_diff (const text_action *ta,
5465 asection *sec,
5466 bfd_vma offset,
5467 int removed,
5468 int removable_space)
5469 {
5470 int new_removed;
5471 int current_removed = 0;
5472
5473 if (ta)
5474 current_removed = ta->removed_bytes;
5475
5476 BFD_ASSERT (ta == NULL || ta->offset == offset);
5477 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5478
5479 /* It is not necessary to fill at the end of a section. Clean this up. */
5480 if (sec->size == offset)
5481 new_removed = removable_space - 0;
5482 else
5483 {
5484 int space;
5485 int added = -removed - current_removed;
5486 /* Ignore multiples of the section alignment. */
5487 added = ((1 << sec->alignment_power) - 1) & added;
5488 new_removed = (-added);
5489
5490 /* Modify for removable. */
5491 space = removable_space - new_removed;
5492 new_removed = (removable_space
5493 - (((1 << sec->alignment_power) - 1) & space));
5494 }
5495 return (new_removed - current_removed);
5496 }
5497
5498
5499 static void
5500 adjust_fill_action (text_action *ta, int fill_diff)
5501 {
5502 ta->removed_bytes += fill_diff;
5503 }
5504
5505
5506 static int
5507 text_action_compare (splay_tree_key a, splay_tree_key b)
5508 {
5509 text_action *pa = (text_action *)a;
5510 text_action *pb = (text_action *)b;
5511 static const int action_priority[] =
5512 {
5513 [ta_fill] = 0,
5514 [ta_none] = 1,
5515 [ta_convert_longcall] = 2,
5516 [ta_narrow_insn] = 3,
5517 [ta_remove_insn] = 4,
5518 [ta_remove_longcall] = 5,
5519 [ta_remove_literal] = 6,
5520 [ta_widen_insn] = 7,
5521 [ta_add_literal] = 8,
5522 };
5523
5524 if (pa->offset == pb->offset)
5525 {
5526 if (pa->action == pb->action)
5527 return 0;
5528 return action_priority[pa->action] - action_priority[pb->action];
5529 }
5530 else
5531 return pa->offset < pb->offset ? -1 : 1;
5532 }
5533
5534 static text_action *
5535 action_first (text_action_list *action_list)
5536 {
5537 splay_tree_node node = splay_tree_min (action_list->tree);
5538 return node ? (text_action *)node->value : NULL;
5539 }
5540
5541 static text_action *
5542 action_next (text_action_list *action_list, text_action *action)
5543 {
5544 splay_tree_node node = splay_tree_successor (action_list->tree,
5545 (splay_tree_key)action);
5546 return node ? (text_action *)node->value : NULL;
5547 }
5548
5549 /* Add a modification action to the text. For the case of adding or
5550 removing space, modify any current fill and assume that
5551 "unreachable_space" bytes can be freely contracted. Note that a
5552 negative removed value is a fill. */
5553
5554 static void
5555 text_action_add (text_action_list *l,
5556 text_action_t action,
5557 asection *sec,
5558 bfd_vma offset,
5559 int removed)
5560 {
5561 text_action *ta;
5562 text_action a;
5563
5564 /* It is not necessary to fill at the end of a section. */
5565 if (action == ta_fill && sec->size == offset)
5566 return;
5567
5568 /* It is not necessary to fill 0 bytes. */
5569 if (action == ta_fill && removed == 0)
5570 return;
5571
5572 a.action = action;
5573 a.offset = offset;
5574
5575 if (action == ta_fill)
5576 {
5577 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5578
5579 if (node)
5580 {
5581 ta = (text_action *)node->value;
5582 ta->removed_bytes += removed;
5583 return;
5584 }
5585 }
5586 else
5587 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5588
5589 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5590 ta->action = action;
5591 ta->sec = sec;
5592 ta->offset = offset;
5593 ta->removed_bytes = removed;
5594 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5595 ++l->count;
5596 }
5597
5598
5599 static void
5600 text_action_add_literal (text_action_list *l,
5601 text_action_t action,
5602 const r_reloc *loc,
5603 const literal_value *value,
5604 int removed)
5605 {
5606 text_action *ta;
5607 asection *sec = r_reloc_get_section (loc);
5608 bfd_vma offset = loc->target_offset;
5609 bfd_vma virtual_offset = loc->virtual_offset;
5610
5611 BFD_ASSERT (action == ta_add_literal);
5612
5613 /* Create a new record and fill it up. */
5614 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5615 ta->action = action;
5616 ta->sec = sec;
5617 ta->offset = offset;
5618 ta->virtual_offset = virtual_offset;
5619 ta->value = *value;
5620 ta->removed_bytes = removed;
5621
5622 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5623 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5624 ++l->count;
5625 }
5626
5627
5628 /* Find the total offset adjustment for the relaxations specified by
5629 text_actions, beginning from a particular starting action. This is
5630 typically used from offset_with_removed_text to search an entire list of
5631 actions, but it may also be called directly when adjusting adjacent offsets
5632 so that each search may begin where the previous one left off. */
5633
5634 static int
5635 removed_by_actions (text_action_list *action_list,
5636 text_action **p_start_action,
5637 bfd_vma offset,
5638 bfd_boolean before_fill)
5639 {
5640 text_action *r;
5641 int removed = 0;
5642
5643 r = *p_start_action;
5644 if (r)
5645 {
5646 splay_tree_node node = splay_tree_lookup (action_list->tree,
5647 (splay_tree_key)r);
5648 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5649 }
5650
5651 while (r)
5652 {
5653 if (r->offset > offset)
5654 break;
5655
5656 if (r->offset == offset
5657 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5658 break;
5659
5660 removed += r->removed_bytes;
5661
5662 r = action_next (action_list, r);
5663 }
5664
5665 *p_start_action = r;
5666 return removed;
5667 }
5668
5669
5670 static bfd_vma
5671 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5672 {
5673 text_action *r = action_first (action_list);
5674
5675 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5676 }
5677
5678
5679 static unsigned
5680 action_list_count (text_action_list *action_list)
5681 {
5682 return action_list->count;
5683 }
5684
5685 typedef struct map_action_fn_context_struct map_action_fn_context;
5686 struct map_action_fn_context_struct
5687 {
5688 int removed;
5689 removal_by_action_map map;
5690 bfd_boolean eq_complete;
5691 };
5692
5693 static int
5694 map_action_fn (splay_tree_node node, void *p)
5695 {
5696 map_action_fn_context *ctx = p;
5697 text_action *r = (text_action *)node->value;
5698 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5699
5700 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5701 {
5702 --ientry;
5703 }
5704 else
5705 {
5706 ++ctx->map.n_entries;
5707 ctx->eq_complete = FALSE;
5708 ientry->offset = r->offset;
5709 ientry->eq_removed_before_fill = ctx->removed;
5710 }
5711
5712 if (!ctx->eq_complete)
5713 {
5714 if (r->action != ta_fill || r->removed_bytes >= 0)
5715 {
5716 ientry->eq_removed = ctx->removed;
5717 ctx->eq_complete = TRUE;
5718 }
5719 else
5720 ientry->eq_removed = ctx->removed + r->removed_bytes;
5721 }
5722
5723 ctx->removed += r->removed_bytes;
5724 ientry->removed = ctx->removed;
5725 return 0;
5726 }
5727
5728 static void
5729 map_removal_by_action (text_action_list *action_list)
5730 {
5731 map_action_fn_context ctx;
5732
5733 ctx.removed = 0;
5734 ctx.map.n_entries = 0;
5735 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5736 sizeof (removal_by_action_entry));
5737 ctx.eq_complete = FALSE;
5738
5739 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5740 action_list->map = ctx.map;
5741 }
5742
5743 static int
5744 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5745 bfd_boolean before_fill)
5746 {
5747 unsigned a, b;
5748
5749 if (!action_list->map.entry)
5750 map_removal_by_action (action_list);
5751
5752 if (!action_list->map.n_entries)
5753 return 0;
5754
5755 a = 0;
5756 b = action_list->map.n_entries;
5757
5758 while (b - a > 1)
5759 {
5760 unsigned c = (a + b) / 2;
5761
5762 if (action_list->map.entry[c].offset <= offset)
5763 a = c;
5764 else
5765 b = c;
5766 }
5767
5768 if (action_list->map.entry[a].offset < offset)
5769 {
5770 return action_list->map.entry[a].removed;
5771 }
5772 else if (action_list->map.entry[a].offset == offset)
5773 {
5774 return before_fill ?
5775 action_list->map.entry[a].eq_removed_before_fill :
5776 action_list->map.entry[a].eq_removed;
5777 }
5778 else
5779 {
5780 return 0;
5781 }
5782 }
5783
5784 static bfd_vma
5785 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5786 {
5787 int removed = removed_by_actions_map (action_list, offset, FALSE);
5788 return offset - removed;
5789 }
5790
5791
5792 /* The find_insn_action routine will only find non-fill actions. */
5793
5794 static text_action *
5795 find_insn_action (text_action_list *action_list, bfd_vma offset)
5796 {
5797 static const text_action_t action[] =
5798 {
5799 ta_convert_longcall,
5800 ta_remove_longcall,
5801 ta_widen_insn,
5802 ta_narrow_insn,
5803 ta_remove_insn,
5804 };
5805 text_action a;
5806 unsigned i;
5807
5808 a.offset = offset;
5809 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5810 {
5811 splay_tree_node node;
5812
5813 a.action = action[i];
5814 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5815 if (node)
5816 return (text_action *)node->value;
5817 }
5818 return NULL;
5819 }
5820
5821
5822 #if DEBUG
5823
5824 static void
5825 print_action (FILE *fp, text_action *r)
5826 {
5827 const char *t = "unknown";
5828 switch (r->action)
5829 {
5830 case ta_remove_insn:
5831 t = "remove_insn"; break;
5832 case ta_remove_longcall:
5833 t = "remove_longcall"; break;
5834 case ta_convert_longcall:
5835 t = "convert_longcall"; break;
5836 case ta_narrow_insn:
5837 t = "narrow_insn"; break;
5838 case ta_widen_insn:
5839 t = "widen_insn"; break;
5840 case ta_fill:
5841 t = "fill"; break;
5842 case ta_none:
5843 t = "none"; break;
5844 case ta_remove_literal:
5845 t = "remove_literal"; break;
5846 case ta_add_literal:
5847 t = "add_literal"; break;
5848 }
5849
5850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5851 r->sec->owner->filename,
5852 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5853 }
5854
5855 static int
5856 print_action_list_fn (splay_tree_node node, void *p)
5857 {
5858 text_action *r = (text_action *)node->value;
5859
5860 print_action (p, r);
5861 return 0;
5862 }
5863
5864 static void
5865 print_action_list (FILE *fp, text_action_list *action_list)
5866 {
5867 fprintf (fp, "Text Action\n");
5868 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5869 }
5870
5871 #endif /* DEBUG */
5872
5873 \f
5874 /* Lists of literals being coalesced or removed. */
5875
5876 /* In the usual case, the literal identified by "from" is being
5877 coalesced with another literal identified by "to". If the literal is
5878 unused and is being removed altogether, "to.abfd" will be NULL.
5879 The removed_literal entries are kept on a per-section list, sorted
5880 by the "from" offset field. */
5881
5882 typedef struct removed_literal_struct removed_literal;
5883 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5884 typedef struct removed_literal_list_struct removed_literal_list;
5885
5886 struct removed_literal_struct
5887 {
5888 r_reloc from;
5889 r_reloc to;
5890 removed_literal *next;
5891 };
5892
5893 struct removed_literal_map_entry_struct
5894 {
5895 bfd_vma addr;
5896 removed_literal *literal;
5897 };
5898
5899 struct removed_literal_list_struct
5900 {
5901 removed_literal *head;
5902 removed_literal *tail;
5903
5904 unsigned n_map;
5905 removed_literal_map_entry *map;
5906 };
5907
5908
5909 /* Record that the literal at "from" is being removed. If "to" is not
5910 NULL, the "from" literal is being coalesced with the "to" literal. */
5911
5912 static void
5913 add_removed_literal (removed_literal_list *removed_list,
5914 const r_reloc *from,
5915 const r_reloc *to)
5916 {
5917 removed_literal *r, *new_r, *next_r;
5918
5919 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5920
5921 new_r->from = *from;
5922 if (to)
5923 new_r->to = *to;
5924 else
5925 new_r->to.abfd = NULL;
5926 new_r->next = NULL;
5927
5928 r = removed_list->head;
5929 if (r == NULL)
5930 {
5931 removed_list->head = new_r;
5932 removed_list->tail = new_r;
5933 }
5934 /* Special check for common case of append. */
5935 else if (removed_list->tail->from.target_offset < from->target_offset)
5936 {
5937 removed_list->tail->next = new_r;
5938 removed_list->tail = new_r;
5939 }
5940 else
5941 {
5942 while (r->from.target_offset < from->target_offset && r->next)
5943 {
5944 r = r->next;
5945 }
5946 next_r = r->next;
5947 r->next = new_r;
5948 new_r->next = next_r;
5949 if (next_r == NULL)
5950 removed_list->tail = new_r;
5951 }
5952 }
5953
5954 static void
5955 map_removed_literal (removed_literal_list *removed_list)
5956 {
5957 unsigned n_map = 0;
5958 unsigned i;
5959 removed_literal_map_entry *map = NULL;
5960 removed_literal *r = removed_list->head;
5961
5962 for (i = 0; r; ++i, r = r->next)
5963 {
5964 if (i == n_map)
5965 {
5966 n_map = (n_map * 2) + 2;
5967 map = bfd_realloc (map, n_map * sizeof (*map));
5968 }
5969 map[i].addr = r->from.target_offset;
5970 map[i].literal = r;
5971 }
5972 removed_list->map = map;
5973 removed_list->n_map = i;
5974 }
5975
5976 static int
5977 removed_literal_compare (const void *a, const void *b)
5978 {
5979 const removed_literal_map_entry *pa = a;
5980 const removed_literal_map_entry *pb = b;
5981
5982 if (pa->addr == pb->addr)
5983 return 0;
5984 else
5985 return pa->addr < pb->addr ? -1 : 1;
5986 }
5987
5988 /* Check if the list of removed literals contains an entry for the
5989 given address. Return the entry if found. */
5990
5991 static removed_literal *
5992 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5993 {
5994 removed_literal_map_entry *p;
5995 removed_literal *r = NULL;
5996
5997 if (removed_list->map == NULL)
5998 map_removed_literal (removed_list);
5999
6000 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6001 sizeof (*removed_list->map), removed_literal_compare);
6002 if (p)
6003 {
6004 while (p != removed_list->map && (p - 1)->addr == addr)
6005 --p;
6006 r = p->literal;
6007 }
6008 return r;
6009 }
6010
6011
6012 #if DEBUG
6013
6014 static void
6015 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6016 {
6017 removed_literal *r;
6018 r = removed_list->head;
6019 if (r)
6020 fprintf (fp, "Removed Literals\n");
6021 for (; r != NULL; r = r->next)
6022 {
6023 print_r_reloc (fp, &r->from);
6024 fprintf (fp, " => ");
6025 if (r->to.abfd == NULL)
6026 fprintf (fp, "REMOVED");
6027 else
6028 print_r_reloc (fp, &r->to);
6029 fprintf (fp, "\n");
6030 }
6031 }
6032
6033 #endif /* DEBUG */
6034
6035 \f
6036 /* Per-section data for relaxation. */
6037
6038 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6039
6040 struct xtensa_relax_info_struct
6041 {
6042 bfd_boolean is_relaxable_literal_section;
6043 bfd_boolean is_relaxable_asm_section;
6044 int visited; /* Number of times visited. */
6045
6046 source_reloc *src_relocs; /* Array[src_count]. */
6047 int src_count;
6048 int src_next; /* Next src_relocs entry to assign. */
6049
6050 removed_literal_list removed_list;
6051 text_action_list action_list;
6052
6053 reloc_bfd_fix *fix_list;
6054 reloc_bfd_fix *fix_array;
6055 unsigned fix_array_count;
6056
6057 /* Support for expanding the reloc array that is stored
6058 in the section structure. If the relocations have been
6059 reallocated, the newly allocated relocations will be referenced
6060 here along with the actual size allocated. The relocation
6061 count will always be found in the section structure. */
6062 Elf_Internal_Rela *allocated_relocs;
6063 unsigned relocs_count;
6064 unsigned allocated_relocs_count;
6065 };
6066
6067 struct elf_xtensa_section_data
6068 {
6069 struct bfd_elf_section_data elf;
6070 xtensa_relax_info relax_info;
6071 };
6072
6073
6074 static bfd_boolean
6075 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6076 {
6077 if (!sec->used_by_bfd)
6078 {
6079 struct elf_xtensa_section_data *sdata;
6080 bfd_size_type amt = sizeof (*sdata);
6081
6082 sdata = bfd_zalloc (abfd, amt);
6083 if (sdata == NULL)
6084 return FALSE;
6085 sec->used_by_bfd = sdata;
6086 }
6087
6088 return _bfd_elf_new_section_hook (abfd, sec);
6089 }
6090
6091
6092 static xtensa_relax_info *
6093 get_xtensa_relax_info (asection *sec)
6094 {
6095 struct elf_xtensa_section_data *section_data;
6096
6097 /* No info available if no section or if it is an output section. */
6098 if (!sec || sec == sec->output_section)
6099 return NULL;
6100
6101 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6102 return &section_data->relax_info;
6103 }
6104
6105
6106 static void
6107 init_xtensa_relax_info (asection *sec)
6108 {
6109 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6110
6111 relax_info->is_relaxable_literal_section = FALSE;
6112 relax_info->is_relaxable_asm_section = FALSE;
6113 relax_info->visited = 0;
6114
6115 relax_info->src_relocs = NULL;
6116 relax_info->src_count = 0;
6117 relax_info->src_next = 0;
6118
6119 relax_info->removed_list.head = NULL;
6120 relax_info->removed_list.tail = NULL;
6121
6122 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6123 NULL, NULL);
6124 relax_info->action_list.map.n_entries = 0;
6125 relax_info->action_list.map.entry = NULL;
6126
6127 relax_info->fix_list = NULL;
6128 relax_info->fix_array = NULL;
6129 relax_info->fix_array_count = 0;
6130
6131 relax_info->allocated_relocs = NULL;
6132 relax_info->relocs_count = 0;
6133 relax_info->allocated_relocs_count = 0;
6134 }
6135
6136 \f
6137 /* Coalescing literals may require a relocation to refer to a section in
6138 a different input file, but the standard relocation information
6139 cannot express that. Instead, the reloc_bfd_fix structures are used
6140 to "fix" the relocations that refer to sections in other input files.
6141 These structures are kept on per-section lists. The "src_type" field
6142 records the relocation type in case there are multiple relocations on
6143 the same location. FIXME: This is ugly; an alternative might be to
6144 add new symbols with the "owner" field to some other input file. */
6145
6146 struct reloc_bfd_fix_struct
6147 {
6148 asection *src_sec;
6149 bfd_vma src_offset;
6150 unsigned src_type; /* Relocation type. */
6151
6152 asection *target_sec;
6153 bfd_vma target_offset;
6154 bfd_boolean translated;
6155
6156 reloc_bfd_fix *next;
6157 };
6158
6159
6160 static reloc_bfd_fix *
6161 reloc_bfd_fix_init (asection *src_sec,
6162 bfd_vma src_offset,
6163 unsigned src_type,
6164 asection *target_sec,
6165 bfd_vma target_offset,
6166 bfd_boolean translated)
6167 {
6168 reloc_bfd_fix *fix;
6169
6170 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6171 fix->src_sec = src_sec;
6172 fix->src_offset = src_offset;
6173 fix->src_type = src_type;
6174 fix->target_sec = target_sec;
6175 fix->target_offset = target_offset;
6176 fix->translated = translated;
6177
6178 return fix;
6179 }
6180
6181
6182 static void
6183 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6184 {
6185 xtensa_relax_info *relax_info;
6186
6187 relax_info = get_xtensa_relax_info (src_sec);
6188 fix->next = relax_info->fix_list;
6189 relax_info->fix_list = fix;
6190 }
6191
6192
6193 static int
6194 fix_compare (const void *ap, const void *bp)
6195 {
6196 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6197 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6198
6199 if (a->src_offset != b->src_offset)
6200 return (a->src_offset - b->src_offset);
6201 return (a->src_type - b->src_type);
6202 }
6203
6204
6205 static void
6206 cache_fix_array (asection *sec)
6207 {
6208 unsigned i, count = 0;
6209 reloc_bfd_fix *r;
6210 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6211
6212 if (relax_info == NULL)
6213 return;
6214 if (relax_info->fix_list == NULL)
6215 return;
6216
6217 for (r = relax_info->fix_list; r != NULL; r = r->next)
6218 count++;
6219
6220 relax_info->fix_array =
6221 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6222 relax_info->fix_array_count = count;
6223
6224 r = relax_info->fix_list;
6225 for (i = 0; i < count; i++, r = r->next)
6226 {
6227 relax_info->fix_array[count - 1 - i] = *r;
6228 relax_info->fix_array[count - 1 - i].next = NULL;
6229 }
6230
6231 qsort (relax_info->fix_array, relax_info->fix_array_count,
6232 sizeof (reloc_bfd_fix), fix_compare);
6233 }
6234
6235
6236 static reloc_bfd_fix *
6237 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6238 {
6239 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6240 reloc_bfd_fix *rv;
6241 reloc_bfd_fix key;
6242
6243 if (relax_info == NULL)
6244 return NULL;
6245 if (relax_info->fix_list == NULL)
6246 return NULL;
6247
6248 if (relax_info->fix_array == NULL)
6249 cache_fix_array (sec);
6250
6251 key.src_offset = offset;
6252 key.src_type = type;
6253 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6254 sizeof (reloc_bfd_fix), fix_compare);
6255 return rv;
6256 }
6257
6258 \f
6259 /* Section caching. */
6260
6261 typedef struct section_cache_struct section_cache_t;
6262
6263 struct section_cache_struct
6264 {
6265 asection *sec;
6266
6267 bfd_byte *contents; /* Cache of the section contents. */
6268 bfd_size_type content_length;
6269
6270 property_table_entry *ptbl; /* Cache of the section property table. */
6271 unsigned pte_count;
6272
6273 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6274 unsigned reloc_count;
6275 };
6276
6277
6278 static void
6279 init_section_cache (section_cache_t *sec_cache)
6280 {
6281 memset (sec_cache, 0, sizeof (*sec_cache));
6282 }
6283
6284
6285 static void
6286 free_section_cache (section_cache_t *sec_cache)
6287 {
6288 if (sec_cache->sec)
6289 {
6290 release_contents (sec_cache->sec, sec_cache->contents);
6291 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6292 if (sec_cache->ptbl)
6293 free (sec_cache->ptbl);
6294 }
6295 }
6296
6297
6298 static bfd_boolean
6299 section_cache_section (section_cache_t *sec_cache,
6300 asection *sec,
6301 struct bfd_link_info *link_info)
6302 {
6303 bfd *abfd;
6304 property_table_entry *prop_table = NULL;
6305 int ptblsize = 0;
6306 bfd_byte *contents = NULL;
6307 Elf_Internal_Rela *internal_relocs = NULL;
6308 bfd_size_type sec_size;
6309
6310 if (sec == NULL)
6311 return FALSE;
6312 if (sec == sec_cache->sec)
6313 return TRUE;
6314
6315 abfd = sec->owner;
6316 sec_size = bfd_get_section_limit (abfd, sec);
6317
6318 /* Get the contents. */
6319 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6320 if (contents == NULL && sec_size != 0)
6321 goto err;
6322
6323 /* Get the relocations. */
6324 internal_relocs = retrieve_internal_relocs (abfd, sec,
6325 link_info->keep_memory);
6326
6327 /* Get the entry table. */
6328 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6329 XTENSA_PROP_SEC_NAME, FALSE);
6330 if (ptblsize < 0)
6331 goto err;
6332
6333 /* Fill in the new section cache. */
6334 free_section_cache (sec_cache);
6335 init_section_cache (sec_cache);
6336
6337 sec_cache->sec = sec;
6338 sec_cache->contents = contents;
6339 sec_cache->content_length = sec_size;
6340 sec_cache->relocs = internal_relocs;
6341 sec_cache->reloc_count = sec->reloc_count;
6342 sec_cache->pte_count = ptblsize;
6343 sec_cache->ptbl = prop_table;
6344
6345 return TRUE;
6346
6347 err:
6348 release_contents (sec, contents);
6349 release_internal_relocs (sec, internal_relocs);
6350 if (prop_table)
6351 free (prop_table);
6352 return FALSE;
6353 }
6354
6355 \f
6356 /* Extended basic blocks. */
6357
6358 /* An ebb_struct represents an Extended Basic Block. Within this
6359 range, we guarantee that all instructions are decodable, the
6360 property table entries are contiguous, and no property table
6361 specifies a segment that cannot have instructions moved. This
6362 structure contains caches of the contents, property table and
6363 relocations for the specified section for easy use. The range is
6364 specified by ranges of indices for the byte offset, property table
6365 offsets and relocation offsets. These must be consistent. */
6366
6367 typedef struct ebb_struct ebb_t;
6368
6369 struct ebb_struct
6370 {
6371 asection *sec;
6372
6373 bfd_byte *contents; /* Cache of the section contents. */
6374 bfd_size_type content_length;
6375
6376 property_table_entry *ptbl; /* Cache of the section property table. */
6377 unsigned pte_count;
6378
6379 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6380 unsigned reloc_count;
6381
6382 bfd_vma start_offset; /* Offset in section. */
6383 unsigned start_ptbl_idx; /* Offset in the property table. */
6384 unsigned start_reloc_idx; /* Offset in the relocations. */
6385
6386 bfd_vma end_offset;
6387 unsigned end_ptbl_idx;
6388 unsigned end_reloc_idx;
6389
6390 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6391
6392 /* The unreachable property table at the end of this set of blocks;
6393 NULL if the end is not an unreachable block. */
6394 property_table_entry *ends_unreachable;
6395 };
6396
6397
6398 enum ebb_target_enum
6399 {
6400 EBB_NO_ALIGN = 0,
6401 EBB_DESIRE_TGT_ALIGN,
6402 EBB_REQUIRE_TGT_ALIGN,
6403 EBB_REQUIRE_LOOP_ALIGN,
6404 EBB_REQUIRE_ALIGN
6405 };
6406
6407
6408 /* proposed_action_struct is similar to the text_action_struct except
6409 that is represents a potential transformation, not one that will
6410 occur. We build a list of these for an extended basic block
6411 and use them to compute the actual actions desired. We must be
6412 careful that the entire set of actual actions we perform do not
6413 break any relocations that would fit if the actions were not
6414 performed. */
6415
6416 typedef struct proposed_action_struct proposed_action;
6417
6418 struct proposed_action_struct
6419 {
6420 enum ebb_target_enum align_type; /* for the target alignment */
6421 bfd_vma alignment_pow;
6422 text_action_t action;
6423 bfd_vma offset;
6424 int removed_bytes;
6425 bfd_boolean do_action; /* If false, then we will not perform the action. */
6426 };
6427
6428
6429 /* The ebb_constraint_struct keeps a set of proposed actions for an
6430 extended basic block. */
6431
6432 typedef struct ebb_constraint_struct ebb_constraint;
6433
6434 struct ebb_constraint_struct
6435 {
6436 ebb_t ebb;
6437 bfd_boolean start_movable;
6438
6439 /* Bytes of extra space at the beginning if movable. */
6440 int start_extra_space;
6441
6442 enum ebb_target_enum start_align;
6443
6444 bfd_boolean end_movable;
6445
6446 /* Bytes of extra space at the end if movable. */
6447 int end_extra_space;
6448
6449 unsigned action_count;
6450 unsigned action_allocated;
6451
6452 /* Array of proposed actions. */
6453 proposed_action *actions;
6454
6455 /* Action alignments -- one for each proposed action. */
6456 enum ebb_target_enum *action_aligns;
6457 };
6458
6459
6460 static void
6461 init_ebb_constraint (ebb_constraint *c)
6462 {
6463 memset (c, 0, sizeof (ebb_constraint));
6464 }
6465
6466
6467 static void
6468 free_ebb_constraint (ebb_constraint *c)
6469 {
6470 if (c->actions)
6471 free (c->actions);
6472 }
6473
6474
6475 static void
6476 init_ebb (ebb_t *ebb,
6477 asection *sec,
6478 bfd_byte *contents,
6479 bfd_size_type content_length,
6480 property_table_entry *prop_table,
6481 unsigned ptblsize,
6482 Elf_Internal_Rela *internal_relocs,
6483 unsigned reloc_count)
6484 {
6485 memset (ebb, 0, sizeof (ebb_t));
6486 ebb->sec = sec;
6487 ebb->contents = contents;
6488 ebb->content_length = content_length;
6489 ebb->ptbl = prop_table;
6490 ebb->pte_count = ptblsize;
6491 ebb->relocs = internal_relocs;
6492 ebb->reloc_count = reloc_count;
6493 ebb->start_offset = 0;
6494 ebb->end_offset = ebb->content_length - 1;
6495 ebb->start_ptbl_idx = 0;
6496 ebb->end_ptbl_idx = ptblsize;
6497 ebb->start_reloc_idx = 0;
6498 ebb->end_reloc_idx = reloc_count;
6499 }
6500
6501
6502 /* Extend the ebb to all decodable contiguous sections. The algorithm
6503 for building a basic block around an instruction is to push it
6504 forward until we hit the end of a section, an unreachable block or
6505 a block that cannot be transformed. Then we push it backwards
6506 searching for similar conditions. */
6507
6508 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6509 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6510 static bfd_size_type insn_block_decodable_len
6511 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6512
6513 static bfd_boolean
6514 extend_ebb_bounds (ebb_t *ebb)
6515 {
6516 if (!extend_ebb_bounds_forward (ebb))
6517 return FALSE;
6518 if (!extend_ebb_bounds_backward (ebb))
6519 return FALSE;
6520 return TRUE;
6521 }
6522
6523
6524 static bfd_boolean
6525 extend_ebb_bounds_forward (ebb_t *ebb)
6526 {
6527 property_table_entry *the_entry, *new_entry;
6528
6529 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6530
6531 /* Stop when (1) we cannot decode an instruction, (2) we are at
6532 the end of the property tables, (3) we hit a non-contiguous property
6533 table entry, (4) we hit a NO_TRANSFORM region. */
6534
6535 while (1)
6536 {
6537 bfd_vma entry_end;
6538 bfd_size_type insn_block_len;
6539
6540 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6541 insn_block_len =
6542 insn_block_decodable_len (ebb->contents, ebb->content_length,
6543 ebb->end_offset,
6544 entry_end - ebb->end_offset);
6545 if (insn_block_len != (entry_end - ebb->end_offset))
6546 {
6547 _bfd_error_handler
6548 /* xgettext:c-format */
6549 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6550 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6551 return FALSE;
6552 }
6553 ebb->end_offset += insn_block_len;
6554
6555 if (ebb->end_offset == ebb->sec->size)
6556 ebb->ends_section = TRUE;
6557
6558 /* Update the reloc counter. */
6559 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6560 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6561 < ebb->end_offset))
6562 {
6563 ebb->end_reloc_idx++;
6564 }
6565
6566 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6567 return TRUE;
6568
6569 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6570 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6571 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6572 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6573 break;
6574
6575 if (the_entry->address + the_entry->size != new_entry->address)
6576 break;
6577
6578 the_entry = new_entry;
6579 ebb->end_ptbl_idx++;
6580 }
6581
6582 /* Quick check for an unreachable or end of file just at the end. */
6583 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6584 {
6585 if (ebb->end_offset == ebb->content_length)
6586 ebb->ends_section = TRUE;
6587 }
6588 else
6589 {
6590 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6591 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6592 && the_entry->address + the_entry->size == new_entry->address)
6593 ebb->ends_unreachable = new_entry;
6594 }
6595
6596 /* Any other ending requires exact alignment. */
6597 return TRUE;
6598 }
6599
6600
6601 static bfd_boolean
6602 extend_ebb_bounds_backward (ebb_t *ebb)
6603 {
6604 property_table_entry *the_entry, *new_entry;
6605
6606 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6607
6608 /* Stop when (1) we cannot decode the instructions in the current entry.
6609 (2) we are at the beginning of the property tables, (3) we hit a
6610 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6611
6612 while (1)
6613 {
6614 bfd_vma block_begin;
6615 bfd_size_type insn_block_len;
6616
6617 block_begin = the_entry->address - ebb->sec->vma;
6618 insn_block_len =
6619 insn_block_decodable_len (ebb->contents, ebb->content_length,
6620 block_begin,
6621 ebb->start_offset - block_begin);
6622 if (insn_block_len != ebb->start_offset - block_begin)
6623 {
6624 _bfd_error_handler
6625 /* xgettext:c-format */
6626 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6627 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6628 return FALSE;
6629 }
6630 ebb->start_offset -= insn_block_len;
6631
6632 /* Update the reloc counter. */
6633 while (ebb->start_reloc_idx > 0
6634 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6635 >= ebb->start_offset))
6636 {
6637 ebb->start_reloc_idx--;
6638 }
6639
6640 if (ebb->start_ptbl_idx == 0)
6641 return TRUE;
6642
6643 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6644 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6645 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6646 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6647 return TRUE;
6648 if (new_entry->address + new_entry->size != the_entry->address)
6649 return TRUE;
6650
6651 the_entry = new_entry;
6652 ebb->start_ptbl_idx--;
6653 }
6654 return TRUE;
6655 }
6656
6657
6658 static bfd_size_type
6659 insn_block_decodable_len (bfd_byte *contents,
6660 bfd_size_type content_len,
6661 bfd_vma block_offset,
6662 bfd_size_type block_len)
6663 {
6664 bfd_vma offset = block_offset;
6665
6666 while (offset < block_offset + block_len)
6667 {
6668 bfd_size_type insn_len = 0;
6669
6670 insn_len = insn_decode_len (contents, content_len, offset);
6671 if (insn_len == 0)
6672 return (offset - block_offset);
6673 offset += insn_len;
6674 }
6675 return (offset - block_offset);
6676 }
6677
6678
6679 static void
6680 ebb_propose_action (ebb_constraint *c,
6681 enum ebb_target_enum align_type,
6682 bfd_vma alignment_pow,
6683 text_action_t action,
6684 bfd_vma offset,
6685 int removed_bytes,
6686 bfd_boolean do_action)
6687 {
6688 proposed_action *act;
6689
6690 if (c->action_allocated <= c->action_count)
6691 {
6692 unsigned new_allocated, i;
6693 proposed_action *new_actions;
6694
6695 new_allocated = (c->action_count + 2) * 2;
6696 new_actions = (proposed_action *)
6697 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6698
6699 for (i = 0; i < c->action_count; i++)
6700 new_actions[i] = c->actions[i];
6701 if (c->actions)
6702 free (c->actions);
6703 c->actions = new_actions;
6704 c->action_allocated = new_allocated;
6705 }
6706
6707 act = &c->actions[c->action_count];
6708 act->align_type = align_type;
6709 act->alignment_pow = alignment_pow;
6710 act->action = action;
6711 act->offset = offset;
6712 act->removed_bytes = removed_bytes;
6713 act->do_action = do_action;
6714
6715 c->action_count++;
6716 }
6717
6718 \f
6719 /* Access to internal relocations, section contents and symbols. */
6720
6721 /* During relaxation, we need to modify relocations, section contents,
6722 and symbol definitions, and we need to keep the original values from
6723 being reloaded from the input files, i.e., we need to "pin" the
6724 modified values in memory. We also want to continue to observe the
6725 setting of the "keep-memory" flag. The following functions wrap the
6726 standard BFD functions to take care of this for us. */
6727
6728 static Elf_Internal_Rela *
6729 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6730 {
6731 Elf_Internal_Rela *internal_relocs;
6732
6733 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6734 return NULL;
6735
6736 internal_relocs = elf_section_data (sec)->relocs;
6737 if (internal_relocs == NULL)
6738 internal_relocs = (_bfd_elf_link_read_relocs
6739 (abfd, sec, NULL, NULL, keep_memory));
6740 return internal_relocs;
6741 }
6742
6743
6744 static void
6745 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6746 {
6747 elf_section_data (sec)->relocs = internal_relocs;
6748 }
6749
6750
6751 static void
6752 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6753 {
6754 if (internal_relocs
6755 && elf_section_data (sec)->relocs != internal_relocs)
6756 free (internal_relocs);
6757 }
6758
6759
6760 static bfd_byte *
6761 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6762 {
6763 bfd_byte *contents;
6764 bfd_size_type sec_size;
6765
6766 sec_size = bfd_get_section_limit (abfd, sec);
6767 contents = elf_section_data (sec)->this_hdr.contents;
6768
6769 if (contents == NULL && sec_size != 0)
6770 {
6771 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6772 {
6773 if (contents)
6774 free (contents);
6775 return NULL;
6776 }
6777 if (keep_memory)
6778 elf_section_data (sec)->this_hdr.contents = contents;
6779 }
6780 return contents;
6781 }
6782
6783
6784 static void
6785 pin_contents (asection *sec, bfd_byte *contents)
6786 {
6787 elf_section_data (sec)->this_hdr.contents = contents;
6788 }
6789
6790
6791 static void
6792 release_contents (asection *sec, bfd_byte *contents)
6793 {
6794 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6795 free (contents);
6796 }
6797
6798
6799 static Elf_Internal_Sym *
6800 retrieve_local_syms (bfd *input_bfd)
6801 {
6802 Elf_Internal_Shdr *symtab_hdr;
6803 Elf_Internal_Sym *isymbuf;
6804 size_t locsymcount;
6805
6806 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6807 locsymcount = symtab_hdr->sh_info;
6808
6809 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6810 if (isymbuf == NULL && locsymcount != 0)
6811 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6812 NULL, NULL, NULL);
6813
6814 /* Save the symbols for this input file so they won't be read again. */
6815 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6816 symtab_hdr->contents = (unsigned char *) isymbuf;
6817
6818 return isymbuf;
6819 }
6820
6821 \f
6822 /* Code for link-time relaxation. */
6823
6824 /* Initialization for relaxation: */
6825 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6826 static bfd_boolean find_relaxable_sections
6827 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6828 static bfd_boolean collect_source_relocs
6829 (bfd *, asection *, struct bfd_link_info *);
6830 static bfd_boolean is_resolvable_asm_expansion
6831 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6832 bfd_boolean *);
6833 static Elf_Internal_Rela *find_associated_l32r_irel
6834 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6835 static bfd_boolean compute_text_actions
6836 (bfd *, asection *, struct bfd_link_info *);
6837 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6838 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6839 typedef struct reloc_range_list_struct reloc_range_list;
6840 static bfd_boolean check_section_ebb_pcrels_fit
6841 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6842 reloc_range_list *, const ebb_constraint *,
6843 const xtensa_opcode *);
6844 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6845 static void text_action_add_proposed
6846 (text_action_list *, const ebb_constraint *, asection *);
6847 static int compute_fill_extra_space (property_table_entry *);
6848
6849 /* First pass: */
6850 static bfd_boolean compute_removed_literals
6851 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6852 static Elf_Internal_Rela *get_irel_at_offset
6853 (asection *, Elf_Internal_Rela *, bfd_vma);
6854 static bfd_boolean is_removable_literal
6855 (const source_reloc *, int, const source_reloc *, int, asection *,
6856 property_table_entry *, int);
6857 static bfd_boolean remove_dead_literal
6858 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6859 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6860 static bfd_boolean identify_literal_placement
6861 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6862 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6863 source_reloc *, property_table_entry *, int, section_cache_t *,
6864 bfd_boolean);
6865 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6866 static bfd_boolean coalesce_shared_literal
6867 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6868 static bfd_boolean move_shared_literal
6869 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6870 int, const r_reloc *, const literal_value *, section_cache_t *);
6871
6872 /* Second pass: */
6873 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6874 static bfd_boolean translate_section_fixes (asection *);
6875 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6876 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6877 static void shrink_dynamic_reloc_sections
6878 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6879 static bfd_boolean move_literal
6880 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6881 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6882 static bfd_boolean relax_property_section
6883 (bfd *, asection *, struct bfd_link_info *);
6884
6885 /* Third pass: */
6886 static bfd_boolean relax_section_symbols (bfd *, asection *);
6887
6888
6889 static bfd_boolean
6890 elf_xtensa_relax_section (bfd *abfd,
6891 asection *sec,
6892 struct bfd_link_info *link_info,
6893 bfd_boolean *again)
6894 {
6895 static value_map_hash_table *values = NULL;
6896 static bfd_boolean relocations_analyzed = FALSE;
6897 xtensa_relax_info *relax_info;
6898
6899 if (!relocations_analyzed)
6900 {
6901 /* Do some overall initialization for relaxation. */
6902 values = value_map_hash_table_init ();
6903 if (values == NULL)
6904 return FALSE;
6905 relaxing_section = TRUE;
6906 if (!analyze_relocations (link_info))
6907 return FALSE;
6908 relocations_analyzed = TRUE;
6909 }
6910 *again = FALSE;
6911
6912 /* Don't mess with linker-created sections. */
6913 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6914 return TRUE;
6915
6916 relax_info = get_xtensa_relax_info (sec);
6917 BFD_ASSERT (relax_info != NULL);
6918
6919 switch (relax_info->visited)
6920 {
6921 case 0:
6922 /* Note: It would be nice to fold this pass into
6923 analyze_relocations, but it is important for this step that the
6924 sections be examined in link order. */
6925 if (!compute_removed_literals (abfd, sec, link_info, values))
6926 return FALSE;
6927 *again = TRUE;
6928 break;
6929
6930 case 1:
6931 if (values)
6932 value_map_hash_table_delete (values);
6933 values = NULL;
6934 if (!relax_section (abfd, sec, link_info))
6935 return FALSE;
6936 *again = TRUE;
6937 break;
6938
6939 case 2:
6940 if (!relax_section_symbols (abfd, sec))
6941 return FALSE;
6942 break;
6943 }
6944
6945 relax_info->visited++;
6946 return TRUE;
6947 }
6948
6949 \f
6950 /* Initialization for relaxation. */
6951
6952 /* This function is called once at the start of relaxation. It scans
6953 all the input sections and marks the ones that are relaxable (i.e.,
6954 literal sections with L32R relocations against them), and then
6955 collects source_reloc information for all the relocations against
6956 those relaxable sections. During this process, it also detects
6957 longcalls, i.e., calls relaxed by the assembler into indirect
6958 calls, that can be optimized back into direct calls. Within each
6959 extended basic block (ebb) containing an optimized longcall, it
6960 computes a set of "text actions" that can be performed to remove
6961 the L32R associated with the longcall while optionally preserving
6962 branch target alignments. */
6963
6964 static bfd_boolean
6965 analyze_relocations (struct bfd_link_info *link_info)
6966 {
6967 bfd *abfd;
6968 asection *sec;
6969 bfd_boolean is_relaxable = FALSE;
6970
6971 /* Initialize the per-section relaxation info. */
6972 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6973 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6974 {
6975 init_xtensa_relax_info (sec);
6976 }
6977
6978 /* Mark relaxable sections (and count relocations against each one). */
6979 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6981 {
6982 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6983 return FALSE;
6984 }
6985
6986 /* Bail out if there are no relaxable sections. */
6987 if (!is_relaxable)
6988 return TRUE;
6989
6990 /* Allocate space for source_relocs. */
6991 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6993 {
6994 xtensa_relax_info *relax_info;
6995
6996 relax_info = get_xtensa_relax_info (sec);
6997 if (relax_info->is_relaxable_literal_section
6998 || relax_info->is_relaxable_asm_section)
6999 {
7000 relax_info->src_relocs = (source_reloc *)
7001 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7002 }
7003 else
7004 relax_info->src_count = 0;
7005 }
7006
7007 /* Collect info on relocations against each relaxable section. */
7008 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7010 {
7011 if (!collect_source_relocs (abfd, sec, link_info))
7012 return FALSE;
7013 }
7014
7015 /* Compute the text actions. */
7016 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7017 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7018 {
7019 if (!compute_text_actions (abfd, sec, link_info))
7020 return FALSE;
7021 }
7022
7023 return TRUE;
7024 }
7025
7026
7027 /* Find all the sections that might be relaxed. The motivation for
7028 this pass is that collect_source_relocs() needs to record _all_ the
7029 relocations that target each relaxable section. That is expensive
7030 and unnecessary unless the target section is actually going to be
7031 relaxed. This pass identifies all such sections by checking if
7032 they have L32Rs pointing to them. In the process, the total number
7033 of relocations targeting each section is also counted so that we
7034 know how much space to allocate for source_relocs against each
7035 relaxable literal section. */
7036
7037 static bfd_boolean
7038 find_relaxable_sections (bfd *abfd,
7039 asection *sec,
7040 struct bfd_link_info *link_info,
7041 bfd_boolean *is_relaxable_p)
7042 {
7043 Elf_Internal_Rela *internal_relocs;
7044 bfd_byte *contents;
7045 bfd_boolean ok = TRUE;
7046 unsigned i;
7047 xtensa_relax_info *source_relax_info;
7048 bfd_boolean is_l32r_reloc;
7049
7050 internal_relocs = retrieve_internal_relocs (abfd, sec,
7051 link_info->keep_memory);
7052 if (internal_relocs == NULL)
7053 return ok;
7054
7055 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7056 if (contents == NULL && sec->size != 0)
7057 {
7058 ok = FALSE;
7059 goto error_return;
7060 }
7061
7062 source_relax_info = get_xtensa_relax_info (sec);
7063 for (i = 0; i < sec->reloc_count; i++)
7064 {
7065 Elf_Internal_Rela *irel = &internal_relocs[i];
7066 r_reloc r_rel;
7067 asection *target_sec;
7068 xtensa_relax_info *target_relax_info;
7069
7070 /* If this section has not already been marked as "relaxable", and
7071 if it contains any ASM_EXPAND relocations (marking expanded
7072 longcalls) that can be optimized into direct calls, then mark
7073 the section as "relaxable". */
7074 if (source_relax_info
7075 && !source_relax_info->is_relaxable_asm_section
7076 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7077 {
7078 bfd_boolean is_reachable = FALSE;
7079 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7080 link_info, &is_reachable)
7081 && is_reachable)
7082 {
7083 source_relax_info->is_relaxable_asm_section = TRUE;
7084 *is_relaxable_p = TRUE;
7085 }
7086 }
7087
7088 r_reloc_init (&r_rel, abfd, irel, contents,
7089 bfd_get_section_limit (abfd, sec));
7090
7091 target_sec = r_reloc_get_section (&r_rel);
7092 target_relax_info = get_xtensa_relax_info (target_sec);
7093 if (!target_relax_info)
7094 continue;
7095
7096 /* Count PC-relative operand relocations against the target section.
7097 Note: The conditions tested here must match the conditions under
7098 which init_source_reloc is called in collect_source_relocs(). */
7099 is_l32r_reloc = FALSE;
7100 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7101 {
7102 xtensa_opcode opcode =
7103 get_relocation_opcode (abfd, sec, contents, irel);
7104 if (opcode != XTENSA_UNDEFINED)
7105 {
7106 is_l32r_reloc = (opcode == get_l32r_opcode ());
7107 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7108 || is_l32r_reloc)
7109 target_relax_info->src_count++;
7110 }
7111 }
7112
7113 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7114 {
7115 /* Mark the target section as relaxable. */
7116 target_relax_info->is_relaxable_literal_section = TRUE;
7117 *is_relaxable_p = TRUE;
7118 }
7119 }
7120
7121 error_return:
7122 release_contents (sec, contents);
7123 release_internal_relocs (sec, internal_relocs);
7124 return ok;
7125 }
7126
7127
7128 /* Record _all_ the relocations that point to relaxable sections, and
7129 get rid of ASM_EXPAND relocs by either converting them to
7130 ASM_SIMPLIFY or by removing them. */
7131
7132 static bfd_boolean
7133 collect_source_relocs (bfd *abfd,
7134 asection *sec,
7135 struct bfd_link_info *link_info)
7136 {
7137 Elf_Internal_Rela *internal_relocs;
7138 bfd_byte *contents;
7139 bfd_boolean ok = TRUE;
7140 unsigned i;
7141 bfd_size_type sec_size;
7142
7143 internal_relocs = retrieve_internal_relocs (abfd, sec,
7144 link_info->keep_memory);
7145 if (internal_relocs == NULL)
7146 return ok;
7147
7148 sec_size = bfd_get_section_limit (abfd, sec);
7149 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7150 if (contents == NULL && sec_size != 0)
7151 {
7152 ok = FALSE;
7153 goto error_return;
7154 }
7155
7156 /* Record relocations against relaxable literal sections. */
7157 for (i = 0; i < sec->reloc_count; i++)
7158 {
7159 Elf_Internal_Rela *irel = &internal_relocs[i];
7160 r_reloc r_rel;
7161 asection *target_sec;
7162 xtensa_relax_info *target_relax_info;
7163
7164 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7165
7166 target_sec = r_reloc_get_section (&r_rel);
7167 target_relax_info = get_xtensa_relax_info (target_sec);
7168
7169 if (target_relax_info
7170 && (target_relax_info->is_relaxable_literal_section
7171 || target_relax_info->is_relaxable_asm_section))
7172 {
7173 xtensa_opcode opcode = XTENSA_UNDEFINED;
7174 int opnd = -1;
7175 bfd_boolean is_abs_literal = FALSE;
7176
7177 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7178 {
7179 /* None of the current alternate relocs are PC-relative,
7180 and only PC-relative relocs matter here. However, we
7181 still need to record the opcode for literal
7182 coalescing. */
7183 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7184 if (opcode == get_l32r_opcode ())
7185 {
7186 is_abs_literal = TRUE;
7187 opnd = 1;
7188 }
7189 else
7190 opcode = XTENSA_UNDEFINED;
7191 }
7192 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7193 {
7194 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7195 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7196 }
7197
7198 if (opcode != XTENSA_UNDEFINED)
7199 {
7200 int src_next = target_relax_info->src_next++;
7201 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7202
7203 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7204 is_abs_literal);
7205 }
7206 }
7207 }
7208
7209 /* Now get rid of ASM_EXPAND relocations. At this point, the
7210 src_relocs array for the target literal section may still be
7211 incomplete, but it must at least contain the entries for the L32R
7212 relocations associated with ASM_EXPANDs because they were just
7213 added in the preceding loop over the relocations. */
7214
7215 for (i = 0; i < sec->reloc_count; i++)
7216 {
7217 Elf_Internal_Rela *irel = &internal_relocs[i];
7218 bfd_boolean is_reachable;
7219
7220 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7221 &is_reachable))
7222 continue;
7223
7224 if (is_reachable)
7225 {
7226 Elf_Internal_Rela *l32r_irel;
7227 r_reloc r_rel;
7228 asection *target_sec;
7229 xtensa_relax_info *target_relax_info;
7230
7231 /* Mark the source_reloc for the L32R so that it will be
7232 removed in compute_removed_literals(), along with the
7233 associated literal. */
7234 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7235 irel, internal_relocs);
7236 if (l32r_irel == NULL)
7237 continue;
7238
7239 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7240
7241 target_sec = r_reloc_get_section (&r_rel);
7242 target_relax_info = get_xtensa_relax_info (target_sec);
7243
7244 if (target_relax_info
7245 && (target_relax_info->is_relaxable_literal_section
7246 || target_relax_info->is_relaxable_asm_section))
7247 {
7248 source_reloc *s_reloc;
7249
7250 /* Search the source_relocs for the entry corresponding to
7251 the l32r_irel. Note: The src_relocs array is not yet
7252 sorted, but it wouldn't matter anyway because we're
7253 searching by source offset instead of target offset. */
7254 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7255 target_relax_info->src_next,
7256 sec, l32r_irel);
7257 BFD_ASSERT (s_reloc);
7258 s_reloc->is_null = TRUE;
7259 }
7260
7261 /* Convert this reloc to ASM_SIMPLIFY. */
7262 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7263 R_XTENSA_ASM_SIMPLIFY);
7264 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7265
7266 pin_internal_relocs (sec, internal_relocs);
7267 }
7268 else
7269 {
7270 /* It is resolvable but doesn't reach. We resolve now
7271 by eliminating the relocation -- the call will remain
7272 expanded into L32R/CALLX. */
7273 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7274 pin_internal_relocs (sec, internal_relocs);
7275 }
7276 }
7277
7278 error_return:
7279 release_contents (sec, contents);
7280 release_internal_relocs (sec, internal_relocs);
7281 return ok;
7282 }
7283
7284
7285 /* Return TRUE if the asm expansion can be resolved. Generally it can
7286 be resolved on a final link or when a partial link locates it in the
7287 same section as the target. Set "is_reachable" flag if the target of
7288 the call is within the range of a direct call, given the current VMA
7289 for this section and the target section. */
7290
7291 bfd_boolean
7292 is_resolvable_asm_expansion (bfd *abfd,
7293 asection *sec,
7294 bfd_byte *contents,
7295 Elf_Internal_Rela *irel,
7296 struct bfd_link_info *link_info,
7297 bfd_boolean *is_reachable_p)
7298 {
7299 asection *target_sec;
7300 bfd_vma target_offset;
7301 r_reloc r_rel;
7302 xtensa_opcode opcode, direct_call_opcode;
7303 bfd_vma self_address;
7304 bfd_vma dest_address;
7305 bfd_boolean uses_l32r;
7306 bfd_size_type sec_size;
7307
7308 *is_reachable_p = FALSE;
7309
7310 if (contents == NULL)
7311 return FALSE;
7312
7313 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7314 return FALSE;
7315
7316 sec_size = bfd_get_section_limit (abfd, sec);
7317 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7318 sec_size - irel->r_offset, &uses_l32r);
7319 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7320 if (!uses_l32r)
7321 return FALSE;
7322
7323 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7324 if (direct_call_opcode == XTENSA_UNDEFINED)
7325 return FALSE;
7326
7327 /* Check and see that the target resolves. */
7328 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7329 if (!r_reloc_is_defined (&r_rel))
7330 return FALSE;
7331
7332 target_sec = r_reloc_get_section (&r_rel);
7333 target_offset = r_rel.target_offset;
7334
7335 /* If the target is in a shared library, then it doesn't reach. This
7336 isn't supposed to come up because the compiler should never generate
7337 non-PIC calls on systems that use shared libraries, but the linker
7338 shouldn't crash regardless. */
7339 if (!target_sec->output_section)
7340 return FALSE;
7341
7342 /* For relocatable sections, we can only simplify when the output
7343 section of the target is the same as the output section of the
7344 source. */
7345 if (bfd_link_relocatable (link_info)
7346 && (target_sec->output_section != sec->output_section
7347 || is_reloc_sym_weak (abfd, irel)))
7348 return FALSE;
7349
7350 if (target_sec->output_section != sec->output_section)
7351 {
7352 /* If the two sections are sufficiently far away that relaxation
7353 might take the call out of range, we can't simplify. For
7354 example, a positive displacement call into another memory
7355 could get moved to a lower address due to literal removal,
7356 but the destination won't move, and so the displacment might
7357 get larger.
7358
7359 If the displacement is negative, assume the destination could
7360 move as far back as the start of the output section. The
7361 self_address will be at least as far into the output section
7362 as it is prior to relaxation.
7363
7364 If the displacement is postive, assume the destination will be in
7365 it's pre-relaxed location (because relaxation only makes sections
7366 smaller). The self_address could go all the way to the beginning
7367 of the output section. */
7368
7369 dest_address = target_sec->output_section->vma;
7370 self_address = sec->output_section->vma;
7371
7372 if (sec->output_section->vma > target_sec->output_section->vma)
7373 self_address += sec->output_offset + irel->r_offset + 3;
7374 else
7375 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7376 /* Call targets should be four-byte aligned. */
7377 dest_address = (dest_address + 3) & ~3;
7378 }
7379 else
7380 {
7381
7382 self_address = (sec->output_section->vma
7383 + sec->output_offset + irel->r_offset + 3);
7384 dest_address = (target_sec->output_section->vma
7385 + target_sec->output_offset + target_offset);
7386 }
7387
7388 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7389 self_address, dest_address);
7390
7391 if ((self_address >> CALL_SEGMENT_BITS) !=
7392 (dest_address >> CALL_SEGMENT_BITS))
7393 return FALSE;
7394
7395 return TRUE;
7396 }
7397
7398
7399 static Elf_Internal_Rela *
7400 find_associated_l32r_irel (bfd *abfd,
7401 asection *sec,
7402 bfd_byte *contents,
7403 Elf_Internal_Rela *other_irel,
7404 Elf_Internal_Rela *internal_relocs)
7405 {
7406 unsigned i;
7407
7408 for (i = 0; i < sec->reloc_count; i++)
7409 {
7410 Elf_Internal_Rela *irel = &internal_relocs[i];
7411
7412 if (irel == other_irel)
7413 continue;
7414 if (irel->r_offset != other_irel->r_offset)
7415 continue;
7416 if (is_l32r_relocation (abfd, sec, contents, irel))
7417 return irel;
7418 }
7419
7420 return NULL;
7421 }
7422
7423
7424 static xtensa_opcode *
7425 build_reloc_opcodes (bfd *abfd,
7426 asection *sec,
7427 bfd_byte *contents,
7428 Elf_Internal_Rela *internal_relocs)
7429 {
7430 unsigned i;
7431 xtensa_opcode *reloc_opcodes =
7432 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7433 for (i = 0; i < sec->reloc_count; i++)
7434 {
7435 Elf_Internal_Rela *irel = &internal_relocs[i];
7436 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7437 }
7438 return reloc_opcodes;
7439 }
7440
7441 struct reloc_range_struct
7442 {
7443 bfd_vma addr;
7444 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7445 /* Original irel index in the array of relocations for a section. */
7446 unsigned irel_index;
7447 };
7448 typedef struct reloc_range_struct reloc_range;
7449
7450 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7451 struct reloc_range_list_entry_struct
7452 {
7453 reloc_range_list_entry *next;
7454 reloc_range_list_entry *prev;
7455 Elf_Internal_Rela *irel;
7456 xtensa_opcode opcode;
7457 int opnum;
7458 };
7459
7460 struct reloc_range_list_struct
7461 {
7462 /* The rest of the structure is only meaningful when ok is TRUE. */
7463 bfd_boolean ok;
7464
7465 unsigned n_range; /* Number of range markers. */
7466 reloc_range *range; /* Sorted range markers. */
7467
7468 unsigned first; /* Index of a first range element in the list. */
7469 unsigned last; /* One past index of a last range element in the list. */
7470
7471 unsigned n_list; /* Number of list elements. */
7472 reloc_range_list_entry *reloc; /* */
7473 reloc_range_list_entry list_root;
7474 };
7475
7476 static int
7477 reloc_range_compare (const void *a, const void *b)
7478 {
7479 const reloc_range *ra = a;
7480 const reloc_range *rb = b;
7481
7482 if (ra->addr != rb->addr)
7483 return ra->addr < rb->addr ? -1 : 1;
7484 if (ra->add != rb->add)
7485 return ra->add ? -1 : 1;
7486 return 0;
7487 }
7488
7489 static void
7490 build_reloc_ranges (bfd *abfd, asection *sec,
7491 bfd_byte *contents,
7492 Elf_Internal_Rela *internal_relocs,
7493 xtensa_opcode *reloc_opcodes,
7494 reloc_range_list *list)
7495 {
7496 unsigned i;
7497 size_t n = 0;
7498 size_t max_n = 0;
7499 reloc_range *ranges = NULL;
7500 reloc_range_list_entry *reloc =
7501 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7502
7503 memset (list, 0, sizeof (*list));
7504 list->ok = TRUE;
7505
7506 for (i = 0; i < sec->reloc_count; i++)
7507 {
7508 Elf_Internal_Rela *irel = &internal_relocs[i];
7509 int r_type = ELF32_R_TYPE (irel->r_info);
7510 reloc_howto_type *howto = &elf_howto_table[r_type];
7511 r_reloc r_rel;
7512
7513 if (r_type == R_XTENSA_ASM_SIMPLIFY
7514 || r_type == R_XTENSA_32_PCREL
7515 || !howto->pc_relative)
7516 continue;
7517
7518 r_reloc_init (&r_rel, abfd, irel, contents,
7519 bfd_get_section_limit (abfd, sec));
7520
7521 if (r_reloc_get_section (&r_rel) != sec)
7522 continue;
7523
7524 if (n + 2 > max_n)
7525 {
7526 max_n = (max_n + 2) * 2;
7527 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7528 }
7529
7530 ranges[n].addr = irel->r_offset;
7531 ranges[n + 1].addr = r_rel.target_offset;
7532
7533 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7534 ranges[n + 1].add = !ranges[n].add;
7535
7536 ranges[n].irel_index = i;
7537 ranges[n + 1].irel_index = i;
7538
7539 n += 2;
7540
7541 reloc[i].irel = irel;
7542
7543 /* Every relocation won't possibly be checked in the optimized version of
7544 check_section_ebb_pcrels_fit, so this needs to be done here. */
7545 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7546 {
7547 /* None of the current alternate relocs are PC-relative,
7548 and only PC-relative relocs matter here. */
7549 }
7550 else
7551 {
7552 xtensa_opcode opcode;
7553 int opnum;
7554
7555 if (reloc_opcodes)
7556 opcode = reloc_opcodes[i];
7557 else
7558 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7559
7560 if (opcode == XTENSA_UNDEFINED)
7561 {
7562 list->ok = FALSE;
7563 break;
7564 }
7565
7566 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7567 if (opnum == XTENSA_UNDEFINED)
7568 {
7569 list->ok = FALSE;
7570 break;
7571 }
7572
7573 /* Record relocation opcode and opnum as we've calculated them
7574 anyway and they won't change. */
7575 reloc[i].opcode = opcode;
7576 reloc[i].opnum = opnum;
7577 }
7578 }
7579
7580 if (list->ok)
7581 {
7582 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7583 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7584
7585 list->n_range = n;
7586 list->range = ranges;
7587 list->reloc = reloc;
7588 list->list_root.prev = &list->list_root;
7589 list->list_root.next = &list->list_root;
7590 }
7591 else
7592 {
7593 free (ranges);
7594 free (reloc);
7595 }
7596 }
7597
7598 static void reloc_range_list_append (reloc_range_list *list,
7599 unsigned irel_index)
7600 {
7601 reloc_range_list_entry *entry = list->reloc + irel_index;
7602
7603 entry->prev = list->list_root.prev;
7604 entry->next = &list->list_root;
7605 entry->prev->next = entry;
7606 entry->next->prev = entry;
7607 ++list->n_list;
7608 }
7609
7610 static void reloc_range_list_remove (reloc_range_list *list,
7611 unsigned irel_index)
7612 {
7613 reloc_range_list_entry *entry = list->reloc + irel_index;
7614
7615 entry->next->prev = entry->prev;
7616 entry->prev->next = entry->next;
7617 --list->n_list;
7618 }
7619
7620 /* Update relocation list object so that it lists all relocations that cross
7621 [first; last] range. Range bounds should not decrease with successive
7622 invocations. */
7623 static void reloc_range_list_update_range (reloc_range_list *list,
7624 bfd_vma first, bfd_vma last)
7625 {
7626 /* This should not happen: EBBs are iterated from lower addresses to higher.
7627 But even if that happens there's no need to break: just flush current list
7628 and start from scratch. */
7629 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7630 (list->first > 0 && list->range[list->first - 1].addr >= first))
7631 {
7632 list->first = 0;
7633 list->last = 0;
7634 list->n_list = 0;
7635 list->list_root.next = &list->list_root;
7636 list->list_root.prev = &list->list_root;
7637 fprintf (stderr, "%s: move backwards requested\n", __func__);
7638 }
7639
7640 for (; list->last < list->n_range &&
7641 list->range[list->last].addr <= last; ++list->last)
7642 if (list->range[list->last].add)
7643 reloc_range_list_append (list, list->range[list->last].irel_index);
7644
7645 for (; list->first < list->n_range &&
7646 list->range[list->first].addr < first; ++list->first)
7647 if (!list->range[list->first].add)
7648 reloc_range_list_remove (list, list->range[list->first].irel_index);
7649 }
7650
7651 static void free_reloc_range_list (reloc_range_list *list)
7652 {
7653 free (list->range);
7654 free (list->reloc);
7655 }
7656
7657 /* The compute_text_actions function will build a list of potential
7658 transformation actions for code in the extended basic block of each
7659 longcall that is optimized to a direct call. From this list we
7660 generate a set of actions to actually perform that optimizes for
7661 space and, if not using size_opt, maintains branch target
7662 alignments.
7663
7664 These actions to be performed are placed on a per-section list.
7665 The actual changes are performed by relax_section() in the second
7666 pass. */
7667
7668 bfd_boolean
7669 compute_text_actions (bfd *abfd,
7670 asection *sec,
7671 struct bfd_link_info *link_info)
7672 {
7673 xtensa_opcode *reloc_opcodes = NULL;
7674 xtensa_relax_info *relax_info;
7675 bfd_byte *contents;
7676 Elf_Internal_Rela *internal_relocs;
7677 bfd_boolean ok = TRUE;
7678 unsigned i;
7679 property_table_entry *prop_table = 0;
7680 int ptblsize = 0;
7681 bfd_size_type sec_size;
7682 reloc_range_list relevant_relocs;
7683
7684 relax_info = get_xtensa_relax_info (sec);
7685 BFD_ASSERT (relax_info);
7686 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7687
7688 /* Do nothing if the section contains no optimized longcalls. */
7689 if (!relax_info->is_relaxable_asm_section)
7690 return ok;
7691
7692 internal_relocs = retrieve_internal_relocs (abfd, sec,
7693 link_info->keep_memory);
7694
7695 if (internal_relocs)
7696 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7697 internal_reloc_compare);
7698
7699 sec_size = bfd_get_section_limit (abfd, sec);
7700 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7701 if (contents == NULL && sec_size != 0)
7702 {
7703 ok = FALSE;
7704 goto error_return;
7705 }
7706
7707 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7708 XTENSA_PROP_SEC_NAME, FALSE);
7709 if (ptblsize < 0)
7710 {
7711 ok = FALSE;
7712 goto error_return;
7713 }
7714
7715 /* Precompute the opcode for each relocation. */
7716 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7717
7718 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7719 &relevant_relocs);
7720
7721 for (i = 0; i < sec->reloc_count; i++)
7722 {
7723 Elf_Internal_Rela *irel = &internal_relocs[i];
7724 bfd_vma r_offset;
7725 property_table_entry *the_entry;
7726 int ptbl_idx;
7727 ebb_t *ebb;
7728 ebb_constraint ebb_table;
7729 bfd_size_type simplify_size;
7730
7731 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7732 continue;
7733 r_offset = irel->r_offset;
7734
7735 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7736 if (simplify_size == 0)
7737 {
7738 _bfd_error_handler
7739 /* xgettext:c-format */
7740 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7741 sec->owner, sec, r_offset);
7742 continue;
7743 }
7744
7745 /* If the instruction table is not around, then don't do this
7746 relaxation. */
7747 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7748 sec->vma + irel->r_offset);
7749 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7750 {
7751 text_action_add (&relax_info->action_list,
7752 ta_convert_longcall, sec, r_offset,
7753 0);
7754 continue;
7755 }
7756
7757 /* If the next longcall happens to be at the same address as an
7758 unreachable section of size 0, then skip forward. */
7759 ptbl_idx = the_entry - prop_table;
7760 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7761 && the_entry->size == 0
7762 && ptbl_idx + 1 < ptblsize
7763 && (prop_table[ptbl_idx + 1].address
7764 == prop_table[ptbl_idx].address))
7765 {
7766 ptbl_idx++;
7767 the_entry++;
7768 }
7769
7770 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7771 /* NO_REORDER is OK */
7772 continue;
7773
7774 init_ebb_constraint (&ebb_table);
7775 ebb = &ebb_table.ebb;
7776 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7777 internal_relocs, sec->reloc_count);
7778 ebb->start_offset = r_offset + simplify_size;
7779 ebb->end_offset = r_offset + simplify_size;
7780 ebb->start_ptbl_idx = ptbl_idx;
7781 ebb->end_ptbl_idx = ptbl_idx;
7782 ebb->start_reloc_idx = i;
7783 ebb->end_reloc_idx = i;
7784
7785 if (!extend_ebb_bounds (ebb)
7786 || !compute_ebb_proposed_actions (&ebb_table)
7787 || !compute_ebb_actions (&ebb_table)
7788 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7789 internal_relocs,
7790 &relevant_relocs,
7791 &ebb_table, reloc_opcodes)
7792 || !check_section_ebb_reduces (&ebb_table))
7793 {
7794 /* If anything goes wrong or we get unlucky and something does
7795 not fit, with our plan because of expansion between
7796 critical branches, just convert to a NOP. */
7797
7798 text_action_add (&relax_info->action_list,
7799 ta_convert_longcall, sec, r_offset, 0);
7800 i = ebb_table.ebb.end_reloc_idx;
7801 free_ebb_constraint (&ebb_table);
7802 continue;
7803 }
7804
7805 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7806
7807 /* Update the index so we do not go looking at the relocations
7808 we have already processed. */
7809 i = ebb_table.ebb.end_reloc_idx;
7810 free_ebb_constraint (&ebb_table);
7811 }
7812
7813 free_reloc_range_list (&relevant_relocs);
7814
7815 #if DEBUG
7816 if (action_list_count (&relax_info->action_list))
7817 print_action_list (stderr, &relax_info->action_list);
7818 #endif
7819
7820 error_return:
7821 release_contents (sec, contents);
7822 release_internal_relocs (sec, internal_relocs);
7823 if (prop_table)
7824 free (prop_table);
7825 if (reloc_opcodes)
7826 free (reloc_opcodes);
7827
7828 return ok;
7829 }
7830
7831
7832 /* Do not widen an instruction if it is preceeded by a
7833 loop opcode. It might cause misalignment. */
7834
7835 static bfd_boolean
7836 prev_instr_is_a_loop (bfd_byte *contents,
7837 bfd_size_type content_length,
7838 bfd_size_type offset)
7839 {
7840 xtensa_opcode prev_opcode;
7841
7842 if (offset < 3)
7843 return FALSE;
7844 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7845 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7846 }
7847
7848
7849 /* Find all of the possible actions for an extended basic block. */
7850
7851 bfd_boolean
7852 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7853 {
7854 const ebb_t *ebb = &ebb_table->ebb;
7855 unsigned rel_idx = ebb->start_reloc_idx;
7856 property_table_entry *entry, *start_entry, *end_entry;
7857 bfd_vma offset = 0;
7858 xtensa_isa isa = xtensa_default_isa;
7859 xtensa_format fmt;
7860 static xtensa_insnbuf insnbuf = NULL;
7861 static xtensa_insnbuf slotbuf = NULL;
7862
7863 if (insnbuf == NULL)
7864 {
7865 insnbuf = xtensa_insnbuf_alloc (isa);
7866 slotbuf = xtensa_insnbuf_alloc (isa);
7867 }
7868
7869 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7870 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7871
7872 for (entry = start_entry; entry <= end_entry; entry++)
7873 {
7874 bfd_vma start_offset, end_offset;
7875 bfd_size_type insn_len;
7876
7877 start_offset = entry->address - ebb->sec->vma;
7878 end_offset = entry->address + entry->size - ebb->sec->vma;
7879
7880 if (entry == start_entry)
7881 start_offset = ebb->start_offset;
7882 if (entry == end_entry)
7883 end_offset = ebb->end_offset;
7884 offset = start_offset;
7885
7886 if (offset == entry->address - ebb->sec->vma
7887 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7888 {
7889 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7890 BFD_ASSERT (offset != end_offset);
7891 if (offset == end_offset)
7892 return FALSE;
7893
7894 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7895 offset);
7896 if (insn_len == 0)
7897 goto decode_error;
7898
7899 if (check_branch_target_aligned_address (offset, insn_len))
7900 align_type = EBB_REQUIRE_TGT_ALIGN;
7901
7902 ebb_propose_action (ebb_table, align_type, 0,
7903 ta_none, offset, 0, TRUE);
7904 }
7905
7906 while (offset != end_offset)
7907 {
7908 Elf_Internal_Rela *irel;
7909 xtensa_opcode opcode;
7910
7911 while (rel_idx < ebb->end_reloc_idx
7912 && (ebb->relocs[rel_idx].r_offset < offset
7913 || (ebb->relocs[rel_idx].r_offset == offset
7914 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7915 != R_XTENSA_ASM_SIMPLIFY))))
7916 rel_idx++;
7917
7918 /* Check for longcall. */
7919 irel = &ebb->relocs[rel_idx];
7920 if (irel->r_offset == offset
7921 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7922 {
7923 bfd_size_type simplify_size;
7924
7925 simplify_size = get_asm_simplify_size (ebb->contents,
7926 ebb->content_length,
7927 irel->r_offset);
7928 if (simplify_size == 0)
7929 goto decode_error;
7930
7931 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7932 ta_convert_longcall, offset, 0, TRUE);
7933
7934 offset += simplify_size;
7935 continue;
7936 }
7937
7938 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7939 goto decode_error;
7940 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7941 ebb->content_length - offset);
7942 fmt = xtensa_format_decode (isa, insnbuf);
7943 if (fmt == XTENSA_UNDEFINED)
7944 goto decode_error;
7945 insn_len = xtensa_format_length (isa, fmt);
7946 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7947 goto decode_error;
7948
7949 if (xtensa_format_num_slots (isa, fmt) != 1)
7950 {
7951 offset += insn_len;
7952 continue;
7953 }
7954
7955 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7956 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7957 if (opcode == XTENSA_UNDEFINED)
7958 goto decode_error;
7959
7960 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7961 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7962 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7963 {
7964 /* Add an instruction narrow action. */
7965 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7966 ta_narrow_insn, offset, 0, FALSE);
7967 }
7968 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7969 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7970 && ! prev_instr_is_a_loop (ebb->contents,
7971 ebb->content_length, offset))
7972 {
7973 /* Add an instruction widen action. */
7974 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7975 ta_widen_insn, offset, 0, FALSE);
7976 }
7977 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7978 {
7979 /* Check for branch targets. */
7980 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7981 ta_none, offset, 0, TRUE);
7982 }
7983
7984 offset += insn_len;
7985 }
7986 }
7987
7988 if (ebb->ends_unreachable)
7989 {
7990 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7991 ta_fill, ebb->end_offset, 0, TRUE);
7992 }
7993
7994 return TRUE;
7995
7996 decode_error:
7997 _bfd_error_handler
7998 /* xgettext:c-format */
7999 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
8000 ebb->sec->owner, ebb->sec, offset);
8001 return FALSE;
8002 }
8003
8004
8005 /* After all of the information has collected about the
8006 transformations possible in an EBB, compute the appropriate actions
8007 here in compute_ebb_actions. We still must check later to make
8008 sure that the actions do not break any relocations. The algorithm
8009 used here is pretty greedy. Basically, it removes as many no-ops
8010 as possible so that the end of the EBB has the same alignment
8011 characteristics as the original. First, it uses narrowing, then
8012 fill space at the end of the EBB, and finally widenings. If that
8013 does not work, it tries again with one fewer no-op removed. The
8014 optimization will only be performed if all of the branch targets
8015 that were aligned before transformation are also aligned after the
8016 transformation.
8017
8018 When the size_opt flag is set, ignore the branch target alignments,
8019 narrow all wide instructions, and remove all no-ops unless the end
8020 of the EBB prevents it. */
8021
8022 bfd_boolean
8023 compute_ebb_actions (ebb_constraint *ebb_table)
8024 {
8025 unsigned i = 0;
8026 unsigned j;
8027 int removed_bytes = 0;
8028 ebb_t *ebb = &ebb_table->ebb;
8029 unsigned seg_idx_start = 0;
8030 unsigned seg_idx_end = 0;
8031
8032 /* We perform this like the assembler relaxation algorithm: Start by
8033 assuming all instructions are narrow and all no-ops removed; then
8034 walk through.... */
8035
8036 /* For each segment of this that has a solid constraint, check to
8037 see if there are any combinations that will keep the constraint.
8038 If so, use it. */
8039 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8040 {
8041 bfd_boolean requires_text_end_align = FALSE;
8042 unsigned longcall_count = 0;
8043 unsigned longcall_convert_count = 0;
8044 unsigned narrowable_count = 0;
8045 unsigned narrowable_convert_count = 0;
8046 unsigned widenable_count = 0;
8047 unsigned widenable_convert_count = 0;
8048
8049 proposed_action *action = NULL;
8050 int align = (1 << ebb_table->ebb.sec->alignment_power);
8051
8052 seg_idx_start = seg_idx_end;
8053
8054 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8055 {
8056 action = &ebb_table->actions[i];
8057 if (action->action == ta_convert_longcall)
8058 longcall_count++;
8059 if (action->action == ta_narrow_insn)
8060 narrowable_count++;
8061 if (action->action == ta_widen_insn)
8062 widenable_count++;
8063 if (action->action == ta_fill)
8064 break;
8065 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8066 break;
8067 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8068 && !elf32xtensa_size_opt)
8069 break;
8070 }
8071 seg_idx_end = i;
8072
8073 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8074 requires_text_end_align = TRUE;
8075
8076 if (elf32xtensa_size_opt && !requires_text_end_align
8077 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8078 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8079 {
8080 longcall_convert_count = longcall_count;
8081 narrowable_convert_count = narrowable_count;
8082 widenable_convert_count = 0;
8083 }
8084 else
8085 {
8086 /* There is a constraint. Convert the max number of longcalls. */
8087 narrowable_convert_count = 0;
8088 longcall_convert_count = 0;
8089 widenable_convert_count = 0;
8090
8091 for (j = 0; j < longcall_count; j++)
8092 {
8093 int removed = (longcall_count - j) * 3 & (align - 1);
8094 unsigned desire_narrow = (align - removed) & (align - 1);
8095 unsigned desire_widen = removed;
8096 if (desire_narrow <= narrowable_count)
8097 {
8098 narrowable_convert_count = desire_narrow;
8099 narrowable_convert_count +=
8100 (align * ((narrowable_count - narrowable_convert_count)
8101 / align));
8102 longcall_convert_count = (longcall_count - j);
8103 widenable_convert_count = 0;
8104 break;
8105 }
8106 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8107 {
8108 narrowable_convert_count = 0;
8109 longcall_convert_count = longcall_count - j;
8110 widenable_convert_count = desire_widen;
8111 break;
8112 }
8113 }
8114 }
8115
8116 /* Now the number of conversions are saved. Do them. */
8117 for (i = seg_idx_start; i < seg_idx_end; i++)
8118 {
8119 action = &ebb_table->actions[i];
8120 switch (action->action)
8121 {
8122 case ta_convert_longcall:
8123 if (longcall_convert_count != 0)
8124 {
8125 action->action = ta_remove_longcall;
8126 action->do_action = TRUE;
8127 action->removed_bytes += 3;
8128 longcall_convert_count--;
8129 }
8130 break;
8131 case ta_narrow_insn:
8132 if (narrowable_convert_count != 0)
8133 {
8134 action->do_action = TRUE;
8135 action->removed_bytes += 1;
8136 narrowable_convert_count--;
8137 }
8138 break;
8139 case ta_widen_insn:
8140 if (widenable_convert_count != 0)
8141 {
8142 action->do_action = TRUE;
8143 action->removed_bytes -= 1;
8144 widenable_convert_count--;
8145 }
8146 break;
8147 default:
8148 break;
8149 }
8150 }
8151 }
8152
8153 /* Now we move on to some local opts. Try to remove each of the
8154 remaining longcalls. */
8155
8156 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8157 {
8158 removed_bytes = 0;
8159 for (i = 0; i < ebb_table->action_count; i++)
8160 {
8161 int old_removed_bytes = removed_bytes;
8162 proposed_action *action = &ebb_table->actions[i];
8163
8164 if (action->do_action && action->action == ta_convert_longcall)
8165 {
8166 bfd_boolean bad_alignment = FALSE;
8167 removed_bytes += 3;
8168 for (j = i + 1; j < ebb_table->action_count; j++)
8169 {
8170 proposed_action *new_action = &ebb_table->actions[j];
8171 bfd_vma offset = new_action->offset;
8172 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8173 {
8174 if (!check_branch_target_aligned
8175 (ebb_table->ebb.contents,
8176 ebb_table->ebb.content_length,
8177 offset, offset - removed_bytes))
8178 {
8179 bad_alignment = TRUE;
8180 break;
8181 }
8182 }
8183 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8184 {
8185 if (!check_loop_aligned (ebb_table->ebb.contents,
8186 ebb_table->ebb.content_length,
8187 offset,
8188 offset - removed_bytes))
8189 {
8190 bad_alignment = TRUE;
8191 break;
8192 }
8193 }
8194 if (new_action->action == ta_narrow_insn
8195 && !new_action->do_action
8196 && ebb_table->ebb.sec->alignment_power == 2)
8197 {
8198 /* Narrow an instruction and we are done. */
8199 new_action->do_action = TRUE;
8200 new_action->removed_bytes += 1;
8201 bad_alignment = FALSE;
8202 break;
8203 }
8204 if (new_action->action == ta_widen_insn
8205 && new_action->do_action
8206 && ebb_table->ebb.sec->alignment_power == 2)
8207 {
8208 /* Narrow an instruction and we are done. */
8209 new_action->do_action = FALSE;
8210 new_action->removed_bytes += 1;
8211 bad_alignment = FALSE;
8212 break;
8213 }
8214 if (new_action->do_action)
8215 removed_bytes += new_action->removed_bytes;
8216 }
8217 if (!bad_alignment)
8218 {
8219 action->removed_bytes += 3;
8220 action->action = ta_remove_longcall;
8221 action->do_action = TRUE;
8222 }
8223 }
8224 removed_bytes = old_removed_bytes;
8225 if (action->do_action)
8226 removed_bytes += action->removed_bytes;
8227 }
8228 }
8229
8230 removed_bytes = 0;
8231 for (i = 0; i < ebb_table->action_count; ++i)
8232 {
8233 proposed_action *action = &ebb_table->actions[i];
8234 if (action->do_action)
8235 removed_bytes += action->removed_bytes;
8236 }
8237
8238 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8239 && ebb->ends_unreachable)
8240 {
8241 proposed_action *action;
8242 int br;
8243 int extra_space;
8244
8245 BFD_ASSERT (ebb_table->action_count != 0);
8246 action = &ebb_table->actions[ebb_table->action_count - 1];
8247 BFD_ASSERT (action->action == ta_fill);
8248 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8249
8250 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8251 br = action->removed_bytes + removed_bytes + extra_space;
8252 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8253
8254 action->removed_bytes = extra_space - br;
8255 }
8256 return TRUE;
8257 }
8258
8259
8260 /* The xlate_map is a sorted array of address mappings designed to
8261 answer the offset_with_removed_text() query with a binary search instead
8262 of a linear search through the section's action_list. */
8263
8264 typedef struct xlate_map_entry xlate_map_entry_t;
8265 typedef struct xlate_map xlate_map_t;
8266
8267 struct xlate_map_entry
8268 {
8269 unsigned orig_address;
8270 unsigned new_address;
8271 unsigned size;
8272 };
8273
8274 struct xlate_map
8275 {
8276 unsigned entry_count;
8277 xlate_map_entry_t *entry;
8278 };
8279
8280
8281 static int
8282 xlate_compare (const void *a_v, const void *b_v)
8283 {
8284 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8285 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8286 if (a->orig_address < b->orig_address)
8287 return -1;
8288 if (a->orig_address > (b->orig_address + b->size - 1))
8289 return 1;
8290 return 0;
8291 }
8292
8293
8294 static bfd_vma
8295 xlate_offset_with_removed_text (const xlate_map_t *map,
8296 text_action_list *action_list,
8297 bfd_vma offset)
8298 {
8299 void *r;
8300 xlate_map_entry_t *e;
8301
8302 if (map == NULL)
8303 return offset_with_removed_text (action_list, offset);
8304
8305 if (map->entry_count == 0)
8306 return offset;
8307
8308 r = bsearch (&offset, map->entry, map->entry_count,
8309 sizeof (xlate_map_entry_t), &xlate_compare);
8310 e = (xlate_map_entry_t *) r;
8311
8312 BFD_ASSERT (e != NULL);
8313 if (e == NULL)
8314 return offset;
8315 return e->new_address - e->orig_address + offset;
8316 }
8317
8318 typedef struct xlate_map_context_struct xlate_map_context;
8319 struct xlate_map_context_struct
8320 {
8321 xlate_map_t *map;
8322 xlate_map_entry_t *current_entry;
8323 int removed;
8324 };
8325
8326 static int
8327 xlate_map_fn (splay_tree_node node, void *p)
8328 {
8329 text_action *r = (text_action *)node->value;
8330 xlate_map_context *ctx = p;
8331 unsigned orig_size = 0;
8332
8333 switch (r->action)
8334 {
8335 case ta_none:
8336 case ta_remove_insn:
8337 case ta_convert_longcall:
8338 case ta_remove_literal:
8339 case ta_add_literal:
8340 break;
8341 case ta_remove_longcall:
8342 orig_size = 6;
8343 break;
8344 case ta_narrow_insn:
8345 orig_size = 3;
8346 break;
8347 case ta_widen_insn:
8348 orig_size = 2;
8349 break;
8350 case ta_fill:
8351 break;
8352 }
8353 ctx->current_entry->size =
8354 r->offset + orig_size - ctx->current_entry->orig_address;
8355 if (ctx->current_entry->size != 0)
8356 {
8357 ctx->current_entry++;
8358 ctx->map->entry_count++;
8359 }
8360 ctx->current_entry->orig_address = r->offset + orig_size;
8361 ctx->removed += r->removed_bytes;
8362 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8363 ctx->current_entry->size = 0;
8364 return 0;
8365 }
8366
8367 /* Build a binary searchable offset translation map from a section's
8368 action list. */
8369
8370 static xlate_map_t *
8371 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8372 {
8373 text_action_list *action_list = &relax_info->action_list;
8374 unsigned num_actions = 0;
8375 xlate_map_context ctx;
8376
8377 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8378
8379 if (ctx.map == NULL)
8380 return NULL;
8381
8382 num_actions = action_list_count (action_list);
8383 ctx.map->entry = (xlate_map_entry_t *)
8384 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8385 if (ctx.map->entry == NULL)
8386 {
8387 free (ctx.map);
8388 return NULL;
8389 }
8390 ctx.map->entry_count = 0;
8391
8392 ctx.removed = 0;
8393 ctx.current_entry = &ctx.map->entry[0];
8394
8395 ctx.current_entry->orig_address = 0;
8396 ctx.current_entry->new_address = 0;
8397 ctx.current_entry->size = 0;
8398
8399 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8400
8401 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8402 - ctx.current_entry->orig_address);
8403 if (ctx.current_entry->size != 0)
8404 ctx.map->entry_count++;
8405
8406 return ctx.map;
8407 }
8408
8409
8410 /* Free an offset translation map. */
8411
8412 static void
8413 free_xlate_map (xlate_map_t *map)
8414 {
8415 if (map && map->entry)
8416 free (map->entry);
8417 if (map)
8418 free (map);
8419 }
8420
8421
8422 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8423 relocations in a section will fit if a proposed set of actions
8424 are performed. */
8425
8426 static bfd_boolean
8427 check_section_ebb_pcrels_fit (bfd *abfd,
8428 asection *sec,
8429 bfd_byte *contents,
8430 Elf_Internal_Rela *internal_relocs,
8431 reloc_range_list *relevant_relocs,
8432 const ebb_constraint *constraint,
8433 const xtensa_opcode *reloc_opcodes)
8434 {
8435 unsigned i, j;
8436 unsigned n = sec->reloc_count;
8437 Elf_Internal_Rela *irel;
8438 xlate_map_t *xmap = NULL;
8439 bfd_boolean ok = TRUE;
8440 xtensa_relax_info *relax_info;
8441 reloc_range_list_entry *entry = NULL;
8442
8443 relax_info = get_xtensa_relax_info (sec);
8444
8445 if (relax_info && sec->reloc_count > 100)
8446 {
8447 xmap = build_xlate_map (sec, relax_info);
8448 /* NULL indicates out of memory, but the slow version
8449 can still be used. */
8450 }
8451
8452 if (relevant_relocs && constraint->action_count)
8453 {
8454 if (!relevant_relocs->ok)
8455 {
8456 ok = FALSE;
8457 n = 0;
8458 }
8459 else
8460 {
8461 bfd_vma min_offset, max_offset;
8462 min_offset = max_offset = constraint->actions[0].offset;
8463
8464 for (i = 1; i < constraint->action_count; ++i)
8465 {
8466 proposed_action *action = &constraint->actions[i];
8467 bfd_vma offset = action->offset;
8468
8469 if (offset < min_offset)
8470 min_offset = offset;
8471 if (offset > max_offset)
8472 max_offset = offset;
8473 }
8474 reloc_range_list_update_range (relevant_relocs, min_offset,
8475 max_offset);
8476 n = relevant_relocs->n_list;
8477 entry = &relevant_relocs->list_root;
8478 }
8479 }
8480 else
8481 {
8482 relevant_relocs = NULL;
8483 }
8484
8485 for (i = 0; i < n; i++)
8486 {
8487 r_reloc r_rel;
8488 bfd_vma orig_self_offset, orig_target_offset;
8489 bfd_vma self_offset, target_offset;
8490 int r_type;
8491 reloc_howto_type *howto;
8492 int self_removed_bytes, target_removed_bytes;
8493
8494 if (relevant_relocs)
8495 {
8496 entry = entry->next;
8497 irel = entry->irel;
8498 }
8499 else
8500 {
8501 irel = internal_relocs + i;
8502 }
8503 r_type = ELF32_R_TYPE (irel->r_info);
8504
8505 howto = &elf_howto_table[r_type];
8506 /* We maintain the required invariant: PC-relative relocations
8507 that fit before linking must fit after linking. Thus we only
8508 need to deal with relocations to the same section that are
8509 PC-relative. */
8510 if (r_type == R_XTENSA_ASM_SIMPLIFY
8511 || r_type == R_XTENSA_32_PCREL
8512 || !howto->pc_relative)
8513 continue;
8514
8515 r_reloc_init (&r_rel, abfd, irel, contents,
8516 bfd_get_section_limit (abfd, sec));
8517
8518 if (r_reloc_get_section (&r_rel) != sec)
8519 continue;
8520
8521 orig_self_offset = irel->r_offset;
8522 orig_target_offset = r_rel.target_offset;
8523
8524 self_offset = orig_self_offset;
8525 target_offset = orig_target_offset;
8526
8527 if (relax_info)
8528 {
8529 self_offset =
8530 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8531 orig_self_offset);
8532 target_offset =
8533 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8534 orig_target_offset);
8535 }
8536
8537 self_removed_bytes = 0;
8538 target_removed_bytes = 0;
8539
8540 for (j = 0; j < constraint->action_count; ++j)
8541 {
8542 proposed_action *action = &constraint->actions[j];
8543 bfd_vma offset = action->offset;
8544 int removed_bytes = action->removed_bytes;
8545 if (offset < orig_self_offset
8546 || (offset == orig_self_offset && action->action == ta_fill
8547 && action->removed_bytes < 0))
8548 self_removed_bytes += removed_bytes;
8549 if (offset < orig_target_offset
8550 || (offset == orig_target_offset && action->action == ta_fill
8551 && action->removed_bytes < 0))
8552 target_removed_bytes += removed_bytes;
8553 }
8554 self_offset -= self_removed_bytes;
8555 target_offset -= target_removed_bytes;
8556
8557 /* Try to encode it. Get the operand and check. */
8558 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8559 {
8560 /* None of the current alternate relocs are PC-relative,
8561 and only PC-relative relocs matter here. */
8562 }
8563 else
8564 {
8565 xtensa_opcode opcode;
8566 int opnum;
8567
8568 if (relevant_relocs)
8569 {
8570 opcode = entry->opcode;
8571 opnum = entry->opnum;
8572 }
8573 else
8574 {
8575 if (reloc_opcodes)
8576 opcode = reloc_opcodes[relevant_relocs ?
8577 (unsigned)(entry - relevant_relocs->reloc) : i];
8578 else
8579 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8580 if (opcode == XTENSA_UNDEFINED)
8581 {
8582 ok = FALSE;
8583 break;
8584 }
8585
8586 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8587 if (opnum == XTENSA_UNDEFINED)
8588 {
8589 ok = FALSE;
8590 break;
8591 }
8592 }
8593
8594 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8595 {
8596 ok = FALSE;
8597 break;
8598 }
8599 }
8600 }
8601
8602 if (xmap)
8603 free_xlate_map (xmap);
8604
8605 return ok;
8606 }
8607
8608
8609 static bfd_boolean
8610 check_section_ebb_reduces (const ebb_constraint *constraint)
8611 {
8612 int removed = 0;
8613 unsigned i;
8614
8615 for (i = 0; i < constraint->action_count; i++)
8616 {
8617 const proposed_action *action = &constraint->actions[i];
8618 if (action->do_action)
8619 removed += action->removed_bytes;
8620 }
8621 if (removed < 0)
8622 return FALSE;
8623
8624 return TRUE;
8625 }
8626
8627
8628 void
8629 text_action_add_proposed (text_action_list *l,
8630 const ebb_constraint *ebb_table,
8631 asection *sec)
8632 {
8633 unsigned i;
8634
8635 for (i = 0; i < ebb_table->action_count; i++)
8636 {
8637 proposed_action *action = &ebb_table->actions[i];
8638
8639 if (!action->do_action)
8640 continue;
8641 switch (action->action)
8642 {
8643 case ta_remove_insn:
8644 case ta_remove_longcall:
8645 case ta_convert_longcall:
8646 case ta_narrow_insn:
8647 case ta_widen_insn:
8648 case ta_fill:
8649 case ta_remove_literal:
8650 text_action_add (l, action->action, sec, action->offset,
8651 action->removed_bytes);
8652 break;
8653 case ta_none:
8654 break;
8655 default:
8656 BFD_ASSERT (0);
8657 break;
8658 }
8659 }
8660 }
8661
8662
8663 int
8664 compute_fill_extra_space (property_table_entry *entry)
8665 {
8666 int fill_extra_space;
8667
8668 if (!entry)
8669 return 0;
8670
8671 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8672 return 0;
8673
8674 fill_extra_space = entry->size;
8675 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8676 {
8677 /* Fill bytes for alignment:
8678 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8679 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8680 int nsm = (1 << pow) - 1;
8681 bfd_vma addr = entry->address + entry->size;
8682 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8683 fill_extra_space += align_fill;
8684 }
8685 return fill_extra_space;
8686 }
8687
8688 \f
8689 /* First relaxation pass. */
8690
8691 /* If the section contains relaxable literals, check each literal to
8692 see if it has the same value as another literal that has already
8693 been seen, either in the current section or a previous one. If so,
8694 add an entry to the per-section list of removed literals. The
8695 actual changes are deferred until the next pass. */
8696
8697 static bfd_boolean
8698 compute_removed_literals (bfd *abfd,
8699 asection *sec,
8700 struct bfd_link_info *link_info,
8701 value_map_hash_table *values)
8702 {
8703 xtensa_relax_info *relax_info;
8704 bfd_byte *contents;
8705 Elf_Internal_Rela *internal_relocs;
8706 source_reloc *src_relocs, *rel;
8707 bfd_boolean ok = TRUE;
8708 property_table_entry *prop_table = NULL;
8709 int ptblsize;
8710 int i, prev_i;
8711 bfd_boolean last_loc_is_prev = FALSE;
8712 bfd_vma last_target_offset = 0;
8713 section_cache_t target_sec_cache;
8714 bfd_size_type sec_size;
8715
8716 init_section_cache (&target_sec_cache);
8717
8718 /* Do nothing if it is not a relaxable literal section. */
8719 relax_info = get_xtensa_relax_info (sec);
8720 BFD_ASSERT (relax_info);
8721 if (!relax_info->is_relaxable_literal_section)
8722 return ok;
8723
8724 internal_relocs = retrieve_internal_relocs (abfd, sec,
8725 link_info->keep_memory);
8726
8727 sec_size = bfd_get_section_limit (abfd, sec);
8728 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8729 if (contents == NULL && sec_size != 0)
8730 {
8731 ok = FALSE;
8732 goto error_return;
8733 }
8734
8735 /* Sort the source_relocs by target offset. */
8736 src_relocs = relax_info->src_relocs;
8737 qsort (src_relocs, relax_info->src_count,
8738 sizeof (source_reloc), source_reloc_compare);
8739 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8740 internal_reloc_compare);
8741
8742 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8743 XTENSA_PROP_SEC_NAME, FALSE);
8744 if (ptblsize < 0)
8745 {
8746 ok = FALSE;
8747 goto error_return;
8748 }
8749
8750 prev_i = -1;
8751 for (i = 0; i < relax_info->src_count; i++)
8752 {
8753 Elf_Internal_Rela *irel = NULL;
8754
8755 rel = &src_relocs[i];
8756 if (get_l32r_opcode () != rel->opcode)
8757 continue;
8758 irel = get_irel_at_offset (sec, internal_relocs,
8759 rel->r_rel.target_offset);
8760
8761 /* If the relocation on this is not a simple R_XTENSA_32 or
8762 R_XTENSA_PLT then do not consider it. This may happen when
8763 the difference of two symbols is used in a literal. */
8764 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8765 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8766 continue;
8767
8768 /* If the target_offset for this relocation is the same as the
8769 previous relocation, then we've already considered whether the
8770 literal can be coalesced. Skip to the next one.... */
8771 if (i != 0 && prev_i != -1
8772 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8773 continue;
8774 prev_i = i;
8775
8776 if (last_loc_is_prev &&
8777 last_target_offset + 4 != rel->r_rel.target_offset)
8778 last_loc_is_prev = FALSE;
8779
8780 /* Check if the relocation was from an L32R that is being removed
8781 because a CALLX was converted to a direct CALL, and check if
8782 there are no other relocations to the literal. */
8783 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8784 sec, prop_table, ptblsize))
8785 {
8786 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8787 irel, rel, prop_table, ptblsize))
8788 {
8789 ok = FALSE;
8790 goto error_return;
8791 }
8792 last_target_offset = rel->r_rel.target_offset;
8793 continue;
8794 }
8795
8796 if (!identify_literal_placement (abfd, sec, contents, link_info,
8797 values,
8798 &last_loc_is_prev, irel,
8799 relax_info->src_count - i, rel,
8800 prop_table, ptblsize,
8801 &target_sec_cache, rel->is_abs_literal))
8802 {
8803 ok = FALSE;
8804 goto error_return;
8805 }
8806 last_target_offset = rel->r_rel.target_offset;
8807 }
8808
8809 #if DEBUG
8810 print_removed_literals (stderr, &relax_info->removed_list);
8811 print_action_list (stderr, &relax_info->action_list);
8812 #endif /* DEBUG */
8813
8814 error_return:
8815 if (prop_table)
8816 free (prop_table);
8817 free_section_cache (&target_sec_cache);
8818
8819 release_contents (sec, contents);
8820 release_internal_relocs (sec, internal_relocs);
8821 return ok;
8822 }
8823
8824
8825 static Elf_Internal_Rela *
8826 get_irel_at_offset (asection *sec,
8827 Elf_Internal_Rela *internal_relocs,
8828 bfd_vma offset)
8829 {
8830 unsigned i;
8831 Elf_Internal_Rela *irel;
8832 unsigned r_type;
8833 Elf_Internal_Rela key;
8834
8835 if (!internal_relocs)
8836 return NULL;
8837
8838 key.r_offset = offset;
8839 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8840 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8841 if (!irel)
8842 return NULL;
8843
8844 /* bsearch does not guarantee which will be returned if there are
8845 multiple matches. We need the first that is not an alignment. */
8846 i = irel - internal_relocs;
8847 while (i > 0)
8848 {
8849 if (internal_relocs[i-1].r_offset != offset)
8850 break;
8851 i--;
8852 }
8853 for ( ; i < sec->reloc_count; i++)
8854 {
8855 irel = &internal_relocs[i];
8856 r_type = ELF32_R_TYPE (irel->r_info);
8857 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8858 return irel;
8859 }
8860
8861 return NULL;
8862 }
8863
8864
8865 bfd_boolean
8866 is_removable_literal (const source_reloc *rel,
8867 int i,
8868 const source_reloc *src_relocs,
8869 int src_count,
8870 asection *sec,
8871 property_table_entry *prop_table,
8872 int ptblsize)
8873 {
8874 const source_reloc *curr_rel;
8875 property_table_entry *entry;
8876
8877 if (!rel->is_null)
8878 return FALSE;
8879
8880 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8881 sec->vma + rel->r_rel.target_offset);
8882 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8883 return FALSE;
8884
8885 for (++i; i < src_count; ++i)
8886 {
8887 curr_rel = &src_relocs[i];
8888 /* If all others have the same target offset.... */
8889 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8890 return TRUE;
8891
8892 if (!curr_rel->is_null
8893 && !xtensa_is_property_section (curr_rel->source_sec)
8894 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8895 return FALSE;
8896 }
8897 return TRUE;
8898 }
8899
8900
8901 bfd_boolean
8902 remove_dead_literal (bfd *abfd,
8903 asection *sec,
8904 struct bfd_link_info *link_info,
8905 Elf_Internal_Rela *internal_relocs,
8906 Elf_Internal_Rela *irel,
8907 source_reloc *rel,
8908 property_table_entry *prop_table,
8909 int ptblsize)
8910 {
8911 property_table_entry *entry;
8912 xtensa_relax_info *relax_info;
8913
8914 relax_info = get_xtensa_relax_info (sec);
8915 if (!relax_info)
8916 return FALSE;
8917
8918 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8919 sec->vma + rel->r_rel.target_offset);
8920
8921 /* Mark the unused literal so that it will be removed. */
8922 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8923
8924 text_action_add (&relax_info->action_list,
8925 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8926
8927 /* If the section is 4-byte aligned, do not add fill. */
8928 if (sec->alignment_power > 2)
8929 {
8930 int fill_extra_space;
8931 bfd_vma entry_sec_offset;
8932 text_action *fa;
8933 property_table_entry *the_add_entry;
8934 int removed_diff;
8935
8936 if (entry)
8937 entry_sec_offset = entry->address - sec->vma + entry->size;
8938 else
8939 entry_sec_offset = rel->r_rel.target_offset + 4;
8940
8941 /* If the literal range is at the end of the section,
8942 do not add fill. */
8943 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8944 entry_sec_offset);
8945 fill_extra_space = compute_fill_extra_space (the_add_entry);
8946
8947 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8948 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8949 -4, fill_extra_space);
8950 if (fa)
8951 adjust_fill_action (fa, removed_diff);
8952 else
8953 text_action_add (&relax_info->action_list,
8954 ta_fill, sec, entry_sec_offset, removed_diff);
8955 }
8956
8957 /* Zero out the relocation on this literal location. */
8958 if (irel)
8959 {
8960 if (elf_hash_table (link_info)->dynamic_sections_created)
8961 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8962
8963 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8964 pin_internal_relocs (sec, internal_relocs);
8965 }
8966
8967 /* Do not modify "last_loc_is_prev". */
8968 return TRUE;
8969 }
8970
8971
8972 bfd_boolean
8973 identify_literal_placement (bfd *abfd,
8974 asection *sec,
8975 bfd_byte *contents,
8976 struct bfd_link_info *link_info,
8977 value_map_hash_table *values,
8978 bfd_boolean *last_loc_is_prev_p,
8979 Elf_Internal_Rela *irel,
8980 int remaining_src_rels,
8981 source_reloc *rel,
8982 property_table_entry *prop_table,
8983 int ptblsize,
8984 section_cache_t *target_sec_cache,
8985 bfd_boolean is_abs_literal)
8986 {
8987 literal_value val;
8988 value_map *val_map;
8989 xtensa_relax_info *relax_info;
8990 bfd_boolean literal_placed = FALSE;
8991 r_reloc r_rel;
8992 unsigned long value;
8993 bfd_boolean final_static_link;
8994 bfd_size_type sec_size;
8995
8996 relax_info = get_xtensa_relax_info (sec);
8997 if (!relax_info)
8998 return FALSE;
8999
9000 sec_size = bfd_get_section_limit (abfd, sec);
9001
9002 final_static_link =
9003 (!bfd_link_relocatable (link_info)
9004 && !elf_hash_table (link_info)->dynamic_sections_created);
9005
9006 /* The placement algorithm first checks to see if the literal is
9007 already in the value map. If so and the value map is reachable
9008 from all uses, then the literal is moved to that location. If
9009 not, then we identify the last location where a fresh literal was
9010 placed. If the literal can be safely moved there, then we do so.
9011 If not, then we assume that the literal is not to move and leave
9012 the literal where it is, marking it as the last literal
9013 location. */
9014
9015 /* Find the literal value. */
9016 value = 0;
9017 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9018 if (!irel)
9019 {
9020 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9021 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9022 }
9023 init_literal_value (&val, &r_rel, value, is_abs_literal);
9024
9025 /* Check if we've seen another literal with the same value that
9026 is in the same output section. */
9027 val_map = value_map_get_cached_value (values, &val, final_static_link);
9028
9029 if (val_map
9030 && (r_reloc_get_section (&val_map->loc)->output_section
9031 == sec->output_section)
9032 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9033 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9034 {
9035 /* No change to last_loc_is_prev. */
9036 literal_placed = TRUE;
9037 }
9038
9039 /* For relocatable links, do not try to move literals. To do it
9040 correctly might increase the number of relocations in an input
9041 section making the default relocatable linking fail. */
9042 if (!bfd_link_relocatable (link_info) && !literal_placed
9043 && values->has_last_loc && !(*last_loc_is_prev_p))
9044 {
9045 asection *target_sec = r_reloc_get_section (&values->last_loc);
9046 if (target_sec && target_sec->output_section == sec->output_section)
9047 {
9048 /* Increment the virtual offset. */
9049 r_reloc try_loc = values->last_loc;
9050 try_loc.virtual_offset += 4;
9051
9052 /* There is a last loc that was in the same output section. */
9053 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9054 && move_shared_literal (sec, link_info, rel,
9055 prop_table, ptblsize,
9056 &try_loc, &val, target_sec_cache))
9057 {
9058 values->last_loc.virtual_offset += 4;
9059 literal_placed = TRUE;
9060 if (!val_map)
9061 val_map = add_value_map (values, &val, &try_loc,
9062 final_static_link);
9063 else
9064 val_map->loc = try_loc;
9065 }
9066 }
9067 }
9068
9069 if (!literal_placed)
9070 {
9071 /* Nothing worked, leave the literal alone but update the last loc. */
9072 values->has_last_loc = TRUE;
9073 values->last_loc = rel->r_rel;
9074 if (!val_map)
9075 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9076 else
9077 val_map->loc = rel->r_rel;
9078 *last_loc_is_prev_p = TRUE;
9079 }
9080
9081 return TRUE;
9082 }
9083
9084
9085 /* Check if the original relocations (presumably on L32R instructions)
9086 identified by reloc[0..N] can be changed to reference the literal
9087 identified by r_rel. If r_rel is out of range for any of the
9088 original relocations, then we don't want to coalesce the original
9089 literal with the one at r_rel. We only check reloc[0..N], where the
9090 offsets are all the same as for reloc[0] (i.e., they're all
9091 referencing the same literal) and where N is also bounded by the
9092 number of remaining entries in the "reloc" array. The "reloc" array
9093 is sorted by target offset so we know all the entries for the same
9094 literal will be contiguous. */
9095
9096 static bfd_boolean
9097 relocations_reach (source_reloc *reloc,
9098 int remaining_relocs,
9099 const r_reloc *r_rel)
9100 {
9101 bfd_vma from_offset, source_address, dest_address;
9102 asection *sec;
9103 int i;
9104
9105 if (!r_reloc_is_defined (r_rel))
9106 return FALSE;
9107
9108 sec = r_reloc_get_section (r_rel);
9109 from_offset = reloc[0].r_rel.target_offset;
9110
9111 for (i = 0; i < remaining_relocs; i++)
9112 {
9113 if (reloc[i].r_rel.target_offset != from_offset)
9114 break;
9115
9116 /* Ignore relocations that have been removed. */
9117 if (reloc[i].is_null)
9118 continue;
9119
9120 /* The original and new output section for these must be the same
9121 in order to coalesce. */
9122 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9123 != sec->output_section)
9124 return FALSE;
9125
9126 /* Absolute literals in the same output section can always be
9127 combined. */
9128 if (reloc[i].is_abs_literal)
9129 continue;
9130
9131 /* A literal with no PC-relative relocations can be moved anywhere. */
9132 if (reloc[i].opnd != -1)
9133 {
9134 /* Otherwise, check to see that it fits. */
9135 source_address = (reloc[i].source_sec->output_section->vma
9136 + reloc[i].source_sec->output_offset
9137 + reloc[i].r_rel.rela.r_offset);
9138 dest_address = (sec->output_section->vma
9139 + sec->output_offset
9140 + r_rel->target_offset);
9141
9142 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9143 source_address, dest_address))
9144 return FALSE;
9145 }
9146 }
9147
9148 return TRUE;
9149 }
9150
9151
9152 /* Move a literal to another literal location because it is
9153 the same as the other literal value. */
9154
9155 static bfd_boolean
9156 coalesce_shared_literal (asection *sec,
9157 source_reloc *rel,
9158 property_table_entry *prop_table,
9159 int ptblsize,
9160 value_map *val_map)
9161 {
9162 property_table_entry *entry;
9163 text_action *fa;
9164 property_table_entry *the_add_entry;
9165 int removed_diff;
9166 xtensa_relax_info *relax_info;
9167
9168 relax_info = get_xtensa_relax_info (sec);
9169 if (!relax_info)
9170 return FALSE;
9171
9172 entry = elf_xtensa_find_property_entry
9173 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9174 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9175 return TRUE;
9176
9177 /* Mark that the literal will be coalesced. */
9178 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9179
9180 text_action_add (&relax_info->action_list,
9181 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9182
9183 /* If the section is 4-byte aligned, do not add fill. */
9184 if (sec->alignment_power > 2)
9185 {
9186 int fill_extra_space;
9187 bfd_vma entry_sec_offset;
9188
9189 if (entry)
9190 entry_sec_offset = entry->address - sec->vma + entry->size;
9191 else
9192 entry_sec_offset = rel->r_rel.target_offset + 4;
9193
9194 /* If the literal range is at the end of the section,
9195 do not add fill. */
9196 fill_extra_space = 0;
9197 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9198 entry_sec_offset);
9199 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9200 fill_extra_space = the_add_entry->size;
9201
9202 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9203 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9204 -4, fill_extra_space);
9205 if (fa)
9206 adjust_fill_action (fa, removed_diff);
9207 else
9208 text_action_add (&relax_info->action_list,
9209 ta_fill, sec, entry_sec_offset, removed_diff);
9210 }
9211
9212 return TRUE;
9213 }
9214
9215
9216 /* Move a literal to another location. This may actually increase the
9217 total amount of space used because of alignments so we need to do
9218 this carefully. Also, it may make a branch go out of range. */
9219
9220 static bfd_boolean
9221 move_shared_literal (asection *sec,
9222 struct bfd_link_info *link_info,
9223 source_reloc *rel,
9224 property_table_entry *prop_table,
9225 int ptblsize,
9226 const r_reloc *target_loc,
9227 const literal_value *lit_value,
9228 section_cache_t *target_sec_cache)
9229 {
9230 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9231 text_action *fa, *target_fa;
9232 int removed_diff;
9233 xtensa_relax_info *relax_info, *target_relax_info;
9234 asection *target_sec;
9235 ebb_t *ebb;
9236 ebb_constraint ebb_table;
9237 bfd_boolean relocs_fit;
9238
9239 /* If this routine always returns FALSE, the literals that cannot be
9240 coalesced will not be moved. */
9241 if (elf32xtensa_no_literal_movement)
9242 return FALSE;
9243
9244 relax_info = get_xtensa_relax_info (sec);
9245 if (!relax_info)
9246 return FALSE;
9247
9248 target_sec = r_reloc_get_section (target_loc);
9249 target_relax_info = get_xtensa_relax_info (target_sec);
9250
9251 /* Literals to undefined sections may not be moved because they
9252 must report an error. */
9253 if (bfd_is_und_section (target_sec))
9254 return FALSE;
9255
9256 src_entry = elf_xtensa_find_property_entry
9257 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9258
9259 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9260 return FALSE;
9261
9262 target_entry = elf_xtensa_find_property_entry
9263 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9264 target_sec->vma + target_loc->target_offset);
9265
9266 if (!target_entry)
9267 return FALSE;
9268
9269 /* Make sure that we have not broken any branches. */
9270 relocs_fit = FALSE;
9271
9272 init_ebb_constraint (&ebb_table);
9273 ebb = &ebb_table.ebb;
9274 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9275 target_sec_cache->content_length,
9276 target_sec_cache->ptbl, target_sec_cache->pte_count,
9277 target_sec_cache->relocs, target_sec_cache->reloc_count);
9278
9279 /* Propose to add 4 bytes + worst-case alignment size increase to
9280 destination. */
9281 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9282 ta_fill, target_loc->target_offset,
9283 -4 - (1 << target_sec->alignment_power), TRUE);
9284
9285 /* Check all of the PC-relative relocations to make sure they still fit. */
9286 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9287 target_sec_cache->contents,
9288 target_sec_cache->relocs, NULL,
9289 &ebb_table, NULL);
9290
9291 if (!relocs_fit)
9292 return FALSE;
9293
9294 text_action_add_literal (&target_relax_info->action_list,
9295 ta_add_literal, target_loc, lit_value, -4);
9296
9297 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9298 {
9299 /* May need to add or remove some fill to maintain alignment. */
9300 int fill_extra_space;
9301 bfd_vma entry_sec_offset;
9302
9303 entry_sec_offset =
9304 target_entry->address - target_sec->vma + target_entry->size;
9305
9306 /* If the literal range is at the end of the section,
9307 do not add fill. */
9308 fill_extra_space = 0;
9309 the_add_entry =
9310 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9311 target_sec_cache->pte_count,
9312 entry_sec_offset);
9313 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9314 fill_extra_space = the_add_entry->size;
9315
9316 target_fa = find_fill_action (&target_relax_info->action_list,
9317 target_sec, entry_sec_offset);
9318 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9319 entry_sec_offset, 4,
9320 fill_extra_space);
9321 if (target_fa)
9322 adjust_fill_action (target_fa, removed_diff);
9323 else
9324 text_action_add (&target_relax_info->action_list,
9325 ta_fill, target_sec, entry_sec_offset, removed_diff);
9326 }
9327
9328 /* Mark that the literal will be moved to the new location. */
9329 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9330
9331 /* Remove the literal. */
9332 text_action_add (&relax_info->action_list,
9333 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9334
9335 /* If the section is 4-byte aligned, do not add fill. */
9336 if (sec->alignment_power > 2 && target_entry != src_entry)
9337 {
9338 int fill_extra_space;
9339 bfd_vma entry_sec_offset;
9340
9341 if (src_entry)
9342 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9343 else
9344 entry_sec_offset = rel->r_rel.target_offset+4;
9345
9346 /* If the literal range is at the end of the section,
9347 do not add fill. */
9348 fill_extra_space = 0;
9349 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9350 entry_sec_offset);
9351 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9352 fill_extra_space = the_add_entry->size;
9353
9354 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9355 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9356 -4, fill_extra_space);
9357 if (fa)
9358 adjust_fill_action (fa, removed_diff);
9359 else
9360 text_action_add (&relax_info->action_list,
9361 ta_fill, sec, entry_sec_offset, removed_diff);
9362 }
9363
9364 return TRUE;
9365 }
9366
9367 \f
9368 /* Second relaxation pass. */
9369
9370 static int
9371 action_remove_bytes_fn (splay_tree_node node, void *p)
9372 {
9373 bfd_size_type *final_size = p;
9374 text_action *action = (text_action *)node->value;
9375
9376 *final_size -= action->removed_bytes;
9377 return 0;
9378 }
9379
9380 /* Modify all of the relocations to point to the right spot, and if this
9381 is a relaxable section, delete the unwanted literals and fix the
9382 section size. */
9383
9384 bfd_boolean
9385 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9386 {
9387 Elf_Internal_Rela *internal_relocs;
9388 xtensa_relax_info *relax_info;
9389 bfd_byte *contents;
9390 bfd_boolean ok = TRUE;
9391 unsigned i;
9392 bfd_boolean rv = FALSE;
9393 bfd_boolean virtual_action;
9394 bfd_size_type sec_size;
9395
9396 sec_size = bfd_get_section_limit (abfd, sec);
9397 relax_info = get_xtensa_relax_info (sec);
9398 BFD_ASSERT (relax_info);
9399
9400 /* First translate any of the fixes that have been added already. */
9401 translate_section_fixes (sec);
9402
9403 /* Handle property sections (e.g., literal tables) specially. */
9404 if (xtensa_is_property_section (sec))
9405 {
9406 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9407 return relax_property_section (abfd, sec, link_info);
9408 }
9409
9410 internal_relocs = retrieve_internal_relocs (abfd, sec,
9411 link_info->keep_memory);
9412 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9413 return TRUE;
9414
9415 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9416 if (contents == NULL && sec_size != 0)
9417 {
9418 ok = FALSE;
9419 goto error_return;
9420 }
9421
9422 if (internal_relocs)
9423 {
9424 for (i = 0; i < sec->reloc_count; i++)
9425 {
9426 Elf_Internal_Rela *irel;
9427 xtensa_relax_info *target_relax_info;
9428 bfd_vma source_offset, old_source_offset;
9429 r_reloc r_rel;
9430 unsigned r_type;
9431 asection *target_sec;
9432
9433 /* Locally change the source address.
9434 Translate the target to the new target address.
9435 If it points to this section and has been removed,
9436 NULLify it.
9437 Write it back. */
9438
9439 irel = &internal_relocs[i];
9440 source_offset = irel->r_offset;
9441 old_source_offset = source_offset;
9442
9443 r_type = ELF32_R_TYPE (irel->r_info);
9444 r_reloc_init (&r_rel, abfd, irel, contents,
9445 bfd_get_section_limit (abfd, sec));
9446
9447 /* If this section could have changed then we may need to
9448 change the relocation's offset. */
9449
9450 if (relax_info->is_relaxable_literal_section
9451 || relax_info->is_relaxable_asm_section)
9452 {
9453 pin_internal_relocs (sec, internal_relocs);
9454
9455 if (r_type != R_XTENSA_NONE
9456 && find_removed_literal (&relax_info->removed_list,
9457 irel->r_offset))
9458 {
9459 /* Remove this relocation. */
9460 if (elf_hash_table (link_info)->dynamic_sections_created)
9461 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9462 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9463 irel->r_offset = offset_with_removed_text_map
9464 (&relax_info->action_list, irel->r_offset);
9465 continue;
9466 }
9467
9468 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9469 {
9470 text_action *action =
9471 find_insn_action (&relax_info->action_list,
9472 irel->r_offset);
9473 if (action && (action->action == ta_convert_longcall
9474 || action->action == ta_remove_longcall))
9475 {
9476 bfd_reloc_status_type retval;
9477 char *error_message = NULL;
9478
9479 retval = contract_asm_expansion (contents, sec_size,
9480 irel, &error_message);
9481 if (retval != bfd_reloc_ok)
9482 {
9483 (*link_info->callbacks->reloc_dangerous)
9484 (link_info, error_message, abfd, sec,
9485 irel->r_offset);
9486 goto error_return;
9487 }
9488 /* Update the action so that the code that moves
9489 the contents will do the right thing. */
9490 /* ta_remove_longcall and ta_remove_insn actions are
9491 grouped together in the tree as well as
9492 ta_convert_longcall and ta_none, so that changes below
9493 can be done w/o removing and reinserting action into
9494 the tree. */
9495
9496 if (action->action == ta_remove_longcall)
9497 action->action = ta_remove_insn;
9498 else
9499 action->action = ta_none;
9500 /* Refresh the info in the r_rel. */
9501 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9502 r_type = ELF32_R_TYPE (irel->r_info);
9503 }
9504 }
9505
9506 source_offset = offset_with_removed_text_map
9507 (&relax_info->action_list, irel->r_offset);
9508 irel->r_offset = source_offset;
9509 }
9510
9511 /* If the target section could have changed then
9512 we may need to change the relocation's target offset. */
9513
9514 target_sec = r_reloc_get_section (&r_rel);
9515
9516 /* For a reference to a discarded section from a DWARF section,
9517 i.e., where action_discarded is PRETEND, the symbol will
9518 eventually be modified to refer to the kept section (at least if
9519 the kept and discarded sections are the same size). Anticipate
9520 that here and adjust things accordingly. */
9521 if (! elf_xtensa_ignore_discarded_relocs (sec)
9522 && elf_xtensa_action_discarded (sec) == PRETEND
9523 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9524 && target_sec != NULL
9525 && discarded_section (target_sec))
9526 {
9527 /* It would be natural to call _bfd_elf_check_kept_section
9528 here, but it's not exported from elflink.c. It's also a
9529 fairly expensive check. Adjusting the relocations to the
9530 discarded section is fairly harmless; it will only adjust
9531 some addends and difference values. If it turns out that
9532 _bfd_elf_check_kept_section fails later, it won't matter,
9533 so just compare the section names to find the right group
9534 member. */
9535 asection *kept = target_sec->kept_section;
9536 if (kept != NULL)
9537 {
9538 if ((kept->flags & SEC_GROUP) != 0)
9539 {
9540 asection *first = elf_next_in_group (kept);
9541 asection *s = first;
9542
9543 kept = NULL;
9544 while (s != NULL)
9545 {
9546 if (strcmp (s->name, target_sec->name) == 0)
9547 {
9548 kept = s;
9549 break;
9550 }
9551 s = elf_next_in_group (s);
9552 if (s == first)
9553 break;
9554 }
9555 }
9556 }
9557 if (kept != NULL
9558 && ((target_sec->rawsize != 0
9559 ? target_sec->rawsize : target_sec->size)
9560 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9561 target_sec = kept;
9562 }
9563
9564 target_relax_info = get_xtensa_relax_info (target_sec);
9565 if (target_relax_info
9566 && (target_relax_info->is_relaxable_literal_section
9567 || target_relax_info->is_relaxable_asm_section))
9568 {
9569 r_reloc new_reloc;
9570 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9571
9572 if (r_type == R_XTENSA_DIFF8
9573 || r_type == R_XTENSA_DIFF16
9574 || r_type == R_XTENSA_DIFF32)
9575 {
9576 bfd_signed_vma diff_value = 0;
9577 bfd_vma new_end_offset, diff_mask = 0;
9578
9579 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9580 {
9581 (*link_info->callbacks->reloc_dangerous)
9582 (link_info, _("invalid relocation address"),
9583 abfd, sec, old_source_offset);
9584 goto error_return;
9585 }
9586
9587 switch (r_type)
9588 {
9589 case R_XTENSA_DIFF8:
9590 diff_value =
9591 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9592 break;
9593 case R_XTENSA_DIFF16:
9594 diff_value =
9595 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9596 break;
9597 case R_XTENSA_DIFF32:
9598 diff_value =
9599 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9600 break;
9601 }
9602
9603 new_end_offset = offset_with_removed_text_map
9604 (&target_relax_info->action_list,
9605 r_rel.target_offset + diff_value);
9606 diff_value = new_end_offset - new_reloc.target_offset;
9607
9608 switch (r_type)
9609 {
9610 case R_XTENSA_DIFF8:
9611 diff_mask = 0x7f;
9612 bfd_put_signed_8 (abfd, diff_value,
9613 &contents[old_source_offset]);
9614 break;
9615 case R_XTENSA_DIFF16:
9616 diff_mask = 0x7fff;
9617 bfd_put_signed_16 (abfd, diff_value,
9618 &contents[old_source_offset]);
9619 break;
9620 case R_XTENSA_DIFF32:
9621 diff_mask = 0x7fffffff;
9622 bfd_put_signed_32 (abfd, diff_value,
9623 &contents[old_source_offset]);
9624 break;
9625 }
9626
9627 /* Check for overflow. Sign bits must be all zeroes or all ones */
9628 if ((diff_value & ~diff_mask) != 0 &&
9629 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9630 {
9631 (*link_info->callbacks->reloc_dangerous)
9632 (link_info, _("overflow after relaxation"),
9633 abfd, sec, old_source_offset);
9634 goto error_return;
9635 }
9636
9637 pin_contents (sec, contents);
9638 }
9639
9640 /* If the relocation still references a section in the same
9641 input file, modify the relocation directly instead of
9642 adding a "fix" record. */
9643 if (target_sec->owner == abfd)
9644 {
9645 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9646 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9647 irel->r_addend = new_reloc.rela.r_addend;
9648 pin_internal_relocs (sec, internal_relocs);
9649 }
9650 else
9651 {
9652 bfd_vma addend_displacement;
9653 reloc_bfd_fix *fix;
9654
9655 addend_displacement =
9656 new_reloc.target_offset + new_reloc.virtual_offset;
9657 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9658 target_sec,
9659 addend_displacement, TRUE);
9660 add_fix (sec, fix);
9661 }
9662 }
9663 }
9664 }
9665
9666 if ((relax_info->is_relaxable_literal_section
9667 || relax_info->is_relaxable_asm_section)
9668 && action_list_count (&relax_info->action_list))
9669 {
9670 /* Walk through the planned actions and build up a table
9671 of move, copy and fill records. Use the move, copy and
9672 fill records to perform the actions once. */
9673
9674 bfd_size_type final_size, copy_size, orig_insn_size;
9675 bfd_byte *scratch = NULL;
9676 bfd_byte *dup_contents = NULL;
9677 bfd_size_type orig_size = sec->size;
9678 bfd_vma orig_dot = 0;
9679 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9680 orig dot in physical memory. */
9681 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9682 bfd_vma dup_dot = 0;
9683
9684 text_action *action;
9685
9686 final_size = sec->size;
9687
9688 splay_tree_foreach (relax_info->action_list.tree,
9689 action_remove_bytes_fn, &final_size);
9690 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9691 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9692
9693 /* The dot is the current fill location. */
9694 #if DEBUG
9695 print_action_list (stderr, &relax_info->action_list);
9696 #endif
9697
9698 for (action = action_first (&relax_info->action_list); action;
9699 action = action_next (&relax_info->action_list, action))
9700 {
9701 virtual_action = FALSE;
9702 if (action->offset > orig_dot)
9703 {
9704 orig_dot += orig_dot_copied;
9705 orig_dot_copied = 0;
9706 orig_dot_vo = 0;
9707 /* Out of the virtual world. */
9708 }
9709
9710 if (action->offset > orig_dot)
9711 {
9712 copy_size = action->offset - orig_dot;
9713 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9714 orig_dot += copy_size;
9715 dup_dot += copy_size;
9716 BFD_ASSERT (action->offset == orig_dot);
9717 }
9718 else if (action->offset < orig_dot)
9719 {
9720 if (action->action == ta_fill
9721 && action->offset - action->removed_bytes == orig_dot)
9722 {
9723 /* This is OK because the fill only effects the dup_dot. */
9724 }
9725 else if (action->action == ta_add_literal)
9726 {
9727 /* TBD. Might need to handle this. */
9728 }
9729 }
9730 if (action->offset == orig_dot)
9731 {
9732 if (action->virtual_offset > orig_dot_vo)
9733 {
9734 if (orig_dot_vo == 0)
9735 {
9736 /* Need to copy virtual_offset bytes. Probably four. */
9737 copy_size = action->virtual_offset - orig_dot_vo;
9738 memmove (&dup_contents[dup_dot],
9739 &contents[orig_dot], copy_size);
9740 orig_dot_copied = copy_size;
9741 dup_dot += copy_size;
9742 }
9743 virtual_action = TRUE;
9744 }
9745 else
9746 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9747 }
9748 switch (action->action)
9749 {
9750 case ta_remove_literal:
9751 case ta_remove_insn:
9752 BFD_ASSERT (action->removed_bytes >= 0);
9753 orig_dot += action->removed_bytes;
9754 break;
9755
9756 case ta_narrow_insn:
9757 orig_insn_size = 3;
9758 copy_size = 2;
9759 memmove (scratch, &contents[orig_dot], orig_insn_size);
9760 BFD_ASSERT (action->removed_bytes == 1);
9761 rv = narrow_instruction (scratch, final_size, 0);
9762 BFD_ASSERT (rv);
9763 memmove (&dup_contents[dup_dot], scratch, copy_size);
9764 orig_dot += orig_insn_size;
9765 dup_dot += copy_size;
9766 break;
9767
9768 case ta_fill:
9769 if (action->removed_bytes >= 0)
9770 orig_dot += action->removed_bytes;
9771 else
9772 {
9773 /* Already zeroed in dup_contents. Just bump the
9774 counters. */
9775 dup_dot += (-action->removed_bytes);
9776 }
9777 break;
9778
9779 case ta_none:
9780 BFD_ASSERT (action->removed_bytes == 0);
9781 break;
9782
9783 case ta_convert_longcall:
9784 case ta_remove_longcall:
9785 /* These will be removed or converted before we get here. */
9786 BFD_ASSERT (0);
9787 break;
9788
9789 case ta_widen_insn:
9790 orig_insn_size = 2;
9791 copy_size = 3;
9792 memmove (scratch, &contents[orig_dot], orig_insn_size);
9793 BFD_ASSERT (action->removed_bytes == -1);
9794 rv = widen_instruction (scratch, final_size, 0);
9795 BFD_ASSERT (rv);
9796 memmove (&dup_contents[dup_dot], scratch, copy_size);
9797 orig_dot += orig_insn_size;
9798 dup_dot += copy_size;
9799 break;
9800
9801 case ta_add_literal:
9802 orig_insn_size = 0;
9803 copy_size = 4;
9804 BFD_ASSERT (action->removed_bytes == -4);
9805 /* TBD -- place the literal value here and insert
9806 into the table. */
9807 memset (&dup_contents[dup_dot], 0, 4);
9808 pin_internal_relocs (sec, internal_relocs);
9809 pin_contents (sec, contents);
9810
9811 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9812 relax_info, &internal_relocs, &action->value))
9813 goto error_return;
9814
9815 if (virtual_action)
9816 orig_dot_vo += copy_size;
9817
9818 orig_dot += orig_insn_size;
9819 dup_dot += copy_size;
9820 break;
9821
9822 default:
9823 /* Not implemented yet. */
9824 BFD_ASSERT (0);
9825 break;
9826 }
9827
9828 BFD_ASSERT (dup_dot <= final_size);
9829 BFD_ASSERT (orig_dot <= orig_size);
9830 }
9831
9832 orig_dot += orig_dot_copied;
9833 orig_dot_copied = 0;
9834
9835 if (orig_dot != orig_size)
9836 {
9837 copy_size = orig_size - orig_dot;
9838 BFD_ASSERT (orig_size > orig_dot);
9839 BFD_ASSERT (dup_dot + copy_size == final_size);
9840 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9841 orig_dot += copy_size;
9842 dup_dot += copy_size;
9843 }
9844 BFD_ASSERT (orig_size == orig_dot);
9845 BFD_ASSERT (final_size == dup_dot);
9846
9847 /* Move the dup_contents back. */
9848 if (final_size > orig_size)
9849 {
9850 /* Contents need to be reallocated. Swap the dup_contents into
9851 contents. */
9852 sec->contents = dup_contents;
9853 free (contents);
9854 contents = dup_contents;
9855 pin_contents (sec, contents);
9856 }
9857 else
9858 {
9859 BFD_ASSERT (final_size <= orig_size);
9860 memset (contents, 0, orig_size);
9861 memcpy (contents, dup_contents, final_size);
9862 free (dup_contents);
9863 }
9864 free (scratch);
9865 pin_contents (sec, contents);
9866
9867 if (sec->rawsize == 0)
9868 sec->rawsize = sec->size;
9869 sec->size = final_size;
9870 }
9871
9872 error_return:
9873 release_internal_relocs (sec, internal_relocs);
9874 release_contents (sec, contents);
9875 return ok;
9876 }
9877
9878
9879 static bfd_boolean
9880 translate_section_fixes (asection *sec)
9881 {
9882 xtensa_relax_info *relax_info;
9883 reloc_bfd_fix *r;
9884
9885 relax_info = get_xtensa_relax_info (sec);
9886 if (!relax_info)
9887 return TRUE;
9888
9889 for (r = relax_info->fix_list; r != NULL; r = r->next)
9890 if (!translate_reloc_bfd_fix (r))
9891 return FALSE;
9892
9893 return TRUE;
9894 }
9895
9896
9897 /* Translate a fix given the mapping in the relax info for the target
9898 section. If it has already been translated, no work is required. */
9899
9900 static bfd_boolean
9901 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9902 {
9903 reloc_bfd_fix new_fix;
9904 asection *sec;
9905 xtensa_relax_info *relax_info;
9906 removed_literal *removed;
9907 bfd_vma new_offset, target_offset;
9908
9909 if (fix->translated)
9910 return TRUE;
9911
9912 sec = fix->target_sec;
9913 target_offset = fix->target_offset;
9914
9915 relax_info = get_xtensa_relax_info (sec);
9916 if (!relax_info)
9917 {
9918 fix->translated = TRUE;
9919 return TRUE;
9920 }
9921
9922 new_fix = *fix;
9923
9924 /* The fix does not need to be translated if the section cannot change. */
9925 if (!relax_info->is_relaxable_literal_section
9926 && !relax_info->is_relaxable_asm_section)
9927 {
9928 fix->translated = TRUE;
9929 return TRUE;
9930 }
9931
9932 /* If the literal has been moved and this relocation was on an
9933 opcode, then the relocation should move to the new literal
9934 location. Otherwise, the relocation should move within the
9935 section. */
9936
9937 removed = FALSE;
9938 if (is_operand_relocation (fix->src_type))
9939 {
9940 /* Check if the original relocation is against a literal being
9941 removed. */
9942 removed = find_removed_literal (&relax_info->removed_list,
9943 target_offset);
9944 }
9945
9946 if (removed)
9947 {
9948 asection *new_sec;
9949
9950 /* The fact that there is still a relocation to this literal indicates
9951 that the literal is being coalesced, not simply removed. */
9952 BFD_ASSERT (removed->to.abfd != NULL);
9953
9954 /* This was moved to some other address (possibly another section). */
9955 new_sec = r_reloc_get_section (&removed->to);
9956 if (new_sec != sec)
9957 {
9958 sec = new_sec;
9959 relax_info = get_xtensa_relax_info (sec);
9960 if (!relax_info ||
9961 (!relax_info->is_relaxable_literal_section
9962 && !relax_info->is_relaxable_asm_section))
9963 {
9964 target_offset = removed->to.target_offset;
9965 new_fix.target_sec = new_sec;
9966 new_fix.target_offset = target_offset;
9967 new_fix.translated = TRUE;
9968 *fix = new_fix;
9969 return TRUE;
9970 }
9971 }
9972 target_offset = removed->to.target_offset;
9973 new_fix.target_sec = new_sec;
9974 }
9975
9976 /* The target address may have been moved within its section. */
9977 new_offset = offset_with_removed_text (&relax_info->action_list,
9978 target_offset);
9979
9980 new_fix.target_offset = new_offset;
9981 new_fix.target_offset = new_offset;
9982 new_fix.translated = TRUE;
9983 *fix = new_fix;
9984 return TRUE;
9985 }
9986
9987
9988 /* Fix up a relocation to take account of removed literals. */
9989
9990 static asection *
9991 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9992 {
9993 xtensa_relax_info *relax_info;
9994 removed_literal *removed;
9995 bfd_vma target_offset, base_offset;
9996
9997 *new_rel = *orig_rel;
9998
9999 if (!r_reloc_is_defined (orig_rel))
10000 return sec ;
10001
10002 relax_info = get_xtensa_relax_info (sec);
10003 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10004 || relax_info->is_relaxable_asm_section));
10005
10006 target_offset = orig_rel->target_offset;
10007
10008 removed = FALSE;
10009 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10010 {
10011 /* Check if the original relocation is against a literal being
10012 removed. */
10013 removed = find_removed_literal (&relax_info->removed_list,
10014 target_offset);
10015 }
10016 if (removed && removed->to.abfd)
10017 {
10018 asection *new_sec;
10019
10020 /* The fact that there is still a relocation to this literal indicates
10021 that the literal is being coalesced, not simply removed. */
10022 BFD_ASSERT (removed->to.abfd != NULL);
10023
10024 /* This was moved to some other address
10025 (possibly in another section). */
10026 *new_rel = removed->to;
10027 new_sec = r_reloc_get_section (new_rel);
10028 if (new_sec != sec)
10029 {
10030 sec = new_sec;
10031 relax_info = get_xtensa_relax_info (sec);
10032 if (!relax_info
10033 || (!relax_info->is_relaxable_literal_section
10034 && !relax_info->is_relaxable_asm_section))
10035 return sec;
10036 }
10037 target_offset = new_rel->target_offset;
10038 }
10039
10040 /* Find the base offset of the reloc symbol, excluding any addend from the
10041 reloc or from the section contents (for a partial_inplace reloc). Then
10042 find the adjusted values of the offsets due to relaxation. The base
10043 offset is needed to determine the change to the reloc's addend; the reloc
10044 addend should not be adjusted due to relaxations located before the base
10045 offset. */
10046
10047 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10048 if (base_offset <= target_offset)
10049 {
10050 int base_removed = removed_by_actions_map (&relax_info->action_list,
10051 base_offset, FALSE);
10052 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10053 target_offset, FALSE) -
10054 base_removed;
10055
10056 new_rel->target_offset = target_offset - base_removed - addend_removed;
10057 new_rel->rela.r_addend -= addend_removed;
10058 }
10059 else
10060 {
10061 /* Handle a negative addend. The base offset comes first. */
10062 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10063 target_offset, FALSE);
10064 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10065 base_offset, FALSE) -
10066 tgt_removed;
10067
10068 new_rel->target_offset = target_offset - tgt_removed;
10069 new_rel->rela.r_addend += addend_removed;
10070 }
10071
10072 return sec;
10073 }
10074
10075
10076 /* For dynamic links, there may be a dynamic relocation for each
10077 literal. The number of dynamic relocations must be computed in
10078 size_dynamic_sections, which occurs before relaxation. When a
10079 literal is removed, this function checks if there is a corresponding
10080 dynamic relocation and shrinks the size of the appropriate dynamic
10081 relocation section accordingly. At this point, the contents of the
10082 dynamic relocation sections have not yet been filled in, so there's
10083 nothing else that needs to be done. */
10084
10085 static void
10086 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10087 bfd *abfd,
10088 asection *input_section,
10089 Elf_Internal_Rela *rel)
10090 {
10091 struct elf_xtensa_link_hash_table *htab;
10092 Elf_Internal_Shdr *symtab_hdr;
10093 struct elf_link_hash_entry **sym_hashes;
10094 unsigned long r_symndx;
10095 int r_type;
10096 struct elf_link_hash_entry *h;
10097 bfd_boolean dynamic_symbol;
10098
10099 htab = elf_xtensa_hash_table (info);
10100 if (htab == NULL)
10101 return;
10102
10103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10104 sym_hashes = elf_sym_hashes (abfd);
10105
10106 r_type = ELF32_R_TYPE (rel->r_info);
10107 r_symndx = ELF32_R_SYM (rel->r_info);
10108
10109 if (r_symndx < symtab_hdr->sh_info)
10110 h = NULL;
10111 else
10112 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10113
10114 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10115
10116 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10117 && (input_section->flags & SEC_ALLOC) != 0
10118 && (dynamic_symbol || bfd_link_pic (info)))
10119 {
10120 asection *srel;
10121 bfd_boolean is_plt = FALSE;
10122
10123 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10124 {
10125 srel = htab->elf.srelplt;
10126 is_plt = TRUE;
10127 }
10128 else
10129 srel = htab->elf.srelgot;
10130
10131 /* Reduce size of the .rela.* section by one reloc. */
10132 BFD_ASSERT (srel != NULL);
10133 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10134 srel->size -= sizeof (Elf32_External_Rela);
10135
10136 if (is_plt)
10137 {
10138 asection *splt, *sgotplt, *srelgot;
10139 int reloc_index, chunk;
10140
10141 /* Find the PLT reloc index of the entry being removed. This
10142 is computed from the size of ".rela.plt". It is needed to
10143 figure out which PLT chunk to resize. Usually "last index
10144 = size - 1" since the index starts at zero, but in this
10145 context, the size has just been decremented so there's no
10146 need to subtract one. */
10147 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10148
10149 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10150 splt = elf_xtensa_get_plt_section (info, chunk);
10151 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10152 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10153
10154 /* Check if an entire PLT chunk has just been eliminated. */
10155 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10156 {
10157 /* The two magic GOT entries for that chunk can go away. */
10158 srelgot = htab->elf.srelgot;
10159 BFD_ASSERT (srelgot != NULL);
10160 srelgot->reloc_count -= 2;
10161 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10162 sgotplt->size -= 8;
10163
10164 /* There should be only one entry left (and it will be
10165 removed below). */
10166 BFD_ASSERT (sgotplt->size == 4);
10167 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10168 }
10169
10170 BFD_ASSERT (sgotplt->size >= 4);
10171 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10172
10173 sgotplt->size -= 4;
10174 splt->size -= PLT_ENTRY_SIZE;
10175 }
10176 }
10177 }
10178
10179
10180 /* Take an r_rel and move it to another section. This usually
10181 requires extending the interal_relocation array and pinning it. If
10182 the original r_rel is from the same BFD, we can complete this here.
10183 Otherwise, we add a fix record to let the final link fix the
10184 appropriate address. Contents and internal relocations for the
10185 section must be pinned after calling this routine. */
10186
10187 static bfd_boolean
10188 move_literal (bfd *abfd,
10189 struct bfd_link_info *link_info,
10190 asection *sec,
10191 bfd_vma offset,
10192 bfd_byte *contents,
10193 xtensa_relax_info *relax_info,
10194 Elf_Internal_Rela **internal_relocs_p,
10195 const literal_value *lit)
10196 {
10197 Elf_Internal_Rela *new_relocs = NULL;
10198 size_t new_relocs_count = 0;
10199 Elf_Internal_Rela this_rela;
10200 const r_reloc *r_rel;
10201
10202 r_rel = &lit->r_rel;
10203 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10204
10205 if (r_reloc_is_const (r_rel))
10206 bfd_put_32 (abfd, lit->value, contents + offset);
10207 else
10208 {
10209 int r_type;
10210 unsigned i;
10211 reloc_bfd_fix *fix;
10212 unsigned insert_at;
10213
10214 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10215
10216 /* This is the difficult case. We have to create a fix up. */
10217 this_rela.r_offset = offset;
10218 this_rela.r_info = ELF32_R_INFO (0, r_type);
10219 this_rela.r_addend =
10220 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10221 bfd_put_32 (abfd, lit->value, contents + offset);
10222
10223 /* Currently, we cannot move relocations during a relocatable link. */
10224 BFD_ASSERT (!bfd_link_relocatable (link_info));
10225 fix = reloc_bfd_fix_init (sec, offset, r_type,
10226 r_reloc_get_section (r_rel),
10227 r_rel->target_offset + r_rel->virtual_offset,
10228 FALSE);
10229 /* We also need to mark that relocations are needed here. */
10230 sec->flags |= SEC_RELOC;
10231
10232 translate_reloc_bfd_fix (fix);
10233 /* This fix has not yet been translated. */
10234 add_fix (sec, fix);
10235
10236 /* Add the relocation. If we have already allocated our own
10237 space for the relocations and we have room for more, then use
10238 it. Otherwise, allocate new space and move the literals. */
10239 insert_at = sec->reloc_count;
10240 for (i = 0; i < sec->reloc_count; ++i)
10241 {
10242 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10243 {
10244 insert_at = i;
10245 break;
10246 }
10247 }
10248
10249 if (*internal_relocs_p != relax_info->allocated_relocs
10250 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10251 {
10252 BFD_ASSERT (relax_info->allocated_relocs == NULL
10253 || sec->reloc_count == relax_info->relocs_count);
10254
10255 if (relax_info->allocated_relocs_count == 0)
10256 new_relocs_count = (sec->reloc_count + 2) * 2;
10257 else
10258 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10259
10260 new_relocs = (Elf_Internal_Rela *)
10261 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10262 if (!new_relocs)
10263 return FALSE;
10264
10265 /* We could handle this more quickly by finding the split point. */
10266 if (insert_at != 0)
10267 memcpy (new_relocs, *internal_relocs_p,
10268 insert_at * sizeof (Elf_Internal_Rela));
10269
10270 new_relocs[insert_at] = this_rela;
10271
10272 if (insert_at != sec->reloc_count)
10273 memcpy (new_relocs + insert_at + 1,
10274 (*internal_relocs_p) + insert_at,
10275 (sec->reloc_count - insert_at)
10276 * sizeof (Elf_Internal_Rela));
10277
10278 if (*internal_relocs_p != relax_info->allocated_relocs)
10279 {
10280 /* The first time we re-allocate, we can only free the
10281 old relocs if they were allocated with bfd_malloc.
10282 This is not true when keep_memory is in effect. */
10283 if (!link_info->keep_memory)
10284 free (*internal_relocs_p);
10285 }
10286 else
10287 free (*internal_relocs_p);
10288 relax_info->allocated_relocs = new_relocs;
10289 relax_info->allocated_relocs_count = new_relocs_count;
10290 elf_section_data (sec)->relocs = new_relocs;
10291 sec->reloc_count++;
10292 relax_info->relocs_count = sec->reloc_count;
10293 *internal_relocs_p = new_relocs;
10294 }
10295 else
10296 {
10297 if (insert_at != sec->reloc_count)
10298 {
10299 unsigned idx;
10300 for (idx = sec->reloc_count; idx > insert_at; idx--)
10301 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10302 }
10303 (*internal_relocs_p)[insert_at] = this_rela;
10304 sec->reloc_count++;
10305 if (relax_info->allocated_relocs)
10306 relax_info->relocs_count = sec->reloc_count;
10307 }
10308 }
10309 return TRUE;
10310 }
10311
10312
10313 /* This is similar to relax_section except that when a target is moved,
10314 we shift addresses up. We also need to modify the size. This
10315 algorithm does NOT allow for relocations into the middle of the
10316 property sections. */
10317
10318 static bfd_boolean
10319 relax_property_section (bfd *abfd,
10320 asection *sec,
10321 struct bfd_link_info *link_info)
10322 {
10323 Elf_Internal_Rela *internal_relocs;
10324 bfd_byte *contents;
10325 unsigned i;
10326 bfd_boolean ok = TRUE;
10327 bfd_boolean is_full_prop_section;
10328 size_t last_zfill_target_offset = 0;
10329 asection *last_zfill_target_sec = NULL;
10330 bfd_size_type sec_size;
10331 bfd_size_type entry_size;
10332
10333 sec_size = bfd_get_section_limit (abfd, sec);
10334 internal_relocs = retrieve_internal_relocs (abfd, sec,
10335 link_info->keep_memory);
10336 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10337 if (contents == NULL && sec_size != 0)
10338 {
10339 ok = FALSE;
10340 goto error_return;
10341 }
10342
10343 is_full_prop_section = xtensa_is_proptable_section (sec);
10344 if (is_full_prop_section)
10345 entry_size = 12;
10346 else
10347 entry_size = 8;
10348
10349 if (internal_relocs)
10350 {
10351 for (i = 0; i < sec->reloc_count; i++)
10352 {
10353 Elf_Internal_Rela *irel;
10354 xtensa_relax_info *target_relax_info;
10355 unsigned r_type;
10356 asection *target_sec;
10357 literal_value val;
10358 bfd_byte *size_p, *flags_p;
10359
10360 /* Locally change the source address.
10361 Translate the target to the new target address.
10362 If it points to this section and has been removed, MOVE IT.
10363 Also, don't forget to modify the associated SIZE at
10364 (offset + 4). */
10365
10366 irel = &internal_relocs[i];
10367 r_type = ELF32_R_TYPE (irel->r_info);
10368 if (r_type == R_XTENSA_NONE)
10369 continue;
10370
10371 /* Find the literal value. */
10372 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10373 size_p = &contents[irel->r_offset + 4];
10374 flags_p = NULL;
10375 if (is_full_prop_section)
10376 flags_p = &contents[irel->r_offset + 8];
10377 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10378
10379 target_sec = r_reloc_get_section (&val.r_rel);
10380 target_relax_info = get_xtensa_relax_info (target_sec);
10381
10382 if (target_relax_info
10383 && (target_relax_info->is_relaxable_literal_section
10384 || target_relax_info->is_relaxable_asm_section ))
10385 {
10386 /* Translate the relocation's destination. */
10387 bfd_vma old_offset = val.r_rel.target_offset;
10388 bfd_vma new_offset;
10389 long old_size, new_size;
10390 int removed_by_old_offset =
10391 removed_by_actions_map (&target_relax_info->action_list,
10392 old_offset, FALSE);
10393 new_offset = old_offset - removed_by_old_offset;
10394
10395 /* Assert that we are not out of bounds. */
10396 old_size = bfd_get_32 (abfd, size_p);
10397 new_size = old_size;
10398
10399 if (old_size == 0)
10400 {
10401 /* Only the first zero-sized unreachable entry is
10402 allowed to expand. In this case the new offset
10403 should be the offset before the fill and the new
10404 size is the expansion size. For other zero-sized
10405 entries the resulting size should be zero with an
10406 offset before or after the fill address depending
10407 on whether the expanding unreachable entry
10408 preceeds it. */
10409 if (last_zfill_target_sec == 0
10410 || last_zfill_target_sec != target_sec
10411 || last_zfill_target_offset != old_offset)
10412 {
10413 bfd_vma new_end_offset = new_offset;
10414
10415 /* Recompute the new_offset, but this time don't
10416 include any fill inserted by relaxation. */
10417 removed_by_old_offset =
10418 removed_by_actions_map (&target_relax_info->action_list,
10419 old_offset, TRUE);
10420 new_offset = old_offset - removed_by_old_offset;
10421
10422 /* If it is not unreachable and we have not yet
10423 seen an unreachable at this address, place it
10424 before the fill address. */
10425 if (flags_p && (bfd_get_32 (abfd, flags_p)
10426 & XTENSA_PROP_UNREACHABLE) != 0)
10427 {
10428 new_size = new_end_offset - new_offset;
10429
10430 last_zfill_target_sec = target_sec;
10431 last_zfill_target_offset = old_offset;
10432 }
10433 }
10434 }
10435 else
10436 {
10437 int removed_by_old_offset_size =
10438 removed_by_actions_map (&target_relax_info->action_list,
10439 old_offset + old_size, TRUE);
10440 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10441 }
10442
10443 if (new_size != old_size)
10444 {
10445 bfd_put_32 (abfd, new_size, size_p);
10446 pin_contents (sec, contents);
10447 }
10448
10449 if (new_offset != old_offset)
10450 {
10451 bfd_vma diff = new_offset - old_offset;
10452 irel->r_addend += diff;
10453 pin_internal_relocs (sec, internal_relocs);
10454 }
10455 }
10456 }
10457 }
10458
10459 /* Combine adjacent property table entries. This is also done in
10460 finish_dynamic_sections() but at that point it's too late to
10461 reclaim the space in the output section, so we do this twice. */
10462
10463 if (internal_relocs && (!bfd_link_relocatable (link_info)
10464 || xtensa_is_littable_section (sec)))
10465 {
10466 Elf_Internal_Rela *last_irel = NULL;
10467 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10468 int removed_bytes = 0;
10469 bfd_vma offset;
10470 flagword predef_flags;
10471
10472 predef_flags = xtensa_get_property_predef_flags (sec);
10473
10474 /* Walk over memory and relocations at the same time.
10475 This REQUIRES that the internal_relocs be sorted by offset. */
10476 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10477 internal_reloc_compare);
10478
10479 pin_internal_relocs (sec, internal_relocs);
10480 pin_contents (sec, contents);
10481
10482 next_rel = internal_relocs;
10483 rel_end = internal_relocs + sec->reloc_count;
10484
10485 BFD_ASSERT (sec->size % entry_size == 0);
10486
10487 for (offset = 0; offset < sec->size; offset += entry_size)
10488 {
10489 Elf_Internal_Rela *offset_rel, *extra_rel;
10490 bfd_vma bytes_to_remove, size, actual_offset;
10491 bfd_boolean remove_this_rel;
10492 flagword flags;
10493
10494 /* Find the first relocation for the entry at the current offset.
10495 Adjust the offsets of any extra relocations for the previous
10496 entry. */
10497 offset_rel = NULL;
10498 if (next_rel)
10499 {
10500 for (irel = next_rel; irel < rel_end; irel++)
10501 {
10502 if ((irel->r_offset == offset
10503 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10504 || irel->r_offset > offset)
10505 {
10506 offset_rel = irel;
10507 break;
10508 }
10509 irel->r_offset -= removed_bytes;
10510 }
10511 }
10512
10513 /* Find the next relocation (if there are any left). */
10514 extra_rel = NULL;
10515 if (offset_rel)
10516 {
10517 for (irel = offset_rel + 1; irel < rel_end; irel++)
10518 {
10519 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10520 {
10521 extra_rel = irel;
10522 break;
10523 }
10524 }
10525 }
10526
10527 /* Check if there are relocations on the current entry. There
10528 should usually be a relocation on the offset field. If there
10529 are relocations on the size or flags, then we can't optimize
10530 this entry. Also, find the next relocation to examine on the
10531 next iteration. */
10532 if (offset_rel)
10533 {
10534 if (offset_rel->r_offset >= offset + entry_size)
10535 {
10536 next_rel = offset_rel;
10537 /* There are no relocations on the current entry, but we
10538 might still be able to remove it if the size is zero. */
10539 offset_rel = NULL;
10540 }
10541 else if (offset_rel->r_offset > offset
10542 || (extra_rel
10543 && extra_rel->r_offset < offset + entry_size))
10544 {
10545 /* There is a relocation on the size or flags, so we can't
10546 do anything with this entry. Continue with the next. */
10547 next_rel = offset_rel;
10548 continue;
10549 }
10550 else
10551 {
10552 BFD_ASSERT (offset_rel->r_offset == offset);
10553 offset_rel->r_offset -= removed_bytes;
10554 next_rel = offset_rel + 1;
10555 }
10556 }
10557 else
10558 next_rel = NULL;
10559
10560 remove_this_rel = FALSE;
10561 bytes_to_remove = 0;
10562 actual_offset = offset - removed_bytes;
10563 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10564
10565 if (is_full_prop_section)
10566 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10567 else
10568 flags = predef_flags;
10569
10570 if (size == 0
10571 && (flags & XTENSA_PROP_ALIGN) == 0
10572 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10573 {
10574 /* Always remove entries with zero size and no alignment. */
10575 bytes_to_remove = entry_size;
10576 if (offset_rel)
10577 remove_this_rel = TRUE;
10578 }
10579 else if (offset_rel
10580 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10581 {
10582 if (last_irel)
10583 {
10584 flagword old_flags;
10585 bfd_vma old_size =
10586 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10587 bfd_vma old_address =
10588 (last_irel->r_addend
10589 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10590 bfd_vma new_address =
10591 (offset_rel->r_addend
10592 + bfd_get_32 (abfd, &contents[actual_offset]));
10593 if (is_full_prop_section)
10594 old_flags = bfd_get_32
10595 (abfd, &contents[last_irel->r_offset + 8]);
10596 else
10597 old_flags = predef_flags;
10598
10599 if ((ELF32_R_SYM (offset_rel->r_info)
10600 == ELF32_R_SYM (last_irel->r_info))
10601 && old_address + old_size == new_address
10602 && old_flags == flags
10603 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10604 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10605 {
10606 /* Fix the old size. */
10607 bfd_put_32 (abfd, old_size + size,
10608 &contents[last_irel->r_offset + 4]);
10609 bytes_to_remove = entry_size;
10610 remove_this_rel = TRUE;
10611 }
10612 else
10613 last_irel = offset_rel;
10614 }
10615 else
10616 last_irel = offset_rel;
10617 }
10618
10619 if (remove_this_rel)
10620 {
10621 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10622 offset_rel->r_offset = 0;
10623 }
10624
10625 if (bytes_to_remove != 0)
10626 {
10627 removed_bytes += bytes_to_remove;
10628 if (offset + bytes_to_remove < sec->size)
10629 memmove (&contents[actual_offset],
10630 &contents[actual_offset + bytes_to_remove],
10631 sec->size - offset - bytes_to_remove);
10632 }
10633 }
10634
10635 if (removed_bytes)
10636 {
10637 /* Fix up any extra relocations on the last entry. */
10638 for (irel = next_rel; irel < rel_end; irel++)
10639 irel->r_offset -= removed_bytes;
10640
10641 /* Clear the removed bytes. */
10642 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10643
10644 if (sec->rawsize == 0)
10645 sec->rawsize = sec->size;
10646 sec->size -= removed_bytes;
10647
10648 if (xtensa_is_littable_section (sec))
10649 {
10650 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10651 if (sgotloc)
10652 sgotloc->size -= removed_bytes;
10653 }
10654 }
10655 }
10656
10657 error_return:
10658 release_internal_relocs (sec, internal_relocs);
10659 release_contents (sec, contents);
10660 return ok;
10661 }
10662
10663 \f
10664 /* Third relaxation pass. */
10665
10666 /* Change symbol values to account for removed literals. */
10667
10668 bfd_boolean
10669 relax_section_symbols (bfd *abfd, asection *sec)
10670 {
10671 xtensa_relax_info *relax_info;
10672 unsigned int sec_shndx;
10673 Elf_Internal_Shdr *symtab_hdr;
10674 Elf_Internal_Sym *isymbuf;
10675 unsigned i, num_syms, num_locals;
10676
10677 relax_info = get_xtensa_relax_info (sec);
10678 BFD_ASSERT (relax_info);
10679
10680 if (!relax_info->is_relaxable_literal_section
10681 && !relax_info->is_relaxable_asm_section)
10682 return TRUE;
10683
10684 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10685
10686 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10687 isymbuf = retrieve_local_syms (abfd);
10688
10689 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10690 num_locals = symtab_hdr->sh_info;
10691
10692 /* Adjust the local symbols defined in this section. */
10693 for (i = 0; i < num_locals; i++)
10694 {
10695 Elf_Internal_Sym *isym = &isymbuf[i];
10696
10697 if (isym->st_shndx == sec_shndx)
10698 {
10699 bfd_vma orig_addr = isym->st_value;
10700 int removed = removed_by_actions_map (&relax_info->action_list,
10701 orig_addr, FALSE);
10702
10703 isym->st_value -= removed;
10704 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10705 isym->st_size -=
10706 removed_by_actions_map (&relax_info->action_list,
10707 orig_addr + isym->st_size, FALSE) -
10708 removed;
10709 }
10710 }
10711
10712 /* Now adjust the global symbols defined in this section. */
10713 for (i = 0; i < (num_syms - num_locals); i++)
10714 {
10715 struct elf_link_hash_entry *sym_hash;
10716
10717 sym_hash = elf_sym_hashes (abfd)[i];
10718
10719 if (sym_hash->root.type == bfd_link_hash_warning)
10720 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10721
10722 if ((sym_hash->root.type == bfd_link_hash_defined
10723 || sym_hash->root.type == bfd_link_hash_defweak)
10724 && sym_hash->root.u.def.section == sec)
10725 {
10726 bfd_vma orig_addr = sym_hash->root.u.def.value;
10727 int removed = removed_by_actions_map (&relax_info->action_list,
10728 orig_addr, FALSE);
10729
10730 sym_hash->root.u.def.value -= removed;
10731
10732 if (sym_hash->type == STT_FUNC)
10733 sym_hash->size -=
10734 removed_by_actions_map (&relax_info->action_list,
10735 orig_addr + sym_hash->size, FALSE) -
10736 removed;
10737 }
10738 }
10739
10740 return TRUE;
10741 }
10742
10743 \f
10744 /* "Fix" handling functions, called while performing relocations. */
10745
10746 static bfd_boolean
10747 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10748 bfd *input_bfd,
10749 asection *input_section,
10750 bfd_byte *contents)
10751 {
10752 r_reloc r_rel;
10753 asection *sec, *old_sec;
10754 bfd_vma old_offset;
10755 int r_type = ELF32_R_TYPE (rel->r_info);
10756 reloc_bfd_fix *fix;
10757
10758 if (r_type == R_XTENSA_NONE)
10759 return TRUE;
10760
10761 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10762 if (!fix)
10763 return TRUE;
10764
10765 r_reloc_init (&r_rel, input_bfd, rel, contents,
10766 bfd_get_section_limit (input_bfd, input_section));
10767 old_sec = r_reloc_get_section (&r_rel);
10768 old_offset = r_rel.target_offset;
10769
10770 if (!old_sec || !r_reloc_is_defined (&r_rel))
10771 {
10772 if (r_type != R_XTENSA_ASM_EXPAND)
10773 {
10774 _bfd_error_handler
10775 /* xgettext:c-format */
10776 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10777 input_bfd, input_section, rel->r_offset,
10778 elf_howto_table[r_type].name);
10779 return FALSE;
10780 }
10781 /* Leave it be. Resolution will happen in a later stage. */
10782 }
10783 else
10784 {
10785 sec = fix->target_sec;
10786 rel->r_addend += ((sec->output_offset + fix->target_offset)
10787 - (old_sec->output_offset + old_offset));
10788 }
10789 return TRUE;
10790 }
10791
10792
10793 static void
10794 do_fix_for_final_link (Elf_Internal_Rela *rel,
10795 bfd *input_bfd,
10796 asection *input_section,
10797 bfd_byte *contents,
10798 bfd_vma *relocationp)
10799 {
10800 asection *sec;
10801 int r_type = ELF32_R_TYPE (rel->r_info);
10802 reloc_bfd_fix *fix;
10803 bfd_vma fixup_diff;
10804
10805 if (r_type == R_XTENSA_NONE)
10806 return;
10807
10808 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10809 if (!fix)
10810 return;
10811
10812 sec = fix->target_sec;
10813
10814 fixup_diff = rel->r_addend;
10815 if (elf_howto_table[fix->src_type].partial_inplace)
10816 {
10817 bfd_vma inplace_val;
10818 BFD_ASSERT (fix->src_offset
10819 < bfd_get_section_limit (input_bfd, input_section));
10820 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10821 fixup_diff += inplace_val;
10822 }
10823
10824 *relocationp = (sec->output_section->vma
10825 + sec->output_offset
10826 + fix->target_offset - fixup_diff);
10827 }
10828
10829 \f
10830 /* Miscellaneous utility functions.... */
10831
10832 static asection *
10833 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10834 {
10835 bfd *dynobj;
10836 char plt_name[10];
10837
10838 if (chunk == 0)
10839 return elf_hash_table (info)->splt;
10840
10841 dynobj = elf_hash_table (info)->dynobj;
10842 sprintf (plt_name, ".plt.%u", chunk);
10843 return bfd_get_linker_section (dynobj, plt_name);
10844 }
10845
10846
10847 static asection *
10848 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10849 {
10850 bfd *dynobj;
10851 char got_name[14];
10852
10853 if (chunk == 0)
10854 return elf_hash_table (info)->sgotplt;
10855
10856 dynobj = elf_hash_table (info)->dynobj;
10857 sprintf (got_name, ".got.plt.%u", chunk);
10858 return bfd_get_linker_section (dynobj, got_name);
10859 }
10860
10861
10862 /* Get the input section for a given symbol index.
10863 If the symbol is:
10864 . a section symbol, return the section;
10865 . a common symbol, return the common section;
10866 . an undefined symbol, return the undefined section;
10867 . an indirect symbol, follow the links;
10868 . an absolute value, return the absolute section. */
10869
10870 static asection *
10871 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10872 {
10873 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10874 asection *target_sec = NULL;
10875 if (r_symndx < symtab_hdr->sh_info)
10876 {
10877 Elf_Internal_Sym *isymbuf;
10878 unsigned int section_index;
10879
10880 isymbuf = retrieve_local_syms (abfd);
10881 section_index = isymbuf[r_symndx].st_shndx;
10882
10883 if (section_index == SHN_UNDEF)
10884 target_sec = bfd_und_section_ptr;
10885 else if (section_index == SHN_ABS)
10886 target_sec = bfd_abs_section_ptr;
10887 else if (section_index == SHN_COMMON)
10888 target_sec = bfd_com_section_ptr;
10889 else
10890 target_sec = bfd_section_from_elf_index (abfd, section_index);
10891 }
10892 else
10893 {
10894 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10895 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10896
10897 while (h->root.type == bfd_link_hash_indirect
10898 || h->root.type == bfd_link_hash_warning)
10899 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10900
10901 switch (h->root.type)
10902 {
10903 case bfd_link_hash_defined:
10904 case bfd_link_hash_defweak:
10905 target_sec = h->root.u.def.section;
10906 break;
10907 case bfd_link_hash_common:
10908 target_sec = bfd_com_section_ptr;
10909 break;
10910 case bfd_link_hash_undefined:
10911 case bfd_link_hash_undefweak:
10912 target_sec = bfd_und_section_ptr;
10913 break;
10914 default: /* New indirect warning. */
10915 target_sec = bfd_und_section_ptr;
10916 break;
10917 }
10918 }
10919 return target_sec;
10920 }
10921
10922
10923 static struct elf_link_hash_entry *
10924 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10925 {
10926 unsigned long indx;
10927 struct elf_link_hash_entry *h;
10928 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10929
10930 if (r_symndx < symtab_hdr->sh_info)
10931 return NULL;
10932
10933 indx = r_symndx - symtab_hdr->sh_info;
10934 h = elf_sym_hashes (abfd)[indx];
10935 while (h->root.type == bfd_link_hash_indirect
10936 || h->root.type == bfd_link_hash_warning)
10937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10938 return h;
10939 }
10940
10941
10942 /* Get the section-relative offset for a symbol number. */
10943
10944 static bfd_vma
10945 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10946 {
10947 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10948 bfd_vma offset = 0;
10949
10950 if (r_symndx < symtab_hdr->sh_info)
10951 {
10952 Elf_Internal_Sym *isymbuf;
10953 isymbuf = retrieve_local_syms (abfd);
10954 offset = isymbuf[r_symndx].st_value;
10955 }
10956 else
10957 {
10958 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10959 struct elf_link_hash_entry *h =
10960 elf_sym_hashes (abfd)[indx];
10961
10962 while (h->root.type == bfd_link_hash_indirect
10963 || h->root.type == bfd_link_hash_warning)
10964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10965 if (h->root.type == bfd_link_hash_defined
10966 || h->root.type == bfd_link_hash_defweak)
10967 offset = h->root.u.def.value;
10968 }
10969 return offset;
10970 }
10971
10972
10973 static bfd_boolean
10974 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10975 {
10976 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10977 struct elf_link_hash_entry *h;
10978
10979 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10980 if (h && h->root.type == bfd_link_hash_defweak)
10981 return TRUE;
10982 return FALSE;
10983 }
10984
10985
10986 static bfd_boolean
10987 pcrel_reloc_fits (xtensa_opcode opc,
10988 int opnd,
10989 bfd_vma self_address,
10990 bfd_vma dest_address)
10991 {
10992 xtensa_isa isa = xtensa_default_isa;
10993 uint32 valp = dest_address;
10994 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10995 || xtensa_operand_encode (isa, opc, opnd, &valp))
10996 return FALSE;
10997 return TRUE;
10998 }
10999
11000
11001 static bfd_boolean
11002 xtensa_is_property_section (asection *sec)
11003 {
11004 if (xtensa_is_insntable_section (sec)
11005 || xtensa_is_littable_section (sec)
11006 || xtensa_is_proptable_section (sec))
11007 return TRUE;
11008
11009 return FALSE;
11010 }
11011
11012
11013 static bfd_boolean
11014 xtensa_is_insntable_section (asection *sec)
11015 {
11016 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11017 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11018 return TRUE;
11019
11020 return FALSE;
11021 }
11022
11023
11024 static bfd_boolean
11025 xtensa_is_littable_section (asection *sec)
11026 {
11027 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11028 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11029 return TRUE;
11030
11031 return FALSE;
11032 }
11033
11034
11035 static bfd_boolean
11036 xtensa_is_proptable_section (asection *sec)
11037 {
11038 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11039 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11040 return TRUE;
11041
11042 return FALSE;
11043 }
11044
11045
11046 static int
11047 internal_reloc_compare (const void *ap, const void *bp)
11048 {
11049 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11050 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11051
11052 if (a->r_offset != b->r_offset)
11053 return (a->r_offset - b->r_offset);
11054
11055 /* We don't need to sort on these criteria for correctness,
11056 but enforcing a more strict ordering prevents unstable qsort
11057 from behaving differently with different implementations.
11058 Without the code below we get correct but different results
11059 on Solaris 2.7 and 2.8. We would like to always produce the
11060 same results no matter the host. */
11061
11062 if (a->r_info != b->r_info)
11063 return (a->r_info - b->r_info);
11064
11065 return (a->r_addend - b->r_addend);
11066 }
11067
11068
11069 static int
11070 internal_reloc_matches (const void *ap, const void *bp)
11071 {
11072 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11073 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11074
11075 /* Check if one entry overlaps with the other; this shouldn't happen
11076 except when searching for a match. */
11077 return (a->r_offset - b->r_offset);
11078 }
11079
11080
11081 /* Predicate function used to look up a section in a particular group. */
11082
11083 static bfd_boolean
11084 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11085 {
11086 const char *gname = inf;
11087 const char *group_name = elf_group_name (sec);
11088
11089 return (group_name == gname
11090 || (group_name != NULL
11091 && gname != NULL
11092 && strcmp (group_name, gname) == 0));
11093 }
11094
11095
11096 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11097
11098 static char *
11099 xtensa_property_section_name (asection *sec, const char *base_name)
11100 {
11101 const char *suffix, *group_name;
11102 char *prop_sec_name;
11103
11104 group_name = elf_group_name (sec);
11105 if (group_name)
11106 {
11107 suffix = strrchr (sec->name, '.');
11108 if (suffix == sec->name)
11109 suffix = 0;
11110 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11111 + (suffix ? strlen (suffix) : 0));
11112 strcpy (prop_sec_name, base_name);
11113 if (suffix)
11114 strcat (prop_sec_name, suffix);
11115 }
11116 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11117 {
11118 char *linkonce_kind = 0;
11119
11120 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11121 linkonce_kind = "x.";
11122 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11123 linkonce_kind = "p.";
11124 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11125 linkonce_kind = "prop.";
11126 else
11127 abort ();
11128
11129 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11130 + strlen (linkonce_kind) + 1);
11131 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11132 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11133
11134 suffix = sec->name + linkonce_len;
11135 /* For backward compatibility, replace "t." instead of inserting
11136 the new linkonce_kind (but not for "prop" sections). */
11137 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11138 suffix += 2;
11139 strcat (prop_sec_name + linkonce_len, suffix);
11140 }
11141 else
11142 prop_sec_name = strdup (base_name);
11143
11144 return prop_sec_name;
11145 }
11146
11147
11148 static asection *
11149 xtensa_get_property_section (asection *sec, const char *base_name)
11150 {
11151 char *prop_sec_name;
11152 asection *prop_sec;
11153
11154 prop_sec_name = xtensa_property_section_name (sec, base_name);
11155 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11156 match_section_group,
11157 (void *) elf_group_name (sec));
11158 free (prop_sec_name);
11159 return prop_sec;
11160 }
11161
11162
11163 asection *
11164 xtensa_make_property_section (asection *sec, const char *base_name)
11165 {
11166 char *prop_sec_name;
11167 asection *prop_sec;
11168
11169 /* Check if the section already exists. */
11170 prop_sec_name = xtensa_property_section_name (sec, base_name);
11171 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11172 match_section_group,
11173 (void *) elf_group_name (sec));
11174 /* If not, create it. */
11175 if (! prop_sec)
11176 {
11177 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11178 flags |= (bfd_get_section_flags (sec->owner, sec)
11179 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11180
11181 prop_sec = bfd_make_section_anyway_with_flags
11182 (sec->owner, strdup (prop_sec_name), flags);
11183 if (! prop_sec)
11184 return 0;
11185
11186 elf_group_name (prop_sec) = elf_group_name (sec);
11187 }
11188
11189 free (prop_sec_name);
11190 return prop_sec;
11191 }
11192
11193
11194 flagword
11195 xtensa_get_property_predef_flags (asection *sec)
11196 {
11197 if (xtensa_is_insntable_section (sec))
11198 return (XTENSA_PROP_INSN
11199 | XTENSA_PROP_NO_TRANSFORM
11200 | XTENSA_PROP_INSN_NO_REORDER);
11201
11202 if (xtensa_is_littable_section (sec))
11203 return (XTENSA_PROP_LITERAL
11204 | XTENSA_PROP_NO_TRANSFORM
11205 | XTENSA_PROP_INSN_NO_REORDER);
11206
11207 return 0;
11208 }
11209
11210 \f
11211 /* Other functions called directly by the linker. */
11212
11213 bfd_boolean
11214 xtensa_callback_required_dependence (bfd *abfd,
11215 asection *sec,
11216 struct bfd_link_info *link_info,
11217 deps_callback_t callback,
11218 void *closure)
11219 {
11220 Elf_Internal_Rela *internal_relocs;
11221 bfd_byte *contents;
11222 unsigned i;
11223 bfd_boolean ok = TRUE;
11224 bfd_size_type sec_size;
11225
11226 sec_size = bfd_get_section_limit (abfd, sec);
11227
11228 /* ".plt*" sections have no explicit relocations but they contain L32R
11229 instructions that reference the corresponding ".got.plt*" sections. */
11230 if ((sec->flags & SEC_LINKER_CREATED) != 0
11231 && CONST_STRNEQ (sec->name, ".plt"))
11232 {
11233 asection *sgotplt;
11234
11235 /* Find the corresponding ".got.plt*" section. */
11236 if (sec->name[4] == '\0')
11237 sgotplt = elf_hash_table (link_info)->sgotplt;
11238 else
11239 {
11240 char got_name[14];
11241 int chunk = 0;
11242
11243 BFD_ASSERT (sec->name[4] == '.');
11244 chunk = strtol (&sec->name[5], NULL, 10);
11245
11246 sprintf (got_name, ".got.plt.%u", chunk);
11247 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11248 }
11249 BFD_ASSERT (sgotplt);
11250
11251 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11252 section referencing a literal at the very beginning of
11253 ".got.plt". This is very close to the real dependence, anyway. */
11254 (*callback) (sec, sec_size, sgotplt, 0, closure);
11255 }
11256
11257 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11258 when building uclibc, which runs "ld -b binary /dev/null". */
11259 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11260 return ok;
11261
11262 internal_relocs = retrieve_internal_relocs (abfd, sec,
11263 link_info->keep_memory);
11264 if (internal_relocs == NULL
11265 || sec->reloc_count == 0)
11266 return ok;
11267
11268 /* Cache the contents for the duration of this scan. */
11269 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11270 if (contents == NULL && sec_size != 0)
11271 {
11272 ok = FALSE;
11273 goto error_return;
11274 }
11275
11276 if (!xtensa_default_isa)
11277 xtensa_default_isa = xtensa_isa_init (0, 0);
11278
11279 for (i = 0; i < sec->reloc_count; i++)
11280 {
11281 Elf_Internal_Rela *irel = &internal_relocs[i];
11282 if (is_l32r_relocation (abfd, sec, contents, irel))
11283 {
11284 r_reloc l32r_rel;
11285 asection *target_sec;
11286 bfd_vma target_offset;
11287
11288 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11289 target_sec = NULL;
11290 target_offset = 0;
11291 /* L32Rs must be local to the input file. */
11292 if (r_reloc_is_defined (&l32r_rel))
11293 {
11294 target_sec = r_reloc_get_section (&l32r_rel);
11295 target_offset = l32r_rel.target_offset;
11296 }
11297 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11298 closure);
11299 }
11300 }
11301
11302 error_return:
11303 release_internal_relocs (sec, internal_relocs);
11304 release_contents (sec, contents);
11305 return ok;
11306 }
11307
11308 /* The default literal sections should always be marked as "code" (i.e.,
11309 SHF_EXECINSTR). This is particularly important for the Linux kernel
11310 module loader so that the literals are not placed after the text. */
11311 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11312 {
11313 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11314 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11315 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11316 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11317 { NULL, 0, 0, 0, 0 }
11318 };
11319 \f
11320 #define ELF_TARGET_ID XTENSA_ELF_DATA
11321 #ifndef ELF_ARCH
11322 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11323 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11324 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11325 #define TARGET_BIG_NAME "elf32-xtensa-be"
11326 #define ELF_ARCH bfd_arch_xtensa
11327
11328 #define ELF_MACHINE_CODE EM_XTENSA
11329 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11330
11331 #if XCHAL_HAVE_MMU
11332 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11333 #else /* !XCHAL_HAVE_MMU */
11334 #define ELF_MAXPAGESIZE 1
11335 #endif /* !XCHAL_HAVE_MMU */
11336 #endif /* ELF_ARCH */
11337
11338 #define elf_backend_can_gc_sections 1
11339 #define elf_backend_can_refcount 1
11340 #define elf_backend_plt_readonly 1
11341 #define elf_backend_got_header_size 4
11342 #define elf_backend_want_dynbss 0
11343 #define elf_backend_want_got_plt 1
11344
11345 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11346
11347 #define bfd_elf32_mkobject elf_xtensa_mkobject
11348
11349 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11350 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11351 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11352 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11353 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11354 #define bfd_elf32_bfd_reloc_name_lookup \
11355 elf_xtensa_reloc_name_lookup
11356 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11357 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11358
11359 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11360 #define elf_backend_check_relocs elf_xtensa_check_relocs
11361 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11362 #define elf_backend_discard_info elf_xtensa_discard_info
11363 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11364 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11365 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11366 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11367 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11368 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11369 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11370 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11371 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11372 #define elf_backend_object_p elf_xtensa_object_p
11373 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11374 #define elf_backend_relocate_section elf_xtensa_relocate_section
11375 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11376 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11377 #define elf_backend_omit_section_dynsym \
11378 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11379 #define elf_backend_special_sections elf_xtensa_special_sections
11380 #define elf_backend_action_discarded elf_xtensa_action_discarded
11381 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11382
11383 #include "elf32-target.h"
This page took 0.286637 seconds and 4 git commands to generate.