xtensa: bfd: fix assertion in xlate_offset_with_removed_text
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Rename one of the generic section flags to better document how it
158 is used here. */
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
161 \f
162 static reloc_howto_type elf_howto_table[] =
163 {
164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 FALSE, 0, 0, FALSE),
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
170
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 FALSE, 0, 0xffffffff, FALSE),
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 FALSE, 0, 0xffffffff, FALSE),
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 FALSE, 0, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 FALSE, 0, 0xffffffff, FALSE),
191
192 EMPTY_HOWTO (7),
193
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
209 EMPTY_HOWTO (13),
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
214
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
218 FALSE, 0, 0, FALSE),
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 FALSE, 0, 0, FALSE),
223
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
318 };
319
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
330 {
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
433 default:
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
450 break;
451 }
452
453 /* xgettext:c-format */
454 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
455 bfd_set_error (bfd_error_bad_value);
456 TRACE ("Unknown");
457 return NULL;
458 }
459
460 static reloc_howto_type *
461 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
462 const char *r_name)
463 {
464 unsigned int i;
465
466 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
467 if (elf_howto_table[i].name != NULL
468 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
469 return &elf_howto_table[i];
470
471 return NULL;
472 }
473
474
475 /* Given an ELF "rela" relocation, find the corresponding howto and record
476 it in the BFD internal arelent representation of the relocation. */
477
478 static bfd_boolean
479 elf_xtensa_info_to_howto_rela (bfd *abfd,
480 arelent *cache_ptr,
481 Elf_Internal_Rela *dst)
482 {
483 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
484
485 if (r_type >= (unsigned int) R_XTENSA_max)
486 {
487 /* xgettext:c-format */
488 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
489 abfd, r_type);
490 bfd_set_error (bfd_error_bad_value);
491 return FALSE;
492 }
493 cache_ptr->howto = &elf_howto_table[r_type];
494 return TRUE;
495 }
496
497 \f
498 /* Functions for the Xtensa ELF linker. */
499
500 /* The name of the dynamic interpreter. This is put in the .interp
501 section. */
502
503 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
504
505 /* The size in bytes of an entry in the procedure linkage table.
506 (This does _not_ include the space for the literals associated with
507 the PLT entry.) */
508
509 #define PLT_ENTRY_SIZE 16
510
511 /* For _really_ large PLTs, we may need to alternate between literals
512 and code to keep the literals within the 256K range of the L32R
513 instructions in the code. It's unlikely that anyone would ever need
514 such a big PLT, but an arbitrary limit on the PLT size would be bad.
515 Thus, we split the PLT into chunks. Since there's very little
516 overhead (2 extra literals) for each chunk, the chunk size is kept
517 small so that the code for handling multiple chunks get used and
518 tested regularly. With 254 entries, there are 1K of literals for
519 each chunk, and that seems like a nice round number. */
520
521 #define PLT_ENTRIES_PER_CHUNK 254
522
523 /* PLT entries are actually used as stub functions for lazy symbol
524 resolution. Once the symbol is resolved, the stub function is never
525 invoked. Note: the 32-byte frame size used here cannot be changed
526 without a corresponding change in the runtime linker. */
527
528 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
529 {
530 {
531 0x6c, 0x10, 0x04, /* entry sp, 32 */
532 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
533 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
534 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
535 0x0a, 0x80, 0x00, /* jx a8 */
536 0 /* unused */
537 },
538 {
539 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0x0a, 0x80, 0x00, /* jx a8 */
543 0 /* unused */
544 }
545 };
546
547 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
548 {
549 {
550 0x36, 0x41, 0x00, /* entry sp, 32 */
551 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
552 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
553 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
554 0xa0, 0x08, 0x00, /* jx a8 */
555 0 /* unused */
556 },
557 {
558 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
559 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
560 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
561 0xa0, 0x08, 0x00, /* jx a8 */
562 0 /* unused */
563 }
564 };
565
566 /* The size of the thread control block. */
567 #define TCB_SIZE 8
568
569 struct elf_xtensa_link_hash_entry
570 {
571 struct elf_link_hash_entry elf;
572
573 bfd_signed_vma tlsfunc_refcount;
574
575 #define GOT_UNKNOWN 0
576 #define GOT_NORMAL 1
577 #define GOT_TLS_GD 2 /* global or local dynamic */
578 #define GOT_TLS_IE 4 /* initial or local exec */
579 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
580 unsigned char tls_type;
581 };
582
583 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
584
585 struct elf_xtensa_obj_tdata
586 {
587 struct elf_obj_tdata root;
588
589 /* tls_type for each local got entry. */
590 char *local_got_tls_type;
591
592 bfd_signed_vma *local_tlsfunc_refcounts;
593 };
594
595 #define elf_xtensa_tdata(abfd) \
596 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
597
598 #define elf_xtensa_local_got_tls_type(abfd) \
599 (elf_xtensa_tdata (abfd)->local_got_tls_type)
600
601 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
602 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
603
604 #define is_xtensa_elf(bfd) \
605 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
606 && elf_tdata (bfd) != NULL \
607 && elf_object_id (bfd) == XTENSA_ELF_DATA)
608
609 static bfd_boolean
610 elf_xtensa_mkobject (bfd *abfd)
611 {
612 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
613 XTENSA_ELF_DATA);
614 }
615
616 /* Xtensa ELF linker hash table. */
617
618 struct elf_xtensa_link_hash_table
619 {
620 struct elf_link_hash_table elf;
621
622 /* Short-cuts to get to dynamic linker sections. */
623 asection *sgotloc;
624 asection *spltlittbl;
625
626 /* Total count of PLT relocations seen during check_relocs.
627 The actual PLT code must be split into multiple sections and all
628 the sections have to be created before size_dynamic_sections,
629 where we figure out the exact number of PLT entries that will be
630 needed. It is OK if this count is an overestimate, e.g., some
631 relocations may be removed by GC. */
632 int plt_reloc_count;
633
634 struct elf_xtensa_link_hash_entry *tlsbase;
635 };
636
637 /* Get the Xtensa ELF linker hash table from a link_info structure. */
638
639 #define elf_xtensa_hash_table(p) \
640 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
641 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
642
643 /* Create an entry in an Xtensa ELF linker hash table. */
644
645 static struct bfd_hash_entry *
646 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
647 struct bfd_hash_table *table,
648 const char *string)
649 {
650 /* Allocate the structure if it has not already been allocated by a
651 subclass. */
652 if (entry == NULL)
653 {
654 entry = bfd_hash_allocate (table,
655 sizeof (struct elf_xtensa_link_hash_entry));
656 if (entry == NULL)
657 return entry;
658 }
659
660 /* Call the allocation method of the superclass. */
661 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
662 if (entry != NULL)
663 {
664 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
665 eh->tlsfunc_refcount = 0;
666 eh->tls_type = GOT_UNKNOWN;
667 }
668
669 return entry;
670 }
671
672 /* Create an Xtensa ELF linker hash table. */
673
674 static struct bfd_link_hash_table *
675 elf_xtensa_link_hash_table_create (bfd *abfd)
676 {
677 struct elf_link_hash_entry *tlsbase;
678 struct elf_xtensa_link_hash_table *ret;
679 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
680
681 ret = bfd_zmalloc (amt);
682 if (ret == NULL)
683 return NULL;
684
685 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
686 elf_xtensa_link_hash_newfunc,
687 sizeof (struct elf_xtensa_link_hash_entry),
688 XTENSA_ELF_DATA))
689 {
690 free (ret);
691 return NULL;
692 }
693
694 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
695 for it later. */
696 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
697 TRUE, FALSE, FALSE);
698 tlsbase->root.type = bfd_link_hash_new;
699 tlsbase->root.u.undef.abfd = NULL;
700 tlsbase->non_elf = 0;
701 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
702 ret->tlsbase->tls_type = GOT_UNKNOWN;
703
704 return &ret->elf.root;
705 }
706
707 /* Copy the extra info we tack onto an elf_link_hash_entry. */
708
709 static void
710 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
711 struct elf_link_hash_entry *dir,
712 struct elf_link_hash_entry *ind)
713 {
714 struct elf_xtensa_link_hash_entry *edir, *eind;
715
716 edir = elf_xtensa_hash_entry (dir);
717 eind = elf_xtensa_hash_entry (ind);
718
719 if (ind->root.type == bfd_link_hash_indirect)
720 {
721 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
722 eind->tlsfunc_refcount = 0;
723
724 if (dir->got.refcount <= 0)
725 {
726 edir->tls_type = eind->tls_type;
727 eind->tls_type = GOT_UNKNOWN;
728 }
729 }
730
731 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
732 }
733
734 static inline bfd_boolean
735 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
736 struct bfd_link_info *info)
737 {
738 /* Check if we should do dynamic things to this symbol. The
739 "ignore_protected" argument need not be set, because Xtensa code
740 does not require special handling of STV_PROTECTED to make function
741 pointer comparisons work properly. The PLT addresses are never
742 used for function pointers. */
743
744 return _bfd_elf_dynamic_symbol_p (h, info, 0);
745 }
746
747 \f
748 static int
749 property_table_compare (const void *ap, const void *bp)
750 {
751 const property_table_entry *a = (const property_table_entry *) ap;
752 const property_table_entry *b = (const property_table_entry *) bp;
753
754 if (a->address == b->address)
755 {
756 if (a->size != b->size)
757 return (a->size - b->size);
758
759 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
760 return ((b->flags & XTENSA_PROP_ALIGN)
761 - (a->flags & XTENSA_PROP_ALIGN));
762
763 if ((a->flags & XTENSA_PROP_ALIGN)
764 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
765 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
766 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
767 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
768
769 if ((a->flags & XTENSA_PROP_UNREACHABLE)
770 != (b->flags & XTENSA_PROP_UNREACHABLE))
771 return ((b->flags & XTENSA_PROP_UNREACHABLE)
772 - (a->flags & XTENSA_PROP_UNREACHABLE));
773
774 return (a->flags - b->flags);
775 }
776
777 return (a->address - b->address);
778 }
779
780
781 static int
782 property_table_matches (const void *ap, const void *bp)
783 {
784 const property_table_entry *a = (const property_table_entry *) ap;
785 const property_table_entry *b = (const property_table_entry *) bp;
786
787 /* Check if one entry overlaps with the other. */
788 if ((b->address >= a->address && b->address < (a->address + a->size))
789 || (a->address >= b->address && a->address < (b->address + b->size)))
790 return 0;
791
792 return (a->address - b->address);
793 }
794
795
796 /* Get the literal table or property table entries for the given
797 section. Sets TABLE_P and returns the number of entries. On
798 error, returns a negative value. */
799
800 static int
801 xtensa_read_table_entries (bfd *abfd,
802 asection *section,
803 property_table_entry **table_p,
804 const char *sec_name,
805 bfd_boolean output_addr)
806 {
807 asection *table_section;
808 bfd_size_type table_size = 0;
809 bfd_byte *table_data;
810 property_table_entry *blocks;
811 int blk, block_count;
812 bfd_size_type num_records;
813 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
814 bfd_vma section_addr, off;
815 flagword predef_flags;
816 bfd_size_type table_entry_size, section_limit;
817
818 if (!section
819 || !(section->flags & SEC_ALLOC)
820 || (section->flags & SEC_DEBUGGING))
821 {
822 *table_p = NULL;
823 return 0;
824 }
825
826 table_section = xtensa_get_property_section (section, sec_name);
827 if (table_section)
828 table_size = table_section->size;
829
830 if (table_size == 0)
831 {
832 *table_p = NULL;
833 return 0;
834 }
835
836 predef_flags = xtensa_get_property_predef_flags (table_section);
837 table_entry_size = 12;
838 if (predef_flags)
839 table_entry_size -= 4;
840
841 num_records = table_size / table_entry_size;
842 table_data = retrieve_contents (abfd, table_section, TRUE);
843 blocks = (property_table_entry *)
844 bfd_malloc (num_records * sizeof (property_table_entry));
845 block_count = 0;
846
847 if (output_addr)
848 section_addr = section->output_section->vma + section->output_offset;
849 else
850 section_addr = section->vma;
851
852 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
853 if (internal_relocs && !table_section->reloc_done)
854 {
855 qsort (internal_relocs, table_section->reloc_count,
856 sizeof (Elf_Internal_Rela), internal_reloc_compare);
857 irel = internal_relocs;
858 }
859 else
860 irel = NULL;
861
862 section_limit = bfd_get_section_limit (abfd, section);
863 rel_end = internal_relocs + table_section->reloc_count;
864
865 for (off = 0; off < table_size; off += table_entry_size)
866 {
867 bfd_vma address = bfd_get_32 (abfd, table_data + off);
868
869 /* Skip any relocations before the current offset. This should help
870 avoid confusion caused by unexpected relocations for the preceding
871 table entry. */
872 while (irel &&
873 (irel->r_offset < off
874 || (irel->r_offset == off
875 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
876 {
877 irel += 1;
878 if (irel >= rel_end)
879 irel = 0;
880 }
881
882 if (irel && irel->r_offset == off)
883 {
884 bfd_vma sym_off;
885 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
886 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
887
888 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
889 continue;
890
891 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
892 BFD_ASSERT (sym_off == 0);
893 address += (section_addr + sym_off + irel->r_addend);
894 }
895 else
896 {
897 if (address < section_addr
898 || address >= section_addr + section_limit)
899 continue;
900 }
901
902 blocks[block_count].address = address;
903 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
904 if (predef_flags)
905 blocks[block_count].flags = predef_flags;
906 else
907 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
908 block_count++;
909 }
910
911 release_contents (table_section, table_data);
912 release_internal_relocs (table_section, internal_relocs);
913
914 if (block_count > 0)
915 {
916 /* Now sort them into address order for easy reference. */
917 qsort (blocks, block_count, sizeof (property_table_entry),
918 property_table_compare);
919
920 /* Check that the table contents are valid. Problems may occur,
921 for example, if an unrelocated object file is stripped. */
922 for (blk = 1; blk < block_count; blk++)
923 {
924 /* The only circumstance where two entries may legitimately
925 have the same address is when one of them is a zero-size
926 placeholder to mark a place where fill can be inserted.
927 The zero-size entry should come first. */
928 if (blocks[blk - 1].address == blocks[blk].address &&
929 blocks[blk - 1].size != 0)
930 {
931 /* xgettext:c-format */
932 _bfd_error_handler (_("%pB(%pA): invalid property table"),
933 abfd, section);
934 bfd_set_error (bfd_error_bad_value);
935 free (blocks);
936 return -1;
937 }
938 }
939 }
940
941 *table_p = blocks;
942 return block_count;
943 }
944
945
946 static property_table_entry *
947 elf_xtensa_find_property_entry (property_table_entry *property_table,
948 int property_table_size,
949 bfd_vma addr)
950 {
951 property_table_entry entry;
952 property_table_entry *rv;
953
954 if (property_table_size == 0)
955 return NULL;
956
957 entry.address = addr;
958 entry.size = 1;
959 entry.flags = 0;
960
961 rv = bsearch (&entry, property_table, property_table_size,
962 sizeof (property_table_entry), property_table_matches);
963 return rv;
964 }
965
966
967 static bfd_boolean
968 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
969 int lit_table_size,
970 bfd_vma addr)
971 {
972 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
973 return TRUE;
974
975 return FALSE;
976 }
977
978 \f
979 /* Look through the relocs for a section during the first phase, and
980 calculate needed space in the dynamic reloc sections. */
981
982 static bfd_boolean
983 elf_xtensa_check_relocs (bfd *abfd,
984 struct bfd_link_info *info,
985 asection *sec,
986 const Elf_Internal_Rela *relocs)
987 {
988 struct elf_xtensa_link_hash_table *htab;
989 Elf_Internal_Shdr *symtab_hdr;
990 struct elf_link_hash_entry **sym_hashes;
991 const Elf_Internal_Rela *rel;
992 const Elf_Internal_Rela *rel_end;
993
994 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
995 return TRUE;
996
997 BFD_ASSERT (is_xtensa_elf (abfd));
998
999 htab = elf_xtensa_hash_table (info);
1000 if (htab == NULL)
1001 return FALSE;
1002
1003 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1004 sym_hashes = elf_sym_hashes (abfd);
1005
1006 rel_end = relocs + sec->reloc_count;
1007 for (rel = relocs; rel < rel_end; rel++)
1008 {
1009 unsigned int r_type;
1010 unsigned r_symndx;
1011 struct elf_link_hash_entry *h = NULL;
1012 struct elf_xtensa_link_hash_entry *eh;
1013 int tls_type, old_tls_type;
1014 bfd_boolean is_got = FALSE;
1015 bfd_boolean is_plt = FALSE;
1016 bfd_boolean is_tlsfunc = FALSE;
1017
1018 r_symndx = ELF32_R_SYM (rel->r_info);
1019 r_type = ELF32_R_TYPE (rel->r_info);
1020
1021 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1022 {
1023 /* xgettext:c-format */
1024 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1025 abfd, r_symndx);
1026 return FALSE;
1027 }
1028
1029 if (r_symndx >= symtab_hdr->sh_info)
1030 {
1031 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1032 while (h->root.type == bfd_link_hash_indirect
1033 || h->root.type == bfd_link_hash_warning)
1034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1035 }
1036 eh = elf_xtensa_hash_entry (h);
1037
1038 switch (r_type)
1039 {
1040 case R_XTENSA_TLSDESC_FN:
1041 if (bfd_link_pic (info))
1042 {
1043 tls_type = GOT_TLS_GD;
1044 is_got = TRUE;
1045 is_tlsfunc = TRUE;
1046 }
1047 else
1048 tls_type = GOT_TLS_IE;
1049 break;
1050
1051 case R_XTENSA_TLSDESC_ARG:
1052 if (bfd_link_pic (info))
1053 {
1054 tls_type = GOT_TLS_GD;
1055 is_got = TRUE;
1056 }
1057 else
1058 {
1059 tls_type = GOT_TLS_IE;
1060 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1061 is_got = TRUE;
1062 }
1063 break;
1064
1065 case R_XTENSA_TLS_DTPOFF:
1066 if (bfd_link_pic (info))
1067 tls_type = GOT_TLS_GD;
1068 else
1069 tls_type = GOT_TLS_IE;
1070 break;
1071
1072 case R_XTENSA_TLS_TPOFF:
1073 tls_type = GOT_TLS_IE;
1074 if (bfd_link_pic (info))
1075 info->flags |= DF_STATIC_TLS;
1076 if (bfd_link_pic (info) || h)
1077 is_got = TRUE;
1078 break;
1079
1080 case R_XTENSA_32:
1081 tls_type = GOT_NORMAL;
1082 is_got = TRUE;
1083 break;
1084
1085 case R_XTENSA_PLT:
1086 tls_type = GOT_NORMAL;
1087 is_plt = TRUE;
1088 break;
1089
1090 case R_XTENSA_GNU_VTINHERIT:
1091 /* This relocation describes the C++ object vtable hierarchy.
1092 Reconstruct it for later use during GC. */
1093 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1094 return FALSE;
1095 continue;
1096
1097 case R_XTENSA_GNU_VTENTRY:
1098 /* This relocation describes which C++ vtable entries are actually
1099 used. Record for later use during GC. */
1100 BFD_ASSERT (h != NULL);
1101 if (h != NULL
1102 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1103 return FALSE;
1104 continue;
1105
1106 default:
1107 /* Nothing to do for any other relocations. */
1108 continue;
1109 }
1110
1111 if (h)
1112 {
1113 if (is_plt)
1114 {
1115 if (h->plt.refcount <= 0)
1116 {
1117 h->needs_plt = 1;
1118 h->plt.refcount = 1;
1119 }
1120 else
1121 h->plt.refcount += 1;
1122
1123 /* Keep track of the total PLT relocation count even if we
1124 don't yet know whether the dynamic sections will be
1125 created. */
1126 htab->plt_reloc_count += 1;
1127
1128 if (elf_hash_table (info)->dynamic_sections_created)
1129 {
1130 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1131 return FALSE;
1132 }
1133 }
1134 else if (is_got)
1135 {
1136 if (h->got.refcount <= 0)
1137 h->got.refcount = 1;
1138 else
1139 h->got.refcount += 1;
1140 }
1141
1142 if (is_tlsfunc)
1143 eh->tlsfunc_refcount += 1;
1144
1145 old_tls_type = eh->tls_type;
1146 }
1147 else
1148 {
1149 /* Allocate storage the first time. */
1150 if (elf_local_got_refcounts (abfd) == NULL)
1151 {
1152 bfd_size_type size = symtab_hdr->sh_info;
1153 void *mem;
1154
1155 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1156 if (mem == NULL)
1157 return FALSE;
1158 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1159
1160 mem = bfd_zalloc (abfd, size);
1161 if (mem == NULL)
1162 return FALSE;
1163 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1164
1165 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1166 if (mem == NULL)
1167 return FALSE;
1168 elf_xtensa_local_tlsfunc_refcounts (abfd)
1169 = (bfd_signed_vma *) mem;
1170 }
1171
1172 /* This is a global offset table entry for a local symbol. */
1173 if (is_got || is_plt)
1174 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1175
1176 if (is_tlsfunc)
1177 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1178
1179 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1180 }
1181
1182 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1183 tls_type |= old_tls_type;
1184 /* If a TLS symbol is accessed using IE at least once,
1185 there is no point to use a dynamic model for it. */
1186 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1187 && ((old_tls_type & GOT_TLS_GD) == 0
1188 || (tls_type & GOT_TLS_IE) == 0))
1189 {
1190 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1191 tls_type = old_tls_type;
1192 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1193 tls_type |= old_tls_type;
1194 else
1195 {
1196 _bfd_error_handler
1197 /* xgettext:c-format */
1198 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1199 abfd,
1200 h ? h->root.root.string : "<local>");
1201 return FALSE;
1202 }
1203 }
1204
1205 if (old_tls_type != tls_type)
1206 {
1207 if (eh)
1208 eh->tls_type = tls_type;
1209 else
1210 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1211 }
1212 }
1213
1214 return TRUE;
1215 }
1216
1217
1218 static void
1219 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1220 struct elf_link_hash_entry *h)
1221 {
1222 if (bfd_link_pic (info))
1223 {
1224 if (h->plt.refcount > 0)
1225 {
1226 /* For shared objects, there's no need for PLT entries for local
1227 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1228 if (h->got.refcount < 0)
1229 h->got.refcount = 0;
1230 h->got.refcount += h->plt.refcount;
1231 h->plt.refcount = 0;
1232 }
1233 }
1234 else
1235 {
1236 /* Don't need any dynamic relocations at all. */
1237 h->plt.refcount = 0;
1238 h->got.refcount = 0;
1239 }
1240 }
1241
1242
1243 static void
1244 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1245 struct elf_link_hash_entry *h,
1246 bfd_boolean force_local)
1247 {
1248 /* For a shared link, move the plt refcount to the got refcount to leave
1249 space for RELATIVE relocs. */
1250 elf_xtensa_make_sym_local (info, h);
1251
1252 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1253 }
1254
1255
1256 /* Return the section that should be marked against GC for a given
1257 relocation. */
1258
1259 static asection *
1260 elf_xtensa_gc_mark_hook (asection *sec,
1261 struct bfd_link_info *info,
1262 Elf_Internal_Rela *rel,
1263 struct elf_link_hash_entry *h,
1264 Elf_Internal_Sym *sym)
1265 {
1266 /* Property sections are marked "KEEP" in the linker scripts, but they
1267 should not cause other sections to be marked. (This approach relies
1268 on elf_xtensa_discard_info to remove property table entries that
1269 describe discarded sections. Alternatively, it might be more
1270 efficient to avoid using "KEEP" in the linker scripts and instead use
1271 the gc_mark_extra_sections hook to mark only the property sections
1272 that describe marked sections. That alternative does not work well
1273 with the current property table sections, which do not correspond
1274 one-to-one with the sections they describe, but that should be fixed
1275 someday.) */
1276 if (xtensa_is_property_section (sec))
1277 return NULL;
1278
1279 if (h != NULL)
1280 switch (ELF32_R_TYPE (rel->r_info))
1281 {
1282 case R_XTENSA_GNU_VTINHERIT:
1283 case R_XTENSA_GNU_VTENTRY:
1284 return NULL;
1285 }
1286
1287 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1288 }
1289
1290
1291 /* Create all the dynamic sections. */
1292
1293 static bfd_boolean
1294 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1295 {
1296 struct elf_xtensa_link_hash_table *htab;
1297 flagword flags, noalloc_flags;
1298
1299 htab = elf_xtensa_hash_table (info);
1300 if (htab == NULL)
1301 return FALSE;
1302
1303 /* First do all the standard stuff. */
1304 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1305 return FALSE;
1306
1307 /* Create any extra PLT sections in case check_relocs has already
1308 been called on all the non-dynamic input files. */
1309 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1310 return FALSE;
1311
1312 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1313 | SEC_LINKER_CREATED | SEC_READONLY);
1314 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1315
1316 /* Mark the ".got.plt" section READONLY. */
1317 if (htab->elf.sgotplt == NULL
1318 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1319 return FALSE;
1320
1321 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1322 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1323 flags);
1324 if (htab->sgotloc == NULL
1325 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1326 return FALSE;
1327
1328 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1329 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1330 noalloc_flags);
1331 if (htab->spltlittbl == NULL
1332 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1333 return FALSE;
1334
1335 return TRUE;
1336 }
1337
1338
1339 static bfd_boolean
1340 add_extra_plt_sections (struct bfd_link_info *info, int count)
1341 {
1342 bfd *dynobj = elf_hash_table (info)->dynobj;
1343 int chunk;
1344
1345 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1346 ".got.plt" sections. */
1347 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1348 {
1349 char *sname;
1350 flagword flags;
1351 asection *s;
1352
1353 /* Stop when we find a section has already been created. */
1354 if (elf_xtensa_get_plt_section (info, chunk))
1355 break;
1356
1357 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1358 | SEC_LINKER_CREATED | SEC_READONLY);
1359
1360 sname = (char *) bfd_malloc (10);
1361 sprintf (sname, ".plt.%u", chunk);
1362 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1363 if (s == NULL
1364 || ! bfd_set_section_alignment (dynobj, s, 2))
1365 return FALSE;
1366
1367 sname = (char *) bfd_malloc (14);
1368 sprintf (sname, ".got.plt.%u", chunk);
1369 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1370 if (s == NULL
1371 || ! bfd_set_section_alignment (dynobj, s, 2))
1372 return FALSE;
1373 }
1374
1375 return TRUE;
1376 }
1377
1378
1379 /* Adjust a symbol defined by a dynamic object and referenced by a
1380 regular object. The current definition is in some section of the
1381 dynamic object, but we're not including those sections. We have to
1382 change the definition to something the rest of the link can
1383 understand. */
1384
1385 static bfd_boolean
1386 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1387 struct elf_link_hash_entry *h)
1388 {
1389 /* If this is a weak symbol, and there is a real definition, the
1390 processor independent code will have arranged for us to see the
1391 real definition first, and we can just use the same value. */
1392 if (h->is_weakalias)
1393 {
1394 struct elf_link_hash_entry *def = weakdef (h);
1395 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1396 h->root.u.def.section = def->root.u.def.section;
1397 h->root.u.def.value = def->root.u.def.value;
1398 return TRUE;
1399 }
1400
1401 /* This is a reference to a symbol defined by a dynamic object. The
1402 reference must go through the GOT, so there's no need for COPY relocs,
1403 .dynbss, etc. */
1404
1405 return TRUE;
1406 }
1407
1408
1409 static bfd_boolean
1410 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1411 {
1412 struct bfd_link_info *info;
1413 struct elf_xtensa_link_hash_table *htab;
1414 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1415
1416 if (h->root.type == bfd_link_hash_indirect)
1417 return TRUE;
1418
1419 info = (struct bfd_link_info *) arg;
1420 htab = elf_xtensa_hash_table (info);
1421 if (htab == NULL)
1422 return FALSE;
1423
1424 /* If we saw any use of an IE model for this symbol, we can then optimize
1425 away GOT entries for any TLSDESC_FN relocs. */
1426 if ((eh->tls_type & GOT_TLS_IE) != 0)
1427 {
1428 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1429 h->got.refcount -= eh->tlsfunc_refcount;
1430 }
1431
1432 if (! elf_xtensa_dynamic_symbol_p (h, info))
1433 elf_xtensa_make_sym_local (info, h);
1434
1435 if (h->plt.refcount > 0)
1436 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1437
1438 if (h->got.refcount > 0)
1439 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1440
1441 return TRUE;
1442 }
1443
1444
1445 static void
1446 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1447 {
1448 struct elf_xtensa_link_hash_table *htab;
1449 bfd *i;
1450
1451 htab = elf_xtensa_hash_table (info);
1452 if (htab == NULL)
1453 return;
1454
1455 for (i = info->input_bfds; i; i = i->link.next)
1456 {
1457 bfd_signed_vma *local_got_refcounts;
1458 bfd_size_type j, cnt;
1459 Elf_Internal_Shdr *symtab_hdr;
1460
1461 local_got_refcounts = elf_local_got_refcounts (i);
1462 if (!local_got_refcounts)
1463 continue;
1464
1465 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1466 cnt = symtab_hdr->sh_info;
1467
1468 for (j = 0; j < cnt; ++j)
1469 {
1470 /* If we saw any use of an IE model for this symbol, we can
1471 then optimize away GOT entries for any TLSDESC_FN relocs. */
1472 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1473 {
1474 bfd_signed_vma *tlsfunc_refcount
1475 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1476 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1477 local_got_refcounts[j] -= *tlsfunc_refcount;
1478 }
1479
1480 if (local_got_refcounts[j] > 0)
1481 htab->elf.srelgot->size += (local_got_refcounts[j]
1482 * sizeof (Elf32_External_Rela));
1483 }
1484 }
1485 }
1486
1487
1488 /* Set the sizes of the dynamic sections. */
1489
1490 static bfd_boolean
1491 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1492 struct bfd_link_info *info)
1493 {
1494 struct elf_xtensa_link_hash_table *htab;
1495 bfd *dynobj, *abfd;
1496 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1497 bfd_boolean relplt, relgot;
1498 int plt_entries, plt_chunks, chunk;
1499
1500 plt_entries = 0;
1501 plt_chunks = 0;
1502
1503 htab = elf_xtensa_hash_table (info);
1504 if (htab == NULL)
1505 return FALSE;
1506
1507 dynobj = elf_hash_table (info)->dynobj;
1508 if (dynobj == NULL)
1509 abort ();
1510 srelgot = htab->elf.srelgot;
1511 srelplt = htab->elf.srelplt;
1512
1513 if (elf_hash_table (info)->dynamic_sections_created)
1514 {
1515 BFD_ASSERT (htab->elf.srelgot != NULL
1516 && htab->elf.srelplt != NULL
1517 && htab->elf.sgot != NULL
1518 && htab->spltlittbl != NULL
1519 && htab->sgotloc != NULL);
1520
1521 /* Set the contents of the .interp section to the interpreter. */
1522 if (bfd_link_executable (info) && !info->nointerp)
1523 {
1524 s = bfd_get_linker_section (dynobj, ".interp");
1525 if (s == NULL)
1526 abort ();
1527 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1528 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1529 }
1530
1531 /* Allocate room for one word in ".got". */
1532 htab->elf.sgot->size = 4;
1533
1534 /* Allocate space in ".rela.got" for literals that reference global
1535 symbols and space in ".rela.plt" for literals that have PLT
1536 entries. */
1537 elf_link_hash_traverse (elf_hash_table (info),
1538 elf_xtensa_allocate_dynrelocs,
1539 (void *) info);
1540
1541 /* If we are generating a shared object, we also need space in
1542 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1543 reference local symbols. */
1544 if (bfd_link_pic (info))
1545 elf_xtensa_allocate_local_got_size (info);
1546
1547 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1548 each PLT entry, we need the PLT code plus a 4-byte literal.
1549 For each chunk of ".plt", we also need two more 4-byte
1550 literals, two corresponding entries in ".rela.got", and an
1551 8-byte entry in ".xt.lit.plt". */
1552 spltlittbl = htab->spltlittbl;
1553 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1554 plt_chunks =
1555 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1556
1557 /* Iterate over all the PLT chunks, including any extra sections
1558 created earlier because the initial count of PLT relocations
1559 was an overestimate. */
1560 for (chunk = 0;
1561 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1562 chunk++)
1563 {
1564 int chunk_entries;
1565
1566 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1567 BFD_ASSERT (sgotplt != NULL);
1568
1569 if (chunk < plt_chunks - 1)
1570 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1571 else if (chunk == plt_chunks - 1)
1572 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1573 else
1574 chunk_entries = 0;
1575
1576 if (chunk_entries != 0)
1577 {
1578 sgotplt->size = 4 * (chunk_entries + 2);
1579 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1580 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1581 spltlittbl->size += 8;
1582 }
1583 else
1584 {
1585 sgotplt->size = 0;
1586 splt->size = 0;
1587 }
1588 }
1589
1590 /* Allocate space in ".got.loc" to match the total size of all the
1591 literal tables. */
1592 sgotloc = htab->sgotloc;
1593 sgotloc->size = spltlittbl->size;
1594 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1595 {
1596 if (abfd->flags & DYNAMIC)
1597 continue;
1598 for (s = abfd->sections; s != NULL; s = s->next)
1599 {
1600 if (! discarded_section (s)
1601 && xtensa_is_littable_section (s)
1602 && s != spltlittbl)
1603 sgotloc->size += s->size;
1604 }
1605 }
1606 }
1607
1608 /* Allocate memory for dynamic sections. */
1609 relplt = FALSE;
1610 relgot = FALSE;
1611 for (s = dynobj->sections; s != NULL; s = s->next)
1612 {
1613 const char *name;
1614
1615 if ((s->flags & SEC_LINKER_CREATED) == 0)
1616 continue;
1617
1618 /* It's OK to base decisions on the section name, because none
1619 of the dynobj section names depend upon the input files. */
1620 name = bfd_get_section_name (dynobj, s);
1621
1622 if (CONST_STRNEQ (name, ".rela"))
1623 {
1624 if (s->size != 0)
1625 {
1626 if (strcmp (name, ".rela.plt") == 0)
1627 relplt = TRUE;
1628 else if (strcmp (name, ".rela.got") == 0)
1629 relgot = TRUE;
1630
1631 /* We use the reloc_count field as a counter if we need
1632 to copy relocs into the output file. */
1633 s->reloc_count = 0;
1634 }
1635 }
1636 else if (! CONST_STRNEQ (name, ".plt.")
1637 && ! CONST_STRNEQ (name, ".got.plt.")
1638 && strcmp (name, ".got") != 0
1639 && strcmp (name, ".plt") != 0
1640 && strcmp (name, ".got.plt") != 0
1641 && strcmp (name, ".xt.lit.plt") != 0
1642 && strcmp (name, ".got.loc") != 0)
1643 {
1644 /* It's not one of our sections, so don't allocate space. */
1645 continue;
1646 }
1647
1648 if (s->size == 0)
1649 {
1650 /* If we don't need this section, strip it from the output
1651 file. We must create the ".plt*" and ".got.plt*"
1652 sections in create_dynamic_sections and/or check_relocs
1653 based on a conservative estimate of the PLT relocation
1654 count, because the sections must be created before the
1655 linker maps input sections to output sections. The
1656 linker does that before size_dynamic_sections, where we
1657 compute the exact size of the PLT, so there may be more
1658 of these sections than are actually needed. */
1659 s->flags |= SEC_EXCLUDE;
1660 }
1661 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1662 {
1663 /* Allocate memory for the section contents. */
1664 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1665 if (s->contents == NULL)
1666 return FALSE;
1667 }
1668 }
1669
1670 if (elf_hash_table (info)->dynamic_sections_created)
1671 {
1672 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1673 known until finish_dynamic_sections, but we need to get the relocs
1674 in place before they are sorted. */
1675 for (chunk = 0; chunk < plt_chunks; chunk++)
1676 {
1677 Elf_Internal_Rela irela;
1678 bfd_byte *loc;
1679
1680 irela.r_offset = 0;
1681 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1682 irela.r_addend = 0;
1683
1684 loc = (srelgot->contents
1685 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1686 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1687 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1688 loc + sizeof (Elf32_External_Rela));
1689 srelgot->reloc_count += 2;
1690 }
1691
1692 /* Add some entries to the .dynamic section. We fill in the
1693 values later, in elf_xtensa_finish_dynamic_sections, but we
1694 must add the entries now so that we get the correct size for
1695 the .dynamic section. The DT_DEBUG entry is filled in by the
1696 dynamic linker and used by the debugger. */
1697 #define add_dynamic_entry(TAG, VAL) \
1698 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1699
1700 if (bfd_link_executable (info))
1701 {
1702 if (!add_dynamic_entry (DT_DEBUG, 0))
1703 return FALSE;
1704 }
1705
1706 if (relplt)
1707 {
1708 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1709 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1710 || !add_dynamic_entry (DT_JMPREL, 0))
1711 return FALSE;
1712 }
1713
1714 if (relgot)
1715 {
1716 if (!add_dynamic_entry (DT_RELA, 0)
1717 || !add_dynamic_entry (DT_RELASZ, 0)
1718 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1719 return FALSE;
1720 }
1721
1722 if (!add_dynamic_entry (DT_PLTGOT, 0)
1723 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1724 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1725 return FALSE;
1726 }
1727 #undef add_dynamic_entry
1728
1729 return TRUE;
1730 }
1731
1732 static bfd_boolean
1733 elf_xtensa_always_size_sections (bfd *output_bfd,
1734 struct bfd_link_info *info)
1735 {
1736 struct elf_xtensa_link_hash_table *htab;
1737 asection *tls_sec;
1738
1739 htab = elf_xtensa_hash_table (info);
1740 if (htab == NULL)
1741 return FALSE;
1742
1743 tls_sec = htab->elf.tls_sec;
1744
1745 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1746 {
1747 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1748 struct bfd_link_hash_entry *bh = &tlsbase->root;
1749 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1750
1751 tlsbase->type = STT_TLS;
1752 if (!(_bfd_generic_link_add_one_symbol
1753 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1754 tls_sec, 0, NULL, FALSE,
1755 bed->collect, &bh)))
1756 return FALSE;
1757 tlsbase->def_regular = 1;
1758 tlsbase->other = STV_HIDDEN;
1759 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1760 }
1761
1762 return TRUE;
1763 }
1764
1765 \f
1766 /* Return the base VMA address which should be subtracted from real addresses
1767 when resolving @dtpoff relocation.
1768 This is PT_TLS segment p_vaddr. */
1769
1770 static bfd_vma
1771 dtpoff_base (struct bfd_link_info *info)
1772 {
1773 /* If tls_sec is NULL, we should have signalled an error already. */
1774 if (elf_hash_table (info)->tls_sec == NULL)
1775 return 0;
1776 return elf_hash_table (info)->tls_sec->vma;
1777 }
1778
1779 /* Return the relocation value for @tpoff relocation
1780 if STT_TLS virtual address is ADDRESS. */
1781
1782 static bfd_vma
1783 tpoff (struct bfd_link_info *info, bfd_vma address)
1784 {
1785 struct elf_link_hash_table *htab = elf_hash_table (info);
1786 bfd_vma base;
1787
1788 /* If tls_sec is NULL, we should have signalled an error already. */
1789 if (htab->tls_sec == NULL)
1790 return 0;
1791 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1792 return address - htab->tls_sec->vma + base;
1793 }
1794
1795 /* Perform the specified relocation. The instruction at (contents + address)
1796 is modified to set one operand to represent the value in "relocation". The
1797 operand position is determined by the relocation type recorded in the
1798 howto. */
1799
1800 #define CALL_SEGMENT_BITS (30)
1801 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1802
1803 static bfd_reloc_status_type
1804 elf_xtensa_do_reloc (reloc_howto_type *howto,
1805 bfd *abfd,
1806 asection *input_section,
1807 bfd_vma relocation,
1808 bfd_byte *contents,
1809 bfd_vma address,
1810 bfd_boolean is_weak_undef,
1811 char **error_message)
1812 {
1813 xtensa_format fmt;
1814 xtensa_opcode opcode;
1815 xtensa_isa isa = xtensa_default_isa;
1816 static xtensa_insnbuf ibuff = NULL;
1817 static xtensa_insnbuf sbuff = NULL;
1818 bfd_vma self_address;
1819 bfd_size_type input_size;
1820 int opnd, slot;
1821 uint32 newval;
1822
1823 if (!ibuff)
1824 {
1825 ibuff = xtensa_insnbuf_alloc (isa);
1826 sbuff = xtensa_insnbuf_alloc (isa);
1827 }
1828
1829 input_size = bfd_get_section_limit (abfd, input_section);
1830
1831 /* Calculate the PC address for this instruction. */
1832 self_address = (input_section->output_section->vma
1833 + input_section->output_offset
1834 + address);
1835
1836 switch (howto->type)
1837 {
1838 case R_XTENSA_NONE:
1839 case R_XTENSA_DIFF8:
1840 case R_XTENSA_DIFF16:
1841 case R_XTENSA_DIFF32:
1842 case R_XTENSA_TLS_FUNC:
1843 case R_XTENSA_TLS_ARG:
1844 case R_XTENSA_TLS_CALL:
1845 return bfd_reloc_ok;
1846
1847 case R_XTENSA_ASM_EXPAND:
1848 if (!is_weak_undef)
1849 {
1850 /* Check for windowed CALL across a 1GB boundary. */
1851 opcode = get_expanded_call_opcode (contents + address,
1852 input_size - address, 0);
1853 if (is_windowed_call_opcode (opcode))
1854 {
1855 if ((self_address >> CALL_SEGMENT_BITS)
1856 != (relocation >> CALL_SEGMENT_BITS))
1857 {
1858 *error_message = "windowed longcall crosses 1GB boundary; "
1859 "return may fail";
1860 return bfd_reloc_dangerous;
1861 }
1862 }
1863 }
1864 return bfd_reloc_ok;
1865
1866 case R_XTENSA_ASM_SIMPLIFY:
1867 {
1868 /* Convert the L32R/CALLX to CALL. */
1869 bfd_reloc_status_type retval =
1870 elf_xtensa_do_asm_simplify (contents, address, input_size,
1871 error_message);
1872 if (retval != bfd_reloc_ok)
1873 return bfd_reloc_dangerous;
1874
1875 /* The CALL needs to be relocated. Continue below for that part. */
1876 address += 3;
1877 self_address += 3;
1878 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1879 }
1880 break;
1881
1882 case R_XTENSA_32:
1883 {
1884 bfd_vma x;
1885 x = bfd_get_32 (abfd, contents + address);
1886 x = x + relocation;
1887 bfd_put_32 (abfd, x, contents + address);
1888 }
1889 return bfd_reloc_ok;
1890
1891 case R_XTENSA_32_PCREL:
1892 bfd_put_32 (abfd, relocation - self_address, contents + address);
1893 return bfd_reloc_ok;
1894
1895 case R_XTENSA_PLT:
1896 case R_XTENSA_TLSDESC_FN:
1897 case R_XTENSA_TLSDESC_ARG:
1898 case R_XTENSA_TLS_DTPOFF:
1899 case R_XTENSA_TLS_TPOFF:
1900 bfd_put_32 (abfd, relocation, contents + address);
1901 return bfd_reloc_ok;
1902 }
1903
1904 /* Only instruction slot-specific relocations handled below.... */
1905 slot = get_relocation_slot (howto->type);
1906 if (slot == XTENSA_UNDEFINED)
1907 {
1908 *error_message = "unexpected relocation";
1909 return bfd_reloc_dangerous;
1910 }
1911
1912 /* Read the instruction into a buffer and decode the opcode. */
1913 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1914 input_size - address);
1915 fmt = xtensa_format_decode (isa, ibuff);
1916 if (fmt == XTENSA_UNDEFINED)
1917 {
1918 *error_message = "cannot decode instruction format";
1919 return bfd_reloc_dangerous;
1920 }
1921
1922 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1923
1924 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1925 if (opcode == XTENSA_UNDEFINED)
1926 {
1927 *error_message = "cannot decode instruction opcode";
1928 return bfd_reloc_dangerous;
1929 }
1930
1931 /* Check for opcode-specific "alternate" relocations. */
1932 if (is_alt_relocation (howto->type))
1933 {
1934 if (opcode == get_l32r_opcode ())
1935 {
1936 /* Handle the special-case of non-PC-relative L32R instructions. */
1937 bfd *output_bfd = input_section->output_section->owner;
1938 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1939 if (!lit4_sec)
1940 {
1941 *error_message = "relocation references missing .lit4 section";
1942 return bfd_reloc_dangerous;
1943 }
1944 self_address = ((lit4_sec->vma & ~0xfff)
1945 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1946 newval = relocation;
1947 opnd = 1;
1948 }
1949 else if (opcode == get_const16_opcode ())
1950 {
1951 /* ALT used for high 16 bits. */
1952 newval = relocation >> 16;
1953 opnd = 1;
1954 }
1955 else
1956 {
1957 /* No other "alternate" relocations currently defined. */
1958 *error_message = "unexpected relocation";
1959 return bfd_reloc_dangerous;
1960 }
1961 }
1962 else /* Not an "alternate" relocation.... */
1963 {
1964 if (opcode == get_const16_opcode ())
1965 {
1966 newval = relocation & 0xffff;
1967 opnd = 1;
1968 }
1969 else
1970 {
1971 /* ...normal PC-relative relocation.... */
1972
1973 /* Determine which operand is being relocated. */
1974 opnd = get_relocation_opnd (opcode, howto->type);
1975 if (opnd == XTENSA_UNDEFINED)
1976 {
1977 *error_message = "unexpected relocation";
1978 return bfd_reloc_dangerous;
1979 }
1980
1981 if (!howto->pc_relative)
1982 {
1983 *error_message = "expected PC-relative relocation";
1984 return bfd_reloc_dangerous;
1985 }
1986
1987 newval = relocation;
1988 }
1989 }
1990
1991 /* Apply the relocation. */
1992 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1993 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1994 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1995 sbuff, newval))
1996 {
1997 const char *opname = xtensa_opcode_name (isa, opcode);
1998 const char *msg;
1999
2000 msg = "cannot encode";
2001 if (is_direct_call_opcode (opcode))
2002 {
2003 if ((relocation & 0x3) != 0)
2004 msg = "misaligned call target";
2005 else
2006 msg = "call target out of range";
2007 }
2008 else if (opcode == get_l32r_opcode ())
2009 {
2010 if ((relocation & 0x3) != 0)
2011 msg = "misaligned literal target";
2012 else if (is_alt_relocation (howto->type))
2013 msg = "literal target out of range (too many literals)";
2014 else if (self_address > relocation)
2015 msg = "literal target out of range (try using text-section-literals)";
2016 else
2017 msg = "literal placed after use";
2018 }
2019
2020 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2021 return bfd_reloc_dangerous;
2022 }
2023
2024 /* Check for calls across 1GB boundaries. */
2025 if (is_direct_call_opcode (opcode)
2026 && is_windowed_call_opcode (opcode))
2027 {
2028 if ((self_address >> CALL_SEGMENT_BITS)
2029 != (relocation >> CALL_SEGMENT_BITS))
2030 {
2031 *error_message =
2032 "windowed call crosses 1GB boundary; return may fail";
2033 return bfd_reloc_dangerous;
2034 }
2035 }
2036
2037 /* Write the modified instruction back out of the buffer. */
2038 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2039 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2040 input_size - address);
2041 return bfd_reloc_ok;
2042 }
2043
2044
2045 static char *
2046 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2047 {
2048 /* To reduce the size of the memory leak,
2049 we only use a single message buffer. */
2050 static bfd_size_type alloc_size = 0;
2051 static char *message = NULL;
2052 bfd_size_type orig_len, len = 0;
2053 bfd_boolean is_append;
2054 va_list ap;
2055
2056 va_start (ap, arglen);
2057
2058 is_append = (origmsg == message);
2059
2060 orig_len = strlen (origmsg);
2061 len = orig_len + strlen (fmt) + arglen + 20;
2062 if (len > alloc_size)
2063 {
2064 message = (char *) bfd_realloc_or_free (message, len);
2065 alloc_size = len;
2066 }
2067 if (message != NULL)
2068 {
2069 if (!is_append)
2070 memcpy (message, origmsg, orig_len);
2071 vsprintf (message + orig_len, fmt, ap);
2072 }
2073 va_end (ap);
2074 return message;
2075 }
2076
2077
2078 /* This function is registered as the "special_function" in the
2079 Xtensa howto for handling simplify operations.
2080 bfd_perform_relocation / bfd_install_relocation use it to
2081 perform (install) the specified relocation. Since this replaces the code
2082 in bfd_perform_relocation, it is basically an Xtensa-specific,
2083 stripped-down version of bfd_perform_relocation. */
2084
2085 static bfd_reloc_status_type
2086 bfd_elf_xtensa_reloc (bfd *abfd,
2087 arelent *reloc_entry,
2088 asymbol *symbol,
2089 void *data,
2090 asection *input_section,
2091 bfd *output_bfd,
2092 char **error_message)
2093 {
2094 bfd_vma relocation;
2095 bfd_reloc_status_type flag;
2096 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2097 bfd_vma output_base = 0;
2098 reloc_howto_type *howto = reloc_entry->howto;
2099 asection *reloc_target_output_section;
2100 bfd_boolean is_weak_undef;
2101
2102 if (!xtensa_default_isa)
2103 xtensa_default_isa = xtensa_isa_init (0, 0);
2104
2105 /* ELF relocs are against symbols. If we are producing relocatable
2106 output, and the reloc is against an external symbol, the resulting
2107 reloc will also be against the same symbol. In such a case, we
2108 don't want to change anything about the way the reloc is handled,
2109 since it will all be done at final link time. This test is similar
2110 to what bfd_elf_generic_reloc does except that it lets relocs with
2111 howto->partial_inplace go through even if the addend is non-zero.
2112 (The real problem is that partial_inplace is set for XTENSA_32
2113 relocs to begin with, but that's a long story and there's little we
2114 can do about it now....) */
2115
2116 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2117 {
2118 reloc_entry->address += input_section->output_offset;
2119 return bfd_reloc_ok;
2120 }
2121
2122 /* Is the address of the relocation really within the section? */
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Work out which section the relocation is targeted at and the
2127 initial relocation command value. */
2128
2129 /* Get symbol value. (Common symbols are special.) */
2130 if (bfd_is_com_section (symbol->section))
2131 relocation = 0;
2132 else
2133 relocation = symbol->value;
2134
2135 reloc_target_output_section = symbol->section->output_section;
2136
2137 /* Convert input-section-relative symbol value to absolute. */
2138 if ((output_bfd && !howto->partial_inplace)
2139 || reloc_target_output_section == NULL)
2140 output_base = 0;
2141 else
2142 output_base = reloc_target_output_section->vma;
2143
2144 relocation += output_base + symbol->section->output_offset;
2145
2146 /* Add in supplied addend. */
2147 relocation += reloc_entry->addend;
2148
2149 /* Here the variable relocation holds the final address of the
2150 symbol we are relocating against, plus any addend. */
2151 if (output_bfd)
2152 {
2153 if (!howto->partial_inplace)
2154 {
2155 /* This is a partial relocation, and we want to apply the relocation
2156 to the reloc entry rather than the raw data. Everything except
2157 relocations against section symbols has already been handled
2158 above. */
2159
2160 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2161 reloc_entry->addend = relocation;
2162 reloc_entry->address += input_section->output_offset;
2163 return bfd_reloc_ok;
2164 }
2165 else
2166 {
2167 reloc_entry->address += input_section->output_offset;
2168 reloc_entry->addend = 0;
2169 }
2170 }
2171
2172 is_weak_undef = (bfd_is_und_section (symbol->section)
2173 && (symbol->flags & BSF_WEAK) != 0);
2174 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2175 (bfd_byte *) data, (bfd_vma) octets,
2176 is_weak_undef, error_message);
2177
2178 if (flag == bfd_reloc_dangerous)
2179 {
2180 /* Add the symbol name to the error message. */
2181 if (! *error_message)
2182 *error_message = "";
2183 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2184 strlen (symbol->name) + 17,
2185 symbol->name,
2186 (unsigned long) reloc_entry->addend);
2187 }
2188
2189 return flag;
2190 }
2191
2192
2193 /* Set up an entry in the procedure linkage table. */
2194
2195 static bfd_vma
2196 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2197 bfd *output_bfd,
2198 unsigned reloc_index)
2199 {
2200 asection *splt, *sgotplt;
2201 bfd_vma plt_base, got_base;
2202 bfd_vma code_offset, lit_offset, abi_offset;
2203 int chunk;
2204
2205 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2206 splt = elf_xtensa_get_plt_section (info, chunk);
2207 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2208 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2209
2210 plt_base = splt->output_section->vma + splt->output_offset;
2211 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2212
2213 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2214 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2215
2216 /* Fill in the literal entry. This is the offset of the dynamic
2217 relocation entry. */
2218 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2219 sgotplt->contents + lit_offset);
2220
2221 /* Fill in the entry in the procedure linkage table. */
2222 memcpy (splt->contents + code_offset,
2223 (bfd_big_endian (output_bfd)
2224 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2225 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2226 PLT_ENTRY_SIZE);
2227 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2228 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2229 plt_base + code_offset + abi_offset),
2230 splt->contents + code_offset + abi_offset + 1);
2231 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2232 plt_base + code_offset + abi_offset + 3),
2233 splt->contents + code_offset + abi_offset + 4);
2234 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2235 plt_base + code_offset + abi_offset + 6),
2236 splt->contents + code_offset + abi_offset + 7);
2237
2238 return plt_base + code_offset;
2239 }
2240
2241
2242 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2243
2244 static bfd_boolean
2245 replace_tls_insn (Elf_Internal_Rela *rel,
2246 bfd *abfd,
2247 asection *input_section,
2248 bfd_byte *contents,
2249 bfd_boolean is_ld_model,
2250 char **error_message)
2251 {
2252 static xtensa_insnbuf ibuff = NULL;
2253 static xtensa_insnbuf sbuff = NULL;
2254 xtensa_isa isa = xtensa_default_isa;
2255 xtensa_format fmt;
2256 xtensa_opcode old_op, new_op;
2257 bfd_size_type input_size;
2258 int r_type;
2259 unsigned dest_reg, src_reg;
2260
2261 if (ibuff == NULL)
2262 {
2263 ibuff = xtensa_insnbuf_alloc (isa);
2264 sbuff = xtensa_insnbuf_alloc (isa);
2265 }
2266
2267 input_size = bfd_get_section_limit (abfd, input_section);
2268
2269 /* Read the instruction into a buffer and decode the opcode. */
2270 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2271 input_size - rel->r_offset);
2272 fmt = xtensa_format_decode (isa, ibuff);
2273 if (fmt == XTENSA_UNDEFINED)
2274 {
2275 *error_message = "cannot decode instruction format";
2276 return FALSE;
2277 }
2278
2279 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2280 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2281
2282 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2283 if (old_op == XTENSA_UNDEFINED)
2284 {
2285 *error_message = "cannot decode instruction opcode";
2286 return FALSE;
2287 }
2288
2289 r_type = ELF32_R_TYPE (rel->r_info);
2290 switch (r_type)
2291 {
2292 case R_XTENSA_TLS_FUNC:
2293 case R_XTENSA_TLS_ARG:
2294 if (old_op != get_l32r_opcode ()
2295 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2296 sbuff, &dest_reg) != 0)
2297 {
2298 *error_message = "cannot extract L32R destination for TLS access";
2299 return FALSE;
2300 }
2301 break;
2302
2303 case R_XTENSA_TLS_CALL:
2304 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2305 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 sbuff, &src_reg) != 0)
2307 {
2308 *error_message = "cannot extract CALLXn operands for TLS access";
2309 return FALSE;
2310 }
2311 break;
2312
2313 default:
2314 abort ();
2315 }
2316
2317 if (is_ld_model)
2318 {
2319 switch (r_type)
2320 {
2321 case R_XTENSA_TLS_FUNC:
2322 case R_XTENSA_TLS_ARG:
2323 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2324 versions of Xtensa). */
2325 new_op = xtensa_opcode_lookup (isa, "nop");
2326 if (new_op == XTENSA_UNDEFINED)
2327 {
2328 new_op = xtensa_opcode_lookup (isa, "or");
2329 if (new_op == XTENSA_UNDEFINED
2330 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2331 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2332 sbuff, 1) != 0
2333 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2334 sbuff, 1) != 0
2335 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2336 sbuff, 1) != 0)
2337 {
2338 *error_message = "cannot encode OR for TLS access";
2339 return FALSE;
2340 }
2341 }
2342 else
2343 {
2344 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2345 {
2346 *error_message = "cannot encode NOP for TLS access";
2347 return FALSE;
2348 }
2349 }
2350 break;
2351
2352 case R_XTENSA_TLS_CALL:
2353 /* Read THREADPTR into the CALLX's return value register. */
2354 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2355 if (new_op == XTENSA_UNDEFINED
2356 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2357 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2358 sbuff, dest_reg + 2) != 0)
2359 {
2360 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2361 return FALSE;
2362 }
2363 break;
2364 }
2365 }
2366 else
2367 {
2368 switch (r_type)
2369 {
2370 case R_XTENSA_TLS_FUNC:
2371 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2372 if (new_op == XTENSA_UNDEFINED
2373 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2374 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2375 sbuff, dest_reg) != 0)
2376 {
2377 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2378 return FALSE;
2379 }
2380 break;
2381
2382 case R_XTENSA_TLS_ARG:
2383 /* Nothing to do. Keep the original L32R instruction. */
2384 return TRUE;
2385
2386 case R_XTENSA_TLS_CALL:
2387 /* Add the CALLX's src register (holding the THREADPTR value)
2388 to the first argument register (holding the offset) and put
2389 the result in the CALLX's return value register. */
2390 new_op = xtensa_opcode_lookup (isa, "add");
2391 if (new_op == XTENSA_UNDEFINED
2392 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2393 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2394 sbuff, dest_reg + 2) != 0
2395 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2396 sbuff, dest_reg + 2) != 0
2397 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2398 sbuff, src_reg) != 0)
2399 {
2400 *error_message = "cannot encode ADD for TLS access";
2401 return FALSE;
2402 }
2403 break;
2404 }
2405 }
2406
2407 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2408 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2409 input_size - rel->r_offset);
2410
2411 return TRUE;
2412 }
2413
2414
2415 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2416 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2417 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2418 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2419 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2420 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2421 || (R_TYPE) == R_XTENSA_TLS_ARG \
2422 || (R_TYPE) == R_XTENSA_TLS_CALL)
2423
2424 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2425 both relocatable and final links. */
2426
2427 static bfd_boolean
2428 elf_xtensa_relocate_section (bfd *output_bfd,
2429 struct bfd_link_info *info,
2430 bfd *input_bfd,
2431 asection *input_section,
2432 bfd_byte *contents,
2433 Elf_Internal_Rela *relocs,
2434 Elf_Internal_Sym *local_syms,
2435 asection **local_sections)
2436 {
2437 struct elf_xtensa_link_hash_table *htab;
2438 Elf_Internal_Shdr *symtab_hdr;
2439 Elf_Internal_Rela *rel;
2440 Elf_Internal_Rela *relend;
2441 struct elf_link_hash_entry **sym_hashes;
2442 property_table_entry *lit_table = 0;
2443 int ltblsize = 0;
2444 char *local_got_tls_types;
2445 char *error_message = NULL;
2446 bfd_size_type input_size;
2447 int tls_type;
2448
2449 if (!xtensa_default_isa)
2450 xtensa_default_isa = xtensa_isa_init (0, 0);
2451
2452 BFD_ASSERT (is_xtensa_elf (input_bfd));
2453
2454 htab = elf_xtensa_hash_table (info);
2455 if (htab == NULL)
2456 return FALSE;
2457
2458 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2459 sym_hashes = elf_sym_hashes (input_bfd);
2460 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2461
2462 if (elf_hash_table (info)->dynamic_sections_created)
2463 {
2464 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2465 &lit_table, XTENSA_LIT_SEC_NAME,
2466 TRUE);
2467 if (ltblsize < 0)
2468 return FALSE;
2469 }
2470
2471 input_size = bfd_get_section_limit (input_bfd, input_section);
2472
2473 rel = relocs;
2474 relend = relocs + input_section->reloc_count;
2475 for (; rel < relend; rel++)
2476 {
2477 int r_type;
2478 reloc_howto_type *howto;
2479 unsigned long r_symndx;
2480 struct elf_link_hash_entry *h;
2481 Elf_Internal_Sym *sym;
2482 char sym_type;
2483 const char *name;
2484 asection *sec;
2485 bfd_vma relocation;
2486 bfd_reloc_status_type r;
2487 bfd_boolean is_weak_undef;
2488 bfd_boolean unresolved_reloc;
2489 bfd_boolean warned;
2490 bfd_boolean dynamic_symbol;
2491
2492 r_type = ELF32_R_TYPE (rel->r_info);
2493 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2494 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2495 continue;
2496
2497 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2498 {
2499 bfd_set_error (bfd_error_bad_value);
2500 return FALSE;
2501 }
2502 howto = &elf_howto_table[r_type];
2503
2504 r_symndx = ELF32_R_SYM (rel->r_info);
2505
2506 h = NULL;
2507 sym = NULL;
2508 sec = NULL;
2509 is_weak_undef = FALSE;
2510 unresolved_reloc = FALSE;
2511 warned = FALSE;
2512
2513 if (howto->partial_inplace && !bfd_link_relocatable (info))
2514 {
2515 /* Because R_XTENSA_32 was made partial_inplace to fix some
2516 problems with DWARF info in partial links, there may be
2517 an addend stored in the contents. Take it out of there
2518 and move it back into the addend field of the reloc. */
2519 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2520 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2521 }
2522
2523 if (r_symndx < symtab_hdr->sh_info)
2524 {
2525 sym = local_syms + r_symndx;
2526 sym_type = ELF32_ST_TYPE (sym->st_info);
2527 sec = local_sections[r_symndx];
2528 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2529 }
2530 else
2531 {
2532 bfd_boolean ignored;
2533
2534 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2535 r_symndx, symtab_hdr, sym_hashes,
2536 h, sec, relocation,
2537 unresolved_reloc, warned, ignored);
2538
2539 if (relocation == 0
2540 && !unresolved_reloc
2541 && h->root.type == bfd_link_hash_undefweak)
2542 is_weak_undef = TRUE;
2543
2544 sym_type = h->type;
2545 }
2546
2547 if (sec != NULL && discarded_section (sec))
2548 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2549 rel, 1, relend, howto, 0, contents);
2550
2551 if (bfd_link_relocatable (info))
2552 {
2553 bfd_vma dest_addr;
2554 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2555
2556 /* This is a relocatable link.
2557 1) If the reloc is against a section symbol, adjust
2558 according to the output section.
2559 2) If there is a new target for this relocation,
2560 the new target will be in the same output section.
2561 We adjust the relocation by the output section
2562 difference. */
2563
2564 if (relaxing_section)
2565 {
2566 /* Check if this references a section in another input file. */
2567 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2568 contents))
2569 return FALSE;
2570 }
2571
2572 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2573 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2574
2575 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2576 {
2577 error_message = NULL;
2578 /* Convert ASM_SIMPLIFY into the simpler relocation
2579 so that they never escape a relaxing link. */
2580 r = contract_asm_expansion (contents, input_size, rel,
2581 &error_message);
2582 if (r != bfd_reloc_ok)
2583 (*info->callbacks->reloc_dangerous)
2584 (info, error_message,
2585 input_bfd, input_section, rel->r_offset);
2586
2587 r_type = ELF32_R_TYPE (rel->r_info);
2588 }
2589
2590 /* This is a relocatable link, so we don't have to change
2591 anything unless the reloc is against a section symbol,
2592 in which case we have to adjust according to where the
2593 section symbol winds up in the output section. */
2594 if (r_symndx < symtab_hdr->sh_info)
2595 {
2596 sym = local_syms + r_symndx;
2597 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2598 {
2599 sec = local_sections[r_symndx];
2600 rel->r_addend += sec->output_offset + sym->st_value;
2601 }
2602 }
2603
2604 /* If there is an addend with a partial_inplace howto,
2605 then move the addend to the contents. This is a hack
2606 to work around problems with DWARF in relocatable links
2607 with some previous version of BFD. Now we can't easily get
2608 rid of the hack without breaking backward compatibility.... */
2609 r = bfd_reloc_ok;
2610 howto = &elf_howto_table[r_type];
2611 if (howto->partial_inplace && rel->r_addend)
2612 {
2613 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2614 rel->r_addend, contents,
2615 rel->r_offset, FALSE,
2616 &error_message);
2617 rel->r_addend = 0;
2618 }
2619 else
2620 {
2621 /* Put the correct bits in the target instruction, even
2622 though the relocation will still be present in the output
2623 file. This makes disassembly clearer, as well as
2624 allowing loadable kernel modules to work without needing
2625 relocations on anything other than calls and l32r's. */
2626
2627 /* If it is not in the same section, there is nothing we can do. */
2628 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2629 sym_sec->output_section == input_section->output_section)
2630 {
2631 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2632 dest_addr, contents,
2633 rel->r_offset, FALSE,
2634 &error_message);
2635 }
2636 }
2637 if (r != bfd_reloc_ok)
2638 (*info->callbacks->reloc_dangerous)
2639 (info, error_message,
2640 input_bfd, input_section, rel->r_offset);
2641
2642 /* Done with work for relocatable link; continue with next reloc. */
2643 continue;
2644 }
2645
2646 /* This is a final link. */
2647
2648 if (relaxing_section)
2649 {
2650 /* Check if this references a section in another input file. */
2651 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2652 &relocation);
2653 }
2654
2655 /* Sanity check the address. */
2656 if (rel->r_offset >= input_size
2657 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2658 {
2659 _bfd_error_handler
2660 /* xgettext:c-format */
2661 (_("%pB(%pA+%#" PRIx64 "): "
2662 "relocation offset out of range (size=%#" PRIx64 ")"),
2663 input_bfd, input_section, (uint64_t) rel->r_offset,
2664 (uint64_t) input_size);
2665 bfd_set_error (bfd_error_bad_value);
2666 return FALSE;
2667 }
2668
2669 if (h != NULL)
2670 name = h->root.root.string;
2671 else
2672 {
2673 name = (bfd_elf_string_from_elf_section
2674 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2675 if (name == NULL || *name == '\0')
2676 name = bfd_section_name (input_bfd, sec);
2677 }
2678
2679 if (r_symndx != STN_UNDEF
2680 && r_type != R_XTENSA_NONE
2681 && (h == NULL
2682 || h->root.type == bfd_link_hash_defined
2683 || h->root.type == bfd_link_hash_defweak)
2684 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2685 {
2686 _bfd_error_handler
2687 ((sym_type == STT_TLS
2688 /* xgettext:c-format */
2689 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2690 /* xgettext:c-format */
2691 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2692 input_bfd,
2693 input_section,
2694 (uint64_t) rel->r_offset,
2695 howto->name,
2696 name);
2697 }
2698
2699 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2700
2701 tls_type = GOT_UNKNOWN;
2702 if (h)
2703 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2704 else if (local_got_tls_types)
2705 tls_type = local_got_tls_types [r_symndx];
2706
2707 switch (r_type)
2708 {
2709 case R_XTENSA_32:
2710 case R_XTENSA_PLT:
2711 if (elf_hash_table (info)->dynamic_sections_created
2712 && (input_section->flags & SEC_ALLOC) != 0
2713 && (dynamic_symbol || bfd_link_pic (info)))
2714 {
2715 Elf_Internal_Rela outrel;
2716 bfd_byte *loc;
2717 asection *srel;
2718
2719 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2720 srel = htab->elf.srelplt;
2721 else
2722 srel = htab->elf.srelgot;
2723
2724 BFD_ASSERT (srel != NULL);
2725
2726 outrel.r_offset =
2727 _bfd_elf_section_offset (output_bfd, info,
2728 input_section, rel->r_offset);
2729
2730 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2731 memset (&outrel, 0, sizeof outrel);
2732 else
2733 {
2734 outrel.r_offset += (input_section->output_section->vma
2735 + input_section->output_offset);
2736
2737 /* Complain if the relocation is in a read-only section
2738 and not in a literal pool. */
2739 if ((input_section->flags & SEC_READONLY) != 0
2740 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2741 outrel.r_offset))
2742 {
2743 error_message =
2744 _("dynamic relocation in read-only section");
2745 (*info->callbacks->reloc_dangerous)
2746 (info, error_message,
2747 input_bfd, input_section, rel->r_offset);
2748 }
2749
2750 if (dynamic_symbol)
2751 {
2752 outrel.r_addend = rel->r_addend;
2753 rel->r_addend = 0;
2754
2755 if (r_type == R_XTENSA_32)
2756 {
2757 outrel.r_info =
2758 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2759 relocation = 0;
2760 }
2761 else /* r_type == R_XTENSA_PLT */
2762 {
2763 outrel.r_info =
2764 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2765
2766 /* Create the PLT entry and set the initial
2767 contents of the literal entry to the address of
2768 the PLT entry. */
2769 relocation =
2770 elf_xtensa_create_plt_entry (info, output_bfd,
2771 srel->reloc_count);
2772 }
2773 unresolved_reloc = FALSE;
2774 }
2775 else
2776 {
2777 /* Generate a RELATIVE relocation. */
2778 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2779 outrel.r_addend = 0;
2780 }
2781 }
2782
2783 loc = (srel->contents
2784 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2785 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2786 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2787 <= srel->size);
2788 }
2789 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2790 {
2791 /* This should only happen for non-PIC code, which is not
2792 supposed to be used on systems with dynamic linking.
2793 Just ignore these relocations. */
2794 continue;
2795 }
2796 break;
2797
2798 case R_XTENSA_TLS_TPOFF:
2799 /* Switch to LE model for local symbols in an executable. */
2800 if (! bfd_link_pic (info) && ! dynamic_symbol)
2801 {
2802 relocation = tpoff (info, relocation);
2803 break;
2804 }
2805 /* fall through */
2806
2807 case R_XTENSA_TLSDESC_FN:
2808 case R_XTENSA_TLSDESC_ARG:
2809 {
2810 if (r_type == R_XTENSA_TLSDESC_FN)
2811 {
2812 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2813 r_type = R_XTENSA_NONE;
2814 }
2815 else if (r_type == R_XTENSA_TLSDESC_ARG)
2816 {
2817 if (bfd_link_pic (info))
2818 {
2819 if ((tls_type & GOT_TLS_IE) != 0)
2820 r_type = R_XTENSA_TLS_TPOFF;
2821 }
2822 else
2823 {
2824 r_type = R_XTENSA_TLS_TPOFF;
2825 if (! dynamic_symbol)
2826 {
2827 relocation = tpoff (info, relocation);
2828 break;
2829 }
2830 }
2831 }
2832
2833 if (r_type == R_XTENSA_NONE)
2834 /* Nothing to do here; skip to the next reloc. */
2835 continue;
2836
2837 if (! elf_hash_table (info)->dynamic_sections_created)
2838 {
2839 error_message =
2840 _("TLS relocation invalid without dynamic sections");
2841 (*info->callbacks->reloc_dangerous)
2842 (info, error_message,
2843 input_bfd, input_section, rel->r_offset);
2844 }
2845 else
2846 {
2847 Elf_Internal_Rela outrel;
2848 bfd_byte *loc;
2849 asection *srel = htab->elf.srelgot;
2850 int indx;
2851
2852 outrel.r_offset = (input_section->output_section->vma
2853 + input_section->output_offset
2854 + rel->r_offset);
2855
2856 /* Complain if the relocation is in a read-only section
2857 and not in a literal pool. */
2858 if ((input_section->flags & SEC_READONLY) != 0
2859 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2860 outrel.r_offset))
2861 {
2862 error_message =
2863 _("dynamic relocation in read-only section");
2864 (*info->callbacks->reloc_dangerous)
2865 (info, error_message,
2866 input_bfd, input_section, rel->r_offset);
2867 }
2868
2869 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2870 if (indx == 0)
2871 outrel.r_addend = relocation - dtpoff_base (info);
2872 else
2873 outrel.r_addend = 0;
2874 rel->r_addend = 0;
2875
2876 outrel.r_info = ELF32_R_INFO (indx, r_type);
2877 relocation = 0;
2878 unresolved_reloc = FALSE;
2879
2880 BFD_ASSERT (srel);
2881 loc = (srel->contents
2882 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2883 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2884 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2885 <= srel->size);
2886 }
2887 }
2888 break;
2889
2890 case R_XTENSA_TLS_DTPOFF:
2891 if (! bfd_link_pic (info))
2892 /* Switch from LD model to LE model. */
2893 relocation = tpoff (info, relocation);
2894 else
2895 relocation -= dtpoff_base (info);
2896 break;
2897
2898 case R_XTENSA_TLS_FUNC:
2899 case R_XTENSA_TLS_ARG:
2900 case R_XTENSA_TLS_CALL:
2901 /* Check if optimizing to IE or LE model. */
2902 if ((tls_type & GOT_TLS_IE) != 0)
2903 {
2904 bfd_boolean is_ld_model =
2905 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2906 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2907 is_ld_model, &error_message))
2908 (*info->callbacks->reloc_dangerous)
2909 (info, error_message,
2910 input_bfd, input_section, rel->r_offset);
2911
2912 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2913 {
2914 /* Skip subsequent relocations on the same instruction. */
2915 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2916 rel++;
2917 }
2918 }
2919 continue;
2920
2921 default:
2922 if (elf_hash_table (info)->dynamic_sections_created
2923 && dynamic_symbol && (is_operand_relocation (r_type)
2924 || r_type == R_XTENSA_32_PCREL))
2925 {
2926 error_message =
2927 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2928 strlen (name) + 2, name);
2929 (*info->callbacks->reloc_dangerous)
2930 (info, error_message, input_bfd, input_section, rel->r_offset);
2931 continue;
2932 }
2933 break;
2934 }
2935
2936 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2937 because such sections are not SEC_ALLOC and thus ld.so will
2938 not process them. */
2939 if (unresolved_reloc
2940 && !((input_section->flags & SEC_DEBUGGING) != 0
2941 && h->def_dynamic)
2942 && _bfd_elf_section_offset (output_bfd, info, input_section,
2943 rel->r_offset) != (bfd_vma) -1)
2944 {
2945 _bfd_error_handler
2946 /* xgettext:c-format */
2947 (_("%pB(%pA+%#" PRIx64 "): "
2948 "unresolvable %s relocation against symbol `%s'"),
2949 input_bfd,
2950 input_section,
2951 (uint64_t) rel->r_offset,
2952 howto->name,
2953 name);
2954 return FALSE;
2955 }
2956
2957 /* TLS optimizations may have changed r_type; update "howto". */
2958 howto = &elf_howto_table[r_type];
2959
2960 /* There's no point in calling bfd_perform_relocation here.
2961 Just go directly to our "special function". */
2962 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2963 relocation + rel->r_addend,
2964 contents, rel->r_offset, is_weak_undef,
2965 &error_message);
2966
2967 if (r != bfd_reloc_ok && !warned)
2968 {
2969 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2970 BFD_ASSERT (error_message != NULL);
2971
2972 if (rel->r_addend == 0)
2973 error_message = vsprint_msg (error_message, ": %s",
2974 strlen (name) + 2, name);
2975 else
2976 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2977 strlen (name) + 22,
2978 name, (int) rel->r_addend);
2979
2980 (*info->callbacks->reloc_dangerous)
2981 (info, error_message, input_bfd, input_section, rel->r_offset);
2982 }
2983 }
2984
2985 if (lit_table)
2986 free (lit_table);
2987
2988 input_section->reloc_done = TRUE;
2989
2990 return TRUE;
2991 }
2992
2993
2994 /* Finish up dynamic symbol handling. There's not much to do here since
2995 the PLT and GOT entries are all set up by relocate_section. */
2996
2997 static bfd_boolean
2998 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2999 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3000 struct elf_link_hash_entry *h,
3001 Elf_Internal_Sym *sym)
3002 {
3003 if (h->needs_plt && !h->def_regular)
3004 {
3005 /* Mark the symbol as undefined, rather than as defined in
3006 the .plt section. Leave the value alone. */
3007 sym->st_shndx = SHN_UNDEF;
3008 /* If the symbol is weak, we do need to clear the value.
3009 Otherwise, the PLT entry would provide a definition for
3010 the symbol even if the symbol wasn't defined anywhere,
3011 and so the symbol would never be NULL. */
3012 if (!h->ref_regular_nonweak)
3013 sym->st_value = 0;
3014 }
3015
3016 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3017 if (h == elf_hash_table (info)->hdynamic
3018 || h == elf_hash_table (info)->hgot)
3019 sym->st_shndx = SHN_ABS;
3020
3021 return TRUE;
3022 }
3023
3024
3025 /* Combine adjacent literal table entries in the output. Adjacent
3026 entries within each input section may have been removed during
3027 relaxation, but we repeat the process here, even though it's too late
3028 to shrink the output section, because it's important to minimize the
3029 number of literal table entries to reduce the start-up work for the
3030 runtime linker. Returns the number of remaining table entries or -1
3031 on error. */
3032
3033 static int
3034 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3035 asection *sxtlit,
3036 asection *sgotloc)
3037 {
3038 bfd_byte *contents;
3039 property_table_entry *table;
3040 bfd_size_type section_size, sgotloc_size;
3041 bfd_vma offset;
3042 int n, m, num;
3043
3044 section_size = sxtlit->size;
3045 BFD_ASSERT (section_size % 8 == 0);
3046 num = section_size / 8;
3047
3048 sgotloc_size = sgotloc->size;
3049 if (sgotloc_size != section_size)
3050 {
3051 _bfd_error_handler
3052 (_("internal inconsistency in size of .got.loc section"));
3053 return -1;
3054 }
3055
3056 table = bfd_malloc (num * sizeof (property_table_entry));
3057 if (table == 0)
3058 return -1;
3059
3060 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3061 propagates to the output section, where it doesn't really apply and
3062 where it breaks the following call to bfd_malloc_and_get_section. */
3063 sxtlit->flags &= ~SEC_IN_MEMORY;
3064
3065 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3066 {
3067 if (contents != 0)
3068 free (contents);
3069 free (table);
3070 return -1;
3071 }
3072
3073 /* There should never be any relocations left at this point, so this
3074 is quite a bit easier than what is done during relaxation. */
3075
3076 /* Copy the raw contents into a property table array and sort it. */
3077 offset = 0;
3078 for (n = 0; n < num; n++)
3079 {
3080 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3081 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3082 offset += 8;
3083 }
3084 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3085
3086 for (n = 0; n < num; n++)
3087 {
3088 bfd_boolean remove_entry = FALSE;
3089
3090 if (table[n].size == 0)
3091 remove_entry = TRUE;
3092 else if (n > 0
3093 && (table[n-1].address + table[n-1].size == table[n].address))
3094 {
3095 table[n-1].size += table[n].size;
3096 remove_entry = TRUE;
3097 }
3098
3099 if (remove_entry)
3100 {
3101 for (m = n; m < num - 1; m++)
3102 {
3103 table[m].address = table[m+1].address;
3104 table[m].size = table[m+1].size;
3105 }
3106
3107 n--;
3108 num--;
3109 }
3110 }
3111
3112 /* Copy the data back to the raw contents. */
3113 offset = 0;
3114 for (n = 0; n < num; n++)
3115 {
3116 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3117 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3118 offset += 8;
3119 }
3120
3121 /* Clear the removed bytes. */
3122 if ((bfd_size_type) (num * 8) < section_size)
3123 memset (&contents[num * 8], 0, section_size - num * 8);
3124
3125 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3126 section_size))
3127 return -1;
3128
3129 /* Copy the contents to ".got.loc". */
3130 memcpy (sgotloc->contents, contents, section_size);
3131
3132 free (contents);
3133 free (table);
3134 return num;
3135 }
3136
3137
3138 /* Finish up the dynamic sections. */
3139
3140 static bfd_boolean
3141 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3142 struct bfd_link_info *info)
3143 {
3144 struct elf_xtensa_link_hash_table *htab;
3145 bfd *dynobj;
3146 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3147 Elf32_External_Dyn *dyncon, *dynconend;
3148 int num_xtlit_entries = 0;
3149
3150 if (! elf_hash_table (info)->dynamic_sections_created)
3151 return TRUE;
3152
3153 htab = elf_xtensa_hash_table (info);
3154 if (htab == NULL)
3155 return FALSE;
3156
3157 dynobj = elf_hash_table (info)->dynobj;
3158 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3159 BFD_ASSERT (sdyn != NULL);
3160
3161 /* Set the first entry in the global offset table to the address of
3162 the dynamic section. */
3163 sgot = htab->elf.sgot;
3164 if (sgot)
3165 {
3166 BFD_ASSERT (sgot->size == 4);
3167 if (sdyn == NULL)
3168 bfd_put_32 (output_bfd, 0, sgot->contents);
3169 else
3170 bfd_put_32 (output_bfd,
3171 sdyn->output_section->vma + sdyn->output_offset,
3172 sgot->contents);
3173 }
3174
3175 srelplt = htab->elf.srelplt;
3176 if (srelplt && srelplt->size != 0)
3177 {
3178 asection *sgotplt, *srelgot, *spltlittbl;
3179 int chunk, plt_chunks, plt_entries;
3180 Elf_Internal_Rela irela;
3181 bfd_byte *loc;
3182 unsigned rtld_reloc;
3183
3184 srelgot = htab->elf.srelgot;
3185 spltlittbl = htab->spltlittbl;
3186 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3187
3188 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3189 of them follow immediately after.... */
3190 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3191 {
3192 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3193 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3194 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3195 break;
3196 }
3197 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3198
3199 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3200 plt_chunks =
3201 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3202
3203 for (chunk = 0; chunk < plt_chunks; chunk++)
3204 {
3205 int chunk_entries = 0;
3206
3207 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3208 BFD_ASSERT (sgotplt != NULL);
3209
3210 /* Emit special RTLD relocations for the first two entries in
3211 each chunk of the .got.plt section. */
3212
3213 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3214 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3215 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3216 irela.r_offset = (sgotplt->output_section->vma
3217 + sgotplt->output_offset);
3218 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3219 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3220 rtld_reloc += 1;
3221 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3222
3223 /* Next literal immediately follows the first. */
3224 loc += sizeof (Elf32_External_Rela);
3225 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3226 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3227 irela.r_offset = (sgotplt->output_section->vma
3228 + sgotplt->output_offset + 4);
3229 /* Tell rtld to set value to object's link map. */
3230 irela.r_addend = 2;
3231 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3232 rtld_reloc += 1;
3233 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3234
3235 /* Fill in the literal table. */
3236 if (chunk < plt_chunks - 1)
3237 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3238 else
3239 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3240
3241 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3242 bfd_put_32 (output_bfd,
3243 sgotplt->output_section->vma + sgotplt->output_offset,
3244 spltlittbl->contents + (chunk * 8) + 0);
3245 bfd_put_32 (output_bfd,
3246 8 + (chunk_entries * 4),
3247 spltlittbl->contents + (chunk * 8) + 4);
3248 }
3249
3250 /* All the dynamic relocations have been emitted at this point.
3251 Make sure the relocation sections are the correct size. */
3252 if (srelgot->size != (sizeof (Elf32_External_Rela)
3253 * srelgot->reloc_count)
3254 || srelplt->size != (sizeof (Elf32_External_Rela)
3255 * srelplt->reloc_count))
3256 abort ();
3257
3258 /* The .xt.lit.plt section has just been modified. This must
3259 happen before the code below which combines adjacent literal
3260 table entries, and the .xt.lit.plt contents have to be forced to
3261 the output here. */
3262 if (! bfd_set_section_contents (output_bfd,
3263 spltlittbl->output_section,
3264 spltlittbl->contents,
3265 spltlittbl->output_offset,
3266 spltlittbl->size))
3267 return FALSE;
3268 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3269 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3270 }
3271
3272 /* Combine adjacent literal table entries. */
3273 BFD_ASSERT (! bfd_link_relocatable (info));
3274 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3275 sgotloc = htab->sgotloc;
3276 BFD_ASSERT (sgotloc);
3277 if (sxtlit)
3278 {
3279 num_xtlit_entries =
3280 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3281 if (num_xtlit_entries < 0)
3282 return FALSE;
3283 }
3284
3285 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3286 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3287 for (; dyncon < dynconend; dyncon++)
3288 {
3289 Elf_Internal_Dyn dyn;
3290
3291 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3292
3293 switch (dyn.d_tag)
3294 {
3295 default:
3296 break;
3297
3298 case DT_XTENSA_GOT_LOC_SZ:
3299 dyn.d_un.d_val = num_xtlit_entries;
3300 break;
3301
3302 case DT_XTENSA_GOT_LOC_OFF:
3303 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3304 + htab->sgotloc->output_offset);
3305 break;
3306
3307 case DT_PLTGOT:
3308 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3309 + htab->elf.sgot->output_offset);
3310 break;
3311
3312 case DT_JMPREL:
3313 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3314 + htab->elf.srelplt->output_offset);
3315 break;
3316
3317 case DT_PLTRELSZ:
3318 dyn.d_un.d_val = htab->elf.srelplt->size;
3319 break;
3320 }
3321
3322 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3323 }
3324
3325 return TRUE;
3326 }
3327
3328 \f
3329 /* Functions for dealing with the e_flags field. */
3330
3331 /* Merge backend specific data from an object file to the output
3332 object file when linking. */
3333
3334 static bfd_boolean
3335 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3336 {
3337 bfd *obfd = info->output_bfd;
3338 unsigned out_mach, in_mach;
3339 flagword out_flag, in_flag;
3340
3341 /* Check if we have the same endianness. */
3342 if (!_bfd_generic_verify_endian_match (ibfd, info))
3343 return FALSE;
3344
3345 /* Don't even pretend to support mixed-format linking. */
3346 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3347 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3348 return FALSE;
3349
3350 out_flag = elf_elfheader (obfd)->e_flags;
3351 in_flag = elf_elfheader (ibfd)->e_flags;
3352
3353 out_mach = out_flag & EF_XTENSA_MACH;
3354 in_mach = in_flag & EF_XTENSA_MACH;
3355 if (out_mach != in_mach)
3356 {
3357 _bfd_error_handler
3358 /* xgettext:c-format */
3359 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3360 ibfd, out_mach, in_mach);
3361 bfd_set_error (bfd_error_wrong_format);
3362 return FALSE;
3363 }
3364
3365 if (! elf_flags_init (obfd))
3366 {
3367 elf_flags_init (obfd) = TRUE;
3368 elf_elfheader (obfd)->e_flags = in_flag;
3369
3370 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3371 && bfd_get_arch_info (obfd)->the_default)
3372 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3373 bfd_get_mach (ibfd));
3374
3375 return TRUE;
3376 }
3377
3378 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3379 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3380
3381 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3382 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3383
3384 return TRUE;
3385 }
3386
3387
3388 static bfd_boolean
3389 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3390 {
3391 BFD_ASSERT (!elf_flags_init (abfd)
3392 || elf_elfheader (abfd)->e_flags == flags);
3393
3394 elf_elfheader (abfd)->e_flags |= flags;
3395 elf_flags_init (abfd) = TRUE;
3396
3397 return TRUE;
3398 }
3399
3400
3401 static bfd_boolean
3402 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3403 {
3404 FILE *f = (FILE *) farg;
3405 flagword e_flags = elf_elfheader (abfd)->e_flags;
3406
3407 fprintf (f, "\nXtensa header:\n");
3408 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3409 fprintf (f, "\nMachine = Base\n");
3410 else
3411 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3412
3413 fprintf (f, "Insn tables = %s\n",
3414 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3415
3416 fprintf (f, "Literal tables = %s\n",
3417 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3418
3419 return _bfd_elf_print_private_bfd_data (abfd, farg);
3420 }
3421
3422
3423 /* Set the right machine number for an Xtensa ELF file. */
3424
3425 static bfd_boolean
3426 elf_xtensa_object_p (bfd *abfd)
3427 {
3428 int mach;
3429 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3430
3431 switch (arch)
3432 {
3433 case E_XTENSA_MACH:
3434 mach = bfd_mach_xtensa;
3435 break;
3436 default:
3437 return FALSE;
3438 }
3439
3440 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3441 return TRUE;
3442 }
3443
3444
3445 /* The final processing done just before writing out an Xtensa ELF object
3446 file. This gets the Xtensa architecture right based on the machine
3447 number. */
3448
3449 static void
3450 elf_xtensa_final_write_processing (bfd *abfd,
3451 bfd_boolean linker ATTRIBUTE_UNUSED)
3452 {
3453 int mach;
3454 unsigned long val;
3455
3456 switch (mach = bfd_get_mach (abfd))
3457 {
3458 case bfd_mach_xtensa:
3459 val = E_XTENSA_MACH;
3460 break;
3461 default:
3462 return;
3463 }
3464
3465 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3466 elf_elfheader (abfd)->e_flags |= val;
3467 }
3468
3469
3470 static enum elf_reloc_type_class
3471 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3472 const asection *rel_sec ATTRIBUTE_UNUSED,
3473 const Elf_Internal_Rela *rela)
3474 {
3475 switch ((int) ELF32_R_TYPE (rela->r_info))
3476 {
3477 case R_XTENSA_RELATIVE:
3478 return reloc_class_relative;
3479 case R_XTENSA_JMP_SLOT:
3480 return reloc_class_plt;
3481 default:
3482 return reloc_class_normal;
3483 }
3484 }
3485
3486 \f
3487 static bfd_boolean
3488 elf_xtensa_discard_info_for_section (bfd *abfd,
3489 struct elf_reloc_cookie *cookie,
3490 struct bfd_link_info *info,
3491 asection *sec)
3492 {
3493 bfd_byte *contents;
3494 bfd_vma offset, actual_offset;
3495 bfd_size_type removed_bytes = 0;
3496 bfd_size_type entry_size;
3497
3498 if (sec->output_section
3499 && bfd_is_abs_section (sec->output_section))
3500 return FALSE;
3501
3502 if (xtensa_is_proptable_section (sec))
3503 entry_size = 12;
3504 else
3505 entry_size = 8;
3506
3507 if (sec->size == 0 || sec->size % entry_size != 0)
3508 return FALSE;
3509
3510 contents = retrieve_contents (abfd, sec, info->keep_memory);
3511 if (!contents)
3512 return FALSE;
3513
3514 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3515 if (!cookie->rels)
3516 {
3517 release_contents (sec, contents);
3518 return FALSE;
3519 }
3520
3521 /* Sort the relocations. They should already be in order when
3522 relaxation is enabled, but it might not be. */
3523 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3524 internal_reloc_compare);
3525
3526 cookie->rel = cookie->rels;
3527 cookie->relend = cookie->rels + sec->reloc_count;
3528
3529 for (offset = 0; offset < sec->size; offset += entry_size)
3530 {
3531 actual_offset = offset - removed_bytes;
3532
3533 /* The ...symbol_deleted_p function will skip over relocs but it
3534 won't adjust their offsets, so do that here. */
3535 while (cookie->rel < cookie->relend
3536 && cookie->rel->r_offset < offset)
3537 {
3538 cookie->rel->r_offset -= removed_bytes;
3539 cookie->rel++;
3540 }
3541
3542 while (cookie->rel < cookie->relend
3543 && cookie->rel->r_offset == offset)
3544 {
3545 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3546 {
3547 /* Remove the table entry. (If the reloc type is NONE, then
3548 the entry has already been merged with another and deleted
3549 during relaxation.) */
3550 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3551 {
3552 /* Shift the contents up. */
3553 if (offset + entry_size < sec->size)
3554 memmove (&contents[actual_offset],
3555 &contents[actual_offset + entry_size],
3556 sec->size - offset - entry_size);
3557 removed_bytes += entry_size;
3558 }
3559
3560 /* Remove this relocation. */
3561 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3562 }
3563
3564 /* Adjust the relocation offset for previous removals. This
3565 should not be done before calling ...symbol_deleted_p
3566 because it might mess up the offset comparisons there.
3567 Make sure the offset doesn't underflow in the case where
3568 the first entry is removed. */
3569 if (cookie->rel->r_offset >= removed_bytes)
3570 cookie->rel->r_offset -= removed_bytes;
3571 else
3572 cookie->rel->r_offset = 0;
3573
3574 cookie->rel++;
3575 }
3576 }
3577
3578 if (removed_bytes != 0)
3579 {
3580 /* Adjust any remaining relocs (shouldn't be any). */
3581 for (; cookie->rel < cookie->relend; cookie->rel++)
3582 {
3583 if (cookie->rel->r_offset >= removed_bytes)
3584 cookie->rel->r_offset -= removed_bytes;
3585 else
3586 cookie->rel->r_offset = 0;
3587 }
3588
3589 /* Clear the removed bytes. */
3590 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3591
3592 pin_contents (sec, contents);
3593 pin_internal_relocs (sec, cookie->rels);
3594
3595 /* Shrink size. */
3596 if (sec->rawsize == 0)
3597 sec->rawsize = sec->size;
3598 sec->size -= removed_bytes;
3599
3600 if (xtensa_is_littable_section (sec))
3601 {
3602 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3603 if (sgotloc)
3604 sgotloc->size -= removed_bytes;
3605 }
3606 }
3607 else
3608 {
3609 release_contents (sec, contents);
3610 release_internal_relocs (sec, cookie->rels);
3611 }
3612
3613 return (removed_bytes != 0);
3614 }
3615
3616
3617 static bfd_boolean
3618 elf_xtensa_discard_info (bfd *abfd,
3619 struct elf_reloc_cookie *cookie,
3620 struct bfd_link_info *info)
3621 {
3622 asection *sec;
3623 bfd_boolean changed = FALSE;
3624
3625 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3626 {
3627 if (xtensa_is_property_section (sec))
3628 {
3629 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3630 changed = TRUE;
3631 }
3632 }
3633
3634 return changed;
3635 }
3636
3637
3638 static bfd_boolean
3639 elf_xtensa_ignore_discarded_relocs (asection *sec)
3640 {
3641 return xtensa_is_property_section (sec);
3642 }
3643
3644
3645 static unsigned int
3646 elf_xtensa_action_discarded (asection *sec)
3647 {
3648 if (strcmp (".xt_except_table", sec->name) == 0)
3649 return 0;
3650
3651 if (strcmp (".xt_except_desc", sec->name) == 0)
3652 return 0;
3653
3654 return _bfd_elf_default_action_discarded (sec);
3655 }
3656
3657 \f
3658 /* Support for core dump NOTE sections. */
3659
3660 static bfd_boolean
3661 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3662 {
3663 int offset;
3664 unsigned int size;
3665
3666 /* The size for Xtensa is variable, so don't try to recognize the format
3667 based on the size. Just assume this is GNU/Linux. */
3668
3669 /* pr_cursig */
3670 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3671
3672 /* pr_pid */
3673 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3674
3675 /* pr_reg */
3676 offset = 72;
3677 size = note->descsz - offset - 4;
3678
3679 /* Make a ".reg/999" section. */
3680 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3681 size, note->descpos + offset);
3682 }
3683
3684
3685 static bfd_boolean
3686 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3687 {
3688 switch (note->descsz)
3689 {
3690 default:
3691 return FALSE;
3692
3693 case 128: /* GNU/Linux elf_prpsinfo */
3694 elf_tdata (abfd)->core->program
3695 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3696 elf_tdata (abfd)->core->command
3697 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3698 }
3699
3700 /* Note that for some reason, a spurious space is tacked
3701 onto the end of the args in some (at least one anyway)
3702 implementations, so strip it off if it exists. */
3703
3704 {
3705 char *command = elf_tdata (abfd)->core->command;
3706 int n = strlen (command);
3707
3708 if (0 < n && command[n - 1] == ' ')
3709 command[n - 1] = '\0';
3710 }
3711
3712 return TRUE;
3713 }
3714
3715 \f
3716 /* Generic Xtensa configurability stuff. */
3717
3718 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3719 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3720 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3721 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3722 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3723 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3724 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3725 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3726
3727 static void
3728 init_call_opcodes (void)
3729 {
3730 if (callx0_op == XTENSA_UNDEFINED)
3731 {
3732 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3733 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3734 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3735 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3736 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3737 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3738 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3739 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3740 }
3741 }
3742
3743
3744 static bfd_boolean
3745 is_indirect_call_opcode (xtensa_opcode opcode)
3746 {
3747 init_call_opcodes ();
3748 return (opcode == callx0_op
3749 || opcode == callx4_op
3750 || opcode == callx8_op
3751 || opcode == callx12_op);
3752 }
3753
3754
3755 static bfd_boolean
3756 is_direct_call_opcode (xtensa_opcode opcode)
3757 {
3758 init_call_opcodes ();
3759 return (opcode == call0_op
3760 || opcode == call4_op
3761 || opcode == call8_op
3762 || opcode == call12_op);
3763 }
3764
3765
3766 static bfd_boolean
3767 is_windowed_call_opcode (xtensa_opcode opcode)
3768 {
3769 init_call_opcodes ();
3770 return (opcode == call4_op
3771 || opcode == call8_op
3772 || opcode == call12_op
3773 || opcode == callx4_op
3774 || opcode == callx8_op
3775 || opcode == callx12_op);
3776 }
3777
3778
3779 static bfd_boolean
3780 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3781 {
3782 unsigned dst = (unsigned) -1;
3783
3784 init_call_opcodes ();
3785 if (opcode == callx0_op)
3786 dst = 0;
3787 else if (opcode == callx4_op)
3788 dst = 4;
3789 else if (opcode == callx8_op)
3790 dst = 8;
3791 else if (opcode == callx12_op)
3792 dst = 12;
3793
3794 if (dst == (unsigned) -1)
3795 return FALSE;
3796
3797 *pdst = dst;
3798 return TRUE;
3799 }
3800
3801
3802 static xtensa_opcode
3803 get_const16_opcode (void)
3804 {
3805 static bfd_boolean done_lookup = FALSE;
3806 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3807 if (!done_lookup)
3808 {
3809 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3810 done_lookup = TRUE;
3811 }
3812 return const16_opcode;
3813 }
3814
3815
3816 static xtensa_opcode
3817 get_l32r_opcode (void)
3818 {
3819 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3820 static bfd_boolean done_lookup = FALSE;
3821
3822 if (!done_lookup)
3823 {
3824 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3825 done_lookup = TRUE;
3826 }
3827 return l32r_opcode;
3828 }
3829
3830
3831 static bfd_vma
3832 l32r_offset (bfd_vma addr, bfd_vma pc)
3833 {
3834 bfd_vma offset;
3835
3836 offset = addr - ((pc+3) & -4);
3837 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3838 offset = (signed int) offset >> 2;
3839 BFD_ASSERT ((signed int) offset >> 16 == -1);
3840 return offset;
3841 }
3842
3843
3844 static int
3845 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3846 {
3847 xtensa_isa isa = xtensa_default_isa;
3848 int last_immed, last_opnd, opi;
3849
3850 if (opcode == XTENSA_UNDEFINED)
3851 return XTENSA_UNDEFINED;
3852
3853 /* Find the last visible PC-relative immediate operand for the opcode.
3854 If there are no PC-relative immediates, then choose the last visible
3855 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3856 last_immed = XTENSA_UNDEFINED;
3857 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3858 for (opi = last_opnd - 1; opi >= 0; opi--)
3859 {
3860 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3861 continue;
3862 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3863 {
3864 last_immed = opi;
3865 break;
3866 }
3867 if (last_immed == XTENSA_UNDEFINED
3868 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3869 last_immed = opi;
3870 }
3871 if (last_immed < 0)
3872 return XTENSA_UNDEFINED;
3873
3874 /* If the operand number was specified in an old-style relocation,
3875 check for consistency with the operand computed above. */
3876 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3877 {
3878 int reloc_opnd = r_type - R_XTENSA_OP0;
3879 if (reloc_opnd != last_immed)
3880 return XTENSA_UNDEFINED;
3881 }
3882
3883 return last_immed;
3884 }
3885
3886
3887 int
3888 get_relocation_slot (int r_type)
3889 {
3890 switch (r_type)
3891 {
3892 case R_XTENSA_OP0:
3893 case R_XTENSA_OP1:
3894 case R_XTENSA_OP2:
3895 return 0;
3896
3897 default:
3898 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3899 return r_type - R_XTENSA_SLOT0_OP;
3900 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3901 return r_type - R_XTENSA_SLOT0_ALT;
3902 break;
3903 }
3904
3905 return XTENSA_UNDEFINED;
3906 }
3907
3908
3909 /* Get the opcode for a relocation. */
3910
3911 static xtensa_opcode
3912 get_relocation_opcode (bfd *abfd,
3913 asection *sec,
3914 bfd_byte *contents,
3915 Elf_Internal_Rela *irel)
3916 {
3917 static xtensa_insnbuf ibuff = NULL;
3918 static xtensa_insnbuf sbuff = NULL;
3919 xtensa_isa isa = xtensa_default_isa;
3920 xtensa_format fmt;
3921 int slot;
3922
3923 if (contents == NULL)
3924 return XTENSA_UNDEFINED;
3925
3926 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3927 return XTENSA_UNDEFINED;
3928
3929 if (ibuff == NULL)
3930 {
3931 ibuff = xtensa_insnbuf_alloc (isa);
3932 sbuff = xtensa_insnbuf_alloc (isa);
3933 }
3934
3935 /* Decode the instruction. */
3936 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3937 sec->size - irel->r_offset);
3938 fmt = xtensa_format_decode (isa, ibuff);
3939 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3940 if (slot == XTENSA_UNDEFINED)
3941 return XTENSA_UNDEFINED;
3942 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3943 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3944 }
3945
3946
3947 bfd_boolean
3948 is_l32r_relocation (bfd *abfd,
3949 asection *sec,
3950 bfd_byte *contents,
3951 Elf_Internal_Rela *irel)
3952 {
3953 xtensa_opcode opcode;
3954 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3955 return FALSE;
3956 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3957 return (opcode == get_l32r_opcode ());
3958 }
3959
3960
3961 static bfd_size_type
3962 get_asm_simplify_size (bfd_byte *contents,
3963 bfd_size_type content_len,
3964 bfd_size_type offset)
3965 {
3966 bfd_size_type insnlen, size = 0;
3967
3968 /* Decode the size of the next two instructions. */
3969 insnlen = insn_decode_len (contents, content_len, offset);
3970 if (insnlen == 0)
3971 return 0;
3972
3973 size += insnlen;
3974
3975 insnlen = insn_decode_len (contents, content_len, offset + size);
3976 if (insnlen == 0)
3977 return 0;
3978
3979 size += insnlen;
3980 return size;
3981 }
3982
3983
3984 bfd_boolean
3985 is_alt_relocation (int r_type)
3986 {
3987 return (r_type >= R_XTENSA_SLOT0_ALT
3988 && r_type <= R_XTENSA_SLOT14_ALT);
3989 }
3990
3991
3992 bfd_boolean
3993 is_operand_relocation (int r_type)
3994 {
3995 switch (r_type)
3996 {
3997 case R_XTENSA_OP0:
3998 case R_XTENSA_OP1:
3999 case R_XTENSA_OP2:
4000 return TRUE;
4001
4002 default:
4003 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4004 return TRUE;
4005 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4006 return TRUE;
4007 break;
4008 }
4009
4010 return FALSE;
4011 }
4012
4013
4014 #define MIN_INSN_LENGTH 2
4015
4016 /* Return 0 if it fails to decode. */
4017
4018 bfd_size_type
4019 insn_decode_len (bfd_byte *contents,
4020 bfd_size_type content_len,
4021 bfd_size_type offset)
4022 {
4023 int insn_len;
4024 xtensa_isa isa = xtensa_default_isa;
4025 xtensa_format fmt;
4026 static xtensa_insnbuf ibuff = NULL;
4027
4028 if (offset + MIN_INSN_LENGTH > content_len)
4029 return 0;
4030
4031 if (ibuff == NULL)
4032 ibuff = xtensa_insnbuf_alloc (isa);
4033 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4034 content_len - offset);
4035 fmt = xtensa_format_decode (isa, ibuff);
4036 if (fmt == XTENSA_UNDEFINED)
4037 return 0;
4038 insn_len = xtensa_format_length (isa, fmt);
4039 if (insn_len == XTENSA_UNDEFINED)
4040 return 0;
4041 return insn_len;
4042 }
4043
4044
4045 /* Decode the opcode for a single slot instruction.
4046 Return 0 if it fails to decode or the instruction is multi-slot. */
4047
4048 xtensa_opcode
4049 insn_decode_opcode (bfd_byte *contents,
4050 bfd_size_type content_len,
4051 bfd_size_type offset,
4052 int slot)
4053 {
4054 xtensa_isa isa = xtensa_default_isa;
4055 xtensa_format fmt;
4056 static xtensa_insnbuf insnbuf = NULL;
4057 static xtensa_insnbuf slotbuf = NULL;
4058
4059 if (offset + MIN_INSN_LENGTH > content_len)
4060 return XTENSA_UNDEFINED;
4061
4062 if (insnbuf == NULL)
4063 {
4064 insnbuf = xtensa_insnbuf_alloc (isa);
4065 slotbuf = xtensa_insnbuf_alloc (isa);
4066 }
4067
4068 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4069 content_len - offset);
4070 fmt = xtensa_format_decode (isa, insnbuf);
4071 if (fmt == XTENSA_UNDEFINED)
4072 return XTENSA_UNDEFINED;
4073
4074 if (slot >= xtensa_format_num_slots (isa, fmt))
4075 return XTENSA_UNDEFINED;
4076
4077 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4078 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4079 }
4080
4081
4082 /* The offset is the offset in the contents.
4083 The address is the address of that offset. */
4084
4085 static bfd_boolean
4086 check_branch_target_aligned (bfd_byte *contents,
4087 bfd_size_type content_length,
4088 bfd_vma offset,
4089 bfd_vma address)
4090 {
4091 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4092 if (insn_len == 0)
4093 return FALSE;
4094 return check_branch_target_aligned_address (address, insn_len);
4095 }
4096
4097
4098 static bfd_boolean
4099 check_loop_aligned (bfd_byte *contents,
4100 bfd_size_type content_length,
4101 bfd_vma offset,
4102 bfd_vma address)
4103 {
4104 bfd_size_type loop_len, insn_len;
4105 xtensa_opcode opcode;
4106
4107 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4108 if (opcode == XTENSA_UNDEFINED
4109 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4110 {
4111 BFD_ASSERT (FALSE);
4112 return FALSE;
4113 }
4114
4115 loop_len = insn_decode_len (contents, content_length, offset);
4116 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4117 if (loop_len == 0 || insn_len == 0)
4118 {
4119 BFD_ASSERT (FALSE);
4120 return FALSE;
4121 }
4122
4123 return check_branch_target_aligned_address (address + loop_len, insn_len);
4124 }
4125
4126
4127 static bfd_boolean
4128 check_branch_target_aligned_address (bfd_vma addr, int len)
4129 {
4130 if (len == 8)
4131 return (addr % 8 == 0);
4132 return ((addr >> 2) == ((addr + len - 1) >> 2));
4133 }
4134
4135 \f
4136 /* Instruction widening and narrowing. */
4137
4138 /* When FLIX is available we need to access certain instructions only
4139 when they are 16-bit or 24-bit instructions. This table caches
4140 information about such instructions by walking through all the
4141 opcodes and finding the smallest single-slot format into which each
4142 can be encoded. */
4143
4144 static xtensa_format *op_single_fmt_table = NULL;
4145
4146
4147 static void
4148 init_op_single_format_table (void)
4149 {
4150 xtensa_isa isa = xtensa_default_isa;
4151 xtensa_insnbuf ibuf;
4152 xtensa_opcode opcode;
4153 xtensa_format fmt;
4154 int num_opcodes;
4155
4156 if (op_single_fmt_table)
4157 return;
4158
4159 ibuf = xtensa_insnbuf_alloc (isa);
4160 num_opcodes = xtensa_isa_num_opcodes (isa);
4161
4162 op_single_fmt_table = (xtensa_format *)
4163 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4164 for (opcode = 0; opcode < num_opcodes; opcode++)
4165 {
4166 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4167 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4168 {
4169 if (xtensa_format_num_slots (isa, fmt) == 1
4170 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4171 {
4172 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4173 int fmt_length = xtensa_format_length (isa, fmt);
4174 if (old_fmt == XTENSA_UNDEFINED
4175 || fmt_length < xtensa_format_length (isa, old_fmt))
4176 op_single_fmt_table[opcode] = fmt;
4177 }
4178 }
4179 }
4180 xtensa_insnbuf_free (isa, ibuf);
4181 }
4182
4183
4184 static xtensa_format
4185 get_single_format (xtensa_opcode opcode)
4186 {
4187 init_op_single_format_table ();
4188 return op_single_fmt_table[opcode];
4189 }
4190
4191
4192 /* For the set of narrowable instructions we do NOT include the
4193 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4194 involved during linker relaxation that may require these to
4195 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4196 requires special case code to ensure it only works when op1 == op2. */
4197
4198 struct string_pair
4199 {
4200 const char *wide;
4201 const char *narrow;
4202 };
4203
4204 struct string_pair narrowable[] =
4205 {
4206 { "add", "add.n" },
4207 { "addi", "addi.n" },
4208 { "addmi", "addi.n" },
4209 { "l32i", "l32i.n" },
4210 { "movi", "movi.n" },
4211 { "ret", "ret.n" },
4212 { "retw", "retw.n" },
4213 { "s32i", "s32i.n" },
4214 { "or", "mov.n" } /* special case only when op1 == op2 */
4215 };
4216
4217 struct string_pair widenable[] =
4218 {
4219 { "add", "add.n" },
4220 { "addi", "addi.n" },
4221 { "addmi", "addi.n" },
4222 { "beqz", "beqz.n" },
4223 { "bnez", "bnez.n" },
4224 { "l32i", "l32i.n" },
4225 { "movi", "movi.n" },
4226 { "ret", "ret.n" },
4227 { "retw", "retw.n" },
4228 { "s32i", "s32i.n" },
4229 { "or", "mov.n" } /* special case only when op1 == op2 */
4230 };
4231
4232
4233 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4234 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4235 return the instruction buffer holding the narrow instruction. Otherwise,
4236 return 0. The set of valid narrowing are specified by a string table
4237 but require some special case operand checks in some cases. */
4238
4239 static xtensa_insnbuf
4240 can_narrow_instruction (xtensa_insnbuf slotbuf,
4241 xtensa_format fmt,
4242 xtensa_opcode opcode)
4243 {
4244 xtensa_isa isa = xtensa_default_isa;
4245 xtensa_format o_fmt;
4246 unsigned opi;
4247
4248 static xtensa_insnbuf o_insnbuf = NULL;
4249 static xtensa_insnbuf o_slotbuf = NULL;
4250
4251 if (o_insnbuf == NULL)
4252 {
4253 o_insnbuf = xtensa_insnbuf_alloc (isa);
4254 o_slotbuf = xtensa_insnbuf_alloc (isa);
4255 }
4256
4257 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4258 {
4259 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4260
4261 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4262 {
4263 uint32 value, newval;
4264 int i, operand_count, o_operand_count;
4265 xtensa_opcode o_opcode;
4266
4267 /* Address does not matter in this case. We might need to
4268 fix it to handle branches/jumps. */
4269 bfd_vma self_address = 0;
4270
4271 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4272 if (o_opcode == XTENSA_UNDEFINED)
4273 return 0;
4274 o_fmt = get_single_format (o_opcode);
4275 if (o_fmt == XTENSA_UNDEFINED)
4276 return 0;
4277
4278 if (xtensa_format_length (isa, fmt) != 3
4279 || xtensa_format_length (isa, o_fmt) != 2)
4280 return 0;
4281
4282 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4283 operand_count = xtensa_opcode_num_operands (isa, opcode);
4284 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4285
4286 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4287 return 0;
4288
4289 if (!is_or)
4290 {
4291 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4292 return 0;
4293 }
4294 else
4295 {
4296 uint32 rawval0, rawval1, rawval2;
4297
4298 if (o_operand_count + 1 != operand_count
4299 || xtensa_operand_get_field (isa, opcode, 0,
4300 fmt, 0, slotbuf, &rawval0) != 0
4301 || xtensa_operand_get_field (isa, opcode, 1,
4302 fmt, 0, slotbuf, &rawval1) != 0
4303 || xtensa_operand_get_field (isa, opcode, 2,
4304 fmt, 0, slotbuf, &rawval2) != 0
4305 || rawval1 != rawval2
4306 || rawval0 == rawval1 /* it is a nop */)
4307 return 0;
4308 }
4309
4310 for (i = 0; i < o_operand_count; ++i)
4311 {
4312 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4313 slotbuf, &value)
4314 || xtensa_operand_decode (isa, opcode, i, &value))
4315 return 0;
4316
4317 /* PC-relative branches need adjustment, but
4318 the PC-rel operand will always have a relocation. */
4319 newval = value;
4320 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4321 self_address)
4322 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4323 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4324 o_slotbuf, newval))
4325 return 0;
4326 }
4327
4328 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4329 return 0;
4330
4331 return o_insnbuf;
4332 }
4333 }
4334 return 0;
4335 }
4336
4337
4338 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4339 the action in-place directly into the contents and return TRUE. Otherwise,
4340 the return value is FALSE and the contents are not modified. */
4341
4342 static bfd_boolean
4343 narrow_instruction (bfd_byte *contents,
4344 bfd_size_type content_length,
4345 bfd_size_type offset)
4346 {
4347 xtensa_opcode opcode;
4348 bfd_size_type insn_len;
4349 xtensa_isa isa = xtensa_default_isa;
4350 xtensa_format fmt;
4351 xtensa_insnbuf o_insnbuf;
4352
4353 static xtensa_insnbuf insnbuf = NULL;
4354 static xtensa_insnbuf slotbuf = NULL;
4355
4356 if (insnbuf == NULL)
4357 {
4358 insnbuf = xtensa_insnbuf_alloc (isa);
4359 slotbuf = xtensa_insnbuf_alloc (isa);
4360 }
4361
4362 BFD_ASSERT (offset < content_length);
4363
4364 if (content_length < 2)
4365 return FALSE;
4366
4367 /* We will hand-code a few of these for a little while.
4368 These have all been specified in the assembler aleady. */
4369 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4370 content_length - offset);
4371 fmt = xtensa_format_decode (isa, insnbuf);
4372 if (xtensa_format_num_slots (isa, fmt) != 1)
4373 return FALSE;
4374
4375 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4376 return FALSE;
4377
4378 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4379 if (opcode == XTENSA_UNDEFINED)
4380 return FALSE;
4381 insn_len = xtensa_format_length (isa, fmt);
4382 if (insn_len > content_length)
4383 return FALSE;
4384
4385 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4386 if (o_insnbuf)
4387 {
4388 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4389 content_length - offset);
4390 return TRUE;
4391 }
4392
4393 return FALSE;
4394 }
4395
4396
4397 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4398 "density" instruction to a standard 3-byte instruction. If it is valid,
4399 return the instruction buffer holding the wide instruction. Otherwise,
4400 return 0. The set of valid widenings are specified by a string table
4401 but require some special case operand checks in some cases. */
4402
4403 static xtensa_insnbuf
4404 can_widen_instruction (xtensa_insnbuf slotbuf,
4405 xtensa_format fmt,
4406 xtensa_opcode opcode)
4407 {
4408 xtensa_isa isa = xtensa_default_isa;
4409 xtensa_format o_fmt;
4410 unsigned opi;
4411
4412 static xtensa_insnbuf o_insnbuf = NULL;
4413 static xtensa_insnbuf o_slotbuf = NULL;
4414
4415 if (o_insnbuf == NULL)
4416 {
4417 o_insnbuf = xtensa_insnbuf_alloc (isa);
4418 o_slotbuf = xtensa_insnbuf_alloc (isa);
4419 }
4420
4421 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4422 {
4423 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4424 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4425 || strcmp ("bnez", widenable[opi].wide) == 0);
4426
4427 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4428 {
4429 uint32 value, newval;
4430 int i, operand_count, o_operand_count, check_operand_count;
4431 xtensa_opcode o_opcode;
4432
4433 /* Address does not matter in this case. We might need to fix it
4434 to handle branches/jumps. */
4435 bfd_vma self_address = 0;
4436
4437 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4438 if (o_opcode == XTENSA_UNDEFINED)
4439 return 0;
4440 o_fmt = get_single_format (o_opcode);
4441 if (o_fmt == XTENSA_UNDEFINED)
4442 return 0;
4443
4444 if (xtensa_format_length (isa, fmt) != 2
4445 || xtensa_format_length (isa, o_fmt) != 3)
4446 return 0;
4447
4448 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4449 operand_count = xtensa_opcode_num_operands (isa, opcode);
4450 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4451 check_operand_count = o_operand_count;
4452
4453 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4454 return 0;
4455
4456 if (!is_or)
4457 {
4458 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4459 return 0;
4460 }
4461 else
4462 {
4463 uint32 rawval0, rawval1;
4464
4465 if (o_operand_count != operand_count + 1
4466 || xtensa_operand_get_field (isa, opcode, 0,
4467 fmt, 0, slotbuf, &rawval0) != 0
4468 || xtensa_operand_get_field (isa, opcode, 1,
4469 fmt, 0, slotbuf, &rawval1) != 0
4470 || rawval0 == rawval1 /* it is a nop */)
4471 return 0;
4472 }
4473 if (is_branch)
4474 check_operand_count--;
4475
4476 for (i = 0; i < check_operand_count; i++)
4477 {
4478 int new_i = i;
4479 if (is_or && i == o_operand_count - 1)
4480 new_i = i - 1;
4481 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4482 slotbuf, &value)
4483 || xtensa_operand_decode (isa, opcode, new_i, &value))
4484 return 0;
4485
4486 /* PC-relative branches need adjustment, but
4487 the PC-rel operand will always have a relocation. */
4488 newval = value;
4489 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4490 self_address)
4491 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4492 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4493 o_slotbuf, newval))
4494 return 0;
4495 }
4496
4497 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4498 return 0;
4499
4500 return o_insnbuf;
4501 }
4502 }
4503 return 0;
4504 }
4505
4506
4507 /* Attempt to widen an instruction. If the widening is valid, perform
4508 the action in-place directly into the contents and return TRUE. Otherwise,
4509 the return value is FALSE and the contents are not modified. */
4510
4511 static bfd_boolean
4512 widen_instruction (bfd_byte *contents,
4513 bfd_size_type content_length,
4514 bfd_size_type offset)
4515 {
4516 xtensa_opcode opcode;
4517 bfd_size_type insn_len;
4518 xtensa_isa isa = xtensa_default_isa;
4519 xtensa_format fmt;
4520 xtensa_insnbuf o_insnbuf;
4521
4522 static xtensa_insnbuf insnbuf = NULL;
4523 static xtensa_insnbuf slotbuf = NULL;
4524
4525 if (insnbuf == NULL)
4526 {
4527 insnbuf = xtensa_insnbuf_alloc (isa);
4528 slotbuf = xtensa_insnbuf_alloc (isa);
4529 }
4530
4531 BFD_ASSERT (offset < content_length);
4532
4533 if (content_length < 2)
4534 return FALSE;
4535
4536 /* We will hand-code a few of these for a little while.
4537 These have all been specified in the assembler aleady. */
4538 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4539 content_length - offset);
4540 fmt = xtensa_format_decode (isa, insnbuf);
4541 if (xtensa_format_num_slots (isa, fmt) != 1)
4542 return FALSE;
4543
4544 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4545 return FALSE;
4546
4547 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4548 if (opcode == XTENSA_UNDEFINED)
4549 return FALSE;
4550 insn_len = xtensa_format_length (isa, fmt);
4551 if (insn_len > content_length)
4552 return FALSE;
4553
4554 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4555 if (o_insnbuf)
4556 {
4557 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4558 content_length - offset);
4559 return TRUE;
4560 }
4561 return FALSE;
4562 }
4563
4564 \f
4565 /* Code for transforming CALLs at link-time. */
4566
4567 static bfd_reloc_status_type
4568 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4569 bfd_vma address,
4570 bfd_vma content_length,
4571 char **error_message)
4572 {
4573 static xtensa_insnbuf insnbuf = NULL;
4574 static xtensa_insnbuf slotbuf = NULL;
4575 xtensa_format core_format = XTENSA_UNDEFINED;
4576 xtensa_opcode opcode;
4577 xtensa_opcode direct_call_opcode;
4578 xtensa_isa isa = xtensa_default_isa;
4579 bfd_byte *chbuf = contents + address;
4580 int opn;
4581
4582 if (insnbuf == NULL)
4583 {
4584 insnbuf = xtensa_insnbuf_alloc (isa);
4585 slotbuf = xtensa_insnbuf_alloc (isa);
4586 }
4587
4588 if (content_length < address)
4589 {
4590 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4591 return bfd_reloc_other;
4592 }
4593
4594 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4595 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4596 if (direct_call_opcode == XTENSA_UNDEFINED)
4597 {
4598 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4599 return bfd_reloc_other;
4600 }
4601
4602 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4603 core_format = xtensa_format_lookup (isa, "x24");
4604 opcode = xtensa_opcode_lookup (isa, "or");
4605 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4606 for (opn = 0; opn < 3; opn++)
4607 {
4608 uint32 regno = 1;
4609 xtensa_operand_encode (isa, opcode, opn, &regno);
4610 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4611 slotbuf, regno);
4612 }
4613 xtensa_format_encode (isa, core_format, insnbuf);
4614 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4615 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4616
4617 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4618 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4619 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4620
4621 xtensa_format_encode (isa, core_format, insnbuf);
4622 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4623 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4624 content_length - address - 3);
4625
4626 return bfd_reloc_ok;
4627 }
4628
4629
4630 static bfd_reloc_status_type
4631 contract_asm_expansion (bfd_byte *contents,
4632 bfd_vma content_length,
4633 Elf_Internal_Rela *irel,
4634 char **error_message)
4635 {
4636 bfd_reloc_status_type retval =
4637 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4638 error_message);
4639
4640 if (retval != bfd_reloc_ok)
4641 return bfd_reloc_dangerous;
4642
4643 /* Update the irel->r_offset field so that the right immediate and
4644 the right instruction are modified during the relocation. */
4645 irel->r_offset += 3;
4646 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4647 return bfd_reloc_ok;
4648 }
4649
4650
4651 static xtensa_opcode
4652 swap_callx_for_call_opcode (xtensa_opcode opcode)
4653 {
4654 init_call_opcodes ();
4655
4656 if (opcode == callx0_op) return call0_op;
4657 if (opcode == callx4_op) return call4_op;
4658 if (opcode == callx8_op) return call8_op;
4659 if (opcode == callx12_op) return call12_op;
4660
4661 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4662 return XTENSA_UNDEFINED;
4663 }
4664
4665
4666 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4667 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4668 If not, return XTENSA_UNDEFINED. */
4669
4670 #define L32R_TARGET_REG_OPERAND 0
4671 #define CONST16_TARGET_REG_OPERAND 0
4672 #define CALLN_SOURCE_OPERAND 0
4673
4674 static xtensa_opcode
4675 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4676 {
4677 static xtensa_insnbuf insnbuf = NULL;
4678 static xtensa_insnbuf slotbuf = NULL;
4679 xtensa_format fmt;
4680 xtensa_opcode opcode;
4681 xtensa_isa isa = xtensa_default_isa;
4682 uint32 regno, const16_regno, call_regno;
4683 int offset = 0;
4684
4685 if (insnbuf == NULL)
4686 {
4687 insnbuf = xtensa_insnbuf_alloc (isa);
4688 slotbuf = xtensa_insnbuf_alloc (isa);
4689 }
4690
4691 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4692 fmt = xtensa_format_decode (isa, insnbuf);
4693 if (fmt == XTENSA_UNDEFINED
4694 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4695 return XTENSA_UNDEFINED;
4696
4697 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4698 if (opcode == XTENSA_UNDEFINED)
4699 return XTENSA_UNDEFINED;
4700
4701 if (opcode == get_l32r_opcode ())
4702 {
4703 if (p_uses_l32r)
4704 *p_uses_l32r = TRUE;
4705 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4706 fmt, 0, slotbuf, &regno)
4707 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4708 &regno))
4709 return XTENSA_UNDEFINED;
4710 }
4711 else if (opcode == get_const16_opcode ())
4712 {
4713 if (p_uses_l32r)
4714 *p_uses_l32r = FALSE;
4715 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4716 fmt, 0, slotbuf, &regno)
4717 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4718 &regno))
4719 return XTENSA_UNDEFINED;
4720
4721 /* Check that the next instruction is also CONST16. */
4722 offset += xtensa_format_length (isa, fmt);
4723 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4724 fmt = xtensa_format_decode (isa, insnbuf);
4725 if (fmt == XTENSA_UNDEFINED
4726 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4727 return XTENSA_UNDEFINED;
4728 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4729 if (opcode != get_const16_opcode ())
4730 return XTENSA_UNDEFINED;
4731
4732 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4733 fmt, 0, slotbuf, &const16_regno)
4734 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4735 &const16_regno)
4736 || const16_regno != regno)
4737 return XTENSA_UNDEFINED;
4738 }
4739 else
4740 return XTENSA_UNDEFINED;
4741
4742 /* Next instruction should be an CALLXn with operand 0 == regno. */
4743 offset += xtensa_format_length (isa, fmt);
4744 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4745 fmt = xtensa_format_decode (isa, insnbuf);
4746 if (fmt == XTENSA_UNDEFINED
4747 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4748 return XTENSA_UNDEFINED;
4749 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4750 if (opcode == XTENSA_UNDEFINED
4751 || !is_indirect_call_opcode (opcode))
4752 return XTENSA_UNDEFINED;
4753
4754 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4755 fmt, 0, slotbuf, &call_regno)
4756 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4757 &call_regno))
4758 return XTENSA_UNDEFINED;
4759
4760 if (call_regno != regno)
4761 return XTENSA_UNDEFINED;
4762
4763 return opcode;
4764 }
4765
4766 \f
4767 /* Data structures used during relaxation. */
4768
4769 /* r_reloc: relocation values. */
4770
4771 /* Through the relaxation process, we need to keep track of the values
4772 that will result from evaluating relocations. The standard ELF
4773 relocation structure is not sufficient for this purpose because we're
4774 operating on multiple input files at once, so we need to know which
4775 input file a relocation refers to. The r_reloc structure thus
4776 records both the input file (bfd) and ELF relocation.
4777
4778 For efficiency, an r_reloc also contains a "target_offset" field to
4779 cache the target-section-relative offset value that is represented by
4780 the relocation.
4781
4782 The r_reloc also contains a virtual offset that allows multiple
4783 inserted literals to be placed at the same "address" with
4784 different offsets. */
4785
4786 typedef struct r_reloc_struct r_reloc;
4787
4788 struct r_reloc_struct
4789 {
4790 bfd *abfd;
4791 Elf_Internal_Rela rela;
4792 bfd_vma target_offset;
4793 bfd_vma virtual_offset;
4794 };
4795
4796
4797 /* The r_reloc structure is included by value in literal_value, but not
4798 every literal_value has an associated relocation -- some are simple
4799 constants. In such cases, we set all the fields in the r_reloc
4800 struct to zero. The r_reloc_is_const function should be used to
4801 detect this case. */
4802
4803 static bfd_boolean
4804 r_reloc_is_const (const r_reloc *r_rel)
4805 {
4806 return (r_rel->abfd == NULL);
4807 }
4808
4809
4810 static bfd_vma
4811 r_reloc_get_target_offset (const r_reloc *r_rel)
4812 {
4813 bfd_vma target_offset;
4814 unsigned long r_symndx;
4815
4816 BFD_ASSERT (!r_reloc_is_const (r_rel));
4817 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4818 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4819 return (target_offset + r_rel->rela.r_addend);
4820 }
4821
4822
4823 static struct elf_link_hash_entry *
4824 r_reloc_get_hash_entry (const r_reloc *r_rel)
4825 {
4826 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4827 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4828 }
4829
4830
4831 static asection *
4832 r_reloc_get_section (const r_reloc *r_rel)
4833 {
4834 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4835 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4836 }
4837
4838
4839 static bfd_boolean
4840 r_reloc_is_defined (const r_reloc *r_rel)
4841 {
4842 asection *sec;
4843 if (r_rel == NULL)
4844 return FALSE;
4845
4846 sec = r_reloc_get_section (r_rel);
4847 if (sec == bfd_abs_section_ptr
4848 || sec == bfd_com_section_ptr
4849 || sec == bfd_und_section_ptr)
4850 return FALSE;
4851 return TRUE;
4852 }
4853
4854
4855 static void
4856 r_reloc_init (r_reloc *r_rel,
4857 bfd *abfd,
4858 Elf_Internal_Rela *irel,
4859 bfd_byte *contents,
4860 bfd_size_type content_length)
4861 {
4862 int r_type;
4863 reloc_howto_type *howto;
4864
4865 if (irel)
4866 {
4867 r_rel->rela = *irel;
4868 r_rel->abfd = abfd;
4869 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4870 r_rel->virtual_offset = 0;
4871 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4872 howto = &elf_howto_table[r_type];
4873 if (howto->partial_inplace)
4874 {
4875 bfd_vma inplace_val;
4876 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4877
4878 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4879 r_rel->target_offset += inplace_val;
4880 }
4881 }
4882 else
4883 memset (r_rel, 0, sizeof (r_reloc));
4884 }
4885
4886
4887 #if DEBUG
4888
4889 static void
4890 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4891 {
4892 if (r_reloc_is_defined (r_rel))
4893 {
4894 asection *sec = r_reloc_get_section (r_rel);
4895 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4896 }
4897 else if (r_reloc_get_hash_entry (r_rel))
4898 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4899 else
4900 fprintf (fp, " ?? + ");
4901
4902 fprintf_vma (fp, r_rel->target_offset);
4903 if (r_rel->virtual_offset)
4904 {
4905 fprintf (fp, " + ");
4906 fprintf_vma (fp, r_rel->virtual_offset);
4907 }
4908
4909 fprintf (fp, ")");
4910 }
4911
4912 #endif /* DEBUG */
4913
4914 \f
4915 /* source_reloc: relocations that reference literals. */
4916
4917 /* To determine whether literals can be coalesced, we need to first
4918 record all the relocations that reference the literals. The
4919 source_reloc structure below is used for this purpose. The
4920 source_reloc entries are kept in a per-literal-section array, sorted
4921 by offset within the literal section (i.e., target offset).
4922
4923 The source_sec and r_rel.rela.r_offset fields identify the source of
4924 the relocation. The r_rel field records the relocation value, i.e.,
4925 the offset of the literal being referenced. The opnd field is needed
4926 to determine the range of the immediate field to which the relocation
4927 applies, so we can determine whether another literal with the same
4928 value is within range. The is_null field is true when the relocation
4929 is being removed (e.g., when an L32R is being removed due to a CALLX
4930 that is converted to a direct CALL). */
4931
4932 typedef struct source_reloc_struct source_reloc;
4933
4934 struct source_reloc_struct
4935 {
4936 asection *source_sec;
4937 r_reloc r_rel;
4938 xtensa_opcode opcode;
4939 int opnd;
4940 bfd_boolean is_null;
4941 bfd_boolean is_abs_literal;
4942 };
4943
4944
4945 static void
4946 init_source_reloc (source_reloc *reloc,
4947 asection *source_sec,
4948 const r_reloc *r_rel,
4949 xtensa_opcode opcode,
4950 int opnd,
4951 bfd_boolean is_abs_literal)
4952 {
4953 reloc->source_sec = source_sec;
4954 reloc->r_rel = *r_rel;
4955 reloc->opcode = opcode;
4956 reloc->opnd = opnd;
4957 reloc->is_null = FALSE;
4958 reloc->is_abs_literal = is_abs_literal;
4959 }
4960
4961
4962 /* Find the source_reloc for a particular source offset and relocation
4963 type. Note that the array is sorted by _target_ offset, so this is
4964 just a linear search. */
4965
4966 static source_reloc *
4967 find_source_reloc (source_reloc *src_relocs,
4968 int src_count,
4969 asection *sec,
4970 Elf_Internal_Rela *irel)
4971 {
4972 int i;
4973
4974 for (i = 0; i < src_count; i++)
4975 {
4976 if (src_relocs[i].source_sec == sec
4977 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4978 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4979 == ELF32_R_TYPE (irel->r_info)))
4980 return &src_relocs[i];
4981 }
4982
4983 return NULL;
4984 }
4985
4986
4987 static int
4988 source_reloc_compare (const void *ap, const void *bp)
4989 {
4990 const source_reloc *a = (const source_reloc *) ap;
4991 const source_reloc *b = (const source_reloc *) bp;
4992
4993 if (a->r_rel.target_offset != b->r_rel.target_offset)
4994 return (a->r_rel.target_offset - b->r_rel.target_offset);
4995
4996 /* We don't need to sort on these criteria for correctness,
4997 but enforcing a more strict ordering prevents unstable qsort
4998 from behaving differently with different implementations.
4999 Without the code below we get correct but different results
5000 on Solaris 2.7 and 2.8. We would like to always produce the
5001 same results no matter the host. */
5002
5003 if ((!a->is_null) - (!b->is_null))
5004 return ((!a->is_null) - (!b->is_null));
5005 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5006 }
5007
5008 \f
5009 /* Literal values and value hash tables. */
5010
5011 /* Literals with the same value can be coalesced. The literal_value
5012 structure records the value of a literal: the "r_rel" field holds the
5013 information from the relocation on the literal (if there is one) and
5014 the "value" field holds the contents of the literal word itself.
5015
5016 The value_map structure records a literal value along with the
5017 location of a literal holding that value. The value_map hash table
5018 is indexed by the literal value, so that we can quickly check if a
5019 particular literal value has been seen before and is thus a candidate
5020 for coalescing. */
5021
5022 typedef struct literal_value_struct literal_value;
5023 typedef struct value_map_struct value_map;
5024 typedef struct value_map_hash_table_struct value_map_hash_table;
5025
5026 struct literal_value_struct
5027 {
5028 r_reloc r_rel;
5029 unsigned long value;
5030 bfd_boolean is_abs_literal;
5031 };
5032
5033 struct value_map_struct
5034 {
5035 literal_value val; /* The literal value. */
5036 r_reloc loc; /* Location of the literal. */
5037 value_map *next;
5038 };
5039
5040 struct value_map_hash_table_struct
5041 {
5042 unsigned bucket_count;
5043 value_map **buckets;
5044 unsigned count;
5045 bfd_boolean has_last_loc;
5046 r_reloc last_loc;
5047 };
5048
5049
5050 static void
5051 init_literal_value (literal_value *lit,
5052 const r_reloc *r_rel,
5053 unsigned long value,
5054 bfd_boolean is_abs_literal)
5055 {
5056 lit->r_rel = *r_rel;
5057 lit->value = value;
5058 lit->is_abs_literal = is_abs_literal;
5059 }
5060
5061
5062 static bfd_boolean
5063 literal_value_equal (const literal_value *src1,
5064 const literal_value *src2,
5065 bfd_boolean final_static_link)
5066 {
5067 struct elf_link_hash_entry *h1, *h2;
5068
5069 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5070 return FALSE;
5071
5072 if (r_reloc_is_const (&src1->r_rel))
5073 return (src1->value == src2->value);
5074
5075 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5076 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5077 return FALSE;
5078
5079 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5080 return FALSE;
5081
5082 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5083 return FALSE;
5084
5085 if (src1->value != src2->value)
5086 return FALSE;
5087
5088 /* Now check for the same section (if defined) or the same elf_hash
5089 (if undefined or weak). */
5090 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5091 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5092 if (r_reloc_is_defined (&src1->r_rel)
5093 && (final_static_link
5094 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5095 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5096 {
5097 if (r_reloc_get_section (&src1->r_rel)
5098 != r_reloc_get_section (&src2->r_rel))
5099 return FALSE;
5100 }
5101 else
5102 {
5103 /* Require that the hash entries (i.e., symbols) be identical. */
5104 if (h1 != h2 || h1 == 0)
5105 return FALSE;
5106 }
5107
5108 if (src1->is_abs_literal != src2->is_abs_literal)
5109 return FALSE;
5110
5111 return TRUE;
5112 }
5113
5114
5115 /* Must be power of 2. */
5116 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5117
5118 static value_map_hash_table *
5119 value_map_hash_table_init (void)
5120 {
5121 value_map_hash_table *values;
5122
5123 values = (value_map_hash_table *)
5124 bfd_zmalloc (sizeof (value_map_hash_table));
5125 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5126 values->count = 0;
5127 values->buckets = (value_map **)
5128 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5129 if (values->buckets == NULL)
5130 {
5131 free (values);
5132 return NULL;
5133 }
5134 values->has_last_loc = FALSE;
5135
5136 return values;
5137 }
5138
5139
5140 static void
5141 value_map_hash_table_delete (value_map_hash_table *table)
5142 {
5143 free (table->buckets);
5144 free (table);
5145 }
5146
5147
5148 static unsigned
5149 hash_bfd_vma (bfd_vma val)
5150 {
5151 return (val >> 2) + (val >> 10);
5152 }
5153
5154
5155 static unsigned
5156 literal_value_hash (const literal_value *src)
5157 {
5158 unsigned hash_val;
5159
5160 hash_val = hash_bfd_vma (src->value);
5161 if (!r_reloc_is_const (&src->r_rel))
5162 {
5163 void *sec_or_hash;
5164
5165 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5166 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5167 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5168
5169 /* Now check for the same section and the same elf_hash. */
5170 if (r_reloc_is_defined (&src->r_rel))
5171 sec_or_hash = r_reloc_get_section (&src->r_rel);
5172 else
5173 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5174 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5175 }
5176 return hash_val;
5177 }
5178
5179
5180 /* Check if the specified literal_value has been seen before. */
5181
5182 static value_map *
5183 value_map_get_cached_value (value_map_hash_table *map,
5184 const literal_value *val,
5185 bfd_boolean final_static_link)
5186 {
5187 value_map *map_e;
5188 value_map *bucket;
5189 unsigned idx;
5190
5191 idx = literal_value_hash (val);
5192 idx = idx & (map->bucket_count - 1);
5193 bucket = map->buckets[idx];
5194 for (map_e = bucket; map_e; map_e = map_e->next)
5195 {
5196 if (literal_value_equal (&map_e->val, val, final_static_link))
5197 return map_e;
5198 }
5199 return NULL;
5200 }
5201
5202
5203 /* Record a new literal value. It is illegal to call this if VALUE
5204 already has an entry here. */
5205
5206 static value_map *
5207 add_value_map (value_map_hash_table *map,
5208 const literal_value *val,
5209 const r_reloc *loc,
5210 bfd_boolean final_static_link)
5211 {
5212 value_map **bucket_p;
5213 unsigned idx;
5214
5215 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5216 if (val_e == NULL)
5217 {
5218 bfd_set_error (bfd_error_no_memory);
5219 return NULL;
5220 }
5221
5222 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5223 val_e->val = *val;
5224 val_e->loc = *loc;
5225
5226 idx = literal_value_hash (val);
5227 idx = idx & (map->bucket_count - 1);
5228 bucket_p = &map->buckets[idx];
5229
5230 val_e->next = *bucket_p;
5231 *bucket_p = val_e;
5232 map->count++;
5233 /* FIXME: Consider resizing the hash table if we get too many entries. */
5234
5235 return val_e;
5236 }
5237
5238 \f
5239 /* Lists of text actions (ta_) for narrowing, widening, longcall
5240 conversion, space fill, code & literal removal, etc. */
5241
5242 /* The following text actions are generated:
5243
5244 "ta_remove_insn" remove an instruction or instructions
5245 "ta_remove_longcall" convert longcall to call
5246 "ta_convert_longcall" convert longcall to nop/call
5247 "ta_narrow_insn" narrow a wide instruction
5248 "ta_widen" widen a narrow instruction
5249 "ta_fill" add fill or remove fill
5250 removed < 0 is a fill; branches to the fill address will be
5251 changed to address + fill size (e.g., address - removed)
5252 removed >= 0 branches to the fill address will stay unchanged
5253 "ta_remove_literal" remove a literal; this action is
5254 indicated when a literal is removed
5255 or replaced.
5256 "ta_add_literal" insert a new literal; this action is
5257 indicated when a literal has been moved.
5258 It may use a virtual_offset because
5259 multiple literals can be placed at the
5260 same location.
5261
5262 For each of these text actions, we also record the number of bytes
5263 removed by performing the text action. In the case of a "ta_widen"
5264 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5265
5266 typedef struct text_action_struct text_action;
5267 typedef struct text_action_list_struct text_action_list;
5268 typedef enum text_action_enum_t text_action_t;
5269
5270 enum text_action_enum_t
5271 {
5272 ta_none,
5273 ta_remove_insn, /* removed = -size */
5274 ta_remove_longcall, /* removed = -size */
5275 ta_convert_longcall, /* removed = 0 */
5276 ta_narrow_insn, /* removed = -1 */
5277 ta_widen_insn, /* removed = +1 */
5278 ta_fill, /* removed = +size */
5279 ta_remove_literal,
5280 ta_add_literal
5281 };
5282
5283
5284 /* Structure for a text action record. */
5285 struct text_action_struct
5286 {
5287 text_action_t action;
5288 asection *sec; /* Optional */
5289 bfd_vma offset;
5290 bfd_vma virtual_offset; /* Zero except for adding literals. */
5291 int removed_bytes;
5292 literal_value value; /* Only valid when adding literals. */
5293 };
5294
5295 struct removal_by_action_entry_struct
5296 {
5297 bfd_vma offset;
5298 int removed;
5299 int eq_removed;
5300 int eq_removed_before_fill;
5301 };
5302 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5303
5304 struct removal_by_action_map_struct
5305 {
5306 unsigned n_entries;
5307 removal_by_action_entry *entry;
5308 };
5309 typedef struct removal_by_action_map_struct removal_by_action_map;
5310
5311
5312 /* List of all of the actions taken on a text section. */
5313 struct text_action_list_struct
5314 {
5315 unsigned count;
5316 splay_tree tree;
5317 removal_by_action_map map;
5318 };
5319
5320
5321 static text_action *
5322 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5323 {
5324 text_action a;
5325
5326 /* It is not necessary to fill at the end of a section. */
5327 if (sec->size == offset)
5328 return NULL;
5329
5330 a.offset = offset;
5331 a.action = ta_fill;
5332
5333 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5334 if (node)
5335 return (text_action *)node->value;
5336 return NULL;
5337 }
5338
5339
5340 static int
5341 compute_removed_action_diff (const text_action *ta,
5342 asection *sec,
5343 bfd_vma offset,
5344 int removed,
5345 int removable_space)
5346 {
5347 int new_removed;
5348 int current_removed = 0;
5349
5350 if (ta)
5351 current_removed = ta->removed_bytes;
5352
5353 BFD_ASSERT (ta == NULL || ta->offset == offset);
5354 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5355
5356 /* It is not necessary to fill at the end of a section. Clean this up. */
5357 if (sec->size == offset)
5358 new_removed = removable_space - 0;
5359 else
5360 {
5361 int space;
5362 int added = -removed - current_removed;
5363 /* Ignore multiples of the section alignment. */
5364 added = ((1 << sec->alignment_power) - 1) & added;
5365 new_removed = (-added);
5366
5367 /* Modify for removable. */
5368 space = removable_space - new_removed;
5369 new_removed = (removable_space
5370 - (((1 << sec->alignment_power) - 1) & space));
5371 }
5372 return (new_removed - current_removed);
5373 }
5374
5375
5376 static void
5377 adjust_fill_action (text_action *ta, int fill_diff)
5378 {
5379 ta->removed_bytes += fill_diff;
5380 }
5381
5382
5383 static int
5384 text_action_compare (splay_tree_key a, splay_tree_key b)
5385 {
5386 text_action *pa = (text_action *)a;
5387 text_action *pb = (text_action *)b;
5388 static const int action_priority[] =
5389 {
5390 [ta_fill] = 0,
5391 [ta_none] = 1,
5392 [ta_convert_longcall] = 2,
5393 [ta_narrow_insn] = 3,
5394 [ta_remove_insn] = 4,
5395 [ta_remove_longcall] = 5,
5396 [ta_remove_literal] = 6,
5397 [ta_widen_insn] = 7,
5398 [ta_add_literal] = 8,
5399 };
5400
5401 if (pa->offset == pb->offset)
5402 {
5403 if (pa->action == pb->action)
5404 return 0;
5405 return action_priority[pa->action] - action_priority[pb->action];
5406 }
5407 else
5408 return pa->offset < pb->offset ? -1 : 1;
5409 }
5410
5411 static text_action *
5412 action_first (text_action_list *action_list)
5413 {
5414 splay_tree_node node = splay_tree_min (action_list->tree);
5415 return node ? (text_action *)node->value : NULL;
5416 }
5417
5418 static text_action *
5419 action_next (text_action_list *action_list, text_action *action)
5420 {
5421 splay_tree_node node = splay_tree_successor (action_list->tree,
5422 (splay_tree_key)action);
5423 return node ? (text_action *)node->value : NULL;
5424 }
5425
5426 /* Add a modification action to the text. For the case of adding or
5427 removing space, modify any current fill and assume that
5428 "unreachable_space" bytes can be freely contracted. Note that a
5429 negative removed value is a fill. */
5430
5431 static void
5432 text_action_add (text_action_list *l,
5433 text_action_t action,
5434 asection *sec,
5435 bfd_vma offset,
5436 int removed)
5437 {
5438 text_action *ta;
5439 text_action a;
5440
5441 /* It is not necessary to fill at the end of a section. */
5442 if (action == ta_fill && sec->size == offset)
5443 return;
5444
5445 /* It is not necessary to fill 0 bytes. */
5446 if (action == ta_fill && removed == 0)
5447 return;
5448
5449 a.action = action;
5450 a.offset = offset;
5451
5452 if (action == ta_fill)
5453 {
5454 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5455
5456 if (node)
5457 {
5458 ta = (text_action *)node->value;
5459 ta->removed_bytes += removed;
5460 return;
5461 }
5462 }
5463 else
5464 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5465
5466 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5467 ta->action = action;
5468 ta->sec = sec;
5469 ta->offset = offset;
5470 ta->removed_bytes = removed;
5471 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5472 ++l->count;
5473 }
5474
5475
5476 static void
5477 text_action_add_literal (text_action_list *l,
5478 text_action_t action,
5479 const r_reloc *loc,
5480 const literal_value *value,
5481 int removed)
5482 {
5483 text_action *ta;
5484 asection *sec = r_reloc_get_section (loc);
5485 bfd_vma offset = loc->target_offset;
5486 bfd_vma virtual_offset = loc->virtual_offset;
5487
5488 BFD_ASSERT (action == ta_add_literal);
5489
5490 /* Create a new record and fill it up. */
5491 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5492 ta->action = action;
5493 ta->sec = sec;
5494 ta->offset = offset;
5495 ta->virtual_offset = virtual_offset;
5496 ta->value = *value;
5497 ta->removed_bytes = removed;
5498
5499 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5500 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5501 ++l->count;
5502 }
5503
5504
5505 /* Find the total offset adjustment for the relaxations specified by
5506 text_actions, beginning from a particular starting action. This is
5507 typically used from offset_with_removed_text to search an entire list of
5508 actions, but it may also be called directly when adjusting adjacent offsets
5509 so that each search may begin where the previous one left off. */
5510
5511 static int
5512 removed_by_actions (text_action_list *action_list,
5513 text_action **p_start_action,
5514 bfd_vma offset,
5515 bfd_boolean before_fill)
5516 {
5517 text_action *r;
5518 int removed = 0;
5519
5520 r = *p_start_action;
5521 if (r)
5522 {
5523 splay_tree_node node = splay_tree_lookup (action_list->tree,
5524 (splay_tree_key)r);
5525 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5526 }
5527
5528 while (r)
5529 {
5530 if (r->offset > offset)
5531 break;
5532
5533 if (r->offset == offset
5534 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5535 break;
5536
5537 removed += r->removed_bytes;
5538
5539 r = action_next (action_list, r);
5540 }
5541
5542 *p_start_action = r;
5543 return removed;
5544 }
5545
5546
5547 static bfd_vma
5548 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5549 {
5550 text_action *r = action_first (action_list);
5551
5552 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5553 }
5554
5555
5556 static unsigned
5557 action_list_count (text_action_list *action_list)
5558 {
5559 return action_list->count;
5560 }
5561
5562 typedef struct map_action_fn_context_struct map_action_fn_context;
5563 struct map_action_fn_context_struct
5564 {
5565 int removed;
5566 removal_by_action_map map;
5567 bfd_boolean eq_complete;
5568 };
5569
5570 static int
5571 map_action_fn (splay_tree_node node, void *p)
5572 {
5573 map_action_fn_context *ctx = p;
5574 text_action *r = (text_action *)node->value;
5575 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5576
5577 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5578 {
5579 --ientry;
5580 }
5581 else
5582 {
5583 ++ctx->map.n_entries;
5584 ctx->eq_complete = FALSE;
5585 ientry->offset = r->offset;
5586 ientry->eq_removed_before_fill = ctx->removed;
5587 }
5588
5589 if (!ctx->eq_complete)
5590 {
5591 if (r->action != ta_fill || r->removed_bytes >= 0)
5592 {
5593 ientry->eq_removed = ctx->removed;
5594 ctx->eq_complete = TRUE;
5595 }
5596 else
5597 ientry->eq_removed = ctx->removed + r->removed_bytes;
5598 }
5599
5600 ctx->removed += r->removed_bytes;
5601 ientry->removed = ctx->removed;
5602 return 0;
5603 }
5604
5605 static void
5606 map_removal_by_action (text_action_list *action_list)
5607 {
5608 map_action_fn_context ctx;
5609
5610 ctx.removed = 0;
5611 ctx.map.n_entries = 0;
5612 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5613 sizeof (removal_by_action_entry));
5614 ctx.eq_complete = FALSE;
5615
5616 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5617 action_list->map = ctx.map;
5618 }
5619
5620 static int
5621 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5622 bfd_boolean before_fill)
5623 {
5624 unsigned a, b;
5625
5626 if (!action_list->map.entry)
5627 map_removal_by_action (action_list);
5628
5629 if (!action_list->map.n_entries)
5630 return 0;
5631
5632 a = 0;
5633 b = action_list->map.n_entries;
5634
5635 while (b - a > 1)
5636 {
5637 unsigned c = (a + b) / 2;
5638
5639 if (action_list->map.entry[c].offset <= offset)
5640 a = c;
5641 else
5642 b = c;
5643 }
5644
5645 if (action_list->map.entry[a].offset < offset)
5646 {
5647 return action_list->map.entry[a].removed;
5648 }
5649 else if (action_list->map.entry[a].offset == offset)
5650 {
5651 return before_fill ?
5652 action_list->map.entry[a].eq_removed_before_fill :
5653 action_list->map.entry[a].eq_removed;
5654 }
5655 else
5656 {
5657 return 0;
5658 }
5659 }
5660
5661 static bfd_vma
5662 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5663 {
5664 int removed = removed_by_actions_map (action_list, offset, FALSE);
5665 return offset - removed;
5666 }
5667
5668
5669 /* The find_insn_action routine will only find non-fill actions. */
5670
5671 static text_action *
5672 find_insn_action (text_action_list *action_list, bfd_vma offset)
5673 {
5674 static const text_action_t action[] =
5675 {
5676 ta_convert_longcall,
5677 ta_remove_longcall,
5678 ta_widen_insn,
5679 ta_narrow_insn,
5680 ta_remove_insn,
5681 };
5682 text_action a;
5683 unsigned i;
5684
5685 a.offset = offset;
5686 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5687 {
5688 splay_tree_node node;
5689
5690 a.action = action[i];
5691 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5692 if (node)
5693 return (text_action *)node->value;
5694 }
5695 return NULL;
5696 }
5697
5698
5699 #if DEBUG
5700
5701 static void
5702 print_action (FILE *fp, text_action *r)
5703 {
5704 const char *t = "unknown";
5705 switch (r->action)
5706 {
5707 case ta_remove_insn:
5708 t = "remove_insn"; break;
5709 case ta_remove_longcall:
5710 t = "remove_longcall"; break;
5711 case ta_convert_longcall:
5712 t = "convert_longcall"; break;
5713 case ta_narrow_insn:
5714 t = "narrow_insn"; break;
5715 case ta_widen_insn:
5716 t = "widen_insn"; break;
5717 case ta_fill:
5718 t = "fill"; break;
5719 case ta_none:
5720 t = "none"; break;
5721 case ta_remove_literal:
5722 t = "remove_literal"; break;
5723 case ta_add_literal:
5724 t = "add_literal"; break;
5725 }
5726
5727 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5728 r->sec->owner->filename,
5729 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5730 }
5731
5732 static int
5733 print_action_list_fn (splay_tree_node node, void *p)
5734 {
5735 text_action *r = (text_action *)node->value;
5736
5737 print_action (p, r);
5738 return 0;
5739 }
5740
5741 static void
5742 print_action_list (FILE *fp, text_action_list *action_list)
5743 {
5744 fprintf (fp, "Text Action\n");
5745 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5746 }
5747
5748 #endif /* DEBUG */
5749
5750 \f
5751 /* Lists of literals being coalesced or removed. */
5752
5753 /* In the usual case, the literal identified by "from" is being
5754 coalesced with another literal identified by "to". If the literal is
5755 unused and is being removed altogether, "to.abfd" will be NULL.
5756 The removed_literal entries are kept on a per-section list, sorted
5757 by the "from" offset field. */
5758
5759 typedef struct removed_literal_struct removed_literal;
5760 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5761 typedef struct removed_literal_list_struct removed_literal_list;
5762
5763 struct removed_literal_struct
5764 {
5765 r_reloc from;
5766 r_reloc to;
5767 removed_literal *next;
5768 };
5769
5770 struct removed_literal_map_entry_struct
5771 {
5772 bfd_vma addr;
5773 removed_literal *literal;
5774 };
5775
5776 struct removed_literal_list_struct
5777 {
5778 removed_literal *head;
5779 removed_literal *tail;
5780
5781 unsigned n_map;
5782 removed_literal_map_entry *map;
5783 };
5784
5785
5786 /* Record that the literal at "from" is being removed. If "to" is not
5787 NULL, the "from" literal is being coalesced with the "to" literal. */
5788
5789 static void
5790 add_removed_literal (removed_literal_list *removed_list,
5791 const r_reloc *from,
5792 const r_reloc *to)
5793 {
5794 removed_literal *r, *new_r, *next_r;
5795
5796 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5797
5798 new_r->from = *from;
5799 if (to)
5800 new_r->to = *to;
5801 else
5802 new_r->to.abfd = NULL;
5803 new_r->next = NULL;
5804
5805 r = removed_list->head;
5806 if (r == NULL)
5807 {
5808 removed_list->head = new_r;
5809 removed_list->tail = new_r;
5810 }
5811 /* Special check for common case of append. */
5812 else if (removed_list->tail->from.target_offset < from->target_offset)
5813 {
5814 removed_list->tail->next = new_r;
5815 removed_list->tail = new_r;
5816 }
5817 else
5818 {
5819 while (r->from.target_offset < from->target_offset && r->next)
5820 {
5821 r = r->next;
5822 }
5823 next_r = r->next;
5824 r->next = new_r;
5825 new_r->next = next_r;
5826 if (next_r == NULL)
5827 removed_list->tail = new_r;
5828 }
5829 }
5830
5831 static void
5832 map_removed_literal (removed_literal_list *removed_list)
5833 {
5834 unsigned n_map = 0;
5835 unsigned i;
5836 removed_literal_map_entry *map = NULL;
5837 removed_literal *r = removed_list->head;
5838
5839 for (i = 0; r; ++i, r = r->next)
5840 {
5841 if (i == n_map)
5842 {
5843 n_map = (n_map * 2) + 2;
5844 map = bfd_realloc (map, n_map * sizeof (*map));
5845 }
5846 map[i].addr = r->from.target_offset;
5847 map[i].literal = r;
5848 }
5849 removed_list->map = map;
5850 removed_list->n_map = i;
5851 }
5852
5853 static int
5854 removed_literal_compare (const void *a, const void *b)
5855 {
5856 const removed_literal_map_entry *pa = a;
5857 const removed_literal_map_entry *pb = b;
5858
5859 if (pa->addr == pb->addr)
5860 return 0;
5861 else
5862 return pa->addr < pb->addr ? -1 : 1;
5863 }
5864
5865 /* Check if the list of removed literals contains an entry for the
5866 given address. Return the entry if found. */
5867
5868 static removed_literal *
5869 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5870 {
5871 removed_literal_map_entry *p;
5872 removed_literal *r = NULL;
5873
5874 if (removed_list->map == NULL)
5875 map_removed_literal (removed_list);
5876
5877 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5878 sizeof (*removed_list->map), removed_literal_compare);
5879 if (p)
5880 {
5881 while (p != removed_list->map && (p - 1)->addr == addr)
5882 --p;
5883 r = p->literal;
5884 }
5885 return r;
5886 }
5887
5888
5889 #if DEBUG
5890
5891 static void
5892 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5893 {
5894 removed_literal *r;
5895 r = removed_list->head;
5896 if (r)
5897 fprintf (fp, "Removed Literals\n");
5898 for (; r != NULL; r = r->next)
5899 {
5900 print_r_reloc (fp, &r->from);
5901 fprintf (fp, " => ");
5902 if (r->to.abfd == NULL)
5903 fprintf (fp, "REMOVED");
5904 else
5905 print_r_reloc (fp, &r->to);
5906 fprintf (fp, "\n");
5907 }
5908 }
5909
5910 #endif /* DEBUG */
5911
5912 \f
5913 /* Per-section data for relaxation. */
5914
5915 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5916
5917 struct xtensa_relax_info_struct
5918 {
5919 bfd_boolean is_relaxable_literal_section;
5920 bfd_boolean is_relaxable_asm_section;
5921 int visited; /* Number of times visited. */
5922
5923 source_reloc *src_relocs; /* Array[src_count]. */
5924 int src_count;
5925 int src_next; /* Next src_relocs entry to assign. */
5926
5927 removed_literal_list removed_list;
5928 text_action_list action_list;
5929
5930 reloc_bfd_fix *fix_list;
5931 reloc_bfd_fix *fix_array;
5932 unsigned fix_array_count;
5933
5934 /* Support for expanding the reloc array that is stored
5935 in the section structure. If the relocations have been
5936 reallocated, the newly allocated relocations will be referenced
5937 here along with the actual size allocated. The relocation
5938 count will always be found in the section structure. */
5939 Elf_Internal_Rela *allocated_relocs;
5940 unsigned relocs_count;
5941 unsigned allocated_relocs_count;
5942 };
5943
5944 struct elf_xtensa_section_data
5945 {
5946 struct bfd_elf_section_data elf;
5947 xtensa_relax_info relax_info;
5948 };
5949
5950
5951 static bfd_boolean
5952 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5953 {
5954 if (!sec->used_by_bfd)
5955 {
5956 struct elf_xtensa_section_data *sdata;
5957 bfd_size_type amt = sizeof (*sdata);
5958
5959 sdata = bfd_zalloc (abfd, amt);
5960 if (sdata == NULL)
5961 return FALSE;
5962 sec->used_by_bfd = sdata;
5963 }
5964
5965 return _bfd_elf_new_section_hook (abfd, sec);
5966 }
5967
5968
5969 static xtensa_relax_info *
5970 get_xtensa_relax_info (asection *sec)
5971 {
5972 struct elf_xtensa_section_data *section_data;
5973
5974 /* No info available if no section or if it is an output section. */
5975 if (!sec || sec == sec->output_section)
5976 return NULL;
5977
5978 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5979 return &section_data->relax_info;
5980 }
5981
5982
5983 static void
5984 init_xtensa_relax_info (asection *sec)
5985 {
5986 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5987
5988 relax_info->is_relaxable_literal_section = FALSE;
5989 relax_info->is_relaxable_asm_section = FALSE;
5990 relax_info->visited = 0;
5991
5992 relax_info->src_relocs = NULL;
5993 relax_info->src_count = 0;
5994 relax_info->src_next = 0;
5995
5996 relax_info->removed_list.head = NULL;
5997 relax_info->removed_list.tail = NULL;
5998
5999 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6000 NULL, NULL);
6001 relax_info->action_list.map.n_entries = 0;
6002 relax_info->action_list.map.entry = NULL;
6003
6004 relax_info->fix_list = NULL;
6005 relax_info->fix_array = NULL;
6006 relax_info->fix_array_count = 0;
6007
6008 relax_info->allocated_relocs = NULL;
6009 relax_info->relocs_count = 0;
6010 relax_info->allocated_relocs_count = 0;
6011 }
6012
6013 \f
6014 /* Coalescing literals may require a relocation to refer to a section in
6015 a different input file, but the standard relocation information
6016 cannot express that. Instead, the reloc_bfd_fix structures are used
6017 to "fix" the relocations that refer to sections in other input files.
6018 These structures are kept on per-section lists. The "src_type" field
6019 records the relocation type in case there are multiple relocations on
6020 the same location. FIXME: This is ugly; an alternative might be to
6021 add new symbols with the "owner" field to some other input file. */
6022
6023 struct reloc_bfd_fix_struct
6024 {
6025 asection *src_sec;
6026 bfd_vma src_offset;
6027 unsigned src_type; /* Relocation type. */
6028
6029 asection *target_sec;
6030 bfd_vma target_offset;
6031 bfd_boolean translated;
6032
6033 reloc_bfd_fix *next;
6034 };
6035
6036
6037 static reloc_bfd_fix *
6038 reloc_bfd_fix_init (asection *src_sec,
6039 bfd_vma src_offset,
6040 unsigned src_type,
6041 asection *target_sec,
6042 bfd_vma target_offset,
6043 bfd_boolean translated)
6044 {
6045 reloc_bfd_fix *fix;
6046
6047 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6048 fix->src_sec = src_sec;
6049 fix->src_offset = src_offset;
6050 fix->src_type = src_type;
6051 fix->target_sec = target_sec;
6052 fix->target_offset = target_offset;
6053 fix->translated = translated;
6054
6055 return fix;
6056 }
6057
6058
6059 static void
6060 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6061 {
6062 xtensa_relax_info *relax_info;
6063
6064 relax_info = get_xtensa_relax_info (src_sec);
6065 fix->next = relax_info->fix_list;
6066 relax_info->fix_list = fix;
6067 }
6068
6069
6070 static int
6071 fix_compare (const void *ap, const void *bp)
6072 {
6073 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6074 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6075
6076 if (a->src_offset != b->src_offset)
6077 return (a->src_offset - b->src_offset);
6078 return (a->src_type - b->src_type);
6079 }
6080
6081
6082 static void
6083 cache_fix_array (asection *sec)
6084 {
6085 unsigned i, count = 0;
6086 reloc_bfd_fix *r;
6087 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6088
6089 if (relax_info == NULL)
6090 return;
6091 if (relax_info->fix_list == NULL)
6092 return;
6093
6094 for (r = relax_info->fix_list; r != NULL; r = r->next)
6095 count++;
6096
6097 relax_info->fix_array =
6098 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6099 relax_info->fix_array_count = count;
6100
6101 r = relax_info->fix_list;
6102 for (i = 0; i < count; i++, r = r->next)
6103 {
6104 relax_info->fix_array[count - 1 - i] = *r;
6105 relax_info->fix_array[count - 1 - i].next = NULL;
6106 }
6107
6108 qsort (relax_info->fix_array, relax_info->fix_array_count,
6109 sizeof (reloc_bfd_fix), fix_compare);
6110 }
6111
6112
6113 static reloc_bfd_fix *
6114 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6115 {
6116 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6117 reloc_bfd_fix *rv;
6118 reloc_bfd_fix key;
6119
6120 if (relax_info == NULL)
6121 return NULL;
6122 if (relax_info->fix_list == NULL)
6123 return NULL;
6124
6125 if (relax_info->fix_array == NULL)
6126 cache_fix_array (sec);
6127
6128 key.src_offset = offset;
6129 key.src_type = type;
6130 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6131 sizeof (reloc_bfd_fix), fix_compare);
6132 return rv;
6133 }
6134
6135 \f
6136 /* Section caching. */
6137
6138 typedef struct section_cache_struct section_cache_t;
6139
6140 struct section_cache_struct
6141 {
6142 asection *sec;
6143
6144 bfd_byte *contents; /* Cache of the section contents. */
6145 bfd_size_type content_length;
6146
6147 property_table_entry *ptbl; /* Cache of the section property table. */
6148 unsigned pte_count;
6149
6150 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6151 unsigned reloc_count;
6152 };
6153
6154
6155 static void
6156 init_section_cache (section_cache_t *sec_cache)
6157 {
6158 memset (sec_cache, 0, sizeof (*sec_cache));
6159 }
6160
6161
6162 static void
6163 free_section_cache (section_cache_t *sec_cache)
6164 {
6165 if (sec_cache->sec)
6166 {
6167 release_contents (sec_cache->sec, sec_cache->contents);
6168 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6169 if (sec_cache->ptbl)
6170 free (sec_cache->ptbl);
6171 }
6172 }
6173
6174
6175 static bfd_boolean
6176 section_cache_section (section_cache_t *sec_cache,
6177 asection *sec,
6178 struct bfd_link_info *link_info)
6179 {
6180 bfd *abfd;
6181 property_table_entry *prop_table = NULL;
6182 int ptblsize = 0;
6183 bfd_byte *contents = NULL;
6184 Elf_Internal_Rela *internal_relocs = NULL;
6185 bfd_size_type sec_size;
6186
6187 if (sec == NULL)
6188 return FALSE;
6189 if (sec == sec_cache->sec)
6190 return TRUE;
6191
6192 abfd = sec->owner;
6193 sec_size = bfd_get_section_limit (abfd, sec);
6194
6195 /* Get the contents. */
6196 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6197 if (contents == NULL && sec_size != 0)
6198 goto err;
6199
6200 /* Get the relocations. */
6201 internal_relocs = retrieve_internal_relocs (abfd, sec,
6202 link_info->keep_memory);
6203
6204 /* Get the entry table. */
6205 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6206 XTENSA_PROP_SEC_NAME, FALSE);
6207 if (ptblsize < 0)
6208 goto err;
6209
6210 /* Fill in the new section cache. */
6211 free_section_cache (sec_cache);
6212 init_section_cache (sec_cache);
6213
6214 sec_cache->sec = sec;
6215 sec_cache->contents = contents;
6216 sec_cache->content_length = sec_size;
6217 sec_cache->relocs = internal_relocs;
6218 sec_cache->reloc_count = sec->reloc_count;
6219 sec_cache->pte_count = ptblsize;
6220 sec_cache->ptbl = prop_table;
6221
6222 return TRUE;
6223
6224 err:
6225 release_contents (sec, contents);
6226 release_internal_relocs (sec, internal_relocs);
6227 if (prop_table)
6228 free (prop_table);
6229 return FALSE;
6230 }
6231
6232 \f
6233 /* Extended basic blocks. */
6234
6235 /* An ebb_struct represents an Extended Basic Block. Within this
6236 range, we guarantee that all instructions are decodable, the
6237 property table entries are contiguous, and no property table
6238 specifies a segment that cannot have instructions moved. This
6239 structure contains caches of the contents, property table and
6240 relocations for the specified section for easy use. The range is
6241 specified by ranges of indices for the byte offset, property table
6242 offsets and relocation offsets. These must be consistent. */
6243
6244 typedef struct ebb_struct ebb_t;
6245
6246 struct ebb_struct
6247 {
6248 asection *sec;
6249
6250 bfd_byte *contents; /* Cache of the section contents. */
6251 bfd_size_type content_length;
6252
6253 property_table_entry *ptbl; /* Cache of the section property table. */
6254 unsigned pte_count;
6255
6256 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6257 unsigned reloc_count;
6258
6259 bfd_vma start_offset; /* Offset in section. */
6260 unsigned start_ptbl_idx; /* Offset in the property table. */
6261 unsigned start_reloc_idx; /* Offset in the relocations. */
6262
6263 bfd_vma end_offset;
6264 unsigned end_ptbl_idx;
6265 unsigned end_reloc_idx;
6266
6267 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6268
6269 /* The unreachable property table at the end of this set of blocks;
6270 NULL if the end is not an unreachable block. */
6271 property_table_entry *ends_unreachable;
6272 };
6273
6274
6275 enum ebb_target_enum
6276 {
6277 EBB_NO_ALIGN = 0,
6278 EBB_DESIRE_TGT_ALIGN,
6279 EBB_REQUIRE_TGT_ALIGN,
6280 EBB_REQUIRE_LOOP_ALIGN,
6281 EBB_REQUIRE_ALIGN
6282 };
6283
6284
6285 /* proposed_action_struct is similar to the text_action_struct except
6286 that is represents a potential transformation, not one that will
6287 occur. We build a list of these for an extended basic block
6288 and use them to compute the actual actions desired. We must be
6289 careful that the entire set of actual actions we perform do not
6290 break any relocations that would fit if the actions were not
6291 performed. */
6292
6293 typedef struct proposed_action_struct proposed_action;
6294
6295 struct proposed_action_struct
6296 {
6297 enum ebb_target_enum align_type; /* for the target alignment */
6298 bfd_vma alignment_pow;
6299 text_action_t action;
6300 bfd_vma offset;
6301 int removed_bytes;
6302 bfd_boolean do_action; /* If false, then we will not perform the action. */
6303 };
6304
6305
6306 /* The ebb_constraint_struct keeps a set of proposed actions for an
6307 extended basic block. */
6308
6309 typedef struct ebb_constraint_struct ebb_constraint;
6310
6311 struct ebb_constraint_struct
6312 {
6313 ebb_t ebb;
6314 bfd_boolean start_movable;
6315
6316 /* Bytes of extra space at the beginning if movable. */
6317 int start_extra_space;
6318
6319 enum ebb_target_enum start_align;
6320
6321 bfd_boolean end_movable;
6322
6323 /* Bytes of extra space at the end if movable. */
6324 int end_extra_space;
6325
6326 unsigned action_count;
6327 unsigned action_allocated;
6328
6329 /* Array of proposed actions. */
6330 proposed_action *actions;
6331
6332 /* Action alignments -- one for each proposed action. */
6333 enum ebb_target_enum *action_aligns;
6334 };
6335
6336
6337 static void
6338 init_ebb_constraint (ebb_constraint *c)
6339 {
6340 memset (c, 0, sizeof (ebb_constraint));
6341 }
6342
6343
6344 static void
6345 free_ebb_constraint (ebb_constraint *c)
6346 {
6347 if (c->actions)
6348 free (c->actions);
6349 }
6350
6351
6352 static void
6353 init_ebb (ebb_t *ebb,
6354 asection *sec,
6355 bfd_byte *contents,
6356 bfd_size_type content_length,
6357 property_table_entry *prop_table,
6358 unsigned ptblsize,
6359 Elf_Internal_Rela *internal_relocs,
6360 unsigned reloc_count)
6361 {
6362 memset (ebb, 0, sizeof (ebb_t));
6363 ebb->sec = sec;
6364 ebb->contents = contents;
6365 ebb->content_length = content_length;
6366 ebb->ptbl = prop_table;
6367 ebb->pte_count = ptblsize;
6368 ebb->relocs = internal_relocs;
6369 ebb->reloc_count = reloc_count;
6370 ebb->start_offset = 0;
6371 ebb->end_offset = ebb->content_length - 1;
6372 ebb->start_ptbl_idx = 0;
6373 ebb->end_ptbl_idx = ptblsize;
6374 ebb->start_reloc_idx = 0;
6375 ebb->end_reloc_idx = reloc_count;
6376 }
6377
6378
6379 /* Extend the ebb to all decodable contiguous sections. The algorithm
6380 for building a basic block around an instruction is to push it
6381 forward until we hit the end of a section, an unreachable block or
6382 a block that cannot be transformed. Then we push it backwards
6383 searching for similar conditions. */
6384
6385 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6386 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6387 static bfd_size_type insn_block_decodable_len
6388 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6389
6390 static bfd_boolean
6391 extend_ebb_bounds (ebb_t *ebb)
6392 {
6393 if (!extend_ebb_bounds_forward (ebb))
6394 return FALSE;
6395 if (!extend_ebb_bounds_backward (ebb))
6396 return FALSE;
6397 return TRUE;
6398 }
6399
6400
6401 static bfd_boolean
6402 extend_ebb_bounds_forward (ebb_t *ebb)
6403 {
6404 property_table_entry *the_entry, *new_entry;
6405
6406 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6407
6408 /* Stop when (1) we cannot decode an instruction, (2) we are at
6409 the end of the property tables, (3) we hit a non-contiguous property
6410 table entry, (4) we hit a NO_TRANSFORM region. */
6411
6412 while (1)
6413 {
6414 bfd_vma entry_end;
6415 bfd_size_type insn_block_len;
6416
6417 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6418 insn_block_len =
6419 insn_block_decodable_len (ebb->contents, ebb->content_length,
6420 ebb->end_offset,
6421 entry_end - ebb->end_offset);
6422 if (insn_block_len != (entry_end - ebb->end_offset))
6423 {
6424 _bfd_error_handler
6425 /* xgettext:c-format */
6426 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6427 "possible configuration mismatch"),
6428 ebb->sec->owner, ebb->sec,
6429 (uint64_t) (ebb->end_offset + insn_block_len));
6430 return FALSE;
6431 }
6432 ebb->end_offset += insn_block_len;
6433
6434 if (ebb->end_offset == ebb->sec->size)
6435 ebb->ends_section = TRUE;
6436
6437 /* Update the reloc counter. */
6438 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6439 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6440 < ebb->end_offset))
6441 {
6442 ebb->end_reloc_idx++;
6443 }
6444
6445 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6446 return TRUE;
6447
6448 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6449 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6450 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6451 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6452 break;
6453
6454 if (the_entry->address + the_entry->size != new_entry->address)
6455 break;
6456
6457 the_entry = new_entry;
6458 ebb->end_ptbl_idx++;
6459 }
6460
6461 /* Quick check for an unreachable or end of file just at the end. */
6462 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6463 {
6464 if (ebb->end_offset == ebb->content_length)
6465 ebb->ends_section = TRUE;
6466 }
6467 else
6468 {
6469 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6470 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6471 && the_entry->address + the_entry->size == new_entry->address)
6472 ebb->ends_unreachable = new_entry;
6473 }
6474
6475 /* Any other ending requires exact alignment. */
6476 return TRUE;
6477 }
6478
6479
6480 static bfd_boolean
6481 extend_ebb_bounds_backward (ebb_t *ebb)
6482 {
6483 property_table_entry *the_entry, *new_entry;
6484
6485 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6486
6487 /* Stop when (1) we cannot decode the instructions in the current entry.
6488 (2) we are at the beginning of the property tables, (3) we hit a
6489 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6490
6491 while (1)
6492 {
6493 bfd_vma block_begin;
6494 bfd_size_type insn_block_len;
6495
6496 block_begin = the_entry->address - ebb->sec->vma;
6497 insn_block_len =
6498 insn_block_decodable_len (ebb->contents, ebb->content_length,
6499 block_begin,
6500 ebb->start_offset - block_begin);
6501 if (insn_block_len != ebb->start_offset - block_begin)
6502 {
6503 _bfd_error_handler
6504 /* xgettext:c-format */
6505 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6506 "possible configuration mismatch"),
6507 ebb->sec->owner, ebb->sec,
6508 (uint64_t) (ebb->end_offset + insn_block_len));
6509 return FALSE;
6510 }
6511 ebb->start_offset -= insn_block_len;
6512
6513 /* Update the reloc counter. */
6514 while (ebb->start_reloc_idx > 0
6515 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6516 >= ebb->start_offset))
6517 {
6518 ebb->start_reloc_idx--;
6519 }
6520
6521 if (ebb->start_ptbl_idx == 0)
6522 return TRUE;
6523
6524 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6525 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6526 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6527 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6528 return TRUE;
6529 if (new_entry->address + new_entry->size != the_entry->address)
6530 return TRUE;
6531
6532 the_entry = new_entry;
6533 ebb->start_ptbl_idx--;
6534 }
6535 return TRUE;
6536 }
6537
6538
6539 static bfd_size_type
6540 insn_block_decodable_len (bfd_byte *contents,
6541 bfd_size_type content_len,
6542 bfd_vma block_offset,
6543 bfd_size_type block_len)
6544 {
6545 bfd_vma offset = block_offset;
6546
6547 while (offset < block_offset + block_len)
6548 {
6549 bfd_size_type insn_len = 0;
6550
6551 insn_len = insn_decode_len (contents, content_len, offset);
6552 if (insn_len == 0)
6553 return (offset - block_offset);
6554 offset += insn_len;
6555 }
6556 return (offset - block_offset);
6557 }
6558
6559
6560 static void
6561 ebb_propose_action (ebb_constraint *c,
6562 enum ebb_target_enum align_type,
6563 bfd_vma alignment_pow,
6564 text_action_t action,
6565 bfd_vma offset,
6566 int removed_bytes,
6567 bfd_boolean do_action)
6568 {
6569 proposed_action *act;
6570
6571 if (c->action_allocated <= c->action_count)
6572 {
6573 unsigned new_allocated, i;
6574 proposed_action *new_actions;
6575
6576 new_allocated = (c->action_count + 2) * 2;
6577 new_actions = (proposed_action *)
6578 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6579
6580 for (i = 0; i < c->action_count; i++)
6581 new_actions[i] = c->actions[i];
6582 if (c->actions)
6583 free (c->actions);
6584 c->actions = new_actions;
6585 c->action_allocated = new_allocated;
6586 }
6587
6588 act = &c->actions[c->action_count];
6589 act->align_type = align_type;
6590 act->alignment_pow = alignment_pow;
6591 act->action = action;
6592 act->offset = offset;
6593 act->removed_bytes = removed_bytes;
6594 act->do_action = do_action;
6595
6596 c->action_count++;
6597 }
6598
6599 \f
6600 /* Access to internal relocations, section contents and symbols. */
6601
6602 /* During relaxation, we need to modify relocations, section contents,
6603 and symbol definitions, and we need to keep the original values from
6604 being reloaded from the input files, i.e., we need to "pin" the
6605 modified values in memory. We also want to continue to observe the
6606 setting of the "keep-memory" flag. The following functions wrap the
6607 standard BFD functions to take care of this for us. */
6608
6609 static Elf_Internal_Rela *
6610 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6611 {
6612 Elf_Internal_Rela *internal_relocs;
6613
6614 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6615 return NULL;
6616
6617 internal_relocs = elf_section_data (sec)->relocs;
6618 if (internal_relocs == NULL)
6619 internal_relocs = (_bfd_elf_link_read_relocs
6620 (abfd, sec, NULL, NULL, keep_memory));
6621 return internal_relocs;
6622 }
6623
6624
6625 static void
6626 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6627 {
6628 elf_section_data (sec)->relocs = internal_relocs;
6629 }
6630
6631
6632 static void
6633 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6634 {
6635 if (internal_relocs
6636 && elf_section_data (sec)->relocs != internal_relocs)
6637 free (internal_relocs);
6638 }
6639
6640
6641 static bfd_byte *
6642 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6643 {
6644 bfd_byte *contents;
6645 bfd_size_type sec_size;
6646
6647 sec_size = bfd_get_section_limit (abfd, sec);
6648 contents = elf_section_data (sec)->this_hdr.contents;
6649
6650 if (contents == NULL && sec_size != 0)
6651 {
6652 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6653 {
6654 if (contents)
6655 free (contents);
6656 return NULL;
6657 }
6658 if (keep_memory)
6659 elf_section_data (sec)->this_hdr.contents = contents;
6660 }
6661 return contents;
6662 }
6663
6664
6665 static void
6666 pin_contents (asection *sec, bfd_byte *contents)
6667 {
6668 elf_section_data (sec)->this_hdr.contents = contents;
6669 }
6670
6671
6672 static void
6673 release_contents (asection *sec, bfd_byte *contents)
6674 {
6675 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6676 free (contents);
6677 }
6678
6679
6680 static Elf_Internal_Sym *
6681 retrieve_local_syms (bfd *input_bfd)
6682 {
6683 Elf_Internal_Shdr *symtab_hdr;
6684 Elf_Internal_Sym *isymbuf;
6685 size_t locsymcount;
6686
6687 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6688 locsymcount = symtab_hdr->sh_info;
6689
6690 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6691 if (isymbuf == NULL && locsymcount != 0)
6692 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6693 NULL, NULL, NULL);
6694
6695 /* Save the symbols for this input file so they won't be read again. */
6696 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6697 symtab_hdr->contents = (unsigned char *) isymbuf;
6698
6699 return isymbuf;
6700 }
6701
6702 \f
6703 /* Code for link-time relaxation. */
6704
6705 /* Initialization for relaxation: */
6706 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6707 static bfd_boolean find_relaxable_sections
6708 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6709 static bfd_boolean collect_source_relocs
6710 (bfd *, asection *, struct bfd_link_info *);
6711 static bfd_boolean is_resolvable_asm_expansion
6712 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6713 bfd_boolean *);
6714 static Elf_Internal_Rela *find_associated_l32r_irel
6715 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6716 static bfd_boolean compute_text_actions
6717 (bfd *, asection *, struct bfd_link_info *);
6718 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6719 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6720 typedef struct reloc_range_list_struct reloc_range_list;
6721 static bfd_boolean check_section_ebb_pcrels_fit
6722 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6723 reloc_range_list *, const ebb_constraint *,
6724 const xtensa_opcode *);
6725 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6726 static void text_action_add_proposed
6727 (text_action_list *, const ebb_constraint *, asection *);
6728 static int compute_fill_extra_space (property_table_entry *);
6729
6730 /* First pass: */
6731 static bfd_boolean compute_removed_literals
6732 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6733 static Elf_Internal_Rela *get_irel_at_offset
6734 (asection *, Elf_Internal_Rela *, bfd_vma);
6735 static bfd_boolean is_removable_literal
6736 (const source_reloc *, int, const source_reloc *, int, asection *,
6737 property_table_entry *, int);
6738 static bfd_boolean remove_dead_literal
6739 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6740 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6741 static bfd_boolean identify_literal_placement
6742 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6743 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6744 source_reloc *, property_table_entry *, int, section_cache_t *,
6745 bfd_boolean);
6746 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6747 static bfd_boolean coalesce_shared_literal
6748 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6749 static bfd_boolean move_shared_literal
6750 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6751 int, const r_reloc *, const literal_value *, section_cache_t *);
6752
6753 /* Second pass: */
6754 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6755 static bfd_boolean translate_section_fixes (asection *);
6756 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6757 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6758 static void shrink_dynamic_reloc_sections
6759 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6760 static bfd_boolean move_literal
6761 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6762 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6763 static bfd_boolean relax_property_section
6764 (bfd *, asection *, struct bfd_link_info *);
6765
6766 /* Third pass: */
6767 static bfd_boolean relax_section_symbols (bfd *, asection *);
6768
6769
6770 static bfd_boolean
6771 elf_xtensa_relax_section (bfd *abfd,
6772 asection *sec,
6773 struct bfd_link_info *link_info,
6774 bfd_boolean *again)
6775 {
6776 static value_map_hash_table *values = NULL;
6777 static bfd_boolean relocations_analyzed = FALSE;
6778 xtensa_relax_info *relax_info;
6779
6780 if (!relocations_analyzed)
6781 {
6782 /* Do some overall initialization for relaxation. */
6783 values = value_map_hash_table_init ();
6784 if (values == NULL)
6785 return FALSE;
6786 relaxing_section = TRUE;
6787 if (!analyze_relocations (link_info))
6788 return FALSE;
6789 relocations_analyzed = TRUE;
6790 }
6791 *again = FALSE;
6792
6793 /* Don't mess with linker-created sections. */
6794 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6795 return TRUE;
6796
6797 relax_info = get_xtensa_relax_info (sec);
6798 BFD_ASSERT (relax_info != NULL);
6799
6800 switch (relax_info->visited)
6801 {
6802 case 0:
6803 /* Note: It would be nice to fold this pass into
6804 analyze_relocations, but it is important for this step that the
6805 sections be examined in link order. */
6806 if (!compute_removed_literals (abfd, sec, link_info, values))
6807 return FALSE;
6808 *again = TRUE;
6809 break;
6810
6811 case 1:
6812 if (values)
6813 value_map_hash_table_delete (values);
6814 values = NULL;
6815 if (!relax_section (abfd, sec, link_info))
6816 return FALSE;
6817 *again = TRUE;
6818 break;
6819
6820 case 2:
6821 if (!relax_section_symbols (abfd, sec))
6822 return FALSE;
6823 break;
6824 }
6825
6826 relax_info->visited++;
6827 return TRUE;
6828 }
6829
6830 \f
6831 /* Initialization for relaxation. */
6832
6833 /* This function is called once at the start of relaxation. It scans
6834 all the input sections and marks the ones that are relaxable (i.e.,
6835 literal sections with L32R relocations against them), and then
6836 collects source_reloc information for all the relocations against
6837 those relaxable sections. During this process, it also detects
6838 longcalls, i.e., calls relaxed by the assembler into indirect
6839 calls, that can be optimized back into direct calls. Within each
6840 extended basic block (ebb) containing an optimized longcall, it
6841 computes a set of "text actions" that can be performed to remove
6842 the L32R associated with the longcall while optionally preserving
6843 branch target alignments. */
6844
6845 static bfd_boolean
6846 analyze_relocations (struct bfd_link_info *link_info)
6847 {
6848 bfd *abfd;
6849 asection *sec;
6850 bfd_boolean is_relaxable = FALSE;
6851
6852 /* Initialize the per-section relaxation info. */
6853 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6854 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6855 {
6856 init_xtensa_relax_info (sec);
6857 }
6858
6859 /* Mark relaxable sections (and count relocations against each one). */
6860 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6861 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6862 {
6863 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6864 return FALSE;
6865 }
6866
6867 /* Bail out if there are no relaxable sections. */
6868 if (!is_relaxable)
6869 return TRUE;
6870
6871 /* Allocate space for source_relocs. */
6872 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6873 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6874 {
6875 xtensa_relax_info *relax_info;
6876
6877 relax_info = get_xtensa_relax_info (sec);
6878 if (relax_info->is_relaxable_literal_section
6879 || relax_info->is_relaxable_asm_section)
6880 {
6881 relax_info->src_relocs = (source_reloc *)
6882 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6883 }
6884 else
6885 relax_info->src_count = 0;
6886 }
6887
6888 /* Collect info on relocations against each relaxable section. */
6889 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6890 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6891 {
6892 if (!collect_source_relocs (abfd, sec, link_info))
6893 return FALSE;
6894 }
6895
6896 /* Compute the text actions. */
6897 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6898 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6899 {
6900 if (!compute_text_actions (abfd, sec, link_info))
6901 return FALSE;
6902 }
6903
6904 return TRUE;
6905 }
6906
6907
6908 /* Find all the sections that might be relaxed. The motivation for
6909 this pass is that collect_source_relocs() needs to record _all_ the
6910 relocations that target each relaxable section. That is expensive
6911 and unnecessary unless the target section is actually going to be
6912 relaxed. This pass identifies all such sections by checking if
6913 they have L32Rs pointing to them. In the process, the total number
6914 of relocations targeting each section is also counted so that we
6915 know how much space to allocate for source_relocs against each
6916 relaxable literal section. */
6917
6918 static bfd_boolean
6919 find_relaxable_sections (bfd *abfd,
6920 asection *sec,
6921 struct bfd_link_info *link_info,
6922 bfd_boolean *is_relaxable_p)
6923 {
6924 Elf_Internal_Rela *internal_relocs;
6925 bfd_byte *contents;
6926 bfd_boolean ok = TRUE;
6927 unsigned i;
6928 xtensa_relax_info *source_relax_info;
6929 bfd_boolean is_l32r_reloc;
6930
6931 internal_relocs = retrieve_internal_relocs (abfd, sec,
6932 link_info->keep_memory);
6933 if (internal_relocs == NULL)
6934 return ok;
6935
6936 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6937 if (contents == NULL && sec->size != 0)
6938 {
6939 ok = FALSE;
6940 goto error_return;
6941 }
6942
6943 source_relax_info = get_xtensa_relax_info (sec);
6944 for (i = 0; i < sec->reloc_count; i++)
6945 {
6946 Elf_Internal_Rela *irel = &internal_relocs[i];
6947 r_reloc r_rel;
6948 asection *target_sec;
6949 xtensa_relax_info *target_relax_info;
6950
6951 /* If this section has not already been marked as "relaxable", and
6952 if it contains any ASM_EXPAND relocations (marking expanded
6953 longcalls) that can be optimized into direct calls, then mark
6954 the section as "relaxable". */
6955 if (source_relax_info
6956 && !source_relax_info->is_relaxable_asm_section
6957 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6958 {
6959 bfd_boolean is_reachable = FALSE;
6960 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6961 link_info, &is_reachable)
6962 && is_reachable)
6963 {
6964 source_relax_info->is_relaxable_asm_section = TRUE;
6965 *is_relaxable_p = TRUE;
6966 }
6967 }
6968
6969 r_reloc_init (&r_rel, abfd, irel, contents,
6970 bfd_get_section_limit (abfd, sec));
6971
6972 target_sec = r_reloc_get_section (&r_rel);
6973 target_relax_info = get_xtensa_relax_info (target_sec);
6974 if (!target_relax_info)
6975 continue;
6976
6977 /* Count PC-relative operand relocations against the target section.
6978 Note: The conditions tested here must match the conditions under
6979 which init_source_reloc is called in collect_source_relocs(). */
6980 is_l32r_reloc = FALSE;
6981 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6982 {
6983 xtensa_opcode opcode =
6984 get_relocation_opcode (abfd, sec, contents, irel);
6985 if (opcode != XTENSA_UNDEFINED)
6986 {
6987 is_l32r_reloc = (opcode == get_l32r_opcode ());
6988 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6989 || is_l32r_reloc)
6990 target_relax_info->src_count++;
6991 }
6992 }
6993
6994 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6995 {
6996 /* Mark the target section as relaxable. */
6997 target_relax_info->is_relaxable_literal_section = TRUE;
6998 *is_relaxable_p = TRUE;
6999 }
7000 }
7001
7002 error_return:
7003 release_contents (sec, contents);
7004 release_internal_relocs (sec, internal_relocs);
7005 return ok;
7006 }
7007
7008
7009 /* Record _all_ the relocations that point to relaxable sections, and
7010 get rid of ASM_EXPAND relocs by either converting them to
7011 ASM_SIMPLIFY or by removing them. */
7012
7013 static bfd_boolean
7014 collect_source_relocs (bfd *abfd,
7015 asection *sec,
7016 struct bfd_link_info *link_info)
7017 {
7018 Elf_Internal_Rela *internal_relocs;
7019 bfd_byte *contents;
7020 bfd_boolean ok = TRUE;
7021 unsigned i;
7022 bfd_size_type sec_size;
7023
7024 internal_relocs = retrieve_internal_relocs (abfd, sec,
7025 link_info->keep_memory);
7026 if (internal_relocs == NULL)
7027 return ok;
7028
7029 sec_size = bfd_get_section_limit (abfd, sec);
7030 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7031 if (contents == NULL && sec_size != 0)
7032 {
7033 ok = FALSE;
7034 goto error_return;
7035 }
7036
7037 /* Record relocations against relaxable literal sections. */
7038 for (i = 0; i < sec->reloc_count; i++)
7039 {
7040 Elf_Internal_Rela *irel = &internal_relocs[i];
7041 r_reloc r_rel;
7042 asection *target_sec;
7043 xtensa_relax_info *target_relax_info;
7044
7045 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7046
7047 target_sec = r_reloc_get_section (&r_rel);
7048 target_relax_info = get_xtensa_relax_info (target_sec);
7049
7050 if (target_relax_info
7051 && (target_relax_info->is_relaxable_literal_section
7052 || target_relax_info->is_relaxable_asm_section))
7053 {
7054 xtensa_opcode opcode = XTENSA_UNDEFINED;
7055 int opnd = -1;
7056 bfd_boolean is_abs_literal = FALSE;
7057
7058 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7059 {
7060 /* None of the current alternate relocs are PC-relative,
7061 and only PC-relative relocs matter here. However, we
7062 still need to record the opcode for literal
7063 coalescing. */
7064 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7065 if (opcode == get_l32r_opcode ())
7066 {
7067 is_abs_literal = TRUE;
7068 opnd = 1;
7069 }
7070 else
7071 opcode = XTENSA_UNDEFINED;
7072 }
7073 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7074 {
7075 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7076 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7077 }
7078
7079 if (opcode != XTENSA_UNDEFINED)
7080 {
7081 int src_next = target_relax_info->src_next++;
7082 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7083
7084 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7085 is_abs_literal);
7086 }
7087 }
7088 }
7089
7090 /* Now get rid of ASM_EXPAND relocations. At this point, the
7091 src_relocs array for the target literal section may still be
7092 incomplete, but it must at least contain the entries for the L32R
7093 relocations associated with ASM_EXPANDs because they were just
7094 added in the preceding loop over the relocations. */
7095
7096 for (i = 0; i < sec->reloc_count; i++)
7097 {
7098 Elf_Internal_Rela *irel = &internal_relocs[i];
7099 bfd_boolean is_reachable;
7100
7101 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7102 &is_reachable))
7103 continue;
7104
7105 if (is_reachable)
7106 {
7107 Elf_Internal_Rela *l32r_irel;
7108 r_reloc r_rel;
7109 asection *target_sec;
7110 xtensa_relax_info *target_relax_info;
7111
7112 /* Mark the source_reloc for the L32R so that it will be
7113 removed in compute_removed_literals(), along with the
7114 associated literal. */
7115 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7116 irel, internal_relocs);
7117 if (l32r_irel == NULL)
7118 continue;
7119
7120 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7121
7122 target_sec = r_reloc_get_section (&r_rel);
7123 target_relax_info = get_xtensa_relax_info (target_sec);
7124
7125 if (target_relax_info
7126 && (target_relax_info->is_relaxable_literal_section
7127 || target_relax_info->is_relaxable_asm_section))
7128 {
7129 source_reloc *s_reloc;
7130
7131 /* Search the source_relocs for the entry corresponding to
7132 the l32r_irel. Note: The src_relocs array is not yet
7133 sorted, but it wouldn't matter anyway because we're
7134 searching by source offset instead of target offset. */
7135 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7136 target_relax_info->src_next,
7137 sec, l32r_irel);
7138 BFD_ASSERT (s_reloc);
7139 s_reloc->is_null = TRUE;
7140 }
7141
7142 /* Convert this reloc to ASM_SIMPLIFY. */
7143 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7144 R_XTENSA_ASM_SIMPLIFY);
7145 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7146
7147 pin_internal_relocs (sec, internal_relocs);
7148 }
7149 else
7150 {
7151 /* It is resolvable but doesn't reach. We resolve now
7152 by eliminating the relocation -- the call will remain
7153 expanded into L32R/CALLX. */
7154 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7155 pin_internal_relocs (sec, internal_relocs);
7156 }
7157 }
7158
7159 error_return:
7160 release_contents (sec, contents);
7161 release_internal_relocs (sec, internal_relocs);
7162 return ok;
7163 }
7164
7165
7166 /* Return TRUE if the asm expansion can be resolved. Generally it can
7167 be resolved on a final link or when a partial link locates it in the
7168 same section as the target. Set "is_reachable" flag if the target of
7169 the call is within the range of a direct call, given the current VMA
7170 for this section and the target section. */
7171
7172 bfd_boolean
7173 is_resolvable_asm_expansion (bfd *abfd,
7174 asection *sec,
7175 bfd_byte *contents,
7176 Elf_Internal_Rela *irel,
7177 struct bfd_link_info *link_info,
7178 bfd_boolean *is_reachable_p)
7179 {
7180 asection *target_sec;
7181 bfd_vma target_offset;
7182 r_reloc r_rel;
7183 xtensa_opcode opcode, direct_call_opcode;
7184 bfd_vma self_address;
7185 bfd_vma dest_address;
7186 bfd_boolean uses_l32r;
7187 bfd_size_type sec_size;
7188
7189 *is_reachable_p = FALSE;
7190
7191 if (contents == NULL)
7192 return FALSE;
7193
7194 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7195 return FALSE;
7196
7197 sec_size = bfd_get_section_limit (abfd, sec);
7198 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7199 sec_size - irel->r_offset, &uses_l32r);
7200 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7201 if (!uses_l32r)
7202 return FALSE;
7203
7204 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7205 if (direct_call_opcode == XTENSA_UNDEFINED)
7206 return FALSE;
7207
7208 /* Check and see that the target resolves. */
7209 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7210 if (!r_reloc_is_defined (&r_rel))
7211 return FALSE;
7212
7213 target_sec = r_reloc_get_section (&r_rel);
7214 target_offset = r_rel.target_offset;
7215
7216 /* If the target is in a shared library, then it doesn't reach. This
7217 isn't supposed to come up because the compiler should never generate
7218 non-PIC calls on systems that use shared libraries, but the linker
7219 shouldn't crash regardless. */
7220 if (!target_sec->output_section)
7221 return FALSE;
7222
7223 /* For relocatable sections, we can only simplify when the output
7224 section of the target is the same as the output section of the
7225 source. */
7226 if (bfd_link_relocatable (link_info)
7227 && (target_sec->output_section != sec->output_section
7228 || is_reloc_sym_weak (abfd, irel)))
7229 return FALSE;
7230
7231 if (target_sec->output_section != sec->output_section)
7232 {
7233 /* If the two sections are sufficiently far away that relaxation
7234 might take the call out of range, we can't simplify. For
7235 example, a positive displacement call into another memory
7236 could get moved to a lower address due to literal removal,
7237 but the destination won't move, and so the displacment might
7238 get larger.
7239
7240 If the displacement is negative, assume the destination could
7241 move as far back as the start of the output section. The
7242 self_address will be at least as far into the output section
7243 as it is prior to relaxation.
7244
7245 If the displacement is postive, assume the destination will be in
7246 it's pre-relaxed location (because relaxation only makes sections
7247 smaller). The self_address could go all the way to the beginning
7248 of the output section. */
7249
7250 dest_address = target_sec->output_section->vma;
7251 self_address = sec->output_section->vma;
7252
7253 if (sec->output_section->vma > target_sec->output_section->vma)
7254 self_address += sec->output_offset + irel->r_offset + 3;
7255 else
7256 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7257 /* Call targets should be four-byte aligned. */
7258 dest_address = (dest_address + 3) & ~3;
7259 }
7260 else
7261 {
7262
7263 self_address = (sec->output_section->vma
7264 + sec->output_offset + irel->r_offset + 3);
7265 dest_address = (target_sec->output_section->vma
7266 + target_sec->output_offset + target_offset);
7267 }
7268
7269 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7270 self_address, dest_address);
7271
7272 if ((self_address >> CALL_SEGMENT_BITS) !=
7273 (dest_address >> CALL_SEGMENT_BITS))
7274 return FALSE;
7275
7276 return TRUE;
7277 }
7278
7279
7280 static Elf_Internal_Rela *
7281 find_associated_l32r_irel (bfd *abfd,
7282 asection *sec,
7283 bfd_byte *contents,
7284 Elf_Internal_Rela *other_irel,
7285 Elf_Internal_Rela *internal_relocs)
7286 {
7287 unsigned i;
7288
7289 for (i = 0; i < sec->reloc_count; i++)
7290 {
7291 Elf_Internal_Rela *irel = &internal_relocs[i];
7292
7293 if (irel == other_irel)
7294 continue;
7295 if (irel->r_offset != other_irel->r_offset)
7296 continue;
7297 if (is_l32r_relocation (abfd, sec, contents, irel))
7298 return irel;
7299 }
7300
7301 return NULL;
7302 }
7303
7304
7305 static xtensa_opcode *
7306 build_reloc_opcodes (bfd *abfd,
7307 asection *sec,
7308 bfd_byte *contents,
7309 Elf_Internal_Rela *internal_relocs)
7310 {
7311 unsigned i;
7312 xtensa_opcode *reloc_opcodes =
7313 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7314 for (i = 0; i < sec->reloc_count; i++)
7315 {
7316 Elf_Internal_Rela *irel = &internal_relocs[i];
7317 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7318 }
7319 return reloc_opcodes;
7320 }
7321
7322 struct reloc_range_struct
7323 {
7324 bfd_vma addr;
7325 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7326 /* Original irel index in the array of relocations for a section. */
7327 unsigned irel_index;
7328 };
7329 typedef struct reloc_range_struct reloc_range;
7330
7331 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7332 struct reloc_range_list_entry_struct
7333 {
7334 reloc_range_list_entry *next;
7335 reloc_range_list_entry *prev;
7336 Elf_Internal_Rela *irel;
7337 xtensa_opcode opcode;
7338 int opnum;
7339 };
7340
7341 struct reloc_range_list_struct
7342 {
7343 /* The rest of the structure is only meaningful when ok is TRUE. */
7344 bfd_boolean ok;
7345
7346 unsigned n_range; /* Number of range markers. */
7347 reloc_range *range; /* Sorted range markers. */
7348
7349 unsigned first; /* Index of a first range element in the list. */
7350 unsigned last; /* One past index of a last range element in the list. */
7351
7352 unsigned n_list; /* Number of list elements. */
7353 reloc_range_list_entry *reloc; /* */
7354 reloc_range_list_entry list_root;
7355 };
7356
7357 static int
7358 reloc_range_compare (const void *a, const void *b)
7359 {
7360 const reloc_range *ra = a;
7361 const reloc_range *rb = b;
7362
7363 if (ra->addr != rb->addr)
7364 return ra->addr < rb->addr ? -1 : 1;
7365 if (ra->add != rb->add)
7366 return ra->add ? -1 : 1;
7367 return 0;
7368 }
7369
7370 static void
7371 build_reloc_ranges (bfd *abfd, asection *sec,
7372 bfd_byte *contents,
7373 Elf_Internal_Rela *internal_relocs,
7374 xtensa_opcode *reloc_opcodes,
7375 reloc_range_list *list)
7376 {
7377 unsigned i;
7378 size_t n = 0;
7379 size_t max_n = 0;
7380 reloc_range *ranges = NULL;
7381 reloc_range_list_entry *reloc =
7382 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7383
7384 memset (list, 0, sizeof (*list));
7385 list->ok = TRUE;
7386
7387 for (i = 0; i < sec->reloc_count; i++)
7388 {
7389 Elf_Internal_Rela *irel = &internal_relocs[i];
7390 int r_type = ELF32_R_TYPE (irel->r_info);
7391 reloc_howto_type *howto = &elf_howto_table[r_type];
7392 r_reloc r_rel;
7393
7394 if (r_type == R_XTENSA_ASM_SIMPLIFY
7395 || r_type == R_XTENSA_32_PCREL
7396 || !howto->pc_relative)
7397 continue;
7398
7399 r_reloc_init (&r_rel, abfd, irel, contents,
7400 bfd_get_section_limit (abfd, sec));
7401
7402 if (r_reloc_get_section (&r_rel) != sec)
7403 continue;
7404
7405 if (n + 2 > max_n)
7406 {
7407 max_n = (max_n + 2) * 2;
7408 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7409 }
7410
7411 ranges[n].addr = irel->r_offset;
7412 ranges[n + 1].addr = r_rel.target_offset;
7413
7414 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7415 ranges[n + 1].add = !ranges[n].add;
7416
7417 ranges[n].irel_index = i;
7418 ranges[n + 1].irel_index = i;
7419
7420 n += 2;
7421
7422 reloc[i].irel = irel;
7423
7424 /* Every relocation won't possibly be checked in the optimized version of
7425 check_section_ebb_pcrels_fit, so this needs to be done here. */
7426 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7427 {
7428 /* None of the current alternate relocs are PC-relative,
7429 and only PC-relative relocs matter here. */
7430 }
7431 else
7432 {
7433 xtensa_opcode opcode;
7434 int opnum;
7435
7436 if (reloc_opcodes)
7437 opcode = reloc_opcodes[i];
7438 else
7439 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7440
7441 if (opcode == XTENSA_UNDEFINED)
7442 {
7443 list->ok = FALSE;
7444 break;
7445 }
7446
7447 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7448 if (opnum == XTENSA_UNDEFINED)
7449 {
7450 list->ok = FALSE;
7451 break;
7452 }
7453
7454 /* Record relocation opcode and opnum as we've calculated them
7455 anyway and they won't change. */
7456 reloc[i].opcode = opcode;
7457 reloc[i].opnum = opnum;
7458 }
7459 }
7460
7461 if (list->ok)
7462 {
7463 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7464 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7465
7466 list->n_range = n;
7467 list->range = ranges;
7468 list->reloc = reloc;
7469 list->list_root.prev = &list->list_root;
7470 list->list_root.next = &list->list_root;
7471 }
7472 else
7473 {
7474 free (ranges);
7475 free (reloc);
7476 }
7477 }
7478
7479 static void reloc_range_list_append (reloc_range_list *list,
7480 unsigned irel_index)
7481 {
7482 reloc_range_list_entry *entry = list->reloc + irel_index;
7483
7484 entry->prev = list->list_root.prev;
7485 entry->next = &list->list_root;
7486 entry->prev->next = entry;
7487 entry->next->prev = entry;
7488 ++list->n_list;
7489 }
7490
7491 static void reloc_range_list_remove (reloc_range_list *list,
7492 unsigned irel_index)
7493 {
7494 reloc_range_list_entry *entry = list->reloc + irel_index;
7495
7496 entry->next->prev = entry->prev;
7497 entry->prev->next = entry->next;
7498 --list->n_list;
7499 }
7500
7501 /* Update relocation list object so that it lists all relocations that cross
7502 [first; last] range. Range bounds should not decrease with successive
7503 invocations. */
7504 static void reloc_range_list_update_range (reloc_range_list *list,
7505 bfd_vma first, bfd_vma last)
7506 {
7507 /* This should not happen: EBBs are iterated from lower addresses to higher.
7508 But even if that happens there's no need to break: just flush current list
7509 and start from scratch. */
7510 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7511 (list->first > 0 && list->range[list->first - 1].addr >= first))
7512 {
7513 list->first = 0;
7514 list->last = 0;
7515 list->n_list = 0;
7516 list->list_root.next = &list->list_root;
7517 list->list_root.prev = &list->list_root;
7518 fprintf (stderr, "%s: move backwards requested\n", __func__);
7519 }
7520
7521 for (; list->last < list->n_range &&
7522 list->range[list->last].addr <= last; ++list->last)
7523 if (list->range[list->last].add)
7524 reloc_range_list_append (list, list->range[list->last].irel_index);
7525
7526 for (; list->first < list->n_range &&
7527 list->range[list->first].addr < first; ++list->first)
7528 if (!list->range[list->first].add)
7529 reloc_range_list_remove (list, list->range[list->first].irel_index);
7530 }
7531
7532 static void free_reloc_range_list (reloc_range_list *list)
7533 {
7534 free (list->range);
7535 free (list->reloc);
7536 }
7537
7538 /* The compute_text_actions function will build a list of potential
7539 transformation actions for code in the extended basic block of each
7540 longcall that is optimized to a direct call. From this list we
7541 generate a set of actions to actually perform that optimizes for
7542 space and, if not using size_opt, maintains branch target
7543 alignments.
7544
7545 These actions to be performed are placed on a per-section list.
7546 The actual changes are performed by relax_section() in the second
7547 pass. */
7548
7549 bfd_boolean
7550 compute_text_actions (bfd *abfd,
7551 asection *sec,
7552 struct bfd_link_info *link_info)
7553 {
7554 xtensa_opcode *reloc_opcodes = NULL;
7555 xtensa_relax_info *relax_info;
7556 bfd_byte *contents;
7557 Elf_Internal_Rela *internal_relocs;
7558 bfd_boolean ok = TRUE;
7559 unsigned i;
7560 property_table_entry *prop_table = 0;
7561 int ptblsize = 0;
7562 bfd_size_type sec_size;
7563 reloc_range_list relevant_relocs;
7564
7565 relax_info = get_xtensa_relax_info (sec);
7566 BFD_ASSERT (relax_info);
7567 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7568
7569 /* Do nothing if the section contains no optimized longcalls. */
7570 if (!relax_info->is_relaxable_asm_section)
7571 return ok;
7572
7573 internal_relocs = retrieve_internal_relocs (abfd, sec,
7574 link_info->keep_memory);
7575
7576 if (internal_relocs)
7577 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7578 internal_reloc_compare);
7579
7580 sec_size = bfd_get_section_limit (abfd, sec);
7581 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7582 if (contents == NULL && sec_size != 0)
7583 {
7584 ok = FALSE;
7585 goto error_return;
7586 }
7587
7588 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7589 XTENSA_PROP_SEC_NAME, FALSE);
7590 if (ptblsize < 0)
7591 {
7592 ok = FALSE;
7593 goto error_return;
7594 }
7595
7596 /* Precompute the opcode for each relocation. */
7597 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7598
7599 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7600 &relevant_relocs);
7601
7602 for (i = 0; i < sec->reloc_count; i++)
7603 {
7604 Elf_Internal_Rela *irel = &internal_relocs[i];
7605 bfd_vma r_offset;
7606 property_table_entry *the_entry;
7607 int ptbl_idx;
7608 ebb_t *ebb;
7609 ebb_constraint ebb_table;
7610 bfd_size_type simplify_size;
7611
7612 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7613 continue;
7614 r_offset = irel->r_offset;
7615
7616 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7617 if (simplify_size == 0)
7618 {
7619 _bfd_error_handler
7620 /* xgettext:c-format */
7621 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7622 "XTENSA_ASM_SIMPLIFY relocation; "
7623 "possible configuration mismatch"),
7624 sec->owner, sec, (uint64_t) r_offset);
7625 continue;
7626 }
7627
7628 /* If the instruction table is not around, then don't do this
7629 relaxation. */
7630 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7631 sec->vma + irel->r_offset);
7632 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7633 {
7634 text_action_add (&relax_info->action_list,
7635 ta_convert_longcall, sec, r_offset,
7636 0);
7637 continue;
7638 }
7639
7640 /* If the next longcall happens to be at the same address as an
7641 unreachable section of size 0, then skip forward. */
7642 ptbl_idx = the_entry - prop_table;
7643 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7644 && the_entry->size == 0
7645 && ptbl_idx + 1 < ptblsize
7646 && (prop_table[ptbl_idx + 1].address
7647 == prop_table[ptbl_idx].address))
7648 {
7649 ptbl_idx++;
7650 the_entry++;
7651 }
7652
7653 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7654 /* NO_REORDER is OK */
7655 continue;
7656
7657 init_ebb_constraint (&ebb_table);
7658 ebb = &ebb_table.ebb;
7659 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7660 internal_relocs, sec->reloc_count);
7661 ebb->start_offset = r_offset + simplify_size;
7662 ebb->end_offset = r_offset + simplify_size;
7663 ebb->start_ptbl_idx = ptbl_idx;
7664 ebb->end_ptbl_idx = ptbl_idx;
7665 ebb->start_reloc_idx = i;
7666 ebb->end_reloc_idx = i;
7667
7668 if (!extend_ebb_bounds (ebb)
7669 || !compute_ebb_proposed_actions (&ebb_table)
7670 || !compute_ebb_actions (&ebb_table)
7671 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7672 internal_relocs,
7673 &relevant_relocs,
7674 &ebb_table, reloc_opcodes)
7675 || !check_section_ebb_reduces (&ebb_table))
7676 {
7677 /* If anything goes wrong or we get unlucky and something does
7678 not fit, with our plan because of expansion between
7679 critical branches, just convert to a NOP. */
7680
7681 text_action_add (&relax_info->action_list,
7682 ta_convert_longcall, sec, r_offset, 0);
7683 i = ebb_table.ebb.end_reloc_idx;
7684 free_ebb_constraint (&ebb_table);
7685 continue;
7686 }
7687
7688 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7689
7690 /* Update the index so we do not go looking at the relocations
7691 we have already processed. */
7692 i = ebb_table.ebb.end_reloc_idx;
7693 free_ebb_constraint (&ebb_table);
7694 }
7695
7696 free_reloc_range_list (&relevant_relocs);
7697
7698 #if DEBUG
7699 if (action_list_count (&relax_info->action_list))
7700 print_action_list (stderr, &relax_info->action_list);
7701 #endif
7702
7703 error_return:
7704 release_contents (sec, contents);
7705 release_internal_relocs (sec, internal_relocs);
7706 if (prop_table)
7707 free (prop_table);
7708 if (reloc_opcodes)
7709 free (reloc_opcodes);
7710
7711 return ok;
7712 }
7713
7714
7715 /* Do not widen an instruction if it is preceeded by a
7716 loop opcode. It might cause misalignment. */
7717
7718 static bfd_boolean
7719 prev_instr_is_a_loop (bfd_byte *contents,
7720 bfd_size_type content_length,
7721 bfd_size_type offset)
7722 {
7723 xtensa_opcode prev_opcode;
7724
7725 if (offset < 3)
7726 return FALSE;
7727 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7728 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7729 }
7730
7731
7732 /* Find all of the possible actions for an extended basic block. */
7733
7734 bfd_boolean
7735 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7736 {
7737 const ebb_t *ebb = &ebb_table->ebb;
7738 unsigned rel_idx = ebb->start_reloc_idx;
7739 property_table_entry *entry, *start_entry, *end_entry;
7740 bfd_vma offset = 0;
7741 xtensa_isa isa = xtensa_default_isa;
7742 xtensa_format fmt;
7743 static xtensa_insnbuf insnbuf = NULL;
7744 static xtensa_insnbuf slotbuf = NULL;
7745
7746 if (insnbuf == NULL)
7747 {
7748 insnbuf = xtensa_insnbuf_alloc (isa);
7749 slotbuf = xtensa_insnbuf_alloc (isa);
7750 }
7751
7752 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7753 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7754
7755 for (entry = start_entry; entry <= end_entry; entry++)
7756 {
7757 bfd_vma start_offset, end_offset;
7758 bfd_size_type insn_len;
7759
7760 start_offset = entry->address - ebb->sec->vma;
7761 end_offset = entry->address + entry->size - ebb->sec->vma;
7762
7763 if (entry == start_entry)
7764 start_offset = ebb->start_offset;
7765 if (entry == end_entry)
7766 end_offset = ebb->end_offset;
7767 offset = start_offset;
7768
7769 if (offset == entry->address - ebb->sec->vma
7770 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7771 {
7772 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7773 BFD_ASSERT (offset != end_offset);
7774 if (offset == end_offset)
7775 return FALSE;
7776
7777 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7778 offset);
7779 if (insn_len == 0)
7780 goto decode_error;
7781
7782 if (check_branch_target_aligned_address (offset, insn_len))
7783 align_type = EBB_REQUIRE_TGT_ALIGN;
7784
7785 ebb_propose_action (ebb_table, align_type, 0,
7786 ta_none, offset, 0, TRUE);
7787 }
7788
7789 while (offset != end_offset)
7790 {
7791 Elf_Internal_Rela *irel;
7792 xtensa_opcode opcode;
7793
7794 while (rel_idx < ebb->end_reloc_idx
7795 && (ebb->relocs[rel_idx].r_offset < offset
7796 || (ebb->relocs[rel_idx].r_offset == offset
7797 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7798 != R_XTENSA_ASM_SIMPLIFY))))
7799 rel_idx++;
7800
7801 /* Check for longcall. */
7802 irel = &ebb->relocs[rel_idx];
7803 if (irel->r_offset == offset
7804 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7805 {
7806 bfd_size_type simplify_size;
7807
7808 simplify_size = get_asm_simplify_size (ebb->contents,
7809 ebb->content_length,
7810 irel->r_offset);
7811 if (simplify_size == 0)
7812 goto decode_error;
7813
7814 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7815 ta_convert_longcall, offset, 0, TRUE);
7816
7817 offset += simplify_size;
7818 continue;
7819 }
7820
7821 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7822 goto decode_error;
7823 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7824 ebb->content_length - offset);
7825 fmt = xtensa_format_decode (isa, insnbuf);
7826 if (fmt == XTENSA_UNDEFINED)
7827 goto decode_error;
7828 insn_len = xtensa_format_length (isa, fmt);
7829 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7830 goto decode_error;
7831
7832 if (xtensa_format_num_slots (isa, fmt) != 1)
7833 {
7834 offset += insn_len;
7835 continue;
7836 }
7837
7838 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7839 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7840 if (opcode == XTENSA_UNDEFINED)
7841 goto decode_error;
7842
7843 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7844 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7845 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7846 {
7847 /* Add an instruction narrow action. */
7848 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7849 ta_narrow_insn, offset, 0, FALSE);
7850 }
7851 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7852 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7853 && ! prev_instr_is_a_loop (ebb->contents,
7854 ebb->content_length, offset))
7855 {
7856 /* Add an instruction widen action. */
7857 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7858 ta_widen_insn, offset, 0, FALSE);
7859 }
7860 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7861 {
7862 /* Check for branch targets. */
7863 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7864 ta_none, offset, 0, TRUE);
7865 }
7866
7867 offset += insn_len;
7868 }
7869 }
7870
7871 if (ebb->ends_unreachable)
7872 {
7873 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7874 ta_fill, ebb->end_offset, 0, TRUE);
7875 }
7876
7877 return TRUE;
7878
7879 decode_error:
7880 _bfd_error_handler
7881 /* xgettext:c-format */
7882 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
7883 "possible configuration mismatch"),
7884 ebb->sec->owner, ebb->sec, (uint64_t) offset);
7885 return FALSE;
7886 }
7887
7888
7889 /* After all of the information has collected about the
7890 transformations possible in an EBB, compute the appropriate actions
7891 here in compute_ebb_actions. We still must check later to make
7892 sure that the actions do not break any relocations. The algorithm
7893 used here is pretty greedy. Basically, it removes as many no-ops
7894 as possible so that the end of the EBB has the same alignment
7895 characteristics as the original. First, it uses narrowing, then
7896 fill space at the end of the EBB, and finally widenings. If that
7897 does not work, it tries again with one fewer no-op removed. The
7898 optimization will only be performed if all of the branch targets
7899 that were aligned before transformation are also aligned after the
7900 transformation.
7901
7902 When the size_opt flag is set, ignore the branch target alignments,
7903 narrow all wide instructions, and remove all no-ops unless the end
7904 of the EBB prevents it. */
7905
7906 bfd_boolean
7907 compute_ebb_actions (ebb_constraint *ebb_table)
7908 {
7909 unsigned i = 0;
7910 unsigned j;
7911 int removed_bytes = 0;
7912 ebb_t *ebb = &ebb_table->ebb;
7913 unsigned seg_idx_start = 0;
7914 unsigned seg_idx_end = 0;
7915
7916 /* We perform this like the assembler relaxation algorithm: Start by
7917 assuming all instructions are narrow and all no-ops removed; then
7918 walk through.... */
7919
7920 /* For each segment of this that has a solid constraint, check to
7921 see if there are any combinations that will keep the constraint.
7922 If so, use it. */
7923 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7924 {
7925 bfd_boolean requires_text_end_align = FALSE;
7926 unsigned longcall_count = 0;
7927 unsigned longcall_convert_count = 0;
7928 unsigned narrowable_count = 0;
7929 unsigned narrowable_convert_count = 0;
7930 unsigned widenable_count = 0;
7931 unsigned widenable_convert_count = 0;
7932
7933 proposed_action *action = NULL;
7934 int align = (1 << ebb_table->ebb.sec->alignment_power);
7935
7936 seg_idx_start = seg_idx_end;
7937
7938 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7939 {
7940 action = &ebb_table->actions[i];
7941 if (action->action == ta_convert_longcall)
7942 longcall_count++;
7943 if (action->action == ta_narrow_insn)
7944 narrowable_count++;
7945 if (action->action == ta_widen_insn)
7946 widenable_count++;
7947 if (action->action == ta_fill)
7948 break;
7949 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7950 break;
7951 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7952 && !elf32xtensa_size_opt)
7953 break;
7954 }
7955 seg_idx_end = i;
7956
7957 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7958 requires_text_end_align = TRUE;
7959
7960 if (elf32xtensa_size_opt && !requires_text_end_align
7961 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7962 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7963 {
7964 longcall_convert_count = longcall_count;
7965 narrowable_convert_count = narrowable_count;
7966 widenable_convert_count = 0;
7967 }
7968 else
7969 {
7970 /* There is a constraint. Convert the max number of longcalls. */
7971 narrowable_convert_count = 0;
7972 longcall_convert_count = 0;
7973 widenable_convert_count = 0;
7974
7975 for (j = 0; j < longcall_count; j++)
7976 {
7977 int removed = (longcall_count - j) * 3 & (align - 1);
7978 unsigned desire_narrow = (align - removed) & (align - 1);
7979 unsigned desire_widen = removed;
7980 if (desire_narrow <= narrowable_count)
7981 {
7982 narrowable_convert_count = desire_narrow;
7983 narrowable_convert_count +=
7984 (align * ((narrowable_count - narrowable_convert_count)
7985 / align));
7986 longcall_convert_count = (longcall_count - j);
7987 widenable_convert_count = 0;
7988 break;
7989 }
7990 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7991 {
7992 narrowable_convert_count = 0;
7993 longcall_convert_count = longcall_count - j;
7994 widenable_convert_count = desire_widen;
7995 break;
7996 }
7997 }
7998 }
7999
8000 /* Now the number of conversions are saved. Do them. */
8001 for (i = seg_idx_start; i < seg_idx_end; i++)
8002 {
8003 action = &ebb_table->actions[i];
8004 switch (action->action)
8005 {
8006 case ta_convert_longcall:
8007 if (longcall_convert_count != 0)
8008 {
8009 action->action = ta_remove_longcall;
8010 action->do_action = TRUE;
8011 action->removed_bytes += 3;
8012 longcall_convert_count--;
8013 }
8014 break;
8015 case ta_narrow_insn:
8016 if (narrowable_convert_count != 0)
8017 {
8018 action->do_action = TRUE;
8019 action->removed_bytes += 1;
8020 narrowable_convert_count--;
8021 }
8022 break;
8023 case ta_widen_insn:
8024 if (widenable_convert_count != 0)
8025 {
8026 action->do_action = TRUE;
8027 action->removed_bytes -= 1;
8028 widenable_convert_count--;
8029 }
8030 break;
8031 default:
8032 break;
8033 }
8034 }
8035 }
8036
8037 /* Now we move on to some local opts. Try to remove each of the
8038 remaining longcalls. */
8039
8040 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8041 {
8042 removed_bytes = 0;
8043 for (i = 0; i < ebb_table->action_count; i++)
8044 {
8045 int old_removed_bytes = removed_bytes;
8046 proposed_action *action = &ebb_table->actions[i];
8047
8048 if (action->do_action && action->action == ta_convert_longcall)
8049 {
8050 bfd_boolean bad_alignment = FALSE;
8051 removed_bytes += 3;
8052 for (j = i + 1; j < ebb_table->action_count; j++)
8053 {
8054 proposed_action *new_action = &ebb_table->actions[j];
8055 bfd_vma offset = new_action->offset;
8056 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8057 {
8058 if (!check_branch_target_aligned
8059 (ebb_table->ebb.contents,
8060 ebb_table->ebb.content_length,
8061 offset, offset - removed_bytes))
8062 {
8063 bad_alignment = TRUE;
8064 break;
8065 }
8066 }
8067 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8068 {
8069 if (!check_loop_aligned (ebb_table->ebb.contents,
8070 ebb_table->ebb.content_length,
8071 offset,
8072 offset - removed_bytes))
8073 {
8074 bad_alignment = TRUE;
8075 break;
8076 }
8077 }
8078 if (new_action->action == ta_narrow_insn
8079 && !new_action->do_action
8080 && ebb_table->ebb.sec->alignment_power == 2)
8081 {
8082 /* Narrow an instruction and we are done. */
8083 new_action->do_action = TRUE;
8084 new_action->removed_bytes += 1;
8085 bad_alignment = FALSE;
8086 break;
8087 }
8088 if (new_action->action == ta_widen_insn
8089 && new_action->do_action
8090 && ebb_table->ebb.sec->alignment_power == 2)
8091 {
8092 /* Narrow an instruction and we are done. */
8093 new_action->do_action = FALSE;
8094 new_action->removed_bytes += 1;
8095 bad_alignment = FALSE;
8096 break;
8097 }
8098 if (new_action->do_action)
8099 removed_bytes += new_action->removed_bytes;
8100 }
8101 if (!bad_alignment)
8102 {
8103 action->removed_bytes += 3;
8104 action->action = ta_remove_longcall;
8105 action->do_action = TRUE;
8106 }
8107 }
8108 removed_bytes = old_removed_bytes;
8109 if (action->do_action)
8110 removed_bytes += action->removed_bytes;
8111 }
8112 }
8113
8114 removed_bytes = 0;
8115 for (i = 0; i < ebb_table->action_count; ++i)
8116 {
8117 proposed_action *action = &ebb_table->actions[i];
8118 if (action->do_action)
8119 removed_bytes += action->removed_bytes;
8120 }
8121
8122 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8123 && ebb->ends_unreachable)
8124 {
8125 proposed_action *action;
8126 int br;
8127 int extra_space;
8128
8129 BFD_ASSERT (ebb_table->action_count != 0);
8130 action = &ebb_table->actions[ebb_table->action_count - 1];
8131 BFD_ASSERT (action->action == ta_fill);
8132 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8133
8134 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8135 br = action->removed_bytes + removed_bytes + extra_space;
8136 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8137
8138 action->removed_bytes = extra_space - br;
8139 }
8140 return TRUE;
8141 }
8142
8143
8144 /* The xlate_map is a sorted array of address mappings designed to
8145 answer the offset_with_removed_text() query with a binary search instead
8146 of a linear search through the section's action_list. */
8147
8148 typedef struct xlate_map_entry xlate_map_entry_t;
8149 typedef struct xlate_map xlate_map_t;
8150
8151 struct xlate_map_entry
8152 {
8153 bfd_vma orig_address;
8154 bfd_vma new_address;
8155 unsigned size;
8156 };
8157
8158 struct xlate_map
8159 {
8160 unsigned entry_count;
8161 xlate_map_entry_t *entry;
8162 };
8163
8164
8165 static int
8166 xlate_compare (const void *a_v, const void *b_v)
8167 {
8168 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8169 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8170 if (a->orig_address < b->orig_address)
8171 return -1;
8172 if (a->orig_address > (b->orig_address + b->size - 1))
8173 return 1;
8174 return 0;
8175 }
8176
8177
8178 static bfd_vma
8179 xlate_offset_with_removed_text (const xlate_map_t *map,
8180 text_action_list *action_list,
8181 bfd_vma offset)
8182 {
8183 void *r;
8184 xlate_map_entry_t *e;
8185 struct xlate_map_entry se;
8186
8187 if (map == NULL)
8188 return offset_with_removed_text (action_list, offset);
8189
8190 if (map->entry_count == 0)
8191 return offset;
8192
8193 se.orig_address = offset;
8194 r = bsearch (&se, map->entry, map->entry_count,
8195 sizeof (xlate_map_entry_t), &xlate_compare);
8196 e = (xlate_map_entry_t *) r;
8197
8198 /* There could be a jump past the end of the section,
8199 allow it using the last xlate map entry to translate its address. */
8200 if (e == NULL)
8201 {
8202 e = map->entry + map->entry_count - 1;
8203 if (xlate_compare (&se, e) <= 0)
8204 e = NULL;
8205 }
8206 BFD_ASSERT (e != NULL);
8207 if (e == NULL)
8208 return offset;
8209 return e->new_address - e->orig_address + offset;
8210 }
8211
8212 typedef struct xlate_map_context_struct xlate_map_context;
8213 struct xlate_map_context_struct
8214 {
8215 xlate_map_t *map;
8216 xlate_map_entry_t *current_entry;
8217 int removed;
8218 };
8219
8220 static int
8221 xlate_map_fn (splay_tree_node node, void *p)
8222 {
8223 text_action *r = (text_action *)node->value;
8224 xlate_map_context *ctx = p;
8225 unsigned orig_size = 0;
8226
8227 switch (r->action)
8228 {
8229 case ta_none:
8230 case ta_remove_insn:
8231 case ta_convert_longcall:
8232 case ta_remove_literal:
8233 case ta_add_literal:
8234 break;
8235 case ta_remove_longcall:
8236 orig_size = 6;
8237 break;
8238 case ta_narrow_insn:
8239 orig_size = 3;
8240 break;
8241 case ta_widen_insn:
8242 orig_size = 2;
8243 break;
8244 case ta_fill:
8245 break;
8246 }
8247 ctx->current_entry->size =
8248 r->offset + orig_size - ctx->current_entry->orig_address;
8249 if (ctx->current_entry->size != 0)
8250 {
8251 ctx->current_entry++;
8252 ctx->map->entry_count++;
8253 }
8254 ctx->current_entry->orig_address = r->offset + orig_size;
8255 ctx->removed += r->removed_bytes;
8256 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8257 ctx->current_entry->size = 0;
8258 return 0;
8259 }
8260
8261 /* Build a binary searchable offset translation map from a section's
8262 action list. */
8263
8264 static xlate_map_t *
8265 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8266 {
8267 text_action_list *action_list = &relax_info->action_list;
8268 unsigned num_actions = 0;
8269 xlate_map_context ctx;
8270
8271 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8272
8273 if (ctx.map == NULL)
8274 return NULL;
8275
8276 num_actions = action_list_count (action_list);
8277 ctx.map->entry = (xlate_map_entry_t *)
8278 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8279 if (ctx.map->entry == NULL)
8280 {
8281 free (ctx.map);
8282 return NULL;
8283 }
8284 ctx.map->entry_count = 0;
8285
8286 ctx.removed = 0;
8287 ctx.current_entry = &ctx.map->entry[0];
8288
8289 ctx.current_entry->orig_address = 0;
8290 ctx.current_entry->new_address = 0;
8291 ctx.current_entry->size = 0;
8292
8293 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8294
8295 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8296 - ctx.current_entry->orig_address);
8297 if (ctx.current_entry->size != 0)
8298 ctx.map->entry_count++;
8299
8300 return ctx.map;
8301 }
8302
8303
8304 /* Free an offset translation map. */
8305
8306 static void
8307 free_xlate_map (xlate_map_t *map)
8308 {
8309 if (map && map->entry)
8310 free (map->entry);
8311 if (map)
8312 free (map);
8313 }
8314
8315
8316 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8317 relocations in a section will fit if a proposed set of actions
8318 are performed. */
8319
8320 static bfd_boolean
8321 check_section_ebb_pcrels_fit (bfd *abfd,
8322 asection *sec,
8323 bfd_byte *contents,
8324 Elf_Internal_Rela *internal_relocs,
8325 reloc_range_list *relevant_relocs,
8326 const ebb_constraint *constraint,
8327 const xtensa_opcode *reloc_opcodes)
8328 {
8329 unsigned i, j;
8330 unsigned n = sec->reloc_count;
8331 Elf_Internal_Rela *irel;
8332 xlate_map_t *xmap = NULL;
8333 bfd_boolean ok = TRUE;
8334 xtensa_relax_info *relax_info;
8335 reloc_range_list_entry *entry = NULL;
8336
8337 relax_info = get_xtensa_relax_info (sec);
8338
8339 if (relax_info && sec->reloc_count > 100)
8340 {
8341 xmap = build_xlate_map (sec, relax_info);
8342 /* NULL indicates out of memory, but the slow version
8343 can still be used. */
8344 }
8345
8346 if (relevant_relocs && constraint->action_count)
8347 {
8348 if (!relevant_relocs->ok)
8349 {
8350 ok = FALSE;
8351 n = 0;
8352 }
8353 else
8354 {
8355 bfd_vma min_offset, max_offset;
8356 min_offset = max_offset = constraint->actions[0].offset;
8357
8358 for (i = 1; i < constraint->action_count; ++i)
8359 {
8360 proposed_action *action = &constraint->actions[i];
8361 bfd_vma offset = action->offset;
8362
8363 if (offset < min_offset)
8364 min_offset = offset;
8365 if (offset > max_offset)
8366 max_offset = offset;
8367 }
8368 reloc_range_list_update_range (relevant_relocs, min_offset,
8369 max_offset);
8370 n = relevant_relocs->n_list;
8371 entry = &relevant_relocs->list_root;
8372 }
8373 }
8374 else
8375 {
8376 relevant_relocs = NULL;
8377 }
8378
8379 for (i = 0; i < n; i++)
8380 {
8381 r_reloc r_rel;
8382 bfd_vma orig_self_offset, orig_target_offset;
8383 bfd_vma self_offset, target_offset;
8384 int r_type;
8385 reloc_howto_type *howto;
8386 int self_removed_bytes, target_removed_bytes;
8387
8388 if (relevant_relocs)
8389 {
8390 entry = entry->next;
8391 irel = entry->irel;
8392 }
8393 else
8394 {
8395 irel = internal_relocs + i;
8396 }
8397 r_type = ELF32_R_TYPE (irel->r_info);
8398
8399 howto = &elf_howto_table[r_type];
8400 /* We maintain the required invariant: PC-relative relocations
8401 that fit before linking must fit after linking. Thus we only
8402 need to deal with relocations to the same section that are
8403 PC-relative. */
8404 if (r_type == R_XTENSA_ASM_SIMPLIFY
8405 || r_type == R_XTENSA_32_PCREL
8406 || !howto->pc_relative)
8407 continue;
8408
8409 r_reloc_init (&r_rel, abfd, irel, contents,
8410 bfd_get_section_limit (abfd, sec));
8411
8412 if (r_reloc_get_section (&r_rel) != sec)
8413 continue;
8414
8415 orig_self_offset = irel->r_offset;
8416 orig_target_offset = r_rel.target_offset;
8417
8418 self_offset = orig_self_offset;
8419 target_offset = orig_target_offset;
8420
8421 if (relax_info)
8422 {
8423 self_offset =
8424 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8425 orig_self_offset);
8426 target_offset =
8427 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8428 orig_target_offset);
8429 }
8430
8431 self_removed_bytes = 0;
8432 target_removed_bytes = 0;
8433
8434 for (j = 0; j < constraint->action_count; ++j)
8435 {
8436 proposed_action *action = &constraint->actions[j];
8437 bfd_vma offset = action->offset;
8438 int removed_bytes = action->removed_bytes;
8439 if (offset < orig_self_offset
8440 || (offset == orig_self_offset && action->action == ta_fill
8441 && action->removed_bytes < 0))
8442 self_removed_bytes += removed_bytes;
8443 if (offset < orig_target_offset
8444 || (offset == orig_target_offset && action->action == ta_fill
8445 && action->removed_bytes < 0))
8446 target_removed_bytes += removed_bytes;
8447 }
8448 self_offset -= self_removed_bytes;
8449 target_offset -= target_removed_bytes;
8450
8451 /* Try to encode it. Get the operand and check. */
8452 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8453 {
8454 /* None of the current alternate relocs are PC-relative,
8455 and only PC-relative relocs matter here. */
8456 }
8457 else
8458 {
8459 xtensa_opcode opcode;
8460 int opnum;
8461
8462 if (relevant_relocs)
8463 {
8464 opcode = entry->opcode;
8465 opnum = entry->opnum;
8466 }
8467 else
8468 {
8469 if (reloc_opcodes)
8470 opcode = reloc_opcodes[relevant_relocs ?
8471 (unsigned)(entry - relevant_relocs->reloc) : i];
8472 else
8473 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8474 if (opcode == XTENSA_UNDEFINED)
8475 {
8476 ok = FALSE;
8477 break;
8478 }
8479
8480 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8481 if (opnum == XTENSA_UNDEFINED)
8482 {
8483 ok = FALSE;
8484 break;
8485 }
8486 }
8487
8488 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8489 {
8490 ok = FALSE;
8491 break;
8492 }
8493 }
8494 }
8495
8496 if (xmap)
8497 free_xlate_map (xmap);
8498
8499 return ok;
8500 }
8501
8502
8503 static bfd_boolean
8504 check_section_ebb_reduces (const ebb_constraint *constraint)
8505 {
8506 int removed = 0;
8507 unsigned i;
8508
8509 for (i = 0; i < constraint->action_count; i++)
8510 {
8511 const proposed_action *action = &constraint->actions[i];
8512 if (action->do_action)
8513 removed += action->removed_bytes;
8514 }
8515 if (removed < 0)
8516 return FALSE;
8517
8518 return TRUE;
8519 }
8520
8521
8522 void
8523 text_action_add_proposed (text_action_list *l,
8524 const ebb_constraint *ebb_table,
8525 asection *sec)
8526 {
8527 unsigned i;
8528
8529 for (i = 0; i < ebb_table->action_count; i++)
8530 {
8531 proposed_action *action = &ebb_table->actions[i];
8532
8533 if (!action->do_action)
8534 continue;
8535 switch (action->action)
8536 {
8537 case ta_remove_insn:
8538 case ta_remove_longcall:
8539 case ta_convert_longcall:
8540 case ta_narrow_insn:
8541 case ta_widen_insn:
8542 case ta_fill:
8543 case ta_remove_literal:
8544 text_action_add (l, action->action, sec, action->offset,
8545 action->removed_bytes);
8546 break;
8547 case ta_none:
8548 break;
8549 default:
8550 BFD_ASSERT (0);
8551 break;
8552 }
8553 }
8554 }
8555
8556
8557 int
8558 compute_fill_extra_space (property_table_entry *entry)
8559 {
8560 int fill_extra_space;
8561
8562 if (!entry)
8563 return 0;
8564
8565 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8566 return 0;
8567
8568 fill_extra_space = entry->size;
8569 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8570 {
8571 /* Fill bytes for alignment:
8572 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8573 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8574 int nsm = (1 << pow) - 1;
8575 bfd_vma addr = entry->address + entry->size;
8576 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8577 fill_extra_space += align_fill;
8578 }
8579 return fill_extra_space;
8580 }
8581
8582 \f
8583 /* First relaxation pass. */
8584
8585 /* If the section contains relaxable literals, check each literal to
8586 see if it has the same value as another literal that has already
8587 been seen, either in the current section or a previous one. If so,
8588 add an entry to the per-section list of removed literals. The
8589 actual changes are deferred until the next pass. */
8590
8591 static bfd_boolean
8592 compute_removed_literals (bfd *abfd,
8593 asection *sec,
8594 struct bfd_link_info *link_info,
8595 value_map_hash_table *values)
8596 {
8597 xtensa_relax_info *relax_info;
8598 bfd_byte *contents;
8599 Elf_Internal_Rela *internal_relocs;
8600 source_reloc *src_relocs, *rel;
8601 bfd_boolean ok = TRUE;
8602 property_table_entry *prop_table = NULL;
8603 int ptblsize;
8604 int i, prev_i;
8605 bfd_boolean last_loc_is_prev = FALSE;
8606 bfd_vma last_target_offset = 0;
8607 section_cache_t target_sec_cache;
8608 bfd_size_type sec_size;
8609
8610 init_section_cache (&target_sec_cache);
8611
8612 /* Do nothing if it is not a relaxable literal section. */
8613 relax_info = get_xtensa_relax_info (sec);
8614 BFD_ASSERT (relax_info);
8615 if (!relax_info->is_relaxable_literal_section)
8616 return ok;
8617
8618 internal_relocs = retrieve_internal_relocs (abfd, sec,
8619 link_info->keep_memory);
8620
8621 sec_size = bfd_get_section_limit (abfd, sec);
8622 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8623 if (contents == NULL && sec_size != 0)
8624 {
8625 ok = FALSE;
8626 goto error_return;
8627 }
8628
8629 /* Sort the source_relocs by target offset. */
8630 src_relocs = relax_info->src_relocs;
8631 qsort (src_relocs, relax_info->src_count,
8632 sizeof (source_reloc), source_reloc_compare);
8633 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8634 internal_reloc_compare);
8635
8636 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8637 XTENSA_PROP_SEC_NAME, FALSE);
8638 if (ptblsize < 0)
8639 {
8640 ok = FALSE;
8641 goto error_return;
8642 }
8643
8644 prev_i = -1;
8645 for (i = 0; i < relax_info->src_count; i++)
8646 {
8647 Elf_Internal_Rela *irel = NULL;
8648
8649 rel = &src_relocs[i];
8650 if (get_l32r_opcode () != rel->opcode)
8651 continue;
8652 irel = get_irel_at_offset (sec, internal_relocs,
8653 rel->r_rel.target_offset);
8654
8655 /* If the relocation on this is not a simple R_XTENSA_32 or
8656 R_XTENSA_PLT then do not consider it. This may happen when
8657 the difference of two symbols is used in a literal. */
8658 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8659 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8660 continue;
8661
8662 /* If the target_offset for this relocation is the same as the
8663 previous relocation, then we've already considered whether the
8664 literal can be coalesced. Skip to the next one.... */
8665 if (i != 0 && prev_i != -1
8666 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8667 continue;
8668 prev_i = i;
8669
8670 if (last_loc_is_prev &&
8671 last_target_offset + 4 != rel->r_rel.target_offset)
8672 last_loc_is_prev = FALSE;
8673
8674 /* Check if the relocation was from an L32R that is being removed
8675 because a CALLX was converted to a direct CALL, and check if
8676 there are no other relocations to the literal. */
8677 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8678 sec, prop_table, ptblsize))
8679 {
8680 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8681 irel, rel, prop_table, ptblsize))
8682 {
8683 ok = FALSE;
8684 goto error_return;
8685 }
8686 last_target_offset = rel->r_rel.target_offset;
8687 continue;
8688 }
8689
8690 if (!identify_literal_placement (abfd, sec, contents, link_info,
8691 values,
8692 &last_loc_is_prev, irel,
8693 relax_info->src_count - i, rel,
8694 prop_table, ptblsize,
8695 &target_sec_cache, rel->is_abs_literal))
8696 {
8697 ok = FALSE;
8698 goto error_return;
8699 }
8700 last_target_offset = rel->r_rel.target_offset;
8701 }
8702
8703 #if DEBUG
8704 print_removed_literals (stderr, &relax_info->removed_list);
8705 print_action_list (stderr, &relax_info->action_list);
8706 #endif /* DEBUG */
8707
8708 error_return:
8709 if (prop_table)
8710 free (prop_table);
8711 free_section_cache (&target_sec_cache);
8712
8713 release_contents (sec, contents);
8714 release_internal_relocs (sec, internal_relocs);
8715 return ok;
8716 }
8717
8718
8719 static Elf_Internal_Rela *
8720 get_irel_at_offset (asection *sec,
8721 Elf_Internal_Rela *internal_relocs,
8722 bfd_vma offset)
8723 {
8724 unsigned i;
8725 Elf_Internal_Rela *irel;
8726 unsigned r_type;
8727 Elf_Internal_Rela key;
8728
8729 if (!internal_relocs)
8730 return NULL;
8731
8732 key.r_offset = offset;
8733 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8734 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8735 if (!irel)
8736 return NULL;
8737
8738 /* bsearch does not guarantee which will be returned if there are
8739 multiple matches. We need the first that is not an alignment. */
8740 i = irel - internal_relocs;
8741 while (i > 0)
8742 {
8743 if (internal_relocs[i-1].r_offset != offset)
8744 break;
8745 i--;
8746 }
8747 for ( ; i < sec->reloc_count; i++)
8748 {
8749 irel = &internal_relocs[i];
8750 r_type = ELF32_R_TYPE (irel->r_info);
8751 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8752 return irel;
8753 }
8754
8755 return NULL;
8756 }
8757
8758
8759 bfd_boolean
8760 is_removable_literal (const source_reloc *rel,
8761 int i,
8762 const source_reloc *src_relocs,
8763 int src_count,
8764 asection *sec,
8765 property_table_entry *prop_table,
8766 int ptblsize)
8767 {
8768 const source_reloc *curr_rel;
8769 property_table_entry *entry;
8770
8771 if (!rel->is_null)
8772 return FALSE;
8773
8774 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8775 sec->vma + rel->r_rel.target_offset);
8776 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8777 return FALSE;
8778
8779 for (++i; i < src_count; ++i)
8780 {
8781 curr_rel = &src_relocs[i];
8782 /* If all others have the same target offset.... */
8783 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8784 return TRUE;
8785
8786 if (!curr_rel->is_null
8787 && !xtensa_is_property_section (curr_rel->source_sec)
8788 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8789 return FALSE;
8790 }
8791 return TRUE;
8792 }
8793
8794
8795 bfd_boolean
8796 remove_dead_literal (bfd *abfd,
8797 asection *sec,
8798 struct bfd_link_info *link_info,
8799 Elf_Internal_Rela *internal_relocs,
8800 Elf_Internal_Rela *irel,
8801 source_reloc *rel,
8802 property_table_entry *prop_table,
8803 int ptblsize)
8804 {
8805 property_table_entry *entry;
8806 xtensa_relax_info *relax_info;
8807
8808 relax_info = get_xtensa_relax_info (sec);
8809 if (!relax_info)
8810 return FALSE;
8811
8812 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8813 sec->vma + rel->r_rel.target_offset);
8814
8815 /* Mark the unused literal so that it will be removed. */
8816 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8817
8818 text_action_add (&relax_info->action_list,
8819 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8820
8821 /* If the section is 4-byte aligned, do not add fill. */
8822 if (sec->alignment_power > 2)
8823 {
8824 int fill_extra_space;
8825 bfd_vma entry_sec_offset;
8826 text_action *fa;
8827 property_table_entry *the_add_entry;
8828 int removed_diff;
8829
8830 if (entry)
8831 entry_sec_offset = entry->address - sec->vma + entry->size;
8832 else
8833 entry_sec_offset = rel->r_rel.target_offset + 4;
8834
8835 /* If the literal range is at the end of the section,
8836 do not add fill. */
8837 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8838 entry_sec_offset);
8839 fill_extra_space = compute_fill_extra_space (the_add_entry);
8840
8841 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8842 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8843 -4, fill_extra_space);
8844 if (fa)
8845 adjust_fill_action (fa, removed_diff);
8846 else
8847 text_action_add (&relax_info->action_list,
8848 ta_fill, sec, entry_sec_offset, removed_diff);
8849 }
8850
8851 /* Zero out the relocation on this literal location. */
8852 if (irel)
8853 {
8854 if (elf_hash_table (link_info)->dynamic_sections_created)
8855 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8856
8857 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8858 pin_internal_relocs (sec, internal_relocs);
8859 }
8860
8861 /* Do not modify "last_loc_is_prev". */
8862 return TRUE;
8863 }
8864
8865
8866 bfd_boolean
8867 identify_literal_placement (bfd *abfd,
8868 asection *sec,
8869 bfd_byte *contents,
8870 struct bfd_link_info *link_info,
8871 value_map_hash_table *values,
8872 bfd_boolean *last_loc_is_prev_p,
8873 Elf_Internal_Rela *irel,
8874 int remaining_src_rels,
8875 source_reloc *rel,
8876 property_table_entry *prop_table,
8877 int ptblsize,
8878 section_cache_t *target_sec_cache,
8879 bfd_boolean is_abs_literal)
8880 {
8881 literal_value val;
8882 value_map *val_map;
8883 xtensa_relax_info *relax_info;
8884 bfd_boolean literal_placed = FALSE;
8885 r_reloc r_rel;
8886 unsigned long value;
8887 bfd_boolean final_static_link;
8888 bfd_size_type sec_size;
8889
8890 relax_info = get_xtensa_relax_info (sec);
8891 if (!relax_info)
8892 return FALSE;
8893
8894 sec_size = bfd_get_section_limit (abfd, sec);
8895
8896 final_static_link =
8897 (!bfd_link_relocatable (link_info)
8898 && !elf_hash_table (link_info)->dynamic_sections_created);
8899
8900 /* The placement algorithm first checks to see if the literal is
8901 already in the value map. If so and the value map is reachable
8902 from all uses, then the literal is moved to that location. If
8903 not, then we identify the last location where a fresh literal was
8904 placed. If the literal can be safely moved there, then we do so.
8905 If not, then we assume that the literal is not to move and leave
8906 the literal where it is, marking it as the last literal
8907 location. */
8908
8909 /* Find the literal value. */
8910 value = 0;
8911 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8912 if (!irel)
8913 {
8914 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8915 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8916 }
8917 init_literal_value (&val, &r_rel, value, is_abs_literal);
8918
8919 /* Check if we've seen another literal with the same value that
8920 is in the same output section. */
8921 val_map = value_map_get_cached_value (values, &val, final_static_link);
8922
8923 if (val_map
8924 && (r_reloc_get_section (&val_map->loc)->output_section
8925 == sec->output_section)
8926 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8927 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8928 {
8929 /* No change to last_loc_is_prev. */
8930 literal_placed = TRUE;
8931 }
8932
8933 /* For relocatable links, do not try to move literals. To do it
8934 correctly might increase the number of relocations in an input
8935 section making the default relocatable linking fail. */
8936 if (!bfd_link_relocatable (link_info) && !literal_placed
8937 && values->has_last_loc && !(*last_loc_is_prev_p))
8938 {
8939 asection *target_sec = r_reloc_get_section (&values->last_loc);
8940 if (target_sec && target_sec->output_section == sec->output_section)
8941 {
8942 /* Increment the virtual offset. */
8943 r_reloc try_loc = values->last_loc;
8944 try_loc.virtual_offset += 4;
8945
8946 /* There is a last loc that was in the same output section. */
8947 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8948 && move_shared_literal (sec, link_info, rel,
8949 prop_table, ptblsize,
8950 &try_loc, &val, target_sec_cache))
8951 {
8952 values->last_loc.virtual_offset += 4;
8953 literal_placed = TRUE;
8954 if (!val_map)
8955 val_map = add_value_map (values, &val, &try_loc,
8956 final_static_link);
8957 else
8958 val_map->loc = try_loc;
8959 }
8960 }
8961 }
8962
8963 if (!literal_placed)
8964 {
8965 /* Nothing worked, leave the literal alone but update the last loc. */
8966 values->has_last_loc = TRUE;
8967 values->last_loc = rel->r_rel;
8968 if (!val_map)
8969 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8970 else
8971 val_map->loc = rel->r_rel;
8972 *last_loc_is_prev_p = TRUE;
8973 }
8974
8975 return TRUE;
8976 }
8977
8978
8979 /* Check if the original relocations (presumably on L32R instructions)
8980 identified by reloc[0..N] can be changed to reference the literal
8981 identified by r_rel. If r_rel is out of range for any of the
8982 original relocations, then we don't want to coalesce the original
8983 literal with the one at r_rel. We only check reloc[0..N], where the
8984 offsets are all the same as for reloc[0] (i.e., they're all
8985 referencing the same literal) and where N is also bounded by the
8986 number of remaining entries in the "reloc" array. The "reloc" array
8987 is sorted by target offset so we know all the entries for the same
8988 literal will be contiguous. */
8989
8990 static bfd_boolean
8991 relocations_reach (source_reloc *reloc,
8992 int remaining_relocs,
8993 const r_reloc *r_rel)
8994 {
8995 bfd_vma from_offset, source_address, dest_address;
8996 asection *sec;
8997 int i;
8998
8999 if (!r_reloc_is_defined (r_rel))
9000 return FALSE;
9001
9002 sec = r_reloc_get_section (r_rel);
9003 from_offset = reloc[0].r_rel.target_offset;
9004
9005 for (i = 0; i < remaining_relocs; i++)
9006 {
9007 if (reloc[i].r_rel.target_offset != from_offset)
9008 break;
9009
9010 /* Ignore relocations that have been removed. */
9011 if (reloc[i].is_null)
9012 continue;
9013
9014 /* The original and new output section for these must be the same
9015 in order to coalesce. */
9016 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9017 != sec->output_section)
9018 return FALSE;
9019
9020 /* Absolute literals in the same output section can always be
9021 combined. */
9022 if (reloc[i].is_abs_literal)
9023 continue;
9024
9025 /* A literal with no PC-relative relocations can be moved anywhere. */
9026 if (reloc[i].opnd != -1)
9027 {
9028 /* Otherwise, check to see that it fits. */
9029 source_address = (reloc[i].source_sec->output_section->vma
9030 + reloc[i].source_sec->output_offset
9031 + reloc[i].r_rel.rela.r_offset);
9032 dest_address = (sec->output_section->vma
9033 + sec->output_offset
9034 + r_rel->target_offset);
9035
9036 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9037 source_address, dest_address))
9038 return FALSE;
9039 }
9040 }
9041
9042 return TRUE;
9043 }
9044
9045
9046 /* Move a literal to another literal location because it is
9047 the same as the other literal value. */
9048
9049 static bfd_boolean
9050 coalesce_shared_literal (asection *sec,
9051 source_reloc *rel,
9052 property_table_entry *prop_table,
9053 int ptblsize,
9054 value_map *val_map)
9055 {
9056 property_table_entry *entry;
9057 text_action *fa;
9058 property_table_entry *the_add_entry;
9059 int removed_diff;
9060 xtensa_relax_info *relax_info;
9061
9062 relax_info = get_xtensa_relax_info (sec);
9063 if (!relax_info)
9064 return FALSE;
9065
9066 entry = elf_xtensa_find_property_entry
9067 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9068 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9069 return TRUE;
9070
9071 /* Mark that the literal will be coalesced. */
9072 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9073
9074 text_action_add (&relax_info->action_list,
9075 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9076
9077 /* If the section is 4-byte aligned, do not add fill. */
9078 if (sec->alignment_power > 2)
9079 {
9080 int fill_extra_space;
9081 bfd_vma entry_sec_offset;
9082
9083 if (entry)
9084 entry_sec_offset = entry->address - sec->vma + entry->size;
9085 else
9086 entry_sec_offset = rel->r_rel.target_offset + 4;
9087
9088 /* If the literal range is at the end of the section,
9089 do not add fill. */
9090 fill_extra_space = 0;
9091 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9092 entry_sec_offset);
9093 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9094 fill_extra_space = the_add_entry->size;
9095
9096 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9097 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9098 -4, fill_extra_space);
9099 if (fa)
9100 adjust_fill_action (fa, removed_diff);
9101 else
9102 text_action_add (&relax_info->action_list,
9103 ta_fill, sec, entry_sec_offset, removed_diff);
9104 }
9105
9106 return TRUE;
9107 }
9108
9109
9110 /* Move a literal to another location. This may actually increase the
9111 total amount of space used because of alignments so we need to do
9112 this carefully. Also, it may make a branch go out of range. */
9113
9114 static bfd_boolean
9115 move_shared_literal (asection *sec,
9116 struct bfd_link_info *link_info,
9117 source_reloc *rel,
9118 property_table_entry *prop_table,
9119 int ptblsize,
9120 const r_reloc *target_loc,
9121 const literal_value *lit_value,
9122 section_cache_t *target_sec_cache)
9123 {
9124 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9125 text_action *fa, *target_fa;
9126 int removed_diff;
9127 xtensa_relax_info *relax_info, *target_relax_info;
9128 asection *target_sec;
9129 ebb_t *ebb;
9130 ebb_constraint ebb_table;
9131 bfd_boolean relocs_fit;
9132
9133 /* If this routine always returns FALSE, the literals that cannot be
9134 coalesced will not be moved. */
9135 if (elf32xtensa_no_literal_movement)
9136 return FALSE;
9137
9138 relax_info = get_xtensa_relax_info (sec);
9139 if (!relax_info)
9140 return FALSE;
9141
9142 target_sec = r_reloc_get_section (target_loc);
9143 target_relax_info = get_xtensa_relax_info (target_sec);
9144
9145 /* Literals to undefined sections may not be moved because they
9146 must report an error. */
9147 if (bfd_is_und_section (target_sec))
9148 return FALSE;
9149
9150 src_entry = elf_xtensa_find_property_entry
9151 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9152
9153 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9154 return FALSE;
9155
9156 target_entry = elf_xtensa_find_property_entry
9157 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9158 target_sec->vma + target_loc->target_offset);
9159
9160 if (!target_entry)
9161 return FALSE;
9162
9163 /* Make sure that we have not broken any branches. */
9164 relocs_fit = FALSE;
9165
9166 init_ebb_constraint (&ebb_table);
9167 ebb = &ebb_table.ebb;
9168 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9169 target_sec_cache->content_length,
9170 target_sec_cache->ptbl, target_sec_cache->pte_count,
9171 target_sec_cache->relocs, target_sec_cache->reloc_count);
9172
9173 /* Propose to add 4 bytes + worst-case alignment size increase to
9174 destination. */
9175 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9176 ta_fill, target_loc->target_offset,
9177 -4 - (1 << target_sec->alignment_power), TRUE);
9178
9179 /* Check all of the PC-relative relocations to make sure they still fit. */
9180 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9181 target_sec_cache->contents,
9182 target_sec_cache->relocs, NULL,
9183 &ebb_table, NULL);
9184
9185 if (!relocs_fit)
9186 return FALSE;
9187
9188 text_action_add_literal (&target_relax_info->action_list,
9189 ta_add_literal, target_loc, lit_value, -4);
9190
9191 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9192 {
9193 /* May need to add or remove some fill to maintain alignment. */
9194 int fill_extra_space;
9195 bfd_vma entry_sec_offset;
9196
9197 entry_sec_offset =
9198 target_entry->address - target_sec->vma + target_entry->size;
9199
9200 /* If the literal range is at the end of the section,
9201 do not add fill. */
9202 fill_extra_space = 0;
9203 the_add_entry =
9204 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9205 target_sec_cache->pte_count,
9206 entry_sec_offset);
9207 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9208 fill_extra_space = the_add_entry->size;
9209
9210 target_fa = find_fill_action (&target_relax_info->action_list,
9211 target_sec, entry_sec_offset);
9212 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9213 entry_sec_offset, 4,
9214 fill_extra_space);
9215 if (target_fa)
9216 adjust_fill_action (target_fa, removed_diff);
9217 else
9218 text_action_add (&target_relax_info->action_list,
9219 ta_fill, target_sec, entry_sec_offset, removed_diff);
9220 }
9221
9222 /* Mark that the literal will be moved to the new location. */
9223 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9224
9225 /* Remove the literal. */
9226 text_action_add (&relax_info->action_list,
9227 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9228
9229 /* If the section is 4-byte aligned, do not add fill. */
9230 if (sec->alignment_power > 2 && target_entry != src_entry)
9231 {
9232 int fill_extra_space;
9233 bfd_vma entry_sec_offset;
9234
9235 if (src_entry)
9236 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9237 else
9238 entry_sec_offset = rel->r_rel.target_offset+4;
9239
9240 /* If the literal range is at the end of the section,
9241 do not add fill. */
9242 fill_extra_space = 0;
9243 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9244 entry_sec_offset);
9245 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9246 fill_extra_space = the_add_entry->size;
9247
9248 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9249 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9250 -4, fill_extra_space);
9251 if (fa)
9252 adjust_fill_action (fa, removed_diff);
9253 else
9254 text_action_add (&relax_info->action_list,
9255 ta_fill, sec, entry_sec_offset, removed_diff);
9256 }
9257
9258 return TRUE;
9259 }
9260
9261 \f
9262 /* Second relaxation pass. */
9263
9264 static int
9265 action_remove_bytes_fn (splay_tree_node node, void *p)
9266 {
9267 bfd_size_type *final_size = p;
9268 text_action *action = (text_action *)node->value;
9269
9270 *final_size -= action->removed_bytes;
9271 return 0;
9272 }
9273
9274 /* Modify all of the relocations to point to the right spot, and if this
9275 is a relaxable section, delete the unwanted literals and fix the
9276 section size. */
9277
9278 bfd_boolean
9279 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9280 {
9281 Elf_Internal_Rela *internal_relocs;
9282 xtensa_relax_info *relax_info;
9283 bfd_byte *contents;
9284 bfd_boolean ok = TRUE;
9285 unsigned i;
9286 bfd_boolean rv = FALSE;
9287 bfd_boolean virtual_action;
9288 bfd_size_type sec_size;
9289
9290 sec_size = bfd_get_section_limit (abfd, sec);
9291 relax_info = get_xtensa_relax_info (sec);
9292 BFD_ASSERT (relax_info);
9293
9294 /* First translate any of the fixes that have been added already. */
9295 translate_section_fixes (sec);
9296
9297 /* Handle property sections (e.g., literal tables) specially. */
9298 if (xtensa_is_property_section (sec))
9299 {
9300 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9301 return relax_property_section (abfd, sec, link_info);
9302 }
9303
9304 internal_relocs = retrieve_internal_relocs (abfd, sec,
9305 link_info->keep_memory);
9306 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9307 return TRUE;
9308
9309 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9310 if (contents == NULL && sec_size != 0)
9311 {
9312 ok = FALSE;
9313 goto error_return;
9314 }
9315
9316 if (internal_relocs)
9317 {
9318 for (i = 0; i < sec->reloc_count; i++)
9319 {
9320 Elf_Internal_Rela *irel;
9321 xtensa_relax_info *target_relax_info;
9322 bfd_vma source_offset, old_source_offset;
9323 r_reloc r_rel;
9324 unsigned r_type;
9325 asection *target_sec;
9326
9327 /* Locally change the source address.
9328 Translate the target to the new target address.
9329 If it points to this section and has been removed,
9330 NULLify it.
9331 Write it back. */
9332
9333 irel = &internal_relocs[i];
9334 source_offset = irel->r_offset;
9335 old_source_offset = source_offset;
9336
9337 r_type = ELF32_R_TYPE (irel->r_info);
9338 r_reloc_init (&r_rel, abfd, irel, contents,
9339 bfd_get_section_limit (abfd, sec));
9340
9341 /* If this section could have changed then we may need to
9342 change the relocation's offset. */
9343
9344 if (relax_info->is_relaxable_literal_section
9345 || relax_info->is_relaxable_asm_section)
9346 {
9347 pin_internal_relocs (sec, internal_relocs);
9348
9349 if (r_type != R_XTENSA_NONE
9350 && find_removed_literal (&relax_info->removed_list,
9351 irel->r_offset))
9352 {
9353 /* Remove this relocation. */
9354 if (elf_hash_table (link_info)->dynamic_sections_created)
9355 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9356 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9357 irel->r_offset = offset_with_removed_text_map
9358 (&relax_info->action_list, irel->r_offset);
9359 continue;
9360 }
9361
9362 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9363 {
9364 text_action *action =
9365 find_insn_action (&relax_info->action_list,
9366 irel->r_offset);
9367 if (action && (action->action == ta_convert_longcall
9368 || action->action == ta_remove_longcall))
9369 {
9370 bfd_reloc_status_type retval;
9371 char *error_message = NULL;
9372
9373 retval = contract_asm_expansion (contents, sec_size,
9374 irel, &error_message);
9375 if (retval != bfd_reloc_ok)
9376 {
9377 (*link_info->callbacks->reloc_dangerous)
9378 (link_info, error_message, abfd, sec,
9379 irel->r_offset);
9380 goto error_return;
9381 }
9382 /* Update the action so that the code that moves
9383 the contents will do the right thing. */
9384 /* ta_remove_longcall and ta_remove_insn actions are
9385 grouped together in the tree as well as
9386 ta_convert_longcall and ta_none, so that changes below
9387 can be done w/o removing and reinserting action into
9388 the tree. */
9389
9390 if (action->action == ta_remove_longcall)
9391 action->action = ta_remove_insn;
9392 else
9393 action->action = ta_none;
9394 /* Refresh the info in the r_rel. */
9395 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9396 r_type = ELF32_R_TYPE (irel->r_info);
9397 }
9398 }
9399
9400 source_offset = offset_with_removed_text_map
9401 (&relax_info->action_list, irel->r_offset);
9402 irel->r_offset = source_offset;
9403 }
9404
9405 /* If the target section could have changed then
9406 we may need to change the relocation's target offset. */
9407
9408 target_sec = r_reloc_get_section (&r_rel);
9409
9410 /* For a reference to a discarded section from a DWARF section,
9411 i.e., where action_discarded is PRETEND, the symbol will
9412 eventually be modified to refer to the kept section (at least if
9413 the kept and discarded sections are the same size). Anticipate
9414 that here and adjust things accordingly. */
9415 if (! elf_xtensa_ignore_discarded_relocs (sec)
9416 && elf_xtensa_action_discarded (sec) == PRETEND
9417 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9418 && target_sec != NULL
9419 && discarded_section (target_sec))
9420 {
9421 /* It would be natural to call _bfd_elf_check_kept_section
9422 here, but it's not exported from elflink.c. It's also a
9423 fairly expensive check. Adjusting the relocations to the
9424 discarded section is fairly harmless; it will only adjust
9425 some addends and difference values. If it turns out that
9426 _bfd_elf_check_kept_section fails later, it won't matter,
9427 so just compare the section names to find the right group
9428 member. */
9429 asection *kept = target_sec->kept_section;
9430 if (kept != NULL)
9431 {
9432 if ((kept->flags & SEC_GROUP) != 0)
9433 {
9434 asection *first = elf_next_in_group (kept);
9435 asection *s = first;
9436
9437 kept = NULL;
9438 while (s != NULL)
9439 {
9440 if (strcmp (s->name, target_sec->name) == 0)
9441 {
9442 kept = s;
9443 break;
9444 }
9445 s = elf_next_in_group (s);
9446 if (s == first)
9447 break;
9448 }
9449 }
9450 }
9451 if (kept != NULL
9452 && ((target_sec->rawsize != 0
9453 ? target_sec->rawsize : target_sec->size)
9454 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9455 target_sec = kept;
9456 }
9457
9458 target_relax_info = get_xtensa_relax_info (target_sec);
9459 if (target_relax_info
9460 && (target_relax_info->is_relaxable_literal_section
9461 || target_relax_info->is_relaxable_asm_section))
9462 {
9463 r_reloc new_reloc;
9464 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9465
9466 if (r_type == R_XTENSA_DIFF8
9467 || r_type == R_XTENSA_DIFF16
9468 || r_type == R_XTENSA_DIFF32)
9469 {
9470 bfd_signed_vma diff_value = 0;
9471 bfd_vma new_end_offset, diff_mask = 0;
9472
9473 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9474 {
9475 (*link_info->callbacks->reloc_dangerous)
9476 (link_info, _("invalid relocation address"),
9477 abfd, sec, old_source_offset);
9478 goto error_return;
9479 }
9480
9481 switch (r_type)
9482 {
9483 case R_XTENSA_DIFF8:
9484 diff_value =
9485 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9486 break;
9487 case R_XTENSA_DIFF16:
9488 diff_value =
9489 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9490 break;
9491 case R_XTENSA_DIFF32:
9492 diff_value =
9493 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9494 break;
9495 }
9496
9497 new_end_offset = offset_with_removed_text_map
9498 (&target_relax_info->action_list,
9499 r_rel.target_offset + diff_value);
9500 diff_value = new_end_offset - new_reloc.target_offset;
9501
9502 switch (r_type)
9503 {
9504 case R_XTENSA_DIFF8:
9505 diff_mask = 0x7f;
9506 bfd_put_signed_8 (abfd, diff_value,
9507 &contents[old_source_offset]);
9508 break;
9509 case R_XTENSA_DIFF16:
9510 diff_mask = 0x7fff;
9511 bfd_put_signed_16 (abfd, diff_value,
9512 &contents[old_source_offset]);
9513 break;
9514 case R_XTENSA_DIFF32:
9515 diff_mask = 0x7fffffff;
9516 bfd_put_signed_32 (abfd, diff_value,
9517 &contents[old_source_offset]);
9518 break;
9519 }
9520
9521 /* Check for overflow. Sign bits must be all zeroes or all ones */
9522 if ((diff_value & ~diff_mask) != 0 &&
9523 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9524 {
9525 (*link_info->callbacks->reloc_dangerous)
9526 (link_info, _("overflow after relaxation"),
9527 abfd, sec, old_source_offset);
9528 goto error_return;
9529 }
9530
9531 pin_contents (sec, contents);
9532 }
9533
9534 /* If the relocation still references a section in the same
9535 input file, modify the relocation directly instead of
9536 adding a "fix" record. */
9537 if (target_sec->owner == abfd)
9538 {
9539 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9540 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9541 irel->r_addend = new_reloc.rela.r_addend;
9542 pin_internal_relocs (sec, internal_relocs);
9543 }
9544 else
9545 {
9546 bfd_vma addend_displacement;
9547 reloc_bfd_fix *fix;
9548
9549 addend_displacement =
9550 new_reloc.target_offset + new_reloc.virtual_offset;
9551 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9552 target_sec,
9553 addend_displacement, TRUE);
9554 add_fix (sec, fix);
9555 }
9556 }
9557 }
9558 }
9559
9560 if ((relax_info->is_relaxable_literal_section
9561 || relax_info->is_relaxable_asm_section)
9562 && action_list_count (&relax_info->action_list))
9563 {
9564 /* Walk through the planned actions and build up a table
9565 of move, copy and fill records. Use the move, copy and
9566 fill records to perform the actions once. */
9567
9568 bfd_size_type final_size, copy_size, orig_insn_size;
9569 bfd_byte *scratch = NULL;
9570 bfd_byte *dup_contents = NULL;
9571 bfd_size_type orig_size = sec->size;
9572 bfd_vma orig_dot = 0;
9573 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9574 orig dot in physical memory. */
9575 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9576 bfd_vma dup_dot = 0;
9577
9578 text_action *action;
9579
9580 final_size = sec->size;
9581
9582 splay_tree_foreach (relax_info->action_list.tree,
9583 action_remove_bytes_fn, &final_size);
9584 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9585 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9586
9587 /* The dot is the current fill location. */
9588 #if DEBUG
9589 print_action_list (stderr, &relax_info->action_list);
9590 #endif
9591
9592 for (action = action_first (&relax_info->action_list); action;
9593 action = action_next (&relax_info->action_list, action))
9594 {
9595 virtual_action = FALSE;
9596 if (action->offset > orig_dot)
9597 {
9598 orig_dot += orig_dot_copied;
9599 orig_dot_copied = 0;
9600 orig_dot_vo = 0;
9601 /* Out of the virtual world. */
9602 }
9603
9604 if (action->offset > orig_dot)
9605 {
9606 copy_size = action->offset - orig_dot;
9607 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9608 orig_dot += copy_size;
9609 dup_dot += copy_size;
9610 BFD_ASSERT (action->offset == orig_dot);
9611 }
9612 else if (action->offset < orig_dot)
9613 {
9614 if (action->action == ta_fill
9615 && action->offset - action->removed_bytes == orig_dot)
9616 {
9617 /* This is OK because the fill only effects the dup_dot. */
9618 }
9619 else if (action->action == ta_add_literal)
9620 {
9621 /* TBD. Might need to handle this. */
9622 }
9623 }
9624 if (action->offset == orig_dot)
9625 {
9626 if (action->virtual_offset > orig_dot_vo)
9627 {
9628 if (orig_dot_vo == 0)
9629 {
9630 /* Need to copy virtual_offset bytes. Probably four. */
9631 copy_size = action->virtual_offset - orig_dot_vo;
9632 memmove (&dup_contents[dup_dot],
9633 &contents[orig_dot], copy_size);
9634 orig_dot_copied = copy_size;
9635 dup_dot += copy_size;
9636 }
9637 virtual_action = TRUE;
9638 }
9639 else
9640 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9641 }
9642 switch (action->action)
9643 {
9644 case ta_remove_literal:
9645 case ta_remove_insn:
9646 BFD_ASSERT (action->removed_bytes >= 0);
9647 orig_dot += action->removed_bytes;
9648 break;
9649
9650 case ta_narrow_insn:
9651 orig_insn_size = 3;
9652 copy_size = 2;
9653 memmove (scratch, &contents[orig_dot], orig_insn_size);
9654 BFD_ASSERT (action->removed_bytes == 1);
9655 rv = narrow_instruction (scratch, final_size, 0);
9656 BFD_ASSERT (rv);
9657 memmove (&dup_contents[dup_dot], scratch, copy_size);
9658 orig_dot += orig_insn_size;
9659 dup_dot += copy_size;
9660 break;
9661
9662 case ta_fill:
9663 if (action->removed_bytes >= 0)
9664 orig_dot += action->removed_bytes;
9665 else
9666 {
9667 /* Already zeroed in dup_contents. Just bump the
9668 counters. */
9669 dup_dot += (-action->removed_bytes);
9670 }
9671 break;
9672
9673 case ta_none:
9674 BFD_ASSERT (action->removed_bytes == 0);
9675 break;
9676
9677 case ta_convert_longcall:
9678 case ta_remove_longcall:
9679 /* These will be removed or converted before we get here. */
9680 BFD_ASSERT (0);
9681 break;
9682
9683 case ta_widen_insn:
9684 orig_insn_size = 2;
9685 copy_size = 3;
9686 memmove (scratch, &contents[orig_dot], orig_insn_size);
9687 BFD_ASSERT (action->removed_bytes == -1);
9688 rv = widen_instruction (scratch, final_size, 0);
9689 BFD_ASSERT (rv);
9690 memmove (&dup_contents[dup_dot], scratch, copy_size);
9691 orig_dot += orig_insn_size;
9692 dup_dot += copy_size;
9693 break;
9694
9695 case ta_add_literal:
9696 orig_insn_size = 0;
9697 copy_size = 4;
9698 BFD_ASSERT (action->removed_bytes == -4);
9699 /* TBD -- place the literal value here and insert
9700 into the table. */
9701 memset (&dup_contents[dup_dot], 0, 4);
9702 pin_internal_relocs (sec, internal_relocs);
9703 pin_contents (sec, contents);
9704
9705 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9706 relax_info, &internal_relocs, &action->value))
9707 goto error_return;
9708
9709 if (virtual_action)
9710 orig_dot_vo += copy_size;
9711
9712 orig_dot += orig_insn_size;
9713 dup_dot += copy_size;
9714 break;
9715
9716 default:
9717 /* Not implemented yet. */
9718 BFD_ASSERT (0);
9719 break;
9720 }
9721
9722 BFD_ASSERT (dup_dot <= final_size);
9723 BFD_ASSERT (orig_dot <= orig_size);
9724 }
9725
9726 orig_dot += orig_dot_copied;
9727 orig_dot_copied = 0;
9728
9729 if (orig_dot != orig_size)
9730 {
9731 copy_size = orig_size - orig_dot;
9732 BFD_ASSERT (orig_size > orig_dot);
9733 BFD_ASSERT (dup_dot + copy_size == final_size);
9734 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9735 orig_dot += copy_size;
9736 dup_dot += copy_size;
9737 }
9738 BFD_ASSERT (orig_size == orig_dot);
9739 BFD_ASSERT (final_size == dup_dot);
9740
9741 /* Move the dup_contents back. */
9742 if (final_size > orig_size)
9743 {
9744 /* Contents need to be reallocated. Swap the dup_contents into
9745 contents. */
9746 sec->contents = dup_contents;
9747 free (contents);
9748 contents = dup_contents;
9749 pin_contents (sec, contents);
9750 }
9751 else
9752 {
9753 BFD_ASSERT (final_size <= orig_size);
9754 memset (contents, 0, orig_size);
9755 memcpy (contents, dup_contents, final_size);
9756 free (dup_contents);
9757 }
9758 free (scratch);
9759 pin_contents (sec, contents);
9760
9761 if (sec->rawsize == 0)
9762 sec->rawsize = sec->size;
9763 sec->size = final_size;
9764 }
9765
9766 error_return:
9767 release_internal_relocs (sec, internal_relocs);
9768 release_contents (sec, contents);
9769 return ok;
9770 }
9771
9772
9773 static bfd_boolean
9774 translate_section_fixes (asection *sec)
9775 {
9776 xtensa_relax_info *relax_info;
9777 reloc_bfd_fix *r;
9778
9779 relax_info = get_xtensa_relax_info (sec);
9780 if (!relax_info)
9781 return TRUE;
9782
9783 for (r = relax_info->fix_list; r != NULL; r = r->next)
9784 if (!translate_reloc_bfd_fix (r))
9785 return FALSE;
9786
9787 return TRUE;
9788 }
9789
9790
9791 /* Translate a fix given the mapping in the relax info for the target
9792 section. If it has already been translated, no work is required. */
9793
9794 static bfd_boolean
9795 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9796 {
9797 reloc_bfd_fix new_fix;
9798 asection *sec;
9799 xtensa_relax_info *relax_info;
9800 removed_literal *removed;
9801 bfd_vma new_offset, target_offset;
9802
9803 if (fix->translated)
9804 return TRUE;
9805
9806 sec = fix->target_sec;
9807 target_offset = fix->target_offset;
9808
9809 relax_info = get_xtensa_relax_info (sec);
9810 if (!relax_info)
9811 {
9812 fix->translated = TRUE;
9813 return TRUE;
9814 }
9815
9816 new_fix = *fix;
9817
9818 /* The fix does not need to be translated if the section cannot change. */
9819 if (!relax_info->is_relaxable_literal_section
9820 && !relax_info->is_relaxable_asm_section)
9821 {
9822 fix->translated = TRUE;
9823 return TRUE;
9824 }
9825
9826 /* If the literal has been moved and this relocation was on an
9827 opcode, then the relocation should move to the new literal
9828 location. Otherwise, the relocation should move within the
9829 section. */
9830
9831 removed = FALSE;
9832 if (is_operand_relocation (fix->src_type))
9833 {
9834 /* Check if the original relocation is against a literal being
9835 removed. */
9836 removed = find_removed_literal (&relax_info->removed_list,
9837 target_offset);
9838 }
9839
9840 if (removed)
9841 {
9842 asection *new_sec;
9843
9844 /* The fact that there is still a relocation to this literal indicates
9845 that the literal is being coalesced, not simply removed. */
9846 BFD_ASSERT (removed->to.abfd != NULL);
9847
9848 /* This was moved to some other address (possibly another section). */
9849 new_sec = r_reloc_get_section (&removed->to);
9850 if (new_sec != sec)
9851 {
9852 sec = new_sec;
9853 relax_info = get_xtensa_relax_info (sec);
9854 if (!relax_info ||
9855 (!relax_info->is_relaxable_literal_section
9856 && !relax_info->is_relaxable_asm_section))
9857 {
9858 target_offset = removed->to.target_offset;
9859 new_fix.target_sec = new_sec;
9860 new_fix.target_offset = target_offset;
9861 new_fix.translated = TRUE;
9862 *fix = new_fix;
9863 return TRUE;
9864 }
9865 }
9866 target_offset = removed->to.target_offset;
9867 new_fix.target_sec = new_sec;
9868 }
9869
9870 /* The target address may have been moved within its section. */
9871 new_offset = offset_with_removed_text (&relax_info->action_list,
9872 target_offset);
9873
9874 new_fix.target_offset = new_offset;
9875 new_fix.target_offset = new_offset;
9876 new_fix.translated = TRUE;
9877 *fix = new_fix;
9878 return TRUE;
9879 }
9880
9881
9882 /* Fix up a relocation to take account of removed literals. */
9883
9884 static asection *
9885 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9886 {
9887 xtensa_relax_info *relax_info;
9888 removed_literal *removed;
9889 bfd_vma target_offset, base_offset;
9890
9891 *new_rel = *orig_rel;
9892
9893 if (!r_reloc_is_defined (orig_rel))
9894 return sec ;
9895
9896 relax_info = get_xtensa_relax_info (sec);
9897 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9898 || relax_info->is_relaxable_asm_section));
9899
9900 target_offset = orig_rel->target_offset;
9901
9902 removed = FALSE;
9903 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9904 {
9905 /* Check if the original relocation is against a literal being
9906 removed. */
9907 removed = find_removed_literal (&relax_info->removed_list,
9908 target_offset);
9909 }
9910 if (removed && removed->to.abfd)
9911 {
9912 asection *new_sec;
9913
9914 /* The fact that there is still a relocation to this literal indicates
9915 that the literal is being coalesced, not simply removed. */
9916 BFD_ASSERT (removed->to.abfd != NULL);
9917
9918 /* This was moved to some other address
9919 (possibly in another section). */
9920 *new_rel = removed->to;
9921 new_sec = r_reloc_get_section (new_rel);
9922 if (new_sec != sec)
9923 {
9924 sec = new_sec;
9925 relax_info = get_xtensa_relax_info (sec);
9926 if (!relax_info
9927 || (!relax_info->is_relaxable_literal_section
9928 && !relax_info->is_relaxable_asm_section))
9929 return sec;
9930 }
9931 target_offset = new_rel->target_offset;
9932 }
9933
9934 /* Find the base offset of the reloc symbol, excluding any addend from the
9935 reloc or from the section contents (for a partial_inplace reloc). Then
9936 find the adjusted values of the offsets due to relaxation. The base
9937 offset is needed to determine the change to the reloc's addend; the reloc
9938 addend should not be adjusted due to relaxations located before the base
9939 offset. */
9940
9941 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9942 if (base_offset <= target_offset)
9943 {
9944 int base_removed = removed_by_actions_map (&relax_info->action_list,
9945 base_offset, FALSE);
9946 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9947 target_offset, FALSE) -
9948 base_removed;
9949
9950 new_rel->target_offset = target_offset - base_removed - addend_removed;
9951 new_rel->rela.r_addend -= addend_removed;
9952 }
9953 else
9954 {
9955 /* Handle a negative addend. The base offset comes first. */
9956 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
9957 target_offset, FALSE);
9958 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9959 base_offset, FALSE) -
9960 tgt_removed;
9961
9962 new_rel->target_offset = target_offset - tgt_removed;
9963 new_rel->rela.r_addend += addend_removed;
9964 }
9965
9966 return sec;
9967 }
9968
9969
9970 /* For dynamic links, there may be a dynamic relocation for each
9971 literal. The number of dynamic relocations must be computed in
9972 size_dynamic_sections, which occurs before relaxation. When a
9973 literal is removed, this function checks if there is a corresponding
9974 dynamic relocation and shrinks the size of the appropriate dynamic
9975 relocation section accordingly. At this point, the contents of the
9976 dynamic relocation sections have not yet been filled in, so there's
9977 nothing else that needs to be done. */
9978
9979 static void
9980 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9981 bfd *abfd,
9982 asection *input_section,
9983 Elf_Internal_Rela *rel)
9984 {
9985 struct elf_xtensa_link_hash_table *htab;
9986 Elf_Internal_Shdr *symtab_hdr;
9987 struct elf_link_hash_entry **sym_hashes;
9988 unsigned long r_symndx;
9989 int r_type;
9990 struct elf_link_hash_entry *h;
9991 bfd_boolean dynamic_symbol;
9992
9993 htab = elf_xtensa_hash_table (info);
9994 if (htab == NULL)
9995 return;
9996
9997 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9998 sym_hashes = elf_sym_hashes (abfd);
9999
10000 r_type = ELF32_R_TYPE (rel->r_info);
10001 r_symndx = ELF32_R_SYM (rel->r_info);
10002
10003 if (r_symndx < symtab_hdr->sh_info)
10004 h = NULL;
10005 else
10006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10007
10008 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10009
10010 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10011 && (input_section->flags & SEC_ALLOC) != 0
10012 && (dynamic_symbol || bfd_link_pic (info)))
10013 {
10014 asection *srel;
10015 bfd_boolean is_plt = FALSE;
10016
10017 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10018 {
10019 srel = htab->elf.srelplt;
10020 is_plt = TRUE;
10021 }
10022 else
10023 srel = htab->elf.srelgot;
10024
10025 /* Reduce size of the .rela.* section by one reloc. */
10026 BFD_ASSERT (srel != NULL);
10027 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10028 srel->size -= sizeof (Elf32_External_Rela);
10029
10030 if (is_plt)
10031 {
10032 asection *splt, *sgotplt, *srelgot;
10033 int reloc_index, chunk;
10034
10035 /* Find the PLT reloc index of the entry being removed. This
10036 is computed from the size of ".rela.plt". It is needed to
10037 figure out which PLT chunk to resize. Usually "last index
10038 = size - 1" since the index starts at zero, but in this
10039 context, the size has just been decremented so there's no
10040 need to subtract one. */
10041 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10042
10043 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10044 splt = elf_xtensa_get_plt_section (info, chunk);
10045 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10046 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10047
10048 /* Check if an entire PLT chunk has just been eliminated. */
10049 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10050 {
10051 /* The two magic GOT entries for that chunk can go away. */
10052 srelgot = htab->elf.srelgot;
10053 BFD_ASSERT (srelgot != NULL);
10054 srelgot->reloc_count -= 2;
10055 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10056 sgotplt->size -= 8;
10057
10058 /* There should be only one entry left (and it will be
10059 removed below). */
10060 BFD_ASSERT (sgotplt->size == 4);
10061 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10062 }
10063
10064 BFD_ASSERT (sgotplt->size >= 4);
10065 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10066
10067 sgotplt->size -= 4;
10068 splt->size -= PLT_ENTRY_SIZE;
10069 }
10070 }
10071 }
10072
10073
10074 /* Take an r_rel and move it to another section. This usually
10075 requires extending the interal_relocation array and pinning it. If
10076 the original r_rel is from the same BFD, we can complete this here.
10077 Otherwise, we add a fix record to let the final link fix the
10078 appropriate address. Contents and internal relocations for the
10079 section must be pinned after calling this routine. */
10080
10081 static bfd_boolean
10082 move_literal (bfd *abfd,
10083 struct bfd_link_info *link_info,
10084 asection *sec,
10085 bfd_vma offset,
10086 bfd_byte *contents,
10087 xtensa_relax_info *relax_info,
10088 Elf_Internal_Rela **internal_relocs_p,
10089 const literal_value *lit)
10090 {
10091 Elf_Internal_Rela *new_relocs = NULL;
10092 size_t new_relocs_count = 0;
10093 Elf_Internal_Rela this_rela;
10094 const r_reloc *r_rel;
10095
10096 r_rel = &lit->r_rel;
10097 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10098
10099 if (r_reloc_is_const (r_rel))
10100 bfd_put_32 (abfd, lit->value, contents + offset);
10101 else
10102 {
10103 int r_type;
10104 unsigned i;
10105 reloc_bfd_fix *fix;
10106 unsigned insert_at;
10107
10108 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10109
10110 /* This is the difficult case. We have to create a fix up. */
10111 this_rela.r_offset = offset;
10112 this_rela.r_info = ELF32_R_INFO (0, r_type);
10113 this_rela.r_addend =
10114 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10115 bfd_put_32 (abfd, lit->value, contents + offset);
10116
10117 /* Currently, we cannot move relocations during a relocatable link. */
10118 BFD_ASSERT (!bfd_link_relocatable (link_info));
10119 fix = reloc_bfd_fix_init (sec, offset, r_type,
10120 r_reloc_get_section (r_rel),
10121 r_rel->target_offset + r_rel->virtual_offset,
10122 FALSE);
10123 /* We also need to mark that relocations are needed here. */
10124 sec->flags |= SEC_RELOC;
10125
10126 translate_reloc_bfd_fix (fix);
10127 /* This fix has not yet been translated. */
10128 add_fix (sec, fix);
10129
10130 /* Add the relocation. If we have already allocated our own
10131 space for the relocations and we have room for more, then use
10132 it. Otherwise, allocate new space and move the literals. */
10133 insert_at = sec->reloc_count;
10134 for (i = 0; i < sec->reloc_count; ++i)
10135 {
10136 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10137 {
10138 insert_at = i;
10139 break;
10140 }
10141 }
10142
10143 if (*internal_relocs_p != relax_info->allocated_relocs
10144 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10145 {
10146 BFD_ASSERT (relax_info->allocated_relocs == NULL
10147 || sec->reloc_count == relax_info->relocs_count);
10148
10149 if (relax_info->allocated_relocs_count == 0)
10150 new_relocs_count = (sec->reloc_count + 2) * 2;
10151 else
10152 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10153
10154 new_relocs = (Elf_Internal_Rela *)
10155 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10156 if (!new_relocs)
10157 return FALSE;
10158
10159 /* We could handle this more quickly by finding the split point. */
10160 if (insert_at != 0)
10161 memcpy (new_relocs, *internal_relocs_p,
10162 insert_at * sizeof (Elf_Internal_Rela));
10163
10164 new_relocs[insert_at] = this_rela;
10165
10166 if (insert_at != sec->reloc_count)
10167 memcpy (new_relocs + insert_at + 1,
10168 (*internal_relocs_p) + insert_at,
10169 (sec->reloc_count - insert_at)
10170 * sizeof (Elf_Internal_Rela));
10171
10172 if (*internal_relocs_p != relax_info->allocated_relocs)
10173 {
10174 /* The first time we re-allocate, we can only free the
10175 old relocs if they were allocated with bfd_malloc.
10176 This is not true when keep_memory is in effect. */
10177 if (!link_info->keep_memory)
10178 free (*internal_relocs_p);
10179 }
10180 else
10181 free (*internal_relocs_p);
10182 relax_info->allocated_relocs = new_relocs;
10183 relax_info->allocated_relocs_count = new_relocs_count;
10184 elf_section_data (sec)->relocs = new_relocs;
10185 sec->reloc_count++;
10186 relax_info->relocs_count = sec->reloc_count;
10187 *internal_relocs_p = new_relocs;
10188 }
10189 else
10190 {
10191 if (insert_at != sec->reloc_count)
10192 {
10193 unsigned idx;
10194 for (idx = sec->reloc_count; idx > insert_at; idx--)
10195 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10196 }
10197 (*internal_relocs_p)[insert_at] = this_rela;
10198 sec->reloc_count++;
10199 if (relax_info->allocated_relocs)
10200 relax_info->relocs_count = sec->reloc_count;
10201 }
10202 }
10203 return TRUE;
10204 }
10205
10206
10207 /* This is similar to relax_section except that when a target is moved,
10208 we shift addresses up. We also need to modify the size. This
10209 algorithm does NOT allow for relocations into the middle of the
10210 property sections. */
10211
10212 static bfd_boolean
10213 relax_property_section (bfd *abfd,
10214 asection *sec,
10215 struct bfd_link_info *link_info)
10216 {
10217 Elf_Internal_Rela *internal_relocs;
10218 bfd_byte *contents;
10219 unsigned i;
10220 bfd_boolean ok = TRUE;
10221 bfd_boolean is_full_prop_section;
10222 size_t last_zfill_target_offset = 0;
10223 asection *last_zfill_target_sec = NULL;
10224 bfd_size_type sec_size;
10225 bfd_size_type entry_size;
10226
10227 sec_size = bfd_get_section_limit (abfd, sec);
10228 internal_relocs = retrieve_internal_relocs (abfd, sec,
10229 link_info->keep_memory);
10230 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10231 if (contents == NULL && sec_size != 0)
10232 {
10233 ok = FALSE;
10234 goto error_return;
10235 }
10236
10237 is_full_prop_section = xtensa_is_proptable_section (sec);
10238 if (is_full_prop_section)
10239 entry_size = 12;
10240 else
10241 entry_size = 8;
10242
10243 if (internal_relocs)
10244 {
10245 for (i = 0; i < sec->reloc_count; i++)
10246 {
10247 Elf_Internal_Rela *irel;
10248 xtensa_relax_info *target_relax_info;
10249 unsigned r_type;
10250 asection *target_sec;
10251 literal_value val;
10252 bfd_byte *size_p, *flags_p;
10253
10254 /* Locally change the source address.
10255 Translate the target to the new target address.
10256 If it points to this section and has been removed, MOVE IT.
10257 Also, don't forget to modify the associated SIZE at
10258 (offset + 4). */
10259
10260 irel = &internal_relocs[i];
10261 r_type = ELF32_R_TYPE (irel->r_info);
10262 if (r_type == R_XTENSA_NONE)
10263 continue;
10264
10265 /* Find the literal value. */
10266 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10267 size_p = &contents[irel->r_offset + 4];
10268 flags_p = NULL;
10269 if (is_full_prop_section)
10270 flags_p = &contents[irel->r_offset + 8];
10271 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10272
10273 target_sec = r_reloc_get_section (&val.r_rel);
10274 target_relax_info = get_xtensa_relax_info (target_sec);
10275
10276 if (target_relax_info
10277 && (target_relax_info->is_relaxable_literal_section
10278 || target_relax_info->is_relaxable_asm_section ))
10279 {
10280 /* Translate the relocation's destination. */
10281 bfd_vma old_offset = val.r_rel.target_offset;
10282 bfd_vma new_offset;
10283 long old_size, new_size;
10284 int removed_by_old_offset =
10285 removed_by_actions_map (&target_relax_info->action_list,
10286 old_offset, FALSE);
10287 new_offset = old_offset - removed_by_old_offset;
10288
10289 /* Assert that we are not out of bounds. */
10290 old_size = bfd_get_32 (abfd, size_p);
10291 new_size = old_size;
10292
10293 if (old_size == 0)
10294 {
10295 /* Only the first zero-sized unreachable entry is
10296 allowed to expand. In this case the new offset
10297 should be the offset before the fill and the new
10298 size is the expansion size. For other zero-sized
10299 entries the resulting size should be zero with an
10300 offset before or after the fill address depending
10301 on whether the expanding unreachable entry
10302 preceeds it. */
10303 if (last_zfill_target_sec == 0
10304 || last_zfill_target_sec != target_sec
10305 || last_zfill_target_offset != old_offset)
10306 {
10307 bfd_vma new_end_offset = new_offset;
10308
10309 /* Recompute the new_offset, but this time don't
10310 include any fill inserted by relaxation. */
10311 removed_by_old_offset =
10312 removed_by_actions_map (&target_relax_info->action_list,
10313 old_offset, TRUE);
10314 new_offset = old_offset - removed_by_old_offset;
10315
10316 /* If it is not unreachable and we have not yet
10317 seen an unreachable at this address, place it
10318 before the fill address. */
10319 if (flags_p && (bfd_get_32 (abfd, flags_p)
10320 & XTENSA_PROP_UNREACHABLE) != 0)
10321 {
10322 new_size = new_end_offset - new_offset;
10323
10324 last_zfill_target_sec = target_sec;
10325 last_zfill_target_offset = old_offset;
10326 }
10327 }
10328 }
10329 else
10330 {
10331 int removed_by_old_offset_size =
10332 removed_by_actions_map (&target_relax_info->action_list,
10333 old_offset + old_size, TRUE);
10334 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10335 }
10336
10337 if (new_size != old_size)
10338 {
10339 bfd_put_32 (abfd, new_size, size_p);
10340 pin_contents (sec, contents);
10341 }
10342
10343 if (new_offset != old_offset)
10344 {
10345 bfd_vma diff = new_offset - old_offset;
10346 irel->r_addend += diff;
10347 pin_internal_relocs (sec, internal_relocs);
10348 }
10349 }
10350 }
10351 }
10352
10353 /* Combine adjacent property table entries. This is also done in
10354 finish_dynamic_sections() but at that point it's too late to
10355 reclaim the space in the output section, so we do this twice. */
10356
10357 if (internal_relocs && (!bfd_link_relocatable (link_info)
10358 || xtensa_is_littable_section (sec)))
10359 {
10360 Elf_Internal_Rela *last_irel = NULL;
10361 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10362 int removed_bytes = 0;
10363 bfd_vma offset;
10364 flagword predef_flags;
10365
10366 predef_flags = xtensa_get_property_predef_flags (sec);
10367
10368 /* Walk over memory and relocations at the same time.
10369 This REQUIRES that the internal_relocs be sorted by offset. */
10370 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10371 internal_reloc_compare);
10372
10373 pin_internal_relocs (sec, internal_relocs);
10374 pin_contents (sec, contents);
10375
10376 next_rel = internal_relocs;
10377 rel_end = internal_relocs + sec->reloc_count;
10378
10379 BFD_ASSERT (sec->size % entry_size == 0);
10380
10381 for (offset = 0; offset < sec->size; offset += entry_size)
10382 {
10383 Elf_Internal_Rela *offset_rel, *extra_rel;
10384 bfd_vma bytes_to_remove, size, actual_offset;
10385 bfd_boolean remove_this_rel;
10386 flagword flags;
10387
10388 /* Find the first relocation for the entry at the current offset.
10389 Adjust the offsets of any extra relocations for the previous
10390 entry. */
10391 offset_rel = NULL;
10392 if (next_rel)
10393 {
10394 for (irel = next_rel; irel < rel_end; irel++)
10395 {
10396 if ((irel->r_offset == offset
10397 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10398 || irel->r_offset > offset)
10399 {
10400 offset_rel = irel;
10401 break;
10402 }
10403 irel->r_offset -= removed_bytes;
10404 }
10405 }
10406
10407 /* Find the next relocation (if there are any left). */
10408 extra_rel = NULL;
10409 if (offset_rel)
10410 {
10411 for (irel = offset_rel + 1; irel < rel_end; irel++)
10412 {
10413 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10414 {
10415 extra_rel = irel;
10416 break;
10417 }
10418 }
10419 }
10420
10421 /* Check if there are relocations on the current entry. There
10422 should usually be a relocation on the offset field. If there
10423 are relocations on the size or flags, then we can't optimize
10424 this entry. Also, find the next relocation to examine on the
10425 next iteration. */
10426 if (offset_rel)
10427 {
10428 if (offset_rel->r_offset >= offset + entry_size)
10429 {
10430 next_rel = offset_rel;
10431 /* There are no relocations on the current entry, but we
10432 might still be able to remove it if the size is zero. */
10433 offset_rel = NULL;
10434 }
10435 else if (offset_rel->r_offset > offset
10436 || (extra_rel
10437 && extra_rel->r_offset < offset + entry_size))
10438 {
10439 /* There is a relocation on the size or flags, so we can't
10440 do anything with this entry. Continue with the next. */
10441 next_rel = offset_rel;
10442 continue;
10443 }
10444 else
10445 {
10446 BFD_ASSERT (offset_rel->r_offset == offset);
10447 offset_rel->r_offset -= removed_bytes;
10448 next_rel = offset_rel + 1;
10449 }
10450 }
10451 else
10452 next_rel = NULL;
10453
10454 remove_this_rel = FALSE;
10455 bytes_to_remove = 0;
10456 actual_offset = offset - removed_bytes;
10457 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10458
10459 if (is_full_prop_section)
10460 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10461 else
10462 flags = predef_flags;
10463
10464 if (size == 0
10465 && (flags & XTENSA_PROP_ALIGN) == 0
10466 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10467 {
10468 /* Always remove entries with zero size and no alignment. */
10469 bytes_to_remove = entry_size;
10470 if (offset_rel)
10471 remove_this_rel = TRUE;
10472 }
10473 else if (offset_rel
10474 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10475 {
10476 if (last_irel)
10477 {
10478 flagword old_flags;
10479 bfd_vma old_size =
10480 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10481 bfd_vma old_address =
10482 (last_irel->r_addend
10483 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10484 bfd_vma new_address =
10485 (offset_rel->r_addend
10486 + bfd_get_32 (abfd, &contents[actual_offset]));
10487 if (is_full_prop_section)
10488 old_flags = bfd_get_32
10489 (abfd, &contents[last_irel->r_offset + 8]);
10490 else
10491 old_flags = predef_flags;
10492
10493 if ((ELF32_R_SYM (offset_rel->r_info)
10494 == ELF32_R_SYM (last_irel->r_info))
10495 && old_address + old_size == new_address
10496 && old_flags == flags
10497 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10498 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10499 {
10500 /* Fix the old size. */
10501 bfd_put_32 (abfd, old_size + size,
10502 &contents[last_irel->r_offset + 4]);
10503 bytes_to_remove = entry_size;
10504 remove_this_rel = TRUE;
10505 }
10506 else
10507 last_irel = offset_rel;
10508 }
10509 else
10510 last_irel = offset_rel;
10511 }
10512
10513 if (remove_this_rel)
10514 {
10515 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10516 offset_rel->r_offset = 0;
10517 }
10518
10519 if (bytes_to_remove != 0)
10520 {
10521 removed_bytes += bytes_to_remove;
10522 if (offset + bytes_to_remove < sec->size)
10523 memmove (&contents[actual_offset],
10524 &contents[actual_offset + bytes_to_remove],
10525 sec->size - offset - bytes_to_remove);
10526 }
10527 }
10528
10529 if (removed_bytes)
10530 {
10531 /* Fix up any extra relocations on the last entry. */
10532 for (irel = next_rel; irel < rel_end; irel++)
10533 irel->r_offset -= removed_bytes;
10534
10535 /* Clear the removed bytes. */
10536 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10537
10538 if (sec->rawsize == 0)
10539 sec->rawsize = sec->size;
10540 sec->size -= removed_bytes;
10541
10542 if (xtensa_is_littable_section (sec))
10543 {
10544 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10545 if (sgotloc)
10546 sgotloc->size -= removed_bytes;
10547 }
10548 }
10549 }
10550
10551 error_return:
10552 release_internal_relocs (sec, internal_relocs);
10553 release_contents (sec, contents);
10554 return ok;
10555 }
10556
10557 \f
10558 /* Third relaxation pass. */
10559
10560 /* Change symbol values to account for removed literals. */
10561
10562 bfd_boolean
10563 relax_section_symbols (bfd *abfd, asection *sec)
10564 {
10565 xtensa_relax_info *relax_info;
10566 unsigned int sec_shndx;
10567 Elf_Internal_Shdr *symtab_hdr;
10568 Elf_Internal_Sym *isymbuf;
10569 unsigned i, num_syms, num_locals;
10570
10571 relax_info = get_xtensa_relax_info (sec);
10572 BFD_ASSERT (relax_info);
10573
10574 if (!relax_info->is_relaxable_literal_section
10575 && !relax_info->is_relaxable_asm_section)
10576 return TRUE;
10577
10578 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10579
10580 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10581 isymbuf = retrieve_local_syms (abfd);
10582
10583 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10584 num_locals = symtab_hdr->sh_info;
10585
10586 /* Adjust the local symbols defined in this section. */
10587 for (i = 0; i < num_locals; i++)
10588 {
10589 Elf_Internal_Sym *isym = &isymbuf[i];
10590
10591 if (isym->st_shndx == sec_shndx)
10592 {
10593 bfd_vma orig_addr = isym->st_value;
10594 int removed = removed_by_actions_map (&relax_info->action_list,
10595 orig_addr, FALSE);
10596
10597 isym->st_value -= removed;
10598 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10599 isym->st_size -=
10600 removed_by_actions_map (&relax_info->action_list,
10601 orig_addr + isym->st_size, FALSE) -
10602 removed;
10603 }
10604 }
10605
10606 /* Now adjust the global symbols defined in this section. */
10607 for (i = 0; i < (num_syms - num_locals); i++)
10608 {
10609 struct elf_link_hash_entry *sym_hash;
10610
10611 sym_hash = elf_sym_hashes (abfd)[i];
10612
10613 if (sym_hash->root.type == bfd_link_hash_warning)
10614 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10615
10616 if ((sym_hash->root.type == bfd_link_hash_defined
10617 || sym_hash->root.type == bfd_link_hash_defweak)
10618 && sym_hash->root.u.def.section == sec)
10619 {
10620 bfd_vma orig_addr = sym_hash->root.u.def.value;
10621 int removed = removed_by_actions_map (&relax_info->action_list,
10622 orig_addr, FALSE);
10623
10624 sym_hash->root.u.def.value -= removed;
10625
10626 if (sym_hash->type == STT_FUNC)
10627 sym_hash->size -=
10628 removed_by_actions_map (&relax_info->action_list,
10629 orig_addr + sym_hash->size, FALSE) -
10630 removed;
10631 }
10632 }
10633
10634 return TRUE;
10635 }
10636
10637 \f
10638 /* "Fix" handling functions, called while performing relocations. */
10639
10640 static bfd_boolean
10641 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10642 bfd *input_bfd,
10643 asection *input_section,
10644 bfd_byte *contents)
10645 {
10646 r_reloc r_rel;
10647 asection *sec, *old_sec;
10648 bfd_vma old_offset;
10649 int r_type = ELF32_R_TYPE (rel->r_info);
10650 reloc_bfd_fix *fix;
10651
10652 if (r_type == R_XTENSA_NONE)
10653 return TRUE;
10654
10655 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10656 if (!fix)
10657 return TRUE;
10658
10659 r_reloc_init (&r_rel, input_bfd, rel, contents,
10660 bfd_get_section_limit (input_bfd, input_section));
10661 old_sec = r_reloc_get_section (&r_rel);
10662 old_offset = r_rel.target_offset;
10663
10664 if (!old_sec || !r_reloc_is_defined (&r_rel))
10665 {
10666 if (r_type != R_XTENSA_ASM_EXPAND)
10667 {
10668 _bfd_error_handler
10669 /* xgettext:c-format */
10670 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10671 input_bfd, input_section, (uint64_t) rel->r_offset,
10672 elf_howto_table[r_type].name);
10673 return FALSE;
10674 }
10675 /* Leave it be. Resolution will happen in a later stage. */
10676 }
10677 else
10678 {
10679 sec = fix->target_sec;
10680 rel->r_addend += ((sec->output_offset + fix->target_offset)
10681 - (old_sec->output_offset + old_offset));
10682 }
10683 return TRUE;
10684 }
10685
10686
10687 static void
10688 do_fix_for_final_link (Elf_Internal_Rela *rel,
10689 bfd *input_bfd,
10690 asection *input_section,
10691 bfd_byte *contents,
10692 bfd_vma *relocationp)
10693 {
10694 asection *sec;
10695 int r_type = ELF32_R_TYPE (rel->r_info);
10696 reloc_bfd_fix *fix;
10697 bfd_vma fixup_diff;
10698
10699 if (r_type == R_XTENSA_NONE)
10700 return;
10701
10702 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10703 if (!fix)
10704 return;
10705
10706 sec = fix->target_sec;
10707
10708 fixup_diff = rel->r_addend;
10709 if (elf_howto_table[fix->src_type].partial_inplace)
10710 {
10711 bfd_vma inplace_val;
10712 BFD_ASSERT (fix->src_offset
10713 < bfd_get_section_limit (input_bfd, input_section));
10714 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10715 fixup_diff += inplace_val;
10716 }
10717
10718 *relocationp = (sec->output_section->vma
10719 + sec->output_offset
10720 + fix->target_offset - fixup_diff);
10721 }
10722
10723 \f
10724 /* Miscellaneous utility functions.... */
10725
10726 static asection *
10727 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10728 {
10729 bfd *dynobj;
10730 char plt_name[17];
10731
10732 if (chunk == 0)
10733 return elf_hash_table (info)->splt;
10734
10735 dynobj = elf_hash_table (info)->dynobj;
10736 sprintf (plt_name, ".plt.%u", chunk);
10737 return bfd_get_linker_section (dynobj, plt_name);
10738 }
10739
10740
10741 static asection *
10742 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10743 {
10744 bfd *dynobj;
10745 char got_name[21];
10746
10747 if (chunk == 0)
10748 return elf_hash_table (info)->sgotplt;
10749
10750 dynobj = elf_hash_table (info)->dynobj;
10751 sprintf (got_name, ".got.plt.%u", chunk);
10752 return bfd_get_linker_section (dynobj, got_name);
10753 }
10754
10755
10756 /* Get the input section for a given symbol index.
10757 If the symbol is:
10758 . a section symbol, return the section;
10759 . a common symbol, return the common section;
10760 . an undefined symbol, return the undefined section;
10761 . an indirect symbol, follow the links;
10762 . an absolute value, return the absolute section. */
10763
10764 static asection *
10765 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10766 {
10767 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10768 asection *target_sec = NULL;
10769 if (r_symndx < symtab_hdr->sh_info)
10770 {
10771 Elf_Internal_Sym *isymbuf;
10772 unsigned int section_index;
10773
10774 isymbuf = retrieve_local_syms (abfd);
10775 section_index = isymbuf[r_symndx].st_shndx;
10776
10777 if (section_index == SHN_UNDEF)
10778 target_sec = bfd_und_section_ptr;
10779 else if (section_index == SHN_ABS)
10780 target_sec = bfd_abs_section_ptr;
10781 else if (section_index == SHN_COMMON)
10782 target_sec = bfd_com_section_ptr;
10783 else
10784 target_sec = bfd_section_from_elf_index (abfd, section_index);
10785 }
10786 else
10787 {
10788 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10789 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10790
10791 while (h->root.type == bfd_link_hash_indirect
10792 || h->root.type == bfd_link_hash_warning)
10793 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10794
10795 switch (h->root.type)
10796 {
10797 case bfd_link_hash_defined:
10798 case bfd_link_hash_defweak:
10799 target_sec = h->root.u.def.section;
10800 break;
10801 case bfd_link_hash_common:
10802 target_sec = bfd_com_section_ptr;
10803 break;
10804 case bfd_link_hash_undefined:
10805 case bfd_link_hash_undefweak:
10806 target_sec = bfd_und_section_ptr;
10807 break;
10808 default: /* New indirect warning. */
10809 target_sec = bfd_und_section_ptr;
10810 break;
10811 }
10812 }
10813 return target_sec;
10814 }
10815
10816
10817 static struct elf_link_hash_entry *
10818 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10819 {
10820 unsigned long indx;
10821 struct elf_link_hash_entry *h;
10822 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10823
10824 if (r_symndx < symtab_hdr->sh_info)
10825 return NULL;
10826
10827 indx = r_symndx - symtab_hdr->sh_info;
10828 h = elf_sym_hashes (abfd)[indx];
10829 while (h->root.type == bfd_link_hash_indirect
10830 || h->root.type == bfd_link_hash_warning)
10831 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10832 return h;
10833 }
10834
10835
10836 /* Get the section-relative offset for a symbol number. */
10837
10838 static bfd_vma
10839 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10840 {
10841 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10842 bfd_vma offset = 0;
10843
10844 if (r_symndx < symtab_hdr->sh_info)
10845 {
10846 Elf_Internal_Sym *isymbuf;
10847 isymbuf = retrieve_local_syms (abfd);
10848 offset = isymbuf[r_symndx].st_value;
10849 }
10850 else
10851 {
10852 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10853 struct elf_link_hash_entry *h =
10854 elf_sym_hashes (abfd)[indx];
10855
10856 while (h->root.type == bfd_link_hash_indirect
10857 || h->root.type == bfd_link_hash_warning)
10858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10859 if (h->root.type == bfd_link_hash_defined
10860 || h->root.type == bfd_link_hash_defweak)
10861 offset = h->root.u.def.value;
10862 }
10863 return offset;
10864 }
10865
10866
10867 static bfd_boolean
10868 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10869 {
10870 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10871 struct elf_link_hash_entry *h;
10872
10873 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10874 if (h && h->root.type == bfd_link_hash_defweak)
10875 return TRUE;
10876 return FALSE;
10877 }
10878
10879
10880 static bfd_boolean
10881 pcrel_reloc_fits (xtensa_opcode opc,
10882 int opnd,
10883 bfd_vma self_address,
10884 bfd_vma dest_address)
10885 {
10886 xtensa_isa isa = xtensa_default_isa;
10887 uint32 valp = dest_address;
10888 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10889 || xtensa_operand_encode (isa, opc, opnd, &valp))
10890 return FALSE;
10891 return TRUE;
10892 }
10893
10894
10895 static bfd_boolean
10896 xtensa_is_property_section (asection *sec)
10897 {
10898 if (xtensa_is_insntable_section (sec)
10899 || xtensa_is_littable_section (sec)
10900 || xtensa_is_proptable_section (sec))
10901 return TRUE;
10902
10903 return FALSE;
10904 }
10905
10906
10907 static bfd_boolean
10908 xtensa_is_insntable_section (asection *sec)
10909 {
10910 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10911 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10912 return TRUE;
10913
10914 return FALSE;
10915 }
10916
10917
10918 static bfd_boolean
10919 xtensa_is_littable_section (asection *sec)
10920 {
10921 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10922 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10923 return TRUE;
10924
10925 return FALSE;
10926 }
10927
10928
10929 static bfd_boolean
10930 xtensa_is_proptable_section (asection *sec)
10931 {
10932 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10933 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10934 return TRUE;
10935
10936 return FALSE;
10937 }
10938
10939
10940 static int
10941 internal_reloc_compare (const void *ap, const void *bp)
10942 {
10943 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10944 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10945
10946 if (a->r_offset != b->r_offset)
10947 return (a->r_offset - b->r_offset);
10948
10949 /* We don't need to sort on these criteria for correctness,
10950 but enforcing a more strict ordering prevents unstable qsort
10951 from behaving differently with different implementations.
10952 Without the code below we get correct but different results
10953 on Solaris 2.7 and 2.8. We would like to always produce the
10954 same results no matter the host. */
10955
10956 if (a->r_info != b->r_info)
10957 return (a->r_info - b->r_info);
10958
10959 return (a->r_addend - b->r_addend);
10960 }
10961
10962
10963 static int
10964 internal_reloc_matches (const void *ap, const void *bp)
10965 {
10966 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10967 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10968
10969 /* Check if one entry overlaps with the other; this shouldn't happen
10970 except when searching for a match. */
10971 return (a->r_offset - b->r_offset);
10972 }
10973
10974
10975 /* Predicate function used to look up a section in a particular group. */
10976
10977 static bfd_boolean
10978 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10979 {
10980 const char *gname = inf;
10981 const char *group_name = elf_group_name (sec);
10982
10983 return (group_name == gname
10984 || (group_name != NULL
10985 && gname != NULL
10986 && strcmp (group_name, gname) == 0));
10987 }
10988
10989
10990 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10991
10992 static char *
10993 xtensa_property_section_name (asection *sec, const char *base_name)
10994 {
10995 const char *suffix, *group_name;
10996 char *prop_sec_name;
10997
10998 group_name = elf_group_name (sec);
10999 if (group_name)
11000 {
11001 suffix = strrchr (sec->name, '.');
11002 if (suffix == sec->name)
11003 suffix = 0;
11004 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11005 + (suffix ? strlen (suffix) : 0));
11006 strcpy (prop_sec_name, base_name);
11007 if (suffix)
11008 strcat (prop_sec_name, suffix);
11009 }
11010 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11011 {
11012 char *linkonce_kind = 0;
11013
11014 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11015 linkonce_kind = "x.";
11016 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11017 linkonce_kind = "p.";
11018 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11019 linkonce_kind = "prop.";
11020 else
11021 abort ();
11022
11023 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11024 + strlen (linkonce_kind) + 1);
11025 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11026 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11027
11028 suffix = sec->name + linkonce_len;
11029 /* For backward compatibility, replace "t." instead of inserting
11030 the new linkonce_kind (but not for "prop" sections). */
11031 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11032 suffix += 2;
11033 strcat (prop_sec_name + linkonce_len, suffix);
11034 }
11035 else
11036 prop_sec_name = strdup (base_name);
11037
11038 return prop_sec_name;
11039 }
11040
11041
11042 static asection *
11043 xtensa_get_property_section (asection *sec, const char *base_name)
11044 {
11045 char *prop_sec_name;
11046 asection *prop_sec;
11047
11048 prop_sec_name = xtensa_property_section_name (sec, base_name);
11049 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11050 match_section_group,
11051 (void *) elf_group_name (sec));
11052 free (prop_sec_name);
11053 return prop_sec;
11054 }
11055
11056
11057 asection *
11058 xtensa_make_property_section (asection *sec, const char *base_name)
11059 {
11060 char *prop_sec_name;
11061 asection *prop_sec;
11062
11063 /* Check if the section already exists. */
11064 prop_sec_name = xtensa_property_section_name (sec, base_name);
11065 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11066 match_section_group,
11067 (void *) elf_group_name (sec));
11068 /* If not, create it. */
11069 if (! prop_sec)
11070 {
11071 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11072 flags |= (bfd_get_section_flags (sec->owner, sec)
11073 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11074
11075 prop_sec = bfd_make_section_anyway_with_flags
11076 (sec->owner, strdup (prop_sec_name), flags);
11077 if (! prop_sec)
11078 return 0;
11079
11080 elf_group_name (prop_sec) = elf_group_name (sec);
11081 }
11082
11083 free (prop_sec_name);
11084 return prop_sec;
11085 }
11086
11087
11088 flagword
11089 xtensa_get_property_predef_flags (asection *sec)
11090 {
11091 if (xtensa_is_insntable_section (sec))
11092 return (XTENSA_PROP_INSN
11093 | XTENSA_PROP_NO_TRANSFORM
11094 | XTENSA_PROP_INSN_NO_REORDER);
11095
11096 if (xtensa_is_littable_section (sec))
11097 return (XTENSA_PROP_LITERAL
11098 | XTENSA_PROP_NO_TRANSFORM
11099 | XTENSA_PROP_INSN_NO_REORDER);
11100
11101 return 0;
11102 }
11103
11104 \f
11105 /* Other functions called directly by the linker. */
11106
11107 bfd_boolean
11108 xtensa_callback_required_dependence (bfd *abfd,
11109 asection *sec,
11110 struct bfd_link_info *link_info,
11111 deps_callback_t callback,
11112 void *closure)
11113 {
11114 Elf_Internal_Rela *internal_relocs;
11115 bfd_byte *contents;
11116 unsigned i;
11117 bfd_boolean ok = TRUE;
11118 bfd_size_type sec_size;
11119
11120 sec_size = bfd_get_section_limit (abfd, sec);
11121
11122 /* ".plt*" sections have no explicit relocations but they contain L32R
11123 instructions that reference the corresponding ".got.plt*" sections. */
11124 if ((sec->flags & SEC_LINKER_CREATED) != 0
11125 && CONST_STRNEQ (sec->name, ".plt"))
11126 {
11127 asection *sgotplt;
11128
11129 /* Find the corresponding ".got.plt*" section. */
11130 if (sec->name[4] == '\0')
11131 sgotplt = elf_hash_table (link_info)->sgotplt;
11132 else
11133 {
11134 char got_name[14];
11135 int chunk = 0;
11136
11137 BFD_ASSERT (sec->name[4] == '.');
11138 chunk = strtol (&sec->name[5], NULL, 10);
11139
11140 sprintf (got_name, ".got.plt.%u", chunk);
11141 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11142 }
11143 BFD_ASSERT (sgotplt);
11144
11145 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11146 section referencing a literal at the very beginning of
11147 ".got.plt". This is very close to the real dependence, anyway. */
11148 (*callback) (sec, sec_size, sgotplt, 0, closure);
11149 }
11150
11151 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11152 when building uclibc, which runs "ld -b binary /dev/null". */
11153 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11154 return ok;
11155
11156 internal_relocs = retrieve_internal_relocs (abfd, sec,
11157 link_info->keep_memory);
11158 if (internal_relocs == NULL
11159 || sec->reloc_count == 0)
11160 return ok;
11161
11162 /* Cache the contents for the duration of this scan. */
11163 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11164 if (contents == NULL && sec_size != 0)
11165 {
11166 ok = FALSE;
11167 goto error_return;
11168 }
11169
11170 if (!xtensa_default_isa)
11171 xtensa_default_isa = xtensa_isa_init (0, 0);
11172
11173 for (i = 0; i < sec->reloc_count; i++)
11174 {
11175 Elf_Internal_Rela *irel = &internal_relocs[i];
11176 if (is_l32r_relocation (abfd, sec, contents, irel))
11177 {
11178 r_reloc l32r_rel;
11179 asection *target_sec;
11180 bfd_vma target_offset;
11181
11182 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11183 target_sec = NULL;
11184 target_offset = 0;
11185 /* L32Rs must be local to the input file. */
11186 if (r_reloc_is_defined (&l32r_rel))
11187 {
11188 target_sec = r_reloc_get_section (&l32r_rel);
11189 target_offset = l32r_rel.target_offset;
11190 }
11191 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11192 closure);
11193 }
11194 }
11195
11196 error_return:
11197 release_internal_relocs (sec, internal_relocs);
11198 release_contents (sec, contents);
11199 return ok;
11200 }
11201
11202 /* The default literal sections should always be marked as "code" (i.e.,
11203 SHF_EXECINSTR). This is particularly important for the Linux kernel
11204 module loader so that the literals are not placed after the text. */
11205 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11206 {
11207 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11208 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11209 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11210 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11211 { NULL, 0, 0, 0, 0 }
11212 };
11213 \f
11214 #define ELF_TARGET_ID XTENSA_ELF_DATA
11215 #ifndef ELF_ARCH
11216 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11217 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11218 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11219 #define TARGET_BIG_NAME "elf32-xtensa-be"
11220 #define ELF_ARCH bfd_arch_xtensa
11221
11222 #define ELF_MACHINE_CODE EM_XTENSA
11223 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11224
11225 #define ELF_MAXPAGESIZE 0x1000
11226 #endif /* ELF_ARCH */
11227
11228 #define elf_backend_can_gc_sections 1
11229 #define elf_backend_can_refcount 1
11230 #define elf_backend_plt_readonly 1
11231 #define elf_backend_got_header_size 4
11232 #define elf_backend_want_dynbss 0
11233 #define elf_backend_want_got_plt 1
11234 #define elf_backend_dtrel_excludes_plt 1
11235
11236 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11237
11238 #define bfd_elf32_mkobject elf_xtensa_mkobject
11239
11240 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11241 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11242 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11243 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11244 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11245 #define bfd_elf32_bfd_reloc_name_lookup \
11246 elf_xtensa_reloc_name_lookup
11247 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11248 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11249
11250 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11251 #define elf_backend_check_relocs elf_xtensa_check_relocs
11252 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11253 #define elf_backend_discard_info elf_xtensa_discard_info
11254 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11255 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11256 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11257 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11258 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11259 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11260 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11261 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11262 #define elf_backend_object_p elf_xtensa_object_p
11263 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11264 #define elf_backend_relocate_section elf_xtensa_relocate_section
11265 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11266 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11267 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11268 #define elf_backend_special_sections elf_xtensa_special_sections
11269 #define elf_backend_action_discarded elf_xtensa_action_discarded
11270 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11271
11272 #include "elf32-target.h"
This page took 0.411381 seconds and 5 git commands to generate.