Add copyright notices
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "alloca-conf.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf/hppa.h"
29 #include "libhppa.h"
30 #include "elf64-hppa.h"
31
32
33 #define ARCH_SIZE 64
34
35 #define PLT_ENTRY_SIZE 0x10
36 #define DLT_ENTRY_SIZE 0x8
37 #define OPD_ENTRY_SIZE 0x20
38
39 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
40
41 /* The stub is supposed to load the target address and target's DP
42 value out of the PLT, then do an external branch to the target
43 address.
44
45 LDD PLTOFF(%r27),%r1
46 BVE (%r1)
47 LDD PLTOFF+8(%r27),%r27
48
49 Note that we must use the LDD with a 14 bit displacement, not the one
50 with a 5 bit displacement. */
51 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
52 0x53, 0x7b, 0x00, 0x00 };
53
54 struct elf64_hppa_link_hash_entry
55 {
56 struct elf_link_hash_entry eh;
57
58 /* Offsets for this symbol in various linker sections. */
59 bfd_vma dlt_offset;
60 bfd_vma plt_offset;
61 bfd_vma opd_offset;
62 bfd_vma stub_offset;
63
64 /* The index of the (possibly local) symbol in the input bfd and its
65 associated BFD. Needed so that we can have relocs against local
66 symbols in shared libraries. */
67 long sym_indx;
68 bfd *owner;
69
70 /* Dynamic symbols may need to have two different values. One for
71 the dynamic symbol table, one for the normal symbol table.
72
73 In such cases we store the symbol's real value and section
74 index here so we can restore the real value before we write
75 the normal symbol table. */
76 bfd_vma st_value;
77 int st_shndx;
78
79 /* Used to count non-got, non-plt relocations for delayed sizing
80 of relocation sections. */
81 struct elf64_hppa_dyn_reloc_entry
82 {
83 /* Next relocation in the chain. */
84 struct elf64_hppa_dyn_reloc_entry *next;
85
86 /* The type of the relocation. */
87 int type;
88
89 /* The input section of the relocation. */
90 asection *sec;
91
92 /* Number of relocs copied in this section. */
93 bfd_size_type count;
94
95 /* The index of the section symbol for the input section of
96 the relocation. Only needed when building shared libraries. */
97 int sec_symndx;
98
99 /* The offset within the input section of the relocation. */
100 bfd_vma offset;
101
102 /* The addend for the relocation. */
103 bfd_vma addend;
104
105 } *reloc_entries;
106
107 /* Nonzero if this symbol needs an entry in one of the linker
108 sections. */
109 unsigned want_dlt;
110 unsigned want_plt;
111 unsigned want_opd;
112 unsigned want_stub;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 /* We build tables to map from an input section back to its
142 symbol index. This is the BFD for which we currently have
143 a map. */
144 bfd *section_syms_bfd;
145
146 /* Array of symbol numbers for each input section attached to the
147 current BFD. */
148 int *section_syms;
149 };
150
151 #define hppa_link_hash_table(p) \
152 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
153 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
154
155 #define hppa_elf_hash_entry(ent) \
156 ((struct elf64_hppa_link_hash_entry *)(ent))
157
158 #define eh_name(eh) \
159 (eh ? eh->root.root.string : "<undef>")
160
161 typedef struct bfd_hash_entry *(*new_hash_entry_func)
162 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
163
164 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
165 (bfd *abfd);
166
167 /* This must follow the definitions of the various derived linker
168 hash tables and shared functions. */
169 #include "elf-hppa.h"
170
171 static bfd_boolean elf64_hppa_object_p
172 (bfd *);
173
174 static void elf64_hppa_post_process_headers
175 (bfd *, struct bfd_link_info *);
176
177 static bfd_boolean elf64_hppa_create_dynamic_sections
178 (bfd *, struct bfd_link_info *);
179
180 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
181 (struct bfd_link_info *, struct elf_link_hash_entry *);
182
183 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
184 (struct elf_link_hash_entry *, void *);
185
186 static bfd_boolean elf64_hppa_size_dynamic_sections
187 (bfd *, struct bfd_link_info *);
188
189 static int elf64_hppa_link_output_symbol_hook
190 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
191 asection *, struct elf_link_hash_entry *);
192
193 static bfd_boolean elf64_hppa_finish_dynamic_symbol
194 (bfd *, struct bfd_link_info *,
195 struct elf_link_hash_entry *, Elf_Internal_Sym *);
196
197 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
198 (const Elf_Internal_Rela *);
199
200 static bfd_boolean elf64_hppa_finish_dynamic_sections
201 (bfd *, struct bfd_link_info *);
202
203 static bfd_boolean elf64_hppa_check_relocs
204 (bfd *, struct bfd_link_info *,
205 asection *, const Elf_Internal_Rela *);
206
207 static bfd_boolean elf64_hppa_dynamic_symbol_p
208 (struct elf_link_hash_entry *, struct bfd_link_info *);
209
210 static bfd_boolean elf64_hppa_mark_exported_functions
211 (struct elf_link_hash_entry *, void *);
212
213 static bfd_boolean elf64_hppa_finalize_opd
214 (struct elf_link_hash_entry *, void *);
215
216 static bfd_boolean elf64_hppa_finalize_dlt
217 (struct elf_link_hash_entry *, void *);
218
219 static bfd_boolean allocate_global_data_dlt
220 (struct elf_link_hash_entry *, void *);
221
222 static bfd_boolean allocate_global_data_plt
223 (struct elf_link_hash_entry *, void *);
224
225 static bfd_boolean allocate_global_data_stub
226 (struct elf_link_hash_entry *, void *);
227
228 static bfd_boolean allocate_global_data_opd
229 (struct elf_link_hash_entry *, void *);
230
231 static bfd_boolean get_reloc_section
232 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
233
234 static bfd_boolean count_dyn_reloc
235 (bfd *, struct elf64_hppa_link_hash_entry *,
236 int, asection *, int, bfd_vma, bfd_vma);
237
238 static bfd_boolean allocate_dynrel_entries
239 (struct elf_link_hash_entry *, void *);
240
241 static bfd_boolean elf64_hppa_finalize_dynreloc
242 (struct elf_link_hash_entry *, void *);
243
244 static bfd_boolean get_opd
245 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
246
247 static bfd_boolean get_plt
248 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
249
250 static bfd_boolean get_dlt
251 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
252
253 static bfd_boolean get_stub
254 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
255
256 static int elf64_hppa_elf_get_symbol_type
257 (Elf_Internal_Sym *, int);
258
259 /* Initialize an entry in the link hash table. */
260
261 static struct bfd_hash_entry *
262 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
263 struct bfd_hash_table *table,
264 const char *string)
265 {
266 /* Allocate the structure if it has not already been allocated by a
267 subclass. */
268 if (entry == NULL)
269 {
270 entry = bfd_hash_allocate (table,
271 sizeof (struct elf64_hppa_link_hash_entry));
272 if (entry == NULL)
273 return entry;
274 }
275
276 /* Call the allocation method of the superclass. */
277 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
278 if (entry != NULL)
279 {
280 struct elf64_hppa_link_hash_entry *hh;
281
282 /* Initialize our local data. All zeros. */
283 hh = hppa_elf_hash_entry (entry);
284 memset (&hh->dlt_offset, 0,
285 (sizeof (struct elf64_hppa_link_hash_entry)
286 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
287 }
288
289 return entry;
290 }
291
292 /* Create the derived linker hash table. The PA64 ELF port uses this
293 derived hash table to keep information specific to the PA ElF
294 linker (without using static variables). */
295
296 static struct bfd_link_hash_table*
297 elf64_hppa_hash_table_create (bfd *abfd)
298 {
299 struct elf64_hppa_link_hash_table *htab;
300 bfd_size_type amt = sizeof (*htab);
301
302 htab = bfd_zalloc (abfd, amt);
303 if (htab == NULL)
304 return NULL;
305
306 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
307 hppa64_link_hash_newfunc,
308 sizeof (struct elf64_hppa_link_hash_entry),
309 HPPA64_ELF_DATA))
310 {
311 bfd_release (abfd, htab);
312 return NULL;
313 }
314
315 htab->text_segment_base = (bfd_vma) -1;
316 htab->data_segment_base = (bfd_vma) -1;
317
318 return &htab->root.root;
319 }
320 \f
321 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
322
323 Additionally we set the default architecture and machine. */
324 static bfd_boolean
325 elf64_hppa_object_p (bfd *abfd)
326 {
327 Elf_Internal_Ehdr * i_ehdrp;
328 unsigned int flags;
329
330 i_ehdrp = elf_elfheader (abfd);
331 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
332 {
333 /* GCC on hppa-linux produces binaries with OSABI=GNU,
334 but the kernel produces corefiles with OSABI=SysV. */
335 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
336 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
337 return FALSE;
338 }
339 else
340 {
341 /* HPUX produces binaries with OSABI=HPUX,
342 but the kernel produces corefiles with OSABI=SysV. */
343 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
344 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
345 return FALSE;
346 }
347
348 flags = i_ehdrp->e_flags;
349 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
350 {
351 case EFA_PARISC_1_0:
352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
353 case EFA_PARISC_1_1:
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
355 case EFA_PARISC_2_0:
356 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
357 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
358 else
359 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
360 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
361 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
362 }
363 /* Don't be fussy. */
364 return TRUE;
365 }
366
367 /* Given section type (hdr->sh_type), return a boolean indicating
368 whether or not the section is an elf64-hppa specific section. */
369 static bfd_boolean
370 elf64_hppa_section_from_shdr (bfd *abfd,
371 Elf_Internal_Shdr *hdr,
372 const char *name,
373 int shindex)
374 {
375 switch (hdr->sh_type)
376 {
377 case SHT_PARISC_EXT:
378 if (strcmp (name, ".PARISC.archext") != 0)
379 return FALSE;
380 break;
381 case SHT_PARISC_UNWIND:
382 if (strcmp (name, ".PARISC.unwind") != 0)
383 return FALSE;
384 break;
385 case SHT_PARISC_DOC:
386 case SHT_PARISC_ANNOT:
387 default:
388 return FALSE;
389 }
390
391 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
392 return FALSE;
393
394 return TRUE;
395 }
396
397 /* SEC is a section containing relocs for an input BFD when linking; return
398 a suitable section for holding relocs in the output BFD for a link. */
399
400 static bfd_boolean
401 get_reloc_section (bfd *abfd,
402 struct elf64_hppa_link_hash_table *hppa_info,
403 asection *sec)
404 {
405 const char *srel_name;
406 asection *srel;
407 bfd *dynobj;
408
409 srel_name = (bfd_elf_string_from_elf_section
410 (abfd, elf_elfheader(abfd)->e_shstrndx,
411 _bfd_elf_single_rel_hdr(sec)->sh_name));
412 if (srel_name == NULL)
413 return FALSE;
414
415 dynobj = hppa_info->root.dynobj;
416 if (!dynobj)
417 hppa_info->root.dynobj = dynobj = abfd;
418
419 srel = bfd_get_linker_section (dynobj, srel_name);
420 if (srel == NULL)
421 {
422 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
423 (SEC_ALLOC
424 | SEC_LOAD
425 | SEC_HAS_CONTENTS
426 | SEC_IN_MEMORY
427 | SEC_LINKER_CREATED
428 | SEC_READONLY));
429 if (srel == NULL
430 || !bfd_set_section_alignment (dynobj, srel, 3))
431 return FALSE;
432 }
433
434 hppa_info->other_rel_sec = srel;
435 return TRUE;
436 }
437
438 /* Add a new entry to the list of dynamic relocations against DYN_H.
439
440 We use this to keep a record of all the FPTR relocations against a
441 particular symbol so that we can create FPTR relocations in the
442 output file. */
443
444 static bfd_boolean
445 count_dyn_reloc (bfd *abfd,
446 struct elf64_hppa_link_hash_entry *hh,
447 int type,
448 asection *sec,
449 int sec_symndx,
450 bfd_vma offset,
451 bfd_vma addend)
452 {
453 struct elf64_hppa_dyn_reloc_entry *rent;
454
455 rent = (struct elf64_hppa_dyn_reloc_entry *)
456 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
457 if (!rent)
458 return FALSE;
459
460 rent->next = hh->reloc_entries;
461 rent->type = type;
462 rent->sec = sec;
463 rent->sec_symndx = sec_symndx;
464 rent->offset = offset;
465 rent->addend = addend;
466 hh->reloc_entries = rent;
467
468 return TRUE;
469 }
470
471 /* Return a pointer to the local DLT, PLT and OPD reference counts
472 for ABFD. Returns NULL if the storage allocation fails. */
473
474 static bfd_signed_vma *
475 hppa64_elf_local_refcounts (bfd *abfd)
476 {
477 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
478 bfd_signed_vma *local_refcounts;
479
480 local_refcounts = elf_local_got_refcounts (abfd);
481 if (local_refcounts == NULL)
482 {
483 bfd_size_type size;
484
485 /* Allocate space for local DLT, PLT and OPD reference
486 counts. Done this way to save polluting elf_obj_tdata
487 with another target specific pointer. */
488 size = symtab_hdr->sh_info;
489 size *= 3 * sizeof (bfd_signed_vma);
490 local_refcounts = bfd_zalloc (abfd, size);
491 elf_local_got_refcounts (abfd) = local_refcounts;
492 }
493 return local_refcounts;
494 }
495
496 /* Scan the RELOCS and record the type of dynamic entries that each
497 referenced symbol needs. */
498
499 static bfd_boolean
500 elf64_hppa_check_relocs (bfd *abfd,
501 struct bfd_link_info *info,
502 asection *sec,
503 const Elf_Internal_Rela *relocs)
504 {
505 struct elf64_hppa_link_hash_table *hppa_info;
506 const Elf_Internal_Rela *relend;
507 Elf_Internal_Shdr *symtab_hdr;
508 const Elf_Internal_Rela *rel;
509 unsigned int sec_symndx;
510
511 if (info->relocatable)
512 return TRUE;
513
514 /* If this is the first dynamic object found in the link, create
515 the special sections required for dynamic linking. */
516 if (! elf_hash_table (info)->dynamic_sections_created)
517 {
518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
519 return FALSE;
520 }
521
522 hppa_info = hppa_link_hash_table (info);
523 if (hppa_info == NULL)
524 return FALSE;
525 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
526
527 /* If necessary, build a new table holding section symbols indices
528 for this BFD. */
529
530 if (info->shared && hppa_info->section_syms_bfd != abfd)
531 {
532 unsigned long i;
533 unsigned int highest_shndx;
534 Elf_Internal_Sym *local_syms = NULL;
535 Elf_Internal_Sym *isym, *isymend;
536 bfd_size_type amt;
537
538 /* We're done with the old cache of section index to section symbol
539 index information. Free it.
540
541 ?!? Note we leak the last section_syms array. Presumably we
542 could free it in one of the later routines in this file. */
543 if (hppa_info->section_syms)
544 free (hppa_info->section_syms);
545
546 /* Read this BFD's local symbols. */
547 if (symtab_hdr->sh_info != 0)
548 {
549 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
550 if (local_syms == NULL)
551 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
552 symtab_hdr->sh_info, 0,
553 NULL, NULL, NULL);
554 if (local_syms == NULL)
555 return FALSE;
556 }
557
558 /* Record the highest section index referenced by the local symbols. */
559 highest_shndx = 0;
560 isymend = local_syms + symtab_hdr->sh_info;
561 for (isym = local_syms; isym < isymend; isym++)
562 {
563 if (isym->st_shndx > highest_shndx
564 && isym->st_shndx < SHN_LORESERVE)
565 highest_shndx = isym->st_shndx;
566 }
567
568 /* Allocate an array to hold the section index to section symbol index
569 mapping. Bump by one since we start counting at zero. */
570 highest_shndx++;
571 amt = highest_shndx;
572 amt *= sizeof (int);
573 hppa_info->section_syms = (int *) bfd_malloc (amt);
574
575 /* Now walk the local symbols again. If we find a section symbol,
576 record the index of the symbol into the section_syms array. */
577 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
578 {
579 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
580 hppa_info->section_syms[isym->st_shndx] = i;
581 }
582
583 /* We are finished with the local symbols. */
584 if (local_syms != NULL
585 && symtab_hdr->contents != (unsigned char *) local_syms)
586 {
587 if (! info->keep_memory)
588 free (local_syms);
589 else
590 {
591 /* Cache the symbols for elf_link_input_bfd. */
592 symtab_hdr->contents = (unsigned char *) local_syms;
593 }
594 }
595
596 /* Record which BFD we built the section_syms mapping for. */
597 hppa_info->section_syms_bfd = abfd;
598 }
599
600 /* Record the symbol index for this input section. We may need it for
601 relocations when building shared libraries. When not building shared
602 libraries this value is never really used, but assign it to zero to
603 prevent out of bounds memory accesses in other routines. */
604 if (info->shared)
605 {
606 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
607
608 /* If we did not find a section symbol for this section, then
609 something went terribly wrong above. */
610 if (sec_symndx == SHN_BAD)
611 return FALSE;
612
613 if (sec_symndx < SHN_LORESERVE)
614 sec_symndx = hppa_info->section_syms[sec_symndx];
615 else
616 sec_symndx = 0;
617 }
618 else
619 sec_symndx = 0;
620
621 relend = relocs + sec->reloc_count;
622 for (rel = relocs; rel < relend; ++rel)
623 {
624 enum
625 {
626 NEED_DLT = 1,
627 NEED_PLT = 2,
628 NEED_STUB = 4,
629 NEED_OPD = 8,
630 NEED_DYNREL = 16,
631 };
632
633 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
634 struct elf64_hppa_link_hash_entry *hh;
635 int need_entry;
636 bfd_boolean maybe_dynamic;
637 int dynrel_type = R_PARISC_NONE;
638 static reloc_howto_type *howto;
639
640 if (r_symndx >= symtab_hdr->sh_info)
641 {
642 /* We're dealing with a global symbol -- find its hash entry
643 and mark it as being referenced. */
644 long indx = r_symndx - symtab_hdr->sh_info;
645 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
646 while (hh->eh.root.type == bfd_link_hash_indirect
647 || hh->eh.root.type == bfd_link_hash_warning)
648 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
649
650 hh->eh.ref_regular = 1;
651 }
652 else
653 hh = NULL;
654
655 /* We can only get preliminary data on whether a symbol is
656 locally or externally defined, as not all of the input files
657 have yet been processed. Do something with what we know, as
658 this may help reduce memory usage and processing time later. */
659 maybe_dynamic = FALSE;
660 if (hh && ((info->shared
661 && (!info->symbolic
662 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
663 || !hh->eh.def_regular
664 || hh->eh.root.type == bfd_link_hash_defweak))
665 maybe_dynamic = TRUE;
666
667 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
668 need_entry = 0;
669 switch (howto->type)
670 {
671 /* These are simple indirect references to symbols through the
672 DLT. We need to create a DLT entry for any symbols which
673 appears in a DLTIND relocation. */
674 case R_PARISC_DLTIND21L:
675 case R_PARISC_DLTIND14R:
676 case R_PARISC_DLTIND14F:
677 case R_PARISC_DLTIND14WR:
678 case R_PARISC_DLTIND14DR:
679 need_entry = NEED_DLT;
680 break;
681
682 /* ?!? These need a DLT entry. But I have no idea what to do with
683 the "link time TP value. */
684 case R_PARISC_LTOFF_TP21L:
685 case R_PARISC_LTOFF_TP14R:
686 case R_PARISC_LTOFF_TP14F:
687 case R_PARISC_LTOFF_TP64:
688 case R_PARISC_LTOFF_TP14WR:
689 case R_PARISC_LTOFF_TP14DR:
690 case R_PARISC_LTOFF_TP16F:
691 case R_PARISC_LTOFF_TP16WF:
692 case R_PARISC_LTOFF_TP16DF:
693 need_entry = NEED_DLT;
694 break;
695
696 /* These are function calls. Depending on their precise target we
697 may need to make a stub for them. The stub uses the PLT, so we
698 need to create PLT entries for these symbols too. */
699 case R_PARISC_PCREL12F:
700 case R_PARISC_PCREL17F:
701 case R_PARISC_PCREL22F:
702 case R_PARISC_PCREL32:
703 case R_PARISC_PCREL64:
704 case R_PARISC_PCREL21L:
705 case R_PARISC_PCREL17R:
706 case R_PARISC_PCREL17C:
707 case R_PARISC_PCREL14R:
708 case R_PARISC_PCREL14F:
709 case R_PARISC_PCREL22C:
710 case R_PARISC_PCREL14WR:
711 case R_PARISC_PCREL14DR:
712 case R_PARISC_PCREL16F:
713 case R_PARISC_PCREL16WF:
714 case R_PARISC_PCREL16DF:
715 /* Function calls might need to go through the .plt, and
716 might need a long branch stub. */
717 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
718 need_entry = (NEED_PLT | NEED_STUB);
719 else
720 need_entry = 0;
721 break;
722
723 case R_PARISC_PLTOFF21L:
724 case R_PARISC_PLTOFF14R:
725 case R_PARISC_PLTOFF14F:
726 case R_PARISC_PLTOFF14WR:
727 case R_PARISC_PLTOFF14DR:
728 case R_PARISC_PLTOFF16F:
729 case R_PARISC_PLTOFF16WF:
730 case R_PARISC_PLTOFF16DF:
731 need_entry = (NEED_PLT);
732 break;
733
734 case R_PARISC_DIR64:
735 if (info->shared || maybe_dynamic)
736 need_entry = (NEED_DYNREL);
737 dynrel_type = R_PARISC_DIR64;
738 break;
739
740 /* This is an indirect reference through the DLT to get the address
741 of a OPD descriptor. Thus we need to make a DLT entry that points
742 to an OPD entry. */
743 case R_PARISC_LTOFF_FPTR21L:
744 case R_PARISC_LTOFF_FPTR14R:
745 case R_PARISC_LTOFF_FPTR14WR:
746 case R_PARISC_LTOFF_FPTR14DR:
747 case R_PARISC_LTOFF_FPTR32:
748 case R_PARISC_LTOFF_FPTR64:
749 case R_PARISC_LTOFF_FPTR16F:
750 case R_PARISC_LTOFF_FPTR16WF:
751 case R_PARISC_LTOFF_FPTR16DF:
752 if (info->shared || maybe_dynamic)
753 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 else
755 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
756 dynrel_type = R_PARISC_FPTR64;
757 break;
758
759 /* This is a simple OPD entry. */
760 case R_PARISC_FPTR64:
761 if (info->shared || maybe_dynamic)
762 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
763 else
764 need_entry = (NEED_OPD | NEED_PLT);
765 dynrel_type = R_PARISC_FPTR64;
766 break;
767
768 /* Add more cases as needed. */
769 }
770
771 if (!need_entry)
772 continue;
773
774 if (hh)
775 {
776 /* Stash away enough information to be able to find this symbol
777 regardless of whether or not it is local or global. */
778 hh->owner = abfd;
779 hh->sym_indx = r_symndx;
780 }
781
782 /* Create what's needed. */
783 if (need_entry & NEED_DLT)
784 {
785 /* Allocate space for a DLT entry, as well as a dynamic
786 relocation for this entry. */
787 if (! hppa_info->dlt_sec
788 && ! get_dlt (abfd, info, hppa_info))
789 goto err_out;
790
791 if (hh != NULL)
792 {
793 hh->want_dlt = 1;
794 hh->eh.got.refcount += 1;
795 }
796 else
797 {
798 bfd_signed_vma *local_dlt_refcounts;
799
800 /* This is a DLT entry for a local symbol. */
801 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
802 if (local_dlt_refcounts == NULL)
803 return FALSE;
804 local_dlt_refcounts[r_symndx] += 1;
805 }
806 }
807
808 if (need_entry & NEED_PLT)
809 {
810 if (! hppa_info->plt_sec
811 && ! get_plt (abfd, info, hppa_info))
812 goto err_out;
813
814 if (hh != NULL)
815 {
816 hh->want_plt = 1;
817 hh->eh.needs_plt = 1;
818 hh->eh.plt.refcount += 1;
819 }
820 else
821 {
822 bfd_signed_vma *local_dlt_refcounts;
823 bfd_signed_vma *local_plt_refcounts;
824
825 /* This is a PLT entry for a local symbol. */
826 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
827 if (local_dlt_refcounts == NULL)
828 return FALSE;
829 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
830 local_plt_refcounts[r_symndx] += 1;
831 }
832 }
833
834 if (need_entry & NEED_STUB)
835 {
836 if (! hppa_info->stub_sec
837 && ! get_stub (abfd, info, hppa_info))
838 goto err_out;
839 if (hh)
840 hh->want_stub = 1;
841 }
842
843 if (need_entry & NEED_OPD)
844 {
845 if (! hppa_info->opd_sec
846 && ! get_opd (abfd, info, hppa_info))
847 goto err_out;
848
849 /* FPTRs are not allocated by the dynamic linker for PA64,
850 though it is possible that will change in the future. */
851
852 if (hh != NULL)
853 hh->want_opd = 1;
854 else
855 {
856 bfd_signed_vma *local_dlt_refcounts;
857 bfd_signed_vma *local_opd_refcounts;
858
859 /* This is a OPD for a local symbol. */
860 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
861 if (local_dlt_refcounts == NULL)
862 return FALSE;
863 local_opd_refcounts = (local_dlt_refcounts
864 + 2 * symtab_hdr->sh_info);
865 local_opd_refcounts[r_symndx] += 1;
866 }
867 }
868
869 /* Add a new dynamic relocation to the chain of dynamic
870 relocations for this symbol. */
871 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
872 {
873 if (! hppa_info->other_rel_sec
874 && ! get_reloc_section (abfd, hppa_info, sec))
875 goto err_out;
876
877 /* Count dynamic relocations against global symbols. */
878 if (hh != NULL
879 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
880 sec_symndx, rel->r_offset, rel->r_addend))
881 goto err_out;
882
883 /* If we are building a shared library and we just recorded
884 a dynamic R_PARISC_FPTR64 relocation, then make sure the
885 section symbol for this section ends up in the dynamic
886 symbol table. */
887 if (info->shared && dynrel_type == R_PARISC_FPTR64
888 && ! (bfd_elf_link_record_local_dynamic_symbol
889 (info, abfd, sec_symndx)))
890 return FALSE;
891 }
892 }
893
894 return TRUE;
895
896 err_out:
897 return FALSE;
898 }
899
900 struct elf64_hppa_allocate_data
901 {
902 struct bfd_link_info *info;
903 bfd_size_type ofs;
904 };
905
906 /* Should we do dynamic things to this symbol? */
907
908 static bfd_boolean
909 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
910 struct bfd_link_info *info)
911 {
912 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
913 and relocations that retrieve a function descriptor? Assume the
914 worst for now. */
915 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
916 {
917 /* ??? Why is this here and not elsewhere is_local_label_name. */
918 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
919 return FALSE;
920
921 return TRUE;
922 }
923 else
924 return FALSE;
925 }
926
927 /* Mark all functions exported by this file so that we can later allocate
928 entries in .opd for them. */
929
930 static bfd_boolean
931 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
932 {
933 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
934 struct bfd_link_info *info = (struct bfd_link_info *)data;
935 struct elf64_hppa_link_hash_table *hppa_info;
936
937 hppa_info = hppa_link_hash_table (info);
938 if (hppa_info == NULL)
939 return FALSE;
940
941 if (eh
942 && (eh->root.type == bfd_link_hash_defined
943 || eh->root.type == bfd_link_hash_defweak)
944 && eh->root.u.def.section->output_section != NULL
945 && eh->type == STT_FUNC)
946 {
947 if (! hppa_info->opd_sec
948 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
949 return FALSE;
950
951 hh->want_opd = 1;
952
953 /* Put a flag here for output_symbol_hook. */
954 hh->st_shndx = -1;
955 eh->needs_plt = 1;
956 }
957
958 return TRUE;
959 }
960
961 /* Allocate space for a DLT entry. */
962
963 static bfd_boolean
964 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
965 {
966 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
967 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
968
969 if (hh->want_dlt)
970 {
971 if (x->info->shared)
972 {
973 /* Possibly add the symbol to the local dynamic symbol
974 table since we might need to create a dynamic relocation
975 against it. */
976 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
977 {
978 bfd *owner = eh->root.u.def.section->owner;
979
980 if (! (bfd_elf_link_record_local_dynamic_symbol
981 (x->info, owner, hh->sym_indx)))
982 return FALSE;
983 }
984 }
985
986 hh->dlt_offset = x->ofs;
987 x->ofs += DLT_ENTRY_SIZE;
988 }
989 return TRUE;
990 }
991
992 /* Allocate space for a DLT.PLT entry. */
993
994 static bfd_boolean
995 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
996 {
997 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
998 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
999
1000 if (hh->want_plt
1001 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1002 && !((eh->root.type == bfd_link_hash_defined
1003 || eh->root.type == bfd_link_hash_defweak)
1004 && eh->root.u.def.section->output_section != NULL))
1005 {
1006 hh->plt_offset = x->ofs;
1007 x->ofs += PLT_ENTRY_SIZE;
1008 if (hh->plt_offset < 0x2000)
1009 {
1010 struct elf64_hppa_link_hash_table *hppa_info;
1011
1012 hppa_info = hppa_link_hash_table (x->info);
1013 if (hppa_info == NULL)
1014 return FALSE;
1015
1016 hppa_info->gp_offset = hh->plt_offset;
1017 }
1018 }
1019 else
1020 hh->want_plt = 0;
1021
1022 return TRUE;
1023 }
1024
1025 /* Allocate space for a STUB entry. */
1026
1027 static bfd_boolean
1028 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1029 {
1030 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1031 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032
1033 if (hh->want_stub
1034 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1035 && !((eh->root.type == bfd_link_hash_defined
1036 || eh->root.type == bfd_link_hash_defweak)
1037 && eh->root.u.def.section->output_section != NULL))
1038 {
1039 hh->stub_offset = x->ofs;
1040 x->ofs += sizeof (plt_stub);
1041 }
1042 else
1043 hh->want_stub = 0;
1044 return TRUE;
1045 }
1046
1047 /* Allocate space for a FPTR entry. */
1048
1049 static bfd_boolean
1050 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1051 {
1052 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1053 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1054
1055 if (hh && hh->want_opd)
1056 {
1057 /* We never need an opd entry for a symbol which is not
1058 defined by this output file. */
1059 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1060 || hh->eh.root.type == bfd_link_hash_undefweak
1061 || hh->eh.root.u.def.section->output_section == NULL))
1062 hh->want_opd = 0;
1063
1064 /* If we are creating a shared library, took the address of a local
1065 function or might export this function from this object file, then
1066 we have to create an opd descriptor. */
1067 else if (x->info->shared
1068 || hh == NULL
1069 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1070 || (hh->eh.root.type == bfd_link_hash_defined
1071 || hh->eh.root.type == bfd_link_hash_defweak))
1072 {
1073 /* If we are creating a shared library, then we will have to
1074 create a runtime relocation for the symbol to properly
1075 initialize the .opd entry. Make sure the symbol gets
1076 added to the dynamic symbol table. */
1077 if (x->info->shared
1078 && (hh == NULL || (hh->eh.dynindx == -1)))
1079 {
1080 bfd *owner;
1081 /* PR 6511: Default to using the dynamic symbol table. */
1082 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1083
1084 if (!bfd_elf_link_record_local_dynamic_symbol
1085 (x->info, owner, hh->sym_indx))
1086 return FALSE;
1087 }
1088
1089 /* This may not be necessary or desirable anymore now that
1090 we have some support for dealing with section symbols
1091 in dynamic relocs. But name munging does make the result
1092 much easier to debug. ie, the EPLT reloc will reference
1093 a symbol like .foobar, instead of .text + offset. */
1094 if (x->info->shared && eh)
1095 {
1096 char *new_name;
1097 struct elf_link_hash_entry *nh;
1098
1099 new_name = alloca (strlen (eh->root.root.string) + 2);
1100 new_name[0] = '.';
1101 strcpy (new_name + 1, eh->root.root.string);
1102
1103 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1104 new_name, TRUE, TRUE, TRUE);
1105
1106 nh->root.type = eh->root.type;
1107 nh->root.u.def.value = eh->root.u.def.value;
1108 nh->root.u.def.section = eh->root.u.def.section;
1109
1110 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1111 return FALSE;
1112
1113 }
1114 hh->opd_offset = x->ofs;
1115 x->ofs += OPD_ENTRY_SIZE;
1116 }
1117
1118 /* Otherwise we do not need an opd entry. */
1119 else
1120 hh->want_opd = 0;
1121 }
1122 return TRUE;
1123 }
1124
1125 /* HP requires the EI_OSABI field to be filled in. The assignment to
1126 EI_ABIVERSION may not be strictly necessary. */
1127
1128 static void
1129 elf64_hppa_post_process_headers (bfd *abfd,
1130 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1131 {
1132 Elf_Internal_Ehdr * i_ehdrp;
1133
1134 i_ehdrp = elf_elfheader (abfd);
1135
1136 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1137 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1138 }
1139
1140 /* Create function descriptor section (.opd). This section is called .opd
1141 because it contains "official procedure descriptors". The "official"
1142 refers to the fact that these descriptors are used when taking the address
1143 of a procedure, thus ensuring a unique address for each procedure. */
1144
1145 static bfd_boolean
1146 get_opd (bfd *abfd,
1147 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1148 struct elf64_hppa_link_hash_table *hppa_info)
1149 {
1150 asection *opd;
1151 bfd *dynobj;
1152
1153 opd = hppa_info->opd_sec;
1154 if (!opd)
1155 {
1156 dynobj = hppa_info->root.dynobj;
1157 if (!dynobj)
1158 hppa_info->root.dynobj = dynobj = abfd;
1159
1160 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1161 (SEC_ALLOC
1162 | SEC_LOAD
1163 | SEC_HAS_CONTENTS
1164 | SEC_IN_MEMORY
1165 | SEC_LINKER_CREATED));
1166 if (!opd
1167 || !bfd_set_section_alignment (abfd, opd, 3))
1168 {
1169 BFD_ASSERT (0);
1170 return FALSE;
1171 }
1172
1173 hppa_info->opd_sec = opd;
1174 }
1175
1176 return TRUE;
1177 }
1178
1179 /* Create the PLT section. */
1180
1181 static bfd_boolean
1182 get_plt (bfd *abfd,
1183 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1184 struct elf64_hppa_link_hash_table *hppa_info)
1185 {
1186 asection *plt;
1187 bfd *dynobj;
1188
1189 plt = hppa_info->plt_sec;
1190 if (!plt)
1191 {
1192 dynobj = hppa_info->root.dynobj;
1193 if (!dynobj)
1194 hppa_info->root.dynobj = dynobj = abfd;
1195
1196 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1197 (SEC_ALLOC
1198 | SEC_LOAD
1199 | SEC_HAS_CONTENTS
1200 | SEC_IN_MEMORY
1201 | SEC_LINKER_CREATED));
1202 if (!plt
1203 || !bfd_set_section_alignment (abfd, plt, 3))
1204 {
1205 BFD_ASSERT (0);
1206 return FALSE;
1207 }
1208
1209 hppa_info->plt_sec = plt;
1210 }
1211
1212 return TRUE;
1213 }
1214
1215 /* Create the DLT section. */
1216
1217 static bfd_boolean
1218 get_dlt (bfd *abfd,
1219 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1220 struct elf64_hppa_link_hash_table *hppa_info)
1221 {
1222 asection *dlt;
1223 bfd *dynobj;
1224
1225 dlt = hppa_info->dlt_sec;
1226 if (!dlt)
1227 {
1228 dynobj = hppa_info->root.dynobj;
1229 if (!dynobj)
1230 hppa_info->root.dynobj = dynobj = abfd;
1231
1232 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1233 (SEC_ALLOC
1234 | SEC_LOAD
1235 | SEC_HAS_CONTENTS
1236 | SEC_IN_MEMORY
1237 | SEC_LINKER_CREATED));
1238 if (!dlt
1239 || !bfd_set_section_alignment (abfd, dlt, 3))
1240 {
1241 BFD_ASSERT (0);
1242 return FALSE;
1243 }
1244
1245 hppa_info->dlt_sec = dlt;
1246 }
1247
1248 return TRUE;
1249 }
1250
1251 /* Create the stubs section. */
1252
1253 static bfd_boolean
1254 get_stub (bfd *abfd,
1255 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1256 struct elf64_hppa_link_hash_table *hppa_info)
1257 {
1258 asection *stub;
1259 bfd *dynobj;
1260
1261 stub = hppa_info->stub_sec;
1262 if (!stub)
1263 {
1264 dynobj = hppa_info->root.dynobj;
1265 if (!dynobj)
1266 hppa_info->root.dynobj = dynobj = abfd;
1267
1268 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1269 (SEC_ALLOC | SEC_LOAD
1270 | SEC_HAS_CONTENTS
1271 | SEC_IN_MEMORY
1272 | SEC_READONLY
1273 | SEC_LINKER_CREATED));
1274 if (!stub
1275 || !bfd_set_section_alignment (abfd, stub, 3))
1276 {
1277 BFD_ASSERT (0);
1278 return FALSE;
1279 }
1280
1281 hppa_info->stub_sec = stub;
1282 }
1283
1284 return TRUE;
1285 }
1286
1287 /* Create sections necessary for dynamic linking. This is only a rough
1288 cut and will likely change as we learn more about the somewhat
1289 unusual dynamic linking scheme HP uses.
1290
1291 .stub:
1292 Contains code to implement cross-space calls. The first time one
1293 of the stubs is used it will call into the dynamic linker, later
1294 calls will go straight to the target.
1295
1296 The only stub we support right now looks like
1297
1298 ldd OFFSET(%dp),%r1
1299 bve %r0(%r1)
1300 ldd OFFSET+8(%dp),%dp
1301
1302 Other stubs may be needed in the future. We may want the remove
1303 the break/nop instruction. It is only used right now to keep the
1304 offset of a .plt entry and a .stub entry in sync.
1305
1306 .dlt:
1307 This is what most people call the .got. HP used a different name.
1308 Losers.
1309
1310 .rela.dlt:
1311 Relocations for the DLT.
1312
1313 .plt:
1314 Function pointers as address,gp pairs.
1315
1316 .rela.plt:
1317 Should contain dynamic IPLT (and EPLT?) relocations.
1318
1319 .opd:
1320 FPTRS
1321
1322 .rela.opd:
1323 EPLT relocations for symbols exported from shared libraries. */
1324
1325 static bfd_boolean
1326 elf64_hppa_create_dynamic_sections (bfd *abfd,
1327 struct bfd_link_info *info)
1328 {
1329 asection *s;
1330 struct elf64_hppa_link_hash_table *hppa_info;
1331
1332 hppa_info = hppa_link_hash_table (info);
1333 if (hppa_info == NULL)
1334 return FALSE;
1335
1336 if (! get_stub (abfd, info, hppa_info))
1337 return FALSE;
1338
1339 if (! get_dlt (abfd, info, hppa_info))
1340 return FALSE;
1341
1342 if (! get_plt (abfd, info, hppa_info))
1343 return FALSE;
1344
1345 if (! get_opd (abfd, info, hppa_info))
1346 return FALSE;
1347
1348 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1349 (SEC_ALLOC | SEC_LOAD
1350 | SEC_HAS_CONTENTS
1351 | SEC_IN_MEMORY
1352 | SEC_READONLY
1353 | SEC_LINKER_CREATED));
1354 if (s == NULL
1355 || !bfd_set_section_alignment (abfd, s, 3))
1356 return FALSE;
1357 hppa_info->dlt_rel_sec = s;
1358
1359 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1360 (SEC_ALLOC | SEC_LOAD
1361 | SEC_HAS_CONTENTS
1362 | SEC_IN_MEMORY
1363 | SEC_READONLY
1364 | SEC_LINKER_CREATED));
1365 if (s == NULL
1366 || !bfd_set_section_alignment (abfd, s, 3))
1367 return FALSE;
1368 hppa_info->plt_rel_sec = s;
1369
1370 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1371 (SEC_ALLOC | SEC_LOAD
1372 | SEC_HAS_CONTENTS
1373 | SEC_IN_MEMORY
1374 | SEC_READONLY
1375 | SEC_LINKER_CREATED));
1376 if (s == NULL
1377 || !bfd_set_section_alignment (abfd, s, 3))
1378 return FALSE;
1379 hppa_info->other_rel_sec = s;
1380
1381 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1382 (SEC_ALLOC | SEC_LOAD
1383 | SEC_HAS_CONTENTS
1384 | SEC_IN_MEMORY
1385 | SEC_READONLY
1386 | SEC_LINKER_CREATED));
1387 if (s == NULL
1388 || !bfd_set_section_alignment (abfd, s, 3))
1389 return FALSE;
1390 hppa_info->opd_rel_sec = s;
1391
1392 return TRUE;
1393 }
1394
1395 /* Allocate dynamic relocations for those symbols that turned out
1396 to be dynamic. */
1397
1398 static bfd_boolean
1399 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1400 {
1401 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1402 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1403 struct elf64_hppa_link_hash_table *hppa_info;
1404 struct elf64_hppa_dyn_reloc_entry *rent;
1405 bfd_boolean dynamic_symbol, shared;
1406
1407 hppa_info = hppa_link_hash_table (x->info);
1408 if (hppa_info == NULL)
1409 return FALSE;
1410
1411 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1412 shared = x->info->shared;
1413
1414 /* We may need to allocate relocations for a non-dynamic symbol
1415 when creating a shared library. */
1416 if (!dynamic_symbol && !shared)
1417 return TRUE;
1418
1419 /* Take care of the normal data relocations. */
1420
1421 for (rent = hh->reloc_entries; rent; rent = rent->next)
1422 {
1423 /* Allocate one iff we are building a shared library, the relocation
1424 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1425 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1426 continue;
1427
1428 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1429
1430 /* Make sure this symbol gets into the dynamic symbol table if it is
1431 not already recorded. ?!? This should not be in the loop since
1432 the symbol need only be added once. */
1433 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1434 if (!bfd_elf_link_record_local_dynamic_symbol
1435 (x->info, rent->sec->owner, hh->sym_indx))
1436 return FALSE;
1437 }
1438
1439 /* Take care of the GOT and PLT relocations. */
1440
1441 if ((dynamic_symbol || shared) && hh->want_dlt)
1442 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1443
1444 /* If we are building a shared library, then every symbol that has an
1445 opd entry will need an EPLT relocation to relocate the symbol's address
1446 and __gp value based on the runtime load address. */
1447 if (shared && hh->want_opd)
1448 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1449
1450 if (hh->want_plt && dynamic_symbol)
1451 {
1452 bfd_size_type t = 0;
1453
1454 /* Dynamic symbols get one IPLT relocation. Local symbols in
1455 shared libraries get two REL relocations. Local symbols in
1456 main applications get nothing. */
1457 if (dynamic_symbol)
1458 t = sizeof (Elf64_External_Rela);
1459 else if (shared)
1460 t = 2 * sizeof (Elf64_External_Rela);
1461
1462 hppa_info->plt_rel_sec->size += t;
1463 }
1464
1465 return TRUE;
1466 }
1467
1468 /* Adjust a symbol defined by a dynamic object and referenced by a
1469 regular object. */
1470
1471 static bfd_boolean
1472 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1473 struct elf_link_hash_entry *eh)
1474 {
1475 /* ??? Undefined symbols with PLT entries should be re-defined
1476 to be the PLT entry. */
1477
1478 /* If this is a weak symbol, and there is a real definition, the
1479 processor independent code will have arranged for us to see the
1480 real definition first, and we can just use the same value. */
1481 if (eh->u.weakdef != NULL)
1482 {
1483 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1484 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1485 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1486 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1487 return TRUE;
1488 }
1489
1490 /* If this is a reference to a symbol defined by a dynamic object which
1491 is not a function, we might allocate the symbol in our .dynbss section
1492 and allocate a COPY dynamic relocation.
1493
1494 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1495 of hackery. */
1496
1497 return TRUE;
1498 }
1499
1500 /* This function is called via elf_link_hash_traverse to mark millicode
1501 symbols with a dynindx of -1 and to remove the string table reference
1502 from the dynamic symbol table. If the symbol is not a millicode symbol,
1503 elf64_hppa_mark_exported_functions is called. */
1504
1505 static bfd_boolean
1506 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1507 void *data)
1508 {
1509 struct bfd_link_info *info = (struct bfd_link_info *) data;
1510
1511 if (eh->type == STT_PARISC_MILLI)
1512 {
1513 if (eh->dynindx != -1)
1514 {
1515 eh->dynindx = -1;
1516 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1517 eh->dynstr_index);
1518 }
1519 return TRUE;
1520 }
1521
1522 return elf64_hppa_mark_exported_functions (eh, data);
1523 }
1524
1525 /* Set the final sizes of the dynamic sections and allocate memory for
1526 the contents of our special sections. */
1527
1528 static bfd_boolean
1529 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1530 {
1531 struct elf64_hppa_link_hash_table *hppa_info;
1532 struct elf64_hppa_allocate_data data;
1533 bfd *dynobj;
1534 bfd *ibfd;
1535 asection *sec;
1536 bfd_boolean plt;
1537 bfd_boolean relocs;
1538 bfd_boolean reltext;
1539
1540 hppa_info = hppa_link_hash_table (info);
1541 if (hppa_info == NULL)
1542 return FALSE;
1543
1544 dynobj = elf_hash_table (info)->dynobj;
1545 BFD_ASSERT (dynobj != NULL);
1546
1547 /* Mark each function this program exports so that we will allocate
1548 space in the .opd section for each function's FPTR. If we are
1549 creating dynamic sections, change the dynamic index of millicode
1550 symbols to -1 and remove them from the string table for .dynstr.
1551
1552 We have to traverse the main linker hash table since we have to
1553 find functions which may not have been mentioned in any relocs. */
1554 elf_link_hash_traverse (elf_hash_table (info),
1555 (elf_hash_table (info)->dynamic_sections_created
1556 ? elf64_hppa_mark_milli_and_exported_functions
1557 : elf64_hppa_mark_exported_functions),
1558 info);
1559
1560 if (elf_hash_table (info)->dynamic_sections_created)
1561 {
1562 /* Set the contents of the .interp section to the interpreter. */
1563 if (info->executable)
1564 {
1565 sec = bfd_get_linker_section (dynobj, ".interp");
1566 BFD_ASSERT (sec != NULL);
1567 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1568 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1569 }
1570 }
1571 else
1572 {
1573 /* We may have created entries in the .rela.got section.
1574 However, if we are not creating the dynamic sections, we will
1575 not actually use these entries. Reset the size of .rela.dlt,
1576 which will cause it to get stripped from the output file
1577 below. */
1578 sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1579 if (sec != NULL)
1580 sec->size = 0;
1581 }
1582
1583 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1584 dynamic relocs. */
1585 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1586 {
1587 bfd_signed_vma *local_dlt;
1588 bfd_signed_vma *end_local_dlt;
1589 bfd_signed_vma *local_plt;
1590 bfd_signed_vma *end_local_plt;
1591 bfd_signed_vma *local_opd;
1592 bfd_signed_vma *end_local_opd;
1593 bfd_size_type locsymcount;
1594 Elf_Internal_Shdr *symtab_hdr;
1595 asection *srel;
1596
1597 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1598 continue;
1599
1600 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1601 {
1602 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1603
1604 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1605 elf_section_data (sec)->local_dynrel);
1606 hdh_p != NULL;
1607 hdh_p = hdh_p->next)
1608 {
1609 if (!bfd_is_abs_section (hdh_p->sec)
1610 && bfd_is_abs_section (hdh_p->sec->output_section))
1611 {
1612 /* Input section has been discarded, either because
1613 it is a copy of a linkonce section or due to
1614 linker script /DISCARD/, so we'll be discarding
1615 the relocs too. */
1616 }
1617 else if (hdh_p->count != 0)
1618 {
1619 srel = elf_section_data (hdh_p->sec)->sreloc;
1620 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1621 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1622 info->flags |= DF_TEXTREL;
1623 }
1624 }
1625 }
1626
1627 local_dlt = elf_local_got_refcounts (ibfd);
1628 if (!local_dlt)
1629 continue;
1630
1631 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1632 locsymcount = symtab_hdr->sh_info;
1633 end_local_dlt = local_dlt + locsymcount;
1634 sec = hppa_info->dlt_sec;
1635 srel = hppa_info->dlt_rel_sec;
1636 for (; local_dlt < end_local_dlt; ++local_dlt)
1637 {
1638 if (*local_dlt > 0)
1639 {
1640 *local_dlt = sec->size;
1641 sec->size += DLT_ENTRY_SIZE;
1642 if (info->shared)
1643 {
1644 srel->size += sizeof (Elf64_External_Rela);
1645 }
1646 }
1647 else
1648 *local_dlt = (bfd_vma) -1;
1649 }
1650
1651 local_plt = end_local_dlt;
1652 end_local_plt = local_plt + locsymcount;
1653 if (! hppa_info->root.dynamic_sections_created)
1654 {
1655 /* Won't be used, but be safe. */
1656 for (; local_plt < end_local_plt; ++local_plt)
1657 *local_plt = (bfd_vma) -1;
1658 }
1659 else
1660 {
1661 sec = hppa_info->plt_sec;
1662 srel = hppa_info->plt_rel_sec;
1663 for (; local_plt < end_local_plt; ++local_plt)
1664 {
1665 if (*local_plt > 0)
1666 {
1667 *local_plt = sec->size;
1668 sec->size += PLT_ENTRY_SIZE;
1669 if (info->shared)
1670 srel->size += sizeof (Elf64_External_Rela);
1671 }
1672 else
1673 *local_plt = (bfd_vma) -1;
1674 }
1675 }
1676
1677 local_opd = end_local_plt;
1678 end_local_opd = local_opd + locsymcount;
1679 if (! hppa_info->root.dynamic_sections_created)
1680 {
1681 /* Won't be used, but be safe. */
1682 for (; local_opd < end_local_opd; ++local_opd)
1683 *local_opd = (bfd_vma) -1;
1684 }
1685 else
1686 {
1687 sec = hppa_info->opd_sec;
1688 srel = hppa_info->opd_rel_sec;
1689 for (; local_opd < end_local_opd; ++local_opd)
1690 {
1691 if (*local_opd > 0)
1692 {
1693 *local_opd = sec->size;
1694 sec->size += OPD_ENTRY_SIZE;
1695 if (info->shared)
1696 srel->size += sizeof (Elf64_External_Rela);
1697 }
1698 else
1699 *local_opd = (bfd_vma) -1;
1700 }
1701 }
1702 }
1703
1704 /* Allocate the GOT entries. */
1705
1706 data.info = info;
1707 if (hppa_info->dlt_sec)
1708 {
1709 data.ofs = hppa_info->dlt_sec->size;
1710 elf_link_hash_traverse (elf_hash_table (info),
1711 allocate_global_data_dlt, &data);
1712 hppa_info->dlt_sec->size = data.ofs;
1713 }
1714
1715 if (hppa_info->plt_sec)
1716 {
1717 data.ofs = hppa_info->plt_sec->size;
1718 elf_link_hash_traverse (elf_hash_table (info),
1719 allocate_global_data_plt, &data);
1720 hppa_info->plt_sec->size = data.ofs;
1721 }
1722
1723 if (hppa_info->stub_sec)
1724 {
1725 data.ofs = 0x0;
1726 elf_link_hash_traverse (elf_hash_table (info),
1727 allocate_global_data_stub, &data);
1728 hppa_info->stub_sec->size = data.ofs;
1729 }
1730
1731 /* Allocate space for entries in the .opd section. */
1732 if (hppa_info->opd_sec)
1733 {
1734 data.ofs = hppa_info->opd_sec->size;
1735 elf_link_hash_traverse (elf_hash_table (info),
1736 allocate_global_data_opd, &data);
1737 hppa_info->opd_sec->size = data.ofs;
1738 }
1739
1740 /* Now allocate space for dynamic relocations, if necessary. */
1741 if (hppa_info->root.dynamic_sections_created)
1742 elf_link_hash_traverse (elf_hash_table (info),
1743 allocate_dynrel_entries, &data);
1744
1745 /* The sizes of all the sections are set. Allocate memory for them. */
1746 plt = FALSE;
1747 relocs = FALSE;
1748 reltext = FALSE;
1749 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1750 {
1751 const char *name;
1752
1753 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1754 continue;
1755
1756 /* It's OK to base decisions on the section name, because none
1757 of the dynobj section names depend upon the input files. */
1758 name = bfd_get_section_name (dynobj, sec);
1759
1760 if (strcmp (name, ".plt") == 0)
1761 {
1762 /* Remember whether there is a PLT. */
1763 plt = sec->size != 0;
1764 }
1765 else if (strcmp (name, ".opd") == 0
1766 || CONST_STRNEQ (name, ".dlt")
1767 || strcmp (name, ".stub") == 0
1768 || strcmp (name, ".got") == 0)
1769 {
1770 /* Strip this section if we don't need it; see the comment below. */
1771 }
1772 else if (CONST_STRNEQ (name, ".rela"))
1773 {
1774 if (sec->size != 0)
1775 {
1776 asection *target;
1777
1778 /* Remember whether there are any reloc sections other
1779 than .rela.plt. */
1780 if (strcmp (name, ".rela.plt") != 0)
1781 {
1782 const char *outname;
1783
1784 relocs = TRUE;
1785
1786 /* If this relocation section applies to a read only
1787 section, then we probably need a DT_TEXTREL
1788 entry. The entries in the .rela.plt section
1789 really apply to the .got section, which we
1790 created ourselves and so know is not readonly. */
1791 outname = bfd_get_section_name (output_bfd,
1792 sec->output_section);
1793 target = bfd_get_section_by_name (output_bfd, outname + 4);
1794 if (target != NULL
1795 && (target->flags & SEC_READONLY) != 0
1796 && (target->flags & SEC_ALLOC) != 0)
1797 reltext = TRUE;
1798 }
1799
1800 /* We use the reloc_count field as a counter if we need
1801 to copy relocs into the output file. */
1802 sec->reloc_count = 0;
1803 }
1804 }
1805 else
1806 {
1807 /* It's not one of our sections, so don't allocate space. */
1808 continue;
1809 }
1810
1811 if (sec->size == 0)
1812 {
1813 /* If we don't need this section, strip it from the
1814 output file. This is mostly to handle .rela.bss and
1815 .rela.plt. We must create both sections in
1816 create_dynamic_sections, because they must be created
1817 before the linker maps input sections to output
1818 sections. The linker does that before
1819 adjust_dynamic_symbol is called, and it is that
1820 function which decides whether anything needs to go
1821 into these sections. */
1822 sec->flags |= SEC_EXCLUDE;
1823 continue;
1824 }
1825
1826 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1827 continue;
1828
1829 /* Allocate memory for the section contents if it has not
1830 been allocated already. We use bfd_zalloc here in case
1831 unused entries are not reclaimed before the section's
1832 contents are written out. This should not happen, but this
1833 way if it does, we get a R_PARISC_NONE reloc instead of
1834 garbage. */
1835 if (sec->contents == NULL)
1836 {
1837 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1838 if (sec->contents == NULL)
1839 return FALSE;
1840 }
1841 }
1842
1843 if (elf_hash_table (info)->dynamic_sections_created)
1844 {
1845 /* Always create a DT_PLTGOT. It actually has nothing to do with
1846 the PLT, it is how we communicate the __gp value of a load
1847 module to the dynamic linker. */
1848 #define add_dynamic_entry(TAG, VAL) \
1849 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1850
1851 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1852 || !add_dynamic_entry (DT_PLTGOT, 0))
1853 return FALSE;
1854
1855 /* Add some entries to the .dynamic section. We fill in the
1856 values later, in elf64_hppa_finish_dynamic_sections, but we
1857 must add the entries now so that we get the correct size for
1858 the .dynamic section. The DT_DEBUG entry is filled in by the
1859 dynamic linker and used by the debugger. */
1860 if (! info->shared)
1861 {
1862 if (!add_dynamic_entry (DT_DEBUG, 0)
1863 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1864 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1865 return FALSE;
1866 }
1867
1868 /* Force DT_FLAGS to always be set.
1869 Required by HPUX 11.00 patch PHSS_26559. */
1870 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1871 return FALSE;
1872
1873 if (plt)
1874 {
1875 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1876 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1877 || !add_dynamic_entry (DT_JMPREL, 0))
1878 return FALSE;
1879 }
1880
1881 if (relocs)
1882 {
1883 if (!add_dynamic_entry (DT_RELA, 0)
1884 || !add_dynamic_entry (DT_RELASZ, 0)
1885 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1886 return FALSE;
1887 }
1888
1889 if (reltext)
1890 {
1891 if (!add_dynamic_entry (DT_TEXTREL, 0))
1892 return FALSE;
1893 info->flags |= DF_TEXTREL;
1894 }
1895 }
1896 #undef add_dynamic_entry
1897
1898 return TRUE;
1899 }
1900
1901 /* Called after we have output the symbol into the dynamic symbol
1902 table, but before we output the symbol into the normal symbol
1903 table.
1904
1905 For some symbols we had to change their address when outputting
1906 the dynamic symbol table. We undo that change here so that
1907 the symbols have their expected value in the normal symbol
1908 table. Ick. */
1909
1910 static int
1911 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1912 const char *name,
1913 Elf_Internal_Sym *sym,
1914 asection *input_sec ATTRIBUTE_UNUSED,
1915 struct elf_link_hash_entry *eh)
1916 {
1917 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1918
1919 /* We may be called with the file symbol or section symbols.
1920 They never need munging, so it is safe to ignore them. */
1921 if (!name || !eh)
1922 return 1;
1923
1924 /* Function symbols for which we created .opd entries *may* have been
1925 munged by finish_dynamic_symbol and have to be un-munged here.
1926
1927 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1928 into non-dynamic ones, so we initialize st_shndx to -1 in
1929 mark_exported_functions and check to see if it was overwritten
1930 here instead of just checking eh->dynindx. */
1931 if (hh->want_opd && hh->st_shndx != -1)
1932 {
1933 /* Restore the saved value and section index. */
1934 sym->st_value = hh->st_value;
1935 sym->st_shndx = hh->st_shndx;
1936 }
1937
1938 return 1;
1939 }
1940
1941 /* Finish up dynamic symbol handling. We set the contents of various
1942 dynamic sections here. */
1943
1944 static bfd_boolean
1945 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1946 struct bfd_link_info *info,
1947 struct elf_link_hash_entry *eh,
1948 Elf_Internal_Sym *sym)
1949 {
1950 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1951 asection *stub, *splt, *sopd, *spltrel;
1952 struct elf64_hppa_link_hash_table *hppa_info;
1953
1954 hppa_info = hppa_link_hash_table (info);
1955 if (hppa_info == NULL)
1956 return FALSE;
1957
1958 stub = hppa_info->stub_sec;
1959 splt = hppa_info->plt_sec;
1960 sopd = hppa_info->opd_sec;
1961 spltrel = hppa_info->plt_rel_sec;
1962
1963 /* Incredible. It is actually necessary to NOT use the symbol's real
1964 value when building the dynamic symbol table for a shared library.
1965 At least for symbols that refer to functions.
1966
1967 We will store a new value and section index into the symbol long
1968 enough to output it into the dynamic symbol table, then we restore
1969 the original values (in elf64_hppa_link_output_symbol_hook). */
1970 if (hh->want_opd)
1971 {
1972 BFD_ASSERT (sopd != NULL);
1973
1974 /* Save away the original value and section index so that we
1975 can restore them later. */
1976 hh->st_value = sym->st_value;
1977 hh->st_shndx = sym->st_shndx;
1978
1979 /* For the dynamic symbol table entry, we want the value to be
1980 address of this symbol's entry within the .opd section. */
1981 sym->st_value = (hh->opd_offset
1982 + sopd->output_offset
1983 + sopd->output_section->vma);
1984 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1985 sopd->output_section);
1986 }
1987
1988 /* Initialize a .plt entry if requested. */
1989 if (hh->want_plt
1990 && elf64_hppa_dynamic_symbol_p (eh, info))
1991 {
1992 bfd_vma value;
1993 Elf_Internal_Rela rel;
1994 bfd_byte *loc;
1995
1996 BFD_ASSERT (splt != NULL && spltrel != NULL);
1997
1998 /* We do not actually care about the value in the PLT entry
1999 if we are creating a shared library and the symbol is
2000 still undefined, we create a dynamic relocation to fill
2001 in the correct value. */
2002 if (info->shared && eh->root.type == bfd_link_hash_undefined)
2003 value = 0;
2004 else
2005 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2006
2007 /* Fill in the entry in the procedure linkage table.
2008
2009 The format of a plt entry is
2010 <funcaddr> <__gp>.
2011
2012 plt_offset is the offset within the PLT section at which to
2013 install the PLT entry.
2014
2015 We are modifying the in-memory PLT contents here, so we do not add
2016 in the output_offset of the PLT section. */
2017
2018 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2019 value = _bfd_get_gp_value (splt->output_section->owner);
2020 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2021
2022 /* Create a dynamic IPLT relocation for this entry.
2023
2024 We are creating a relocation in the output file's PLT section,
2025 which is included within the DLT secton. So we do need to include
2026 the PLT's output_offset in the computation of the relocation's
2027 address. */
2028 rel.r_offset = (hh->plt_offset + splt->output_offset
2029 + splt->output_section->vma);
2030 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2031 rel.r_addend = 0;
2032
2033 loc = spltrel->contents;
2034 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2035 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2036 }
2037
2038 /* Initialize an external call stub entry if requested. */
2039 if (hh->want_stub
2040 && elf64_hppa_dynamic_symbol_p (eh, info))
2041 {
2042 bfd_vma value;
2043 int insn;
2044 unsigned int max_offset;
2045
2046 BFD_ASSERT (stub != NULL);
2047
2048 /* Install the generic stub template.
2049
2050 We are modifying the contents of the stub section, so we do not
2051 need to include the stub section's output_offset here. */
2052 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2053
2054 /* Fix up the first ldd instruction.
2055
2056 We are modifying the contents of the STUB section in memory,
2057 so we do not need to include its output offset in this computation.
2058
2059 Note the plt_offset value is the value of the PLT entry relative to
2060 the start of the PLT section. These instructions will reference
2061 data relative to the value of __gp, which may not necessarily have
2062 the same address as the start of the PLT section.
2063
2064 gp_offset contains the offset of __gp within the PLT section. */
2065 value = hh->plt_offset - hppa_info->gp_offset;
2066
2067 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2068 if (output_bfd->arch_info->mach >= 25)
2069 {
2070 /* Wide mode allows 16 bit offsets. */
2071 max_offset = 32768;
2072 insn &= ~ 0xfff1;
2073 insn |= re_assemble_16 ((int) value);
2074 }
2075 else
2076 {
2077 max_offset = 8192;
2078 insn &= ~ 0x3ff1;
2079 insn |= re_assemble_14 ((int) value);
2080 }
2081
2082 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2083 {
2084 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2085 hh->eh.root.root.string,
2086 (long) value);
2087 return FALSE;
2088 }
2089
2090 bfd_put_32 (stub->owner, (bfd_vma) insn,
2091 stub->contents + hh->stub_offset);
2092
2093 /* Fix up the second ldd instruction. */
2094 value += 8;
2095 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2096 if (output_bfd->arch_info->mach >= 25)
2097 {
2098 insn &= ~ 0xfff1;
2099 insn |= re_assemble_16 ((int) value);
2100 }
2101 else
2102 {
2103 insn &= ~ 0x3ff1;
2104 insn |= re_assemble_14 ((int) value);
2105 }
2106 bfd_put_32 (stub->owner, (bfd_vma) insn,
2107 stub->contents + hh->stub_offset + 8);
2108 }
2109
2110 return TRUE;
2111 }
2112
2113 /* The .opd section contains FPTRs for each function this file
2114 exports. Initialize the FPTR entries. */
2115
2116 static bfd_boolean
2117 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2118 {
2119 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2120 struct bfd_link_info *info = (struct bfd_link_info *)data;
2121 struct elf64_hppa_link_hash_table *hppa_info;
2122 asection *sopd;
2123 asection *sopdrel;
2124
2125 hppa_info = hppa_link_hash_table (info);
2126 if (hppa_info == NULL)
2127 return FALSE;
2128
2129 sopd = hppa_info->opd_sec;
2130 sopdrel = hppa_info->opd_rel_sec;
2131
2132 if (hh->want_opd)
2133 {
2134 bfd_vma value;
2135
2136 /* The first two words of an .opd entry are zero.
2137
2138 We are modifying the contents of the OPD section in memory, so we
2139 do not need to include its output offset in this computation. */
2140 memset (sopd->contents + hh->opd_offset, 0, 16);
2141
2142 value = (eh->root.u.def.value
2143 + eh->root.u.def.section->output_section->vma
2144 + eh->root.u.def.section->output_offset);
2145
2146 /* The next word is the address of the function. */
2147 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2148
2149 /* The last word is our local __gp value. */
2150 value = _bfd_get_gp_value (sopd->output_section->owner);
2151 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2152 }
2153
2154 /* If we are generating a shared library, we must generate EPLT relocations
2155 for each entry in the .opd, even for static functions (they may have
2156 had their address taken). */
2157 if (info->shared && hh->want_opd)
2158 {
2159 Elf_Internal_Rela rel;
2160 bfd_byte *loc;
2161 int dynindx;
2162
2163 /* We may need to do a relocation against a local symbol, in
2164 which case we have to look up it's dynamic symbol index off
2165 the local symbol hash table. */
2166 if (eh->dynindx != -1)
2167 dynindx = eh->dynindx;
2168 else
2169 dynindx
2170 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2171 hh->sym_indx);
2172
2173 /* The offset of this relocation is the absolute address of the
2174 .opd entry for this symbol. */
2175 rel.r_offset = (hh->opd_offset + sopd->output_offset
2176 + sopd->output_section->vma);
2177
2178 /* If H is non-null, then we have an external symbol.
2179
2180 It is imperative that we use a different dynamic symbol for the
2181 EPLT relocation if the symbol has global scope.
2182
2183 In the dynamic symbol table, the function symbol will have a value
2184 which is address of the function's .opd entry.
2185
2186 Thus, we can not use that dynamic symbol for the EPLT relocation
2187 (if we did, the data in the .opd would reference itself rather
2188 than the actual address of the function). Instead we have to use
2189 a new dynamic symbol which has the same value as the original global
2190 function symbol.
2191
2192 We prefix the original symbol with a "." and use the new symbol in
2193 the EPLT relocation. This new symbol has already been recorded in
2194 the symbol table, we just have to look it up and use it.
2195
2196 We do not have such problems with static functions because we do
2197 not make their addresses in the dynamic symbol table point to
2198 the .opd entry. Ultimately this should be safe since a static
2199 function can not be directly referenced outside of its shared
2200 library.
2201
2202 We do have to play similar games for FPTR relocations in shared
2203 libraries, including those for static symbols. See the FPTR
2204 handling in elf64_hppa_finalize_dynreloc. */
2205 if (eh)
2206 {
2207 char *new_name;
2208 struct elf_link_hash_entry *nh;
2209
2210 new_name = alloca (strlen (eh->root.root.string) + 2);
2211 new_name[0] = '.';
2212 strcpy (new_name + 1, eh->root.root.string);
2213
2214 nh = elf_link_hash_lookup (elf_hash_table (info),
2215 new_name, TRUE, TRUE, FALSE);
2216
2217 /* All we really want from the new symbol is its dynamic
2218 symbol index. */
2219 if (nh)
2220 dynindx = nh->dynindx;
2221 }
2222
2223 rel.r_addend = 0;
2224 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2225
2226 loc = sopdrel->contents;
2227 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2228 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2229 }
2230 return TRUE;
2231 }
2232
2233 /* The .dlt section contains addresses for items referenced through the
2234 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2235 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2236
2237 static bfd_boolean
2238 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2239 {
2240 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2241 struct bfd_link_info *info = (struct bfd_link_info *)data;
2242 struct elf64_hppa_link_hash_table *hppa_info;
2243 asection *sdlt, *sdltrel;
2244
2245 hppa_info = hppa_link_hash_table (info);
2246 if (hppa_info == NULL)
2247 return FALSE;
2248
2249 sdlt = hppa_info->dlt_sec;
2250 sdltrel = hppa_info->dlt_rel_sec;
2251
2252 /* H/DYN_H may refer to a local variable and we know it's
2253 address, so there is no need to create a relocation. Just install
2254 the proper value into the DLT, note this shortcut can not be
2255 skipped when building a shared library. */
2256 if (! info->shared && hh && hh->want_dlt)
2257 {
2258 bfd_vma value;
2259
2260 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 to point to the FPTR entry in the .opd section.
2262
2263 We include the OPD's output offset in this computation as
2264 we are referring to an absolute address in the resulting
2265 object file. */
2266 if (hh->want_opd)
2267 {
2268 value = (hh->opd_offset
2269 + hppa_info->opd_sec->output_offset
2270 + hppa_info->opd_sec->output_section->vma);
2271 }
2272 else if ((eh->root.type == bfd_link_hash_defined
2273 || eh->root.type == bfd_link_hash_defweak)
2274 && eh->root.u.def.section)
2275 {
2276 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2277 if (eh->root.u.def.section->output_section)
2278 value += eh->root.u.def.section->output_section->vma;
2279 else
2280 value += eh->root.u.def.section->vma;
2281 }
2282 else
2283 /* We have an undefined function reference. */
2284 value = 0;
2285
2286 /* We do not need to include the output offset of the DLT section
2287 here because we are modifying the in-memory contents. */
2288 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2289 }
2290
2291 /* Create a relocation for the DLT entry associated with this symbol.
2292 When building a shared library the symbol does not have to be dynamic. */
2293 if (hh->want_dlt
2294 && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2295 {
2296 Elf_Internal_Rela rel;
2297 bfd_byte *loc;
2298 int dynindx;
2299
2300 /* We may need to do a relocation against a local symbol, in
2301 which case we have to look up it's dynamic symbol index off
2302 the local symbol hash table. */
2303 if (eh && eh->dynindx != -1)
2304 dynindx = eh->dynindx;
2305 else
2306 dynindx
2307 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2308 hh->sym_indx);
2309
2310 /* Create a dynamic relocation for this entry. Do include the output
2311 offset of the DLT entry since we need an absolute address in the
2312 resulting object file. */
2313 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2314 + sdlt->output_section->vma);
2315 if (eh && eh->type == STT_FUNC)
2316 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2317 else
2318 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2319 rel.r_addend = 0;
2320
2321 loc = sdltrel->contents;
2322 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2323 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2324 }
2325 return TRUE;
2326 }
2327
2328 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2329 for dynamic functions used to initialize static data. */
2330
2331 static bfd_boolean
2332 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2333 void *data)
2334 {
2335 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2336 struct bfd_link_info *info = (struct bfd_link_info *)data;
2337 struct elf64_hppa_link_hash_table *hppa_info;
2338 int dynamic_symbol;
2339
2340 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2341
2342 if (!dynamic_symbol && !info->shared)
2343 return TRUE;
2344
2345 if (hh->reloc_entries)
2346 {
2347 struct elf64_hppa_dyn_reloc_entry *rent;
2348 int dynindx;
2349
2350 hppa_info = hppa_link_hash_table (info);
2351 if (hppa_info == NULL)
2352 return FALSE;
2353
2354 /* We may need to do a relocation against a local symbol, in
2355 which case we have to look up it's dynamic symbol index off
2356 the local symbol hash table. */
2357 if (eh->dynindx != -1)
2358 dynindx = eh->dynindx;
2359 else
2360 dynindx
2361 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2362 hh->sym_indx);
2363
2364 for (rent = hh->reloc_entries; rent; rent = rent->next)
2365 {
2366 Elf_Internal_Rela rel;
2367 bfd_byte *loc;
2368
2369 /* Allocate one iff we are building a shared library, the relocation
2370 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2371 if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2372 continue;
2373
2374 /* Create a dynamic relocation for this entry.
2375
2376 We need the output offset for the reloc's section because
2377 we are creating an absolute address in the resulting object
2378 file. */
2379 rel.r_offset = (rent->offset + rent->sec->output_offset
2380 + rent->sec->output_section->vma);
2381
2382 /* An FPTR64 relocation implies that we took the address of
2383 a function and that the function has an entry in the .opd
2384 section. We want the FPTR64 relocation to reference the
2385 entry in .opd.
2386
2387 We could munge the symbol value in the dynamic symbol table
2388 (in fact we already do for functions with global scope) to point
2389 to the .opd entry. Then we could use that dynamic symbol in
2390 this relocation.
2391
2392 Or we could do something sensible, not munge the symbol's
2393 address and instead just use a different symbol to reference
2394 the .opd entry. At least that seems sensible until you
2395 realize there's no local dynamic symbols we can use for that
2396 purpose. Thus the hair in the check_relocs routine.
2397
2398 We use a section symbol recorded by check_relocs as the
2399 base symbol for the relocation. The addend is the difference
2400 between the section symbol and the address of the .opd entry. */
2401 if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2402 {
2403 bfd_vma value, value2;
2404
2405 /* First compute the address of the opd entry for this symbol. */
2406 value = (hh->opd_offset
2407 + hppa_info->opd_sec->output_section->vma
2408 + hppa_info->opd_sec->output_offset);
2409
2410 /* Compute the value of the start of the section with
2411 the relocation. */
2412 value2 = (rent->sec->output_section->vma
2413 + rent->sec->output_offset);
2414
2415 /* Compute the difference between the start of the section
2416 with the relocation and the opd entry. */
2417 value -= value2;
2418
2419 /* The result becomes the addend of the relocation. */
2420 rel.r_addend = value;
2421
2422 /* The section symbol becomes the symbol for the dynamic
2423 relocation. */
2424 dynindx
2425 = _bfd_elf_link_lookup_local_dynindx (info,
2426 rent->sec->owner,
2427 rent->sec_symndx);
2428 }
2429 else
2430 rel.r_addend = rent->addend;
2431
2432 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2433
2434 loc = hppa_info->other_rel_sec->contents;
2435 loc += (hppa_info->other_rel_sec->reloc_count++
2436 * sizeof (Elf64_External_Rela));
2437 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2438 &rel, loc);
2439 }
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 /* Used to decide how to sort relocs in an optimal manner for the
2446 dynamic linker, before writing them out. */
2447
2448 static enum elf_reloc_type_class
2449 elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
2450 {
2451 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463 }
2464
2465 /* Finish up the dynamic sections. */
2466
2467 static bfd_boolean
2468 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 struct bfd_link_info *info)
2470 {
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = hppa_link_hash_table (info);
2476 if (hppa_info == NULL)
2477 return FALSE;
2478
2479 /* Finalize the contents of the .opd section. */
2480 elf_link_hash_traverse (elf_hash_table (info),
2481 elf64_hppa_finalize_opd,
2482 info);
2483
2484 elf_link_hash_traverse (elf_hash_table (info),
2485 elf64_hppa_finalize_dynreloc,
2486 info);
2487
2488 /* Finalize the contents of the .dlt section. */
2489 dynobj = elf_hash_table (info)->dynobj;
2490 /* Finalize the contents of the .dlt section. */
2491 elf_link_hash_traverse (elf_hash_table (info),
2492 elf64_hppa_finalize_dlt,
2493 info);
2494
2495 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496
2497 if (elf_hash_table (info)->dynamic_sections_created)
2498 {
2499 Elf64_External_Dyn *dyncon, *dynconend;
2500
2501 BFD_ASSERT (sdyn != NULL);
2502
2503 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505 for (; dyncon < dynconend; dyncon++)
2506 {
2507 Elf_Internal_Dyn dyn;
2508 asection *s;
2509
2510 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511
2512 switch (dyn.d_tag)
2513 {
2514 default:
2515 break;
2516
2517 case DT_HP_LOAD_MAP:
2518 /* Compute the absolute address of 16byte scratchpad area
2519 for the dynamic linker.
2520
2521 By convention the linker script will allocate the scratchpad
2522 area at the start of the .data section. So all we have to
2523 to is find the start of the .data section. */
2524 s = bfd_get_section_by_name (output_bfd, ".data");
2525 dyn.d_un.d_ptr = s->vma;
2526 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527 break;
2528
2529 case DT_PLTGOT:
2530 /* HP's use PLTGOT to set the GOT register. */
2531 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2532 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 break;
2534
2535 case DT_JMPREL:
2536 s = hppa_info->plt_rel_sec;
2537 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2538 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539 break;
2540
2541 case DT_PLTRELSZ:
2542 s = hppa_info->plt_rel_sec;
2543 dyn.d_un.d_val = s->size;
2544 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2545 break;
2546
2547 case DT_RELA:
2548 s = hppa_info->other_rel_sec;
2549 if (! s || ! s->size)
2550 s = hppa_info->dlt_rel_sec;
2551 if (! s || ! s->size)
2552 s = hppa_info->opd_rel_sec;
2553 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2554 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2555 break;
2556
2557 case DT_RELASZ:
2558 s = hppa_info->other_rel_sec;
2559 dyn.d_un.d_val = s->size;
2560 s = hppa_info->dlt_rel_sec;
2561 dyn.d_un.d_val += s->size;
2562 s = hppa_info->opd_rel_sec;
2563 dyn.d_un.d_val += s->size;
2564 /* There is some question about whether or not the size of
2565 the PLT relocs should be included here. HP's tools do
2566 it, so we'll emulate them. */
2567 s = hppa_info->plt_rel_sec;
2568 dyn.d_un.d_val += s->size;
2569 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2570 break;
2571
2572 }
2573 }
2574 }
2575
2576 return TRUE;
2577 }
2578
2579 /* Support for core dump NOTE sections. */
2580
2581 static bfd_boolean
2582 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2583 {
2584 int offset;
2585 size_t size;
2586
2587 switch (note->descsz)
2588 {
2589 default:
2590 return FALSE;
2591
2592 case 760: /* Linux/hppa */
2593 /* pr_cursig */
2594 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2595
2596 /* pr_pid */
2597 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2598
2599 /* pr_reg */
2600 offset = 112;
2601 size = 640;
2602
2603 break;
2604 }
2605
2606 /* Make a ".reg/999" section. */
2607 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2608 size, note->descpos + offset);
2609 }
2610
2611 static bfd_boolean
2612 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2613 {
2614 char * command;
2615 int n;
2616
2617 switch (note->descsz)
2618 {
2619 default:
2620 return FALSE;
2621
2622 case 136: /* Linux/hppa elf_prpsinfo. */
2623 elf_tdata (abfd)->core_program
2624 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2625 elf_tdata (abfd)->core_command
2626 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2627 }
2628
2629 /* Note that for some reason, a spurious space is tacked
2630 onto the end of the args in some (at least one anyway)
2631 implementations, so strip it off if it exists. */
2632 command = elf_tdata (abfd)->core_command;
2633 n = strlen (command);
2634
2635 if (0 < n && command[n - 1] == ' ')
2636 command[n - 1] = '\0';
2637
2638 return TRUE;
2639 }
2640
2641 /* Return the number of additional phdrs we will need.
2642
2643 The generic ELF code only creates PT_PHDRs for executables. The HP
2644 dynamic linker requires PT_PHDRs for dynamic libraries too.
2645
2646 This routine indicates that the backend needs one additional program
2647 header for that case.
2648
2649 Note we do not have access to the link info structure here, so we have
2650 to guess whether or not we are building a shared library based on the
2651 existence of a .interp section. */
2652
2653 static int
2654 elf64_hppa_additional_program_headers (bfd *abfd,
2655 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2656 {
2657 asection *s;
2658
2659 /* If we are creating a shared library, then we have to create a
2660 PT_PHDR segment. HP's dynamic linker chokes without it. */
2661 s = bfd_get_section_by_name (abfd, ".interp");
2662 if (! s)
2663 return 1;
2664 return 0;
2665 }
2666
2667 /* Allocate and initialize any program headers required by this
2668 specific backend.
2669
2670 The generic ELF code only creates PT_PHDRs for executables. The HP
2671 dynamic linker requires PT_PHDRs for dynamic libraries too.
2672
2673 This allocates the PT_PHDR and initializes it in a manner suitable
2674 for the HP linker.
2675
2676 Note we do not have access to the link info structure here, so we have
2677 to guess whether or not we are building a shared library based on the
2678 existence of a .interp section. */
2679
2680 static bfd_boolean
2681 elf64_hppa_modify_segment_map (bfd *abfd,
2682 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2683 {
2684 struct elf_segment_map *m;
2685 asection *s;
2686
2687 s = bfd_get_section_by_name (abfd, ".interp");
2688 if (! s)
2689 {
2690 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2691 if (m->p_type == PT_PHDR)
2692 break;
2693 if (m == NULL)
2694 {
2695 m = ((struct elf_segment_map *)
2696 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2697 if (m == NULL)
2698 return FALSE;
2699
2700 m->p_type = PT_PHDR;
2701 m->p_flags = PF_R | PF_X;
2702 m->p_flags_valid = 1;
2703 m->p_paddr_valid = 1;
2704 m->includes_phdrs = 1;
2705
2706 m->next = elf_tdata (abfd)->segment_map;
2707 elf_tdata (abfd)->segment_map = m;
2708 }
2709 }
2710
2711 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2712 if (m->p_type == PT_LOAD)
2713 {
2714 unsigned int i;
2715
2716 for (i = 0; i < m->count; i++)
2717 {
2718 /* The code "hint" is not really a hint. It is a requirement
2719 for certain versions of the HP dynamic linker. Worse yet,
2720 it must be set even if the shared library does not have
2721 any code in its "text" segment (thus the check for .hash
2722 to catch this situation). */
2723 if (m->sections[i]->flags & SEC_CODE
2724 || (strcmp (m->sections[i]->name, ".hash") == 0))
2725 m->p_flags |= (PF_X | PF_HP_CODE);
2726 }
2727 }
2728
2729 return TRUE;
2730 }
2731
2732 /* Called when writing out an object file to decide the type of a
2733 symbol. */
2734 static int
2735 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2736 int type)
2737 {
2738 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2739 return STT_PARISC_MILLI;
2740 else
2741 return type;
2742 }
2743
2744 /* Support HP specific sections for core files. */
2745
2746 static bfd_boolean
2747 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2748 const char *typename)
2749 {
2750 if (hdr->p_type == PT_HP_CORE_KERNEL)
2751 {
2752 asection *sect;
2753
2754 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2755 return FALSE;
2756
2757 sect = bfd_make_section_anyway (abfd, ".kernel");
2758 if (sect == NULL)
2759 return FALSE;
2760 sect->size = hdr->p_filesz;
2761 sect->filepos = hdr->p_offset;
2762 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2763 return TRUE;
2764 }
2765
2766 if (hdr->p_type == PT_HP_CORE_PROC)
2767 {
2768 int sig;
2769
2770 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2771 return FALSE;
2772 if (bfd_bread (&sig, 4, abfd) != 4)
2773 return FALSE;
2774
2775 elf_tdata (abfd)->core_signal = sig;
2776
2777 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2778 return FALSE;
2779
2780 /* GDB uses the ".reg" section to read register contents. */
2781 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2782 hdr->p_offset);
2783 }
2784
2785 if (hdr->p_type == PT_HP_CORE_LOADABLE
2786 || hdr->p_type == PT_HP_CORE_STACK
2787 || hdr->p_type == PT_HP_CORE_MMF)
2788 hdr->p_type = PT_LOAD;
2789
2790 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2791 }
2792
2793 /* Hook called by the linker routine which adds symbols from an object
2794 file. HP's libraries define symbols with HP specific section
2795 indices, which we have to handle. */
2796
2797 static bfd_boolean
2798 elf_hppa_add_symbol_hook (bfd *abfd,
2799 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2800 Elf_Internal_Sym *sym,
2801 const char **namep ATTRIBUTE_UNUSED,
2802 flagword *flagsp ATTRIBUTE_UNUSED,
2803 asection **secp,
2804 bfd_vma *valp)
2805 {
2806 unsigned int sec_index = sym->st_shndx;
2807
2808 switch (sec_index)
2809 {
2810 case SHN_PARISC_ANSI_COMMON:
2811 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2812 (*secp)->flags |= SEC_IS_COMMON;
2813 *valp = sym->st_size;
2814 break;
2815
2816 case SHN_PARISC_HUGE_COMMON:
2817 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2818 (*secp)->flags |= SEC_IS_COMMON;
2819 *valp = sym->st_size;
2820 break;
2821 }
2822
2823 return TRUE;
2824 }
2825
2826 static bfd_boolean
2827 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2828 void *data)
2829 {
2830 struct bfd_link_info *info = data;
2831
2832 /* If we are not creating a shared library, and this symbol is
2833 referenced by a shared library but is not defined anywhere, then
2834 the generic code will warn that it is undefined.
2835
2836 This behavior is undesirable on HPs since the standard shared
2837 libraries contain references to undefined symbols.
2838
2839 So we twiddle the flags associated with such symbols so that they
2840 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2841
2842 Ultimately we should have better controls over the generic ELF BFD
2843 linker code. */
2844 if (! info->relocatable
2845 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2846 && h->root.type == bfd_link_hash_undefined
2847 && h->ref_dynamic
2848 && !h->ref_regular)
2849 {
2850 h->ref_dynamic = 0;
2851 h->pointer_equality_needed = 1;
2852 }
2853
2854 return TRUE;
2855 }
2856
2857 static bfd_boolean
2858 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2859 void *data)
2860 {
2861 struct bfd_link_info *info = data;
2862
2863 /* If we are not creating a shared library, and this symbol is
2864 referenced by a shared library but is not defined anywhere, then
2865 the generic code will warn that it is undefined.
2866
2867 This behavior is undesirable on HPs since the standard shared
2868 libraries contain references to undefined symbols.
2869
2870 So we twiddle the flags associated with such symbols so that they
2871 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2872
2873 Ultimately we should have better controls over the generic ELF BFD
2874 linker code. */
2875 if (! info->relocatable
2876 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2877 && h->root.type == bfd_link_hash_undefined
2878 && !h->ref_dynamic
2879 && !h->ref_regular
2880 && h->pointer_equality_needed)
2881 {
2882 h->ref_dynamic = 1;
2883 h->pointer_equality_needed = 0;
2884 }
2885
2886 return TRUE;
2887 }
2888
2889 static bfd_boolean
2890 elf_hppa_is_dynamic_loader_symbol (const char *name)
2891 {
2892 return (! strcmp (name, "__CPU_REVISION")
2893 || ! strcmp (name, "__CPU_KEYBITS_1")
2894 || ! strcmp (name, "__SYSTEM_ID_D")
2895 || ! strcmp (name, "__FPU_MODEL")
2896 || ! strcmp (name, "__FPU_REVISION")
2897 || ! strcmp (name, "__ARGC")
2898 || ! strcmp (name, "__ARGV")
2899 || ! strcmp (name, "__ENVP")
2900 || ! strcmp (name, "__TLS_SIZE_D")
2901 || ! strcmp (name, "__LOAD_INFO")
2902 || ! strcmp (name, "__systab"));
2903 }
2904
2905 /* Record the lowest address for the data and text segments. */
2906 static void
2907 elf_hppa_record_segment_addrs (bfd *abfd,
2908 asection *section,
2909 void *data)
2910 {
2911 struct elf64_hppa_link_hash_table *hppa_info = data;
2912
2913 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2914 {
2915 bfd_vma value;
2916 Elf_Internal_Phdr *p;
2917
2918 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2919 BFD_ASSERT (p != NULL);
2920 value = p->p_vaddr;
2921
2922 if (section->flags & SEC_READONLY)
2923 {
2924 if (value < hppa_info->text_segment_base)
2925 hppa_info->text_segment_base = value;
2926 }
2927 else
2928 {
2929 if (value < hppa_info->data_segment_base)
2930 hppa_info->data_segment_base = value;
2931 }
2932 }
2933 }
2934
2935 /* Called after we have seen all the input files/sections, but before
2936 final symbol resolution and section placement has been determined.
2937
2938 We use this hook to (possibly) provide a value for __gp, then we
2939 fall back to the generic ELF final link routine. */
2940
2941 static bfd_boolean
2942 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2943 {
2944 bfd_boolean retval;
2945 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2946
2947 if (hppa_info == NULL)
2948 return FALSE;
2949
2950 if (! info->relocatable)
2951 {
2952 struct elf_link_hash_entry *gp;
2953 bfd_vma gp_val;
2954
2955 /* The linker script defines a value for __gp iff it was referenced
2956 by one of the objects being linked. First try to find the symbol
2957 in the hash table. If that fails, just compute the value __gp
2958 should have had. */
2959 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2960 FALSE, FALSE);
2961
2962 if (gp)
2963 {
2964
2965 /* Adjust the value of __gp as we may want to slide it into the
2966 .plt section so that the stubs can access PLT entries without
2967 using an addil sequence. */
2968 gp->root.u.def.value += hppa_info->gp_offset;
2969
2970 gp_val = (gp->root.u.def.section->output_section->vma
2971 + gp->root.u.def.section->output_offset
2972 + gp->root.u.def.value);
2973 }
2974 else
2975 {
2976 asection *sec;
2977
2978 /* First look for a .plt section. If found, then __gp is the
2979 address of the .plt + gp_offset.
2980
2981 If no .plt is found, then look for .dlt, .opd and .data (in
2982 that order) and set __gp to the base address of whichever
2983 section is found first. */
2984
2985 sec = hppa_info->plt_sec;
2986 if (sec && ! (sec->flags & SEC_EXCLUDE))
2987 gp_val = (sec->output_offset
2988 + sec->output_section->vma
2989 + hppa_info->gp_offset);
2990 else
2991 {
2992 sec = hppa_info->dlt_sec;
2993 if (!sec || (sec->flags & SEC_EXCLUDE))
2994 sec = hppa_info->opd_sec;
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 sec = bfd_get_section_by_name (abfd, ".data");
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 gp_val = 0;
2999 else
3000 gp_val = sec->output_offset + sec->output_section->vma;
3001 }
3002 }
3003
3004 /* Install whatever value we found/computed for __gp. */
3005 _bfd_set_gp_value (abfd, gp_val);
3006 }
3007
3008 /* We need to know the base of the text and data segments so that we
3009 can perform SEGREL relocations. We will record the base addresses
3010 when we encounter the first SEGREL relocation. */
3011 hppa_info->text_segment_base = (bfd_vma)-1;
3012 hppa_info->data_segment_base = (bfd_vma)-1;
3013
3014 /* HP's shared libraries have references to symbols that are not
3015 defined anywhere. The generic ELF BFD linker code will complain
3016 about such symbols.
3017
3018 So we detect the losing case and arrange for the flags on the symbol
3019 to indicate that it was never referenced. This keeps the generic
3020 ELF BFD link code happy and appears to not create any secondary
3021 problems. Ultimately we need a way to control the behavior of the
3022 generic ELF BFD link code better. */
3023 elf_link_hash_traverse (elf_hash_table (info),
3024 elf_hppa_unmark_useless_dynamic_symbols,
3025 info);
3026
3027 /* Invoke the regular ELF backend linker to do all the work. */
3028 retval = bfd_elf_final_link (abfd, info);
3029
3030 elf_link_hash_traverse (elf_hash_table (info),
3031 elf_hppa_remark_useless_dynamic_symbols,
3032 info);
3033
3034 /* If we're producing a final executable, sort the contents of the
3035 unwind section. */
3036 if (retval && !info->relocatable)
3037 retval = elf_hppa_sort_unwind (abfd);
3038
3039 return retval;
3040 }
3041
3042 /* Relocate the given INSN. VALUE should be the actual value we want
3043 to insert into the instruction, ie by this point we should not be
3044 concerned with computing an offset relative to the DLT, PC, etc.
3045 Instead this routine is meant to handle the bit manipulations needed
3046 to insert the relocation into the given instruction. */
3047
3048 static int
3049 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3050 {
3051 switch (r_type)
3052 {
3053 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3054 the "B" instruction. */
3055 case R_PARISC_PCREL22F:
3056 case R_PARISC_PCREL22C:
3057 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3058
3059 /* This is any 12 bit branch. */
3060 case R_PARISC_PCREL12F:
3061 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3062
3063 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3064 to the "B" instruction as well as BE. */
3065 case R_PARISC_PCREL17F:
3066 case R_PARISC_DIR17F:
3067 case R_PARISC_DIR17R:
3068 case R_PARISC_PCREL17C:
3069 case R_PARISC_PCREL17R:
3070 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3071
3072 /* ADDIL or LDIL instructions. */
3073 case R_PARISC_DLTREL21L:
3074 case R_PARISC_DLTIND21L:
3075 case R_PARISC_LTOFF_FPTR21L:
3076 case R_PARISC_PCREL21L:
3077 case R_PARISC_LTOFF_TP21L:
3078 case R_PARISC_DPREL21L:
3079 case R_PARISC_PLTOFF21L:
3080 case R_PARISC_DIR21L:
3081 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3082
3083 /* LDO and integer loads/stores with 14 bit displacements. */
3084 case R_PARISC_DLTREL14R:
3085 case R_PARISC_DLTREL14F:
3086 case R_PARISC_DLTIND14R:
3087 case R_PARISC_DLTIND14F:
3088 case R_PARISC_LTOFF_FPTR14R:
3089 case R_PARISC_PCREL14R:
3090 case R_PARISC_PCREL14F:
3091 case R_PARISC_LTOFF_TP14R:
3092 case R_PARISC_LTOFF_TP14F:
3093 case R_PARISC_DPREL14R:
3094 case R_PARISC_DPREL14F:
3095 case R_PARISC_PLTOFF14R:
3096 case R_PARISC_PLTOFF14F:
3097 case R_PARISC_DIR14R:
3098 case R_PARISC_DIR14F:
3099 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3100
3101 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3102 case R_PARISC_LTOFF_FPTR16F:
3103 case R_PARISC_PCREL16F:
3104 case R_PARISC_LTOFF_TP16F:
3105 case R_PARISC_GPREL16F:
3106 case R_PARISC_PLTOFF16F:
3107 case R_PARISC_DIR16F:
3108 case R_PARISC_LTOFF16F:
3109 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3110
3111 /* Doubleword loads and stores with a 14 bit displacement. */
3112 case R_PARISC_DLTREL14DR:
3113 case R_PARISC_DLTIND14DR:
3114 case R_PARISC_LTOFF_FPTR14DR:
3115 case R_PARISC_LTOFF_FPTR16DF:
3116 case R_PARISC_PCREL14DR:
3117 case R_PARISC_PCREL16DF:
3118 case R_PARISC_LTOFF_TP14DR:
3119 case R_PARISC_LTOFF_TP16DF:
3120 case R_PARISC_DPREL14DR:
3121 case R_PARISC_GPREL16DF:
3122 case R_PARISC_PLTOFF14DR:
3123 case R_PARISC_PLTOFF16DF:
3124 case R_PARISC_DIR14DR:
3125 case R_PARISC_DIR16DF:
3126 case R_PARISC_LTOFF16DF:
3127 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3128 | ((sym_value & 0x1ff8) << 1));
3129
3130 /* Floating point single word load/store instructions. */
3131 case R_PARISC_DLTREL14WR:
3132 case R_PARISC_DLTIND14WR:
3133 case R_PARISC_LTOFF_FPTR14WR:
3134 case R_PARISC_LTOFF_FPTR16WF:
3135 case R_PARISC_PCREL14WR:
3136 case R_PARISC_PCREL16WF:
3137 case R_PARISC_LTOFF_TP14WR:
3138 case R_PARISC_LTOFF_TP16WF:
3139 case R_PARISC_DPREL14WR:
3140 case R_PARISC_GPREL16WF:
3141 case R_PARISC_PLTOFF14WR:
3142 case R_PARISC_PLTOFF16WF:
3143 case R_PARISC_DIR16WF:
3144 case R_PARISC_DIR14WR:
3145 case R_PARISC_LTOFF16WF:
3146 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3147 | ((sym_value & 0x1ffc) << 1));
3148
3149 default:
3150 return insn;
3151 }
3152 }
3153
3154 /* Compute the value for a relocation (REL) during a final link stage,
3155 then insert the value into the proper location in CONTENTS.
3156
3157 VALUE is a tentative value for the relocation and may be overridden
3158 and modified here based on the specific relocation to be performed.
3159
3160 For example we do conversions for PC-relative branches in this routine
3161 or redirection of calls to external routines to stubs.
3162
3163 The work of actually applying the relocation is left to a helper
3164 routine in an attempt to reduce the complexity and size of this
3165 function. */
3166
3167 static bfd_reloc_status_type
3168 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3169 bfd *input_bfd,
3170 bfd *output_bfd,
3171 asection *input_section,
3172 bfd_byte *contents,
3173 bfd_vma value,
3174 struct bfd_link_info *info,
3175 asection *sym_sec,
3176 struct elf_link_hash_entry *eh)
3177 {
3178 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3179 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3180 bfd_vma *local_offsets;
3181 Elf_Internal_Shdr *symtab_hdr;
3182 int insn;
3183 bfd_vma max_branch_offset = 0;
3184 bfd_vma offset = rel->r_offset;
3185 bfd_signed_vma addend = rel->r_addend;
3186 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3187 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3188 unsigned int r_type = howto->type;
3189 bfd_byte *hit_data = contents + offset;
3190
3191 if (hppa_info == NULL)
3192 return bfd_reloc_notsupported;
3193
3194 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3195 local_offsets = elf_local_got_offsets (input_bfd);
3196 insn = bfd_get_32 (input_bfd, hit_data);
3197
3198 switch (r_type)
3199 {
3200 case R_PARISC_NONE:
3201 break;
3202
3203 /* Basic function call support.
3204
3205 Note for a call to a function defined in another dynamic library
3206 we want to redirect the call to a stub. */
3207
3208 /* PC relative relocs without an implicit offset. */
3209 case R_PARISC_PCREL21L:
3210 case R_PARISC_PCREL14R:
3211 case R_PARISC_PCREL14F:
3212 case R_PARISC_PCREL14WR:
3213 case R_PARISC_PCREL14DR:
3214 case R_PARISC_PCREL16F:
3215 case R_PARISC_PCREL16WF:
3216 case R_PARISC_PCREL16DF:
3217 {
3218 /* If this is a call to a function defined in another dynamic
3219 library, then redirect the call to the local stub for this
3220 function. */
3221 if (sym_sec == NULL || sym_sec->output_section == NULL)
3222 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3223 + hppa_info->stub_sec->output_section->vma);
3224
3225 /* Turn VALUE into a proper PC relative address. */
3226 value -= (offset + input_section->output_offset
3227 + input_section->output_section->vma);
3228
3229 /* Adjust for any field selectors. */
3230 if (r_type == R_PARISC_PCREL21L)
3231 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3232 else if (r_type == R_PARISC_PCREL14F
3233 || r_type == R_PARISC_PCREL16F
3234 || r_type == R_PARISC_PCREL16WF
3235 || r_type == R_PARISC_PCREL16DF)
3236 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3237 else
3238 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3239
3240 /* Apply the relocation to the given instruction. */
3241 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3242 break;
3243 }
3244
3245 case R_PARISC_PCREL12F:
3246 case R_PARISC_PCREL22F:
3247 case R_PARISC_PCREL17F:
3248 case R_PARISC_PCREL22C:
3249 case R_PARISC_PCREL17C:
3250 case R_PARISC_PCREL17R:
3251 {
3252 /* If this is a call to a function defined in another dynamic
3253 library, then redirect the call to the local stub for this
3254 function. */
3255 if (sym_sec == NULL || sym_sec->output_section == NULL)
3256 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3257 + hppa_info->stub_sec->output_section->vma);
3258
3259 /* Turn VALUE into a proper PC relative address. */
3260 value -= (offset + input_section->output_offset
3261 + input_section->output_section->vma);
3262 addend -= 8;
3263
3264 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3265 max_branch_offset = (1 << (22-1)) << 2;
3266 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3267 max_branch_offset = (1 << (17-1)) << 2;
3268 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3269 max_branch_offset = (1 << (12-1)) << 2;
3270
3271 /* Make sure we can reach the branch target. */
3272 if (max_branch_offset != 0
3273 && value + addend + max_branch_offset >= 2*max_branch_offset)
3274 {
3275 (*_bfd_error_handler)
3276 (_("%B(%A+0x" BFD_VMA_FMT "x): cannot reach %s"),
3277 input_bfd,
3278 input_section,
3279 offset,
3280 eh ? eh->root.root.string : "unknown");
3281 bfd_set_error (bfd_error_bad_value);
3282 return bfd_reloc_overflow;
3283 }
3284
3285 /* Adjust for any field selectors. */
3286 if (r_type == R_PARISC_PCREL17R)
3287 value = hppa_field_adjust (value, addend, e_rsel);
3288 else
3289 value = hppa_field_adjust (value, addend, e_fsel);
3290
3291 /* All branches are implicitly shifted by 2 places. */
3292 value >>= 2;
3293
3294 /* Apply the relocation to the given instruction. */
3295 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3296 break;
3297 }
3298
3299 /* Indirect references to data through the DLT. */
3300 case R_PARISC_DLTIND14R:
3301 case R_PARISC_DLTIND14F:
3302 case R_PARISC_DLTIND14DR:
3303 case R_PARISC_DLTIND14WR:
3304 case R_PARISC_DLTIND21L:
3305 case R_PARISC_LTOFF_FPTR14R:
3306 case R_PARISC_LTOFF_FPTR14DR:
3307 case R_PARISC_LTOFF_FPTR14WR:
3308 case R_PARISC_LTOFF_FPTR21L:
3309 case R_PARISC_LTOFF_FPTR16F:
3310 case R_PARISC_LTOFF_FPTR16WF:
3311 case R_PARISC_LTOFF_FPTR16DF:
3312 case R_PARISC_LTOFF_TP21L:
3313 case R_PARISC_LTOFF_TP14R:
3314 case R_PARISC_LTOFF_TP14F:
3315 case R_PARISC_LTOFF_TP14WR:
3316 case R_PARISC_LTOFF_TP14DR:
3317 case R_PARISC_LTOFF_TP16F:
3318 case R_PARISC_LTOFF_TP16WF:
3319 case R_PARISC_LTOFF_TP16DF:
3320 case R_PARISC_LTOFF16F:
3321 case R_PARISC_LTOFF16WF:
3322 case R_PARISC_LTOFF16DF:
3323 {
3324 bfd_vma off;
3325
3326 /* If this relocation was against a local symbol, then we still
3327 have not set up the DLT entry (it's not convenient to do so
3328 in the "finalize_dlt" routine because it is difficult to get
3329 to the local symbol's value).
3330
3331 So, if this is a local symbol (h == NULL), then we need to
3332 fill in its DLT entry.
3333
3334 Similarly we may still need to set up an entry in .opd for
3335 a local function which had its address taken. */
3336 if (hh == NULL)
3337 {
3338 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3339
3340 if (local_offsets == NULL)
3341 abort ();
3342
3343 /* Now do .opd creation if needed. */
3344 if (r_type == R_PARISC_LTOFF_FPTR14R
3345 || r_type == R_PARISC_LTOFF_FPTR14DR
3346 || r_type == R_PARISC_LTOFF_FPTR14WR
3347 || r_type == R_PARISC_LTOFF_FPTR21L
3348 || r_type == R_PARISC_LTOFF_FPTR16F
3349 || r_type == R_PARISC_LTOFF_FPTR16WF
3350 || r_type == R_PARISC_LTOFF_FPTR16DF)
3351 {
3352 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3353 off = local_opd_offsets[r_symndx];
3354
3355 /* The last bit records whether we've already initialised
3356 this local .opd entry. */
3357 if ((off & 1) != 0)
3358 {
3359 BFD_ASSERT (off != (bfd_vma) -1);
3360 off &= ~1;
3361 }
3362 else
3363 {
3364 local_opd_offsets[r_symndx] |= 1;
3365
3366 /* The first two words of an .opd entry are zero. */
3367 memset (hppa_info->opd_sec->contents + off, 0, 16);
3368
3369 /* The next word is the address of the function. */
3370 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3371 (hppa_info->opd_sec->contents + off + 16));
3372
3373 /* The last word is our local __gp value. */
3374 value = _bfd_get_gp_value
3375 (hppa_info->opd_sec->output_section->owner);
3376 bfd_put_64 (hppa_info->opd_sec->owner, value,
3377 (hppa_info->opd_sec->contents + off + 24));
3378 }
3379
3380 /* The DLT value is the address of the .opd entry. */
3381 value = (off
3382 + hppa_info->opd_sec->output_offset
3383 + hppa_info->opd_sec->output_section->vma);
3384 addend = 0;
3385 }
3386
3387 local_dlt_offsets = local_offsets;
3388 off = local_dlt_offsets[r_symndx];
3389
3390 if ((off & 1) != 0)
3391 {
3392 BFD_ASSERT (off != (bfd_vma) -1);
3393 off &= ~1;
3394 }
3395 else
3396 {
3397 local_dlt_offsets[r_symndx] |= 1;
3398 bfd_put_64 (hppa_info->dlt_sec->owner,
3399 value + addend,
3400 hppa_info->dlt_sec->contents + off);
3401 }
3402 }
3403 else
3404 off = hh->dlt_offset;
3405
3406 /* We want the value of the DLT offset for this symbol, not
3407 the symbol's actual address. Note that __gp may not point
3408 to the start of the DLT, so we have to compute the absolute
3409 address, then subtract out the value of __gp. */
3410 value = (off
3411 + hppa_info->dlt_sec->output_offset
3412 + hppa_info->dlt_sec->output_section->vma);
3413 value -= _bfd_get_gp_value (output_bfd);
3414
3415 /* All DLTIND relocations are basically the same at this point,
3416 except that we need different field selectors for the 21bit
3417 version vs the 14bit versions. */
3418 if (r_type == R_PARISC_DLTIND21L
3419 || r_type == R_PARISC_LTOFF_FPTR21L
3420 || r_type == R_PARISC_LTOFF_TP21L)
3421 value = hppa_field_adjust (value, 0, e_lsel);
3422 else if (r_type == R_PARISC_DLTIND14F
3423 || r_type == R_PARISC_LTOFF_FPTR16F
3424 || r_type == R_PARISC_LTOFF_FPTR16WF
3425 || r_type == R_PARISC_LTOFF_FPTR16DF
3426 || r_type == R_PARISC_LTOFF16F
3427 || r_type == R_PARISC_LTOFF16DF
3428 || r_type == R_PARISC_LTOFF16WF
3429 || r_type == R_PARISC_LTOFF_TP16F
3430 || r_type == R_PARISC_LTOFF_TP16WF
3431 || r_type == R_PARISC_LTOFF_TP16DF)
3432 value = hppa_field_adjust (value, 0, e_fsel);
3433 else
3434 value = hppa_field_adjust (value, 0, e_rsel);
3435
3436 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3437 break;
3438 }
3439
3440 case R_PARISC_DLTREL14R:
3441 case R_PARISC_DLTREL14F:
3442 case R_PARISC_DLTREL14DR:
3443 case R_PARISC_DLTREL14WR:
3444 case R_PARISC_DLTREL21L:
3445 case R_PARISC_DPREL21L:
3446 case R_PARISC_DPREL14WR:
3447 case R_PARISC_DPREL14DR:
3448 case R_PARISC_DPREL14R:
3449 case R_PARISC_DPREL14F:
3450 case R_PARISC_GPREL16F:
3451 case R_PARISC_GPREL16WF:
3452 case R_PARISC_GPREL16DF:
3453 {
3454 /* Subtract out the global pointer value to make value a DLT
3455 relative address. */
3456 value -= _bfd_get_gp_value (output_bfd);
3457
3458 /* All DLTREL relocations are basically the same at this point,
3459 except that we need different field selectors for the 21bit
3460 version vs the 14bit versions. */
3461 if (r_type == R_PARISC_DLTREL21L
3462 || r_type == R_PARISC_DPREL21L)
3463 value = hppa_field_adjust (value, addend, e_lrsel);
3464 else if (r_type == R_PARISC_DLTREL14F
3465 || r_type == R_PARISC_DPREL14F
3466 || r_type == R_PARISC_GPREL16F
3467 || r_type == R_PARISC_GPREL16WF
3468 || r_type == R_PARISC_GPREL16DF)
3469 value = hppa_field_adjust (value, addend, e_fsel);
3470 else
3471 value = hppa_field_adjust (value, addend, e_rrsel);
3472
3473 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3474 break;
3475 }
3476
3477 case R_PARISC_DIR21L:
3478 case R_PARISC_DIR17R:
3479 case R_PARISC_DIR17F:
3480 case R_PARISC_DIR14R:
3481 case R_PARISC_DIR14F:
3482 case R_PARISC_DIR14WR:
3483 case R_PARISC_DIR14DR:
3484 case R_PARISC_DIR16F:
3485 case R_PARISC_DIR16WF:
3486 case R_PARISC_DIR16DF:
3487 {
3488 /* All DIR relocations are basically the same at this point,
3489 except that branch offsets need to be divided by four, and
3490 we need different field selectors. Note that we don't
3491 redirect absolute calls to local stubs. */
3492
3493 if (r_type == R_PARISC_DIR21L)
3494 value = hppa_field_adjust (value, addend, e_lrsel);
3495 else if (r_type == R_PARISC_DIR17F
3496 || r_type == R_PARISC_DIR16F
3497 || r_type == R_PARISC_DIR16WF
3498 || r_type == R_PARISC_DIR16DF
3499 || r_type == R_PARISC_DIR14F)
3500 value = hppa_field_adjust (value, addend, e_fsel);
3501 else
3502 value = hppa_field_adjust (value, addend, e_rrsel);
3503
3504 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3505 /* All branches are implicitly shifted by 2 places. */
3506 value >>= 2;
3507
3508 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3509 break;
3510 }
3511
3512 case R_PARISC_PLTOFF21L:
3513 case R_PARISC_PLTOFF14R:
3514 case R_PARISC_PLTOFF14F:
3515 case R_PARISC_PLTOFF14WR:
3516 case R_PARISC_PLTOFF14DR:
3517 case R_PARISC_PLTOFF16F:
3518 case R_PARISC_PLTOFF16WF:
3519 case R_PARISC_PLTOFF16DF:
3520 {
3521 /* We want the value of the PLT offset for this symbol, not
3522 the symbol's actual address. Note that __gp may not point
3523 to the start of the DLT, so we have to compute the absolute
3524 address, then subtract out the value of __gp. */
3525 value = (hh->plt_offset
3526 + hppa_info->plt_sec->output_offset
3527 + hppa_info->plt_sec->output_section->vma);
3528 value -= _bfd_get_gp_value (output_bfd);
3529
3530 /* All PLTOFF relocations are basically the same at this point,
3531 except that we need different field selectors for the 21bit
3532 version vs the 14bit versions. */
3533 if (r_type == R_PARISC_PLTOFF21L)
3534 value = hppa_field_adjust (value, addend, e_lrsel);
3535 else if (r_type == R_PARISC_PLTOFF14F
3536 || r_type == R_PARISC_PLTOFF16F
3537 || r_type == R_PARISC_PLTOFF16WF
3538 || r_type == R_PARISC_PLTOFF16DF)
3539 value = hppa_field_adjust (value, addend, e_fsel);
3540 else
3541 value = hppa_field_adjust (value, addend, e_rrsel);
3542
3543 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3544 break;
3545 }
3546
3547 case R_PARISC_LTOFF_FPTR32:
3548 {
3549 /* We may still need to create the FPTR itself if it was for
3550 a local symbol. */
3551 if (hh == NULL)
3552 {
3553 /* The first two words of an .opd entry are zero. */
3554 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3555
3556 /* The next word is the address of the function. */
3557 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3558 (hppa_info->opd_sec->contents
3559 + hh->opd_offset + 16));
3560
3561 /* The last word is our local __gp value. */
3562 value = _bfd_get_gp_value
3563 (hppa_info->opd_sec->output_section->owner);
3564 bfd_put_64 (hppa_info->opd_sec->owner, value,
3565 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3566
3567 /* The DLT value is the address of the .opd entry. */
3568 value = (hh->opd_offset
3569 + hppa_info->opd_sec->output_offset
3570 + hppa_info->opd_sec->output_section->vma);
3571
3572 bfd_put_64 (hppa_info->dlt_sec->owner,
3573 value,
3574 hppa_info->dlt_sec->contents + hh->dlt_offset);
3575 }
3576
3577 /* We want the value of the DLT offset for this symbol, not
3578 the symbol's actual address. Note that __gp may not point
3579 to the start of the DLT, so we have to compute the absolute
3580 address, then subtract out the value of __gp. */
3581 value = (hh->dlt_offset
3582 + hppa_info->dlt_sec->output_offset
3583 + hppa_info->dlt_sec->output_section->vma);
3584 value -= _bfd_get_gp_value (output_bfd);
3585 bfd_put_32 (input_bfd, value, hit_data);
3586 return bfd_reloc_ok;
3587 }
3588
3589 case R_PARISC_LTOFF_FPTR64:
3590 case R_PARISC_LTOFF_TP64:
3591 {
3592 /* We may still need to create the FPTR itself if it was for
3593 a local symbol. */
3594 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3595 {
3596 /* The first two words of an .opd entry are zero. */
3597 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3598
3599 /* The next word is the address of the function. */
3600 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3601 (hppa_info->opd_sec->contents
3602 + hh->opd_offset + 16));
3603
3604 /* The last word is our local __gp value. */
3605 value = _bfd_get_gp_value
3606 (hppa_info->opd_sec->output_section->owner);
3607 bfd_put_64 (hppa_info->opd_sec->owner, value,
3608 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3609
3610 /* The DLT value is the address of the .opd entry. */
3611 value = (hh->opd_offset
3612 + hppa_info->opd_sec->output_offset
3613 + hppa_info->opd_sec->output_section->vma);
3614
3615 bfd_put_64 (hppa_info->dlt_sec->owner,
3616 value,
3617 hppa_info->dlt_sec->contents + hh->dlt_offset);
3618 }
3619
3620 /* We want the value of the DLT offset for this symbol, not
3621 the symbol's actual address. Note that __gp may not point
3622 to the start of the DLT, so we have to compute the absolute
3623 address, then subtract out the value of __gp. */
3624 value = (hh->dlt_offset
3625 + hppa_info->dlt_sec->output_offset
3626 + hppa_info->dlt_sec->output_section->vma);
3627 value -= _bfd_get_gp_value (output_bfd);
3628 bfd_put_64 (input_bfd, value, hit_data);
3629 return bfd_reloc_ok;
3630 }
3631
3632 case R_PARISC_DIR32:
3633 bfd_put_32 (input_bfd, value + addend, hit_data);
3634 return bfd_reloc_ok;
3635
3636 case R_PARISC_DIR64:
3637 bfd_put_64 (input_bfd, value + addend, hit_data);
3638 return bfd_reloc_ok;
3639
3640 case R_PARISC_GPREL64:
3641 /* Subtract out the global pointer value to make value a DLT
3642 relative address. */
3643 value -= _bfd_get_gp_value (output_bfd);
3644
3645 bfd_put_64 (input_bfd, value + addend, hit_data);
3646 return bfd_reloc_ok;
3647
3648 case R_PARISC_LTOFF64:
3649 /* We want the value of the DLT offset for this symbol, not
3650 the symbol's actual address. Note that __gp may not point
3651 to the start of the DLT, so we have to compute the absolute
3652 address, then subtract out the value of __gp. */
3653 value = (hh->dlt_offset
3654 + hppa_info->dlt_sec->output_offset
3655 + hppa_info->dlt_sec->output_section->vma);
3656 value -= _bfd_get_gp_value (output_bfd);
3657
3658 bfd_put_64 (input_bfd, value + addend, hit_data);
3659 return bfd_reloc_ok;
3660
3661 case R_PARISC_PCREL32:
3662 {
3663 /* If this is a call to a function defined in another dynamic
3664 library, then redirect the call to the local stub for this
3665 function. */
3666 if (sym_sec == NULL || sym_sec->output_section == NULL)
3667 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3668 + hppa_info->stub_sec->output_section->vma);
3669
3670 /* Turn VALUE into a proper PC relative address. */
3671 value -= (offset + input_section->output_offset
3672 + input_section->output_section->vma);
3673
3674 value += addend;
3675 value -= 8;
3676 bfd_put_32 (input_bfd, value, hit_data);
3677 return bfd_reloc_ok;
3678 }
3679
3680 case R_PARISC_PCREL64:
3681 {
3682 /* If this is a call to a function defined in another dynamic
3683 library, then redirect the call to the local stub for this
3684 function. */
3685 if (sym_sec == NULL || sym_sec->output_section == NULL)
3686 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3687 + hppa_info->stub_sec->output_section->vma);
3688
3689 /* Turn VALUE into a proper PC relative address. */
3690 value -= (offset + input_section->output_offset
3691 + input_section->output_section->vma);
3692
3693 value += addend;
3694 value -= 8;
3695 bfd_put_64 (input_bfd, value, hit_data);
3696 return bfd_reloc_ok;
3697 }
3698
3699 case R_PARISC_FPTR64:
3700 {
3701 bfd_vma off;
3702
3703 /* We may still need to create the FPTR itself if it was for
3704 a local symbol. */
3705 if (hh == NULL)
3706 {
3707 bfd_vma *local_opd_offsets;
3708
3709 if (local_offsets == NULL)
3710 abort ();
3711
3712 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3713 off = local_opd_offsets[r_symndx];
3714
3715 /* The last bit records whether we've already initialised
3716 this local .opd entry. */
3717 if ((off & 1) != 0)
3718 {
3719 BFD_ASSERT (off != (bfd_vma) -1);
3720 off &= ~1;
3721 }
3722 else
3723 {
3724 /* The first two words of an .opd entry are zero. */
3725 memset (hppa_info->opd_sec->contents + off, 0, 16);
3726
3727 /* The next word is the address of the function. */
3728 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3729 (hppa_info->opd_sec->contents + off + 16));
3730
3731 /* The last word is our local __gp value. */
3732 value = _bfd_get_gp_value
3733 (hppa_info->opd_sec->output_section->owner);
3734 bfd_put_64 (hppa_info->opd_sec->owner, value,
3735 hppa_info->opd_sec->contents + off + 24);
3736 }
3737 }
3738 else
3739 off = hh->opd_offset;
3740
3741 if (hh == NULL || hh->want_opd)
3742 /* We want the value of the OPD offset for this symbol. */
3743 value = (off
3744 + hppa_info->opd_sec->output_offset
3745 + hppa_info->opd_sec->output_section->vma);
3746 else
3747 /* We want the address of the symbol. */
3748 value += addend;
3749
3750 bfd_put_64 (input_bfd, value, hit_data);
3751 return bfd_reloc_ok;
3752 }
3753
3754 case R_PARISC_SECREL32:
3755 if (sym_sec)
3756 value -= sym_sec->output_section->vma;
3757 bfd_put_32 (input_bfd, value + addend, hit_data);
3758 return bfd_reloc_ok;
3759
3760 case R_PARISC_SEGREL32:
3761 case R_PARISC_SEGREL64:
3762 {
3763 /* If this is the first SEGREL relocation, then initialize
3764 the segment base values. */
3765 if (hppa_info->text_segment_base == (bfd_vma) -1)
3766 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3767 hppa_info);
3768
3769 /* VALUE holds the absolute address. We want to include the
3770 addend, then turn it into a segment relative address.
3771
3772 The segment is derived from SYM_SEC. We assume that there are
3773 only two segments of note in the resulting executable/shlib.
3774 A readonly segment (.text) and a readwrite segment (.data). */
3775 value += addend;
3776
3777 if (sym_sec->flags & SEC_CODE)
3778 value -= hppa_info->text_segment_base;
3779 else
3780 value -= hppa_info->data_segment_base;
3781
3782 if (r_type == R_PARISC_SEGREL32)
3783 bfd_put_32 (input_bfd, value, hit_data);
3784 else
3785 bfd_put_64 (input_bfd, value, hit_data);
3786 return bfd_reloc_ok;
3787 }
3788
3789 /* Something we don't know how to handle. */
3790 default:
3791 return bfd_reloc_notsupported;
3792 }
3793
3794 /* Update the instruction word. */
3795 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3796 return bfd_reloc_ok;
3797 }
3798
3799 /* Relocate an HPPA ELF section. */
3800
3801 static bfd_boolean
3802 elf64_hppa_relocate_section (bfd *output_bfd,
3803 struct bfd_link_info *info,
3804 bfd *input_bfd,
3805 asection *input_section,
3806 bfd_byte *contents,
3807 Elf_Internal_Rela *relocs,
3808 Elf_Internal_Sym *local_syms,
3809 asection **local_sections)
3810 {
3811 Elf_Internal_Shdr *symtab_hdr;
3812 Elf_Internal_Rela *rel;
3813 Elf_Internal_Rela *relend;
3814 struct elf64_hppa_link_hash_table *hppa_info;
3815
3816 hppa_info = hppa_link_hash_table (info);
3817 if (hppa_info == NULL)
3818 return FALSE;
3819
3820 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3821
3822 rel = relocs;
3823 relend = relocs + input_section->reloc_count;
3824 for (; rel < relend; rel++)
3825 {
3826 int r_type;
3827 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3828 unsigned long r_symndx;
3829 struct elf_link_hash_entry *eh;
3830 Elf_Internal_Sym *sym;
3831 asection *sym_sec;
3832 bfd_vma relocation;
3833 bfd_reloc_status_type r;
3834
3835 r_type = ELF_R_TYPE (rel->r_info);
3836 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3837 {
3838 bfd_set_error (bfd_error_bad_value);
3839 return FALSE;
3840 }
3841 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3842 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3843 continue;
3844
3845 /* This is a final link. */
3846 r_symndx = ELF_R_SYM (rel->r_info);
3847 eh = NULL;
3848 sym = NULL;
3849 sym_sec = NULL;
3850 if (r_symndx < symtab_hdr->sh_info)
3851 {
3852 /* This is a local symbol, hh defaults to NULL. */
3853 sym = local_syms + r_symndx;
3854 sym_sec = local_sections[r_symndx];
3855 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3856 }
3857 else
3858 {
3859 /* This is not a local symbol. */
3860 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3861
3862 /* It seems this can happen with erroneous or unsupported
3863 input (mixing a.out and elf in an archive, for example.) */
3864 if (sym_hashes == NULL)
3865 return FALSE;
3866
3867 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3868
3869 while (eh->root.type == bfd_link_hash_indirect
3870 || eh->root.type == bfd_link_hash_warning)
3871 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3872
3873 relocation = 0;
3874 if (eh->root.type == bfd_link_hash_defined
3875 || eh->root.type == bfd_link_hash_defweak)
3876 {
3877 sym_sec = eh->root.u.def.section;
3878 if (sym_sec != NULL
3879 && sym_sec->output_section != NULL)
3880 relocation = (eh->root.u.def.value
3881 + sym_sec->output_section->vma
3882 + sym_sec->output_offset);
3883 }
3884 else if (eh->root.type == bfd_link_hash_undefweak)
3885 ;
3886 else if (info->unresolved_syms_in_objects == RM_IGNORE
3887 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3888 ;
3889 else if (!info->relocatable
3890 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3891 continue;
3892 else if (!info->relocatable)
3893 {
3894 bfd_boolean err;
3895 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3896 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3897 if (!info->callbacks->undefined_symbol (info,
3898 eh->root.root.string,
3899 input_bfd,
3900 input_section,
3901 rel->r_offset, err))
3902 return FALSE;
3903 }
3904
3905 if (!info->relocatable
3906 && relocation == 0
3907 && eh->root.type != bfd_link_hash_defined
3908 && eh->root.type != bfd_link_hash_defweak
3909 && eh->root.type != bfd_link_hash_undefweak)
3910 {
3911 if (info->unresolved_syms_in_objects == RM_IGNORE
3912 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3913 && eh->type == STT_PARISC_MILLI)
3914 {
3915 if (! info->callbacks->undefined_symbol
3916 (info, eh_name (eh), input_bfd,
3917 input_section, rel->r_offset, FALSE))
3918 return FALSE;
3919 }
3920 }
3921 }
3922
3923 if (sym_sec != NULL && discarded_section (sym_sec))
3924 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3925 rel, 1, relend, howto, 0, contents);
3926
3927 if (info->relocatable)
3928 continue;
3929
3930 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3931 input_section, contents,
3932 relocation, info, sym_sec,
3933 eh);
3934
3935 if (r != bfd_reloc_ok)
3936 {
3937 switch (r)
3938 {
3939 default:
3940 abort ();
3941 case bfd_reloc_overflow:
3942 {
3943 const char *sym_name;
3944
3945 if (eh != NULL)
3946 sym_name = NULL;
3947 else
3948 {
3949 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3950 symtab_hdr->sh_link,
3951 sym->st_name);
3952 if (sym_name == NULL)
3953 return FALSE;
3954 if (*sym_name == '\0')
3955 sym_name = bfd_section_name (input_bfd, sym_sec);
3956 }
3957
3958 if (!((*info->callbacks->reloc_overflow)
3959 (info, (eh ? &eh->root : NULL), sym_name,
3960 howto->name, (bfd_vma) 0, input_bfd,
3961 input_section, rel->r_offset)))
3962 return FALSE;
3963 }
3964 break;
3965 }
3966 }
3967 }
3968 return TRUE;
3969 }
3970
3971 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3972 {
3973 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3974 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3975 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3976 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3977 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3978 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3979 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3980 { NULL, 0, 0, 0, 0 }
3981 };
3982
3983 /* The hash bucket size is the standard one, namely 4. */
3984
3985 const struct elf_size_info hppa64_elf_size_info =
3986 {
3987 sizeof (Elf64_External_Ehdr),
3988 sizeof (Elf64_External_Phdr),
3989 sizeof (Elf64_External_Shdr),
3990 sizeof (Elf64_External_Rel),
3991 sizeof (Elf64_External_Rela),
3992 sizeof (Elf64_External_Sym),
3993 sizeof (Elf64_External_Dyn),
3994 sizeof (Elf_External_Note),
3995 4,
3996 1,
3997 64, 3,
3998 ELFCLASS64, EV_CURRENT,
3999 bfd_elf64_write_out_phdrs,
4000 bfd_elf64_write_shdrs_and_ehdr,
4001 bfd_elf64_checksum_contents,
4002 bfd_elf64_write_relocs,
4003 bfd_elf64_swap_symbol_in,
4004 bfd_elf64_swap_symbol_out,
4005 bfd_elf64_slurp_reloc_table,
4006 bfd_elf64_slurp_symbol_table,
4007 bfd_elf64_swap_dyn_in,
4008 bfd_elf64_swap_dyn_out,
4009 bfd_elf64_swap_reloc_in,
4010 bfd_elf64_swap_reloc_out,
4011 bfd_elf64_swap_reloca_in,
4012 bfd_elf64_swap_reloca_out
4013 };
4014
4015 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
4016 #define TARGET_BIG_NAME "elf64-hppa"
4017 #define ELF_ARCH bfd_arch_hppa
4018 #define ELF_TARGET_ID HPPA64_ELF_DATA
4019 #define ELF_MACHINE_CODE EM_PARISC
4020 /* This is not strictly correct. The maximum page size for PA2.0 is
4021 64M. But everything still uses 4k. */
4022 #define ELF_MAXPAGESIZE 0x1000
4023 #define ELF_OSABI ELFOSABI_HPUX
4024
4025 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4026 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4027 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4028 #define elf_info_to_howto elf_hppa_info_to_howto
4029 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4030
4031 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4032 #define elf_backend_object_p elf64_hppa_object_p
4033 #define elf_backend_final_write_processing \
4034 elf_hppa_final_write_processing
4035 #define elf_backend_fake_sections elf_hppa_fake_sections
4036 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4037
4038 #define elf_backend_relocate_section elf_hppa_relocate_section
4039
4040 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4041
4042 #define elf_backend_create_dynamic_sections \
4043 elf64_hppa_create_dynamic_sections
4044 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4045
4046 #define elf_backend_omit_section_dynsym \
4047 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4048 #define elf_backend_adjust_dynamic_symbol \
4049 elf64_hppa_adjust_dynamic_symbol
4050
4051 #define elf_backend_size_dynamic_sections \
4052 elf64_hppa_size_dynamic_sections
4053
4054 #define elf_backend_finish_dynamic_symbol \
4055 elf64_hppa_finish_dynamic_symbol
4056 #define elf_backend_finish_dynamic_sections \
4057 elf64_hppa_finish_dynamic_sections
4058 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4059 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4060
4061 /* Stuff for the BFD linker: */
4062 #define bfd_elf64_bfd_link_hash_table_create \
4063 elf64_hppa_hash_table_create
4064
4065 #define elf_backend_check_relocs \
4066 elf64_hppa_check_relocs
4067
4068 #define elf_backend_size_info \
4069 hppa64_elf_size_info
4070
4071 #define elf_backend_additional_program_headers \
4072 elf64_hppa_additional_program_headers
4073
4074 #define elf_backend_modify_segment_map \
4075 elf64_hppa_modify_segment_map
4076
4077 #define elf_backend_link_output_symbol_hook \
4078 elf64_hppa_link_output_symbol_hook
4079
4080 #define elf_backend_want_got_plt 0
4081 #define elf_backend_plt_readonly 0
4082 #define elf_backend_want_plt_sym 0
4083 #define elf_backend_got_header_size 0
4084 #define elf_backend_type_change_ok TRUE
4085 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4086 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4087 #define elf_backend_rela_normal 1
4088 #define elf_backend_special_sections elf64_hppa_special_sections
4089 #define elf_backend_action_discarded elf_hppa_action_discarded
4090 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4091
4092 #define elf64_bed elf64_hppa_hpux_bed
4093
4094 #include "elf64-target.h"
4095
4096 #undef TARGET_BIG_SYM
4097 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
4098 #undef TARGET_BIG_NAME
4099 #define TARGET_BIG_NAME "elf64-hppa-linux"
4100 #undef ELF_OSABI
4101 #define ELF_OSABI ELFOSABI_GNU
4102 #undef elf_backend_post_process_headers
4103 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4104 #undef elf64_bed
4105 #define elf64_bed elf64_hppa_linux_bed
4106
4107 #include "elf64-target.h"
This page took 0.163247 seconds and 4 git commands to generate.