2005-07-07 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static bfd_boolean elf64_hppa_dyn_hash_table_init
161 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
162 new_hash_entry_func new));
163 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
165 const char *string));
166 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
167 PARAMS ((bfd *abfd));
168 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
170 bfd_boolean create, bfd_boolean copy));
171 static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
173 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
174 PTR info));
175
176 static const char *get_dyn_name
177 PARAMS ((bfd *, struct elf_link_hash_entry *,
178 const Elf_Internal_Rela *, char **, size_t *));
179
180 /* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182 #include "elf-hppa.h"
183
184 static bfd_boolean elf64_hppa_object_p
185 PARAMS ((bfd *));
186
187 static void elf64_hppa_post_process_headers
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_create_dynamic_sections
191 PARAMS ((bfd *, struct bfd_link_info *));
192
193 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
194 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
195
196 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
197 PARAMS ((struct elf_link_hash_entry *, PTR));
198
199 static bfd_boolean elf64_hppa_size_dynamic_sections
200 PARAMS ((bfd *, struct bfd_link_info *));
201
202 static bfd_boolean elf64_hppa_link_output_symbol_hook
203 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
204 asection *, struct elf_link_hash_entry *));
205
206 static bfd_boolean elf64_hppa_finish_dynamic_symbol
207 PARAMS ((bfd *, struct bfd_link_info *,
208 struct elf_link_hash_entry *, Elf_Internal_Sym *));
209
210 static int elf64_hppa_additional_program_headers
211 PARAMS ((bfd *));
212
213 static bfd_boolean elf64_hppa_modify_segment_map
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela *));
218
219 static bfd_boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd *, struct bfd_link_info *));
221
222 static bfd_boolean elf64_hppa_check_relocs
223 PARAMS ((bfd *, struct bfd_link_info *,
224 asection *, const Elf_Internal_Rela *));
225
226 static bfd_boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
228
229 static bfd_boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry *, PTR));
231
232 static bfd_boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247 static bfd_boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
250 static bfd_boolean get_reloc_section
251 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
252
253 static bfd_boolean count_dyn_reloc
254 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
255 int, asection *, int, bfd_vma, bfd_vma));
256
257 static bfd_boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260 static bfd_boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
263 static bfd_boolean get_opd
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static bfd_boolean get_plt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static bfd_boolean get_dlt
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272 static bfd_boolean get_stub
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
275 static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym *, int));
277
278 static bfd_boolean
279 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
280 struct elf64_hppa_dyn_hash_table *ht;
281 bfd *abfd ATTRIBUTE_UNUSED;
282 new_hash_entry_func new;
283 {
284 memset (ht, 0, sizeof (*ht));
285 return bfd_hash_table_init (&ht->root, new);
286 }
287
288 static struct bfd_hash_entry*
289 elf64_hppa_new_dyn_hash_entry (entry, table, string)
290 struct bfd_hash_entry *entry;
291 struct bfd_hash_table *table;
292 const char *string;
293 {
294 struct elf64_hppa_dyn_hash_entry *ret;
295 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
296
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (!ret)
300 ret = bfd_hash_allocate (table, sizeof (*ret));
301
302 if (!ret)
303 return 0;
304
305 /* Call the allocation method of the superclass. */
306 ret = ((struct elf64_hppa_dyn_hash_entry *)
307 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
308
309 /* Initialize our local data. All zeros. */
310 memset (&ret->dlt_offset, 0,
311 (sizeof (struct elf64_hppa_dyn_hash_entry)
312 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
313
314 return &ret->root;
315 }
316
317 /* Create the derived linker hash table. The PA64 ELF port uses this
318 derived hash table to keep information specific to the PA ElF
319 linker (without using static variables). */
320
321 static struct bfd_link_hash_table*
322 elf64_hppa_hash_table_create (abfd)
323 bfd *abfd;
324 {
325 struct elf64_hppa_link_hash_table *ret;
326
327 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
328 if (!ret)
329 return 0;
330 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
331 _bfd_elf_link_hash_newfunc))
332 {
333 bfd_release (abfd, ret);
334 return 0;
335 }
336
337 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
338 elf64_hppa_new_dyn_hash_entry))
339 return 0;
340 return &ret->root.root;
341 }
342
343 /* Look up an entry in a PA64 ELF linker hash table. */
344
345 static struct elf64_hppa_dyn_hash_entry *
346 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
347 struct elf64_hppa_dyn_hash_table *table;
348 const char *string;
349 bfd_boolean create, copy;
350 {
351 return ((struct elf64_hppa_dyn_hash_entry *)
352 bfd_hash_lookup (&table->root, string, create, copy));
353 }
354
355 /* Traverse a PA64 ELF linker hash table. */
356
357 static void
358 elf64_hppa_dyn_hash_traverse (table, func, info)
359 struct elf64_hppa_dyn_hash_table *table;
360 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
361 PTR info;
362 {
363 (bfd_hash_traverse
364 (&table->root,
365 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
366 info));
367 }
368 \f
369 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
370
371 Additionally we set the default architecture and machine. */
372 static bfd_boolean
373 elf64_hppa_object_p (abfd)
374 bfd *abfd;
375 {
376 Elf_Internal_Ehdr * i_ehdrp;
377 unsigned int flags;
378
379 i_ehdrp = elf_elfheader (abfd);
380 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
381 {
382 /* GCC on hppa-linux produces binaries with OSABI=Linux,
383 but the kernel produces corefiles with OSABI=SysV. */
384 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
385 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
386 return FALSE;
387 }
388 else
389 {
390 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
391 return FALSE;
392 }
393
394 flags = i_ehdrp->e_flags;
395 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
396 {
397 case EFA_PARISC_1_0:
398 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
399 case EFA_PARISC_1_1:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
401 case EFA_PARISC_2_0:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
403 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
404 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
405 }
406 /* Don't be fussy. */
407 return TRUE;
408 }
409
410 /* Given section type (hdr->sh_type), return a boolean indicating
411 whether or not the section is an elf64-hppa specific section. */
412 static bfd_boolean
413 elf64_hppa_section_from_shdr (bfd *abfd,
414 Elf_Internal_Shdr *hdr,
415 const char *name,
416 int shindex)
417 {
418 asection *newsect;
419
420 switch (hdr->sh_type)
421 {
422 case SHT_PARISC_EXT:
423 if (strcmp (name, ".PARISC.archext") != 0)
424 return FALSE;
425 break;
426 case SHT_PARISC_UNWIND:
427 if (strcmp (name, ".PARISC.unwind") != 0)
428 return FALSE;
429 break;
430 case SHT_PARISC_DOC:
431 case SHT_PARISC_ANNOT:
432 default:
433 return FALSE;
434 }
435
436 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
437 return FALSE;
438 newsect = hdr->bfd_section;
439
440 return TRUE;
441 }
442
443 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
444 name describes what was once potentially anonymous memory. We
445 allocate memory as necessary, possibly reusing PBUF/PLEN. */
446
447 static const char *
448 get_dyn_name (abfd, h, rel, pbuf, plen)
449 bfd *abfd;
450 struct elf_link_hash_entry *h;
451 const Elf_Internal_Rela *rel;
452 char **pbuf;
453 size_t *plen;
454 {
455 asection *sec = abfd->sections;
456 size_t nlen, tlen;
457 char *buf;
458 size_t len;
459
460 if (h && rel->r_addend == 0)
461 return h->root.root.string;
462
463 if (h)
464 nlen = strlen (h->root.root.string);
465 else
466 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
467 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
468
469 len = *plen;
470 buf = *pbuf;
471 if (len < tlen)
472 {
473 if (buf)
474 free (buf);
475 *pbuf = buf = malloc (tlen);
476 *plen = len = tlen;
477 if (!buf)
478 return NULL;
479 }
480
481 if (h)
482 {
483 memcpy (buf, h->root.root.string, nlen);
484 buf[nlen++] = '+';
485 sprintf_vma (buf + nlen, rel->r_addend);
486 }
487 else
488 {
489 nlen = sprintf (buf, "%x:%lx",
490 sec->id & 0xffffffff,
491 (long) ELF64_R_SYM (rel->r_info));
492 if (rel->r_addend)
493 {
494 buf[nlen++] = '+';
495 sprintf_vma (buf + nlen, rel->r_addend);
496 }
497 }
498
499 return buf;
500 }
501
502 /* SEC is a section containing relocs for an input BFD when linking; return
503 a suitable section for holding relocs in the output BFD for a link. */
504
505 static bfd_boolean
506 get_reloc_section (abfd, hppa_info, sec)
507 bfd *abfd;
508 struct elf64_hppa_link_hash_table *hppa_info;
509 asection *sec;
510 {
511 const char *srel_name;
512 asection *srel;
513 bfd *dynobj;
514
515 srel_name = (bfd_elf_string_from_elf_section
516 (abfd, elf_elfheader(abfd)->e_shstrndx,
517 elf_section_data(sec)->rel_hdr.sh_name));
518 if (srel_name == NULL)
519 return FALSE;
520
521 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
522 && strcmp (bfd_get_section_name (abfd, sec),
523 srel_name+5) == 0)
524 || (strncmp (srel_name, ".rel", 4) == 0
525 && strcmp (bfd_get_section_name (abfd, sec),
526 srel_name+4) == 0));
527
528 dynobj = hppa_info->root.dynobj;
529 if (!dynobj)
530 hppa_info->root.dynobj = dynobj = abfd;
531
532 srel = bfd_get_section_by_name (dynobj, srel_name);
533 if (srel == NULL)
534 {
535 srel = bfd_make_section_with_flags (dynobj, srel_name,
536 (SEC_ALLOC
537 | SEC_LOAD
538 | SEC_HAS_CONTENTS
539 | SEC_IN_MEMORY
540 | SEC_LINKER_CREATED
541 | SEC_READONLY));
542 if (srel == NULL
543 || !bfd_set_section_alignment (dynobj, srel, 3))
544 return FALSE;
545 }
546
547 hppa_info->other_rel_sec = srel;
548 return TRUE;
549 }
550
551 /* Add a new entry to the list of dynamic relocations against DYN_H.
552
553 We use this to keep a record of all the FPTR relocations against a
554 particular symbol so that we can create FPTR relocations in the
555 output file. */
556
557 static bfd_boolean
558 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
559 bfd *abfd;
560 struct elf64_hppa_dyn_hash_entry *dyn_h;
561 int type;
562 asection *sec;
563 int sec_symndx;
564 bfd_vma offset;
565 bfd_vma addend;
566 {
567 struct elf64_hppa_dyn_reloc_entry *rent;
568
569 rent = (struct elf64_hppa_dyn_reloc_entry *)
570 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
571 if (!rent)
572 return FALSE;
573
574 rent->next = dyn_h->reloc_entries;
575 rent->type = type;
576 rent->sec = sec;
577 rent->sec_symndx = sec_symndx;
578 rent->offset = offset;
579 rent->addend = addend;
580 dyn_h->reloc_entries = rent;
581
582 return TRUE;
583 }
584
585 /* Scan the RELOCS and record the type of dynamic entries that each
586 referenced symbol needs. */
587
588 static bfd_boolean
589 elf64_hppa_check_relocs (abfd, info, sec, relocs)
590 bfd *abfd;
591 struct bfd_link_info *info;
592 asection *sec;
593 const Elf_Internal_Rela *relocs;
594 {
595 struct elf64_hppa_link_hash_table *hppa_info;
596 const Elf_Internal_Rela *relend;
597 Elf_Internal_Shdr *symtab_hdr;
598 const Elf_Internal_Rela *rel;
599 asection *dlt, *plt, *stubs;
600 char *buf;
601 size_t buf_len;
602 int sec_symndx;
603
604 if (info->relocatable)
605 return TRUE;
606
607 /* If this is the first dynamic object found in the link, create
608 the special sections required for dynamic linking. */
609 if (! elf_hash_table (info)->dynamic_sections_created)
610 {
611 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
612 return FALSE;
613 }
614
615 hppa_info = elf64_hppa_hash_table (info);
616 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
617
618 /* If necessary, build a new table holding section symbols indices
619 for this BFD. */
620
621 if (info->shared && hppa_info->section_syms_bfd != abfd)
622 {
623 unsigned long i;
624 unsigned int highest_shndx;
625 Elf_Internal_Sym *local_syms = NULL;
626 Elf_Internal_Sym *isym, *isymend;
627 bfd_size_type amt;
628
629 /* We're done with the old cache of section index to section symbol
630 index information. Free it.
631
632 ?!? Note we leak the last section_syms array. Presumably we
633 could free it in one of the later routines in this file. */
634 if (hppa_info->section_syms)
635 free (hppa_info->section_syms);
636
637 /* Read this BFD's local symbols. */
638 if (symtab_hdr->sh_info != 0)
639 {
640 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
641 if (local_syms == NULL)
642 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
643 symtab_hdr->sh_info, 0,
644 NULL, NULL, NULL);
645 if (local_syms == NULL)
646 return FALSE;
647 }
648
649 /* Record the highest section index referenced by the local symbols. */
650 highest_shndx = 0;
651 isymend = local_syms + symtab_hdr->sh_info;
652 for (isym = local_syms; isym < isymend; isym++)
653 {
654 if (isym->st_shndx > highest_shndx)
655 highest_shndx = isym->st_shndx;
656 }
657
658 /* Allocate an array to hold the section index to section symbol index
659 mapping. Bump by one since we start counting at zero. */
660 highest_shndx++;
661 amt = highest_shndx;
662 amt *= sizeof (int);
663 hppa_info->section_syms = (int *) bfd_malloc (amt);
664
665 /* Now walk the local symbols again. If we find a section symbol,
666 record the index of the symbol into the section_syms array. */
667 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
668 {
669 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
670 hppa_info->section_syms[isym->st_shndx] = i;
671 }
672
673 /* We are finished with the local symbols. */
674 if (local_syms != NULL
675 && symtab_hdr->contents != (unsigned char *) local_syms)
676 {
677 if (! info->keep_memory)
678 free (local_syms);
679 else
680 {
681 /* Cache the symbols for elf_link_input_bfd. */
682 symtab_hdr->contents = (unsigned char *) local_syms;
683 }
684 }
685
686 /* Record which BFD we built the section_syms mapping for. */
687 hppa_info->section_syms_bfd = abfd;
688 }
689
690 /* Record the symbol index for this input section. We may need it for
691 relocations when building shared libraries. When not building shared
692 libraries this value is never really used, but assign it to zero to
693 prevent out of bounds memory accesses in other routines. */
694 if (info->shared)
695 {
696 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
697
698 /* If we did not find a section symbol for this section, then
699 something went terribly wrong above. */
700 if (sec_symndx == -1)
701 return FALSE;
702
703 sec_symndx = hppa_info->section_syms[sec_symndx];
704 }
705 else
706 sec_symndx = 0;
707
708 dlt = plt = stubs = NULL;
709 buf = NULL;
710 buf_len = 0;
711
712 relend = relocs + sec->reloc_count;
713 for (rel = relocs; rel < relend; ++rel)
714 {
715 enum
716 {
717 NEED_DLT = 1,
718 NEED_PLT = 2,
719 NEED_STUB = 4,
720 NEED_OPD = 8,
721 NEED_DYNREL = 16,
722 };
723
724 struct elf_link_hash_entry *h = NULL;
725 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
726 struct elf64_hppa_dyn_hash_entry *dyn_h;
727 int need_entry;
728 const char *addr_name;
729 bfd_boolean maybe_dynamic;
730 int dynrel_type = R_PARISC_NONE;
731 static reloc_howto_type *howto;
732
733 if (r_symndx >= symtab_hdr->sh_info)
734 {
735 /* We're dealing with a global symbol -- find its hash entry
736 and mark it as being referenced. */
737 long indx = r_symndx - symtab_hdr->sh_info;
738 h = elf_sym_hashes (abfd)[indx];
739 while (h->root.type == bfd_link_hash_indirect
740 || h->root.type == bfd_link_hash_warning)
741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
742
743 h->ref_regular = 1;
744 }
745
746 /* We can only get preliminary data on whether a symbol is
747 locally or externally defined, as not all of the input files
748 have yet been processed. Do something with what we know, as
749 this may help reduce memory usage and processing time later. */
750 maybe_dynamic = FALSE;
751 if (h && ((info->shared
752 && (!info->symbolic
753 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
754 || !h->def_regular
755 || h->root.type == bfd_link_hash_defweak))
756 maybe_dynamic = TRUE;
757
758 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
759 need_entry = 0;
760 switch (howto->type)
761 {
762 /* These are simple indirect references to symbols through the
763 DLT. We need to create a DLT entry for any symbols which
764 appears in a DLTIND relocation. */
765 case R_PARISC_DLTIND21L:
766 case R_PARISC_DLTIND14R:
767 case R_PARISC_DLTIND14F:
768 case R_PARISC_DLTIND14WR:
769 case R_PARISC_DLTIND14DR:
770 need_entry = NEED_DLT;
771 break;
772
773 /* ?!? These need a DLT entry. But I have no idea what to do with
774 the "link time TP value. */
775 case R_PARISC_LTOFF_TP21L:
776 case R_PARISC_LTOFF_TP14R:
777 case R_PARISC_LTOFF_TP14F:
778 case R_PARISC_LTOFF_TP64:
779 case R_PARISC_LTOFF_TP14WR:
780 case R_PARISC_LTOFF_TP14DR:
781 case R_PARISC_LTOFF_TP16F:
782 case R_PARISC_LTOFF_TP16WF:
783 case R_PARISC_LTOFF_TP16DF:
784 need_entry = NEED_DLT;
785 break;
786
787 /* These are function calls. Depending on their precise target we
788 may need to make a stub for them. The stub uses the PLT, so we
789 need to create PLT entries for these symbols too. */
790 case R_PARISC_PCREL12F:
791 case R_PARISC_PCREL17F:
792 case R_PARISC_PCREL22F:
793 case R_PARISC_PCREL32:
794 case R_PARISC_PCREL64:
795 case R_PARISC_PCREL21L:
796 case R_PARISC_PCREL17R:
797 case R_PARISC_PCREL17C:
798 case R_PARISC_PCREL14R:
799 case R_PARISC_PCREL14F:
800 case R_PARISC_PCREL22C:
801 case R_PARISC_PCREL14WR:
802 case R_PARISC_PCREL14DR:
803 case R_PARISC_PCREL16F:
804 case R_PARISC_PCREL16WF:
805 case R_PARISC_PCREL16DF:
806 need_entry = (NEED_PLT | NEED_STUB);
807 break;
808
809 case R_PARISC_PLTOFF21L:
810 case R_PARISC_PLTOFF14R:
811 case R_PARISC_PLTOFF14F:
812 case R_PARISC_PLTOFF14WR:
813 case R_PARISC_PLTOFF14DR:
814 case R_PARISC_PLTOFF16F:
815 case R_PARISC_PLTOFF16WF:
816 case R_PARISC_PLTOFF16DF:
817 need_entry = (NEED_PLT);
818 break;
819
820 case R_PARISC_DIR64:
821 if (info->shared || maybe_dynamic)
822 need_entry = (NEED_DYNREL);
823 dynrel_type = R_PARISC_DIR64;
824 break;
825
826 /* This is an indirect reference through the DLT to get the address
827 of a OPD descriptor. Thus we need to make a DLT entry that points
828 to an OPD entry. */
829 case R_PARISC_LTOFF_FPTR21L:
830 case R_PARISC_LTOFF_FPTR14R:
831 case R_PARISC_LTOFF_FPTR14WR:
832 case R_PARISC_LTOFF_FPTR14DR:
833 case R_PARISC_LTOFF_FPTR32:
834 case R_PARISC_LTOFF_FPTR64:
835 case R_PARISC_LTOFF_FPTR16F:
836 case R_PARISC_LTOFF_FPTR16WF:
837 case R_PARISC_LTOFF_FPTR16DF:
838 if (info->shared || maybe_dynamic)
839 need_entry = (NEED_DLT | NEED_OPD);
840 else
841 need_entry = (NEED_DLT | NEED_OPD);
842 dynrel_type = R_PARISC_FPTR64;
843 break;
844
845 /* This is a simple OPD entry. */
846 case R_PARISC_FPTR64:
847 if (info->shared || maybe_dynamic)
848 need_entry = (NEED_OPD | NEED_DYNREL);
849 else
850 need_entry = (NEED_OPD);
851 dynrel_type = R_PARISC_FPTR64;
852 break;
853
854 /* Add more cases as needed. */
855 }
856
857 if (!need_entry)
858 continue;
859
860 /* Collect a canonical name for this address. */
861 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
862
863 /* Collect the canonical entry data for this address. */
864 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
865 addr_name, TRUE, TRUE);
866 BFD_ASSERT (dyn_h);
867
868 /* Stash away enough information to be able to find this symbol
869 regardless of whether or not it is local or global. */
870 dyn_h->h = h;
871 dyn_h->owner = abfd;
872 dyn_h->sym_indx = r_symndx;
873
874 /* ?!? We may need to do some error checking in here. */
875 /* Create what's needed. */
876 if (need_entry & NEED_DLT)
877 {
878 if (! hppa_info->dlt_sec
879 && ! get_dlt (abfd, info, hppa_info))
880 goto err_out;
881 dyn_h->want_dlt = 1;
882 }
883
884 if (need_entry & NEED_PLT)
885 {
886 if (! hppa_info->plt_sec
887 && ! get_plt (abfd, info, hppa_info))
888 goto err_out;
889 dyn_h->want_plt = 1;
890 }
891
892 if (need_entry & NEED_STUB)
893 {
894 if (! hppa_info->stub_sec
895 && ! get_stub (abfd, info, hppa_info))
896 goto err_out;
897 dyn_h->want_stub = 1;
898 }
899
900 if (need_entry & NEED_OPD)
901 {
902 if (! hppa_info->opd_sec
903 && ! get_opd (abfd, info, hppa_info))
904 goto err_out;
905
906 dyn_h->want_opd = 1;
907
908 /* FPTRs are not allocated by the dynamic linker for PA64, though
909 it is possible that will change in the future. */
910
911 /* This could be a local function that had its address taken, in
912 which case H will be NULL. */
913 if (h)
914 h->needs_plt = 1;
915 }
916
917 /* Add a new dynamic relocation to the chain of dynamic
918 relocations for this symbol. */
919 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
920 {
921 if (! hppa_info->other_rel_sec
922 && ! get_reloc_section (abfd, hppa_info, sec))
923 goto err_out;
924
925 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
926 sec_symndx, rel->r_offset, rel->r_addend))
927 goto err_out;
928
929 /* If we are building a shared library and we just recorded
930 a dynamic R_PARISC_FPTR64 relocation, then make sure the
931 section symbol for this section ends up in the dynamic
932 symbol table. */
933 if (info->shared && dynrel_type == R_PARISC_FPTR64
934 && ! (bfd_elf_link_record_local_dynamic_symbol
935 (info, abfd, sec_symndx)))
936 return FALSE;
937 }
938 }
939
940 if (buf)
941 free (buf);
942 return TRUE;
943
944 err_out:
945 if (buf)
946 free (buf);
947 return FALSE;
948 }
949
950 struct elf64_hppa_allocate_data
951 {
952 struct bfd_link_info *info;
953 bfd_size_type ofs;
954 };
955
956 /* Should we do dynamic things to this symbol? */
957
958 static bfd_boolean
959 elf64_hppa_dynamic_symbol_p (h, info)
960 struct elf_link_hash_entry *h;
961 struct bfd_link_info *info;
962 {
963 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
964 and relocations that retrieve a function descriptor? Assume the
965 worst for now. */
966 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
967 {
968 /* ??? Why is this here and not elsewhere is_local_label_name. */
969 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
970 return FALSE;
971
972 return TRUE;
973 }
974 else
975 return FALSE;
976 }
977
978 /* Mark all functions exported by this file so that we can later allocate
979 entries in .opd for them. */
980
981 static bfd_boolean
982 elf64_hppa_mark_exported_functions (h, data)
983 struct elf_link_hash_entry *h;
984 PTR data;
985 {
986 struct bfd_link_info *info = (struct bfd_link_info *)data;
987 struct elf64_hppa_link_hash_table *hppa_info;
988
989 hppa_info = elf64_hppa_hash_table (info);
990
991 if (h->root.type == bfd_link_hash_warning)
992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
993
994 if (h
995 && (h->root.type == bfd_link_hash_defined
996 || h->root.type == bfd_link_hash_defweak)
997 && h->root.u.def.section->output_section != NULL
998 && h->type == STT_FUNC)
999 {
1000 struct elf64_hppa_dyn_hash_entry *dyn_h;
1001
1002 /* Add this symbol to the PA64 linker hash table. */
1003 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1004 h->root.root.string, TRUE, TRUE);
1005 BFD_ASSERT (dyn_h);
1006 dyn_h->h = h;
1007
1008 if (! hppa_info->opd_sec
1009 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1010 return FALSE;
1011
1012 dyn_h->want_opd = 1;
1013 /* Put a flag here for output_symbol_hook. */
1014 dyn_h->st_shndx = -1;
1015 h->needs_plt = 1;
1016 }
1017
1018 return TRUE;
1019 }
1020
1021 /* Allocate space for a DLT entry. */
1022
1023 static bfd_boolean
1024 allocate_global_data_dlt (dyn_h, data)
1025 struct elf64_hppa_dyn_hash_entry *dyn_h;
1026 PTR data;
1027 {
1028 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1029
1030 if (dyn_h->want_dlt)
1031 {
1032 struct elf_link_hash_entry *h = dyn_h->h;
1033
1034 if (x->info->shared)
1035 {
1036 /* Possibly add the symbol to the local dynamic symbol
1037 table since we might need to create a dynamic relocation
1038 against it. */
1039 if (! h
1040 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1041 {
1042 bfd *owner;
1043 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1044
1045 if (! (bfd_elf_link_record_local_dynamic_symbol
1046 (x->info, owner, dyn_h->sym_indx)))
1047 return FALSE;
1048 }
1049 }
1050
1051 dyn_h->dlt_offset = x->ofs;
1052 x->ofs += DLT_ENTRY_SIZE;
1053 }
1054 return TRUE;
1055 }
1056
1057 /* Allocate space for a DLT.PLT entry. */
1058
1059 static bfd_boolean
1060 allocate_global_data_plt (dyn_h, data)
1061 struct elf64_hppa_dyn_hash_entry *dyn_h;
1062 PTR data;
1063 {
1064 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1065
1066 if (dyn_h->want_plt
1067 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1068 && !((dyn_h->h->root.type == bfd_link_hash_defined
1069 || dyn_h->h->root.type == bfd_link_hash_defweak)
1070 && dyn_h->h->root.u.def.section->output_section != NULL))
1071 {
1072 dyn_h->plt_offset = x->ofs;
1073 x->ofs += PLT_ENTRY_SIZE;
1074 if (dyn_h->plt_offset < 0x2000)
1075 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1076 }
1077 else
1078 dyn_h->want_plt = 0;
1079
1080 return TRUE;
1081 }
1082
1083 /* Allocate space for a STUB entry. */
1084
1085 static bfd_boolean
1086 allocate_global_data_stub (dyn_h, data)
1087 struct elf64_hppa_dyn_hash_entry *dyn_h;
1088 PTR data;
1089 {
1090 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1091
1092 if (dyn_h->want_stub
1093 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1094 && !((dyn_h->h->root.type == bfd_link_hash_defined
1095 || dyn_h->h->root.type == bfd_link_hash_defweak)
1096 && dyn_h->h->root.u.def.section->output_section != NULL))
1097 {
1098 dyn_h->stub_offset = x->ofs;
1099 x->ofs += sizeof (plt_stub);
1100 }
1101 else
1102 dyn_h->want_stub = 0;
1103 return TRUE;
1104 }
1105
1106 /* Allocate space for a FPTR entry. */
1107
1108 static bfd_boolean
1109 allocate_global_data_opd (dyn_h, data)
1110 struct elf64_hppa_dyn_hash_entry *dyn_h;
1111 PTR data;
1112 {
1113 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1114
1115 if (dyn_h->want_opd)
1116 {
1117 struct elf_link_hash_entry *h = dyn_h->h;
1118
1119 if (h)
1120 while (h->root.type == bfd_link_hash_indirect
1121 || h->root.type == bfd_link_hash_warning)
1122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1123
1124 /* We never need an opd entry for a symbol which is not
1125 defined by this output file. */
1126 if (h && (h->root.type == bfd_link_hash_undefined
1127 || h->root.u.def.section->output_section == NULL))
1128 dyn_h->want_opd = 0;
1129
1130 /* If we are creating a shared library, took the address of a local
1131 function or might export this function from this object file, then
1132 we have to create an opd descriptor. */
1133 else if (x->info->shared
1134 || h == NULL
1135 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1136 || (h->root.type == bfd_link_hash_defined
1137 || h->root.type == bfd_link_hash_defweak))
1138 {
1139 /* If we are creating a shared library, then we will have to
1140 create a runtime relocation for the symbol to properly
1141 initialize the .opd entry. Make sure the symbol gets
1142 added to the dynamic symbol table. */
1143 if (x->info->shared
1144 && (h == NULL || (h->dynindx == -1)))
1145 {
1146 bfd *owner;
1147 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1148
1149 if (!bfd_elf_link_record_local_dynamic_symbol
1150 (x->info, owner, dyn_h->sym_indx))
1151 return FALSE;
1152 }
1153
1154 /* This may not be necessary or desirable anymore now that
1155 we have some support for dealing with section symbols
1156 in dynamic relocs. But name munging does make the result
1157 much easier to debug. ie, the EPLT reloc will reference
1158 a symbol like .foobar, instead of .text + offset. */
1159 if (x->info->shared && h)
1160 {
1161 char *new_name;
1162 struct elf_link_hash_entry *nh;
1163
1164 new_name = alloca (strlen (h->root.root.string) + 2);
1165 new_name[0] = '.';
1166 strcpy (new_name + 1, h->root.root.string);
1167
1168 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1169 new_name, TRUE, TRUE, TRUE);
1170
1171 nh->root.type = h->root.type;
1172 nh->root.u.def.value = h->root.u.def.value;
1173 nh->root.u.def.section = h->root.u.def.section;
1174
1175 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1176 return FALSE;
1177
1178 }
1179 dyn_h->opd_offset = x->ofs;
1180 x->ofs += OPD_ENTRY_SIZE;
1181 }
1182
1183 /* Otherwise we do not need an opd entry. */
1184 else
1185 dyn_h->want_opd = 0;
1186 }
1187 return TRUE;
1188 }
1189
1190 /* HP requires the EI_OSABI field to be filled in. The assignment to
1191 EI_ABIVERSION may not be strictly necessary. */
1192
1193 static void
1194 elf64_hppa_post_process_headers (abfd, link_info)
1195 bfd * abfd;
1196 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1197 {
1198 Elf_Internal_Ehdr * i_ehdrp;
1199
1200 i_ehdrp = elf_elfheader (abfd);
1201
1202 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1203 {
1204 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1205 }
1206 else
1207 {
1208 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1209 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1210 }
1211 }
1212
1213 /* Create function descriptor section (.opd). This section is called .opd
1214 because it contains "official procedure descriptors". The "official"
1215 refers to the fact that these descriptors are used when taking the address
1216 of a procedure, thus ensuring a unique address for each procedure. */
1217
1218 static bfd_boolean
1219 get_opd (abfd, info, hppa_info)
1220 bfd *abfd;
1221 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1222 struct elf64_hppa_link_hash_table *hppa_info;
1223 {
1224 asection *opd;
1225 bfd *dynobj;
1226
1227 opd = hppa_info->opd_sec;
1228 if (!opd)
1229 {
1230 dynobj = hppa_info->root.dynobj;
1231 if (!dynobj)
1232 hppa_info->root.dynobj = dynobj = abfd;
1233
1234 opd = bfd_make_section_with_flags (dynobj, ".opd",
1235 (SEC_ALLOC
1236 | SEC_LOAD
1237 | SEC_HAS_CONTENTS
1238 | SEC_IN_MEMORY
1239 | SEC_LINKER_CREATED));
1240 if (!opd
1241 || !bfd_set_section_alignment (abfd, opd, 3))
1242 {
1243 BFD_ASSERT (0);
1244 return FALSE;
1245 }
1246
1247 hppa_info->opd_sec = opd;
1248 }
1249
1250 return TRUE;
1251 }
1252
1253 /* Create the PLT section. */
1254
1255 static bfd_boolean
1256 get_plt (abfd, info, hppa_info)
1257 bfd *abfd;
1258 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1259 struct elf64_hppa_link_hash_table *hppa_info;
1260 {
1261 asection *plt;
1262 bfd *dynobj;
1263
1264 plt = hppa_info->plt_sec;
1265 if (!plt)
1266 {
1267 dynobj = hppa_info->root.dynobj;
1268 if (!dynobj)
1269 hppa_info->root.dynobj = dynobj = abfd;
1270
1271 plt = bfd_make_section_with_flags (dynobj, ".plt",
1272 (SEC_ALLOC
1273 | SEC_LOAD
1274 | SEC_HAS_CONTENTS
1275 | SEC_IN_MEMORY
1276 | SEC_LINKER_CREATED));
1277 if (!plt
1278 || !bfd_set_section_alignment (abfd, plt, 3))
1279 {
1280 BFD_ASSERT (0);
1281 return FALSE;
1282 }
1283
1284 hppa_info->plt_sec = plt;
1285 }
1286
1287 return TRUE;
1288 }
1289
1290 /* Create the DLT section. */
1291
1292 static bfd_boolean
1293 get_dlt (abfd, info, hppa_info)
1294 bfd *abfd;
1295 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1296 struct elf64_hppa_link_hash_table *hppa_info;
1297 {
1298 asection *dlt;
1299 bfd *dynobj;
1300
1301 dlt = hppa_info->dlt_sec;
1302 if (!dlt)
1303 {
1304 dynobj = hppa_info->root.dynobj;
1305 if (!dynobj)
1306 hppa_info->root.dynobj = dynobj = abfd;
1307
1308 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1309 (SEC_ALLOC
1310 | SEC_LOAD
1311 | SEC_HAS_CONTENTS
1312 | SEC_IN_MEMORY
1313 | SEC_LINKER_CREATED));
1314 if (!dlt
1315 || !bfd_set_section_alignment (abfd, dlt, 3))
1316 {
1317 BFD_ASSERT (0);
1318 return FALSE;
1319 }
1320
1321 hppa_info->dlt_sec = dlt;
1322 }
1323
1324 return TRUE;
1325 }
1326
1327 /* Create the stubs section. */
1328
1329 static bfd_boolean
1330 get_stub (abfd, info, hppa_info)
1331 bfd *abfd;
1332 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1333 struct elf64_hppa_link_hash_table *hppa_info;
1334 {
1335 asection *stub;
1336 bfd *dynobj;
1337
1338 stub = hppa_info->stub_sec;
1339 if (!stub)
1340 {
1341 dynobj = hppa_info->root.dynobj;
1342 if (!dynobj)
1343 hppa_info->root.dynobj = dynobj = abfd;
1344
1345 stub = bfd_make_section_with_flags (dynobj, ".stub",
1346 (SEC_ALLOC | SEC_LOAD
1347 | SEC_HAS_CONTENTS
1348 | SEC_IN_MEMORY
1349 | SEC_READONLY
1350 | SEC_LINKER_CREATED));
1351 if (!stub
1352 || !bfd_set_section_alignment (abfd, stub, 3))
1353 {
1354 BFD_ASSERT (0);
1355 return FALSE;
1356 }
1357
1358 hppa_info->stub_sec = stub;
1359 }
1360
1361 return TRUE;
1362 }
1363
1364 /* Create sections necessary for dynamic linking. This is only a rough
1365 cut and will likely change as we learn more about the somewhat
1366 unusual dynamic linking scheme HP uses.
1367
1368 .stub:
1369 Contains code to implement cross-space calls. The first time one
1370 of the stubs is used it will call into the dynamic linker, later
1371 calls will go straight to the target.
1372
1373 The only stub we support right now looks like
1374
1375 ldd OFFSET(%dp),%r1
1376 bve %r0(%r1)
1377 ldd OFFSET+8(%dp),%dp
1378
1379 Other stubs may be needed in the future. We may want the remove
1380 the break/nop instruction. It is only used right now to keep the
1381 offset of a .plt entry and a .stub entry in sync.
1382
1383 .dlt:
1384 This is what most people call the .got. HP used a different name.
1385 Losers.
1386
1387 .rela.dlt:
1388 Relocations for the DLT.
1389
1390 .plt:
1391 Function pointers as address,gp pairs.
1392
1393 .rela.plt:
1394 Should contain dynamic IPLT (and EPLT?) relocations.
1395
1396 .opd:
1397 FPTRS
1398
1399 .rela.opd:
1400 EPLT relocations for symbols exported from shared libraries. */
1401
1402 static bfd_boolean
1403 elf64_hppa_create_dynamic_sections (abfd, info)
1404 bfd *abfd;
1405 struct bfd_link_info *info;
1406 {
1407 asection *s;
1408
1409 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1410 return FALSE;
1411
1412 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1413 return FALSE;
1414
1415 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1416 return FALSE;
1417
1418 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1419 return FALSE;
1420
1421 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1422 (SEC_ALLOC | SEC_LOAD
1423 | SEC_HAS_CONTENTS
1424 | SEC_IN_MEMORY
1425 | SEC_READONLY
1426 | SEC_LINKER_CREATED));
1427 if (s == NULL
1428 || !bfd_set_section_alignment (abfd, s, 3))
1429 return FALSE;
1430 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1431
1432 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1433 (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED));
1438 if (s == NULL
1439 || !bfd_set_section_alignment (abfd, s, 3))
1440 return FALSE;
1441 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1442
1443 s = bfd_make_section_with_flags (abfd, ".rela.data",
1444 (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED));
1449 if (s == NULL
1450 || !bfd_set_section_alignment (abfd, s, 3))
1451 return FALSE;
1452 elf64_hppa_hash_table (info)->other_rel_sec = s;
1453
1454 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1455 (SEC_ALLOC | SEC_LOAD
1456 | SEC_HAS_CONTENTS
1457 | SEC_IN_MEMORY
1458 | SEC_READONLY
1459 | SEC_LINKER_CREATED));
1460 if (s == NULL
1461 || !bfd_set_section_alignment (abfd, s, 3))
1462 return FALSE;
1463 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1464
1465 return TRUE;
1466 }
1467
1468 /* Allocate dynamic relocations for those symbols that turned out
1469 to be dynamic. */
1470
1471 static bfd_boolean
1472 allocate_dynrel_entries (dyn_h, data)
1473 struct elf64_hppa_dyn_hash_entry *dyn_h;
1474 PTR data;
1475 {
1476 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1477 struct elf64_hppa_link_hash_table *hppa_info;
1478 struct elf64_hppa_dyn_reloc_entry *rent;
1479 bfd_boolean dynamic_symbol, shared;
1480
1481 hppa_info = elf64_hppa_hash_table (x->info);
1482 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1483 shared = x->info->shared;
1484
1485 /* We may need to allocate relocations for a non-dynamic symbol
1486 when creating a shared library. */
1487 if (!dynamic_symbol && !shared)
1488 return TRUE;
1489
1490 /* Take care of the normal data relocations. */
1491
1492 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1493 {
1494 /* Allocate one iff we are building a shared library, the relocation
1495 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1496 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1497 continue;
1498
1499 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1500
1501 /* Make sure this symbol gets into the dynamic symbol table if it is
1502 not already recorded. ?!? This should not be in the loop since
1503 the symbol need only be added once. */
1504 if (dyn_h->h == 0
1505 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1506 if (!bfd_elf_link_record_local_dynamic_symbol
1507 (x->info, rent->sec->owner, dyn_h->sym_indx))
1508 return FALSE;
1509 }
1510
1511 /* Take care of the GOT and PLT relocations. */
1512
1513 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1514 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1515
1516 /* If we are building a shared library, then every symbol that has an
1517 opd entry will need an EPLT relocation to relocate the symbol's address
1518 and __gp value based on the runtime load address. */
1519 if (shared && dyn_h->want_opd)
1520 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1521
1522 if (dyn_h->want_plt && dynamic_symbol)
1523 {
1524 bfd_size_type t = 0;
1525
1526 /* Dynamic symbols get one IPLT relocation. Local symbols in
1527 shared libraries get two REL relocations. Local symbols in
1528 main applications get nothing. */
1529 if (dynamic_symbol)
1530 t = sizeof (Elf64_External_Rela);
1531 else if (shared)
1532 t = 2 * sizeof (Elf64_External_Rela);
1533
1534 hppa_info->plt_rel_sec->size += t;
1535 }
1536
1537 return TRUE;
1538 }
1539
1540 /* Adjust a symbol defined by a dynamic object and referenced by a
1541 regular object. */
1542
1543 static bfd_boolean
1544 elf64_hppa_adjust_dynamic_symbol (info, h)
1545 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1546 struct elf_link_hash_entry *h;
1547 {
1548 /* ??? Undefined symbols with PLT entries should be re-defined
1549 to be the PLT entry. */
1550
1551 /* If this is a weak symbol, and there is a real definition, the
1552 processor independent code will have arranged for us to see the
1553 real definition first, and we can just use the same value. */
1554 if (h->u.weakdef != NULL)
1555 {
1556 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1557 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1558 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1559 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1560 return TRUE;
1561 }
1562
1563 /* If this is a reference to a symbol defined by a dynamic object which
1564 is not a function, we might allocate the symbol in our .dynbss section
1565 and allocate a COPY dynamic relocation.
1566
1567 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1568 of hackery. */
1569
1570 return TRUE;
1571 }
1572
1573 /* This function is called via elf_link_hash_traverse to mark millicode
1574 symbols with a dynindx of -1 and to remove the string table reference
1575 from the dynamic symbol table. If the symbol is not a millicode symbol,
1576 elf64_hppa_mark_exported_functions is called. */
1577
1578 static bfd_boolean
1579 elf64_hppa_mark_milli_and_exported_functions (h, data)
1580 struct elf_link_hash_entry *h;
1581 PTR data;
1582 {
1583 struct bfd_link_info *info = (struct bfd_link_info *)data;
1584 struct elf_link_hash_entry *elf = h;
1585
1586 if (elf->root.type == bfd_link_hash_warning)
1587 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1588
1589 if (elf->type == STT_PARISC_MILLI)
1590 {
1591 if (elf->dynindx != -1)
1592 {
1593 elf->dynindx = -1;
1594 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1595 elf->dynstr_index);
1596 }
1597 return TRUE;
1598 }
1599
1600 return elf64_hppa_mark_exported_functions (h, data);
1601 }
1602
1603 /* Set the final sizes of the dynamic sections and allocate memory for
1604 the contents of our special sections. */
1605
1606 static bfd_boolean
1607 elf64_hppa_size_dynamic_sections (output_bfd, info)
1608 bfd *output_bfd;
1609 struct bfd_link_info *info;
1610 {
1611 bfd *dynobj;
1612 asection *s;
1613 bfd_boolean plt;
1614 bfd_boolean relocs;
1615 bfd_boolean reltext;
1616 struct elf64_hppa_allocate_data data;
1617 struct elf64_hppa_link_hash_table *hppa_info;
1618
1619 hppa_info = elf64_hppa_hash_table (info);
1620
1621 dynobj = elf_hash_table (info)->dynobj;
1622 BFD_ASSERT (dynobj != NULL);
1623
1624 /* Mark each function this program exports so that we will allocate
1625 space in the .opd section for each function's FPTR. If we are
1626 creating dynamic sections, change the dynamic index of millicode
1627 symbols to -1 and remove them from the string table for .dynstr.
1628
1629 We have to traverse the main linker hash table since we have to
1630 find functions which may not have been mentioned in any relocs. */
1631 elf_link_hash_traverse (elf_hash_table (info),
1632 (elf_hash_table (info)->dynamic_sections_created
1633 ? elf64_hppa_mark_milli_and_exported_functions
1634 : elf64_hppa_mark_exported_functions),
1635 info);
1636
1637 if (elf_hash_table (info)->dynamic_sections_created)
1638 {
1639 /* Set the contents of the .interp section to the interpreter. */
1640 if (info->executable)
1641 {
1642 s = bfd_get_section_by_name (dynobj, ".interp");
1643 BFD_ASSERT (s != NULL);
1644 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1645 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1646 }
1647 }
1648 else
1649 {
1650 /* We may have created entries in the .rela.got section.
1651 However, if we are not creating the dynamic sections, we will
1652 not actually use these entries. Reset the size of .rela.dlt,
1653 which will cause it to get stripped from the output file
1654 below. */
1655 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1656 if (s != NULL)
1657 s->size = 0;
1658 }
1659
1660 /* Allocate the GOT entries. */
1661
1662 data.info = info;
1663 if (elf64_hppa_hash_table (info)->dlt_sec)
1664 {
1665 data.ofs = 0x0;
1666 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1667 allocate_global_data_dlt, &data);
1668 hppa_info->dlt_sec->size = data.ofs;
1669
1670 data.ofs = 0x0;
1671 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1672 allocate_global_data_plt, &data);
1673 hppa_info->plt_sec->size = data.ofs;
1674
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_stub, &data);
1678 hppa_info->stub_sec->size = data.ofs;
1679 }
1680
1681 /* Allocate space for entries in the .opd section. */
1682 if (elf64_hppa_hash_table (info)->opd_sec)
1683 {
1684 data.ofs = 0;
1685 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1686 allocate_global_data_opd, &data);
1687 hppa_info->opd_sec->size = data.ofs;
1688 }
1689
1690 /* Now allocate space for dynamic relocations, if necessary. */
1691 if (hppa_info->root.dynamic_sections_created)
1692 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1693 allocate_dynrel_entries, &data);
1694
1695 /* The sizes of all the sections are set. Allocate memory for them. */
1696 plt = FALSE;
1697 relocs = FALSE;
1698 reltext = FALSE;
1699 for (s = dynobj->sections; s != NULL; s = s->next)
1700 {
1701 const char *name;
1702 bfd_boolean strip;
1703
1704 if ((s->flags & SEC_LINKER_CREATED) == 0)
1705 continue;
1706
1707 /* It's OK to base decisions on the section name, because none
1708 of the dynobj section names depend upon the input files. */
1709 name = bfd_get_section_name (dynobj, s);
1710
1711 strip = 0;
1712
1713 if (strcmp (name, ".plt") == 0)
1714 {
1715 /* Strip this section if we don't need it; see the comment below. */
1716 if (s->size == 0)
1717 {
1718 strip = TRUE;
1719 }
1720 else
1721 {
1722 /* Remember whether there is a PLT. */
1723 plt = TRUE;
1724 }
1725 }
1726 else if (strcmp (name, ".dlt") == 0)
1727 {
1728 /* Strip this section if we don't need it; see the comment below. */
1729 if (s->size == 0)
1730 {
1731 strip = TRUE;
1732 }
1733 }
1734 else if (strcmp (name, ".opd") == 0)
1735 {
1736 /* Strip this section if we don't need it; see the comment below. */
1737 if (s->size == 0)
1738 {
1739 strip = TRUE;
1740 }
1741 }
1742 else if (strncmp (name, ".rela", 5) == 0)
1743 {
1744 /* If we don't need this section, strip it from the output file.
1745 This is mostly to handle .rela.bss and .rela.plt. We must
1746 create both sections in create_dynamic_sections, because they
1747 must be created before the linker maps input sections to output
1748 sections. The linker does that before adjust_dynamic_symbol
1749 is called, and it is that function which decides whether
1750 anything needs to go into these sections. */
1751 if (s->size == 0)
1752 {
1753 /* If we don't need this section, strip it from the
1754 output file. This is mostly to handle .rela.bss and
1755 .rela.plt. We must create both sections in
1756 create_dynamic_sections, because they must be created
1757 before the linker maps input sections to output
1758 sections. The linker does that before
1759 adjust_dynamic_symbol is called, and it is that
1760 function which decides whether anything needs to go
1761 into these sections. */
1762 strip = TRUE;
1763 }
1764 else
1765 {
1766 asection *target;
1767
1768 /* Remember whether there are any reloc sections other
1769 than .rela.plt. */
1770 if (strcmp (name, ".rela.plt") != 0)
1771 {
1772 const char *outname;
1773
1774 relocs = TRUE;
1775
1776 /* If this relocation section applies to a read only
1777 section, then we probably need a DT_TEXTREL
1778 entry. The entries in the .rela.plt section
1779 really apply to the .got section, which we
1780 created ourselves and so know is not readonly. */
1781 outname = bfd_get_section_name (output_bfd,
1782 s->output_section);
1783 target = bfd_get_section_by_name (output_bfd, outname + 4);
1784 if (target != NULL
1785 && (target->flags & SEC_READONLY) != 0
1786 && (target->flags & SEC_ALLOC) != 0)
1787 reltext = TRUE;
1788 }
1789
1790 /* We use the reloc_count field as a counter if we need
1791 to copy relocs into the output file. */
1792 s->reloc_count = 0;
1793 }
1794 }
1795 else if (strncmp (name, ".dlt", 4) != 0
1796 && strcmp (name, ".stub") != 0
1797 && strcmp (name, ".got") != 0)
1798 {
1799 /* It's not one of our sections, so don't allocate space. */
1800 continue;
1801 }
1802
1803 if (strip)
1804 {
1805 s->flags |= SEC_EXCLUDE;
1806 continue;
1807 }
1808
1809 /* Allocate memory for the section contents if it has not
1810 been allocated already. We use bfd_zalloc here in case
1811 unused entries are not reclaimed before the section's
1812 contents are written out. This should not happen, but this
1813 way if it does, we get a R_PARISC_NONE reloc instead of
1814 garbage. */
1815 if (s->contents == NULL)
1816 {
1817 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1818 if (s->contents == NULL && s->size != 0)
1819 return FALSE;
1820 }
1821 }
1822
1823 if (elf_hash_table (info)->dynamic_sections_created)
1824 {
1825 /* Always create a DT_PLTGOT. It actually has nothing to do with
1826 the PLT, it is how we communicate the __gp value of a load
1827 module to the dynamic linker. */
1828 #define add_dynamic_entry(TAG, VAL) \
1829 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1830
1831 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1832 || !add_dynamic_entry (DT_PLTGOT, 0))
1833 return FALSE;
1834
1835 /* Add some entries to the .dynamic section. We fill in the
1836 values later, in elf64_hppa_finish_dynamic_sections, but we
1837 must add the entries now so that we get the correct size for
1838 the .dynamic section. The DT_DEBUG entry is filled in by the
1839 dynamic linker and used by the debugger. */
1840 if (! info->shared)
1841 {
1842 if (!add_dynamic_entry (DT_DEBUG, 0)
1843 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1844 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1845 return FALSE;
1846 }
1847
1848 /* Force DT_FLAGS to always be set.
1849 Required by HPUX 11.00 patch PHSS_26559. */
1850 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1851 return FALSE;
1852
1853 if (plt)
1854 {
1855 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1856 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1857 || !add_dynamic_entry (DT_JMPREL, 0))
1858 return FALSE;
1859 }
1860
1861 if (relocs)
1862 {
1863 if (!add_dynamic_entry (DT_RELA, 0)
1864 || !add_dynamic_entry (DT_RELASZ, 0)
1865 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1866 return FALSE;
1867 }
1868
1869 if (reltext)
1870 {
1871 if (!add_dynamic_entry (DT_TEXTREL, 0))
1872 return FALSE;
1873 info->flags |= DF_TEXTREL;
1874 }
1875 }
1876 #undef add_dynamic_entry
1877
1878 return TRUE;
1879 }
1880
1881 /* Called after we have output the symbol into the dynamic symbol
1882 table, but before we output the symbol into the normal symbol
1883 table.
1884
1885 For some symbols we had to change their address when outputting
1886 the dynamic symbol table. We undo that change here so that
1887 the symbols have their expected value in the normal symbol
1888 table. Ick. */
1889
1890 static bfd_boolean
1891 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1892 struct bfd_link_info *info;
1893 const char *name;
1894 Elf_Internal_Sym *sym;
1895 asection *input_sec ATTRIBUTE_UNUSED;
1896 struct elf_link_hash_entry *h;
1897 {
1898 struct elf64_hppa_link_hash_table *hppa_info;
1899 struct elf64_hppa_dyn_hash_entry *dyn_h;
1900
1901 /* We may be called with the file symbol or section symbols.
1902 They never need munging, so it is safe to ignore them. */
1903 if (!name)
1904 return TRUE;
1905
1906 /* Get the PA dyn_symbol (if any) associated with NAME. */
1907 hppa_info = elf64_hppa_hash_table (info);
1908 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1909 name, FALSE, FALSE);
1910 if (!dyn_h || dyn_h->h != h)
1911 return TRUE;
1912
1913 /* Function symbols for which we created .opd entries *may* have been
1914 munged by finish_dynamic_symbol and have to be un-munged here.
1915
1916 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1917 into non-dynamic ones, so we initialize st_shndx to -1 in
1918 mark_exported_functions and check to see if it was overwritten
1919 here instead of just checking dyn_h->h->dynindx. */
1920 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1921 {
1922 /* Restore the saved value and section index. */
1923 sym->st_value = dyn_h->st_value;
1924 sym->st_shndx = dyn_h->st_shndx;
1925 }
1926
1927 return TRUE;
1928 }
1929
1930 /* Finish up dynamic symbol handling. We set the contents of various
1931 dynamic sections here. */
1932
1933 static bfd_boolean
1934 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1935 bfd *output_bfd;
1936 struct bfd_link_info *info;
1937 struct elf_link_hash_entry *h;
1938 Elf_Internal_Sym *sym;
1939 {
1940 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1941 struct elf64_hppa_link_hash_table *hppa_info;
1942 struct elf64_hppa_dyn_hash_entry *dyn_h;
1943
1944 hppa_info = elf64_hppa_hash_table (info);
1945 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1946 h->root.root.string, FALSE, FALSE);
1947
1948 stub = hppa_info->stub_sec;
1949 splt = hppa_info->plt_sec;
1950 sdlt = hppa_info->dlt_sec;
1951 sopd = hppa_info->opd_sec;
1952 spltrel = hppa_info->plt_rel_sec;
1953 sdltrel = hppa_info->dlt_rel_sec;
1954
1955 /* Incredible. It is actually necessary to NOT use the symbol's real
1956 value when building the dynamic symbol table for a shared library.
1957 At least for symbols that refer to functions.
1958
1959 We will store a new value and section index into the symbol long
1960 enough to output it into the dynamic symbol table, then we restore
1961 the original values (in elf64_hppa_link_output_symbol_hook). */
1962 if (dyn_h && dyn_h->want_opd)
1963 {
1964 BFD_ASSERT (sopd != NULL);
1965
1966 /* Save away the original value and section index so that we
1967 can restore them later. */
1968 dyn_h->st_value = sym->st_value;
1969 dyn_h->st_shndx = sym->st_shndx;
1970
1971 /* For the dynamic symbol table entry, we want the value to be
1972 address of this symbol's entry within the .opd section. */
1973 sym->st_value = (dyn_h->opd_offset
1974 + sopd->output_offset
1975 + sopd->output_section->vma);
1976 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1977 sopd->output_section);
1978 }
1979
1980 /* Initialize a .plt entry if requested. */
1981 if (dyn_h && dyn_h->want_plt
1982 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1983 {
1984 bfd_vma value;
1985 Elf_Internal_Rela rel;
1986 bfd_byte *loc;
1987
1988 BFD_ASSERT (splt != NULL && spltrel != NULL);
1989
1990 /* We do not actually care about the value in the PLT entry
1991 if we are creating a shared library and the symbol is
1992 still undefined, we create a dynamic relocation to fill
1993 in the correct value. */
1994 if (info->shared && h->root.type == bfd_link_hash_undefined)
1995 value = 0;
1996 else
1997 value = (h->root.u.def.value + h->root.u.def.section->vma);
1998
1999 /* Fill in the entry in the procedure linkage table.
2000
2001 The format of a plt entry is
2002 <funcaddr> <__gp>.
2003
2004 plt_offset is the offset within the PLT section at which to
2005 install the PLT entry.
2006
2007 We are modifying the in-memory PLT contents here, so we do not add
2008 in the output_offset of the PLT section. */
2009
2010 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2011 value = _bfd_get_gp_value (splt->output_section->owner);
2012 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2013
2014 /* Create a dynamic IPLT relocation for this entry.
2015
2016 We are creating a relocation in the output file's PLT section,
2017 which is included within the DLT secton. So we do need to include
2018 the PLT's output_offset in the computation of the relocation's
2019 address. */
2020 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2021 + splt->output_section->vma);
2022 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2023 rel.r_addend = 0;
2024
2025 loc = spltrel->contents;
2026 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2027 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2028 }
2029
2030 /* Initialize an external call stub entry if requested. */
2031 if (dyn_h && dyn_h->want_stub
2032 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2033 {
2034 bfd_vma value;
2035 int insn;
2036 unsigned int max_offset;
2037
2038 BFD_ASSERT (stub != NULL);
2039
2040 /* Install the generic stub template.
2041
2042 We are modifying the contents of the stub section, so we do not
2043 need to include the stub section's output_offset here. */
2044 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2045
2046 /* Fix up the first ldd instruction.
2047
2048 We are modifying the contents of the STUB section in memory,
2049 so we do not need to include its output offset in this computation.
2050
2051 Note the plt_offset value is the value of the PLT entry relative to
2052 the start of the PLT section. These instructions will reference
2053 data relative to the value of __gp, which may not necessarily have
2054 the same address as the start of the PLT section.
2055
2056 gp_offset contains the offset of __gp within the PLT section. */
2057 value = dyn_h->plt_offset - hppa_info->gp_offset;
2058
2059 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2060 if (output_bfd->arch_info->mach >= 25)
2061 {
2062 /* Wide mode allows 16 bit offsets. */
2063 max_offset = 32768;
2064 insn &= ~ 0xfff1;
2065 insn |= re_assemble_16 ((int) value);
2066 }
2067 else
2068 {
2069 max_offset = 8192;
2070 insn &= ~ 0x3ff1;
2071 insn |= re_assemble_14 ((int) value);
2072 }
2073
2074 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2075 {
2076 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2077 dyn_h->root.string,
2078 (long) value);
2079 return FALSE;
2080 }
2081
2082 bfd_put_32 (stub->owner, (bfd_vma) insn,
2083 stub->contents + dyn_h->stub_offset);
2084
2085 /* Fix up the second ldd instruction. */
2086 value += 8;
2087 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2088 if (output_bfd->arch_info->mach >= 25)
2089 {
2090 insn &= ~ 0xfff1;
2091 insn |= re_assemble_16 ((int) value);
2092 }
2093 else
2094 {
2095 insn &= ~ 0x3ff1;
2096 insn |= re_assemble_14 ((int) value);
2097 }
2098 bfd_put_32 (stub->owner, (bfd_vma) insn,
2099 stub->contents + dyn_h->stub_offset + 8);
2100 }
2101
2102 return TRUE;
2103 }
2104
2105 /* The .opd section contains FPTRs for each function this file
2106 exports. Initialize the FPTR entries. */
2107
2108 static bfd_boolean
2109 elf64_hppa_finalize_opd (dyn_h, data)
2110 struct elf64_hppa_dyn_hash_entry *dyn_h;
2111 PTR data;
2112 {
2113 struct bfd_link_info *info = (struct bfd_link_info *)data;
2114 struct elf64_hppa_link_hash_table *hppa_info;
2115 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2116 asection *sopd;
2117 asection *sopdrel;
2118
2119 hppa_info = elf64_hppa_hash_table (info);
2120 sopd = hppa_info->opd_sec;
2121 sopdrel = hppa_info->opd_rel_sec;
2122
2123 if (h && dyn_h->want_opd)
2124 {
2125 bfd_vma value;
2126
2127 /* The first two words of an .opd entry are zero.
2128
2129 We are modifying the contents of the OPD section in memory, so we
2130 do not need to include its output offset in this computation. */
2131 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2132
2133 value = (h->root.u.def.value
2134 + h->root.u.def.section->output_section->vma
2135 + h->root.u.def.section->output_offset);
2136
2137 /* The next word is the address of the function. */
2138 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2139
2140 /* The last word is our local __gp value. */
2141 value = _bfd_get_gp_value (sopd->output_section->owner);
2142 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2143 }
2144
2145 /* If we are generating a shared library, we must generate EPLT relocations
2146 for each entry in the .opd, even for static functions (they may have
2147 had their address taken). */
2148 if (info->shared && dyn_h && dyn_h->want_opd)
2149 {
2150 Elf_Internal_Rela rel;
2151 bfd_byte *loc;
2152 int dynindx;
2153
2154 /* We may need to do a relocation against a local symbol, in
2155 which case we have to look up it's dynamic symbol index off
2156 the local symbol hash table. */
2157 if (h && h->dynindx != -1)
2158 dynindx = h->dynindx;
2159 else
2160 dynindx
2161 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2162 dyn_h->sym_indx);
2163
2164 /* The offset of this relocation is the absolute address of the
2165 .opd entry for this symbol. */
2166 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2167 + sopd->output_section->vma);
2168
2169 /* If H is non-null, then we have an external symbol.
2170
2171 It is imperative that we use a different dynamic symbol for the
2172 EPLT relocation if the symbol has global scope.
2173
2174 In the dynamic symbol table, the function symbol will have a value
2175 which is address of the function's .opd entry.
2176
2177 Thus, we can not use that dynamic symbol for the EPLT relocation
2178 (if we did, the data in the .opd would reference itself rather
2179 than the actual address of the function). Instead we have to use
2180 a new dynamic symbol which has the same value as the original global
2181 function symbol.
2182
2183 We prefix the original symbol with a "." and use the new symbol in
2184 the EPLT relocation. This new symbol has already been recorded in
2185 the symbol table, we just have to look it up and use it.
2186
2187 We do not have such problems with static functions because we do
2188 not make their addresses in the dynamic symbol table point to
2189 the .opd entry. Ultimately this should be safe since a static
2190 function can not be directly referenced outside of its shared
2191 library.
2192
2193 We do have to play similar games for FPTR relocations in shared
2194 libraries, including those for static symbols. See the FPTR
2195 handling in elf64_hppa_finalize_dynreloc. */
2196 if (h)
2197 {
2198 char *new_name;
2199 struct elf_link_hash_entry *nh;
2200
2201 new_name = alloca (strlen (h->root.root.string) + 2);
2202 new_name[0] = '.';
2203 strcpy (new_name + 1, h->root.root.string);
2204
2205 nh = elf_link_hash_lookup (elf_hash_table (info),
2206 new_name, FALSE, FALSE, FALSE);
2207
2208 /* All we really want from the new symbol is its dynamic
2209 symbol index. */
2210 dynindx = nh->dynindx;
2211 }
2212
2213 rel.r_addend = 0;
2214 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2215
2216 loc = sopdrel->contents;
2217 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2218 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2219 }
2220 return TRUE;
2221 }
2222
2223 /* The .dlt section contains addresses for items referenced through the
2224 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2225 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2226
2227 static bfd_boolean
2228 elf64_hppa_finalize_dlt (dyn_h, data)
2229 struct elf64_hppa_dyn_hash_entry *dyn_h;
2230 PTR data;
2231 {
2232 struct bfd_link_info *info = (struct bfd_link_info *)data;
2233 struct elf64_hppa_link_hash_table *hppa_info;
2234 asection *sdlt, *sdltrel;
2235 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2236
2237 hppa_info = elf64_hppa_hash_table (info);
2238
2239 sdlt = hppa_info->dlt_sec;
2240 sdltrel = hppa_info->dlt_rel_sec;
2241
2242 /* H/DYN_H may refer to a local variable and we know it's
2243 address, so there is no need to create a relocation. Just install
2244 the proper value into the DLT, note this shortcut can not be
2245 skipped when building a shared library. */
2246 if (! info->shared && h && dyn_h->want_dlt)
2247 {
2248 bfd_vma value;
2249
2250 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2251 to point to the FPTR entry in the .opd section.
2252
2253 We include the OPD's output offset in this computation as
2254 we are referring to an absolute address in the resulting
2255 object file. */
2256 if (dyn_h->want_opd)
2257 {
2258 value = (dyn_h->opd_offset
2259 + hppa_info->opd_sec->output_offset
2260 + hppa_info->opd_sec->output_section->vma);
2261 }
2262 else if ((h->root.type == bfd_link_hash_defined
2263 || h->root.type == bfd_link_hash_defweak)
2264 && h->root.u.def.section)
2265 {
2266 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2267 if (h->root.u.def.section->output_section)
2268 value += h->root.u.def.section->output_section->vma;
2269 else
2270 value += h->root.u.def.section->vma;
2271 }
2272 else
2273 /* We have an undefined function reference. */
2274 value = 0;
2275
2276 /* We do not need to include the output offset of the DLT section
2277 here because we are modifying the in-memory contents. */
2278 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2279 }
2280
2281 /* Create a relocation for the DLT entry associated with this symbol.
2282 When building a shared library the symbol does not have to be dynamic. */
2283 if (dyn_h->want_dlt
2284 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2285 {
2286 Elf_Internal_Rela rel;
2287 bfd_byte *loc;
2288 int dynindx;
2289
2290 /* We may need to do a relocation against a local symbol, in
2291 which case we have to look up it's dynamic symbol index off
2292 the local symbol hash table. */
2293 if (h && h->dynindx != -1)
2294 dynindx = h->dynindx;
2295 else
2296 dynindx
2297 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2298 dyn_h->sym_indx);
2299
2300 /* Create a dynamic relocation for this entry. Do include the output
2301 offset of the DLT entry since we need an absolute address in the
2302 resulting object file. */
2303 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2304 + sdlt->output_section->vma);
2305 if (h && h->type == STT_FUNC)
2306 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2307 else
2308 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2309 rel.r_addend = 0;
2310
2311 loc = sdltrel->contents;
2312 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2313 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2314 }
2315 return TRUE;
2316 }
2317
2318 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2319 for dynamic functions used to initialize static data. */
2320
2321 static bfd_boolean
2322 elf64_hppa_finalize_dynreloc (dyn_h, data)
2323 struct elf64_hppa_dyn_hash_entry *dyn_h;
2324 PTR data;
2325 {
2326 struct bfd_link_info *info = (struct bfd_link_info *)data;
2327 struct elf64_hppa_link_hash_table *hppa_info;
2328 struct elf_link_hash_entry *h;
2329 int dynamic_symbol;
2330
2331 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2332
2333 if (!dynamic_symbol && !info->shared)
2334 return TRUE;
2335
2336 if (dyn_h->reloc_entries)
2337 {
2338 struct elf64_hppa_dyn_reloc_entry *rent;
2339 int dynindx;
2340
2341 hppa_info = elf64_hppa_hash_table (info);
2342 h = dyn_h->h;
2343
2344 /* We may need to do a relocation against a local symbol, in
2345 which case we have to look up it's dynamic symbol index off
2346 the local symbol hash table. */
2347 if (h && h->dynindx != -1)
2348 dynindx = h->dynindx;
2349 else
2350 dynindx
2351 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2352 dyn_h->sym_indx);
2353
2354 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2355 {
2356 Elf_Internal_Rela rel;
2357 bfd_byte *loc;
2358
2359 /* Allocate one iff we are building a shared library, the relocation
2360 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2361 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2362 continue;
2363
2364 /* Create a dynamic relocation for this entry.
2365
2366 We need the output offset for the reloc's section because
2367 we are creating an absolute address in the resulting object
2368 file. */
2369 rel.r_offset = (rent->offset + rent->sec->output_offset
2370 + rent->sec->output_section->vma);
2371
2372 /* An FPTR64 relocation implies that we took the address of
2373 a function and that the function has an entry in the .opd
2374 section. We want the FPTR64 relocation to reference the
2375 entry in .opd.
2376
2377 We could munge the symbol value in the dynamic symbol table
2378 (in fact we already do for functions with global scope) to point
2379 to the .opd entry. Then we could use that dynamic symbol in
2380 this relocation.
2381
2382 Or we could do something sensible, not munge the symbol's
2383 address and instead just use a different symbol to reference
2384 the .opd entry. At least that seems sensible until you
2385 realize there's no local dynamic symbols we can use for that
2386 purpose. Thus the hair in the check_relocs routine.
2387
2388 We use a section symbol recorded by check_relocs as the
2389 base symbol for the relocation. The addend is the difference
2390 between the section symbol and the address of the .opd entry. */
2391 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2392 {
2393 bfd_vma value, value2;
2394
2395 /* First compute the address of the opd entry for this symbol. */
2396 value = (dyn_h->opd_offset
2397 + hppa_info->opd_sec->output_section->vma
2398 + hppa_info->opd_sec->output_offset);
2399
2400 /* Compute the value of the start of the section with
2401 the relocation. */
2402 value2 = (rent->sec->output_section->vma
2403 + rent->sec->output_offset);
2404
2405 /* Compute the difference between the start of the section
2406 with the relocation and the opd entry. */
2407 value -= value2;
2408
2409 /* The result becomes the addend of the relocation. */
2410 rel.r_addend = value;
2411
2412 /* The section symbol becomes the symbol for the dynamic
2413 relocation. */
2414 dynindx
2415 = _bfd_elf_link_lookup_local_dynindx (info,
2416 rent->sec->owner,
2417 rent->sec_symndx);
2418 }
2419 else
2420 rel.r_addend = rent->addend;
2421
2422 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2423
2424 loc = hppa_info->other_rel_sec->contents;
2425 loc += (hppa_info->other_rel_sec->reloc_count++
2426 * sizeof (Elf64_External_Rela));
2427 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2428 &rel, loc);
2429 }
2430 }
2431
2432 return TRUE;
2433 }
2434
2435 /* Used to decide how to sort relocs in an optimal manner for the
2436 dynamic linker, before writing them out. */
2437
2438 static enum elf_reloc_type_class
2439 elf64_hppa_reloc_type_class (rela)
2440 const Elf_Internal_Rela *rela;
2441 {
2442 if (ELF64_R_SYM (rela->r_info) == 0)
2443 return reloc_class_relative;
2444
2445 switch ((int) ELF64_R_TYPE (rela->r_info))
2446 {
2447 case R_PARISC_IPLT:
2448 return reloc_class_plt;
2449 case R_PARISC_COPY:
2450 return reloc_class_copy;
2451 default:
2452 return reloc_class_normal;
2453 }
2454 }
2455
2456 /* Finish up the dynamic sections. */
2457
2458 static bfd_boolean
2459 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2460 bfd *output_bfd;
2461 struct bfd_link_info *info;
2462 {
2463 bfd *dynobj;
2464 asection *sdyn;
2465 struct elf64_hppa_link_hash_table *hppa_info;
2466
2467 hppa_info = elf64_hppa_hash_table (info);
2468
2469 /* Finalize the contents of the .opd section. */
2470 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2471 elf64_hppa_finalize_opd,
2472 info);
2473
2474 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2475 elf64_hppa_finalize_dynreloc,
2476 info);
2477
2478 /* Finalize the contents of the .dlt section. */
2479 dynobj = elf_hash_table (info)->dynobj;
2480 /* Finalize the contents of the .dlt section. */
2481 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2482 elf64_hppa_finalize_dlt,
2483 info);
2484
2485 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2486
2487 if (elf_hash_table (info)->dynamic_sections_created)
2488 {
2489 Elf64_External_Dyn *dyncon, *dynconend;
2490
2491 BFD_ASSERT (sdyn != NULL);
2492
2493 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2494 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2495 for (; dyncon < dynconend; dyncon++)
2496 {
2497 Elf_Internal_Dyn dyn;
2498 asection *s;
2499
2500 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2501
2502 switch (dyn.d_tag)
2503 {
2504 default:
2505 break;
2506
2507 case DT_HP_LOAD_MAP:
2508 /* Compute the absolute address of 16byte scratchpad area
2509 for the dynamic linker.
2510
2511 By convention the linker script will allocate the scratchpad
2512 area at the start of the .data section. So all we have to
2513 to is find the start of the .data section. */
2514 s = bfd_get_section_by_name (output_bfd, ".data");
2515 dyn.d_un.d_ptr = s->vma;
2516 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2517 break;
2518
2519 case DT_PLTGOT:
2520 /* HP's use PLTGOT to set the GOT register. */
2521 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2522 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523 break;
2524
2525 case DT_JMPREL:
2526 s = hppa_info->plt_rel_sec;
2527 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_PLTRELSZ:
2532 s = hppa_info->plt_rel_sec;
2533 dyn.d_un.d_val = s->size;
2534 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 break;
2536
2537 case DT_RELA:
2538 s = hppa_info->other_rel_sec;
2539 if (! s || ! s->size)
2540 s = hppa_info->dlt_rel_sec;
2541 if (! s || ! s->size)
2542 s = hppa_info->opd_rel_sec;
2543 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2544 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2545 break;
2546
2547 case DT_RELASZ:
2548 s = hppa_info->other_rel_sec;
2549 dyn.d_un.d_val = s->size;
2550 s = hppa_info->dlt_rel_sec;
2551 dyn.d_un.d_val += s->size;
2552 s = hppa_info->opd_rel_sec;
2553 dyn.d_un.d_val += s->size;
2554 /* There is some question about whether or not the size of
2555 the PLT relocs should be included here. HP's tools do
2556 it, so we'll emulate them. */
2557 s = hppa_info->plt_rel_sec;
2558 dyn.d_un.d_val += s->size;
2559 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2560 break;
2561
2562 }
2563 }
2564 }
2565
2566 return TRUE;
2567 }
2568
2569 /* Return the number of additional phdrs we will need.
2570
2571 The generic ELF code only creates PT_PHDRs for executables. The HP
2572 dynamic linker requires PT_PHDRs for dynamic libraries too.
2573
2574 This routine indicates that the backend needs one additional program
2575 header for that case.
2576
2577 Note we do not have access to the link info structure here, so we have
2578 to guess whether or not we are building a shared library based on the
2579 existence of a .interp section. */
2580
2581 static int
2582 elf64_hppa_additional_program_headers (abfd)
2583 bfd *abfd;
2584 {
2585 asection *s;
2586
2587 /* If we are creating a shared library, then we have to create a
2588 PT_PHDR segment. HP's dynamic linker chokes without it. */
2589 s = bfd_get_section_by_name (abfd, ".interp");
2590 if (! s)
2591 return 1;
2592 return 0;
2593 }
2594
2595 /* Allocate and initialize any program headers required by this
2596 specific backend.
2597
2598 The generic ELF code only creates PT_PHDRs for executables. The HP
2599 dynamic linker requires PT_PHDRs for dynamic libraries too.
2600
2601 This allocates the PT_PHDR and initializes it in a manner suitable
2602 for the HP linker.
2603
2604 Note we do not have access to the link info structure here, so we have
2605 to guess whether or not we are building a shared library based on the
2606 existence of a .interp section. */
2607
2608 static bfd_boolean
2609 elf64_hppa_modify_segment_map (abfd, info)
2610 bfd *abfd;
2611 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2612 {
2613 struct elf_segment_map *m;
2614 asection *s;
2615
2616 s = bfd_get_section_by_name (abfd, ".interp");
2617 if (! s)
2618 {
2619 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2620 if (m->p_type == PT_PHDR)
2621 break;
2622 if (m == NULL)
2623 {
2624 m = ((struct elf_segment_map *)
2625 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2626 if (m == NULL)
2627 return FALSE;
2628
2629 m->p_type = PT_PHDR;
2630 m->p_flags = PF_R | PF_X;
2631 m->p_flags_valid = 1;
2632 m->p_paddr_valid = 1;
2633 m->includes_phdrs = 1;
2634
2635 m->next = elf_tdata (abfd)->segment_map;
2636 elf_tdata (abfd)->segment_map = m;
2637 }
2638 }
2639
2640 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2641 if (m->p_type == PT_LOAD)
2642 {
2643 unsigned int i;
2644
2645 for (i = 0; i < m->count; i++)
2646 {
2647 /* The code "hint" is not really a hint. It is a requirement
2648 for certain versions of the HP dynamic linker. Worse yet,
2649 it must be set even if the shared library does not have
2650 any code in its "text" segment (thus the check for .hash
2651 to catch this situation). */
2652 if (m->sections[i]->flags & SEC_CODE
2653 || (strcmp (m->sections[i]->name, ".hash") == 0))
2654 m->p_flags |= (PF_X | PF_HP_CODE);
2655 }
2656 }
2657
2658 return TRUE;
2659 }
2660
2661 /* Called when writing out an object file to decide the type of a
2662 symbol. */
2663 static int
2664 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2665 Elf_Internal_Sym *elf_sym;
2666 int type;
2667 {
2668 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2669 return STT_PARISC_MILLI;
2670 else
2671 return type;
2672 }
2673
2674 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2675 {
2676 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2677 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2678 { NULL, 0, 0, 0, 0 }
2679 };
2680
2681 /* The hash bucket size is the standard one, namely 4. */
2682
2683 const struct elf_size_info hppa64_elf_size_info =
2684 {
2685 sizeof (Elf64_External_Ehdr),
2686 sizeof (Elf64_External_Phdr),
2687 sizeof (Elf64_External_Shdr),
2688 sizeof (Elf64_External_Rel),
2689 sizeof (Elf64_External_Rela),
2690 sizeof (Elf64_External_Sym),
2691 sizeof (Elf64_External_Dyn),
2692 sizeof (Elf_External_Note),
2693 4,
2694 1,
2695 64, 3,
2696 ELFCLASS64, EV_CURRENT,
2697 bfd_elf64_write_out_phdrs,
2698 bfd_elf64_write_shdrs_and_ehdr,
2699 bfd_elf64_write_relocs,
2700 bfd_elf64_swap_symbol_in,
2701 bfd_elf64_swap_symbol_out,
2702 bfd_elf64_slurp_reloc_table,
2703 bfd_elf64_slurp_symbol_table,
2704 bfd_elf64_swap_dyn_in,
2705 bfd_elf64_swap_dyn_out,
2706 bfd_elf64_swap_reloc_in,
2707 bfd_elf64_swap_reloc_out,
2708 bfd_elf64_swap_reloca_in,
2709 bfd_elf64_swap_reloca_out
2710 };
2711
2712 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2713 #define TARGET_BIG_NAME "elf64-hppa"
2714 #define ELF_ARCH bfd_arch_hppa
2715 #define ELF_MACHINE_CODE EM_PARISC
2716 /* This is not strictly correct. The maximum page size for PA2.0 is
2717 64M. But everything still uses 4k. */
2718 #define ELF_MAXPAGESIZE 0x1000
2719 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2720 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2721 #define elf_info_to_howto elf_hppa_info_to_howto
2722 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2723
2724 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2725 #define elf_backend_object_p elf64_hppa_object_p
2726 #define elf_backend_final_write_processing \
2727 elf_hppa_final_write_processing
2728 #define elf_backend_fake_sections elf_hppa_fake_sections
2729 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2730
2731 #define elf_backend_relocate_section elf_hppa_relocate_section
2732
2733 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2734
2735 #define elf_backend_create_dynamic_sections \
2736 elf64_hppa_create_dynamic_sections
2737 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2738
2739 #define elf_backend_adjust_dynamic_symbol \
2740 elf64_hppa_adjust_dynamic_symbol
2741
2742 #define elf_backend_size_dynamic_sections \
2743 elf64_hppa_size_dynamic_sections
2744
2745 #define elf_backend_finish_dynamic_symbol \
2746 elf64_hppa_finish_dynamic_symbol
2747 #define elf_backend_finish_dynamic_sections \
2748 elf64_hppa_finish_dynamic_sections
2749
2750 /* Stuff for the BFD linker: */
2751 #define bfd_elf64_bfd_link_hash_table_create \
2752 elf64_hppa_hash_table_create
2753
2754 #define elf_backend_check_relocs \
2755 elf64_hppa_check_relocs
2756
2757 #define elf_backend_size_info \
2758 hppa64_elf_size_info
2759
2760 #define elf_backend_additional_program_headers \
2761 elf64_hppa_additional_program_headers
2762
2763 #define elf_backend_modify_segment_map \
2764 elf64_hppa_modify_segment_map
2765
2766 #define elf_backend_link_output_symbol_hook \
2767 elf64_hppa_link_output_symbol_hook
2768
2769 #define elf_backend_want_got_plt 0
2770 #define elf_backend_plt_readonly 0
2771 #define elf_backend_want_plt_sym 0
2772 #define elf_backend_got_header_size 0
2773 #define elf_backend_type_change_ok TRUE
2774 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2775 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2776 #define elf_backend_rela_normal 1
2777 #define elf_backend_special_sections elf64_hppa_special_sections
2778
2779 #include "elf64-target.h"
2780
2781 #undef TARGET_BIG_SYM
2782 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2783 #undef TARGET_BIG_NAME
2784 #define TARGET_BIG_NAME "elf64-hppa-linux"
2785
2786 #undef elf_backend_special_sections
2787
2788 #define INCLUDED_TARGET_FILE 1
2789 #include "elf64-target.h"
This page took 0.264573 seconds and 5 git commands to generate.