2359adde6d59392a56265190c513c5e7327800fe
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29
30 /* This is the code recommended in the autoconf documentation, almost
31 verbatim. */
32 #ifndef __GNUC__
33 # if HAVE_ALLOCA_H
34 # include <alloca.h>
35 # else
36 # ifdef _AIX
37 /* Indented so that pre-ansi C compilers will ignore it, rather than
38 choke on it. Some versions of AIX require this to be the first
39 thing in the file. */
40 #pragma alloca
41 # else
42 # ifndef alloca /* predefined by HP cc +Olibcalls */
43 # if !defined (__STDC__) && !defined (__hpux)
44 extern char *alloca ();
45 # else
46 extern void *alloca ();
47 # endif /* __STDC__, __hpux */
48 # endif /* alloca */
49 # endif /* _AIX */
50 # endif /* HAVE_ALLOCA_H */
51 #else
52 extern void *alloca (size_t);
53 #endif /* __GNUC__ */
54
55
56 #define ARCH_SIZE 64
57
58 #define PLT_ENTRY_SIZE 0x10
59 #define DLT_ENTRY_SIZE 0x8
60 #define OPD_ENTRY_SIZE 0x20
61
62 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
63
64 /* The stub is supposed to load the target address and target's DP
65 value out of the PLT, then do an external branch to the target
66 address.
67
68 LDD PLTOFF(%r27),%r1
69 BVE (%r1)
70 LDD PLTOFF+8(%r27),%r27
71
72 Note that we must use the LDD with a 14 bit displacement, not the one
73 with a 5 bit displacement. */
74 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
75 0x53, 0x7b, 0x00, 0x00 };
76
77 struct elf64_hppa_dyn_hash_entry
78 {
79 struct bfd_hash_entry root;
80
81 /* Offsets for this symbol in various linker sections. */
82 bfd_vma dlt_offset;
83 bfd_vma plt_offset;
84 bfd_vma opd_offset;
85 bfd_vma stub_offset;
86
87 /* The symbol table entry, if any, that this was derived from. */
88 struct elf_link_hash_entry *h;
89
90 /* The index of the (possibly local) symbol in the input bfd and its
91 associated BFD. Needed so that we can have relocs against local
92 symbols in shared libraries. */
93 long sym_indx;
94 bfd *owner;
95
96 /* Dynamic symbols may need to have two different values. One for
97 the dynamic symbol table, one for the normal symbol table.
98
99 In such cases we store the symbol's real value and section
100 index here so we can restore the real value before we write
101 the normal symbol table. */
102 bfd_vma st_value;
103 int st_shndx;
104
105 /* Used to count non-got, non-plt relocations for delayed sizing
106 of relocation sections. */
107 struct elf64_hppa_dyn_reloc_entry
108 {
109 /* Next relocation in the chain. */
110 struct elf64_hppa_dyn_reloc_entry *next;
111
112 /* The type of the relocation. */
113 int type;
114
115 /* The input section of the relocation. */
116 asection *sec;
117
118 /* The index of the section symbol for the input section of
119 the relocation. Only needed when building shared libraries. */
120 int sec_symndx;
121
122 /* The offset within the input section of the relocation. */
123 bfd_vma offset;
124
125 /* The addend for the relocation. */
126 bfd_vma addend;
127
128 } *reloc_entries;
129
130 /* Nonzero if this symbol needs an entry in one of the linker
131 sections. */
132 unsigned want_dlt;
133 unsigned want_plt;
134 unsigned want_opd;
135 unsigned want_stub;
136 };
137
138 struct elf64_hppa_dyn_hash_table
139 {
140 struct bfd_hash_table root;
141 };
142
143 struct elf64_hppa_link_hash_table
144 {
145 struct elf_link_hash_table root;
146
147 /* Shortcuts to get to the various linker defined sections. */
148 asection *dlt_sec;
149 asection *dlt_rel_sec;
150 asection *plt_sec;
151 asection *plt_rel_sec;
152 asection *opd_sec;
153 asection *opd_rel_sec;
154 asection *other_rel_sec;
155
156 /* Offset of __gp within .plt section. When the PLT gets large we want
157 to slide __gp into the PLT section so that we can continue to use
158 single DP relative instructions to load values out of the PLT. */
159 bfd_vma gp_offset;
160
161 /* Note this is not strictly correct. We should create a stub section for
162 each input section with calls. The stub section should be placed before
163 the section with the call. */
164 asection *stub_sec;
165
166 bfd_vma text_segment_base;
167 bfd_vma data_segment_base;
168
169 struct elf64_hppa_dyn_hash_table dyn_hash_table;
170
171 /* We build tables to map from an input section back to its
172 symbol index. This is the BFD for which we currently have
173 a map. */
174 bfd *section_syms_bfd;
175
176 /* Array of symbol numbers for each input section attached to the
177 current BFD. */
178 int *section_syms;
179 };
180
181 #define elf64_hppa_hash_table(p) \
182 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
183
184 typedef struct bfd_hash_entry *(*new_hash_entry_func)
185 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
186
187 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
188 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
189 const char *string));
190 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
191 PARAMS ((bfd *abfd));
192 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
193 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
194 bfd_boolean create, bfd_boolean copy));
195 static void elf64_hppa_dyn_hash_traverse
196 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
197 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
198 PTR info));
199
200 static const char *get_dyn_name
201 PARAMS ((bfd *, struct elf_link_hash_entry *,
202 const Elf_Internal_Rela *, char **, size_t *));
203
204 /* This must follow the definitions of the various derived linker
205 hash tables and shared functions. */
206 #include "elf-hppa.h"
207
208 static bfd_boolean elf64_hppa_object_p
209 PARAMS ((bfd *));
210
211 static void elf64_hppa_post_process_headers
212 PARAMS ((bfd *, struct bfd_link_info *));
213
214 static bfd_boolean elf64_hppa_create_dynamic_sections
215 PARAMS ((bfd *, struct bfd_link_info *));
216
217 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
218 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
219
220 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
221 PARAMS ((struct elf_link_hash_entry *, PTR));
222
223 static bfd_boolean elf64_hppa_size_dynamic_sections
224 PARAMS ((bfd *, struct bfd_link_info *));
225
226 static bfd_boolean elf64_hppa_link_output_symbol_hook
227 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
228 asection *, struct elf_link_hash_entry *));
229
230 static bfd_boolean elf64_hppa_finish_dynamic_symbol
231 PARAMS ((bfd *, struct bfd_link_info *,
232 struct elf_link_hash_entry *, Elf_Internal_Sym *));
233
234 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
235 PARAMS ((const Elf_Internal_Rela *));
236
237 static bfd_boolean elf64_hppa_finish_dynamic_sections
238 PARAMS ((bfd *, struct bfd_link_info *));
239
240 static bfd_boolean elf64_hppa_check_relocs
241 PARAMS ((bfd *, struct bfd_link_info *,
242 asection *, const Elf_Internal_Rela *));
243
244 static bfd_boolean elf64_hppa_dynamic_symbol_p
245 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
246
247 static bfd_boolean elf64_hppa_mark_exported_functions
248 PARAMS ((struct elf_link_hash_entry *, PTR));
249
250 static bfd_boolean elf64_hppa_finalize_opd
251 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
253 static bfd_boolean elf64_hppa_finalize_dlt
254 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
255
256 static bfd_boolean allocate_global_data_dlt
257 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
258
259 static bfd_boolean allocate_global_data_plt
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
262 static bfd_boolean allocate_global_data_stub
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
265 static bfd_boolean allocate_global_data_opd
266 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
267
268 static bfd_boolean get_reloc_section
269 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
270
271 static bfd_boolean count_dyn_reloc
272 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
273 int, asection *, int, bfd_vma, bfd_vma));
274
275 static bfd_boolean allocate_dynrel_entries
276 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
277
278 static bfd_boolean elf64_hppa_finalize_dynreloc
279 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
280
281 static bfd_boolean get_opd
282 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
283
284 static bfd_boolean get_plt
285 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
286
287 static bfd_boolean get_dlt
288 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
289
290 static bfd_boolean get_stub
291 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
292
293 static int elf64_hppa_elf_get_symbol_type
294 PARAMS ((Elf_Internal_Sym *, int));
295
296 static bfd_boolean
297 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
298 bfd *abfd ATTRIBUTE_UNUSED,
299 new_hash_entry_func new,
300 unsigned int entsize)
301 {
302 memset (ht, 0, sizeof (*ht));
303 return bfd_hash_table_init (&ht->root, new, entsize);
304 }
305
306 static struct bfd_hash_entry*
307 elf64_hppa_new_dyn_hash_entry (entry, table, string)
308 struct bfd_hash_entry *entry;
309 struct bfd_hash_table *table;
310 const char *string;
311 {
312 struct elf64_hppa_dyn_hash_entry *ret;
313 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
314
315 /* Allocate the structure if it has not already been allocated by a
316 subclass. */
317 if (!ret)
318 ret = bfd_hash_allocate (table, sizeof (*ret));
319
320 if (!ret)
321 return 0;
322
323 /* Call the allocation method of the superclass. */
324 ret = ((struct elf64_hppa_dyn_hash_entry *)
325 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
326
327 /* Initialize our local data. All zeros. */
328 memset (&ret->dlt_offset, 0,
329 (sizeof (struct elf64_hppa_dyn_hash_entry)
330 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
331
332 return &ret->root;
333 }
334
335 /* Create the derived linker hash table. The PA64 ELF port uses this
336 derived hash table to keep information specific to the PA ElF
337 linker (without using static variables). */
338
339 static struct bfd_link_hash_table*
340 elf64_hppa_hash_table_create (abfd)
341 bfd *abfd;
342 {
343 struct elf64_hppa_link_hash_table *ret;
344
345 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
346 if (!ret)
347 return 0;
348 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
349 _bfd_elf_link_hash_newfunc,
350 sizeof (struct elf_link_hash_entry)))
351 {
352 bfd_release (abfd, ret);
353 return 0;
354 }
355
356 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
357 elf64_hppa_new_dyn_hash_entry,
358 sizeof (struct elf64_hppa_dyn_hash_entry)))
359 return 0;
360 return &ret->root.root;
361 }
362
363 /* Look up an entry in a PA64 ELF linker hash table. */
364
365 static struct elf64_hppa_dyn_hash_entry *
366 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
367 struct elf64_hppa_dyn_hash_table *table;
368 const char *string;
369 bfd_boolean create, copy;
370 {
371 return ((struct elf64_hppa_dyn_hash_entry *)
372 bfd_hash_lookup (&table->root, string, create, copy));
373 }
374
375 /* Traverse a PA64 ELF linker hash table. */
376
377 static void
378 elf64_hppa_dyn_hash_traverse (table, func, info)
379 struct elf64_hppa_dyn_hash_table *table;
380 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
381 PTR info;
382 {
383 (bfd_hash_traverse
384 (&table->root,
385 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
386 info));
387 }
388 \f
389 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
390
391 Additionally we set the default architecture and machine. */
392 static bfd_boolean
393 elf64_hppa_object_p (abfd)
394 bfd *abfd;
395 {
396 Elf_Internal_Ehdr * i_ehdrp;
397 unsigned int flags;
398
399 i_ehdrp = elf_elfheader (abfd);
400 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
401 {
402 /* GCC on hppa-linux produces binaries with OSABI=Linux,
403 but the kernel produces corefiles with OSABI=SysV. */
404 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
405 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
406 return FALSE;
407 }
408 else
409 {
410 /* HPUX produces binaries with OSABI=HPUX,
411 but the kernel produces corefiles with OSABI=SysV. */
412 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
413 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
414 return FALSE;
415 }
416
417 flags = i_ehdrp->e_flags;
418 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
419 {
420 case EFA_PARISC_1_0:
421 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
422 case EFA_PARISC_1_1:
423 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
424 case EFA_PARISC_2_0:
425 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
426 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
427 else
428 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
429 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
430 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
431 }
432 /* Don't be fussy. */
433 return TRUE;
434 }
435
436 /* Given section type (hdr->sh_type), return a boolean indicating
437 whether or not the section is an elf64-hppa specific section. */
438 static bfd_boolean
439 elf64_hppa_section_from_shdr (bfd *abfd,
440 Elf_Internal_Shdr *hdr,
441 const char *name,
442 int shindex)
443 {
444 asection *newsect;
445
446 switch (hdr->sh_type)
447 {
448 case SHT_PARISC_EXT:
449 if (strcmp (name, ".PARISC.archext") != 0)
450 return FALSE;
451 break;
452 case SHT_PARISC_UNWIND:
453 if (strcmp (name, ".PARISC.unwind") != 0)
454 return FALSE;
455 break;
456 case SHT_PARISC_DOC:
457 case SHT_PARISC_ANNOT:
458 default:
459 return FALSE;
460 }
461
462 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
463 return FALSE;
464 newsect = hdr->bfd_section;
465
466 return TRUE;
467 }
468
469 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
470 name describes what was once potentially anonymous memory. We
471 allocate memory as necessary, possibly reusing PBUF/PLEN. */
472
473 static const char *
474 get_dyn_name (abfd, h, rel, pbuf, plen)
475 bfd *abfd;
476 struct elf_link_hash_entry *h;
477 const Elf_Internal_Rela *rel;
478 char **pbuf;
479 size_t *plen;
480 {
481 asection *sec = abfd->sections;
482 size_t nlen, tlen;
483 char *buf;
484 size_t len;
485
486 if (h && rel->r_addend == 0)
487 return h->root.root.string;
488
489 if (h)
490 nlen = strlen (h->root.root.string);
491 else
492 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
493 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
494
495 len = *plen;
496 buf = *pbuf;
497 if (len < tlen)
498 {
499 if (buf)
500 free (buf);
501 *pbuf = buf = malloc (tlen);
502 *plen = len = tlen;
503 if (!buf)
504 return NULL;
505 }
506
507 if (h)
508 {
509 memcpy (buf, h->root.root.string, nlen);
510 buf[nlen++] = '+';
511 sprintf_vma (buf + nlen, rel->r_addend);
512 }
513 else
514 {
515 nlen = sprintf (buf, "%x:%lx",
516 sec->id & 0xffffffff,
517 (long) ELF64_R_SYM (rel->r_info));
518 if (rel->r_addend)
519 {
520 buf[nlen++] = '+';
521 sprintf_vma (buf + nlen, rel->r_addend);
522 }
523 }
524
525 return buf;
526 }
527
528 /* SEC is a section containing relocs for an input BFD when linking; return
529 a suitable section for holding relocs in the output BFD for a link. */
530
531 static bfd_boolean
532 get_reloc_section (abfd, hppa_info, sec)
533 bfd *abfd;
534 struct elf64_hppa_link_hash_table *hppa_info;
535 asection *sec;
536 {
537 const char *srel_name;
538 asection *srel;
539 bfd *dynobj;
540
541 srel_name = (bfd_elf_string_from_elf_section
542 (abfd, elf_elfheader(abfd)->e_shstrndx,
543 elf_section_data(sec)->rel_hdr.sh_name));
544 if (srel_name == NULL)
545 return FALSE;
546
547 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
548 && strcmp (bfd_get_section_name (abfd, sec),
549 srel_name + 5) == 0)
550 || (CONST_STRNEQ (srel_name, ".rel")
551 && strcmp (bfd_get_section_name (abfd, sec),
552 srel_name + 4) == 0));
553
554 dynobj = hppa_info->root.dynobj;
555 if (!dynobj)
556 hppa_info->root.dynobj = dynobj = abfd;
557
558 srel = bfd_get_section_by_name (dynobj, srel_name);
559 if (srel == NULL)
560 {
561 srel = bfd_make_section_with_flags (dynobj, srel_name,
562 (SEC_ALLOC
563 | SEC_LOAD
564 | SEC_HAS_CONTENTS
565 | SEC_IN_MEMORY
566 | SEC_LINKER_CREATED
567 | SEC_READONLY));
568 if (srel == NULL
569 || !bfd_set_section_alignment (dynobj, srel, 3))
570 return FALSE;
571 }
572
573 hppa_info->other_rel_sec = srel;
574 return TRUE;
575 }
576
577 /* Add a new entry to the list of dynamic relocations against DYN_H.
578
579 We use this to keep a record of all the FPTR relocations against a
580 particular symbol so that we can create FPTR relocations in the
581 output file. */
582
583 static bfd_boolean
584 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
585 bfd *abfd;
586 struct elf64_hppa_dyn_hash_entry *dyn_h;
587 int type;
588 asection *sec;
589 int sec_symndx;
590 bfd_vma offset;
591 bfd_vma addend;
592 {
593 struct elf64_hppa_dyn_reloc_entry *rent;
594
595 rent = (struct elf64_hppa_dyn_reloc_entry *)
596 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
597 if (!rent)
598 return FALSE;
599
600 rent->next = dyn_h->reloc_entries;
601 rent->type = type;
602 rent->sec = sec;
603 rent->sec_symndx = sec_symndx;
604 rent->offset = offset;
605 rent->addend = addend;
606 dyn_h->reloc_entries = rent;
607
608 return TRUE;
609 }
610
611 /* Scan the RELOCS and record the type of dynamic entries that each
612 referenced symbol needs. */
613
614 static bfd_boolean
615 elf64_hppa_check_relocs (abfd, info, sec, relocs)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 asection *sec;
619 const Elf_Internal_Rela *relocs;
620 {
621 struct elf64_hppa_link_hash_table *hppa_info;
622 const Elf_Internal_Rela *relend;
623 Elf_Internal_Shdr *symtab_hdr;
624 const Elf_Internal_Rela *rel;
625 asection *dlt, *plt, *stubs;
626 char *buf;
627 size_t buf_len;
628 unsigned int sec_symndx;
629
630 if (info->relocatable)
631 return TRUE;
632
633 /* If this is the first dynamic object found in the link, create
634 the special sections required for dynamic linking. */
635 if (! elf_hash_table (info)->dynamic_sections_created)
636 {
637 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
638 return FALSE;
639 }
640
641 hppa_info = elf64_hppa_hash_table (info);
642 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
643
644 /* If necessary, build a new table holding section symbols indices
645 for this BFD. */
646
647 if (info->shared && hppa_info->section_syms_bfd != abfd)
648 {
649 unsigned long i;
650 unsigned int highest_shndx;
651 Elf_Internal_Sym *local_syms = NULL;
652 Elf_Internal_Sym *isym, *isymend;
653 bfd_size_type amt;
654
655 /* We're done with the old cache of section index to section symbol
656 index information. Free it.
657
658 ?!? Note we leak the last section_syms array. Presumably we
659 could free it in one of the later routines in this file. */
660 if (hppa_info->section_syms)
661 free (hppa_info->section_syms);
662
663 /* Read this BFD's local symbols. */
664 if (symtab_hdr->sh_info != 0)
665 {
666 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
667 if (local_syms == NULL)
668 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
669 symtab_hdr->sh_info, 0,
670 NULL, NULL, NULL);
671 if (local_syms == NULL)
672 return FALSE;
673 }
674
675 /* Record the highest section index referenced by the local symbols. */
676 highest_shndx = 0;
677 isymend = local_syms + symtab_hdr->sh_info;
678 for (isym = local_syms; isym < isymend; isym++)
679 {
680 if (isym->st_shndx > highest_shndx
681 && isym->st_shndx < SHN_LORESERVE)
682 highest_shndx = isym->st_shndx;
683 }
684
685 /* Allocate an array to hold the section index to section symbol index
686 mapping. Bump by one since we start counting at zero. */
687 highest_shndx++;
688 amt = highest_shndx;
689 amt *= sizeof (int);
690 hppa_info->section_syms = (int *) bfd_malloc (amt);
691
692 /* Now walk the local symbols again. If we find a section symbol,
693 record the index of the symbol into the section_syms array. */
694 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
695 {
696 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
697 hppa_info->section_syms[isym->st_shndx] = i;
698 }
699
700 /* We are finished with the local symbols. */
701 if (local_syms != NULL
702 && symtab_hdr->contents != (unsigned char *) local_syms)
703 {
704 if (! info->keep_memory)
705 free (local_syms);
706 else
707 {
708 /* Cache the symbols for elf_link_input_bfd. */
709 symtab_hdr->contents = (unsigned char *) local_syms;
710 }
711 }
712
713 /* Record which BFD we built the section_syms mapping for. */
714 hppa_info->section_syms_bfd = abfd;
715 }
716
717 /* Record the symbol index for this input section. We may need it for
718 relocations when building shared libraries. When not building shared
719 libraries this value is never really used, but assign it to zero to
720 prevent out of bounds memory accesses in other routines. */
721 if (info->shared)
722 {
723 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
724
725 /* If we did not find a section symbol for this section, then
726 something went terribly wrong above. */
727 if (sec_symndx == SHN_BAD)
728 return FALSE;
729
730 if (sec_symndx < SHN_LORESERVE)
731 sec_symndx = hppa_info->section_syms[sec_symndx];
732 else
733 sec_symndx = 0;
734 }
735 else
736 sec_symndx = 0;
737
738 dlt = plt = stubs = NULL;
739 buf = NULL;
740 buf_len = 0;
741
742 relend = relocs + sec->reloc_count;
743 for (rel = relocs; rel < relend; ++rel)
744 {
745 enum
746 {
747 NEED_DLT = 1,
748 NEED_PLT = 2,
749 NEED_STUB = 4,
750 NEED_OPD = 8,
751 NEED_DYNREL = 16,
752 };
753
754 struct elf_link_hash_entry *h = NULL;
755 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
756 struct elf64_hppa_dyn_hash_entry *dyn_h;
757 int need_entry;
758 const char *addr_name;
759 bfd_boolean maybe_dynamic;
760 int dynrel_type = R_PARISC_NONE;
761 static reloc_howto_type *howto;
762
763 if (r_symndx >= symtab_hdr->sh_info)
764 {
765 /* We're dealing with a global symbol -- find its hash entry
766 and mark it as being referenced. */
767 long indx = r_symndx - symtab_hdr->sh_info;
768 h = elf_sym_hashes (abfd)[indx];
769 while (h->root.type == bfd_link_hash_indirect
770 || h->root.type == bfd_link_hash_warning)
771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
772
773 h->ref_regular = 1;
774 }
775
776 /* We can only get preliminary data on whether a symbol is
777 locally or externally defined, as not all of the input files
778 have yet been processed. Do something with what we know, as
779 this may help reduce memory usage and processing time later. */
780 maybe_dynamic = FALSE;
781 if (h && ((info->shared
782 && (!info->symbolic
783 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
784 || !h->def_regular
785 || h->root.type == bfd_link_hash_defweak))
786 maybe_dynamic = TRUE;
787
788 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
789 need_entry = 0;
790 switch (howto->type)
791 {
792 /* These are simple indirect references to symbols through the
793 DLT. We need to create a DLT entry for any symbols which
794 appears in a DLTIND relocation. */
795 case R_PARISC_DLTIND21L:
796 case R_PARISC_DLTIND14R:
797 case R_PARISC_DLTIND14F:
798 case R_PARISC_DLTIND14WR:
799 case R_PARISC_DLTIND14DR:
800 need_entry = NEED_DLT;
801 break;
802
803 /* ?!? These need a DLT entry. But I have no idea what to do with
804 the "link time TP value. */
805 case R_PARISC_LTOFF_TP21L:
806 case R_PARISC_LTOFF_TP14R:
807 case R_PARISC_LTOFF_TP14F:
808 case R_PARISC_LTOFF_TP64:
809 case R_PARISC_LTOFF_TP14WR:
810 case R_PARISC_LTOFF_TP14DR:
811 case R_PARISC_LTOFF_TP16F:
812 case R_PARISC_LTOFF_TP16WF:
813 case R_PARISC_LTOFF_TP16DF:
814 need_entry = NEED_DLT;
815 break;
816
817 /* These are function calls. Depending on their precise target we
818 may need to make a stub for them. The stub uses the PLT, so we
819 need to create PLT entries for these symbols too. */
820 case R_PARISC_PCREL12F:
821 case R_PARISC_PCREL17F:
822 case R_PARISC_PCREL22F:
823 case R_PARISC_PCREL32:
824 case R_PARISC_PCREL64:
825 case R_PARISC_PCREL21L:
826 case R_PARISC_PCREL17R:
827 case R_PARISC_PCREL17C:
828 case R_PARISC_PCREL14R:
829 case R_PARISC_PCREL14F:
830 case R_PARISC_PCREL22C:
831 case R_PARISC_PCREL14WR:
832 case R_PARISC_PCREL14DR:
833 case R_PARISC_PCREL16F:
834 case R_PARISC_PCREL16WF:
835 case R_PARISC_PCREL16DF:
836 need_entry = (NEED_PLT | NEED_STUB);
837 break;
838
839 case R_PARISC_PLTOFF21L:
840 case R_PARISC_PLTOFF14R:
841 case R_PARISC_PLTOFF14F:
842 case R_PARISC_PLTOFF14WR:
843 case R_PARISC_PLTOFF14DR:
844 case R_PARISC_PLTOFF16F:
845 case R_PARISC_PLTOFF16WF:
846 case R_PARISC_PLTOFF16DF:
847 need_entry = (NEED_PLT);
848 break;
849
850 case R_PARISC_DIR64:
851 if (info->shared || maybe_dynamic)
852 need_entry = (NEED_DYNREL);
853 dynrel_type = R_PARISC_DIR64;
854 break;
855
856 /* This is an indirect reference through the DLT to get the address
857 of a OPD descriptor. Thus we need to make a DLT entry that points
858 to an OPD entry. */
859 case R_PARISC_LTOFF_FPTR21L:
860 case R_PARISC_LTOFF_FPTR14R:
861 case R_PARISC_LTOFF_FPTR14WR:
862 case R_PARISC_LTOFF_FPTR14DR:
863 case R_PARISC_LTOFF_FPTR32:
864 case R_PARISC_LTOFF_FPTR64:
865 case R_PARISC_LTOFF_FPTR16F:
866 case R_PARISC_LTOFF_FPTR16WF:
867 case R_PARISC_LTOFF_FPTR16DF:
868 if (info->shared || maybe_dynamic)
869 need_entry = (NEED_DLT | NEED_OPD);
870 else
871 need_entry = (NEED_DLT | NEED_OPD);
872 dynrel_type = R_PARISC_FPTR64;
873 break;
874
875 /* This is a simple OPD entry. */
876 case R_PARISC_FPTR64:
877 if (info->shared || maybe_dynamic)
878 need_entry = (NEED_OPD | NEED_DYNREL);
879 else
880 need_entry = (NEED_OPD);
881 dynrel_type = R_PARISC_FPTR64;
882 break;
883
884 /* Add more cases as needed. */
885 }
886
887 if (!need_entry)
888 continue;
889
890 /* Collect a canonical name for this address. */
891 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
892
893 /* Collect the canonical entry data for this address. */
894 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
895 addr_name, TRUE, TRUE);
896 BFD_ASSERT (dyn_h);
897
898 /* Stash away enough information to be able to find this symbol
899 regardless of whether or not it is local or global. */
900 dyn_h->h = h;
901 dyn_h->owner = abfd;
902 dyn_h->sym_indx = r_symndx;
903
904 /* ?!? We may need to do some error checking in here. */
905 /* Create what's needed. */
906 if (need_entry & NEED_DLT)
907 {
908 if (! hppa_info->dlt_sec
909 && ! get_dlt (abfd, info, hppa_info))
910 goto err_out;
911 dyn_h->want_dlt = 1;
912 }
913
914 if (need_entry & NEED_PLT)
915 {
916 if (! hppa_info->plt_sec
917 && ! get_plt (abfd, info, hppa_info))
918 goto err_out;
919 dyn_h->want_plt = 1;
920 }
921
922 if (need_entry & NEED_STUB)
923 {
924 if (! hppa_info->stub_sec
925 && ! get_stub (abfd, info, hppa_info))
926 goto err_out;
927 dyn_h->want_stub = 1;
928 }
929
930 if (need_entry & NEED_OPD)
931 {
932 if (! hppa_info->opd_sec
933 && ! get_opd (abfd, info, hppa_info))
934 goto err_out;
935
936 dyn_h->want_opd = 1;
937
938 /* FPTRs are not allocated by the dynamic linker for PA64, though
939 it is possible that will change in the future. */
940
941 /* This could be a local function that had its address taken, in
942 which case H will be NULL. */
943 if (h)
944 h->needs_plt = 1;
945 }
946
947 /* Add a new dynamic relocation to the chain of dynamic
948 relocations for this symbol. */
949 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
950 {
951 if (! hppa_info->other_rel_sec
952 && ! get_reloc_section (abfd, hppa_info, sec))
953 goto err_out;
954
955 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
956 sec_symndx, rel->r_offset, rel->r_addend))
957 goto err_out;
958
959 /* If we are building a shared library and we just recorded
960 a dynamic R_PARISC_FPTR64 relocation, then make sure the
961 section symbol for this section ends up in the dynamic
962 symbol table. */
963 if (info->shared && dynrel_type == R_PARISC_FPTR64
964 && ! (bfd_elf_link_record_local_dynamic_symbol
965 (info, abfd, sec_symndx)))
966 return FALSE;
967 }
968 }
969
970 if (buf)
971 free (buf);
972 return TRUE;
973
974 err_out:
975 if (buf)
976 free (buf);
977 return FALSE;
978 }
979
980 struct elf64_hppa_allocate_data
981 {
982 struct bfd_link_info *info;
983 bfd_size_type ofs;
984 };
985
986 /* Should we do dynamic things to this symbol? */
987
988 static bfd_boolean
989 elf64_hppa_dynamic_symbol_p (h, info)
990 struct elf_link_hash_entry *h;
991 struct bfd_link_info *info;
992 {
993 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
994 and relocations that retrieve a function descriptor? Assume the
995 worst for now. */
996 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
997 {
998 /* ??? Why is this here and not elsewhere is_local_label_name. */
999 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1000 return FALSE;
1001
1002 return TRUE;
1003 }
1004 else
1005 return FALSE;
1006 }
1007
1008 /* Mark all functions exported by this file so that we can later allocate
1009 entries in .opd for them. */
1010
1011 static bfd_boolean
1012 elf64_hppa_mark_exported_functions (h, data)
1013 struct elf_link_hash_entry *h;
1014 PTR data;
1015 {
1016 struct bfd_link_info *info = (struct bfd_link_info *)data;
1017 struct elf64_hppa_link_hash_table *hppa_info;
1018
1019 hppa_info = elf64_hppa_hash_table (info);
1020
1021 if (h->root.type == bfd_link_hash_warning)
1022 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1023
1024 if (h
1025 && (h->root.type == bfd_link_hash_defined
1026 || h->root.type == bfd_link_hash_defweak)
1027 && h->root.u.def.section->output_section != NULL
1028 && h->type == STT_FUNC)
1029 {
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031
1032 /* Add this symbol to the PA64 linker hash table. */
1033 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1034 h->root.root.string, TRUE, TRUE);
1035 BFD_ASSERT (dyn_h);
1036 dyn_h->h = h;
1037
1038 if (! hppa_info->opd_sec
1039 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1040 return FALSE;
1041
1042 dyn_h->want_opd = 1;
1043 /* Put a flag here for output_symbol_hook. */
1044 dyn_h->st_shndx = -1;
1045 h->needs_plt = 1;
1046 }
1047
1048 return TRUE;
1049 }
1050
1051 /* Allocate space for a DLT entry. */
1052
1053 static bfd_boolean
1054 allocate_global_data_dlt (dyn_h, data)
1055 struct elf64_hppa_dyn_hash_entry *dyn_h;
1056 PTR data;
1057 {
1058 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1059
1060 if (dyn_h->want_dlt)
1061 {
1062 struct elf_link_hash_entry *h = dyn_h->h;
1063
1064 if (x->info->shared)
1065 {
1066 /* Possibly add the symbol to the local dynamic symbol
1067 table since we might need to create a dynamic relocation
1068 against it. */
1069 if (! h
1070 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1071 {
1072 bfd *owner;
1073 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1074
1075 if (! (bfd_elf_link_record_local_dynamic_symbol
1076 (x->info, owner, dyn_h->sym_indx)))
1077 return FALSE;
1078 }
1079 }
1080
1081 dyn_h->dlt_offset = x->ofs;
1082 x->ofs += DLT_ENTRY_SIZE;
1083 }
1084 return TRUE;
1085 }
1086
1087 /* Allocate space for a DLT.PLT entry. */
1088
1089 static bfd_boolean
1090 allocate_global_data_plt (dyn_h, data)
1091 struct elf64_hppa_dyn_hash_entry *dyn_h;
1092 PTR data;
1093 {
1094 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1095
1096 if (dyn_h->want_plt
1097 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1098 && !((dyn_h->h->root.type == bfd_link_hash_defined
1099 || dyn_h->h->root.type == bfd_link_hash_defweak)
1100 && dyn_h->h->root.u.def.section->output_section != NULL))
1101 {
1102 dyn_h->plt_offset = x->ofs;
1103 x->ofs += PLT_ENTRY_SIZE;
1104 if (dyn_h->plt_offset < 0x2000)
1105 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1106 }
1107 else
1108 dyn_h->want_plt = 0;
1109
1110 return TRUE;
1111 }
1112
1113 /* Allocate space for a STUB entry. */
1114
1115 static bfd_boolean
1116 allocate_global_data_stub (dyn_h, data)
1117 struct elf64_hppa_dyn_hash_entry *dyn_h;
1118 PTR data;
1119 {
1120 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1121
1122 if (dyn_h->want_stub
1123 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1124 && !((dyn_h->h->root.type == bfd_link_hash_defined
1125 || dyn_h->h->root.type == bfd_link_hash_defweak)
1126 && dyn_h->h->root.u.def.section->output_section != NULL))
1127 {
1128 dyn_h->stub_offset = x->ofs;
1129 x->ofs += sizeof (plt_stub);
1130 }
1131 else
1132 dyn_h->want_stub = 0;
1133 return TRUE;
1134 }
1135
1136 /* Allocate space for a FPTR entry. */
1137
1138 static bfd_boolean
1139 allocate_global_data_opd (dyn_h, data)
1140 struct elf64_hppa_dyn_hash_entry *dyn_h;
1141 PTR data;
1142 {
1143 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1144
1145 if (dyn_h->want_opd)
1146 {
1147 struct elf_link_hash_entry *h = dyn_h->h;
1148
1149 if (h)
1150 while (h->root.type == bfd_link_hash_indirect
1151 || h->root.type == bfd_link_hash_warning)
1152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1153
1154 /* We never need an opd entry for a symbol which is not
1155 defined by this output file. */
1156 if (h && (h->root.type == bfd_link_hash_undefined
1157 || h->root.type == bfd_link_hash_undefweak
1158 || h->root.u.def.section->output_section == NULL))
1159 dyn_h->want_opd = 0;
1160
1161 /* If we are creating a shared library, took the address of a local
1162 function or might export this function from this object file, then
1163 we have to create an opd descriptor. */
1164 else if (x->info->shared
1165 || h == NULL
1166 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1167 || (h->root.type == bfd_link_hash_defined
1168 || h->root.type == bfd_link_hash_defweak))
1169 {
1170 /* If we are creating a shared library, then we will have to
1171 create a runtime relocation for the symbol to properly
1172 initialize the .opd entry. Make sure the symbol gets
1173 added to the dynamic symbol table. */
1174 if (x->info->shared
1175 && (h == NULL || (h->dynindx == -1)))
1176 {
1177 bfd *owner;
1178 /* PR 6511: Default to using the dynamic symbol table. */
1179 owner = (dyn_h->owner ? dyn_h->owner: h->root.u.def.section->owner);
1180
1181 if (!bfd_elf_link_record_local_dynamic_symbol
1182 (x->info, owner, dyn_h->sym_indx))
1183 return FALSE;
1184 }
1185
1186 /* This may not be necessary or desirable anymore now that
1187 we have some support for dealing with section symbols
1188 in dynamic relocs. But name munging does make the result
1189 much easier to debug. ie, the EPLT reloc will reference
1190 a symbol like .foobar, instead of .text + offset. */
1191 if (x->info->shared && h)
1192 {
1193 char *new_name;
1194 struct elf_link_hash_entry *nh;
1195
1196 new_name = alloca (strlen (h->root.root.string) + 2);
1197 new_name[0] = '.';
1198 strcpy (new_name + 1, h->root.root.string);
1199
1200 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1201 new_name, TRUE, TRUE, TRUE);
1202
1203 nh->root.type = h->root.type;
1204 nh->root.u.def.value = h->root.u.def.value;
1205 nh->root.u.def.section = h->root.u.def.section;
1206
1207 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1208 return FALSE;
1209
1210 }
1211 dyn_h->opd_offset = x->ofs;
1212 x->ofs += OPD_ENTRY_SIZE;
1213 }
1214
1215 /* Otherwise we do not need an opd entry. */
1216 else
1217 dyn_h->want_opd = 0;
1218 }
1219 return TRUE;
1220 }
1221
1222 /* HP requires the EI_OSABI field to be filled in. The assignment to
1223 EI_ABIVERSION may not be strictly necessary. */
1224
1225 static void
1226 elf64_hppa_post_process_headers (abfd, link_info)
1227 bfd * abfd;
1228 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1229 {
1230 Elf_Internal_Ehdr * i_ehdrp;
1231
1232 i_ehdrp = elf_elfheader (abfd);
1233
1234 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1235 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1236 }
1237
1238 /* Create function descriptor section (.opd). This section is called .opd
1239 because it contains "official procedure descriptors". The "official"
1240 refers to the fact that these descriptors are used when taking the address
1241 of a procedure, thus ensuring a unique address for each procedure. */
1242
1243 static bfd_boolean
1244 get_opd (abfd, info, hppa_info)
1245 bfd *abfd;
1246 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1247 struct elf64_hppa_link_hash_table *hppa_info;
1248 {
1249 asection *opd;
1250 bfd *dynobj;
1251
1252 opd = hppa_info->opd_sec;
1253 if (!opd)
1254 {
1255 dynobj = hppa_info->root.dynobj;
1256 if (!dynobj)
1257 hppa_info->root.dynobj = dynobj = abfd;
1258
1259 opd = bfd_make_section_with_flags (dynobj, ".opd",
1260 (SEC_ALLOC
1261 | SEC_LOAD
1262 | SEC_HAS_CONTENTS
1263 | SEC_IN_MEMORY
1264 | SEC_LINKER_CREATED));
1265 if (!opd
1266 || !bfd_set_section_alignment (abfd, opd, 3))
1267 {
1268 BFD_ASSERT (0);
1269 return FALSE;
1270 }
1271
1272 hppa_info->opd_sec = opd;
1273 }
1274
1275 return TRUE;
1276 }
1277
1278 /* Create the PLT section. */
1279
1280 static bfd_boolean
1281 get_plt (abfd, info, hppa_info)
1282 bfd *abfd;
1283 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1284 struct elf64_hppa_link_hash_table *hppa_info;
1285 {
1286 asection *plt;
1287 bfd *dynobj;
1288
1289 plt = hppa_info->plt_sec;
1290 if (!plt)
1291 {
1292 dynobj = hppa_info->root.dynobj;
1293 if (!dynobj)
1294 hppa_info->root.dynobj = dynobj = abfd;
1295
1296 plt = bfd_make_section_with_flags (dynobj, ".plt",
1297 (SEC_ALLOC
1298 | SEC_LOAD
1299 | SEC_HAS_CONTENTS
1300 | SEC_IN_MEMORY
1301 | SEC_LINKER_CREATED));
1302 if (!plt
1303 || !bfd_set_section_alignment (abfd, plt, 3))
1304 {
1305 BFD_ASSERT (0);
1306 return FALSE;
1307 }
1308
1309 hppa_info->plt_sec = plt;
1310 }
1311
1312 return TRUE;
1313 }
1314
1315 /* Create the DLT section. */
1316
1317 static bfd_boolean
1318 get_dlt (abfd, info, hppa_info)
1319 bfd *abfd;
1320 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1321 struct elf64_hppa_link_hash_table *hppa_info;
1322 {
1323 asection *dlt;
1324 bfd *dynobj;
1325
1326 dlt = hppa_info->dlt_sec;
1327 if (!dlt)
1328 {
1329 dynobj = hppa_info->root.dynobj;
1330 if (!dynobj)
1331 hppa_info->root.dynobj = dynobj = abfd;
1332
1333 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1334 (SEC_ALLOC
1335 | SEC_LOAD
1336 | SEC_HAS_CONTENTS
1337 | SEC_IN_MEMORY
1338 | SEC_LINKER_CREATED));
1339 if (!dlt
1340 || !bfd_set_section_alignment (abfd, dlt, 3))
1341 {
1342 BFD_ASSERT (0);
1343 return FALSE;
1344 }
1345
1346 hppa_info->dlt_sec = dlt;
1347 }
1348
1349 return TRUE;
1350 }
1351
1352 /* Create the stubs section. */
1353
1354 static bfd_boolean
1355 get_stub (abfd, info, hppa_info)
1356 bfd *abfd;
1357 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1358 struct elf64_hppa_link_hash_table *hppa_info;
1359 {
1360 asection *stub;
1361 bfd *dynobj;
1362
1363 stub = hppa_info->stub_sec;
1364 if (!stub)
1365 {
1366 dynobj = hppa_info->root.dynobj;
1367 if (!dynobj)
1368 hppa_info->root.dynobj = dynobj = abfd;
1369
1370 stub = bfd_make_section_with_flags (dynobj, ".stub",
1371 (SEC_ALLOC | SEC_LOAD
1372 | SEC_HAS_CONTENTS
1373 | SEC_IN_MEMORY
1374 | SEC_READONLY
1375 | SEC_LINKER_CREATED));
1376 if (!stub
1377 || !bfd_set_section_alignment (abfd, stub, 3))
1378 {
1379 BFD_ASSERT (0);
1380 return FALSE;
1381 }
1382
1383 hppa_info->stub_sec = stub;
1384 }
1385
1386 return TRUE;
1387 }
1388
1389 /* Create sections necessary for dynamic linking. This is only a rough
1390 cut and will likely change as we learn more about the somewhat
1391 unusual dynamic linking scheme HP uses.
1392
1393 .stub:
1394 Contains code to implement cross-space calls. The first time one
1395 of the stubs is used it will call into the dynamic linker, later
1396 calls will go straight to the target.
1397
1398 The only stub we support right now looks like
1399
1400 ldd OFFSET(%dp),%r1
1401 bve %r0(%r1)
1402 ldd OFFSET+8(%dp),%dp
1403
1404 Other stubs may be needed in the future. We may want the remove
1405 the break/nop instruction. It is only used right now to keep the
1406 offset of a .plt entry and a .stub entry in sync.
1407
1408 .dlt:
1409 This is what most people call the .got. HP used a different name.
1410 Losers.
1411
1412 .rela.dlt:
1413 Relocations for the DLT.
1414
1415 .plt:
1416 Function pointers as address,gp pairs.
1417
1418 .rela.plt:
1419 Should contain dynamic IPLT (and EPLT?) relocations.
1420
1421 .opd:
1422 FPTRS
1423
1424 .rela.opd:
1425 EPLT relocations for symbols exported from shared libraries. */
1426
1427 static bfd_boolean
1428 elf64_hppa_create_dynamic_sections (abfd, info)
1429 bfd *abfd;
1430 struct bfd_link_info *info;
1431 {
1432 asection *s;
1433
1434 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1435 return FALSE;
1436
1437 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1438 return FALSE;
1439
1440 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1441 return FALSE;
1442
1443 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1444 return FALSE;
1445
1446 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1447 (SEC_ALLOC | SEC_LOAD
1448 | SEC_HAS_CONTENTS
1449 | SEC_IN_MEMORY
1450 | SEC_READONLY
1451 | SEC_LINKER_CREATED));
1452 if (s == NULL
1453 || !bfd_set_section_alignment (abfd, s, 3))
1454 return FALSE;
1455 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1456
1457 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1458 (SEC_ALLOC | SEC_LOAD
1459 | SEC_HAS_CONTENTS
1460 | SEC_IN_MEMORY
1461 | SEC_READONLY
1462 | SEC_LINKER_CREATED));
1463 if (s == NULL
1464 || !bfd_set_section_alignment (abfd, s, 3))
1465 return FALSE;
1466 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1467
1468 s = bfd_make_section_with_flags (abfd, ".rela.data",
1469 (SEC_ALLOC | SEC_LOAD
1470 | SEC_HAS_CONTENTS
1471 | SEC_IN_MEMORY
1472 | SEC_READONLY
1473 | SEC_LINKER_CREATED));
1474 if (s == NULL
1475 || !bfd_set_section_alignment (abfd, s, 3))
1476 return FALSE;
1477 elf64_hppa_hash_table (info)->other_rel_sec = s;
1478
1479 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1480 (SEC_ALLOC | SEC_LOAD
1481 | SEC_HAS_CONTENTS
1482 | SEC_IN_MEMORY
1483 | SEC_READONLY
1484 | SEC_LINKER_CREATED));
1485 if (s == NULL
1486 || !bfd_set_section_alignment (abfd, s, 3))
1487 return FALSE;
1488 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1489
1490 return TRUE;
1491 }
1492
1493 /* Allocate dynamic relocations for those symbols that turned out
1494 to be dynamic. */
1495
1496 static bfd_boolean
1497 allocate_dynrel_entries (dyn_h, data)
1498 struct elf64_hppa_dyn_hash_entry *dyn_h;
1499 PTR data;
1500 {
1501 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1502 struct elf64_hppa_link_hash_table *hppa_info;
1503 struct elf64_hppa_dyn_reloc_entry *rent;
1504 bfd_boolean dynamic_symbol, shared;
1505
1506 hppa_info = elf64_hppa_hash_table (x->info);
1507 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1508 shared = x->info->shared;
1509
1510 /* We may need to allocate relocations for a non-dynamic symbol
1511 when creating a shared library. */
1512 if (!dynamic_symbol && !shared)
1513 return TRUE;
1514
1515 /* Take care of the normal data relocations. */
1516
1517 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1518 {
1519 /* Allocate one iff we are building a shared library, the relocation
1520 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1521 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1522 continue;
1523
1524 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1525
1526 /* Make sure this symbol gets into the dynamic symbol table if it is
1527 not already recorded. ?!? This should not be in the loop since
1528 the symbol need only be added once. */
1529 if (dyn_h->h == 0
1530 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1531 if (!bfd_elf_link_record_local_dynamic_symbol
1532 (x->info, rent->sec->owner, dyn_h->sym_indx))
1533 return FALSE;
1534 }
1535
1536 /* Take care of the GOT and PLT relocations. */
1537
1538 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1539 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1540
1541 /* If we are building a shared library, then every symbol that has an
1542 opd entry will need an EPLT relocation to relocate the symbol's address
1543 and __gp value based on the runtime load address. */
1544 if (shared && dyn_h->want_opd)
1545 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1546
1547 if (dyn_h->want_plt && dynamic_symbol)
1548 {
1549 bfd_size_type t = 0;
1550
1551 /* Dynamic symbols get one IPLT relocation. Local symbols in
1552 shared libraries get two REL relocations. Local symbols in
1553 main applications get nothing. */
1554 if (dynamic_symbol)
1555 t = sizeof (Elf64_External_Rela);
1556 else if (shared)
1557 t = 2 * sizeof (Elf64_External_Rela);
1558
1559 hppa_info->plt_rel_sec->size += t;
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* Adjust a symbol defined by a dynamic object and referenced by a
1566 regular object. */
1567
1568 static bfd_boolean
1569 elf64_hppa_adjust_dynamic_symbol (info, h)
1570 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1571 struct elf_link_hash_entry *h;
1572 {
1573 /* ??? Undefined symbols with PLT entries should be re-defined
1574 to be the PLT entry. */
1575
1576 /* If this is a weak symbol, and there is a real definition, the
1577 processor independent code will have arranged for us to see the
1578 real definition first, and we can just use the same value. */
1579 if (h->u.weakdef != NULL)
1580 {
1581 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1582 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1583 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1584 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1585 return TRUE;
1586 }
1587
1588 /* If this is a reference to a symbol defined by a dynamic object which
1589 is not a function, we might allocate the symbol in our .dynbss section
1590 and allocate a COPY dynamic relocation.
1591
1592 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1593 of hackery. */
1594
1595 return TRUE;
1596 }
1597
1598 /* This function is called via elf_link_hash_traverse to mark millicode
1599 symbols with a dynindx of -1 and to remove the string table reference
1600 from the dynamic symbol table. If the symbol is not a millicode symbol,
1601 elf64_hppa_mark_exported_functions is called. */
1602
1603 static bfd_boolean
1604 elf64_hppa_mark_milli_and_exported_functions (h, data)
1605 struct elf_link_hash_entry *h;
1606 PTR data;
1607 {
1608 struct bfd_link_info *info = (struct bfd_link_info *)data;
1609 struct elf_link_hash_entry *elf = h;
1610
1611 if (elf->root.type == bfd_link_hash_warning)
1612 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1613
1614 if (elf->type == STT_PARISC_MILLI)
1615 {
1616 if (elf->dynindx != -1)
1617 {
1618 elf->dynindx = -1;
1619 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1620 elf->dynstr_index);
1621 }
1622 return TRUE;
1623 }
1624
1625 return elf64_hppa_mark_exported_functions (h, data);
1626 }
1627
1628 /* Set the final sizes of the dynamic sections and allocate memory for
1629 the contents of our special sections. */
1630
1631 static bfd_boolean
1632 elf64_hppa_size_dynamic_sections (output_bfd, info)
1633 bfd *output_bfd;
1634 struct bfd_link_info *info;
1635 {
1636 bfd *dynobj;
1637 asection *s;
1638 bfd_boolean plt;
1639 bfd_boolean relocs;
1640 bfd_boolean reltext;
1641 struct elf64_hppa_allocate_data data;
1642 struct elf64_hppa_link_hash_table *hppa_info;
1643
1644 hppa_info = elf64_hppa_hash_table (info);
1645
1646 dynobj = elf_hash_table (info)->dynobj;
1647 BFD_ASSERT (dynobj != NULL);
1648
1649 /* Mark each function this program exports so that we will allocate
1650 space in the .opd section for each function's FPTR. If we are
1651 creating dynamic sections, change the dynamic index of millicode
1652 symbols to -1 and remove them from the string table for .dynstr.
1653
1654 We have to traverse the main linker hash table since we have to
1655 find functions which may not have been mentioned in any relocs. */
1656 elf_link_hash_traverse (elf_hash_table (info),
1657 (elf_hash_table (info)->dynamic_sections_created
1658 ? elf64_hppa_mark_milli_and_exported_functions
1659 : elf64_hppa_mark_exported_functions),
1660 info);
1661
1662 if (elf_hash_table (info)->dynamic_sections_created)
1663 {
1664 /* Set the contents of the .interp section to the interpreter. */
1665 if (info->executable)
1666 {
1667 s = bfd_get_section_by_name (dynobj, ".interp");
1668 BFD_ASSERT (s != NULL);
1669 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1670 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1671 }
1672 }
1673 else
1674 {
1675 /* We may have created entries in the .rela.got section.
1676 However, if we are not creating the dynamic sections, we will
1677 not actually use these entries. Reset the size of .rela.dlt,
1678 which will cause it to get stripped from the output file
1679 below. */
1680 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1681 if (s != NULL)
1682 s->size = 0;
1683 }
1684
1685 /* Allocate the GOT entries. */
1686
1687 data.info = info;
1688 if (elf64_hppa_hash_table (info)->dlt_sec)
1689 {
1690 data.ofs = 0x0;
1691 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692 allocate_global_data_dlt, &data);
1693 hppa_info->dlt_sec->size = data.ofs;
1694
1695 data.ofs = 0x0;
1696 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1697 allocate_global_data_plt, &data);
1698 hppa_info->plt_sec->size = data.ofs;
1699
1700 data.ofs = 0x0;
1701 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1702 allocate_global_data_stub, &data);
1703 hppa_info->stub_sec->size = data.ofs;
1704 }
1705
1706 /* Allocate space for entries in the .opd section. */
1707 if (elf64_hppa_hash_table (info)->opd_sec)
1708 {
1709 data.ofs = 0;
1710 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1711 allocate_global_data_opd, &data);
1712 hppa_info->opd_sec->size = data.ofs;
1713 }
1714
1715 /* Now allocate space for dynamic relocations, if necessary. */
1716 if (hppa_info->root.dynamic_sections_created)
1717 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1718 allocate_dynrel_entries, &data);
1719
1720 /* The sizes of all the sections are set. Allocate memory for them. */
1721 plt = FALSE;
1722 relocs = FALSE;
1723 reltext = FALSE;
1724 for (s = dynobj->sections; s != NULL; s = s->next)
1725 {
1726 const char *name;
1727
1728 if ((s->flags & SEC_LINKER_CREATED) == 0)
1729 continue;
1730
1731 /* It's OK to base decisions on the section name, because none
1732 of the dynobj section names depend upon the input files. */
1733 name = bfd_get_section_name (dynobj, s);
1734
1735 if (strcmp (name, ".plt") == 0)
1736 {
1737 /* Remember whether there is a PLT. */
1738 plt = s->size != 0;
1739 }
1740 else if (strcmp (name, ".opd") == 0
1741 || CONST_STRNEQ (name, ".dlt")
1742 || strcmp (name, ".stub") == 0
1743 || strcmp (name, ".got") == 0)
1744 {
1745 /* Strip this section if we don't need it; see the comment below. */
1746 }
1747 else if (CONST_STRNEQ (name, ".rela"))
1748 {
1749 if (s->size != 0)
1750 {
1751 asection *target;
1752
1753 /* Remember whether there are any reloc sections other
1754 than .rela.plt. */
1755 if (strcmp (name, ".rela.plt") != 0)
1756 {
1757 const char *outname;
1758
1759 relocs = TRUE;
1760
1761 /* If this relocation section applies to a read only
1762 section, then we probably need a DT_TEXTREL
1763 entry. The entries in the .rela.plt section
1764 really apply to the .got section, which we
1765 created ourselves and so know is not readonly. */
1766 outname = bfd_get_section_name (output_bfd,
1767 s->output_section);
1768 target = bfd_get_section_by_name (output_bfd, outname + 4);
1769 if (target != NULL
1770 && (target->flags & SEC_READONLY) != 0
1771 && (target->flags & SEC_ALLOC) != 0)
1772 reltext = TRUE;
1773 }
1774
1775 /* We use the reloc_count field as a counter if we need
1776 to copy relocs into the output file. */
1777 s->reloc_count = 0;
1778 }
1779 }
1780 else
1781 {
1782 /* It's not one of our sections, so don't allocate space. */
1783 continue;
1784 }
1785
1786 if (s->size == 0)
1787 {
1788 /* If we don't need this section, strip it from the
1789 output file. This is mostly to handle .rela.bss and
1790 .rela.plt. We must create both sections in
1791 create_dynamic_sections, because they must be created
1792 before the linker maps input sections to output
1793 sections. The linker does that before
1794 adjust_dynamic_symbol is called, and it is that
1795 function which decides whether anything needs to go
1796 into these sections. */
1797 s->flags |= SEC_EXCLUDE;
1798 continue;
1799 }
1800
1801 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1802 continue;
1803
1804 /* Allocate memory for the section contents if it has not
1805 been allocated already. We use bfd_zalloc here in case
1806 unused entries are not reclaimed before the section's
1807 contents are written out. This should not happen, but this
1808 way if it does, we get a R_PARISC_NONE reloc instead of
1809 garbage. */
1810 if (s->contents == NULL)
1811 {
1812 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1813 if (s->contents == NULL)
1814 return FALSE;
1815 }
1816 }
1817
1818 if (elf_hash_table (info)->dynamic_sections_created)
1819 {
1820 /* Always create a DT_PLTGOT. It actually has nothing to do with
1821 the PLT, it is how we communicate the __gp value of a load
1822 module to the dynamic linker. */
1823 #define add_dynamic_entry(TAG, VAL) \
1824 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1825
1826 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1827 || !add_dynamic_entry (DT_PLTGOT, 0))
1828 return FALSE;
1829
1830 /* Add some entries to the .dynamic section. We fill in the
1831 values later, in elf64_hppa_finish_dynamic_sections, but we
1832 must add the entries now so that we get the correct size for
1833 the .dynamic section. The DT_DEBUG entry is filled in by the
1834 dynamic linker and used by the debugger. */
1835 if (! info->shared)
1836 {
1837 if (!add_dynamic_entry (DT_DEBUG, 0)
1838 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1839 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1840 return FALSE;
1841 }
1842
1843 /* Force DT_FLAGS to always be set.
1844 Required by HPUX 11.00 patch PHSS_26559. */
1845 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1846 return FALSE;
1847
1848 if (plt)
1849 {
1850 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1851 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1852 || !add_dynamic_entry (DT_JMPREL, 0))
1853 return FALSE;
1854 }
1855
1856 if (relocs)
1857 {
1858 if (!add_dynamic_entry (DT_RELA, 0)
1859 || !add_dynamic_entry (DT_RELASZ, 0)
1860 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1861 return FALSE;
1862 }
1863
1864 if (reltext)
1865 {
1866 if (!add_dynamic_entry (DT_TEXTREL, 0))
1867 return FALSE;
1868 info->flags |= DF_TEXTREL;
1869 }
1870 }
1871 #undef add_dynamic_entry
1872
1873 return TRUE;
1874 }
1875
1876 /* Called after we have output the symbol into the dynamic symbol
1877 table, but before we output the symbol into the normal symbol
1878 table.
1879
1880 For some symbols we had to change their address when outputting
1881 the dynamic symbol table. We undo that change here so that
1882 the symbols have their expected value in the normal symbol
1883 table. Ick. */
1884
1885 static bfd_boolean
1886 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1887 struct bfd_link_info *info;
1888 const char *name;
1889 Elf_Internal_Sym *sym;
1890 asection *input_sec ATTRIBUTE_UNUSED;
1891 struct elf_link_hash_entry *h;
1892 {
1893 struct elf64_hppa_link_hash_table *hppa_info;
1894 struct elf64_hppa_dyn_hash_entry *dyn_h;
1895
1896 /* We may be called with the file symbol or section symbols.
1897 They never need munging, so it is safe to ignore them. */
1898 if (!name)
1899 return TRUE;
1900
1901 /* Get the PA dyn_symbol (if any) associated with NAME. */
1902 hppa_info = elf64_hppa_hash_table (info);
1903 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1904 name, FALSE, FALSE);
1905 if (!dyn_h || dyn_h->h != h)
1906 return TRUE;
1907
1908 /* Function symbols for which we created .opd entries *may* have been
1909 munged by finish_dynamic_symbol and have to be un-munged here.
1910
1911 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1912 into non-dynamic ones, so we initialize st_shndx to -1 in
1913 mark_exported_functions and check to see if it was overwritten
1914 here instead of just checking dyn_h->h->dynindx. */
1915 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1916 {
1917 /* Restore the saved value and section index. */
1918 sym->st_value = dyn_h->st_value;
1919 sym->st_shndx = dyn_h->st_shndx;
1920 }
1921
1922 return TRUE;
1923 }
1924
1925 /* Finish up dynamic symbol handling. We set the contents of various
1926 dynamic sections here. */
1927
1928 static bfd_boolean
1929 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1930 bfd *output_bfd;
1931 struct bfd_link_info *info;
1932 struct elf_link_hash_entry *h;
1933 Elf_Internal_Sym *sym;
1934 {
1935 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1936 struct elf64_hppa_link_hash_table *hppa_info;
1937 struct elf64_hppa_dyn_hash_entry *dyn_h;
1938
1939 hppa_info = elf64_hppa_hash_table (info);
1940 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1941 h->root.root.string, FALSE, FALSE);
1942
1943 stub = hppa_info->stub_sec;
1944 splt = hppa_info->plt_sec;
1945 sdlt = hppa_info->dlt_sec;
1946 sopd = hppa_info->opd_sec;
1947 spltrel = hppa_info->plt_rel_sec;
1948 sdltrel = hppa_info->dlt_rel_sec;
1949
1950 /* Incredible. It is actually necessary to NOT use the symbol's real
1951 value when building the dynamic symbol table for a shared library.
1952 At least for symbols that refer to functions.
1953
1954 We will store a new value and section index into the symbol long
1955 enough to output it into the dynamic symbol table, then we restore
1956 the original values (in elf64_hppa_link_output_symbol_hook). */
1957 if (dyn_h && dyn_h->want_opd)
1958 {
1959 BFD_ASSERT (sopd != NULL);
1960
1961 /* Save away the original value and section index so that we
1962 can restore them later. */
1963 dyn_h->st_value = sym->st_value;
1964 dyn_h->st_shndx = sym->st_shndx;
1965
1966 /* For the dynamic symbol table entry, we want the value to be
1967 address of this symbol's entry within the .opd section. */
1968 sym->st_value = (dyn_h->opd_offset
1969 + sopd->output_offset
1970 + sopd->output_section->vma);
1971 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1972 sopd->output_section);
1973 }
1974
1975 /* Initialize a .plt entry if requested. */
1976 if (dyn_h && dyn_h->want_plt
1977 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1978 {
1979 bfd_vma value;
1980 Elf_Internal_Rela rel;
1981 bfd_byte *loc;
1982
1983 BFD_ASSERT (splt != NULL && spltrel != NULL);
1984
1985 /* We do not actually care about the value in the PLT entry
1986 if we are creating a shared library and the symbol is
1987 still undefined, we create a dynamic relocation to fill
1988 in the correct value. */
1989 if (info->shared && h->root.type == bfd_link_hash_undefined)
1990 value = 0;
1991 else
1992 value = (h->root.u.def.value + h->root.u.def.section->vma);
1993
1994 /* Fill in the entry in the procedure linkage table.
1995
1996 The format of a plt entry is
1997 <funcaddr> <__gp>.
1998
1999 plt_offset is the offset within the PLT section at which to
2000 install the PLT entry.
2001
2002 We are modifying the in-memory PLT contents here, so we do not add
2003 in the output_offset of the PLT section. */
2004
2005 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2006 value = _bfd_get_gp_value (splt->output_section->owner);
2007 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2008
2009 /* Create a dynamic IPLT relocation for this entry.
2010
2011 We are creating a relocation in the output file's PLT section,
2012 which is included within the DLT secton. So we do need to include
2013 the PLT's output_offset in the computation of the relocation's
2014 address. */
2015 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2016 + splt->output_section->vma);
2017 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2018 rel.r_addend = 0;
2019
2020 loc = spltrel->contents;
2021 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2022 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2023 }
2024
2025 /* Initialize an external call stub entry if requested. */
2026 if (dyn_h && dyn_h->want_stub
2027 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2028 {
2029 bfd_vma value;
2030 int insn;
2031 unsigned int max_offset;
2032
2033 BFD_ASSERT (stub != NULL);
2034
2035 /* Install the generic stub template.
2036
2037 We are modifying the contents of the stub section, so we do not
2038 need to include the stub section's output_offset here. */
2039 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2040
2041 /* Fix up the first ldd instruction.
2042
2043 We are modifying the contents of the STUB section in memory,
2044 so we do not need to include its output offset in this computation.
2045
2046 Note the plt_offset value is the value of the PLT entry relative to
2047 the start of the PLT section. These instructions will reference
2048 data relative to the value of __gp, which may not necessarily have
2049 the same address as the start of the PLT section.
2050
2051 gp_offset contains the offset of __gp within the PLT section. */
2052 value = dyn_h->plt_offset - hppa_info->gp_offset;
2053
2054 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2055 if (output_bfd->arch_info->mach >= 25)
2056 {
2057 /* Wide mode allows 16 bit offsets. */
2058 max_offset = 32768;
2059 insn &= ~ 0xfff1;
2060 insn |= re_assemble_16 ((int) value);
2061 }
2062 else
2063 {
2064 max_offset = 8192;
2065 insn &= ~ 0x3ff1;
2066 insn |= re_assemble_14 ((int) value);
2067 }
2068
2069 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2070 {
2071 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2072 dyn_h->root.string,
2073 (long) value);
2074 return FALSE;
2075 }
2076
2077 bfd_put_32 (stub->owner, (bfd_vma) insn,
2078 stub->contents + dyn_h->stub_offset);
2079
2080 /* Fix up the second ldd instruction. */
2081 value += 8;
2082 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2083 if (output_bfd->arch_info->mach >= 25)
2084 {
2085 insn &= ~ 0xfff1;
2086 insn |= re_assemble_16 ((int) value);
2087 }
2088 else
2089 {
2090 insn &= ~ 0x3ff1;
2091 insn |= re_assemble_14 ((int) value);
2092 }
2093 bfd_put_32 (stub->owner, (bfd_vma) insn,
2094 stub->contents + dyn_h->stub_offset + 8);
2095 }
2096
2097 return TRUE;
2098 }
2099
2100 /* The .opd section contains FPTRs for each function this file
2101 exports. Initialize the FPTR entries. */
2102
2103 static bfd_boolean
2104 elf64_hppa_finalize_opd (dyn_h, data)
2105 struct elf64_hppa_dyn_hash_entry *dyn_h;
2106 PTR data;
2107 {
2108 struct bfd_link_info *info = (struct bfd_link_info *)data;
2109 struct elf64_hppa_link_hash_table *hppa_info;
2110 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2111 asection *sopd;
2112 asection *sopdrel;
2113
2114 hppa_info = elf64_hppa_hash_table (info);
2115 sopd = hppa_info->opd_sec;
2116 sopdrel = hppa_info->opd_rel_sec;
2117
2118 if (h && dyn_h->want_opd)
2119 {
2120 bfd_vma value;
2121
2122 /* The first two words of an .opd entry are zero.
2123
2124 We are modifying the contents of the OPD section in memory, so we
2125 do not need to include its output offset in this computation. */
2126 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2127
2128 value = (h->root.u.def.value
2129 + h->root.u.def.section->output_section->vma
2130 + h->root.u.def.section->output_offset);
2131
2132 /* The next word is the address of the function. */
2133 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2134
2135 /* The last word is our local __gp value. */
2136 value = _bfd_get_gp_value (sopd->output_section->owner);
2137 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2138 }
2139
2140 /* If we are generating a shared library, we must generate EPLT relocations
2141 for each entry in the .opd, even for static functions (they may have
2142 had their address taken). */
2143 if (info->shared && dyn_h && dyn_h->want_opd)
2144 {
2145 Elf_Internal_Rela rel;
2146 bfd_byte *loc;
2147 int dynindx;
2148
2149 /* We may need to do a relocation against a local symbol, in
2150 which case we have to look up it's dynamic symbol index off
2151 the local symbol hash table. */
2152 if (h && h->dynindx != -1)
2153 dynindx = h->dynindx;
2154 else
2155 dynindx
2156 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2157 dyn_h->sym_indx);
2158
2159 /* The offset of this relocation is the absolute address of the
2160 .opd entry for this symbol. */
2161 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2162 + sopd->output_section->vma);
2163
2164 /* If H is non-null, then we have an external symbol.
2165
2166 It is imperative that we use a different dynamic symbol for the
2167 EPLT relocation if the symbol has global scope.
2168
2169 In the dynamic symbol table, the function symbol will have a value
2170 which is address of the function's .opd entry.
2171
2172 Thus, we can not use that dynamic symbol for the EPLT relocation
2173 (if we did, the data in the .opd would reference itself rather
2174 than the actual address of the function). Instead we have to use
2175 a new dynamic symbol which has the same value as the original global
2176 function symbol.
2177
2178 We prefix the original symbol with a "." and use the new symbol in
2179 the EPLT relocation. This new symbol has already been recorded in
2180 the symbol table, we just have to look it up and use it.
2181
2182 We do not have such problems with static functions because we do
2183 not make their addresses in the dynamic symbol table point to
2184 the .opd entry. Ultimately this should be safe since a static
2185 function can not be directly referenced outside of its shared
2186 library.
2187
2188 We do have to play similar games for FPTR relocations in shared
2189 libraries, including those for static symbols. See the FPTR
2190 handling in elf64_hppa_finalize_dynreloc. */
2191 if (h)
2192 {
2193 char *new_name;
2194 struct elf_link_hash_entry *nh;
2195
2196 new_name = alloca (strlen (h->root.root.string) + 2);
2197 new_name[0] = '.';
2198 strcpy (new_name + 1, h->root.root.string);
2199
2200 nh = elf_link_hash_lookup (elf_hash_table (info),
2201 new_name, TRUE, TRUE, FALSE);
2202
2203 /* All we really want from the new symbol is its dynamic
2204 symbol index. */
2205 if (nh)
2206 dynindx = nh->dynindx;
2207 }
2208
2209 rel.r_addend = 0;
2210 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2211
2212 loc = sopdrel->contents;
2213 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2214 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2215 }
2216 return TRUE;
2217 }
2218
2219 /* The .dlt section contains addresses for items referenced through the
2220 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2221 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2222
2223 static bfd_boolean
2224 elf64_hppa_finalize_dlt (dyn_h, data)
2225 struct elf64_hppa_dyn_hash_entry *dyn_h;
2226 PTR data;
2227 {
2228 struct bfd_link_info *info = (struct bfd_link_info *)data;
2229 struct elf64_hppa_link_hash_table *hppa_info;
2230 asection *sdlt, *sdltrel;
2231 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2232
2233 hppa_info = elf64_hppa_hash_table (info);
2234
2235 sdlt = hppa_info->dlt_sec;
2236 sdltrel = hppa_info->dlt_rel_sec;
2237
2238 /* H/DYN_H may refer to a local variable and we know it's
2239 address, so there is no need to create a relocation. Just install
2240 the proper value into the DLT, note this shortcut can not be
2241 skipped when building a shared library. */
2242 if (! info->shared && h && dyn_h->want_dlt)
2243 {
2244 bfd_vma value;
2245
2246 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2247 to point to the FPTR entry in the .opd section.
2248
2249 We include the OPD's output offset in this computation as
2250 we are referring to an absolute address in the resulting
2251 object file. */
2252 if (dyn_h->want_opd)
2253 {
2254 value = (dyn_h->opd_offset
2255 + hppa_info->opd_sec->output_offset
2256 + hppa_info->opd_sec->output_section->vma);
2257 }
2258 else if ((h->root.type == bfd_link_hash_defined
2259 || h->root.type == bfd_link_hash_defweak)
2260 && h->root.u.def.section)
2261 {
2262 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2263 if (h->root.u.def.section->output_section)
2264 value += h->root.u.def.section->output_section->vma;
2265 else
2266 value += h->root.u.def.section->vma;
2267 }
2268 else
2269 /* We have an undefined function reference. */
2270 value = 0;
2271
2272 /* We do not need to include the output offset of the DLT section
2273 here because we are modifying the in-memory contents. */
2274 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2275 }
2276
2277 /* Create a relocation for the DLT entry associated with this symbol.
2278 When building a shared library the symbol does not have to be dynamic. */
2279 if (dyn_h->want_dlt
2280 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2281 {
2282 Elf_Internal_Rela rel;
2283 bfd_byte *loc;
2284 int dynindx;
2285
2286 /* We may need to do a relocation against a local symbol, in
2287 which case we have to look up it's dynamic symbol index off
2288 the local symbol hash table. */
2289 if (h && h->dynindx != -1)
2290 dynindx = h->dynindx;
2291 else
2292 dynindx
2293 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2294 dyn_h->sym_indx);
2295
2296 /* Create a dynamic relocation for this entry. Do include the output
2297 offset of the DLT entry since we need an absolute address in the
2298 resulting object file. */
2299 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2300 + sdlt->output_section->vma);
2301 if (h && h->type == STT_FUNC)
2302 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2303 else
2304 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2305 rel.r_addend = 0;
2306
2307 loc = sdltrel->contents;
2308 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2309 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2310 }
2311 return TRUE;
2312 }
2313
2314 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2315 for dynamic functions used to initialize static data. */
2316
2317 static bfd_boolean
2318 elf64_hppa_finalize_dynreloc (dyn_h, data)
2319 struct elf64_hppa_dyn_hash_entry *dyn_h;
2320 PTR data;
2321 {
2322 struct bfd_link_info *info = (struct bfd_link_info *)data;
2323 struct elf64_hppa_link_hash_table *hppa_info;
2324 struct elf_link_hash_entry *h;
2325 int dynamic_symbol;
2326
2327 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2328
2329 if (!dynamic_symbol && !info->shared)
2330 return TRUE;
2331
2332 if (dyn_h->reloc_entries)
2333 {
2334 struct elf64_hppa_dyn_reloc_entry *rent;
2335 int dynindx;
2336
2337 hppa_info = elf64_hppa_hash_table (info);
2338 h = dyn_h->h;
2339
2340 /* We may need to do a relocation against a local symbol, in
2341 which case we have to look up it's dynamic symbol index off
2342 the local symbol hash table. */
2343 if (h && h->dynindx != -1)
2344 dynindx = h->dynindx;
2345 else
2346 dynindx
2347 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2348 dyn_h->sym_indx);
2349
2350 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2351 {
2352 Elf_Internal_Rela rel;
2353 bfd_byte *loc;
2354
2355 /* Allocate one iff we are building a shared library, the relocation
2356 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2357 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2358 continue;
2359
2360 /* Create a dynamic relocation for this entry.
2361
2362 We need the output offset for the reloc's section because
2363 we are creating an absolute address in the resulting object
2364 file. */
2365 rel.r_offset = (rent->offset + rent->sec->output_offset
2366 + rent->sec->output_section->vma);
2367
2368 /* An FPTR64 relocation implies that we took the address of
2369 a function and that the function has an entry in the .opd
2370 section. We want the FPTR64 relocation to reference the
2371 entry in .opd.
2372
2373 We could munge the symbol value in the dynamic symbol table
2374 (in fact we already do for functions with global scope) to point
2375 to the .opd entry. Then we could use that dynamic symbol in
2376 this relocation.
2377
2378 Or we could do something sensible, not munge the symbol's
2379 address and instead just use a different symbol to reference
2380 the .opd entry. At least that seems sensible until you
2381 realize there's no local dynamic symbols we can use for that
2382 purpose. Thus the hair in the check_relocs routine.
2383
2384 We use a section symbol recorded by check_relocs as the
2385 base symbol for the relocation. The addend is the difference
2386 between the section symbol and the address of the .opd entry. */
2387 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2388 {
2389 bfd_vma value, value2;
2390
2391 /* First compute the address of the opd entry for this symbol. */
2392 value = (dyn_h->opd_offset
2393 + hppa_info->opd_sec->output_section->vma
2394 + hppa_info->opd_sec->output_offset);
2395
2396 /* Compute the value of the start of the section with
2397 the relocation. */
2398 value2 = (rent->sec->output_section->vma
2399 + rent->sec->output_offset);
2400
2401 /* Compute the difference between the start of the section
2402 with the relocation and the opd entry. */
2403 value -= value2;
2404
2405 /* The result becomes the addend of the relocation. */
2406 rel.r_addend = value;
2407
2408 /* The section symbol becomes the symbol for the dynamic
2409 relocation. */
2410 dynindx
2411 = _bfd_elf_link_lookup_local_dynindx (info,
2412 rent->sec->owner,
2413 rent->sec_symndx);
2414 }
2415 else
2416 rel.r_addend = rent->addend;
2417
2418 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2419
2420 loc = hppa_info->other_rel_sec->contents;
2421 loc += (hppa_info->other_rel_sec->reloc_count++
2422 * sizeof (Elf64_External_Rela));
2423 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2424 &rel, loc);
2425 }
2426 }
2427
2428 return TRUE;
2429 }
2430
2431 /* Used to decide how to sort relocs in an optimal manner for the
2432 dynamic linker, before writing them out. */
2433
2434 static enum elf_reloc_type_class
2435 elf64_hppa_reloc_type_class (rela)
2436 const Elf_Internal_Rela *rela;
2437 {
2438 if (ELF64_R_SYM (rela->r_info) == 0)
2439 return reloc_class_relative;
2440
2441 switch ((int) ELF64_R_TYPE (rela->r_info))
2442 {
2443 case R_PARISC_IPLT:
2444 return reloc_class_plt;
2445 case R_PARISC_COPY:
2446 return reloc_class_copy;
2447 default:
2448 return reloc_class_normal;
2449 }
2450 }
2451
2452 /* Finish up the dynamic sections. */
2453
2454 static bfd_boolean
2455 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2456 bfd *output_bfd;
2457 struct bfd_link_info *info;
2458 {
2459 bfd *dynobj;
2460 asection *sdyn;
2461 struct elf64_hppa_link_hash_table *hppa_info;
2462
2463 hppa_info = elf64_hppa_hash_table (info);
2464
2465 /* Finalize the contents of the .opd section. */
2466 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2467 elf64_hppa_finalize_opd,
2468 info);
2469
2470 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2471 elf64_hppa_finalize_dynreloc,
2472 info);
2473
2474 /* Finalize the contents of the .dlt section. */
2475 dynobj = elf_hash_table (info)->dynobj;
2476 /* Finalize the contents of the .dlt section. */
2477 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2478 elf64_hppa_finalize_dlt,
2479 info);
2480
2481 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2482
2483 if (elf_hash_table (info)->dynamic_sections_created)
2484 {
2485 Elf64_External_Dyn *dyncon, *dynconend;
2486
2487 BFD_ASSERT (sdyn != NULL);
2488
2489 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2490 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2491 for (; dyncon < dynconend; dyncon++)
2492 {
2493 Elf_Internal_Dyn dyn;
2494 asection *s;
2495
2496 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2497
2498 switch (dyn.d_tag)
2499 {
2500 default:
2501 break;
2502
2503 case DT_HP_LOAD_MAP:
2504 /* Compute the absolute address of 16byte scratchpad area
2505 for the dynamic linker.
2506
2507 By convention the linker script will allocate the scratchpad
2508 area at the start of the .data section. So all we have to
2509 to is find the start of the .data section. */
2510 s = bfd_get_section_by_name (output_bfd, ".data");
2511 dyn.d_un.d_ptr = s->vma;
2512 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2513 break;
2514
2515 case DT_PLTGOT:
2516 /* HP's use PLTGOT to set the GOT register. */
2517 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2518 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2519 break;
2520
2521 case DT_JMPREL:
2522 s = hppa_info->plt_rel_sec;
2523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2524 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2525 break;
2526
2527 case DT_PLTRELSZ:
2528 s = hppa_info->plt_rel_sec;
2529 dyn.d_un.d_val = s->size;
2530 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 break;
2532
2533 case DT_RELA:
2534 s = hppa_info->other_rel_sec;
2535 if (! s || ! s->size)
2536 s = hppa_info->dlt_rel_sec;
2537 if (! s || ! s->size)
2538 s = hppa_info->opd_rel_sec;
2539 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2540 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 break;
2542
2543 case DT_RELASZ:
2544 s = hppa_info->other_rel_sec;
2545 dyn.d_un.d_val = s->size;
2546 s = hppa_info->dlt_rel_sec;
2547 dyn.d_un.d_val += s->size;
2548 s = hppa_info->opd_rel_sec;
2549 dyn.d_un.d_val += s->size;
2550 /* There is some question about whether or not the size of
2551 the PLT relocs should be included here. HP's tools do
2552 it, so we'll emulate them. */
2553 s = hppa_info->plt_rel_sec;
2554 dyn.d_un.d_val += s->size;
2555 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2556 break;
2557
2558 }
2559 }
2560 }
2561
2562 return TRUE;
2563 }
2564
2565 /* Support for core dump NOTE sections. */
2566
2567 static bfd_boolean
2568 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2569 {
2570 int offset;
2571 size_t size;
2572
2573 switch (note->descsz)
2574 {
2575 default:
2576 return FALSE;
2577
2578 case 760: /* Linux/hppa */
2579 /* pr_cursig */
2580 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2581
2582 /* pr_pid */
2583 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2584
2585 /* pr_reg */
2586 offset = 112;
2587 size = 640;
2588
2589 break;
2590 }
2591
2592 /* Make a ".reg/999" section. */
2593 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2594 size, note->descpos + offset);
2595 }
2596
2597 static bfd_boolean
2598 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2599 {
2600 char * command;
2601 int n;
2602
2603 switch (note->descsz)
2604 {
2605 default:
2606 return FALSE;
2607
2608 case 136: /* Linux/hppa elf_prpsinfo. */
2609 elf_tdata (abfd)->core_program
2610 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2611 elf_tdata (abfd)->core_command
2612 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2613 }
2614
2615 /* Note that for some reason, a spurious space is tacked
2616 onto the end of the args in some (at least one anyway)
2617 implementations, so strip it off if it exists. */
2618 command = elf_tdata (abfd)->core_command;
2619 n = strlen (command);
2620
2621 if (0 < n && command[n - 1] == ' ')
2622 command[n - 1] = '\0';
2623
2624 return TRUE;
2625 }
2626
2627 /* Return the number of additional phdrs we will need.
2628
2629 The generic ELF code only creates PT_PHDRs for executables. The HP
2630 dynamic linker requires PT_PHDRs for dynamic libraries too.
2631
2632 This routine indicates that the backend needs one additional program
2633 header for that case.
2634
2635 Note we do not have access to the link info structure here, so we have
2636 to guess whether or not we are building a shared library based on the
2637 existence of a .interp section. */
2638
2639 static int
2640 elf64_hppa_additional_program_headers (bfd *abfd,
2641 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2642 {
2643 asection *s;
2644
2645 /* If we are creating a shared library, then we have to create a
2646 PT_PHDR segment. HP's dynamic linker chokes without it. */
2647 s = bfd_get_section_by_name (abfd, ".interp");
2648 if (! s)
2649 return 1;
2650 return 0;
2651 }
2652
2653 /* Allocate and initialize any program headers required by this
2654 specific backend.
2655
2656 The generic ELF code only creates PT_PHDRs for executables. The HP
2657 dynamic linker requires PT_PHDRs for dynamic libraries too.
2658
2659 This allocates the PT_PHDR and initializes it in a manner suitable
2660 for the HP linker.
2661
2662 Note we do not have access to the link info structure here, so we have
2663 to guess whether or not we are building a shared library based on the
2664 existence of a .interp section. */
2665
2666 static bfd_boolean
2667 elf64_hppa_modify_segment_map (bfd *abfd,
2668 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2669 {
2670 struct elf_segment_map *m;
2671 asection *s;
2672
2673 s = bfd_get_section_by_name (abfd, ".interp");
2674 if (! s)
2675 {
2676 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2677 if (m->p_type == PT_PHDR)
2678 break;
2679 if (m == NULL)
2680 {
2681 m = ((struct elf_segment_map *)
2682 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2683 if (m == NULL)
2684 return FALSE;
2685
2686 m->p_type = PT_PHDR;
2687 m->p_flags = PF_R | PF_X;
2688 m->p_flags_valid = 1;
2689 m->p_paddr_valid = 1;
2690 m->includes_phdrs = 1;
2691
2692 m->next = elf_tdata (abfd)->segment_map;
2693 elf_tdata (abfd)->segment_map = m;
2694 }
2695 }
2696
2697 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2698 if (m->p_type == PT_LOAD)
2699 {
2700 unsigned int i;
2701
2702 for (i = 0; i < m->count; i++)
2703 {
2704 /* The code "hint" is not really a hint. It is a requirement
2705 for certain versions of the HP dynamic linker. Worse yet,
2706 it must be set even if the shared library does not have
2707 any code in its "text" segment (thus the check for .hash
2708 to catch this situation). */
2709 if (m->sections[i]->flags & SEC_CODE
2710 || (strcmp (m->sections[i]->name, ".hash") == 0))
2711 m->p_flags |= (PF_X | PF_HP_CODE);
2712 }
2713 }
2714
2715 return TRUE;
2716 }
2717
2718 /* Called when writing out an object file to decide the type of a
2719 symbol. */
2720 static int
2721 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2722 Elf_Internal_Sym *elf_sym;
2723 int type;
2724 {
2725 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2726 return STT_PARISC_MILLI;
2727 else
2728 return type;
2729 }
2730
2731 /* Support HP specific sections for core files. */
2732 static bfd_boolean
2733 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2734 const char *typename)
2735 {
2736 if (hdr->p_type == PT_HP_CORE_KERNEL)
2737 {
2738 asection *sect;
2739
2740 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2741 return FALSE;
2742
2743 sect = bfd_make_section_anyway (abfd, ".kernel");
2744 if (sect == NULL)
2745 return FALSE;
2746 sect->size = hdr->p_filesz;
2747 sect->filepos = hdr->p_offset;
2748 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2749 return TRUE;
2750 }
2751
2752 if (hdr->p_type == PT_HP_CORE_PROC)
2753 {
2754 int sig;
2755
2756 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2757 return FALSE;
2758 if (bfd_bread (&sig, 4, abfd) != 4)
2759 return FALSE;
2760
2761 elf_tdata (abfd)->core_signal = sig;
2762
2763 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2764 return FALSE;
2765
2766 /* GDB uses the ".reg" section to read register contents. */
2767 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2768 hdr->p_offset);
2769 }
2770
2771 if (hdr->p_type == PT_HP_CORE_LOADABLE
2772 || hdr->p_type == PT_HP_CORE_STACK
2773 || hdr->p_type == PT_HP_CORE_MMF)
2774 hdr->p_type = PT_LOAD;
2775
2776 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2777 }
2778
2779 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2780 {
2781 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2782 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2783 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2784 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2785 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2786 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2787 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2788 { NULL, 0, 0, 0, 0 }
2789 };
2790
2791 /* The hash bucket size is the standard one, namely 4. */
2792
2793 const struct elf_size_info hppa64_elf_size_info =
2794 {
2795 sizeof (Elf64_External_Ehdr),
2796 sizeof (Elf64_External_Phdr),
2797 sizeof (Elf64_External_Shdr),
2798 sizeof (Elf64_External_Rel),
2799 sizeof (Elf64_External_Rela),
2800 sizeof (Elf64_External_Sym),
2801 sizeof (Elf64_External_Dyn),
2802 sizeof (Elf_External_Note),
2803 4,
2804 1,
2805 64, 3,
2806 ELFCLASS64, EV_CURRENT,
2807 bfd_elf64_write_out_phdrs,
2808 bfd_elf64_write_shdrs_and_ehdr,
2809 bfd_elf64_checksum_contents,
2810 bfd_elf64_write_relocs,
2811 bfd_elf64_swap_symbol_in,
2812 bfd_elf64_swap_symbol_out,
2813 bfd_elf64_slurp_reloc_table,
2814 bfd_elf64_slurp_symbol_table,
2815 bfd_elf64_swap_dyn_in,
2816 bfd_elf64_swap_dyn_out,
2817 bfd_elf64_swap_reloc_in,
2818 bfd_elf64_swap_reloc_out,
2819 bfd_elf64_swap_reloca_in,
2820 bfd_elf64_swap_reloca_out
2821 };
2822
2823 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2824 #define TARGET_BIG_NAME "elf64-hppa"
2825 #define ELF_ARCH bfd_arch_hppa
2826 #define ELF_MACHINE_CODE EM_PARISC
2827 /* This is not strictly correct. The maximum page size for PA2.0 is
2828 64M. But everything still uses 4k. */
2829 #define ELF_MAXPAGESIZE 0x1000
2830 #define ELF_OSABI ELFOSABI_HPUX
2831
2832 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2833 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
2834 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2835 #define elf_info_to_howto elf_hppa_info_to_howto
2836 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2837
2838 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2839 #define elf_backend_object_p elf64_hppa_object_p
2840 #define elf_backend_final_write_processing \
2841 elf_hppa_final_write_processing
2842 #define elf_backend_fake_sections elf_hppa_fake_sections
2843 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2844
2845 #define elf_backend_relocate_section elf_hppa_relocate_section
2846
2847 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2848
2849 #define elf_backend_create_dynamic_sections \
2850 elf64_hppa_create_dynamic_sections
2851 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2852
2853 #define elf_backend_omit_section_dynsym \
2854 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2855 #define elf_backend_adjust_dynamic_symbol \
2856 elf64_hppa_adjust_dynamic_symbol
2857
2858 #define elf_backend_size_dynamic_sections \
2859 elf64_hppa_size_dynamic_sections
2860
2861 #define elf_backend_finish_dynamic_symbol \
2862 elf64_hppa_finish_dynamic_symbol
2863 #define elf_backend_finish_dynamic_sections \
2864 elf64_hppa_finish_dynamic_sections
2865 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2866 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2867
2868 /* Stuff for the BFD linker: */
2869 #define bfd_elf64_bfd_link_hash_table_create \
2870 elf64_hppa_hash_table_create
2871
2872 #define elf_backend_check_relocs \
2873 elf64_hppa_check_relocs
2874
2875 #define elf_backend_size_info \
2876 hppa64_elf_size_info
2877
2878 #define elf_backend_additional_program_headers \
2879 elf64_hppa_additional_program_headers
2880
2881 #define elf_backend_modify_segment_map \
2882 elf64_hppa_modify_segment_map
2883
2884 #define elf_backend_link_output_symbol_hook \
2885 elf64_hppa_link_output_symbol_hook
2886
2887 #define elf_backend_want_got_plt 0
2888 #define elf_backend_plt_readonly 0
2889 #define elf_backend_want_plt_sym 0
2890 #define elf_backend_got_header_size 0
2891 #define elf_backend_type_change_ok TRUE
2892 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2893 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2894 #define elf_backend_rela_normal 1
2895 #define elf_backend_special_sections elf64_hppa_special_sections
2896 #define elf_backend_action_discarded elf_hppa_action_discarded
2897 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2898
2899 #define elf64_bed elf64_hppa_hpux_bed
2900
2901 #include "elf64-target.h"
2902
2903 #undef TARGET_BIG_SYM
2904 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2905 #undef TARGET_BIG_NAME
2906 #define TARGET_BIG_NAME "elf64-hppa-linux"
2907 #undef ELF_OSABI
2908 #define ELF_OSABI ELFOSABI_LINUX
2909 #undef elf_backend_post_process_headers
2910 #define elf_backend_post_process_headers _bfd_elf_set_osabi
2911 #undef elf64_bed
2912 #define elf64_bed elf64_hppa_linux_bed
2913
2914 #include "elf64-target.h"
This page took 0.084178 seconds and 3 git commands to generate.