daily update
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
29
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
33
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49 struct elf64_hppa_dyn_hash_entry
50 {
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108 };
109
110 struct elf64_hppa_dyn_hash_table
111 {
112 struct bfd_hash_table root;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151 };
152
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
178
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
182
183 static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198 static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
201 static boolean elf64_hppa_link_output_symbol_hook
202 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
203 Elf_Internal_Sym *, asection *input_sec));
204
205 static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd *, struct bfd_link_info *,
207 struct elf_link_hash_entry *, Elf_Internal_Sym *));
208
209 static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
210
211 static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
212
213 static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216 static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220 static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223 static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226 static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229 static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247 static boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251 static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254 static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260 static boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
272 static boolean
273 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
274 struct elf64_hppa_dyn_hash_table *ht;
275 bfd *abfd ATTRIBUTE_UNUSED;
276 new_hash_entry_func new;
277 {
278 memset (ht, 0, sizeof (*ht));
279 return bfd_hash_table_init (&ht->root, new);
280 }
281
282 static struct bfd_hash_entry*
283 elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287 {
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
301 memset (ret, 0, sizeof (*ret));
302
303 /* Call the allocation method of the superclass. */
304 ret = ((struct elf64_hppa_dyn_hash_entry *)
305 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
306
307 return &ret->root;
308 }
309
310 /* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
313
314 static struct bfd_link_hash_table*
315 elf64_hppa_hash_table_create (abfd)
316 bfd *abfd;
317 {
318 struct elf64_hppa_link_hash_table *ret;
319
320 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
321 if (!ret)
322 return 0;
323 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
324 _bfd_elf_link_hash_newfunc))
325 {
326 bfd_release (abfd, ret);
327 return 0;
328 }
329
330 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
331 elf64_hppa_new_dyn_hash_entry))
332 return 0;
333 return &ret->root.root;
334 }
335
336 /* Look up an entry in a PA64 ELF linker hash table. */
337
338 static struct elf64_hppa_dyn_hash_entry *
339 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 boolean create, copy;
343 {
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346 }
347
348 /* Traverse a PA64 ELF linker hash table. */
349
350 static void
351 elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355 {
356 (bfd_hash_traverse
357 (&table->root,
358 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360 }
361 \f
362 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365 static boolean
366 elf64_hppa_object_p (abfd)
367 bfd *abfd;
368 {
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
371
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
376 return false;
377 }
378 else
379 {
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
381 return false;
382 }
383
384 flags = i_ehdrp->e_flags;
385 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
386 {
387 case EFA_PARISC_1_0:
388 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
389 case EFA_PARISC_1_1:
390 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
391 case EFA_PARISC_2_0:
392 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
393 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
395 }
396 /* Don't be fussy. */
397 return true;
398 }
399
400 /* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
402 static boolean
403 elf64_hppa_section_from_shdr (abfd, hdr, name)
404 bfd *abfd;
405 Elf64_Internal_Shdr *hdr;
406 char *name;
407 {
408 asection *newsect;
409
410 switch (hdr->sh_type)
411 {
412 case SHT_PARISC_EXT:
413 if (strcmp (name, ".PARISC.archext") != 0)
414 return false;
415 break;
416 case SHT_PARISC_UNWIND:
417 if (strcmp (name, ".PARISC.unwind") != 0)
418 return false;
419 break;
420 case SHT_PARISC_DOC:
421 case SHT_PARISC_ANNOT:
422 default:
423 return false;
424 }
425
426 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
427 return false;
428 newsect = hdr->bfd_section;
429
430 return true;
431 }
432
433 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
434 name describes what was once potentially anonymous memory. We
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
436
437 static const char *
438 get_dyn_name (sec, h, rel, pbuf, plen)
439 asection *sec;
440 struct elf_link_hash_entry *h;
441 const Elf_Internal_Rela *rel;
442 char **pbuf;
443 size_t *plen;
444 {
445 size_t nlen, tlen;
446 char *buf;
447 size_t len;
448
449 if (h && rel->r_addend == 0)
450 return h->root.root.string;
451
452 if (h)
453 nlen = strlen (h->root.root.string);
454 else
455 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
456 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
457
458 len = *plen;
459 buf = *pbuf;
460 if (len < tlen)
461 {
462 if (buf)
463 free (buf);
464 *pbuf = buf = malloc (tlen);
465 *plen = len = tlen;
466 if (!buf)
467 return NULL;
468 }
469
470 if (h)
471 {
472 memcpy (buf, h->root.root.string, nlen);
473 buf[nlen++] = '+';
474 sprintf_vma (buf + nlen, rel->r_addend);
475 }
476 else
477 {
478 nlen = sprintf (buf, "%x:%lx",
479 sec->id & 0xffffffff,
480 (long) ELF64_R_SYM (rel->r_info));
481 if (rel->r_addend)
482 {
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 }
487
488 return buf;
489 }
490
491 /* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
493
494 static boolean
495 get_reloc_section (abfd, hppa_info, sec)
496 bfd *abfd;
497 struct elf64_hppa_link_hash_table *hppa_info;
498 asection *sec;
499 {
500 const char *srel_name;
501 asection *srel;
502 bfd *dynobj;
503
504 srel_name = (bfd_elf_string_from_elf_section
505 (abfd, elf_elfheader(abfd)->e_shstrndx,
506 elf_section_data(sec)->rel_hdr.sh_name));
507 if (srel_name == NULL)
508 return false;
509
510 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd, sec),
512 srel_name+5) == 0)
513 || (strncmp (srel_name, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+4) == 0));
516
517 dynobj = hppa_info->root.dynobj;
518 if (!dynobj)
519 hppa_info->root.dynobj = dynobj = abfd;
520
521 srel = bfd_get_section_by_name (dynobj, srel_name);
522 if (srel == NULL)
523 {
524 srel = bfd_make_section (dynobj, srel_name);
525 if (srel == NULL
526 || !bfd_set_section_flags (dynobj, srel,
527 (SEC_ALLOC
528 | SEC_LOAD
529 | SEC_HAS_CONTENTS
530 | SEC_IN_MEMORY
531 | SEC_LINKER_CREATED
532 | SEC_READONLY))
533 || !bfd_set_section_alignment (dynobj, srel, 3))
534 return false;
535 }
536
537 hppa_info->other_rel_sec = srel;
538 return true;
539 }
540
541 /* Add a new entry to the list of dynamic relocations against DYN_H.
542
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
545 output file. */
546
547 static boolean
548 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
549 bfd *abfd;
550 struct elf64_hppa_dyn_hash_entry *dyn_h;
551 int type;
552 asection *sec;
553 int sec_symndx;
554 bfd_vma offset;
555 bfd_vma addend;
556 {
557 struct elf64_hppa_dyn_reloc_entry *rent;
558
559 rent = (struct elf64_hppa_dyn_reloc_entry *)
560 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
561 if (!rent)
562 return false;
563
564 rent->next = dyn_h->reloc_entries;
565 rent->type = type;
566 rent->sec = sec;
567 rent->sec_symndx = sec_symndx;
568 rent->offset = offset;
569 rent->addend = addend;
570 dyn_h->reloc_entries = rent;
571
572 return true;
573 }
574
575 /* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
577
578 static boolean
579 elf64_hppa_check_relocs (abfd, info, sec, relocs)
580 bfd *abfd;
581 struct bfd_link_info *info;
582 asection *sec;
583 const Elf_Internal_Rela *relocs;
584 {
585 struct elf64_hppa_link_hash_table *hppa_info;
586 const Elf_Internal_Rela *relend;
587 Elf_Internal_Shdr *symtab_hdr;
588 Elf_Internal_Shdr *shndx_hdr;
589 const Elf_Internal_Rela *rel;
590 asection *dlt, *plt, *stubs;
591 char *buf;
592 size_t buf_len;
593 int sec_symndx;
594
595 if (info->relocateable)
596 return true;
597
598 /* If this is the first dynamic object found in the link, create
599 the special sections required for dynamic linking. */
600 if (! elf_hash_table (info)->dynamic_sections_created)
601 {
602 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
603 return false;
604 }
605
606 hppa_info = elf64_hppa_hash_table (info);
607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
608
609 /* If necessary, build a new table holding section symbols indices
610 for this BFD. This is disgusting. */
611
612 if (info->shared && hppa_info->section_syms_bfd != abfd)
613 {
614 unsigned long i;
615 unsigned int highest_shndx;
616 Elf_Internal_Sym *local_syms, *isym;
617 Elf64_External_Sym *ext_syms, *esym;
618 Elf_External_Sym_Shndx *shndx_buf, *shndx;
619 bfd_size_type amt;
620
621 /* We're done with the old cache of section index to section symbol
622 index information. Free it.
623
624 ?!? Note we leak the last section_syms array. Presumably we
625 could free it in one of the later routines in this file. */
626 if (hppa_info->section_syms)
627 free (hppa_info->section_syms);
628
629 /* Allocate memory for the internal and external symbols. */
630 amt = symtab_hdr->sh_info;
631 amt *= sizeof (Elf_Internal_Sym);
632 local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
633 if (local_syms == NULL)
634 return false;
635
636 amt = symtab_hdr->sh_info;
637 amt *= sizeof (Elf64_External_Sym);
638 ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
639 if (ext_syms == NULL)
640 {
641 free (local_syms);
642 return false;
643 }
644
645 /* Read in the local symbols. */
646 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
647 || bfd_bread (ext_syms, amt, abfd) != amt)
648 {
649 free (ext_syms);
650 free (local_syms);
651 return false;
652 }
653
654 shndx_buf = NULL;
655 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
656 if (shndx_hdr->sh_size != 0)
657 {
658 amt = symtab_hdr->sh_info;
659 amt *= sizeof (Elf_External_Sym_Shndx);
660 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
661 if (shndx_buf == NULL)
662 {
663 free (ext_syms);
664 free (local_syms);
665 return false;
666 }
667
668 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
669 || bfd_bread (shndx_buf, amt, abfd) != amt)
670 {
671 free (shndx_buf);
672 free (ext_syms);
673 free (local_syms);
674 return false;
675 }
676 }
677
678 /* Swap in the local symbols, also record the highest section index
679 referenced by the local symbols. */
680 highest_shndx = 0;
681 for (i = 0, isym = local_syms, esym = ext_syms, shndx = shndx_buf;
682 i < symtab_hdr->sh_info;
683 i++, esym++, isym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
684 {
685 bfd_elf64_swap_symbol_in (abfd, esym, shndx, isym);
686 if (isym->st_shndx > highest_shndx)
687 highest_shndx = isym->st_shndx;
688 }
689
690 /* Now we can free the external symbols. */
691 free (shndx_buf);
692 free (ext_syms);
693
694 /* Allocate an array to hold the section index to section symbol index
695 mapping. Bump by one since we start counting at zero. */
696 highest_shndx++;
697 amt = highest_shndx;
698 amt *= sizeof (int);
699 hppa_info->section_syms = (int *) bfd_malloc (amt);
700
701 /* Now walk the local symbols again. If we find a section symbol,
702 record the index of the symbol into the section_syms array. */
703 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
704 {
705 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
706 hppa_info->section_syms[isym->st_shndx] = i;
707 }
708
709 /* We are finished with the local symbols. Get rid of them. */
710 free (local_syms);
711
712 /* Record which BFD we built the section_syms mapping for. */
713 hppa_info->section_syms_bfd = abfd;
714 }
715
716 /* Record the symbol index for this input section. We may need it for
717 relocations when building shared libraries. When not building shared
718 libraries this value is never really used, but assign it to zero to
719 prevent out of bounds memory accesses in other routines. */
720 if (info->shared)
721 {
722 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
723
724 /* If we did not find a section symbol for this section, then
725 something went terribly wrong above. */
726 if (sec_symndx == -1)
727 return false;
728
729 sec_symndx = hppa_info->section_syms[sec_symndx];
730 }
731 else
732 sec_symndx = 0;
733
734 dlt = plt = stubs = NULL;
735 buf = NULL;
736 buf_len = 0;
737
738 relend = relocs + sec->reloc_count;
739 for (rel = relocs; rel < relend; ++rel)
740 {
741 enum {
742 NEED_DLT = 1,
743 NEED_PLT = 2,
744 NEED_STUB = 4,
745 NEED_OPD = 8,
746 NEED_DYNREL = 16,
747 };
748
749 struct elf_link_hash_entry *h = NULL;
750 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
751 struct elf64_hppa_dyn_hash_entry *dyn_h;
752 int need_entry;
753 const char *addr_name;
754 boolean maybe_dynamic;
755 int dynrel_type = R_PARISC_NONE;
756 static reloc_howto_type *howto;
757
758 if (r_symndx >= symtab_hdr->sh_info)
759 {
760 /* We're dealing with a global symbol -- find its hash entry
761 and mark it as being referenced. */
762 long indx = r_symndx - symtab_hdr->sh_info;
763 h = elf_sym_hashes (abfd)[indx];
764 while (h->root.type == bfd_link_hash_indirect
765 || h->root.type == bfd_link_hash_warning)
766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
767
768 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
769 }
770
771 /* We can only get preliminary data on whether a symbol is
772 locally or externally defined, as not all of the input files
773 have yet been processed. Do something with what we know, as
774 this may help reduce memory usage and processing time later. */
775 maybe_dynamic = false;
776 if (h && ((info->shared
777 && (!info->symbolic || info->allow_shlib_undefined) )
778 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
779 || h->root.type == bfd_link_hash_defweak))
780 maybe_dynamic = true;
781
782 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
783 need_entry = 0;
784 switch (howto->type)
785 {
786 /* These are simple indirect references to symbols through the
787 DLT. We need to create a DLT entry for any symbols which
788 appears in a DLTIND relocation. */
789 case R_PARISC_DLTIND21L:
790 case R_PARISC_DLTIND14R:
791 case R_PARISC_DLTIND14F:
792 case R_PARISC_DLTIND14WR:
793 case R_PARISC_DLTIND14DR:
794 need_entry = NEED_DLT;
795 break;
796
797 /* ?!? These need a DLT entry. But I have no idea what to do with
798 the "link time TP value. */
799 case R_PARISC_LTOFF_TP21L:
800 case R_PARISC_LTOFF_TP14R:
801 case R_PARISC_LTOFF_TP14F:
802 case R_PARISC_LTOFF_TP64:
803 case R_PARISC_LTOFF_TP14WR:
804 case R_PARISC_LTOFF_TP14DR:
805 case R_PARISC_LTOFF_TP16F:
806 case R_PARISC_LTOFF_TP16WF:
807 case R_PARISC_LTOFF_TP16DF:
808 need_entry = NEED_DLT;
809 break;
810
811 /* These are function calls. Depending on their precise target we
812 may need to make a stub for them. The stub uses the PLT, so we
813 need to create PLT entries for these symbols too. */
814 case R_PARISC_PCREL12F:
815 case R_PARISC_PCREL17F:
816 case R_PARISC_PCREL22F:
817 case R_PARISC_PCREL32:
818 case R_PARISC_PCREL64:
819 case R_PARISC_PCREL21L:
820 case R_PARISC_PCREL17R:
821 case R_PARISC_PCREL17C:
822 case R_PARISC_PCREL14R:
823 case R_PARISC_PCREL14F:
824 case R_PARISC_PCREL22C:
825 case R_PARISC_PCREL14WR:
826 case R_PARISC_PCREL14DR:
827 case R_PARISC_PCREL16F:
828 case R_PARISC_PCREL16WF:
829 case R_PARISC_PCREL16DF:
830 need_entry = (NEED_PLT | NEED_STUB);
831 break;
832
833 case R_PARISC_PLTOFF21L:
834 case R_PARISC_PLTOFF14R:
835 case R_PARISC_PLTOFF14F:
836 case R_PARISC_PLTOFF14WR:
837 case R_PARISC_PLTOFF14DR:
838 case R_PARISC_PLTOFF16F:
839 case R_PARISC_PLTOFF16WF:
840 case R_PARISC_PLTOFF16DF:
841 need_entry = (NEED_PLT);
842 break;
843
844 case R_PARISC_DIR64:
845 if (info->shared || maybe_dynamic)
846 need_entry = (NEED_DYNREL);
847 dynrel_type = R_PARISC_DIR64;
848 break;
849
850 /* This is an indirect reference through the DLT to get the address
851 of a OPD descriptor. Thus we need to make a DLT entry that points
852 to an OPD entry. */
853 case R_PARISC_LTOFF_FPTR21L:
854 case R_PARISC_LTOFF_FPTR14R:
855 case R_PARISC_LTOFF_FPTR14WR:
856 case R_PARISC_LTOFF_FPTR14DR:
857 case R_PARISC_LTOFF_FPTR32:
858 case R_PARISC_LTOFF_FPTR64:
859 case R_PARISC_LTOFF_FPTR16F:
860 case R_PARISC_LTOFF_FPTR16WF:
861 case R_PARISC_LTOFF_FPTR16DF:
862 if (info->shared || maybe_dynamic)
863 need_entry = (NEED_DLT | NEED_OPD);
864 else
865 need_entry = (NEED_DLT | NEED_OPD);
866 dynrel_type = R_PARISC_FPTR64;
867 break;
868
869 /* This is a simple OPD entry. */
870 case R_PARISC_FPTR64:
871 if (info->shared || maybe_dynamic)
872 need_entry = (NEED_OPD | NEED_DYNREL);
873 else
874 need_entry = (NEED_OPD);
875 dynrel_type = R_PARISC_FPTR64;
876 break;
877
878 /* Add more cases as needed. */
879 }
880
881 if (!need_entry)
882 continue;
883
884 /* Collect a canonical name for this address. */
885 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
886
887 /* Collect the canonical entry data for this address. */
888 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
889 addr_name, true, true);
890 BFD_ASSERT (dyn_h);
891
892 /* Stash away enough information to be able to find this symbol
893 regardless of whether or not it is local or global. */
894 dyn_h->h = h;
895 dyn_h->owner = abfd;
896 dyn_h->sym_indx = r_symndx;
897
898 /* ?!? We may need to do some error checking in here. */
899 /* Create what's needed. */
900 if (need_entry & NEED_DLT)
901 {
902 if (! hppa_info->dlt_sec
903 && ! get_dlt (abfd, info, hppa_info))
904 goto err_out;
905 dyn_h->want_dlt = 1;
906 }
907
908 if (need_entry & NEED_PLT)
909 {
910 if (! hppa_info->plt_sec
911 && ! get_plt (abfd, info, hppa_info))
912 goto err_out;
913 dyn_h->want_plt = 1;
914 }
915
916 if (need_entry & NEED_STUB)
917 {
918 if (! hppa_info->stub_sec
919 && ! get_stub (abfd, info, hppa_info))
920 goto err_out;
921 dyn_h->want_stub = 1;
922 }
923
924 if (need_entry & NEED_OPD)
925 {
926 if (! hppa_info->opd_sec
927 && ! get_opd (abfd, info, hppa_info))
928 goto err_out;
929
930 dyn_h->want_opd = 1;
931
932 /* FPTRs are not allocated by the dynamic linker for PA64, though
933 it is possible that will change in the future. */
934
935 /* This could be a local function that had its address taken, in
936 which case H will be NULL. */
937 if (h)
938 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
939 }
940
941 /* Add a new dynamic relocation to the chain of dynamic
942 relocations for this symbol. */
943 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
944 {
945 if (! hppa_info->other_rel_sec
946 && ! get_reloc_section (abfd, hppa_info, sec))
947 goto err_out;
948
949 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
950 sec_symndx, rel->r_offset, rel->r_addend))
951 goto err_out;
952
953 /* If we are building a shared library and we just recorded
954 a dynamic R_PARISC_FPTR64 relocation, then make sure the
955 section symbol for this section ends up in the dynamic
956 symbol table. */
957 if (info->shared && dynrel_type == R_PARISC_FPTR64
958 && ! (_bfd_elf64_link_record_local_dynamic_symbol
959 (info, abfd, sec_symndx)))
960 return false;
961 }
962 }
963
964 if (buf)
965 free (buf);
966 return true;
967
968 err_out:
969 if (buf)
970 free (buf);
971 return false;
972 }
973
974 struct elf64_hppa_allocate_data
975 {
976 struct bfd_link_info *info;
977 bfd_size_type ofs;
978 };
979
980 /* Should we do dynamic things to this symbol? */
981
982 static boolean
983 elf64_hppa_dynamic_symbol_p (h, info)
984 struct elf_link_hash_entry *h;
985 struct bfd_link_info *info;
986 {
987 if (h == NULL)
988 return false;
989
990 while (h->root.type == bfd_link_hash_indirect
991 || h->root.type == bfd_link_hash_warning)
992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
993
994 if (h->dynindx == -1)
995 return false;
996
997 if (h->root.type == bfd_link_hash_undefweak
998 || h->root.type == bfd_link_hash_defweak)
999 return true;
1000
1001 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1002 return false;
1003
1004 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
1005 || ((h->elf_link_hash_flags
1006 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
1007 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
1008 return true;
1009
1010 return false;
1011 }
1012
1013 /* Mark all funtions exported by this file so that we can later allocate
1014 entries in .opd for them. */
1015
1016 static boolean
1017 elf64_hppa_mark_exported_functions (h, data)
1018 struct elf_link_hash_entry *h;
1019 PTR data;
1020 {
1021 struct bfd_link_info *info = (struct bfd_link_info *)data;
1022 struct elf64_hppa_link_hash_table *hppa_info;
1023
1024 hppa_info = elf64_hppa_hash_table (info);
1025
1026 if (h
1027 && (h->root.type == bfd_link_hash_defined
1028 || h->root.type == bfd_link_hash_defweak)
1029 && h->root.u.def.section->output_section != NULL
1030 && h->type == STT_FUNC)
1031 {
1032 struct elf64_hppa_dyn_hash_entry *dyn_h;
1033
1034 /* Add this symbol to the PA64 linker hash table. */
1035 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1036 h->root.root.string, true, true);
1037 BFD_ASSERT (dyn_h);
1038 dyn_h->h = h;
1039
1040 if (! hppa_info->opd_sec
1041 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1042 return false;
1043
1044 dyn_h->want_opd = 1;
1045 /* Put a flag here for output_symbol_hook. */
1046 dyn_h->st_shndx = -1;
1047 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1048 }
1049
1050 return true;
1051 }
1052
1053 /* Allocate space for a DLT entry. */
1054
1055 static boolean
1056 allocate_global_data_dlt (dyn_h, data)
1057 struct elf64_hppa_dyn_hash_entry *dyn_h;
1058 PTR data;
1059 {
1060 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1061
1062 if (dyn_h->want_dlt)
1063 {
1064 struct elf_link_hash_entry *h = dyn_h->h;
1065
1066 if (x->info->shared)
1067 {
1068 /* Possibly add the symbol to the local dynamic symbol
1069 table since we might need to create a dynamic relocation
1070 against it. */
1071 if (! h
1072 || (h && h->dynindx == -1))
1073 {
1074 bfd *owner;
1075 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1076
1077 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1078 (x->info, owner, dyn_h->sym_indx)))
1079 return false;
1080 }
1081 }
1082
1083 dyn_h->dlt_offset = x->ofs;
1084 x->ofs += DLT_ENTRY_SIZE;
1085 }
1086 return true;
1087 }
1088
1089 /* Allocate space for a DLT.PLT entry. */
1090
1091 static boolean
1092 allocate_global_data_plt (dyn_h, data)
1093 struct elf64_hppa_dyn_hash_entry *dyn_h;
1094 PTR data;
1095 {
1096 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1097
1098 if (dyn_h->want_plt
1099 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1100 && !((dyn_h->h->root.type == bfd_link_hash_defined
1101 || dyn_h->h->root.type == bfd_link_hash_defweak)
1102 && dyn_h->h->root.u.def.section->output_section != NULL))
1103 {
1104 dyn_h->plt_offset = x->ofs;
1105 x->ofs += PLT_ENTRY_SIZE;
1106 if (dyn_h->plt_offset < 0x2000)
1107 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1108 }
1109 else
1110 dyn_h->want_plt = 0;
1111
1112 return true;
1113 }
1114
1115 /* Allocate space for a STUB entry. */
1116
1117 static boolean
1118 allocate_global_data_stub (dyn_h, data)
1119 struct elf64_hppa_dyn_hash_entry *dyn_h;
1120 PTR data;
1121 {
1122 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1123
1124 if (dyn_h->want_stub
1125 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1126 && !((dyn_h->h->root.type == bfd_link_hash_defined
1127 || dyn_h->h->root.type == bfd_link_hash_defweak)
1128 && dyn_h->h->root.u.def.section->output_section != NULL))
1129 {
1130 dyn_h->stub_offset = x->ofs;
1131 x->ofs += sizeof (plt_stub);
1132 }
1133 else
1134 dyn_h->want_stub = 0;
1135 return true;
1136 }
1137
1138 /* Allocate space for a FPTR entry. */
1139
1140 static boolean
1141 allocate_global_data_opd (dyn_h, data)
1142 struct elf64_hppa_dyn_hash_entry *dyn_h;
1143 PTR data;
1144 {
1145 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1146
1147 if (dyn_h->want_opd)
1148 {
1149 struct elf_link_hash_entry *h = dyn_h->h;
1150
1151 if (h)
1152 while (h->root.type == bfd_link_hash_indirect
1153 || h->root.type == bfd_link_hash_warning)
1154 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1155
1156 /* We never need an opd entry for a symbol which is not
1157 defined by this output file. */
1158 if (h && h->root.type == bfd_link_hash_undefined)
1159 dyn_h->want_opd = 0;
1160
1161 /* If we are creating a shared library, took the address of a local
1162 function or might export this function from this object file, then
1163 we have to create an opd descriptor. */
1164 else if (x->info->shared
1165 || h == NULL
1166 || h->dynindx == -1
1167 || ((h->root.type == bfd_link_hash_defined
1168 || h->root.type == bfd_link_hash_defweak)
1169 && h->root.u.def.section->output_section != NULL))
1170 {
1171 /* If we are creating a shared library, then we will have to
1172 create a runtime relocation for the symbol to properly
1173 initialize the .opd entry. Make sure the symbol gets
1174 added to the dynamic symbol table. */
1175 if (x->info->shared
1176 && (h == NULL || (h->dynindx == -1)))
1177 {
1178 bfd *owner;
1179 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1180
1181 if (!_bfd_elf64_link_record_local_dynamic_symbol
1182 (x->info, owner, dyn_h->sym_indx))
1183 return false;
1184 }
1185
1186 /* This may not be necessary or desirable anymore now that
1187 we have some support for dealing with section symbols
1188 in dynamic relocs. But name munging does make the result
1189 much easier to debug. ie, the EPLT reloc will reference
1190 a symbol like .foobar, instead of .text + offset. */
1191 if (x->info->shared && h)
1192 {
1193 char *new_name;
1194 struct elf_link_hash_entry *nh;
1195
1196 new_name = alloca (strlen (h->root.root.string) + 2);
1197 new_name[0] = '.';
1198 strcpy (new_name + 1, h->root.root.string);
1199
1200 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1201 new_name, true, true, true);
1202
1203 nh->root.type = h->root.type;
1204 nh->root.u.def.value = h->root.u.def.value;
1205 nh->root.u.def.section = h->root.u.def.section;
1206
1207 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1208 return false;
1209
1210 }
1211 dyn_h->opd_offset = x->ofs;
1212 x->ofs += OPD_ENTRY_SIZE;
1213 }
1214
1215 /* Otherwise we do not need an opd entry. */
1216 else
1217 dyn_h->want_opd = 0;
1218 }
1219 return true;
1220 }
1221
1222 /* HP requires the EI_OSABI field to be filled in. The assignment to
1223 EI_ABIVERSION may not be strictly necessary. */
1224
1225 static void
1226 elf64_hppa_post_process_headers (abfd, link_info)
1227 bfd * abfd;
1228 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1229 {
1230 Elf_Internal_Ehdr * i_ehdrp;
1231
1232 i_ehdrp = elf_elfheader (abfd);
1233
1234 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1235 {
1236 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1237 }
1238 else
1239 {
1240 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1241 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1242 }
1243 }
1244
1245 /* Create function descriptor section (.opd). This section is called .opd
1246 because it contains "official prodecure descriptors". The "official"
1247 refers to the fact that these descriptors are used when taking the address
1248 of a procedure, thus ensuring a unique address for each procedure. */
1249
1250 static boolean
1251 get_opd (abfd, info, hppa_info)
1252 bfd *abfd;
1253 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1254 struct elf64_hppa_link_hash_table *hppa_info;
1255 {
1256 asection *opd;
1257 bfd *dynobj;
1258
1259 opd = hppa_info->opd_sec;
1260 if (!opd)
1261 {
1262 dynobj = hppa_info->root.dynobj;
1263 if (!dynobj)
1264 hppa_info->root.dynobj = dynobj = abfd;
1265
1266 opd = bfd_make_section (dynobj, ".opd");
1267 if (!opd
1268 || !bfd_set_section_flags (dynobj, opd,
1269 (SEC_ALLOC
1270 | SEC_LOAD
1271 | SEC_HAS_CONTENTS
1272 | SEC_IN_MEMORY
1273 | SEC_LINKER_CREATED))
1274 || !bfd_set_section_alignment (abfd, opd, 3))
1275 {
1276 BFD_ASSERT (0);
1277 return false;
1278 }
1279
1280 hppa_info->opd_sec = opd;
1281 }
1282
1283 return true;
1284 }
1285
1286 /* Create the PLT section. */
1287
1288 static boolean
1289 get_plt (abfd, info, hppa_info)
1290 bfd *abfd;
1291 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1292 struct elf64_hppa_link_hash_table *hppa_info;
1293 {
1294 asection *plt;
1295 bfd *dynobj;
1296
1297 plt = hppa_info->plt_sec;
1298 if (!plt)
1299 {
1300 dynobj = hppa_info->root.dynobj;
1301 if (!dynobj)
1302 hppa_info->root.dynobj = dynobj = abfd;
1303
1304 plt = bfd_make_section (dynobj, ".plt");
1305 if (!plt
1306 || !bfd_set_section_flags (dynobj, plt,
1307 (SEC_ALLOC
1308 | SEC_LOAD
1309 | SEC_HAS_CONTENTS
1310 | SEC_IN_MEMORY
1311 | SEC_LINKER_CREATED))
1312 || !bfd_set_section_alignment (abfd, plt, 3))
1313 {
1314 BFD_ASSERT (0);
1315 return false;
1316 }
1317
1318 hppa_info->plt_sec = plt;
1319 }
1320
1321 return true;
1322 }
1323
1324 /* Create the DLT section. */
1325
1326 static boolean
1327 get_dlt (abfd, info, hppa_info)
1328 bfd *abfd;
1329 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1330 struct elf64_hppa_link_hash_table *hppa_info;
1331 {
1332 asection *dlt;
1333 bfd *dynobj;
1334
1335 dlt = hppa_info->dlt_sec;
1336 if (!dlt)
1337 {
1338 dynobj = hppa_info->root.dynobj;
1339 if (!dynobj)
1340 hppa_info->root.dynobj = dynobj = abfd;
1341
1342 dlt = bfd_make_section (dynobj, ".dlt");
1343 if (!dlt
1344 || !bfd_set_section_flags (dynobj, dlt,
1345 (SEC_ALLOC
1346 | SEC_LOAD
1347 | SEC_HAS_CONTENTS
1348 | SEC_IN_MEMORY
1349 | SEC_LINKER_CREATED))
1350 || !bfd_set_section_alignment (abfd, dlt, 3))
1351 {
1352 BFD_ASSERT (0);
1353 return false;
1354 }
1355
1356 hppa_info->dlt_sec = dlt;
1357 }
1358
1359 return true;
1360 }
1361
1362 /* Create the stubs section. */
1363
1364 static boolean
1365 get_stub (abfd, info, hppa_info)
1366 bfd *abfd;
1367 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1368 struct elf64_hppa_link_hash_table *hppa_info;
1369 {
1370 asection *stub;
1371 bfd *dynobj;
1372
1373 stub = hppa_info->stub_sec;
1374 if (!stub)
1375 {
1376 dynobj = hppa_info->root.dynobj;
1377 if (!dynobj)
1378 hppa_info->root.dynobj = dynobj = abfd;
1379
1380 stub = bfd_make_section (dynobj, ".stub");
1381 if (!stub
1382 || !bfd_set_section_flags (dynobj, stub,
1383 (SEC_ALLOC
1384 | SEC_LOAD
1385 | SEC_HAS_CONTENTS
1386 | SEC_IN_MEMORY
1387 | SEC_READONLY
1388 | SEC_LINKER_CREATED))
1389 || !bfd_set_section_alignment (abfd, stub, 3))
1390 {
1391 BFD_ASSERT (0);
1392 return false;
1393 }
1394
1395 hppa_info->stub_sec = stub;
1396 }
1397
1398 return true;
1399 }
1400
1401 /* Create sections necessary for dynamic linking. This is only a rough
1402 cut and will likely change as we learn more about the somewhat
1403 unusual dynamic linking scheme HP uses.
1404
1405 .stub:
1406 Contains code to implement cross-space calls. The first time one
1407 of the stubs is used it will call into the dynamic linker, later
1408 calls will go straight to the target.
1409
1410 The only stub we support right now looks like
1411
1412 ldd OFFSET(%dp),%r1
1413 bve %r0(%r1)
1414 ldd OFFSET+8(%dp),%dp
1415
1416 Other stubs may be needed in the future. We may want the remove
1417 the break/nop instruction. It is only used right now to keep the
1418 offset of a .plt entry and a .stub entry in sync.
1419
1420 .dlt:
1421 This is what most people call the .got. HP used a different name.
1422 Losers.
1423
1424 .rela.dlt:
1425 Relocations for the DLT.
1426
1427 .plt:
1428 Function pointers as address,gp pairs.
1429
1430 .rela.plt:
1431 Should contain dynamic IPLT (and EPLT?) relocations.
1432
1433 .opd:
1434 FPTRS
1435
1436 .rela.opd:
1437 EPLT relocations for symbols exported from shared libraries. */
1438
1439 static boolean
1440 elf64_hppa_create_dynamic_sections (abfd, info)
1441 bfd *abfd;
1442 struct bfd_link_info *info;
1443 {
1444 asection *s;
1445
1446 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1447 return false;
1448
1449 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1450 return false;
1451
1452 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1453 return false;
1454
1455 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1456 return false;
1457
1458 s = bfd_make_section(abfd, ".rela.dlt");
1459 if (s == NULL
1460 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1461 | SEC_HAS_CONTENTS
1462 | SEC_IN_MEMORY
1463 | SEC_READONLY
1464 | SEC_LINKER_CREATED))
1465 || !bfd_set_section_alignment (abfd, s, 3))
1466 return false;
1467 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1468
1469 s = bfd_make_section(abfd, ".rela.plt");
1470 if (s == NULL
1471 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1472 | SEC_HAS_CONTENTS
1473 | SEC_IN_MEMORY
1474 | SEC_READONLY
1475 | SEC_LINKER_CREATED))
1476 || !bfd_set_section_alignment (abfd, s, 3))
1477 return false;
1478 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1479
1480 s = bfd_make_section(abfd, ".rela.data");
1481 if (s == NULL
1482 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1483 | SEC_HAS_CONTENTS
1484 | SEC_IN_MEMORY
1485 | SEC_READONLY
1486 | SEC_LINKER_CREATED))
1487 || !bfd_set_section_alignment (abfd, s, 3))
1488 return false;
1489 elf64_hppa_hash_table (info)->other_rel_sec = s;
1490
1491 s = bfd_make_section(abfd, ".rela.opd");
1492 if (s == NULL
1493 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1494 | SEC_HAS_CONTENTS
1495 | SEC_IN_MEMORY
1496 | SEC_READONLY
1497 | SEC_LINKER_CREATED))
1498 || !bfd_set_section_alignment (abfd, s, 3))
1499 return false;
1500 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1501
1502 return true;
1503 }
1504
1505 /* Allocate dynamic relocations for those symbols that turned out
1506 to be dynamic. */
1507
1508 static boolean
1509 allocate_dynrel_entries (dyn_h, data)
1510 struct elf64_hppa_dyn_hash_entry *dyn_h;
1511 PTR data;
1512 {
1513 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1514 struct elf64_hppa_link_hash_table *hppa_info;
1515 struct elf64_hppa_dyn_reloc_entry *rent;
1516 boolean dynamic_symbol, shared;
1517
1518 hppa_info = elf64_hppa_hash_table (x->info);
1519 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1520 shared = x->info->shared;
1521
1522 /* We may need to allocate relocations for a non-dynamic symbol
1523 when creating a shared library. */
1524 if (!dynamic_symbol && !shared)
1525 return true;
1526
1527 /* Take care of the normal data relocations. */
1528
1529 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1530 {
1531 switch (rent->type)
1532 {
1533 case R_PARISC_FPTR64:
1534 /* Allocate one iff we are not building a shared library and
1535 !want_opd, which by this point will be true only if we're
1536 actually allocating one statically in the main executable. */
1537 if (!x->info->shared && dyn_h->want_opd)
1538 continue;
1539 break;
1540 }
1541 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1542
1543 /* Make sure this symbol gets into the dynamic symbol table if it is
1544 not already recorded. ?!? This should not be in the loop since
1545 the symbol need only be added once. */
1546 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1547 if (!_bfd_elf64_link_record_local_dynamic_symbol
1548 (x->info, rent->sec->owner, dyn_h->sym_indx))
1549 return false;
1550 }
1551
1552 /* Take care of the GOT and PLT relocations. */
1553
1554 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1555 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1556
1557 /* If we are building a shared library, then every symbol that has an
1558 opd entry will need an EPLT relocation to relocate the symbol's address
1559 and __gp value based on the runtime load address. */
1560 if (shared && dyn_h->want_opd)
1561 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1562
1563 if (dyn_h->want_plt && dynamic_symbol)
1564 {
1565 bfd_size_type t = 0;
1566
1567 /* Dynamic symbols get one IPLT relocation. Local symbols in
1568 shared libraries get two REL relocations. Local symbols in
1569 main applications get nothing. */
1570 if (dynamic_symbol)
1571 t = sizeof (Elf64_External_Rela);
1572 else if (shared)
1573 t = 2 * sizeof (Elf64_External_Rela);
1574
1575 hppa_info->plt_rel_sec->_raw_size += t;
1576 }
1577
1578 return true;
1579 }
1580
1581 /* Adjust a symbol defined by a dynamic object and referenced by a
1582 regular object. */
1583
1584 static boolean
1585 elf64_hppa_adjust_dynamic_symbol (info, h)
1586 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1587 struct elf_link_hash_entry *h;
1588 {
1589 /* ??? Undefined symbols with PLT entries should be re-defined
1590 to be the PLT entry. */
1591
1592 /* If this is a weak symbol, and there is a real definition, the
1593 processor independent code will have arranged for us to see the
1594 real definition first, and we can just use the same value. */
1595 if (h->weakdef != NULL)
1596 {
1597 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1598 || h->weakdef->root.type == bfd_link_hash_defweak);
1599 h->root.u.def.section = h->weakdef->root.u.def.section;
1600 h->root.u.def.value = h->weakdef->root.u.def.value;
1601 return true;
1602 }
1603
1604 /* If this is a reference to a symbol defined by a dynamic object which
1605 is not a function, we might allocate the symbol in our .dynbss section
1606 and allocate a COPY dynamic relocation.
1607
1608 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1609 of hackery. */
1610
1611 return true;
1612 }
1613
1614 /* Set the final sizes of the dynamic sections and allocate memory for
1615 the contents of our special sections. */
1616
1617 static boolean
1618 elf64_hppa_size_dynamic_sections (output_bfd, info)
1619 bfd *output_bfd;
1620 struct bfd_link_info *info;
1621 {
1622 bfd *dynobj;
1623 asection *s;
1624 boolean plt;
1625 boolean relocs;
1626 boolean reltext;
1627 struct elf64_hppa_allocate_data data;
1628 struct elf64_hppa_link_hash_table *hppa_info;
1629
1630 hppa_info = elf64_hppa_hash_table (info);
1631
1632 dynobj = elf_hash_table (info)->dynobj;
1633 BFD_ASSERT (dynobj != NULL);
1634
1635 if (elf_hash_table (info)->dynamic_sections_created)
1636 {
1637 /* Set the contents of the .interp section to the interpreter. */
1638 if (! info->shared)
1639 {
1640 s = bfd_get_section_by_name (dynobj, ".interp");
1641 BFD_ASSERT (s != NULL);
1642 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1643 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1644 }
1645 }
1646 else
1647 {
1648 /* We may have created entries in the .rela.got section.
1649 However, if we are not creating the dynamic sections, we will
1650 not actually use these entries. Reset the size of .rela.dlt,
1651 which will cause it to get stripped from the output file
1652 below. */
1653 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1654 if (s != NULL)
1655 s->_raw_size = 0;
1656 }
1657
1658 /* Allocate the GOT entries. */
1659
1660 data.info = info;
1661 if (elf64_hppa_hash_table (info)->dlt_sec)
1662 {
1663 data.ofs = 0x0;
1664 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1665 allocate_global_data_dlt, &data);
1666 hppa_info->dlt_sec->_raw_size = data.ofs;
1667
1668 data.ofs = 0x0;
1669 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1670 allocate_global_data_plt, &data);
1671 hppa_info->plt_sec->_raw_size = data.ofs;
1672
1673 data.ofs = 0x0;
1674 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1675 allocate_global_data_stub, &data);
1676 hppa_info->stub_sec->_raw_size = data.ofs;
1677 }
1678
1679 /* Mark each function this program exports so that we will allocate
1680 space in the .opd section for each function's FPTR.
1681
1682 We have to traverse the main linker hash table since we have to
1683 find functions which may not have been mentioned in any relocs. */
1684 elf_link_hash_traverse (elf_hash_table (info),
1685 elf64_hppa_mark_exported_functions,
1686 info);
1687
1688 /* Allocate space for entries in the .opd section. */
1689 if (elf64_hppa_hash_table (info)->opd_sec)
1690 {
1691 data.ofs = 0;
1692 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1693 allocate_global_data_opd, &data);
1694 hppa_info->opd_sec->_raw_size = data.ofs;
1695 }
1696
1697 /* Now allocate space for dynamic relocations, if necessary. */
1698 if (hppa_info->root.dynamic_sections_created)
1699 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1700 allocate_dynrel_entries, &data);
1701
1702 /* The sizes of all the sections are set. Allocate memory for them. */
1703 plt = false;
1704 relocs = false;
1705 reltext = false;
1706 for (s = dynobj->sections; s != NULL; s = s->next)
1707 {
1708 const char *name;
1709 boolean strip;
1710
1711 if ((s->flags & SEC_LINKER_CREATED) == 0)
1712 continue;
1713
1714 /* It's OK to base decisions on the section name, because none
1715 of the dynobj section names depend upon the input files. */
1716 name = bfd_get_section_name (dynobj, s);
1717
1718 strip = 0;
1719
1720 if (strcmp (name, ".plt") == 0)
1721 {
1722 if (s->_raw_size == 0)
1723 {
1724 /* Strip this section if we don't need it; see the
1725 comment below. */
1726 strip = true;
1727 }
1728 else
1729 {
1730 /* Remember whether there is a PLT. */
1731 plt = true;
1732 }
1733 }
1734 else if (strcmp (name, ".dlt") == 0)
1735 {
1736 if (s->_raw_size == 0)
1737 {
1738 /* Strip this section if we don't need it; see the
1739 comment below. */
1740 strip = true;
1741 }
1742 }
1743 else if (strcmp (name, ".opd") == 0)
1744 {
1745 if (s->_raw_size == 0)
1746 {
1747 /* Strip this section if we don't need it; see the
1748 comment below. */
1749 strip = true;
1750 }
1751 }
1752 else if (strncmp (name, ".rela", 4) == 0)
1753 {
1754 if (s->_raw_size == 0)
1755 {
1756 /* If we don't need this section, strip it from the
1757 output file. This is mostly to handle .rela.bss and
1758 .rela.plt. We must create both sections in
1759 create_dynamic_sections, because they must be created
1760 before the linker maps input sections to output
1761 sections. The linker does that before
1762 adjust_dynamic_symbol is called, and it is that
1763 function which decides whether anything needs to go
1764 into these sections. */
1765 strip = true;
1766 }
1767 else
1768 {
1769 asection *target;
1770
1771 /* Remember whether there are any reloc sections other
1772 than .rela.plt. */
1773 if (strcmp (name, ".rela.plt") != 0)
1774 {
1775 const char *outname;
1776
1777 relocs = true;
1778
1779 /* If this relocation section applies to a read only
1780 section, then we probably need a DT_TEXTREL
1781 entry. The entries in the .rela.plt section
1782 really apply to the .got section, which we
1783 created ourselves and so know is not readonly. */
1784 outname = bfd_get_section_name (output_bfd,
1785 s->output_section);
1786 target = bfd_get_section_by_name (output_bfd, outname + 4);
1787 if (target != NULL
1788 && (target->flags & SEC_READONLY) != 0
1789 && (target->flags & SEC_ALLOC) != 0)
1790 reltext = true;
1791 }
1792
1793 /* We use the reloc_count field as a counter if we need
1794 to copy relocs into the output file. */
1795 s->reloc_count = 0;
1796 }
1797 }
1798 else if (strncmp (name, ".dlt", 4) != 0
1799 && strcmp (name, ".stub") != 0
1800 && strcmp (name, ".got") != 0)
1801 {
1802 /* It's not one of our sections, so don't allocate space. */
1803 continue;
1804 }
1805
1806 if (strip)
1807 {
1808 _bfd_strip_section_from_output (info, s);
1809 continue;
1810 }
1811
1812 /* Allocate memory for the section contents if it has not
1813 been allocated already. We use bfd_zalloc here in case
1814 unused entries are not reclaimed before the section's
1815 contents are written out. This should not happen, but this
1816 way if it does, we get a R_PARISC_NONE reloc instead of
1817 garbage. */
1818 if (s->contents == NULL)
1819 {
1820 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1821 if (s->contents == NULL && s->_raw_size != 0)
1822 return false;
1823 }
1824 }
1825
1826 if (elf_hash_table (info)->dynamic_sections_created)
1827 {
1828 /* Always create a DT_PLTGOT. It actually has nothing to do with
1829 the PLT, it is how we communicate the __gp value of a load
1830 module to the dynamic linker. */
1831 #define add_dynamic_entry(TAG, VAL) \
1832 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1833
1834 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1835 || !add_dynamic_entry (DT_PLTGOT, 0))
1836 return false;
1837
1838 /* Add some entries to the .dynamic section. We fill in the
1839 values later, in elf64_hppa_finish_dynamic_sections, but we
1840 must add the entries now so that we get the correct size for
1841 the .dynamic section. The DT_DEBUG entry is filled in by the
1842 dynamic linker and used by the debugger. */
1843 if (! info->shared)
1844 {
1845 if (!add_dynamic_entry (DT_DEBUG, 0)
1846 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1847 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1848 return false;
1849 }
1850
1851 if (plt)
1852 {
1853 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1854 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1855 || !add_dynamic_entry (DT_JMPREL, 0))
1856 return false;
1857 }
1858
1859 if (relocs)
1860 {
1861 if (!add_dynamic_entry (DT_RELA, 0)
1862 || !add_dynamic_entry (DT_RELASZ, 0)
1863 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1864 return false;
1865 }
1866
1867 if (reltext)
1868 {
1869 if (!add_dynamic_entry (DT_TEXTREL, 0))
1870 return false;
1871 info->flags |= DF_TEXTREL;
1872 }
1873 }
1874 #undef add_dynamic_entry
1875
1876 return true;
1877 }
1878
1879 /* Called after we have output the symbol into the dynamic symbol
1880 table, but before we output the symbol into the normal symbol
1881 table.
1882
1883 For some symbols we had to change their address when outputting
1884 the dynamic symbol table. We undo that change here so that
1885 the symbols have their expected value in the normal symbol
1886 table. Ick. */
1887
1888 static boolean
1889 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1890 bfd *abfd ATTRIBUTE_UNUSED;
1891 struct bfd_link_info *info;
1892 const char *name;
1893 Elf_Internal_Sym *sym;
1894 asection *input_sec ATTRIBUTE_UNUSED;
1895 {
1896 struct elf64_hppa_link_hash_table *hppa_info;
1897 struct elf64_hppa_dyn_hash_entry *dyn_h;
1898
1899 /* We may be called with the file symbol or section symbols.
1900 They never need munging, so it is safe to ignore them. */
1901 if (!name)
1902 return true;
1903
1904 /* Get the PA dyn_symbol (if any) associated with NAME. */
1905 hppa_info = elf64_hppa_hash_table (info);
1906 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1907 name, false, false);
1908
1909 /* Function symbols for which we created .opd entries *may* have been
1910 munged by finish_dynamic_symbol and have to be un-munged here.
1911
1912 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1913 into non-dynamic ones, so we initialize st_shndx to -1 in
1914 mark_exported_functions and check to see if it was overwritten
1915 here instead of just checking dyn_h->h->dynindx. */
1916 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1917 {
1918 /* Restore the saved value and section index. */
1919 sym->st_value = dyn_h->st_value;
1920 sym->st_shndx = dyn_h->st_shndx;
1921 }
1922
1923 return true;
1924 }
1925
1926 /* Finish up dynamic symbol handling. We set the contents of various
1927 dynamic sections here. */
1928
1929 static boolean
1930 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1931 bfd *output_bfd;
1932 struct bfd_link_info *info;
1933 struct elf_link_hash_entry *h;
1934 Elf_Internal_Sym *sym;
1935 {
1936 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1937 struct elf64_hppa_link_hash_table *hppa_info;
1938 struct elf64_hppa_dyn_hash_entry *dyn_h;
1939
1940 hppa_info = elf64_hppa_hash_table (info);
1941 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1942 h->root.root.string, false, false);
1943
1944 stub = hppa_info->stub_sec;
1945 splt = hppa_info->plt_sec;
1946 sdlt = hppa_info->dlt_sec;
1947 sopd = hppa_info->opd_sec;
1948 spltrel = hppa_info->plt_rel_sec;
1949 sdltrel = hppa_info->dlt_rel_sec;
1950
1951 BFD_ASSERT (stub != NULL && splt != NULL
1952 && sopd != NULL && sdlt != NULL)
1953
1954 /* Incredible. It is actually necessary to NOT use the symbol's real
1955 value when building the dynamic symbol table for a shared library.
1956 At least for symbols that refer to functions.
1957
1958 We will store a new value and section index into the symbol long
1959 enough to output it into the dynamic symbol table, then we restore
1960 the original values (in elf64_hppa_link_output_symbol_hook). */
1961 if (dyn_h && dyn_h->want_opd)
1962 {
1963 /* Save away the original value and section index so that we
1964 can restore them later. */
1965 dyn_h->st_value = sym->st_value;
1966 dyn_h->st_shndx = sym->st_shndx;
1967
1968 /* For the dynamic symbol table entry, we want the value to be
1969 address of this symbol's entry within the .opd section. */
1970 sym->st_value = (dyn_h->opd_offset
1971 + sopd->output_offset
1972 + sopd->output_section->vma);
1973 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1974 sopd->output_section);
1975 }
1976
1977 /* Initialize a .plt entry if requested. */
1978 if (dyn_h && dyn_h->want_plt
1979 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1980 {
1981 bfd_vma value;
1982 Elf_Internal_Rela rel;
1983
1984 /* We do not actually care about the value in the PLT entry
1985 if we are creating a shared library and the symbol is
1986 still undefined, we create a dynamic relocation to fill
1987 in the correct value. */
1988 if (info->shared && h->root.type == bfd_link_hash_undefined)
1989 value = 0;
1990 else
1991 value = (h->root.u.def.value + h->root.u.def.section->vma);
1992
1993 /* Fill in the entry in the procedure linkage table.
1994
1995 The format of a plt entry is
1996 <funcaddr> <__gp>.
1997
1998 plt_offset is the offset within the PLT section at which to
1999 install the PLT entry.
2000
2001 We are modifying the in-memory PLT contents here, so we do not add
2002 in the output_offset of the PLT section. */
2003
2004 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2005 value = _bfd_get_gp_value (splt->output_section->owner);
2006 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2007
2008 /* Create a dynamic IPLT relocation for this entry.
2009
2010 We are creating a relocation in the output file's PLT section,
2011 which is included within the DLT secton. So we do need to include
2012 the PLT's output_offset in the computation of the relocation's
2013 address. */
2014 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2015 + splt->output_section->vma);
2016 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2017 rel.r_addend = 0;
2018
2019 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2020 (((Elf64_External_Rela *)
2021 spltrel->contents)
2022 + spltrel->reloc_count));
2023 spltrel->reloc_count++;
2024 }
2025
2026 /* Initialize an external call stub entry if requested. */
2027 if (dyn_h && dyn_h->want_stub
2028 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2029 {
2030 bfd_vma value;
2031 int insn;
2032 unsigned int max_offset;
2033
2034 /* Install the generic stub template.
2035
2036 We are modifying the contents of the stub section, so we do not
2037 need to include the stub section's output_offset here. */
2038 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2039
2040 /* Fix up the first ldd instruction.
2041
2042 We are modifying the contents of the STUB section in memory,
2043 so we do not need to include its output offset in this computation.
2044
2045 Note the plt_offset value is the value of the PLT entry relative to
2046 the start of the PLT section. These instructions will reference
2047 data relative to the value of __gp, which may not necessarily have
2048 the same address as the start of the PLT section.
2049
2050 gp_offset contains the offset of __gp within the PLT section. */
2051 value = dyn_h->plt_offset - hppa_info->gp_offset;
2052
2053 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2054 if (output_bfd->arch_info->mach >= 25)
2055 {
2056 /* Wide mode allows 16 bit offsets. */
2057 max_offset = 32768;
2058 insn &= ~ 0xfff1;
2059 insn |= re_assemble_16 ((int) value);
2060 }
2061 else
2062 {
2063 max_offset = 8192;
2064 insn &= ~ 0x3ff1;
2065 insn |= re_assemble_14 ((int) value);
2066 }
2067
2068 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2069 {
2070 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2071 dyn_h->root.string,
2072 (long) value);
2073 return false;
2074 }
2075
2076 bfd_put_32 (stub->owner, (bfd_vma) insn,
2077 stub->contents + dyn_h->stub_offset);
2078
2079 /* Fix up the second ldd instruction. */
2080 value += 8;
2081 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2082 if (output_bfd->arch_info->mach >= 25)
2083 {
2084 insn &= ~ 0xfff1;
2085 insn |= re_assemble_16 ((int) value);
2086 }
2087 else
2088 {
2089 insn &= ~ 0x3ff1;
2090 insn |= re_assemble_14 ((int) value);
2091 }
2092 bfd_put_32 (stub->owner, (bfd_vma) insn,
2093 stub->contents + dyn_h->stub_offset + 8);
2094 }
2095
2096 /* Millicode symbols should not be put in the dynamic
2097 symbol table under any circumstances. */
2098 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2099 h->dynindx = -1;
2100
2101 return true;
2102 }
2103
2104 /* The .opd section contains FPTRs for each function this file
2105 exports. Initialize the FPTR entries. */
2106
2107 static boolean
2108 elf64_hppa_finalize_opd (dyn_h, data)
2109 struct elf64_hppa_dyn_hash_entry *dyn_h;
2110 PTR data;
2111 {
2112 struct bfd_link_info *info = (struct bfd_link_info *)data;
2113 struct elf64_hppa_link_hash_table *hppa_info;
2114 struct elf_link_hash_entry *h = dyn_h->h;
2115 asection *sopd;
2116 asection *sopdrel;
2117
2118 hppa_info = elf64_hppa_hash_table (info);
2119 sopd = hppa_info->opd_sec;
2120 sopdrel = hppa_info->opd_rel_sec;
2121
2122 if (h && dyn_h && dyn_h->want_opd)
2123 {
2124 bfd_vma value;
2125
2126 /* The first two words of an .opd entry are zero.
2127
2128 We are modifying the contents of the OPD section in memory, so we
2129 do not need to include its output offset in this computation. */
2130 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2131
2132 value = (h->root.u.def.value
2133 + h->root.u.def.section->output_section->vma
2134 + h->root.u.def.section->output_offset);
2135
2136 /* The next word is the address of the function. */
2137 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2138
2139 /* The last word is our local __gp value. */
2140 value = _bfd_get_gp_value (sopd->output_section->owner);
2141 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2142 }
2143
2144 /* If we are generating a shared library, we must generate EPLT relocations
2145 for each entry in the .opd, even for static functions (they may have
2146 had their address taken). */
2147 if (info->shared && dyn_h && dyn_h->want_opd)
2148 {
2149 Elf64_Internal_Rela rel;
2150 int dynindx;
2151
2152 /* We may need to do a relocation against a local symbol, in
2153 which case we have to look up it's dynamic symbol index off
2154 the local symbol hash table. */
2155 if (h && h->dynindx != -1)
2156 dynindx = h->dynindx;
2157 else
2158 dynindx
2159 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2160 dyn_h->sym_indx);
2161
2162 /* The offset of this relocation is the absolute address of the
2163 .opd entry for this symbol. */
2164 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2165 + sopd->output_section->vma);
2166
2167 /* If H is non-null, then we have an external symbol.
2168
2169 It is imperative that we use a different dynamic symbol for the
2170 EPLT relocation if the symbol has global scope.
2171
2172 In the dynamic symbol table, the function symbol will have a value
2173 which is address of the function's .opd entry.
2174
2175 Thus, we can not use that dynamic symbol for the EPLT relocation
2176 (if we did, the data in the .opd would reference itself rather
2177 than the actual address of the function). Instead we have to use
2178 a new dynamic symbol which has the same value as the original global
2179 function symbol.
2180
2181 We prefix the original symbol with a "." and use the new symbol in
2182 the EPLT relocation. This new symbol has already been recorded in
2183 the symbol table, we just have to look it up and use it.
2184
2185 We do not have such problems with static functions because we do
2186 not make their addresses in the dynamic symbol table point to
2187 the .opd entry. Ultimately this should be safe since a static
2188 function can not be directly referenced outside of its shared
2189 library.
2190
2191 We do have to play similar games for FPTR relocations in shared
2192 libraries, including those for static symbols. See the FPTR
2193 handling in elf64_hppa_finalize_dynreloc. */
2194 if (h)
2195 {
2196 char *new_name;
2197 struct elf_link_hash_entry *nh;
2198
2199 new_name = alloca (strlen (h->root.root.string) + 2);
2200 new_name[0] = '.';
2201 strcpy (new_name + 1, h->root.root.string);
2202
2203 nh = elf_link_hash_lookup (elf_hash_table (info),
2204 new_name, false, false, false);
2205
2206 /* All we really want from the new symbol is its dynamic
2207 symbol index. */
2208 dynindx = nh->dynindx;
2209 }
2210
2211 rel.r_addend = 0;
2212 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2213
2214 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2215 (((Elf64_External_Rela *)
2216 sopdrel->contents)
2217 + sopdrel->reloc_count));
2218 sopdrel->reloc_count++;
2219 }
2220 return true;
2221 }
2222
2223 /* The .dlt section contains addresses for items referenced through the
2224 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2225 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2226
2227 static boolean
2228 elf64_hppa_finalize_dlt (dyn_h, data)
2229 struct elf64_hppa_dyn_hash_entry *dyn_h;
2230 PTR data;
2231 {
2232 struct bfd_link_info *info = (struct bfd_link_info *)data;
2233 struct elf64_hppa_link_hash_table *hppa_info;
2234 asection *sdlt, *sdltrel;
2235 struct elf_link_hash_entry *h = dyn_h->h;
2236
2237 hppa_info = elf64_hppa_hash_table (info);
2238
2239 sdlt = hppa_info->dlt_sec;
2240 sdltrel = hppa_info->dlt_rel_sec;
2241
2242 /* H/DYN_H may refer to a local variable and we know it's
2243 address, so there is no need to create a relocation. Just install
2244 the proper value into the DLT, note this shortcut can not be
2245 skipped when building a shared library. */
2246 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2247 {
2248 bfd_vma value;
2249
2250 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2251 to point to the FPTR entry in the .opd section.
2252
2253 We include the OPD's output offset in this computation as
2254 we are referring to an absolute address in the resulting
2255 object file. */
2256 if (dyn_h->want_opd)
2257 {
2258 value = (dyn_h->opd_offset
2259 + hppa_info->opd_sec->output_offset
2260 + hppa_info->opd_sec->output_section->vma);
2261 }
2262 else
2263 {
2264 value = (h->root.u.def.value
2265 + h->root.u.def.section->output_offset);
2266
2267 if (h->root.u.def.section->output_section)
2268 value += h->root.u.def.section->output_section->vma;
2269 else
2270 value += h->root.u.def.section->vma;
2271 }
2272
2273 /* We do not need to include the output offset of the DLT section
2274 here because we are modifying the in-memory contents. */
2275 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2276 }
2277
2278 /* Create a relocation for the DLT entry assocated with this symbol.
2279 When building a shared library the symbol does not have to be dynamic. */
2280 if (dyn_h->want_dlt
2281 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2282 {
2283 Elf64_Internal_Rela rel;
2284 int dynindx;
2285
2286 /* We may need to do a relocation against a local symbol, in
2287 which case we have to look up it's dynamic symbol index off
2288 the local symbol hash table. */
2289 if (h && h->dynindx != -1)
2290 dynindx = h->dynindx;
2291 else
2292 dynindx
2293 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2294 dyn_h->sym_indx);
2295
2296 /* Create a dynamic relocation for this entry. Do include the output
2297 offset of the DLT entry since we need an absolute address in the
2298 resulting object file. */
2299 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2300 + sdlt->output_section->vma);
2301 if (h && h->type == STT_FUNC)
2302 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2303 else
2304 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2305 rel.r_addend = 0;
2306
2307 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2308 (((Elf64_External_Rela *)
2309 sdltrel->contents)
2310 + sdltrel->reloc_count));
2311 sdltrel->reloc_count++;
2312 }
2313 return true;
2314 }
2315
2316 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2317 for dynamic functions used to initialize static data. */
2318
2319 static boolean
2320 elf64_hppa_finalize_dynreloc (dyn_h, data)
2321 struct elf64_hppa_dyn_hash_entry *dyn_h;
2322 PTR data;
2323 {
2324 struct bfd_link_info *info = (struct bfd_link_info *)data;
2325 struct elf64_hppa_link_hash_table *hppa_info;
2326 struct elf_link_hash_entry *h;
2327 int dynamic_symbol;
2328
2329 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2330
2331 if (!dynamic_symbol && !info->shared)
2332 return true;
2333
2334 if (dyn_h->reloc_entries)
2335 {
2336 struct elf64_hppa_dyn_reloc_entry *rent;
2337 int dynindx;
2338
2339 hppa_info = elf64_hppa_hash_table (info);
2340 h = dyn_h->h;
2341
2342 /* We may need to do a relocation against a local symbol, in
2343 which case we have to look up it's dynamic symbol index off
2344 the local symbol hash table. */
2345 if (h && h->dynindx != -1)
2346 dynindx = h->dynindx;
2347 else
2348 dynindx
2349 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2350 dyn_h->sym_indx);
2351
2352 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2353 {
2354 Elf64_Internal_Rela rel;
2355
2356 switch (rent->type)
2357 {
2358 case R_PARISC_FPTR64:
2359 /* Allocate one iff we are not building a shared library and
2360 !want_opd, which by this point will be true only if we're
2361 actually allocating one statically in the main executable. */
2362 if (!info->shared && dyn_h->want_opd)
2363 continue;
2364 break;
2365 }
2366
2367 /* Create a dynamic relocation for this entry.
2368
2369 We need the output offset for the reloc's section because
2370 we are creating an absolute address in the resulting object
2371 file. */
2372 rel.r_offset = (rent->offset + rent->sec->output_offset
2373 + rent->sec->output_section->vma);
2374
2375 /* An FPTR64 relocation implies that we took the address of
2376 a function and that the function has an entry in the .opd
2377 section. We want the FPTR64 relocation to reference the
2378 entry in .opd.
2379
2380 We could munge the symbol value in the dynamic symbol table
2381 (in fact we already do for functions with global scope) to point
2382 to the .opd entry. Then we could use that dynamic symbol in
2383 this relocation.
2384
2385 Or we could do something sensible, not munge the symbol's
2386 address and instead just use a different symbol to reference
2387 the .opd entry. At least that seems sensible until you
2388 realize there's no local dynamic symbols we can use for that
2389 purpose. Thus the hair in the check_relocs routine.
2390
2391 We use a section symbol recorded by check_relocs as the
2392 base symbol for the relocation. The addend is the difference
2393 between the section symbol and the address of the .opd entry. */
2394 if (info->shared && rent->type == R_PARISC_FPTR64)
2395 {
2396 bfd_vma value, value2;
2397
2398 /* First compute the address of the opd entry for this symbol. */
2399 value = (dyn_h->opd_offset
2400 + hppa_info->opd_sec->output_section->vma
2401 + hppa_info->opd_sec->output_offset);
2402
2403 /* Compute the value of the start of the section with
2404 the relocation. */
2405 value2 = (rent->sec->output_section->vma
2406 + rent->sec->output_offset);
2407
2408 /* Compute the difference between the start of the section
2409 with the relocation and the opd entry. */
2410 value -= value2;
2411
2412 /* The result becomes the addend of the relocation. */
2413 rel.r_addend = value;
2414
2415 /* The section symbol becomes the symbol for the dynamic
2416 relocation. */
2417 dynindx
2418 = _bfd_elf_link_lookup_local_dynindx (info,
2419 rent->sec->owner,
2420 rent->sec_symndx);
2421 }
2422 else
2423 rel.r_addend = rent->addend;
2424
2425 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2426
2427 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2428 &rel,
2429 (((Elf64_External_Rela *)
2430 hppa_info->other_rel_sec->contents)
2431 + hppa_info->other_rel_sec->reloc_count));
2432 hppa_info->other_rel_sec->reloc_count++;
2433 }
2434 }
2435
2436 return true;
2437 }
2438
2439 /* Finish up the dynamic sections. */
2440
2441 static boolean
2442 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2443 bfd *output_bfd;
2444 struct bfd_link_info *info;
2445 {
2446 bfd *dynobj;
2447 asection *sdyn;
2448 struct elf64_hppa_link_hash_table *hppa_info;
2449
2450 hppa_info = elf64_hppa_hash_table (info);
2451
2452 /* Finalize the contents of the .opd section. */
2453 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2454 elf64_hppa_finalize_opd,
2455 info);
2456
2457 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2458 elf64_hppa_finalize_dynreloc,
2459 info);
2460
2461 /* Finalize the contents of the .dlt section. */
2462 dynobj = elf_hash_table (info)->dynobj;
2463 /* Finalize the contents of the .dlt section. */
2464 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2465 elf64_hppa_finalize_dlt,
2466 info);
2467
2468 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2469
2470 if (elf_hash_table (info)->dynamic_sections_created)
2471 {
2472 Elf64_External_Dyn *dyncon, *dynconend;
2473
2474 BFD_ASSERT (sdyn != NULL);
2475
2476 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2477 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2478 for (; dyncon < dynconend; dyncon++)
2479 {
2480 Elf_Internal_Dyn dyn;
2481 asection *s;
2482
2483 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2484
2485 switch (dyn.d_tag)
2486 {
2487 default:
2488 break;
2489
2490 case DT_HP_LOAD_MAP:
2491 /* Compute the absolute address of 16byte scratchpad area
2492 for the dynamic linker.
2493
2494 By convention the linker script will allocate the scratchpad
2495 area at the start of the .data section. So all we have to
2496 to is find the start of the .data section. */
2497 s = bfd_get_section_by_name (output_bfd, ".data");
2498 dyn.d_un.d_ptr = s->vma;
2499 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2500 break;
2501
2502 case DT_PLTGOT:
2503 /* HP's use PLTGOT to set the GOT register. */
2504 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2505 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2506 break;
2507
2508 case DT_JMPREL:
2509 s = hppa_info->plt_rel_sec;
2510 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2511 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2512 break;
2513
2514 case DT_PLTRELSZ:
2515 s = hppa_info->plt_rel_sec;
2516 dyn.d_un.d_val = s->_raw_size;
2517 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2518 break;
2519
2520 case DT_RELA:
2521 s = hppa_info->other_rel_sec;
2522 if (! s)
2523 s = hppa_info->dlt_rel_sec;
2524 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2525 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2526 break;
2527
2528 case DT_RELASZ:
2529 s = hppa_info->other_rel_sec;
2530 dyn.d_un.d_val = s->_raw_size;
2531 s = hppa_info->dlt_rel_sec;
2532 dyn.d_un.d_val += s->_raw_size;
2533 s = hppa_info->opd_rel_sec;
2534 dyn.d_un.d_val += s->_raw_size;
2535 /* There is some question about whether or not the size of
2536 the PLT relocs should be included here. HP's tools do
2537 it, so we'll emulate them. */
2538 s = hppa_info->plt_rel_sec;
2539 dyn.d_un.d_val += s->_raw_size;
2540 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 break;
2542
2543 }
2544 }
2545 }
2546
2547 return true;
2548 }
2549
2550 /* Return the number of additional phdrs we will need.
2551
2552 The generic ELF code only creates PT_PHDRs for executables. The HP
2553 dynamic linker requires PT_PHDRs for dynamic libraries too.
2554
2555 This routine indicates that the backend needs one additional program
2556 header for that case.
2557
2558 Note we do not have access to the link info structure here, so we have
2559 to guess whether or not we are building a shared library based on the
2560 existence of a .interp section. */
2561
2562 static int
2563 elf64_hppa_additional_program_headers (abfd)
2564 bfd *abfd;
2565 {
2566 asection *s;
2567
2568 /* If we are creating a shared library, then we have to create a
2569 PT_PHDR segment. HP's dynamic linker chokes without it. */
2570 s = bfd_get_section_by_name (abfd, ".interp");
2571 if (! s)
2572 return 1;
2573 return 0;
2574 }
2575
2576 /* Allocate and initialize any program headers required by this
2577 specific backend.
2578
2579 The generic ELF code only creates PT_PHDRs for executables. The HP
2580 dynamic linker requires PT_PHDRs for dynamic libraries too.
2581
2582 This allocates the PT_PHDR and initializes it in a manner suitable
2583 for the HP linker.
2584
2585 Note we do not have access to the link info structure here, so we have
2586 to guess whether or not we are building a shared library based on the
2587 existence of a .interp section. */
2588
2589 static boolean
2590 elf64_hppa_modify_segment_map (abfd)
2591 bfd *abfd;
2592 {
2593 struct elf_segment_map *m;
2594 asection *s;
2595
2596 s = bfd_get_section_by_name (abfd, ".interp");
2597 if (! s)
2598 {
2599 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2600 if (m->p_type == PT_PHDR)
2601 break;
2602 if (m == NULL)
2603 {
2604 m = ((struct elf_segment_map *)
2605 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2606 if (m == NULL)
2607 return false;
2608
2609 m->p_type = PT_PHDR;
2610 m->p_flags = PF_R | PF_X;
2611 m->p_flags_valid = 1;
2612 m->p_paddr_valid = 1;
2613 m->includes_phdrs = 1;
2614
2615 m->next = elf_tdata (abfd)->segment_map;
2616 elf_tdata (abfd)->segment_map = m;
2617 }
2618 }
2619
2620 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2621 if (m->p_type == PT_LOAD)
2622 {
2623 unsigned int i;
2624
2625 for (i = 0; i < m->count; i++)
2626 {
2627 /* The code "hint" is not really a hint. It is a requirement
2628 for certain versions of the HP dynamic linker. Worse yet,
2629 it must be set even if the shared library does not have
2630 any code in its "text" segment (thus the check for .hash
2631 to catch this situation). */
2632 if (m->sections[i]->flags & SEC_CODE
2633 || (strcmp (m->sections[i]->name, ".hash") == 0))
2634 m->p_flags |= (PF_X | PF_HP_CODE);
2635 }
2636 }
2637
2638 return true;
2639 }
2640
2641 /* Called when writing out an object file to decide the type of a
2642 symbol. */
2643 static int
2644 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2645 Elf_Internal_Sym *elf_sym;
2646 int type;
2647 {
2648 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2649 return STT_PARISC_MILLI;
2650 else
2651 return type;
2652 }
2653
2654 /* The hash bucket size is the standard one, namely 4. */
2655
2656 const struct elf_size_info hppa64_elf_size_info =
2657 {
2658 sizeof (Elf64_External_Ehdr),
2659 sizeof (Elf64_External_Phdr),
2660 sizeof (Elf64_External_Shdr),
2661 sizeof (Elf64_External_Rel),
2662 sizeof (Elf64_External_Rela),
2663 sizeof (Elf64_External_Sym),
2664 sizeof (Elf64_External_Dyn),
2665 sizeof (Elf_External_Note),
2666 4,
2667 1,
2668 64, 8,
2669 ELFCLASS64, EV_CURRENT,
2670 bfd_elf64_write_out_phdrs,
2671 bfd_elf64_write_shdrs_and_ehdr,
2672 bfd_elf64_write_relocs,
2673 bfd_elf64_swap_symbol_out,
2674 bfd_elf64_slurp_reloc_table,
2675 bfd_elf64_slurp_symbol_table,
2676 bfd_elf64_swap_dyn_in,
2677 bfd_elf64_swap_dyn_out,
2678 NULL,
2679 NULL,
2680 NULL,
2681 NULL
2682 };
2683
2684 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2685 #define TARGET_BIG_NAME "elf64-hppa"
2686 #define ELF_ARCH bfd_arch_hppa
2687 #define ELF_MACHINE_CODE EM_PARISC
2688 /* This is not strictly correct. The maximum page size for PA2.0 is
2689 64M. But everything still uses 4k. */
2690 #define ELF_MAXPAGESIZE 0x1000
2691 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2692 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2693 #define elf_info_to_howto elf_hppa_info_to_howto
2694 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2695
2696 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2697 #define elf_backend_object_p elf64_hppa_object_p
2698 #define elf_backend_final_write_processing \
2699 elf_hppa_final_write_processing
2700 #define elf_backend_fake_sections elf_hppa_fake_sections
2701 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2702
2703 #define elf_backend_relocate_section elf_hppa_relocate_section
2704
2705 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2706
2707 #define elf_backend_create_dynamic_sections \
2708 elf64_hppa_create_dynamic_sections
2709 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2710
2711 #define elf_backend_adjust_dynamic_symbol \
2712 elf64_hppa_adjust_dynamic_symbol
2713
2714 #define elf_backend_size_dynamic_sections \
2715 elf64_hppa_size_dynamic_sections
2716
2717 #define elf_backend_finish_dynamic_symbol \
2718 elf64_hppa_finish_dynamic_symbol
2719 #define elf_backend_finish_dynamic_sections \
2720 elf64_hppa_finish_dynamic_sections
2721
2722 /* Stuff for the BFD linker: */
2723 #define bfd_elf64_bfd_link_hash_table_create \
2724 elf64_hppa_hash_table_create
2725
2726 #define elf_backend_check_relocs \
2727 elf64_hppa_check_relocs
2728
2729 #define elf_backend_size_info \
2730 hppa64_elf_size_info
2731
2732 #define elf_backend_additional_program_headers \
2733 elf64_hppa_additional_program_headers
2734
2735 #define elf_backend_modify_segment_map \
2736 elf64_hppa_modify_segment_map
2737
2738 #define elf_backend_link_output_symbol_hook \
2739 elf64_hppa_link_output_symbol_hook
2740
2741 #define elf_backend_want_got_plt 0
2742 #define elf_backend_plt_readonly 0
2743 #define elf_backend_want_plt_sym 0
2744 #define elf_backend_got_header_size 0
2745 #define elf_backend_plt_header_size 0
2746 #define elf_backend_type_change_ok true
2747 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2748
2749 #include "elf64-target.h"
2750
2751 #undef TARGET_BIG_SYM
2752 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2753 #undef TARGET_BIG_NAME
2754 #define TARGET_BIG_NAME "elf64-hppa-linux"
2755
2756 #define INCLUDED_TARGET_FILE 1
2757 #include "elf64-target.h"
This page took 0.095521 seconds and 4 git commands to generate.