PR 2434
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167 bfd_boolean create, bfd_boolean copy));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171 PTR info));
172
173 static const char *get_dyn_name
174 PARAMS ((bfd *, struct elf_link_hash_entry *,
175 const Elf_Internal_Rela *, char **, size_t *));
176
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
180
181 static bfd_boolean elf64_hppa_object_p
182 PARAMS ((bfd *));
183
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd *, struct bfd_link_info *));
198
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
202
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207 static int elf64_hppa_additional_program_headers
208 PARAMS ((bfd *));
209
210 static bfd_boolean elf64_hppa_modify_segment_map
211 PARAMS ((bfd *, struct bfd_link_info *));
212
213 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
214 PARAMS ((const Elf_Internal_Rela *));
215
216 static bfd_boolean elf64_hppa_finish_dynamic_sections
217 PARAMS ((bfd *, struct bfd_link_info *));
218
219 static bfd_boolean elf64_hppa_check_relocs
220 PARAMS ((bfd *, struct bfd_link_info *,
221 asection *, const Elf_Internal_Rela *));
222
223 static bfd_boolean elf64_hppa_dynamic_symbol_p
224 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
225
226 static bfd_boolean elf64_hppa_mark_exported_functions
227 PARAMS ((struct elf_link_hash_entry *, PTR));
228
229 static bfd_boolean elf64_hppa_finalize_opd
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static bfd_boolean elf64_hppa_finalize_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean allocate_global_data_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_plt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_stub
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean allocate_global_data_opd
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247 static bfd_boolean get_reloc_section
248 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
249
250 static bfd_boolean count_dyn_reloc
251 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
252 int, asection *, int, bfd_vma, bfd_vma));
253
254 static bfd_boolean allocate_dynrel_entries
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static bfd_boolean elf64_hppa_finalize_dynreloc
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260 static bfd_boolean get_opd
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static bfd_boolean get_plt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static bfd_boolean get_dlt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static bfd_boolean get_stub
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272 static int elf64_hppa_elf_get_symbol_type
273 PARAMS ((Elf_Internal_Sym *, int));
274
275 static bfd_boolean
276 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
277 bfd *abfd ATTRIBUTE_UNUSED,
278 new_hash_entry_func new,
279 unsigned int entsize)
280 {
281 memset (ht, 0, sizeof (*ht));
282 return bfd_hash_table_init (&ht->root, new, entsize);
283 }
284
285 static struct bfd_hash_entry*
286 elf64_hppa_new_dyn_hash_entry (entry, table, string)
287 struct bfd_hash_entry *entry;
288 struct bfd_hash_table *table;
289 const char *string;
290 {
291 struct elf64_hppa_dyn_hash_entry *ret;
292 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
293
294 /* Allocate the structure if it has not already been allocated by a
295 subclass. */
296 if (!ret)
297 ret = bfd_hash_allocate (table, sizeof (*ret));
298
299 if (!ret)
300 return 0;
301
302 /* Call the allocation method of the superclass. */
303 ret = ((struct elf64_hppa_dyn_hash_entry *)
304 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
305
306 /* Initialize our local data. All zeros. */
307 memset (&ret->dlt_offset, 0,
308 (sizeof (struct elf64_hppa_dyn_hash_entry)
309 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
310
311 return &ret->root;
312 }
313
314 /* Create the derived linker hash table. The PA64 ELF port uses this
315 derived hash table to keep information specific to the PA ElF
316 linker (without using static variables). */
317
318 static struct bfd_link_hash_table*
319 elf64_hppa_hash_table_create (abfd)
320 bfd *abfd;
321 {
322 struct elf64_hppa_link_hash_table *ret;
323
324 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
325 if (!ret)
326 return 0;
327 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
328 _bfd_elf_link_hash_newfunc,
329 sizeof (struct elf_link_hash_entry)))
330 {
331 bfd_release (abfd, ret);
332 return 0;
333 }
334
335 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
336 elf64_hppa_new_dyn_hash_entry,
337 sizeof (struct elf64_hppa_dyn_hash_entry)))
338 return 0;
339 return &ret->root.root;
340 }
341
342 /* Look up an entry in a PA64 ELF linker hash table. */
343
344 static struct elf64_hppa_dyn_hash_entry *
345 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346 struct elf64_hppa_dyn_hash_table *table;
347 const char *string;
348 bfd_boolean create, copy;
349 {
350 return ((struct elf64_hppa_dyn_hash_entry *)
351 bfd_hash_lookup (&table->root, string, create, copy));
352 }
353
354 /* Traverse a PA64 ELF linker hash table. */
355
356 static void
357 elf64_hppa_dyn_hash_traverse (table, func, info)
358 struct elf64_hppa_dyn_hash_table *table;
359 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
360 PTR info;
361 {
362 (bfd_hash_traverse
363 (&table->root,
364 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
365 info));
366 }
367 \f
368 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
369
370 Additionally we set the default architecture and machine. */
371 static bfd_boolean
372 elf64_hppa_object_p (abfd)
373 bfd *abfd;
374 {
375 Elf_Internal_Ehdr * i_ehdrp;
376 unsigned int flags;
377
378 i_ehdrp = elf_elfheader (abfd);
379 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
380 {
381 /* GCC on hppa-linux produces binaries with OSABI=Linux,
382 but the kernel produces corefiles with OSABI=SysV. */
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
384 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
385 return FALSE;
386 }
387 else
388 {
389 /* HPUX produces binaries with OSABI=HPUX,
390 but the kernel produces corefiles with OSABI=SysV. */
391 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
392 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
393 return FALSE;
394 }
395
396 flags = i_ehdrp->e_flags;
397 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
398 {
399 case EFA_PARISC_1_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
401 case EFA_PARISC_1_1:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
403 case EFA_PARISC_2_0:
404 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
406 else
407 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
408 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
409 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
410 }
411 /* Don't be fussy. */
412 return TRUE;
413 }
414
415 /* Given section type (hdr->sh_type), return a boolean indicating
416 whether or not the section is an elf64-hppa specific section. */
417 static bfd_boolean
418 elf64_hppa_section_from_shdr (bfd *abfd,
419 Elf_Internal_Shdr *hdr,
420 const char *name,
421 int shindex)
422 {
423 asection *newsect;
424
425 switch (hdr->sh_type)
426 {
427 case SHT_PARISC_EXT:
428 if (strcmp (name, ".PARISC.archext") != 0)
429 return FALSE;
430 break;
431 case SHT_PARISC_UNWIND:
432 if (strcmp (name, ".PARISC.unwind") != 0)
433 return FALSE;
434 break;
435 case SHT_PARISC_DOC:
436 case SHT_PARISC_ANNOT:
437 default:
438 return FALSE;
439 }
440
441 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
442 return FALSE;
443 newsect = hdr->bfd_section;
444
445 return TRUE;
446 }
447
448 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
449 name describes what was once potentially anonymous memory. We
450 allocate memory as necessary, possibly reusing PBUF/PLEN. */
451
452 static const char *
453 get_dyn_name (abfd, h, rel, pbuf, plen)
454 bfd *abfd;
455 struct elf_link_hash_entry *h;
456 const Elf_Internal_Rela *rel;
457 char **pbuf;
458 size_t *plen;
459 {
460 asection *sec = abfd->sections;
461 size_t nlen, tlen;
462 char *buf;
463 size_t len;
464
465 if (h && rel->r_addend == 0)
466 return h->root.root.string;
467
468 if (h)
469 nlen = strlen (h->root.root.string);
470 else
471 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
472 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
473
474 len = *plen;
475 buf = *pbuf;
476 if (len < tlen)
477 {
478 if (buf)
479 free (buf);
480 *pbuf = buf = malloc (tlen);
481 *plen = len = tlen;
482 if (!buf)
483 return NULL;
484 }
485
486 if (h)
487 {
488 memcpy (buf, h->root.root.string, nlen);
489 buf[nlen++] = '+';
490 sprintf_vma (buf + nlen, rel->r_addend);
491 }
492 else
493 {
494 nlen = sprintf (buf, "%x:%lx",
495 sec->id & 0xffffffff,
496 (long) ELF64_R_SYM (rel->r_info));
497 if (rel->r_addend)
498 {
499 buf[nlen++] = '+';
500 sprintf_vma (buf + nlen, rel->r_addend);
501 }
502 }
503
504 return buf;
505 }
506
507 /* SEC is a section containing relocs for an input BFD when linking; return
508 a suitable section for holding relocs in the output BFD for a link. */
509
510 static bfd_boolean
511 get_reloc_section (abfd, hppa_info, sec)
512 bfd *abfd;
513 struct elf64_hppa_link_hash_table *hppa_info;
514 asection *sec;
515 {
516 const char *srel_name;
517 asection *srel;
518 bfd *dynobj;
519
520 srel_name = (bfd_elf_string_from_elf_section
521 (abfd, elf_elfheader(abfd)->e_shstrndx,
522 elf_section_data(sec)->rel_hdr.sh_name));
523 if (srel_name == NULL)
524 return FALSE;
525
526 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
527 && strcmp (bfd_get_section_name (abfd, sec),
528 srel_name+5) == 0)
529 || (strncmp (srel_name, ".rel", 4) == 0
530 && strcmp (bfd_get_section_name (abfd, sec),
531 srel_name+4) == 0));
532
533 dynobj = hppa_info->root.dynobj;
534 if (!dynobj)
535 hppa_info->root.dynobj = dynobj = abfd;
536
537 srel = bfd_get_section_by_name (dynobj, srel_name);
538 if (srel == NULL)
539 {
540 srel = bfd_make_section_with_flags (dynobj, srel_name,
541 (SEC_ALLOC
542 | SEC_LOAD
543 | SEC_HAS_CONTENTS
544 | SEC_IN_MEMORY
545 | SEC_LINKER_CREATED
546 | SEC_READONLY));
547 if (srel == NULL
548 || !bfd_set_section_alignment (dynobj, srel, 3))
549 return FALSE;
550 }
551
552 hppa_info->other_rel_sec = srel;
553 return TRUE;
554 }
555
556 /* Add a new entry to the list of dynamic relocations against DYN_H.
557
558 We use this to keep a record of all the FPTR relocations against a
559 particular symbol so that we can create FPTR relocations in the
560 output file. */
561
562 static bfd_boolean
563 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
564 bfd *abfd;
565 struct elf64_hppa_dyn_hash_entry *dyn_h;
566 int type;
567 asection *sec;
568 int sec_symndx;
569 bfd_vma offset;
570 bfd_vma addend;
571 {
572 struct elf64_hppa_dyn_reloc_entry *rent;
573
574 rent = (struct elf64_hppa_dyn_reloc_entry *)
575 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
576 if (!rent)
577 return FALSE;
578
579 rent->next = dyn_h->reloc_entries;
580 rent->type = type;
581 rent->sec = sec;
582 rent->sec_symndx = sec_symndx;
583 rent->offset = offset;
584 rent->addend = addend;
585 dyn_h->reloc_entries = rent;
586
587 return TRUE;
588 }
589
590 /* Scan the RELOCS and record the type of dynamic entries that each
591 referenced symbol needs. */
592
593 static bfd_boolean
594 elf64_hppa_check_relocs (abfd, info, sec, relocs)
595 bfd *abfd;
596 struct bfd_link_info *info;
597 asection *sec;
598 const Elf_Internal_Rela *relocs;
599 {
600 struct elf64_hppa_link_hash_table *hppa_info;
601 const Elf_Internal_Rela *relend;
602 Elf_Internal_Shdr *symtab_hdr;
603 const Elf_Internal_Rela *rel;
604 asection *dlt, *plt, *stubs;
605 char *buf;
606 size_t buf_len;
607 int sec_symndx;
608
609 if (info->relocatable)
610 return TRUE;
611
612 /* If this is the first dynamic object found in the link, create
613 the special sections required for dynamic linking. */
614 if (! elf_hash_table (info)->dynamic_sections_created)
615 {
616 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
617 return FALSE;
618 }
619
620 hppa_info = elf64_hppa_hash_table (info);
621 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
622
623 /* If necessary, build a new table holding section symbols indices
624 for this BFD. */
625
626 if (info->shared && hppa_info->section_syms_bfd != abfd)
627 {
628 unsigned long i;
629 unsigned int highest_shndx;
630 Elf_Internal_Sym *local_syms = NULL;
631 Elf_Internal_Sym *isym, *isymend;
632 bfd_size_type amt;
633
634 /* We're done with the old cache of section index to section symbol
635 index information. Free it.
636
637 ?!? Note we leak the last section_syms array. Presumably we
638 could free it in one of the later routines in this file. */
639 if (hppa_info->section_syms)
640 free (hppa_info->section_syms);
641
642 /* Read this BFD's local symbols. */
643 if (symtab_hdr->sh_info != 0)
644 {
645 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
646 if (local_syms == NULL)
647 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
648 symtab_hdr->sh_info, 0,
649 NULL, NULL, NULL);
650 if (local_syms == NULL)
651 return FALSE;
652 }
653
654 /* Record the highest section index referenced by the local symbols. */
655 highest_shndx = 0;
656 isymend = local_syms + symtab_hdr->sh_info;
657 for (isym = local_syms; isym < isymend; isym++)
658 {
659 if (isym->st_shndx > highest_shndx)
660 highest_shndx = isym->st_shndx;
661 }
662
663 /* Allocate an array to hold the section index to section symbol index
664 mapping. Bump by one since we start counting at zero. */
665 highest_shndx++;
666 amt = highest_shndx;
667 amt *= sizeof (int);
668 hppa_info->section_syms = (int *) bfd_malloc (amt);
669
670 /* Now walk the local symbols again. If we find a section symbol,
671 record the index of the symbol into the section_syms array. */
672 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
673 {
674 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
675 hppa_info->section_syms[isym->st_shndx] = i;
676 }
677
678 /* We are finished with the local symbols. */
679 if (local_syms != NULL
680 && symtab_hdr->contents != (unsigned char *) local_syms)
681 {
682 if (! info->keep_memory)
683 free (local_syms);
684 else
685 {
686 /* Cache the symbols for elf_link_input_bfd. */
687 symtab_hdr->contents = (unsigned char *) local_syms;
688 }
689 }
690
691 /* Record which BFD we built the section_syms mapping for. */
692 hppa_info->section_syms_bfd = abfd;
693 }
694
695 /* Record the symbol index for this input section. We may need it for
696 relocations when building shared libraries. When not building shared
697 libraries this value is never really used, but assign it to zero to
698 prevent out of bounds memory accesses in other routines. */
699 if (info->shared)
700 {
701 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
702
703 /* If we did not find a section symbol for this section, then
704 something went terribly wrong above. */
705 if (sec_symndx == -1)
706 return FALSE;
707
708 sec_symndx = hppa_info->section_syms[sec_symndx];
709 }
710 else
711 sec_symndx = 0;
712
713 dlt = plt = stubs = NULL;
714 buf = NULL;
715 buf_len = 0;
716
717 relend = relocs + sec->reloc_count;
718 for (rel = relocs; rel < relend; ++rel)
719 {
720 enum
721 {
722 NEED_DLT = 1,
723 NEED_PLT = 2,
724 NEED_STUB = 4,
725 NEED_OPD = 8,
726 NEED_DYNREL = 16,
727 };
728
729 struct elf_link_hash_entry *h = NULL;
730 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
731 struct elf64_hppa_dyn_hash_entry *dyn_h;
732 int need_entry;
733 const char *addr_name;
734 bfd_boolean maybe_dynamic;
735 int dynrel_type = R_PARISC_NONE;
736 static reloc_howto_type *howto;
737
738 if (r_symndx >= symtab_hdr->sh_info)
739 {
740 /* We're dealing with a global symbol -- find its hash entry
741 and mark it as being referenced. */
742 long indx = r_symndx - symtab_hdr->sh_info;
743 h = elf_sym_hashes (abfd)[indx];
744 while (h->root.type == bfd_link_hash_indirect
745 || h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 h->ref_regular = 1;
749 }
750
751 /* We can only get preliminary data on whether a symbol is
752 locally or externally defined, as not all of the input files
753 have yet been processed. Do something with what we know, as
754 this may help reduce memory usage and processing time later. */
755 maybe_dynamic = FALSE;
756 if (h && ((info->shared
757 && (!info->symbolic
758 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
759 || !h->def_regular
760 || h->root.type == bfd_link_hash_defweak))
761 maybe_dynamic = TRUE;
762
763 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
764 need_entry = 0;
765 switch (howto->type)
766 {
767 /* These are simple indirect references to symbols through the
768 DLT. We need to create a DLT entry for any symbols which
769 appears in a DLTIND relocation. */
770 case R_PARISC_DLTIND21L:
771 case R_PARISC_DLTIND14R:
772 case R_PARISC_DLTIND14F:
773 case R_PARISC_DLTIND14WR:
774 case R_PARISC_DLTIND14DR:
775 need_entry = NEED_DLT;
776 break;
777
778 /* ?!? These need a DLT entry. But I have no idea what to do with
779 the "link time TP value. */
780 case R_PARISC_LTOFF_TP21L:
781 case R_PARISC_LTOFF_TP14R:
782 case R_PARISC_LTOFF_TP14F:
783 case R_PARISC_LTOFF_TP64:
784 case R_PARISC_LTOFF_TP14WR:
785 case R_PARISC_LTOFF_TP14DR:
786 case R_PARISC_LTOFF_TP16F:
787 case R_PARISC_LTOFF_TP16WF:
788 case R_PARISC_LTOFF_TP16DF:
789 need_entry = NEED_DLT;
790 break;
791
792 /* These are function calls. Depending on their precise target we
793 may need to make a stub for them. The stub uses the PLT, so we
794 need to create PLT entries for these symbols too. */
795 case R_PARISC_PCREL12F:
796 case R_PARISC_PCREL17F:
797 case R_PARISC_PCREL22F:
798 case R_PARISC_PCREL32:
799 case R_PARISC_PCREL64:
800 case R_PARISC_PCREL21L:
801 case R_PARISC_PCREL17R:
802 case R_PARISC_PCREL17C:
803 case R_PARISC_PCREL14R:
804 case R_PARISC_PCREL14F:
805 case R_PARISC_PCREL22C:
806 case R_PARISC_PCREL14WR:
807 case R_PARISC_PCREL14DR:
808 case R_PARISC_PCREL16F:
809 case R_PARISC_PCREL16WF:
810 case R_PARISC_PCREL16DF:
811 need_entry = (NEED_PLT | NEED_STUB);
812 break;
813
814 case R_PARISC_PLTOFF21L:
815 case R_PARISC_PLTOFF14R:
816 case R_PARISC_PLTOFF14F:
817 case R_PARISC_PLTOFF14WR:
818 case R_PARISC_PLTOFF14DR:
819 case R_PARISC_PLTOFF16F:
820 case R_PARISC_PLTOFF16WF:
821 case R_PARISC_PLTOFF16DF:
822 need_entry = (NEED_PLT);
823 break;
824
825 case R_PARISC_DIR64:
826 if (info->shared || maybe_dynamic)
827 need_entry = (NEED_DYNREL);
828 dynrel_type = R_PARISC_DIR64;
829 break;
830
831 /* This is an indirect reference through the DLT to get the address
832 of a OPD descriptor. Thus we need to make a DLT entry that points
833 to an OPD entry. */
834 case R_PARISC_LTOFF_FPTR21L:
835 case R_PARISC_LTOFF_FPTR14R:
836 case R_PARISC_LTOFF_FPTR14WR:
837 case R_PARISC_LTOFF_FPTR14DR:
838 case R_PARISC_LTOFF_FPTR32:
839 case R_PARISC_LTOFF_FPTR64:
840 case R_PARISC_LTOFF_FPTR16F:
841 case R_PARISC_LTOFF_FPTR16WF:
842 case R_PARISC_LTOFF_FPTR16DF:
843 if (info->shared || maybe_dynamic)
844 need_entry = (NEED_DLT | NEED_OPD);
845 else
846 need_entry = (NEED_DLT | NEED_OPD);
847 dynrel_type = R_PARISC_FPTR64;
848 break;
849
850 /* This is a simple OPD entry. */
851 case R_PARISC_FPTR64:
852 if (info->shared || maybe_dynamic)
853 need_entry = (NEED_OPD | NEED_DYNREL);
854 else
855 need_entry = (NEED_OPD);
856 dynrel_type = R_PARISC_FPTR64;
857 break;
858
859 /* Add more cases as needed. */
860 }
861
862 if (!need_entry)
863 continue;
864
865 /* Collect a canonical name for this address. */
866 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
867
868 /* Collect the canonical entry data for this address. */
869 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
870 addr_name, TRUE, TRUE);
871 BFD_ASSERT (dyn_h);
872
873 /* Stash away enough information to be able to find this symbol
874 regardless of whether or not it is local or global. */
875 dyn_h->h = h;
876 dyn_h->owner = abfd;
877 dyn_h->sym_indx = r_symndx;
878
879 /* ?!? We may need to do some error checking in here. */
880 /* Create what's needed. */
881 if (need_entry & NEED_DLT)
882 {
883 if (! hppa_info->dlt_sec
884 && ! get_dlt (abfd, info, hppa_info))
885 goto err_out;
886 dyn_h->want_dlt = 1;
887 }
888
889 if (need_entry & NEED_PLT)
890 {
891 if (! hppa_info->plt_sec
892 && ! get_plt (abfd, info, hppa_info))
893 goto err_out;
894 dyn_h->want_plt = 1;
895 }
896
897 if (need_entry & NEED_STUB)
898 {
899 if (! hppa_info->stub_sec
900 && ! get_stub (abfd, info, hppa_info))
901 goto err_out;
902 dyn_h->want_stub = 1;
903 }
904
905 if (need_entry & NEED_OPD)
906 {
907 if (! hppa_info->opd_sec
908 && ! get_opd (abfd, info, hppa_info))
909 goto err_out;
910
911 dyn_h->want_opd = 1;
912
913 /* FPTRs are not allocated by the dynamic linker for PA64, though
914 it is possible that will change in the future. */
915
916 /* This could be a local function that had its address taken, in
917 which case H will be NULL. */
918 if (h)
919 h->needs_plt = 1;
920 }
921
922 /* Add a new dynamic relocation to the chain of dynamic
923 relocations for this symbol. */
924 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
925 {
926 if (! hppa_info->other_rel_sec
927 && ! get_reloc_section (abfd, hppa_info, sec))
928 goto err_out;
929
930 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
931 sec_symndx, rel->r_offset, rel->r_addend))
932 goto err_out;
933
934 /* If we are building a shared library and we just recorded
935 a dynamic R_PARISC_FPTR64 relocation, then make sure the
936 section symbol for this section ends up in the dynamic
937 symbol table. */
938 if (info->shared && dynrel_type == R_PARISC_FPTR64
939 && ! (bfd_elf_link_record_local_dynamic_symbol
940 (info, abfd, sec_symndx)))
941 return FALSE;
942 }
943 }
944
945 if (buf)
946 free (buf);
947 return TRUE;
948
949 err_out:
950 if (buf)
951 free (buf);
952 return FALSE;
953 }
954
955 struct elf64_hppa_allocate_data
956 {
957 struct bfd_link_info *info;
958 bfd_size_type ofs;
959 };
960
961 /* Should we do dynamic things to this symbol? */
962
963 static bfd_boolean
964 elf64_hppa_dynamic_symbol_p (h, info)
965 struct elf_link_hash_entry *h;
966 struct bfd_link_info *info;
967 {
968 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
969 and relocations that retrieve a function descriptor? Assume the
970 worst for now. */
971 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
972 {
973 /* ??? Why is this here and not elsewhere is_local_label_name. */
974 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
975 return FALSE;
976
977 return TRUE;
978 }
979 else
980 return FALSE;
981 }
982
983 /* Mark all functions exported by this file so that we can later allocate
984 entries in .opd for them. */
985
986 static bfd_boolean
987 elf64_hppa_mark_exported_functions (h, data)
988 struct elf_link_hash_entry *h;
989 PTR data;
990 {
991 struct bfd_link_info *info = (struct bfd_link_info *)data;
992 struct elf64_hppa_link_hash_table *hppa_info;
993
994 hppa_info = elf64_hppa_hash_table (info);
995
996 if (h->root.type == bfd_link_hash_warning)
997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
998
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1004 {
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009 h->root.root.string, TRUE, TRUE);
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1012
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015 return FALSE;
1016
1017 dyn_h->want_opd = 1;
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
1020 h->needs_plt = 1;
1021 }
1022
1023 return TRUE;
1024 }
1025
1026 /* Allocate space for a DLT entry. */
1027
1028 static bfd_boolean
1029 allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1032 {
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
1035 if (dyn_h->want_dlt)
1036 {
1037 struct elf_link_hash_entry *h = dyn_h->h;
1038
1039 if (x->info->shared)
1040 {
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
1045 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1046 {
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
1050 if (! (bfd_elf_link_record_local_dynamic_symbol
1051 (x->info, owner, dyn_h->sym_indx)))
1052 return FALSE;
1053 }
1054 }
1055
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1058 }
1059 return TRUE;
1060 }
1061
1062 /* Allocate space for a DLT.PLT entry. */
1063
1064 static bfd_boolean
1065 allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1068 {
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1076 {
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081 }
1082 else
1083 dyn_h->want_plt = 0;
1084
1085 return TRUE;
1086 }
1087
1088 /* Allocate space for a STUB entry. */
1089
1090 static bfd_boolean
1091 allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1094 {
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1102 {
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1105 }
1106 else
1107 dyn_h->want_stub = 0;
1108 return TRUE;
1109 }
1110
1111 /* Allocate space for a FPTR entry. */
1112
1113 static bfd_boolean
1114 allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1117 {
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
1120 if (dyn_h->want_opd)
1121 {
1122 struct elf_link_hash_entry *h = dyn_h->h;
1123
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h && (h->root.type == bfd_link_hash_undefined
1132 || h->root.u.def.section->output_section == NULL))
1133 dyn_h->want_opd = 0;
1134
1135 /* If we are creating a shared library, took the address of a local
1136 function or might export this function from this object file, then
1137 we have to create an opd descriptor. */
1138 else if (x->info->shared
1139 || h == NULL
1140 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1141 || (h->root.type == bfd_link_hash_defined
1142 || h->root.type == bfd_link_hash_defweak))
1143 {
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1148 if (x->info->shared
1149 && (h == NULL || (h->dynindx == -1)))
1150 {
1151 bfd *owner;
1152 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1153
1154 if (!bfd_elf_link_record_local_dynamic_symbol
1155 (x->info, owner, dyn_h->sym_indx))
1156 return FALSE;
1157 }
1158
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x->info->shared && h)
1165 {
1166 char *new_name;
1167 struct elf_link_hash_entry *nh;
1168
1169 new_name = alloca (strlen (h->root.root.string) + 2);
1170 new_name[0] = '.';
1171 strcpy (new_name + 1, h->root.root.string);
1172
1173 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1174 new_name, TRUE, TRUE, TRUE);
1175
1176 nh->root.type = h->root.type;
1177 nh->root.u.def.value = h->root.u.def.value;
1178 nh->root.u.def.section = h->root.u.def.section;
1179
1180 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1181 return FALSE;
1182
1183 }
1184 dyn_h->opd_offset = x->ofs;
1185 x->ofs += OPD_ENTRY_SIZE;
1186 }
1187
1188 /* Otherwise we do not need an opd entry. */
1189 else
1190 dyn_h->want_opd = 0;
1191 }
1192 return TRUE;
1193 }
1194
1195 /* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1197
1198 static void
1199 elf64_hppa_post_process_headers (abfd, link_info)
1200 bfd * abfd;
1201 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1202 {
1203 Elf_Internal_Ehdr * i_ehdrp;
1204
1205 i_ehdrp = elf_elfheader (abfd);
1206
1207 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1208 {
1209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1210 }
1211 else
1212 {
1213 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1214 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1215 }
1216 }
1217
1218 /* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official procedure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1222
1223 static bfd_boolean
1224 get_opd (abfd, info, hppa_info)
1225 bfd *abfd;
1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1227 struct elf64_hppa_link_hash_table *hppa_info;
1228 {
1229 asection *opd;
1230 bfd *dynobj;
1231
1232 opd = hppa_info->opd_sec;
1233 if (!opd)
1234 {
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1238
1239 opd = bfd_make_section_with_flags (dynobj, ".opd",
1240 (SEC_ALLOC
1241 | SEC_LOAD
1242 | SEC_HAS_CONTENTS
1243 | SEC_IN_MEMORY
1244 | SEC_LINKER_CREATED));
1245 if (!opd
1246 || !bfd_set_section_alignment (abfd, opd, 3))
1247 {
1248 BFD_ASSERT (0);
1249 return FALSE;
1250 }
1251
1252 hppa_info->opd_sec = opd;
1253 }
1254
1255 return TRUE;
1256 }
1257
1258 /* Create the PLT section. */
1259
1260 static bfd_boolean
1261 get_plt (abfd, info, hppa_info)
1262 bfd *abfd;
1263 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1264 struct elf64_hppa_link_hash_table *hppa_info;
1265 {
1266 asection *plt;
1267 bfd *dynobj;
1268
1269 plt = hppa_info->plt_sec;
1270 if (!plt)
1271 {
1272 dynobj = hppa_info->root.dynobj;
1273 if (!dynobj)
1274 hppa_info->root.dynobj = dynobj = abfd;
1275
1276 plt = bfd_make_section_with_flags (dynobj, ".plt",
1277 (SEC_ALLOC
1278 | SEC_LOAD
1279 | SEC_HAS_CONTENTS
1280 | SEC_IN_MEMORY
1281 | SEC_LINKER_CREATED));
1282 if (!plt
1283 || !bfd_set_section_alignment (abfd, plt, 3))
1284 {
1285 BFD_ASSERT (0);
1286 return FALSE;
1287 }
1288
1289 hppa_info->plt_sec = plt;
1290 }
1291
1292 return TRUE;
1293 }
1294
1295 /* Create the DLT section. */
1296
1297 static bfd_boolean
1298 get_dlt (abfd, info, hppa_info)
1299 bfd *abfd;
1300 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1301 struct elf64_hppa_link_hash_table *hppa_info;
1302 {
1303 asection *dlt;
1304 bfd *dynobj;
1305
1306 dlt = hppa_info->dlt_sec;
1307 if (!dlt)
1308 {
1309 dynobj = hppa_info->root.dynobj;
1310 if (!dynobj)
1311 hppa_info->root.dynobj = dynobj = abfd;
1312
1313 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1314 (SEC_ALLOC
1315 | SEC_LOAD
1316 | SEC_HAS_CONTENTS
1317 | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED));
1319 if (!dlt
1320 || !bfd_set_section_alignment (abfd, dlt, 3))
1321 {
1322 BFD_ASSERT (0);
1323 return FALSE;
1324 }
1325
1326 hppa_info->dlt_sec = dlt;
1327 }
1328
1329 return TRUE;
1330 }
1331
1332 /* Create the stubs section. */
1333
1334 static bfd_boolean
1335 get_stub (abfd, info, hppa_info)
1336 bfd *abfd;
1337 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1338 struct elf64_hppa_link_hash_table *hppa_info;
1339 {
1340 asection *stub;
1341 bfd *dynobj;
1342
1343 stub = hppa_info->stub_sec;
1344 if (!stub)
1345 {
1346 dynobj = hppa_info->root.dynobj;
1347 if (!dynobj)
1348 hppa_info->root.dynobj = dynobj = abfd;
1349
1350 stub = bfd_make_section_with_flags (dynobj, ".stub",
1351 (SEC_ALLOC | SEC_LOAD
1352 | SEC_HAS_CONTENTS
1353 | SEC_IN_MEMORY
1354 | SEC_READONLY
1355 | SEC_LINKER_CREATED));
1356 if (!stub
1357 || !bfd_set_section_alignment (abfd, stub, 3))
1358 {
1359 BFD_ASSERT (0);
1360 return FALSE;
1361 }
1362
1363 hppa_info->stub_sec = stub;
1364 }
1365
1366 return TRUE;
1367 }
1368
1369 /* Create sections necessary for dynamic linking. This is only a rough
1370 cut and will likely change as we learn more about the somewhat
1371 unusual dynamic linking scheme HP uses.
1372
1373 .stub:
1374 Contains code to implement cross-space calls. The first time one
1375 of the stubs is used it will call into the dynamic linker, later
1376 calls will go straight to the target.
1377
1378 The only stub we support right now looks like
1379
1380 ldd OFFSET(%dp),%r1
1381 bve %r0(%r1)
1382 ldd OFFSET+8(%dp),%dp
1383
1384 Other stubs may be needed in the future. We may want the remove
1385 the break/nop instruction. It is only used right now to keep the
1386 offset of a .plt entry and a .stub entry in sync.
1387
1388 .dlt:
1389 This is what most people call the .got. HP used a different name.
1390 Losers.
1391
1392 .rela.dlt:
1393 Relocations for the DLT.
1394
1395 .plt:
1396 Function pointers as address,gp pairs.
1397
1398 .rela.plt:
1399 Should contain dynamic IPLT (and EPLT?) relocations.
1400
1401 .opd:
1402 FPTRS
1403
1404 .rela.opd:
1405 EPLT relocations for symbols exported from shared libraries. */
1406
1407 static bfd_boolean
1408 elf64_hppa_create_dynamic_sections (abfd, info)
1409 bfd *abfd;
1410 struct bfd_link_info *info;
1411 {
1412 asection *s;
1413
1414 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1415 return FALSE;
1416
1417 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1418 return FALSE;
1419
1420 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1421 return FALSE;
1422
1423 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1424 return FALSE;
1425
1426 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1427 (SEC_ALLOC | SEC_LOAD
1428 | SEC_HAS_CONTENTS
1429 | SEC_IN_MEMORY
1430 | SEC_READONLY
1431 | SEC_LINKER_CREATED));
1432 if (s == NULL
1433 || !bfd_set_section_alignment (abfd, s, 3))
1434 return FALSE;
1435 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1436
1437 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1438 (SEC_ALLOC | SEC_LOAD
1439 | SEC_HAS_CONTENTS
1440 | SEC_IN_MEMORY
1441 | SEC_READONLY
1442 | SEC_LINKER_CREATED));
1443 if (s == NULL
1444 || !bfd_set_section_alignment (abfd, s, 3))
1445 return FALSE;
1446 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1447
1448 s = bfd_make_section_with_flags (abfd, ".rela.data",
1449 (SEC_ALLOC | SEC_LOAD
1450 | SEC_HAS_CONTENTS
1451 | SEC_IN_MEMORY
1452 | SEC_READONLY
1453 | SEC_LINKER_CREATED));
1454 if (s == NULL
1455 || !bfd_set_section_alignment (abfd, s, 3))
1456 return FALSE;
1457 elf64_hppa_hash_table (info)->other_rel_sec = s;
1458
1459 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1460 (SEC_ALLOC | SEC_LOAD
1461 | SEC_HAS_CONTENTS
1462 | SEC_IN_MEMORY
1463 | SEC_READONLY
1464 | SEC_LINKER_CREATED));
1465 if (s == NULL
1466 || !bfd_set_section_alignment (abfd, s, 3))
1467 return FALSE;
1468 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1469
1470 return TRUE;
1471 }
1472
1473 /* Allocate dynamic relocations for those symbols that turned out
1474 to be dynamic. */
1475
1476 static bfd_boolean
1477 allocate_dynrel_entries (dyn_h, data)
1478 struct elf64_hppa_dyn_hash_entry *dyn_h;
1479 PTR data;
1480 {
1481 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1482 struct elf64_hppa_link_hash_table *hppa_info;
1483 struct elf64_hppa_dyn_reloc_entry *rent;
1484 bfd_boolean dynamic_symbol, shared;
1485
1486 hppa_info = elf64_hppa_hash_table (x->info);
1487 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1488 shared = x->info->shared;
1489
1490 /* We may need to allocate relocations for a non-dynamic symbol
1491 when creating a shared library. */
1492 if (!dynamic_symbol && !shared)
1493 return TRUE;
1494
1495 /* Take care of the normal data relocations. */
1496
1497 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1498 {
1499 /* Allocate one iff we are building a shared library, the relocation
1500 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1501 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1502 continue;
1503
1504 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1505
1506 /* Make sure this symbol gets into the dynamic symbol table if it is
1507 not already recorded. ?!? This should not be in the loop since
1508 the symbol need only be added once. */
1509 if (dyn_h->h == 0
1510 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1511 if (!bfd_elf_link_record_local_dynamic_symbol
1512 (x->info, rent->sec->owner, dyn_h->sym_indx))
1513 return FALSE;
1514 }
1515
1516 /* Take care of the GOT and PLT relocations. */
1517
1518 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1519 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1520
1521 /* If we are building a shared library, then every symbol that has an
1522 opd entry will need an EPLT relocation to relocate the symbol's address
1523 and __gp value based on the runtime load address. */
1524 if (shared && dyn_h->want_opd)
1525 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1526
1527 if (dyn_h->want_plt && dynamic_symbol)
1528 {
1529 bfd_size_type t = 0;
1530
1531 /* Dynamic symbols get one IPLT relocation. Local symbols in
1532 shared libraries get two REL relocations. Local symbols in
1533 main applications get nothing. */
1534 if (dynamic_symbol)
1535 t = sizeof (Elf64_External_Rela);
1536 else if (shared)
1537 t = 2 * sizeof (Elf64_External_Rela);
1538
1539 hppa_info->plt_rel_sec->size += t;
1540 }
1541
1542 return TRUE;
1543 }
1544
1545 /* Adjust a symbol defined by a dynamic object and referenced by a
1546 regular object. */
1547
1548 static bfd_boolean
1549 elf64_hppa_adjust_dynamic_symbol (info, h)
1550 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1551 struct elf_link_hash_entry *h;
1552 {
1553 /* ??? Undefined symbols with PLT entries should be re-defined
1554 to be the PLT entry. */
1555
1556 /* If this is a weak symbol, and there is a real definition, the
1557 processor independent code will have arranged for us to see the
1558 real definition first, and we can just use the same value. */
1559 if (h->u.weakdef != NULL)
1560 {
1561 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1562 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1563 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1564 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1565 return TRUE;
1566 }
1567
1568 /* If this is a reference to a symbol defined by a dynamic object which
1569 is not a function, we might allocate the symbol in our .dynbss section
1570 and allocate a COPY dynamic relocation.
1571
1572 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1573 of hackery. */
1574
1575 return TRUE;
1576 }
1577
1578 /* This function is called via elf_link_hash_traverse to mark millicode
1579 symbols with a dynindx of -1 and to remove the string table reference
1580 from the dynamic symbol table. If the symbol is not a millicode symbol,
1581 elf64_hppa_mark_exported_functions is called. */
1582
1583 static bfd_boolean
1584 elf64_hppa_mark_milli_and_exported_functions (h, data)
1585 struct elf_link_hash_entry *h;
1586 PTR data;
1587 {
1588 struct bfd_link_info *info = (struct bfd_link_info *)data;
1589 struct elf_link_hash_entry *elf = h;
1590
1591 if (elf->root.type == bfd_link_hash_warning)
1592 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1593
1594 if (elf->type == STT_PARISC_MILLI)
1595 {
1596 if (elf->dynindx != -1)
1597 {
1598 elf->dynindx = -1;
1599 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1600 elf->dynstr_index);
1601 }
1602 return TRUE;
1603 }
1604
1605 return elf64_hppa_mark_exported_functions (h, data);
1606 }
1607
1608 /* Set the final sizes of the dynamic sections and allocate memory for
1609 the contents of our special sections. */
1610
1611 static bfd_boolean
1612 elf64_hppa_size_dynamic_sections (output_bfd, info)
1613 bfd *output_bfd;
1614 struct bfd_link_info *info;
1615 {
1616 bfd *dynobj;
1617 asection *s;
1618 bfd_boolean plt;
1619 bfd_boolean relocs;
1620 bfd_boolean reltext;
1621 struct elf64_hppa_allocate_data data;
1622 struct elf64_hppa_link_hash_table *hppa_info;
1623
1624 hppa_info = elf64_hppa_hash_table (info);
1625
1626 dynobj = elf_hash_table (info)->dynobj;
1627 BFD_ASSERT (dynobj != NULL);
1628
1629 /* Mark each function this program exports so that we will allocate
1630 space in the .opd section for each function's FPTR. If we are
1631 creating dynamic sections, change the dynamic index of millicode
1632 symbols to -1 and remove them from the string table for .dynstr.
1633
1634 We have to traverse the main linker hash table since we have to
1635 find functions which may not have been mentioned in any relocs. */
1636 elf_link_hash_traverse (elf_hash_table (info),
1637 (elf_hash_table (info)->dynamic_sections_created
1638 ? elf64_hppa_mark_milli_and_exported_functions
1639 : elf64_hppa_mark_exported_functions),
1640 info);
1641
1642 if (elf_hash_table (info)->dynamic_sections_created)
1643 {
1644 /* Set the contents of the .interp section to the interpreter. */
1645 if (info->executable)
1646 {
1647 s = bfd_get_section_by_name (dynobj, ".interp");
1648 BFD_ASSERT (s != NULL);
1649 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1650 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1651 }
1652 }
1653 else
1654 {
1655 /* We may have created entries in the .rela.got section.
1656 However, if we are not creating the dynamic sections, we will
1657 not actually use these entries. Reset the size of .rela.dlt,
1658 which will cause it to get stripped from the output file
1659 below. */
1660 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1661 if (s != NULL)
1662 s->size = 0;
1663 }
1664
1665 /* Allocate the GOT entries. */
1666
1667 data.info = info;
1668 if (elf64_hppa_hash_table (info)->dlt_sec)
1669 {
1670 data.ofs = 0x0;
1671 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1672 allocate_global_data_dlt, &data);
1673 hppa_info->dlt_sec->size = data.ofs;
1674
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_plt, &data);
1678 hppa_info->plt_sec->size = data.ofs;
1679
1680 data.ofs = 0x0;
1681 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1682 allocate_global_data_stub, &data);
1683 hppa_info->stub_sec->size = data.ofs;
1684 }
1685
1686 /* Allocate space for entries in the .opd section. */
1687 if (elf64_hppa_hash_table (info)->opd_sec)
1688 {
1689 data.ofs = 0;
1690 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1691 allocate_global_data_opd, &data);
1692 hppa_info->opd_sec->size = data.ofs;
1693 }
1694
1695 /* Now allocate space for dynamic relocations, if necessary. */
1696 if (hppa_info->root.dynamic_sections_created)
1697 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1698 allocate_dynrel_entries, &data);
1699
1700 /* The sizes of all the sections are set. Allocate memory for them. */
1701 plt = FALSE;
1702 relocs = FALSE;
1703 reltext = FALSE;
1704 for (s = dynobj->sections; s != NULL; s = s->next)
1705 {
1706 const char *name;
1707
1708 if ((s->flags & SEC_LINKER_CREATED) == 0)
1709 continue;
1710
1711 /* It's OK to base decisions on the section name, because none
1712 of the dynobj section names depend upon the input files. */
1713 name = bfd_get_section_name (dynobj, s);
1714
1715 if (strcmp (name, ".plt") == 0)
1716 {
1717 /* Remember whether there is a PLT. */
1718 plt = s->size != 0;
1719 }
1720 else if (strcmp (name, ".opd") == 0
1721 || strncmp (name, ".dlt", 4) == 0
1722 || strcmp (name, ".stub") == 0
1723 || strcmp (name, ".got") == 0)
1724 {
1725 /* Strip this section if we don't need it; see the comment below. */
1726 }
1727 else if (strncmp (name, ".rela", 5) == 0)
1728 {
1729 if (s->size != 0)
1730 {
1731 asection *target;
1732
1733 /* Remember whether there are any reloc sections other
1734 than .rela.plt. */
1735 if (strcmp (name, ".rela.plt") != 0)
1736 {
1737 const char *outname;
1738
1739 relocs = TRUE;
1740
1741 /* If this relocation section applies to a read only
1742 section, then we probably need a DT_TEXTREL
1743 entry. The entries in the .rela.plt section
1744 really apply to the .got section, which we
1745 created ourselves and so know is not readonly. */
1746 outname = bfd_get_section_name (output_bfd,
1747 s->output_section);
1748 target = bfd_get_section_by_name (output_bfd, outname + 4);
1749 if (target != NULL
1750 && (target->flags & SEC_READONLY) != 0
1751 && (target->flags & SEC_ALLOC) != 0)
1752 reltext = TRUE;
1753 }
1754
1755 /* We use the reloc_count field as a counter if we need
1756 to copy relocs into the output file. */
1757 s->reloc_count = 0;
1758 }
1759 }
1760 else
1761 {
1762 /* It's not one of our sections, so don't allocate space. */
1763 continue;
1764 }
1765
1766 if (s->size == 0)
1767 {
1768 /* If we don't need this section, strip it from the
1769 output file. This is mostly to handle .rela.bss and
1770 .rela.plt. We must create both sections in
1771 create_dynamic_sections, because they must be created
1772 before the linker maps input sections to output
1773 sections. The linker does that before
1774 adjust_dynamic_symbol is called, and it is that
1775 function which decides whether anything needs to go
1776 into these sections. */
1777 s->flags |= SEC_EXCLUDE;
1778 continue;
1779 }
1780
1781 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1782 continue;
1783
1784 /* Allocate memory for the section contents if it has not
1785 been allocated already. We use bfd_zalloc here in case
1786 unused entries are not reclaimed before the section's
1787 contents are written out. This should not happen, but this
1788 way if it does, we get a R_PARISC_NONE reloc instead of
1789 garbage. */
1790 if (s->contents == NULL)
1791 {
1792 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1793 if (s->contents == NULL)
1794 return FALSE;
1795 }
1796 }
1797
1798 if (elf_hash_table (info)->dynamic_sections_created)
1799 {
1800 /* Always create a DT_PLTGOT. It actually has nothing to do with
1801 the PLT, it is how we communicate the __gp value of a load
1802 module to the dynamic linker. */
1803 #define add_dynamic_entry(TAG, VAL) \
1804 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1805
1806 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1807 || !add_dynamic_entry (DT_PLTGOT, 0))
1808 return FALSE;
1809
1810 /* Add some entries to the .dynamic section. We fill in the
1811 values later, in elf64_hppa_finish_dynamic_sections, but we
1812 must add the entries now so that we get the correct size for
1813 the .dynamic section. The DT_DEBUG entry is filled in by the
1814 dynamic linker and used by the debugger. */
1815 if (! info->shared)
1816 {
1817 if (!add_dynamic_entry (DT_DEBUG, 0)
1818 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1819 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1820 return FALSE;
1821 }
1822
1823 /* Force DT_FLAGS to always be set.
1824 Required by HPUX 11.00 patch PHSS_26559. */
1825 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1826 return FALSE;
1827
1828 if (plt)
1829 {
1830 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1831 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1832 || !add_dynamic_entry (DT_JMPREL, 0))
1833 return FALSE;
1834 }
1835
1836 if (relocs)
1837 {
1838 if (!add_dynamic_entry (DT_RELA, 0)
1839 || !add_dynamic_entry (DT_RELASZ, 0)
1840 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1841 return FALSE;
1842 }
1843
1844 if (reltext)
1845 {
1846 if (!add_dynamic_entry (DT_TEXTREL, 0))
1847 return FALSE;
1848 info->flags |= DF_TEXTREL;
1849 }
1850 }
1851 #undef add_dynamic_entry
1852
1853 return TRUE;
1854 }
1855
1856 /* Called after we have output the symbol into the dynamic symbol
1857 table, but before we output the symbol into the normal symbol
1858 table.
1859
1860 For some symbols we had to change their address when outputting
1861 the dynamic symbol table. We undo that change here so that
1862 the symbols have their expected value in the normal symbol
1863 table. Ick. */
1864
1865 static bfd_boolean
1866 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1867 struct bfd_link_info *info;
1868 const char *name;
1869 Elf_Internal_Sym *sym;
1870 asection *input_sec ATTRIBUTE_UNUSED;
1871 struct elf_link_hash_entry *h;
1872 {
1873 struct elf64_hppa_link_hash_table *hppa_info;
1874 struct elf64_hppa_dyn_hash_entry *dyn_h;
1875
1876 /* We may be called with the file symbol or section symbols.
1877 They never need munging, so it is safe to ignore them. */
1878 if (!name)
1879 return TRUE;
1880
1881 /* Get the PA dyn_symbol (if any) associated with NAME. */
1882 hppa_info = elf64_hppa_hash_table (info);
1883 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1884 name, FALSE, FALSE);
1885 if (!dyn_h || dyn_h->h != h)
1886 return TRUE;
1887
1888 /* Function symbols for which we created .opd entries *may* have been
1889 munged by finish_dynamic_symbol and have to be un-munged here.
1890
1891 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1892 into non-dynamic ones, so we initialize st_shndx to -1 in
1893 mark_exported_functions and check to see if it was overwritten
1894 here instead of just checking dyn_h->h->dynindx. */
1895 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1896 {
1897 /* Restore the saved value and section index. */
1898 sym->st_value = dyn_h->st_value;
1899 sym->st_shndx = dyn_h->st_shndx;
1900 }
1901
1902 return TRUE;
1903 }
1904
1905 /* Finish up dynamic symbol handling. We set the contents of various
1906 dynamic sections here. */
1907
1908 static bfd_boolean
1909 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1910 bfd *output_bfd;
1911 struct bfd_link_info *info;
1912 struct elf_link_hash_entry *h;
1913 Elf_Internal_Sym *sym;
1914 {
1915 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1916 struct elf64_hppa_link_hash_table *hppa_info;
1917 struct elf64_hppa_dyn_hash_entry *dyn_h;
1918
1919 hppa_info = elf64_hppa_hash_table (info);
1920 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1921 h->root.root.string, FALSE, FALSE);
1922
1923 stub = hppa_info->stub_sec;
1924 splt = hppa_info->plt_sec;
1925 sdlt = hppa_info->dlt_sec;
1926 sopd = hppa_info->opd_sec;
1927 spltrel = hppa_info->plt_rel_sec;
1928 sdltrel = hppa_info->dlt_rel_sec;
1929
1930 /* Incredible. It is actually necessary to NOT use the symbol's real
1931 value when building the dynamic symbol table for a shared library.
1932 At least for symbols that refer to functions.
1933
1934 We will store a new value and section index into the symbol long
1935 enough to output it into the dynamic symbol table, then we restore
1936 the original values (in elf64_hppa_link_output_symbol_hook). */
1937 if (dyn_h && dyn_h->want_opd)
1938 {
1939 BFD_ASSERT (sopd != NULL);
1940
1941 /* Save away the original value and section index so that we
1942 can restore them later. */
1943 dyn_h->st_value = sym->st_value;
1944 dyn_h->st_shndx = sym->st_shndx;
1945
1946 /* For the dynamic symbol table entry, we want the value to be
1947 address of this symbol's entry within the .opd section. */
1948 sym->st_value = (dyn_h->opd_offset
1949 + sopd->output_offset
1950 + sopd->output_section->vma);
1951 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1952 sopd->output_section);
1953 }
1954
1955 /* Initialize a .plt entry if requested. */
1956 if (dyn_h && dyn_h->want_plt
1957 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1958 {
1959 bfd_vma value;
1960 Elf_Internal_Rela rel;
1961 bfd_byte *loc;
1962
1963 BFD_ASSERT (splt != NULL && spltrel != NULL);
1964
1965 /* We do not actually care about the value in the PLT entry
1966 if we are creating a shared library and the symbol is
1967 still undefined, we create a dynamic relocation to fill
1968 in the correct value. */
1969 if (info->shared && h->root.type == bfd_link_hash_undefined)
1970 value = 0;
1971 else
1972 value = (h->root.u.def.value + h->root.u.def.section->vma);
1973
1974 /* Fill in the entry in the procedure linkage table.
1975
1976 The format of a plt entry is
1977 <funcaddr> <__gp>.
1978
1979 plt_offset is the offset within the PLT section at which to
1980 install the PLT entry.
1981
1982 We are modifying the in-memory PLT contents here, so we do not add
1983 in the output_offset of the PLT section. */
1984
1985 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1986 value = _bfd_get_gp_value (splt->output_section->owner);
1987 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1988
1989 /* Create a dynamic IPLT relocation for this entry.
1990
1991 We are creating a relocation in the output file's PLT section,
1992 which is included within the DLT secton. So we do need to include
1993 the PLT's output_offset in the computation of the relocation's
1994 address. */
1995 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1996 + splt->output_section->vma);
1997 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1998 rel.r_addend = 0;
1999
2000 loc = spltrel->contents;
2001 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2002 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2003 }
2004
2005 /* Initialize an external call stub entry if requested. */
2006 if (dyn_h && dyn_h->want_stub
2007 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2008 {
2009 bfd_vma value;
2010 int insn;
2011 unsigned int max_offset;
2012
2013 BFD_ASSERT (stub != NULL);
2014
2015 /* Install the generic stub template.
2016
2017 We are modifying the contents of the stub section, so we do not
2018 need to include the stub section's output_offset here. */
2019 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2020
2021 /* Fix up the first ldd instruction.
2022
2023 We are modifying the contents of the STUB section in memory,
2024 so we do not need to include its output offset in this computation.
2025
2026 Note the plt_offset value is the value of the PLT entry relative to
2027 the start of the PLT section. These instructions will reference
2028 data relative to the value of __gp, which may not necessarily have
2029 the same address as the start of the PLT section.
2030
2031 gp_offset contains the offset of __gp within the PLT section. */
2032 value = dyn_h->plt_offset - hppa_info->gp_offset;
2033
2034 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2035 if (output_bfd->arch_info->mach >= 25)
2036 {
2037 /* Wide mode allows 16 bit offsets. */
2038 max_offset = 32768;
2039 insn &= ~ 0xfff1;
2040 insn |= re_assemble_16 ((int) value);
2041 }
2042 else
2043 {
2044 max_offset = 8192;
2045 insn &= ~ 0x3ff1;
2046 insn |= re_assemble_14 ((int) value);
2047 }
2048
2049 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2050 {
2051 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2052 dyn_h->root.string,
2053 (long) value);
2054 return FALSE;
2055 }
2056
2057 bfd_put_32 (stub->owner, (bfd_vma) insn,
2058 stub->contents + dyn_h->stub_offset);
2059
2060 /* Fix up the second ldd instruction. */
2061 value += 8;
2062 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2063 if (output_bfd->arch_info->mach >= 25)
2064 {
2065 insn &= ~ 0xfff1;
2066 insn |= re_assemble_16 ((int) value);
2067 }
2068 else
2069 {
2070 insn &= ~ 0x3ff1;
2071 insn |= re_assemble_14 ((int) value);
2072 }
2073 bfd_put_32 (stub->owner, (bfd_vma) insn,
2074 stub->contents + dyn_h->stub_offset + 8);
2075 }
2076
2077 return TRUE;
2078 }
2079
2080 /* The .opd section contains FPTRs for each function this file
2081 exports. Initialize the FPTR entries. */
2082
2083 static bfd_boolean
2084 elf64_hppa_finalize_opd (dyn_h, data)
2085 struct elf64_hppa_dyn_hash_entry *dyn_h;
2086 PTR data;
2087 {
2088 struct bfd_link_info *info = (struct bfd_link_info *)data;
2089 struct elf64_hppa_link_hash_table *hppa_info;
2090 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2091 asection *sopd;
2092 asection *sopdrel;
2093
2094 hppa_info = elf64_hppa_hash_table (info);
2095 sopd = hppa_info->opd_sec;
2096 sopdrel = hppa_info->opd_rel_sec;
2097
2098 if (h && dyn_h->want_opd)
2099 {
2100 bfd_vma value;
2101
2102 /* The first two words of an .opd entry are zero.
2103
2104 We are modifying the contents of the OPD section in memory, so we
2105 do not need to include its output offset in this computation. */
2106 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2107
2108 value = (h->root.u.def.value
2109 + h->root.u.def.section->output_section->vma
2110 + h->root.u.def.section->output_offset);
2111
2112 /* The next word is the address of the function. */
2113 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2114
2115 /* The last word is our local __gp value. */
2116 value = _bfd_get_gp_value (sopd->output_section->owner);
2117 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2118 }
2119
2120 /* If we are generating a shared library, we must generate EPLT relocations
2121 for each entry in the .opd, even for static functions (they may have
2122 had their address taken). */
2123 if (info->shared && dyn_h && dyn_h->want_opd)
2124 {
2125 Elf_Internal_Rela rel;
2126 bfd_byte *loc;
2127 int dynindx;
2128
2129 /* We may need to do a relocation against a local symbol, in
2130 which case we have to look up it's dynamic symbol index off
2131 the local symbol hash table. */
2132 if (h && h->dynindx != -1)
2133 dynindx = h->dynindx;
2134 else
2135 dynindx
2136 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2137 dyn_h->sym_indx);
2138
2139 /* The offset of this relocation is the absolute address of the
2140 .opd entry for this symbol. */
2141 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2142 + sopd->output_section->vma);
2143
2144 /* If H is non-null, then we have an external symbol.
2145
2146 It is imperative that we use a different dynamic symbol for the
2147 EPLT relocation if the symbol has global scope.
2148
2149 In the dynamic symbol table, the function symbol will have a value
2150 which is address of the function's .opd entry.
2151
2152 Thus, we can not use that dynamic symbol for the EPLT relocation
2153 (if we did, the data in the .opd would reference itself rather
2154 than the actual address of the function). Instead we have to use
2155 a new dynamic symbol which has the same value as the original global
2156 function symbol.
2157
2158 We prefix the original symbol with a "." and use the new symbol in
2159 the EPLT relocation. This new symbol has already been recorded in
2160 the symbol table, we just have to look it up and use it.
2161
2162 We do not have such problems with static functions because we do
2163 not make their addresses in the dynamic symbol table point to
2164 the .opd entry. Ultimately this should be safe since a static
2165 function can not be directly referenced outside of its shared
2166 library.
2167
2168 We do have to play similar games for FPTR relocations in shared
2169 libraries, including those for static symbols. See the FPTR
2170 handling in elf64_hppa_finalize_dynreloc. */
2171 if (h)
2172 {
2173 char *new_name;
2174 struct elf_link_hash_entry *nh;
2175
2176 new_name = alloca (strlen (h->root.root.string) + 2);
2177 new_name[0] = '.';
2178 strcpy (new_name + 1, h->root.root.string);
2179
2180 nh = elf_link_hash_lookup (elf_hash_table (info),
2181 new_name, FALSE, FALSE, FALSE);
2182
2183 /* All we really want from the new symbol is its dynamic
2184 symbol index. */
2185 dynindx = nh->dynindx;
2186 }
2187
2188 rel.r_addend = 0;
2189 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2190
2191 loc = sopdrel->contents;
2192 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2193 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2194 }
2195 return TRUE;
2196 }
2197
2198 /* The .dlt section contains addresses for items referenced through the
2199 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2200 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2201
2202 static bfd_boolean
2203 elf64_hppa_finalize_dlt (dyn_h, data)
2204 struct elf64_hppa_dyn_hash_entry *dyn_h;
2205 PTR data;
2206 {
2207 struct bfd_link_info *info = (struct bfd_link_info *)data;
2208 struct elf64_hppa_link_hash_table *hppa_info;
2209 asection *sdlt, *sdltrel;
2210 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2211
2212 hppa_info = elf64_hppa_hash_table (info);
2213
2214 sdlt = hppa_info->dlt_sec;
2215 sdltrel = hppa_info->dlt_rel_sec;
2216
2217 /* H/DYN_H may refer to a local variable and we know it's
2218 address, so there is no need to create a relocation. Just install
2219 the proper value into the DLT, note this shortcut can not be
2220 skipped when building a shared library. */
2221 if (! info->shared && h && dyn_h->want_dlt)
2222 {
2223 bfd_vma value;
2224
2225 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2226 to point to the FPTR entry in the .opd section.
2227
2228 We include the OPD's output offset in this computation as
2229 we are referring to an absolute address in the resulting
2230 object file. */
2231 if (dyn_h->want_opd)
2232 {
2233 value = (dyn_h->opd_offset
2234 + hppa_info->opd_sec->output_offset
2235 + hppa_info->opd_sec->output_section->vma);
2236 }
2237 else if ((h->root.type == bfd_link_hash_defined
2238 || h->root.type == bfd_link_hash_defweak)
2239 && h->root.u.def.section)
2240 {
2241 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2242 if (h->root.u.def.section->output_section)
2243 value += h->root.u.def.section->output_section->vma;
2244 else
2245 value += h->root.u.def.section->vma;
2246 }
2247 else
2248 /* We have an undefined function reference. */
2249 value = 0;
2250
2251 /* We do not need to include the output offset of the DLT section
2252 here because we are modifying the in-memory contents. */
2253 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2254 }
2255
2256 /* Create a relocation for the DLT entry associated with this symbol.
2257 When building a shared library the symbol does not have to be dynamic. */
2258 if (dyn_h->want_dlt
2259 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2260 {
2261 Elf_Internal_Rela rel;
2262 bfd_byte *loc;
2263 int dynindx;
2264
2265 /* We may need to do a relocation against a local symbol, in
2266 which case we have to look up it's dynamic symbol index off
2267 the local symbol hash table. */
2268 if (h && h->dynindx != -1)
2269 dynindx = h->dynindx;
2270 else
2271 dynindx
2272 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2273 dyn_h->sym_indx);
2274
2275 /* Create a dynamic relocation for this entry. Do include the output
2276 offset of the DLT entry since we need an absolute address in the
2277 resulting object file. */
2278 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2279 + sdlt->output_section->vma);
2280 if (h && h->type == STT_FUNC)
2281 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2282 else
2283 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2284 rel.r_addend = 0;
2285
2286 loc = sdltrel->contents;
2287 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2288 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2289 }
2290 return TRUE;
2291 }
2292
2293 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2294 for dynamic functions used to initialize static data. */
2295
2296 static bfd_boolean
2297 elf64_hppa_finalize_dynreloc (dyn_h, data)
2298 struct elf64_hppa_dyn_hash_entry *dyn_h;
2299 PTR data;
2300 {
2301 struct bfd_link_info *info = (struct bfd_link_info *)data;
2302 struct elf64_hppa_link_hash_table *hppa_info;
2303 struct elf_link_hash_entry *h;
2304 int dynamic_symbol;
2305
2306 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2307
2308 if (!dynamic_symbol && !info->shared)
2309 return TRUE;
2310
2311 if (dyn_h->reloc_entries)
2312 {
2313 struct elf64_hppa_dyn_reloc_entry *rent;
2314 int dynindx;
2315
2316 hppa_info = elf64_hppa_hash_table (info);
2317 h = dyn_h->h;
2318
2319 /* We may need to do a relocation against a local symbol, in
2320 which case we have to look up it's dynamic symbol index off
2321 the local symbol hash table. */
2322 if (h && h->dynindx != -1)
2323 dynindx = h->dynindx;
2324 else
2325 dynindx
2326 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2327 dyn_h->sym_indx);
2328
2329 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2330 {
2331 Elf_Internal_Rela rel;
2332 bfd_byte *loc;
2333
2334 /* Allocate one iff we are building a shared library, the relocation
2335 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2336 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2337 continue;
2338
2339 /* Create a dynamic relocation for this entry.
2340
2341 We need the output offset for the reloc's section because
2342 we are creating an absolute address in the resulting object
2343 file. */
2344 rel.r_offset = (rent->offset + rent->sec->output_offset
2345 + rent->sec->output_section->vma);
2346
2347 /* An FPTR64 relocation implies that we took the address of
2348 a function and that the function has an entry in the .opd
2349 section. We want the FPTR64 relocation to reference the
2350 entry in .opd.
2351
2352 We could munge the symbol value in the dynamic symbol table
2353 (in fact we already do for functions with global scope) to point
2354 to the .opd entry. Then we could use that dynamic symbol in
2355 this relocation.
2356
2357 Or we could do something sensible, not munge the symbol's
2358 address and instead just use a different symbol to reference
2359 the .opd entry. At least that seems sensible until you
2360 realize there's no local dynamic symbols we can use for that
2361 purpose. Thus the hair in the check_relocs routine.
2362
2363 We use a section symbol recorded by check_relocs as the
2364 base symbol for the relocation. The addend is the difference
2365 between the section symbol and the address of the .opd entry. */
2366 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2367 {
2368 bfd_vma value, value2;
2369
2370 /* First compute the address of the opd entry for this symbol. */
2371 value = (dyn_h->opd_offset
2372 + hppa_info->opd_sec->output_section->vma
2373 + hppa_info->opd_sec->output_offset);
2374
2375 /* Compute the value of the start of the section with
2376 the relocation. */
2377 value2 = (rent->sec->output_section->vma
2378 + rent->sec->output_offset);
2379
2380 /* Compute the difference between the start of the section
2381 with the relocation and the opd entry. */
2382 value -= value2;
2383
2384 /* The result becomes the addend of the relocation. */
2385 rel.r_addend = value;
2386
2387 /* The section symbol becomes the symbol for the dynamic
2388 relocation. */
2389 dynindx
2390 = _bfd_elf_link_lookup_local_dynindx (info,
2391 rent->sec->owner,
2392 rent->sec_symndx);
2393 }
2394 else
2395 rel.r_addend = rent->addend;
2396
2397 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2398
2399 loc = hppa_info->other_rel_sec->contents;
2400 loc += (hppa_info->other_rel_sec->reloc_count++
2401 * sizeof (Elf64_External_Rela));
2402 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2403 &rel, loc);
2404 }
2405 }
2406
2407 return TRUE;
2408 }
2409
2410 /* Used to decide how to sort relocs in an optimal manner for the
2411 dynamic linker, before writing them out. */
2412
2413 static enum elf_reloc_type_class
2414 elf64_hppa_reloc_type_class (rela)
2415 const Elf_Internal_Rela *rela;
2416 {
2417 if (ELF64_R_SYM (rela->r_info) == 0)
2418 return reloc_class_relative;
2419
2420 switch ((int) ELF64_R_TYPE (rela->r_info))
2421 {
2422 case R_PARISC_IPLT:
2423 return reloc_class_plt;
2424 case R_PARISC_COPY:
2425 return reloc_class_copy;
2426 default:
2427 return reloc_class_normal;
2428 }
2429 }
2430
2431 /* Finish up the dynamic sections. */
2432
2433 static bfd_boolean
2434 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2435 bfd *output_bfd;
2436 struct bfd_link_info *info;
2437 {
2438 bfd *dynobj;
2439 asection *sdyn;
2440 struct elf64_hppa_link_hash_table *hppa_info;
2441
2442 hppa_info = elf64_hppa_hash_table (info);
2443
2444 /* Finalize the contents of the .opd section. */
2445 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2446 elf64_hppa_finalize_opd,
2447 info);
2448
2449 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2450 elf64_hppa_finalize_dynreloc,
2451 info);
2452
2453 /* Finalize the contents of the .dlt section. */
2454 dynobj = elf_hash_table (info)->dynobj;
2455 /* Finalize the contents of the .dlt section. */
2456 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2457 elf64_hppa_finalize_dlt,
2458 info);
2459
2460 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2461
2462 if (elf_hash_table (info)->dynamic_sections_created)
2463 {
2464 Elf64_External_Dyn *dyncon, *dynconend;
2465
2466 BFD_ASSERT (sdyn != NULL);
2467
2468 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2469 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2470 for (; dyncon < dynconend; dyncon++)
2471 {
2472 Elf_Internal_Dyn dyn;
2473 asection *s;
2474
2475 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2476
2477 switch (dyn.d_tag)
2478 {
2479 default:
2480 break;
2481
2482 case DT_HP_LOAD_MAP:
2483 /* Compute the absolute address of 16byte scratchpad area
2484 for the dynamic linker.
2485
2486 By convention the linker script will allocate the scratchpad
2487 area at the start of the .data section. So all we have to
2488 to is find the start of the .data section. */
2489 s = bfd_get_section_by_name (output_bfd, ".data");
2490 dyn.d_un.d_ptr = s->vma;
2491 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2492 break;
2493
2494 case DT_PLTGOT:
2495 /* HP's use PLTGOT to set the GOT register. */
2496 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2497 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2498 break;
2499
2500 case DT_JMPREL:
2501 s = hppa_info->plt_rel_sec;
2502 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2503 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2504 break;
2505
2506 case DT_PLTRELSZ:
2507 s = hppa_info->plt_rel_sec;
2508 dyn.d_un.d_val = s->size;
2509 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2510 break;
2511
2512 case DT_RELA:
2513 s = hppa_info->other_rel_sec;
2514 if (! s || ! s->size)
2515 s = hppa_info->dlt_rel_sec;
2516 if (! s || ! s->size)
2517 s = hppa_info->opd_rel_sec;
2518 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2519 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2520 break;
2521
2522 case DT_RELASZ:
2523 s = hppa_info->other_rel_sec;
2524 dyn.d_un.d_val = s->size;
2525 s = hppa_info->dlt_rel_sec;
2526 dyn.d_un.d_val += s->size;
2527 s = hppa_info->opd_rel_sec;
2528 dyn.d_un.d_val += s->size;
2529 /* There is some question about whether or not the size of
2530 the PLT relocs should be included here. HP's tools do
2531 it, so we'll emulate them. */
2532 s = hppa_info->plt_rel_sec;
2533 dyn.d_un.d_val += s->size;
2534 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 break;
2536
2537 }
2538 }
2539 }
2540
2541 return TRUE;
2542 }
2543
2544 /* Return the number of additional phdrs we will need.
2545
2546 The generic ELF code only creates PT_PHDRs for executables. The HP
2547 dynamic linker requires PT_PHDRs for dynamic libraries too.
2548
2549 This routine indicates that the backend needs one additional program
2550 header for that case.
2551
2552 Note we do not have access to the link info structure here, so we have
2553 to guess whether or not we are building a shared library based on the
2554 existence of a .interp section. */
2555
2556 static int
2557 elf64_hppa_additional_program_headers (abfd)
2558 bfd *abfd;
2559 {
2560 asection *s;
2561
2562 /* If we are creating a shared library, then we have to create a
2563 PT_PHDR segment. HP's dynamic linker chokes without it. */
2564 s = bfd_get_section_by_name (abfd, ".interp");
2565 if (! s)
2566 return 1;
2567 return 0;
2568 }
2569
2570 /* Allocate and initialize any program headers required by this
2571 specific backend.
2572
2573 The generic ELF code only creates PT_PHDRs for executables. The HP
2574 dynamic linker requires PT_PHDRs for dynamic libraries too.
2575
2576 This allocates the PT_PHDR and initializes it in a manner suitable
2577 for the HP linker.
2578
2579 Note we do not have access to the link info structure here, so we have
2580 to guess whether or not we are building a shared library based on the
2581 existence of a .interp section. */
2582
2583 static bfd_boolean
2584 elf64_hppa_modify_segment_map (abfd, info)
2585 bfd *abfd;
2586 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2587 {
2588 struct elf_segment_map *m;
2589 asection *s;
2590
2591 s = bfd_get_section_by_name (abfd, ".interp");
2592 if (! s)
2593 {
2594 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2595 if (m->p_type == PT_PHDR)
2596 break;
2597 if (m == NULL)
2598 {
2599 m = ((struct elf_segment_map *)
2600 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2601 if (m == NULL)
2602 return FALSE;
2603
2604 m->p_type = PT_PHDR;
2605 m->p_flags = PF_R | PF_X;
2606 m->p_flags_valid = 1;
2607 m->p_paddr_valid = 1;
2608 m->includes_phdrs = 1;
2609
2610 m->next = elf_tdata (abfd)->segment_map;
2611 elf_tdata (abfd)->segment_map = m;
2612 }
2613 }
2614
2615 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2616 if (m->p_type == PT_LOAD)
2617 {
2618 unsigned int i;
2619
2620 for (i = 0; i < m->count; i++)
2621 {
2622 /* The code "hint" is not really a hint. It is a requirement
2623 for certain versions of the HP dynamic linker. Worse yet,
2624 it must be set even if the shared library does not have
2625 any code in its "text" segment (thus the check for .hash
2626 to catch this situation). */
2627 if (m->sections[i]->flags & SEC_CODE
2628 || (strcmp (m->sections[i]->name, ".hash") == 0))
2629 m->p_flags |= (PF_X | PF_HP_CODE);
2630 }
2631 }
2632
2633 return TRUE;
2634 }
2635
2636 /* Called when writing out an object file to decide the type of a
2637 symbol. */
2638 static int
2639 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2640 Elf_Internal_Sym *elf_sym;
2641 int type;
2642 {
2643 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2644 return STT_PARISC_MILLI;
2645 else
2646 return type;
2647 }
2648
2649 /* Support HP specific sections for core files. */
2650 static bfd_boolean
2651 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2652 const char *typename)
2653 {
2654 if (hdr->p_type == PT_HP_CORE_KERNEL)
2655 {
2656 asection *sect;
2657
2658 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2659 return FALSE;
2660
2661 sect = bfd_make_section_anyway (abfd, ".kernel");
2662 if (sect == NULL)
2663 return FALSE;
2664 sect->size = hdr->p_filesz;
2665 sect->filepos = hdr->p_offset;
2666 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2667 return TRUE;
2668 }
2669
2670 if (hdr->p_type == PT_HP_CORE_PROC)
2671 {
2672 int sig;
2673
2674 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2675 return FALSE;
2676 if (bfd_bread (&sig, 4, abfd) != 4)
2677 return FALSE;
2678
2679 elf_tdata (abfd)->core_signal = sig;
2680
2681 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2682 return FALSE;
2683
2684 /* GDB uses the ".reg" section to read register contents. */
2685 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2686 hdr->p_offset);
2687 }
2688
2689 if (hdr->p_type == PT_HP_CORE_LOADABLE
2690 || hdr->p_type == PT_HP_CORE_STACK
2691 || hdr->p_type == PT_HP_CORE_MMF)
2692 hdr->p_type = PT_LOAD;
2693
2694 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2695 }
2696
2697 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2698 {
2699 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2700 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2701 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2702 { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2703 { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2704 { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2705 { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_WEAKORDER },
2706 { NULL, 0, 0, 0, 0 }
2707 };
2708
2709 /* The hash bucket size is the standard one, namely 4. */
2710
2711 const struct elf_size_info hppa64_elf_size_info =
2712 {
2713 sizeof (Elf64_External_Ehdr),
2714 sizeof (Elf64_External_Phdr),
2715 sizeof (Elf64_External_Shdr),
2716 sizeof (Elf64_External_Rel),
2717 sizeof (Elf64_External_Rela),
2718 sizeof (Elf64_External_Sym),
2719 sizeof (Elf64_External_Dyn),
2720 sizeof (Elf_External_Note),
2721 4,
2722 1,
2723 64, 3,
2724 ELFCLASS64, EV_CURRENT,
2725 bfd_elf64_write_out_phdrs,
2726 bfd_elf64_write_shdrs_and_ehdr,
2727 bfd_elf64_write_relocs,
2728 bfd_elf64_swap_symbol_in,
2729 bfd_elf64_swap_symbol_out,
2730 bfd_elf64_slurp_reloc_table,
2731 bfd_elf64_slurp_symbol_table,
2732 bfd_elf64_swap_dyn_in,
2733 bfd_elf64_swap_dyn_out,
2734 bfd_elf64_swap_reloc_in,
2735 bfd_elf64_swap_reloc_out,
2736 bfd_elf64_swap_reloca_in,
2737 bfd_elf64_swap_reloca_out
2738 };
2739
2740 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2741 #define TARGET_BIG_NAME "elf64-hppa"
2742 #define ELF_ARCH bfd_arch_hppa
2743 #define ELF_MACHINE_CODE EM_PARISC
2744 /* This is not strictly correct. The maximum page size for PA2.0 is
2745 64M. But everything still uses 4k. */
2746 #define ELF_MAXPAGESIZE 0x1000
2747 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2748 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2749 #define elf_info_to_howto elf_hppa_info_to_howto
2750 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2751
2752 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2753 #define elf_backend_object_p elf64_hppa_object_p
2754 #define elf_backend_final_write_processing \
2755 elf_hppa_final_write_processing
2756 #define elf_backend_fake_sections elf_hppa_fake_sections
2757 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2758
2759 #define elf_backend_relocate_section elf_hppa_relocate_section
2760
2761 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2762
2763 #define elf_backend_create_dynamic_sections \
2764 elf64_hppa_create_dynamic_sections
2765 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2766
2767 #define elf_backend_adjust_dynamic_symbol \
2768 elf64_hppa_adjust_dynamic_symbol
2769
2770 #define elf_backend_size_dynamic_sections \
2771 elf64_hppa_size_dynamic_sections
2772
2773 #define elf_backend_finish_dynamic_symbol \
2774 elf64_hppa_finish_dynamic_symbol
2775 #define elf_backend_finish_dynamic_sections \
2776 elf64_hppa_finish_dynamic_sections
2777
2778 /* Stuff for the BFD linker: */
2779 #define bfd_elf64_bfd_link_hash_table_create \
2780 elf64_hppa_hash_table_create
2781
2782 #define elf_backend_check_relocs \
2783 elf64_hppa_check_relocs
2784
2785 #define elf_backend_size_info \
2786 hppa64_elf_size_info
2787
2788 #define elf_backend_additional_program_headers \
2789 elf64_hppa_additional_program_headers
2790
2791 #define elf_backend_modify_segment_map \
2792 elf64_hppa_modify_segment_map
2793
2794 #define elf_backend_link_output_symbol_hook \
2795 elf64_hppa_link_output_symbol_hook
2796
2797 #define elf_backend_want_got_plt 0
2798 #define elf_backend_plt_readonly 0
2799 #define elf_backend_want_plt_sym 0
2800 #define elf_backend_got_header_size 0
2801 #define elf_backend_type_change_ok TRUE
2802 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2803 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2804 #define elf_backend_rela_normal 1
2805 #define elf_backend_special_sections elf64_hppa_special_sections
2806 #define elf_backend_action_discarded elf_hppa_action_discarded
2807 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2808
2809 #include "elf64-target.h"
2810
2811 #undef TARGET_BIG_SYM
2812 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2813 #undef TARGET_BIG_NAME
2814 #define TARGET_BIG_NAME "elf64-hppa-linux"
2815
2816 #undef elf_backend_special_sections
2817
2818 #define INCLUDED_TARGET_FILE 1
2819 #include "elf64-target.h"
This page took 0.085869 seconds and 4 git commands to generate.