bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (bfd *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (bfd *, int);
98 static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_littable_section (asection *);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern char *xtensa_get_property_section_name (asection *, const char *);
110 static flagword xtensa_get_property_predef_flags (asection *);
111
112 /* Other functions called directly by the linker. */
113
114 typedef void (*deps_callback_t)
115 (asection *, bfd_vma, asection *, bfd_vma, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
118
119
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
124
125 int elf32xtensa_size_opt;
126
127
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
131
132 typedef struct xtensa_relax_info_struct xtensa_relax_info;
133
134
135 /* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
139 needed. It is OK if this count is an overestimate, e.g., some
140 relocations may be removed by GC. */
141
142 static int plt_reloc_count = 0;
143
144
145 /* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150 xtensa_isa xtensa_default_isa;
151
152
153 /* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157 static bfd_boolean relaxing_section = FALSE;
158
159 /* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162 int elf32xtensa_no_literal_movement = 1;
163
164 \f
165 static reloc_howto_type elf_howto_table[] =
166 {
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
326 };
327
328 #if DEBUG_GEN_RELOC
329 #define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331 #else
332 #define TRACE(str)
333 #endif
334
335 static reloc_howto_type *
336 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
338 {
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431 }
432
433
434 /* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437 static void
438 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
441 {
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446 }
447
448 \f
449 /* Functions for the Xtensa ELF linker. */
450
451 /* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456 /* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460 #define PLT_ENTRY_SIZE 16
461
462 /* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472 #define PLT_ENTRIES_PER_CHUNK 254
473
474 /* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480 {
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487 };
488
489 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490 {
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497 };
498
499
500 static inline bfd_boolean
501 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
503 {
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511 }
512
513 \f
514 static int
515 property_table_compare (const void *ap, const void *bp)
516 {
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
520 if (a->address == b->address)
521 {
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544 }
545
546
547 static int
548 property_table_matches (const void *ap, const void *bp)
549 {
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559 }
560
561
562 /* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
565
566 static int
567 xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
572 {
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
578 int blk, block_count;
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
581 bfd_vma section_addr;
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
592
593 table_section_name = xtensa_get_property_section_name (section, sec_name);
594 table_section = bfd_get_section_by_name (abfd, table_section_name);
595 free (table_section_name);
596 if (table_section)
597 table_size = table_section->size;
598
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
620
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
624 if (internal_relocs && !table_section->reloc_done)
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
642 BFD_ASSERT (sym_off == 0);
643 blocks[block_count].address =
644 (section_addr + sym_off + rel->r_addend
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
653 block_count++;
654 }
655 }
656 }
657 else
658 {
659 /* The file has already been relocated and the addresses are
660 already in the table. */
661 bfd_vma off;
662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
663
664 for (off = 0; off < table_size; off += table_entry_size)
665 {
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
667
668 if (address >= section_addr
669 && address < section_addr + section_limit)
670 {
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
679 block_count++;
680 }
681 }
682 }
683
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
686
687 if (block_count > 0)
688 {
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
692
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
696 {
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
703 {
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
709 }
710 }
711 }
712
713 *table_p = blocks;
714 return block_count;
715 }
716
717
718 static property_table_entry *
719 elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
722 {
723 property_table_entry entry;
724 property_table_entry *rv;
725
726 if (property_table_size == 0)
727 return NULL;
728
729 entry.address = addr;
730 entry.size = 1;
731 entry.flags = 0;
732
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
736 }
737
738
739 static bfd_boolean
740 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
743 {
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
745 return TRUE;
746
747 return FALSE;
748 }
749
750 \f
751 /* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
753
754 static bfd_boolean
755 elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
759 {
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
764
765 if (info->relocatable)
766 return TRUE;
767
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
770
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
773 {
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
777
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
780
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
782 {
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
785 return FALSE;
786 }
787
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
791 {
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
796 }
797
798 switch (r_type)
799 {
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
803
804 if ((sec->flags & SEC_ALLOC) != 0)
805 {
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
810 }
811 break;
812
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
818
819 if ((sec->flags & SEC_ALLOC) != 0)
820 {
821 if (h->plt.refcount <= 0)
822 {
823 h->needs_plt = 1;
824 h->plt.refcount = 1;
825 }
826 else
827 h->plt.refcount += 1;
828
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
833
834 if (elf_hash_table (info)->dynamic_sections_created)
835 {
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
839 }
840 }
841 break;
842
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
845 {
846 bfd_signed_vma *local_got_refcounts;
847
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
851 {
852 bfd_size_type size;
853
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
861 }
862 local_got_refcounts[r_symndx] += 1;
863 }
864 break;
865
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
904 /* Nothing to do for these. */
905 break;
906
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
911 return FALSE;
912 break;
913
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
918 return FALSE;
919 break;
920
921 default:
922 break;
923 }
924 }
925
926 return TRUE;
927 }
928
929
930 static void
931 elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
933 {
934 if (info->shared)
935 {
936 if (h->plt.refcount > 0)
937 {
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951 }
952
953
954 static void
955 elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
958 {
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964 }
965
966
967 /* Return the section that should be marked against GC for a given
968 relocation. */
969
970 static asection *
971 elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
976 {
977 if (h)
978 {
979 switch (ELF32_R_TYPE (rel->r_info))
980 {
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
984
985 default:
986 switch (h->root.type)
987 {
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
991
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
994
995 default:
996 break;
997 }
998 }
999 }
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1002
1003 return NULL;
1004 }
1005
1006
1007 /* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1009
1010 static bfd_boolean
1011 elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
1015 {
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1020
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1023
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1027
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1030 {
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1034
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
1037 {
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042 }
1043
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1046 {
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1053
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1060
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 return TRUE;
1072 }
1073
1074
1075 /* Create all the dynamic sections. */
1076
1077 static bfd_boolean
1078 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1079 {
1080 flagword flags, noalloc_flags;
1081 asection *s;
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1086
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1091
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1095
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1101
1102 /* Create ".rela.got". */
1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1104 if (s == NULL
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1107
1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1110 if (s == NULL
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1113
1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
1117 if (s == NULL
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 return TRUE;
1122 }
1123
1124
1125 static bfd_boolean
1126 add_extra_plt_sections (bfd *dynobj, int count)
1127 {
1128 int chunk;
1129
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1133 {
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1137
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1141
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1144
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
1149 if (s == NULL
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1152
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
1156 if (s == NULL
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1159 }
1160
1161 return TRUE;
1162 }
1163
1164
1165 /* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1170
1171 static bfd_boolean
1172 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
1174 {
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
1178 if (h->u.weakdef)
1179 {
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1184 return TRUE;
1185 }
1186
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1190
1191 return TRUE;
1192 }
1193
1194
1195 static bfd_boolean
1196 elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
1197 {
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1199
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1202
1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
1204 elf_xtensa_make_sym_local (info, h);
1205
1206 return TRUE;
1207 }
1208
1209
1210 static bfd_boolean
1211 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
1212 {
1213 asection *srelplt = (asection *) arg;
1214
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1217
1218 if (h->plt.refcount > 0)
1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1220
1221 return TRUE;
1222 }
1223
1224
1225 static bfd_boolean
1226 elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
1227 {
1228 asection *srelgot = (asection *) arg;
1229
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232
1233 if (h->got.refcount > 0)
1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1235
1236 return TRUE;
1237 }
1238
1239
1240 static void
1241 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
1243 {
1244 bfd *i;
1245
1246 for (i = info->input_bfds; i; i = i->link_next)
1247 {
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1251
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1255
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1258
1259 for (j = 0; j < cnt; ++j)
1260 {
1261 if (local_got_refcounts[j] > 0)
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
1264 }
1265 }
1266 }
1267
1268
1269 /* Set the sizes of the dynamic sections. */
1270
1271 static bfd_boolean
1272 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
1274 {
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1279
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1283
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1287
1288 if (elf_hash_table (info)->dynamic_sections_created)
1289 {
1290 /* Set the contents of the .interp section to the interpreter. */
1291 if (info->executable)
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
1304 s->size = 4;
1305
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
1309 (void *) info);
1310
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
1318 (void *) srelgot);
1319
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1325
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
1332 (void *) srelplt);
1333
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1342
1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1346
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1353 {
1354 int chunk_entries;
1355
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1359
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1366
1367 if (chunk_entries != 0)
1368 {
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
1373 }
1374 else
1375 {
1376 sgotplt->size = 0;
1377 splt->size = 0;
1378 }
1379 }
1380
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
1386 sgotloc->size = spltlittbl->size;
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1388 {
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1392 {
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
1396 sgotloc->size += s->size;
1397 }
1398 }
1399 }
1400
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1405 {
1406 const char *name;
1407
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1410
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1414
1415 if (strncmp (name, ".rela", 5) == 0)
1416 {
1417 if (s->size != 0)
1418 {
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1423
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
1427 }
1428 }
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
1436 {
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1439 }
1440
1441 if (s->size == 0)
1442 {
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1453 }
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1455 {
1456 /* Allocate memory for the section contents. */
1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1458 if (s->contents == NULL)
1459 return FALSE;
1460 }
1461 }
1462
1463 if (elf_hash_table (info)->dynamic_sections_created)
1464 {
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1471 {
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1474
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1478
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1485 }
1486
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492 #define add_dynamic_entry(TAG, VAL) \
1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1494
1495 if (! info->shared)
1496 {
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1499 }
1500
1501 if (relplt)
1502 {
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1508 }
1509
1510 if (relgot)
1511 {
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1516 }
1517
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1521 }
1522 #undef add_dynamic_entry
1523
1524 return TRUE;
1525 }
1526
1527 \f
1528 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1534
1535 static bfd_boolean
1536 elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1538 {
1539 struct elf_segment_map **m_p;
1540
1541 m_p = &elf_tdata (abfd)->segment_map;
1542 while (*m_p)
1543 {
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1548 }
1549 return TRUE;
1550 }
1551
1552 \f
1553 /* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1557
1558 #define CALL_SEGMENT_BITS (30)
1559 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1560
1561 static bfd_reloc_status_type
1562 elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
1570 {
1571 xtensa_format fmt;
1572 xtensa_opcode opcode;
1573 xtensa_isa isa = xtensa_default_isa;
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
1579 uint32 newval;
1580
1581 if (!ibuff)
1582 {
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1585 }
1586
1587 input_size = bfd_get_section_limit (abfd, input_section);
1588
1589 switch (howto->type)
1590 {
1591 case R_XTENSA_NONE:
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1599 {
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
1603 input_size - address, 0);
1604 if (is_windowed_call_opcode (opcode))
1605 {
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
1611 {
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1615 }
1616 }
1617 }
1618 return bfd_reloc_ok;
1619
1620 case R_XTENSA_ASM_SIMPLIFY:
1621 {
1622 /* Convert the L32R/CALLX to CALL. */
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
1626 if (retval != bfd_reloc_ok)
1627 return bfd_reloc_dangerous;
1628
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1632 }
1633 break;
1634
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1637 {
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1642 }
1643 return bfd_reloc_ok;
1644 }
1645
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
1649 {
1650 *error_message = "unexpected relocation";
1651 return bfd_reloc_dangerous;
1652 }
1653
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
1659 {
1660 *error_message = "cannot decode instruction format";
1661 return bfd_reloc_dangerous;
1662 }
1663
1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1665
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
1668 {
1669 *error_message = "cannot decode instruction opcode";
1670 return bfd_reloc_dangerous;
1671 }
1672
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1675 {
1676 if (opcode == get_l32r_opcode ())
1677 {
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1682 {
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1685 }
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1690 }
1691 else if (opcode == get_const16_opcode ())
1692 {
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1696 }
1697 else
1698 {
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1702 }
1703 }
1704 else /* Not an "alternate" relocation.... */
1705 {
1706 if (opcode == get_const16_opcode ())
1707 {
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1710 }
1711 else
1712 {
1713 /* ...normal PC-relative relocation.... */
1714
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1718 {
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1721 }
1722
1723 if (!howto->pc_relative)
1724 {
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1727 }
1728
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
1733
1734 newval = relocation;
1735 }
1736 }
1737
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
1743 {
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1746
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1749 {
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1754 }
1755 else if (opcode == get_l32r_opcode ())
1756 {
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1765 }
1766
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1768 return bfd_reloc_dangerous;
1769 }
1770
1771 /* Check for calls across 1GB boundaries. */
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1774 {
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
1777 {
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
1780 return bfd_reloc_dangerous;
1781 }
1782 }
1783
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
1788 return bfd_reloc_ok;
1789 }
1790
1791
1792 static char *
1793 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1794 {
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1801
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1804
1805 is_append = (origmsg == message);
1806
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1810 {
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1813 }
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1819 }
1820
1821
1822 /* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1828
1829 static bfd_reloc_status_type
1830 bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
1837 {
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1845
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1848
1849 /* ELF relocs are against symbols. If we are producing relocatable
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1859
1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1861 {
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1864 }
1865
1866 /* Is the address of the relocation really within the section? */
1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1868 return bfd_reloc_outofrange;
1869
1870 /* Work out which section the relocation is targeted at and the
1871 initial relocation command value. */
1872
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1878
1879 reloc_target_output_section = symbol->section->output_section;
1880
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1887
1888 relocation += output_base + symbol->section->output_offset;
1889
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1892
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1896 {
1897 if (!howto->partial_inplace)
1898 {
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
1903
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1908 }
1909 else
1910 {
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1913 }
1914 }
1915
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1921
1922 if (flag == bfd_reloc_dangerous)
1923 {
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
1931 }
1932
1933 return flag;
1934 }
1935
1936
1937 /* Set up an entry in the procedure linkage table. */
1938
1939 static bfd_vma
1940 elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
1943 {
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1948
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1953
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1956
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1959
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1964
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1980
1981 return plt_base + code_offset;
1982 }
1983
1984
1985 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1986 both relocatable and final links. */
1987
1988 static bfd_boolean
1989 elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
1997 {
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
2006 char *error_message = NULL;
2007 bfd_size_type input_size;
2008
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
2011
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2015
2016 srelgot = NULL;
2017 srelplt = NULL;
2018 if (dynobj)
2019 {
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2022 }
2023
2024 if (elf_hash_table (info)->dynamic_sections_created)
2025 {
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
2029 if (ltblsize < 0)
2030 return FALSE;
2031 }
2032
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2034
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
2049 bfd_boolean warned;
2050
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2055
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2057 {
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 howto = &elf_howto_table[r_type];
2062
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2064
2065 if (info->relocatable)
2066 {
2067 /* This is a relocatable link.
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2074
2075 if (relaxing_section)
2076 {
2077 /* Check if this references a section in another input file. */
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
2081 r_type = ELF32_R_TYPE (rel->r_info);
2082 }
2083
2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2085 {
2086 char *error_message = NULL;
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2092 {
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2097 }
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
2101 /* This is a relocatable link, so we don't have to change
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2112 }
2113 }
2114
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
2117 to work around problems with DWARF in relocatable links
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2121 {
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2124 {
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2130 {
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2135 }
2136 rel->r_addend = 0;
2137 }
2138 }
2139
2140 /* Done with work for relocatable link; continue with next reloc. */
2141 continue;
2142 }
2143
2144 /* This is a final link. */
2145
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
2151 warned = FALSE;
2152
2153 if (howto->partial_inplace)
2154 {
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2161 }
2162
2163 if (r_symndx < symtab_hdr->sh_info)
2164 {
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2168 }
2169 else
2170 {
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
2175
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
2179 is_weak_undef = TRUE;
2180 }
2181
2182 if (relaxing_section)
2183 {
2184 /* Check if this references a section in another input file. */
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
2187
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2191 }
2192
2193 /* Sanity check the address. */
2194 if (rel->r_offset >= input_size
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2196 {
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2202 }
2203
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2206 {
2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
2208
2209 if (dynamic_symbol && is_operand_relocation (r_type))
2210 {
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2221 }
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2225 {
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2229
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2234
2235 BFD_ASSERT (srel != NULL);
2236
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2240
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2244 {
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
2247
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2252 outrel.r_offset))
2253 {
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2260 }
2261
2262 if (dynamic_symbol)
2263 {
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2266
2267 if (r_type == R_XTENSA_32)
2268 {
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2272 }
2273 else /* r_type == R_XTENSA_PLT */
2274 {
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2277
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
2281 relocation =
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2284 }
2285 unresolved_reloc = FALSE;
2286 }
2287 else
2288 {
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2292 }
2293 }
2294
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2299 <= srel->size);
2300 }
2301 }
2302
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
2308 && h->def_dynamic))
2309 (*_bfd_error_handler)
2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2311 input_bfd,
2312 input_section,
2313 (long) rel->r_offset,
2314 howto->name,
2315 h->root.root.string);
2316
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
2323
2324 if (r != bfd_reloc_ok && !warned)
2325 {
2326 const char *name;
2327
2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2329 BFD_ASSERT (error_message != NULL);
2330
2331 if (h)
2332 name = h->root.root.string;
2333 else
2334 {
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2339 }
2340 if (name)
2341 {
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
2348 name, (int)rel->r_addend);
2349 }
2350
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2355 }
2356 }
2357
2358 if (lit_table)
2359 free (lit_table);
2360
2361 input_section->reloc_done = TRUE;
2362
2363 return TRUE;
2364 }
2365
2366
2367 /* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2369
2370 static bfd_boolean
2371 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
2375 {
2376 if (h->needs_plt
2377 && !h->def_regular)
2378 {
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2382 }
2383
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2386 || h == elf_hash_table (info)->hgot)
2387 sym->st_shndx = SHN_ABS;
2388
2389 return TRUE;
2390 }
2391
2392
2393 /* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2400
2401 static int
2402 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
2405 {
2406 bfd_byte *contents;
2407 property_table_entry *table;
2408 bfd_size_type section_size, sgotloc_size;
2409 bfd_vma offset;
2410 int n, m, num;
2411
2412 section_size = sxtlit->size;
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2415
2416 sgotloc_size = sgotloc->size;
2417 if (sgotloc_size != section_size)
2418 {
2419 (*_bfd_error_handler)
2420 (_("internal inconsistency in size of .got.loc section"));
2421 return -1;
2422 }
2423
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
2426 return -1;
2427
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
2430 where it breaks the following call to bfd_malloc_and_get_section. */
2431 sxtlit->flags &= ~SEC_IN_MEMORY;
2432
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2434 {
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2439 }
2440
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2443
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2447 {
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2451 }
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2453
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_boolean remove = FALSE;
2457
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2462 {
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2465 }
2466
2467 if (remove)
2468 {
2469 for (m = n; m < num - 1; m++)
2470 {
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2473 }
2474
2475 n--;
2476 num--;
2477 }
2478 }
2479
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2483 {
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2487 }
2488
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
2491 memset (&contents[num * 8], 0, section_size - num * 8);
2492
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
2495 return -1;
2496
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2499
2500 free (contents);
2501 free (table);
2502 return num;
2503 }
2504
2505
2506 /* Finish up the dynamic sections. */
2507
2508 static bfd_boolean
2509 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
2511 {
2512 bfd *dynobj;
2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2516
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2519
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2523
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2528 {
2529 BFD_ASSERT (sgot->size == 4);
2530 if (sdyn == NULL)
2531 bfd_put_32 (output_bfd, 0, sgot->contents);
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2536 }
2537
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2539 if (srelplt && srelplt->size != 0)
2540 {
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2546
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2549
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2552
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2556 {
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2561 }
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2563
2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2567
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2569 {
2570 int chunk_entries = 0;
2571
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2574
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2577
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2599
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2605
2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2613 }
2614
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
2621 abort ();
2622
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
2631 spltlittbl->size))
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2635 }
2636
2637 /* Combine adjacent literal table entries. */
2638 BFD_ASSERT (! info->relocatable);
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
2641 BFD_ASSERT (sxtlit && sgotloc);
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2646
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2649 for (; dyncon < dynconend; dyncon++)
2650 {
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2654
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2656
2657 switch (dyn.d_tag)
2658 {
2659 default:
2660 break;
2661
2662 case DT_XTENSA_GOT_LOC_SZ:
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2665
2666 case DT_XTENSA_GOT_LOC_OFF:
2667 name = ".got.loc";
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2679
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
2683 dyn.d_un.d_val = s->size;
2684 break;
2685
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
2695 dyn.d_un.d_val -= s->size;
2696 break;
2697 }
2698
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2700 }
2701
2702 return TRUE;
2703 }
2704
2705 \f
2706 /* Functions for dealing with the e_flags field. */
2707
2708 /* Merge backend specific data from an object file to the output
2709 object file when linking. */
2710
2711 static bfd_boolean
2712 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2713 {
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2716
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2720
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2725
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2728
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
2731 if (out_mach != in_mach)
2732 {
2733 (*_bfd_error_handler)
2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2735 ibfd, out_mach, in_mach);
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2738 }
2739
2740 if (! elf_flags_init (obfd))
2741 {
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
2744
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
2749
2750 return TRUE;
2751 }
2752
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2755
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2758
2759 return TRUE;
2760 }
2761
2762
2763 static bfd_boolean
2764 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2765 {
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2768
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2771
2772 return TRUE;
2773 }
2774
2775
2776 static bfd_boolean
2777 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2778 {
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2781
2782 fprintf (f, "\nXtensa header:\n");
2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2787
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2790
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2793
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2795 }
2796
2797
2798 /* Set the right machine number for an Xtensa ELF file. */
2799
2800 static bfd_boolean
2801 elf_xtensa_object_p (bfd *abfd)
2802 {
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2805
2806 switch (arch)
2807 {
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2813 }
2814
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2817 }
2818
2819
2820 /* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2823
2824 static void
2825 elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
2827 {
2828 int mach;
2829 unsigned long val;
2830
2831 switch (mach = bfd_get_mach (abfd))
2832 {
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2838 }
2839
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2842 }
2843
2844
2845 static enum elf_reloc_type_class
2846 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2847 {
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2849 {
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2856 }
2857 }
2858
2859 \f
2860 static bfd_boolean
2861 elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
2865 {
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2870
2871 section_size = sec->size;
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2874
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2878
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2882
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2885 {
2886 release_contents (sec, contents);
2887 return FALSE;
2888 }
2889
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2892
2893 for (offset = 0; offset < section_size; offset += 8)
2894 {
2895 actual_offset = offset - removed_bytes;
2896
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2901 {
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2904 }
2905
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2908 {
2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2910 {
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2915 {
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2922 }
2923
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2926 }
2927
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2937
2938 cookie->rel++;
2939 }
2940 }
2941
2942 if (removed_bytes != 0)
2943 {
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2946 {
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2951 }
2952
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2955
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2958
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
2961
2962 if (xtensa_is_littable_section (sec))
2963 {
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2966 {
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
2970 sgotloc->size -= removed_bytes;
2971 }
2972 }
2973 }
2974 else
2975 {
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2978 }
2979
2980 return (removed_bytes != 0);
2981 }
2982
2983
2984 static bfd_boolean
2985 elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
2988 {
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2991
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2993 {
2994 if (xtensa_is_property_section (sec))
2995 {
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
2998 }
2999 }
3000
3001 return changed;
3002 }
3003
3004
3005 static bfd_boolean
3006 elf_xtensa_ignore_discarded_relocs (asection *sec)
3007 {
3008 return xtensa_is_property_section (sec);
3009 }
3010
3011 \f
3012 /* Support for core dump NOTE sections. */
3013
3014 static bfd_boolean
3015 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3016 {
3017 int offset;
3018 unsigned int size;
3019
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3022
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028
3029 /* pr_reg */
3030 offset = 72;
3031 size = note->descsz - offset - 4;
3032
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3035 size, note->descpos + offset);
3036 }
3037
3038
3039 static bfd_boolean
3040 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3041 {
3042 switch (note->descsz)
3043 {
3044 default:
3045 return FALSE;
3046
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3052 }
3053
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3057
3058 {
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3061
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3064 }
3065
3066 return TRUE;
3067 }
3068
3069 \f
3070 /* Generic Xtensa configurability stuff. */
3071
3072 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080
3081 static void
3082 init_call_opcodes (void)
3083 {
3084 if (callx0_op == XTENSA_UNDEFINED)
3085 {
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3094 }
3095 }
3096
3097
3098 static bfd_boolean
3099 is_indirect_call_opcode (xtensa_opcode opcode)
3100 {
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3106 }
3107
3108
3109 static bfd_boolean
3110 is_direct_call_opcode (xtensa_opcode opcode)
3111 {
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3117 }
3118
3119
3120 static bfd_boolean
3121 is_windowed_call_opcode (xtensa_opcode opcode)
3122 {
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3130 }
3131
3132
3133 static xtensa_opcode
3134 get_const16_opcode (void)
3135 {
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3139 {
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3142 }
3143 return const16_opcode;
3144 }
3145
3146
3147 static xtensa_opcode
3148 get_l32r_opcode (void)
3149 {
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3151 static bfd_boolean done_lookup = FALSE;
3152
3153 if (!done_lookup)
3154 {
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3156 done_lookup = TRUE;
3157 }
3158 return l32r_opcode;
3159 }
3160
3161
3162 static bfd_vma
3163 l32r_offset (bfd_vma addr, bfd_vma pc)
3164 {
3165 bfd_vma offset;
3166
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3172 }
3173
3174
3175 static int
3176 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3177 {
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3180
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3183
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 {
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 {
3195 last_immed = opi;
3196 break;
3197 }
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3201 }
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3204
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 {
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3212 }
3213
3214 return last_immed;
3215 }
3216
3217
3218 int
3219 get_relocation_slot (int r_type)
3220 {
3221 switch (r_type)
3222 {
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3227
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3234 }
3235
3236 return XTENSA_UNDEFINED;
3237 }
3238
3239
3240 /* Get the opcode for a relocation. */
3241
3242 static xtensa_opcode
3243 get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
3247 {
3248 static xtensa_insnbuf ibuff = NULL;
3249 static xtensa_insnbuf sbuff = NULL;
3250 xtensa_isa isa = xtensa_default_isa;
3251 xtensa_format fmt;
3252 int slot;
3253
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3256
3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3258 return XTENSA_UNDEFINED;
3259
3260 if (ibuff == NULL)
3261 {
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3264 }
3265
3266 /* Decode the instruction. */
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3275 }
3276
3277
3278 bfd_boolean
3279 is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
3283 {
3284 xtensa_opcode opcode;
3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3286 return FALSE;
3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3288 return (opcode == get_l32r_opcode ());
3289 }
3290
3291
3292 static bfd_size_type
3293 get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
3296 {
3297 bfd_size_type insnlen, size = 0;
3298
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
3303
3304 size += insnlen;
3305
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
3309
3310 size += insnlen;
3311 return size;
3312 }
3313
3314
3315 bfd_boolean
3316 is_alt_relocation (int r_type)
3317 {
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
3320 }
3321
3322
3323 bfd_boolean
3324 is_operand_relocation (int r_type)
3325 {
3326 switch (r_type)
3327 {
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
3332
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3339 }
3340
3341 return FALSE;
3342 }
3343
3344
3345 #define MIN_INSN_LENGTH 2
3346
3347 /* Return 0 if it fails to decode. */
3348
3349 bfd_size_type
3350 insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
3353 {
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
3358
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
3361
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
3373 }
3374
3375
3376 /* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
3378
3379 xtensa_opcode
3380 insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
3384 {
3385 xtensa_isa isa = xtensa_default_isa;
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3389
3390 if (offset + MIN_INSN_LENGTH > content_len)
3391 return XTENSA_UNDEFINED;
3392
3393 if (insnbuf == NULL)
3394 {
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3397 }
3398
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
3403 return XTENSA_UNDEFINED;
3404
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
3406 return XTENSA_UNDEFINED;
3407
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3410 }
3411
3412
3413 /* The offset is the offset in the contents.
3414 The address is the address of that offset. */
3415
3416 static bfd_boolean
3417 check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
3421 {
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3426 }
3427
3428
3429 static bfd_boolean
3430 check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
3434 {
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode =
3437 insn_decode_opcode (contents, content_length, offset, 0);
3438 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3439 if (opcode != XTENSA_UNDEFINED)
3440 return FALSE;
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3443 return FALSE;
3444
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 BFD_ASSERT (loop_len != 0);
3447 if (loop_len == 0)
3448 return FALSE;
3449
3450 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3451 BFD_ASSERT (insn_len != 0);
3452 if (insn_len == 0)
3453 return FALSE;
3454
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456 }
3457
3458
3459 static bfd_boolean
3460 check_branch_target_aligned_address (bfd_vma addr, int len)
3461 {
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
3465 }
3466
3467 \f
3468 /* Instruction widening and narrowing. */
3469
3470 /* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476 static xtensa_format *op_single_fmt_table = NULL;
3477
3478
3479 static void
3480 init_op_single_format_table (void)
3481 {
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513 }
3514
3515
3516 static xtensa_format
3517 get_single_format (xtensa_opcode opcode)
3518 {
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521 }
3522
3523
3524 /* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
3529
3530 struct string_pair
3531 {
3532 const char *wide;
3533 const char *narrow;
3534 };
3535
3536 struct string_pair narrowable[] =
3537 {
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547 };
3548
3549 struct string_pair widenable[] =
3550 {
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562 };
3563
3564
3565 /* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3570
3571 static bfd_boolean
3572 narrow_instruction (bfd_byte *contents,
3573 bfd_size_type content_length,
3574 bfd_size_type offset,
3575 bfd_boolean do_it)
3576 {
3577 xtensa_opcode opcode;
3578 bfd_size_type insn_len, opi;
3579 xtensa_isa isa = xtensa_default_isa;
3580 xtensa_format fmt, o_fmt;
3581
3582 static xtensa_insnbuf insnbuf = NULL;
3583 static xtensa_insnbuf slotbuf = NULL;
3584 static xtensa_insnbuf o_insnbuf = NULL;
3585 static xtensa_insnbuf o_slotbuf = NULL;
3586
3587 if (insnbuf == NULL)
3588 {
3589 insnbuf = xtensa_insnbuf_alloc (isa);
3590 slotbuf = xtensa_insnbuf_alloc (isa);
3591 o_insnbuf = xtensa_insnbuf_alloc (isa);
3592 o_slotbuf = xtensa_insnbuf_alloc (isa);
3593 }
3594
3595 BFD_ASSERT (offset < content_length);
3596
3597 if (content_length < 2)
3598 return FALSE;
3599
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3603 content_length - offset);
3604 fmt = xtensa_format_decode (isa, insnbuf);
3605 if (xtensa_format_num_slots (isa, fmt) != 1)
3606 return FALSE;
3607
3608 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3609 return FALSE;
3610
3611 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3612 if (opcode == XTENSA_UNDEFINED)
3613 return FALSE;
3614 insn_len = xtensa_format_length (isa, fmt);
3615 if (insn_len > content_length)
3616 return FALSE;
3617
3618 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3619 {
3620 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3621
3622 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3623 {
3624 uint32 value, newval;
3625 int i, operand_count, o_operand_count;
3626 xtensa_opcode o_opcode;
3627
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address = 0;
3631
3632 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3633 if (o_opcode == XTENSA_UNDEFINED)
3634 return FALSE;
3635 o_fmt = get_single_format (o_opcode);
3636 if (o_fmt == XTENSA_UNDEFINED)
3637 return FALSE;
3638
3639 if (xtensa_format_length (isa, fmt) != 3
3640 || xtensa_format_length (isa, o_fmt) != 2)
3641 return FALSE;
3642
3643 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3644 operand_count = xtensa_opcode_num_operands (isa, opcode);
3645 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3646
3647 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3648 return FALSE;
3649
3650 if (!is_or)
3651 {
3652 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3653 return FALSE;
3654 }
3655 else
3656 {
3657 uint32 rawval0, rawval1, rawval2;
3658
3659 if (o_operand_count + 1 != operand_count)
3660 return FALSE;
3661 if (xtensa_operand_get_field (isa, opcode, 0,
3662 fmt, 0, slotbuf, &rawval0) != 0)
3663 return FALSE;
3664 if (xtensa_operand_get_field (isa, opcode, 1,
3665 fmt, 0, slotbuf, &rawval1) != 0)
3666 return FALSE;
3667 if (xtensa_operand_get_field (isa, opcode, 2,
3668 fmt, 0, slotbuf, &rawval2) != 0)
3669 return FALSE;
3670
3671 if (rawval1 != rawval2)
3672 return FALSE;
3673 if (rawval0 == rawval1) /* it is a nop */
3674 return FALSE;
3675 }
3676
3677 for (i = 0; i < o_operand_count; ++i)
3678 {
3679 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3680 slotbuf, &value)
3681 || xtensa_operand_decode (isa, opcode, i, &value))
3682 return FALSE;
3683
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3686 newval = value;
3687 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3688 self_address)
3689 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3690 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3691 o_slotbuf, newval))
3692 return FALSE;
3693 }
3694
3695 if (xtensa_format_set_slot (isa, o_fmt, 0,
3696 o_insnbuf, o_slotbuf) != 0)
3697 return FALSE;
3698
3699 if (do_it)
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704 }
3705 return FALSE;
3706 }
3707
3708
3709 /* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3714 cases. */
3715
3716 static bfd_boolean
3717 widen_instruction (bfd_byte *contents,
3718 bfd_size_type content_length,
3719 bfd_size_type offset,
3720 bfd_boolean do_it)
3721 {
3722 xtensa_opcode opcode;
3723 bfd_size_type insn_len, opi;
3724 xtensa_isa isa = xtensa_default_isa;
3725 xtensa_format fmt, o_fmt;
3726
3727 static xtensa_insnbuf insnbuf = NULL;
3728 static xtensa_insnbuf slotbuf = NULL;
3729 static xtensa_insnbuf o_insnbuf = NULL;
3730 static xtensa_insnbuf o_slotbuf = NULL;
3731
3732 if (insnbuf == NULL)
3733 {
3734 insnbuf = xtensa_insnbuf_alloc (isa);
3735 slotbuf = xtensa_insnbuf_alloc (isa);
3736 o_insnbuf = xtensa_insnbuf_alloc (isa);
3737 o_slotbuf = xtensa_insnbuf_alloc (isa);
3738 }
3739
3740 BFD_ASSERT (offset < content_length);
3741
3742 if (content_length < 2)
3743 return FALSE;
3744
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3748 content_length - offset);
3749 fmt = xtensa_format_decode (isa, insnbuf);
3750 if (xtensa_format_num_slots (isa, fmt) != 1)
3751 return FALSE;
3752
3753 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3754 return FALSE;
3755
3756 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3757 if (opcode == XTENSA_UNDEFINED)
3758 return FALSE;
3759 insn_len = xtensa_format_length (isa, fmt);
3760 if (insn_len > content_length)
3761 return FALSE;
3762
3763 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
3764 {
3765 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3766 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3767 || strcmp ("bnez", widenable[opi].wide) == 0);
3768
3769 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3770 {
3771 uint32 value, newval;
3772 int i, operand_count, o_operand_count, check_operand_count;
3773 xtensa_opcode o_opcode;
3774
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address = 0;
3778
3779 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3780 if (o_opcode == XTENSA_UNDEFINED)
3781 return FALSE;
3782 o_fmt = get_single_format (o_opcode);
3783 if (o_fmt == XTENSA_UNDEFINED)
3784 return FALSE;
3785
3786 if (xtensa_format_length (isa, fmt) != 2
3787 || xtensa_format_length (isa, o_fmt) != 3)
3788 return FALSE;
3789
3790 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3791 operand_count = xtensa_opcode_num_operands (isa, opcode);
3792 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3793 check_operand_count = o_operand_count;
3794
3795 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3796 return FALSE;
3797
3798 if (!is_or)
3799 {
3800 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3801 return FALSE;
3802 }
3803 else
3804 {
3805 uint32 rawval0, rawval1;
3806
3807 if (o_operand_count != operand_count + 1)
3808 return FALSE;
3809 if (xtensa_operand_get_field (isa, opcode, 0,
3810 fmt, 0, slotbuf, &rawval0) != 0)
3811 return FALSE;
3812 if (xtensa_operand_get_field (isa, opcode, 1,
3813 fmt, 0, slotbuf, &rawval1) != 0)
3814 return FALSE;
3815 if (rawval0 == rawval1) /* it is a nop */
3816 return FALSE;
3817 }
3818 if (is_branch)
3819 check_operand_count--;
3820
3821 for (i = 0; i < check_operand_count; ++i)
3822 {
3823 int new_i = i;
3824 if (is_or && i == o_operand_count - 1)
3825 new_i = i - 1;
3826 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3827 slotbuf, &value)
3828 || xtensa_operand_decode (isa, opcode, new_i, &value))
3829 return FALSE;
3830
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3833 newval = value;
3834 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3835 self_address)
3836 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3837 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3838 o_slotbuf, newval))
3839 return FALSE;
3840 }
3841
3842 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3843 return FALSE;
3844
3845 if (do_it)
3846 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3847 content_length - offset);
3848 return TRUE;
3849 }
3850 }
3851 return FALSE;
3852 }
3853
3854 \f
3855 /* Code for transforming CALLs at link-time. */
3856
3857 static bfd_reloc_status_type
3858 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3859 bfd_vma address,
3860 bfd_vma content_length,
3861 char **error_message)
3862 {
3863 static xtensa_insnbuf insnbuf = NULL;
3864 static xtensa_insnbuf slotbuf = NULL;
3865 xtensa_format core_format = XTENSA_UNDEFINED;
3866 xtensa_opcode opcode;
3867 xtensa_opcode direct_call_opcode;
3868 xtensa_isa isa = xtensa_default_isa;
3869 bfd_byte *chbuf = contents + address;
3870 int opn;
3871
3872 if (insnbuf == NULL)
3873 {
3874 insnbuf = xtensa_insnbuf_alloc (isa);
3875 slotbuf = xtensa_insnbuf_alloc (isa);
3876 }
3877
3878 if (content_length < address)
3879 {
3880 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other;
3882 }
3883
3884 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3885 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3886 if (direct_call_opcode == XTENSA_UNDEFINED)
3887 {
3888 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other;
3890 }
3891
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format = xtensa_format_lookup (isa, "x24");
3894 opcode = xtensa_opcode_lookup (isa, "or");
3895 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3896 for (opn = 0; opn < 3; opn++)
3897 {
3898 uint32 regno = 1;
3899 xtensa_operand_encode (isa, opcode, opn, &regno);
3900 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3901 slotbuf, regno);
3902 }
3903 xtensa_format_encode (isa, core_format, insnbuf);
3904 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3905 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3906
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3909 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3910
3911 xtensa_format_encode (isa, core_format, insnbuf);
3912 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3913 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3914 content_length - address - 3);
3915
3916 return bfd_reloc_ok;
3917 }
3918
3919
3920 static bfd_reloc_status_type
3921 contract_asm_expansion (bfd_byte *contents,
3922 bfd_vma content_length,
3923 Elf_Internal_Rela *irel,
3924 char **error_message)
3925 {
3926 bfd_reloc_status_type retval =
3927 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3928 error_message);
3929
3930 if (retval != bfd_reloc_ok)
3931 return bfd_reloc_dangerous;
3932
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel->r_offset += 3;
3936 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3937 return bfd_reloc_ok;
3938 }
3939
3940
3941 static xtensa_opcode
3942 swap_callx_for_call_opcode (xtensa_opcode opcode)
3943 {
3944 init_call_opcodes ();
3945
3946 if (opcode == callx0_op) return call0_op;
3947 if (opcode == callx4_op) return call4_op;
3948 if (opcode == callx8_op) return call8_op;
3949 if (opcode == callx12_op) return call12_op;
3950
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED;
3953 }
3954
3955
3956 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
3959
3960 #define L32R_TARGET_REG_OPERAND 0
3961 #define CONST16_TARGET_REG_OPERAND 0
3962 #define CALLN_SOURCE_OPERAND 0
3963
3964 static xtensa_opcode
3965 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3966 {
3967 static xtensa_insnbuf insnbuf = NULL;
3968 static xtensa_insnbuf slotbuf = NULL;
3969 xtensa_format fmt;
3970 xtensa_opcode opcode;
3971 xtensa_isa isa = xtensa_default_isa;
3972 uint32 regno, const16_regno, call_regno;
3973 int offset = 0;
3974
3975 if (insnbuf == NULL)
3976 {
3977 insnbuf = xtensa_insnbuf_alloc (isa);
3978 slotbuf = xtensa_insnbuf_alloc (isa);
3979 }
3980
3981 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3982 fmt = xtensa_format_decode (isa, insnbuf);
3983 if (fmt == XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3985 return XTENSA_UNDEFINED;
3986
3987 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3988 if (opcode == XTENSA_UNDEFINED)
3989 return XTENSA_UNDEFINED;
3990
3991 if (opcode == get_l32r_opcode ())
3992 {
3993 if (p_uses_l32r)
3994 *p_uses_l32r = TRUE;
3995 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3996 fmt, 0, slotbuf, &regno)
3997 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3998 &regno))
3999 return XTENSA_UNDEFINED;
4000 }
4001 else if (opcode == get_const16_opcode ())
4002 {
4003 if (p_uses_l32r)
4004 *p_uses_l32r = FALSE;
4005 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, &regno)
4007 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 &regno))
4009 return XTENSA_UNDEFINED;
4010
4011 /* Check that the next instruction is also CONST16. */
4012 offset += xtensa_format_length (isa, fmt);
4013 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4014 fmt = xtensa_format_decode (isa, insnbuf);
4015 if (fmt == XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4017 return XTENSA_UNDEFINED;
4018 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4019 if (opcode != get_const16_opcode ())
4020 return XTENSA_UNDEFINED;
4021
4022 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4023 fmt, 0, slotbuf, &const16_regno)
4024 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4025 &const16_regno)
4026 || const16_regno != regno)
4027 return XTENSA_UNDEFINED;
4028 }
4029 else
4030 return XTENSA_UNDEFINED;
4031
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode == XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode))
4042 return XTENSA_UNDEFINED;
4043
4044 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4045 fmt, 0, slotbuf, &call_regno)
4046 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4047 &call_regno))
4048 return XTENSA_UNDEFINED;
4049
4050 if (call_regno != regno)
4051 return XTENSA_UNDEFINED;
4052
4053 return opcode;
4054 }
4055
4056 \f
4057 /* Data structures used during relaxation. */
4058
4059 /* r_reloc: relocation values. */
4060
4061 /* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
4067
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4070 the relocation.
4071
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
4075
4076 typedef struct r_reloc_struct r_reloc;
4077
4078 struct r_reloc_struct
4079 {
4080 bfd *abfd;
4081 Elf_Internal_Rela rela;
4082 bfd_vma target_offset;
4083 bfd_vma virtual_offset;
4084 };
4085
4086
4087 /* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
4092
4093 static bfd_boolean
4094 r_reloc_is_const (const r_reloc *r_rel)
4095 {
4096 return (r_rel->abfd == NULL);
4097 }
4098
4099
4100 static bfd_vma
4101 r_reloc_get_target_offset (const r_reloc *r_rel)
4102 {
4103 bfd_vma target_offset;
4104 unsigned long r_symndx;
4105
4106 BFD_ASSERT (!r_reloc_is_const (r_rel));
4107 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4108 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4109 return (target_offset + r_rel->rela.r_addend);
4110 }
4111
4112
4113 static struct elf_link_hash_entry *
4114 r_reloc_get_hash_entry (const r_reloc *r_rel)
4115 {
4116 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4117 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4118 }
4119
4120
4121 static asection *
4122 r_reloc_get_section (const r_reloc *r_rel)
4123 {
4124 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4125 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4126 }
4127
4128
4129 static bfd_boolean
4130 r_reloc_is_defined (const r_reloc *r_rel)
4131 {
4132 asection *sec;
4133 if (r_rel == NULL)
4134 return FALSE;
4135
4136 sec = r_reloc_get_section (r_rel);
4137 if (sec == bfd_abs_section_ptr
4138 || sec == bfd_com_section_ptr
4139 || sec == bfd_und_section_ptr)
4140 return FALSE;
4141 return TRUE;
4142 }
4143
4144
4145 static void
4146 r_reloc_init (r_reloc *r_rel,
4147 bfd *abfd,
4148 Elf_Internal_Rela *irel,
4149 bfd_byte *contents,
4150 bfd_size_type content_length)
4151 {
4152 int r_type;
4153 reloc_howto_type *howto;
4154
4155 if (irel)
4156 {
4157 r_rel->rela = *irel;
4158 r_rel->abfd = abfd;
4159 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4160 r_rel->virtual_offset = 0;
4161 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4162 howto = &elf_howto_table[r_type];
4163 if (howto->partial_inplace)
4164 {
4165 bfd_vma inplace_val;
4166 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4167
4168 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4169 r_rel->target_offset += inplace_val;
4170 }
4171 }
4172 else
4173 memset (r_rel, 0, sizeof (r_reloc));
4174 }
4175
4176
4177 #if DEBUG
4178
4179 static void
4180 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4181 {
4182 if (r_reloc_is_defined (r_rel))
4183 {
4184 asection *sec = r_reloc_get_section (r_rel);
4185 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4186 }
4187 else if (r_reloc_get_hash_entry (r_rel))
4188 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4189 else
4190 fprintf (fp, " ?? + ");
4191
4192 fprintf_vma (fp, r_rel->target_offset);
4193 if (r_rel->virtual_offset)
4194 {
4195 fprintf (fp, " + ");
4196 fprintf_vma (fp, r_rel->virtual_offset);
4197 }
4198
4199 fprintf (fp, ")");
4200 }
4201
4202 #endif /* DEBUG */
4203
4204 \f
4205 /* source_reloc: relocations that reference literals. */
4206
4207 /* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
4212
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
4221
4222 typedef struct source_reloc_struct source_reloc;
4223
4224 struct source_reloc_struct
4225 {
4226 asection *source_sec;
4227 r_reloc r_rel;
4228 xtensa_opcode opcode;
4229 int opnd;
4230 bfd_boolean is_null;
4231 bfd_boolean is_abs_literal;
4232 };
4233
4234
4235 static void
4236 init_source_reloc (source_reloc *reloc,
4237 asection *source_sec,
4238 const r_reloc *r_rel,
4239 xtensa_opcode opcode,
4240 int opnd,
4241 bfd_boolean is_abs_literal)
4242 {
4243 reloc->source_sec = source_sec;
4244 reloc->r_rel = *r_rel;
4245 reloc->opcode = opcode;
4246 reloc->opnd = opnd;
4247 reloc->is_null = FALSE;
4248 reloc->is_abs_literal = is_abs_literal;
4249 }
4250
4251
4252 /* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
4255
4256 static source_reloc *
4257 find_source_reloc (source_reloc *src_relocs,
4258 int src_count,
4259 asection *sec,
4260 Elf_Internal_Rela *irel)
4261 {
4262 int i;
4263
4264 for (i = 0; i < src_count; i++)
4265 {
4266 if (src_relocs[i].source_sec == sec
4267 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4268 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4269 == ELF32_R_TYPE (irel->r_info)))
4270 return &src_relocs[i];
4271 }
4272
4273 return NULL;
4274 }
4275
4276
4277 static int
4278 source_reloc_compare (const void *ap, const void *bp)
4279 {
4280 const source_reloc *a = (const source_reloc *) ap;
4281 const source_reloc *b = (const source_reloc *) bp;
4282
4283 if (a->r_rel.target_offset != b->r_rel.target_offset)
4284 return (a->r_rel.target_offset - b->r_rel.target_offset);
4285
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4292
4293 if ((!a->is_null) - (!b->is_null))
4294 return ((!a->is_null) - (!b->is_null));
4295 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4296 }
4297
4298 \f
4299 /* Literal values and value hash tables. */
4300
4301 /* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
4305
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4310 for coalescing. */
4311
4312 typedef struct literal_value_struct literal_value;
4313 typedef struct value_map_struct value_map;
4314 typedef struct value_map_hash_table_struct value_map_hash_table;
4315
4316 struct literal_value_struct
4317 {
4318 r_reloc r_rel;
4319 unsigned long value;
4320 bfd_boolean is_abs_literal;
4321 };
4322
4323 struct value_map_struct
4324 {
4325 literal_value val; /* The literal value. */
4326 r_reloc loc; /* Location of the literal. */
4327 value_map *next;
4328 };
4329
4330 struct value_map_hash_table_struct
4331 {
4332 unsigned bucket_count;
4333 value_map **buckets;
4334 unsigned count;
4335 bfd_boolean has_last_loc;
4336 r_reloc last_loc;
4337 };
4338
4339
4340 static void
4341 init_literal_value (literal_value *lit,
4342 const r_reloc *r_rel,
4343 unsigned long value,
4344 bfd_boolean is_abs_literal)
4345 {
4346 lit->r_rel = *r_rel;
4347 lit->value = value;
4348 lit->is_abs_literal = is_abs_literal;
4349 }
4350
4351
4352 static bfd_boolean
4353 literal_value_equal (const literal_value *src1,
4354 const literal_value *src2,
4355 bfd_boolean final_static_link)
4356 {
4357 struct elf_link_hash_entry *h1, *h2;
4358
4359 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4360 return FALSE;
4361
4362 if (r_reloc_is_const (&src1->r_rel))
4363 return (src1->value == src2->value);
4364
4365 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4366 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4367 return FALSE;
4368
4369 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4370 return FALSE;
4371
4372 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4373 return FALSE;
4374
4375 if (src1->value != src2->value)
4376 return FALSE;
4377
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4381 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4382 if (r_reloc_is_defined (&src1->r_rel)
4383 && (final_static_link
4384 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4385 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4386 {
4387 if (r_reloc_get_section (&src1->r_rel)
4388 != r_reloc_get_section (&src2->r_rel))
4389 return FALSE;
4390 }
4391 else
4392 {
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1 != h2 || h1 == 0)
4395 return FALSE;
4396 }
4397
4398 if (src1->is_abs_literal != src2->is_abs_literal)
4399 return FALSE;
4400
4401 return TRUE;
4402 }
4403
4404
4405 /* Must be power of 2. */
4406 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4407
4408 static value_map_hash_table *
4409 value_map_hash_table_init (void)
4410 {
4411 value_map_hash_table *values;
4412
4413 values = (value_map_hash_table *)
4414 bfd_zmalloc (sizeof (value_map_hash_table));
4415 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4416 values->count = 0;
4417 values->buckets = (value_map **)
4418 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4419 if (values->buckets == NULL)
4420 {
4421 free (values);
4422 return NULL;
4423 }
4424 values->has_last_loc = FALSE;
4425
4426 return values;
4427 }
4428
4429
4430 static void
4431 value_map_hash_table_delete (value_map_hash_table *table)
4432 {
4433 free (table->buckets);
4434 free (table);
4435 }
4436
4437
4438 static unsigned
4439 hash_bfd_vma (bfd_vma val)
4440 {
4441 return (val >> 2) + (val >> 10);
4442 }
4443
4444
4445 static unsigned
4446 literal_value_hash (const literal_value *src)
4447 {
4448 unsigned hash_val;
4449
4450 hash_val = hash_bfd_vma (src->value);
4451 if (!r_reloc_is_const (&src->r_rel))
4452 {
4453 void *sec_or_hash;
4454
4455 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4456 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4457 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4458
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src->r_rel))
4461 sec_or_hash = r_reloc_get_section (&src->r_rel);
4462 else
4463 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4464 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4465 }
4466 return hash_val;
4467 }
4468
4469
4470 /* Check if the specified literal_value has been seen before. */
4471
4472 static value_map *
4473 value_map_get_cached_value (value_map_hash_table *map,
4474 const literal_value *val,
4475 bfd_boolean final_static_link)
4476 {
4477 value_map *map_e;
4478 value_map *bucket;
4479 unsigned idx;
4480
4481 idx = literal_value_hash (val);
4482 idx = idx & (map->bucket_count - 1);
4483 bucket = map->buckets[idx];
4484 for (map_e = bucket; map_e; map_e = map_e->next)
4485 {
4486 if (literal_value_equal (&map_e->val, val, final_static_link))
4487 return map_e;
4488 }
4489 return NULL;
4490 }
4491
4492
4493 /* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4495
4496 static value_map *
4497 add_value_map (value_map_hash_table *map,
4498 const literal_value *val,
4499 const r_reloc *loc,
4500 bfd_boolean final_static_link)
4501 {
4502 value_map **bucket_p;
4503 unsigned idx;
4504
4505 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4506 if (val_e == NULL)
4507 {
4508 bfd_set_error (bfd_error_no_memory);
4509 return NULL;
4510 }
4511
4512 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4513 val_e->val = *val;
4514 val_e->loc = *loc;
4515
4516 idx = literal_value_hash (val);
4517 idx = idx & (map->bucket_count - 1);
4518 bucket_p = &map->buckets[idx];
4519
4520 val_e->next = *bucket_p;
4521 *bucket_p = val_e;
4522 map->count++;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4524
4525 return val_e;
4526 }
4527
4528 \f
4529 /* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4531
4532 /* The following text actions are generated:
4533
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4545 or replaced.
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4550 same location.
4551
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4555
4556 typedef struct text_action_struct text_action;
4557 typedef struct text_action_list_struct text_action_list;
4558 typedef enum text_action_enum_t text_action_t;
4559
4560 enum text_action_enum_t
4561 {
4562 ta_none,
4563 ta_remove_insn, /* removed = -size */
4564 ta_remove_longcall, /* removed = -size */
4565 ta_convert_longcall, /* removed = 0 */
4566 ta_narrow_insn, /* removed = -1 */
4567 ta_widen_insn, /* removed = +1 */
4568 ta_fill, /* removed = +size */
4569 ta_remove_literal,
4570 ta_add_literal
4571 };
4572
4573
4574 /* Structure for a text action record. */
4575 struct text_action_struct
4576 {
4577 text_action_t action;
4578 asection *sec; /* Optional */
4579 bfd_vma offset;
4580 bfd_vma virtual_offset; /* Zero except for adding literals. */
4581 int removed_bytes;
4582 literal_value value; /* Only valid when adding literals. */
4583
4584 text_action *next;
4585 };
4586
4587
4588 /* List of all of the actions taken on a text section. */
4589 struct text_action_list_struct
4590 {
4591 text_action *head;
4592 };
4593
4594
4595 static text_action *
4596 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4597 {
4598 text_action **m_p;
4599
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec->size == offset)
4602 return NULL;
4603
4604 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4605 {
4606 text_action *t = *m_p;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t->offset == offset && t->action == ta_fill)
4610 return t;
4611 }
4612 return NULL;
4613 }
4614
4615
4616 static int
4617 compute_removed_action_diff (const text_action *ta,
4618 asection *sec,
4619 bfd_vma offset,
4620 int removed,
4621 int removable_space)
4622 {
4623 int new_removed;
4624 int current_removed = 0;
4625
4626 if (ta)
4627 current_removed = ta->removed_bytes;
4628
4629 BFD_ASSERT (ta == NULL || ta->offset == offset);
4630 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4631
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec->size == offset)
4634 new_removed = removable_space - 0;
4635 else
4636 {
4637 int space;
4638 int added = -removed - current_removed;
4639 /* Ignore multiples of the section alignment. */
4640 added = ((1 << sec->alignment_power) - 1) & added;
4641 new_removed = (-added);
4642
4643 /* Modify for removable. */
4644 space = removable_space - new_removed;
4645 new_removed = (removable_space
4646 - (((1 << sec->alignment_power) - 1) & space));
4647 }
4648 return (new_removed - current_removed);
4649 }
4650
4651
4652 static void
4653 adjust_fill_action (text_action *ta, int fill_diff)
4654 {
4655 ta->removed_bytes += fill_diff;
4656 }
4657
4658
4659 /* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4663
4664 static void
4665 text_action_add (text_action_list *l,
4666 text_action_t action,
4667 asection *sec,
4668 bfd_vma offset,
4669 int removed)
4670 {
4671 text_action **m_p;
4672 text_action *ta;
4673
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action == ta_fill && sec->size == offset)
4676 return;
4677
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action == ta_fill && removed == 0)
4680 return;
4681
4682 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4683 {
4684 text_action *t = *m_p;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4688 {
4689 t->removed_bytes += removed;
4690 return;
4691 }
4692 }
4693
4694 /* Create a new record and fill it up. */
4695 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4696 ta->action = action;
4697 ta->sec = sec;
4698 ta->offset = offset;
4699 ta->removed_bytes = removed;
4700 ta->next = (*m_p);
4701 *m_p = ta;
4702 }
4703
4704
4705 static void
4706 text_action_add_literal (text_action_list *l,
4707 text_action_t action,
4708 const r_reloc *loc,
4709 const literal_value *value,
4710 int removed)
4711 {
4712 text_action **m_p;
4713 text_action *ta;
4714 asection *sec = r_reloc_get_section (loc);
4715 bfd_vma offset = loc->target_offset;
4716 bfd_vma virtual_offset = loc->virtual_offset;
4717
4718 BFD_ASSERT (action == ta_add_literal);
4719
4720 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4721 {
4722 if ((*m_p)->offset > offset
4723 && ((*m_p)->offset != offset
4724 || (*m_p)->virtual_offset > virtual_offset))
4725 break;
4726 }
4727
4728 /* Create a new record and fill it up. */
4729 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4730 ta->action = action;
4731 ta->sec = sec;
4732 ta->offset = offset;
4733 ta->virtual_offset = virtual_offset;
4734 ta->value = *value;
4735 ta->removed_bytes = removed;
4736 ta->next = (*m_p);
4737 *m_p = ta;
4738 }
4739
4740
4741 static bfd_vma
4742 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4743 {
4744 text_action *r;
4745 int removed = 0;
4746
4747 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4748 {
4749 if (r->offset < offset
4750 || (r->action == ta_fill && r->removed_bytes < 0))
4751 removed += r->removed_bytes;
4752 }
4753
4754 return (offset - removed);
4755 }
4756
4757
4758 static unsigned
4759 action_list_count (text_action_list *action_list)
4760 {
4761 text_action *r = action_list->head;
4762 unsigned count = 0;
4763 for (r = action_list->head; r != NULL; r = r->next)
4764 {
4765 count++;
4766 }
4767 return count;
4768 }
4769
4770
4771 static bfd_vma
4772 offset_with_removed_text_before_fill (text_action_list *action_list,
4773 bfd_vma offset)
4774 {
4775 text_action *r;
4776 int removed = 0;
4777
4778 for (r = action_list->head; r && r->offset < offset; r = r->next)
4779 removed += r->removed_bytes;
4780
4781 return (offset - removed);
4782 }
4783
4784
4785 /* The find_insn_action routine will only find non-fill actions. */
4786
4787 static text_action *
4788 find_insn_action (text_action_list *action_list, bfd_vma offset)
4789 {
4790 text_action *t;
4791 for (t = action_list->head; t; t = t->next)
4792 {
4793 if (t->offset == offset)
4794 {
4795 switch (t->action)
4796 {
4797 case ta_none:
4798 case ta_fill:
4799 break;
4800 case ta_remove_insn:
4801 case ta_remove_longcall:
4802 case ta_convert_longcall:
4803 case ta_narrow_insn:
4804 case ta_widen_insn:
4805 return t;
4806 case ta_remove_literal:
4807 case ta_add_literal:
4808 BFD_ASSERT (0);
4809 break;
4810 }
4811 }
4812 }
4813 return NULL;
4814 }
4815
4816
4817 #if DEBUG
4818
4819 static void
4820 print_action_list (FILE *fp, text_action_list *action_list)
4821 {
4822 text_action *r;
4823
4824 fprintf (fp, "Text Action\n");
4825 for (r = action_list->head; r != NULL; r = r->next)
4826 {
4827 const char *t = "unknown";
4828 switch (r->action)
4829 {
4830 case ta_remove_insn:
4831 t = "remove_insn"; break;
4832 case ta_remove_longcall:
4833 t = "remove_longcall"; break;
4834 case ta_convert_longcall:
4835 t = "remove_longcall"; break;
4836 case ta_narrow_insn:
4837 t = "narrow_insn"; break;
4838 case ta_widen_insn:
4839 t = "widen_insn"; break;
4840 case ta_fill:
4841 t = "fill"; break;
4842 case ta_none:
4843 t = "none"; break;
4844 case ta_remove_literal:
4845 t = "remove_literal"; break;
4846 case ta_add_literal:
4847 t = "add_literal"; break;
4848 }
4849
4850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4851 r->sec->owner->filename,
4852 r->sec->name, r->offset, t, r->removed_bytes);
4853 }
4854 }
4855
4856 #endif /* DEBUG */
4857
4858 \f
4859 /* Lists of literals being coalesced or removed. */
4860
4861 /* In the usual case, the literal identified by "from" is being
4862 coalesced with another literal identified by "to". If the literal is
4863 unused and is being removed altogether, "to.abfd" will be NULL.
4864 The removed_literal entries are kept on a per-section list, sorted
4865 by the "from" offset field. */
4866
4867 typedef struct removed_literal_struct removed_literal;
4868 typedef struct removed_literal_list_struct removed_literal_list;
4869
4870 struct removed_literal_struct
4871 {
4872 r_reloc from;
4873 r_reloc to;
4874 removed_literal *next;
4875 };
4876
4877 struct removed_literal_list_struct
4878 {
4879 removed_literal *head;
4880 removed_literal *tail;
4881 };
4882
4883
4884 /* Record that the literal at "from" is being removed. If "to" is not
4885 NULL, the "from" literal is being coalesced with the "to" literal. */
4886
4887 static void
4888 add_removed_literal (removed_literal_list *removed_list,
4889 const r_reloc *from,
4890 const r_reloc *to)
4891 {
4892 removed_literal *r, *new_r, *next_r;
4893
4894 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4895
4896 new_r->from = *from;
4897 if (to)
4898 new_r->to = *to;
4899 else
4900 new_r->to.abfd = NULL;
4901 new_r->next = NULL;
4902
4903 r = removed_list->head;
4904 if (r == NULL)
4905 {
4906 removed_list->head = new_r;
4907 removed_list->tail = new_r;
4908 }
4909 /* Special check for common case of append. */
4910 else if (removed_list->tail->from.target_offset < from->target_offset)
4911 {
4912 removed_list->tail->next = new_r;
4913 removed_list->tail = new_r;
4914 }
4915 else
4916 {
4917 while (r->from.target_offset < from->target_offset && r->next)
4918 {
4919 r = r->next;
4920 }
4921 next_r = r->next;
4922 r->next = new_r;
4923 new_r->next = next_r;
4924 if (next_r == NULL)
4925 removed_list->tail = new_r;
4926 }
4927 }
4928
4929
4930 /* Check if the list of removed literals contains an entry for the
4931 given address. Return the entry if found. */
4932
4933 static removed_literal *
4934 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4935 {
4936 removed_literal *r = removed_list->head;
4937 while (r && r->from.target_offset < addr)
4938 r = r->next;
4939 if (r && r->from.target_offset == addr)
4940 return r;
4941 return NULL;
4942 }
4943
4944
4945 #if DEBUG
4946
4947 static void
4948 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4949 {
4950 removed_literal *r;
4951 r = removed_list->head;
4952 if (r)
4953 fprintf (fp, "Removed Literals\n");
4954 for (; r != NULL; r = r->next)
4955 {
4956 print_r_reloc (fp, &r->from);
4957 fprintf (fp, " => ");
4958 if (r->to.abfd == NULL)
4959 fprintf (fp, "REMOVED");
4960 else
4961 print_r_reloc (fp, &r->to);
4962 fprintf (fp, "\n");
4963 }
4964 }
4965
4966 #endif /* DEBUG */
4967
4968 \f
4969 /* Per-section data for relaxation. */
4970
4971 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4972
4973 struct xtensa_relax_info_struct
4974 {
4975 bfd_boolean is_relaxable_literal_section;
4976 bfd_boolean is_relaxable_asm_section;
4977 int visited; /* Number of times visited. */
4978
4979 source_reloc *src_relocs; /* Array[src_count]. */
4980 int src_count;
4981 int src_next; /* Next src_relocs entry to assign. */
4982
4983 removed_literal_list removed_list;
4984 text_action_list action_list;
4985
4986 reloc_bfd_fix *fix_list;
4987 reloc_bfd_fix *fix_array;
4988 unsigned fix_array_count;
4989
4990 /* Support for expanding the reloc array that is stored
4991 in the section structure. If the relocations have been
4992 reallocated, the newly allocated relocations will be referenced
4993 here along with the actual size allocated. The relocation
4994 count will always be found in the section structure. */
4995 Elf_Internal_Rela *allocated_relocs;
4996 unsigned relocs_count;
4997 unsigned allocated_relocs_count;
4998 };
4999
5000 struct elf_xtensa_section_data
5001 {
5002 struct bfd_elf_section_data elf;
5003 xtensa_relax_info relax_info;
5004 };
5005
5006
5007 static bfd_boolean
5008 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5009 {
5010 if (!sec->used_by_bfd)
5011 {
5012 struct elf_xtensa_section_data *sdata;
5013 bfd_size_type amt = sizeof (*sdata);
5014
5015 sdata = bfd_zalloc (abfd, amt);
5016 if (sdata == NULL)
5017 return FALSE;
5018 sec->used_by_bfd = sdata;
5019 }
5020
5021 return _bfd_elf_new_section_hook (abfd, sec);
5022 }
5023
5024
5025 static xtensa_relax_info *
5026 get_xtensa_relax_info (asection *sec)
5027 {
5028 struct elf_xtensa_section_data *section_data;
5029
5030 /* No info available if no section or if it is an output section. */
5031 if (!sec || sec == sec->output_section)
5032 return NULL;
5033
5034 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5035 return &section_data->relax_info;
5036 }
5037
5038
5039 static void
5040 init_xtensa_relax_info (asection *sec)
5041 {
5042 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5043
5044 relax_info->is_relaxable_literal_section = FALSE;
5045 relax_info->is_relaxable_asm_section = FALSE;
5046 relax_info->visited = 0;
5047
5048 relax_info->src_relocs = NULL;
5049 relax_info->src_count = 0;
5050 relax_info->src_next = 0;
5051
5052 relax_info->removed_list.head = NULL;
5053 relax_info->removed_list.tail = NULL;
5054
5055 relax_info->action_list.head = NULL;
5056
5057 relax_info->fix_list = NULL;
5058 relax_info->fix_array = NULL;
5059 relax_info->fix_array_count = 0;
5060
5061 relax_info->allocated_relocs = NULL;
5062 relax_info->relocs_count = 0;
5063 relax_info->allocated_relocs_count = 0;
5064 }
5065
5066 \f
5067 /* Coalescing literals may require a relocation to refer to a section in
5068 a different input file, but the standard relocation information
5069 cannot express that. Instead, the reloc_bfd_fix structures are used
5070 to "fix" the relocations that refer to sections in other input files.
5071 These structures are kept on per-section lists. The "src_type" field
5072 records the relocation type in case there are multiple relocations on
5073 the same location. FIXME: This is ugly; an alternative might be to
5074 add new symbols with the "owner" field to some other input file. */
5075
5076 struct reloc_bfd_fix_struct
5077 {
5078 asection *src_sec;
5079 bfd_vma src_offset;
5080 unsigned src_type; /* Relocation type. */
5081
5082 bfd *target_abfd;
5083 asection *target_sec;
5084 bfd_vma target_offset;
5085 bfd_boolean translated;
5086
5087 reloc_bfd_fix *next;
5088 };
5089
5090
5091 static reloc_bfd_fix *
5092 reloc_bfd_fix_init (asection *src_sec,
5093 bfd_vma src_offset,
5094 unsigned src_type,
5095 bfd *target_abfd,
5096 asection *target_sec,
5097 bfd_vma target_offset,
5098 bfd_boolean translated)
5099 {
5100 reloc_bfd_fix *fix;
5101
5102 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5103 fix->src_sec = src_sec;
5104 fix->src_offset = src_offset;
5105 fix->src_type = src_type;
5106 fix->target_abfd = target_abfd;
5107 fix->target_sec = target_sec;
5108 fix->target_offset = target_offset;
5109 fix->translated = translated;
5110
5111 return fix;
5112 }
5113
5114
5115 static void
5116 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5117 {
5118 xtensa_relax_info *relax_info;
5119
5120 relax_info = get_xtensa_relax_info (src_sec);
5121 fix->next = relax_info->fix_list;
5122 relax_info->fix_list = fix;
5123 }
5124
5125
5126 static int
5127 fix_compare (const void *ap, const void *bp)
5128 {
5129 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5130 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5131
5132 if (a->src_offset != b->src_offset)
5133 return (a->src_offset - b->src_offset);
5134 return (a->src_type - b->src_type);
5135 }
5136
5137
5138 static void
5139 cache_fix_array (asection *sec)
5140 {
5141 unsigned i, count = 0;
5142 reloc_bfd_fix *r;
5143 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5144
5145 if (relax_info == NULL)
5146 return;
5147 if (relax_info->fix_list == NULL)
5148 return;
5149
5150 for (r = relax_info->fix_list; r != NULL; r = r->next)
5151 count++;
5152
5153 relax_info->fix_array =
5154 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5155 relax_info->fix_array_count = count;
5156
5157 r = relax_info->fix_list;
5158 for (i = 0; i < count; i++, r = r->next)
5159 {
5160 relax_info->fix_array[count - 1 - i] = *r;
5161 relax_info->fix_array[count - 1 - i].next = NULL;
5162 }
5163
5164 qsort (relax_info->fix_array, relax_info->fix_array_count,
5165 sizeof (reloc_bfd_fix), fix_compare);
5166 }
5167
5168
5169 static reloc_bfd_fix *
5170 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5171 {
5172 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5173 reloc_bfd_fix *rv;
5174 reloc_bfd_fix key;
5175
5176 if (relax_info == NULL)
5177 return NULL;
5178 if (relax_info->fix_list == NULL)
5179 return NULL;
5180
5181 if (relax_info->fix_array == NULL)
5182 cache_fix_array (sec);
5183
5184 key.src_offset = offset;
5185 key.src_type = type;
5186 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5187 sizeof (reloc_bfd_fix), fix_compare);
5188 return rv;
5189 }
5190
5191 \f
5192 /* Section caching. */
5193
5194 typedef struct section_cache_struct section_cache_t;
5195
5196 struct section_cache_struct
5197 {
5198 asection *sec;
5199
5200 bfd_byte *contents; /* Cache of the section contents. */
5201 bfd_size_type content_length;
5202
5203 property_table_entry *ptbl; /* Cache of the section property table. */
5204 unsigned pte_count;
5205
5206 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5207 unsigned reloc_count;
5208 };
5209
5210
5211 static void
5212 init_section_cache (section_cache_t *sec_cache)
5213 {
5214 memset (sec_cache, 0, sizeof (*sec_cache));
5215 }
5216
5217
5218 static void
5219 clear_section_cache (section_cache_t *sec_cache)
5220 {
5221 if (sec_cache->sec)
5222 {
5223 release_contents (sec_cache->sec, sec_cache->contents);
5224 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5225 if (sec_cache->ptbl)
5226 free (sec_cache->ptbl);
5227 memset (sec_cache, 0, sizeof (sec_cache));
5228 }
5229 }
5230
5231
5232 static bfd_boolean
5233 section_cache_section (section_cache_t *sec_cache,
5234 asection *sec,
5235 struct bfd_link_info *link_info)
5236 {
5237 bfd *abfd;
5238 property_table_entry *prop_table = NULL;
5239 int ptblsize = 0;
5240 bfd_byte *contents = NULL;
5241 Elf_Internal_Rela *internal_relocs = NULL;
5242 bfd_size_type sec_size;
5243
5244 if (sec == NULL)
5245 return FALSE;
5246 if (sec == sec_cache->sec)
5247 return TRUE;
5248
5249 abfd = sec->owner;
5250 sec_size = bfd_get_section_limit (abfd, sec);
5251
5252 /* Get the contents. */
5253 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5254 if (contents == NULL && sec_size != 0)
5255 goto err;
5256
5257 /* Get the relocations. */
5258 internal_relocs = retrieve_internal_relocs (abfd, sec,
5259 link_info->keep_memory);
5260
5261 /* Get the entry table. */
5262 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5263 XTENSA_PROP_SEC_NAME, FALSE);
5264 if (ptblsize < 0)
5265 goto err;
5266
5267 /* Fill in the new section cache. */
5268 clear_section_cache (sec_cache);
5269 memset (sec_cache, 0, sizeof (sec_cache));
5270
5271 sec_cache->sec = sec;
5272 sec_cache->contents = contents;
5273 sec_cache->content_length = sec_size;
5274 sec_cache->relocs = internal_relocs;
5275 sec_cache->reloc_count = sec->reloc_count;
5276 sec_cache->pte_count = ptblsize;
5277 sec_cache->ptbl = prop_table;
5278
5279 return TRUE;
5280
5281 err:
5282 release_contents (sec, contents);
5283 release_internal_relocs (sec, internal_relocs);
5284 if (prop_table)
5285 free (prop_table);
5286 return FALSE;
5287 }
5288
5289 \f
5290 /* Extended basic blocks. */
5291
5292 /* An ebb_struct represents an Extended Basic Block. Within this
5293 range, we guarantee that all instructions are decodable, the
5294 property table entries are contiguous, and no property table
5295 specifies a segment that cannot have instructions moved. This
5296 structure contains caches of the contents, property table and
5297 relocations for the specified section for easy use. The range is
5298 specified by ranges of indices for the byte offset, property table
5299 offsets and relocation offsets. These must be consistent. */
5300
5301 typedef struct ebb_struct ebb_t;
5302
5303 struct ebb_struct
5304 {
5305 asection *sec;
5306
5307 bfd_byte *contents; /* Cache of the section contents. */
5308 bfd_size_type content_length;
5309
5310 property_table_entry *ptbl; /* Cache of the section property table. */
5311 unsigned pte_count;
5312
5313 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5314 unsigned reloc_count;
5315
5316 bfd_vma start_offset; /* Offset in section. */
5317 unsigned start_ptbl_idx; /* Offset in the property table. */
5318 unsigned start_reloc_idx; /* Offset in the relocations. */
5319
5320 bfd_vma end_offset;
5321 unsigned end_ptbl_idx;
5322 unsigned end_reloc_idx;
5323
5324 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5325
5326 /* The unreachable property table at the end of this set of blocks;
5327 NULL if the end is not an unreachable block. */
5328 property_table_entry *ends_unreachable;
5329 };
5330
5331
5332 enum ebb_target_enum
5333 {
5334 EBB_NO_ALIGN = 0,
5335 EBB_DESIRE_TGT_ALIGN,
5336 EBB_REQUIRE_TGT_ALIGN,
5337 EBB_REQUIRE_LOOP_ALIGN,
5338 EBB_REQUIRE_ALIGN
5339 };
5340
5341
5342 /* proposed_action_struct is similar to the text_action_struct except
5343 that is represents a potential transformation, not one that will
5344 occur. We build a list of these for an extended basic block
5345 and use them to compute the actual actions desired. We must be
5346 careful that the entire set of actual actions we perform do not
5347 break any relocations that would fit if the actions were not
5348 performed. */
5349
5350 typedef struct proposed_action_struct proposed_action;
5351
5352 struct proposed_action_struct
5353 {
5354 enum ebb_target_enum align_type; /* for the target alignment */
5355 bfd_vma alignment_pow;
5356 text_action_t action;
5357 bfd_vma offset;
5358 int removed_bytes;
5359 bfd_boolean do_action; /* If false, then we will not perform the action. */
5360 };
5361
5362
5363 /* The ebb_constraint_struct keeps a set of proposed actions for an
5364 extended basic block. */
5365
5366 typedef struct ebb_constraint_struct ebb_constraint;
5367
5368 struct ebb_constraint_struct
5369 {
5370 ebb_t ebb;
5371 bfd_boolean start_movable;
5372
5373 /* Bytes of extra space at the beginning if movable. */
5374 int start_extra_space;
5375
5376 enum ebb_target_enum start_align;
5377
5378 bfd_boolean end_movable;
5379
5380 /* Bytes of extra space at the end if movable. */
5381 int end_extra_space;
5382
5383 unsigned action_count;
5384 unsigned action_allocated;
5385
5386 /* Array of proposed actions. */
5387 proposed_action *actions;
5388
5389 /* Action alignments -- one for each proposed action. */
5390 enum ebb_target_enum *action_aligns;
5391 };
5392
5393
5394 static void
5395 init_ebb_constraint (ebb_constraint *c)
5396 {
5397 memset (c, 0, sizeof (ebb_constraint));
5398 }
5399
5400
5401 static void
5402 free_ebb_constraint (ebb_constraint *c)
5403 {
5404 if (c->actions)
5405 free (c->actions);
5406 }
5407
5408
5409 static void
5410 init_ebb (ebb_t *ebb,
5411 asection *sec,
5412 bfd_byte *contents,
5413 bfd_size_type content_length,
5414 property_table_entry *prop_table,
5415 unsigned ptblsize,
5416 Elf_Internal_Rela *internal_relocs,
5417 unsigned reloc_count)
5418 {
5419 memset (ebb, 0, sizeof (ebb_t));
5420 ebb->sec = sec;
5421 ebb->contents = contents;
5422 ebb->content_length = content_length;
5423 ebb->ptbl = prop_table;
5424 ebb->pte_count = ptblsize;
5425 ebb->relocs = internal_relocs;
5426 ebb->reloc_count = reloc_count;
5427 ebb->start_offset = 0;
5428 ebb->end_offset = ebb->content_length - 1;
5429 ebb->start_ptbl_idx = 0;
5430 ebb->end_ptbl_idx = ptblsize;
5431 ebb->start_reloc_idx = 0;
5432 ebb->end_reloc_idx = reloc_count;
5433 }
5434
5435
5436 /* Extend the ebb to all decodable contiguous sections. The algorithm
5437 for building a basic block around an instruction is to push it
5438 forward until we hit the end of a section, an unreachable block or
5439 a block that cannot be transformed. Then we push it backwards
5440 searching for similar conditions. */
5441
5442 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5443 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5444 static bfd_size_type insn_block_decodable_len
5445 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5446
5447 static bfd_boolean
5448 extend_ebb_bounds (ebb_t *ebb)
5449 {
5450 if (!extend_ebb_bounds_forward (ebb))
5451 return FALSE;
5452 if (!extend_ebb_bounds_backward (ebb))
5453 return FALSE;
5454 return TRUE;
5455 }
5456
5457
5458 static bfd_boolean
5459 extend_ebb_bounds_forward (ebb_t *ebb)
5460 {
5461 property_table_entry *the_entry, *new_entry;
5462
5463 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5464
5465 /* Stop when (1) we cannot decode an instruction, (2) we are at
5466 the end of the property tables, (3) we hit a non-contiguous property
5467 table entry, (4) we hit a NO_TRANSFORM region. */
5468
5469 while (1)
5470 {
5471 bfd_vma entry_end;
5472 bfd_size_type insn_block_len;
5473
5474 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5475 insn_block_len =
5476 insn_block_decodable_len (ebb->contents, ebb->content_length,
5477 ebb->end_offset,
5478 entry_end - ebb->end_offset);
5479 if (insn_block_len != (entry_end - ebb->end_offset))
5480 {
5481 (*_bfd_error_handler)
5482 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5483 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5484 return FALSE;
5485 }
5486 ebb->end_offset += insn_block_len;
5487
5488 if (ebb->end_offset == ebb->sec->size)
5489 ebb->ends_section = TRUE;
5490
5491 /* Update the reloc counter. */
5492 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5493 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5494 < ebb->end_offset))
5495 {
5496 ebb->end_reloc_idx++;
5497 }
5498
5499 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5500 return TRUE;
5501
5502 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5503 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5504 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5505 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5506 break;
5507
5508 if (the_entry->address + the_entry->size != new_entry->address)
5509 break;
5510
5511 the_entry = new_entry;
5512 ebb->end_ptbl_idx++;
5513 }
5514
5515 /* Quick check for an unreachable or end of file just at the end. */
5516 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5517 {
5518 if (ebb->end_offset == ebb->content_length)
5519 ebb->ends_section = TRUE;
5520 }
5521 else
5522 {
5523 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5524 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5525 && the_entry->address + the_entry->size == new_entry->address)
5526 ebb->ends_unreachable = new_entry;
5527 }
5528
5529 /* Any other ending requires exact alignment. */
5530 return TRUE;
5531 }
5532
5533
5534 static bfd_boolean
5535 extend_ebb_bounds_backward (ebb_t *ebb)
5536 {
5537 property_table_entry *the_entry, *new_entry;
5538
5539 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5540
5541 /* Stop when (1) we cannot decode the instructions in the current entry.
5542 (2) we are at the beginning of the property tables, (3) we hit a
5543 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5544
5545 while (1)
5546 {
5547 bfd_vma block_begin;
5548 bfd_size_type insn_block_len;
5549
5550 block_begin = the_entry->address - ebb->sec->vma;
5551 insn_block_len =
5552 insn_block_decodable_len (ebb->contents, ebb->content_length,
5553 block_begin,
5554 ebb->start_offset - block_begin);
5555 if (insn_block_len != ebb->start_offset - block_begin)
5556 {
5557 (*_bfd_error_handler)
5558 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5559 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5560 return FALSE;
5561 }
5562 ebb->start_offset -= insn_block_len;
5563
5564 /* Update the reloc counter. */
5565 while (ebb->start_reloc_idx > 0
5566 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5567 >= ebb->start_offset))
5568 {
5569 ebb->start_reloc_idx--;
5570 }
5571
5572 if (ebb->start_ptbl_idx == 0)
5573 return TRUE;
5574
5575 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5576 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5577 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5578 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5579 return TRUE;
5580 if (new_entry->address + new_entry->size != the_entry->address)
5581 return TRUE;
5582
5583 the_entry = new_entry;
5584 ebb->start_ptbl_idx--;
5585 }
5586 return TRUE;
5587 }
5588
5589
5590 static bfd_size_type
5591 insn_block_decodable_len (bfd_byte *contents,
5592 bfd_size_type content_len,
5593 bfd_vma block_offset,
5594 bfd_size_type block_len)
5595 {
5596 bfd_vma offset = block_offset;
5597
5598 while (offset < block_offset + block_len)
5599 {
5600 bfd_size_type insn_len = 0;
5601
5602 insn_len = insn_decode_len (contents, content_len, offset);
5603 if (insn_len == 0)
5604 return (offset - block_offset);
5605 offset += insn_len;
5606 }
5607 return (offset - block_offset);
5608 }
5609
5610
5611 static void
5612 ebb_propose_action (ebb_constraint *c,
5613 enum ebb_target_enum align_type,
5614 bfd_vma alignment_pow,
5615 text_action_t action,
5616 bfd_vma offset,
5617 int removed_bytes,
5618 bfd_boolean do_action)
5619 {
5620 proposed_action *act;
5621
5622 if (c->action_allocated <= c->action_count)
5623 {
5624 unsigned new_allocated, i;
5625 proposed_action *new_actions;
5626
5627 new_allocated = (c->action_count + 2) * 2;
5628 new_actions = (proposed_action *)
5629 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5630
5631 for (i = 0; i < c->action_count; i++)
5632 new_actions[i] = c->actions[i];
5633 if (c->actions)
5634 free (c->actions);
5635 c->actions = new_actions;
5636 c->action_allocated = new_allocated;
5637 }
5638
5639 act = &c->actions[c->action_count];
5640 act->align_type = align_type;
5641 act->alignment_pow = alignment_pow;
5642 act->action = action;
5643 act->offset = offset;
5644 act->removed_bytes = removed_bytes;
5645 act->do_action = do_action;
5646
5647 c->action_count++;
5648 }
5649
5650 \f
5651 /* Access to internal relocations, section contents and symbols. */
5652
5653 /* During relaxation, we need to modify relocations, section contents,
5654 and symbol definitions, and we need to keep the original values from
5655 being reloaded from the input files, i.e., we need to "pin" the
5656 modified values in memory. We also want to continue to observe the
5657 setting of the "keep-memory" flag. The following functions wrap the
5658 standard BFD functions to take care of this for us. */
5659
5660 static Elf_Internal_Rela *
5661 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5662 {
5663 Elf_Internal_Rela *internal_relocs;
5664
5665 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5666 return NULL;
5667
5668 internal_relocs = elf_section_data (sec)->relocs;
5669 if (internal_relocs == NULL)
5670 internal_relocs = (_bfd_elf_link_read_relocs
5671 (abfd, sec, NULL, NULL, keep_memory));
5672 return internal_relocs;
5673 }
5674
5675
5676 static void
5677 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5678 {
5679 elf_section_data (sec)->relocs = internal_relocs;
5680 }
5681
5682
5683 static void
5684 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5685 {
5686 if (internal_relocs
5687 && elf_section_data (sec)->relocs != internal_relocs)
5688 free (internal_relocs);
5689 }
5690
5691
5692 static bfd_byte *
5693 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5694 {
5695 bfd_byte *contents;
5696 bfd_size_type sec_size;
5697
5698 sec_size = bfd_get_section_limit (abfd, sec);
5699 contents = elf_section_data (sec)->this_hdr.contents;
5700
5701 if (contents == NULL && sec_size != 0)
5702 {
5703 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5704 {
5705 if (contents)
5706 free (contents);
5707 return NULL;
5708 }
5709 if (keep_memory)
5710 elf_section_data (sec)->this_hdr.contents = contents;
5711 }
5712 return contents;
5713 }
5714
5715
5716 static void
5717 pin_contents (asection *sec, bfd_byte *contents)
5718 {
5719 elf_section_data (sec)->this_hdr.contents = contents;
5720 }
5721
5722
5723 static void
5724 release_contents (asection *sec, bfd_byte *contents)
5725 {
5726 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5727 free (contents);
5728 }
5729
5730
5731 static Elf_Internal_Sym *
5732 retrieve_local_syms (bfd *input_bfd)
5733 {
5734 Elf_Internal_Shdr *symtab_hdr;
5735 Elf_Internal_Sym *isymbuf;
5736 size_t locsymcount;
5737
5738 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5739 locsymcount = symtab_hdr->sh_info;
5740
5741 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5742 if (isymbuf == NULL && locsymcount != 0)
5743 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5744 NULL, NULL, NULL);
5745
5746 /* Save the symbols for this input file so they won't be read again. */
5747 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5748 symtab_hdr->contents = (unsigned char *) isymbuf;
5749
5750 return isymbuf;
5751 }
5752
5753 \f
5754 /* Code for link-time relaxation. */
5755
5756 /* Initialization for relaxation: */
5757 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5758 static bfd_boolean find_relaxable_sections
5759 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5760 static bfd_boolean collect_source_relocs
5761 (bfd *, asection *, struct bfd_link_info *);
5762 static bfd_boolean is_resolvable_asm_expansion
5763 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5764 bfd_boolean *);
5765 static Elf_Internal_Rela *find_associated_l32r_irel
5766 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5767 static bfd_boolean compute_text_actions
5768 (bfd *, asection *, struct bfd_link_info *);
5769 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5770 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5771 static bfd_boolean check_section_ebb_pcrels_fit
5772 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5773 const xtensa_opcode *);
5774 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5775 static void text_action_add_proposed
5776 (text_action_list *, const ebb_constraint *, asection *);
5777 static int compute_fill_extra_space (property_table_entry *);
5778
5779 /* First pass: */
5780 static bfd_boolean compute_removed_literals
5781 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5782 static Elf_Internal_Rela *get_irel_at_offset
5783 (asection *, Elf_Internal_Rela *, bfd_vma);
5784 static bfd_boolean is_removable_literal
5785 (const source_reloc *, int, const source_reloc *, int);
5786 static bfd_boolean remove_dead_literal
5787 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5788 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5789 static bfd_boolean identify_literal_placement
5790 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5791 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5792 source_reloc *, property_table_entry *, int, section_cache_t *,
5793 bfd_boolean);
5794 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5795 static bfd_boolean coalesce_shared_literal
5796 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5797 static bfd_boolean move_shared_literal
5798 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5799 int, const r_reloc *, const literal_value *, section_cache_t *);
5800
5801 /* Second pass: */
5802 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5803 static bfd_boolean translate_section_fixes (asection *);
5804 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5805 static void translate_reloc (const r_reloc *, r_reloc *);
5806 static void shrink_dynamic_reloc_sections
5807 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5808 static bfd_boolean move_literal
5809 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5810 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5811 static bfd_boolean relax_property_section
5812 (bfd *, asection *, struct bfd_link_info *);
5813
5814 /* Third pass: */
5815 static bfd_boolean relax_section_symbols (bfd *, asection *);
5816
5817
5818 static bfd_boolean
5819 elf_xtensa_relax_section (bfd *abfd,
5820 asection *sec,
5821 struct bfd_link_info *link_info,
5822 bfd_boolean *again)
5823 {
5824 static value_map_hash_table *values = NULL;
5825 static bfd_boolean relocations_analyzed = FALSE;
5826 xtensa_relax_info *relax_info;
5827
5828 if (!relocations_analyzed)
5829 {
5830 /* Do some overall initialization for relaxation. */
5831 values = value_map_hash_table_init ();
5832 if (values == NULL)
5833 return FALSE;
5834 relaxing_section = TRUE;
5835 if (!analyze_relocations (link_info))
5836 return FALSE;
5837 relocations_analyzed = TRUE;
5838 }
5839 *again = FALSE;
5840
5841 /* Don't mess with linker-created sections. */
5842 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5843 return TRUE;
5844
5845 relax_info = get_xtensa_relax_info (sec);
5846 BFD_ASSERT (relax_info != NULL);
5847
5848 switch (relax_info->visited)
5849 {
5850 case 0:
5851 /* Note: It would be nice to fold this pass into
5852 analyze_relocations, but it is important for this step that the
5853 sections be examined in link order. */
5854 if (!compute_removed_literals (abfd, sec, link_info, values))
5855 return FALSE;
5856 *again = TRUE;
5857 break;
5858
5859 case 1:
5860 if (values)
5861 value_map_hash_table_delete (values);
5862 values = NULL;
5863 if (!relax_section (abfd, sec, link_info))
5864 return FALSE;
5865 *again = TRUE;
5866 break;
5867
5868 case 2:
5869 if (!relax_section_symbols (abfd, sec))
5870 return FALSE;
5871 break;
5872 }
5873
5874 relax_info->visited++;
5875 return TRUE;
5876 }
5877
5878 \f
5879 /* Initialization for relaxation. */
5880
5881 /* This function is called once at the start of relaxation. It scans
5882 all the input sections and marks the ones that are relaxable (i.e.,
5883 literal sections with L32R relocations against them), and then
5884 collects source_reloc information for all the relocations against
5885 those relaxable sections. During this process, it also detects
5886 longcalls, i.e., calls relaxed by the assembler into indirect
5887 calls, that can be optimized back into direct calls. Within each
5888 extended basic block (ebb) containing an optimized longcall, it
5889 computes a set of "text actions" that can be performed to remove
5890 the L32R associated with the longcall while optionally preserving
5891 branch target alignments. */
5892
5893 static bfd_boolean
5894 analyze_relocations (struct bfd_link_info *link_info)
5895 {
5896 bfd *abfd;
5897 asection *sec;
5898 bfd_boolean is_relaxable = FALSE;
5899
5900 /* Initialize the per-section relaxation info. */
5901 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5902 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5903 {
5904 init_xtensa_relax_info (sec);
5905 }
5906
5907 /* Mark relaxable sections (and count relocations against each one). */
5908 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5909 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5910 {
5911 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5912 return FALSE;
5913 }
5914
5915 /* Bail out if there are no relaxable sections. */
5916 if (!is_relaxable)
5917 return TRUE;
5918
5919 /* Allocate space for source_relocs. */
5920 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5921 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5922 {
5923 xtensa_relax_info *relax_info;
5924
5925 relax_info = get_xtensa_relax_info (sec);
5926 if (relax_info->is_relaxable_literal_section
5927 || relax_info->is_relaxable_asm_section)
5928 {
5929 relax_info->src_relocs = (source_reloc *)
5930 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5931 }
5932 }
5933
5934 /* Collect info on relocations against each relaxable section. */
5935 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5936 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5937 {
5938 if (!collect_source_relocs (abfd, sec, link_info))
5939 return FALSE;
5940 }
5941
5942 /* Compute the text actions. */
5943 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5944 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5945 {
5946 if (!compute_text_actions (abfd, sec, link_info))
5947 return FALSE;
5948 }
5949
5950 return TRUE;
5951 }
5952
5953
5954 /* Find all the sections that might be relaxed. The motivation for
5955 this pass is that collect_source_relocs() needs to record _all_ the
5956 relocations that target each relaxable section. That is expensive
5957 and unnecessary unless the target section is actually going to be
5958 relaxed. This pass identifies all such sections by checking if
5959 they have L32Rs pointing to them. In the process, the total number
5960 of relocations targeting each section is also counted so that we
5961 know how much space to allocate for source_relocs against each
5962 relaxable literal section. */
5963
5964 static bfd_boolean
5965 find_relaxable_sections (bfd *abfd,
5966 asection *sec,
5967 struct bfd_link_info *link_info,
5968 bfd_boolean *is_relaxable_p)
5969 {
5970 Elf_Internal_Rela *internal_relocs;
5971 bfd_byte *contents;
5972 bfd_boolean ok = TRUE;
5973 unsigned i;
5974 xtensa_relax_info *source_relax_info;
5975
5976 internal_relocs = retrieve_internal_relocs (abfd, sec,
5977 link_info->keep_memory);
5978 if (internal_relocs == NULL)
5979 return ok;
5980
5981 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5982 if (contents == NULL && sec->size != 0)
5983 {
5984 ok = FALSE;
5985 goto error_return;
5986 }
5987
5988 source_relax_info = get_xtensa_relax_info (sec);
5989 for (i = 0; i < sec->reloc_count; i++)
5990 {
5991 Elf_Internal_Rela *irel = &internal_relocs[i];
5992 r_reloc r_rel;
5993 asection *target_sec;
5994 xtensa_relax_info *target_relax_info;
5995
5996 /* If this section has not already been marked as "relaxable", and
5997 if it contains any ASM_EXPAND relocations (marking expanded
5998 longcalls) that can be optimized into direct calls, then mark
5999 the section as "relaxable". */
6000 if (source_relax_info
6001 && !source_relax_info->is_relaxable_asm_section
6002 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6003 {
6004 bfd_boolean is_reachable = FALSE;
6005 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6006 link_info, &is_reachable)
6007 && is_reachable)
6008 {
6009 source_relax_info->is_relaxable_asm_section = TRUE;
6010 *is_relaxable_p = TRUE;
6011 }
6012 }
6013
6014 r_reloc_init (&r_rel, abfd, irel, contents,
6015 bfd_get_section_limit (abfd, sec));
6016
6017 target_sec = r_reloc_get_section (&r_rel);
6018 target_relax_info = get_xtensa_relax_info (target_sec);
6019 if (!target_relax_info)
6020 continue;
6021
6022 /* Count PC-relative operand relocations against the target section.
6023 Note: The conditions tested here must match the conditions under
6024 which init_source_reloc is called in collect_source_relocs(). */
6025 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6026 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6027 || is_l32r_relocation (abfd, sec, contents, irel)))
6028 target_relax_info->src_count++;
6029
6030 if (is_l32r_relocation (abfd, sec, contents, irel)
6031 && r_reloc_is_defined (&r_rel))
6032 {
6033 /* Mark the target section as relaxable. */
6034 target_relax_info->is_relaxable_literal_section = TRUE;
6035 *is_relaxable_p = TRUE;
6036 }
6037 }
6038
6039 error_return:
6040 release_contents (sec, contents);
6041 release_internal_relocs (sec, internal_relocs);
6042 return ok;
6043 }
6044
6045
6046 /* Record _all_ the relocations that point to relaxable sections, and
6047 get rid of ASM_EXPAND relocs by either converting them to
6048 ASM_SIMPLIFY or by removing them. */
6049
6050 static bfd_boolean
6051 collect_source_relocs (bfd *abfd,
6052 asection *sec,
6053 struct bfd_link_info *link_info)
6054 {
6055 Elf_Internal_Rela *internal_relocs;
6056 bfd_byte *contents;
6057 bfd_boolean ok = TRUE;
6058 unsigned i;
6059 bfd_size_type sec_size;
6060
6061 internal_relocs = retrieve_internal_relocs (abfd, sec,
6062 link_info->keep_memory);
6063 if (internal_relocs == NULL)
6064 return ok;
6065
6066 sec_size = bfd_get_section_limit (abfd, sec);
6067 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6068 if (contents == NULL && sec_size != 0)
6069 {
6070 ok = FALSE;
6071 goto error_return;
6072 }
6073
6074 /* Record relocations against relaxable literal sections. */
6075 for (i = 0; i < sec->reloc_count; i++)
6076 {
6077 Elf_Internal_Rela *irel = &internal_relocs[i];
6078 r_reloc r_rel;
6079 asection *target_sec;
6080 xtensa_relax_info *target_relax_info;
6081
6082 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6083
6084 target_sec = r_reloc_get_section (&r_rel);
6085 target_relax_info = get_xtensa_relax_info (target_sec);
6086
6087 if (target_relax_info
6088 && (target_relax_info->is_relaxable_literal_section
6089 || target_relax_info->is_relaxable_asm_section))
6090 {
6091 xtensa_opcode opcode = XTENSA_UNDEFINED;
6092 int opnd = -1;
6093 bfd_boolean is_abs_literal = FALSE;
6094
6095 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6096 {
6097 /* None of the current alternate relocs are PC-relative,
6098 and only PC-relative relocs matter here. However, we
6099 still need to record the opcode for literal
6100 coalescing. */
6101 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6102 if (opcode == get_l32r_opcode ())
6103 {
6104 is_abs_literal = TRUE;
6105 opnd = 1;
6106 }
6107 else
6108 opcode = XTENSA_UNDEFINED;
6109 }
6110 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6111 {
6112 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6113 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6114 }
6115
6116 if (opcode != XTENSA_UNDEFINED)
6117 {
6118 int src_next = target_relax_info->src_next++;
6119 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6120
6121 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6122 is_abs_literal);
6123 }
6124 }
6125 }
6126
6127 /* Now get rid of ASM_EXPAND relocations. At this point, the
6128 src_relocs array for the target literal section may still be
6129 incomplete, but it must at least contain the entries for the L32R
6130 relocations associated with ASM_EXPANDs because they were just
6131 added in the preceding loop over the relocations. */
6132
6133 for (i = 0; i < sec->reloc_count; i++)
6134 {
6135 Elf_Internal_Rela *irel = &internal_relocs[i];
6136 bfd_boolean is_reachable;
6137
6138 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6139 &is_reachable))
6140 continue;
6141
6142 if (is_reachable)
6143 {
6144 Elf_Internal_Rela *l32r_irel;
6145 r_reloc r_rel;
6146 asection *target_sec;
6147 xtensa_relax_info *target_relax_info;
6148
6149 /* Mark the source_reloc for the L32R so that it will be
6150 removed in compute_removed_literals(), along with the
6151 associated literal. */
6152 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6153 irel, internal_relocs);
6154 if (l32r_irel == NULL)
6155 continue;
6156
6157 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6158
6159 target_sec = r_reloc_get_section (&r_rel);
6160 target_relax_info = get_xtensa_relax_info (target_sec);
6161
6162 if (target_relax_info
6163 && (target_relax_info->is_relaxable_literal_section
6164 || target_relax_info->is_relaxable_asm_section))
6165 {
6166 source_reloc *s_reloc;
6167
6168 /* Search the source_relocs for the entry corresponding to
6169 the l32r_irel. Note: The src_relocs array is not yet
6170 sorted, but it wouldn't matter anyway because we're
6171 searching by source offset instead of target offset. */
6172 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6173 target_relax_info->src_next,
6174 sec, l32r_irel);
6175 BFD_ASSERT (s_reloc);
6176 s_reloc->is_null = TRUE;
6177 }
6178
6179 /* Convert this reloc to ASM_SIMPLIFY. */
6180 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6181 R_XTENSA_ASM_SIMPLIFY);
6182 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6183
6184 pin_internal_relocs (sec, internal_relocs);
6185 }
6186 else
6187 {
6188 /* It is resolvable but doesn't reach. We resolve now
6189 by eliminating the relocation -- the call will remain
6190 expanded into L32R/CALLX. */
6191 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6192 pin_internal_relocs (sec, internal_relocs);
6193 }
6194 }
6195
6196 error_return:
6197 release_contents (sec, contents);
6198 release_internal_relocs (sec, internal_relocs);
6199 return ok;
6200 }
6201
6202
6203 /* Return TRUE if the asm expansion can be resolved. Generally it can
6204 be resolved on a final link or when a partial link locates it in the
6205 same section as the target. Set "is_reachable" flag if the target of
6206 the call is within the range of a direct call, given the current VMA
6207 for this section and the target section. */
6208
6209 bfd_boolean
6210 is_resolvable_asm_expansion (bfd *abfd,
6211 asection *sec,
6212 bfd_byte *contents,
6213 Elf_Internal_Rela *irel,
6214 struct bfd_link_info *link_info,
6215 bfd_boolean *is_reachable_p)
6216 {
6217 asection *target_sec;
6218 bfd_vma target_offset;
6219 r_reloc r_rel;
6220 xtensa_opcode opcode, direct_call_opcode;
6221 bfd_vma self_address;
6222 bfd_vma dest_address;
6223 bfd_boolean uses_l32r;
6224 bfd_size_type sec_size;
6225
6226 *is_reachable_p = FALSE;
6227
6228 if (contents == NULL)
6229 return FALSE;
6230
6231 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6232 return FALSE;
6233
6234 sec_size = bfd_get_section_limit (abfd, sec);
6235 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6236 sec_size - irel->r_offset, &uses_l32r);
6237 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6238 if (!uses_l32r)
6239 return FALSE;
6240
6241 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6242 if (direct_call_opcode == XTENSA_UNDEFINED)
6243 return FALSE;
6244
6245 /* Check and see that the target resolves. */
6246 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6247 if (!r_reloc_is_defined (&r_rel))
6248 return FALSE;
6249
6250 target_sec = r_reloc_get_section (&r_rel);
6251 target_offset = r_rel.target_offset;
6252
6253 /* If the target is in a shared library, then it doesn't reach. This
6254 isn't supposed to come up because the compiler should never generate
6255 non-PIC calls on systems that use shared libraries, but the linker
6256 shouldn't crash regardless. */
6257 if (!target_sec->output_section)
6258 return FALSE;
6259
6260 /* For relocatable sections, we can only simplify when the output
6261 section of the target is the same as the output section of the
6262 source. */
6263 if (link_info->relocatable
6264 && (target_sec->output_section != sec->output_section
6265 || is_reloc_sym_weak (abfd, irel)))
6266 return FALSE;
6267
6268 self_address = (sec->output_section->vma
6269 + sec->output_offset + irel->r_offset + 3);
6270 dest_address = (target_sec->output_section->vma
6271 + target_sec->output_offset + target_offset);
6272
6273 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6274 self_address, dest_address);
6275
6276 if ((self_address >> CALL_SEGMENT_BITS) !=
6277 (dest_address >> CALL_SEGMENT_BITS))
6278 return FALSE;
6279
6280 return TRUE;
6281 }
6282
6283
6284 static Elf_Internal_Rela *
6285 find_associated_l32r_irel (bfd *abfd,
6286 asection *sec,
6287 bfd_byte *contents,
6288 Elf_Internal_Rela *other_irel,
6289 Elf_Internal_Rela *internal_relocs)
6290 {
6291 unsigned i;
6292
6293 for (i = 0; i < sec->reloc_count; i++)
6294 {
6295 Elf_Internal_Rela *irel = &internal_relocs[i];
6296
6297 if (irel == other_irel)
6298 continue;
6299 if (irel->r_offset != other_irel->r_offset)
6300 continue;
6301 if (is_l32r_relocation (abfd, sec, contents, irel))
6302 return irel;
6303 }
6304
6305 return NULL;
6306 }
6307
6308
6309 static xtensa_opcode *
6310 build_reloc_opcodes (bfd *abfd,
6311 asection *sec,
6312 bfd_byte *contents,
6313 Elf_Internal_Rela *internal_relocs)
6314 {
6315 unsigned i;
6316 xtensa_opcode *reloc_opcodes =
6317 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6318 for (i = 0; i < sec->reloc_count; i++)
6319 {
6320 Elf_Internal_Rela *irel = &internal_relocs[i];
6321 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6322 }
6323 return reloc_opcodes;
6324 }
6325
6326
6327 /* The compute_text_actions function will build a list of potential
6328 transformation actions for code in the extended basic block of each
6329 longcall that is optimized to a direct call. From this list we
6330 generate a set of actions to actually perform that optimizes for
6331 space and, if not using size_opt, maintains branch target
6332 alignments.
6333
6334 These actions to be performed are placed on a per-section list.
6335 The actual changes are performed by relax_section() in the second
6336 pass. */
6337
6338 bfd_boolean
6339 compute_text_actions (bfd *abfd,
6340 asection *sec,
6341 struct bfd_link_info *link_info)
6342 {
6343 xtensa_opcode *reloc_opcodes = NULL;
6344 xtensa_relax_info *relax_info;
6345 bfd_byte *contents;
6346 Elf_Internal_Rela *internal_relocs;
6347 bfd_boolean ok = TRUE;
6348 unsigned i;
6349 property_table_entry *prop_table = 0;
6350 int ptblsize = 0;
6351 bfd_size_type sec_size;
6352 static bfd_boolean no_insn_move = FALSE;
6353
6354 if (no_insn_move)
6355 return ok;
6356
6357 /* Do nothing if the section contains no optimized longcalls. */
6358 relax_info = get_xtensa_relax_info (sec);
6359 BFD_ASSERT (relax_info);
6360 if (!relax_info->is_relaxable_asm_section)
6361 return ok;
6362
6363 internal_relocs = retrieve_internal_relocs (abfd, sec,
6364 link_info->keep_memory);
6365
6366 if (internal_relocs)
6367 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6368 internal_reloc_compare);
6369
6370 sec_size = bfd_get_section_limit (abfd, sec);
6371 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6372 if (contents == NULL && sec_size != 0)
6373 {
6374 ok = FALSE;
6375 goto error_return;
6376 }
6377
6378 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6379 XTENSA_PROP_SEC_NAME, FALSE);
6380 if (ptblsize < 0)
6381 {
6382 ok = FALSE;
6383 goto error_return;
6384 }
6385
6386 for (i = 0; i < sec->reloc_count; i++)
6387 {
6388 Elf_Internal_Rela *irel = &internal_relocs[i];
6389 bfd_vma r_offset;
6390 property_table_entry *the_entry;
6391 int ptbl_idx;
6392 ebb_t *ebb;
6393 ebb_constraint ebb_table;
6394 bfd_size_type simplify_size;
6395
6396 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6397 continue;
6398 r_offset = irel->r_offset;
6399
6400 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6401 if (simplify_size == 0)
6402 {
6403 (*_bfd_error_handler)
6404 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6405 sec->owner, sec, r_offset);
6406 continue;
6407 }
6408
6409 /* If the instruction table is not around, then don't do this
6410 relaxation. */
6411 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6412 sec->vma + irel->r_offset);
6413 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6414 {
6415 text_action_add (&relax_info->action_list,
6416 ta_convert_longcall, sec, r_offset,
6417 0);
6418 continue;
6419 }
6420
6421 /* If the next longcall happens to be at the same address as an
6422 unreachable section of size 0, then skip forward. */
6423 ptbl_idx = the_entry - prop_table;
6424 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6425 && the_entry->size == 0
6426 && ptbl_idx + 1 < ptblsize
6427 && (prop_table[ptbl_idx + 1].address
6428 == prop_table[ptbl_idx].address))
6429 {
6430 ptbl_idx++;
6431 the_entry++;
6432 }
6433
6434 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6435 /* NO_REORDER is OK */
6436 continue;
6437
6438 init_ebb_constraint (&ebb_table);
6439 ebb = &ebb_table.ebb;
6440 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6441 internal_relocs, sec->reloc_count);
6442 ebb->start_offset = r_offset + simplify_size;
6443 ebb->end_offset = r_offset + simplify_size;
6444 ebb->start_ptbl_idx = ptbl_idx;
6445 ebb->end_ptbl_idx = ptbl_idx;
6446 ebb->start_reloc_idx = i;
6447 ebb->end_reloc_idx = i;
6448
6449 /* Precompute the opcode for each relocation. */
6450 if (reloc_opcodes == NULL)
6451 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6452 internal_relocs);
6453
6454 if (!extend_ebb_bounds (ebb)
6455 || !compute_ebb_proposed_actions (&ebb_table)
6456 || !compute_ebb_actions (&ebb_table)
6457 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6458 internal_relocs, &ebb_table,
6459 reloc_opcodes)
6460 || !check_section_ebb_reduces (&ebb_table))
6461 {
6462 /* If anything goes wrong or we get unlucky and something does
6463 not fit, with our plan because of expansion between
6464 critical branches, just convert to a NOP. */
6465
6466 text_action_add (&relax_info->action_list,
6467 ta_convert_longcall, sec, r_offset, 0);
6468 i = ebb_table.ebb.end_reloc_idx;
6469 free_ebb_constraint (&ebb_table);
6470 continue;
6471 }
6472
6473 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6474
6475 /* Update the index so we do not go looking at the relocations
6476 we have already processed. */
6477 i = ebb_table.ebb.end_reloc_idx;
6478 free_ebb_constraint (&ebb_table);
6479 }
6480
6481 #if DEBUG
6482 if (relax_info->action_list.head)
6483 print_action_list (stderr, &relax_info->action_list);
6484 #endif
6485
6486 error_return:
6487 release_contents (sec, contents);
6488 release_internal_relocs (sec, internal_relocs);
6489 if (prop_table)
6490 free (prop_table);
6491 if (reloc_opcodes)
6492 free (reloc_opcodes);
6493
6494 return ok;
6495 }
6496
6497
6498 /* Find all of the possible actions for an extended basic block. */
6499
6500 bfd_boolean
6501 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6502 {
6503 const ebb_t *ebb = &ebb_table->ebb;
6504 unsigned rel_idx = ebb->start_reloc_idx;
6505 property_table_entry *entry, *start_entry, *end_entry;
6506
6507 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6508 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6509
6510 for (entry = start_entry; entry <= end_entry; entry++)
6511 {
6512 bfd_vma offset, start_offset, end_offset;
6513 bfd_size_type insn_len;
6514
6515 start_offset = entry->address - ebb->sec->vma;
6516 end_offset = entry->address + entry->size - ebb->sec->vma;
6517
6518 if (entry == start_entry)
6519 start_offset = ebb->start_offset;
6520 if (entry == end_entry)
6521 end_offset = ebb->end_offset;
6522 offset = start_offset;
6523
6524 if (offset == entry->address - ebb->sec->vma
6525 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6526 {
6527 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6528 BFD_ASSERT (offset != end_offset);
6529 if (offset == end_offset)
6530 return FALSE;
6531
6532 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6533 offset);
6534
6535 /* Propose no actions for a section with an undecodable offset. */
6536 if (insn_len == 0)
6537 {
6538 (*_bfd_error_handler)
6539 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6540 ebb->sec->owner, ebb->sec, offset);
6541 return FALSE;
6542 }
6543 if (check_branch_target_aligned_address (offset, insn_len))
6544 align_type = EBB_REQUIRE_TGT_ALIGN;
6545
6546 ebb_propose_action (ebb_table, align_type, 0,
6547 ta_none, offset, 0, TRUE);
6548 }
6549
6550 while (offset != end_offset)
6551 {
6552 Elf_Internal_Rela *irel;
6553 xtensa_opcode opcode;
6554
6555 while (rel_idx < ebb->end_reloc_idx
6556 && (ebb->relocs[rel_idx].r_offset < offset
6557 || (ebb->relocs[rel_idx].r_offset == offset
6558 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6559 != R_XTENSA_ASM_SIMPLIFY))))
6560 rel_idx++;
6561
6562 /* Check for longcall. */
6563 irel = &ebb->relocs[rel_idx];
6564 if (irel->r_offset == offset
6565 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6566 {
6567 bfd_size_type simplify_size;
6568
6569 simplify_size = get_asm_simplify_size (ebb->contents,
6570 ebb->content_length,
6571 irel->r_offset);
6572 if (simplify_size == 0)
6573 {
6574 (*_bfd_error_handler)
6575 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6576 ebb->sec->owner, ebb->sec, offset);
6577 return FALSE;
6578 }
6579
6580 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6581 ta_convert_longcall, offset, 0, TRUE);
6582
6583 offset += simplify_size;
6584 continue;
6585 }
6586
6587 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6588 offset);
6589 /* If the instruction is undecodable, then report an error. */
6590 if (insn_len == 0)
6591 {
6592 (*_bfd_error_handler)
6593 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6594 ebb->sec->owner, ebb->sec, offset);
6595 return FALSE;
6596 }
6597
6598 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6599 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6600 && narrow_instruction (ebb->contents, ebb->content_length,
6601 offset, FALSE))
6602 {
6603 /* Add an instruction narrow action. */
6604 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6605 ta_narrow_insn, offset, 0, FALSE);
6606 offset += insn_len;
6607 continue;
6608 }
6609 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6610 && widen_instruction (ebb->contents, ebb->content_length,
6611 offset, FALSE))
6612 {
6613 /* Add an instruction widen action. */
6614 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6615 ta_widen_insn, offset, 0, FALSE);
6616 offset += insn_len;
6617 continue;
6618 }
6619 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6620 offset, 0);
6621 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6622 {
6623 /* Check for branch targets. */
6624 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6625 ta_none, offset, 0, TRUE);
6626 offset += insn_len;
6627 continue;
6628 }
6629
6630 offset += insn_len;
6631 }
6632 }
6633
6634 if (ebb->ends_unreachable)
6635 {
6636 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6637 ta_fill, ebb->end_offset, 0, TRUE);
6638 }
6639
6640 return TRUE;
6641 }
6642
6643
6644 /* After all of the information has collected about the
6645 transformations possible in an EBB, compute the appropriate actions
6646 here in compute_ebb_actions. We still must check later to make
6647 sure that the actions do not break any relocations. The algorithm
6648 used here is pretty greedy. Basically, it removes as many no-ops
6649 as possible so that the end of the EBB has the same alignment
6650 characteristics as the original. First, it uses narrowing, then
6651 fill space at the end of the EBB, and finally widenings. If that
6652 does not work, it tries again with one fewer no-op removed. The
6653 optimization will only be performed if all of the branch targets
6654 that were aligned before transformation are also aligned after the
6655 transformation.
6656
6657 When the size_opt flag is set, ignore the branch target alignments,
6658 narrow all wide instructions, and remove all no-ops unless the end
6659 of the EBB prevents it. */
6660
6661 bfd_boolean
6662 compute_ebb_actions (ebb_constraint *ebb_table)
6663 {
6664 unsigned i = 0;
6665 unsigned j;
6666 int removed_bytes = 0;
6667 ebb_t *ebb = &ebb_table->ebb;
6668 unsigned seg_idx_start = 0;
6669 unsigned seg_idx_end = 0;
6670
6671 /* We perform this like the assembler relaxation algorithm: Start by
6672 assuming all instructions are narrow and all no-ops removed; then
6673 walk through.... */
6674
6675 /* For each segment of this that has a solid constraint, check to
6676 see if there are any combinations that will keep the constraint.
6677 If so, use it. */
6678 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6679 {
6680 bfd_boolean requires_text_end_align = FALSE;
6681 unsigned longcall_count = 0;
6682 unsigned longcall_convert_count = 0;
6683 unsigned narrowable_count = 0;
6684 unsigned narrowable_convert_count = 0;
6685 unsigned widenable_count = 0;
6686 unsigned widenable_convert_count = 0;
6687
6688 proposed_action *action = NULL;
6689 int align = (1 << ebb_table->ebb.sec->alignment_power);
6690
6691 seg_idx_start = seg_idx_end;
6692
6693 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6694 {
6695 action = &ebb_table->actions[i];
6696 if (action->action == ta_convert_longcall)
6697 longcall_count++;
6698 if (action->action == ta_narrow_insn)
6699 narrowable_count++;
6700 if (action->action == ta_widen_insn)
6701 widenable_count++;
6702 if (action->action == ta_fill)
6703 break;
6704 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6705 break;
6706 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6707 && !elf32xtensa_size_opt)
6708 break;
6709 }
6710 seg_idx_end = i;
6711
6712 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6713 requires_text_end_align = TRUE;
6714
6715 if (elf32xtensa_size_opt && !requires_text_end_align
6716 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6717 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6718 {
6719 longcall_convert_count = longcall_count;
6720 narrowable_convert_count = narrowable_count;
6721 widenable_convert_count = 0;
6722 }
6723 else
6724 {
6725 /* There is a constraint. Convert the max number of longcalls. */
6726 narrowable_convert_count = 0;
6727 longcall_convert_count = 0;
6728 widenable_convert_count = 0;
6729
6730 for (j = 0; j < longcall_count; j++)
6731 {
6732 int removed = (longcall_count - j) * 3 & (align - 1);
6733 unsigned desire_narrow = (align - removed) & (align - 1);
6734 unsigned desire_widen = removed;
6735 if (desire_narrow <= narrowable_count)
6736 {
6737 narrowable_convert_count = desire_narrow;
6738 narrowable_convert_count +=
6739 (align * ((narrowable_count - narrowable_convert_count)
6740 / align));
6741 longcall_convert_count = (longcall_count - j);
6742 widenable_convert_count = 0;
6743 break;
6744 }
6745 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6746 {
6747 narrowable_convert_count = 0;
6748 longcall_convert_count = longcall_count - j;
6749 widenable_convert_count = desire_widen;
6750 break;
6751 }
6752 }
6753 }
6754
6755 /* Now the number of conversions are saved. Do them. */
6756 for (i = seg_idx_start; i < seg_idx_end; i++)
6757 {
6758 action = &ebb_table->actions[i];
6759 switch (action->action)
6760 {
6761 case ta_convert_longcall:
6762 if (longcall_convert_count != 0)
6763 {
6764 action->action = ta_remove_longcall;
6765 action->do_action = TRUE;
6766 action->removed_bytes += 3;
6767 longcall_convert_count--;
6768 }
6769 break;
6770 case ta_narrow_insn:
6771 if (narrowable_convert_count != 0)
6772 {
6773 action->do_action = TRUE;
6774 action->removed_bytes += 1;
6775 narrowable_convert_count--;
6776 }
6777 break;
6778 case ta_widen_insn:
6779 if (widenable_convert_count != 0)
6780 {
6781 action->do_action = TRUE;
6782 action->removed_bytes -= 1;
6783 widenable_convert_count--;
6784 }
6785 break;
6786 default:
6787 break;
6788 }
6789 }
6790 }
6791
6792 /* Now we move on to some local opts. Try to remove each of the
6793 remaining longcalls. */
6794
6795 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6796 {
6797 removed_bytes = 0;
6798 for (i = 0; i < ebb_table->action_count; i++)
6799 {
6800 int old_removed_bytes = removed_bytes;
6801 proposed_action *action = &ebb_table->actions[i];
6802
6803 if (action->do_action && action->action == ta_convert_longcall)
6804 {
6805 bfd_boolean bad_alignment = FALSE;
6806 removed_bytes += 3;
6807 for (j = i + 1; j < ebb_table->action_count; j++)
6808 {
6809 proposed_action *new_action = &ebb_table->actions[j];
6810 bfd_vma offset = new_action->offset;
6811 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6812 {
6813 if (!check_branch_target_aligned
6814 (ebb_table->ebb.contents,
6815 ebb_table->ebb.content_length,
6816 offset, offset - removed_bytes))
6817 {
6818 bad_alignment = TRUE;
6819 break;
6820 }
6821 }
6822 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6823 {
6824 if (!check_loop_aligned (ebb_table->ebb.contents,
6825 ebb_table->ebb.content_length,
6826 offset,
6827 offset - removed_bytes))
6828 {
6829 bad_alignment = TRUE;
6830 break;
6831 }
6832 }
6833 if (new_action->action == ta_narrow_insn
6834 && !new_action->do_action
6835 && ebb_table->ebb.sec->alignment_power == 2)
6836 {
6837 /* Narrow an instruction and we are done. */
6838 new_action->do_action = TRUE;
6839 new_action->removed_bytes += 1;
6840 bad_alignment = FALSE;
6841 break;
6842 }
6843 if (new_action->action == ta_widen_insn
6844 && new_action->do_action
6845 && ebb_table->ebb.sec->alignment_power == 2)
6846 {
6847 /* Narrow an instruction and we are done. */
6848 new_action->do_action = FALSE;
6849 new_action->removed_bytes += 1;
6850 bad_alignment = FALSE;
6851 break;
6852 }
6853 }
6854 if (!bad_alignment)
6855 {
6856 action->removed_bytes += 3;
6857 action->action = ta_remove_longcall;
6858 action->do_action = TRUE;
6859 }
6860 }
6861 removed_bytes = old_removed_bytes;
6862 if (action->do_action)
6863 removed_bytes += action->removed_bytes;
6864 }
6865 }
6866
6867 removed_bytes = 0;
6868 for (i = 0; i < ebb_table->action_count; ++i)
6869 {
6870 proposed_action *action = &ebb_table->actions[i];
6871 if (action->do_action)
6872 removed_bytes += action->removed_bytes;
6873 }
6874
6875 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6876 && ebb->ends_unreachable)
6877 {
6878 proposed_action *action;
6879 int br;
6880 int extra_space;
6881
6882 BFD_ASSERT (ebb_table->action_count != 0);
6883 action = &ebb_table->actions[ebb_table->action_count - 1];
6884 BFD_ASSERT (action->action == ta_fill);
6885 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6886
6887 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6888 br = action->removed_bytes + removed_bytes + extra_space;
6889 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6890
6891 action->removed_bytes = extra_space - br;
6892 }
6893 return TRUE;
6894 }
6895
6896
6897 /* The xlate_map is a sorted array of address mappings designed to
6898 answer the offset_with_removed_text() query with a binary search instead
6899 of a linear search through the section's action_list. */
6900
6901 typedef struct xlate_map_entry xlate_map_entry_t;
6902 typedef struct xlate_map xlate_map_t;
6903
6904 struct xlate_map_entry
6905 {
6906 unsigned orig_address;
6907 unsigned new_address;
6908 unsigned size;
6909 };
6910
6911 struct xlate_map
6912 {
6913 unsigned entry_count;
6914 xlate_map_entry_t *entry;
6915 };
6916
6917
6918 static int
6919 xlate_compare (const void *a_v, const void *b_v)
6920 {
6921 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6922 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6923 if (a->orig_address < b->orig_address)
6924 return -1;
6925 if (a->orig_address > (b->orig_address + b->size - 1))
6926 return 1;
6927 return 0;
6928 }
6929
6930
6931 static bfd_vma
6932 xlate_offset_with_removed_text (const xlate_map_t *map,
6933 text_action_list *action_list,
6934 bfd_vma offset)
6935 {
6936 xlate_map_entry_t tmp;
6937 void *r;
6938 xlate_map_entry_t *e;
6939
6940 if (map == NULL)
6941 return offset_with_removed_text (action_list, offset);
6942
6943 if (map->entry_count == 0)
6944 return offset;
6945
6946 tmp.orig_address = offset;
6947 tmp.new_address = offset;
6948 tmp.size = 1;
6949
6950 r = bsearch (&offset, map->entry, map->entry_count,
6951 sizeof (xlate_map_entry_t), &xlate_compare);
6952 e = (xlate_map_entry_t *) r;
6953
6954 BFD_ASSERT (e != NULL);
6955 if (e == NULL)
6956 return offset;
6957 return e->new_address - e->orig_address + offset;
6958 }
6959
6960
6961 /* Build a binary searchable offset translation map from a section's
6962 action list. */
6963
6964 static xlate_map_t *
6965 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6966 {
6967 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6968 text_action_list *action_list = &relax_info->action_list;
6969 unsigned num_actions = 0;
6970 text_action *r;
6971 int removed;
6972 xlate_map_entry_t *current_entry;
6973
6974 if (map == NULL)
6975 return NULL;
6976
6977 num_actions = action_list_count (action_list);
6978 map->entry = (xlate_map_entry_t *)
6979 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6980 if (map->entry == NULL)
6981 {
6982 free (map);
6983 return NULL;
6984 }
6985 map->entry_count = 0;
6986
6987 removed = 0;
6988 current_entry = &map->entry[0];
6989
6990 current_entry->orig_address = 0;
6991 current_entry->new_address = 0;
6992 current_entry->size = 0;
6993
6994 for (r = action_list->head; r != NULL; r = r->next)
6995 {
6996 unsigned orig_size = 0;
6997 switch (r->action)
6998 {
6999 case ta_none:
7000 case ta_remove_insn:
7001 case ta_convert_longcall:
7002 case ta_remove_literal:
7003 case ta_add_literal:
7004 break;
7005 case ta_remove_longcall:
7006 orig_size = 6;
7007 break;
7008 case ta_narrow_insn:
7009 orig_size = 3;
7010 break;
7011 case ta_widen_insn:
7012 orig_size = 2;
7013 break;
7014 case ta_fill:
7015 break;
7016 }
7017 current_entry->size =
7018 r->offset + orig_size - current_entry->orig_address;
7019 if (current_entry->size != 0)
7020 {
7021 current_entry++;
7022 map->entry_count++;
7023 }
7024 current_entry->orig_address = r->offset + orig_size;
7025 removed += r->removed_bytes;
7026 current_entry->new_address = r->offset + orig_size - removed;
7027 current_entry->size = 0;
7028 }
7029
7030 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7031 - current_entry->orig_address);
7032 if (current_entry->size != 0)
7033 map->entry_count++;
7034
7035 return map;
7036 }
7037
7038
7039 /* Free an offset translation map. */
7040
7041 static void
7042 free_xlate_map (xlate_map_t *map)
7043 {
7044 if (map && map->entry)
7045 free (map->entry);
7046 if (map)
7047 free (map);
7048 }
7049
7050
7051 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7052 relocations in a section will fit if a proposed set of actions
7053 are performed. */
7054
7055 static bfd_boolean
7056 check_section_ebb_pcrels_fit (bfd *abfd,
7057 asection *sec,
7058 bfd_byte *contents,
7059 Elf_Internal_Rela *internal_relocs,
7060 const ebb_constraint *constraint,
7061 const xtensa_opcode *reloc_opcodes)
7062 {
7063 unsigned i, j;
7064 Elf_Internal_Rela *irel;
7065 xlate_map_t *xmap = NULL;
7066 bfd_boolean ok = TRUE;
7067 xtensa_relax_info *relax_info;
7068
7069 relax_info = get_xtensa_relax_info (sec);
7070
7071 if (relax_info && sec->reloc_count > 100)
7072 {
7073 xmap = build_xlate_map (sec, relax_info);
7074 /* NULL indicates out of memory, but the slow version
7075 can still be used. */
7076 }
7077
7078 for (i = 0; i < sec->reloc_count; i++)
7079 {
7080 r_reloc r_rel;
7081 bfd_vma orig_self_offset, orig_target_offset;
7082 bfd_vma self_offset, target_offset;
7083 int r_type;
7084 reloc_howto_type *howto;
7085 int self_removed_bytes, target_removed_bytes;
7086
7087 irel = &internal_relocs[i];
7088 r_type = ELF32_R_TYPE (irel->r_info);
7089
7090 howto = &elf_howto_table[r_type];
7091 /* We maintain the required invariant: PC-relative relocations
7092 that fit before linking must fit after linking. Thus we only
7093 need to deal with relocations to the same section that are
7094 PC-relative. */
7095 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7096 || !howto->pc_relative)
7097 continue;
7098
7099 r_reloc_init (&r_rel, abfd, irel, contents,
7100 bfd_get_section_limit (abfd, sec));
7101
7102 if (r_reloc_get_section (&r_rel) != sec)
7103 continue;
7104
7105 orig_self_offset = irel->r_offset;
7106 orig_target_offset = r_rel.target_offset;
7107
7108 self_offset = orig_self_offset;
7109 target_offset = orig_target_offset;
7110
7111 if (relax_info)
7112 {
7113 self_offset =
7114 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7115 orig_self_offset);
7116 target_offset =
7117 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7118 orig_target_offset);
7119 }
7120
7121 self_removed_bytes = 0;
7122 target_removed_bytes = 0;
7123
7124 for (j = 0; j < constraint->action_count; ++j)
7125 {
7126 proposed_action *action = &constraint->actions[j];
7127 bfd_vma offset = action->offset;
7128 int removed_bytes = action->removed_bytes;
7129 if (offset < orig_self_offset
7130 || (offset == orig_self_offset && action->action == ta_fill
7131 && action->removed_bytes < 0))
7132 self_removed_bytes += removed_bytes;
7133 if (offset < orig_target_offset
7134 || (offset == orig_target_offset && action->action == ta_fill
7135 && action->removed_bytes < 0))
7136 target_removed_bytes += removed_bytes;
7137 }
7138 self_offset -= self_removed_bytes;
7139 target_offset -= target_removed_bytes;
7140
7141 /* Try to encode it. Get the operand and check. */
7142 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7143 {
7144 /* None of the current alternate relocs are PC-relative,
7145 and only PC-relative relocs matter here. */
7146 }
7147 else
7148 {
7149 xtensa_opcode opcode;
7150 int opnum;
7151
7152 if (reloc_opcodes)
7153 opcode = reloc_opcodes[i];
7154 else
7155 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7156 if (opcode == XTENSA_UNDEFINED)
7157 {
7158 ok = FALSE;
7159 break;
7160 }
7161
7162 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7163 if (opnum == XTENSA_UNDEFINED)
7164 {
7165 ok = FALSE;
7166 break;
7167 }
7168
7169 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7170 {
7171 ok = FALSE;
7172 break;
7173 }
7174 }
7175 }
7176
7177 if (xmap)
7178 free_xlate_map (xmap);
7179
7180 return ok;
7181 }
7182
7183
7184 static bfd_boolean
7185 check_section_ebb_reduces (const ebb_constraint *constraint)
7186 {
7187 int removed = 0;
7188 unsigned i;
7189
7190 for (i = 0; i < constraint->action_count; i++)
7191 {
7192 const proposed_action *action = &constraint->actions[i];
7193 if (action->do_action)
7194 removed += action->removed_bytes;
7195 }
7196 if (removed < 0)
7197 return FALSE;
7198
7199 return TRUE;
7200 }
7201
7202
7203 void
7204 text_action_add_proposed (text_action_list *l,
7205 const ebb_constraint *ebb_table,
7206 asection *sec)
7207 {
7208 unsigned i;
7209
7210 for (i = 0; i < ebb_table->action_count; i++)
7211 {
7212 proposed_action *action = &ebb_table->actions[i];
7213
7214 if (!action->do_action)
7215 continue;
7216 switch (action->action)
7217 {
7218 case ta_remove_insn:
7219 case ta_remove_longcall:
7220 case ta_convert_longcall:
7221 case ta_narrow_insn:
7222 case ta_widen_insn:
7223 case ta_fill:
7224 case ta_remove_literal:
7225 text_action_add (l, action->action, sec, action->offset,
7226 action->removed_bytes);
7227 break;
7228 case ta_none:
7229 break;
7230 default:
7231 BFD_ASSERT (0);
7232 break;
7233 }
7234 }
7235 }
7236
7237
7238 int
7239 compute_fill_extra_space (property_table_entry *entry)
7240 {
7241 int fill_extra_space;
7242
7243 if (!entry)
7244 return 0;
7245
7246 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7247 return 0;
7248
7249 fill_extra_space = entry->size;
7250 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7251 {
7252 /* Fill bytes for alignment:
7253 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7254 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7255 int nsm = (1 << pow) - 1;
7256 bfd_vma addr = entry->address + entry->size;
7257 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7258 fill_extra_space += align_fill;
7259 }
7260 return fill_extra_space;
7261 }
7262
7263 \f
7264 /* First relaxation pass. */
7265
7266 /* If the section contains relaxable literals, check each literal to
7267 see if it has the same value as another literal that has already
7268 been seen, either in the current section or a previous one. If so,
7269 add an entry to the per-section list of removed literals. The
7270 actual changes are deferred until the next pass. */
7271
7272 static bfd_boolean
7273 compute_removed_literals (bfd *abfd,
7274 asection *sec,
7275 struct bfd_link_info *link_info,
7276 value_map_hash_table *values)
7277 {
7278 xtensa_relax_info *relax_info;
7279 bfd_byte *contents;
7280 Elf_Internal_Rela *internal_relocs;
7281 source_reloc *src_relocs, *rel;
7282 bfd_boolean ok = TRUE;
7283 property_table_entry *prop_table = NULL;
7284 int ptblsize;
7285 int i, prev_i;
7286 bfd_boolean last_loc_is_prev = FALSE;
7287 bfd_vma last_target_offset = 0;
7288 section_cache_t target_sec_cache;
7289 bfd_size_type sec_size;
7290
7291 init_section_cache (&target_sec_cache);
7292
7293 /* Do nothing if it is not a relaxable literal section. */
7294 relax_info = get_xtensa_relax_info (sec);
7295 BFD_ASSERT (relax_info);
7296 if (!relax_info->is_relaxable_literal_section)
7297 return ok;
7298
7299 internal_relocs = retrieve_internal_relocs (abfd, sec,
7300 link_info->keep_memory);
7301
7302 sec_size = bfd_get_section_limit (abfd, sec);
7303 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7304 if (contents == NULL && sec_size != 0)
7305 {
7306 ok = FALSE;
7307 goto error_return;
7308 }
7309
7310 /* Sort the source_relocs by target offset. */
7311 src_relocs = relax_info->src_relocs;
7312 qsort (src_relocs, relax_info->src_count,
7313 sizeof (source_reloc), source_reloc_compare);
7314 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7315 internal_reloc_compare);
7316
7317 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7318 XTENSA_PROP_SEC_NAME, FALSE);
7319 if (ptblsize < 0)
7320 {
7321 ok = FALSE;
7322 goto error_return;
7323 }
7324
7325 prev_i = -1;
7326 for (i = 0; i < relax_info->src_count; i++)
7327 {
7328 Elf_Internal_Rela *irel = NULL;
7329
7330 rel = &src_relocs[i];
7331 if (get_l32r_opcode () != rel->opcode)
7332 continue;
7333 irel = get_irel_at_offset (sec, internal_relocs,
7334 rel->r_rel.target_offset);
7335
7336 /* If the relocation on this is not a simple R_XTENSA_32 or
7337 R_XTENSA_PLT then do not consider it. This may happen when
7338 the difference of two symbols is used in a literal. */
7339 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7340 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7341 continue;
7342
7343 /* If the target_offset for this relocation is the same as the
7344 previous relocation, then we've already considered whether the
7345 literal can be coalesced. Skip to the next one.... */
7346 if (i != 0 && prev_i != -1
7347 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7348 continue;
7349 prev_i = i;
7350
7351 if (last_loc_is_prev &&
7352 last_target_offset + 4 != rel->r_rel.target_offset)
7353 last_loc_is_prev = FALSE;
7354
7355 /* Check if the relocation was from an L32R that is being removed
7356 because a CALLX was converted to a direct CALL, and check if
7357 there are no other relocations to the literal. */
7358 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7359 {
7360 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7361 irel, rel, prop_table, ptblsize))
7362 {
7363 ok = FALSE;
7364 goto error_return;
7365 }
7366 last_target_offset = rel->r_rel.target_offset;
7367 continue;
7368 }
7369
7370 if (!identify_literal_placement (abfd, sec, contents, link_info,
7371 values,
7372 &last_loc_is_prev, irel,
7373 relax_info->src_count - i, rel,
7374 prop_table, ptblsize,
7375 &target_sec_cache, rel->is_abs_literal))
7376 {
7377 ok = FALSE;
7378 goto error_return;
7379 }
7380 last_target_offset = rel->r_rel.target_offset;
7381 }
7382
7383 #if DEBUG
7384 print_removed_literals (stderr, &relax_info->removed_list);
7385 print_action_list (stderr, &relax_info->action_list);
7386 #endif /* DEBUG */
7387
7388 error_return:
7389 if (prop_table) free (prop_table);
7390 clear_section_cache (&target_sec_cache);
7391
7392 release_contents (sec, contents);
7393 release_internal_relocs (sec, internal_relocs);
7394 return ok;
7395 }
7396
7397
7398 static Elf_Internal_Rela *
7399 get_irel_at_offset (asection *sec,
7400 Elf_Internal_Rela *internal_relocs,
7401 bfd_vma offset)
7402 {
7403 unsigned i;
7404 Elf_Internal_Rela *irel;
7405 unsigned r_type;
7406 Elf_Internal_Rela key;
7407
7408 if (!internal_relocs)
7409 return NULL;
7410
7411 key.r_offset = offset;
7412 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7413 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7414 if (!irel)
7415 return NULL;
7416
7417 /* bsearch does not guarantee which will be returned if there are
7418 multiple matches. We need the first that is not an alignment. */
7419 i = irel - internal_relocs;
7420 while (i > 0)
7421 {
7422 if (internal_relocs[i-1].r_offset != offset)
7423 break;
7424 i--;
7425 }
7426 for ( ; i < sec->reloc_count; i++)
7427 {
7428 irel = &internal_relocs[i];
7429 r_type = ELF32_R_TYPE (irel->r_info);
7430 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7431 return irel;
7432 }
7433
7434 return NULL;
7435 }
7436
7437
7438 bfd_boolean
7439 is_removable_literal (const source_reloc *rel,
7440 int i,
7441 const source_reloc *src_relocs,
7442 int src_count)
7443 {
7444 const source_reloc *curr_rel;
7445 if (!rel->is_null)
7446 return FALSE;
7447
7448 for (++i; i < src_count; ++i)
7449 {
7450 curr_rel = &src_relocs[i];
7451 /* If all others have the same target offset.... */
7452 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7453 return TRUE;
7454
7455 if (!curr_rel->is_null
7456 && !xtensa_is_property_section (curr_rel->source_sec)
7457 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7458 return FALSE;
7459 }
7460 return TRUE;
7461 }
7462
7463
7464 bfd_boolean
7465 remove_dead_literal (bfd *abfd,
7466 asection *sec,
7467 struct bfd_link_info *link_info,
7468 Elf_Internal_Rela *internal_relocs,
7469 Elf_Internal_Rela *irel,
7470 source_reloc *rel,
7471 property_table_entry *prop_table,
7472 int ptblsize)
7473 {
7474 property_table_entry *entry;
7475 xtensa_relax_info *relax_info;
7476
7477 relax_info = get_xtensa_relax_info (sec);
7478 if (!relax_info)
7479 return FALSE;
7480
7481 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7482 sec->vma + rel->r_rel.target_offset);
7483
7484 /* Mark the unused literal so that it will be removed. */
7485 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7486
7487 text_action_add (&relax_info->action_list,
7488 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7489
7490 /* If the section is 4-byte aligned, do not add fill. */
7491 if (sec->alignment_power > 2)
7492 {
7493 int fill_extra_space;
7494 bfd_vma entry_sec_offset;
7495 text_action *fa;
7496 property_table_entry *the_add_entry;
7497 int removed_diff;
7498
7499 if (entry)
7500 entry_sec_offset = entry->address - sec->vma + entry->size;
7501 else
7502 entry_sec_offset = rel->r_rel.target_offset + 4;
7503
7504 /* If the literal range is at the end of the section,
7505 do not add fill. */
7506 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7507 entry_sec_offset);
7508 fill_extra_space = compute_fill_extra_space (the_add_entry);
7509
7510 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7511 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7512 -4, fill_extra_space);
7513 if (fa)
7514 adjust_fill_action (fa, removed_diff);
7515 else
7516 text_action_add (&relax_info->action_list,
7517 ta_fill, sec, entry_sec_offset, removed_diff);
7518 }
7519
7520 /* Zero out the relocation on this literal location. */
7521 if (irel)
7522 {
7523 if (elf_hash_table (link_info)->dynamic_sections_created)
7524 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7525
7526 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7527 pin_internal_relocs (sec, internal_relocs);
7528 }
7529
7530 /* Do not modify "last_loc_is_prev". */
7531 return TRUE;
7532 }
7533
7534
7535 bfd_boolean
7536 identify_literal_placement (bfd *abfd,
7537 asection *sec,
7538 bfd_byte *contents,
7539 struct bfd_link_info *link_info,
7540 value_map_hash_table *values,
7541 bfd_boolean *last_loc_is_prev_p,
7542 Elf_Internal_Rela *irel,
7543 int remaining_src_rels,
7544 source_reloc *rel,
7545 property_table_entry *prop_table,
7546 int ptblsize,
7547 section_cache_t *target_sec_cache,
7548 bfd_boolean is_abs_literal)
7549 {
7550 literal_value val;
7551 value_map *val_map;
7552 xtensa_relax_info *relax_info;
7553 bfd_boolean literal_placed = FALSE;
7554 r_reloc r_rel;
7555 unsigned long value;
7556 bfd_boolean final_static_link;
7557 bfd_size_type sec_size;
7558
7559 relax_info = get_xtensa_relax_info (sec);
7560 if (!relax_info)
7561 return FALSE;
7562
7563 sec_size = bfd_get_section_limit (abfd, sec);
7564
7565 final_static_link =
7566 (!link_info->relocatable
7567 && !elf_hash_table (link_info)->dynamic_sections_created);
7568
7569 /* The placement algorithm first checks to see if the literal is
7570 already in the value map. If so and the value map is reachable
7571 from all uses, then the literal is moved to that location. If
7572 not, then we identify the last location where a fresh literal was
7573 placed. If the literal can be safely moved there, then we do so.
7574 If not, then we assume that the literal is not to move and leave
7575 the literal where it is, marking it as the last literal
7576 location. */
7577
7578 /* Find the literal value. */
7579 value = 0;
7580 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7581 if (!irel)
7582 {
7583 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7584 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7585 }
7586 init_literal_value (&val, &r_rel, value, is_abs_literal);
7587
7588 /* Check if we've seen another literal with the same value that
7589 is in the same output section. */
7590 val_map = value_map_get_cached_value (values, &val, final_static_link);
7591
7592 if (val_map
7593 && (r_reloc_get_section (&val_map->loc)->output_section
7594 == sec->output_section)
7595 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7596 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7597 {
7598 /* No change to last_loc_is_prev. */
7599 literal_placed = TRUE;
7600 }
7601
7602 /* For relocatable links, do not try to move literals. To do it
7603 correctly might increase the number of relocations in an input
7604 section making the default relocatable linking fail. */
7605 if (!link_info->relocatable && !literal_placed
7606 && values->has_last_loc && !(*last_loc_is_prev_p))
7607 {
7608 asection *target_sec = r_reloc_get_section (&values->last_loc);
7609 if (target_sec && target_sec->output_section == sec->output_section)
7610 {
7611 /* Increment the virtual offset. */
7612 r_reloc try_loc = values->last_loc;
7613 try_loc.virtual_offset += 4;
7614
7615 /* There is a last loc that was in the same output section. */
7616 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7617 && move_shared_literal (sec, link_info, rel,
7618 prop_table, ptblsize,
7619 &try_loc, &val, target_sec_cache))
7620 {
7621 values->last_loc.virtual_offset += 4;
7622 literal_placed = TRUE;
7623 if (!val_map)
7624 val_map = add_value_map (values, &val, &try_loc,
7625 final_static_link);
7626 else
7627 val_map->loc = try_loc;
7628 }
7629 }
7630 }
7631
7632 if (!literal_placed)
7633 {
7634 /* Nothing worked, leave the literal alone but update the last loc. */
7635 values->has_last_loc = TRUE;
7636 values->last_loc = rel->r_rel;
7637 if (!val_map)
7638 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7639 else
7640 val_map->loc = rel->r_rel;
7641 *last_loc_is_prev_p = TRUE;
7642 }
7643
7644 return TRUE;
7645 }
7646
7647
7648 /* Check if the original relocations (presumably on L32R instructions)
7649 identified by reloc[0..N] can be changed to reference the literal
7650 identified by r_rel. If r_rel is out of range for any of the
7651 original relocations, then we don't want to coalesce the original
7652 literal with the one at r_rel. We only check reloc[0..N], where the
7653 offsets are all the same as for reloc[0] (i.e., they're all
7654 referencing the same literal) and where N is also bounded by the
7655 number of remaining entries in the "reloc" array. The "reloc" array
7656 is sorted by target offset so we know all the entries for the same
7657 literal will be contiguous. */
7658
7659 static bfd_boolean
7660 relocations_reach (source_reloc *reloc,
7661 int remaining_relocs,
7662 const r_reloc *r_rel)
7663 {
7664 bfd_vma from_offset, source_address, dest_address;
7665 asection *sec;
7666 int i;
7667
7668 if (!r_reloc_is_defined (r_rel))
7669 return FALSE;
7670
7671 sec = r_reloc_get_section (r_rel);
7672 from_offset = reloc[0].r_rel.target_offset;
7673
7674 for (i = 0; i < remaining_relocs; i++)
7675 {
7676 if (reloc[i].r_rel.target_offset != from_offset)
7677 break;
7678
7679 /* Ignore relocations that have been removed. */
7680 if (reloc[i].is_null)
7681 continue;
7682
7683 /* The original and new output section for these must be the same
7684 in order to coalesce. */
7685 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7686 != sec->output_section)
7687 return FALSE;
7688
7689 /* Absolute literals in the same output section can always be
7690 combined. */
7691 if (reloc[i].is_abs_literal)
7692 continue;
7693
7694 /* A literal with no PC-relative relocations can be moved anywhere. */
7695 if (reloc[i].opnd != -1)
7696 {
7697 /* Otherwise, check to see that it fits. */
7698 source_address = (reloc[i].source_sec->output_section->vma
7699 + reloc[i].source_sec->output_offset
7700 + reloc[i].r_rel.rela.r_offset);
7701 dest_address = (sec->output_section->vma
7702 + sec->output_offset
7703 + r_rel->target_offset);
7704
7705 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7706 source_address, dest_address))
7707 return FALSE;
7708 }
7709 }
7710
7711 return TRUE;
7712 }
7713
7714
7715 /* Move a literal to another literal location because it is
7716 the same as the other literal value. */
7717
7718 static bfd_boolean
7719 coalesce_shared_literal (asection *sec,
7720 source_reloc *rel,
7721 property_table_entry *prop_table,
7722 int ptblsize,
7723 value_map *val_map)
7724 {
7725 property_table_entry *entry;
7726 text_action *fa;
7727 property_table_entry *the_add_entry;
7728 int removed_diff;
7729 xtensa_relax_info *relax_info;
7730
7731 relax_info = get_xtensa_relax_info (sec);
7732 if (!relax_info)
7733 return FALSE;
7734
7735 entry = elf_xtensa_find_property_entry
7736 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7737 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7738 return TRUE;
7739
7740 /* Mark that the literal will be coalesced. */
7741 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7742
7743 text_action_add (&relax_info->action_list,
7744 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7745
7746 /* If the section is 4-byte aligned, do not add fill. */
7747 if (sec->alignment_power > 2)
7748 {
7749 int fill_extra_space;
7750 bfd_vma entry_sec_offset;
7751
7752 if (entry)
7753 entry_sec_offset = entry->address - sec->vma + entry->size;
7754 else
7755 entry_sec_offset = rel->r_rel.target_offset + 4;
7756
7757 /* If the literal range is at the end of the section,
7758 do not add fill. */
7759 fill_extra_space = 0;
7760 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7761 entry_sec_offset);
7762 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7763 fill_extra_space = the_add_entry->size;
7764
7765 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7766 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7767 -4, fill_extra_space);
7768 if (fa)
7769 adjust_fill_action (fa, removed_diff);
7770 else
7771 text_action_add (&relax_info->action_list,
7772 ta_fill, sec, entry_sec_offset, removed_diff);
7773 }
7774
7775 return TRUE;
7776 }
7777
7778
7779 /* Move a literal to another location. This may actually increase the
7780 total amount of space used because of alignments so we need to do
7781 this carefully. Also, it may make a branch go out of range. */
7782
7783 static bfd_boolean
7784 move_shared_literal (asection *sec,
7785 struct bfd_link_info *link_info,
7786 source_reloc *rel,
7787 property_table_entry *prop_table,
7788 int ptblsize,
7789 const r_reloc *target_loc,
7790 const literal_value *lit_value,
7791 section_cache_t *target_sec_cache)
7792 {
7793 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7794 text_action *fa, *target_fa;
7795 int removed_diff;
7796 xtensa_relax_info *relax_info, *target_relax_info;
7797 asection *target_sec;
7798 ebb_t *ebb;
7799 ebb_constraint ebb_table;
7800 bfd_boolean relocs_fit;
7801
7802 /* If this routine always returns FALSE, the literals that cannot be
7803 coalesced will not be moved. */
7804 if (elf32xtensa_no_literal_movement)
7805 return FALSE;
7806
7807 relax_info = get_xtensa_relax_info (sec);
7808 if (!relax_info)
7809 return FALSE;
7810
7811 target_sec = r_reloc_get_section (target_loc);
7812 target_relax_info = get_xtensa_relax_info (target_sec);
7813
7814 /* Literals to undefined sections may not be moved because they
7815 must report an error. */
7816 if (bfd_is_und_section (target_sec))
7817 return FALSE;
7818
7819 src_entry = elf_xtensa_find_property_entry
7820 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7821
7822 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7823 return FALSE;
7824
7825 target_entry = elf_xtensa_find_property_entry
7826 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7827 target_sec->vma + target_loc->target_offset);
7828
7829 if (!target_entry)
7830 return FALSE;
7831
7832 /* Make sure that we have not broken any branches. */
7833 relocs_fit = FALSE;
7834
7835 init_ebb_constraint (&ebb_table);
7836 ebb = &ebb_table.ebb;
7837 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7838 target_sec_cache->content_length,
7839 target_sec_cache->ptbl, target_sec_cache->pte_count,
7840 target_sec_cache->relocs, target_sec_cache->reloc_count);
7841
7842 /* Propose to add 4 bytes + worst-case alignment size increase to
7843 destination. */
7844 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7845 ta_fill, target_loc->target_offset,
7846 -4 - (1 << target_sec->alignment_power), TRUE);
7847
7848 /* Check all of the PC-relative relocations to make sure they still fit. */
7849 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7850 target_sec_cache->contents,
7851 target_sec_cache->relocs,
7852 &ebb_table, NULL);
7853
7854 if (!relocs_fit)
7855 return FALSE;
7856
7857 text_action_add_literal (&target_relax_info->action_list,
7858 ta_add_literal, target_loc, lit_value, -4);
7859
7860 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7861 {
7862 /* May need to add or remove some fill to maintain alignment. */
7863 int fill_extra_space;
7864 bfd_vma entry_sec_offset;
7865
7866 entry_sec_offset =
7867 target_entry->address - target_sec->vma + target_entry->size;
7868
7869 /* If the literal range is at the end of the section,
7870 do not add fill. */
7871 fill_extra_space = 0;
7872 the_add_entry =
7873 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7874 target_sec_cache->pte_count,
7875 entry_sec_offset);
7876 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7877 fill_extra_space = the_add_entry->size;
7878
7879 target_fa = find_fill_action (&target_relax_info->action_list,
7880 target_sec, entry_sec_offset);
7881 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7882 entry_sec_offset, 4,
7883 fill_extra_space);
7884 if (target_fa)
7885 adjust_fill_action (target_fa, removed_diff);
7886 else
7887 text_action_add (&target_relax_info->action_list,
7888 ta_fill, target_sec, entry_sec_offset, removed_diff);
7889 }
7890
7891 /* Mark that the literal will be moved to the new location. */
7892 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7893
7894 /* Remove the literal. */
7895 text_action_add (&relax_info->action_list,
7896 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7897
7898 /* If the section is 4-byte aligned, do not add fill. */
7899 if (sec->alignment_power > 2 && target_entry != src_entry)
7900 {
7901 int fill_extra_space;
7902 bfd_vma entry_sec_offset;
7903
7904 if (src_entry)
7905 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7906 else
7907 entry_sec_offset = rel->r_rel.target_offset+4;
7908
7909 /* If the literal range is at the end of the section,
7910 do not add fill. */
7911 fill_extra_space = 0;
7912 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7913 entry_sec_offset);
7914 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7915 fill_extra_space = the_add_entry->size;
7916
7917 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7918 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7919 -4, fill_extra_space);
7920 if (fa)
7921 adjust_fill_action (fa, removed_diff);
7922 else
7923 text_action_add (&relax_info->action_list,
7924 ta_fill, sec, entry_sec_offset, removed_diff);
7925 }
7926
7927 return TRUE;
7928 }
7929
7930 \f
7931 /* Second relaxation pass. */
7932
7933 /* Modify all of the relocations to point to the right spot, and if this
7934 is a relaxable section, delete the unwanted literals and fix the
7935 section size. */
7936
7937 bfd_boolean
7938 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
7939 {
7940 Elf_Internal_Rela *internal_relocs;
7941 xtensa_relax_info *relax_info;
7942 bfd_byte *contents;
7943 bfd_boolean ok = TRUE;
7944 unsigned i;
7945 bfd_boolean rv = FALSE;
7946 bfd_boolean virtual_action;
7947 bfd_size_type sec_size;
7948
7949 sec_size = bfd_get_section_limit (abfd, sec);
7950 relax_info = get_xtensa_relax_info (sec);
7951 BFD_ASSERT (relax_info);
7952
7953 /* First translate any of the fixes that have been added already. */
7954 translate_section_fixes (sec);
7955
7956 /* Handle property sections (e.g., literal tables) specially. */
7957 if (xtensa_is_property_section (sec))
7958 {
7959 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7960 return relax_property_section (abfd, sec, link_info);
7961 }
7962
7963 internal_relocs = retrieve_internal_relocs (abfd, sec,
7964 link_info->keep_memory);
7965 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7966 if (contents == NULL && sec_size != 0)
7967 {
7968 ok = FALSE;
7969 goto error_return;
7970 }
7971
7972 if (internal_relocs)
7973 {
7974 for (i = 0; i < sec->reloc_count; i++)
7975 {
7976 Elf_Internal_Rela *irel;
7977 xtensa_relax_info *target_relax_info;
7978 bfd_vma source_offset, old_source_offset;
7979 r_reloc r_rel;
7980 unsigned r_type;
7981 asection *target_sec;
7982
7983 /* Locally change the source address.
7984 Translate the target to the new target address.
7985 If it points to this section and has been removed,
7986 NULLify it.
7987 Write it back. */
7988
7989 irel = &internal_relocs[i];
7990 source_offset = irel->r_offset;
7991 old_source_offset = source_offset;
7992
7993 r_type = ELF32_R_TYPE (irel->r_info);
7994 r_reloc_init (&r_rel, abfd, irel, contents,
7995 bfd_get_section_limit (abfd, sec));
7996
7997 /* If this section could have changed then we may need to
7998 change the relocation's offset. */
7999
8000 if (relax_info->is_relaxable_literal_section
8001 || relax_info->is_relaxable_asm_section)
8002 {
8003 if (r_type != R_XTENSA_NONE
8004 && find_removed_literal (&relax_info->removed_list,
8005 irel->r_offset))
8006 {
8007 /* Remove this relocation. */
8008 if (elf_hash_table (link_info)->dynamic_sections_created)
8009 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8010 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8011 irel->r_offset = offset_with_removed_text
8012 (&relax_info->action_list, irel->r_offset);
8013 pin_internal_relocs (sec, internal_relocs);
8014 continue;
8015 }
8016
8017 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8018 {
8019 text_action *action =
8020 find_insn_action (&relax_info->action_list,
8021 irel->r_offset);
8022 if (action && (action->action == ta_convert_longcall
8023 || action->action == ta_remove_longcall))
8024 {
8025 bfd_reloc_status_type retval;
8026 char *error_message = NULL;
8027
8028 retval = contract_asm_expansion (contents, sec_size,
8029 irel, &error_message);
8030 if (retval != bfd_reloc_ok)
8031 {
8032 (*link_info->callbacks->reloc_dangerous)
8033 (link_info, error_message, abfd, sec,
8034 irel->r_offset);
8035 goto error_return;
8036 }
8037 /* Update the action so that the code that moves
8038 the contents will do the right thing. */
8039 if (action->action == ta_remove_longcall)
8040 action->action = ta_remove_insn;
8041 else
8042 action->action = ta_none;
8043 /* Refresh the info in the r_rel. */
8044 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8045 r_type = ELF32_R_TYPE (irel->r_info);
8046 }
8047 }
8048
8049 source_offset = offset_with_removed_text
8050 (&relax_info->action_list, irel->r_offset);
8051 irel->r_offset = source_offset;
8052 }
8053
8054 /* If the target section could have changed then
8055 we may need to change the relocation's target offset. */
8056
8057 target_sec = r_reloc_get_section (&r_rel);
8058 target_relax_info = get_xtensa_relax_info (target_sec);
8059
8060 if (target_relax_info
8061 && (target_relax_info->is_relaxable_literal_section
8062 || target_relax_info->is_relaxable_asm_section))
8063 {
8064 r_reloc new_reloc;
8065 reloc_bfd_fix *fix;
8066 bfd_vma addend_displacement;
8067
8068 translate_reloc (&r_rel, &new_reloc);
8069
8070 if (r_type == R_XTENSA_DIFF8
8071 || r_type == R_XTENSA_DIFF16
8072 || r_type == R_XTENSA_DIFF32)
8073 {
8074 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8075
8076 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8077 {
8078 (*link_info->callbacks->reloc_dangerous)
8079 (link_info, _("invalid relocation address"),
8080 abfd, sec, old_source_offset);
8081 goto error_return;
8082 }
8083
8084 switch (r_type)
8085 {
8086 case R_XTENSA_DIFF8:
8087 diff_value =
8088 bfd_get_8 (abfd, &contents[old_source_offset]);
8089 break;
8090 case R_XTENSA_DIFF16:
8091 diff_value =
8092 bfd_get_16 (abfd, &contents[old_source_offset]);
8093 break;
8094 case R_XTENSA_DIFF32:
8095 diff_value =
8096 bfd_get_32 (abfd, &contents[old_source_offset]);
8097 break;
8098 }
8099
8100 new_end_offset = offset_with_removed_text
8101 (&target_relax_info->action_list,
8102 r_rel.target_offset + diff_value);
8103 diff_value = new_end_offset - new_reloc.target_offset;
8104
8105 switch (r_type)
8106 {
8107 case R_XTENSA_DIFF8:
8108 diff_mask = 0xff;
8109 bfd_put_8 (abfd, diff_value,
8110 &contents[old_source_offset]);
8111 break;
8112 case R_XTENSA_DIFF16:
8113 diff_mask = 0xffff;
8114 bfd_put_16 (abfd, diff_value,
8115 &contents[old_source_offset]);
8116 break;
8117 case R_XTENSA_DIFF32:
8118 diff_mask = 0xffffffff;
8119 bfd_put_32 (abfd, diff_value,
8120 &contents[old_source_offset]);
8121 break;
8122 }
8123
8124 /* Check for overflow. */
8125 if ((diff_value & ~diff_mask) != 0)
8126 {
8127 (*link_info->callbacks->reloc_dangerous)
8128 (link_info, _("overflow after relaxation"),
8129 abfd, sec, old_source_offset);
8130 goto error_return;
8131 }
8132
8133 pin_contents (sec, contents);
8134 }
8135
8136 /* FIXME: If the relocation still references a section in
8137 the same input file, the relocation should be modified
8138 directly instead of adding a "fix" record. */
8139
8140 addend_displacement =
8141 new_reloc.target_offset + new_reloc.virtual_offset;
8142
8143 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8144 r_reloc_get_section (&new_reloc),
8145 addend_displacement, TRUE);
8146 add_fix (sec, fix);
8147 }
8148
8149 pin_internal_relocs (sec, internal_relocs);
8150 }
8151 }
8152
8153 if ((relax_info->is_relaxable_literal_section
8154 || relax_info->is_relaxable_asm_section)
8155 && relax_info->action_list.head)
8156 {
8157 /* Walk through the planned actions and build up a table
8158 of move, copy and fill records. Use the move, copy and
8159 fill records to perform the actions once. */
8160
8161 bfd_size_type size = sec->size;
8162 int removed = 0;
8163 bfd_size_type final_size, copy_size, orig_insn_size;
8164 bfd_byte *scratch = NULL;
8165 bfd_byte *dup_contents = NULL;
8166 bfd_size_type orig_size = size;
8167 bfd_vma orig_dot = 0;
8168 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8169 orig dot in physical memory. */
8170 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8171 bfd_vma dup_dot = 0;
8172
8173 text_action *action = relax_info->action_list.head;
8174
8175 final_size = sec->size;
8176 for (action = relax_info->action_list.head; action;
8177 action = action->next)
8178 {
8179 final_size -= action->removed_bytes;
8180 }
8181
8182 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8183 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8184
8185 /* The dot is the current fill location. */
8186 #if DEBUG
8187 print_action_list (stderr, &relax_info->action_list);
8188 #endif
8189
8190 for (action = relax_info->action_list.head; action;
8191 action = action->next)
8192 {
8193 virtual_action = FALSE;
8194 if (action->offset > orig_dot)
8195 {
8196 orig_dot += orig_dot_copied;
8197 orig_dot_copied = 0;
8198 orig_dot_vo = 0;
8199 /* Out of the virtual world. */
8200 }
8201
8202 if (action->offset > orig_dot)
8203 {
8204 copy_size = action->offset - orig_dot;
8205 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8206 orig_dot += copy_size;
8207 dup_dot += copy_size;
8208 BFD_ASSERT (action->offset == orig_dot);
8209 }
8210 else if (action->offset < orig_dot)
8211 {
8212 if (action->action == ta_fill
8213 && action->offset - action->removed_bytes == orig_dot)
8214 {
8215 /* This is OK because the fill only effects the dup_dot. */
8216 }
8217 else if (action->action == ta_add_literal)
8218 {
8219 /* TBD. Might need to handle this. */
8220 }
8221 }
8222 if (action->offset == orig_dot)
8223 {
8224 if (action->virtual_offset > orig_dot_vo)
8225 {
8226 if (orig_dot_vo == 0)
8227 {
8228 /* Need to copy virtual_offset bytes. Probably four. */
8229 copy_size = action->virtual_offset - orig_dot_vo;
8230 memmove (&dup_contents[dup_dot],
8231 &contents[orig_dot], copy_size);
8232 orig_dot_copied = copy_size;
8233 dup_dot += copy_size;
8234 }
8235 virtual_action = TRUE;
8236 }
8237 else
8238 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8239 }
8240 switch (action->action)
8241 {
8242 case ta_remove_literal:
8243 case ta_remove_insn:
8244 BFD_ASSERT (action->removed_bytes >= 0);
8245 orig_dot += action->removed_bytes;
8246 break;
8247
8248 case ta_narrow_insn:
8249 orig_insn_size = 3;
8250 copy_size = 2;
8251 memmove (scratch, &contents[orig_dot], orig_insn_size);
8252 BFD_ASSERT (action->removed_bytes == 1);
8253 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8254 BFD_ASSERT (rv);
8255 memmove (&dup_contents[dup_dot], scratch, copy_size);
8256 orig_dot += orig_insn_size;
8257 dup_dot += copy_size;
8258 break;
8259
8260 case ta_fill:
8261 if (action->removed_bytes >= 0)
8262 orig_dot += action->removed_bytes;
8263 else
8264 {
8265 /* Already zeroed in dup_contents. Just bump the
8266 counters. */
8267 dup_dot += (-action->removed_bytes);
8268 }
8269 break;
8270
8271 case ta_none:
8272 BFD_ASSERT (action->removed_bytes == 0);
8273 break;
8274
8275 case ta_convert_longcall:
8276 case ta_remove_longcall:
8277 /* These will be removed or converted before we get here. */
8278 BFD_ASSERT (0);
8279 break;
8280
8281 case ta_widen_insn:
8282 orig_insn_size = 2;
8283 copy_size = 3;
8284 memmove (scratch, &contents[orig_dot], orig_insn_size);
8285 BFD_ASSERT (action->removed_bytes == -1);
8286 rv = widen_instruction (scratch, final_size, 0, TRUE);
8287 BFD_ASSERT (rv);
8288 memmove (&dup_contents[dup_dot], scratch, copy_size);
8289 orig_dot += orig_insn_size;
8290 dup_dot += copy_size;
8291 break;
8292
8293 case ta_add_literal:
8294 orig_insn_size = 0;
8295 copy_size = 4;
8296 BFD_ASSERT (action->removed_bytes == -4);
8297 /* TBD -- place the literal value here and insert
8298 into the table. */
8299 memset (&dup_contents[dup_dot], 0, 4);
8300 pin_internal_relocs (sec, internal_relocs);
8301 pin_contents (sec, contents);
8302
8303 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8304 relax_info, &internal_relocs, &action->value))
8305 goto error_return;
8306
8307 if (virtual_action)
8308 orig_dot_vo += copy_size;
8309
8310 orig_dot += orig_insn_size;
8311 dup_dot += copy_size;
8312 break;
8313
8314 default:
8315 /* Not implemented yet. */
8316 BFD_ASSERT (0);
8317 break;
8318 }
8319
8320 size -= action->removed_bytes;
8321 removed += action->removed_bytes;
8322 BFD_ASSERT (dup_dot <= final_size);
8323 BFD_ASSERT (orig_dot <= orig_size);
8324 }
8325
8326 orig_dot += orig_dot_copied;
8327 orig_dot_copied = 0;
8328
8329 if (orig_dot != orig_size)
8330 {
8331 copy_size = orig_size - orig_dot;
8332 BFD_ASSERT (orig_size > orig_dot);
8333 BFD_ASSERT (dup_dot + copy_size == final_size);
8334 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8335 orig_dot += copy_size;
8336 dup_dot += copy_size;
8337 }
8338 BFD_ASSERT (orig_size == orig_dot);
8339 BFD_ASSERT (final_size == dup_dot);
8340
8341 /* Move the dup_contents back. */
8342 if (final_size > orig_size)
8343 {
8344 /* Contents need to be reallocated. Swap the dup_contents into
8345 contents. */
8346 sec->contents = dup_contents;
8347 free (contents);
8348 contents = dup_contents;
8349 pin_contents (sec, contents);
8350 }
8351 else
8352 {
8353 BFD_ASSERT (final_size <= orig_size);
8354 memset (contents, 0, orig_size);
8355 memcpy (contents, dup_contents, final_size);
8356 free (dup_contents);
8357 }
8358 free (scratch);
8359 pin_contents (sec, contents);
8360
8361 sec->size = final_size;
8362 }
8363
8364 error_return:
8365 release_internal_relocs (sec, internal_relocs);
8366 release_contents (sec, contents);
8367 return ok;
8368 }
8369
8370
8371 static bfd_boolean
8372 translate_section_fixes (asection *sec)
8373 {
8374 xtensa_relax_info *relax_info;
8375 reloc_bfd_fix *r;
8376
8377 relax_info = get_xtensa_relax_info (sec);
8378 if (!relax_info)
8379 return TRUE;
8380
8381 for (r = relax_info->fix_list; r != NULL; r = r->next)
8382 if (!translate_reloc_bfd_fix (r))
8383 return FALSE;
8384
8385 return TRUE;
8386 }
8387
8388
8389 /* Translate a fix given the mapping in the relax info for the target
8390 section. If it has already been translated, no work is required. */
8391
8392 static bfd_boolean
8393 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8394 {
8395 reloc_bfd_fix new_fix;
8396 asection *sec;
8397 xtensa_relax_info *relax_info;
8398 removed_literal *removed;
8399 bfd_vma new_offset, target_offset;
8400
8401 if (fix->translated)
8402 return TRUE;
8403
8404 sec = fix->target_sec;
8405 target_offset = fix->target_offset;
8406
8407 relax_info = get_xtensa_relax_info (sec);
8408 if (!relax_info)
8409 {
8410 fix->translated = TRUE;
8411 return TRUE;
8412 }
8413
8414 new_fix = *fix;
8415
8416 /* The fix does not need to be translated if the section cannot change. */
8417 if (!relax_info->is_relaxable_literal_section
8418 && !relax_info->is_relaxable_asm_section)
8419 {
8420 fix->translated = TRUE;
8421 return TRUE;
8422 }
8423
8424 /* If the literal has been moved and this relocation was on an
8425 opcode, then the relocation should move to the new literal
8426 location. Otherwise, the relocation should move within the
8427 section. */
8428
8429 removed = FALSE;
8430 if (is_operand_relocation (fix->src_type))
8431 {
8432 /* Check if the original relocation is against a literal being
8433 removed. */
8434 removed = find_removed_literal (&relax_info->removed_list,
8435 target_offset);
8436 }
8437
8438 if (removed)
8439 {
8440 asection *new_sec;
8441
8442 /* The fact that there is still a relocation to this literal indicates
8443 that the literal is being coalesced, not simply removed. */
8444 BFD_ASSERT (removed->to.abfd != NULL);
8445
8446 /* This was moved to some other address (possibly another section). */
8447 new_sec = r_reloc_get_section (&removed->to);
8448 if (new_sec != sec)
8449 {
8450 sec = new_sec;
8451 relax_info = get_xtensa_relax_info (sec);
8452 if (!relax_info ||
8453 (!relax_info->is_relaxable_literal_section
8454 && !relax_info->is_relaxable_asm_section))
8455 {
8456 target_offset = removed->to.target_offset;
8457 new_fix.target_sec = new_sec;
8458 new_fix.target_offset = target_offset;
8459 new_fix.translated = TRUE;
8460 *fix = new_fix;
8461 return TRUE;
8462 }
8463 }
8464 target_offset = removed->to.target_offset;
8465 new_fix.target_sec = new_sec;
8466 }
8467
8468 /* The target address may have been moved within its section. */
8469 new_offset = offset_with_removed_text (&relax_info->action_list,
8470 target_offset);
8471
8472 new_fix.target_offset = new_offset;
8473 new_fix.target_offset = new_offset;
8474 new_fix.translated = TRUE;
8475 *fix = new_fix;
8476 return TRUE;
8477 }
8478
8479
8480 /* Fix up a relocation to take account of removed literals. */
8481
8482 static void
8483 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8484 {
8485 asection *sec;
8486 xtensa_relax_info *relax_info;
8487 removed_literal *removed;
8488 bfd_vma new_offset, target_offset, removed_bytes;
8489
8490 *new_rel = *orig_rel;
8491
8492 if (!r_reloc_is_defined (orig_rel))
8493 return;
8494 sec = r_reloc_get_section (orig_rel);
8495
8496 relax_info = get_xtensa_relax_info (sec);
8497 BFD_ASSERT (relax_info);
8498
8499 if (!relax_info->is_relaxable_literal_section
8500 && !relax_info->is_relaxable_asm_section)
8501 return;
8502
8503 target_offset = orig_rel->target_offset;
8504
8505 removed = FALSE;
8506 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8507 {
8508 /* Check if the original relocation is against a literal being
8509 removed. */
8510 removed = find_removed_literal (&relax_info->removed_list,
8511 target_offset);
8512 }
8513 if (removed && removed->to.abfd)
8514 {
8515 asection *new_sec;
8516
8517 /* The fact that there is still a relocation to this literal indicates
8518 that the literal is being coalesced, not simply removed. */
8519 BFD_ASSERT (removed->to.abfd != NULL);
8520
8521 /* This was moved to some other address
8522 (possibly in another section). */
8523 *new_rel = removed->to;
8524 new_sec = r_reloc_get_section (new_rel);
8525 if (new_sec != sec)
8526 {
8527 sec = new_sec;
8528 relax_info = get_xtensa_relax_info (sec);
8529 if (!relax_info
8530 || (!relax_info->is_relaxable_literal_section
8531 && !relax_info->is_relaxable_asm_section))
8532 return;
8533 }
8534 target_offset = new_rel->target_offset;
8535 }
8536
8537 /* ...and the target address may have been moved within its section. */
8538 new_offset = offset_with_removed_text (&relax_info->action_list,
8539 target_offset);
8540
8541 /* Modify the offset and addend. */
8542 removed_bytes = target_offset - new_offset;
8543 new_rel->target_offset = new_offset;
8544 new_rel->rela.r_addend -= removed_bytes;
8545 }
8546
8547
8548 /* For dynamic links, there may be a dynamic relocation for each
8549 literal. The number of dynamic relocations must be computed in
8550 size_dynamic_sections, which occurs before relaxation. When a
8551 literal is removed, this function checks if there is a corresponding
8552 dynamic relocation and shrinks the size of the appropriate dynamic
8553 relocation section accordingly. At this point, the contents of the
8554 dynamic relocation sections have not yet been filled in, so there's
8555 nothing else that needs to be done. */
8556
8557 static void
8558 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8559 bfd *abfd,
8560 asection *input_section,
8561 Elf_Internal_Rela *rel)
8562 {
8563 Elf_Internal_Shdr *symtab_hdr;
8564 struct elf_link_hash_entry **sym_hashes;
8565 unsigned long r_symndx;
8566 int r_type;
8567 struct elf_link_hash_entry *h;
8568 bfd_boolean dynamic_symbol;
8569
8570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8571 sym_hashes = elf_sym_hashes (abfd);
8572
8573 r_type = ELF32_R_TYPE (rel->r_info);
8574 r_symndx = ELF32_R_SYM (rel->r_info);
8575
8576 if (r_symndx < symtab_hdr->sh_info)
8577 h = NULL;
8578 else
8579 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8580
8581 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
8582
8583 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8584 && (input_section->flags & SEC_ALLOC) != 0
8585 && (dynamic_symbol || info->shared))
8586 {
8587 bfd *dynobj;
8588 const char *srel_name;
8589 asection *srel;
8590 bfd_boolean is_plt = FALSE;
8591
8592 dynobj = elf_hash_table (info)->dynobj;
8593 BFD_ASSERT (dynobj != NULL);
8594
8595 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8596 {
8597 srel_name = ".rela.plt";
8598 is_plt = TRUE;
8599 }
8600 else
8601 srel_name = ".rela.got";
8602
8603 /* Reduce size of the .rela.* section by one reloc. */
8604 srel = bfd_get_section_by_name (dynobj, srel_name);
8605 BFD_ASSERT (srel != NULL);
8606 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8607 srel->size -= sizeof (Elf32_External_Rela);
8608
8609 if (is_plt)
8610 {
8611 asection *splt, *sgotplt, *srelgot;
8612 int reloc_index, chunk;
8613
8614 /* Find the PLT reloc index of the entry being removed. This
8615 is computed from the size of ".rela.plt". It is needed to
8616 figure out which PLT chunk to resize. Usually "last index
8617 = size - 1" since the index starts at zero, but in this
8618 context, the size has just been decremented so there's no
8619 need to subtract one. */
8620 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8621
8622 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8623 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8624 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8625 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8626
8627 /* Check if an entire PLT chunk has just been eliminated. */
8628 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8629 {
8630 /* The two magic GOT entries for that chunk can go away. */
8631 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8632 BFD_ASSERT (srelgot != NULL);
8633 srelgot->reloc_count -= 2;
8634 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8635 sgotplt->size -= 8;
8636
8637 /* There should be only one entry left (and it will be
8638 removed below). */
8639 BFD_ASSERT (sgotplt->size == 4);
8640 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8641 }
8642
8643 BFD_ASSERT (sgotplt->size >= 4);
8644 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8645
8646 sgotplt->size -= 4;
8647 splt->size -= PLT_ENTRY_SIZE;
8648 }
8649 }
8650 }
8651
8652
8653 /* Take an r_rel and move it to another section. This usually
8654 requires extending the interal_relocation array and pinning it. If
8655 the original r_rel is from the same BFD, we can complete this here.
8656 Otherwise, we add a fix record to let the final link fix the
8657 appropriate address. Contents and internal relocations for the
8658 section must be pinned after calling this routine. */
8659
8660 static bfd_boolean
8661 move_literal (bfd *abfd,
8662 struct bfd_link_info *link_info,
8663 asection *sec,
8664 bfd_vma offset,
8665 bfd_byte *contents,
8666 xtensa_relax_info *relax_info,
8667 Elf_Internal_Rela **internal_relocs_p,
8668 const literal_value *lit)
8669 {
8670 Elf_Internal_Rela *new_relocs = NULL;
8671 size_t new_relocs_count = 0;
8672 Elf_Internal_Rela this_rela;
8673 const r_reloc *r_rel;
8674
8675 r_rel = &lit->r_rel;
8676 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8677
8678 if (r_reloc_is_const (r_rel))
8679 bfd_put_32 (abfd, lit->value, contents + offset);
8680 else
8681 {
8682 int r_type;
8683 unsigned i;
8684 asection *target_sec;
8685 reloc_bfd_fix *fix;
8686 unsigned insert_at;
8687
8688 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8689 target_sec = r_reloc_get_section (r_rel);
8690
8691 /* This is the difficult case. We have to create a fix up. */
8692 this_rela.r_offset = offset;
8693 this_rela.r_info = ELF32_R_INFO (0, r_type);
8694 this_rela.r_addend =
8695 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8696 bfd_put_32 (abfd, lit->value, contents + offset);
8697
8698 /* Currently, we cannot move relocations during a relocatable link. */
8699 BFD_ASSERT (!link_info->relocatable);
8700 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8701 r_reloc_get_section (r_rel),
8702 r_rel->target_offset + r_rel->virtual_offset,
8703 FALSE);
8704 /* We also need to mark that relocations are needed here. */
8705 sec->flags |= SEC_RELOC;
8706
8707 translate_reloc_bfd_fix (fix);
8708 /* This fix has not yet been translated. */
8709 add_fix (sec, fix);
8710
8711 /* Add the relocation. If we have already allocated our own
8712 space for the relocations and we have room for more, then use
8713 it. Otherwise, allocate new space and move the literals. */
8714 insert_at = sec->reloc_count;
8715 for (i = 0; i < sec->reloc_count; ++i)
8716 {
8717 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8718 {
8719 insert_at = i;
8720 break;
8721 }
8722 }
8723
8724 if (*internal_relocs_p != relax_info->allocated_relocs
8725 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8726 {
8727 BFD_ASSERT (relax_info->allocated_relocs == NULL
8728 || sec->reloc_count == relax_info->relocs_count);
8729
8730 if (relax_info->allocated_relocs_count == 0)
8731 new_relocs_count = (sec->reloc_count + 2) * 2;
8732 else
8733 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8734
8735 new_relocs = (Elf_Internal_Rela *)
8736 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8737 if (!new_relocs)
8738 return FALSE;
8739
8740 /* We could handle this more quickly by finding the split point. */
8741 if (insert_at != 0)
8742 memcpy (new_relocs, *internal_relocs_p,
8743 insert_at * sizeof (Elf_Internal_Rela));
8744
8745 new_relocs[insert_at] = this_rela;
8746
8747 if (insert_at != sec->reloc_count)
8748 memcpy (new_relocs + insert_at + 1,
8749 (*internal_relocs_p) + insert_at,
8750 (sec->reloc_count - insert_at)
8751 * sizeof (Elf_Internal_Rela));
8752
8753 if (*internal_relocs_p != relax_info->allocated_relocs)
8754 {
8755 /* The first time we re-allocate, we can only free the
8756 old relocs if they were allocated with bfd_malloc.
8757 This is not true when keep_memory is in effect. */
8758 if (!link_info->keep_memory)
8759 free (*internal_relocs_p);
8760 }
8761 else
8762 free (*internal_relocs_p);
8763 relax_info->allocated_relocs = new_relocs;
8764 relax_info->allocated_relocs_count = new_relocs_count;
8765 elf_section_data (sec)->relocs = new_relocs;
8766 sec->reloc_count++;
8767 relax_info->relocs_count = sec->reloc_count;
8768 *internal_relocs_p = new_relocs;
8769 }
8770 else
8771 {
8772 if (insert_at != sec->reloc_count)
8773 {
8774 unsigned idx;
8775 for (idx = sec->reloc_count; idx > insert_at; idx--)
8776 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8777 }
8778 (*internal_relocs_p)[insert_at] = this_rela;
8779 sec->reloc_count++;
8780 if (relax_info->allocated_relocs)
8781 relax_info->relocs_count = sec->reloc_count;
8782 }
8783 }
8784 return TRUE;
8785 }
8786
8787
8788 /* This is similar to relax_section except that when a target is moved,
8789 we shift addresses up. We also need to modify the size. This
8790 algorithm does NOT allow for relocations into the middle of the
8791 property sections. */
8792
8793 static bfd_boolean
8794 relax_property_section (bfd *abfd,
8795 asection *sec,
8796 struct bfd_link_info *link_info)
8797 {
8798 Elf_Internal_Rela *internal_relocs;
8799 bfd_byte *contents;
8800 unsigned i, nexti;
8801 bfd_boolean ok = TRUE;
8802 bfd_boolean is_full_prop_section;
8803 size_t last_zfill_target_offset = 0;
8804 asection *last_zfill_target_sec = NULL;
8805 bfd_size_type sec_size;
8806
8807 sec_size = bfd_get_section_limit (abfd, sec);
8808 internal_relocs = retrieve_internal_relocs (abfd, sec,
8809 link_info->keep_memory);
8810 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8811 if (contents == NULL && sec_size != 0)
8812 {
8813 ok = FALSE;
8814 goto error_return;
8815 }
8816
8817 is_full_prop_section =
8818 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8819 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8820 sizeof ".gnu.linkonce.prop." - 1) == 0));
8821
8822 if (internal_relocs)
8823 {
8824 for (i = 0; i < sec->reloc_count; i++)
8825 {
8826 Elf_Internal_Rela *irel;
8827 xtensa_relax_info *target_relax_info;
8828 unsigned r_type;
8829 asection *target_sec;
8830 literal_value val;
8831 bfd_byte *size_p, *flags_p;
8832
8833 /* Locally change the source address.
8834 Translate the target to the new target address.
8835 If it points to this section and has been removed, MOVE IT.
8836 Also, don't forget to modify the associated SIZE at
8837 (offset + 4). */
8838
8839 irel = &internal_relocs[i];
8840 r_type = ELF32_R_TYPE (irel->r_info);
8841 if (r_type == R_XTENSA_NONE)
8842 continue;
8843
8844 /* Find the literal value. */
8845 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8846 size_p = &contents[irel->r_offset + 4];
8847 flags_p = NULL;
8848 if (is_full_prop_section)
8849 {
8850 flags_p = &contents[irel->r_offset + 8];
8851 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8852 }
8853 else
8854 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
8855
8856 target_sec = r_reloc_get_section (&val.r_rel);
8857 target_relax_info = get_xtensa_relax_info (target_sec);
8858
8859 if (target_relax_info
8860 && (target_relax_info->is_relaxable_literal_section
8861 || target_relax_info->is_relaxable_asm_section ))
8862 {
8863 /* Translate the relocation's destination. */
8864 bfd_vma new_offset, new_end_offset;
8865 long old_size, new_size;
8866
8867 new_offset = offset_with_removed_text
8868 (&target_relax_info->action_list, val.r_rel.target_offset);
8869
8870 /* Assert that we are not out of bounds. */
8871 old_size = bfd_get_32 (abfd, size_p);
8872
8873 if (old_size == 0)
8874 {
8875 /* Only the first zero-sized unreachable entry is
8876 allowed to expand. In this case the new offset
8877 should be the offset before the fill and the new
8878 size is the expansion size. For other zero-sized
8879 entries the resulting size should be zero with an
8880 offset before or after the fill address depending
8881 on whether the expanding unreachable entry
8882 preceeds it. */
8883 if (last_zfill_target_sec
8884 && last_zfill_target_sec == target_sec
8885 && last_zfill_target_offset == val.r_rel.target_offset)
8886 new_end_offset = new_offset;
8887 else
8888 {
8889 new_end_offset = new_offset;
8890 new_offset = offset_with_removed_text_before_fill
8891 (&target_relax_info->action_list,
8892 val.r_rel.target_offset);
8893
8894 /* If it is not unreachable and we have not yet
8895 seen an unreachable at this address, place it
8896 before the fill address. */
8897 if (!flags_p
8898 || (bfd_get_32 (abfd, flags_p)
8899 & XTENSA_PROP_UNREACHABLE) == 0)
8900 new_end_offset = new_offset;
8901 else
8902 {
8903 last_zfill_target_sec = target_sec;
8904 last_zfill_target_offset = val.r_rel.target_offset;
8905 }
8906 }
8907 }
8908 else
8909 {
8910 new_end_offset = offset_with_removed_text_before_fill
8911 (&target_relax_info->action_list,
8912 val.r_rel.target_offset + old_size);
8913 }
8914
8915 new_size = new_end_offset - new_offset;
8916
8917 if (new_size != old_size)
8918 {
8919 bfd_put_32 (abfd, new_size, size_p);
8920 pin_contents (sec, contents);
8921 }
8922
8923 if (new_offset != val.r_rel.target_offset)
8924 {
8925 bfd_vma diff = new_offset - val.r_rel.target_offset;
8926 irel->r_addend += diff;
8927 pin_internal_relocs (sec, internal_relocs);
8928 }
8929 }
8930 }
8931 }
8932
8933 /* Combine adjacent property table entries. This is also done in
8934 finish_dynamic_sections() but at that point it's too late to
8935 reclaim the space in the output section, so we do this twice. */
8936
8937 if (internal_relocs && (!link_info->relocatable
8938 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
8939 {
8940 Elf_Internal_Rela *last_irel = NULL;
8941 int removed_bytes = 0;
8942 bfd_vma offset, last_irel_offset;
8943 bfd_vma section_size;
8944 bfd_size_type entry_size;
8945 flagword predef_flags;
8946
8947 if (is_full_prop_section)
8948 entry_size = 12;
8949 else
8950 entry_size = 8;
8951
8952 predef_flags = xtensa_get_property_predef_flags (sec);
8953
8954 /* Walk over memory and irels at the same time.
8955 This REQUIRES that the internal_relocs be sorted by offset. */
8956 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8957 internal_reloc_compare);
8958 nexti = 0; /* Index into internal_relocs. */
8959
8960 pin_internal_relocs (sec, internal_relocs);
8961 pin_contents (sec, contents);
8962
8963 last_irel_offset = (bfd_vma) -1;
8964 section_size = sec->size;
8965 BFD_ASSERT (section_size % entry_size == 0);
8966
8967 for (offset = 0; offset < section_size; offset += entry_size)
8968 {
8969 Elf_Internal_Rela *irel, *next_irel;
8970 bfd_vma bytes_to_remove, size, actual_offset;
8971 bfd_boolean remove_this_irel;
8972 flagword flags;
8973
8974 irel = NULL;
8975 next_irel = NULL;
8976
8977 /* Find the next two relocations (if there are that many left),
8978 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8979 the starting reloc index. After these two loops, "i"
8980 is the index of the first non-NONE reloc past that starting
8981 index, and "nexti" is the index for the next non-NONE reloc
8982 after "i". */
8983
8984 for (i = nexti; i < sec->reloc_count; i++)
8985 {
8986 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8987 {
8988 irel = &internal_relocs[i];
8989 break;
8990 }
8991 internal_relocs[i].r_offset -= removed_bytes;
8992 }
8993
8994 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8995 {
8996 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8997 != R_XTENSA_NONE)
8998 {
8999 next_irel = &internal_relocs[nexti];
9000 break;
9001 }
9002 internal_relocs[nexti].r_offset -= removed_bytes;
9003 }
9004
9005 remove_this_irel = FALSE;
9006 bytes_to_remove = 0;
9007 actual_offset = offset - removed_bytes;
9008 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9009
9010 if (is_full_prop_section)
9011 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9012 else
9013 flags = predef_flags;
9014
9015 /* Check that the irels are sorted by offset,
9016 with only one per address. */
9017 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9018 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9019
9020 /* Make sure there aren't relocs on the size or flag fields. */
9021 if ((irel && irel->r_offset == offset + 4)
9022 || (is_full_prop_section
9023 && irel && irel->r_offset == offset + 8))
9024 {
9025 irel->r_offset -= removed_bytes;
9026 last_irel_offset = irel->r_offset;
9027 }
9028 else if (next_irel && (next_irel->r_offset == offset + 4
9029 || (is_full_prop_section
9030 && next_irel->r_offset == offset + 8)))
9031 {
9032 nexti += 1;
9033 irel->r_offset -= removed_bytes;
9034 next_irel->r_offset -= removed_bytes;
9035 last_irel_offset = next_irel->r_offset;
9036 }
9037 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9038 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9039 {
9040 /* Always remove entries with zero size and no alignment. */
9041 bytes_to_remove = entry_size;
9042 if (irel && irel->r_offset == offset)
9043 {
9044 remove_this_irel = TRUE;
9045
9046 irel->r_offset -= removed_bytes;
9047 last_irel_offset = irel->r_offset;
9048 }
9049 }
9050 else if (irel && irel->r_offset == offset)
9051 {
9052 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9053 {
9054 if (last_irel)
9055 {
9056 flagword old_flags;
9057 bfd_vma old_size =
9058 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9059 bfd_vma old_address =
9060 (last_irel->r_addend
9061 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9062 bfd_vma new_address =
9063 (irel->r_addend
9064 + bfd_get_32 (abfd, &contents[actual_offset]));
9065 if (is_full_prop_section)
9066 old_flags = bfd_get_32
9067 (abfd, &contents[last_irel->r_offset + 8]);
9068 else
9069 old_flags = predef_flags;
9070
9071 if ((ELF32_R_SYM (irel->r_info)
9072 == ELF32_R_SYM (last_irel->r_info))
9073 && old_address + old_size == new_address
9074 && old_flags == flags
9075 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9076 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9077 {
9078 /* Fix the old size. */
9079 bfd_put_32 (abfd, old_size + size,
9080 &contents[last_irel->r_offset + 4]);
9081 bytes_to_remove = entry_size;
9082 remove_this_irel = TRUE;
9083 }
9084 else
9085 last_irel = irel;
9086 }
9087 else
9088 last_irel = irel;
9089 }
9090
9091 irel->r_offset -= removed_bytes;
9092 last_irel_offset = irel->r_offset;
9093 }
9094
9095 if (remove_this_irel)
9096 {
9097 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9098 irel->r_offset -= bytes_to_remove;
9099 }
9100
9101 if (bytes_to_remove != 0)
9102 {
9103 removed_bytes += bytes_to_remove;
9104 if (offset + bytes_to_remove < section_size)
9105 memmove (&contents[actual_offset],
9106 &contents[actual_offset + bytes_to_remove],
9107 section_size - offset - bytes_to_remove);
9108 }
9109 }
9110
9111 if (removed_bytes)
9112 {
9113 /* Clear the removed bytes. */
9114 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9115
9116 sec->size = section_size - removed_bytes;
9117
9118 if (xtensa_is_littable_section (sec))
9119 {
9120 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9121 if (dynobj)
9122 {
9123 asection *sgotloc =
9124 bfd_get_section_by_name (dynobj, ".got.loc");
9125 if (sgotloc)
9126 sgotloc->size -= removed_bytes;
9127 }
9128 }
9129 }
9130 }
9131
9132 error_return:
9133 release_internal_relocs (sec, internal_relocs);
9134 release_contents (sec, contents);
9135 return ok;
9136 }
9137
9138 \f
9139 /* Third relaxation pass. */
9140
9141 /* Change symbol values to account for removed literals. */
9142
9143 bfd_boolean
9144 relax_section_symbols (bfd *abfd, asection *sec)
9145 {
9146 xtensa_relax_info *relax_info;
9147 unsigned int sec_shndx;
9148 Elf_Internal_Shdr *symtab_hdr;
9149 Elf_Internal_Sym *isymbuf;
9150 unsigned i, num_syms, num_locals;
9151
9152 relax_info = get_xtensa_relax_info (sec);
9153 BFD_ASSERT (relax_info);
9154
9155 if (!relax_info->is_relaxable_literal_section
9156 && !relax_info->is_relaxable_asm_section)
9157 return TRUE;
9158
9159 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9160
9161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9162 isymbuf = retrieve_local_syms (abfd);
9163
9164 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9165 num_locals = symtab_hdr->sh_info;
9166
9167 /* Adjust the local symbols defined in this section. */
9168 for (i = 0; i < num_locals; i++)
9169 {
9170 Elf_Internal_Sym *isym = &isymbuf[i];
9171
9172 if (isym->st_shndx == sec_shndx)
9173 {
9174 bfd_vma new_address = offset_with_removed_text
9175 (&relax_info->action_list, isym->st_value);
9176 bfd_vma new_size = isym->st_size;
9177
9178 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9179 {
9180 bfd_vma new_end = offset_with_removed_text
9181 (&relax_info->action_list, isym->st_value + isym->st_size);
9182 new_size = new_end - new_address;
9183 }
9184
9185 isym->st_value = new_address;
9186 isym->st_size = new_size;
9187 }
9188 }
9189
9190 /* Now adjust the global symbols defined in this section. */
9191 for (i = 0; i < (num_syms - num_locals); i++)
9192 {
9193 struct elf_link_hash_entry *sym_hash;
9194
9195 sym_hash = elf_sym_hashes (abfd)[i];
9196
9197 if (sym_hash->root.type == bfd_link_hash_warning)
9198 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9199
9200 if ((sym_hash->root.type == bfd_link_hash_defined
9201 || sym_hash->root.type == bfd_link_hash_defweak)
9202 && sym_hash->root.u.def.section == sec)
9203 {
9204 bfd_vma new_address = offset_with_removed_text
9205 (&relax_info->action_list, sym_hash->root.u.def.value);
9206 bfd_vma new_size = sym_hash->size;
9207
9208 if (sym_hash->type == STT_FUNC)
9209 {
9210 bfd_vma new_end = offset_with_removed_text
9211 (&relax_info->action_list,
9212 sym_hash->root.u.def.value + sym_hash->size);
9213 new_size = new_end - new_address;
9214 }
9215
9216 sym_hash->root.u.def.value = new_address;
9217 sym_hash->size = new_size;
9218 }
9219 }
9220
9221 return TRUE;
9222 }
9223
9224 \f
9225 /* "Fix" handling functions, called while performing relocations. */
9226
9227 static bfd_boolean
9228 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9229 bfd *input_bfd,
9230 asection *input_section,
9231 bfd_byte *contents)
9232 {
9233 r_reloc r_rel;
9234 asection *sec, *old_sec;
9235 bfd_vma old_offset;
9236 int r_type = ELF32_R_TYPE (rel->r_info);
9237 reloc_bfd_fix *fix;
9238
9239 if (r_type == R_XTENSA_NONE)
9240 return TRUE;
9241
9242 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9243 if (!fix)
9244 return TRUE;
9245
9246 r_reloc_init (&r_rel, input_bfd, rel, contents,
9247 bfd_get_section_limit (input_bfd, input_section));
9248 old_sec = r_reloc_get_section (&r_rel);
9249 old_offset = r_rel.target_offset;
9250
9251 if (!old_sec || !r_reloc_is_defined (&r_rel))
9252 {
9253 if (r_type != R_XTENSA_ASM_EXPAND)
9254 {
9255 (*_bfd_error_handler)
9256 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9257 input_bfd, input_section, rel->r_offset,
9258 elf_howto_table[r_type].name);
9259 return FALSE;
9260 }
9261 /* Leave it be. Resolution will happen in a later stage. */
9262 }
9263 else
9264 {
9265 sec = fix->target_sec;
9266 rel->r_addend += ((sec->output_offset + fix->target_offset)
9267 - (old_sec->output_offset + old_offset));
9268 }
9269 return TRUE;
9270 }
9271
9272
9273 static void
9274 do_fix_for_final_link (Elf_Internal_Rela *rel,
9275 bfd *input_bfd,
9276 asection *input_section,
9277 bfd_byte *contents,
9278 bfd_vma *relocationp)
9279 {
9280 asection *sec;
9281 int r_type = ELF32_R_TYPE (rel->r_info);
9282 reloc_bfd_fix *fix;
9283 bfd_vma fixup_diff;
9284
9285 if (r_type == R_XTENSA_NONE)
9286 return;
9287
9288 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9289 if (!fix)
9290 return;
9291
9292 sec = fix->target_sec;
9293
9294 fixup_diff = rel->r_addend;
9295 if (elf_howto_table[fix->src_type].partial_inplace)
9296 {
9297 bfd_vma inplace_val;
9298 BFD_ASSERT (fix->src_offset
9299 < bfd_get_section_limit (input_bfd, input_section));
9300 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9301 fixup_diff += inplace_val;
9302 }
9303
9304 *relocationp = (sec->output_section->vma
9305 + sec->output_offset
9306 + fix->target_offset - fixup_diff);
9307 }
9308
9309 \f
9310 /* Miscellaneous utility functions.... */
9311
9312 static asection *
9313 elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
9314 {
9315 char plt_name[10];
9316
9317 if (chunk == 0)
9318 return bfd_get_section_by_name (dynobj, ".plt");
9319
9320 sprintf (plt_name, ".plt.%u", chunk);
9321 return bfd_get_section_by_name (dynobj, plt_name);
9322 }
9323
9324
9325 static asection *
9326 elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
9327 {
9328 char got_name[14];
9329
9330 if (chunk == 0)
9331 return bfd_get_section_by_name (dynobj, ".got.plt");
9332
9333 sprintf (got_name, ".got.plt.%u", chunk);
9334 return bfd_get_section_by_name (dynobj, got_name);
9335 }
9336
9337
9338 /* Get the input section for a given symbol index.
9339 If the symbol is:
9340 . a section symbol, return the section;
9341 . a common symbol, return the common section;
9342 . an undefined symbol, return the undefined section;
9343 . an indirect symbol, follow the links;
9344 . an absolute value, return the absolute section. */
9345
9346 static asection *
9347 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9348 {
9349 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9350 asection *target_sec = NULL;
9351 if (r_symndx < symtab_hdr->sh_info)
9352 {
9353 Elf_Internal_Sym *isymbuf;
9354 unsigned int section_index;
9355
9356 isymbuf = retrieve_local_syms (abfd);
9357 section_index = isymbuf[r_symndx].st_shndx;
9358
9359 if (section_index == SHN_UNDEF)
9360 target_sec = bfd_und_section_ptr;
9361 else if (section_index > 0 && section_index < SHN_LORESERVE)
9362 target_sec = bfd_section_from_elf_index (abfd, section_index);
9363 else if (section_index == SHN_ABS)
9364 target_sec = bfd_abs_section_ptr;
9365 else if (section_index == SHN_COMMON)
9366 target_sec = bfd_com_section_ptr;
9367 else
9368 /* Who knows? */
9369 target_sec = NULL;
9370 }
9371 else
9372 {
9373 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9374 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9375
9376 while (h->root.type == bfd_link_hash_indirect
9377 || h->root.type == bfd_link_hash_warning)
9378 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9379
9380 switch (h->root.type)
9381 {
9382 case bfd_link_hash_defined:
9383 case bfd_link_hash_defweak:
9384 target_sec = h->root.u.def.section;
9385 break;
9386 case bfd_link_hash_common:
9387 target_sec = bfd_com_section_ptr;
9388 break;
9389 case bfd_link_hash_undefined:
9390 case bfd_link_hash_undefweak:
9391 target_sec = bfd_und_section_ptr;
9392 break;
9393 default: /* New indirect warning. */
9394 target_sec = bfd_und_section_ptr;
9395 break;
9396 }
9397 }
9398 return target_sec;
9399 }
9400
9401
9402 static struct elf_link_hash_entry *
9403 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9404 {
9405 unsigned long indx;
9406 struct elf_link_hash_entry *h;
9407 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9408
9409 if (r_symndx < symtab_hdr->sh_info)
9410 return NULL;
9411
9412 indx = r_symndx - symtab_hdr->sh_info;
9413 h = elf_sym_hashes (abfd)[indx];
9414 while (h->root.type == bfd_link_hash_indirect
9415 || h->root.type == bfd_link_hash_warning)
9416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9417 return h;
9418 }
9419
9420
9421 /* Get the section-relative offset for a symbol number. */
9422
9423 static bfd_vma
9424 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9425 {
9426 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9427 bfd_vma offset = 0;
9428
9429 if (r_symndx < symtab_hdr->sh_info)
9430 {
9431 Elf_Internal_Sym *isymbuf;
9432 isymbuf = retrieve_local_syms (abfd);
9433 offset = isymbuf[r_symndx].st_value;
9434 }
9435 else
9436 {
9437 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9438 struct elf_link_hash_entry *h =
9439 elf_sym_hashes (abfd)[indx];
9440
9441 while (h->root.type == bfd_link_hash_indirect
9442 || h->root.type == bfd_link_hash_warning)
9443 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9444 if (h->root.type == bfd_link_hash_defined
9445 || h->root.type == bfd_link_hash_defweak)
9446 offset = h->root.u.def.value;
9447 }
9448 return offset;
9449 }
9450
9451
9452 static bfd_boolean
9453 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9454 {
9455 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9456 struct elf_link_hash_entry *h;
9457
9458 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9459 if (h && h->root.type == bfd_link_hash_defweak)
9460 return TRUE;
9461 return FALSE;
9462 }
9463
9464
9465 static bfd_boolean
9466 pcrel_reloc_fits (xtensa_opcode opc,
9467 int opnd,
9468 bfd_vma self_address,
9469 bfd_vma dest_address)
9470 {
9471 xtensa_isa isa = xtensa_default_isa;
9472 uint32 valp = dest_address;
9473 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9474 || xtensa_operand_encode (isa, opc, opnd, &valp))
9475 return FALSE;
9476 return TRUE;
9477 }
9478
9479
9480 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9481 static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9482 static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
9483 static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
9484
9485
9486 static bfd_boolean
9487 xtensa_is_property_section (asection *sec)
9488 {
9489 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
9490 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9491 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
9492 return TRUE;
9493
9494 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9495 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9496 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9497 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
9498 return TRUE;
9499
9500 return FALSE;
9501 }
9502
9503
9504 static bfd_boolean
9505 xtensa_is_littable_section (asection *sec)
9506 {
9507 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9508 return TRUE;
9509
9510 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9511 && sec->name[linkonce_len] == 'p'
9512 && sec->name[linkonce_len + 1] == '.')
9513 return TRUE;
9514
9515 return FALSE;
9516 }
9517
9518
9519 static int
9520 internal_reloc_compare (const void *ap, const void *bp)
9521 {
9522 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9523 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9524
9525 if (a->r_offset != b->r_offset)
9526 return (a->r_offset - b->r_offset);
9527
9528 /* We don't need to sort on these criteria for correctness,
9529 but enforcing a more strict ordering prevents unstable qsort
9530 from behaving differently with different implementations.
9531 Without the code below we get correct but different results
9532 on Solaris 2.7 and 2.8. We would like to always produce the
9533 same results no matter the host. */
9534
9535 if (a->r_info != b->r_info)
9536 return (a->r_info - b->r_info);
9537
9538 return (a->r_addend - b->r_addend);
9539 }
9540
9541
9542 static int
9543 internal_reloc_matches (const void *ap, const void *bp)
9544 {
9545 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9546 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9547
9548 /* Check if one entry overlaps with the other; this shouldn't happen
9549 except when searching for a match. */
9550 return (a->r_offset - b->r_offset);
9551 }
9552
9553
9554 char *
9555 xtensa_get_property_section_name (asection *sec, const char *base_name)
9556 {
9557 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9558 {
9559 char *prop_sec_name;
9560 const char *suffix;
9561 char *linkonce_kind = 0;
9562
9563 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9564 linkonce_kind = "x.";
9565 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9566 linkonce_kind = "p.";
9567 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9568 linkonce_kind = "prop.";
9569 else
9570 abort ();
9571
9572 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9573 + strlen (linkonce_kind) + 1);
9574 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9575 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9576
9577 suffix = sec->name + linkonce_len;
9578 /* For backward compatibility, replace "t." instead of inserting
9579 the new linkonce_kind (but not for "prop" sections). */
9580 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9581 suffix += 2;
9582 strcat (prop_sec_name + linkonce_len, suffix);
9583
9584 return prop_sec_name;
9585 }
9586
9587 return strdup (base_name);
9588 }
9589
9590
9591 flagword
9592 xtensa_get_property_predef_flags (asection *sec)
9593 {
9594 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9595 || strncmp (sec->name, ".gnu.linkonce.x.",
9596 sizeof ".gnu.linkonce.x." - 1) == 0)
9597 return (XTENSA_PROP_INSN
9598 | XTENSA_PROP_INSN_NO_TRANSFORM
9599 | XTENSA_PROP_INSN_NO_REORDER);
9600
9601 if (xtensa_is_littable_section (sec))
9602 return (XTENSA_PROP_LITERAL
9603 | XTENSA_PROP_INSN_NO_TRANSFORM
9604 | XTENSA_PROP_INSN_NO_REORDER);
9605
9606 return 0;
9607 }
9608
9609 \f
9610 /* Other functions called directly by the linker. */
9611
9612 bfd_boolean
9613 xtensa_callback_required_dependence (bfd *abfd,
9614 asection *sec,
9615 struct bfd_link_info *link_info,
9616 deps_callback_t callback,
9617 void *closure)
9618 {
9619 Elf_Internal_Rela *internal_relocs;
9620 bfd_byte *contents;
9621 unsigned i;
9622 bfd_boolean ok = TRUE;
9623 bfd_size_type sec_size;
9624
9625 sec_size = bfd_get_section_limit (abfd, sec);
9626
9627 /* ".plt*" sections have no explicit relocations but they contain L32R
9628 instructions that reference the corresponding ".got.plt*" sections. */
9629 if ((sec->flags & SEC_LINKER_CREATED) != 0
9630 && strncmp (sec->name, ".plt", 4) == 0)
9631 {
9632 asection *sgotplt;
9633
9634 /* Find the corresponding ".got.plt*" section. */
9635 if (sec->name[4] == '\0')
9636 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9637 else
9638 {
9639 char got_name[14];
9640 int chunk = 0;
9641
9642 BFD_ASSERT (sec->name[4] == '.');
9643 chunk = strtol (&sec->name[5], NULL, 10);
9644
9645 sprintf (got_name, ".got.plt.%u", chunk);
9646 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9647 }
9648 BFD_ASSERT (sgotplt);
9649
9650 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9651 section referencing a literal at the very beginning of
9652 ".got.plt". This is very close to the real dependence, anyway. */
9653 (*callback) (sec, sec_size, sgotplt, 0, closure);
9654 }
9655
9656 internal_relocs = retrieve_internal_relocs (abfd, sec,
9657 link_info->keep_memory);
9658 if (internal_relocs == NULL
9659 || sec->reloc_count == 0)
9660 return ok;
9661
9662 /* Cache the contents for the duration of this scan. */
9663 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9664 if (contents == NULL && sec_size != 0)
9665 {
9666 ok = FALSE;
9667 goto error_return;
9668 }
9669
9670 if (!xtensa_default_isa)
9671 xtensa_default_isa = xtensa_isa_init (0, 0);
9672
9673 for (i = 0; i < sec->reloc_count; i++)
9674 {
9675 Elf_Internal_Rela *irel = &internal_relocs[i];
9676 if (is_l32r_relocation (abfd, sec, contents, irel))
9677 {
9678 r_reloc l32r_rel;
9679 asection *target_sec;
9680 bfd_vma target_offset;
9681
9682 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9683 target_sec = NULL;
9684 target_offset = 0;
9685 /* L32Rs must be local to the input file. */
9686 if (r_reloc_is_defined (&l32r_rel))
9687 {
9688 target_sec = r_reloc_get_section (&l32r_rel);
9689 target_offset = l32r_rel.target_offset;
9690 }
9691 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9692 closure);
9693 }
9694 }
9695
9696 error_return:
9697 release_internal_relocs (sec, internal_relocs);
9698 release_contents (sec, contents);
9699 return ok;
9700 }
9701
9702 /* The default literal sections should always be marked as "code" (i.e.,
9703 SHF_EXECINSTR). This is particularly important for the Linux kernel
9704 module loader so that the literals are not placed after the text. */
9705 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9706 {
9707 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9708 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9709 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9710 { NULL, 0, 0, 0, 0 }
9711 };
9712 \f
9713 #ifndef ELF_ARCH
9714 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9715 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9716 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9717 #define TARGET_BIG_NAME "elf32-xtensa-be"
9718 #define ELF_ARCH bfd_arch_xtensa
9719
9720 #define ELF_MACHINE_CODE EM_XTENSA
9721 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9722
9723 #if XCHAL_HAVE_MMU
9724 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9725 #else /* !XCHAL_HAVE_MMU */
9726 #define ELF_MAXPAGESIZE 1
9727 #endif /* !XCHAL_HAVE_MMU */
9728 #endif /* ELF_ARCH */
9729
9730 #define elf_backend_can_gc_sections 1
9731 #define elf_backend_can_refcount 1
9732 #define elf_backend_plt_readonly 1
9733 #define elf_backend_got_header_size 4
9734 #define elf_backend_want_dynbss 0
9735 #define elf_backend_want_got_plt 1
9736
9737 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9738
9739 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9740 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9741 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9742 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9743 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9744 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9745
9746 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9747 #define elf_backend_check_relocs elf_xtensa_check_relocs
9748 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9749 #define elf_backend_discard_info elf_xtensa_discard_info
9750 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9751 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9752 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9753 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9754 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9755 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9756 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9757 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9758 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9759 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9760 #define elf_backend_object_p elf_xtensa_object_p
9761 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9762 #define elf_backend_relocate_section elf_xtensa_relocate_section
9763 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9764 #define elf_backend_special_sections elf_xtensa_special_sections
9765
9766 #include "elf32-target.h"
This page took 0.246733 seconds and 4 git commands to generate.