2011-09-30 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / bfd / elf64-alpha.c
1 /* Alpha specific support for 64-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Richard Henderson <rth@tamu.edu>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /* We need a published ABI spec for this. Until one comes out, don't
25 assume this'll remain unchanged forever. */
26
27 #include "sysdep.h"
28 #include "bfd.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31
32 #include "elf/alpha.h"
33
34 #define ALPHAECOFF
35
36 #define NO_COFF_RELOCS
37 #define NO_COFF_SYMBOLS
38 #define NO_COFF_LINENOS
39
40 /* Get the ECOFF swapping routines. Needed for the debug information. */
41 #include "coff/internal.h"
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/alpha.h"
46 #include "aout/ar.h"
47 #include "libcoff.h"
48 #include "libecoff.h"
49 #define ECOFF_64
50 #include "ecoffswap.h"
51
52 \f
53 /* Instruction data for plt generation and relaxation. */
54
55 #define OP_LDA 0x08
56 #define OP_LDAH 0x09
57 #define OP_LDQ 0x29
58 #define OP_BR 0x30
59 #define OP_BSR 0x34
60
61 #define INSN_LDA (OP_LDA << 26)
62 #define INSN_LDAH (OP_LDAH << 26)
63 #define INSN_LDQ (OP_LDQ << 26)
64 #define INSN_BR (OP_BR << 26)
65
66 #define INSN_ADDQ 0x40000400
67 #define INSN_RDUNIQ 0x0000009e
68 #define INSN_SUBQ 0x40000520
69 #define INSN_S4SUBQ 0x40000560
70 #define INSN_UNOP 0x2ffe0000
71
72 #define INSN_JSR 0x68004000
73 #define INSN_JMP 0x68000000
74 #define INSN_JSR_MASK 0xfc00c000
75
76 #define INSN_A(I,A) (I | (A << 21))
77 #define INSN_AB(I,A,B) (I | (A << 21) | (B << 16))
78 #define INSN_ABC(I,A,B,C) (I | (A << 21) | (B << 16) | C)
79 #define INSN_ABO(I,A,B,O) (I | (A << 21) | (B << 16) | ((O) & 0xffff))
80 #define INSN_AD(I,A,D) (I | (A << 21) | (((D) >> 2) & 0x1fffff))
81
82 /* PLT/GOT Stuff */
83
84 /* Set by ld emulation. Putting this into the link_info or hash structure
85 is simply working too hard. */
86 #ifdef USE_SECUREPLT
87 bfd_boolean elf64_alpha_use_secureplt = TRUE;
88 #else
89 bfd_boolean elf64_alpha_use_secureplt = FALSE;
90 #endif
91
92 #define OLD_PLT_HEADER_SIZE 32
93 #define OLD_PLT_ENTRY_SIZE 12
94 #define NEW_PLT_HEADER_SIZE 36
95 #define NEW_PLT_ENTRY_SIZE 4
96
97 #define PLT_HEADER_SIZE \
98 (elf64_alpha_use_secureplt ? NEW_PLT_HEADER_SIZE : OLD_PLT_HEADER_SIZE)
99 #define PLT_ENTRY_SIZE \
100 (elf64_alpha_use_secureplt ? NEW_PLT_ENTRY_SIZE : OLD_PLT_ENTRY_SIZE)
101
102 #define MAX_GOT_SIZE (64*1024)
103
104 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so"
105 \f
106
107 /* Used to implement multiple .got subsections. */
108 struct alpha_elf_got_entry
109 {
110 struct alpha_elf_got_entry *next;
111
112 /* Which .got subsection? */
113 bfd *gotobj;
114
115 /* The addend in effect for this entry. */
116 bfd_vma addend;
117
118 /* The .got offset for this entry. */
119 int got_offset;
120
121 /* The .plt offset for this entry. */
122 int plt_offset;
123
124 /* How many references to this entry? */
125 int use_count;
126
127 /* The relocation type of this entry. */
128 unsigned char reloc_type;
129
130 /* How a LITERAL is used. */
131 unsigned char flags;
132
133 /* Have we initialized the dynamic relocation for this entry? */
134 unsigned char reloc_done;
135
136 /* Have we adjusted this entry for SEC_MERGE? */
137 unsigned char reloc_xlated;
138 };
139
140 struct alpha_elf_reloc_entry
141 {
142 struct alpha_elf_reloc_entry *next;
143
144 /* Which .reloc section? */
145 asection *srel;
146
147 /* What kind of relocation? */
148 unsigned int rtype;
149
150 /* Is this against read-only section? */
151 unsigned int reltext : 1;
152
153 /* How many did we find? */
154 unsigned long count;
155 };
156
157 struct alpha_elf_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* External symbol information. */
162 EXTR esym;
163
164 /* Cumulative flags for all the .got entries. */
165 int flags;
166
167 /* Contexts in which a literal was referenced. */
168 #define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01
169 #define ALPHA_ELF_LINK_HASH_LU_MEM 0x02
170 #define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04
171 #define ALPHA_ELF_LINK_HASH_LU_JSR 0x08
172 #define ALPHA_ELF_LINK_HASH_LU_TLSGD 0x10
173 #define ALPHA_ELF_LINK_HASH_LU_TLSLDM 0x20
174 #define ALPHA_ELF_LINK_HASH_LU_JSRDIRECT 0x40
175 #define ALPHA_ELF_LINK_HASH_LU_PLT 0x38
176 #define ALPHA_ELF_LINK_HASH_TLS_IE 0x80
177
178 /* Used to implement multiple .got subsections. */
179 struct alpha_elf_got_entry *got_entries;
180
181 /* Used to count non-got, non-plt relocations for delayed sizing
182 of relocation sections. */
183 struct alpha_elf_reloc_entry *reloc_entries;
184 };
185
186 /* Alpha ELF linker hash table. */
187
188 struct alpha_elf_link_hash_table
189 {
190 struct elf_link_hash_table root;
191
192 /* The head of a list of .got subsections linked through
193 alpha_elf_tdata(abfd)->got_link_next. */
194 bfd *got_list;
195
196 /* The most recent relax pass that we've seen. The GOTs
197 should be regenerated if this doesn't match. */
198 int relax_trip;
199 };
200
201 /* Look up an entry in a Alpha ELF linker hash table. */
202
203 #define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \
204 ((struct alpha_elf_link_hash_entry *) \
205 elf_link_hash_lookup (&(table)->root, (string), (create), \
206 (copy), (follow)))
207
208 /* Traverse a Alpha ELF linker hash table. */
209
210 #define alpha_elf_link_hash_traverse(table, func, info) \
211 (elf_link_hash_traverse \
212 (&(table)->root, \
213 (bfd_boolean (*) (struct elf_link_hash_entry *, PTR)) (func), \
214 (info)))
215
216 /* Get the Alpha ELF linker hash table from a link_info structure. */
217
218 #define alpha_elf_hash_table(p) \
219 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
220 == ALPHA_ELF_DATA ? ((struct alpha_elf_link_hash_table *) ((p)->hash)) : NULL)
221
222 /* Get the object's symbols as our own entry type. */
223
224 #define alpha_elf_sym_hashes(abfd) \
225 ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
226
227 /* Should we do dynamic things to this symbol? This differs from the
228 generic version in that we never need to consider function pointer
229 equality wrt PLT entries -- we don't create a PLT entry if a symbol's
230 address is ever taken. */
231
232 static inline bfd_boolean
233 alpha_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
234 struct bfd_link_info *info)
235 {
236 return _bfd_elf_dynamic_symbol_p (h, info, 0);
237 }
238
239 /* Create an entry in a Alpha ELF linker hash table. */
240
241 static struct bfd_hash_entry *
242 elf64_alpha_link_hash_newfunc (struct bfd_hash_entry *entry,
243 struct bfd_hash_table *table,
244 const char *string)
245 {
246 struct alpha_elf_link_hash_entry *ret =
247 (struct alpha_elf_link_hash_entry *) entry;
248
249 /* Allocate the structure if it has not already been allocated by a
250 subclass. */
251 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
252 ret = ((struct alpha_elf_link_hash_entry *)
253 bfd_hash_allocate (table,
254 sizeof (struct alpha_elf_link_hash_entry)));
255 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
256 return (struct bfd_hash_entry *) ret;
257
258 /* Call the allocation method of the superclass. */
259 ret = ((struct alpha_elf_link_hash_entry *)
260 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
261 table, string));
262 if (ret != (struct alpha_elf_link_hash_entry *) NULL)
263 {
264 /* Set local fields. */
265 memset (&ret->esym, 0, sizeof (EXTR));
266 /* We use -2 as a marker to indicate that the information has
267 not been set. -1 means there is no associated ifd. */
268 ret->esym.ifd = -2;
269 ret->flags = 0;
270 ret->got_entries = NULL;
271 ret->reloc_entries = NULL;
272 }
273
274 return (struct bfd_hash_entry *) ret;
275 }
276
277 /* Create a Alpha ELF linker hash table. */
278
279 static struct bfd_link_hash_table *
280 elf64_alpha_bfd_link_hash_table_create (bfd *abfd)
281 {
282 struct alpha_elf_link_hash_table *ret;
283 bfd_size_type amt = sizeof (struct alpha_elf_link_hash_table);
284
285 ret = (struct alpha_elf_link_hash_table *) bfd_zmalloc (amt);
286 if (ret == (struct alpha_elf_link_hash_table *) NULL)
287 return NULL;
288
289 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
290 elf64_alpha_link_hash_newfunc,
291 sizeof (struct alpha_elf_link_hash_entry),
292 ALPHA_ELF_DATA))
293 {
294 free (ret);
295 return NULL;
296 }
297
298 return &ret->root.root;
299 }
300 \f
301 /* We have some private fields hanging off of the elf_tdata structure. */
302
303 struct alpha_elf_obj_tdata
304 {
305 struct elf_obj_tdata root;
306
307 /* For every input file, these are the got entries for that object's
308 local symbols. */
309 struct alpha_elf_got_entry ** local_got_entries;
310
311 /* For every input file, this is the object that owns the got that
312 this input file uses. */
313 bfd *gotobj;
314
315 /* For every got, this is a linked list through the objects using this got */
316 bfd *in_got_link_next;
317
318 /* For every got, this is a link to the next got subsegment. */
319 bfd *got_link_next;
320
321 /* For every got, this is the section. */
322 asection *got;
323
324 /* For every got, this is it's total number of words. */
325 int total_got_size;
326
327 /* For every got, this is the sum of the number of words required
328 to hold all of the member object's local got. */
329 int local_got_size;
330 };
331
332 #define alpha_elf_tdata(abfd) \
333 ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
334
335 #define is_alpha_elf(bfd) \
336 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
337 && elf_tdata (bfd) != NULL \
338 && elf_object_id (bfd) == ALPHA_ELF_DATA)
339
340 static bfd_boolean
341 elf64_alpha_mkobject (bfd *abfd)
342 {
343 return bfd_elf_allocate_object (abfd, sizeof (struct alpha_elf_obj_tdata),
344 ALPHA_ELF_DATA);
345 }
346
347 static bfd_boolean
348 elf64_alpha_object_p (bfd *abfd)
349 {
350 /* Set the right machine number for an Alpha ELF file. */
351 return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
352 }
353 \f
354 /* A relocation function which doesn't do anything. */
355
356 static bfd_reloc_status_type
357 elf64_alpha_reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
358 asymbol *sym ATTRIBUTE_UNUSED,
359 PTR data ATTRIBUTE_UNUSED, asection *sec,
360 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
361 {
362 if (output_bfd)
363 reloc->address += sec->output_offset;
364 return bfd_reloc_ok;
365 }
366
367 /* A relocation function used for an unsupported reloc. */
368
369 static bfd_reloc_status_type
370 elf64_alpha_reloc_bad (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
371 asymbol *sym ATTRIBUTE_UNUSED,
372 PTR data ATTRIBUTE_UNUSED, asection *sec,
373 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
374 {
375 if (output_bfd)
376 reloc->address += sec->output_offset;
377 return bfd_reloc_notsupported;
378 }
379
380 /* Do the work of the GPDISP relocation. */
381
382 static bfd_reloc_status_type
383 elf64_alpha_do_reloc_gpdisp (bfd *abfd, bfd_vma gpdisp, bfd_byte *p_ldah,
384 bfd_byte *p_lda)
385 {
386 bfd_reloc_status_type ret = bfd_reloc_ok;
387 bfd_vma addend;
388 unsigned long i_ldah, i_lda;
389
390 i_ldah = bfd_get_32 (abfd, p_ldah);
391 i_lda = bfd_get_32 (abfd, p_lda);
392
393 /* Complain if the instructions are not correct. */
394 if (((i_ldah >> 26) & 0x3f) != 0x09
395 || ((i_lda >> 26) & 0x3f) != 0x08)
396 ret = bfd_reloc_dangerous;
397
398 /* Extract the user-supplied offset, mirroring the sign extensions
399 that the instructions perform. */
400 addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
401 addend = (addend ^ 0x80008000) - 0x80008000;
402
403 gpdisp += addend;
404
405 if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
406 || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
407 ret = bfd_reloc_overflow;
408
409 /* compensate for the sign extension again. */
410 i_ldah = ((i_ldah & 0xffff0000)
411 | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
412 i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);
413
414 bfd_put_32 (abfd, (bfd_vma) i_ldah, p_ldah);
415 bfd_put_32 (abfd, (bfd_vma) i_lda, p_lda);
416
417 return ret;
418 }
419
420 /* The special function for the GPDISP reloc. */
421
422 static bfd_reloc_status_type
423 elf64_alpha_reloc_gpdisp (bfd *abfd, arelent *reloc_entry,
424 asymbol *sym ATTRIBUTE_UNUSED, PTR data,
425 asection *input_section, bfd *output_bfd,
426 char **err_msg)
427 {
428 bfd_reloc_status_type ret;
429 bfd_vma gp, relocation;
430 bfd_vma high_address;
431 bfd_byte *p_ldah, *p_lda;
432
433 /* Don't do anything if we're not doing a final link. */
434 if (output_bfd)
435 {
436 reloc_entry->address += input_section->output_offset;
437 return bfd_reloc_ok;
438 }
439
440 high_address = bfd_get_section_limit (abfd, input_section);
441 if (reloc_entry->address > high_address
442 || reloc_entry->address + reloc_entry->addend > high_address)
443 return bfd_reloc_outofrange;
444
445 /* The gp used in the portion of the output object to which this
446 input object belongs is cached on the input bfd. */
447 gp = _bfd_get_gp_value (abfd);
448
449 relocation = (input_section->output_section->vma
450 + input_section->output_offset
451 + reloc_entry->address);
452
453 p_ldah = (bfd_byte *) data + reloc_entry->address;
454 p_lda = p_ldah + reloc_entry->addend;
455
456 ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);
457
458 /* Complain if the instructions are not correct. */
459 if (ret == bfd_reloc_dangerous)
460 *err_msg = _("GPDISP relocation did not find ldah and lda instructions");
461
462 return ret;
463 }
464
465 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
466 from smaller values. Start with zero, widen, *then* decrement. */
467 #define MINUS_ONE (((bfd_vma)0) - 1)
468
469
470 #define SKIP_HOWTO(N) \
471 HOWTO(N, 0, 0, 0, 0, 0, complain_overflow_dont, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)
472
473 static reloc_howto_type elf64_alpha_howto_table[] =
474 {
475 HOWTO (R_ALPHA_NONE, /* type */
476 0, /* rightshift */
477 0, /* size (0 = byte, 1 = short, 2 = long) */
478 8, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont, /* complain_on_overflow */
482 elf64_alpha_reloc_nil, /* special_function */
483 "NONE", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 /* A 32 bit reference to a symbol. */
490 HOWTO (R_ALPHA_REFLONG, /* type */
491 0, /* rightshift */
492 2, /* size (0 = byte, 1 = short, 2 = long) */
493 32, /* bitsize */
494 FALSE, /* pc_relative */
495 0, /* bitpos */
496 complain_overflow_bitfield, /* complain_on_overflow */
497 bfd_elf_generic_reloc, /* special_function */
498 "REFLONG", /* name */
499 FALSE, /* partial_inplace */
500 0xffffffff, /* src_mask */
501 0xffffffff, /* dst_mask */
502 FALSE), /* pcrel_offset */
503
504 /* A 64 bit reference to a symbol. */
505 HOWTO (R_ALPHA_REFQUAD, /* type */
506 0, /* rightshift */
507 4, /* size (0 = byte, 1 = short, 2 = long) */
508 64, /* bitsize */
509 FALSE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_bitfield, /* complain_on_overflow */
512 bfd_elf_generic_reloc, /* special_function */
513 "REFQUAD", /* name */
514 FALSE, /* partial_inplace */
515 MINUS_ONE, /* src_mask */
516 MINUS_ONE, /* dst_mask */
517 FALSE), /* pcrel_offset */
518
519 /* A 32 bit GP relative offset. This is just like REFLONG except
520 that when the value is used the value of the gp register will be
521 added in. */
522 HOWTO (R_ALPHA_GPREL32, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_bitfield, /* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "GPREL32", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 /* Used for an instruction that refers to memory off the GP register. */
537 HOWTO (R_ALPHA_LITERAL, /* type */
538 0, /* rightshift */
539 1, /* size (0 = byte, 1 = short, 2 = long) */
540 16, /* bitsize */
541 FALSE, /* pc_relative */
542 0, /* bitpos */
543 complain_overflow_signed, /* complain_on_overflow */
544 bfd_elf_generic_reloc, /* special_function */
545 "ELF_LITERAL", /* name */
546 FALSE, /* partial_inplace */
547 0xffff, /* src_mask */
548 0xffff, /* dst_mask */
549 FALSE), /* pcrel_offset */
550
551 /* This reloc only appears immediately following an ELF_LITERAL reloc.
552 It identifies a use of the literal. The symbol index is special:
553 1 means the literal address is in the base register of a memory
554 format instruction; 2 means the literal address is in the byte
555 offset register of a byte-manipulation instruction; 3 means the
556 literal address is in the target register of a jsr instruction.
557 This does not actually do any relocation. */
558 HOWTO (R_ALPHA_LITUSE, /* type */
559 0, /* rightshift */
560 1, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_dont, /* complain_on_overflow */
565 elf64_alpha_reloc_nil, /* special_function */
566 "LITUSE", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Load the gp register. This is always used for a ldah instruction
573 which loads the upper 16 bits of the gp register. The symbol
574 index of the GPDISP instruction is an offset in bytes to the lda
575 instruction that loads the lower 16 bits. The value to use for
576 the relocation is the difference between the GP value and the
577 current location; the load will always be done against a register
578 holding the current address.
579
580 NOTE: Unlike ECOFF, partial in-place relocation is not done. If
581 any offset is present in the instructions, it is an offset from
582 the register to the ldah instruction. This lets us avoid any
583 stupid hackery like inventing a gp value to do partial relocation
584 against. Also unlike ECOFF, we do the whole relocation off of
585 the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd,
586 space consuming bit, that, since all the information was present
587 in the GPDISP_HI16 reloc. */
588 HOWTO (R_ALPHA_GPDISP, /* type */
589 16, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 16, /* bitsize */
592 FALSE, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_dont, /* complain_on_overflow */
595 elf64_alpha_reloc_gpdisp, /* special_function */
596 "GPDISP", /* name */
597 FALSE, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 TRUE), /* pcrel_offset */
601
602 /* A 21 bit branch. */
603 HOWTO (R_ALPHA_BRADDR, /* type */
604 2, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 21, /* bitsize */
607 TRUE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 "BRADDR", /* name */
612 FALSE, /* partial_inplace */
613 0x1fffff, /* src_mask */
614 0x1fffff, /* dst_mask */
615 TRUE), /* pcrel_offset */
616
617 /* A hint for a jump to a register. */
618 HOWTO (R_ALPHA_HINT, /* type */
619 2, /* rightshift */
620 1, /* size (0 = byte, 1 = short, 2 = long) */
621 14, /* bitsize */
622 TRUE, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_dont, /* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "HINT", /* name */
627 FALSE, /* partial_inplace */
628 0x3fff, /* src_mask */
629 0x3fff, /* dst_mask */
630 TRUE), /* pcrel_offset */
631
632 /* 16 bit PC relative offset. */
633 HOWTO (R_ALPHA_SREL16, /* type */
634 0, /* rightshift */
635 1, /* size (0 = byte, 1 = short, 2 = long) */
636 16, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "SREL16", /* name */
642 FALSE, /* partial_inplace */
643 0xffff, /* src_mask */
644 0xffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* 32 bit PC relative offset. */
648 HOWTO (R_ALPHA_SREL32, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 TRUE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_signed, /* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "SREL32", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 TRUE), /* pcrel_offset */
661
662 /* A 64 bit PC relative offset. */
663 HOWTO (R_ALPHA_SREL64, /* type */
664 0, /* rightshift */
665 4, /* size (0 = byte, 1 = short, 2 = long) */
666 64, /* bitsize */
667 TRUE, /* pc_relative */
668 0, /* bitpos */
669 complain_overflow_signed, /* complain_on_overflow */
670 bfd_elf_generic_reloc, /* special_function */
671 "SREL64", /* name */
672 FALSE, /* partial_inplace */
673 MINUS_ONE, /* src_mask */
674 MINUS_ONE, /* dst_mask */
675 TRUE), /* pcrel_offset */
676
677 /* Skip 12 - 16; deprecated ECOFF relocs. */
678 SKIP_HOWTO (12),
679 SKIP_HOWTO (13),
680 SKIP_HOWTO (14),
681 SKIP_HOWTO (15),
682 SKIP_HOWTO (16),
683
684 /* The high 16 bits of the displacement from GP to the target. */
685 HOWTO (R_ALPHA_GPRELHIGH,
686 0, /* rightshift */
687 1, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_signed, /* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "GPRELHIGH", /* name */
694 FALSE, /* partial_inplace */
695 0xffff, /* src_mask */
696 0xffff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 /* The low 16 bits of the displacement from GP to the target. */
700 HOWTO (R_ALPHA_GPRELLOW,
701 0, /* rightshift */
702 1, /* size (0 = byte, 1 = short, 2 = long) */
703 16, /* bitsize */
704 FALSE, /* pc_relative */
705 0, /* bitpos */
706 complain_overflow_dont, /* complain_on_overflow */
707 bfd_elf_generic_reloc, /* special_function */
708 "GPRELLOW", /* name */
709 FALSE, /* partial_inplace */
710 0xffff, /* src_mask */
711 0xffff, /* dst_mask */
712 FALSE), /* pcrel_offset */
713
714 /* A 16-bit displacement from the GP to the target. */
715 HOWTO (R_ALPHA_GPREL16,
716 0, /* rightshift */
717 1, /* size (0 = byte, 1 = short, 2 = long) */
718 16, /* bitsize */
719 FALSE, /* pc_relative */
720 0, /* bitpos */
721 complain_overflow_signed, /* complain_on_overflow */
722 bfd_elf_generic_reloc, /* special_function */
723 "GPREL16", /* name */
724 FALSE, /* partial_inplace */
725 0xffff, /* src_mask */
726 0xffff, /* dst_mask */
727 FALSE), /* pcrel_offset */
728
729 /* Skip 20 - 23; deprecated ECOFF relocs. */
730 SKIP_HOWTO (20),
731 SKIP_HOWTO (21),
732 SKIP_HOWTO (22),
733 SKIP_HOWTO (23),
734
735 /* Misc ELF relocations. */
736
737 /* A dynamic relocation to copy the target into our .dynbss section. */
738 /* Not generated, as all Alpha objects use PIC, so it is not needed. It
739 is present because every other ELF has one, but should not be used
740 because .dynbss is an ugly thing. */
741 HOWTO (R_ALPHA_COPY,
742 0,
743 0,
744 0,
745 FALSE,
746 0,
747 complain_overflow_dont,
748 bfd_elf_generic_reloc,
749 "COPY",
750 FALSE,
751 0,
752 0,
753 TRUE),
754
755 /* A dynamic relocation for a .got entry. */
756 HOWTO (R_ALPHA_GLOB_DAT,
757 0,
758 0,
759 0,
760 FALSE,
761 0,
762 complain_overflow_dont,
763 bfd_elf_generic_reloc,
764 "GLOB_DAT",
765 FALSE,
766 0,
767 0,
768 TRUE),
769
770 /* A dynamic relocation for a .plt entry. */
771 HOWTO (R_ALPHA_JMP_SLOT,
772 0,
773 0,
774 0,
775 FALSE,
776 0,
777 complain_overflow_dont,
778 bfd_elf_generic_reloc,
779 "JMP_SLOT",
780 FALSE,
781 0,
782 0,
783 TRUE),
784
785 /* A dynamic relocation to add the base of the DSO to a 64-bit field. */
786 HOWTO (R_ALPHA_RELATIVE,
787 0,
788 0,
789 0,
790 FALSE,
791 0,
792 complain_overflow_dont,
793 bfd_elf_generic_reloc,
794 "RELATIVE",
795 FALSE,
796 0,
797 0,
798 TRUE),
799
800 /* A 21 bit branch that adjusts for gp loads. */
801 HOWTO (R_ALPHA_BRSGP, /* type */
802 2, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 21, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed, /* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "BRSGP", /* name */
810 FALSE, /* partial_inplace */
811 0x1fffff, /* src_mask */
812 0x1fffff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 /* Creates a tls_index for the symbol in the got. */
816 HOWTO (R_ALPHA_TLSGD, /* type */
817 0, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_signed, /* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "TLSGD", /* name */
825 FALSE, /* partial_inplace */
826 0xffff, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* Creates a tls_index for the (current) module in the got. */
831 HOWTO (R_ALPHA_TLSLDM, /* type */
832 0, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_signed, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "TLSLDM", /* name */
840 FALSE, /* partial_inplace */
841 0xffff, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* A dynamic relocation for a DTP module entry. */
846 HOWTO (R_ALPHA_DTPMOD64, /* type */
847 0, /* rightshift */
848 4, /* size (0 = byte, 1 = short, 2 = long) */
849 64, /* bitsize */
850 FALSE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_bitfield, /* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "DTPMOD64", /* name */
855 FALSE, /* partial_inplace */
856 MINUS_ONE, /* src_mask */
857 MINUS_ONE, /* dst_mask */
858 FALSE), /* pcrel_offset */
859
860 /* Creates a 64-bit offset in the got for the displacement
861 from DTP to the target. */
862 HOWTO (R_ALPHA_GOTDTPREL, /* type */
863 0, /* rightshift */
864 1, /* size (0 = byte, 1 = short, 2 = long) */
865 16, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_signed, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "GOTDTPREL", /* name */
871 FALSE, /* partial_inplace */
872 0xffff, /* src_mask */
873 0xffff, /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* A dynamic relocation for a displacement from DTP to the target. */
877 HOWTO (R_ALPHA_DTPREL64, /* type */
878 0, /* rightshift */
879 4, /* size (0 = byte, 1 = short, 2 = long) */
880 64, /* bitsize */
881 FALSE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_bitfield, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "DTPREL64", /* name */
886 FALSE, /* partial_inplace */
887 MINUS_ONE, /* src_mask */
888 MINUS_ONE, /* dst_mask */
889 FALSE), /* pcrel_offset */
890
891 /* The high 16 bits of the displacement from DTP to the target. */
892 HOWTO (R_ALPHA_DTPRELHI, /* type */
893 0, /* rightshift */
894 1, /* size (0 = byte, 1 = short, 2 = long) */
895 16, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_signed, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 "DTPRELHI", /* name */
901 FALSE, /* partial_inplace */
902 0xffff, /* src_mask */
903 0xffff, /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* The low 16 bits of the displacement from DTP to the target. */
907 HOWTO (R_ALPHA_DTPRELLO, /* type */
908 0, /* rightshift */
909 1, /* size (0 = byte, 1 = short, 2 = long) */
910 16, /* bitsize */
911 FALSE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "DTPRELLO", /* name */
916 FALSE, /* partial_inplace */
917 0xffff, /* src_mask */
918 0xffff, /* dst_mask */
919 FALSE), /* pcrel_offset */
920
921 /* A 16-bit displacement from DTP to the target. */
922 HOWTO (R_ALPHA_DTPREL16, /* type */
923 0, /* rightshift */
924 1, /* size (0 = byte, 1 = short, 2 = long) */
925 16, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_signed, /* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "DTPREL16", /* name */
931 FALSE, /* partial_inplace */
932 0xffff, /* src_mask */
933 0xffff, /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* Creates a 64-bit offset in the got for the displacement
937 from TP to the target. */
938 HOWTO (R_ALPHA_GOTTPREL, /* type */
939 0, /* rightshift */
940 1, /* size (0 = byte, 1 = short, 2 = long) */
941 16, /* bitsize */
942 FALSE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_signed, /* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "GOTTPREL", /* name */
947 FALSE, /* partial_inplace */
948 0xffff, /* src_mask */
949 0xffff, /* dst_mask */
950 FALSE), /* pcrel_offset */
951
952 /* A dynamic relocation for a displacement from TP to the target. */
953 HOWTO (R_ALPHA_TPREL64, /* type */
954 0, /* rightshift */
955 4, /* size (0 = byte, 1 = short, 2 = long) */
956 64, /* bitsize */
957 FALSE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_bitfield, /* complain_on_overflow */
960 bfd_elf_generic_reloc, /* special_function */
961 "TPREL64", /* name */
962 FALSE, /* partial_inplace */
963 MINUS_ONE, /* src_mask */
964 MINUS_ONE, /* dst_mask */
965 FALSE), /* pcrel_offset */
966
967 /* The high 16 bits of the displacement from TP to the target. */
968 HOWTO (R_ALPHA_TPRELHI, /* type */
969 0, /* rightshift */
970 1, /* size (0 = byte, 1 = short, 2 = long) */
971 16, /* bitsize */
972 FALSE, /* pc_relative */
973 0, /* bitpos */
974 complain_overflow_signed, /* complain_on_overflow */
975 bfd_elf_generic_reloc, /* special_function */
976 "TPRELHI", /* name */
977 FALSE, /* partial_inplace */
978 0xffff, /* src_mask */
979 0xffff, /* dst_mask */
980 FALSE), /* pcrel_offset */
981
982 /* The low 16 bits of the displacement from TP to the target. */
983 HOWTO (R_ALPHA_TPRELLO, /* type */
984 0, /* rightshift */
985 1, /* size (0 = byte, 1 = short, 2 = long) */
986 16, /* bitsize */
987 FALSE, /* pc_relative */
988 0, /* bitpos */
989 complain_overflow_dont, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "TPRELLO", /* name */
992 FALSE, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 FALSE), /* pcrel_offset */
996
997 /* A 16-bit displacement from TP to the target. */
998 HOWTO (R_ALPHA_TPREL16, /* type */
999 0, /* rightshift */
1000 1, /* size (0 = byte, 1 = short, 2 = long) */
1001 16, /* bitsize */
1002 FALSE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_signed, /* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "TPREL16", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffff, /* src_mask */
1009 0xffff, /* dst_mask */
1010 FALSE), /* pcrel_offset */
1011 };
1012
1013 /* A mapping from BFD reloc types to Alpha ELF reloc types. */
1014
1015 struct elf_reloc_map
1016 {
1017 bfd_reloc_code_real_type bfd_reloc_val;
1018 int elf_reloc_val;
1019 };
1020
1021 static const struct elf_reloc_map elf64_alpha_reloc_map[] =
1022 {
1023 {BFD_RELOC_NONE, R_ALPHA_NONE},
1024 {BFD_RELOC_32, R_ALPHA_REFLONG},
1025 {BFD_RELOC_64, R_ALPHA_REFQUAD},
1026 {BFD_RELOC_CTOR, R_ALPHA_REFQUAD},
1027 {BFD_RELOC_GPREL32, R_ALPHA_GPREL32},
1028 {BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL},
1029 {BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE},
1030 {BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP},
1031 {BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR},
1032 {BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT},
1033 {BFD_RELOC_16_PCREL, R_ALPHA_SREL16},
1034 {BFD_RELOC_32_PCREL, R_ALPHA_SREL32},
1035 {BFD_RELOC_64_PCREL, R_ALPHA_SREL64},
1036 {BFD_RELOC_ALPHA_GPREL_HI16, R_ALPHA_GPRELHIGH},
1037 {BFD_RELOC_ALPHA_GPREL_LO16, R_ALPHA_GPRELLOW},
1038 {BFD_RELOC_GPREL16, R_ALPHA_GPREL16},
1039 {BFD_RELOC_ALPHA_BRSGP, R_ALPHA_BRSGP},
1040 {BFD_RELOC_ALPHA_TLSGD, R_ALPHA_TLSGD},
1041 {BFD_RELOC_ALPHA_TLSLDM, R_ALPHA_TLSLDM},
1042 {BFD_RELOC_ALPHA_DTPMOD64, R_ALPHA_DTPMOD64},
1043 {BFD_RELOC_ALPHA_GOTDTPREL16, R_ALPHA_GOTDTPREL},
1044 {BFD_RELOC_ALPHA_DTPREL64, R_ALPHA_DTPREL64},
1045 {BFD_RELOC_ALPHA_DTPREL_HI16, R_ALPHA_DTPRELHI},
1046 {BFD_RELOC_ALPHA_DTPREL_LO16, R_ALPHA_DTPRELLO},
1047 {BFD_RELOC_ALPHA_DTPREL16, R_ALPHA_DTPREL16},
1048 {BFD_RELOC_ALPHA_GOTTPREL16, R_ALPHA_GOTTPREL},
1049 {BFD_RELOC_ALPHA_TPREL64, R_ALPHA_TPREL64},
1050 {BFD_RELOC_ALPHA_TPREL_HI16, R_ALPHA_TPRELHI},
1051 {BFD_RELOC_ALPHA_TPREL_LO16, R_ALPHA_TPRELLO},
1052 {BFD_RELOC_ALPHA_TPREL16, R_ALPHA_TPREL16},
1053 };
1054
1055 /* Given a BFD reloc type, return a HOWTO structure. */
1056
1057 static reloc_howto_type *
1058 elf64_alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1059 bfd_reloc_code_real_type code)
1060 {
1061 const struct elf_reloc_map *i, *e;
1062 i = e = elf64_alpha_reloc_map;
1063 e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
1064 for (; i != e; ++i)
1065 {
1066 if (i->bfd_reloc_val == code)
1067 return &elf64_alpha_howto_table[i->elf_reloc_val];
1068 }
1069 return 0;
1070 }
1071
1072 static reloc_howto_type *
1073 elf64_alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1074 const char *r_name)
1075 {
1076 unsigned int i;
1077
1078 for (i = 0;
1079 i < (sizeof (elf64_alpha_howto_table)
1080 / sizeof (elf64_alpha_howto_table[0]));
1081 i++)
1082 if (elf64_alpha_howto_table[i].name != NULL
1083 && strcasecmp (elf64_alpha_howto_table[i].name, r_name) == 0)
1084 return &elf64_alpha_howto_table[i];
1085
1086 return NULL;
1087 }
1088
1089 /* Given an Alpha ELF reloc type, fill in an arelent structure. */
1090
1091 static void
1092 elf64_alpha_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
1093 Elf_Internal_Rela *dst)
1094 {
1095 unsigned r_type = ELF64_R_TYPE(dst->r_info);
1096 BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max);
1097 cache_ptr->howto = &elf64_alpha_howto_table[r_type];
1098 }
1099
1100 /* These two relocations create a two-word entry in the got. */
1101 #define alpha_got_entry_size(r_type) \
1102 (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)
1103
1104 /* This is PT_TLS segment p_vaddr. */
1105 #define alpha_get_dtprel_base(info) \
1106 (elf_hash_table (info)->tls_sec->vma)
1107
1108 /* Main program TLS (whose template starts at PT_TLS p_vaddr)
1109 is assigned offset round(16, PT_TLS p_align). */
1110 #define alpha_get_tprel_base(info) \
1111 (elf_hash_table (info)->tls_sec->vma \
1112 - align_power ((bfd_vma) 16, \
1113 elf_hash_table (info)->tls_sec->alignment_power))
1114 \f
1115 /* Handle an Alpha specific section when reading an object file. This
1116 is called when bfd_section_from_shdr finds a section with an unknown
1117 type.
1118 FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure
1119 how to. */
1120
1121 static bfd_boolean
1122 elf64_alpha_section_from_shdr (bfd *abfd,
1123 Elf_Internal_Shdr *hdr,
1124 const char *name,
1125 int shindex)
1126 {
1127 asection *newsect;
1128
1129 /* There ought to be a place to keep ELF backend specific flags, but
1130 at the moment there isn't one. We just keep track of the
1131 sections by their name, instead. Fortunately, the ABI gives
1132 suggested names for all the MIPS specific sections, so we will
1133 probably get away with this. */
1134 switch (hdr->sh_type)
1135 {
1136 case SHT_ALPHA_DEBUG:
1137 if (strcmp (name, ".mdebug") != 0)
1138 return FALSE;
1139 break;
1140 default:
1141 return FALSE;
1142 }
1143
1144 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1145 return FALSE;
1146 newsect = hdr->bfd_section;
1147
1148 if (hdr->sh_type == SHT_ALPHA_DEBUG)
1149 {
1150 if (! bfd_set_section_flags (abfd, newsect,
1151 (bfd_get_section_flags (abfd, newsect)
1152 | SEC_DEBUGGING)))
1153 return FALSE;
1154 }
1155
1156 return TRUE;
1157 }
1158
1159 /* Convert Alpha specific section flags to bfd internal section flags. */
1160
1161 static bfd_boolean
1162 elf64_alpha_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
1163 {
1164 if (hdr->sh_flags & SHF_ALPHA_GPREL)
1165 *flags |= SEC_SMALL_DATA;
1166
1167 return TRUE;
1168 }
1169
1170 /* Set the correct type for an Alpha ELF section. We do this by the
1171 section name, which is a hack, but ought to work. */
1172
1173 static bfd_boolean
1174 elf64_alpha_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
1175 {
1176 register const char *name;
1177
1178 name = bfd_get_section_name (abfd, sec);
1179
1180 if (strcmp (name, ".mdebug") == 0)
1181 {
1182 hdr->sh_type = SHT_ALPHA_DEBUG;
1183 /* In a shared object on Irix 5.3, the .mdebug section has an
1184 entsize of 0. FIXME: Does this matter? */
1185 if ((abfd->flags & DYNAMIC) != 0 )
1186 hdr->sh_entsize = 0;
1187 else
1188 hdr->sh_entsize = 1;
1189 }
1190 else if ((sec->flags & SEC_SMALL_DATA)
1191 || strcmp (name, ".sdata") == 0
1192 || strcmp (name, ".sbss") == 0
1193 || strcmp (name, ".lit4") == 0
1194 || strcmp (name, ".lit8") == 0)
1195 hdr->sh_flags |= SHF_ALPHA_GPREL;
1196
1197 return TRUE;
1198 }
1199
1200 /* Hook called by the linker routine which adds symbols from an object
1201 file. We use it to put .comm items in .sbss, and not .bss. */
1202
1203 static bfd_boolean
1204 elf64_alpha_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
1205 Elf_Internal_Sym *sym,
1206 const char **namep ATTRIBUTE_UNUSED,
1207 flagword *flagsp ATTRIBUTE_UNUSED,
1208 asection **secp, bfd_vma *valp)
1209 {
1210 if (sym->st_shndx == SHN_COMMON
1211 && !info->relocatable
1212 && sym->st_size <= elf_gp_size (abfd))
1213 {
1214 /* Common symbols less than or equal to -G nn bytes are
1215 automatically put into .sbss. */
1216
1217 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1218
1219 if (scomm == NULL)
1220 {
1221 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1222 (SEC_ALLOC
1223 | SEC_IS_COMMON
1224 | SEC_LINKER_CREATED));
1225 if (scomm == NULL)
1226 return FALSE;
1227 }
1228
1229 *secp = scomm;
1230 *valp = sym->st_size;
1231 }
1232
1233 return TRUE;
1234 }
1235
1236 /* Create the .got section. */
1237
1238 static bfd_boolean
1239 elf64_alpha_create_got_section (bfd *abfd,
1240 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1241 {
1242 flagword flags;
1243 asection *s;
1244
1245 if (! is_alpha_elf (abfd))
1246 return FALSE;
1247
1248 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1249 | SEC_LINKER_CREATED);
1250 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
1251 if (s == NULL
1252 || !bfd_set_section_alignment (abfd, s, 3))
1253 return FALSE;
1254
1255 alpha_elf_tdata (abfd)->got = s;
1256
1257 /* Make sure the object's gotobj is set to itself so that we default
1258 to every object with its own .got. We'll merge .gots later once
1259 we've collected each object's info. */
1260 alpha_elf_tdata (abfd)->gotobj = abfd;
1261
1262 return TRUE;
1263 }
1264
1265 /* Create all the dynamic sections. */
1266
1267 static bfd_boolean
1268 elf64_alpha_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1269 {
1270 asection *s;
1271 flagword flags;
1272 struct elf_link_hash_entry *h;
1273
1274 if (! is_alpha_elf (abfd))
1275 return FALSE;
1276
1277 /* We need to create .plt, .rela.plt, .got, and .rela.got sections. */
1278
1279 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1280 | SEC_LINKER_CREATED
1281 | (elf64_alpha_use_secureplt ? SEC_READONLY : 0));
1282 s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags);
1283 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4))
1284 return FALSE;
1285
1286 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
1287 .plt section. */
1288 h = _bfd_elf_define_linkage_sym (abfd, info, s,
1289 "_PROCEDURE_LINKAGE_TABLE_");
1290 elf_hash_table (info)->hplt = h;
1291 if (h == NULL)
1292 return FALSE;
1293
1294 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1295 | SEC_LINKER_CREATED | SEC_READONLY);
1296 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", flags);
1297 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1298 return FALSE;
1299
1300 if (elf64_alpha_use_secureplt)
1301 {
1302 flags = SEC_ALLOC | SEC_LINKER_CREATED;
1303 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
1304 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1305 return FALSE;
1306 }
1307
1308 /* We may or may not have created a .got section for this object, but
1309 we definitely havn't done the rest of the work. */
1310
1311 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1312 {
1313 if (!elf64_alpha_create_got_section (abfd, info))
1314 return FALSE;
1315 }
1316
1317 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 s = bfd_make_section_anyway_with_flags (abfd, ".rela.got", flags);
1320 if (s == NULL
1321 || !bfd_set_section_alignment (abfd, s, 3))
1322 return FALSE;
1323
1324 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
1325 dynobj's .got section. We don't do this in the linker script
1326 because we don't want to define the symbol if we are not creating
1327 a global offset table. */
1328 h = _bfd_elf_define_linkage_sym (abfd, info, alpha_elf_tdata(abfd)->got,
1329 "_GLOBAL_OFFSET_TABLE_");
1330 elf_hash_table (info)->hgot = h;
1331 if (h == NULL)
1332 return FALSE;
1333
1334 return TRUE;
1335 }
1336 \f
1337 /* Read ECOFF debugging information from a .mdebug section into a
1338 ecoff_debug_info structure. */
1339
1340 static bfd_boolean
1341 elf64_alpha_read_ecoff_info (bfd *abfd, asection *section,
1342 struct ecoff_debug_info *debug)
1343 {
1344 HDRR *symhdr;
1345 const struct ecoff_debug_swap *swap;
1346 char *ext_hdr = NULL;
1347
1348 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1349 memset (debug, 0, sizeof (*debug));
1350
1351 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
1352 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1353 goto error_return;
1354
1355 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
1356 swap->external_hdr_size))
1357 goto error_return;
1358
1359 symhdr = &debug->symbolic_header;
1360 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1361
1362 /* The symbolic header contains absolute file offsets and sizes to
1363 read. */
1364 #define READ(ptr, offset, count, size, type) \
1365 if (symhdr->count == 0) \
1366 debug->ptr = NULL; \
1367 else \
1368 { \
1369 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1370 debug->ptr = (type) bfd_malloc (amt); \
1371 if (debug->ptr == NULL) \
1372 goto error_return; \
1373 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
1374 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1375 goto error_return; \
1376 }
1377
1378 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1379 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
1380 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
1381 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
1382 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
1383 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1384 union aux_ext *);
1385 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1386 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1387 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
1388 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
1389 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
1390 #undef READ
1391
1392 debug->fdr = NULL;
1393
1394 return TRUE;
1395
1396 error_return:
1397 if (ext_hdr != NULL)
1398 free (ext_hdr);
1399 if (debug->line != NULL)
1400 free (debug->line);
1401 if (debug->external_dnr != NULL)
1402 free (debug->external_dnr);
1403 if (debug->external_pdr != NULL)
1404 free (debug->external_pdr);
1405 if (debug->external_sym != NULL)
1406 free (debug->external_sym);
1407 if (debug->external_opt != NULL)
1408 free (debug->external_opt);
1409 if (debug->external_aux != NULL)
1410 free (debug->external_aux);
1411 if (debug->ss != NULL)
1412 free (debug->ss);
1413 if (debug->ssext != NULL)
1414 free (debug->ssext);
1415 if (debug->external_fdr != NULL)
1416 free (debug->external_fdr);
1417 if (debug->external_rfd != NULL)
1418 free (debug->external_rfd);
1419 if (debug->external_ext != NULL)
1420 free (debug->external_ext);
1421 return FALSE;
1422 }
1423
1424 /* Alpha ELF local labels start with '$'. */
1425
1426 static bfd_boolean
1427 elf64_alpha_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
1428 {
1429 return name[0] == '$';
1430 }
1431
1432 /* Alpha ELF follows MIPS ELF in using a special find_nearest_line
1433 routine in order to handle the ECOFF debugging information. We
1434 still call this mips_elf_find_line because of the slot
1435 find_line_info in elf_obj_tdata is declared that way. */
1436
1437 struct mips_elf_find_line
1438 {
1439 struct ecoff_debug_info d;
1440 struct ecoff_find_line i;
1441 };
1442
1443 static bfd_boolean
1444 elf64_alpha_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols,
1445 bfd_vma offset, const char **filename_ptr,
1446 const char **functionname_ptr,
1447 unsigned int *line_ptr)
1448 {
1449 asection *msec;
1450
1451 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
1452 section, symbols, offset,
1453 filename_ptr, functionname_ptr,
1454 line_ptr, 0,
1455 &elf_tdata (abfd)->dwarf2_find_line_info))
1456 return TRUE;
1457
1458 msec = bfd_get_section_by_name (abfd, ".mdebug");
1459 if (msec != NULL)
1460 {
1461 flagword origflags;
1462 struct mips_elf_find_line *fi;
1463 const struct ecoff_debug_swap * const swap =
1464 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1465
1466 /* If we are called during a link, alpha_elf_final_link may have
1467 cleared the SEC_HAS_CONTENTS field. We force it back on here
1468 if appropriate (which it normally will be). */
1469 origflags = msec->flags;
1470 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
1471 msec->flags |= SEC_HAS_CONTENTS;
1472
1473 fi = elf_tdata (abfd)->find_line_info;
1474 if (fi == NULL)
1475 {
1476 bfd_size_type external_fdr_size;
1477 char *fraw_src;
1478 char *fraw_end;
1479 struct fdr *fdr_ptr;
1480 bfd_size_type amt = sizeof (struct mips_elf_find_line);
1481
1482 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
1483 if (fi == NULL)
1484 {
1485 msec->flags = origflags;
1486 return FALSE;
1487 }
1488
1489 if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
1490 {
1491 msec->flags = origflags;
1492 return FALSE;
1493 }
1494
1495 /* Swap in the FDR information. */
1496 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
1497 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
1498 if (fi->d.fdr == NULL)
1499 {
1500 msec->flags = origflags;
1501 return FALSE;
1502 }
1503 external_fdr_size = swap->external_fdr_size;
1504 fdr_ptr = fi->d.fdr;
1505 fraw_src = (char *) fi->d.external_fdr;
1506 fraw_end = (fraw_src
1507 + fi->d.symbolic_header.ifdMax * external_fdr_size);
1508 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
1509 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
1510
1511 elf_tdata (abfd)->find_line_info = fi;
1512
1513 /* Note that we don't bother to ever free this information.
1514 find_nearest_line is either called all the time, as in
1515 objdump -l, so the information should be saved, or it is
1516 rarely called, as in ld error messages, so the memory
1517 wasted is unimportant. Still, it would probably be a
1518 good idea for free_cached_info to throw it away. */
1519 }
1520
1521 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
1522 &fi->i, filename_ptr, functionname_ptr,
1523 line_ptr))
1524 {
1525 msec->flags = origflags;
1526 return TRUE;
1527 }
1528
1529 msec->flags = origflags;
1530 }
1531
1532 /* Fall back on the generic ELF find_nearest_line routine. */
1533
1534 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
1535 filename_ptr, functionname_ptr,
1536 line_ptr);
1537 }
1538 \f
1539 /* Structure used to pass information to alpha_elf_output_extsym. */
1540
1541 struct extsym_info
1542 {
1543 bfd *abfd;
1544 struct bfd_link_info *info;
1545 struct ecoff_debug_info *debug;
1546 const struct ecoff_debug_swap *swap;
1547 bfd_boolean failed;
1548 };
1549
1550 static bfd_boolean
1551 elf64_alpha_output_extsym (struct alpha_elf_link_hash_entry *h, PTR data)
1552 {
1553 struct extsym_info *einfo = (struct extsym_info *) data;
1554 bfd_boolean strip;
1555 asection *sec, *output_section;
1556
1557 if (h->root.indx == -2)
1558 strip = FALSE;
1559 else if ((h->root.def_dynamic
1560 || h->root.ref_dynamic
1561 || h->root.root.type == bfd_link_hash_new)
1562 && !h->root.def_regular
1563 && !h->root.ref_regular)
1564 strip = TRUE;
1565 else if (einfo->info->strip == strip_all
1566 || (einfo->info->strip == strip_some
1567 && bfd_hash_lookup (einfo->info->keep_hash,
1568 h->root.root.root.string,
1569 FALSE, FALSE) == NULL))
1570 strip = TRUE;
1571 else
1572 strip = FALSE;
1573
1574 if (strip)
1575 return TRUE;
1576
1577 if (h->esym.ifd == -2)
1578 {
1579 h->esym.jmptbl = 0;
1580 h->esym.cobol_main = 0;
1581 h->esym.weakext = 0;
1582 h->esym.reserved = 0;
1583 h->esym.ifd = ifdNil;
1584 h->esym.asym.value = 0;
1585 h->esym.asym.st = stGlobal;
1586
1587 if (h->root.root.type != bfd_link_hash_defined
1588 && h->root.root.type != bfd_link_hash_defweak)
1589 h->esym.asym.sc = scAbs;
1590 else
1591 {
1592 const char *name;
1593
1594 sec = h->root.root.u.def.section;
1595 output_section = sec->output_section;
1596
1597 /* When making a shared library and symbol h is the one from
1598 the another shared library, OUTPUT_SECTION may be null. */
1599 if (output_section == NULL)
1600 h->esym.asym.sc = scUndefined;
1601 else
1602 {
1603 name = bfd_section_name (output_section->owner, output_section);
1604
1605 if (strcmp (name, ".text") == 0)
1606 h->esym.asym.sc = scText;
1607 else if (strcmp (name, ".data") == 0)
1608 h->esym.asym.sc = scData;
1609 else if (strcmp (name, ".sdata") == 0)
1610 h->esym.asym.sc = scSData;
1611 else if (strcmp (name, ".rodata") == 0
1612 || strcmp (name, ".rdata") == 0)
1613 h->esym.asym.sc = scRData;
1614 else if (strcmp (name, ".bss") == 0)
1615 h->esym.asym.sc = scBss;
1616 else if (strcmp (name, ".sbss") == 0)
1617 h->esym.asym.sc = scSBss;
1618 else if (strcmp (name, ".init") == 0)
1619 h->esym.asym.sc = scInit;
1620 else if (strcmp (name, ".fini") == 0)
1621 h->esym.asym.sc = scFini;
1622 else
1623 h->esym.asym.sc = scAbs;
1624 }
1625 }
1626
1627 h->esym.asym.reserved = 0;
1628 h->esym.asym.index = indexNil;
1629 }
1630
1631 if (h->root.root.type == bfd_link_hash_common)
1632 h->esym.asym.value = h->root.root.u.c.size;
1633 else if (h->root.root.type == bfd_link_hash_defined
1634 || h->root.root.type == bfd_link_hash_defweak)
1635 {
1636 if (h->esym.asym.sc == scCommon)
1637 h->esym.asym.sc = scBss;
1638 else if (h->esym.asym.sc == scSCommon)
1639 h->esym.asym.sc = scSBss;
1640
1641 sec = h->root.root.u.def.section;
1642 output_section = sec->output_section;
1643 if (output_section != NULL)
1644 h->esym.asym.value = (h->root.root.u.def.value
1645 + sec->output_offset
1646 + output_section->vma);
1647 else
1648 h->esym.asym.value = 0;
1649 }
1650
1651 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1652 h->root.root.root.string,
1653 &h->esym))
1654 {
1655 einfo->failed = TRUE;
1656 return FALSE;
1657 }
1658
1659 return TRUE;
1660 }
1661 \f
1662 /* Search for and possibly create a got entry. */
1663
1664 static struct alpha_elf_got_entry *
1665 get_got_entry (bfd *abfd, struct alpha_elf_link_hash_entry *h,
1666 unsigned long r_type, unsigned long r_symndx,
1667 bfd_vma r_addend)
1668 {
1669 struct alpha_elf_got_entry *gotent;
1670 struct alpha_elf_got_entry **slot;
1671
1672 if (h)
1673 slot = &h->got_entries;
1674 else
1675 {
1676 /* This is a local .got entry -- record for merge. */
1677
1678 struct alpha_elf_got_entry **local_got_entries;
1679
1680 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
1681 if (!local_got_entries)
1682 {
1683 bfd_size_type size;
1684 Elf_Internal_Shdr *symtab_hdr;
1685
1686 symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
1687 size = symtab_hdr->sh_info;
1688 size *= sizeof (struct alpha_elf_got_entry *);
1689
1690 local_got_entries
1691 = (struct alpha_elf_got_entry **) bfd_zalloc (abfd, size);
1692 if (!local_got_entries)
1693 return NULL;
1694
1695 alpha_elf_tdata (abfd)->local_got_entries = local_got_entries;
1696 }
1697
1698 slot = &local_got_entries[r_symndx];
1699 }
1700
1701 for (gotent = *slot; gotent ; gotent = gotent->next)
1702 if (gotent->gotobj == abfd
1703 && gotent->reloc_type == r_type
1704 && gotent->addend == r_addend)
1705 break;
1706
1707 if (!gotent)
1708 {
1709 int entry_size;
1710 bfd_size_type amt;
1711
1712 amt = sizeof (struct alpha_elf_got_entry);
1713 gotent = (struct alpha_elf_got_entry *) bfd_alloc (abfd, amt);
1714 if (!gotent)
1715 return NULL;
1716
1717 gotent->gotobj = abfd;
1718 gotent->addend = r_addend;
1719 gotent->got_offset = -1;
1720 gotent->plt_offset = -1;
1721 gotent->use_count = 1;
1722 gotent->reloc_type = r_type;
1723 gotent->reloc_done = 0;
1724 gotent->reloc_xlated = 0;
1725
1726 gotent->next = *slot;
1727 *slot = gotent;
1728
1729 entry_size = alpha_got_entry_size (r_type);
1730 alpha_elf_tdata (abfd)->total_got_size += entry_size;
1731 if (!h)
1732 alpha_elf_tdata(abfd)->local_got_size += entry_size;
1733 }
1734 else
1735 gotent->use_count += 1;
1736
1737 return gotent;
1738 }
1739
1740 static bfd_boolean
1741 elf64_alpha_want_plt (struct alpha_elf_link_hash_entry *ah)
1742 {
1743 return ((ah->root.type == STT_FUNC
1744 || ah->root.root.type == bfd_link_hash_undefweak
1745 || ah->root.root.type == bfd_link_hash_undefined)
1746 && (ah->flags & ALPHA_ELF_LINK_HASH_LU_PLT) != 0
1747 && (ah->flags & ~ALPHA_ELF_LINK_HASH_LU_PLT) == 0);
1748 }
1749
1750 /* Handle dynamic relocations when doing an Alpha ELF link. */
1751
1752 static bfd_boolean
1753 elf64_alpha_check_relocs (bfd *abfd, struct bfd_link_info *info,
1754 asection *sec, const Elf_Internal_Rela *relocs)
1755 {
1756 bfd *dynobj;
1757 asection *sreloc;
1758 Elf_Internal_Shdr *symtab_hdr;
1759 struct alpha_elf_link_hash_entry **sym_hashes;
1760 const Elf_Internal_Rela *rel, *relend;
1761 bfd_size_type amt;
1762
1763 if (info->relocatable)
1764 return TRUE;
1765
1766 /* Don't do anything special with non-loaded, non-alloced sections.
1767 In particular, any relocs in such sections should not affect GOT
1768 and PLT reference counting (ie. we don't allow them to create GOT
1769 or PLT entries), there's no possibility or desire to optimize TLS
1770 relocs, and there's not much point in propagating relocs to shared
1771 libs that the dynamic linker won't relocate. */
1772 if ((sec->flags & SEC_ALLOC) == 0)
1773 return TRUE;
1774
1775 BFD_ASSERT (is_alpha_elf (abfd));
1776
1777 dynobj = elf_hash_table (info)->dynobj;
1778 if (dynobj == NULL)
1779 elf_hash_table (info)->dynobj = dynobj = abfd;
1780
1781 sreloc = NULL;
1782 symtab_hdr = &elf_symtab_hdr (abfd);
1783 sym_hashes = alpha_elf_sym_hashes (abfd);
1784
1785 relend = relocs + sec->reloc_count;
1786 for (rel = relocs; rel < relend; ++rel)
1787 {
1788 enum {
1789 NEED_GOT = 1,
1790 NEED_GOT_ENTRY = 2,
1791 NEED_DYNREL = 4
1792 };
1793
1794 unsigned long r_symndx, r_type;
1795 struct alpha_elf_link_hash_entry *h;
1796 unsigned int gotent_flags;
1797 bfd_boolean maybe_dynamic;
1798 unsigned int need;
1799 bfd_vma addend;
1800
1801 r_symndx = ELF64_R_SYM (rel->r_info);
1802 if (r_symndx < symtab_hdr->sh_info)
1803 h = NULL;
1804 else
1805 {
1806 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1807
1808 while (h->root.root.type == bfd_link_hash_indirect
1809 || h->root.root.type == bfd_link_hash_warning)
1810 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
1811
1812 h->root.ref_regular = 1;
1813 }
1814
1815 /* We can only get preliminary data on whether a symbol is
1816 locally or externally defined, as not all of the input files
1817 have yet been processed. Do something with what we know, as
1818 this may help reduce memory usage and processing time later. */
1819 maybe_dynamic = FALSE;
1820 if (h && ((info->shared
1821 && (!info->symbolic
1822 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
1823 || !h->root.def_regular
1824 || h->root.root.type == bfd_link_hash_defweak))
1825 maybe_dynamic = TRUE;
1826
1827 need = 0;
1828 gotent_flags = 0;
1829 r_type = ELF64_R_TYPE (rel->r_info);
1830 addend = rel->r_addend;
1831
1832 switch (r_type)
1833 {
1834 case R_ALPHA_LITERAL:
1835 need = NEED_GOT | NEED_GOT_ENTRY;
1836
1837 /* Remember how this literal is used from its LITUSEs.
1838 This will be important when it comes to decide if we can
1839 create a .plt entry for a function symbol. */
1840 while (++rel < relend && ELF64_R_TYPE (rel->r_info) == R_ALPHA_LITUSE)
1841 if (rel->r_addend >= 1 && rel->r_addend <= 6)
1842 gotent_flags |= 1 << rel->r_addend;
1843 --rel;
1844
1845 /* No LITUSEs -- presumably the address is used somehow. */
1846 if (gotent_flags == 0)
1847 gotent_flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
1848 break;
1849
1850 case R_ALPHA_GPDISP:
1851 case R_ALPHA_GPREL16:
1852 case R_ALPHA_GPREL32:
1853 case R_ALPHA_GPRELHIGH:
1854 case R_ALPHA_GPRELLOW:
1855 case R_ALPHA_BRSGP:
1856 need = NEED_GOT;
1857 break;
1858
1859 case R_ALPHA_REFLONG:
1860 case R_ALPHA_REFQUAD:
1861 if (info->shared || maybe_dynamic)
1862 need = NEED_DYNREL;
1863 break;
1864
1865 case R_ALPHA_TLSLDM:
1866 /* The symbol for a TLSLDM reloc is ignored. Collapse the
1867 reloc to the STN_UNDEF (0) symbol so that they all match. */
1868 r_symndx = STN_UNDEF;
1869 h = 0;
1870 maybe_dynamic = FALSE;
1871 /* FALLTHRU */
1872
1873 case R_ALPHA_TLSGD:
1874 case R_ALPHA_GOTDTPREL:
1875 need = NEED_GOT | NEED_GOT_ENTRY;
1876 break;
1877
1878 case R_ALPHA_GOTTPREL:
1879 need = NEED_GOT | NEED_GOT_ENTRY;
1880 gotent_flags = ALPHA_ELF_LINK_HASH_TLS_IE;
1881 if (info->shared)
1882 info->flags |= DF_STATIC_TLS;
1883 break;
1884
1885 case R_ALPHA_TPREL64:
1886 if (info->shared && !info->pie)
1887 {
1888 info->flags |= DF_STATIC_TLS;
1889 need = NEED_DYNREL;
1890 }
1891 else if (maybe_dynamic)
1892 need = NEED_DYNREL;
1893 break;
1894 }
1895
1896 if (need & NEED_GOT)
1897 {
1898 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1899 {
1900 if (!elf64_alpha_create_got_section (abfd, info))
1901 return FALSE;
1902 }
1903 }
1904
1905 if (need & NEED_GOT_ENTRY)
1906 {
1907 struct alpha_elf_got_entry *gotent;
1908
1909 gotent = get_got_entry (abfd, h, r_type, r_symndx, addend);
1910 if (!gotent)
1911 return FALSE;
1912
1913 if (gotent_flags)
1914 {
1915 gotent->flags |= gotent_flags;
1916 if (h)
1917 {
1918 gotent_flags |= h->flags;
1919 h->flags = gotent_flags;
1920
1921 /* Make a guess as to whether a .plt entry is needed. */
1922 /* ??? It appears that we won't make it into
1923 adjust_dynamic_symbol for symbols that remain
1924 totally undefined. Copying this check here means
1925 we can create a plt entry for them too. */
1926 h->root.needs_plt
1927 = (maybe_dynamic && elf64_alpha_want_plt (h));
1928 }
1929 }
1930 }
1931
1932 if (need & NEED_DYNREL)
1933 {
1934 /* We need to create the section here now whether we eventually
1935 use it or not so that it gets mapped to an output section by
1936 the linker. If not used, we'll kill it in size_dynamic_sections. */
1937 if (sreloc == NULL)
1938 {
1939 sreloc = _bfd_elf_make_dynamic_reloc_section
1940 (sec, dynobj, 3, abfd, /*rela?*/ TRUE);
1941
1942 if (sreloc == NULL)
1943 return FALSE;
1944 }
1945
1946 if (h)
1947 {
1948 /* Since we havn't seen all of the input symbols yet, we
1949 don't know whether we'll actually need a dynamic relocation
1950 entry for this reloc. So make a record of it. Once we
1951 find out if this thing needs dynamic relocation we'll
1952 expand the relocation sections by the appropriate amount. */
1953
1954 struct alpha_elf_reloc_entry *rent;
1955
1956 for (rent = h->reloc_entries; rent; rent = rent->next)
1957 if (rent->rtype == r_type && rent->srel == sreloc)
1958 break;
1959
1960 if (!rent)
1961 {
1962 amt = sizeof (struct alpha_elf_reloc_entry);
1963 rent = (struct alpha_elf_reloc_entry *) bfd_alloc (abfd, amt);
1964 if (!rent)
1965 return FALSE;
1966
1967 rent->srel = sreloc;
1968 rent->rtype = r_type;
1969 rent->count = 1;
1970 rent->reltext = (sec->flags & SEC_READONLY) != 0;
1971
1972 rent->next = h->reloc_entries;
1973 h->reloc_entries = rent;
1974 }
1975 else
1976 rent->count++;
1977 }
1978 else if (info->shared)
1979 {
1980 /* If this is a shared library, and the section is to be
1981 loaded into memory, we need a RELATIVE reloc. */
1982 sreloc->size += sizeof (Elf64_External_Rela);
1983 if (sec->flags & SEC_READONLY)
1984 info->flags |= DF_TEXTREL;
1985 }
1986 }
1987 }
1988
1989 return TRUE;
1990 }
1991
1992 /* Return the section that should be marked against GC for a given
1993 relocation. */
1994
1995 static asection *
1996 elf64_alpha_gc_mark_hook (asection *sec, struct bfd_link_info *info,
1997 Elf_Internal_Rela *rel,
1998 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
1999 {
2000 /* These relocations don't really reference a symbol. Instead we store
2001 extra data in their addend slot. Ignore the symbol. */
2002 switch (ELF64_R_TYPE (rel->r_info))
2003 {
2004 case R_ALPHA_LITUSE:
2005 case R_ALPHA_GPDISP:
2006 case R_ALPHA_HINT:
2007 return NULL;
2008 }
2009
2010 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2011 }
2012
2013 /* Update the got entry reference counts for the section being removed. */
2014
2015 static bfd_boolean
2016 elf64_alpha_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2017 asection *sec, const Elf_Internal_Rela *relocs)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 struct alpha_elf_link_hash_entry **sym_hashes;
2021 const Elf_Internal_Rela *rel, *relend;
2022
2023 if (info->relocatable)
2024 return TRUE;
2025
2026 symtab_hdr = &elf_symtab_hdr (abfd);
2027 sym_hashes = alpha_elf_sym_hashes (abfd);
2028
2029 relend = relocs + sec->reloc_count;
2030 for (rel = relocs; rel < relend; rel++)
2031 {
2032 unsigned long r_symndx, r_type;
2033 struct alpha_elf_link_hash_entry *h = NULL;
2034 struct alpha_elf_got_entry *gotent;
2035
2036 r_symndx = ELF64_R_SYM (rel->r_info);
2037 if (r_symndx >= symtab_hdr->sh_info)
2038 {
2039 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2040 while (h->root.root.type == bfd_link_hash_indirect
2041 || h->root.root.type == bfd_link_hash_warning)
2042 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2043 }
2044
2045 r_type = ELF64_R_TYPE (rel->r_info);
2046 switch (r_type)
2047 {
2048 case R_ALPHA_LITERAL:
2049 /* ??? Ignore re-computation of gotent_flags. We're not
2050 carrying a use-count for each bit in that mask. */
2051
2052 case R_ALPHA_TLSGD:
2053 case R_ALPHA_GOTDTPREL:
2054 case R_ALPHA_GOTTPREL:
2055 /* Fetch the got entry from the tables. */
2056 gotent = get_got_entry (abfd, h, r_type, r_symndx, rel->r_addend);
2057
2058 /* The got entry *must* exist, since we should have created it
2059 before during check_relocs. Also note that get_got_entry
2060 assumed this was going to be another use, and so incremented
2061 the use count again. Thus the use count must be at least the
2062 one real use and the "use" we just added. */
2063 if (gotent == NULL || gotent->use_count < 2)
2064 {
2065 abort ();
2066 return FALSE;
2067 }
2068 gotent->use_count -= 2;
2069 break;
2070
2071 default:
2072 break;
2073 }
2074 }
2075
2076 return TRUE;
2077 }
2078
2079 /* Adjust a symbol defined by a dynamic object and referenced by a
2080 regular object. The current definition is in some section of the
2081 dynamic object, but we're not including those sections. We have to
2082 change the definition to something the rest of the link can
2083 understand. */
2084
2085 static bfd_boolean
2086 elf64_alpha_adjust_dynamic_symbol (struct bfd_link_info *info,
2087 struct elf_link_hash_entry *h)
2088 {
2089 bfd *dynobj;
2090 asection *s;
2091 struct alpha_elf_link_hash_entry *ah;
2092
2093 dynobj = elf_hash_table(info)->dynobj;
2094 ah = (struct alpha_elf_link_hash_entry *)h;
2095
2096 /* Now that we've seen all of the input symbols, finalize our decision
2097 about whether this symbol should get a .plt entry. Irritatingly, it
2098 is common for folk to leave undefined symbols in shared libraries,
2099 and they still expect lazy binding; accept undefined symbols in lieu
2100 of STT_FUNC. */
2101 if (alpha_elf_dynamic_symbol_p (h, info) && elf64_alpha_want_plt (ah))
2102 {
2103 h->needs_plt = TRUE;
2104
2105 s = bfd_get_section_by_name(dynobj, ".plt");
2106 if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
2107 return FALSE;
2108
2109 /* We need one plt entry per got subsection. Delay allocation of
2110 the actual plt entries until size_plt_section, called from
2111 size_dynamic_sections or during relaxation. */
2112
2113 return TRUE;
2114 }
2115 else
2116 h->needs_plt = FALSE;
2117
2118 /* If this is a weak symbol, and there is a real definition, the
2119 processor independent code will have arranged for us to see the
2120 real definition first, and we can just use the same value. */
2121 if (h->u.weakdef != NULL)
2122 {
2123 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2124 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2125 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2126 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2127 return TRUE;
2128 }
2129
2130 /* This is a reference to a symbol defined by a dynamic object which
2131 is not a function. The Alpha, since it uses .got entries for all
2132 symbols even in regular objects, does not need the hackery of a
2133 .dynbss section and COPY dynamic relocations. */
2134
2135 return TRUE;
2136 }
2137
2138 /* Record STO_ALPHA_NOPV and STO_ALPHA_STD_GPLOAD. */
2139
2140 static void
2141 elf64_alpha_merge_symbol_attribute (struct elf_link_hash_entry *h,
2142 const Elf_Internal_Sym *isym,
2143 bfd_boolean definition,
2144 bfd_boolean dynamic)
2145 {
2146 if (!dynamic && definition)
2147 h->other = ((h->other & ELF_ST_VISIBILITY (-1))
2148 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
2149 }
2150
2151 /* Symbol versioning can create new symbols, and make our old symbols
2152 indirect to the new ones. Consolidate the got and reloc information
2153 in these situations. */
2154
2155 static void
2156 elf64_alpha_copy_indirect_symbol (struct bfd_link_info *info,
2157 struct elf_link_hash_entry *dir,
2158 struct elf_link_hash_entry *ind)
2159 {
2160 struct alpha_elf_link_hash_entry *hi
2161 = (struct alpha_elf_link_hash_entry *) ind;
2162 struct alpha_elf_link_hash_entry *hs
2163 = (struct alpha_elf_link_hash_entry *) dir;
2164
2165 /* Do the merging in the superclass. */
2166 _bfd_elf_link_hash_copy_indirect(info, dir, ind);
2167
2168 /* Merge the flags. Whee. */
2169 hs->flags |= hi->flags;
2170
2171 /* ??? It's unclear to me what's really supposed to happen when
2172 "merging" defweak and defined symbols, given that we don't
2173 actually throw away the defweak. This more-or-less copies
2174 the logic related to got and plt entries in the superclass. */
2175 if (ind->root.type != bfd_link_hash_indirect)
2176 return;
2177
2178 /* Merge the .got entries. Cannibalize the old symbol's list in
2179 doing so, since we don't need it anymore. */
2180
2181 if (hs->got_entries == NULL)
2182 hs->got_entries = hi->got_entries;
2183 else
2184 {
2185 struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;
2186
2187 gsh = hs->got_entries;
2188 for (gi = hi->got_entries; gi ; gi = gin)
2189 {
2190 gin = gi->next;
2191 for (gs = gsh; gs ; gs = gs->next)
2192 if (gi->gotobj == gs->gotobj
2193 && gi->reloc_type == gs->reloc_type
2194 && gi->addend == gs->addend)
2195 {
2196 gi->use_count += gs->use_count;
2197 goto got_found;
2198 }
2199 gi->next = hs->got_entries;
2200 hs->got_entries = gi;
2201 got_found:;
2202 }
2203 }
2204 hi->got_entries = NULL;
2205
2206 /* And similar for the reloc entries. */
2207
2208 if (hs->reloc_entries == NULL)
2209 hs->reloc_entries = hi->reloc_entries;
2210 else
2211 {
2212 struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;
2213
2214 rsh = hs->reloc_entries;
2215 for (ri = hi->reloc_entries; ri ; ri = rin)
2216 {
2217 rin = ri->next;
2218 for (rs = rsh; rs ; rs = rs->next)
2219 if (ri->rtype == rs->rtype && ri->srel == rs->srel)
2220 {
2221 rs->count += ri->count;
2222 goto found_reloc;
2223 }
2224 ri->next = hs->reloc_entries;
2225 hs->reloc_entries = ri;
2226 found_reloc:;
2227 }
2228 }
2229 hi->reloc_entries = NULL;
2230 }
2231
2232 /* Is it possible to merge two object file's .got tables? */
2233
2234 static bfd_boolean
2235 elf64_alpha_can_merge_gots (bfd *a, bfd *b)
2236 {
2237 int total = alpha_elf_tdata (a)->total_got_size;
2238 bfd *bsub;
2239
2240 /* Trivial quick fallout test. */
2241 if (total + alpha_elf_tdata (b)->total_got_size <= MAX_GOT_SIZE)
2242 return TRUE;
2243
2244 /* By their nature, local .got entries cannot be merged. */
2245 if ((total += alpha_elf_tdata (b)->local_got_size) > MAX_GOT_SIZE)
2246 return FALSE;
2247
2248 /* Failing the common trivial comparison, we must effectively
2249 perform the merge. Not actually performing the merge means that
2250 we don't have to store undo information in case we fail. */
2251 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2252 {
2253 struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
2254 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2255 int i, n;
2256
2257 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2258 for (i = 0; i < n; ++i)
2259 {
2260 struct alpha_elf_got_entry *ae, *be;
2261 struct alpha_elf_link_hash_entry *h;
2262
2263 h = hashes[i];
2264 while (h->root.root.type == bfd_link_hash_indirect
2265 || h->root.root.type == bfd_link_hash_warning)
2266 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2267
2268 for (be = h->got_entries; be ; be = be->next)
2269 {
2270 if (be->use_count == 0)
2271 continue;
2272 if (be->gotobj != b)
2273 continue;
2274
2275 for (ae = h->got_entries; ae ; ae = ae->next)
2276 if (ae->gotobj == a
2277 && ae->reloc_type == be->reloc_type
2278 && ae->addend == be->addend)
2279 goto global_found;
2280
2281 total += alpha_got_entry_size (be->reloc_type);
2282 if (total > MAX_GOT_SIZE)
2283 return FALSE;
2284 global_found:;
2285 }
2286 }
2287 }
2288
2289 return TRUE;
2290 }
2291
2292 /* Actually merge two .got tables. */
2293
2294 static void
2295 elf64_alpha_merge_gots (bfd *a, bfd *b)
2296 {
2297 int total = alpha_elf_tdata (a)->total_got_size;
2298 bfd *bsub;
2299
2300 /* Remember local expansion. */
2301 {
2302 int e = alpha_elf_tdata (b)->local_got_size;
2303 total += e;
2304 alpha_elf_tdata (a)->local_got_size += e;
2305 }
2306
2307 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2308 {
2309 struct alpha_elf_got_entry **local_got_entries;
2310 struct alpha_elf_link_hash_entry **hashes;
2311 Elf_Internal_Shdr *symtab_hdr;
2312 int i, n;
2313
2314 /* Let the local .got entries know they are part of a new subsegment. */
2315 local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
2316 if (local_got_entries)
2317 {
2318 n = elf_tdata (bsub)->symtab_hdr.sh_info;
2319 for (i = 0; i < n; ++i)
2320 {
2321 struct alpha_elf_got_entry *ent;
2322 for (ent = local_got_entries[i]; ent; ent = ent->next)
2323 ent->gotobj = a;
2324 }
2325 }
2326
2327 /* Merge the global .got entries. */
2328 hashes = alpha_elf_sym_hashes (bsub);
2329 symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2330
2331 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2332 for (i = 0; i < n; ++i)
2333 {
2334 struct alpha_elf_got_entry *ae, *be, **pbe, **start;
2335 struct alpha_elf_link_hash_entry *h;
2336
2337 h = hashes[i];
2338 while (h->root.root.type == bfd_link_hash_indirect
2339 || h->root.root.type == bfd_link_hash_warning)
2340 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2341
2342 pbe = start = &h->got_entries;
2343 while ((be = *pbe) != NULL)
2344 {
2345 if (be->use_count == 0)
2346 {
2347 *pbe = be->next;
2348 memset (be, 0xa5, sizeof (*be));
2349 goto kill;
2350 }
2351 if (be->gotobj != b)
2352 goto next;
2353
2354 for (ae = *start; ae ; ae = ae->next)
2355 if (ae->gotobj == a
2356 && ae->reloc_type == be->reloc_type
2357 && ae->addend == be->addend)
2358 {
2359 ae->flags |= be->flags;
2360 ae->use_count += be->use_count;
2361 *pbe = be->next;
2362 memset (be, 0xa5, sizeof (*be));
2363 goto kill;
2364 }
2365 be->gotobj = a;
2366 total += alpha_got_entry_size (be->reloc_type);
2367
2368 next:;
2369 pbe = &be->next;
2370 kill:;
2371 }
2372 }
2373
2374 alpha_elf_tdata (bsub)->gotobj = a;
2375 }
2376 alpha_elf_tdata (a)->total_got_size = total;
2377
2378 /* Merge the two in_got chains. */
2379 {
2380 bfd *next;
2381
2382 bsub = a;
2383 while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
2384 bsub = next;
2385
2386 alpha_elf_tdata (bsub)->in_got_link_next = b;
2387 }
2388 }
2389
2390 /* Calculate the offsets for the got entries. */
2391
2392 static bfd_boolean
2393 elf64_alpha_calc_got_offsets_for_symbol (struct alpha_elf_link_hash_entry *h,
2394 PTR arg ATTRIBUTE_UNUSED)
2395 {
2396 struct alpha_elf_got_entry *gotent;
2397
2398 for (gotent = h->got_entries; gotent; gotent = gotent->next)
2399 if (gotent->use_count > 0)
2400 {
2401 struct alpha_elf_obj_tdata *td;
2402 bfd_size_type *plge;
2403
2404 td = alpha_elf_tdata (gotent->gotobj);
2405 plge = &td->got->size;
2406 gotent->got_offset = *plge;
2407 *plge += alpha_got_entry_size (gotent->reloc_type);
2408 }
2409
2410 return TRUE;
2411 }
2412
2413 static void
2414 elf64_alpha_calc_got_offsets (struct bfd_link_info *info)
2415 {
2416 bfd *i, *got_list;
2417 struct alpha_elf_link_hash_table * htab;
2418
2419 htab = alpha_elf_hash_table (info);
2420 if (htab == NULL)
2421 return;
2422 got_list = htab->got_list;
2423
2424 /* First, zero out the .got sizes, as we may be recalculating the
2425 .got after optimizing it. */
2426 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2427 alpha_elf_tdata(i)->got->size = 0;
2428
2429 /* Next, fill in the offsets for all the global entries. */
2430 alpha_elf_link_hash_traverse (htab,
2431 elf64_alpha_calc_got_offsets_for_symbol,
2432 NULL);
2433
2434 /* Finally, fill in the offsets for the local entries. */
2435 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2436 {
2437 bfd_size_type got_offset = alpha_elf_tdata(i)->got->size;
2438 bfd *j;
2439
2440 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2441 {
2442 struct alpha_elf_got_entry **local_got_entries, *gotent;
2443 int k, n;
2444
2445 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2446 if (!local_got_entries)
2447 continue;
2448
2449 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2450 for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
2451 if (gotent->use_count > 0)
2452 {
2453 gotent->got_offset = got_offset;
2454 got_offset += alpha_got_entry_size (gotent->reloc_type);
2455 }
2456 }
2457
2458 alpha_elf_tdata(i)->got->size = got_offset;
2459 }
2460 }
2461
2462 /* Constructs the gots. */
2463
2464 static bfd_boolean
2465 elf64_alpha_size_got_sections (struct bfd_link_info *info)
2466 {
2467 bfd *i, *got_list, *cur_got_obj = NULL;
2468 struct alpha_elf_link_hash_table * htab;
2469
2470 htab = alpha_elf_hash_table (info);
2471 if (htab == NULL)
2472 return FALSE;
2473 got_list = htab->got_list;
2474
2475 /* On the first time through, pretend we have an existing got list
2476 consisting of all of the input files. */
2477 if (got_list == NULL)
2478 {
2479 for (i = info->input_bfds; i ; i = i->link_next)
2480 {
2481 bfd *this_got;
2482
2483 if (! is_alpha_elf (i))
2484 continue;
2485
2486 this_got = alpha_elf_tdata (i)->gotobj;
2487 if (this_got == NULL)
2488 continue;
2489
2490 /* We are assuming no merging has yet occurred. */
2491 BFD_ASSERT (this_got == i);
2492
2493 if (alpha_elf_tdata (this_got)->total_got_size > MAX_GOT_SIZE)
2494 {
2495 /* Yikes! A single object file has too many entries. */
2496 (*_bfd_error_handler)
2497 (_("%B: .got subsegment exceeds 64K (size %d)"),
2498 i, alpha_elf_tdata (this_got)->total_got_size);
2499 return FALSE;
2500 }
2501
2502 if (got_list == NULL)
2503 got_list = this_got;
2504 else
2505 alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
2506 cur_got_obj = this_got;
2507 }
2508
2509 /* Strange degenerate case of no got references. */
2510 if (got_list == NULL)
2511 return TRUE;
2512
2513 htab->got_list = got_list;
2514 }
2515
2516 cur_got_obj = got_list;
2517 if (cur_got_obj == NULL)
2518 return FALSE;
2519
2520 i = alpha_elf_tdata(cur_got_obj)->got_link_next;
2521 while (i != NULL)
2522 {
2523 if (elf64_alpha_can_merge_gots (cur_got_obj, i))
2524 {
2525 elf64_alpha_merge_gots (cur_got_obj, i);
2526
2527 alpha_elf_tdata(i)->got->size = 0;
2528 i = alpha_elf_tdata(i)->got_link_next;
2529 alpha_elf_tdata(cur_got_obj)->got_link_next = i;
2530 }
2531 else
2532 {
2533 cur_got_obj = i;
2534 i = alpha_elf_tdata(i)->got_link_next;
2535 }
2536 }
2537
2538 /* Once the gots have been merged, fill in the got offsets for
2539 everything therein. */
2540 elf64_alpha_calc_got_offsets (info);
2541
2542 return TRUE;
2543 }
2544
2545 static bfd_boolean
2546 elf64_alpha_size_plt_section_1 (struct alpha_elf_link_hash_entry *h, PTR data)
2547 {
2548 asection *splt = (asection *) data;
2549 struct alpha_elf_got_entry *gotent;
2550 bfd_boolean saw_one = FALSE;
2551
2552 /* If we didn't need an entry before, we still don't. */
2553 if (!h->root.needs_plt)
2554 return TRUE;
2555
2556 /* For each LITERAL got entry still in use, allocate a plt entry. */
2557 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2558 if (gotent->reloc_type == R_ALPHA_LITERAL
2559 && gotent->use_count > 0)
2560 {
2561 if (splt->size == 0)
2562 splt->size = PLT_HEADER_SIZE;
2563 gotent->plt_offset = splt->size;
2564 splt->size += PLT_ENTRY_SIZE;
2565 saw_one = TRUE;
2566 }
2567
2568 /* If there weren't any, there's no longer a need for the PLT entry. */
2569 if (!saw_one)
2570 h->root.needs_plt = FALSE;
2571
2572 return TRUE;
2573 }
2574
2575 /* Called from relax_section to rebuild the PLT in light of potential changes
2576 in the function's status. */
2577
2578 static void
2579 elf64_alpha_size_plt_section (struct bfd_link_info *info)
2580 {
2581 asection *splt, *spltrel, *sgotplt;
2582 unsigned long entries;
2583 bfd *dynobj;
2584 struct alpha_elf_link_hash_table * htab;
2585
2586 htab = alpha_elf_hash_table (info);
2587 if (htab == NULL)
2588 return;
2589
2590 dynobj = elf_hash_table(info)->dynobj;
2591 splt = bfd_get_section_by_name (dynobj, ".plt");
2592 if (splt == NULL)
2593 return;
2594
2595 splt->size = 0;
2596
2597 alpha_elf_link_hash_traverse (htab,
2598 elf64_alpha_size_plt_section_1, splt);
2599
2600 /* Every plt entry requires a JMP_SLOT relocation. */
2601 spltrel = bfd_get_section_by_name (dynobj, ".rela.plt");
2602 entries = 0;
2603 if (splt->size)
2604 {
2605 if (elf64_alpha_use_secureplt)
2606 entries = (splt->size - NEW_PLT_HEADER_SIZE) / NEW_PLT_ENTRY_SIZE;
2607 else
2608 entries = (splt->size - OLD_PLT_HEADER_SIZE) / OLD_PLT_ENTRY_SIZE;
2609 }
2610 spltrel->size = entries * sizeof (Elf64_External_Rela);
2611
2612 /* When using the secureplt, we need two words somewhere in the data
2613 segment for the dynamic linker to tell us where to go. This is the
2614 entire contents of the .got.plt section. */
2615 if (elf64_alpha_use_secureplt)
2616 {
2617 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2618 sgotplt->size = entries ? 16 : 0;
2619 }
2620 }
2621
2622 static bfd_boolean
2623 elf64_alpha_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2624 struct bfd_link_info *info)
2625 {
2626 bfd *i;
2627 struct alpha_elf_link_hash_table * htab;
2628
2629 if (info->relocatable)
2630 return TRUE;
2631
2632 htab = alpha_elf_hash_table (info);
2633 if (htab == NULL)
2634 return FALSE;
2635
2636 if (!elf64_alpha_size_got_sections (info))
2637 return FALSE;
2638
2639 /* Allocate space for all of the .got subsections. */
2640 i = htab->got_list;
2641 for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
2642 {
2643 asection *s = alpha_elf_tdata(i)->got;
2644 if (s->size > 0)
2645 {
2646 s->contents = (bfd_byte *) bfd_zalloc (i, s->size);
2647 if (s->contents == NULL)
2648 return FALSE;
2649 }
2650 }
2651
2652 return TRUE;
2653 }
2654
2655 /* The number of dynamic relocations required by a static relocation. */
2656
2657 static int
2658 alpha_dynamic_entries_for_reloc (int r_type, int dynamic, int shared, int pie)
2659 {
2660 switch (r_type)
2661 {
2662 /* May appear in GOT entries. */
2663 case R_ALPHA_TLSGD:
2664 return (dynamic ? 2 : shared ? 1 : 0);
2665 case R_ALPHA_TLSLDM:
2666 return shared;
2667 case R_ALPHA_LITERAL:
2668 return dynamic || shared;
2669 case R_ALPHA_GOTTPREL:
2670 return dynamic || (shared && !pie);
2671 case R_ALPHA_GOTDTPREL:
2672 return dynamic;
2673
2674 /* May appear in data sections. */
2675 case R_ALPHA_REFLONG:
2676 case R_ALPHA_REFQUAD:
2677 return dynamic || shared;
2678 case R_ALPHA_TPREL64:
2679 return dynamic || (shared && !pie);
2680
2681 /* Everything else is illegal. We'll issue an error during
2682 relocate_section. */
2683 default:
2684 return 0;
2685 }
2686 }
2687
2688 /* Work out the sizes of the dynamic relocation entries. */
2689
2690 static bfd_boolean
2691 elf64_alpha_calc_dynrel_sizes (struct alpha_elf_link_hash_entry *h,
2692 struct bfd_link_info *info)
2693 {
2694 bfd_boolean dynamic;
2695 struct alpha_elf_reloc_entry *relent;
2696 unsigned long entries;
2697
2698 /* If the symbol was defined as a common symbol in a regular object
2699 file, and there was no definition in any dynamic object, then the
2700 linker will have allocated space for the symbol in a common
2701 section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
2702 set. This is done for dynamic symbols in
2703 elf_adjust_dynamic_symbol but this is not done for non-dynamic
2704 symbols, somehow. */
2705 if (!h->root.def_regular
2706 && h->root.ref_regular
2707 && !h->root.def_dynamic
2708 && (h->root.root.type == bfd_link_hash_defined
2709 || h->root.root.type == bfd_link_hash_defweak)
2710 && !(h->root.root.u.def.section->owner->flags & DYNAMIC))
2711 h->root.def_regular = 1;
2712
2713 /* If the symbol is dynamic, we'll need all the relocations in their
2714 natural form. If this is a shared object, and it has been forced
2715 local, we'll need the same number of RELATIVE relocations. */
2716 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2717
2718 /* If the symbol is a hidden undefined weak, then we never have any
2719 relocations. Avoid the loop which may want to add RELATIVE relocs
2720 based on info->shared. */
2721 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2722 return TRUE;
2723
2724 for (relent = h->reloc_entries; relent; relent = relent->next)
2725 {
2726 entries = alpha_dynamic_entries_for_reloc (relent->rtype, dynamic,
2727 info->shared, info->pie);
2728 if (entries)
2729 {
2730 relent->srel->size +=
2731 entries * sizeof (Elf64_External_Rela) * relent->count;
2732 if (relent->reltext)
2733 info->flags |= DT_TEXTREL;
2734 }
2735 }
2736
2737 return TRUE;
2738 }
2739
2740 /* Subroutine of elf64_alpha_size_rela_got_section for doing the
2741 global symbols. */
2742
2743 static bfd_boolean
2744 elf64_alpha_size_rela_got_1 (struct alpha_elf_link_hash_entry *h,
2745 struct bfd_link_info *info)
2746 {
2747 bfd_boolean dynamic;
2748 struct alpha_elf_got_entry *gotent;
2749 unsigned long entries;
2750
2751 /* If we're using a plt for this symbol, then all of its relocations
2752 for its got entries go into .rela.plt. */
2753 if (h->root.needs_plt)
2754 return TRUE;
2755
2756 /* If the symbol is dynamic, we'll need all the relocations in their
2757 natural form. If this is a shared object, and it has been forced
2758 local, we'll need the same number of RELATIVE relocations. */
2759 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2760
2761 /* If the symbol is a hidden undefined weak, then we never have any
2762 relocations. Avoid the loop which may want to add RELATIVE relocs
2763 based on info->shared. */
2764 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2765 return TRUE;
2766
2767 entries = 0;
2768 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2769 if (gotent->use_count > 0)
2770 entries += alpha_dynamic_entries_for_reloc (gotent->reloc_type, dynamic,
2771 info->shared, info->pie);
2772
2773 if (entries > 0)
2774 {
2775 bfd *dynobj = elf_hash_table(info)->dynobj;
2776 asection *srel = bfd_get_section_by_name (dynobj, ".rela.got");
2777 BFD_ASSERT (srel != NULL);
2778 srel->size += sizeof (Elf64_External_Rela) * entries;
2779 }
2780
2781 return TRUE;
2782 }
2783
2784 /* Set the sizes of the dynamic relocation sections. */
2785
2786 static void
2787 elf64_alpha_size_rela_got_section (struct bfd_link_info *info)
2788 {
2789 unsigned long entries;
2790 bfd *i, *dynobj;
2791 asection *srel;
2792 struct alpha_elf_link_hash_table * htab;
2793
2794 htab = alpha_elf_hash_table (info);
2795 if (htab == NULL)
2796 return;
2797
2798 /* Shared libraries often require RELATIVE relocs, and some relocs
2799 require attention for the main application as well. */
2800
2801 entries = 0;
2802 for (i = htab->got_list;
2803 i ; i = alpha_elf_tdata(i)->got_link_next)
2804 {
2805 bfd *j;
2806
2807 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2808 {
2809 struct alpha_elf_got_entry **local_got_entries, *gotent;
2810 int k, n;
2811
2812 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2813 if (!local_got_entries)
2814 continue;
2815
2816 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2817 for (gotent = local_got_entries[k];
2818 gotent ; gotent = gotent->next)
2819 if (gotent->use_count > 0)
2820 entries += (alpha_dynamic_entries_for_reloc
2821 (gotent->reloc_type, 0, info->shared, info->pie));
2822 }
2823 }
2824
2825 dynobj = elf_hash_table(info)->dynobj;
2826 srel = bfd_get_section_by_name (dynobj, ".rela.got");
2827 if (!srel)
2828 {
2829 BFD_ASSERT (entries == 0);
2830 return;
2831 }
2832 srel->size = sizeof (Elf64_External_Rela) * entries;
2833
2834 /* Now do the non-local symbols. */
2835 alpha_elf_link_hash_traverse (htab,
2836 elf64_alpha_size_rela_got_1, info);
2837 }
2838
2839 /* Set the sizes of the dynamic sections. */
2840
2841 static bfd_boolean
2842 elf64_alpha_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2843 struct bfd_link_info *info)
2844 {
2845 bfd *dynobj;
2846 asection *s;
2847 bfd_boolean relplt;
2848 struct alpha_elf_link_hash_table * htab;
2849
2850 htab = alpha_elf_hash_table (info);
2851 if (htab == NULL)
2852 return FALSE;
2853
2854 dynobj = elf_hash_table(info)->dynobj;
2855 BFD_ASSERT(dynobj != NULL);
2856
2857 if (elf_hash_table (info)->dynamic_sections_created)
2858 {
2859 /* Set the contents of the .interp section to the interpreter. */
2860 if (info->executable)
2861 {
2862 s = bfd_get_section_by_name (dynobj, ".interp");
2863 BFD_ASSERT (s != NULL);
2864 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2865 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2866 }
2867
2868 /* Now that we've seen all of the input files, we can decide which
2869 symbols need dynamic relocation entries and which don't. We've
2870 collected information in check_relocs that we can now apply to
2871 size the dynamic relocation sections. */
2872 alpha_elf_link_hash_traverse (htab,
2873 elf64_alpha_calc_dynrel_sizes, info);
2874
2875 elf64_alpha_size_rela_got_section (info);
2876 elf64_alpha_size_plt_section (info);
2877 }
2878 /* else we're not dynamic and by definition we don't need such things. */
2879
2880 /* The check_relocs and adjust_dynamic_symbol entry points have
2881 determined the sizes of the various dynamic sections. Allocate
2882 memory for them. */
2883 relplt = FALSE;
2884 for (s = dynobj->sections; s != NULL; s = s->next)
2885 {
2886 const char *name;
2887
2888 if (!(s->flags & SEC_LINKER_CREATED))
2889 continue;
2890
2891 /* It's OK to base decisions on the section name, because none
2892 of the dynobj section names depend upon the input files. */
2893 name = bfd_get_section_name (dynobj, s);
2894
2895 if (CONST_STRNEQ (name, ".rela"))
2896 {
2897 if (s->size != 0)
2898 {
2899 if (strcmp (name, ".rela.plt") == 0)
2900 relplt = TRUE;
2901
2902 /* We use the reloc_count field as a counter if we need
2903 to copy relocs into the output file. */
2904 s->reloc_count = 0;
2905 }
2906 }
2907 else if (! CONST_STRNEQ (name, ".got")
2908 && strcmp (name, ".plt") != 0
2909 && strcmp (name, ".dynbss") != 0)
2910 {
2911 /* It's not one of our dynamic sections, so don't allocate space. */
2912 continue;
2913 }
2914
2915 if (s->size == 0)
2916 {
2917 /* If we don't need this section, strip it from the output file.
2918 This is to handle .rela.bss and .rela.plt. We must create it
2919 in create_dynamic_sections, because it must be created before
2920 the linker maps input sections to output sections. The
2921 linker does that before adjust_dynamic_symbol is called, and
2922 it is that function which decides whether anything needs to
2923 go into these sections. */
2924 if (!CONST_STRNEQ (name, ".got"))
2925 s->flags |= SEC_EXCLUDE;
2926 }
2927 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
2928 {
2929 /* Allocate memory for the section contents. */
2930 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2931 if (s->contents == NULL)
2932 return FALSE;
2933 }
2934 }
2935
2936 if (elf_hash_table (info)->dynamic_sections_created)
2937 {
2938 /* Add some entries to the .dynamic section. We fill in the
2939 values later, in elf64_alpha_finish_dynamic_sections, but we
2940 must add the entries now so that we get the correct size for
2941 the .dynamic section. The DT_DEBUG entry is filled in by the
2942 dynamic linker and used by the debugger. */
2943 #define add_dynamic_entry(TAG, VAL) \
2944 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2945
2946 if (info->executable)
2947 {
2948 if (!add_dynamic_entry (DT_DEBUG, 0))
2949 return FALSE;
2950 }
2951
2952 if (relplt)
2953 {
2954 if (!add_dynamic_entry (DT_PLTGOT, 0)
2955 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2956 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2957 || !add_dynamic_entry (DT_JMPREL, 0))
2958 return FALSE;
2959
2960 if (elf64_alpha_use_secureplt
2961 && !add_dynamic_entry (DT_ALPHA_PLTRO, 1))
2962 return FALSE;
2963 }
2964
2965 if (!add_dynamic_entry (DT_RELA, 0)
2966 || !add_dynamic_entry (DT_RELASZ, 0)
2967 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2968 return FALSE;
2969
2970 if (info->flags & DF_TEXTREL)
2971 {
2972 if (!add_dynamic_entry (DT_TEXTREL, 0))
2973 return FALSE;
2974 }
2975 }
2976 #undef add_dynamic_entry
2977
2978 return TRUE;
2979 }
2980 \f
2981 /* These functions do relaxation for Alpha ELF.
2982
2983 Currently I'm only handling what I can do with existing compiler
2984 and assembler support, which means no instructions are removed,
2985 though some may be nopped. At this time GCC does not emit enough
2986 information to do all of the relaxing that is possible. It will
2987 take some not small amount of work for that to happen.
2988
2989 There are a couple of interesting papers that I once read on this
2990 subject, that I cannot find references to at the moment, that
2991 related to Alpha in particular. They are by David Wall, then of
2992 DEC WRL. */
2993
2994 struct alpha_relax_info
2995 {
2996 bfd *abfd;
2997 asection *sec;
2998 bfd_byte *contents;
2999 Elf_Internal_Shdr *symtab_hdr;
3000 Elf_Internal_Rela *relocs, *relend;
3001 struct bfd_link_info *link_info;
3002 bfd_vma gp;
3003 bfd *gotobj;
3004 asection *tsec;
3005 struct alpha_elf_link_hash_entry *h;
3006 struct alpha_elf_got_entry **first_gotent;
3007 struct alpha_elf_got_entry *gotent;
3008 bfd_boolean changed_contents;
3009 bfd_boolean changed_relocs;
3010 unsigned char other;
3011 };
3012
3013 static Elf_Internal_Rela *
3014 elf64_alpha_find_reloc_at_ofs (Elf_Internal_Rela *rel,
3015 Elf_Internal_Rela *relend,
3016 bfd_vma offset, int type)
3017 {
3018 while (rel < relend)
3019 {
3020 if (rel->r_offset == offset
3021 && ELF64_R_TYPE (rel->r_info) == (unsigned int) type)
3022 return rel;
3023 ++rel;
3024 }
3025 return NULL;
3026 }
3027
3028 static bfd_boolean
3029 elf64_alpha_relax_got_load (struct alpha_relax_info *info, bfd_vma symval,
3030 Elf_Internal_Rela *irel, unsigned long r_type)
3031 {
3032 unsigned int insn;
3033 bfd_signed_vma disp;
3034
3035 /* Get the instruction. */
3036 insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3037
3038 if (insn >> 26 != OP_LDQ)
3039 {
3040 reloc_howto_type *howto = elf64_alpha_howto_table + r_type;
3041 ((*_bfd_error_handler)
3042 ("%B: %A+0x%lx: warning: %s relocation against unexpected insn",
3043 info->abfd, info->sec,
3044 (unsigned long) irel->r_offset, howto->name));
3045 return TRUE;
3046 }
3047
3048 /* Can't relax dynamic symbols. */
3049 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3050 return TRUE;
3051
3052 /* Can't use local-exec relocations in shared libraries. */
3053 if (r_type == R_ALPHA_GOTTPREL
3054 && (info->link_info->shared && !info->link_info->pie))
3055 return TRUE;
3056
3057 if (r_type == R_ALPHA_LITERAL)
3058 {
3059 /* Look for nice constant addresses. This includes the not-uncommon
3060 special case of 0 for undefweak symbols. */
3061 if ((info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3062 || (!info->link_info->shared
3063 && (symval >= (bfd_vma)-0x8000 || symval < 0x8000)))
3064 {
3065 disp = 0;
3066 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3067 insn |= (symval & 0xffff);
3068 r_type = R_ALPHA_NONE;
3069 }
3070 else
3071 {
3072 disp = symval - info->gp;
3073 insn = (OP_LDA << 26) | (insn & 0x03ff0000);
3074 r_type = R_ALPHA_GPREL16;
3075 }
3076 }
3077 else
3078 {
3079 bfd_vma dtp_base, tp_base;
3080
3081 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3082 dtp_base = alpha_get_dtprel_base (info->link_info);
3083 tp_base = alpha_get_tprel_base (info->link_info);
3084 disp = symval - (r_type == R_ALPHA_GOTDTPREL ? dtp_base : tp_base);
3085
3086 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3087
3088 switch (r_type)
3089 {
3090 case R_ALPHA_GOTDTPREL:
3091 r_type = R_ALPHA_DTPREL16;
3092 break;
3093 case R_ALPHA_GOTTPREL:
3094 r_type = R_ALPHA_TPREL16;
3095 break;
3096 default:
3097 BFD_ASSERT (0);
3098 return FALSE;
3099 }
3100 }
3101
3102 if (disp < -0x8000 || disp >= 0x8000)
3103 return TRUE;
3104
3105 bfd_put_32 (info->abfd, (bfd_vma) insn, info->contents + irel->r_offset);
3106 info->changed_contents = TRUE;
3107
3108 /* Reduce the use count on this got entry by one, possibly
3109 eliminating it. */
3110 if (--info->gotent->use_count == 0)
3111 {
3112 int sz = alpha_got_entry_size (r_type);
3113 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3114 if (!info->h)
3115 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3116 }
3117
3118 /* Smash the existing GOT relocation for its 16-bit immediate pair. */
3119 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), r_type);
3120 info->changed_relocs = TRUE;
3121
3122 /* ??? Search forward through this basic block looking for insns
3123 that use the target register. Stop after an insn modifying the
3124 register is seen, or after a branch or call.
3125
3126 Any such memory load insn may be substituted by a load directly
3127 off the GP. This allows the memory load insn to be issued before
3128 the calculated GP register would otherwise be ready.
3129
3130 Any such jsr insn can be replaced by a bsr if it is in range.
3131
3132 This would mean that we'd have to _add_ relocations, the pain of
3133 which gives one pause. */
3134
3135 return TRUE;
3136 }
3137
3138 static bfd_vma
3139 elf64_alpha_relax_opt_call (struct alpha_relax_info *info, bfd_vma symval)
3140 {
3141 /* If the function has the same gp, and we can identify that the
3142 function does not use its function pointer, we can eliminate the
3143 address load. */
3144
3145 /* If the symbol is marked NOPV, we are being told the function never
3146 needs its procedure value. */
3147 if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
3148 return symval;
3149
3150 /* If the symbol is marked STD_GP, we are being told the function does
3151 a normal ldgp in the first two words. */
3152 else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
3153 ;
3154
3155 /* Otherwise, we may be able to identify a GP load in the first two
3156 words, which we can then skip. */
3157 else
3158 {
3159 Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
3160 bfd_vma ofs;
3161
3162 /* Load the relocations from the section that the target symbol is in. */
3163 if (info->sec == info->tsec)
3164 {
3165 tsec_relocs = info->relocs;
3166 tsec_relend = info->relend;
3167 tsec_free = NULL;
3168 }
3169 else
3170 {
3171 tsec_relocs = (_bfd_elf_link_read_relocs
3172 (info->abfd, info->tsec, (PTR) NULL,
3173 (Elf_Internal_Rela *) NULL,
3174 info->link_info->keep_memory));
3175 if (tsec_relocs == NULL)
3176 return 0;
3177 tsec_relend = tsec_relocs + info->tsec->reloc_count;
3178 tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
3179 }
3180
3181 /* Recover the symbol's offset within the section. */
3182 ofs = (symval - info->tsec->output_section->vma
3183 - info->tsec->output_offset);
3184
3185 /* Look for a GPDISP reloc. */
3186 gpdisp = (elf64_alpha_find_reloc_at_ofs
3187 (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));
3188
3189 if (!gpdisp || gpdisp->r_addend != 4)
3190 {
3191 if (tsec_free)
3192 free (tsec_free);
3193 return 0;
3194 }
3195 if (tsec_free)
3196 free (tsec_free);
3197 }
3198
3199 /* We've now determined that we can skip an initial gp load. Verify
3200 that the call and the target use the same gp. */
3201 if (info->link_info->output_bfd->xvec != info->tsec->owner->xvec
3202 || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
3203 return 0;
3204
3205 return symval + 8;
3206 }
3207
3208 static bfd_boolean
3209 elf64_alpha_relax_with_lituse (struct alpha_relax_info *info,
3210 bfd_vma symval, Elf_Internal_Rela *irel)
3211 {
3212 Elf_Internal_Rela *urel, *irelend = info->relend;
3213 int flags, count, i;
3214 bfd_signed_vma disp;
3215 bfd_boolean fits16;
3216 bfd_boolean fits32;
3217 bfd_boolean lit_reused = FALSE;
3218 bfd_boolean all_optimized = TRUE;
3219 unsigned int lit_insn;
3220
3221 lit_insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3222 if (lit_insn >> 26 != OP_LDQ)
3223 {
3224 ((*_bfd_error_handler)
3225 ("%B: %A+0x%lx: warning: LITERAL relocation against unexpected insn",
3226 info->abfd, info->sec,
3227 (unsigned long) irel->r_offset));
3228 return TRUE;
3229 }
3230
3231 /* Can't relax dynamic symbols. */
3232 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3233 return TRUE;
3234
3235 /* Summarize how this particular LITERAL is used. */
3236 for (urel = irel+1, flags = count = 0; urel < irelend; ++urel, ++count)
3237 {
3238 if (ELF64_R_TYPE (urel->r_info) != R_ALPHA_LITUSE)
3239 break;
3240 if (urel->r_addend <= 6)
3241 flags |= 1 << urel->r_addend;
3242 }
3243
3244 /* A little preparation for the loop... */
3245 disp = symval - info->gp;
3246
3247 for (urel = irel+1, i = 0; i < count; ++i, ++urel)
3248 {
3249 unsigned int insn;
3250 int insn_disp;
3251 bfd_signed_vma xdisp;
3252
3253 insn = bfd_get_32 (info->abfd, info->contents + urel->r_offset);
3254
3255 switch (urel->r_addend)
3256 {
3257 case LITUSE_ALPHA_ADDR:
3258 default:
3259 /* This type is really just a placeholder to note that all
3260 uses cannot be optimized, but to still allow some. */
3261 all_optimized = FALSE;
3262 break;
3263
3264 case LITUSE_ALPHA_BASE:
3265 /* We can always optimize 16-bit displacements. */
3266
3267 /* Extract the displacement from the instruction, sign-extending
3268 it if necessary, then test whether it is within 16 or 32 bits
3269 displacement from GP. */
3270 insn_disp = ((insn & 0xffff) ^ 0x8000) - 0x8000;
3271
3272 xdisp = disp + insn_disp;
3273 fits16 = (xdisp >= - (bfd_signed_vma) 0x8000 && xdisp < 0x8000);
3274 fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000
3275 && xdisp < 0x7fff8000);
3276
3277 if (fits16)
3278 {
3279 /* Take the op code and dest from this insn, take the base
3280 register from the literal insn. Leave the offset alone. */
3281 insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
3282 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3283 R_ALPHA_GPREL16);
3284 urel->r_addend = irel->r_addend;
3285 info->changed_relocs = TRUE;
3286
3287 bfd_put_32 (info->abfd, (bfd_vma) insn,
3288 info->contents + urel->r_offset);
3289 info->changed_contents = TRUE;
3290 }
3291
3292 /* If all mem+byte, we can optimize 32-bit mem displacements. */
3293 else if (fits32 && !(flags & ~6))
3294 {
3295 /* FIXME: sanity check that lit insn Ra is mem insn Rb. */
3296
3297 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3298 R_ALPHA_GPRELHIGH);
3299 lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
3300 bfd_put_32 (info->abfd, (bfd_vma) lit_insn,
3301 info->contents + irel->r_offset);
3302 lit_reused = TRUE;
3303 info->changed_contents = TRUE;
3304
3305 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3306 R_ALPHA_GPRELLOW);
3307 urel->r_addend = irel->r_addend;
3308 info->changed_relocs = TRUE;
3309 }
3310 else
3311 all_optimized = FALSE;
3312 break;
3313
3314 case LITUSE_ALPHA_BYTOFF:
3315 /* We can always optimize byte instructions. */
3316
3317 /* FIXME: sanity check the insn for byte op. Check that the
3318 literal dest reg is indeed Rb in the byte insn. */
3319
3320 insn &= ~ (unsigned) 0x001ff000;
3321 insn |= ((symval & 7) << 13) | 0x1000;
3322
3323 urel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3324 urel->r_addend = 0;
3325 info->changed_relocs = TRUE;
3326
3327 bfd_put_32 (info->abfd, (bfd_vma) insn,
3328 info->contents + urel->r_offset);
3329 info->changed_contents = TRUE;
3330 break;
3331
3332 case LITUSE_ALPHA_JSR:
3333 case LITUSE_ALPHA_TLSGD:
3334 case LITUSE_ALPHA_TLSLDM:
3335 case LITUSE_ALPHA_JSRDIRECT:
3336 {
3337 bfd_vma optdest, org;
3338 bfd_signed_vma odisp;
3339
3340 /* For undefined weak symbols, we're mostly interested in getting
3341 rid of the got entry whenever possible, so optimize this to a
3342 use of the zero register. */
3343 if (info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3344 {
3345 insn |= 31 << 16;
3346 bfd_put_32 (info->abfd, (bfd_vma) insn,
3347 info->contents + urel->r_offset);
3348
3349 info->changed_contents = TRUE;
3350 break;
3351 }
3352
3353 /* If not zero, place to jump without needing pv. */
3354 optdest = elf64_alpha_relax_opt_call (info, symval);
3355 org = (info->sec->output_section->vma
3356 + info->sec->output_offset
3357 + urel->r_offset + 4);
3358 odisp = (optdest ? optdest : symval) - org;
3359
3360 if (odisp >= -0x400000 && odisp < 0x400000)
3361 {
3362 Elf_Internal_Rela *xrel;
3363
3364 /* Preserve branch prediction call stack when possible. */
3365 if ((insn & INSN_JSR_MASK) == INSN_JSR)
3366 insn = (OP_BSR << 26) | (insn & 0x03e00000);
3367 else
3368 insn = (OP_BR << 26) | (insn & 0x03e00000);
3369
3370 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3371 R_ALPHA_BRADDR);
3372 urel->r_addend = irel->r_addend;
3373
3374 if (optdest)
3375 urel->r_addend += optdest - symval;
3376 else
3377 all_optimized = FALSE;
3378
3379 bfd_put_32 (info->abfd, (bfd_vma) insn,
3380 info->contents + urel->r_offset);
3381
3382 /* Kill any HINT reloc that might exist for this insn. */
3383 xrel = (elf64_alpha_find_reloc_at_ofs
3384 (info->relocs, info->relend, urel->r_offset,
3385 R_ALPHA_HINT));
3386 if (xrel)
3387 xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3388
3389 info->changed_contents = TRUE;
3390 info->changed_relocs = TRUE;
3391 }
3392 else
3393 all_optimized = FALSE;
3394
3395 /* Even if the target is not in range for a direct branch,
3396 if we share a GP, we can eliminate the gp reload. */
3397 if (optdest)
3398 {
3399 Elf_Internal_Rela *gpdisp
3400 = (elf64_alpha_find_reloc_at_ofs
3401 (info->relocs, irelend, urel->r_offset + 4,
3402 R_ALPHA_GPDISP));
3403 if (gpdisp)
3404 {
3405 bfd_byte *p_ldah = info->contents + gpdisp->r_offset;
3406 bfd_byte *p_lda = p_ldah + gpdisp->r_addend;
3407 unsigned int ldah = bfd_get_32 (info->abfd, p_ldah);
3408 unsigned int lda = bfd_get_32 (info->abfd, p_lda);
3409
3410 /* Verify that the instruction is "ldah $29,0($26)".
3411 Consider a function that ends in a noreturn call,
3412 and that the next function begins with an ldgp,
3413 and that by accident there is no padding between.
3414 In that case the insn would use $27 as the base. */
3415 if (ldah == 0x27ba0000 && lda == 0x23bd0000)
3416 {
3417 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_ldah);
3418 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_lda);
3419
3420 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3421 info->changed_contents = TRUE;
3422 info->changed_relocs = TRUE;
3423 }
3424 }
3425 }
3426 }
3427 break;
3428 }
3429 }
3430
3431 /* If all cases were optimized, we can reduce the use count on this
3432 got entry by one, possibly eliminating it. */
3433 if (all_optimized)
3434 {
3435 if (--info->gotent->use_count == 0)
3436 {
3437 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3438 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3439 if (!info->h)
3440 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3441 }
3442
3443 /* If the literal instruction is no longer needed (it may have been
3444 reused. We can eliminate it. */
3445 /* ??? For now, I don't want to deal with compacting the section,
3446 so just nop it out. */
3447 if (!lit_reused)
3448 {
3449 irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3450 info->changed_relocs = TRUE;
3451
3452 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP,
3453 info->contents + irel->r_offset);
3454 info->changed_contents = TRUE;
3455 }
3456
3457 return TRUE;
3458 }
3459 else
3460 return elf64_alpha_relax_got_load (info, symval, irel, R_ALPHA_LITERAL);
3461 }
3462
3463 static bfd_boolean
3464 elf64_alpha_relax_tls_get_addr (struct alpha_relax_info *info, bfd_vma symval,
3465 Elf_Internal_Rela *irel, bfd_boolean is_gd)
3466 {
3467 bfd_byte *pos[5];
3468 unsigned int insn, tlsgd_reg;
3469 Elf_Internal_Rela *gpdisp, *hint;
3470 bfd_boolean dynamic, use_gottprel;
3471 unsigned long new_symndx;
3472
3473 dynamic = alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info);
3474
3475 /* If a TLS symbol is accessed using IE at least once, there is no point
3476 to use dynamic model for it. */
3477 if (is_gd && info->h && (info->h->flags & ALPHA_ELF_LINK_HASH_TLS_IE))
3478 ;
3479
3480 /* If the symbol is local, and we've already committed to DF_STATIC_TLS,
3481 then we might as well relax to IE. */
3482 else if (info->link_info->shared && !dynamic
3483 && (info->link_info->flags & DF_STATIC_TLS))
3484 ;
3485
3486 /* Otherwise we must be building an executable to do anything. */
3487 else if (info->link_info->shared)
3488 return TRUE;
3489
3490 /* The TLSGD/TLSLDM relocation must be followed by a LITERAL and
3491 the matching LITUSE_TLS relocations. */
3492 if (irel + 2 >= info->relend)
3493 return TRUE;
3494 if (ELF64_R_TYPE (irel[1].r_info) != R_ALPHA_LITERAL
3495 || ELF64_R_TYPE (irel[2].r_info) != R_ALPHA_LITUSE
3496 || irel[2].r_addend != (is_gd ? LITUSE_ALPHA_TLSGD : LITUSE_ALPHA_TLSLDM))
3497 return TRUE;
3498
3499 /* There must be a GPDISP relocation positioned immediately after the
3500 LITUSE relocation. */
3501 gpdisp = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3502 irel[2].r_offset + 4, R_ALPHA_GPDISP);
3503 if (!gpdisp)
3504 return TRUE;
3505
3506 pos[0] = info->contents + irel[0].r_offset;
3507 pos[1] = info->contents + irel[1].r_offset;
3508 pos[2] = info->contents + irel[2].r_offset;
3509 pos[3] = info->contents + gpdisp->r_offset;
3510 pos[4] = pos[3] + gpdisp->r_addend;
3511
3512 /* Beware of the compiler hoisting part of the sequence out a loop
3513 and adjusting the destination register for the TLSGD insn. If this
3514 happens, there will be a move into $16 before the JSR insn, so only
3515 transformations of the first insn pair should use this register. */
3516 tlsgd_reg = bfd_get_32 (info->abfd, pos[0]);
3517 tlsgd_reg = (tlsgd_reg >> 21) & 31;
3518
3519 /* Generally, the positions are not allowed to be out of order, lest the
3520 modified insn sequence have different register lifetimes. We can make
3521 an exception when pos 1 is adjacent to pos 0. */
3522 if (pos[1] + 4 == pos[0])
3523 {
3524 bfd_byte *tmp = pos[0];
3525 pos[0] = pos[1];
3526 pos[1] = tmp;
3527 }
3528 if (pos[1] >= pos[2] || pos[2] >= pos[3])
3529 return TRUE;
3530
3531 /* Reduce the use count on the LITERAL relocation. Do this before we
3532 smash the symndx when we adjust the relocations below. */
3533 {
3534 struct alpha_elf_got_entry *lit_gotent;
3535 struct alpha_elf_link_hash_entry *lit_h;
3536 unsigned long indx;
3537
3538 BFD_ASSERT (ELF64_R_SYM (irel[1].r_info) >= info->symtab_hdr->sh_info);
3539 indx = ELF64_R_SYM (irel[1].r_info) - info->symtab_hdr->sh_info;
3540 lit_h = alpha_elf_sym_hashes (info->abfd)[indx];
3541
3542 while (lit_h->root.root.type == bfd_link_hash_indirect
3543 || lit_h->root.root.type == bfd_link_hash_warning)
3544 lit_h = (struct alpha_elf_link_hash_entry *) lit_h->root.root.u.i.link;
3545
3546 for (lit_gotent = lit_h->got_entries; lit_gotent ;
3547 lit_gotent = lit_gotent->next)
3548 if (lit_gotent->gotobj == info->gotobj
3549 && lit_gotent->reloc_type == R_ALPHA_LITERAL
3550 && lit_gotent->addend == irel[1].r_addend)
3551 break;
3552 BFD_ASSERT (lit_gotent);
3553
3554 if (--lit_gotent->use_count == 0)
3555 {
3556 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3557 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3558 }
3559 }
3560
3561 /* Change
3562
3563 lda $16,x($gp) !tlsgd!1
3564 ldq $27,__tls_get_addr($gp) !literal!1
3565 jsr $26,($27),__tls_get_addr !lituse_tlsgd!1
3566 ldah $29,0($26) !gpdisp!2
3567 lda $29,0($29) !gpdisp!2
3568 to
3569 ldq $16,x($gp) !gottprel
3570 unop
3571 call_pal rduniq
3572 addq $16,$0,$0
3573 unop
3574 or the first pair to
3575 lda $16,x($gp) !tprel
3576 unop
3577 or
3578 ldah $16,x($gp) !tprelhi
3579 lda $16,x($16) !tprello
3580
3581 as appropriate. */
3582
3583 use_gottprel = FALSE;
3584 new_symndx = is_gd ? ELF64_R_SYM (irel->r_info) : STN_UNDEF;
3585
3586 switch (!dynamic && !info->link_info->shared)
3587 {
3588 case 1:
3589 {
3590 bfd_vma tp_base;
3591 bfd_signed_vma disp;
3592
3593 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3594 tp_base = alpha_get_tprel_base (info->link_info);
3595 disp = symval - tp_base;
3596
3597 if (disp >= -0x8000 && disp < 0x8000)
3598 {
3599 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (31 << 16);
3600 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3601 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3602
3603 irel[0].r_offset = pos[0] - info->contents;
3604 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPREL16);
3605 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3606 break;
3607 }
3608 else if (disp >= -(bfd_signed_vma) 0x80000000
3609 && disp < (bfd_signed_vma) 0x7fff8000
3610 && pos[0] + 4 == pos[1])
3611 {
3612 insn = (OP_LDAH << 26) | (tlsgd_reg << 21) | (31 << 16);
3613 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3614 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (tlsgd_reg << 16);
3615 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[1]);
3616
3617 irel[0].r_offset = pos[0] - info->contents;
3618 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELHI);
3619 irel[1].r_offset = pos[1] - info->contents;
3620 irel[1].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELLO);
3621 break;
3622 }
3623 }
3624 /* FALLTHRU */
3625
3626 default:
3627 use_gottprel = TRUE;
3628
3629 insn = (OP_LDQ << 26) | (tlsgd_reg << 21) | (29 << 16);
3630 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3631 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3632
3633 irel[0].r_offset = pos[0] - info->contents;
3634 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_GOTTPREL);
3635 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3636 break;
3637 }
3638
3639 bfd_put_32 (info->abfd, (bfd_vma) INSN_RDUNIQ, pos[2]);
3640
3641 insn = INSN_ADDQ | (16 << 21) | (0 << 16) | (0 << 0);
3642 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[3]);
3643
3644 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[4]);
3645
3646 irel[2].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3647 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3648
3649 hint = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3650 irel[2].r_offset, R_ALPHA_HINT);
3651 if (hint)
3652 hint->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3653
3654 info->changed_contents = TRUE;
3655 info->changed_relocs = TRUE;
3656
3657 /* Reduce the use count on the TLSGD/TLSLDM relocation. */
3658 if (--info->gotent->use_count == 0)
3659 {
3660 int sz = alpha_got_entry_size (info->gotent->reloc_type);
3661 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3662 if (!info->h)
3663 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3664 }
3665
3666 /* If we've switched to a GOTTPREL relocation, increment the reference
3667 count on that got entry. */
3668 if (use_gottprel)
3669 {
3670 struct alpha_elf_got_entry *tprel_gotent;
3671
3672 for (tprel_gotent = *info->first_gotent; tprel_gotent ;
3673 tprel_gotent = tprel_gotent->next)
3674 if (tprel_gotent->gotobj == info->gotobj
3675 && tprel_gotent->reloc_type == R_ALPHA_GOTTPREL
3676 && tprel_gotent->addend == irel->r_addend)
3677 break;
3678 if (tprel_gotent)
3679 tprel_gotent->use_count++;
3680 else
3681 {
3682 if (info->gotent->use_count == 0)
3683 tprel_gotent = info->gotent;
3684 else
3685 {
3686 tprel_gotent = (struct alpha_elf_got_entry *)
3687 bfd_alloc (info->abfd, sizeof (struct alpha_elf_got_entry));
3688 if (!tprel_gotent)
3689 return FALSE;
3690
3691 tprel_gotent->next = *info->first_gotent;
3692 *info->first_gotent = tprel_gotent;
3693
3694 tprel_gotent->gotobj = info->gotobj;
3695 tprel_gotent->addend = irel->r_addend;
3696 tprel_gotent->got_offset = -1;
3697 tprel_gotent->reloc_done = 0;
3698 tprel_gotent->reloc_xlated = 0;
3699 }
3700
3701 tprel_gotent->use_count = 1;
3702 tprel_gotent->reloc_type = R_ALPHA_GOTTPREL;
3703 }
3704 }
3705
3706 return TRUE;
3707 }
3708
3709 static bfd_boolean
3710 elf64_alpha_relax_section (bfd *abfd, asection *sec,
3711 struct bfd_link_info *link_info, bfd_boolean *again)
3712 {
3713 Elf_Internal_Shdr *symtab_hdr;
3714 Elf_Internal_Rela *internal_relocs;
3715 Elf_Internal_Rela *irel, *irelend;
3716 Elf_Internal_Sym *isymbuf = NULL;
3717 struct alpha_elf_got_entry **local_got_entries;
3718 struct alpha_relax_info info;
3719 struct alpha_elf_link_hash_table * htab;
3720
3721 htab = alpha_elf_hash_table (link_info);
3722 if (htab == NULL)
3723 return FALSE;
3724
3725 /* There's nothing to change, yet. */
3726 *again = FALSE;
3727
3728 if (link_info->relocatable
3729 || ((sec->flags & (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3730 != (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3731 || sec->reloc_count == 0)
3732 return TRUE;
3733
3734 BFD_ASSERT (is_alpha_elf (abfd));
3735
3736 /* Make sure our GOT and PLT tables are up-to-date. */
3737 if (htab->relax_trip != link_info->relax_trip)
3738 {
3739 htab->relax_trip = link_info->relax_trip;
3740
3741 /* This should never fail after the initial round, since the only
3742 error is GOT overflow, and relaxation only shrinks the table. */
3743 if (!elf64_alpha_size_got_sections (link_info))
3744 abort ();
3745 if (elf_hash_table (link_info)->dynamic_sections_created)
3746 {
3747 elf64_alpha_size_plt_section (link_info);
3748 elf64_alpha_size_rela_got_section (link_info);
3749 }
3750 }
3751
3752 symtab_hdr = &elf_symtab_hdr (abfd);
3753 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
3754
3755 /* Load the relocations for this section. */
3756 internal_relocs = (_bfd_elf_link_read_relocs
3757 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
3758 link_info->keep_memory));
3759 if (internal_relocs == NULL)
3760 return FALSE;
3761
3762 memset(&info, 0, sizeof (info));
3763 info.abfd = abfd;
3764 info.sec = sec;
3765 info.link_info = link_info;
3766 info.symtab_hdr = symtab_hdr;
3767 info.relocs = internal_relocs;
3768 info.relend = irelend = internal_relocs + sec->reloc_count;
3769
3770 /* Find the GP for this object. Do not store the result back via
3771 _bfd_set_gp_value, since this could change again before final. */
3772 info.gotobj = alpha_elf_tdata (abfd)->gotobj;
3773 if (info.gotobj)
3774 {
3775 asection *sgot = alpha_elf_tdata (info.gotobj)->got;
3776 info.gp = (sgot->output_section->vma
3777 + sgot->output_offset
3778 + 0x8000);
3779 }
3780
3781 /* Get the section contents. */
3782 if (elf_section_data (sec)->this_hdr.contents != NULL)
3783 info.contents = elf_section_data (sec)->this_hdr.contents;
3784 else
3785 {
3786 if (!bfd_malloc_and_get_section (abfd, sec, &info.contents))
3787 goto error_return;
3788 }
3789
3790 for (irel = internal_relocs; irel < irelend; irel++)
3791 {
3792 bfd_vma symval;
3793 struct alpha_elf_got_entry *gotent;
3794 unsigned long r_type = ELF64_R_TYPE (irel->r_info);
3795 unsigned long r_symndx = ELF64_R_SYM (irel->r_info);
3796
3797 /* Early exit for unhandled or unrelaxable relocations. */
3798 switch (r_type)
3799 {
3800 case R_ALPHA_LITERAL:
3801 case R_ALPHA_GPRELHIGH:
3802 case R_ALPHA_GPRELLOW:
3803 case R_ALPHA_GOTDTPREL:
3804 case R_ALPHA_GOTTPREL:
3805 case R_ALPHA_TLSGD:
3806 break;
3807
3808 case R_ALPHA_TLSLDM:
3809 /* The symbol for a TLSLDM reloc is ignored. Collapse the
3810 reloc to the STN_UNDEF (0) symbol so that they all match. */
3811 r_symndx = STN_UNDEF;
3812 break;
3813
3814 default:
3815 continue;
3816 }
3817
3818 /* Get the value of the symbol referred to by the reloc. */
3819 if (r_symndx < symtab_hdr->sh_info)
3820 {
3821 /* A local symbol. */
3822 Elf_Internal_Sym *isym;
3823
3824 /* Read this BFD's local symbols. */
3825 if (isymbuf == NULL)
3826 {
3827 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3828 if (isymbuf == NULL)
3829 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3830 symtab_hdr->sh_info, 0,
3831 NULL, NULL, NULL);
3832 if (isymbuf == NULL)
3833 goto error_return;
3834 }
3835
3836 isym = isymbuf + r_symndx;
3837
3838 /* Given the symbol for a TLSLDM reloc is ignored, this also
3839 means forcing the symbol value to the tp base. */
3840 if (r_type == R_ALPHA_TLSLDM)
3841 {
3842 info.tsec = bfd_abs_section_ptr;
3843 symval = alpha_get_tprel_base (info.link_info);
3844 }
3845 else
3846 {
3847 symval = isym->st_value;
3848 if (isym->st_shndx == SHN_UNDEF)
3849 continue;
3850 else if (isym->st_shndx == SHN_ABS)
3851 info.tsec = bfd_abs_section_ptr;
3852 else if (isym->st_shndx == SHN_COMMON)
3853 info.tsec = bfd_com_section_ptr;
3854 else
3855 info.tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3856 }
3857
3858 info.h = NULL;
3859 info.other = isym->st_other;
3860 if (local_got_entries)
3861 info.first_gotent = &local_got_entries[r_symndx];
3862 else
3863 {
3864 info.first_gotent = &info.gotent;
3865 info.gotent = NULL;
3866 }
3867 }
3868 else
3869 {
3870 unsigned long indx;
3871 struct alpha_elf_link_hash_entry *h;
3872
3873 indx = r_symndx - symtab_hdr->sh_info;
3874 h = alpha_elf_sym_hashes (abfd)[indx];
3875 BFD_ASSERT (h != NULL);
3876
3877 while (h->root.root.type == bfd_link_hash_indirect
3878 || h->root.root.type == bfd_link_hash_warning)
3879 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
3880
3881 /* If the symbol is undefined, we can't do anything with it. */
3882 if (h->root.root.type == bfd_link_hash_undefined)
3883 continue;
3884
3885 /* If the symbol isn't defined in the current module,
3886 again we can't do anything. */
3887 if (h->root.root.type == bfd_link_hash_undefweak)
3888 {
3889 info.tsec = bfd_abs_section_ptr;
3890 symval = 0;
3891 }
3892 else if (!h->root.def_regular)
3893 {
3894 /* Except for TLSGD relocs, which can sometimes be
3895 relaxed to GOTTPREL relocs. */
3896 if (r_type != R_ALPHA_TLSGD)
3897 continue;
3898 info.tsec = bfd_abs_section_ptr;
3899 symval = 0;
3900 }
3901 else
3902 {
3903 info.tsec = h->root.root.u.def.section;
3904 symval = h->root.root.u.def.value;
3905 }
3906
3907 info.h = h;
3908 info.other = h->root.other;
3909 info.first_gotent = &h->got_entries;
3910 }
3911
3912 /* Search for the got entry to be used by this relocation. */
3913 for (gotent = *info.first_gotent; gotent ; gotent = gotent->next)
3914 if (gotent->gotobj == info.gotobj
3915 && gotent->reloc_type == r_type
3916 && gotent->addend == irel->r_addend)
3917 break;
3918 info.gotent = gotent;
3919
3920 symval += info.tsec->output_section->vma + info.tsec->output_offset;
3921 symval += irel->r_addend;
3922
3923 switch (r_type)
3924 {
3925 case R_ALPHA_LITERAL:
3926 BFD_ASSERT(info.gotent != NULL);
3927
3928 /* If there exist LITUSE relocations immediately following, this
3929 opens up all sorts of interesting optimizations, because we
3930 now know every location that this address load is used. */
3931 if (irel+1 < irelend
3932 && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
3933 {
3934 if (!elf64_alpha_relax_with_lituse (&info, symval, irel))
3935 goto error_return;
3936 }
3937 else
3938 {
3939 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3940 goto error_return;
3941 }
3942 break;
3943
3944 case R_ALPHA_GOTDTPREL:
3945 case R_ALPHA_GOTTPREL:
3946 BFD_ASSERT(info.gotent != NULL);
3947 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3948 goto error_return;
3949 break;
3950
3951 case R_ALPHA_TLSGD:
3952 case R_ALPHA_TLSLDM:
3953 BFD_ASSERT(info.gotent != NULL);
3954 if (!elf64_alpha_relax_tls_get_addr (&info, symval, irel,
3955 r_type == R_ALPHA_TLSGD))
3956 goto error_return;
3957 break;
3958 }
3959 }
3960
3961 if (isymbuf != NULL
3962 && symtab_hdr->contents != (unsigned char *) isymbuf)
3963 {
3964 if (!link_info->keep_memory)
3965 free (isymbuf);
3966 else
3967 {
3968 /* Cache the symbols for elf_link_input_bfd. */
3969 symtab_hdr->contents = (unsigned char *) isymbuf;
3970 }
3971 }
3972
3973 if (info.contents != NULL
3974 && elf_section_data (sec)->this_hdr.contents != info.contents)
3975 {
3976 if (!info.changed_contents && !link_info->keep_memory)
3977 free (info.contents);
3978 else
3979 {
3980 /* Cache the section contents for elf_link_input_bfd. */
3981 elf_section_data (sec)->this_hdr.contents = info.contents;
3982 }
3983 }
3984
3985 if (elf_section_data (sec)->relocs != internal_relocs)
3986 {
3987 if (!info.changed_relocs)
3988 free (internal_relocs);
3989 else
3990 elf_section_data (sec)->relocs = internal_relocs;
3991 }
3992
3993 *again = info.changed_contents || info.changed_relocs;
3994
3995 return TRUE;
3996
3997 error_return:
3998 if (isymbuf != NULL
3999 && symtab_hdr->contents != (unsigned char *) isymbuf)
4000 free (isymbuf);
4001 if (info.contents != NULL
4002 && elf_section_data (sec)->this_hdr.contents != info.contents)
4003 free (info.contents);
4004 if (internal_relocs != NULL
4005 && elf_section_data (sec)->relocs != internal_relocs)
4006 free (internal_relocs);
4007 return FALSE;
4008 }
4009 \f
4010 /* Emit a dynamic relocation for (DYNINDX, RTYPE, ADDEND) at (SEC, OFFSET)
4011 into the next available slot in SREL. */
4012
4013 static void
4014 elf64_alpha_emit_dynrel (bfd *abfd, struct bfd_link_info *info,
4015 asection *sec, asection *srel, bfd_vma offset,
4016 long dynindx, long rtype, bfd_vma addend)
4017 {
4018 Elf_Internal_Rela outrel;
4019 bfd_byte *loc;
4020
4021 BFD_ASSERT (srel != NULL);
4022
4023 outrel.r_info = ELF64_R_INFO (dynindx, rtype);
4024 outrel.r_addend = addend;
4025
4026 offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4027 if ((offset | 1) != (bfd_vma) -1)
4028 outrel.r_offset = sec->output_section->vma + sec->output_offset + offset;
4029 else
4030 memset (&outrel, 0, sizeof (outrel));
4031
4032 loc = srel->contents;
4033 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
4034 bfd_elf64_swap_reloca_out (abfd, &outrel, loc);
4035 BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->size);
4036 }
4037
4038 /* Relocate an Alpha ELF section for a relocatable link.
4039
4040 We don't have to change anything unless the reloc is against a section
4041 symbol, in which case we have to adjust according to where the section
4042 symbol winds up in the output section. */
4043
4044 static bfd_boolean
4045 elf64_alpha_relocate_section_r (bfd *output_bfd ATTRIBUTE_UNUSED,
4046 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4047 bfd *input_bfd, asection *input_section,
4048 bfd_byte *contents ATTRIBUTE_UNUSED,
4049 Elf_Internal_Rela *relocs,
4050 Elf_Internal_Sym *local_syms,
4051 asection **local_sections)
4052 {
4053 unsigned long symtab_hdr_sh_info;
4054 Elf_Internal_Rela *rel;
4055 Elf_Internal_Rela *relend;
4056 struct elf_link_hash_entry **sym_hashes;
4057 bfd_boolean ret_val = TRUE;
4058
4059 symtab_hdr_sh_info = elf_symtab_hdr (input_bfd).sh_info;
4060 sym_hashes = elf_sym_hashes (input_bfd);
4061
4062 relend = relocs + input_section->reloc_count;
4063 for (rel = relocs; rel < relend; rel++)
4064 {
4065 unsigned long r_symndx;
4066 Elf_Internal_Sym *sym;
4067 asection *sec;
4068 unsigned long r_type;
4069
4070 r_type = ELF64_R_TYPE (rel->r_info);
4071 if (r_type >= R_ALPHA_max)
4072 {
4073 (*_bfd_error_handler)
4074 (_("%B: unknown relocation type %d"),
4075 input_bfd, (int) r_type);
4076 bfd_set_error (bfd_error_bad_value);
4077 ret_val = FALSE;
4078 continue;
4079 }
4080
4081 /* The symbol associated with GPDISP and LITUSE is
4082 immaterial. Only the addend is significant. */
4083 if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
4084 continue;
4085
4086 r_symndx = ELF64_R_SYM (rel->r_info);
4087 if (r_symndx < symtab_hdr_sh_info)
4088 {
4089 sym = local_syms + r_symndx;
4090 sec = local_sections[r_symndx];
4091 }
4092 else
4093 {
4094 struct elf_link_hash_entry *h;
4095
4096 h = sym_hashes[r_symndx - symtab_hdr_sh_info];
4097
4098 while (h->root.type == bfd_link_hash_indirect
4099 || h->root.type == bfd_link_hash_warning)
4100 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4101
4102 if (h->root.type != bfd_link_hash_defined
4103 && h->root.type != bfd_link_hash_defweak)
4104 continue;
4105
4106 sym = NULL;
4107 sec = h->root.u.def.section;
4108 }
4109
4110 if (sec != NULL && elf_discarded_section (sec))
4111 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4112 rel, relend,
4113 elf64_alpha_howto_table + r_type,
4114 contents);
4115
4116 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4117 rel->r_addend += sec->output_offset;
4118 }
4119
4120 return ret_val;
4121 }
4122
4123 /* Relocate an Alpha ELF section. */
4124
4125 static bfd_boolean
4126 elf64_alpha_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
4127 bfd *input_bfd, asection *input_section,
4128 bfd_byte *contents, Elf_Internal_Rela *relocs,
4129 Elf_Internal_Sym *local_syms,
4130 asection **local_sections)
4131 {
4132 Elf_Internal_Shdr *symtab_hdr;
4133 Elf_Internal_Rela *rel;
4134 Elf_Internal_Rela *relend;
4135 asection *sgot, *srel, *srelgot;
4136 bfd *dynobj, *gotobj;
4137 bfd_vma gp, tp_base, dtp_base;
4138 struct alpha_elf_got_entry **local_got_entries;
4139 bfd_boolean ret_val;
4140
4141 BFD_ASSERT (is_alpha_elf (input_bfd));
4142
4143 /* Handle relocatable links with a smaller loop. */
4144 if (info->relocatable)
4145 return elf64_alpha_relocate_section_r (output_bfd, info, input_bfd,
4146 input_section, contents, relocs,
4147 local_syms, local_sections);
4148
4149 /* This is a final link. */
4150
4151 ret_val = TRUE;
4152
4153 symtab_hdr = &elf_symtab_hdr (input_bfd);
4154
4155 dynobj = elf_hash_table (info)->dynobj;
4156 if (dynobj)
4157 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
4158 else
4159 srelgot = NULL;
4160
4161 if (input_section->flags & SEC_ALLOC)
4162 {
4163 const char *section_name;
4164 section_name = (bfd_elf_string_from_elf_section
4165 (input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
4166 _bfd_elf_single_rel_hdr (input_section)->sh_name));
4167 BFD_ASSERT(section_name != NULL);
4168 srel = bfd_get_section_by_name (dynobj, section_name);
4169 }
4170 else
4171 srel = NULL;
4172
4173 /* Find the gp value for this input bfd. */
4174 gotobj = alpha_elf_tdata (input_bfd)->gotobj;
4175 if (gotobj)
4176 {
4177 sgot = alpha_elf_tdata (gotobj)->got;
4178 gp = _bfd_get_gp_value (gotobj);
4179 if (gp == 0)
4180 {
4181 gp = (sgot->output_section->vma
4182 + sgot->output_offset
4183 + 0x8000);
4184 _bfd_set_gp_value (gotobj, gp);
4185 }
4186 }
4187 else
4188 {
4189 sgot = NULL;
4190 gp = 0;
4191 }
4192
4193 local_got_entries = alpha_elf_tdata(input_bfd)->local_got_entries;
4194
4195 if (elf_hash_table (info)->tls_sec != NULL)
4196 {
4197 dtp_base = alpha_get_dtprel_base (info);
4198 tp_base = alpha_get_tprel_base (info);
4199 }
4200 else
4201 dtp_base = tp_base = 0;
4202
4203 relend = relocs + input_section->reloc_count;
4204 for (rel = relocs; rel < relend; rel++)
4205 {
4206 struct alpha_elf_link_hash_entry *h = NULL;
4207 struct alpha_elf_got_entry *gotent;
4208 bfd_reloc_status_type r;
4209 reloc_howto_type *howto;
4210 unsigned long r_symndx;
4211 Elf_Internal_Sym *sym = NULL;
4212 asection *sec = NULL;
4213 bfd_vma value;
4214 bfd_vma addend;
4215 bfd_boolean dynamic_symbol_p;
4216 bfd_boolean undef_weak_ref = FALSE;
4217 unsigned long r_type;
4218
4219 r_type = ELF64_R_TYPE(rel->r_info);
4220 if (r_type >= R_ALPHA_max)
4221 {
4222 (*_bfd_error_handler)
4223 (_("%B: unknown relocation type %d"),
4224 input_bfd, (int) r_type);
4225 bfd_set_error (bfd_error_bad_value);
4226 ret_val = FALSE;
4227 continue;
4228 }
4229
4230 howto = elf64_alpha_howto_table + r_type;
4231 r_symndx = ELF64_R_SYM(rel->r_info);
4232
4233 /* The symbol for a TLSLDM reloc is ignored. Collapse the
4234 reloc to the STN_UNDEF (0) symbol so that they all match. */
4235 if (r_type == R_ALPHA_TLSLDM)
4236 r_symndx = STN_UNDEF;
4237
4238 if (r_symndx < symtab_hdr->sh_info)
4239 {
4240 asection *msec;
4241 sym = local_syms + r_symndx;
4242 sec = local_sections[r_symndx];
4243 msec = sec;
4244 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4245
4246 /* If this is a tp-relative relocation against sym STN_UNDEF (0),
4247 this is hackery from relax_section. Force the value to
4248 be the tls module base. */
4249 if (r_symndx == STN_UNDEF
4250 && (r_type == R_ALPHA_TLSLDM
4251 || r_type == R_ALPHA_GOTTPREL
4252 || r_type == R_ALPHA_TPREL64
4253 || r_type == R_ALPHA_TPRELHI
4254 || r_type == R_ALPHA_TPRELLO
4255 || r_type == R_ALPHA_TPREL16))
4256 value = dtp_base;
4257
4258 if (local_got_entries)
4259 gotent = local_got_entries[r_symndx];
4260 else
4261 gotent = NULL;
4262
4263 /* Need to adjust local GOT entries' addends for SEC_MERGE
4264 unless it has been done already. */
4265 if ((sec->flags & SEC_MERGE)
4266 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4267 && sec->sec_info_type == ELF_INFO_TYPE_MERGE
4268 && gotent
4269 && !gotent->reloc_xlated)
4270 {
4271 struct alpha_elf_got_entry *ent;
4272
4273 for (ent = gotent; ent; ent = ent->next)
4274 {
4275 ent->reloc_xlated = 1;
4276 if (ent->use_count == 0)
4277 continue;
4278 msec = sec;
4279 ent->addend =
4280 _bfd_merged_section_offset (output_bfd, &msec,
4281 elf_section_data (sec)->
4282 sec_info,
4283 sym->st_value + ent->addend);
4284 ent->addend -= sym->st_value;
4285 ent->addend += msec->output_section->vma
4286 + msec->output_offset
4287 - sec->output_section->vma
4288 - sec->output_offset;
4289 }
4290 }
4291
4292 dynamic_symbol_p = FALSE;
4293 }
4294 else
4295 {
4296 bfd_boolean warned;
4297 bfd_boolean unresolved_reloc;
4298 struct elf_link_hash_entry *hh;
4299 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4300
4301 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4302 r_symndx, symtab_hdr, sym_hashes,
4303 hh, sec, value,
4304 unresolved_reloc, warned);
4305
4306 if (warned)
4307 continue;
4308
4309 if (value == 0
4310 && ! unresolved_reloc
4311 && hh->root.type == bfd_link_hash_undefweak)
4312 undef_weak_ref = TRUE;
4313
4314 h = (struct alpha_elf_link_hash_entry *) hh;
4315 dynamic_symbol_p = alpha_elf_dynamic_symbol_p (&h->root, info);
4316 gotent = h->got_entries;
4317 }
4318
4319 if (sec != NULL && elf_discarded_section (sec))
4320 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4321 rel, relend, howto, contents);
4322
4323 addend = rel->r_addend;
4324 value += addend;
4325
4326 /* Search for the proper got entry. */
4327 for (; gotent ; gotent = gotent->next)
4328 if (gotent->gotobj == gotobj
4329 && gotent->reloc_type == r_type
4330 && gotent->addend == addend)
4331 break;
4332
4333 switch (r_type)
4334 {
4335 case R_ALPHA_GPDISP:
4336 {
4337 bfd_byte *p_ldah, *p_lda;
4338
4339 BFD_ASSERT(gp != 0);
4340
4341 value = (input_section->output_section->vma
4342 + input_section->output_offset
4343 + rel->r_offset);
4344
4345 p_ldah = contents + rel->r_offset;
4346 p_lda = p_ldah + rel->r_addend;
4347
4348 r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - value,
4349 p_ldah, p_lda);
4350 }
4351 break;
4352
4353 case R_ALPHA_LITERAL:
4354 BFD_ASSERT(sgot != NULL);
4355 BFD_ASSERT(gp != 0);
4356 BFD_ASSERT(gotent != NULL);
4357 BFD_ASSERT(gotent->use_count >= 1);
4358
4359 if (!gotent->reloc_done)
4360 {
4361 gotent->reloc_done = 1;
4362
4363 bfd_put_64 (output_bfd, value,
4364 sgot->contents + gotent->got_offset);
4365
4366 /* If the symbol has been forced local, output a
4367 RELATIVE reloc, otherwise it will be handled in
4368 finish_dynamic_symbol. */
4369 if (info->shared && !dynamic_symbol_p && !undef_weak_ref)
4370 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4371 gotent->got_offset, 0,
4372 R_ALPHA_RELATIVE, value);
4373 }
4374
4375 value = (sgot->output_section->vma
4376 + sgot->output_offset
4377 + gotent->got_offset);
4378 value -= gp;
4379 goto default_reloc;
4380
4381 case R_ALPHA_GPREL32:
4382 case R_ALPHA_GPREL16:
4383 case R_ALPHA_GPRELLOW:
4384 if (dynamic_symbol_p)
4385 {
4386 (*_bfd_error_handler)
4387 (_("%B: gp-relative relocation against dynamic symbol %s"),
4388 input_bfd, h->root.root.root.string);
4389 ret_val = FALSE;
4390 }
4391 BFD_ASSERT(gp != 0);
4392 value -= gp;
4393 goto default_reloc;
4394
4395 case R_ALPHA_GPRELHIGH:
4396 if (dynamic_symbol_p)
4397 {
4398 (*_bfd_error_handler)
4399 (_("%B: gp-relative relocation against dynamic symbol %s"),
4400 input_bfd, h->root.root.root.string);
4401 ret_val = FALSE;
4402 }
4403 BFD_ASSERT(gp != 0);
4404 value -= gp;
4405 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4406 goto default_reloc;
4407
4408 case R_ALPHA_HINT:
4409 /* A call to a dynamic symbol is definitely out of range of
4410 the 16-bit displacement. Don't bother writing anything. */
4411 if (dynamic_symbol_p)
4412 {
4413 r = bfd_reloc_ok;
4414 break;
4415 }
4416 /* The regular PC-relative stuff measures from the start of
4417 the instruction rather than the end. */
4418 value -= 4;
4419 goto default_reloc;
4420
4421 case R_ALPHA_BRADDR:
4422 if (dynamic_symbol_p)
4423 {
4424 (*_bfd_error_handler)
4425 (_("%B: pc-relative relocation against dynamic symbol %s"),
4426 input_bfd, h->root.root.root.string);
4427 ret_val = FALSE;
4428 }
4429 /* The regular PC-relative stuff measures from the start of
4430 the instruction rather than the end. */
4431 value -= 4;
4432 goto default_reloc;
4433
4434 case R_ALPHA_BRSGP:
4435 {
4436 int other;
4437 const char *name;
4438
4439 /* The regular PC-relative stuff measures from the start of
4440 the instruction rather than the end. */
4441 value -= 4;
4442
4443 /* The source and destination gp must be the same. Note that
4444 the source will always have an assigned gp, since we forced
4445 one in check_relocs, but that the destination may not, as
4446 it might not have had any relocations at all. Also take
4447 care not to crash if H is an undefined symbol. */
4448 if (h != NULL && sec != NULL
4449 && alpha_elf_tdata (sec->owner)->gotobj
4450 && gotobj != alpha_elf_tdata (sec->owner)->gotobj)
4451 {
4452 (*_bfd_error_handler)
4453 (_("%B: change in gp: BRSGP %s"),
4454 input_bfd, h->root.root.root.string);
4455 ret_val = FALSE;
4456 }
4457
4458 /* The symbol should be marked either NOPV or STD_GPLOAD. */
4459 if (h != NULL)
4460 other = h->root.other;
4461 else
4462 other = sym->st_other;
4463 switch (other & STO_ALPHA_STD_GPLOAD)
4464 {
4465 case STO_ALPHA_NOPV:
4466 break;
4467 case STO_ALPHA_STD_GPLOAD:
4468 value += 8;
4469 break;
4470 default:
4471 if (h != NULL)
4472 name = h->root.root.root.string;
4473 else
4474 {
4475 name = (bfd_elf_string_from_elf_section
4476 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4477 if (name == NULL)
4478 name = _("<unknown>");
4479 else if (name[0] == 0)
4480 name = bfd_section_name (input_bfd, sec);
4481 }
4482 (*_bfd_error_handler)
4483 (_("%B: !samegp reloc against symbol without .prologue: %s"),
4484 input_bfd, name);
4485 ret_val = FALSE;
4486 break;
4487 }
4488
4489 goto default_reloc;
4490 }
4491
4492 case R_ALPHA_REFLONG:
4493 case R_ALPHA_REFQUAD:
4494 case R_ALPHA_DTPREL64:
4495 case R_ALPHA_TPREL64:
4496 {
4497 long dynindx, dyntype = r_type;
4498 bfd_vma dynaddend;
4499
4500 /* Careful here to remember RELATIVE relocations for global
4501 variables for symbolic shared objects. */
4502
4503 if (dynamic_symbol_p)
4504 {
4505 BFD_ASSERT(h->root.dynindx != -1);
4506 dynindx = h->root.dynindx;
4507 dynaddend = addend;
4508 addend = 0, value = 0;
4509 }
4510 else if (r_type == R_ALPHA_DTPREL64)
4511 {
4512 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4513 value -= dtp_base;
4514 goto default_reloc;
4515 }
4516 else if (r_type == R_ALPHA_TPREL64)
4517 {
4518 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4519 if (!info->shared || info->pie)
4520 {
4521 value -= tp_base;
4522 goto default_reloc;
4523 }
4524 dynindx = 0;
4525 dynaddend = value - dtp_base;
4526 }
4527 else if (info->shared
4528 && r_symndx != STN_UNDEF
4529 && (input_section->flags & SEC_ALLOC)
4530 && !undef_weak_ref)
4531 {
4532 if (r_type == R_ALPHA_REFLONG)
4533 {
4534 (*_bfd_error_handler)
4535 (_("%B: unhandled dynamic relocation against %s"),
4536 input_bfd,
4537 h->root.root.root.string);
4538 ret_val = FALSE;
4539 }
4540 dynindx = 0;
4541 dyntype = R_ALPHA_RELATIVE;
4542 dynaddend = value;
4543 }
4544 else
4545 goto default_reloc;
4546
4547 if (input_section->flags & SEC_ALLOC)
4548 elf64_alpha_emit_dynrel (output_bfd, info, input_section,
4549 srel, rel->r_offset, dynindx,
4550 dyntype, dynaddend);
4551 }
4552 goto default_reloc;
4553
4554 case R_ALPHA_SREL16:
4555 case R_ALPHA_SREL32:
4556 case R_ALPHA_SREL64:
4557 if (dynamic_symbol_p)
4558 {
4559 (*_bfd_error_handler)
4560 (_("%B: pc-relative relocation against dynamic symbol %s"),
4561 input_bfd, h->root.root.root.string);
4562 ret_val = FALSE;
4563 }
4564 else if ((info->shared || info->pie) && undef_weak_ref)
4565 {
4566 (*_bfd_error_handler)
4567 (_("%B: pc-relative relocation against undefined weak symbol %s"),
4568 input_bfd, h->root.root.root.string);
4569 ret_val = FALSE;
4570 }
4571
4572
4573 /* ??? .eh_frame references to discarded sections will be smashed
4574 to relocations against SHN_UNDEF. The .eh_frame format allows
4575 NULL to be encoded as 0 in any format, so this works here. */
4576 if (r_symndx == STN_UNDEF)
4577 howto = (elf64_alpha_howto_table
4578 + (r_type - R_ALPHA_SREL32 + R_ALPHA_REFLONG));
4579 goto default_reloc;
4580
4581 case R_ALPHA_TLSLDM:
4582 /* Ignore the symbol for the relocation. The result is always
4583 the current module. */
4584 dynamic_symbol_p = 0;
4585 /* FALLTHRU */
4586
4587 case R_ALPHA_TLSGD:
4588 if (!gotent->reloc_done)
4589 {
4590 gotent->reloc_done = 1;
4591
4592 /* Note that the module index for the main program is 1. */
4593 bfd_put_64 (output_bfd, !info->shared && !dynamic_symbol_p,
4594 sgot->contents + gotent->got_offset);
4595
4596 /* If the symbol has been forced local, output a
4597 DTPMOD64 reloc, otherwise it will be handled in
4598 finish_dynamic_symbol. */
4599 if (info->shared && !dynamic_symbol_p)
4600 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4601 gotent->got_offset, 0,
4602 R_ALPHA_DTPMOD64, 0);
4603
4604 if (dynamic_symbol_p || r_type == R_ALPHA_TLSLDM)
4605 value = 0;
4606 else
4607 {
4608 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4609 value -= dtp_base;
4610 }
4611 bfd_put_64 (output_bfd, value,
4612 sgot->contents + gotent->got_offset + 8);
4613 }
4614
4615 value = (sgot->output_section->vma
4616 + sgot->output_offset
4617 + gotent->got_offset);
4618 value -= gp;
4619 goto default_reloc;
4620
4621 case R_ALPHA_DTPRELHI:
4622 case R_ALPHA_DTPRELLO:
4623 case R_ALPHA_DTPREL16:
4624 if (dynamic_symbol_p)
4625 {
4626 (*_bfd_error_handler)
4627 (_("%B: dtp-relative relocation against dynamic symbol %s"),
4628 input_bfd, h->root.root.root.string);
4629 ret_val = FALSE;
4630 }
4631 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4632 value -= dtp_base;
4633 if (r_type == R_ALPHA_DTPRELHI)
4634 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4635 goto default_reloc;
4636
4637 case R_ALPHA_TPRELHI:
4638 case R_ALPHA_TPRELLO:
4639 case R_ALPHA_TPREL16:
4640 if (info->shared && !info->pie)
4641 {
4642 (*_bfd_error_handler)
4643 (_("%B: TLS local exec code cannot be linked into shared objects"),
4644 input_bfd);
4645 ret_val = FALSE;
4646 }
4647 else if (dynamic_symbol_p)
4648 {
4649 (*_bfd_error_handler)
4650 (_("%B: tp-relative relocation against dynamic symbol %s"),
4651 input_bfd, h->root.root.root.string);
4652 ret_val = FALSE;
4653 }
4654 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4655 value -= tp_base;
4656 if (r_type == R_ALPHA_TPRELHI)
4657 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4658 goto default_reloc;
4659
4660 case R_ALPHA_GOTDTPREL:
4661 case R_ALPHA_GOTTPREL:
4662 BFD_ASSERT(sgot != NULL);
4663 BFD_ASSERT(gp != 0);
4664 BFD_ASSERT(gotent != NULL);
4665 BFD_ASSERT(gotent->use_count >= 1);
4666
4667 if (!gotent->reloc_done)
4668 {
4669 gotent->reloc_done = 1;
4670
4671 if (dynamic_symbol_p)
4672 value = 0;
4673 else
4674 {
4675 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4676 if (r_type == R_ALPHA_GOTDTPREL)
4677 value -= dtp_base;
4678 else if (!info->shared)
4679 value -= tp_base;
4680 else
4681 {
4682 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4683 gotent->got_offset, 0,
4684 R_ALPHA_TPREL64,
4685 value - dtp_base);
4686 value = 0;
4687 }
4688 }
4689 bfd_put_64 (output_bfd, value,
4690 sgot->contents + gotent->got_offset);
4691 }
4692
4693 value = (sgot->output_section->vma
4694 + sgot->output_offset
4695 + gotent->got_offset);
4696 value -= gp;
4697 goto default_reloc;
4698
4699 default:
4700 default_reloc:
4701 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4702 contents, rel->r_offset, value, 0);
4703 break;
4704 }
4705
4706 switch (r)
4707 {
4708 case bfd_reloc_ok:
4709 break;
4710
4711 case bfd_reloc_overflow:
4712 {
4713 const char *name;
4714
4715 /* Don't warn if the overflow is due to pc relative reloc
4716 against discarded section. Section optimization code should
4717 handle it. */
4718
4719 if (r_symndx < symtab_hdr->sh_info
4720 && sec != NULL && howto->pc_relative
4721 && elf_discarded_section (sec))
4722 break;
4723
4724 if (h != NULL)
4725 name = NULL;
4726 else
4727 {
4728 name = (bfd_elf_string_from_elf_section
4729 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4730 if (name == NULL)
4731 return FALSE;
4732 if (*name == '\0')
4733 name = bfd_section_name (input_bfd, sec);
4734 }
4735 if (! ((*info->callbacks->reloc_overflow)
4736 (info, (h ? &h->root.root : NULL), name, howto->name,
4737 (bfd_vma) 0, input_bfd, input_section,
4738 rel->r_offset)))
4739 ret_val = FALSE;
4740 }
4741 break;
4742
4743 default:
4744 case bfd_reloc_outofrange:
4745 abort ();
4746 }
4747 }
4748
4749 return ret_val;
4750 }
4751
4752 /* Finish up dynamic symbol handling. We set the contents of various
4753 dynamic sections here. */
4754
4755 static bfd_boolean
4756 elf64_alpha_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
4757 struct elf_link_hash_entry *h,
4758 Elf_Internal_Sym *sym)
4759 {
4760 struct alpha_elf_link_hash_entry *ah = (struct alpha_elf_link_hash_entry *)h;
4761 bfd *dynobj = elf_hash_table(info)->dynobj;
4762
4763 if (h->needs_plt)
4764 {
4765 /* Fill in the .plt entry for this symbol. */
4766 asection *splt, *sgot, *srel;
4767 Elf_Internal_Rela outrel;
4768 bfd_byte *loc;
4769 bfd_vma got_addr, plt_addr;
4770 bfd_vma plt_index;
4771 struct alpha_elf_got_entry *gotent;
4772
4773 BFD_ASSERT (h->dynindx != -1);
4774
4775 splt = bfd_get_section_by_name (dynobj, ".plt");
4776 BFD_ASSERT (splt != NULL);
4777 srel = bfd_get_section_by_name (dynobj, ".rela.plt");
4778 BFD_ASSERT (srel != NULL);
4779
4780 for (gotent = ah->got_entries; gotent ; gotent = gotent->next)
4781 if (gotent->reloc_type == R_ALPHA_LITERAL
4782 && gotent->use_count > 0)
4783 {
4784 unsigned int insn;
4785 int disp;
4786
4787 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4788 BFD_ASSERT (sgot != NULL);
4789
4790 BFD_ASSERT (gotent->got_offset != -1);
4791 BFD_ASSERT (gotent->plt_offset != -1);
4792
4793 got_addr = (sgot->output_section->vma
4794 + sgot->output_offset
4795 + gotent->got_offset);
4796 plt_addr = (splt->output_section->vma
4797 + splt->output_offset
4798 + gotent->plt_offset);
4799
4800 plt_index = (gotent->plt_offset-PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
4801
4802 /* Fill in the entry in the procedure linkage table. */
4803 if (elf64_alpha_use_secureplt)
4804 {
4805 disp = (PLT_HEADER_SIZE - 4) - (gotent->plt_offset + 4);
4806 insn = INSN_AD (INSN_BR, 31, disp);
4807 bfd_put_32 (output_bfd, insn,
4808 splt->contents + gotent->plt_offset);
4809
4810 plt_index = ((gotent->plt_offset - NEW_PLT_HEADER_SIZE)
4811 / NEW_PLT_ENTRY_SIZE);
4812 }
4813 else
4814 {
4815 disp = -(gotent->plt_offset + 4);
4816 insn = INSN_AD (INSN_BR, 28, disp);
4817 bfd_put_32 (output_bfd, insn,
4818 splt->contents + gotent->plt_offset);
4819 bfd_put_32 (output_bfd, INSN_UNOP,
4820 splt->contents + gotent->plt_offset + 4);
4821 bfd_put_32 (output_bfd, INSN_UNOP,
4822 splt->contents + gotent->plt_offset + 8);
4823
4824 plt_index = ((gotent->plt_offset - OLD_PLT_HEADER_SIZE)
4825 / OLD_PLT_ENTRY_SIZE);
4826 }
4827
4828 /* Fill in the entry in the .rela.plt section. */
4829 outrel.r_offset = got_addr;
4830 outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
4831 outrel.r_addend = 0;
4832
4833 loc = srel->contents + plt_index * sizeof (Elf64_External_Rela);
4834 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
4835
4836 /* Fill in the entry in the .got. */
4837 bfd_put_64 (output_bfd, plt_addr,
4838 sgot->contents + gotent->got_offset);
4839 }
4840 }
4841 else if (alpha_elf_dynamic_symbol_p (h, info))
4842 {
4843 /* Fill in the dynamic relocations for this symbol's .got entries. */
4844 asection *srel;
4845 struct alpha_elf_got_entry *gotent;
4846
4847 srel = bfd_get_section_by_name (dynobj, ".rela.got");
4848 BFD_ASSERT (srel != NULL);
4849
4850 for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
4851 gotent != NULL;
4852 gotent = gotent->next)
4853 {
4854 asection *sgot;
4855 long r_type;
4856
4857 if (gotent->use_count == 0)
4858 continue;
4859
4860 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4861
4862 r_type = gotent->reloc_type;
4863 switch (r_type)
4864 {
4865 case R_ALPHA_LITERAL:
4866 r_type = R_ALPHA_GLOB_DAT;
4867 break;
4868 case R_ALPHA_TLSGD:
4869 r_type = R_ALPHA_DTPMOD64;
4870 break;
4871 case R_ALPHA_GOTDTPREL:
4872 r_type = R_ALPHA_DTPREL64;
4873 break;
4874 case R_ALPHA_GOTTPREL:
4875 r_type = R_ALPHA_TPREL64;
4876 break;
4877 case R_ALPHA_TLSLDM:
4878 default:
4879 abort ();
4880 }
4881
4882 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4883 gotent->got_offset, h->dynindx,
4884 r_type, gotent->addend);
4885
4886 if (gotent->reloc_type == R_ALPHA_TLSGD)
4887 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4888 gotent->got_offset + 8, h->dynindx,
4889 R_ALPHA_DTPREL64, gotent->addend);
4890 }
4891 }
4892
4893 /* Mark some specially defined symbols as absolute. */
4894 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4895 || h == elf_hash_table (info)->hgot
4896 || h == elf_hash_table (info)->hplt)
4897 sym->st_shndx = SHN_ABS;
4898
4899 return TRUE;
4900 }
4901
4902 /* Finish up the dynamic sections. */
4903
4904 static bfd_boolean
4905 elf64_alpha_finish_dynamic_sections (bfd *output_bfd,
4906 struct bfd_link_info *info)
4907 {
4908 bfd *dynobj;
4909 asection *sdyn;
4910
4911 dynobj = elf_hash_table (info)->dynobj;
4912 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4913
4914 if (elf_hash_table (info)->dynamic_sections_created)
4915 {
4916 asection *splt, *sgotplt, *srelaplt;
4917 Elf64_External_Dyn *dyncon, *dynconend;
4918 bfd_vma plt_vma, gotplt_vma;
4919
4920 splt = bfd_get_section_by_name (dynobj, ".plt");
4921 srelaplt = bfd_get_section_by_name (output_bfd, ".rela.plt");
4922 BFD_ASSERT (splt != NULL && sdyn != NULL);
4923
4924 plt_vma = splt->output_section->vma + splt->output_offset;
4925
4926 gotplt_vma = 0;
4927 if (elf64_alpha_use_secureplt)
4928 {
4929 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4930 BFD_ASSERT (sgotplt != NULL);
4931 if (sgotplt->size > 0)
4932 gotplt_vma = sgotplt->output_section->vma + sgotplt->output_offset;
4933 }
4934
4935 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4936 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4937 for (; dyncon < dynconend; dyncon++)
4938 {
4939 Elf_Internal_Dyn dyn;
4940
4941 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4942
4943 switch (dyn.d_tag)
4944 {
4945 case DT_PLTGOT:
4946 dyn.d_un.d_ptr
4947 = elf64_alpha_use_secureplt ? gotplt_vma : plt_vma;
4948 break;
4949 case DT_PLTRELSZ:
4950 dyn.d_un.d_val = srelaplt ? srelaplt->size : 0;
4951 break;
4952 case DT_JMPREL:
4953 dyn.d_un.d_ptr = srelaplt ? srelaplt->vma : 0;
4954 break;
4955
4956 case DT_RELASZ:
4957 /* My interpretation of the TIS v1.1 ELF document indicates
4958 that RELASZ should not include JMPREL. This is not what
4959 the rest of the BFD does. It is, however, what the
4960 glibc ld.so wants. Do this fixup here until we found
4961 out who is right. */
4962 if (srelaplt)
4963 dyn.d_un.d_val -= srelaplt->size;
4964 break;
4965 }
4966
4967 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4968 }
4969
4970 /* Initialize the plt header. */
4971 if (splt->size > 0)
4972 {
4973 unsigned int insn;
4974 int ofs;
4975
4976 if (elf64_alpha_use_secureplt)
4977 {
4978 ofs = gotplt_vma - (plt_vma + PLT_HEADER_SIZE);
4979
4980 insn = INSN_ABC (INSN_SUBQ, 27, 28, 25);
4981 bfd_put_32 (output_bfd, insn, splt->contents);
4982
4983 insn = INSN_ABO (INSN_LDAH, 28, 28, (ofs + 0x8000) >> 16);
4984 bfd_put_32 (output_bfd, insn, splt->contents + 4);
4985
4986 insn = INSN_ABC (INSN_S4SUBQ, 25, 25, 25);
4987 bfd_put_32 (output_bfd, insn, splt->contents + 8);
4988
4989 insn = INSN_ABO (INSN_LDA, 28, 28, ofs);
4990 bfd_put_32 (output_bfd, insn, splt->contents + 12);
4991
4992 insn = INSN_ABO (INSN_LDQ, 27, 28, 0);
4993 bfd_put_32 (output_bfd, insn, splt->contents + 16);
4994
4995 insn = INSN_ABC (INSN_ADDQ, 25, 25, 25);
4996 bfd_put_32 (output_bfd, insn, splt->contents + 20);
4997
4998 insn = INSN_ABO (INSN_LDQ, 28, 28, 8);
4999 bfd_put_32 (output_bfd, insn, splt->contents + 24);
5000
5001 insn = INSN_AB (INSN_JMP, 31, 27);
5002 bfd_put_32 (output_bfd, insn, splt->contents + 28);
5003
5004 insn = INSN_AD (INSN_BR, 28, -PLT_HEADER_SIZE);
5005 bfd_put_32 (output_bfd, insn, splt->contents + 32);
5006 }
5007 else
5008 {
5009 insn = INSN_AD (INSN_BR, 27, 0); /* br $27, .+4 */
5010 bfd_put_32 (output_bfd, insn, splt->contents);
5011
5012 insn = INSN_ABO (INSN_LDQ, 27, 27, 12);
5013 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5014
5015 insn = INSN_UNOP;
5016 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5017
5018 insn = INSN_AB (INSN_JMP, 27, 27);
5019 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5020
5021 /* The next two words will be filled in by ld.so. */
5022 bfd_put_64 (output_bfd, 0, splt->contents + 16);
5023 bfd_put_64 (output_bfd, 0, splt->contents + 24);
5024 }
5025
5026 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 0;
5027 }
5028 }
5029
5030 return TRUE;
5031 }
5032
5033 /* We need to use a special link routine to handle the .mdebug section.
5034 We need to merge all instances of these sections together, not write
5035 them all out sequentially. */
5036
5037 static bfd_boolean
5038 elf64_alpha_final_link (bfd *abfd, struct bfd_link_info *info)
5039 {
5040 asection *o;
5041 struct bfd_link_order *p;
5042 asection *mdebug_sec;
5043 struct ecoff_debug_info debug;
5044 const struct ecoff_debug_swap *swap
5045 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5046 HDRR *symhdr = &debug.symbolic_header;
5047 void * mdebug_handle = NULL;
5048 struct alpha_elf_link_hash_table * htab;
5049
5050 htab = alpha_elf_hash_table (info);
5051 if (htab == NULL)
5052 return FALSE;
5053
5054 /* Go through the sections and collect the mdebug information. */
5055 mdebug_sec = NULL;
5056 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5057 {
5058 if (strcmp (o->name, ".mdebug") == 0)
5059 {
5060 struct extsym_info einfo;
5061
5062 /* We have found the .mdebug section in the output file.
5063 Look through all the link_orders comprising it and merge
5064 the information together. */
5065 symhdr->magic = swap->sym_magic;
5066 /* FIXME: What should the version stamp be? */
5067 symhdr->vstamp = 0;
5068 symhdr->ilineMax = 0;
5069 symhdr->cbLine = 0;
5070 symhdr->idnMax = 0;
5071 symhdr->ipdMax = 0;
5072 symhdr->isymMax = 0;
5073 symhdr->ioptMax = 0;
5074 symhdr->iauxMax = 0;
5075 symhdr->issMax = 0;
5076 symhdr->issExtMax = 0;
5077 symhdr->ifdMax = 0;
5078 symhdr->crfd = 0;
5079 symhdr->iextMax = 0;
5080
5081 /* We accumulate the debugging information itself in the
5082 debug_info structure. */
5083 debug.line = NULL;
5084 debug.external_dnr = NULL;
5085 debug.external_pdr = NULL;
5086 debug.external_sym = NULL;
5087 debug.external_opt = NULL;
5088 debug.external_aux = NULL;
5089 debug.ss = NULL;
5090 debug.ssext = debug.ssext_end = NULL;
5091 debug.external_fdr = NULL;
5092 debug.external_rfd = NULL;
5093 debug.external_ext = debug.external_ext_end = NULL;
5094
5095 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5096 if (mdebug_handle == (PTR) NULL)
5097 return FALSE;
5098
5099 if (1)
5100 {
5101 asection *s;
5102 EXTR esym;
5103 bfd_vma last = 0;
5104 unsigned int i;
5105 static const char * const name[] =
5106 {
5107 ".text", ".init", ".fini", ".data",
5108 ".rodata", ".sdata", ".sbss", ".bss"
5109 };
5110 static const int sc[] = { scText, scInit, scFini, scData,
5111 scRData, scSData, scSBss, scBss };
5112
5113 esym.jmptbl = 0;
5114 esym.cobol_main = 0;
5115 esym.weakext = 0;
5116 esym.reserved = 0;
5117 esym.ifd = ifdNil;
5118 esym.asym.iss = issNil;
5119 esym.asym.st = stLocal;
5120 esym.asym.reserved = 0;
5121 esym.asym.index = indexNil;
5122 for (i = 0; i < 8; i++)
5123 {
5124 esym.asym.sc = sc[i];
5125 s = bfd_get_section_by_name (abfd, name[i]);
5126 if (s != NULL)
5127 {
5128 esym.asym.value = s->vma;
5129 last = s->vma + s->size;
5130 }
5131 else
5132 esym.asym.value = last;
5133
5134 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
5135 name[i], &esym))
5136 return FALSE;
5137 }
5138 }
5139
5140 for (p = o->map_head.link_order;
5141 p != (struct bfd_link_order *) NULL;
5142 p = p->next)
5143 {
5144 asection *input_section;
5145 bfd *input_bfd;
5146 const struct ecoff_debug_swap *input_swap;
5147 struct ecoff_debug_info input_debug;
5148 char *eraw_src;
5149 char *eraw_end;
5150
5151 if (p->type != bfd_indirect_link_order)
5152 {
5153 if (p->type == bfd_data_link_order)
5154 continue;
5155 abort ();
5156 }
5157
5158 input_section = p->u.indirect.section;
5159 input_bfd = input_section->owner;
5160
5161 if (! is_alpha_elf (input_bfd))
5162 /* I don't know what a non ALPHA ELF bfd would be
5163 doing with a .mdebug section, but I don't really
5164 want to deal with it. */
5165 continue;
5166
5167 input_swap = (get_elf_backend_data (input_bfd)
5168 ->elf_backend_ecoff_debug_swap);
5169
5170 BFD_ASSERT (p->size == input_section->size);
5171
5172 /* The ECOFF linking code expects that we have already
5173 read in the debugging information and set up an
5174 ecoff_debug_info structure, so we do that now. */
5175 if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
5176 &input_debug))
5177 return FALSE;
5178
5179 if (! (bfd_ecoff_debug_accumulate
5180 (mdebug_handle, abfd, &debug, swap, input_bfd,
5181 &input_debug, input_swap, info)))
5182 return FALSE;
5183
5184 /* Loop through the external symbols. For each one with
5185 interesting information, try to find the symbol in
5186 the linker global hash table and save the information
5187 for the output external symbols. */
5188 eraw_src = (char *) input_debug.external_ext;
5189 eraw_end = (eraw_src
5190 + (input_debug.symbolic_header.iextMax
5191 * input_swap->external_ext_size));
5192 for (;
5193 eraw_src < eraw_end;
5194 eraw_src += input_swap->external_ext_size)
5195 {
5196 EXTR ext;
5197 const char *name;
5198 struct alpha_elf_link_hash_entry *h;
5199
5200 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5201 if (ext.asym.sc == scNil
5202 || ext.asym.sc == scUndefined
5203 || ext.asym.sc == scSUndefined)
5204 continue;
5205
5206 name = input_debug.ssext + ext.asym.iss;
5207 h = alpha_elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
5208 if (h == NULL || h->esym.ifd != -2)
5209 continue;
5210
5211 if (ext.ifd != -1)
5212 {
5213 BFD_ASSERT (ext.ifd
5214 < input_debug.symbolic_header.ifdMax);
5215 ext.ifd = input_debug.ifdmap[ext.ifd];
5216 }
5217
5218 h->esym = ext;
5219 }
5220
5221 /* Free up the information we just read. */
5222 free (input_debug.line);
5223 free (input_debug.external_dnr);
5224 free (input_debug.external_pdr);
5225 free (input_debug.external_sym);
5226 free (input_debug.external_opt);
5227 free (input_debug.external_aux);
5228 free (input_debug.ss);
5229 free (input_debug.ssext);
5230 free (input_debug.external_fdr);
5231 free (input_debug.external_rfd);
5232 free (input_debug.external_ext);
5233
5234 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5235 elf_link_input_bfd ignores this section. */
5236 input_section->flags &=~ SEC_HAS_CONTENTS;
5237 }
5238
5239 /* Build the external symbol information. */
5240 einfo.abfd = abfd;
5241 einfo.info = info;
5242 einfo.debug = &debug;
5243 einfo.swap = swap;
5244 einfo.failed = FALSE;
5245 elf_link_hash_traverse (elf_hash_table (info),
5246 elf64_alpha_output_extsym,
5247 (PTR) &einfo);
5248 if (einfo.failed)
5249 return FALSE;
5250
5251 /* Set the size of the .mdebug section. */
5252 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
5253
5254 /* Skip this section later on (I don't think this currently
5255 matters, but someday it might). */
5256 o->map_head.link_order = (struct bfd_link_order *) NULL;
5257
5258 mdebug_sec = o;
5259 }
5260 }
5261
5262 /* Invoke the regular ELF backend linker to do all the work. */
5263 if (! bfd_elf_final_link (abfd, info))
5264 return FALSE;
5265
5266 /* Now write out the computed sections. */
5267
5268 /* The .got subsections... */
5269 {
5270 bfd *i, *dynobj = elf_hash_table(info)->dynobj;
5271 for (i = htab->got_list;
5272 i != NULL;
5273 i = alpha_elf_tdata(i)->got_link_next)
5274 {
5275 asection *sgot;
5276
5277 /* elf_bfd_final_link already did everything in dynobj. */
5278 if (i == dynobj)
5279 continue;
5280
5281 sgot = alpha_elf_tdata(i)->got;
5282 if (! bfd_set_section_contents (abfd, sgot->output_section,
5283 sgot->contents,
5284 (file_ptr) sgot->output_offset,
5285 sgot->size))
5286 return FALSE;
5287 }
5288 }
5289
5290 if (mdebug_sec != (asection *) NULL)
5291 {
5292 BFD_ASSERT (abfd->output_has_begun);
5293 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5294 swap, info,
5295 mdebug_sec->filepos))
5296 return FALSE;
5297
5298 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5299 }
5300
5301 return TRUE;
5302 }
5303
5304 static enum elf_reloc_type_class
5305 elf64_alpha_reloc_type_class (const Elf_Internal_Rela *rela)
5306 {
5307 switch ((int) ELF64_R_TYPE (rela->r_info))
5308 {
5309 case R_ALPHA_RELATIVE:
5310 return reloc_class_relative;
5311 case R_ALPHA_JMP_SLOT:
5312 return reloc_class_plt;
5313 case R_ALPHA_COPY:
5314 return reloc_class_copy;
5315 default:
5316 return reloc_class_normal;
5317 }
5318 }
5319 \f
5320 static const struct bfd_elf_special_section elf64_alpha_special_sections[] =
5321 {
5322 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5323 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5324 { NULL, 0, 0, 0, 0 }
5325 };
5326
5327 /* ECOFF swapping routines. These are used when dealing with the
5328 .mdebug section, which is in the ECOFF debugging format. Copied
5329 from elf32-mips.c. */
5330 static const struct ecoff_debug_swap
5331 elf64_alpha_ecoff_debug_swap =
5332 {
5333 /* Symbol table magic number. */
5334 magicSym2,
5335 /* Alignment of debugging information. E.g., 4. */
5336 8,
5337 /* Sizes of external symbolic information. */
5338 sizeof (struct hdr_ext),
5339 sizeof (struct dnr_ext),
5340 sizeof (struct pdr_ext),
5341 sizeof (struct sym_ext),
5342 sizeof (struct opt_ext),
5343 sizeof (struct fdr_ext),
5344 sizeof (struct rfd_ext),
5345 sizeof (struct ext_ext),
5346 /* Functions to swap in external symbolic data. */
5347 ecoff_swap_hdr_in,
5348 ecoff_swap_dnr_in,
5349 ecoff_swap_pdr_in,
5350 ecoff_swap_sym_in,
5351 ecoff_swap_opt_in,
5352 ecoff_swap_fdr_in,
5353 ecoff_swap_rfd_in,
5354 ecoff_swap_ext_in,
5355 _bfd_ecoff_swap_tir_in,
5356 _bfd_ecoff_swap_rndx_in,
5357 /* Functions to swap out external symbolic data. */
5358 ecoff_swap_hdr_out,
5359 ecoff_swap_dnr_out,
5360 ecoff_swap_pdr_out,
5361 ecoff_swap_sym_out,
5362 ecoff_swap_opt_out,
5363 ecoff_swap_fdr_out,
5364 ecoff_swap_rfd_out,
5365 ecoff_swap_ext_out,
5366 _bfd_ecoff_swap_tir_out,
5367 _bfd_ecoff_swap_rndx_out,
5368 /* Function to read in symbolic data. */
5369 elf64_alpha_read_ecoff_info
5370 };
5371 \f
5372 /* Use a non-standard hash bucket size of 8. */
5373
5374 static const struct elf_size_info alpha_elf_size_info =
5375 {
5376 sizeof (Elf64_External_Ehdr),
5377 sizeof (Elf64_External_Phdr),
5378 sizeof (Elf64_External_Shdr),
5379 sizeof (Elf64_External_Rel),
5380 sizeof (Elf64_External_Rela),
5381 sizeof (Elf64_External_Sym),
5382 sizeof (Elf64_External_Dyn),
5383 sizeof (Elf_External_Note),
5384 8,
5385 1,
5386 64, 3,
5387 ELFCLASS64, EV_CURRENT,
5388 bfd_elf64_write_out_phdrs,
5389 bfd_elf64_write_shdrs_and_ehdr,
5390 bfd_elf64_checksum_contents,
5391 bfd_elf64_write_relocs,
5392 bfd_elf64_swap_symbol_in,
5393 bfd_elf64_swap_symbol_out,
5394 bfd_elf64_slurp_reloc_table,
5395 bfd_elf64_slurp_symbol_table,
5396 bfd_elf64_swap_dyn_in,
5397 bfd_elf64_swap_dyn_out,
5398 bfd_elf64_swap_reloc_in,
5399 bfd_elf64_swap_reloc_out,
5400 bfd_elf64_swap_reloca_in,
5401 bfd_elf64_swap_reloca_out
5402 };
5403
5404 #define TARGET_LITTLE_SYM bfd_elf64_alpha_vec
5405 #define TARGET_LITTLE_NAME "elf64-alpha"
5406 #define ELF_ARCH bfd_arch_alpha
5407 #define ELF_TARGET_ID ALPHA_ELF_DATA
5408 #define ELF_MACHINE_CODE EM_ALPHA
5409 #define ELF_MAXPAGESIZE 0x10000
5410 #define ELF_COMMONPAGESIZE 0x2000
5411
5412 #define bfd_elf64_bfd_link_hash_table_create \
5413 elf64_alpha_bfd_link_hash_table_create
5414
5415 #define bfd_elf64_bfd_reloc_type_lookup \
5416 elf64_alpha_bfd_reloc_type_lookup
5417 #define bfd_elf64_bfd_reloc_name_lookup \
5418 elf64_alpha_bfd_reloc_name_lookup
5419 #define elf_info_to_howto \
5420 elf64_alpha_info_to_howto
5421
5422 #define bfd_elf64_mkobject \
5423 elf64_alpha_mkobject
5424 #define elf_backend_object_p \
5425 elf64_alpha_object_p
5426
5427 #define elf_backend_section_from_shdr \
5428 elf64_alpha_section_from_shdr
5429 #define elf_backend_section_flags \
5430 elf64_alpha_section_flags
5431 #define elf_backend_fake_sections \
5432 elf64_alpha_fake_sections
5433
5434 #define bfd_elf64_bfd_is_local_label_name \
5435 elf64_alpha_is_local_label_name
5436 #define bfd_elf64_find_nearest_line \
5437 elf64_alpha_find_nearest_line
5438 #define bfd_elf64_bfd_relax_section \
5439 elf64_alpha_relax_section
5440
5441 #define elf_backend_add_symbol_hook \
5442 elf64_alpha_add_symbol_hook
5443 #define elf_backend_relocs_compatible \
5444 _bfd_elf_relocs_compatible
5445 #define elf_backend_check_relocs \
5446 elf64_alpha_check_relocs
5447 #define elf_backend_create_dynamic_sections \
5448 elf64_alpha_create_dynamic_sections
5449 #define elf_backend_adjust_dynamic_symbol \
5450 elf64_alpha_adjust_dynamic_symbol
5451 #define elf_backend_merge_symbol_attribute \
5452 elf64_alpha_merge_symbol_attribute
5453 #define elf_backend_copy_indirect_symbol \
5454 elf64_alpha_copy_indirect_symbol
5455 #define elf_backend_always_size_sections \
5456 elf64_alpha_always_size_sections
5457 #define elf_backend_size_dynamic_sections \
5458 elf64_alpha_size_dynamic_sections
5459 #define elf_backend_omit_section_dynsym \
5460 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5461 #define elf_backend_relocate_section \
5462 elf64_alpha_relocate_section
5463 #define elf_backend_finish_dynamic_symbol \
5464 elf64_alpha_finish_dynamic_symbol
5465 #define elf_backend_finish_dynamic_sections \
5466 elf64_alpha_finish_dynamic_sections
5467 #define bfd_elf64_bfd_final_link \
5468 elf64_alpha_final_link
5469 #define elf_backend_reloc_type_class \
5470 elf64_alpha_reloc_type_class
5471
5472 #define elf_backend_can_gc_sections 1
5473 #define elf_backend_gc_mark_hook elf64_alpha_gc_mark_hook
5474 #define elf_backend_gc_sweep_hook elf64_alpha_gc_sweep_hook
5475
5476 #define elf_backend_ecoff_debug_swap \
5477 &elf64_alpha_ecoff_debug_swap
5478
5479 #define elf_backend_size_info \
5480 alpha_elf_size_info
5481
5482 #define elf_backend_special_sections \
5483 elf64_alpha_special_sections
5484
5485 /* A few constants that determine how the .plt section is set up. */
5486 #define elf_backend_want_got_plt 0
5487 #define elf_backend_plt_readonly 0
5488 #define elf_backend_want_plt_sym 1
5489 #define elf_backend_got_header_size 0
5490
5491 #include "elf64-target.h"
5492 \f
5493 /* FreeBSD support. */
5494
5495 #undef TARGET_LITTLE_SYM
5496 #define TARGET_LITTLE_SYM bfd_elf64_alpha_freebsd_vec
5497 #undef TARGET_LITTLE_NAME
5498 #define TARGET_LITTLE_NAME "elf64-alpha-freebsd"
5499 #undef ELF_OSABI
5500 #define ELF_OSABI ELFOSABI_FREEBSD
5501
5502 /* The kernel recognizes executables as valid only if they carry a
5503 "FreeBSD" label in the ELF header. So we put this label on all
5504 executables and (for simplicity) also all other object files. */
5505
5506 static void
5507 elf64_alpha_fbsd_post_process_headers (bfd * abfd,
5508 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
5509 {
5510 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
5511
5512 i_ehdrp = elf_elfheader (abfd);
5513
5514 /* Put an ABI label supported by FreeBSD >= 4.1. */
5515 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5516 #ifdef OLD_FREEBSD_ABI_LABEL
5517 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
5518 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
5519 #endif
5520 }
5521
5522 #undef elf_backend_post_process_headers
5523 #define elf_backend_post_process_headers \
5524 elf64_alpha_fbsd_post_process_headers
5525
5526 #undef elf64_bed
5527 #define elf64_bed elf64_alpha_fbsd_bed
5528
5529 #include "elf64-target.h"
This page took 0.148955 seconds and 5 git commands to generate.