2011-05-09 Paul Brook <paul@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elf64-alpha.c
1 /* Alpha specific support for 64-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Richard Henderson <rth@tamu.edu>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /* We need a published ABI spec for this. Until one comes out, don't
25 assume this'll remain unchanged forever. */
26
27 #include "sysdep.h"
28 #include "bfd.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31
32 #include "elf/alpha.h"
33
34 #define ALPHAECOFF
35
36 #define NO_COFF_RELOCS
37 #define NO_COFF_SYMBOLS
38 #define NO_COFF_LINENOS
39
40 /* Get the ECOFF swapping routines. Needed for the debug information. */
41 #include "coff/internal.h"
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/alpha.h"
46 #include "aout/ar.h"
47 #include "libcoff.h"
48 #include "libecoff.h"
49 #define ECOFF_64
50 #include "ecoffswap.h"
51
52 \f
53 /* Instruction data for plt generation and relaxation. */
54
55 #define OP_LDA 0x08
56 #define OP_LDAH 0x09
57 #define OP_LDQ 0x29
58 #define OP_BR 0x30
59 #define OP_BSR 0x34
60
61 #define INSN_LDA (OP_LDA << 26)
62 #define INSN_LDAH (OP_LDAH << 26)
63 #define INSN_LDQ (OP_LDQ << 26)
64 #define INSN_BR (OP_BR << 26)
65
66 #define INSN_ADDQ 0x40000400
67 #define INSN_RDUNIQ 0x0000009e
68 #define INSN_SUBQ 0x40000520
69 #define INSN_S4SUBQ 0x40000560
70 #define INSN_UNOP 0x2ffe0000
71
72 #define INSN_JSR 0x68004000
73 #define INSN_JMP 0x68000000
74 #define INSN_JSR_MASK 0xfc00c000
75
76 #define INSN_A(I,A) (I | (A << 21))
77 #define INSN_AB(I,A,B) (I | (A << 21) | (B << 16))
78 #define INSN_ABC(I,A,B,C) (I | (A << 21) | (B << 16) | C)
79 #define INSN_ABO(I,A,B,O) (I | (A << 21) | (B << 16) | ((O) & 0xffff))
80 #define INSN_AD(I,A,D) (I | (A << 21) | (((D) >> 2) & 0x1fffff))
81
82 /* PLT/GOT Stuff */
83
84 /* Set by ld emulation. Putting this into the link_info or hash structure
85 is simply working too hard. */
86 #ifdef USE_SECUREPLT
87 bfd_boolean elf64_alpha_use_secureplt = TRUE;
88 #else
89 bfd_boolean elf64_alpha_use_secureplt = FALSE;
90 #endif
91
92 #define OLD_PLT_HEADER_SIZE 32
93 #define OLD_PLT_ENTRY_SIZE 12
94 #define NEW_PLT_HEADER_SIZE 36
95 #define NEW_PLT_ENTRY_SIZE 4
96
97 #define PLT_HEADER_SIZE \
98 (elf64_alpha_use_secureplt ? NEW_PLT_HEADER_SIZE : OLD_PLT_HEADER_SIZE)
99 #define PLT_ENTRY_SIZE \
100 (elf64_alpha_use_secureplt ? NEW_PLT_ENTRY_SIZE : OLD_PLT_ENTRY_SIZE)
101
102 #define MAX_GOT_SIZE (64*1024)
103
104 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so"
105 \f
106
107 /* Used to implement multiple .got subsections. */
108 struct alpha_elf_got_entry
109 {
110 struct alpha_elf_got_entry *next;
111
112 /* Which .got subsection? */
113 bfd *gotobj;
114
115 /* The addend in effect for this entry. */
116 bfd_vma addend;
117
118 /* The .got offset for this entry. */
119 int got_offset;
120
121 /* The .plt offset for this entry. */
122 int plt_offset;
123
124 /* How many references to this entry? */
125 int use_count;
126
127 /* The relocation type of this entry. */
128 unsigned char reloc_type;
129
130 /* How a LITERAL is used. */
131 unsigned char flags;
132
133 /* Have we initialized the dynamic relocation for this entry? */
134 unsigned char reloc_done;
135
136 /* Have we adjusted this entry for SEC_MERGE? */
137 unsigned char reloc_xlated;
138 };
139
140 struct alpha_elf_reloc_entry
141 {
142 struct alpha_elf_reloc_entry *next;
143
144 /* Which .reloc section? */
145 asection *srel;
146
147 /* What kind of relocation? */
148 unsigned int rtype;
149
150 /* Is this against read-only section? */
151 unsigned int reltext : 1;
152
153 /* How many did we find? */
154 unsigned long count;
155 };
156
157 struct alpha_elf_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* External symbol information. */
162 EXTR esym;
163
164 /* Cumulative flags for all the .got entries. */
165 int flags;
166
167 /* Contexts in which a literal was referenced. */
168 #define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01
169 #define ALPHA_ELF_LINK_HASH_LU_MEM 0x02
170 #define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04
171 #define ALPHA_ELF_LINK_HASH_LU_JSR 0x08
172 #define ALPHA_ELF_LINK_HASH_LU_TLSGD 0x10
173 #define ALPHA_ELF_LINK_HASH_LU_TLSLDM 0x20
174 #define ALPHA_ELF_LINK_HASH_LU_JSRDIRECT 0x40
175 #define ALPHA_ELF_LINK_HASH_LU_PLT 0x38
176 #define ALPHA_ELF_LINK_HASH_TLS_IE 0x80
177
178 /* Used to implement multiple .got subsections. */
179 struct alpha_elf_got_entry *got_entries;
180
181 /* Used to count non-got, non-plt relocations for delayed sizing
182 of relocation sections. */
183 struct alpha_elf_reloc_entry *reloc_entries;
184 };
185
186 /* Alpha ELF linker hash table. */
187
188 struct alpha_elf_link_hash_table
189 {
190 struct elf_link_hash_table root;
191
192 /* The head of a list of .got subsections linked through
193 alpha_elf_tdata(abfd)->got_link_next. */
194 bfd *got_list;
195
196 /* The most recent relax pass that we've seen. The GOTs
197 should be regenerated if this doesn't match. */
198 int relax_trip;
199 };
200
201 /* Look up an entry in a Alpha ELF linker hash table. */
202
203 #define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \
204 ((struct alpha_elf_link_hash_entry *) \
205 elf_link_hash_lookup (&(table)->root, (string), (create), \
206 (copy), (follow)))
207
208 /* Traverse a Alpha ELF linker hash table. */
209
210 #define alpha_elf_link_hash_traverse(table, func, info) \
211 (elf_link_hash_traverse \
212 (&(table)->root, \
213 (bfd_boolean (*) (struct elf_link_hash_entry *, PTR)) (func), \
214 (info)))
215
216 /* Get the Alpha ELF linker hash table from a link_info structure. */
217
218 #define alpha_elf_hash_table(p) \
219 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
220 == ALPHA_ELF_DATA ? ((struct alpha_elf_link_hash_table *) ((p)->hash)) : NULL)
221
222 /* Get the object's symbols as our own entry type. */
223
224 #define alpha_elf_sym_hashes(abfd) \
225 ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
226
227 /* Should we do dynamic things to this symbol? This differs from the
228 generic version in that we never need to consider function pointer
229 equality wrt PLT entries -- we don't create a PLT entry if a symbol's
230 address is ever taken. */
231
232 static inline bfd_boolean
233 alpha_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
234 struct bfd_link_info *info)
235 {
236 return _bfd_elf_dynamic_symbol_p (h, info, 0);
237 }
238
239 /* Create an entry in a Alpha ELF linker hash table. */
240
241 static struct bfd_hash_entry *
242 elf64_alpha_link_hash_newfunc (struct bfd_hash_entry *entry,
243 struct bfd_hash_table *table,
244 const char *string)
245 {
246 struct alpha_elf_link_hash_entry *ret =
247 (struct alpha_elf_link_hash_entry *) entry;
248
249 /* Allocate the structure if it has not already been allocated by a
250 subclass. */
251 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
252 ret = ((struct alpha_elf_link_hash_entry *)
253 bfd_hash_allocate (table,
254 sizeof (struct alpha_elf_link_hash_entry)));
255 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
256 return (struct bfd_hash_entry *) ret;
257
258 /* Call the allocation method of the superclass. */
259 ret = ((struct alpha_elf_link_hash_entry *)
260 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
261 table, string));
262 if (ret != (struct alpha_elf_link_hash_entry *) NULL)
263 {
264 /* Set local fields. */
265 memset (&ret->esym, 0, sizeof (EXTR));
266 /* We use -2 as a marker to indicate that the information has
267 not been set. -1 means there is no associated ifd. */
268 ret->esym.ifd = -2;
269 ret->flags = 0;
270 ret->got_entries = NULL;
271 ret->reloc_entries = NULL;
272 }
273
274 return (struct bfd_hash_entry *) ret;
275 }
276
277 /* Create a Alpha ELF linker hash table. */
278
279 static struct bfd_link_hash_table *
280 elf64_alpha_bfd_link_hash_table_create (bfd *abfd)
281 {
282 struct alpha_elf_link_hash_table *ret;
283 bfd_size_type amt = sizeof (struct alpha_elf_link_hash_table);
284
285 ret = (struct alpha_elf_link_hash_table *) bfd_zmalloc (amt);
286 if (ret == (struct alpha_elf_link_hash_table *) NULL)
287 return NULL;
288
289 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
290 elf64_alpha_link_hash_newfunc,
291 sizeof (struct alpha_elf_link_hash_entry),
292 ALPHA_ELF_DATA))
293 {
294 free (ret);
295 return NULL;
296 }
297
298 return &ret->root.root;
299 }
300 \f
301 /* We have some private fields hanging off of the elf_tdata structure. */
302
303 struct alpha_elf_obj_tdata
304 {
305 struct elf_obj_tdata root;
306
307 /* For every input file, these are the got entries for that object's
308 local symbols. */
309 struct alpha_elf_got_entry ** local_got_entries;
310
311 /* For every input file, this is the object that owns the got that
312 this input file uses. */
313 bfd *gotobj;
314
315 /* For every got, this is a linked list through the objects using this got */
316 bfd *in_got_link_next;
317
318 /* For every got, this is a link to the next got subsegment. */
319 bfd *got_link_next;
320
321 /* For every got, this is the section. */
322 asection *got;
323
324 /* For every got, this is it's total number of words. */
325 int total_got_size;
326
327 /* For every got, this is the sum of the number of words required
328 to hold all of the member object's local got. */
329 int local_got_size;
330 };
331
332 #define alpha_elf_tdata(abfd) \
333 ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
334
335 #define is_alpha_elf(bfd) \
336 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
337 && elf_tdata (bfd) != NULL \
338 && elf_object_id (bfd) == ALPHA_ELF_DATA)
339
340 static bfd_boolean
341 elf64_alpha_mkobject (bfd *abfd)
342 {
343 return bfd_elf_allocate_object (abfd, sizeof (struct alpha_elf_obj_tdata),
344 ALPHA_ELF_DATA);
345 }
346
347 static bfd_boolean
348 elf64_alpha_object_p (bfd *abfd)
349 {
350 /* Set the right machine number for an Alpha ELF file. */
351 return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
352 }
353 \f
354 /* A relocation function which doesn't do anything. */
355
356 static bfd_reloc_status_type
357 elf64_alpha_reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
358 asymbol *sym ATTRIBUTE_UNUSED,
359 PTR data ATTRIBUTE_UNUSED, asection *sec,
360 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
361 {
362 if (output_bfd)
363 reloc->address += sec->output_offset;
364 return bfd_reloc_ok;
365 }
366
367 /* A relocation function used for an unsupported reloc. */
368
369 static bfd_reloc_status_type
370 elf64_alpha_reloc_bad (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
371 asymbol *sym ATTRIBUTE_UNUSED,
372 PTR data ATTRIBUTE_UNUSED, asection *sec,
373 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
374 {
375 if (output_bfd)
376 reloc->address += sec->output_offset;
377 return bfd_reloc_notsupported;
378 }
379
380 /* Do the work of the GPDISP relocation. */
381
382 static bfd_reloc_status_type
383 elf64_alpha_do_reloc_gpdisp (bfd *abfd, bfd_vma gpdisp, bfd_byte *p_ldah,
384 bfd_byte *p_lda)
385 {
386 bfd_reloc_status_type ret = bfd_reloc_ok;
387 bfd_vma addend;
388 unsigned long i_ldah, i_lda;
389
390 i_ldah = bfd_get_32 (abfd, p_ldah);
391 i_lda = bfd_get_32 (abfd, p_lda);
392
393 /* Complain if the instructions are not correct. */
394 if (((i_ldah >> 26) & 0x3f) != 0x09
395 || ((i_lda >> 26) & 0x3f) != 0x08)
396 ret = bfd_reloc_dangerous;
397
398 /* Extract the user-supplied offset, mirroring the sign extensions
399 that the instructions perform. */
400 addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
401 addend = (addend ^ 0x80008000) - 0x80008000;
402
403 gpdisp += addend;
404
405 if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
406 || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
407 ret = bfd_reloc_overflow;
408
409 /* compensate for the sign extension again. */
410 i_ldah = ((i_ldah & 0xffff0000)
411 | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
412 i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);
413
414 bfd_put_32 (abfd, (bfd_vma) i_ldah, p_ldah);
415 bfd_put_32 (abfd, (bfd_vma) i_lda, p_lda);
416
417 return ret;
418 }
419
420 /* The special function for the GPDISP reloc. */
421
422 static bfd_reloc_status_type
423 elf64_alpha_reloc_gpdisp (bfd *abfd, arelent *reloc_entry,
424 asymbol *sym ATTRIBUTE_UNUSED, PTR data,
425 asection *input_section, bfd *output_bfd,
426 char **err_msg)
427 {
428 bfd_reloc_status_type ret;
429 bfd_vma gp, relocation;
430 bfd_vma high_address;
431 bfd_byte *p_ldah, *p_lda;
432
433 /* Don't do anything if we're not doing a final link. */
434 if (output_bfd)
435 {
436 reloc_entry->address += input_section->output_offset;
437 return bfd_reloc_ok;
438 }
439
440 high_address = bfd_get_section_limit (abfd, input_section);
441 if (reloc_entry->address > high_address
442 || reloc_entry->address + reloc_entry->addend > high_address)
443 return bfd_reloc_outofrange;
444
445 /* The gp used in the portion of the output object to which this
446 input object belongs is cached on the input bfd. */
447 gp = _bfd_get_gp_value (abfd);
448
449 relocation = (input_section->output_section->vma
450 + input_section->output_offset
451 + reloc_entry->address);
452
453 p_ldah = (bfd_byte *) data + reloc_entry->address;
454 p_lda = p_ldah + reloc_entry->addend;
455
456 ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);
457
458 /* Complain if the instructions are not correct. */
459 if (ret == bfd_reloc_dangerous)
460 *err_msg = _("GPDISP relocation did not find ldah and lda instructions");
461
462 return ret;
463 }
464
465 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
466 from smaller values. Start with zero, widen, *then* decrement. */
467 #define MINUS_ONE (((bfd_vma)0) - 1)
468
469
470 #define SKIP_HOWTO(N) \
471 HOWTO(N, 0, 0, 0, 0, 0, complain_overflow_dont, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)
472
473 static reloc_howto_type elf64_alpha_howto_table[] =
474 {
475 HOWTO (R_ALPHA_NONE, /* type */
476 0, /* rightshift */
477 0, /* size (0 = byte, 1 = short, 2 = long) */
478 8, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont, /* complain_on_overflow */
482 elf64_alpha_reloc_nil, /* special_function */
483 "NONE", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 /* A 32 bit reference to a symbol. */
490 HOWTO (R_ALPHA_REFLONG, /* type */
491 0, /* rightshift */
492 2, /* size (0 = byte, 1 = short, 2 = long) */
493 32, /* bitsize */
494 FALSE, /* pc_relative */
495 0, /* bitpos */
496 complain_overflow_bitfield, /* complain_on_overflow */
497 bfd_elf_generic_reloc, /* special_function */
498 "REFLONG", /* name */
499 FALSE, /* partial_inplace */
500 0xffffffff, /* src_mask */
501 0xffffffff, /* dst_mask */
502 FALSE), /* pcrel_offset */
503
504 /* A 64 bit reference to a symbol. */
505 HOWTO (R_ALPHA_REFQUAD, /* type */
506 0, /* rightshift */
507 4, /* size (0 = byte, 1 = short, 2 = long) */
508 64, /* bitsize */
509 FALSE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_bitfield, /* complain_on_overflow */
512 bfd_elf_generic_reloc, /* special_function */
513 "REFQUAD", /* name */
514 FALSE, /* partial_inplace */
515 MINUS_ONE, /* src_mask */
516 MINUS_ONE, /* dst_mask */
517 FALSE), /* pcrel_offset */
518
519 /* A 32 bit GP relative offset. This is just like REFLONG except
520 that when the value is used the value of the gp register will be
521 added in. */
522 HOWTO (R_ALPHA_GPREL32, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_bitfield, /* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "GPREL32", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 /* Used for an instruction that refers to memory off the GP register. */
537 HOWTO (R_ALPHA_LITERAL, /* type */
538 0, /* rightshift */
539 1, /* size (0 = byte, 1 = short, 2 = long) */
540 16, /* bitsize */
541 FALSE, /* pc_relative */
542 0, /* bitpos */
543 complain_overflow_signed, /* complain_on_overflow */
544 bfd_elf_generic_reloc, /* special_function */
545 "ELF_LITERAL", /* name */
546 FALSE, /* partial_inplace */
547 0xffff, /* src_mask */
548 0xffff, /* dst_mask */
549 FALSE), /* pcrel_offset */
550
551 /* This reloc only appears immediately following an ELF_LITERAL reloc.
552 It identifies a use of the literal. The symbol index is special:
553 1 means the literal address is in the base register of a memory
554 format instruction; 2 means the literal address is in the byte
555 offset register of a byte-manipulation instruction; 3 means the
556 literal address is in the target register of a jsr instruction.
557 This does not actually do any relocation. */
558 HOWTO (R_ALPHA_LITUSE, /* type */
559 0, /* rightshift */
560 1, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_dont, /* complain_on_overflow */
565 elf64_alpha_reloc_nil, /* special_function */
566 "LITUSE", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Load the gp register. This is always used for a ldah instruction
573 which loads the upper 16 bits of the gp register. The symbol
574 index of the GPDISP instruction is an offset in bytes to the lda
575 instruction that loads the lower 16 bits. The value to use for
576 the relocation is the difference between the GP value and the
577 current location; the load will always be done against a register
578 holding the current address.
579
580 NOTE: Unlike ECOFF, partial in-place relocation is not done. If
581 any offset is present in the instructions, it is an offset from
582 the register to the ldah instruction. This lets us avoid any
583 stupid hackery like inventing a gp value to do partial relocation
584 against. Also unlike ECOFF, we do the whole relocation off of
585 the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd,
586 space consuming bit, that, since all the information was present
587 in the GPDISP_HI16 reloc. */
588 HOWTO (R_ALPHA_GPDISP, /* type */
589 16, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 16, /* bitsize */
592 FALSE, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_dont, /* complain_on_overflow */
595 elf64_alpha_reloc_gpdisp, /* special_function */
596 "GPDISP", /* name */
597 FALSE, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 TRUE), /* pcrel_offset */
601
602 /* A 21 bit branch. */
603 HOWTO (R_ALPHA_BRADDR, /* type */
604 2, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 21, /* bitsize */
607 TRUE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 "BRADDR", /* name */
612 FALSE, /* partial_inplace */
613 0x1fffff, /* src_mask */
614 0x1fffff, /* dst_mask */
615 TRUE), /* pcrel_offset */
616
617 /* A hint for a jump to a register. */
618 HOWTO (R_ALPHA_HINT, /* type */
619 2, /* rightshift */
620 1, /* size (0 = byte, 1 = short, 2 = long) */
621 14, /* bitsize */
622 TRUE, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_dont, /* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "HINT", /* name */
627 FALSE, /* partial_inplace */
628 0x3fff, /* src_mask */
629 0x3fff, /* dst_mask */
630 TRUE), /* pcrel_offset */
631
632 /* 16 bit PC relative offset. */
633 HOWTO (R_ALPHA_SREL16, /* type */
634 0, /* rightshift */
635 1, /* size (0 = byte, 1 = short, 2 = long) */
636 16, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "SREL16", /* name */
642 FALSE, /* partial_inplace */
643 0xffff, /* src_mask */
644 0xffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* 32 bit PC relative offset. */
648 HOWTO (R_ALPHA_SREL32, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 TRUE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_signed, /* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "SREL32", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 TRUE), /* pcrel_offset */
661
662 /* A 64 bit PC relative offset. */
663 HOWTO (R_ALPHA_SREL64, /* type */
664 0, /* rightshift */
665 4, /* size (0 = byte, 1 = short, 2 = long) */
666 64, /* bitsize */
667 TRUE, /* pc_relative */
668 0, /* bitpos */
669 complain_overflow_signed, /* complain_on_overflow */
670 bfd_elf_generic_reloc, /* special_function */
671 "SREL64", /* name */
672 FALSE, /* partial_inplace */
673 MINUS_ONE, /* src_mask */
674 MINUS_ONE, /* dst_mask */
675 TRUE), /* pcrel_offset */
676
677 /* Skip 12 - 16; deprecated ECOFF relocs. */
678 SKIP_HOWTO (12),
679 SKIP_HOWTO (13),
680 SKIP_HOWTO (14),
681 SKIP_HOWTO (15),
682 SKIP_HOWTO (16),
683
684 /* The high 16 bits of the displacement from GP to the target. */
685 HOWTO (R_ALPHA_GPRELHIGH,
686 0, /* rightshift */
687 1, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_signed, /* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "GPRELHIGH", /* name */
694 FALSE, /* partial_inplace */
695 0xffff, /* src_mask */
696 0xffff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 /* The low 16 bits of the displacement from GP to the target. */
700 HOWTO (R_ALPHA_GPRELLOW,
701 0, /* rightshift */
702 1, /* size (0 = byte, 1 = short, 2 = long) */
703 16, /* bitsize */
704 FALSE, /* pc_relative */
705 0, /* bitpos */
706 complain_overflow_dont, /* complain_on_overflow */
707 bfd_elf_generic_reloc, /* special_function */
708 "GPRELLOW", /* name */
709 FALSE, /* partial_inplace */
710 0xffff, /* src_mask */
711 0xffff, /* dst_mask */
712 FALSE), /* pcrel_offset */
713
714 /* A 16-bit displacement from the GP to the target. */
715 HOWTO (R_ALPHA_GPREL16,
716 0, /* rightshift */
717 1, /* size (0 = byte, 1 = short, 2 = long) */
718 16, /* bitsize */
719 FALSE, /* pc_relative */
720 0, /* bitpos */
721 complain_overflow_signed, /* complain_on_overflow */
722 bfd_elf_generic_reloc, /* special_function */
723 "GPREL16", /* name */
724 FALSE, /* partial_inplace */
725 0xffff, /* src_mask */
726 0xffff, /* dst_mask */
727 FALSE), /* pcrel_offset */
728
729 /* Skip 20 - 23; deprecated ECOFF relocs. */
730 SKIP_HOWTO (20),
731 SKIP_HOWTO (21),
732 SKIP_HOWTO (22),
733 SKIP_HOWTO (23),
734
735 /* Misc ELF relocations. */
736
737 /* A dynamic relocation to copy the target into our .dynbss section. */
738 /* Not generated, as all Alpha objects use PIC, so it is not needed. It
739 is present because every other ELF has one, but should not be used
740 because .dynbss is an ugly thing. */
741 HOWTO (R_ALPHA_COPY,
742 0,
743 0,
744 0,
745 FALSE,
746 0,
747 complain_overflow_dont,
748 bfd_elf_generic_reloc,
749 "COPY",
750 FALSE,
751 0,
752 0,
753 TRUE),
754
755 /* A dynamic relocation for a .got entry. */
756 HOWTO (R_ALPHA_GLOB_DAT,
757 0,
758 0,
759 0,
760 FALSE,
761 0,
762 complain_overflow_dont,
763 bfd_elf_generic_reloc,
764 "GLOB_DAT",
765 FALSE,
766 0,
767 0,
768 TRUE),
769
770 /* A dynamic relocation for a .plt entry. */
771 HOWTO (R_ALPHA_JMP_SLOT,
772 0,
773 0,
774 0,
775 FALSE,
776 0,
777 complain_overflow_dont,
778 bfd_elf_generic_reloc,
779 "JMP_SLOT",
780 FALSE,
781 0,
782 0,
783 TRUE),
784
785 /* A dynamic relocation to add the base of the DSO to a 64-bit field. */
786 HOWTO (R_ALPHA_RELATIVE,
787 0,
788 0,
789 0,
790 FALSE,
791 0,
792 complain_overflow_dont,
793 bfd_elf_generic_reloc,
794 "RELATIVE",
795 FALSE,
796 0,
797 0,
798 TRUE),
799
800 /* A 21 bit branch that adjusts for gp loads. */
801 HOWTO (R_ALPHA_BRSGP, /* type */
802 2, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 21, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed, /* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "BRSGP", /* name */
810 FALSE, /* partial_inplace */
811 0x1fffff, /* src_mask */
812 0x1fffff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 /* Creates a tls_index for the symbol in the got. */
816 HOWTO (R_ALPHA_TLSGD, /* type */
817 0, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_signed, /* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "TLSGD", /* name */
825 FALSE, /* partial_inplace */
826 0xffff, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* Creates a tls_index for the (current) module in the got. */
831 HOWTO (R_ALPHA_TLSLDM, /* type */
832 0, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_signed, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "TLSLDM", /* name */
840 FALSE, /* partial_inplace */
841 0xffff, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* A dynamic relocation for a DTP module entry. */
846 HOWTO (R_ALPHA_DTPMOD64, /* type */
847 0, /* rightshift */
848 4, /* size (0 = byte, 1 = short, 2 = long) */
849 64, /* bitsize */
850 FALSE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_bitfield, /* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "DTPMOD64", /* name */
855 FALSE, /* partial_inplace */
856 MINUS_ONE, /* src_mask */
857 MINUS_ONE, /* dst_mask */
858 FALSE), /* pcrel_offset */
859
860 /* Creates a 64-bit offset in the got for the displacement
861 from DTP to the target. */
862 HOWTO (R_ALPHA_GOTDTPREL, /* type */
863 0, /* rightshift */
864 1, /* size (0 = byte, 1 = short, 2 = long) */
865 16, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_signed, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "GOTDTPREL", /* name */
871 FALSE, /* partial_inplace */
872 0xffff, /* src_mask */
873 0xffff, /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* A dynamic relocation for a displacement from DTP to the target. */
877 HOWTO (R_ALPHA_DTPREL64, /* type */
878 0, /* rightshift */
879 4, /* size (0 = byte, 1 = short, 2 = long) */
880 64, /* bitsize */
881 FALSE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_bitfield, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "DTPREL64", /* name */
886 FALSE, /* partial_inplace */
887 MINUS_ONE, /* src_mask */
888 MINUS_ONE, /* dst_mask */
889 FALSE), /* pcrel_offset */
890
891 /* The high 16 bits of the displacement from DTP to the target. */
892 HOWTO (R_ALPHA_DTPRELHI, /* type */
893 0, /* rightshift */
894 1, /* size (0 = byte, 1 = short, 2 = long) */
895 16, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_signed, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 "DTPRELHI", /* name */
901 FALSE, /* partial_inplace */
902 0xffff, /* src_mask */
903 0xffff, /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* The low 16 bits of the displacement from DTP to the target. */
907 HOWTO (R_ALPHA_DTPRELLO, /* type */
908 0, /* rightshift */
909 1, /* size (0 = byte, 1 = short, 2 = long) */
910 16, /* bitsize */
911 FALSE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "DTPRELLO", /* name */
916 FALSE, /* partial_inplace */
917 0xffff, /* src_mask */
918 0xffff, /* dst_mask */
919 FALSE), /* pcrel_offset */
920
921 /* A 16-bit displacement from DTP to the target. */
922 HOWTO (R_ALPHA_DTPREL16, /* type */
923 0, /* rightshift */
924 1, /* size (0 = byte, 1 = short, 2 = long) */
925 16, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_signed, /* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "DTPREL16", /* name */
931 FALSE, /* partial_inplace */
932 0xffff, /* src_mask */
933 0xffff, /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* Creates a 64-bit offset in the got for the displacement
937 from TP to the target. */
938 HOWTO (R_ALPHA_GOTTPREL, /* type */
939 0, /* rightshift */
940 1, /* size (0 = byte, 1 = short, 2 = long) */
941 16, /* bitsize */
942 FALSE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_signed, /* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "GOTTPREL", /* name */
947 FALSE, /* partial_inplace */
948 0xffff, /* src_mask */
949 0xffff, /* dst_mask */
950 FALSE), /* pcrel_offset */
951
952 /* A dynamic relocation for a displacement from TP to the target. */
953 HOWTO (R_ALPHA_TPREL64, /* type */
954 0, /* rightshift */
955 4, /* size (0 = byte, 1 = short, 2 = long) */
956 64, /* bitsize */
957 FALSE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_bitfield, /* complain_on_overflow */
960 bfd_elf_generic_reloc, /* special_function */
961 "TPREL64", /* name */
962 FALSE, /* partial_inplace */
963 MINUS_ONE, /* src_mask */
964 MINUS_ONE, /* dst_mask */
965 FALSE), /* pcrel_offset */
966
967 /* The high 16 bits of the displacement from TP to the target. */
968 HOWTO (R_ALPHA_TPRELHI, /* type */
969 0, /* rightshift */
970 1, /* size (0 = byte, 1 = short, 2 = long) */
971 16, /* bitsize */
972 FALSE, /* pc_relative */
973 0, /* bitpos */
974 complain_overflow_signed, /* complain_on_overflow */
975 bfd_elf_generic_reloc, /* special_function */
976 "TPRELHI", /* name */
977 FALSE, /* partial_inplace */
978 0xffff, /* src_mask */
979 0xffff, /* dst_mask */
980 FALSE), /* pcrel_offset */
981
982 /* The low 16 bits of the displacement from TP to the target. */
983 HOWTO (R_ALPHA_TPRELLO, /* type */
984 0, /* rightshift */
985 1, /* size (0 = byte, 1 = short, 2 = long) */
986 16, /* bitsize */
987 FALSE, /* pc_relative */
988 0, /* bitpos */
989 complain_overflow_dont, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "TPRELLO", /* name */
992 FALSE, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 FALSE), /* pcrel_offset */
996
997 /* A 16-bit displacement from TP to the target. */
998 HOWTO (R_ALPHA_TPREL16, /* type */
999 0, /* rightshift */
1000 1, /* size (0 = byte, 1 = short, 2 = long) */
1001 16, /* bitsize */
1002 FALSE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_signed, /* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "TPREL16", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffff, /* src_mask */
1009 0xffff, /* dst_mask */
1010 FALSE), /* pcrel_offset */
1011 };
1012
1013 /* A mapping from BFD reloc types to Alpha ELF reloc types. */
1014
1015 struct elf_reloc_map
1016 {
1017 bfd_reloc_code_real_type bfd_reloc_val;
1018 int elf_reloc_val;
1019 };
1020
1021 static const struct elf_reloc_map elf64_alpha_reloc_map[] =
1022 {
1023 {BFD_RELOC_NONE, R_ALPHA_NONE},
1024 {BFD_RELOC_32, R_ALPHA_REFLONG},
1025 {BFD_RELOC_64, R_ALPHA_REFQUAD},
1026 {BFD_RELOC_CTOR, R_ALPHA_REFQUAD},
1027 {BFD_RELOC_GPREL32, R_ALPHA_GPREL32},
1028 {BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL},
1029 {BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE},
1030 {BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP},
1031 {BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR},
1032 {BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT},
1033 {BFD_RELOC_16_PCREL, R_ALPHA_SREL16},
1034 {BFD_RELOC_32_PCREL, R_ALPHA_SREL32},
1035 {BFD_RELOC_64_PCREL, R_ALPHA_SREL64},
1036 {BFD_RELOC_ALPHA_GPREL_HI16, R_ALPHA_GPRELHIGH},
1037 {BFD_RELOC_ALPHA_GPREL_LO16, R_ALPHA_GPRELLOW},
1038 {BFD_RELOC_GPREL16, R_ALPHA_GPREL16},
1039 {BFD_RELOC_ALPHA_BRSGP, R_ALPHA_BRSGP},
1040 {BFD_RELOC_ALPHA_TLSGD, R_ALPHA_TLSGD},
1041 {BFD_RELOC_ALPHA_TLSLDM, R_ALPHA_TLSLDM},
1042 {BFD_RELOC_ALPHA_DTPMOD64, R_ALPHA_DTPMOD64},
1043 {BFD_RELOC_ALPHA_GOTDTPREL16, R_ALPHA_GOTDTPREL},
1044 {BFD_RELOC_ALPHA_DTPREL64, R_ALPHA_DTPREL64},
1045 {BFD_RELOC_ALPHA_DTPREL_HI16, R_ALPHA_DTPRELHI},
1046 {BFD_RELOC_ALPHA_DTPREL_LO16, R_ALPHA_DTPRELLO},
1047 {BFD_RELOC_ALPHA_DTPREL16, R_ALPHA_DTPREL16},
1048 {BFD_RELOC_ALPHA_GOTTPREL16, R_ALPHA_GOTTPREL},
1049 {BFD_RELOC_ALPHA_TPREL64, R_ALPHA_TPREL64},
1050 {BFD_RELOC_ALPHA_TPREL_HI16, R_ALPHA_TPRELHI},
1051 {BFD_RELOC_ALPHA_TPREL_LO16, R_ALPHA_TPRELLO},
1052 {BFD_RELOC_ALPHA_TPREL16, R_ALPHA_TPREL16},
1053 };
1054
1055 /* Given a BFD reloc type, return a HOWTO structure. */
1056
1057 static reloc_howto_type *
1058 elf64_alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1059 bfd_reloc_code_real_type code)
1060 {
1061 const struct elf_reloc_map *i, *e;
1062 i = e = elf64_alpha_reloc_map;
1063 e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
1064 for (; i != e; ++i)
1065 {
1066 if (i->bfd_reloc_val == code)
1067 return &elf64_alpha_howto_table[i->elf_reloc_val];
1068 }
1069 return 0;
1070 }
1071
1072 static reloc_howto_type *
1073 elf64_alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1074 const char *r_name)
1075 {
1076 unsigned int i;
1077
1078 for (i = 0;
1079 i < (sizeof (elf64_alpha_howto_table)
1080 / sizeof (elf64_alpha_howto_table[0]));
1081 i++)
1082 if (elf64_alpha_howto_table[i].name != NULL
1083 && strcasecmp (elf64_alpha_howto_table[i].name, r_name) == 0)
1084 return &elf64_alpha_howto_table[i];
1085
1086 return NULL;
1087 }
1088
1089 /* Given an Alpha ELF reloc type, fill in an arelent structure. */
1090
1091 static void
1092 elf64_alpha_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
1093 Elf_Internal_Rela *dst)
1094 {
1095 unsigned r_type = ELF64_R_TYPE(dst->r_info);
1096 BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max);
1097 cache_ptr->howto = &elf64_alpha_howto_table[r_type];
1098 }
1099
1100 /* These two relocations create a two-word entry in the got. */
1101 #define alpha_got_entry_size(r_type) \
1102 (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)
1103
1104 /* This is PT_TLS segment p_vaddr. */
1105 #define alpha_get_dtprel_base(info) \
1106 (elf_hash_table (info)->tls_sec->vma)
1107
1108 /* Main program TLS (whose template starts at PT_TLS p_vaddr)
1109 is assigned offset round(16, PT_TLS p_align). */
1110 #define alpha_get_tprel_base(info) \
1111 (elf_hash_table (info)->tls_sec->vma \
1112 - align_power ((bfd_vma) 16, \
1113 elf_hash_table (info)->tls_sec->alignment_power))
1114 \f
1115 /* Handle an Alpha specific section when reading an object file. This
1116 is called when bfd_section_from_shdr finds a section with an unknown
1117 type.
1118 FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure
1119 how to. */
1120
1121 static bfd_boolean
1122 elf64_alpha_section_from_shdr (bfd *abfd,
1123 Elf_Internal_Shdr *hdr,
1124 const char *name,
1125 int shindex)
1126 {
1127 asection *newsect;
1128
1129 /* There ought to be a place to keep ELF backend specific flags, but
1130 at the moment there isn't one. We just keep track of the
1131 sections by their name, instead. Fortunately, the ABI gives
1132 suggested names for all the MIPS specific sections, so we will
1133 probably get away with this. */
1134 switch (hdr->sh_type)
1135 {
1136 case SHT_ALPHA_DEBUG:
1137 if (strcmp (name, ".mdebug") != 0)
1138 return FALSE;
1139 break;
1140 default:
1141 return FALSE;
1142 }
1143
1144 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1145 return FALSE;
1146 newsect = hdr->bfd_section;
1147
1148 if (hdr->sh_type == SHT_ALPHA_DEBUG)
1149 {
1150 if (! bfd_set_section_flags (abfd, newsect,
1151 (bfd_get_section_flags (abfd, newsect)
1152 | SEC_DEBUGGING)))
1153 return FALSE;
1154 }
1155
1156 return TRUE;
1157 }
1158
1159 /* Convert Alpha specific section flags to bfd internal section flags. */
1160
1161 static bfd_boolean
1162 elf64_alpha_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
1163 {
1164 if (hdr->sh_flags & SHF_ALPHA_GPREL)
1165 *flags |= SEC_SMALL_DATA;
1166
1167 return TRUE;
1168 }
1169
1170 /* Set the correct type for an Alpha ELF section. We do this by the
1171 section name, which is a hack, but ought to work. */
1172
1173 static bfd_boolean
1174 elf64_alpha_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
1175 {
1176 register const char *name;
1177
1178 name = bfd_get_section_name (abfd, sec);
1179
1180 if (strcmp (name, ".mdebug") == 0)
1181 {
1182 hdr->sh_type = SHT_ALPHA_DEBUG;
1183 /* In a shared object on Irix 5.3, the .mdebug section has an
1184 entsize of 0. FIXME: Does this matter? */
1185 if ((abfd->flags & DYNAMIC) != 0 )
1186 hdr->sh_entsize = 0;
1187 else
1188 hdr->sh_entsize = 1;
1189 }
1190 else if ((sec->flags & SEC_SMALL_DATA)
1191 || strcmp (name, ".sdata") == 0
1192 || strcmp (name, ".sbss") == 0
1193 || strcmp (name, ".lit4") == 0
1194 || strcmp (name, ".lit8") == 0)
1195 hdr->sh_flags |= SHF_ALPHA_GPREL;
1196
1197 return TRUE;
1198 }
1199
1200 /* Hook called by the linker routine which adds symbols from an object
1201 file. We use it to put .comm items in .sbss, and not .bss. */
1202
1203 static bfd_boolean
1204 elf64_alpha_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
1205 Elf_Internal_Sym *sym,
1206 const char **namep ATTRIBUTE_UNUSED,
1207 flagword *flagsp ATTRIBUTE_UNUSED,
1208 asection **secp, bfd_vma *valp)
1209 {
1210 if (sym->st_shndx == SHN_COMMON
1211 && !info->relocatable
1212 && sym->st_size <= elf_gp_size (abfd))
1213 {
1214 /* Common symbols less than or equal to -G nn bytes are
1215 automatically put into .sbss. */
1216
1217 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1218
1219 if (scomm == NULL)
1220 {
1221 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1222 (SEC_ALLOC
1223 | SEC_IS_COMMON
1224 | SEC_LINKER_CREATED));
1225 if (scomm == NULL)
1226 return FALSE;
1227 }
1228
1229 *secp = scomm;
1230 *valp = sym->st_size;
1231 }
1232
1233 return TRUE;
1234 }
1235
1236 /* Create the .got section. */
1237
1238 static bfd_boolean
1239 elf64_alpha_create_got_section (bfd *abfd,
1240 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1241 {
1242 flagword flags;
1243 asection *s;
1244
1245 if (! is_alpha_elf (abfd))
1246 return FALSE;
1247
1248 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1249 | SEC_LINKER_CREATED);
1250 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
1251 if (s == NULL
1252 || !bfd_set_section_alignment (abfd, s, 3))
1253 return FALSE;
1254
1255 alpha_elf_tdata (abfd)->got = s;
1256
1257 /* Make sure the object's gotobj is set to itself so that we default
1258 to every object with its own .got. We'll merge .gots later once
1259 we've collected each object's info. */
1260 alpha_elf_tdata (abfd)->gotobj = abfd;
1261
1262 return TRUE;
1263 }
1264
1265 /* Create all the dynamic sections. */
1266
1267 static bfd_boolean
1268 elf64_alpha_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1269 {
1270 asection *s;
1271 flagword flags;
1272 struct elf_link_hash_entry *h;
1273
1274 if (! is_alpha_elf (abfd))
1275 return FALSE;
1276
1277 /* We need to create .plt, .rela.plt, .got, and .rela.got sections. */
1278
1279 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1280 | SEC_LINKER_CREATED
1281 | (elf64_alpha_use_secureplt ? SEC_READONLY : 0));
1282 s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags);
1283 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4))
1284 return FALSE;
1285
1286 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
1287 .plt section. */
1288 h = _bfd_elf_define_linkage_sym (abfd, info, s,
1289 "_PROCEDURE_LINKAGE_TABLE_");
1290 elf_hash_table (info)->hplt = h;
1291 if (h == NULL)
1292 return FALSE;
1293
1294 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1295 | SEC_LINKER_CREATED | SEC_READONLY);
1296 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", flags);
1297 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1298 return FALSE;
1299
1300 if (elf64_alpha_use_secureplt)
1301 {
1302 flags = SEC_ALLOC | SEC_LINKER_CREATED;
1303 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
1304 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1305 return FALSE;
1306 }
1307
1308 /* We may or may not have created a .got section for this object, but
1309 we definitely havn't done the rest of the work. */
1310
1311 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1312 {
1313 if (!elf64_alpha_create_got_section (abfd, info))
1314 return FALSE;
1315 }
1316
1317 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 s = bfd_make_section_anyway_with_flags (abfd, ".rela.got", flags);
1320 if (s == NULL
1321 || !bfd_set_section_alignment (abfd, s, 3))
1322 return FALSE;
1323
1324 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
1325 dynobj's .got section. We don't do this in the linker script
1326 because we don't want to define the symbol if we are not creating
1327 a global offset table. */
1328 h = _bfd_elf_define_linkage_sym (abfd, info, alpha_elf_tdata(abfd)->got,
1329 "_GLOBAL_OFFSET_TABLE_");
1330 elf_hash_table (info)->hgot = h;
1331 if (h == NULL)
1332 return FALSE;
1333
1334 return TRUE;
1335 }
1336 \f
1337 /* Read ECOFF debugging information from a .mdebug section into a
1338 ecoff_debug_info structure. */
1339
1340 static bfd_boolean
1341 elf64_alpha_read_ecoff_info (bfd *abfd, asection *section,
1342 struct ecoff_debug_info *debug)
1343 {
1344 HDRR *symhdr;
1345 const struct ecoff_debug_swap *swap;
1346 char *ext_hdr = NULL;
1347
1348 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1349 memset (debug, 0, sizeof (*debug));
1350
1351 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
1352 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1353 goto error_return;
1354
1355 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
1356 swap->external_hdr_size))
1357 goto error_return;
1358
1359 symhdr = &debug->symbolic_header;
1360 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1361
1362 /* The symbolic header contains absolute file offsets and sizes to
1363 read. */
1364 #define READ(ptr, offset, count, size, type) \
1365 if (symhdr->count == 0) \
1366 debug->ptr = NULL; \
1367 else \
1368 { \
1369 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1370 debug->ptr = (type) bfd_malloc (amt); \
1371 if (debug->ptr == NULL) \
1372 goto error_return; \
1373 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
1374 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1375 goto error_return; \
1376 }
1377
1378 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1379 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
1380 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
1381 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
1382 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
1383 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1384 union aux_ext *);
1385 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1386 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1387 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
1388 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
1389 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
1390 #undef READ
1391
1392 debug->fdr = NULL;
1393
1394 return TRUE;
1395
1396 error_return:
1397 if (ext_hdr != NULL)
1398 free (ext_hdr);
1399 if (debug->line != NULL)
1400 free (debug->line);
1401 if (debug->external_dnr != NULL)
1402 free (debug->external_dnr);
1403 if (debug->external_pdr != NULL)
1404 free (debug->external_pdr);
1405 if (debug->external_sym != NULL)
1406 free (debug->external_sym);
1407 if (debug->external_opt != NULL)
1408 free (debug->external_opt);
1409 if (debug->external_aux != NULL)
1410 free (debug->external_aux);
1411 if (debug->ss != NULL)
1412 free (debug->ss);
1413 if (debug->ssext != NULL)
1414 free (debug->ssext);
1415 if (debug->external_fdr != NULL)
1416 free (debug->external_fdr);
1417 if (debug->external_rfd != NULL)
1418 free (debug->external_rfd);
1419 if (debug->external_ext != NULL)
1420 free (debug->external_ext);
1421 return FALSE;
1422 }
1423
1424 /* Alpha ELF local labels start with '$'. */
1425
1426 static bfd_boolean
1427 elf64_alpha_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
1428 {
1429 return name[0] == '$';
1430 }
1431
1432 /* Alpha ELF follows MIPS ELF in using a special find_nearest_line
1433 routine in order to handle the ECOFF debugging information. We
1434 still call this mips_elf_find_line because of the slot
1435 find_line_info in elf_obj_tdata is declared that way. */
1436
1437 struct mips_elf_find_line
1438 {
1439 struct ecoff_debug_info d;
1440 struct ecoff_find_line i;
1441 };
1442
1443 static bfd_boolean
1444 elf64_alpha_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols,
1445 bfd_vma offset, const char **filename_ptr,
1446 const char **functionname_ptr,
1447 unsigned int *line_ptr)
1448 {
1449 asection *msec;
1450
1451 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
1452 filename_ptr, functionname_ptr,
1453 line_ptr, 0,
1454 &elf_tdata (abfd)->dwarf2_find_line_info))
1455 return TRUE;
1456
1457 msec = bfd_get_section_by_name (abfd, ".mdebug");
1458 if (msec != NULL)
1459 {
1460 flagword origflags;
1461 struct mips_elf_find_line *fi;
1462 const struct ecoff_debug_swap * const swap =
1463 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1464
1465 /* If we are called during a link, alpha_elf_final_link may have
1466 cleared the SEC_HAS_CONTENTS field. We force it back on here
1467 if appropriate (which it normally will be). */
1468 origflags = msec->flags;
1469 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
1470 msec->flags |= SEC_HAS_CONTENTS;
1471
1472 fi = elf_tdata (abfd)->find_line_info;
1473 if (fi == NULL)
1474 {
1475 bfd_size_type external_fdr_size;
1476 char *fraw_src;
1477 char *fraw_end;
1478 struct fdr *fdr_ptr;
1479 bfd_size_type amt = sizeof (struct mips_elf_find_line);
1480
1481 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
1482 if (fi == NULL)
1483 {
1484 msec->flags = origflags;
1485 return FALSE;
1486 }
1487
1488 if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
1489 {
1490 msec->flags = origflags;
1491 return FALSE;
1492 }
1493
1494 /* Swap in the FDR information. */
1495 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
1496 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
1497 if (fi->d.fdr == NULL)
1498 {
1499 msec->flags = origflags;
1500 return FALSE;
1501 }
1502 external_fdr_size = swap->external_fdr_size;
1503 fdr_ptr = fi->d.fdr;
1504 fraw_src = (char *) fi->d.external_fdr;
1505 fraw_end = (fraw_src
1506 + fi->d.symbolic_header.ifdMax * external_fdr_size);
1507 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
1508 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
1509
1510 elf_tdata (abfd)->find_line_info = fi;
1511
1512 /* Note that we don't bother to ever free this information.
1513 find_nearest_line is either called all the time, as in
1514 objdump -l, so the information should be saved, or it is
1515 rarely called, as in ld error messages, so the memory
1516 wasted is unimportant. Still, it would probably be a
1517 good idea for free_cached_info to throw it away. */
1518 }
1519
1520 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
1521 &fi->i, filename_ptr, functionname_ptr,
1522 line_ptr))
1523 {
1524 msec->flags = origflags;
1525 return TRUE;
1526 }
1527
1528 msec->flags = origflags;
1529 }
1530
1531 /* Fall back on the generic ELF find_nearest_line routine. */
1532
1533 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
1534 filename_ptr, functionname_ptr,
1535 line_ptr);
1536 }
1537 \f
1538 /* Structure used to pass information to alpha_elf_output_extsym. */
1539
1540 struct extsym_info
1541 {
1542 bfd *abfd;
1543 struct bfd_link_info *info;
1544 struct ecoff_debug_info *debug;
1545 const struct ecoff_debug_swap *swap;
1546 bfd_boolean failed;
1547 };
1548
1549 static bfd_boolean
1550 elf64_alpha_output_extsym (struct alpha_elf_link_hash_entry *h, PTR data)
1551 {
1552 struct extsym_info *einfo = (struct extsym_info *) data;
1553 bfd_boolean strip;
1554 asection *sec, *output_section;
1555
1556 if (h->root.root.type == bfd_link_hash_warning)
1557 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
1558
1559 if (h->root.indx == -2)
1560 strip = FALSE;
1561 else if ((h->root.def_dynamic
1562 || h->root.ref_dynamic
1563 || h->root.root.type == bfd_link_hash_new)
1564 && !h->root.def_regular
1565 && !h->root.ref_regular)
1566 strip = TRUE;
1567 else if (einfo->info->strip == strip_all
1568 || (einfo->info->strip == strip_some
1569 && bfd_hash_lookup (einfo->info->keep_hash,
1570 h->root.root.root.string,
1571 FALSE, FALSE) == NULL))
1572 strip = TRUE;
1573 else
1574 strip = FALSE;
1575
1576 if (strip)
1577 return TRUE;
1578
1579 if (h->esym.ifd == -2)
1580 {
1581 h->esym.jmptbl = 0;
1582 h->esym.cobol_main = 0;
1583 h->esym.weakext = 0;
1584 h->esym.reserved = 0;
1585 h->esym.ifd = ifdNil;
1586 h->esym.asym.value = 0;
1587 h->esym.asym.st = stGlobal;
1588
1589 if (h->root.root.type != bfd_link_hash_defined
1590 && h->root.root.type != bfd_link_hash_defweak)
1591 h->esym.asym.sc = scAbs;
1592 else
1593 {
1594 const char *name;
1595
1596 sec = h->root.root.u.def.section;
1597 output_section = sec->output_section;
1598
1599 /* When making a shared library and symbol h is the one from
1600 the another shared library, OUTPUT_SECTION may be null. */
1601 if (output_section == NULL)
1602 h->esym.asym.sc = scUndefined;
1603 else
1604 {
1605 name = bfd_section_name (output_section->owner, output_section);
1606
1607 if (strcmp (name, ".text") == 0)
1608 h->esym.asym.sc = scText;
1609 else if (strcmp (name, ".data") == 0)
1610 h->esym.asym.sc = scData;
1611 else if (strcmp (name, ".sdata") == 0)
1612 h->esym.asym.sc = scSData;
1613 else if (strcmp (name, ".rodata") == 0
1614 || strcmp (name, ".rdata") == 0)
1615 h->esym.asym.sc = scRData;
1616 else if (strcmp (name, ".bss") == 0)
1617 h->esym.asym.sc = scBss;
1618 else if (strcmp (name, ".sbss") == 0)
1619 h->esym.asym.sc = scSBss;
1620 else if (strcmp (name, ".init") == 0)
1621 h->esym.asym.sc = scInit;
1622 else if (strcmp (name, ".fini") == 0)
1623 h->esym.asym.sc = scFini;
1624 else
1625 h->esym.asym.sc = scAbs;
1626 }
1627 }
1628
1629 h->esym.asym.reserved = 0;
1630 h->esym.asym.index = indexNil;
1631 }
1632
1633 if (h->root.root.type == bfd_link_hash_common)
1634 h->esym.asym.value = h->root.root.u.c.size;
1635 else if (h->root.root.type == bfd_link_hash_defined
1636 || h->root.root.type == bfd_link_hash_defweak)
1637 {
1638 if (h->esym.asym.sc == scCommon)
1639 h->esym.asym.sc = scBss;
1640 else if (h->esym.asym.sc == scSCommon)
1641 h->esym.asym.sc = scSBss;
1642
1643 sec = h->root.root.u.def.section;
1644 output_section = sec->output_section;
1645 if (output_section != NULL)
1646 h->esym.asym.value = (h->root.root.u.def.value
1647 + sec->output_offset
1648 + output_section->vma);
1649 else
1650 h->esym.asym.value = 0;
1651 }
1652
1653 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1654 h->root.root.root.string,
1655 &h->esym))
1656 {
1657 einfo->failed = TRUE;
1658 return FALSE;
1659 }
1660
1661 return TRUE;
1662 }
1663 \f
1664 /* Search for and possibly create a got entry. */
1665
1666 static struct alpha_elf_got_entry *
1667 get_got_entry (bfd *abfd, struct alpha_elf_link_hash_entry *h,
1668 unsigned long r_type, unsigned long r_symndx,
1669 bfd_vma r_addend)
1670 {
1671 struct alpha_elf_got_entry *gotent;
1672 struct alpha_elf_got_entry **slot;
1673
1674 if (h)
1675 slot = &h->got_entries;
1676 else
1677 {
1678 /* This is a local .got entry -- record for merge. */
1679
1680 struct alpha_elf_got_entry **local_got_entries;
1681
1682 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
1683 if (!local_got_entries)
1684 {
1685 bfd_size_type size;
1686 Elf_Internal_Shdr *symtab_hdr;
1687
1688 symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
1689 size = symtab_hdr->sh_info;
1690 size *= sizeof (struct alpha_elf_got_entry *);
1691
1692 local_got_entries
1693 = (struct alpha_elf_got_entry **) bfd_zalloc (abfd, size);
1694 if (!local_got_entries)
1695 return NULL;
1696
1697 alpha_elf_tdata (abfd)->local_got_entries = local_got_entries;
1698 }
1699
1700 slot = &local_got_entries[r_symndx];
1701 }
1702
1703 for (gotent = *slot; gotent ; gotent = gotent->next)
1704 if (gotent->gotobj == abfd
1705 && gotent->reloc_type == r_type
1706 && gotent->addend == r_addend)
1707 break;
1708
1709 if (!gotent)
1710 {
1711 int entry_size;
1712 bfd_size_type amt;
1713
1714 amt = sizeof (struct alpha_elf_got_entry);
1715 gotent = (struct alpha_elf_got_entry *) bfd_alloc (abfd, amt);
1716 if (!gotent)
1717 return NULL;
1718
1719 gotent->gotobj = abfd;
1720 gotent->addend = r_addend;
1721 gotent->got_offset = -1;
1722 gotent->plt_offset = -1;
1723 gotent->use_count = 1;
1724 gotent->reloc_type = r_type;
1725 gotent->reloc_done = 0;
1726 gotent->reloc_xlated = 0;
1727
1728 gotent->next = *slot;
1729 *slot = gotent;
1730
1731 entry_size = alpha_got_entry_size (r_type);
1732 alpha_elf_tdata (abfd)->total_got_size += entry_size;
1733 if (!h)
1734 alpha_elf_tdata(abfd)->local_got_size += entry_size;
1735 }
1736 else
1737 gotent->use_count += 1;
1738
1739 return gotent;
1740 }
1741
1742 static bfd_boolean
1743 elf64_alpha_want_plt (struct alpha_elf_link_hash_entry *ah)
1744 {
1745 return ((ah->root.type == STT_FUNC
1746 || ah->root.root.type == bfd_link_hash_undefweak
1747 || ah->root.root.type == bfd_link_hash_undefined)
1748 && (ah->flags & ALPHA_ELF_LINK_HASH_LU_PLT) != 0
1749 && (ah->flags & ~ALPHA_ELF_LINK_HASH_LU_PLT) == 0);
1750 }
1751
1752 /* Handle dynamic relocations when doing an Alpha ELF link. */
1753
1754 static bfd_boolean
1755 elf64_alpha_check_relocs (bfd *abfd, struct bfd_link_info *info,
1756 asection *sec, const Elf_Internal_Rela *relocs)
1757 {
1758 bfd *dynobj;
1759 asection *sreloc;
1760 Elf_Internal_Shdr *symtab_hdr;
1761 struct alpha_elf_link_hash_entry **sym_hashes;
1762 const Elf_Internal_Rela *rel, *relend;
1763 bfd_size_type amt;
1764
1765 if (info->relocatable)
1766 return TRUE;
1767
1768 /* Don't do anything special with non-loaded, non-alloced sections.
1769 In particular, any relocs in such sections should not affect GOT
1770 and PLT reference counting (ie. we don't allow them to create GOT
1771 or PLT entries), there's no possibility or desire to optimize TLS
1772 relocs, and there's not much point in propagating relocs to shared
1773 libs that the dynamic linker won't relocate. */
1774 if ((sec->flags & SEC_ALLOC) == 0)
1775 return TRUE;
1776
1777 BFD_ASSERT (is_alpha_elf (abfd));
1778
1779 dynobj = elf_hash_table (info)->dynobj;
1780 if (dynobj == NULL)
1781 elf_hash_table (info)->dynobj = dynobj = abfd;
1782
1783 sreloc = NULL;
1784 symtab_hdr = &elf_symtab_hdr (abfd);
1785 sym_hashes = alpha_elf_sym_hashes (abfd);
1786
1787 relend = relocs + sec->reloc_count;
1788 for (rel = relocs; rel < relend; ++rel)
1789 {
1790 enum {
1791 NEED_GOT = 1,
1792 NEED_GOT_ENTRY = 2,
1793 NEED_DYNREL = 4
1794 };
1795
1796 unsigned long r_symndx, r_type;
1797 struct alpha_elf_link_hash_entry *h;
1798 unsigned int gotent_flags;
1799 bfd_boolean maybe_dynamic;
1800 unsigned int need;
1801 bfd_vma addend;
1802
1803 r_symndx = ELF64_R_SYM (rel->r_info);
1804 if (r_symndx < symtab_hdr->sh_info)
1805 h = NULL;
1806 else
1807 {
1808 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1809
1810 while (h->root.root.type == bfd_link_hash_indirect
1811 || h->root.root.type == bfd_link_hash_warning)
1812 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
1813
1814 h->root.ref_regular = 1;
1815 }
1816
1817 /* We can only get preliminary data on whether a symbol is
1818 locally or externally defined, as not all of the input files
1819 have yet been processed. Do something with what we know, as
1820 this may help reduce memory usage and processing time later. */
1821 maybe_dynamic = FALSE;
1822 if (h && ((info->shared
1823 && (!info->symbolic
1824 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
1825 || !h->root.def_regular
1826 || h->root.root.type == bfd_link_hash_defweak))
1827 maybe_dynamic = TRUE;
1828
1829 need = 0;
1830 gotent_flags = 0;
1831 r_type = ELF64_R_TYPE (rel->r_info);
1832 addend = rel->r_addend;
1833
1834 switch (r_type)
1835 {
1836 case R_ALPHA_LITERAL:
1837 need = NEED_GOT | NEED_GOT_ENTRY;
1838
1839 /* Remember how this literal is used from its LITUSEs.
1840 This will be important when it comes to decide if we can
1841 create a .plt entry for a function symbol. */
1842 while (++rel < relend && ELF64_R_TYPE (rel->r_info) == R_ALPHA_LITUSE)
1843 if (rel->r_addend >= 1 && rel->r_addend <= 6)
1844 gotent_flags |= 1 << rel->r_addend;
1845 --rel;
1846
1847 /* No LITUSEs -- presumably the address is used somehow. */
1848 if (gotent_flags == 0)
1849 gotent_flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
1850 break;
1851
1852 case R_ALPHA_GPDISP:
1853 case R_ALPHA_GPREL16:
1854 case R_ALPHA_GPREL32:
1855 case R_ALPHA_GPRELHIGH:
1856 case R_ALPHA_GPRELLOW:
1857 case R_ALPHA_BRSGP:
1858 need = NEED_GOT;
1859 break;
1860
1861 case R_ALPHA_REFLONG:
1862 case R_ALPHA_REFQUAD:
1863 if (info->shared || maybe_dynamic)
1864 need = NEED_DYNREL;
1865 break;
1866
1867 case R_ALPHA_TLSLDM:
1868 /* The symbol for a TLSLDM reloc is ignored. Collapse the
1869 reloc to the STN_UNDEF (0) symbol so that they all match. */
1870 r_symndx = STN_UNDEF;
1871 h = 0;
1872 maybe_dynamic = FALSE;
1873 /* FALLTHRU */
1874
1875 case R_ALPHA_TLSGD:
1876 case R_ALPHA_GOTDTPREL:
1877 need = NEED_GOT | NEED_GOT_ENTRY;
1878 break;
1879
1880 case R_ALPHA_GOTTPREL:
1881 need = NEED_GOT | NEED_GOT_ENTRY;
1882 gotent_flags = ALPHA_ELF_LINK_HASH_TLS_IE;
1883 if (info->shared)
1884 info->flags |= DF_STATIC_TLS;
1885 break;
1886
1887 case R_ALPHA_TPREL64:
1888 if (info->shared || maybe_dynamic)
1889 need = NEED_DYNREL;
1890 if (info->shared)
1891 info->flags |= DF_STATIC_TLS;
1892 break;
1893 }
1894
1895 if (need & NEED_GOT)
1896 {
1897 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1898 {
1899 if (!elf64_alpha_create_got_section (abfd, info))
1900 return FALSE;
1901 }
1902 }
1903
1904 if (need & NEED_GOT_ENTRY)
1905 {
1906 struct alpha_elf_got_entry *gotent;
1907
1908 gotent = get_got_entry (abfd, h, r_type, r_symndx, addend);
1909 if (!gotent)
1910 return FALSE;
1911
1912 if (gotent_flags)
1913 {
1914 gotent->flags |= gotent_flags;
1915 if (h)
1916 {
1917 gotent_flags |= h->flags;
1918 h->flags = gotent_flags;
1919
1920 /* Make a guess as to whether a .plt entry is needed. */
1921 /* ??? It appears that we won't make it into
1922 adjust_dynamic_symbol for symbols that remain
1923 totally undefined. Copying this check here means
1924 we can create a plt entry for them too. */
1925 h->root.needs_plt
1926 = (maybe_dynamic && elf64_alpha_want_plt (h));
1927 }
1928 }
1929 }
1930
1931 if (need & NEED_DYNREL)
1932 {
1933 /* We need to create the section here now whether we eventually
1934 use it or not so that it gets mapped to an output section by
1935 the linker. If not used, we'll kill it in size_dynamic_sections. */
1936 if (sreloc == NULL)
1937 {
1938 sreloc = _bfd_elf_make_dynamic_reloc_section
1939 (sec, dynobj, 3, abfd, /*rela?*/ TRUE);
1940
1941 if (sreloc == NULL)
1942 return FALSE;
1943 }
1944
1945 if (h)
1946 {
1947 /* Since we havn't seen all of the input symbols yet, we
1948 don't know whether we'll actually need a dynamic relocation
1949 entry for this reloc. So make a record of it. Once we
1950 find out if this thing needs dynamic relocation we'll
1951 expand the relocation sections by the appropriate amount. */
1952
1953 struct alpha_elf_reloc_entry *rent;
1954
1955 for (rent = h->reloc_entries; rent; rent = rent->next)
1956 if (rent->rtype == r_type && rent->srel == sreloc)
1957 break;
1958
1959 if (!rent)
1960 {
1961 amt = sizeof (struct alpha_elf_reloc_entry);
1962 rent = (struct alpha_elf_reloc_entry *) bfd_alloc (abfd, amt);
1963 if (!rent)
1964 return FALSE;
1965
1966 rent->srel = sreloc;
1967 rent->rtype = r_type;
1968 rent->count = 1;
1969 rent->reltext = (sec->flags & SEC_READONLY) != 0;
1970
1971 rent->next = h->reloc_entries;
1972 h->reloc_entries = rent;
1973 }
1974 else
1975 rent->count++;
1976 }
1977 else if (info->shared)
1978 {
1979 /* If this is a shared library, and the section is to be
1980 loaded into memory, we need a RELATIVE reloc. */
1981 sreloc->size += sizeof (Elf64_External_Rela);
1982 if (sec->flags & SEC_READONLY)
1983 info->flags |= DF_TEXTREL;
1984 }
1985 }
1986 }
1987
1988 return TRUE;
1989 }
1990
1991 /* Return the section that should be marked against GC for a given
1992 relocation. */
1993
1994 static asection *
1995 elf64_alpha_gc_mark_hook (asection *sec, struct bfd_link_info *info,
1996 Elf_Internal_Rela *rel,
1997 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
1998 {
1999 /* These relocations don't really reference a symbol. Instead we store
2000 extra data in their addend slot. Ignore the symbol. */
2001 switch (ELF64_R_TYPE (rel->r_info))
2002 {
2003 case R_ALPHA_LITUSE:
2004 case R_ALPHA_GPDISP:
2005 case R_ALPHA_HINT:
2006 return NULL;
2007 }
2008
2009 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2010 }
2011
2012 /* Update the got entry reference counts for the section being removed. */
2013
2014 static bfd_boolean
2015 elf64_alpha_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2016 asection *sec, const Elf_Internal_Rela *relocs)
2017 {
2018 Elf_Internal_Shdr *symtab_hdr;
2019 struct alpha_elf_link_hash_entry **sym_hashes;
2020 const Elf_Internal_Rela *rel, *relend;
2021
2022 if (info->relocatable)
2023 return TRUE;
2024
2025 symtab_hdr = &elf_symtab_hdr (abfd);
2026 sym_hashes = alpha_elf_sym_hashes (abfd);
2027
2028 relend = relocs + sec->reloc_count;
2029 for (rel = relocs; rel < relend; rel++)
2030 {
2031 unsigned long r_symndx, r_type;
2032 struct alpha_elf_link_hash_entry *h = NULL;
2033 struct alpha_elf_got_entry *gotent;
2034
2035 r_symndx = ELF64_R_SYM (rel->r_info);
2036 if (r_symndx >= symtab_hdr->sh_info)
2037 {
2038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2039 while (h->root.root.type == bfd_link_hash_indirect
2040 || h->root.root.type == bfd_link_hash_warning)
2041 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2042 }
2043
2044 r_type = ELF64_R_TYPE (rel->r_info);
2045 switch (r_type)
2046 {
2047 case R_ALPHA_LITERAL:
2048 /* ??? Ignore re-computation of gotent_flags. We're not
2049 carrying a use-count for each bit in that mask. */
2050
2051 case R_ALPHA_TLSGD:
2052 case R_ALPHA_GOTDTPREL:
2053 case R_ALPHA_GOTTPREL:
2054 /* Fetch the got entry from the tables. */
2055 gotent = get_got_entry (abfd, h, r_type, r_symndx, rel->r_addend);
2056
2057 /* The got entry *must* exist, since we should have created it
2058 before during check_relocs. Also note that get_got_entry
2059 assumed this was going to be another use, and so incremented
2060 the use count again. Thus the use count must be at least the
2061 one real use and the "use" we just added. */
2062 if (gotent == NULL || gotent->use_count < 2)
2063 {
2064 abort ();
2065 return FALSE;
2066 }
2067 gotent->use_count -= 2;
2068 break;
2069
2070 default:
2071 break;
2072 }
2073 }
2074
2075 return TRUE;
2076 }
2077
2078 /* Adjust a symbol defined by a dynamic object and referenced by a
2079 regular object. The current definition is in some section of the
2080 dynamic object, but we're not including those sections. We have to
2081 change the definition to something the rest of the link can
2082 understand. */
2083
2084 static bfd_boolean
2085 elf64_alpha_adjust_dynamic_symbol (struct bfd_link_info *info,
2086 struct elf_link_hash_entry *h)
2087 {
2088 bfd *dynobj;
2089 asection *s;
2090 struct alpha_elf_link_hash_entry *ah;
2091
2092 dynobj = elf_hash_table(info)->dynobj;
2093 ah = (struct alpha_elf_link_hash_entry *)h;
2094
2095 /* Now that we've seen all of the input symbols, finalize our decision
2096 about whether this symbol should get a .plt entry. Irritatingly, it
2097 is common for folk to leave undefined symbols in shared libraries,
2098 and they still expect lazy binding; accept undefined symbols in lieu
2099 of STT_FUNC. */
2100 if (alpha_elf_dynamic_symbol_p (h, info) && elf64_alpha_want_plt (ah))
2101 {
2102 h->needs_plt = TRUE;
2103
2104 s = bfd_get_section_by_name(dynobj, ".plt");
2105 if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
2106 return FALSE;
2107
2108 /* We need one plt entry per got subsection. Delay allocation of
2109 the actual plt entries until size_plt_section, called from
2110 size_dynamic_sections or during relaxation. */
2111
2112 return TRUE;
2113 }
2114 else
2115 h->needs_plt = FALSE;
2116
2117 /* If this is a weak symbol, and there is a real definition, the
2118 processor independent code will have arranged for us to see the
2119 real definition first, and we can just use the same value. */
2120 if (h->u.weakdef != NULL)
2121 {
2122 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2123 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2124 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2125 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2126 return TRUE;
2127 }
2128
2129 /* This is a reference to a symbol defined by a dynamic object which
2130 is not a function. The Alpha, since it uses .got entries for all
2131 symbols even in regular objects, does not need the hackery of a
2132 .dynbss section and COPY dynamic relocations. */
2133
2134 return TRUE;
2135 }
2136
2137 /* Record STO_ALPHA_NOPV and STO_ALPHA_STD_GPLOAD. */
2138
2139 static void
2140 elf64_alpha_merge_symbol_attribute (struct elf_link_hash_entry *h,
2141 const Elf_Internal_Sym *isym,
2142 bfd_boolean definition,
2143 bfd_boolean dynamic)
2144 {
2145 if (!dynamic && definition)
2146 h->other = ((h->other & ELF_ST_VISIBILITY (-1))
2147 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
2148 }
2149
2150 /* Symbol versioning can create new symbols, and make our old symbols
2151 indirect to the new ones. Consolidate the got and reloc information
2152 in these situations. */
2153
2154 static bfd_boolean
2155 elf64_alpha_merge_ind_symbols (struct alpha_elf_link_hash_entry *hi,
2156 PTR dummy ATTRIBUTE_UNUSED)
2157 {
2158 struct alpha_elf_link_hash_entry *hs;
2159
2160 if (hi->root.root.type != bfd_link_hash_indirect)
2161 return TRUE;
2162 hs = hi;
2163 do {
2164 hs = (struct alpha_elf_link_hash_entry *)hs->root.root.u.i.link;
2165 } while (hs->root.root.type == bfd_link_hash_indirect);
2166
2167 /* Merge the flags. Whee. */
2168
2169 hs->flags |= hi->flags;
2170
2171 /* Merge the .got entries. Cannibalize the old symbol's list in
2172 doing so, since we don't need it anymore. */
2173
2174 if (hs->got_entries == NULL)
2175 hs->got_entries = hi->got_entries;
2176 else
2177 {
2178 struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;
2179
2180 gsh = hs->got_entries;
2181 for (gi = hi->got_entries; gi ; gi = gin)
2182 {
2183 gin = gi->next;
2184 for (gs = gsh; gs ; gs = gs->next)
2185 if (gi->gotobj == gs->gotobj
2186 && gi->reloc_type == gs->reloc_type
2187 && gi->addend == gs->addend)
2188 {
2189 gi->use_count += gs->use_count;
2190 goto got_found;
2191 }
2192 gi->next = hs->got_entries;
2193 hs->got_entries = gi;
2194 got_found:;
2195 }
2196 }
2197 hi->got_entries = NULL;
2198
2199 /* And similar for the reloc entries. */
2200
2201 if (hs->reloc_entries == NULL)
2202 hs->reloc_entries = hi->reloc_entries;
2203 else
2204 {
2205 struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;
2206
2207 rsh = hs->reloc_entries;
2208 for (ri = hi->reloc_entries; ri ; ri = rin)
2209 {
2210 rin = ri->next;
2211 for (rs = rsh; rs ; rs = rs->next)
2212 if (ri->rtype == rs->rtype && ri->srel == rs->srel)
2213 {
2214 rs->count += ri->count;
2215 goto found_reloc;
2216 }
2217 ri->next = hs->reloc_entries;
2218 hs->reloc_entries = ri;
2219 found_reloc:;
2220 }
2221 }
2222 hi->reloc_entries = NULL;
2223
2224 return TRUE;
2225 }
2226
2227 /* Is it possible to merge two object file's .got tables? */
2228
2229 static bfd_boolean
2230 elf64_alpha_can_merge_gots (bfd *a, bfd *b)
2231 {
2232 int total = alpha_elf_tdata (a)->total_got_size;
2233 bfd *bsub;
2234
2235 /* Trivial quick fallout test. */
2236 if (total + alpha_elf_tdata (b)->total_got_size <= MAX_GOT_SIZE)
2237 return TRUE;
2238
2239 /* By their nature, local .got entries cannot be merged. */
2240 if ((total += alpha_elf_tdata (b)->local_got_size) > MAX_GOT_SIZE)
2241 return FALSE;
2242
2243 /* Failing the common trivial comparison, we must effectively
2244 perform the merge. Not actually performing the merge means that
2245 we don't have to store undo information in case we fail. */
2246 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2247 {
2248 struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
2249 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2250 int i, n;
2251
2252 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2253 for (i = 0; i < n; ++i)
2254 {
2255 struct alpha_elf_got_entry *ae, *be;
2256 struct alpha_elf_link_hash_entry *h;
2257
2258 h = hashes[i];
2259 while (h->root.root.type == bfd_link_hash_indirect
2260 || h->root.root.type == bfd_link_hash_warning)
2261 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2262
2263 for (be = h->got_entries; be ; be = be->next)
2264 {
2265 if (be->use_count == 0)
2266 continue;
2267 if (be->gotobj != b)
2268 continue;
2269
2270 for (ae = h->got_entries; ae ; ae = ae->next)
2271 if (ae->gotobj == a
2272 && ae->reloc_type == be->reloc_type
2273 && ae->addend == be->addend)
2274 goto global_found;
2275
2276 total += alpha_got_entry_size (be->reloc_type);
2277 if (total > MAX_GOT_SIZE)
2278 return FALSE;
2279 global_found:;
2280 }
2281 }
2282 }
2283
2284 return TRUE;
2285 }
2286
2287 /* Actually merge two .got tables. */
2288
2289 static void
2290 elf64_alpha_merge_gots (bfd *a, bfd *b)
2291 {
2292 int total = alpha_elf_tdata (a)->total_got_size;
2293 bfd *bsub;
2294
2295 /* Remember local expansion. */
2296 {
2297 int e = alpha_elf_tdata (b)->local_got_size;
2298 total += e;
2299 alpha_elf_tdata (a)->local_got_size += e;
2300 }
2301
2302 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2303 {
2304 struct alpha_elf_got_entry **local_got_entries;
2305 struct alpha_elf_link_hash_entry **hashes;
2306 Elf_Internal_Shdr *symtab_hdr;
2307 int i, n;
2308
2309 /* Let the local .got entries know they are part of a new subsegment. */
2310 local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
2311 if (local_got_entries)
2312 {
2313 n = elf_tdata (bsub)->symtab_hdr.sh_info;
2314 for (i = 0; i < n; ++i)
2315 {
2316 struct alpha_elf_got_entry *ent;
2317 for (ent = local_got_entries[i]; ent; ent = ent->next)
2318 ent->gotobj = a;
2319 }
2320 }
2321
2322 /* Merge the global .got entries. */
2323 hashes = alpha_elf_sym_hashes (bsub);
2324 symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2325
2326 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2327 for (i = 0; i < n; ++i)
2328 {
2329 struct alpha_elf_got_entry *ae, *be, **pbe, **start;
2330 struct alpha_elf_link_hash_entry *h;
2331
2332 h = hashes[i];
2333 while (h->root.root.type == bfd_link_hash_indirect
2334 || h->root.root.type == bfd_link_hash_warning)
2335 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2336
2337 pbe = start = &h->got_entries;
2338 while ((be = *pbe) != NULL)
2339 {
2340 if (be->use_count == 0)
2341 {
2342 *pbe = be->next;
2343 memset (be, 0xa5, sizeof (*be));
2344 goto kill;
2345 }
2346 if (be->gotobj != b)
2347 goto next;
2348
2349 for (ae = *start; ae ; ae = ae->next)
2350 if (ae->gotobj == a
2351 && ae->reloc_type == be->reloc_type
2352 && ae->addend == be->addend)
2353 {
2354 ae->flags |= be->flags;
2355 ae->use_count += be->use_count;
2356 *pbe = be->next;
2357 memset (be, 0xa5, sizeof (*be));
2358 goto kill;
2359 }
2360 be->gotobj = a;
2361 total += alpha_got_entry_size (be->reloc_type);
2362
2363 next:;
2364 pbe = &be->next;
2365 kill:;
2366 }
2367 }
2368
2369 alpha_elf_tdata (bsub)->gotobj = a;
2370 }
2371 alpha_elf_tdata (a)->total_got_size = total;
2372
2373 /* Merge the two in_got chains. */
2374 {
2375 bfd *next;
2376
2377 bsub = a;
2378 while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
2379 bsub = next;
2380
2381 alpha_elf_tdata (bsub)->in_got_link_next = b;
2382 }
2383 }
2384
2385 /* Calculate the offsets for the got entries. */
2386
2387 static bfd_boolean
2388 elf64_alpha_calc_got_offsets_for_symbol (struct alpha_elf_link_hash_entry *h,
2389 PTR arg ATTRIBUTE_UNUSED)
2390 {
2391 struct alpha_elf_got_entry *gotent;
2392
2393 if (h->root.root.type == bfd_link_hash_warning)
2394 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2395
2396 for (gotent = h->got_entries; gotent; gotent = gotent->next)
2397 if (gotent->use_count > 0)
2398 {
2399 struct alpha_elf_obj_tdata *td;
2400 bfd_size_type *plge;
2401
2402 td = alpha_elf_tdata (gotent->gotobj);
2403 plge = &td->got->size;
2404 gotent->got_offset = *plge;
2405 *plge += alpha_got_entry_size (gotent->reloc_type);
2406 }
2407
2408 return TRUE;
2409 }
2410
2411 static void
2412 elf64_alpha_calc_got_offsets (struct bfd_link_info *info)
2413 {
2414 bfd *i, *got_list;
2415 struct alpha_elf_link_hash_table * htab;
2416
2417 htab = alpha_elf_hash_table (info);
2418 if (htab == NULL)
2419 return;
2420 got_list = htab->got_list;
2421
2422 /* First, zero out the .got sizes, as we may be recalculating the
2423 .got after optimizing it. */
2424 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2425 alpha_elf_tdata(i)->got->size = 0;
2426
2427 /* Next, fill in the offsets for all the global entries. */
2428 alpha_elf_link_hash_traverse (htab,
2429 elf64_alpha_calc_got_offsets_for_symbol,
2430 NULL);
2431
2432 /* Finally, fill in the offsets for the local entries. */
2433 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2434 {
2435 bfd_size_type got_offset = alpha_elf_tdata(i)->got->size;
2436 bfd *j;
2437
2438 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2439 {
2440 struct alpha_elf_got_entry **local_got_entries, *gotent;
2441 int k, n;
2442
2443 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2444 if (!local_got_entries)
2445 continue;
2446
2447 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2448 for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
2449 if (gotent->use_count > 0)
2450 {
2451 gotent->got_offset = got_offset;
2452 got_offset += alpha_got_entry_size (gotent->reloc_type);
2453 }
2454 }
2455
2456 alpha_elf_tdata(i)->got->size = got_offset;
2457 }
2458 }
2459
2460 /* Constructs the gots. */
2461
2462 static bfd_boolean
2463 elf64_alpha_size_got_sections (struct bfd_link_info *info)
2464 {
2465 bfd *i, *got_list, *cur_got_obj = NULL;
2466 struct alpha_elf_link_hash_table * htab;
2467
2468 htab = alpha_elf_hash_table (info);
2469 if (htab == NULL)
2470 return FALSE;
2471 got_list = htab->got_list;
2472
2473 /* On the first time through, pretend we have an existing got list
2474 consisting of all of the input files. */
2475 if (got_list == NULL)
2476 {
2477 for (i = info->input_bfds; i ; i = i->link_next)
2478 {
2479 bfd *this_got;
2480
2481 if (! is_alpha_elf (i))
2482 continue;
2483
2484 this_got = alpha_elf_tdata (i)->gotobj;
2485 if (this_got == NULL)
2486 continue;
2487
2488 /* We are assuming no merging has yet occurred. */
2489 BFD_ASSERT (this_got == i);
2490
2491 if (alpha_elf_tdata (this_got)->total_got_size > MAX_GOT_SIZE)
2492 {
2493 /* Yikes! A single object file has too many entries. */
2494 (*_bfd_error_handler)
2495 (_("%B: .got subsegment exceeds 64K (size %d)"),
2496 i, alpha_elf_tdata (this_got)->total_got_size);
2497 return FALSE;
2498 }
2499
2500 if (got_list == NULL)
2501 got_list = this_got;
2502 else
2503 alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
2504 cur_got_obj = this_got;
2505 }
2506
2507 /* Strange degenerate case of no got references. */
2508 if (got_list == NULL)
2509 return TRUE;
2510
2511 htab->got_list = got_list;
2512 }
2513
2514 cur_got_obj = got_list;
2515 if (cur_got_obj == NULL)
2516 return FALSE;
2517
2518 i = alpha_elf_tdata(cur_got_obj)->got_link_next;
2519 while (i != NULL)
2520 {
2521 if (elf64_alpha_can_merge_gots (cur_got_obj, i))
2522 {
2523 elf64_alpha_merge_gots (cur_got_obj, i);
2524
2525 alpha_elf_tdata(i)->got->size = 0;
2526 i = alpha_elf_tdata(i)->got_link_next;
2527 alpha_elf_tdata(cur_got_obj)->got_link_next = i;
2528 }
2529 else
2530 {
2531 cur_got_obj = i;
2532 i = alpha_elf_tdata(i)->got_link_next;
2533 }
2534 }
2535
2536 /* Once the gots have been merged, fill in the got offsets for
2537 everything therein. */
2538 elf64_alpha_calc_got_offsets (info);
2539
2540 return TRUE;
2541 }
2542
2543 static bfd_boolean
2544 elf64_alpha_size_plt_section_1 (struct alpha_elf_link_hash_entry *h, PTR data)
2545 {
2546 asection *splt = (asection *) data;
2547 struct alpha_elf_got_entry *gotent;
2548 bfd_boolean saw_one = FALSE;
2549
2550 /* If we didn't need an entry before, we still don't. */
2551 if (!h->root.needs_plt)
2552 return TRUE;
2553
2554 /* For each LITERAL got entry still in use, allocate a plt entry. */
2555 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2556 if (gotent->reloc_type == R_ALPHA_LITERAL
2557 && gotent->use_count > 0)
2558 {
2559 if (splt->size == 0)
2560 splt->size = PLT_HEADER_SIZE;
2561 gotent->plt_offset = splt->size;
2562 splt->size += PLT_ENTRY_SIZE;
2563 saw_one = TRUE;
2564 }
2565
2566 /* If there weren't any, there's no longer a need for the PLT entry. */
2567 if (!saw_one)
2568 h->root.needs_plt = FALSE;
2569
2570 return TRUE;
2571 }
2572
2573 /* Called from relax_section to rebuild the PLT in light of potential changes
2574 in the function's status. */
2575
2576 static void
2577 elf64_alpha_size_plt_section (struct bfd_link_info *info)
2578 {
2579 asection *splt, *spltrel, *sgotplt;
2580 unsigned long entries;
2581 bfd *dynobj;
2582 struct alpha_elf_link_hash_table * htab;
2583
2584 htab = alpha_elf_hash_table (info);
2585 if (htab == NULL)
2586 return;
2587
2588 dynobj = elf_hash_table(info)->dynobj;
2589 splt = bfd_get_section_by_name (dynobj, ".plt");
2590 if (splt == NULL)
2591 return;
2592
2593 splt->size = 0;
2594
2595 alpha_elf_link_hash_traverse (htab,
2596 elf64_alpha_size_plt_section_1, splt);
2597
2598 /* Every plt entry requires a JMP_SLOT relocation. */
2599 spltrel = bfd_get_section_by_name (dynobj, ".rela.plt");
2600 entries = 0;
2601 if (splt->size)
2602 {
2603 if (elf64_alpha_use_secureplt)
2604 entries = (splt->size - NEW_PLT_HEADER_SIZE) / NEW_PLT_ENTRY_SIZE;
2605 else
2606 entries = (splt->size - OLD_PLT_HEADER_SIZE) / OLD_PLT_ENTRY_SIZE;
2607 }
2608 spltrel->size = entries * sizeof (Elf64_External_Rela);
2609
2610 /* When using the secureplt, we need two words somewhere in the data
2611 segment for the dynamic linker to tell us where to go. This is the
2612 entire contents of the .got.plt section. */
2613 if (elf64_alpha_use_secureplt)
2614 {
2615 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2616 sgotplt->size = entries ? 16 : 0;
2617 }
2618 }
2619
2620 static bfd_boolean
2621 elf64_alpha_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2622 struct bfd_link_info *info)
2623 {
2624 bfd *i;
2625 struct alpha_elf_link_hash_table * htab;
2626
2627 if (info->relocatable)
2628 return TRUE;
2629
2630 htab = alpha_elf_hash_table (info);
2631 if (htab == NULL)
2632 return FALSE;
2633
2634 /* First, take care of the indirect symbols created by versioning. */
2635 alpha_elf_link_hash_traverse (htab, elf64_alpha_merge_ind_symbols,
2636 NULL);
2637
2638 if (!elf64_alpha_size_got_sections (info))
2639 return FALSE;
2640
2641 /* Allocate space for all of the .got subsections. */
2642 i = htab->got_list;
2643 for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
2644 {
2645 asection *s = alpha_elf_tdata(i)->got;
2646 if (s->size > 0)
2647 {
2648 s->contents = (bfd_byte *) bfd_zalloc (i, s->size);
2649 if (s->contents == NULL)
2650 return FALSE;
2651 }
2652 }
2653
2654 return TRUE;
2655 }
2656
2657 /* The number of dynamic relocations required by a static relocation. */
2658
2659 static int
2660 alpha_dynamic_entries_for_reloc (int r_type, int dynamic, int shared)
2661 {
2662 switch (r_type)
2663 {
2664 /* May appear in GOT entries. */
2665 case R_ALPHA_TLSGD:
2666 return (dynamic ? 2 : shared ? 1 : 0);
2667 case R_ALPHA_TLSLDM:
2668 return shared;
2669 case R_ALPHA_LITERAL:
2670 case R_ALPHA_GOTTPREL:
2671 return dynamic || shared;
2672 case R_ALPHA_GOTDTPREL:
2673 return dynamic;
2674
2675 /* May appear in data sections. */
2676 case R_ALPHA_REFLONG:
2677 case R_ALPHA_REFQUAD:
2678 case R_ALPHA_TPREL64:
2679 return dynamic || shared;
2680
2681 /* Everything else is illegal. We'll issue an error during
2682 relocate_section. */
2683 default:
2684 return 0;
2685 }
2686 }
2687
2688 /* Work out the sizes of the dynamic relocation entries. */
2689
2690 static bfd_boolean
2691 elf64_alpha_calc_dynrel_sizes (struct alpha_elf_link_hash_entry *h,
2692 struct bfd_link_info *info)
2693 {
2694 bfd_boolean dynamic;
2695 struct alpha_elf_reloc_entry *relent;
2696 unsigned long entries;
2697
2698 if (h->root.root.type == bfd_link_hash_warning)
2699 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2700
2701 /* If the symbol was defined as a common symbol in a regular object
2702 file, and there was no definition in any dynamic object, then the
2703 linker will have allocated space for the symbol in a common
2704 section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
2705 set. This is done for dynamic symbols in
2706 elf_adjust_dynamic_symbol but this is not done for non-dynamic
2707 symbols, somehow. */
2708 if (!h->root.def_regular
2709 && h->root.ref_regular
2710 && !h->root.def_dynamic
2711 && (h->root.root.type == bfd_link_hash_defined
2712 || h->root.root.type == bfd_link_hash_defweak)
2713 && !(h->root.root.u.def.section->owner->flags & DYNAMIC))
2714 h->root.def_regular = 1;
2715
2716 /* If the symbol is dynamic, we'll need all the relocations in their
2717 natural form. If this is a shared object, and it has been forced
2718 local, we'll need the same number of RELATIVE relocations. */
2719 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2720
2721 /* If the symbol is a hidden undefined weak, then we never have any
2722 relocations. Avoid the loop which may want to add RELATIVE relocs
2723 based on info->shared. */
2724 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2725 return TRUE;
2726
2727 for (relent = h->reloc_entries; relent; relent = relent->next)
2728 {
2729 entries = alpha_dynamic_entries_for_reloc (relent->rtype, dynamic,
2730 info->shared);
2731 if (entries)
2732 {
2733 relent->srel->size +=
2734 entries * sizeof (Elf64_External_Rela) * relent->count;
2735 if (relent->reltext)
2736 info->flags |= DT_TEXTREL;
2737 }
2738 }
2739
2740 return TRUE;
2741 }
2742
2743 /* Subroutine of elf64_alpha_size_rela_got_section for doing the
2744 global symbols. */
2745
2746 static bfd_boolean
2747 elf64_alpha_size_rela_got_1 (struct alpha_elf_link_hash_entry *h,
2748 struct bfd_link_info *info)
2749 {
2750 bfd_boolean dynamic;
2751 struct alpha_elf_got_entry *gotent;
2752 unsigned long entries;
2753
2754 if (h->root.root.type == bfd_link_hash_warning)
2755 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2756
2757 /* If we're using a plt for this symbol, then all of its relocations
2758 for its got entries go into .rela.plt. */
2759 if (h->root.needs_plt)
2760 return TRUE;
2761
2762 /* If the symbol is dynamic, we'll need all the relocations in their
2763 natural form. If this is a shared object, and it has been forced
2764 local, we'll need the same number of RELATIVE relocations. */
2765 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2766
2767 /* If the symbol is a hidden undefined weak, then we never have any
2768 relocations. Avoid the loop which may want to add RELATIVE relocs
2769 based on info->shared. */
2770 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2771 return TRUE;
2772
2773 entries = 0;
2774 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2775 if (gotent->use_count > 0)
2776 entries += alpha_dynamic_entries_for_reloc (gotent->reloc_type,
2777 dynamic, info->shared);
2778
2779 if (entries > 0)
2780 {
2781 bfd *dynobj = elf_hash_table(info)->dynobj;
2782 asection *srel = bfd_get_section_by_name (dynobj, ".rela.got");
2783 BFD_ASSERT (srel != NULL);
2784 srel->size += sizeof (Elf64_External_Rela) * entries;
2785 }
2786
2787 return TRUE;
2788 }
2789
2790 /* Set the sizes of the dynamic relocation sections. */
2791
2792 static void
2793 elf64_alpha_size_rela_got_section (struct bfd_link_info *info)
2794 {
2795 unsigned long entries;
2796 bfd *i, *dynobj;
2797 asection *srel;
2798 struct alpha_elf_link_hash_table * htab;
2799
2800 htab = alpha_elf_hash_table (info);
2801 if (htab == NULL)
2802 return;
2803
2804 /* Shared libraries often require RELATIVE relocs, and some relocs
2805 require attention for the main application as well. */
2806
2807 entries = 0;
2808 for (i = htab->got_list;
2809 i ; i = alpha_elf_tdata(i)->got_link_next)
2810 {
2811 bfd *j;
2812
2813 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2814 {
2815 struct alpha_elf_got_entry **local_got_entries, *gotent;
2816 int k, n;
2817
2818 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2819 if (!local_got_entries)
2820 continue;
2821
2822 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2823 for (gotent = local_got_entries[k];
2824 gotent ; gotent = gotent->next)
2825 if (gotent->use_count > 0)
2826 entries += (alpha_dynamic_entries_for_reloc
2827 (gotent->reloc_type, 0, info->shared));
2828 }
2829 }
2830
2831 dynobj = elf_hash_table(info)->dynobj;
2832 srel = bfd_get_section_by_name (dynobj, ".rela.got");
2833 if (!srel)
2834 {
2835 BFD_ASSERT (entries == 0);
2836 return;
2837 }
2838 srel->size = sizeof (Elf64_External_Rela) * entries;
2839
2840 /* Now do the non-local symbols. */
2841 alpha_elf_link_hash_traverse (htab,
2842 elf64_alpha_size_rela_got_1, info);
2843 }
2844
2845 /* Set the sizes of the dynamic sections. */
2846
2847 static bfd_boolean
2848 elf64_alpha_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2849 struct bfd_link_info *info)
2850 {
2851 bfd *dynobj;
2852 asection *s;
2853 bfd_boolean relplt;
2854 struct alpha_elf_link_hash_table * htab;
2855
2856 htab = alpha_elf_hash_table (info);
2857 if (htab == NULL)
2858 return FALSE;
2859
2860 dynobj = elf_hash_table(info)->dynobj;
2861 BFD_ASSERT(dynobj != NULL);
2862
2863 if (elf_hash_table (info)->dynamic_sections_created)
2864 {
2865 /* Set the contents of the .interp section to the interpreter. */
2866 if (info->executable)
2867 {
2868 s = bfd_get_section_by_name (dynobj, ".interp");
2869 BFD_ASSERT (s != NULL);
2870 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2871 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2872 }
2873
2874 /* Now that we've seen all of the input files, we can decide which
2875 symbols need dynamic relocation entries and which don't. We've
2876 collected information in check_relocs that we can now apply to
2877 size the dynamic relocation sections. */
2878 alpha_elf_link_hash_traverse (htab,
2879 elf64_alpha_calc_dynrel_sizes, info);
2880
2881 elf64_alpha_size_rela_got_section (info);
2882 elf64_alpha_size_plt_section (info);
2883 }
2884 /* else we're not dynamic and by definition we don't need such things. */
2885
2886 /* The check_relocs and adjust_dynamic_symbol entry points have
2887 determined the sizes of the various dynamic sections. Allocate
2888 memory for them. */
2889 relplt = FALSE;
2890 for (s = dynobj->sections; s != NULL; s = s->next)
2891 {
2892 const char *name;
2893
2894 if (!(s->flags & SEC_LINKER_CREATED))
2895 continue;
2896
2897 /* It's OK to base decisions on the section name, because none
2898 of the dynobj section names depend upon the input files. */
2899 name = bfd_get_section_name (dynobj, s);
2900
2901 if (CONST_STRNEQ (name, ".rela"))
2902 {
2903 if (s->size != 0)
2904 {
2905 if (strcmp (name, ".rela.plt") == 0)
2906 relplt = TRUE;
2907
2908 /* We use the reloc_count field as a counter if we need
2909 to copy relocs into the output file. */
2910 s->reloc_count = 0;
2911 }
2912 }
2913 else if (! CONST_STRNEQ (name, ".got")
2914 && strcmp (name, ".plt") != 0
2915 && strcmp (name, ".dynbss") != 0)
2916 {
2917 /* It's not one of our dynamic sections, so don't allocate space. */
2918 continue;
2919 }
2920
2921 if (s->size == 0)
2922 {
2923 /* If we don't need this section, strip it from the output file.
2924 This is to handle .rela.bss and .rela.plt. We must create it
2925 in create_dynamic_sections, because it must be created before
2926 the linker maps input sections to output sections. The
2927 linker does that before adjust_dynamic_symbol is called, and
2928 it is that function which decides whether anything needs to
2929 go into these sections. */
2930 if (!CONST_STRNEQ (name, ".got"))
2931 s->flags |= SEC_EXCLUDE;
2932 }
2933 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
2934 {
2935 /* Allocate memory for the section contents. */
2936 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2937 if (s->contents == NULL)
2938 return FALSE;
2939 }
2940 }
2941
2942 if (elf_hash_table (info)->dynamic_sections_created)
2943 {
2944 /* Add some entries to the .dynamic section. We fill in the
2945 values later, in elf64_alpha_finish_dynamic_sections, but we
2946 must add the entries now so that we get the correct size for
2947 the .dynamic section. The DT_DEBUG entry is filled in by the
2948 dynamic linker and used by the debugger. */
2949 #define add_dynamic_entry(TAG, VAL) \
2950 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2951
2952 if (info->executable)
2953 {
2954 if (!add_dynamic_entry (DT_DEBUG, 0))
2955 return FALSE;
2956 }
2957
2958 if (relplt)
2959 {
2960 if (!add_dynamic_entry (DT_PLTGOT, 0)
2961 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2962 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2963 || !add_dynamic_entry (DT_JMPREL, 0))
2964 return FALSE;
2965
2966 if (elf64_alpha_use_secureplt
2967 && !add_dynamic_entry (DT_ALPHA_PLTRO, 1))
2968 return FALSE;
2969 }
2970
2971 if (!add_dynamic_entry (DT_RELA, 0)
2972 || !add_dynamic_entry (DT_RELASZ, 0)
2973 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2974 return FALSE;
2975
2976 if (info->flags & DF_TEXTREL)
2977 {
2978 if (!add_dynamic_entry (DT_TEXTREL, 0))
2979 return FALSE;
2980 }
2981 }
2982 #undef add_dynamic_entry
2983
2984 return TRUE;
2985 }
2986 \f
2987 /* These functions do relaxation for Alpha ELF.
2988
2989 Currently I'm only handling what I can do with existing compiler
2990 and assembler support, which means no instructions are removed,
2991 though some may be nopped. At this time GCC does not emit enough
2992 information to do all of the relaxing that is possible. It will
2993 take some not small amount of work for that to happen.
2994
2995 There are a couple of interesting papers that I once read on this
2996 subject, that I cannot find references to at the moment, that
2997 related to Alpha in particular. They are by David Wall, then of
2998 DEC WRL. */
2999
3000 struct alpha_relax_info
3001 {
3002 bfd *abfd;
3003 asection *sec;
3004 bfd_byte *contents;
3005 Elf_Internal_Shdr *symtab_hdr;
3006 Elf_Internal_Rela *relocs, *relend;
3007 struct bfd_link_info *link_info;
3008 bfd_vma gp;
3009 bfd *gotobj;
3010 asection *tsec;
3011 struct alpha_elf_link_hash_entry *h;
3012 struct alpha_elf_got_entry **first_gotent;
3013 struct alpha_elf_got_entry *gotent;
3014 bfd_boolean changed_contents;
3015 bfd_boolean changed_relocs;
3016 unsigned char other;
3017 };
3018
3019 static Elf_Internal_Rela *
3020 elf64_alpha_find_reloc_at_ofs (Elf_Internal_Rela *rel,
3021 Elf_Internal_Rela *relend,
3022 bfd_vma offset, int type)
3023 {
3024 while (rel < relend)
3025 {
3026 if (rel->r_offset == offset
3027 && ELF64_R_TYPE (rel->r_info) == (unsigned int) type)
3028 return rel;
3029 ++rel;
3030 }
3031 return NULL;
3032 }
3033
3034 static bfd_boolean
3035 elf64_alpha_relax_got_load (struct alpha_relax_info *info, bfd_vma symval,
3036 Elf_Internal_Rela *irel, unsigned long r_type)
3037 {
3038 unsigned int insn;
3039 bfd_signed_vma disp;
3040
3041 /* Get the instruction. */
3042 insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3043
3044 if (insn >> 26 != OP_LDQ)
3045 {
3046 reloc_howto_type *howto = elf64_alpha_howto_table + r_type;
3047 ((*_bfd_error_handler)
3048 ("%B: %A+0x%lx: warning: %s relocation against unexpected insn",
3049 info->abfd, info->sec,
3050 (unsigned long) irel->r_offset, howto->name));
3051 return TRUE;
3052 }
3053
3054 /* Can't relax dynamic symbols. */
3055 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3056 return TRUE;
3057
3058 /* Can't use local-exec relocations in shared libraries. */
3059 if (r_type == R_ALPHA_GOTTPREL && info->link_info->shared)
3060 return TRUE;
3061
3062 if (r_type == R_ALPHA_LITERAL)
3063 {
3064 /* Look for nice constant addresses. This includes the not-uncommon
3065 special case of 0 for undefweak symbols. */
3066 if ((info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3067 || (!info->link_info->shared
3068 && (symval >= (bfd_vma)-0x8000 || symval < 0x8000)))
3069 {
3070 disp = 0;
3071 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3072 insn |= (symval & 0xffff);
3073 r_type = R_ALPHA_NONE;
3074 }
3075 else
3076 {
3077 disp = symval - info->gp;
3078 insn = (OP_LDA << 26) | (insn & 0x03ff0000);
3079 r_type = R_ALPHA_GPREL16;
3080 }
3081 }
3082 else
3083 {
3084 bfd_vma dtp_base, tp_base;
3085
3086 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3087 dtp_base = alpha_get_dtprel_base (info->link_info);
3088 tp_base = alpha_get_tprel_base (info->link_info);
3089 disp = symval - (r_type == R_ALPHA_GOTDTPREL ? dtp_base : tp_base);
3090
3091 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3092
3093 switch (r_type)
3094 {
3095 case R_ALPHA_GOTDTPREL:
3096 r_type = R_ALPHA_DTPREL16;
3097 break;
3098 case R_ALPHA_GOTTPREL:
3099 r_type = R_ALPHA_TPREL16;
3100 break;
3101 default:
3102 BFD_ASSERT (0);
3103 return FALSE;
3104 }
3105 }
3106
3107 if (disp < -0x8000 || disp >= 0x8000)
3108 return TRUE;
3109
3110 bfd_put_32 (info->abfd, (bfd_vma) insn, info->contents + irel->r_offset);
3111 info->changed_contents = TRUE;
3112
3113 /* Reduce the use count on this got entry by one, possibly
3114 eliminating it. */
3115 if (--info->gotent->use_count == 0)
3116 {
3117 int sz = alpha_got_entry_size (r_type);
3118 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3119 if (!info->h)
3120 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3121 }
3122
3123 /* Smash the existing GOT relocation for its 16-bit immediate pair. */
3124 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), r_type);
3125 info->changed_relocs = TRUE;
3126
3127 /* ??? Search forward through this basic block looking for insns
3128 that use the target register. Stop after an insn modifying the
3129 register is seen, or after a branch or call.
3130
3131 Any such memory load insn may be substituted by a load directly
3132 off the GP. This allows the memory load insn to be issued before
3133 the calculated GP register would otherwise be ready.
3134
3135 Any such jsr insn can be replaced by a bsr if it is in range.
3136
3137 This would mean that we'd have to _add_ relocations, the pain of
3138 which gives one pause. */
3139
3140 return TRUE;
3141 }
3142
3143 static bfd_vma
3144 elf64_alpha_relax_opt_call (struct alpha_relax_info *info, bfd_vma symval)
3145 {
3146 /* If the function has the same gp, and we can identify that the
3147 function does not use its function pointer, we can eliminate the
3148 address load. */
3149
3150 /* If the symbol is marked NOPV, we are being told the function never
3151 needs its procedure value. */
3152 if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
3153 return symval;
3154
3155 /* If the symbol is marked STD_GP, we are being told the function does
3156 a normal ldgp in the first two words. */
3157 else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
3158 ;
3159
3160 /* Otherwise, we may be able to identify a GP load in the first two
3161 words, which we can then skip. */
3162 else
3163 {
3164 Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
3165 bfd_vma ofs;
3166
3167 /* Load the relocations from the section that the target symbol is in. */
3168 if (info->sec == info->tsec)
3169 {
3170 tsec_relocs = info->relocs;
3171 tsec_relend = info->relend;
3172 tsec_free = NULL;
3173 }
3174 else
3175 {
3176 tsec_relocs = (_bfd_elf_link_read_relocs
3177 (info->abfd, info->tsec, (PTR) NULL,
3178 (Elf_Internal_Rela *) NULL,
3179 info->link_info->keep_memory));
3180 if (tsec_relocs == NULL)
3181 return 0;
3182 tsec_relend = tsec_relocs + info->tsec->reloc_count;
3183 tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
3184 }
3185
3186 /* Recover the symbol's offset within the section. */
3187 ofs = (symval - info->tsec->output_section->vma
3188 - info->tsec->output_offset);
3189
3190 /* Look for a GPDISP reloc. */
3191 gpdisp = (elf64_alpha_find_reloc_at_ofs
3192 (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));
3193
3194 if (!gpdisp || gpdisp->r_addend != 4)
3195 {
3196 if (tsec_free)
3197 free (tsec_free);
3198 return 0;
3199 }
3200 if (tsec_free)
3201 free (tsec_free);
3202 }
3203
3204 /* We've now determined that we can skip an initial gp load. Verify
3205 that the call and the target use the same gp. */
3206 if (info->link_info->output_bfd->xvec != info->tsec->owner->xvec
3207 || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
3208 return 0;
3209
3210 return symval + 8;
3211 }
3212
3213 static bfd_boolean
3214 elf64_alpha_relax_with_lituse (struct alpha_relax_info *info,
3215 bfd_vma symval, Elf_Internal_Rela *irel)
3216 {
3217 Elf_Internal_Rela *urel, *irelend = info->relend;
3218 int flags, count, i;
3219 bfd_signed_vma disp;
3220 bfd_boolean fits16;
3221 bfd_boolean fits32;
3222 bfd_boolean lit_reused = FALSE;
3223 bfd_boolean all_optimized = TRUE;
3224 unsigned int lit_insn;
3225
3226 lit_insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3227 if (lit_insn >> 26 != OP_LDQ)
3228 {
3229 ((*_bfd_error_handler)
3230 ("%B: %A+0x%lx: warning: LITERAL relocation against unexpected insn",
3231 info->abfd, info->sec,
3232 (unsigned long) irel->r_offset));
3233 return TRUE;
3234 }
3235
3236 /* Can't relax dynamic symbols. */
3237 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3238 return TRUE;
3239
3240 /* Summarize how this particular LITERAL is used. */
3241 for (urel = irel+1, flags = count = 0; urel < irelend; ++urel, ++count)
3242 {
3243 if (ELF64_R_TYPE (urel->r_info) != R_ALPHA_LITUSE)
3244 break;
3245 if (urel->r_addend <= 6)
3246 flags |= 1 << urel->r_addend;
3247 }
3248
3249 /* A little preparation for the loop... */
3250 disp = symval - info->gp;
3251
3252 for (urel = irel+1, i = 0; i < count; ++i, ++urel)
3253 {
3254 unsigned int insn;
3255 int insn_disp;
3256 bfd_signed_vma xdisp;
3257
3258 insn = bfd_get_32 (info->abfd, info->contents + urel->r_offset);
3259
3260 switch (urel->r_addend)
3261 {
3262 case LITUSE_ALPHA_ADDR:
3263 default:
3264 /* This type is really just a placeholder to note that all
3265 uses cannot be optimized, but to still allow some. */
3266 all_optimized = FALSE;
3267 break;
3268
3269 case LITUSE_ALPHA_BASE:
3270 /* We can always optimize 16-bit displacements. */
3271
3272 /* Extract the displacement from the instruction, sign-extending
3273 it if necessary, then test whether it is within 16 or 32 bits
3274 displacement from GP. */
3275 insn_disp = ((insn & 0xffff) ^ 0x8000) - 0x8000;
3276
3277 xdisp = disp + insn_disp;
3278 fits16 = (xdisp >= - (bfd_signed_vma) 0x8000 && xdisp < 0x8000);
3279 fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000
3280 && xdisp < 0x7fff8000);
3281
3282 if (fits16)
3283 {
3284 /* Take the op code and dest from this insn, take the base
3285 register from the literal insn. Leave the offset alone. */
3286 insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
3287 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3288 R_ALPHA_GPREL16);
3289 urel->r_addend = irel->r_addend;
3290 info->changed_relocs = TRUE;
3291
3292 bfd_put_32 (info->abfd, (bfd_vma) insn,
3293 info->contents + urel->r_offset);
3294 info->changed_contents = TRUE;
3295 }
3296
3297 /* If all mem+byte, we can optimize 32-bit mem displacements. */
3298 else if (fits32 && !(flags & ~6))
3299 {
3300 /* FIXME: sanity check that lit insn Ra is mem insn Rb. */
3301
3302 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3303 R_ALPHA_GPRELHIGH);
3304 lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
3305 bfd_put_32 (info->abfd, (bfd_vma) lit_insn,
3306 info->contents + irel->r_offset);
3307 lit_reused = TRUE;
3308 info->changed_contents = TRUE;
3309
3310 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3311 R_ALPHA_GPRELLOW);
3312 urel->r_addend = irel->r_addend;
3313 info->changed_relocs = TRUE;
3314 }
3315 else
3316 all_optimized = FALSE;
3317 break;
3318
3319 case LITUSE_ALPHA_BYTOFF:
3320 /* We can always optimize byte instructions. */
3321
3322 /* FIXME: sanity check the insn for byte op. Check that the
3323 literal dest reg is indeed Rb in the byte insn. */
3324
3325 insn &= ~ (unsigned) 0x001ff000;
3326 insn |= ((symval & 7) << 13) | 0x1000;
3327
3328 urel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3329 urel->r_addend = 0;
3330 info->changed_relocs = TRUE;
3331
3332 bfd_put_32 (info->abfd, (bfd_vma) insn,
3333 info->contents + urel->r_offset);
3334 info->changed_contents = TRUE;
3335 break;
3336
3337 case LITUSE_ALPHA_JSR:
3338 case LITUSE_ALPHA_TLSGD:
3339 case LITUSE_ALPHA_TLSLDM:
3340 case LITUSE_ALPHA_JSRDIRECT:
3341 {
3342 bfd_vma optdest, org;
3343 bfd_signed_vma odisp;
3344
3345 /* For undefined weak symbols, we're mostly interested in getting
3346 rid of the got entry whenever possible, so optimize this to a
3347 use of the zero register. */
3348 if (info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3349 {
3350 insn |= 31 << 16;
3351 bfd_put_32 (info->abfd, (bfd_vma) insn,
3352 info->contents + urel->r_offset);
3353
3354 info->changed_contents = TRUE;
3355 break;
3356 }
3357
3358 /* If not zero, place to jump without needing pv. */
3359 optdest = elf64_alpha_relax_opt_call (info, symval);
3360 org = (info->sec->output_section->vma
3361 + info->sec->output_offset
3362 + urel->r_offset + 4);
3363 odisp = (optdest ? optdest : symval) - org;
3364
3365 if (odisp >= -0x400000 && odisp < 0x400000)
3366 {
3367 Elf_Internal_Rela *xrel;
3368
3369 /* Preserve branch prediction call stack when possible. */
3370 if ((insn & INSN_JSR_MASK) == INSN_JSR)
3371 insn = (OP_BSR << 26) | (insn & 0x03e00000);
3372 else
3373 insn = (OP_BR << 26) | (insn & 0x03e00000);
3374
3375 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3376 R_ALPHA_BRADDR);
3377 urel->r_addend = irel->r_addend;
3378
3379 if (optdest)
3380 urel->r_addend += optdest - symval;
3381 else
3382 all_optimized = FALSE;
3383
3384 bfd_put_32 (info->abfd, (bfd_vma) insn,
3385 info->contents + urel->r_offset);
3386
3387 /* Kill any HINT reloc that might exist for this insn. */
3388 xrel = (elf64_alpha_find_reloc_at_ofs
3389 (info->relocs, info->relend, urel->r_offset,
3390 R_ALPHA_HINT));
3391 if (xrel)
3392 xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3393
3394 info->changed_contents = TRUE;
3395 info->changed_relocs = TRUE;
3396 }
3397 else
3398 all_optimized = FALSE;
3399
3400 /* Even if the target is not in range for a direct branch,
3401 if we share a GP, we can eliminate the gp reload. */
3402 if (optdest)
3403 {
3404 Elf_Internal_Rela *gpdisp
3405 = (elf64_alpha_find_reloc_at_ofs
3406 (info->relocs, irelend, urel->r_offset + 4,
3407 R_ALPHA_GPDISP));
3408 if (gpdisp)
3409 {
3410 bfd_byte *p_ldah = info->contents + gpdisp->r_offset;
3411 bfd_byte *p_lda = p_ldah + gpdisp->r_addend;
3412 unsigned int ldah = bfd_get_32 (info->abfd, p_ldah);
3413 unsigned int lda = bfd_get_32 (info->abfd, p_lda);
3414
3415 /* Verify that the instruction is "ldah $29,0($26)".
3416 Consider a function that ends in a noreturn call,
3417 and that the next function begins with an ldgp,
3418 and that by accident there is no padding between.
3419 In that case the insn would use $27 as the base. */
3420 if (ldah == 0x27ba0000 && lda == 0x23bd0000)
3421 {
3422 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_ldah);
3423 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_lda);
3424
3425 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3426 info->changed_contents = TRUE;
3427 info->changed_relocs = TRUE;
3428 }
3429 }
3430 }
3431 }
3432 break;
3433 }
3434 }
3435
3436 /* If all cases were optimized, we can reduce the use count on this
3437 got entry by one, possibly eliminating it. */
3438 if (all_optimized)
3439 {
3440 if (--info->gotent->use_count == 0)
3441 {
3442 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3443 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3444 if (!info->h)
3445 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3446 }
3447
3448 /* If the literal instruction is no longer needed (it may have been
3449 reused. We can eliminate it. */
3450 /* ??? For now, I don't want to deal with compacting the section,
3451 so just nop it out. */
3452 if (!lit_reused)
3453 {
3454 irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3455 info->changed_relocs = TRUE;
3456
3457 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP,
3458 info->contents + irel->r_offset);
3459 info->changed_contents = TRUE;
3460 }
3461
3462 return TRUE;
3463 }
3464 else
3465 return elf64_alpha_relax_got_load (info, symval, irel, R_ALPHA_LITERAL);
3466 }
3467
3468 static bfd_boolean
3469 elf64_alpha_relax_tls_get_addr (struct alpha_relax_info *info, bfd_vma symval,
3470 Elf_Internal_Rela *irel, bfd_boolean is_gd)
3471 {
3472 bfd_byte *pos[5];
3473 unsigned int insn, tlsgd_reg;
3474 Elf_Internal_Rela *gpdisp, *hint;
3475 bfd_boolean dynamic, use_gottprel;
3476 unsigned long new_symndx;
3477
3478 dynamic = alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info);
3479
3480 /* If a TLS symbol is accessed using IE at least once, there is no point
3481 to use dynamic model for it. */
3482 if (is_gd && info->h && (info->h->flags & ALPHA_ELF_LINK_HASH_TLS_IE))
3483 ;
3484
3485 /* If the symbol is local, and we've already committed to DF_STATIC_TLS,
3486 then we might as well relax to IE. */
3487 else if (info->link_info->shared && !dynamic
3488 && (info->link_info->flags & DF_STATIC_TLS))
3489 ;
3490
3491 /* Otherwise we must be building an executable to do anything. */
3492 else if (info->link_info->shared)
3493 return TRUE;
3494
3495 /* The TLSGD/TLSLDM relocation must be followed by a LITERAL and
3496 the matching LITUSE_TLS relocations. */
3497 if (irel + 2 >= info->relend)
3498 return TRUE;
3499 if (ELF64_R_TYPE (irel[1].r_info) != R_ALPHA_LITERAL
3500 || ELF64_R_TYPE (irel[2].r_info) != R_ALPHA_LITUSE
3501 || irel[2].r_addend != (is_gd ? LITUSE_ALPHA_TLSGD : LITUSE_ALPHA_TLSLDM))
3502 return TRUE;
3503
3504 /* There must be a GPDISP relocation positioned immediately after the
3505 LITUSE relocation. */
3506 gpdisp = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3507 irel[2].r_offset + 4, R_ALPHA_GPDISP);
3508 if (!gpdisp)
3509 return TRUE;
3510
3511 pos[0] = info->contents + irel[0].r_offset;
3512 pos[1] = info->contents + irel[1].r_offset;
3513 pos[2] = info->contents + irel[2].r_offset;
3514 pos[3] = info->contents + gpdisp->r_offset;
3515 pos[4] = pos[3] + gpdisp->r_addend;
3516
3517 /* Generally, the positions are not allowed to be out of order, lest the
3518 modified insn sequence have different register lifetimes. We can make
3519 an exception when pos 1 is adjacent to pos 0. */
3520 if (pos[1] + 4 == pos[0])
3521 {
3522 bfd_byte *tmp = pos[0];
3523 pos[0] = pos[1];
3524 pos[1] = tmp;
3525 }
3526 if (pos[1] >= pos[2] || pos[2] >= pos[3])
3527 return TRUE;
3528
3529 /* Reduce the use count on the LITERAL relocation. Do this before we
3530 smash the symndx when we adjust the relocations below. */
3531 {
3532 struct alpha_elf_got_entry *lit_gotent;
3533 struct alpha_elf_link_hash_entry *lit_h;
3534 unsigned long indx;
3535
3536 BFD_ASSERT (ELF64_R_SYM (irel[1].r_info) >= info->symtab_hdr->sh_info);
3537 indx = ELF64_R_SYM (irel[1].r_info) - info->symtab_hdr->sh_info;
3538 lit_h = alpha_elf_sym_hashes (info->abfd)[indx];
3539
3540 while (lit_h->root.root.type == bfd_link_hash_indirect
3541 || lit_h->root.root.type == bfd_link_hash_warning)
3542 lit_h = (struct alpha_elf_link_hash_entry *) lit_h->root.root.u.i.link;
3543
3544 for (lit_gotent = lit_h->got_entries; lit_gotent ;
3545 lit_gotent = lit_gotent->next)
3546 if (lit_gotent->gotobj == info->gotobj
3547 && lit_gotent->reloc_type == R_ALPHA_LITERAL
3548 && lit_gotent->addend == irel[1].r_addend)
3549 break;
3550 BFD_ASSERT (lit_gotent);
3551
3552 if (--lit_gotent->use_count == 0)
3553 {
3554 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3555 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3556 }
3557 }
3558
3559 /* Change
3560
3561 lda $16,x($gp) !tlsgd!1
3562 ldq $27,__tls_get_addr($gp) !literal!1
3563 jsr $26,($27),__tls_get_addr !lituse_tlsgd!1
3564 ldah $29,0($26) !gpdisp!2
3565 lda $29,0($29) !gpdisp!2
3566 to
3567 ldq $16,x($gp) !gottprel
3568 unop
3569 call_pal rduniq
3570 addq $16,$0,$0
3571 unop
3572 or the first pair to
3573 lda $16,x($gp) !tprel
3574 unop
3575 or
3576 ldah $16,x($gp) !tprelhi
3577 lda $16,x($16) !tprello
3578
3579 as appropriate. */
3580
3581 use_gottprel = FALSE;
3582 new_symndx = is_gd ? ELF64_R_SYM (irel->r_info) : STN_UNDEF;
3583
3584 /* Beware of the compiler hoisting part of the sequence out a loop
3585 and adjusting the destination register for the TLSGD insn. If this
3586 happens, there will be a move into $16 before the JSR insn, so only
3587 transformations of the first insn pair should use this register. */
3588 tlsgd_reg = bfd_get_32 (info->abfd, pos[0]);
3589 tlsgd_reg = (tlsgd_reg >> 21) & 31;
3590
3591 switch (!dynamic && !info->link_info->shared)
3592 {
3593 case 1:
3594 {
3595 bfd_vma tp_base;
3596 bfd_signed_vma disp;
3597
3598 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3599 tp_base = alpha_get_tprel_base (info->link_info);
3600 disp = symval - tp_base;
3601
3602 if (disp >= -0x8000 && disp < 0x8000)
3603 {
3604 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (31 << 16);
3605 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3606 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3607
3608 irel[0].r_offset = pos[0] - info->contents;
3609 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPREL16);
3610 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3611 break;
3612 }
3613 else if (disp >= -(bfd_signed_vma) 0x80000000
3614 && disp < (bfd_signed_vma) 0x7fff8000
3615 && pos[0] + 4 == pos[1])
3616 {
3617 insn = (OP_LDAH << 26) | (tlsgd_reg << 21) | (31 << 16);
3618 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3619 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (tlsgd_reg << 16);
3620 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[1]);
3621
3622 irel[0].r_offset = pos[0] - info->contents;
3623 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELHI);
3624 irel[1].r_offset = pos[1] - info->contents;
3625 irel[1].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELLO);
3626 break;
3627 }
3628 }
3629 /* FALLTHRU */
3630
3631 default:
3632 use_gottprel = TRUE;
3633
3634 insn = (OP_LDQ << 26) | (tlsgd_reg << 21) | (29 << 16);
3635 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3636 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3637
3638 irel[0].r_offset = pos[0] - info->contents;
3639 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_GOTTPREL);
3640 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3641 break;
3642 }
3643
3644 bfd_put_32 (info->abfd, (bfd_vma) INSN_RDUNIQ, pos[2]);
3645
3646 insn = INSN_ADDQ | (16 << 21) | (0 << 16) | (0 << 0);
3647 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[3]);
3648
3649 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[4]);
3650
3651 irel[2].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3652 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3653
3654 hint = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3655 irel[2].r_offset, R_ALPHA_HINT);
3656 if (hint)
3657 hint->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3658
3659 info->changed_contents = TRUE;
3660 info->changed_relocs = TRUE;
3661
3662 /* Reduce the use count on the TLSGD/TLSLDM relocation. */
3663 if (--info->gotent->use_count == 0)
3664 {
3665 int sz = alpha_got_entry_size (info->gotent->reloc_type);
3666 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3667 if (!info->h)
3668 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3669 }
3670
3671 /* If we've switched to a GOTTPREL relocation, increment the reference
3672 count on that got entry. */
3673 if (use_gottprel)
3674 {
3675 struct alpha_elf_got_entry *tprel_gotent;
3676
3677 for (tprel_gotent = *info->first_gotent; tprel_gotent ;
3678 tprel_gotent = tprel_gotent->next)
3679 if (tprel_gotent->gotobj == info->gotobj
3680 && tprel_gotent->reloc_type == R_ALPHA_GOTTPREL
3681 && tprel_gotent->addend == irel->r_addend)
3682 break;
3683 if (tprel_gotent)
3684 tprel_gotent->use_count++;
3685 else
3686 {
3687 if (info->gotent->use_count == 0)
3688 tprel_gotent = info->gotent;
3689 else
3690 {
3691 tprel_gotent = (struct alpha_elf_got_entry *)
3692 bfd_alloc (info->abfd, sizeof (struct alpha_elf_got_entry));
3693 if (!tprel_gotent)
3694 return FALSE;
3695
3696 tprel_gotent->next = *info->first_gotent;
3697 *info->first_gotent = tprel_gotent;
3698
3699 tprel_gotent->gotobj = info->gotobj;
3700 tprel_gotent->addend = irel->r_addend;
3701 tprel_gotent->got_offset = -1;
3702 tprel_gotent->reloc_done = 0;
3703 tprel_gotent->reloc_xlated = 0;
3704 }
3705
3706 tprel_gotent->use_count = 1;
3707 tprel_gotent->reloc_type = R_ALPHA_GOTTPREL;
3708 }
3709 }
3710
3711 return TRUE;
3712 }
3713
3714 static bfd_boolean
3715 elf64_alpha_relax_section (bfd *abfd, asection *sec,
3716 struct bfd_link_info *link_info, bfd_boolean *again)
3717 {
3718 Elf_Internal_Shdr *symtab_hdr;
3719 Elf_Internal_Rela *internal_relocs;
3720 Elf_Internal_Rela *irel, *irelend;
3721 Elf_Internal_Sym *isymbuf = NULL;
3722 struct alpha_elf_got_entry **local_got_entries;
3723 struct alpha_relax_info info;
3724 struct alpha_elf_link_hash_table * htab;
3725
3726 htab = alpha_elf_hash_table (link_info);
3727 if (htab == NULL)
3728 return FALSE;
3729
3730 /* There's nothing to change, yet. */
3731 *again = FALSE;
3732
3733 if (link_info->relocatable
3734 || ((sec->flags & (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3735 != (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3736 || sec->reloc_count == 0)
3737 return TRUE;
3738
3739 BFD_ASSERT (is_alpha_elf (abfd));
3740
3741 /* Make sure our GOT and PLT tables are up-to-date. */
3742 if (htab->relax_trip != link_info->relax_trip)
3743 {
3744 htab->relax_trip = link_info->relax_trip;
3745
3746 /* This should never fail after the initial round, since the only
3747 error is GOT overflow, and relaxation only shrinks the table. */
3748 if (!elf64_alpha_size_got_sections (link_info))
3749 abort ();
3750 if (elf_hash_table (link_info)->dynamic_sections_created)
3751 {
3752 elf64_alpha_size_plt_section (link_info);
3753 elf64_alpha_size_rela_got_section (link_info);
3754 }
3755 }
3756
3757 symtab_hdr = &elf_symtab_hdr (abfd);
3758 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
3759
3760 /* Load the relocations for this section. */
3761 internal_relocs = (_bfd_elf_link_read_relocs
3762 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
3763 link_info->keep_memory));
3764 if (internal_relocs == NULL)
3765 return FALSE;
3766
3767 memset(&info, 0, sizeof (info));
3768 info.abfd = abfd;
3769 info.sec = sec;
3770 info.link_info = link_info;
3771 info.symtab_hdr = symtab_hdr;
3772 info.relocs = internal_relocs;
3773 info.relend = irelend = internal_relocs + sec->reloc_count;
3774
3775 /* Find the GP for this object. Do not store the result back via
3776 _bfd_set_gp_value, since this could change again before final. */
3777 info.gotobj = alpha_elf_tdata (abfd)->gotobj;
3778 if (info.gotobj)
3779 {
3780 asection *sgot = alpha_elf_tdata (info.gotobj)->got;
3781 info.gp = (sgot->output_section->vma
3782 + sgot->output_offset
3783 + 0x8000);
3784 }
3785
3786 /* Get the section contents. */
3787 if (elf_section_data (sec)->this_hdr.contents != NULL)
3788 info.contents = elf_section_data (sec)->this_hdr.contents;
3789 else
3790 {
3791 if (!bfd_malloc_and_get_section (abfd, sec, &info.contents))
3792 goto error_return;
3793 }
3794
3795 for (irel = internal_relocs; irel < irelend; irel++)
3796 {
3797 bfd_vma symval;
3798 struct alpha_elf_got_entry *gotent;
3799 unsigned long r_type = ELF64_R_TYPE (irel->r_info);
3800 unsigned long r_symndx = ELF64_R_SYM (irel->r_info);
3801
3802 /* Early exit for unhandled or unrelaxable relocations. */
3803 switch (r_type)
3804 {
3805 case R_ALPHA_LITERAL:
3806 case R_ALPHA_GPRELHIGH:
3807 case R_ALPHA_GPRELLOW:
3808 case R_ALPHA_GOTDTPREL:
3809 case R_ALPHA_GOTTPREL:
3810 case R_ALPHA_TLSGD:
3811 break;
3812
3813 case R_ALPHA_TLSLDM:
3814 /* The symbol for a TLSLDM reloc is ignored. Collapse the
3815 reloc to the STN_UNDEF (0) symbol so that they all match. */
3816 r_symndx = STN_UNDEF;
3817 break;
3818
3819 default:
3820 continue;
3821 }
3822
3823 /* Get the value of the symbol referred to by the reloc. */
3824 if (r_symndx < symtab_hdr->sh_info)
3825 {
3826 /* A local symbol. */
3827 Elf_Internal_Sym *isym;
3828
3829 /* Read this BFD's local symbols. */
3830 if (isymbuf == NULL)
3831 {
3832 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3833 if (isymbuf == NULL)
3834 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3835 symtab_hdr->sh_info, 0,
3836 NULL, NULL, NULL);
3837 if (isymbuf == NULL)
3838 goto error_return;
3839 }
3840
3841 isym = isymbuf + r_symndx;
3842
3843 /* Given the symbol for a TLSLDM reloc is ignored, this also
3844 means forcing the symbol value to the tp base. */
3845 if (r_type == R_ALPHA_TLSLDM)
3846 {
3847 info.tsec = bfd_abs_section_ptr;
3848 symval = alpha_get_tprel_base (info.link_info);
3849 }
3850 else
3851 {
3852 symval = isym->st_value;
3853 if (isym->st_shndx == SHN_UNDEF)
3854 continue;
3855 else if (isym->st_shndx == SHN_ABS)
3856 info.tsec = bfd_abs_section_ptr;
3857 else if (isym->st_shndx == SHN_COMMON)
3858 info.tsec = bfd_com_section_ptr;
3859 else
3860 info.tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3861 }
3862
3863 info.h = NULL;
3864 info.other = isym->st_other;
3865 if (local_got_entries)
3866 info.first_gotent = &local_got_entries[r_symndx];
3867 else
3868 {
3869 info.first_gotent = &info.gotent;
3870 info.gotent = NULL;
3871 }
3872 }
3873 else
3874 {
3875 unsigned long indx;
3876 struct alpha_elf_link_hash_entry *h;
3877
3878 indx = r_symndx - symtab_hdr->sh_info;
3879 h = alpha_elf_sym_hashes (abfd)[indx];
3880 BFD_ASSERT (h != NULL);
3881
3882 while (h->root.root.type == bfd_link_hash_indirect
3883 || h->root.root.type == bfd_link_hash_warning)
3884 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
3885
3886 /* If the symbol is undefined, we can't do anything with it. */
3887 if (h->root.root.type == bfd_link_hash_undefined)
3888 continue;
3889
3890 /* If the symbol isn't defined in the current module,
3891 again we can't do anything. */
3892 if (h->root.root.type == bfd_link_hash_undefweak)
3893 {
3894 info.tsec = bfd_abs_section_ptr;
3895 symval = 0;
3896 }
3897 else if (!h->root.def_regular)
3898 {
3899 /* Except for TLSGD relocs, which can sometimes be
3900 relaxed to GOTTPREL relocs. */
3901 if (r_type != R_ALPHA_TLSGD)
3902 continue;
3903 info.tsec = bfd_abs_section_ptr;
3904 symval = 0;
3905 }
3906 else
3907 {
3908 info.tsec = h->root.root.u.def.section;
3909 symval = h->root.root.u.def.value;
3910 }
3911
3912 info.h = h;
3913 info.other = h->root.other;
3914 info.first_gotent = &h->got_entries;
3915 }
3916
3917 /* Search for the got entry to be used by this relocation. */
3918 for (gotent = *info.first_gotent; gotent ; gotent = gotent->next)
3919 if (gotent->gotobj == info.gotobj
3920 && gotent->reloc_type == r_type
3921 && gotent->addend == irel->r_addend)
3922 break;
3923 info.gotent = gotent;
3924
3925 symval += info.tsec->output_section->vma + info.tsec->output_offset;
3926 symval += irel->r_addend;
3927
3928 switch (r_type)
3929 {
3930 case R_ALPHA_LITERAL:
3931 BFD_ASSERT(info.gotent != NULL);
3932
3933 /* If there exist LITUSE relocations immediately following, this
3934 opens up all sorts of interesting optimizations, because we
3935 now know every location that this address load is used. */
3936 if (irel+1 < irelend
3937 && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
3938 {
3939 if (!elf64_alpha_relax_with_lituse (&info, symval, irel))
3940 goto error_return;
3941 }
3942 else
3943 {
3944 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3945 goto error_return;
3946 }
3947 break;
3948
3949 case R_ALPHA_GOTDTPREL:
3950 case R_ALPHA_GOTTPREL:
3951 BFD_ASSERT(info.gotent != NULL);
3952 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3953 goto error_return;
3954 break;
3955
3956 case R_ALPHA_TLSGD:
3957 case R_ALPHA_TLSLDM:
3958 BFD_ASSERT(info.gotent != NULL);
3959 if (!elf64_alpha_relax_tls_get_addr (&info, symval, irel,
3960 r_type == R_ALPHA_TLSGD))
3961 goto error_return;
3962 break;
3963 }
3964 }
3965
3966 if (isymbuf != NULL
3967 && symtab_hdr->contents != (unsigned char *) isymbuf)
3968 {
3969 if (!link_info->keep_memory)
3970 free (isymbuf);
3971 else
3972 {
3973 /* Cache the symbols for elf_link_input_bfd. */
3974 symtab_hdr->contents = (unsigned char *) isymbuf;
3975 }
3976 }
3977
3978 if (info.contents != NULL
3979 && elf_section_data (sec)->this_hdr.contents != info.contents)
3980 {
3981 if (!info.changed_contents && !link_info->keep_memory)
3982 free (info.contents);
3983 else
3984 {
3985 /* Cache the section contents for elf_link_input_bfd. */
3986 elf_section_data (sec)->this_hdr.contents = info.contents;
3987 }
3988 }
3989
3990 if (elf_section_data (sec)->relocs != internal_relocs)
3991 {
3992 if (!info.changed_relocs)
3993 free (internal_relocs);
3994 else
3995 elf_section_data (sec)->relocs = internal_relocs;
3996 }
3997
3998 *again = info.changed_contents || info.changed_relocs;
3999
4000 return TRUE;
4001
4002 error_return:
4003 if (isymbuf != NULL
4004 && symtab_hdr->contents != (unsigned char *) isymbuf)
4005 free (isymbuf);
4006 if (info.contents != NULL
4007 && elf_section_data (sec)->this_hdr.contents != info.contents)
4008 free (info.contents);
4009 if (internal_relocs != NULL
4010 && elf_section_data (sec)->relocs != internal_relocs)
4011 free (internal_relocs);
4012 return FALSE;
4013 }
4014 \f
4015 /* Emit a dynamic relocation for (DYNINDX, RTYPE, ADDEND) at (SEC, OFFSET)
4016 into the next available slot in SREL. */
4017
4018 static void
4019 elf64_alpha_emit_dynrel (bfd *abfd, struct bfd_link_info *info,
4020 asection *sec, asection *srel, bfd_vma offset,
4021 long dynindx, long rtype, bfd_vma addend)
4022 {
4023 Elf_Internal_Rela outrel;
4024 bfd_byte *loc;
4025
4026 BFD_ASSERT (srel != NULL);
4027
4028 outrel.r_info = ELF64_R_INFO (dynindx, rtype);
4029 outrel.r_addend = addend;
4030
4031 offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4032 if ((offset | 1) != (bfd_vma) -1)
4033 outrel.r_offset = sec->output_section->vma + sec->output_offset + offset;
4034 else
4035 memset (&outrel, 0, sizeof (outrel));
4036
4037 loc = srel->contents;
4038 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
4039 bfd_elf64_swap_reloca_out (abfd, &outrel, loc);
4040 BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->size);
4041 }
4042
4043 /* Relocate an Alpha ELF section for a relocatable link.
4044
4045 We don't have to change anything unless the reloc is against a section
4046 symbol, in which case we have to adjust according to where the section
4047 symbol winds up in the output section. */
4048
4049 static bfd_boolean
4050 elf64_alpha_relocate_section_r (bfd *output_bfd ATTRIBUTE_UNUSED,
4051 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4052 bfd *input_bfd, asection *input_section,
4053 bfd_byte *contents ATTRIBUTE_UNUSED,
4054 Elf_Internal_Rela *relocs,
4055 Elf_Internal_Sym *local_syms,
4056 asection **local_sections)
4057 {
4058 unsigned long symtab_hdr_sh_info;
4059 Elf_Internal_Rela *rel;
4060 Elf_Internal_Rela *relend;
4061 struct elf_link_hash_entry **sym_hashes;
4062 bfd_boolean ret_val = TRUE;
4063
4064 symtab_hdr_sh_info = elf_symtab_hdr (input_bfd).sh_info;
4065 sym_hashes = elf_sym_hashes (input_bfd);
4066
4067 relend = relocs + input_section->reloc_count;
4068 for (rel = relocs; rel < relend; rel++)
4069 {
4070 unsigned long r_symndx;
4071 Elf_Internal_Sym *sym;
4072 asection *sec;
4073 unsigned long r_type;
4074
4075 r_type = ELF64_R_TYPE (rel->r_info);
4076 if (r_type >= R_ALPHA_max)
4077 {
4078 (*_bfd_error_handler)
4079 (_("%B: unknown relocation type %d"),
4080 input_bfd, (int) r_type);
4081 bfd_set_error (bfd_error_bad_value);
4082 ret_val = FALSE;
4083 continue;
4084 }
4085
4086 /* The symbol associated with GPDISP and LITUSE is
4087 immaterial. Only the addend is significant. */
4088 if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
4089 continue;
4090
4091 r_symndx = ELF64_R_SYM (rel->r_info);
4092 if (r_symndx < symtab_hdr_sh_info)
4093 {
4094 sym = local_syms + r_symndx;
4095 sec = local_sections[r_symndx];
4096 }
4097 else
4098 {
4099 struct elf_link_hash_entry *h;
4100
4101 h = sym_hashes[r_symndx - symtab_hdr_sh_info];
4102
4103 while (h->root.type == bfd_link_hash_indirect
4104 || h->root.type == bfd_link_hash_warning)
4105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4106
4107 if (h->root.type != bfd_link_hash_defined
4108 && h->root.type != bfd_link_hash_defweak)
4109 continue;
4110
4111 sym = NULL;
4112 sec = h->root.u.def.section;
4113 }
4114
4115 if (sec != NULL && elf_discarded_section (sec))
4116 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4117 rel, relend,
4118 elf64_alpha_howto_table + r_type,
4119 contents);
4120
4121 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4122 rel->r_addend += sec->output_offset;
4123 }
4124
4125 return ret_val;
4126 }
4127
4128 /* Relocate an Alpha ELF section. */
4129
4130 static bfd_boolean
4131 elf64_alpha_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
4132 bfd *input_bfd, asection *input_section,
4133 bfd_byte *contents, Elf_Internal_Rela *relocs,
4134 Elf_Internal_Sym *local_syms,
4135 asection **local_sections)
4136 {
4137 Elf_Internal_Shdr *symtab_hdr;
4138 Elf_Internal_Rela *rel;
4139 Elf_Internal_Rela *relend;
4140 asection *sgot, *srel, *srelgot;
4141 bfd *dynobj, *gotobj;
4142 bfd_vma gp, tp_base, dtp_base;
4143 struct alpha_elf_got_entry **local_got_entries;
4144 bfd_boolean ret_val;
4145
4146 BFD_ASSERT (is_alpha_elf (input_bfd));
4147
4148 /* Handle relocatable links with a smaller loop. */
4149 if (info->relocatable)
4150 return elf64_alpha_relocate_section_r (output_bfd, info, input_bfd,
4151 input_section, contents, relocs,
4152 local_syms, local_sections);
4153
4154 /* This is a final link. */
4155
4156 ret_val = TRUE;
4157
4158 symtab_hdr = &elf_symtab_hdr (input_bfd);
4159
4160 dynobj = elf_hash_table (info)->dynobj;
4161 if (dynobj)
4162 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
4163 else
4164 srelgot = NULL;
4165
4166 if (input_section->flags & SEC_ALLOC)
4167 {
4168 const char *section_name;
4169 section_name = (bfd_elf_string_from_elf_section
4170 (input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
4171 _bfd_elf_single_rel_hdr (input_section)->sh_name));
4172 BFD_ASSERT(section_name != NULL);
4173 srel = bfd_get_section_by_name (dynobj, section_name);
4174 }
4175 else
4176 srel = NULL;
4177
4178 /* Find the gp value for this input bfd. */
4179 gotobj = alpha_elf_tdata (input_bfd)->gotobj;
4180 if (gotobj)
4181 {
4182 sgot = alpha_elf_tdata (gotobj)->got;
4183 gp = _bfd_get_gp_value (gotobj);
4184 if (gp == 0)
4185 {
4186 gp = (sgot->output_section->vma
4187 + sgot->output_offset
4188 + 0x8000);
4189 _bfd_set_gp_value (gotobj, gp);
4190 }
4191 }
4192 else
4193 {
4194 sgot = NULL;
4195 gp = 0;
4196 }
4197
4198 local_got_entries = alpha_elf_tdata(input_bfd)->local_got_entries;
4199
4200 if (elf_hash_table (info)->tls_sec != NULL)
4201 {
4202 dtp_base = alpha_get_dtprel_base (info);
4203 tp_base = alpha_get_tprel_base (info);
4204 }
4205 else
4206 dtp_base = tp_base = 0;
4207
4208 relend = relocs + input_section->reloc_count;
4209 for (rel = relocs; rel < relend; rel++)
4210 {
4211 struct alpha_elf_link_hash_entry *h = NULL;
4212 struct alpha_elf_got_entry *gotent;
4213 bfd_reloc_status_type r;
4214 reloc_howto_type *howto;
4215 unsigned long r_symndx;
4216 Elf_Internal_Sym *sym = NULL;
4217 asection *sec = NULL;
4218 bfd_vma value;
4219 bfd_vma addend;
4220 bfd_boolean dynamic_symbol_p;
4221 bfd_boolean undef_weak_ref = FALSE;
4222 unsigned long r_type;
4223
4224 r_type = ELF64_R_TYPE(rel->r_info);
4225 if (r_type >= R_ALPHA_max)
4226 {
4227 (*_bfd_error_handler)
4228 (_("%B: unknown relocation type %d"),
4229 input_bfd, (int) r_type);
4230 bfd_set_error (bfd_error_bad_value);
4231 ret_val = FALSE;
4232 continue;
4233 }
4234
4235 howto = elf64_alpha_howto_table + r_type;
4236 r_symndx = ELF64_R_SYM(rel->r_info);
4237
4238 /* The symbol for a TLSLDM reloc is ignored. Collapse the
4239 reloc to the STN_UNDEF (0) symbol so that they all match. */
4240 if (r_type == R_ALPHA_TLSLDM)
4241 r_symndx = STN_UNDEF;
4242
4243 if (r_symndx < symtab_hdr->sh_info)
4244 {
4245 asection *msec;
4246 sym = local_syms + r_symndx;
4247 sec = local_sections[r_symndx];
4248 msec = sec;
4249 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4250
4251 /* If this is a tp-relative relocation against sym STN_UNDEF (0),
4252 this is hackery from relax_section. Force the value to
4253 be the tls module base. */
4254 if (r_symndx == STN_UNDEF
4255 && (r_type == R_ALPHA_TLSLDM
4256 || r_type == R_ALPHA_GOTTPREL
4257 || r_type == R_ALPHA_TPREL64
4258 || r_type == R_ALPHA_TPRELHI
4259 || r_type == R_ALPHA_TPRELLO
4260 || r_type == R_ALPHA_TPREL16))
4261 value = dtp_base;
4262
4263 if (local_got_entries)
4264 gotent = local_got_entries[r_symndx];
4265 else
4266 gotent = NULL;
4267
4268 /* Need to adjust local GOT entries' addends for SEC_MERGE
4269 unless it has been done already. */
4270 if ((sec->flags & SEC_MERGE)
4271 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4272 && sec->sec_info_type == ELF_INFO_TYPE_MERGE
4273 && gotent
4274 && !gotent->reloc_xlated)
4275 {
4276 struct alpha_elf_got_entry *ent;
4277
4278 for (ent = gotent; ent; ent = ent->next)
4279 {
4280 ent->reloc_xlated = 1;
4281 if (ent->use_count == 0)
4282 continue;
4283 msec = sec;
4284 ent->addend =
4285 _bfd_merged_section_offset (output_bfd, &msec,
4286 elf_section_data (sec)->
4287 sec_info,
4288 sym->st_value + ent->addend);
4289 ent->addend -= sym->st_value;
4290 ent->addend += msec->output_section->vma
4291 + msec->output_offset
4292 - sec->output_section->vma
4293 - sec->output_offset;
4294 }
4295 }
4296
4297 dynamic_symbol_p = FALSE;
4298 }
4299 else
4300 {
4301 bfd_boolean warned;
4302 bfd_boolean unresolved_reloc;
4303 struct elf_link_hash_entry *hh;
4304 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4305
4306 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4307 r_symndx, symtab_hdr, sym_hashes,
4308 hh, sec, value,
4309 unresolved_reloc, warned);
4310
4311 if (warned)
4312 continue;
4313
4314 if (value == 0
4315 && ! unresolved_reloc
4316 && hh->root.type == bfd_link_hash_undefweak)
4317 undef_weak_ref = TRUE;
4318
4319 h = (struct alpha_elf_link_hash_entry *) hh;
4320 dynamic_symbol_p = alpha_elf_dynamic_symbol_p (&h->root, info);
4321 gotent = h->got_entries;
4322 }
4323
4324 if (sec != NULL && elf_discarded_section (sec))
4325 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4326 rel, relend, howto, contents);
4327
4328 addend = rel->r_addend;
4329 value += addend;
4330
4331 /* Search for the proper got entry. */
4332 for (; gotent ; gotent = gotent->next)
4333 if (gotent->gotobj == gotobj
4334 && gotent->reloc_type == r_type
4335 && gotent->addend == addend)
4336 break;
4337
4338 switch (r_type)
4339 {
4340 case R_ALPHA_GPDISP:
4341 {
4342 bfd_byte *p_ldah, *p_lda;
4343
4344 BFD_ASSERT(gp != 0);
4345
4346 value = (input_section->output_section->vma
4347 + input_section->output_offset
4348 + rel->r_offset);
4349
4350 p_ldah = contents + rel->r_offset;
4351 p_lda = p_ldah + rel->r_addend;
4352
4353 r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - value,
4354 p_ldah, p_lda);
4355 }
4356 break;
4357
4358 case R_ALPHA_LITERAL:
4359 BFD_ASSERT(sgot != NULL);
4360 BFD_ASSERT(gp != 0);
4361 BFD_ASSERT(gotent != NULL);
4362 BFD_ASSERT(gotent->use_count >= 1);
4363
4364 if (!gotent->reloc_done)
4365 {
4366 gotent->reloc_done = 1;
4367
4368 bfd_put_64 (output_bfd, value,
4369 sgot->contents + gotent->got_offset);
4370
4371 /* If the symbol has been forced local, output a
4372 RELATIVE reloc, otherwise it will be handled in
4373 finish_dynamic_symbol. */
4374 if (info->shared && !dynamic_symbol_p && !undef_weak_ref)
4375 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4376 gotent->got_offset, 0,
4377 R_ALPHA_RELATIVE, value);
4378 }
4379
4380 value = (sgot->output_section->vma
4381 + sgot->output_offset
4382 + gotent->got_offset);
4383 value -= gp;
4384 goto default_reloc;
4385
4386 case R_ALPHA_GPREL32:
4387 case R_ALPHA_GPREL16:
4388 case R_ALPHA_GPRELLOW:
4389 if (dynamic_symbol_p)
4390 {
4391 (*_bfd_error_handler)
4392 (_("%B: gp-relative relocation against dynamic symbol %s"),
4393 input_bfd, h->root.root.root.string);
4394 ret_val = FALSE;
4395 }
4396 BFD_ASSERT(gp != 0);
4397 value -= gp;
4398 goto default_reloc;
4399
4400 case R_ALPHA_GPRELHIGH:
4401 if (dynamic_symbol_p)
4402 {
4403 (*_bfd_error_handler)
4404 (_("%B: gp-relative relocation against dynamic symbol %s"),
4405 input_bfd, h->root.root.root.string);
4406 ret_val = FALSE;
4407 }
4408 BFD_ASSERT(gp != 0);
4409 value -= gp;
4410 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4411 goto default_reloc;
4412
4413 case R_ALPHA_HINT:
4414 /* A call to a dynamic symbol is definitely out of range of
4415 the 16-bit displacement. Don't bother writing anything. */
4416 if (dynamic_symbol_p)
4417 {
4418 r = bfd_reloc_ok;
4419 break;
4420 }
4421 /* The regular PC-relative stuff measures from the start of
4422 the instruction rather than the end. */
4423 value -= 4;
4424 goto default_reloc;
4425
4426 case R_ALPHA_BRADDR:
4427 if (dynamic_symbol_p)
4428 {
4429 (*_bfd_error_handler)
4430 (_("%B: pc-relative relocation against dynamic symbol %s"),
4431 input_bfd, h->root.root.root.string);
4432 ret_val = FALSE;
4433 }
4434 /* The regular PC-relative stuff measures from the start of
4435 the instruction rather than the end. */
4436 value -= 4;
4437 goto default_reloc;
4438
4439 case R_ALPHA_BRSGP:
4440 {
4441 int other;
4442 const char *name;
4443
4444 /* The regular PC-relative stuff measures from the start of
4445 the instruction rather than the end. */
4446 value -= 4;
4447
4448 /* The source and destination gp must be the same. Note that
4449 the source will always have an assigned gp, since we forced
4450 one in check_relocs, but that the destination may not, as
4451 it might not have had any relocations at all. Also take
4452 care not to crash if H is an undefined symbol. */
4453 if (h != NULL && sec != NULL
4454 && alpha_elf_tdata (sec->owner)->gotobj
4455 && gotobj != alpha_elf_tdata (sec->owner)->gotobj)
4456 {
4457 (*_bfd_error_handler)
4458 (_("%B: change in gp: BRSGP %s"),
4459 input_bfd, h->root.root.root.string);
4460 ret_val = FALSE;
4461 }
4462
4463 /* The symbol should be marked either NOPV or STD_GPLOAD. */
4464 if (h != NULL)
4465 other = h->root.other;
4466 else
4467 other = sym->st_other;
4468 switch (other & STO_ALPHA_STD_GPLOAD)
4469 {
4470 case STO_ALPHA_NOPV:
4471 break;
4472 case STO_ALPHA_STD_GPLOAD:
4473 value += 8;
4474 break;
4475 default:
4476 if (h != NULL)
4477 name = h->root.root.root.string;
4478 else
4479 {
4480 name = (bfd_elf_string_from_elf_section
4481 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4482 if (name == NULL)
4483 name = _("<unknown>");
4484 else if (name[0] == 0)
4485 name = bfd_section_name (input_bfd, sec);
4486 }
4487 (*_bfd_error_handler)
4488 (_("%B: !samegp reloc against symbol without .prologue: %s"),
4489 input_bfd, name);
4490 ret_val = FALSE;
4491 break;
4492 }
4493
4494 goto default_reloc;
4495 }
4496
4497 case R_ALPHA_REFLONG:
4498 case R_ALPHA_REFQUAD:
4499 case R_ALPHA_DTPREL64:
4500 case R_ALPHA_TPREL64:
4501 {
4502 long dynindx, dyntype = r_type;
4503 bfd_vma dynaddend;
4504
4505 /* Careful here to remember RELATIVE relocations for global
4506 variables for symbolic shared objects. */
4507
4508 if (dynamic_symbol_p)
4509 {
4510 BFD_ASSERT(h->root.dynindx != -1);
4511 dynindx = h->root.dynindx;
4512 dynaddend = addend;
4513 addend = 0, value = 0;
4514 }
4515 else if (r_type == R_ALPHA_DTPREL64)
4516 {
4517 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4518 value -= dtp_base;
4519 goto default_reloc;
4520 }
4521 else if (r_type == R_ALPHA_TPREL64)
4522 {
4523 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4524 if (!info->shared)
4525 {
4526 value -= tp_base;
4527 goto default_reloc;
4528 }
4529 dynindx = 0;
4530 dynaddend = value - dtp_base;
4531 }
4532 else if (info->shared
4533 && r_symndx != STN_UNDEF
4534 && (input_section->flags & SEC_ALLOC)
4535 && !undef_weak_ref)
4536 {
4537 if (r_type == R_ALPHA_REFLONG)
4538 {
4539 (*_bfd_error_handler)
4540 (_("%B: unhandled dynamic relocation against %s"),
4541 input_bfd,
4542 h->root.root.root.string);
4543 ret_val = FALSE;
4544 }
4545 dynindx = 0;
4546 dyntype = R_ALPHA_RELATIVE;
4547 dynaddend = value;
4548 }
4549 else
4550 goto default_reloc;
4551
4552 if (input_section->flags & SEC_ALLOC)
4553 elf64_alpha_emit_dynrel (output_bfd, info, input_section,
4554 srel, rel->r_offset, dynindx,
4555 dyntype, dynaddend);
4556 }
4557 goto default_reloc;
4558
4559 case R_ALPHA_SREL16:
4560 case R_ALPHA_SREL32:
4561 case R_ALPHA_SREL64:
4562 if (dynamic_symbol_p)
4563 {
4564 (*_bfd_error_handler)
4565 (_("%B: pc-relative relocation against dynamic symbol %s"),
4566 input_bfd, h->root.root.root.string);
4567 ret_val = FALSE;
4568 }
4569 else if ((info->shared || info->pie) && undef_weak_ref)
4570 {
4571 (*_bfd_error_handler)
4572 (_("%B: pc-relative relocation against undefined weak symbol %s"),
4573 input_bfd, h->root.root.root.string);
4574 ret_val = FALSE;
4575 }
4576
4577
4578 /* ??? .eh_frame references to discarded sections will be smashed
4579 to relocations against SHN_UNDEF. The .eh_frame format allows
4580 NULL to be encoded as 0 in any format, so this works here. */
4581 if (r_symndx == STN_UNDEF)
4582 howto = (elf64_alpha_howto_table
4583 + (r_type - R_ALPHA_SREL32 + R_ALPHA_REFLONG));
4584 goto default_reloc;
4585
4586 case R_ALPHA_TLSLDM:
4587 /* Ignore the symbol for the relocation. The result is always
4588 the current module. */
4589 dynamic_symbol_p = 0;
4590 /* FALLTHRU */
4591
4592 case R_ALPHA_TLSGD:
4593 if (!gotent->reloc_done)
4594 {
4595 gotent->reloc_done = 1;
4596
4597 /* Note that the module index for the main program is 1. */
4598 bfd_put_64 (output_bfd, !info->shared && !dynamic_symbol_p,
4599 sgot->contents + gotent->got_offset);
4600
4601 /* If the symbol has been forced local, output a
4602 DTPMOD64 reloc, otherwise it will be handled in
4603 finish_dynamic_symbol. */
4604 if (info->shared && !dynamic_symbol_p)
4605 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4606 gotent->got_offset, 0,
4607 R_ALPHA_DTPMOD64, 0);
4608
4609 if (dynamic_symbol_p || r_type == R_ALPHA_TLSLDM)
4610 value = 0;
4611 else
4612 {
4613 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4614 value -= dtp_base;
4615 }
4616 bfd_put_64 (output_bfd, value,
4617 sgot->contents + gotent->got_offset + 8);
4618 }
4619
4620 value = (sgot->output_section->vma
4621 + sgot->output_offset
4622 + gotent->got_offset);
4623 value -= gp;
4624 goto default_reloc;
4625
4626 case R_ALPHA_DTPRELHI:
4627 case R_ALPHA_DTPRELLO:
4628 case R_ALPHA_DTPREL16:
4629 if (dynamic_symbol_p)
4630 {
4631 (*_bfd_error_handler)
4632 (_("%B: dtp-relative relocation against dynamic symbol %s"),
4633 input_bfd, h->root.root.root.string);
4634 ret_val = FALSE;
4635 }
4636 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4637 value -= dtp_base;
4638 if (r_type == R_ALPHA_DTPRELHI)
4639 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4640 goto default_reloc;
4641
4642 case R_ALPHA_TPRELHI:
4643 case R_ALPHA_TPRELLO:
4644 case R_ALPHA_TPREL16:
4645 if (info->shared)
4646 {
4647 (*_bfd_error_handler)
4648 (_("%B: TLS local exec code cannot be linked into shared objects"),
4649 input_bfd);
4650 ret_val = FALSE;
4651 }
4652 else if (dynamic_symbol_p)
4653 {
4654 (*_bfd_error_handler)
4655 (_("%B: tp-relative relocation against dynamic symbol %s"),
4656 input_bfd, h->root.root.root.string);
4657 ret_val = FALSE;
4658 }
4659 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4660 value -= tp_base;
4661 if (r_type == R_ALPHA_TPRELHI)
4662 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4663 goto default_reloc;
4664
4665 case R_ALPHA_GOTDTPREL:
4666 case R_ALPHA_GOTTPREL:
4667 BFD_ASSERT(sgot != NULL);
4668 BFD_ASSERT(gp != 0);
4669 BFD_ASSERT(gotent != NULL);
4670 BFD_ASSERT(gotent->use_count >= 1);
4671
4672 if (!gotent->reloc_done)
4673 {
4674 gotent->reloc_done = 1;
4675
4676 if (dynamic_symbol_p)
4677 value = 0;
4678 else
4679 {
4680 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4681 if (r_type == R_ALPHA_GOTDTPREL)
4682 value -= dtp_base;
4683 else if (!info->shared)
4684 value -= tp_base;
4685 else
4686 {
4687 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4688 gotent->got_offset, 0,
4689 R_ALPHA_TPREL64,
4690 value - dtp_base);
4691 value = 0;
4692 }
4693 }
4694 bfd_put_64 (output_bfd, value,
4695 sgot->contents + gotent->got_offset);
4696 }
4697
4698 value = (sgot->output_section->vma
4699 + sgot->output_offset
4700 + gotent->got_offset);
4701 value -= gp;
4702 goto default_reloc;
4703
4704 default:
4705 default_reloc:
4706 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4707 contents, rel->r_offset, value, 0);
4708 break;
4709 }
4710
4711 switch (r)
4712 {
4713 case bfd_reloc_ok:
4714 break;
4715
4716 case bfd_reloc_overflow:
4717 {
4718 const char *name;
4719
4720 /* Don't warn if the overflow is due to pc relative reloc
4721 against discarded section. Section optimization code should
4722 handle it. */
4723
4724 if (r_symndx < symtab_hdr->sh_info
4725 && sec != NULL && howto->pc_relative
4726 && elf_discarded_section (sec))
4727 break;
4728
4729 if (h != NULL)
4730 name = NULL;
4731 else
4732 {
4733 name = (bfd_elf_string_from_elf_section
4734 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4735 if (name == NULL)
4736 return FALSE;
4737 if (*name == '\0')
4738 name = bfd_section_name (input_bfd, sec);
4739 }
4740 if (! ((*info->callbacks->reloc_overflow)
4741 (info, (h ? &h->root.root : NULL), name, howto->name,
4742 (bfd_vma) 0, input_bfd, input_section,
4743 rel->r_offset)))
4744 ret_val = FALSE;
4745 }
4746 break;
4747
4748 default:
4749 case bfd_reloc_outofrange:
4750 abort ();
4751 }
4752 }
4753
4754 return ret_val;
4755 }
4756
4757 /* Finish up dynamic symbol handling. We set the contents of various
4758 dynamic sections here. */
4759
4760 static bfd_boolean
4761 elf64_alpha_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
4762 struct elf_link_hash_entry *h,
4763 Elf_Internal_Sym *sym)
4764 {
4765 struct alpha_elf_link_hash_entry *ah = (struct alpha_elf_link_hash_entry *)h;
4766 bfd *dynobj = elf_hash_table(info)->dynobj;
4767
4768 if (h->needs_plt)
4769 {
4770 /* Fill in the .plt entry for this symbol. */
4771 asection *splt, *sgot, *srel;
4772 Elf_Internal_Rela outrel;
4773 bfd_byte *loc;
4774 bfd_vma got_addr, plt_addr;
4775 bfd_vma plt_index;
4776 struct alpha_elf_got_entry *gotent;
4777
4778 BFD_ASSERT (h->dynindx != -1);
4779
4780 splt = bfd_get_section_by_name (dynobj, ".plt");
4781 BFD_ASSERT (splt != NULL);
4782 srel = bfd_get_section_by_name (dynobj, ".rela.plt");
4783 BFD_ASSERT (srel != NULL);
4784
4785 for (gotent = ah->got_entries; gotent ; gotent = gotent->next)
4786 if (gotent->reloc_type == R_ALPHA_LITERAL
4787 && gotent->use_count > 0)
4788 {
4789 unsigned int insn;
4790 int disp;
4791
4792 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4793 BFD_ASSERT (sgot != NULL);
4794
4795 BFD_ASSERT (gotent->got_offset != -1);
4796 BFD_ASSERT (gotent->plt_offset != -1);
4797
4798 got_addr = (sgot->output_section->vma
4799 + sgot->output_offset
4800 + gotent->got_offset);
4801 plt_addr = (splt->output_section->vma
4802 + splt->output_offset
4803 + gotent->plt_offset);
4804
4805 plt_index = (gotent->plt_offset-PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
4806
4807 /* Fill in the entry in the procedure linkage table. */
4808 if (elf64_alpha_use_secureplt)
4809 {
4810 disp = (PLT_HEADER_SIZE - 4) - (gotent->plt_offset + 4);
4811 insn = INSN_AD (INSN_BR, 31, disp);
4812 bfd_put_32 (output_bfd, insn,
4813 splt->contents + gotent->plt_offset);
4814
4815 plt_index = ((gotent->plt_offset - NEW_PLT_HEADER_SIZE)
4816 / NEW_PLT_ENTRY_SIZE);
4817 }
4818 else
4819 {
4820 disp = -(gotent->plt_offset + 4);
4821 insn = INSN_AD (INSN_BR, 28, disp);
4822 bfd_put_32 (output_bfd, insn,
4823 splt->contents + gotent->plt_offset);
4824 bfd_put_32 (output_bfd, INSN_UNOP,
4825 splt->contents + gotent->plt_offset + 4);
4826 bfd_put_32 (output_bfd, INSN_UNOP,
4827 splt->contents + gotent->plt_offset + 8);
4828
4829 plt_index = ((gotent->plt_offset - OLD_PLT_HEADER_SIZE)
4830 / OLD_PLT_ENTRY_SIZE);
4831 }
4832
4833 /* Fill in the entry in the .rela.plt section. */
4834 outrel.r_offset = got_addr;
4835 outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
4836 outrel.r_addend = 0;
4837
4838 loc = srel->contents + plt_index * sizeof (Elf64_External_Rela);
4839 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
4840
4841 /* Fill in the entry in the .got. */
4842 bfd_put_64 (output_bfd, plt_addr,
4843 sgot->contents + gotent->got_offset);
4844 }
4845 }
4846 else if (alpha_elf_dynamic_symbol_p (h, info))
4847 {
4848 /* Fill in the dynamic relocations for this symbol's .got entries. */
4849 asection *srel;
4850 struct alpha_elf_got_entry *gotent;
4851
4852 srel = bfd_get_section_by_name (dynobj, ".rela.got");
4853 BFD_ASSERT (srel != NULL);
4854
4855 for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
4856 gotent != NULL;
4857 gotent = gotent->next)
4858 {
4859 asection *sgot;
4860 long r_type;
4861
4862 if (gotent->use_count == 0)
4863 continue;
4864
4865 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4866
4867 r_type = gotent->reloc_type;
4868 switch (r_type)
4869 {
4870 case R_ALPHA_LITERAL:
4871 r_type = R_ALPHA_GLOB_DAT;
4872 break;
4873 case R_ALPHA_TLSGD:
4874 r_type = R_ALPHA_DTPMOD64;
4875 break;
4876 case R_ALPHA_GOTDTPREL:
4877 r_type = R_ALPHA_DTPREL64;
4878 break;
4879 case R_ALPHA_GOTTPREL:
4880 r_type = R_ALPHA_TPREL64;
4881 break;
4882 case R_ALPHA_TLSLDM:
4883 default:
4884 abort ();
4885 }
4886
4887 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4888 gotent->got_offset, h->dynindx,
4889 r_type, gotent->addend);
4890
4891 if (gotent->reloc_type == R_ALPHA_TLSGD)
4892 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4893 gotent->got_offset + 8, h->dynindx,
4894 R_ALPHA_DTPREL64, gotent->addend);
4895 }
4896 }
4897
4898 /* Mark some specially defined symbols as absolute. */
4899 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4900 || h == elf_hash_table (info)->hgot
4901 || h == elf_hash_table (info)->hplt)
4902 sym->st_shndx = SHN_ABS;
4903
4904 return TRUE;
4905 }
4906
4907 /* Finish up the dynamic sections. */
4908
4909 static bfd_boolean
4910 elf64_alpha_finish_dynamic_sections (bfd *output_bfd,
4911 struct bfd_link_info *info)
4912 {
4913 bfd *dynobj;
4914 asection *sdyn;
4915
4916 dynobj = elf_hash_table (info)->dynobj;
4917 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4918
4919 if (elf_hash_table (info)->dynamic_sections_created)
4920 {
4921 asection *splt, *sgotplt, *srelaplt;
4922 Elf64_External_Dyn *dyncon, *dynconend;
4923 bfd_vma plt_vma, gotplt_vma;
4924
4925 splt = bfd_get_section_by_name (dynobj, ".plt");
4926 srelaplt = bfd_get_section_by_name (output_bfd, ".rela.plt");
4927 BFD_ASSERT (splt != NULL && sdyn != NULL);
4928
4929 plt_vma = splt->output_section->vma + splt->output_offset;
4930
4931 gotplt_vma = 0;
4932 if (elf64_alpha_use_secureplt)
4933 {
4934 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4935 BFD_ASSERT (sgotplt != NULL);
4936 if (sgotplt->size > 0)
4937 gotplt_vma = sgotplt->output_section->vma + sgotplt->output_offset;
4938 }
4939
4940 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4941 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4942 for (; dyncon < dynconend; dyncon++)
4943 {
4944 Elf_Internal_Dyn dyn;
4945
4946 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4947
4948 switch (dyn.d_tag)
4949 {
4950 case DT_PLTGOT:
4951 dyn.d_un.d_ptr
4952 = elf64_alpha_use_secureplt ? gotplt_vma : plt_vma;
4953 break;
4954 case DT_PLTRELSZ:
4955 dyn.d_un.d_val = srelaplt ? srelaplt->size : 0;
4956 break;
4957 case DT_JMPREL:
4958 dyn.d_un.d_ptr = srelaplt ? srelaplt->vma : 0;
4959 break;
4960
4961 case DT_RELASZ:
4962 /* My interpretation of the TIS v1.1 ELF document indicates
4963 that RELASZ should not include JMPREL. This is not what
4964 the rest of the BFD does. It is, however, what the
4965 glibc ld.so wants. Do this fixup here until we found
4966 out who is right. */
4967 if (srelaplt)
4968 dyn.d_un.d_val -= srelaplt->size;
4969 break;
4970 }
4971
4972 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4973 }
4974
4975 /* Initialize the plt header. */
4976 if (splt->size > 0)
4977 {
4978 unsigned int insn;
4979 int ofs;
4980
4981 if (elf64_alpha_use_secureplt)
4982 {
4983 ofs = gotplt_vma - (plt_vma + PLT_HEADER_SIZE);
4984
4985 insn = INSN_ABC (INSN_SUBQ, 27, 28, 25);
4986 bfd_put_32 (output_bfd, insn, splt->contents);
4987
4988 insn = INSN_ABO (INSN_LDAH, 28, 28, (ofs + 0x8000) >> 16);
4989 bfd_put_32 (output_bfd, insn, splt->contents + 4);
4990
4991 insn = INSN_ABC (INSN_S4SUBQ, 25, 25, 25);
4992 bfd_put_32 (output_bfd, insn, splt->contents + 8);
4993
4994 insn = INSN_ABO (INSN_LDA, 28, 28, ofs);
4995 bfd_put_32 (output_bfd, insn, splt->contents + 12);
4996
4997 insn = INSN_ABO (INSN_LDQ, 27, 28, 0);
4998 bfd_put_32 (output_bfd, insn, splt->contents + 16);
4999
5000 insn = INSN_ABC (INSN_ADDQ, 25, 25, 25);
5001 bfd_put_32 (output_bfd, insn, splt->contents + 20);
5002
5003 insn = INSN_ABO (INSN_LDQ, 28, 28, 8);
5004 bfd_put_32 (output_bfd, insn, splt->contents + 24);
5005
5006 insn = INSN_AB (INSN_JMP, 31, 27);
5007 bfd_put_32 (output_bfd, insn, splt->contents + 28);
5008
5009 insn = INSN_AD (INSN_BR, 28, -PLT_HEADER_SIZE);
5010 bfd_put_32 (output_bfd, insn, splt->contents + 32);
5011 }
5012 else
5013 {
5014 insn = INSN_AD (INSN_BR, 27, 0); /* br $27, .+4 */
5015 bfd_put_32 (output_bfd, insn, splt->contents);
5016
5017 insn = INSN_ABO (INSN_LDQ, 27, 27, 12);
5018 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5019
5020 insn = INSN_UNOP;
5021 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5022
5023 insn = INSN_AB (INSN_JMP, 27, 27);
5024 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5025
5026 /* The next two words will be filled in by ld.so. */
5027 bfd_put_64 (output_bfd, 0, splt->contents + 16);
5028 bfd_put_64 (output_bfd, 0, splt->contents + 24);
5029 }
5030
5031 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 0;
5032 }
5033 }
5034
5035 return TRUE;
5036 }
5037
5038 /* We need to use a special link routine to handle the .mdebug section.
5039 We need to merge all instances of these sections together, not write
5040 them all out sequentially. */
5041
5042 static bfd_boolean
5043 elf64_alpha_final_link (bfd *abfd, struct bfd_link_info *info)
5044 {
5045 asection *o;
5046 struct bfd_link_order *p;
5047 asection *mdebug_sec;
5048 struct ecoff_debug_info debug;
5049 const struct ecoff_debug_swap *swap
5050 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5051 HDRR *symhdr = &debug.symbolic_header;
5052 void * mdebug_handle = NULL;
5053 struct alpha_elf_link_hash_table * htab;
5054
5055 htab = alpha_elf_hash_table (info);
5056 if (htab == NULL)
5057 return FALSE;
5058
5059 /* Go through the sections and collect the mdebug information. */
5060 mdebug_sec = NULL;
5061 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5062 {
5063 if (strcmp (o->name, ".mdebug") == 0)
5064 {
5065 struct extsym_info einfo;
5066
5067 /* We have found the .mdebug section in the output file.
5068 Look through all the link_orders comprising it and merge
5069 the information together. */
5070 symhdr->magic = swap->sym_magic;
5071 /* FIXME: What should the version stamp be? */
5072 symhdr->vstamp = 0;
5073 symhdr->ilineMax = 0;
5074 symhdr->cbLine = 0;
5075 symhdr->idnMax = 0;
5076 symhdr->ipdMax = 0;
5077 symhdr->isymMax = 0;
5078 symhdr->ioptMax = 0;
5079 symhdr->iauxMax = 0;
5080 symhdr->issMax = 0;
5081 symhdr->issExtMax = 0;
5082 symhdr->ifdMax = 0;
5083 symhdr->crfd = 0;
5084 symhdr->iextMax = 0;
5085
5086 /* We accumulate the debugging information itself in the
5087 debug_info structure. */
5088 debug.line = NULL;
5089 debug.external_dnr = NULL;
5090 debug.external_pdr = NULL;
5091 debug.external_sym = NULL;
5092 debug.external_opt = NULL;
5093 debug.external_aux = NULL;
5094 debug.ss = NULL;
5095 debug.ssext = debug.ssext_end = NULL;
5096 debug.external_fdr = NULL;
5097 debug.external_rfd = NULL;
5098 debug.external_ext = debug.external_ext_end = NULL;
5099
5100 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5101 if (mdebug_handle == (PTR) NULL)
5102 return FALSE;
5103
5104 if (1)
5105 {
5106 asection *s;
5107 EXTR esym;
5108 bfd_vma last = 0;
5109 unsigned int i;
5110 static const char * const name[] =
5111 {
5112 ".text", ".init", ".fini", ".data",
5113 ".rodata", ".sdata", ".sbss", ".bss"
5114 };
5115 static const int sc[] = { scText, scInit, scFini, scData,
5116 scRData, scSData, scSBss, scBss };
5117
5118 esym.jmptbl = 0;
5119 esym.cobol_main = 0;
5120 esym.weakext = 0;
5121 esym.reserved = 0;
5122 esym.ifd = ifdNil;
5123 esym.asym.iss = issNil;
5124 esym.asym.st = stLocal;
5125 esym.asym.reserved = 0;
5126 esym.asym.index = indexNil;
5127 for (i = 0; i < 8; i++)
5128 {
5129 esym.asym.sc = sc[i];
5130 s = bfd_get_section_by_name (abfd, name[i]);
5131 if (s != NULL)
5132 {
5133 esym.asym.value = s->vma;
5134 last = s->vma + s->size;
5135 }
5136 else
5137 esym.asym.value = last;
5138
5139 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
5140 name[i], &esym))
5141 return FALSE;
5142 }
5143 }
5144
5145 for (p = o->map_head.link_order;
5146 p != (struct bfd_link_order *) NULL;
5147 p = p->next)
5148 {
5149 asection *input_section;
5150 bfd *input_bfd;
5151 const struct ecoff_debug_swap *input_swap;
5152 struct ecoff_debug_info input_debug;
5153 char *eraw_src;
5154 char *eraw_end;
5155
5156 if (p->type != bfd_indirect_link_order)
5157 {
5158 if (p->type == bfd_data_link_order)
5159 continue;
5160 abort ();
5161 }
5162
5163 input_section = p->u.indirect.section;
5164 input_bfd = input_section->owner;
5165
5166 if (! is_alpha_elf (input_bfd))
5167 /* I don't know what a non ALPHA ELF bfd would be
5168 doing with a .mdebug section, but I don't really
5169 want to deal with it. */
5170 continue;
5171
5172 input_swap = (get_elf_backend_data (input_bfd)
5173 ->elf_backend_ecoff_debug_swap);
5174
5175 BFD_ASSERT (p->size == input_section->size);
5176
5177 /* The ECOFF linking code expects that we have already
5178 read in the debugging information and set up an
5179 ecoff_debug_info structure, so we do that now. */
5180 if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
5181 &input_debug))
5182 return FALSE;
5183
5184 if (! (bfd_ecoff_debug_accumulate
5185 (mdebug_handle, abfd, &debug, swap, input_bfd,
5186 &input_debug, input_swap, info)))
5187 return FALSE;
5188
5189 /* Loop through the external symbols. For each one with
5190 interesting information, try to find the symbol in
5191 the linker global hash table and save the information
5192 for the output external symbols. */
5193 eraw_src = (char *) input_debug.external_ext;
5194 eraw_end = (eraw_src
5195 + (input_debug.symbolic_header.iextMax
5196 * input_swap->external_ext_size));
5197 for (;
5198 eraw_src < eraw_end;
5199 eraw_src += input_swap->external_ext_size)
5200 {
5201 EXTR ext;
5202 const char *name;
5203 struct alpha_elf_link_hash_entry *h;
5204
5205 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5206 if (ext.asym.sc == scNil
5207 || ext.asym.sc == scUndefined
5208 || ext.asym.sc == scSUndefined)
5209 continue;
5210
5211 name = input_debug.ssext + ext.asym.iss;
5212 h = alpha_elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
5213 if (h == NULL || h->esym.ifd != -2)
5214 continue;
5215
5216 if (ext.ifd != -1)
5217 {
5218 BFD_ASSERT (ext.ifd
5219 < input_debug.symbolic_header.ifdMax);
5220 ext.ifd = input_debug.ifdmap[ext.ifd];
5221 }
5222
5223 h->esym = ext;
5224 }
5225
5226 /* Free up the information we just read. */
5227 free (input_debug.line);
5228 free (input_debug.external_dnr);
5229 free (input_debug.external_pdr);
5230 free (input_debug.external_sym);
5231 free (input_debug.external_opt);
5232 free (input_debug.external_aux);
5233 free (input_debug.ss);
5234 free (input_debug.ssext);
5235 free (input_debug.external_fdr);
5236 free (input_debug.external_rfd);
5237 free (input_debug.external_ext);
5238
5239 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5240 elf_link_input_bfd ignores this section. */
5241 input_section->flags &=~ SEC_HAS_CONTENTS;
5242 }
5243
5244 /* Build the external symbol information. */
5245 einfo.abfd = abfd;
5246 einfo.info = info;
5247 einfo.debug = &debug;
5248 einfo.swap = swap;
5249 einfo.failed = FALSE;
5250 elf_link_hash_traverse (elf_hash_table (info),
5251 elf64_alpha_output_extsym,
5252 (PTR) &einfo);
5253 if (einfo.failed)
5254 return FALSE;
5255
5256 /* Set the size of the .mdebug section. */
5257 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
5258
5259 /* Skip this section later on (I don't think this currently
5260 matters, but someday it might). */
5261 o->map_head.link_order = (struct bfd_link_order *) NULL;
5262
5263 mdebug_sec = o;
5264 }
5265 }
5266
5267 /* Invoke the regular ELF backend linker to do all the work. */
5268 if (! bfd_elf_final_link (abfd, info))
5269 return FALSE;
5270
5271 /* Now write out the computed sections. */
5272
5273 /* The .got subsections... */
5274 {
5275 bfd *i, *dynobj = elf_hash_table(info)->dynobj;
5276 for (i = htab->got_list;
5277 i != NULL;
5278 i = alpha_elf_tdata(i)->got_link_next)
5279 {
5280 asection *sgot;
5281
5282 /* elf_bfd_final_link already did everything in dynobj. */
5283 if (i == dynobj)
5284 continue;
5285
5286 sgot = alpha_elf_tdata(i)->got;
5287 if (! bfd_set_section_contents (abfd, sgot->output_section,
5288 sgot->contents,
5289 (file_ptr) sgot->output_offset,
5290 sgot->size))
5291 return FALSE;
5292 }
5293 }
5294
5295 if (mdebug_sec != (asection *) NULL)
5296 {
5297 BFD_ASSERT (abfd->output_has_begun);
5298 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5299 swap, info,
5300 mdebug_sec->filepos))
5301 return FALSE;
5302
5303 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5304 }
5305
5306 return TRUE;
5307 }
5308
5309 static enum elf_reloc_type_class
5310 elf64_alpha_reloc_type_class (const Elf_Internal_Rela *rela)
5311 {
5312 switch ((int) ELF64_R_TYPE (rela->r_info))
5313 {
5314 case R_ALPHA_RELATIVE:
5315 return reloc_class_relative;
5316 case R_ALPHA_JMP_SLOT:
5317 return reloc_class_plt;
5318 case R_ALPHA_COPY:
5319 return reloc_class_copy;
5320 default:
5321 return reloc_class_normal;
5322 }
5323 }
5324 \f
5325 static const struct bfd_elf_special_section elf64_alpha_special_sections[] =
5326 {
5327 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5328 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5329 { NULL, 0, 0, 0, 0 }
5330 };
5331
5332 /* ECOFF swapping routines. These are used when dealing with the
5333 .mdebug section, which is in the ECOFF debugging format. Copied
5334 from elf32-mips.c. */
5335 static const struct ecoff_debug_swap
5336 elf64_alpha_ecoff_debug_swap =
5337 {
5338 /* Symbol table magic number. */
5339 magicSym2,
5340 /* Alignment of debugging information. E.g., 4. */
5341 8,
5342 /* Sizes of external symbolic information. */
5343 sizeof (struct hdr_ext),
5344 sizeof (struct dnr_ext),
5345 sizeof (struct pdr_ext),
5346 sizeof (struct sym_ext),
5347 sizeof (struct opt_ext),
5348 sizeof (struct fdr_ext),
5349 sizeof (struct rfd_ext),
5350 sizeof (struct ext_ext),
5351 /* Functions to swap in external symbolic data. */
5352 ecoff_swap_hdr_in,
5353 ecoff_swap_dnr_in,
5354 ecoff_swap_pdr_in,
5355 ecoff_swap_sym_in,
5356 ecoff_swap_opt_in,
5357 ecoff_swap_fdr_in,
5358 ecoff_swap_rfd_in,
5359 ecoff_swap_ext_in,
5360 _bfd_ecoff_swap_tir_in,
5361 _bfd_ecoff_swap_rndx_in,
5362 /* Functions to swap out external symbolic data. */
5363 ecoff_swap_hdr_out,
5364 ecoff_swap_dnr_out,
5365 ecoff_swap_pdr_out,
5366 ecoff_swap_sym_out,
5367 ecoff_swap_opt_out,
5368 ecoff_swap_fdr_out,
5369 ecoff_swap_rfd_out,
5370 ecoff_swap_ext_out,
5371 _bfd_ecoff_swap_tir_out,
5372 _bfd_ecoff_swap_rndx_out,
5373 /* Function to read in symbolic data. */
5374 elf64_alpha_read_ecoff_info
5375 };
5376 \f
5377 /* Use a non-standard hash bucket size of 8. */
5378
5379 static const struct elf_size_info alpha_elf_size_info =
5380 {
5381 sizeof (Elf64_External_Ehdr),
5382 sizeof (Elf64_External_Phdr),
5383 sizeof (Elf64_External_Shdr),
5384 sizeof (Elf64_External_Rel),
5385 sizeof (Elf64_External_Rela),
5386 sizeof (Elf64_External_Sym),
5387 sizeof (Elf64_External_Dyn),
5388 sizeof (Elf_External_Note),
5389 8,
5390 1,
5391 64, 3,
5392 ELFCLASS64, EV_CURRENT,
5393 bfd_elf64_write_out_phdrs,
5394 bfd_elf64_write_shdrs_and_ehdr,
5395 bfd_elf64_checksum_contents,
5396 bfd_elf64_write_relocs,
5397 bfd_elf64_swap_symbol_in,
5398 bfd_elf64_swap_symbol_out,
5399 bfd_elf64_slurp_reloc_table,
5400 bfd_elf64_slurp_symbol_table,
5401 bfd_elf64_swap_dyn_in,
5402 bfd_elf64_swap_dyn_out,
5403 bfd_elf64_swap_reloc_in,
5404 bfd_elf64_swap_reloc_out,
5405 bfd_elf64_swap_reloca_in,
5406 bfd_elf64_swap_reloca_out
5407 };
5408
5409 #define TARGET_LITTLE_SYM bfd_elf64_alpha_vec
5410 #define TARGET_LITTLE_NAME "elf64-alpha"
5411 #define ELF_ARCH bfd_arch_alpha
5412 #define ELF_TARGET_ID ALPHA_ELF_DATA
5413 #define ELF_MACHINE_CODE EM_ALPHA
5414 #define ELF_MAXPAGESIZE 0x10000
5415 #define ELF_COMMONPAGESIZE 0x2000
5416
5417 #define bfd_elf64_bfd_link_hash_table_create \
5418 elf64_alpha_bfd_link_hash_table_create
5419
5420 #define bfd_elf64_bfd_reloc_type_lookup \
5421 elf64_alpha_bfd_reloc_type_lookup
5422 #define bfd_elf64_bfd_reloc_name_lookup \
5423 elf64_alpha_bfd_reloc_name_lookup
5424 #define elf_info_to_howto \
5425 elf64_alpha_info_to_howto
5426
5427 #define bfd_elf64_mkobject \
5428 elf64_alpha_mkobject
5429 #define elf_backend_object_p \
5430 elf64_alpha_object_p
5431
5432 #define elf_backend_section_from_shdr \
5433 elf64_alpha_section_from_shdr
5434 #define elf_backend_section_flags \
5435 elf64_alpha_section_flags
5436 #define elf_backend_fake_sections \
5437 elf64_alpha_fake_sections
5438
5439 #define bfd_elf64_bfd_is_local_label_name \
5440 elf64_alpha_is_local_label_name
5441 #define bfd_elf64_find_nearest_line \
5442 elf64_alpha_find_nearest_line
5443 #define bfd_elf64_bfd_relax_section \
5444 elf64_alpha_relax_section
5445
5446 #define elf_backend_add_symbol_hook \
5447 elf64_alpha_add_symbol_hook
5448 #define elf_backend_relocs_compatible \
5449 _bfd_elf_relocs_compatible
5450 #define elf_backend_check_relocs \
5451 elf64_alpha_check_relocs
5452 #define elf_backend_create_dynamic_sections \
5453 elf64_alpha_create_dynamic_sections
5454 #define elf_backend_adjust_dynamic_symbol \
5455 elf64_alpha_adjust_dynamic_symbol
5456 #define elf_backend_merge_symbol_attribute \
5457 elf64_alpha_merge_symbol_attribute
5458 #define elf_backend_always_size_sections \
5459 elf64_alpha_always_size_sections
5460 #define elf_backend_size_dynamic_sections \
5461 elf64_alpha_size_dynamic_sections
5462 #define elf_backend_omit_section_dynsym \
5463 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5464 #define elf_backend_relocate_section \
5465 elf64_alpha_relocate_section
5466 #define elf_backend_finish_dynamic_symbol \
5467 elf64_alpha_finish_dynamic_symbol
5468 #define elf_backend_finish_dynamic_sections \
5469 elf64_alpha_finish_dynamic_sections
5470 #define bfd_elf64_bfd_final_link \
5471 elf64_alpha_final_link
5472 #define elf_backend_reloc_type_class \
5473 elf64_alpha_reloc_type_class
5474
5475 #define elf_backend_can_gc_sections 1
5476 #define elf_backend_gc_mark_hook elf64_alpha_gc_mark_hook
5477 #define elf_backend_gc_sweep_hook elf64_alpha_gc_sweep_hook
5478
5479 #define elf_backend_ecoff_debug_swap \
5480 &elf64_alpha_ecoff_debug_swap
5481
5482 #define elf_backend_size_info \
5483 alpha_elf_size_info
5484
5485 #define elf_backend_special_sections \
5486 elf64_alpha_special_sections
5487
5488 /* A few constants that determine how the .plt section is set up. */
5489 #define elf_backend_want_got_plt 0
5490 #define elf_backend_plt_readonly 0
5491 #define elf_backend_want_plt_sym 1
5492 #define elf_backend_got_header_size 0
5493
5494 #include "elf64-target.h"
5495 \f
5496 /* FreeBSD support. */
5497
5498 #undef TARGET_LITTLE_SYM
5499 #define TARGET_LITTLE_SYM bfd_elf64_alpha_freebsd_vec
5500 #undef TARGET_LITTLE_NAME
5501 #define TARGET_LITTLE_NAME "elf64-alpha-freebsd"
5502 #undef ELF_OSABI
5503 #define ELF_OSABI ELFOSABI_FREEBSD
5504
5505 /* The kernel recognizes executables as valid only if they carry a
5506 "FreeBSD" label in the ELF header. So we put this label on all
5507 executables and (for simplicity) also all other object files. */
5508
5509 static void
5510 elf64_alpha_fbsd_post_process_headers (bfd * abfd,
5511 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
5512 {
5513 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
5514
5515 i_ehdrp = elf_elfheader (abfd);
5516
5517 /* Put an ABI label supported by FreeBSD >= 4.1. */
5518 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5519 #ifdef OLD_FREEBSD_ABI_LABEL
5520 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
5521 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
5522 #endif
5523 }
5524
5525 #undef elf_backend_post_process_headers
5526 #define elf_backend_post_process_headers \
5527 elf64_alpha_fbsd_post_process_headers
5528
5529 #undef elf64_bed
5530 #define elf64_bed elf64_alpha_fbsd_bed
5531
5532 #include "elf64-target.h"
This page took 0.151636 seconds and 4 git commands to generate.