*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static bfd_boolean elf64_hppa_dyn_hash_table_init
161 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
162 new_hash_entry_func new));
163 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
165 const char *string));
166 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
167 PARAMS ((bfd *abfd));
168 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
170 bfd_boolean create, bfd_boolean copy));
171 static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
173 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
174 PTR info));
175
176 static const char *get_dyn_name
177 PARAMS ((bfd *, struct elf_link_hash_entry *,
178 const Elf_Internal_Rela *, char **, size_t *));
179
180 /* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182 #include "elf-hppa.h"
183
184 static bfd_boolean elf64_hppa_object_p
185 PARAMS ((bfd *));
186
187 static bfd_boolean elf64_hppa_section_from_shdr
188 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
189
190 static void elf64_hppa_post_process_headers
191 PARAMS ((bfd *, struct bfd_link_info *));
192
193 static bfd_boolean elf64_hppa_create_dynamic_sections
194 PARAMS ((bfd *, struct bfd_link_info *));
195
196 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
197 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
198
199 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
200 PARAMS ((struct elf_link_hash_entry *, PTR));
201
202 static bfd_boolean elf64_hppa_size_dynamic_sections
203 PARAMS ((bfd *, struct bfd_link_info *));
204
205 static bfd_boolean elf64_hppa_link_output_symbol_hook
206 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
207 asection *, struct elf_link_hash_entry *));
208
209 static bfd_boolean elf64_hppa_finish_dynamic_symbol
210 PARAMS ((bfd *, struct bfd_link_info *,
211 struct elf_link_hash_entry *, Elf_Internal_Sym *));
212
213 static int elf64_hppa_additional_program_headers
214 PARAMS ((bfd *));
215
216 static bfd_boolean elf64_hppa_modify_segment_map
217 PARAMS ((bfd *, struct bfd_link_info *));
218
219 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
220 PARAMS ((const Elf_Internal_Rela *));
221
222 static bfd_boolean elf64_hppa_finish_dynamic_sections
223 PARAMS ((bfd *, struct bfd_link_info *));
224
225 static bfd_boolean elf64_hppa_check_relocs
226 PARAMS ((bfd *, struct bfd_link_info *,
227 asection *, const Elf_Internal_Rela *));
228
229 static bfd_boolean elf64_hppa_dynamic_symbol_p
230 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
231
232 static bfd_boolean elf64_hppa_mark_exported_functions
233 PARAMS ((struct elf_link_hash_entry *, PTR));
234
235 static bfd_boolean elf64_hppa_finalize_opd
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean elf64_hppa_finalize_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_dlt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean allocate_global_data_plt
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247 static bfd_boolean allocate_global_data_stub
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
250 static bfd_boolean allocate_global_data_opd
251 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
253 static bfd_boolean get_reloc_section
254 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
255
256 static bfd_boolean count_dyn_reloc
257 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
258 int, asection *, int, bfd_vma, bfd_vma));
259
260 static bfd_boolean allocate_dynrel_entries
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
263 static bfd_boolean elf64_hppa_finalize_dynreloc
264 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
265
266 static bfd_boolean get_opd
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static bfd_boolean get_plt
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272 static bfd_boolean get_dlt
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
275 static bfd_boolean get_stub
276 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
277
278 static int elf64_hppa_elf_get_symbol_type
279 PARAMS ((Elf_Internal_Sym *, int));
280
281 static bfd_boolean
282 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
283 struct elf64_hppa_dyn_hash_table *ht;
284 bfd *abfd ATTRIBUTE_UNUSED;
285 new_hash_entry_func new;
286 {
287 memset (ht, 0, sizeof (*ht));
288 return bfd_hash_table_init (&ht->root, new);
289 }
290
291 static struct bfd_hash_entry*
292 elf64_hppa_new_dyn_hash_entry (entry, table, string)
293 struct bfd_hash_entry *entry;
294 struct bfd_hash_table *table;
295 const char *string;
296 {
297 struct elf64_hppa_dyn_hash_entry *ret;
298 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
299
300 /* Allocate the structure if it has not already been allocated by a
301 subclass. */
302 if (!ret)
303 ret = bfd_hash_allocate (table, sizeof (*ret));
304
305 if (!ret)
306 return 0;
307
308 /* Call the allocation method of the superclass. */
309 ret = ((struct elf64_hppa_dyn_hash_entry *)
310 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
311
312 /* Initialize our local data. All zeros. */
313 memset (&ret->dlt_offset, 0,
314 (sizeof (struct elf64_hppa_dyn_hash_entry)
315 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
316
317 return &ret->root;
318 }
319
320 /* Create the derived linker hash table. The PA64 ELF port uses this
321 derived hash table to keep information specific to the PA ElF
322 linker (without using static variables). */
323
324 static struct bfd_link_hash_table*
325 elf64_hppa_hash_table_create (abfd)
326 bfd *abfd;
327 {
328 struct elf64_hppa_link_hash_table *ret;
329
330 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
331 if (!ret)
332 return 0;
333 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
334 _bfd_elf_link_hash_newfunc))
335 {
336 bfd_release (abfd, ret);
337 return 0;
338 }
339
340 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
341 elf64_hppa_new_dyn_hash_entry))
342 return 0;
343 return &ret->root.root;
344 }
345
346 /* Look up an entry in a PA64 ELF linker hash table. */
347
348 static struct elf64_hppa_dyn_hash_entry *
349 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
350 struct elf64_hppa_dyn_hash_table *table;
351 const char *string;
352 bfd_boolean create, copy;
353 {
354 return ((struct elf64_hppa_dyn_hash_entry *)
355 bfd_hash_lookup (&table->root, string, create, copy));
356 }
357
358 /* Traverse a PA64 ELF linker hash table. */
359
360 static void
361 elf64_hppa_dyn_hash_traverse (table, func, info)
362 struct elf64_hppa_dyn_hash_table *table;
363 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
364 PTR info;
365 {
366 (bfd_hash_traverse
367 (&table->root,
368 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
369 info));
370 }
371 \f
372 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
373
374 Additionally we set the default architecture and machine. */
375 static bfd_boolean
376 elf64_hppa_object_p (abfd)
377 bfd *abfd;
378 {
379 Elf_Internal_Ehdr * i_ehdrp;
380 unsigned int flags;
381
382 i_ehdrp = elf_elfheader (abfd);
383 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
384 {
385 /* GCC on hppa-linux produces binaries with OSABI=Linux,
386 but the kernel produces corefiles with OSABI=SysV. */
387 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
388 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
389 return FALSE;
390 }
391 else
392 {
393 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
394 return FALSE;
395 }
396
397 flags = i_ehdrp->e_flags;
398 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
399 {
400 case EFA_PARISC_1_0:
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
402 case EFA_PARISC_1_1:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
404 case EFA_PARISC_2_0:
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
406 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
407 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
408 }
409 /* Don't be fussy. */
410 return TRUE;
411 }
412
413 /* Given section type (hdr->sh_type), return a boolean indicating
414 whether or not the section is an elf64-hppa specific section. */
415 static bfd_boolean
416 elf64_hppa_section_from_shdr (abfd, hdr, name)
417 bfd *abfd;
418 Elf_Internal_Shdr *hdr;
419 const char *name;
420 {
421 asection *newsect;
422
423 switch (hdr->sh_type)
424 {
425 case SHT_PARISC_EXT:
426 if (strcmp (name, ".PARISC.archext") != 0)
427 return FALSE;
428 break;
429 case SHT_PARISC_UNWIND:
430 if (strcmp (name, ".PARISC.unwind") != 0)
431 return FALSE;
432 break;
433 case SHT_PARISC_DOC:
434 case SHT_PARISC_ANNOT:
435 default:
436 return FALSE;
437 }
438
439 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
440 return FALSE;
441 newsect = hdr->bfd_section;
442
443 return TRUE;
444 }
445
446 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
447 name describes what was once potentially anonymous memory. We
448 allocate memory as necessary, possibly reusing PBUF/PLEN. */
449
450 static const char *
451 get_dyn_name (abfd, h, rel, pbuf, plen)
452 bfd *abfd;
453 struct elf_link_hash_entry *h;
454 const Elf_Internal_Rela *rel;
455 char **pbuf;
456 size_t *plen;
457 {
458 asection *sec = abfd->sections;
459 size_t nlen, tlen;
460 char *buf;
461 size_t len;
462
463 if (h && rel->r_addend == 0)
464 return h->root.root.string;
465
466 if (h)
467 nlen = strlen (h->root.root.string);
468 else
469 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
470 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
471
472 len = *plen;
473 buf = *pbuf;
474 if (len < tlen)
475 {
476 if (buf)
477 free (buf);
478 *pbuf = buf = malloc (tlen);
479 *plen = len = tlen;
480 if (!buf)
481 return NULL;
482 }
483
484 if (h)
485 {
486 memcpy (buf, h->root.root.string, nlen);
487 buf[nlen++] = '+';
488 sprintf_vma (buf + nlen, rel->r_addend);
489 }
490 else
491 {
492 nlen = sprintf (buf, "%x:%lx",
493 sec->id & 0xffffffff,
494 (long) ELF64_R_SYM (rel->r_info));
495 if (rel->r_addend)
496 {
497 buf[nlen++] = '+';
498 sprintf_vma (buf + nlen, rel->r_addend);
499 }
500 }
501
502 return buf;
503 }
504
505 /* SEC is a section containing relocs for an input BFD when linking; return
506 a suitable section for holding relocs in the output BFD for a link. */
507
508 static bfd_boolean
509 get_reloc_section (abfd, hppa_info, sec)
510 bfd *abfd;
511 struct elf64_hppa_link_hash_table *hppa_info;
512 asection *sec;
513 {
514 const char *srel_name;
515 asection *srel;
516 bfd *dynobj;
517
518 srel_name = (bfd_elf_string_from_elf_section
519 (abfd, elf_elfheader(abfd)->e_shstrndx,
520 elf_section_data(sec)->rel_hdr.sh_name));
521 if (srel_name == NULL)
522 return FALSE;
523
524 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
525 && strcmp (bfd_get_section_name (abfd, sec),
526 srel_name+5) == 0)
527 || (strncmp (srel_name, ".rel", 4) == 0
528 && strcmp (bfd_get_section_name (abfd, sec),
529 srel_name+4) == 0));
530
531 dynobj = hppa_info->root.dynobj;
532 if (!dynobj)
533 hppa_info->root.dynobj = dynobj = abfd;
534
535 srel = bfd_get_section_by_name (dynobj, srel_name);
536 if (srel == NULL)
537 {
538 srel = bfd_make_section (dynobj, srel_name);
539 if (srel == NULL
540 || !bfd_set_section_flags (dynobj, srel,
541 (SEC_ALLOC
542 | SEC_LOAD
543 | SEC_HAS_CONTENTS
544 | SEC_IN_MEMORY
545 | SEC_LINKER_CREATED
546 | SEC_READONLY))
547 || !bfd_set_section_alignment (dynobj, srel, 3))
548 return FALSE;
549 }
550
551 hppa_info->other_rel_sec = srel;
552 return TRUE;
553 }
554
555 /* Add a new entry to the list of dynamic relocations against DYN_H.
556
557 We use this to keep a record of all the FPTR relocations against a
558 particular symbol so that we can create FPTR relocations in the
559 output file. */
560
561 static bfd_boolean
562 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
563 bfd *abfd;
564 struct elf64_hppa_dyn_hash_entry *dyn_h;
565 int type;
566 asection *sec;
567 int sec_symndx;
568 bfd_vma offset;
569 bfd_vma addend;
570 {
571 struct elf64_hppa_dyn_reloc_entry *rent;
572
573 rent = (struct elf64_hppa_dyn_reloc_entry *)
574 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
575 if (!rent)
576 return FALSE;
577
578 rent->next = dyn_h->reloc_entries;
579 rent->type = type;
580 rent->sec = sec;
581 rent->sec_symndx = sec_symndx;
582 rent->offset = offset;
583 rent->addend = addend;
584 dyn_h->reloc_entries = rent;
585
586 return TRUE;
587 }
588
589 /* Scan the RELOCS and record the type of dynamic entries that each
590 referenced symbol needs. */
591
592 static bfd_boolean
593 elf64_hppa_check_relocs (abfd, info, sec, relocs)
594 bfd *abfd;
595 struct bfd_link_info *info;
596 asection *sec;
597 const Elf_Internal_Rela *relocs;
598 {
599 struct elf64_hppa_link_hash_table *hppa_info;
600 const Elf_Internal_Rela *relend;
601 Elf_Internal_Shdr *symtab_hdr;
602 const Elf_Internal_Rela *rel;
603 asection *dlt, *plt, *stubs;
604 char *buf;
605 size_t buf_len;
606 int sec_symndx;
607
608 if (info->relocatable)
609 return TRUE;
610
611 /* If this is the first dynamic object found in the link, create
612 the special sections required for dynamic linking. */
613 if (! elf_hash_table (info)->dynamic_sections_created)
614 {
615 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
616 return FALSE;
617 }
618
619 hppa_info = elf64_hppa_hash_table (info);
620 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
621
622 /* If necessary, build a new table holding section symbols indices
623 for this BFD. */
624
625 if (info->shared && hppa_info->section_syms_bfd != abfd)
626 {
627 unsigned long i;
628 unsigned int highest_shndx;
629 Elf_Internal_Sym *local_syms = NULL;
630 Elf_Internal_Sym *isym, *isymend;
631 bfd_size_type amt;
632
633 /* We're done with the old cache of section index to section symbol
634 index information. Free it.
635
636 ?!? Note we leak the last section_syms array. Presumably we
637 could free it in one of the later routines in this file. */
638 if (hppa_info->section_syms)
639 free (hppa_info->section_syms);
640
641 /* Read this BFD's local symbols. */
642 if (symtab_hdr->sh_info != 0)
643 {
644 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
645 if (local_syms == NULL)
646 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
647 symtab_hdr->sh_info, 0,
648 NULL, NULL, NULL);
649 if (local_syms == NULL)
650 return FALSE;
651 }
652
653 /* Record the highest section index referenced by the local symbols. */
654 highest_shndx = 0;
655 isymend = local_syms + symtab_hdr->sh_info;
656 for (isym = local_syms; isym < isymend; isym++)
657 {
658 if (isym->st_shndx > highest_shndx)
659 highest_shndx = isym->st_shndx;
660 }
661
662 /* Allocate an array to hold the section index to section symbol index
663 mapping. Bump by one since we start counting at zero. */
664 highest_shndx++;
665 amt = highest_shndx;
666 amt *= sizeof (int);
667 hppa_info->section_syms = (int *) bfd_malloc (amt);
668
669 /* Now walk the local symbols again. If we find a section symbol,
670 record the index of the symbol into the section_syms array. */
671 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
672 {
673 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
674 hppa_info->section_syms[isym->st_shndx] = i;
675 }
676
677 /* We are finished with the local symbols. */
678 if (local_syms != NULL
679 && symtab_hdr->contents != (unsigned char *) local_syms)
680 {
681 if (! info->keep_memory)
682 free (local_syms);
683 else
684 {
685 /* Cache the symbols for elf_link_input_bfd. */
686 symtab_hdr->contents = (unsigned char *) local_syms;
687 }
688 }
689
690 /* Record which BFD we built the section_syms mapping for. */
691 hppa_info->section_syms_bfd = abfd;
692 }
693
694 /* Record the symbol index for this input section. We may need it for
695 relocations when building shared libraries. When not building shared
696 libraries this value is never really used, but assign it to zero to
697 prevent out of bounds memory accesses in other routines. */
698 if (info->shared)
699 {
700 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
701
702 /* If we did not find a section symbol for this section, then
703 something went terribly wrong above. */
704 if (sec_symndx == -1)
705 return FALSE;
706
707 sec_symndx = hppa_info->section_syms[sec_symndx];
708 }
709 else
710 sec_symndx = 0;
711
712 dlt = plt = stubs = NULL;
713 buf = NULL;
714 buf_len = 0;
715
716 relend = relocs + sec->reloc_count;
717 for (rel = relocs; rel < relend; ++rel)
718 {
719 enum
720 {
721 NEED_DLT = 1,
722 NEED_PLT = 2,
723 NEED_STUB = 4,
724 NEED_OPD = 8,
725 NEED_DYNREL = 16,
726 };
727
728 struct elf_link_hash_entry *h = NULL;
729 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
730 struct elf64_hppa_dyn_hash_entry *dyn_h;
731 int need_entry;
732 const char *addr_name;
733 bfd_boolean maybe_dynamic;
734 int dynrel_type = R_PARISC_NONE;
735 static reloc_howto_type *howto;
736
737 if (r_symndx >= symtab_hdr->sh_info)
738 {
739 /* We're dealing with a global symbol -- find its hash entry
740 and mark it as being referenced. */
741 long indx = r_symndx - symtab_hdr->sh_info;
742 h = elf_sym_hashes (abfd)[indx];
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 h->ref_regular = 1;
748 }
749
750 /* We can only get preliminary data on whether a symbol is
751 locally or externally defined, as not all of the input files
752 have yet been processed. Do something with what we know, as
753 this may help reduce memory usage and processing time later. */
754 maybe_dynamic = FALSE;
755 if (h && ((info->shared
756 && (!info->symbolic
757 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
758 || !h->def_regular
759 || h->root.type == bfd_link_hash_defweak))
760 maybe_dynamic = TRUE;
761
762 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
763 need_entry = 0;
764 switch (howto->type)
765 {
766 /* These are simple indirect references to symbols through the
767 DLT. We need to create a DLT entry for any symbols which
768 appears in a DLTIND relocation. */
769 case R_PARISC_DLTIND21L:
770 case R_PARISC_DLTIND14R:
771 case R_PARISC_DLTIND14F:
772 case R_PARISC_DLTIND14WR:
773 case R_PARISC_DLTIND14DR:
774 need_entry = NEED_DLT;
775 break;
776
777 /* ?!? These need a DLT entry. But I have no idea what to do with
778 the "link time TP value. */
779 case R_PARISC_LTOFF_TP21L:
780 case R_PARISC_LTOFF_TP14R:
781 case R_PARISC_LTOFF_TP14F:
782 case R_PARISC_LTOFF_TP64:
783 case R_PARISC_LTOFF_TP14WR:
784 case R_PARISC_LTOFF_TP14DR:
785 case R_PARISC_LTOFF_TP16F:
786 case R_PARISC_LTOFF_TP16WF:
787 case R_PARISC_LTOFF_TP16DF:
788 need_entry = NEED_DLT;
789 break;
790
791 /* These are function calls. Depending on their precise target we
792 may need to make a stub for them. The stub uses the PLT, so we
793 need to create PLT entries for these symbols too. */
794 case R_PARISC_PCREL12F:
795 case R_PARISC_PCREL17F:
796 case R_PARISC_PCREL22F:
797 case R_PARISC_PCREL32:
798 case R_PARISC_PCREL64:
799 case R_PARISC_PCREL21L:
800 case R_PARISC_PCREL17R:
801 case R_PARISC_PCREL17C:
802 case R_PARISC_PCREL14R:
803 case R_PARISC_PCREL14F:
804 case R_PARISC_PCREL22C:
805 case R_PARISC_PCREL14WR:
806 case R_PARISC_PCREL14DR:
807 case R_PARISC_PCREL16F:
808 case R_PARISC_PCREL16WF:
809 case R_PARISC_PCREL16DF:
810 need_entry = (NEED_PLT | NEED_STUB);
811 break;
812
813 case R_PARISC_PLTOFF21L:
814 case R_PARISC_PLTOFF14R:
815 case R_PARISC_PLTOFF14F:
816 case R_PARISC_PLTOFF14WR:
817 case R_PARISC_PLTOFF14DR:
818 case R_PARISC_PLTOFF16F:
819 case R_PARISC_PLTOFF16WF:
820 case R_PARISC_PLTOFF16DF:
821 need_entry = (NEED_PLT);
822 break;
823
824 case R_PARISC_DIR64:
825 if (info->shared || maybe_dynamic)
826 need_entry = (NEED_DYNREL);
827 dynrel_type = R_PARISC_DIR64;
828 break;
829
830 /* This is an indirect reference through the DLT to get the address
831 of a OPD descriptor. Thus we need to make a DLT entry that points
832 to an OPD entry. */
833 case R_PARISC_LTOFF_FPTR21L:
834 case R_PARISC_LTOFF_FPTR14R:
835 case R_PARISC_LTOFF_FPTR14WR:
836 case R_PARISC_LTOFF_FPTR14DR:
837 case R_PARISC_LTOFF_FPTR32:
838 case R_PARISC_LTOFF_FPTR64:
839 case R_PARISC_LTOFF_FPTR16F:
840 case R_PARISC_LTOFF_FPTR16WF:
841 case R_PARISC_LTOFF_FPTR16DF:
842 if (info->shared || maybe_dynamic)
843 need_entry = (NEED_DLT | NEED_OPD);
844 else
845 need_entry = (NEED_DLT | NEED_OPD);
846 dynrel_type = R_PARISC_FPTR64;
847 break;
848
849 /* This is a simple OPD entry. */
850 case R_PARISC_FPTR64:
851 if (info->shared || maybe_dynamic)
852 need_entry = (NEED_OPD | NEED_DYNREL);
853 else
854 need_entry = (NEED_OPD);
855 dynrel_type = R_PARISC_FPTR64;
856 break;
857
858 /* Add more cases as needed. */
859 }
860
861 if (!need_entry)
862 continue;
863
864 /* Collect a canonical name for this address. */
865 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
866
867 /* Collect the canonical entry data for this address. */
868 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
869 addr_name, TRUE, TRUE);
870 BFD_ASSERT (dyn_h);
871
872 /* Stash away enough information to be able to find this symbol
873 regardless of whether or not it is local or global. */
874 dyn_h->h = h;
875 dyn_h->owner = abfd;
876 dyn_h->sym_indx = r_symndx;
877
878 /* ?!? We may need to do some error checking in here. */
879 /* Create what's needed. */
880 if (need_entry & NEED_DLT)
881 {
882 if (! hppa_info->dlt_sec
883 && ! get_dlt (abfd, info, hppa_info))
884 goto err_out;
885 dyn_h->want_dlt = 1;
886 }
887
888 if (need_entry & NEED_PLT)
889 {
890 if (! hppa_info->plt_sec
891 && ! get_plt (abfd, info, hppa_info))
892 goto err_out;
893 dyn_h->want_plt = 1;
894 }
895
896 if (need_entry & NEED_STUB)
897 {
898 if (! hppa_info->stub_sec
899 && ! get_stub (abfd, info, hppa_info))
900 goto err_out;
901 dyn_h->want_stub = 1;
902 }
903
904 if (need_entry & NEED_OPD)
905 {
906 if (! hppa_info->opd_sec
907 && ! get_opd (abfd, info, hppa_info))
908 goto err_out;
909
910 dyn_h->want_opd = 1;
911
912 /* FPTRs are not allocated by the dynamic linker for PA64, though
913 it is possible that will change in the future. */
914
915 /* This could be a local function that had its address taken, in
916 which case H will be NULL. */
917 if (h)
918 h->needs_plt = 1;
919 }
920
921 /* Add a new dynamic relocation to the chain of dynamic
922 relocations for this symbol. */
923 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
924 {
925 if (! hppa_info->other_rel_sec
926 && ! get_reloc_section (abfd, hppa_info, sec))
927 goto err_out;
928
929 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
930 sec_symndx, rel->r_offset, rel->r_addend))
931 goto err_out;
932
933 /* If we are building a shared library and we just recorded
934 a dynamic R_PARISC_FPTR64 relocation, then make sure the
935 section symbol for this section ends up in the dynamic
936 symbol table. */
937 if (info->shared && dynrel_type == R_PARISC_FPTR64
938 && ! (bfd_elf_link_record_local_dynamic_symbol
939 (info, abfd, sec_symndx)))
940 return FALSE;
941 }
942 }
943
944 if (buf)
945 free (buf);
946 return TRUE;
947
948 err_out:
949 if (buf)
950 free (buf);
951 return FALSE;
952 }
953
954 struct elf64_hppa_allocate_data
955 {
956 struct bfd_link_info *info;
957 bfd_size_type ofs;
958 };
959
960 /* Should we do dynamic things to this symbol? */
961
962 static bfd_boolean
963 elf64_hppa_dynamic_symbol_p (h, info)
964 struct elf_link_hash_entry *h;
965 struct bfd_link_info *info;
966 {
967 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
968 and relocations that retrieve a function descriptor? Assume the
969 worst for now. */
970 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
971 {
972 /* ??? Why is this here and not elsewhere is_local_label_name. */
973 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
974 return FALSE;
975
976 return TRUE;
977 }
978 else
979 return FALSE;
980 }
981
982 /* Mark all functions exported by this file so that we can later allocate
983 entries in .opd for them. */
984
985 static bfd_boolean
986 elf64_hppa_mark_exported_functions (h, data)
987 struct elf_link_hash_entry *h;
988 PTR data;
989 {
990 struct bfd_link_info *info = (struct bfd_link_info *)data;
991 struct elf64_hppa_link_hash_table *hppa_info;
992
993 hppa_info = elf64_hppa_hash_table (info);
994
995 if (h->root.type == bfd_link_hash_warning)
996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
997
998 if (h
999 && (h->root.type == bfd_link_hash_defined
1000 || h->root.type == bfd_link_hash_defweak)
1001 && h->root.u.def.section->output_section != NULL
1002 && h->type == STT_FUNC)
1003 {
1004 struct elf64_hppa_dyn_hash_entry *dyn_h;
1005
1006 /* Add this symbol to the PA64 linker hash table. */
1007 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1008 h->root.root.string, TRUE, TRUE);
1009 BFD_ASSERT (dyn_h);
1010 dyn_h->h = h;
1011
1012 if (! hppa_info->opd_sec
1013 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1014 return FALSE;
1015
1016 dyn_h->want_opd = 1;
1017 /* Put a flag here for output_symbol_hook. */
1018 dyn_h->st_shndx = -1;
1019 h->needs_plt = 1;
1020 }
1021
1022 return TRUE;
1023 }
1024
1025 /* Allocate space for a DLT entry. */
1026
1027 static bfd_boolean
1028 allocate_global_data_dlt (dyn_h, data)
1029 struct elf64_hppa_dyn_hash_entry *dyn_h;
1030 PTR data;
1031 {
1032 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1033
1034 if (dyn_h->want_dlt)
1035 {
1036 struct elf_link_hash_entry *h = dyn_h->h;
1037
1038 if (x->info->shared)
1039 {
1040 /* Possibly add the symbol to the local dynamic symbol
1041 table since we might need to create a dynamic relocation
1042 against it. */
1043 if (! h
1044 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1045 {
1046 bfd *owner;
1047 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1048
1049 if (! (bfd_elf_link_record_local_dynamic_symbol
1050 (x->info, owner, dyn_h->sym_indx)))
1051 return FALSE;
1052 }
1053 }
1054
1055 dyn_h->dlt_offset = x->ofs;
1056 x->ofs += DLT_ENTRY_SIZE;
1057 }
1058 return TRUE;
1059 }
1060
1061 /* Allocate space for a DLT.PLT entry. */
1062
1063 static bfd_boolean
1064 allocate_global_data_plt (dyn_h, data)
1065 struct elf64_hppa_dyn_hash_entry *dyn_h;
1066 PTR data;
1067 {
1068 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1069
1070 if (dyn_h->want_plt
1071 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1072 && !((dyn_h->h->root.type == bfd_link_hash_defined
1073 || dyn_h->h->root.type == bfd_link_hash_defweak)
1074 && dyn_h->h->root.u.def.section->output_section != NULL))
1075 {
1076 dyn_h->plt_offset = x->ofs;
1077 x->ofs += PLT_ENTRY_SIZE;
1078 if (dyn_h->plt_offset < 0x2000)
1079 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1080 }
1081 else
1082 dyn_h->want_plt = 0;
1083
1084 return TRUE;
1085 }
1086
1087 /* Allocate space for a STUB entry. */
1088
1089 static bfd_boolean
1090 allocate_global_data_stub (dyn_h, data)
1091 struct elf64_hppa_dyn_hash_entry *dyn_h;
1092 PTR data;
1093 {
1094 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1095
1096 if (dyn_h->want_stub
1097 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1098 && !((dyn_h->h->root.type == bfd_link_hash_defined
1099 || dyn_h->h->root.type == bfd_link_hash_defweak)
1100 && dyn_h->h->root.u.def.section->output_section != NULL))
1101 {
1102 dyn_h->stub_offset = x->ofs;
1103 x->ofs += sizeof (plt_stub);
1104 }
1105 else
1106 dyn_h->want_stub = 0;
1107 return TRUE;
1108 }
1109
1110 /* Allocate space for a FPTR entry. */
1111
1112 static bfd_boolean
1113 allocate_global_data_opd (dyn_h, data)
1114 struct elf64_hppa_dyn_hash_entry *dyn_h;
1115 PTR data;
1116 {
1117 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1118
1119 if (dyn_h->want_opd)
1120 {
1121 struct elf_link_hash_entry *h = dyn_h->h;
1122
1123 if (h)
1124 while (h->root.type == bfd_link_hash_indirect
1125 || h->root.type == bfd_link_hash_warning)
1126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1127
1128 /* We never need an opd entry for a symbol which is not
1129 defined by this output file. */
1130 if (h && (h->root.type == bfd_link_hash_undefined
1131 || h->root.u.def.section->output_section == NULL))
1132 dyn_h->want_opd = 0;
1133
1134 /* If we are creating a shared library, took the address of a local
1135 function or might export this function from this object file, then
1136 we have to create an opd descriptor. */
1137 else if (x->info->shared
1138 || h == NULL
1139 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1140 || (h->root.type == bfd_link_hash_defined
1141 || h->root.type == bfd_link_hash_defweak))
1142 {
1143 /* If we are creating a shared library, then we will have to
1144 create a runtime relocation for the symbol to properly
1145 initialize the .opd entry. Make sure the symbol gets
1146 added to the dynamic symbol table. */
1147 if (x->info->shared
1148 && (h == NULL || (h->dynindx == -1)))
1149 {
1150 bfd *owner;
1151 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1152
1153 if (!bfd_elf_link_record_local_dynamic_symbol
1154 (x->info, owner, dyn_h->sym_indx))
1155 return FALSE;
1156 }
1157
1158 /* This may not be necessary or desirable anymore now that
1159 we have some support for dealing with section symbols
1160 in dynamic relocs. But name munging does make the result
1161 much easier to debug. ie, the EPLT reloc will reference
1162 a symbol like .foobar, instead of .text + offset. */
1163 if (x->info->shared && h)
1164 {
1165 char *new_name;
1166 struct elf_link_hash_entry *nh;
1167
1168 new_name = alloca (strlen (h->root.root.string) + 2);
1169 new_name[0] = '.';
1170 strcpy (new_name + 1, h->root.root.string);
1171
1172 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1173 new_name, TRUE, TRUE, TRUE);
1174
1175 nh->root.type = h->root.type;
1176 nh->root.u.def.value = h->root.u.def.value;
1177 nh->root.u.def.section = h->root.u.def.section;
1178
1179 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1180 return FALSE;
1181
1182 }
1183 dyn_h->opd_offset = x->ofs;
1184 x->ofs += OPD_ENTRY_SIZE;
1185 }
1186
1187 /* Otherwise we do not need an opd entry. */
1188 else
1189 dyn_h->want_opd = 0;
1190 }
1191 return TRUE;
1192 }
1193
1194 /* HP requires the EI_OSABI field to be filled in. The assignment to
1195 EI_ABIVERSION may not be strictly necessary. */
1196
1197 static void
1198 elf64_hppa_post_process_headers (abfd, link_info)
1199 bfd * abfd;
1200 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1201 {
1202 Elf_Internal_Ehdr * i_ehdrp;
1203
1204 i_ehdrp = elf_elfheader (abfd);
1205
1206 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1207 {
1208 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1209 }
1210 else
1211 {
1212 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1213 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1214 }
1215 }
1216
1217 /* Create function descriptor section (.opd). This section is called .opd
1218 because it contains "official procedure descriptors". The "official"
1219 refers to the fact that these descriptors are used when taking the address
1220 of a procedure, thus ensuring a unique address for each procedure. */
1221
1222 static bfd_boolean
1223 get_opd (abfd, info, hppa_info)
1224 bfd *abfd;
1225 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1226 struct elf64_hppa_link_hash_table *hppa_info;
1227 {
1228 asection *opd;
1229 bfd *dynobj;
1230
1231 opd = hppa_info->opd_sec;
1232 if (!opd)
1233 {
1234 dynobj = hppa_info->root.dynobj;
1235 if (!dynobj)
1236 hppa_info->root.dynobj = dynobj = abfd;
1237
1238 opd = bfd_make_section (dynobj, ".opd");
1239 if (!opd
1240 || !bfd_set_section_flags (dynobj, opd,
1241 (SEC_ALLOC
1242 | SEC_LOAD
1243 | SEC_HAS_CONTENTS
1244 | SEC_IN_MEMORY
1245 | SEC_LINKER_CREATED))
1246 || !bfd_set_section_alignment (abfd, opd, 3))
1247 {
1248 BFD_ASSERT (0);
1249 return FALSE;
1250 }
1251
1252 hppa_info->opd_sec = opd;
1253 }
1254
1255 return TRUE;
1256 }
1257
1258 /* Create the PLT section. */
1259
1260 static bfd_boolean
1261 get_plt (abfd, info, hppa_info)
1262 bfd *abfd;
1263 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1264 struct elf64_hppa_link_hash_table *hppa_info;
1265 {
1266 asection *plt;
1267 bfd *dynobj;
1268
1269 plt = hppa_info->plt_sec;
1270 if (!plt)
1271 {
1272 dynobj = hppa_info->root.dynobj;
1273 if (!dynobj)
1274 hppa_info->root.dynobj = dynobj = abfd;
1275
1276 plt = bfd_make_section (dynobj, ".plt");
1277 if (!plt
1278 || !bfd_set_section_flags (dynobj, plt,
1279 (SEC_ALLOC
1280 | SEC_LOAD
1281 | SEC_HAS_CONTENTS
1282 | SEC_IN_MEMORY
1283 | SEC_LINKER_CREATED))
1284 || !bfd_set_section_alignment (abfd, plt, 3))
1285 {
1286 BFD_ASSERT (0);
1287 return FALSE;
1288 }
1289
1290 hppa_info->plt_sec = plt;
1291 }
1292
1293 return TRUE;
1294 }
1295
1296 /* Create the DLT section. */
1297
1298 static bfd_boolean
1299 get_dlt (abfd, info, hppa_info)
1300 bfd *abfd;
1301 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1302 struct elf64_hppa_link_hash_table *hppa_info;
1303 {
1304 asection *dlt;
1305 bfd *dynobj;
1306
1307 dlt = hppa_info->dlt_sec;
1308 if (!dlt)
1309 {
1310 dynobj = hppa_info->root.dynobj;
1311 if (!dynobj)
1312 hppa_info->root.dynobj = dynobj = abfd;
1313
1314 dlt = bfd_make_section (dynobj, ".dlt");
1315 if (!dlt
1316 || !bfd_set_section_flags (dynobj, dlt,
1317 (SEC_ALLOC
1318 | SEC_LOAD
1319 | SEC_HAS_CONTENTS
1320 | SEC_IN_MEMORY
1321 | SEC_LINKER_CREATED))
1322 || !bfd_set_section_alignment (abfd, dlt, 3))
1323 {
1324 BFD_ASSERT (0);
1325 return FALSE;
1326 }
1327
1328 hppa_info->dlt_sec = dlt;
1329 }
1330
1331 return TRUE;
1332 }
1333
1334 /* Create the stubs section. */
1335
1336 static bfd_boolean
1337 get_stub (abfd, info, hppa_info)
1338 bfd *abfd;
1339 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1340 struct elf64_hppa_link_hash_table *hppa_info;
1341 {
1342 asection *stub;
1343 bfd *dynobj;
1344
1345 stub = hppa_info->stub_sec;
1346 if (!stub)
1347 {
1348 dynobj = hppa_info->root.dynobj;
1349 if (!dynobj)
1350 hppa_info->root.dynobj = dynobj = abfd;
1351
1352 stub = bfd_make_section (dynobj, ".stub");
1353 if (!stub
1354 || !bfd_set_section_flags (dynobj, stub,
1355 (SEC_ALLOC
1356 | SEC_LOAD
1357 | SEC_HAS_CONTENTS
1358 | SEC_IN_MEMORY
1359 | SEC_READONLY
1360 | SEC_LINKER_CREATED))
1361 || !bfd_set_section_alignment (abfd, stub, 3))
1362 {
1363 BFD_ASSERT (0);
1364 return FALSE;
1365 }
1366
1367 hppa_info->stub_sec = stub;
1368 }
1369
1370 return TRUE;
1371 }
1372
1373 /* Create sections necessary for dynamic linking. This is only a rough
1374 cut and will likely change as we learn more about the somewhat
1375 unusual dynamic linking scheme HP uses.
1376
1377 .stub:
1378 Contains code to implement cross-space calls. The first time one
1379 of the stubs is used it will call into the dynamic linker, later
1380 calls will go straight to the target.
1381
1382 The only stub we support right now looks like
1383
1384 ldd OFFSET(%dp),%r1
1385 bve %r0(%r1)
1386 ldd OFFSET+8(%dp),%dp
1387
1388 Other stubs may be needed in the future. We may want the remove
1389 the break/nop instruction. It is only used right now to keep the
1390 offset of a .plt entry and a .stub entry in sync.
1391
1392 .dlt:
1393 This is what most people call the .got. HP used a different name.
1394 Losers.
1395
1396 .rela.dlt:
1397 Relocations for the DLT.
1398
1399 .plt:
1400 Function pointers as address,gp pairs.
1401
1402 .rela.plt:
1403 Should contain dynamic IPLT (and EPLT?) relocations.
1404
1405 .opd:
1406 FPTRS
1407
1408 .rela.opd:
1409 EPLT relocations for symbols exported from shared libraries. */
1410
1411 static bfd_boolean
1412 elf64_hppa_create_dynamic_sections (abfd, info)
1413 bfd *abfd;
1414 struct bfd_link_info *info;
1415 {
1416 asection *s;
1417
1418 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1419 return FALSE;
1420
1421 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1422 return FALSE;
1423
1424 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1425 return FALSE;
1426
1427 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1428 return FALSE;
1429
1430 s = bfd_make_section(abfd, ".rela.dlt");
1431 if (s == NULL
1432 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1433 | SEC_HAS_CONTENTS
1434 | SEC_IN_MEMORY
1435 | SEC_READONLY
1436 | SEC_LINKER_CREATED))
1437 || !bfd_set_section_alignment (abfd, s, 3))
1438 return FALSE;
1439 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1440
1441 s = bfd_make_section(abfd, ".rela.plt");
1442 if (s == NULL
1443 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1444 | SEC_HAS_CONTENTS
1445 | SEC_IN_MEMORY
1446 | SEC_READONLY
1447 | SEC_LINKER_CREATED))
1448 || !bfd_set_section_alignment (abfd, s, 3))
1449 return FALSE;
1450 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1451
1452 s = bfd_make_section(abfd, ".rela.data");
1453 if (s == NULL
1454 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1455 | SEC_HAS_CONTENTS
1456 | SEC_IN_MEMORY
1457 | SEC_READONLY
1458 | SEC_LINKER_CREATED))
1459 || !bfd_set_section_alignment (abfd, s, 3))
1460 return FALSE;
1461 elf64_hppa_hash_table (info)->other_rel_sec = s;
1462
1463 s = bfd_make_section(abfd, ".rela.opd");
1464 if (s == NULL
1465 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1466 | SEC_HAS_CONTENTS
1467 | SEC_IN_MEMORY
1468 | SEC_READONLY
1469 | SEC_LINKER_CREATED))
1470 || !bfd_set_section_alignment (abfd, s, 3))
1471 return FALSE;
1472 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1473
1474 return TRUE;
1475 }
1476
1477 /* Allocate dynamic relocations for those symbols that turned out
1478 to be dynamic. */
1479
1480 static bfd_boolean
1481 allocate_dynrel_entries (dyn_h, data)
1482 struct elf64_hppa_dyn_hash_entry *dyn_h;
1483 PTR data;
1484 {
1485 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1486 struct elf64_hppa_link_hash_table *hppa_info;
1487 struct elf64_hppa_dyn_reloc_entry *rent;
1488 bfd_boolean dynamic_symbol, shared;
1489
1490 hppa_info = elf64_hppa_hash_table (x->info);
1491 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1492 shared = x->info->shared;
1493
1494 /* We may need to allocate relocations for a non-dynamic symbol
1495 when creating a shared library. */
1496 if (!dynamic_symbol && !shared)
1497 return TRUE;
1498
1499 /* Take care of the normal data relocations. */
1500
1501 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1502 {
1503 /* Allocate one iff we are building a shared library, the relocation
1504 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1505 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1506 continue;
1507
1508 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1509
1510 /* Make sure this symbol gets into the dynamic symbol table if it is
1511 not already recorded. ?!? This should not be in the loop since
1512 the symbol need only be added once. */
1513 if (dyn_h->h == 0
1514 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1515 if (!bfd_elf_link_record_local_dynamic_symbol
1516 (x->info, rent->sec->owner, dyn_h->sym_indx))
1517 return FALSE;
1518 }
1519
1520 /* Take care of the GOT and PLT relocations. */
1521
1522 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1523 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1524
1525 /* If we are building a shared library, then every symbol that has an
1526 opd entry will need an EPLT relocation to relocate the symbol's address
1527 and __gp value based on the runtime load address. */
1528 if (shared && dyn_h->want_opd)
1529 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1530
1531 if (dyn_h->want_plt && dynamic_symbol)
1532 {
1533 bfd_size_type t = 0;
1534
1535 /* Dynamic symbols get one IPLT relocation. Local symbols in
1536 shared libraries get two REL relocations. Local symbols in
1537 main applications get nothing. */
1538 if (dynamic_symbol)
1539 t = sizeof (Elf64_External_Rela);
1540 else if (shared)
1541 t = 2 * sizeof (Elf64_External_Rela);
1542
1543 hppa_info->plt_rel_sec->size += t;
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 /* Adjust a symbol defined by a dynamic object and referenced by a
1550 regular object. */
1551
1552 static bfd_boolean
1553 elf64_hppa_adjust_dynamic_symbol (info, h)
1554 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1555 struct elf_link_hash_entry *h;
1556 {
1557 /* ??? Undefined symbols with PLT entries should be re-defined
1558 to be the PLT entry. */
1559
1560 /* If this is a weak symbol, and there is a real definition, the
1561 processor independent code will have arranged for us to see the
1562 real definition first, and we can just use the same value. */
1563 if (h->u.weakdef != NULL)
1564 {
1565 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1566 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1567 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1568 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1569 return TRUE;
1570 }
1571
1572 /* If this is a reference to a symbol defined by a dynamic object which
1573 is not a function, we might allocate the symbol in our .dynbss section
1574 and allocate a COPY dynamic relocation.
1575
1576 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1577 of hackery. */
1578
1579 return TRUE;
1580 }
1581
1582 /* This function is called via elf_link_hash_traverse to mark millicode
1583 symbols with a dynindx of -1 and to remove the string table reference
1584 from the dynamic symbol table. If the symbol is not a millicode symbol,
1585 elf64_hppa_mark_exported_functions is called. */
1586
1587 static bfd_boolean
1588 elf64_hppa_mark_milli_and_exported_functions (h, data)
1589 struct elf_link_hash_entry *h;
1590 PTR data;
1591 {
1592 struct bfd_link_info *info = (struct bfd_link_info *)data;
1593 struct elf_link_hash_entry *elf = h;
1594
1595 if (elf->root.type == bfd_link_hash_warning)
1596 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1597
1598 if (elf->type == STT_PARISC_MILLI)
1599 {
1600 if (elf->dynindx != -1)
1601 {
1602 elf->dynindx = -1;
1603 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1604 elf->dynstr_index);
1605 }
1606 return TRUE;
1607 }
1608
1609 return elf64_hppa_mark_exported_functions (h, data);
1610 }
1611
1612 /* Set the final sizes of the dynamic sections and allocate memory for
1613 the contents of our special sections. */
1614
1615 static bfd_boolean
1616 elf64_hppa_size_dynamic_sections (output_bfd, info)
1617 bfd *output_bfd;
1618 struct bfd_link_info *info;
1619 {
1620 bfd *dynobj;
1621 asection *s;
1622 bfd_boolean plt;
1623 bfd_boolean relocs;
1624 bfd_boolean reltext;
1625 struct elf64_hppa_allocate_data data;
1626 struct elf64_hppa_link_hash_table *hppa_info;
1627
1628 hppa_info = elf64_hppa_hash_table (info);
1629
1630 dynobj = elf_hash_table (info)->dynobj;
1631 BFD_ASSERT (dynobj != NULL);
1632
1633 /* Mark each function this program exports so that we will allocate
1634 space in the .opd section for each function's FPTR. If we are
1635 creating dynamic sections, change the dynamic index of millicode
1636 symbols to -1 and remove them from the string table for .dynstr.
1637
1638 We have to traverse the main linker hash table since we have to
1639 find functions which may not have been mentioned in any relocs. */
1640 elf_link_hash_traverse (elf_hash_table (info),
1641 (elf_hash_table (info)->dynamic_sections_created
1642 ? elf64_hppa_mark_milli_and_exported_functions
1643 : elf64_hppa_mark_exported_functions),
1644 info);
1645
1646 if (elf_hash_table (info)->dynamic_sections_created)
1647 {
1648 /* Set the contents of the .interp section to the interpreter. */
1649 if (info->executable)
1650 {
1651 s = bfd_get_section_by_name (dynobj, ".interp");
1652 BFD_ASSERT (s != NULL);
1653 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1654 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1655 }
1656 }
1657 else
1658 {
1659 /* We may have created entries in the .rela.got section.
1660 However, if we are not creating the dynamic sections, we will
1661 not actually use these entries. Reset the size of .rela.dlt,
1662 which will cause it to get stripped from the output file
1663 below. */
1664 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1665 if (s != NULL)
1666 s->size = 0;
1667 }
1668
1669 /* Allocate the GOT entries. */
1670
1671 data.info = info;
1672 if (elf64_hppa_hash_table (info)->dlt_sec)
1673 {
1674 data.ofs = 0x0;
1675 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1676 allocate_global_data_dlt, &data);
1677 hppa_info->dlt_sec->size = data.ofs;
1678
1679 data.ofs = 0x0;
1680 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1681 allocate_global_data_plt, &data);
1682 hppa_info->plt_sec->size = data.ofs;
1683
1684 data.ofs = 0x0;
1685 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1686 allocate_global_data_stub, &data);
1687 hppa_info->stub_sec->size = data.ofs;
1688 }
1689
1690 /* Allocate space for entries in the .opd section. */
1691 if (elf64_hppa_hash_table (info)->opd_sec)
1692 {
1693 data.ofs = 0;
1694 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1695 allocate_global_data_opd, &data);
1696 hppa_info->opd_sec->size = data.ofs;
1697 }
1698
1699 /* Now allocate space for dynamic relocations, if necessary. */
1700 if (hppa_info->root.dynamic_sections_created)
1701 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1702 allocate_dynrel_entries, &data);
1703
1704 /* The sizes of all the sections are set. Allocate memory for them. */
1705 plt = FALSE;
1706 relocs = FALSE;
1707 reltext = FALSE;
1708 for (s = dynobj->sections; s != NULL; s = s->next)
1709 {
1710 const char *name;
1711 bfd_boolean strip;
1712
1713 if ((s->flags & SEC_LINKER_CREATED) == 0)
1714 continue;
1715
1716 /* It's OK to base decisions on the section name, because none
1717 of the dynobj section names depend upon the input files. */
1718 name = bfd_get_section_name (dynobj, s);
1719
1720 strip = 0;
1721
1722 if (strcmp (name, ".plt") == 0)
1723 {
1724 /* Strip this section if we don't need it; see the comment below. */
1725 if (s->size == 0)
1726 {
1727 strip = TRUE;
1728 }
1729 else
1730 {
1731 /* Remember whether there is a PLT. */
1732 plt = TRUE;
1733 }
1734 }
1735 else if (strcmp (name, ".dlt") == 0)
1736 {
1737 /* Strip this section if we don't need it; see the comment below. */
1738 if (s->size == 0)
1739 {
1740 strip = TRUE;
1741 }
1742 }
1743 else if (strcmp (name, ".opd") == 0)
1744 {
1745 /* Strip this section if we don't need it; see the comment below. */
1746 if (s->size == 0)
1747 {
1748 strip = TRUE;
1749 }
1750 }
1751 else if (strncmp (name, ".rela", 5) == 0)
1752 {
1753 /* If we don't need this section, strip it from the output file.
1754 This is mostly to handle .rela.bss and .rela.plt. We must
1755 create both sections in create_dynamic_sections, because they
1756 must be created before the linker maps input sections to output
1757 sections. The linker does that before adjust_dynamic_symbol
1758 is called, and it is that function which decides whether
1759 anything needs to go into these sections. */
1760 if (s->size == 0)
1761 {
1762 /* If we don't need this section, strip it from the
1763 output file. This is mostly to handle .rela.bss and
1764 .rela.plt. We must create both sections in
1765 create_dynamic_sections, because they must be created
1766 before the linker maps input sections to output
1767 sections. The linker does that before
1768 adjust_dynamic_symbol is called, and it is that
1769 function which decides whether anything needs to go
1770 into these sections. */
1771 strip = TRUE;
1772 }
1773 else
1774 {
1775 asection *target;
1776
1777 /* Remember whether there are any reloc sections other
1778 than .rela.plt. */
1779 if (strcmp (name, ".rela.plt") != 0)
1780 {
1781 const char *outname;
1782
1783 relocs = TRUE;
1784
1785 /* If this relocation section applies to a read only
1786 section, then we probably need a DT_TEXTREL
1787 entry. The entries in the .rela.plt section
1788 really apply to the .got section, which we
1789 created ourselves and so know is not readonly. */
1790 outname = bfd_get_section_name (output_bfd,
1791 s->output_section);
1792 target = bfd_get_section_by_name (output_bfd, outname + 4);
1793 if (target != NULL
1794 && (target->flags & SEC_READONLY) != 0
1795 && (target->flags & SEC_ALLOC) != 0)
1796 reltext = TRUE;
1797 }
1798
1799 /* We use the reloc_count field as a counter if we need
1800 to copy relocs into the output file. */
1801 s->reloc_count = 0;
1802 }
1803 }
1804 else if (strncmp (name, ".dlt", 4) != 0
1805 && strcmp (name, ".stub") != 0
1806 && strcmp (name, ".got") != 0)
1807 {
1808 /* It's not one of our sections, so don't allocate space. */
1809 continue;
1810 }
1811
1812 if (strip)
1813 {
1814 _bfd_strip_section_from_output (info, s);
1815 continue;
1816 }
1817
1818 /* Allocate memory for the section contents if it has not
1819 been allocated already. We use bfd_zalloc here in case
1820 unused entries are not reclaimed before the section's
1821 contents are written out. This should not happen, but this
1822 way if it does, we get a R_PARISC_NONE reloc instead of
1823 garbage. */
1824 if (s->contents == NULL)
1825 {
1826 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1827 if (s->contents == NULL && s->size != 0)
1828 return FALSE;
1829 }
1830 }
1831
1832 if (elf_hash_table (info)->dynamic_sections_created)
1833 {
1834 /* Always create a DT_PLTGOT. It actually has nothing to do with
1835 the PLT, it is how we communicate the __gp value of a load
1836 module to the dynamic linker. */
1837 #define add_dynamic_entry(TAG, VAL) \
1838 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1839
1840 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1841 || !add_dynamic_entry (DT_PLTGOT, 0))
1842 return FALSE;
1843
1844 /* Add some entries to the .dynamic section. We fill in the
1845 values later, in elf64_hppa_finish_dynamic_sections, but we
1846 must add the entries now so that we get the correct size for
1847 the .dynamic section. The DT_DEBUG entry is filled in by the
1848 dynamic linker and used by the debugger. */
1849 if (! info->shared)
1850 {
1851 if (!add_dynamic_entry (DT_DEBUG, 0)
1852 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1853 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1854 return FALSE;
1855 }
1856
1857 /* Force DT_FLAGS to always be set.
1858 Required by HPUX 11.00 patch PHSS_26559. */
1859 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1860 return FALSE;
1861
1862 if (plt)
1863 {
1864 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1865 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1866 || !add_dynamic_entry (DT_JMPREL, 0))
1867 return FALSE;
1868 }
1869
1870 if (relocs)
1871 {
1872 if (!add_dynamic_entry (DT_RELA, 0)
1873 || !add_dynamic_entry (DT_RELASZ, 0)
1874 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1875 return FALSE;
1876 }
1877
1878 if (reltext)
1879 {
1880 if (!add_dynamic_entry (DT_TEXTREL, 0))
1881 return FALSE;
1882 info->flags |= DF_TEXTREL;
1883 }
1884 }
1885 #undef add_dynamic_entry
1886
1887 return TRUE;
1888 }
1889
1890 /* Called after we have output the symbol into the dynamic symbol
1891 table, but before we output the symbol into the normal symbol
1892 table.
1893
1894 For some symbols we had to change their address when outputting
1895 the dynamic symbol table. We undo that change here so that
1896 the symbols have their expected value in the normal symbol
1897 table. Ick. */
1898
1899 static bfd_boolean
1900 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1901 struct bfd_link_info *info;
1902 const char *name;
1903 Elf_Internal_Sym *sym;
1904 asection *input_sec ATTRIBUTE_UNUSED;
1905 struct elf_link_hash_entry *h;
1906 {
1907 struct elf64_hppa_link_hash_table *hppa_info;
1908 struct elf64_hppa_dyn_hash_entry *dyn_h;
1909
1910 /* We may be called with the file symbol or section symbols.
1911 They never need munging, so it is safe to ignore them. */
1912 if (!name)
1913 return TRUE;
1914
1915 /* Get the PA dyn_symbol (if any) associated with NAME. */
1916 hppa_info = elf64_hppa_hash_table (info);
1917 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1918 name, FALSE, FALSE);
1919 if (!dyn_h || dyn_h->h != h)
1920 return TRUE;
1921
1922 /* Function symbols for which we created .opd entries *may* have been
1923 munged by finish_dynamic_symbol and have to be un-munged here.
1924
1925 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1926 into non-dynamic ones, so we initialize st_shndx to -1 in
1927 mark_exported_functions and check to see if it was overwritten
1928 here instead of just checking dyn_h->h->dynindx. */
1929 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1930 {
1931 /* Restore the saved value and section index. */
1932 sym->st_value = dyn_h->st_value;
1933 sym->st_shndx = dyn_h->st_shndx;
1934 }
1935
1936 return TRUE;
1937 }
1938
1939 /* Finish up dynamic symbol handling. We set the contents of various
1940 dynamic sections here. */
1941
1942 static bfd_boolean
1943 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1944 bfd *output_bfd;
1945 struct bfd_link_info *info;
1946 struct elf_link_hash_entry *h;
1947 Elf_Internal_Sym *sym;
1948 {
1949 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1950 struct elf64_hppa_link_hash_table *hppa_info;
1951 struct elf64_hppa_dyn_hash_entry *dyn_h;
1952
1953 hppa_info = elf64_hppa_hash_table (info);
1954 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1955 h->root.root.string, FALSE, FALSE);
1956
1957 stub = hppa_info->stub_sec;
1958 splt = hppa_info->plt_sec;
1959 sdlt = hppa_info->dlt_sec;
1960 sopd = hppa_info->opd_sec;
1961 spltrel = hppa_info->plt_rel_sec;
1962 sdltrel = hppa_info->dlt_rel_sec;
1963
1964 /* Incredible. It is actually necessary to NOT use the symbol's real
1965 value when building the dynamic symbol table for a shared library.
1966 At least for symbols that refer to functions.
1967
1968 We will store a new value and section index into the symbol long
1969 enough to output it into the dynamic symbol table, then we restore
1970 the original values (in elf64_hppa_link_output_symbol_hook). */
1971 if (dyn_h && dyn_h->want_opd)
1972 {
1973 BFD_ASSERT (sopd != NULL);
1974
1975 /* Save away the original value and section index so that we
1976 can restore them later. */
1977 dyn_h->st_value = sym->st_value;
1978 dyn_h->st_shndx = sym->st_shndx;
1979
1980 /* For the dynamic symbol table entry, we want the value to be
1981 address of this symbol's entry within the .opd section. */
1982 sym->st_value = (dyn_h->opd_offset
1983 + sopd->output_offset
1984 + sopd->output_section->vma);
1985 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1986 sopd->output_section);
1987 }
1988
1989 /* Initialize a .plt entry if requested. */
1990 if (dyn_h && dyn_h->want_plt
1991 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1992 {
1993 bfd_vma value;
1994 Elf_Internal_Rela rel;
1995 bfd_byte *loc;
1996
1997 BFD_ASSERT (splt != NULL && spltrel != NULL);
1998
1999 /* We do not actually care about the value in the PLT entry
2000 if we are creating a shared library and the symbol is
2001 still undefined, we create a dynamic relocation to fill
2002 in the correct value. */
2003 if (info->shared && h->root.type == bfd_link_hash_undefined)
2004 value = 0;
2005 else
2006 value = (h->root.u.def.value + h->root.u.def.section->vma);
2007
2008 /* Fill in the entry in the procedure linkage table.
2009
2010 The format of a plt entry is
2011 <funcaddr> <__gp>.
2012
2013 plt_offset is the offset within the PLT section at which to
2014 install the PLT entry.
2015
2016 We are modifying the in-memory PLT contents here, so we do not add
2017 in the output_offset of the PLT section. */
2018
2019 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2020 value = _bfd_get_gp_value (splt->output_section->owner);
2021 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2022
2023 /* Create a dynamic IPLT relocation for this entry.
2024
2025 We are creating a relocation in the output file's PLT section,
2026 which is included within the DLT secton. So we do need to include
2027 the PLT's output_offset in the computation of the relocation's
2028 address. */
2029 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2030 + splt->output_section->vma);
2031 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2032 rel.r_addend = 0;
2033
2034 loc = spltrel->contents;
2035 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2036 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2037 }
2038
2039 /* Initialize an external call stub entry if requested. */
2040 if (dyn_h && dyn_h->want_stub
2041 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2042 {
2043 bfd_vma value;
2044 int insn;
2045 unsigned int max_offset;
2046
2047 BFD_ASSERT (stub != NULL);
2048
2049 /* Install the generic stub template.
2050
2051 We are modifying the contents of the stub section, so we do not
2052 need to include the stub section's output_offset here. */
2053 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2054
2055 /* Fix up the first ldd instruction.
2056
2057 We are modifying the contents of the STUB section in memory,
2058 so we do not need to include its output offset in this computation.
2059
2060 Note the plt_offset value is the value of the PLT entry relative to
2061 the start of the PLT section. These instructions will reference
2062 data relative to the value of __gp, which may not necessarily have
2063 the same address as the start of the PLT section.
2064
2065 gp_offset contains the offset of __gp within the PLT section. */
2066 value = dyn_h->plt_offset - hppa_info->gp_offset;
2067
2068 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2069 if (output_bfd->arch_info->mach >= 25)
2070 {
2071 /* Wide mode allows 16 bit offsets. */
2072 max_offset = 32768;
2073 insn &= ~ 0xfff1;
2074 insn |= re_assemble_16 ((int) value);
2075 }
2076 else
2077 {
2078 max_offset = 8192;
2079 insn &= ~ 0x3ff1;
2080 insn |= re_assemble_14 ((int) value);
2081 }
2082
2083 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2084 {
2085 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2086 dyn_h->root.string,
2087 (long) value);
2088 return FALSE;
2089 }
2090
2091 bfd_put_32 (stub->owner, (bfd_vma) insn,
2092 stub->contents + dyn_h->stub_offset);
2093
2094 /* Fix up the second ldd instruction. */
2095 value += 8;
2096 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2097 if (output_bfd->arch_info->mach >= 25)
2098 {
2099 insn &= ~ 0xfff1;
2100 insn |= re_assemble_16 ((int) value);
2101 }
2102 else
2103 {
2104 insn &= ~ 0x3ff1;
2105 insn |= re_assemble_14 ((int) value);
2106 }
2107 bfd_put_32 (stub->owner, (bfd_vma) insn,
2108 stub->contents + dyn_h->stub_offset + 8);
2109 }
2110
2111 return TRUE;
2112 }
2113
2114 /* The .opd section contains FPTRs for each function this file
2115 exports. Initialize the FPTR entries. */
2116
2117 static bfd_boolean
2118 elf64_hppa_finalize_opd (dyn_h, data)
2119 struct elf64_hppa_dyn_hash_entry *dyn_h;
2120 PTR data;
2121 {
2122 struct bfd_link_info *info = (struct bfd_link_info *)data;
2123 struct elf64_hppa_link_hash_table *hppa_info;
2124 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2125 asection *sopd;
2126 asection *sopdrel;
2127
2128 hppa_info = elf64_hppa_hash_table (info);
2129 sopd = hppa_info->opd_sec;
2130 sopdrel = hppa_info->opd_rel_sec;
2131
2132 if (h && dyn_h->want_opd)
2133 {
2134 bfd_vma value;
2135
2136 /* The first two words of an .opd entry are zero.
2137
2138 We are modifying the contents of the OPD section in memory, so we
2139 do not need to include its output offset in this computation. */
2140 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2141
2142 value = (h->root.u.def.value
2143 + h->root.u.def.section->output_section->vma
2144 + h->root.u.def.section->output_offset);
2145
2146 /* The next word is the address of the function. */
2147 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2148
2149 /* The last word is our local __gp value. */
2150 value = _bfd_get_gp_value (sopd->output_section->owner);
2151 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2152 }
2153
2154 /* If we are generating a shared library, we must generate EPLT relocations
2155 for each entry in the .opd, even for static functions (they may have
2156 had their address taken). */
2157 if (info->shared && dyn_h && dyn_h->want_opd)
2158 {
2159 Elf_Internal_Rela rel;
2160 bfd_byte *loc;
2161 int dynindx;
2162
2163 /* We may need to do a relocation against a local symbol, in
2164 which case we have to look up it's dynamic symbol index off
2165 the local symbol hash table. */
2166 if (h && h->dynindx != -1)
2167 dynindx = h->dynindx;
2168 else
2169 dynindx
2170 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2171 dyn_h->sym_indx);
2172
2173 /* The offset of this relocation is the absolute address of the
2174 .opd entry for this symbol. */
2175 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2176 + sopd->output_section->vma);
2177
2178 /* If H is non-null, then we have an external symbol.
2179
2180 It is imperative that we use a different dynamic symbol for the
2181 EPLT relocation if the symbol has global scope.
2182
2183 In the dynamic symbol table, the function symbol will have a value
2184 which is address of the function's .opd entry.
2185
2186 Thus, we can not use that dynamic symbol for the EPLT relocation
2187 (if we did, the data in the .opd would reference itself rather
2188 than the actual address of the function). Instead we have to use
2189 a new dynamic symbol which has the same value as the original global
2190 function symbol.
2191
2192 We prefix the original symbol with a "." and use the new symbol in
2193 the EPLT relocation. This new symbol has already been recorded in
2194 the symbol table, we just have to look it up and use it.
2195
2196 We do not have such problems with static functions because we do
2197 not make their addresses in the dynamic symbol table point to
2198 the .opd entry. Ultimately this should be safe since a static
2199 function can not be directly referenced outside of its shared
2200 library.
2201
2202 We do have to play similar games for FPTR relocations in shared
2203 libraries, including those for static symbols. See the FPTR
2204 handling in elf64_hppa_finalize_dynreloc. */
2205 if (h)
2206 {
2207 char *new_name;
2208 struct elf_link_hash_entry *nh;
2209
2210 new_name = alloca (strlen (h->root.root.string) + 2);
2211 new_name[0] = '.';
2212 strcpy (new_name + 1, h->root.root.string);
2213
2214 nh = elf_link_hash_lookup (elf_hash_table (info),
2215 new_name, FALSE, FALSE, FALSE);
2216
2217 /* All we really want from the new symbol is its dynamic
2218 symbol index. */
2219 dynindx = nh->dynindx;
2220 }
2221
2222 rel.r_addend = 0;
2223 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2224
2225 loc = sopdrel->contents;
2226 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2227 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2228 }
2229 return TRUE;
2230 }
2231
2232 /* The .dlt section contains addresses for items referenced through the
2233 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2234 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2235
2236 static bfd_boolean
2237 elf64_hppa_finalize_dlt (dyn_h, data)
2238 struct elf64_hppa_dyn_hash_entry *dyn_h;
2239 PTR data;
2240 {
2241 struct bfd_link_info *info = (struct bfd_link_info *)data;
2242 struct elf64_hppa_link_hash_table *hppa_info;
2243 asection *sdlt, *sdltrel;
2244 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2245
2246 hppa_info = elf64_hppa_hash_table (info);
2247
2248 sdlt = hppa_info->dlt_sec;
2249 sdltrel = hppa_info->dlt_rel_sec;
2250
2251 /* H/DYN_H may refer to a local variable and we know it's
2252 address, so there is no need to create a relocation. Just install
2253 the proper value into the DLT, note this shortcut can not be
2254 skipped when building a shared library. */
2255 if (! info->shared && h && dyn_h->want_dlt)
2256 {
2257 bfd_vma value;
2258
2259 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2260 to point to the FPTR entry in the .opd section.
2261
2262 We include the OPD's output offset in this computation as
2263 we are referring to an absolute address in the resulting
2264 object file. */
2265 if (dyn_h->want_opd)
2266 {
2267 value = (dyn_h->opd_offset
2268 + hppa_info->opd_sec->output_offset
2269 + hppa_info->opd_sec->output_section->vma);
2270 }
2271 else if ((h->root.type == bfd_link_hash_defined
2272 || h->root.type == bfd_link_hash_defweak)
2273 && h->root.u.def.section)
2274 {
2275 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2276 if (h->root.u.def.section->output_section)
2277 value += h->root.u.def.section->output_section->vma;
2278 else
2279 value += h->root.u.def.section->vma;
2280 }
2281 else
2282 /* We have an undefined function reference. */
2283 value = 0;
2284
2285 /* We do not need to include the output offset of the DLT section
2286 here because we are modifying the in-memory contents. */
2287 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2288 }
2289
2290 /* Create a relocation for the DLT entry associated with this symbol.
2291 When building a shared library the symbol does not have to be dynamic. */
2292 if (dyn_h->want_dlt
2293 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2294 {
2295 Elf_Internal_Rela rel;
2296 bfd_byte *loc;
2297 int dynindx;
2298
2299 /* We may need to do a relocation against a local symbol, in
2300 which case we have to look up it's dynamic symbol index off
2301 the local symbol hash table. */
2302 if (h && h->dynindx != -1)
2303 dynindx = h->dynindx;
2304 else
2305 dynindx
2306 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2307 dyn_h->sym_indx);
2308
2309 /* Create a dynamic relocation for this entry. Do include the output
2310 offset of the DLT entry since we need an absolute address in the
2311 resulting object file. */
2312 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2313 + sdlt->output_section->vma);
2314 if (h && h->type == STT_FUNC)
2315 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2316 else
2317 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2318 rel.r_addend = 0;
2319
2320 loc = sdltrel->contents;
2321 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2322 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2323 }
2324 return TRUE;
2325 }
2326
2327 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2328 for dynamic functions used to initialize static data. */
2329
2330 static bfd_boolean
2331 elf64_hppa_finalize_dynreloc (dyn_h, data)
2332 struct elf64_hppa_dyn_hash_entry *dyn_h;
2333 PTR data;
2334 {
2335 struct bfd_link_info *info = (struct bfd_link_info *)data;
2336 struct elf64_hppa_link_hash_table *hppa_info;
2337 struct elf_link_hash_entry *h;
2338 int dynamic_symbol;
2339
2340 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2341
2342 if (!dynamic_symbol && !info->shared)
2343 return TRUE;
2344
2345 if (dyn_h->reloc_entries)
2346 {
2347 struct elf64_hppa_dyn_reloc_entry *rent;
2348 int dynindx;
2349
2350 hppa_info = elf64_hppa_hash_table (info);
2351 h = dyn_h->h;
2352
2353 /* We may need to do a relocation against a local symbol, in
2354 which case we have to look up it's dynamic symbol index off
2355 the local symbol hash table. */
2356 if (h && h->dynindx != -1)
2357 dynindx = h->dynindx;
2358 else
2359 dynindx
2360 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2361 dyn_h->sym_indx);
2362
2363 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2364 {
2365 Elf_Internal_Rela rel;
2366 bfd_byte *loc;
2367
2368 /* Allocate one iff we are building a shared library, the relocation
2369 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2370 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2371 continue;
2372
2373 /* Create a dynamic relocation for this entry.
2374
2375 We need the output offset for the reloc's section because
2376 we are creating an absolute address in the resulting object
2377 file. */
2378 rel.r_offset = (rent->offset + rent->sec->output_offset
2379 + rent->sec->output_section->vma);
2380
2381 /* An FPTR64 relocation implies that we took the address of
2382 a function and that the function has an entry in the .opd
2383 section. We want the FPTR64 relocation to reference the
2384 entry in .opd.
2385
2386 We could munge the symbol value in the dynamic symbol table
2387 (in fact we already do for functions with global scope) to point
2388 to the .opd entry. Then we could use that dynamic symbol in
2389 this relocation.
2390
2391 Or we could do something sensible, not munge the symbol's
2392 address and instead just use a different symbol to reference
2393 the .opd entry. At least that seems sensible until you
2394 realize there's no local dynamic symbols we can use for that
2395 purpose. Thus the hair in the check_relocs routine.
2396
2397 We use a section symbol recorded by check_relocs as the
2398 base symbol for the relocation. The addend is the difference
2399 between the section symbol and the address of the .opd entry. */
2400 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2401 {
2402 bfd_vma value, value2;
2403
2404 /* First compute the address of the opd entry for this symbol. */
2405 value = (dyn_h->opd_offset
2406 + hppa_info->opd_sec->output_section->vma
2407 + hppa_info->opd_sec->output_offset);
2408
2409 /* Compute the value of the start of the section with
2410 the relocation. */
2411 value2 = (rent->sec->output_section->vma
2412 + rent->sec->output_offset);
2413
2414 /* Compute the difference between the start of the section
2415 with the relocation and the opd entry. */
2416 value -= value2;
2417
2418 /* The result becomes the addend of the relocation. */
2419 rel.r_addend = value;
2420
2421 /* The section symbol becomes the symbol for the dynamic
2422 relocation. */
2423 dynindx
2424 = _bfd_elf_link_lookup_local_dynindx (info,
2425 rent->sec->owner,
2426 rent->sec_symndx);
2427 }
2428 else
2429 rel.r_addend = rent->addend;
2430
2431 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2432
2433 loc = hppa_info->other_rel_sec->contents;
2434 loc += (hppa_info->other_rel_sec->reloc_count++
2435 * sizeof (Elf64_External_Rela));
2436 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2437 &rel, loc);
2438 }
2439 }
2440
2441 return TRUE;
2442 }
2443
2444 /* Used to decide how to sort relocs in an optimal manner for the
2445 dynamic linker, before writing them out. */
2446
2447 static enum elf_reloc_type_class
2448 elf64_hppa_reloc_type_class (rela)
2449 const Elf_Internal_Rela *rela;
2450 {
2451 if (ELF64_R_SYM (rela->r_info) == 0)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463 }
2464
2465 /* Finish up the dynamic sections. */
2466
2467 static bfd_boolean
2468 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2469 bfd *output_bfd;
2470 struct bfd_link_info *info;
2471 {
2472 bfd *dynobj;
2473 asection *sdyn;
2474 struct elf64_hppa_link_hash_table *hppa_info;
2475
2476 hppa_info = elf64_hppa_hash_table (info);
2477
2478 /* Finalize the contents of the .opd section. */
2479 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2480 elf64_hppa_finalize_opd,
2481 info);
2482
2483 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2484 elf64_hppa_finalize_dynreloc,
2485 info);
2486
2487 /* Finalize the contents of the .dlt section. */
2488 dynobj = elf_hash_table (info)->dynobj;
2489 /* Finalize the contents of the .dlt section. */
2490 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2491 elf64_hppa_finalize_dlt,
2492 info);
2493
2494 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2495
2496 if (elf_hash_table (info)->dynamic_sections_created)
2497 {
2498 Elf64_External_Dyn *dyncon, *dynconend;
2499
2500 BFD_ASSERT (sdyn != NULL);
2501
2502 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2503 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2504 for (; dyncon < dynconend; dyncon++)
2505 {
2506 Elf_Internal_Dyn dyn;
2507 asection *s;
2508
2509 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2510
2511 switch (dyn.d_tag)
2512 {
2513 default:
2514 break;
2515
2516 case DT_HP_LOAD_MAP:
2517 /* Compute the absolute address of 16byte scratchpad area
2518 for the dynamic linker.
2519
2520 By convention the linker script will allocate the scratchpad
2521 area at the start of the .data section. So all we have to
2522 to is find the start of the .data section. */
2523 s = bfd_get_section_by_name (output_bfd, ".data");
2524 dyn.d_un.d_ptr = s->vma;
2525 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2526 break;
2527
2528 case DT_PLTGOT:
2529 /* HP's use PLTGOT to set the GOT register. */
2530 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2531 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2532 break;
2533
2534 case DT_JMPREL:
2535 s = hppa_info->plt_rel_sec;
2536 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2537 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2538 break;
2539
2540 case DT_PLTRELSZ:
2541 s = hppa_info->plt_rel_sec;
2542 dyn.d_un.d_val = s->size;
2543 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2544 break;
2545
2546 case DT_RELA:
2547 s = hppa_info->other_rel_sec;
2548 if (! s || ! s->size)
2549 s = hppa_info->dlt_rel_sec;
2550 if (! s || ! s->size)
2551 s = hppa_info->opd_rel_sec;
2552 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2553 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2554 break;
2555
2556 case DT_RELASZ:
2557 s = hppa_info->other_rel_sec;
2558 dyn.d_un.d_val = s->size;
2559 s = hppa_info->dlt_rel_sec;
2560 dyn.d_un.d_val += s->size;
2561 s = hppa_info->opd_rel_sec;
2562 dyn.d_un.d_val += s->size;
2563 /* There is some question about whether or not the size of
2564 the PLT relocs should be included here. HP's tools do
2565 it, so we'll emulate them. */
2566 s = hppa_info->plt_rel_sec;
2567 dyn.d_un.d_val += s->size;
2568 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2569 break;
2570
2571 }
2572 }
2573 }
2574
2575 return TRUE;
2576 }
2577
2578 /* Return the number of additional phdrs we will need.
2579
2580 The generic ELF code only creates PT_PHDRs for executables. The HP
2581 dynamic linker requires PT_PHDRs for dynamic libraries too.
2582
2583 This routine indicates that the backend needs one additional program
2584 header for that case.
2585
2586 Note we do not have access to the link info structure here, so we have
2587 to guess whether or not we are building a shared library based on the
2588 existence of a .interp section. */
2589
2590 static int
2591 elf64_hppa_additional_program_headers (abfd)
2592 bfd *abfd;
2593 {
2594 asection *s;
2595
2596 /* If we are creating a shared library, then we have to create a
2597 PT_PHDR segment. HP's dynamic linker chokes without it. */
2598 s = bfd_get_section_by_name (abfd, ".interp");
2599 if (! s)
2600 return 1;
2601 return 0;
2602 }
2603
2604 /* Allocate and initialize any program headers required by this
2605 specific backend.
2606
2607 The generic ELF code only creates PT_PHDRs for executables. The HP
2608 dynamic linker requires PT_PHDRs for dynamic libraries too.
2609
2610 This allocates the PT_PHDR and initializes it in a manner suitable
2611 for the HP linker.
2612
2613 Note we do not have access to the link info structure here, so we have
2614 to guess whether or not we are building a shared library based on the
2615 existence of a .interp section. */
2616
2617 static bfd_boolean
2618 elf64_hppa_modify_segment_map (abfd, info)
2619 bfd *abfd;
2620 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2621 {
2622 struct elf_segment_map *m;
2623 asection *s;
2624
2625 s = bfd_get_section_by_name (abfd, ".interp");
2626 if (! s)
2627 {
2628 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2629 if (m->p_type == PT_PHDR)
2630 break;
2631 if (m == NULL)
2632 {
2633 m = ((struct elf_segment_map *)
2634 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2635 if (m == NULL)
2636 return FALSE;
2637
2638 m->p_type = PT_PHDR;
2639 m->p_flags = PF_R | PF_X;
2640 m->p_flags_valid = 1;
2641 m->p_paddr_valid = 1;
2642 m->includes_phdrs = 1;
2643
2644 m->next = elf_tdata (abfd)->segment_map;
2645 elf_tdata (abfd)->segment_map = m;
2646 }
2647 }
2648
2649 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2650 if (m->p_type == PT_LOAD)
2651 {
2652 unsigned int i;
2653
2654 for (i = 0; i < m->count; i++)
2655 {
2656 /* The code "hint" is not really a hint. It is a requirement
2657 for certain versions of the HP dynamic linker. Worse yet,
2658 it must be set even if the shared library does not have
2659 any code in its "text" segment (thus the check for .hash
2660 to catch this situation). */
2661 if (m->sections[i]->flags & SEC_CODE
2662 || (strcmp (m->sections[i]->name, ".hash") == 0))
2663 m->p_flags |= (PF_X | PF_HP_CODE);
2664 }
2665 }
2666
2667 return TRUE;
2668 }
2669
2670 /* Called when writing out an object file to decide the type of a
2671 symbol. */
2672 static int
2673 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2674 Elf_Internal_Sym *elf_sym;
2675 int type;
2676 {
2677 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2678 return STT_PARISC_MILLI;
2679 else
2680 return type;
2681 }
2682
2683 static struct bfd_elf_special_section const elf64_hppa_special_sections[]=
2684 {
2685 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2686 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2687 { NULL, 0, 0, 0, 0 }
2688 };
2689
2690 /* The hash bucket size is the standard one, namely 4. */
2691
2692 const struct elf_size_info hppa64_elf_size_info =
2693 {
2694 sizeof (Elf64_External_Ehdr),
2695 sizeof (Elf64_External_Phdr),
2696 sizeof (Elf64_External_Shdr),
2697 sizeof (Elf64_External_Rel),
2698 sizeof (Elf64_External_Rela),
2699 sizeof (Elf64_External_Sym),
2700 sizeof (Elf64_External_Dyn),
2701 sizeof (Elf_External_Note),
2702 4,
2703 1,
2704 64, 3,
2705 ELFCLASS64, EV_CURRENT,
2706 bfd_elf64_write_out_phdrs,
2707 bfd_elf64_write_shdrs_and_ehdr,
2708 bfd_elf64_write_relocs,
2709 bfd_elf64_swap_symbol_in,
2710 bfd_elf64_swap_symbol_out,
2711 bfd_elf64_slurp_reloc_table,
2712 bfd_elf64_slurp_symbol_table,
2713 bfd_elf64_swap_dyn_in,
2714 bfd_elf64_swap_dyn_out,
2715 bfd_elf64_swap_reloc_in,
2716 bfd_elf64_swap_reloc_out,
2717 bfd_elf64_swap_reloca_in,
2718 bfd_elf64_swap_reloca_out
2719 };
2720
2721 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2722 #define TARGET_BIG_NAME "elf64-hppa"
2723 #define ELF_ARCH bfd_arch_hppa
2724 #define ELF_MACHINE_CODE EM_PARISC
2725 /* This is not strictly correct. The maximum page size for PA2.0 is
2726 64M. But everything still uses 4k. */
2727 #define ELF_MAXPAGESIZE 0x1000
2728 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2729 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2730 #define elf_info_to_howto elf_hppa_info_to_howto
2731 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2732
2733 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2734 #define elf_backend_object_p elf64_hppa_object_p
2735 #define elf_backend_final_write_processing \
2736 elf_hppa_final_write_processing
2737 #define elf_backend_fake_sections elf_hppa_fake_sections
2738 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2739
2740 #define elf_backend_relocate_section elf_hppa_relocate_section
2741
2742 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2743
2744 #define elf_backend_create_dynamic_sections \
2745 elf64_hppa_create_dynamic_sections
2746 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2747
2748 #define elf_backend_adjust_dynamic_symbol \
2749 elf64_hppa_adjust_dynamic_symbol
2750
2751 #define elf_backend_size_dynamic_sections \
2752 elf64_hppa_size_dynamic_sections
2753
2754 #define elf_backend_finish_dynamic_symbol \
2755 elf64_hppa_finish_dynamic_symbol
2756 #define elf_backend_finish_dynamic_sections \
2757 elf64_hppa_finish_dynamic_sections
2758
2759 /* Stuff for the BFD linker: */
2760 #define bfd_elf64_bfd_link_hash_table_create \
2761 elf64_hppa_hash_table_create
2762
2763 #define elf_backend_check_relocs \
2764 elf64_hppa_check_relocs
2765
2766 #define elf_backend_size_info \
2767 hppa64_elf_size_info
2768
2769 #define elf_backend_additional_program_headers \
2770 elf64_hppa_additional_program_headers
2771
2772 #define elf_backend_modify_segment_map \
2773 elf64_hppa_modify_segment_map
2774
2775 #define elf_backend_link_output_symbol_hook \
2776 elf64_hppa_link_output_symbol_hook
2777
2778 #define elf_backend_want_got_plt 0
2779 #define elf_backend_plt_readonly 0
2780 #define elf_backend_want_plt_sym 0
2781 #define elf_backend_got_header_size 0
2782 #define elf_backend_type_change_ok TRUE
2783 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2784 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2785 #define elf_backend_rela_normal 1
2786 #define elf_backend_special_sections elf64_hppa_special_sections
2787
2788 #include "elf64-target.h"
2789
2790 #undef TARGET_BIG_SYM
2791 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2792 #undef TARGET_BIG_NAME
2793 #define TARGET_BIG_NAME "elf64-hppa-linux"
2794
2795 #undef elf_backend_special_sections
2796
2797 #define INCLUDED_TARGET_FILE 1
2798 #include "elf64-target.h"
This page took 0.088549 seconds and 4 git commands to generate.