elf_swap_symbol_in args should be "const PTR", not "const PTR *".
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
29
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
33
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49 struct elf64_hppa_dyn_hash_entry
50 {
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108 };
109
110 struct elf64_hppa_dyn_hash_table
111 {
112 struct bfd_hash_table root;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151 };
152
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
178
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
182
183 static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
188
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198 static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
201 static boolean elf64_hppa_link_output_symbol_hook
202 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
203 Elf_Internal_Sym *, asection *input_sec));
204
205 static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd *, struct bfd_link_info *,
207 struct elf_link_hash_entry *, Elf_Internal_Sym *));
208
209 static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
210
211 static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
212
213 static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216 static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220 static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223 static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226 static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229 static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247 static boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251 static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254 static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260 static boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
272 static boolean
273 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
274 struct elf64_hppa_dyn_hash_table *ht;
275 bfd *abfd ATTRIBUTE_UNUSED;
276 new_hash_entry_func new;
277 {
278 memset (ht, 0, sizeof (*ht));
279 return bfd_hash_table_init (&ht->root, new);
280 }
281
282 static struct bfd_hash_entry*
283 elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287 {
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
301 memset (ret, 0, sizeof (*ret));
302
303 /* Call the allocation method of the superclass. */
304 ret = ((struct elf64_hppa_dyn_hash_entry *)
305 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
306
307 return &ret->root;
308 }
309
310 /* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
313
314 static struct bfd_link_hash_table*
315 elf64_hppa_hash_table_create (abfd)
316 bfd *abfd;
317 {
318 struct elf64_hppa_link_hash_table *ret;
319
320 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
321 if (!ret)
322 return 0;
323 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
324 _bfd_elf_link_hash_newfunc))
325 {
326 bfd_release (abfd, ret);
327 return 0;
328 }
329
330 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
331 elf64_hppa_new_dyn_hash_entry))
332 return 0;
333 return &ret->root.root;
334 }
335
336 /* Look up an entry in a PA64 ELF linker hash table. */
337
338 static struct elf64_hppa_dyn_hash_entry *
339 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 boolean create, copy;
343 {
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346 }
347
348 /* Traverse a PA64 ELF linker hash table. */
349
350 static void
351 elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355 {
356 (bfd_hash_traverse
357 (&table->root,
358 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360 }
361 \f
362 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365 static boolean
366 elf64_hppa_object_p (abfd)
367 bfd *abfd;
368 {
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
371
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
376 return false;
377 }
378 else
379 {
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
381 return false;
382 }
383
384 flags = i_ehdrp->e_flags;
385 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
386 {
387 case EFA_PARISC_1_0:
388 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
389 case EFA_PARISC_1_1:
390 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
391 case EFA_PARISC_2_0:
392 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
393 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
395 }
396 /* Don't be fussy. */
397 return true;
398 }
399
400 /* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
402 static boolean
403 elf64_hppa_section_from_shdr (abfd, hdr, name)
404 bfd *abfd;
405 Elf64_Internal_Shdr *hdr;
406 const char *name;
407 {
408 asection *newsect;
409
410 switch (hdr->sh_type)
411 {
412 case SHT_PARISC_EXT:
413 if (strcmp (name, ".PARISC.archext") != 0)
414 return false;
415 break;
416 case SHT_PARISC_UNWIND:
417 if (strcmp (name, ".PARISC.unwind") != 0)
418 return false;
419 break;
420 case SHT_PARISC_DOC:
421 case SHT_PARISC_ANNOT:
422 default:
423 return false;
424 }
425
426 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
427 return false;
428 newsect = hdr->bfd_section;
429
430 return true;
431 }
432
433 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
434 name describes what was once potentially anonymous memory. We
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
436
437 static const char *
438 get_dyn_name (sec, h, rel, pbuf, plen)
439 asection *sec;
440 struct elf_link_hash_entry *h;
441 const Elf_Internal_Rela *rel;
442 char **pbuf;
443 size_t *plen;
444 {
445 size_t nlen, tlen;
446 char *buf;
447 size_t len;
448
449 if (h && rel->r_addend == 0)
450 return h->root.root.string;
451
452 if (h)
453 nlen = strlen (h->root.root.string);
454 else
455 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
456 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
457
458 len = *plen;
459 buf = *pbuf;
460 if (len < tlen)
461 {
462 if (buf)
463 free (buf);
464 *pbuf = buf = malloc (tlen);
465 *plen = len = tlen;
466 if (!buf)
467 return NULL;
468 }
469
470 if (h)
471 {
472 memcpy (buf, h->root.root.string, nlen);
473 buf[nlen++] = '+';
474 sprintf_vma (buf + nlen, rel->r_addend);
475 }
476 else
477 {
478 nlen = sprintf (buf, "%x:%lx",
479 sec->id & 0xffffffff,
480 (long) ELF64_R_SYM (rel->r_info));
481 if (rel->r_addend)
482 {
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 }
487
488 return buf;
489 }
490
491 /* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
493
494 static boolean
495 get_reloc_section (abfd, hppa_info, sec)
496 bfd *abfd;
497 struct elf64_hppa_link_hash_table *hppa_info;
498 asection *sec;
499 {
500 const char *srel_name;
501 asection *srel;
502 bfd *dynobj;
503
504 srel_name = (bfd_elf_string_from_elf_section
505 (abfd, elf_elfheader(abfd)->e_shstrndx,
506 elf_section_data(sec)->rel_hdr.sh_name));
507 if (srel_name == NULL)
508 return false;
509
510 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd, sec),
512 srel_name+5) == 0)
513 || (strncmp (srel_name, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+4) == 0));
516
517 dynobj = hppa_info->root.dynobj;
518 if (!dynobj)
519 hppa_info->root.dynobj = dynobj = abfd;
520
521 srel = bfd_get_section_by_name (dynobj, srel_name);
522 if (srel == NULL)
523 {
524 srel = bfd_make_section (dynobj, srel_name);
525 if (srel == NULL
526 || !bfd_set_section_flags (dynobj, srel,
527 (SEC_ALLOC
528 | SEC_LOAD
529 | SEC_HAS_CONTENTS
530 | SEC_IN_MEMORY
531 | SEC_LINKER_CREATED
532 | SEC_READONLY))
533 || !bfd_set_section_alignment (dynobj, srel, 3))
534 return false;
535 }
536
537 hppa_info->other_rel_sec = srel;
538 return true;
539 }
540
541 /* Add a new entry to the list of dynamic relocations against DYN_H.
542
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
545 output file. */
546
547 static boolean
548 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
549 bfd *abfd;
550 struct elf64_hppa_dyn_hash_entry *dyn_h;
551 int type;
552 asection *sec;
553 int sec_symndx;
554 bfd_vma offset;
555 bfd_vma addend;
556 {
557 struct elf64_hppa_dyn_reloc_entry *rent;
558
559 rent = (struct elf64_hppa_dyn_reloc_entry *)
560 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
561 if (!rent)
562 return false;
563
564 rent->next = dyn_h->reloc_entries;
565 rent->type = type;
566 rent->sec = sec;
567 rent->sec_symndx = sec_symndx;
568 rent->offset = offset;
569 rent->addend = addend;
570 dyn_h->reloc_entries = rent;
571
572 return true;
573 }
574
575 /* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
577
578 static boolean
579 elf64_hppa_check_relocs (abfd, info, sec, relocs)
580 bfd *abfd;
581 struct bfd_link_info *info;
582 asection *sec;
583 const Elf_Internal_Rela *relocs;
584 {
585 struct elf64_hppa_link_hash_table *hppa_info;
586 const Elf_Internal_Rela *relend;
587 Elf_Internal_Shdr *symtab_hdr;
588 Elf_Internal_Shdr *shndx_hdr;
589 const Elf_Internal_Rela *rel;
590 asection *dlt, *plt, *stubs;
591 char *buf;
592 size_t buf_len;
593 int sec_symndx;
594
595 if (info->relocateable)
596 return true;
597
598 /* If this is the first dynamic object found in the link, create
599 the special sections required for dynamic linking. */
600 if (! elf_hash_table (info)->dynamic_sections_created)
601 {
602 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
603 return false;
604 }
605
606 hppa_info = elf64_hppa_hash_table (info);
607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
608
609 /* If necessary, build a new table holding section symbols indices
610 for this BFD. This is disgusting. */
611
612 if (info->shared && hppa_info->section_syms_bfd != abfd)
613 {
614 unsigned long i;
615 unsigned int highest_shndx;
616 Elf_Internal_Sym *local_syms, *isym;
617 Elf64_External_Sym *ext_syms, *esym;
618 Elf_External_Sym_Shndx *shndx_buf, *shndx;
619 bfd_size_type amt;
620
621 /* We're done with the old cache of section index to section symbol
622 index information. Free it.
623
624 ?!? Note we leak the last section_syms array. Presumably we
625 could free it in one of the later routines in this file. */
626 if (hppa_info->section_syms)
627 free (hppa_info->section_syms);
628
629 /* Allocate memory for the internal and external symbols. */
630 amt = symtab_hdr->sh_info;
631 amt *= sizeof (Elf_Internal_Sym);
632 local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
633 if (local_syms == NULL)
634 return false;
635
636 amt = symtab_hdr->sh_info;
637 amt *= sizeof (Elf64_External_Sym);
638 ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
639 if (ext_syms == NULL)
640 {
641 free (local_syms);
642 return false;
643 }
644
645 /* Read in the local symbols. */
646 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
647 || bfd_bread (ext_syms, amt, abfd) != amt)
648 {
649 free (ext_syms);
650 free (local_syms);
651 return false;
652 }
653
654 shndx_buf = NULL;
655 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
656 if (shndx_hdr->sh_size != 0)
657 {
658 amt = symtab_hdr->sh_info;
659 amt *= sizeof (Elf_External_Sym_Shndx);
660 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
661 if (shndx_buf == NULL)
662 {
663 free (ext_syms);
664 free (local_syms);
665 return false;
666 }
667
668 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
669 || bfd_bread (shndx_buf, amt, abfd) != amt)
670 {
671 free (shndx_buf);
672 free (ext_syms);
673 free (local_syms);
674 return false;
675 }
676 }
677
678 /* Swap in the local symbols, also record the highest section index
679 referenced by the local symbols. */
680 highest_shndx = 0;
681 for (i = 0, isym = local_syms, esym = ext_syms, shndx = shndx_buf;
682 i < symtab_hdr->sh_info;
683 i++, esym++, isym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
684 {
685 bfd_elf64_swap_symbol_in (abfd, (const PTR) esym, (const PTR) shndx,
686 isym);
687 if (isym->st_shndx > highest_shndx)
688 highest_shndx = isym->st_shndx;
689 }
690
691 /* Now we can free the external symbols. */
692 free (shndx_buf);
693 free (ext_syms);
694
695 /* Allocate an array to hold the section index to section symbol index
696 mapping. Bump by one since we start counting at zero. */
697 highest_shndx++;
698 amt = highest_shndx;
699 amt *= sizeof (int);
700 hppa_info->section_syms = (int *) bfd_malloc (amt);
701
702 /* Now walk the local symbols again. If we find a section symbol,
703 record the index of the symbol into the section_syms array. */
704 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
705 {
706 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
707 hppa_info->section_syms[isym->st_shndx] = i;
708 }
709
710 /* We are finished with the local symbols. Get rid of them. */
711 free (local_syms);
712
713 /* Record which BFD we built the section_syms mapping for. */
714 hppa_info->section_syms_bfd = abfd;
715 }
716
717 /* Record the symbol index for this input section. We may need it for
718 relocations when building shared libraries. When not building shared
719 libraries this value is never really used, but assign it to zero to
720 prevent out of bounds memory accesses in other routines. */
721 if (info->shared)
722 {
723 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
724
725 /* If we did not find a section symbol for this section, then
726 something went terribly wrong above. */
727 if (sec_symndx == -1)
728 return false;
729
730 sec_symndx = hppa_info->section_syms[sec_symndx];
731 }
732 else
733 sec_symndx = 0;
734
735 dlt = plt = stubs = NULL;
736 buf = NULL;
737 buf_len = 0;
738
739 relend = relocs + sec->reloc_count;
740 for (rel = relocs; rel < relend; ++rel)
741 {
742 enum {
743 NEED_DLT = 1,
744 NEED_PLT = 2,
745 NEED_STUB = 4,
746 NEED_OPD = 8,
747 NEED_DYNREL = 16,
748 };
749
750 struct elf_link_hash_entry *h = NULL;
751 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
752 struct elf64_hppa_dyn_hash_entry *dyn_h;
753 int need_entry;
754 const char *addr_name;
755 boolean maybe_dynamic;
756 int dynrel_type = R_PARISC_NONE;
757 static reloc_howto_type *howto;
758
759 if (r_symndx >= symtab_hdr->sh_info)
760 {
761 /* We're dealing with a global symbol -- find its hash entry
762 and mark it as being referenced. */
763 long indx = r_symndx - symtab_hdr->sh_info;
764 h = elf_sym_hashes (abfd)[indx];
765 while (h->root.type == bfd_link_hash_indirect
766 || h->root.type == bfd_link_hash_warning)
767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
768
769 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
770 }
771
772 /* We can only get preliminary data on whether a symbol is
773 locally or externally defined, as not all of the input files
774 have yet been processed. Do something with what we know, as
775 this may help reduce memory usage and processing time later. */
776 maybe_dynamic = false;
777 if (h && ((info->shared
778 && (!info->symbolic || info->allow_shlib_undefined) )
779 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
780 || h->root.type == bfd_link_hash_defweak))
781 maybe_dynamic = true;
782
783 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
784 need_entry = 0;
785 switch (howto->type)
786 {
787 /* These are simple indirect references to symbols through the
788 DLT. We need to create a DLT entry for any symbols which
789 appears in a DLTIND relocation. */
790 case R_PARISC_DLTIND21L:
791 case R_PARISC_DLTIND14R:
792 case R_PARISC_DLTIND14F:
793 case R_PARISC_DLTIND14WR:
794 case R_PARISC_DLTIND14DR:
795 need_entry = NEED_DLT;
796 break;
797
798 /* ?!? These need a DLT entry. But I have no idea what to do with
799 the "link time TP value. */
800 case R_PARISC_LTOFF_TP21L:
801 case R_PARISC_LTOFF_TP14R:
802 case R_PARISC_LTOFF_TP14F:
803 case R_PARISC_LTOFF_TP64:
804 case R_PARISC_LTOFF_TP14WR:
805 case R_PARISC_LTOFF_TP14DR:
806 case R_PARISC_LTOFF_TP16F:
807 case R_PARISC_LTOFF_TP16WF:
808 case R_PARISC_LTOFF_TP16DF:
809 need_entry = NEED_DLT;
810 break;
811
812 /* These are function calls. Depending on their precise target we
813 may need to make a stub for them. The stub uses the PLT, so we
814 need to create PLT entries for these symbols too. */
815 case R_PARISC_PCREL12F:
816 case R_PARISC_PCREL17F:
817 case R_PARISC_PCREL22F:
818 case R_PARISC_PCREL32:
819 case R_PARISC_PCREL64:
820 case R_PARISC_PCREL21L:
821 case R_PARISC_PCREL17R:
822 case R_PARISC_PCREL17C:
823 case R_PARISC_PCREL14R:
824 case R_PARISC_PCREL14F:
825 case R_PARISC_PCREL22C:
826 case R_PARISC_PCREL14WR:
827 case R_PARISC_PCREL14DR:
828 case R_PARISC_PCREL16F:
829 case R_PARISC_PCREL16WF:
830 case R_PARISC_PCREL16DF:
831 need_entry = (NEED_PLT | NEED_STUB);
832 break;
833
834 case R_PARISC_PLTOFF21L:
835 case R_PARISC_PLTOFF14R:
836 case R_PARISC_PLTOFF14F:
837 case R_PARISC_PLTOFF14WR:
838 case R_PARISC_PLTOFF14DR:
839 case R_PARISC_PLTOFF16F:
840 case R_PARISC_PLTOFF16WF:
841 case R_PARISC_PLTOFF16DF:
842 need_entry = (NEED_PLT);
843 break;
844
845 case R_PARISC_DIR64:
846 if (info->shared || maybe_dynamic)
847 need_entry = (NEED_DYNREL);
848 dynrel_type = R_PARISC_DIR64;
849 break;
850
851 /* This is an indirect reference through the DLT to get the address
852 of a OPD descriptor. Thus we need to make a DLT entry that points
853 to an OPD entry. */
854 case R_PARISC_LTOFF_FPTR21L:
855 case R_PARISC_LTOFF_FPTR14R:
856 case R_PARISC_LTOFF_FPTR14WR:
857 case R_PARISC_LTOFF_FPTR14DR:
858 case R_PARISC_LTOFF_FPTR32:
859 case R_PARISC_LTOFF_FPTR64:
860 case R_PARISC_LTOFF_FPTR16F:
861 case R_PARISC_LTOFF_FPTR16WF:
862 case R_PARISC_LTOFF_FPTR16DF:
863 if (info->shared || maybe_dynamic)
864 need_entry = (NEED_DLT | NEED_OPD);
865 else
866 need_entry = (NEED_DLT | NEED_OPD);
867 dynrel_type = R_PARISC_FPTR64;
868 break;
869
870 /* This is a simple OPD entry. */
871 case R_PARISC_FPTR64:
872 if (info->shared || maybe_dynamic)
873 need_entry = (NEED_OPD | NEED_DYNREL);
874 else
875 need_entry = (NEED_OPD);
876 dynrel_type = R_PARISC_FPTR64;
877 break;
878
879 /* Add more cases as needed. */
880 }
881
882 if (!need_entry)
883 continue;
884
885 /* Collect a canonical name for this address. */
886 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
887
888 /* Collect the canonical entry data for this address. */
889 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
890 addr_name, true, true);
891 BFD_ASSERT (dyn_h);
892
893 /* Stash away enough information to be able to find this symbol
894 regardless of whether or not it is local or global. */
895 dyn_h->h = h;
896 dyn_h->owner = abfd;
897 dyn_h->sym_indx = r_symndx;
898
899 /* ?!? We may need to do some error checking in here. */
900 /* Create what's needed. */
901 if (need_entry & NEED_DLT)
902 {
903 if (! hppa_info->dlt_sec
904 && ! get_dlt (abfd, info, hppa_info))
905 goto err_out;
906 dyn_h->want_dlt = 1;
907 }
908
909 if (need_entry & NEED_PLT)
910 {
911 if (! hppa_info->plt_sec
912 && ! get_plt (abfd, info, hppa_info))
913 goto err_out;
914 dyn_h->want_plt = 1;
915 }
916
917 if (need_entry & NEED_STUB)
918 {
919 if (! hppa_info->stub_sec
920 && ! get_stub (abfd, info, hppa_info))
921 goto err_out;
922 dyn_h->want_stub = 1;
923 }
924
925 if (need_entry & NEED_OPD)
926 {
927 if (! hppa_info->opd_sec
928 && ! get_opd (abfd, info, hppa_info))
929 goto err_out;
930
931 dyn_h->want_opd = 1;
932
933 /* FPTRs are not allocated by the dynamic linker for PA64, though
934 it is possible that will change in the future. */
935
936 /* This could be a local function that had its address taken, in
937 which case H will be NULL. */
938 if (h)
939 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
940 }
941
942 /* Add a new dynamic relocation to the chain of dynamic
943 relocations for this symbol. */
944 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
945 {
946 if (! hppa_info->other_rel_sec
947 && ! get_reloc_section (abfd, hppa_info, sec))
948 goto err_out;
949
950 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
951 sec_symndx, rel->r_offset, rel->r_addend))
952 goto err_out;
953
954 /* If we are building a shared library and we just recorded
955 a dynamic R_PARISC_FPTR64 relocation, then make sure the
956 section symbol for this section ends up in the dynamic
957 symbol table. */
958 if (info->shared && dynrel_type == R_PARISC_FPTR64
959 && ! (_bfd_elf64_link_record_local_dynamic_symbol
960 (info, abfd, sec_symndx)))
961 return false;
962 }
963 }
964
965 if (buf)
966 free (buf);
967 return true;
968
969 err_out:
970 if (buf)
971 free (buf);
972 return false;
973 }
974
975 struct elf64_hppa_allocate_data
976 {
977 struct bfd_link_info *info;
978 bfd_size_type ofs;
979 };
980
981 /* Should we do dynamic things to this symbol? */
982
983 static boolean
984 elf64_hppa_dynamic_symbol_p (h, info)
985 struct elf_link_hash_entry *h;
986 struct bfd_link_info *info;
987 {
988 if (h == NULL)
989 return false;
990
991 while (h->root.type == bfd_link_hash_indirect
992 || h->root.type == bfd_link_hash_warning)
993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
994
995 if (h->dynindx == -1)
996 return false;
997
998 if (h->root.type == bfd_link_hash_undefweak
999 || h->root.type == bfd_link_hash_defweak)
1000 return true;
1001
1002 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1003 return false;
1004
1005 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
1006 || ((h->elf_link_hash_flags
1007 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
1008 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
1009 return true;
1010
1011 return false;
1012 }
1013
1014 /* Mark all funtions exported by this file so that we can later allocate
1015 entries in .opd for them. */
1016
1017 static boolean
1018 elf64_hppa_mark_exported_functions (h, data)
1019 struct elf_link_hash_entry *h;
1020 PTR data;
1021 {
1022 struct bfd_link_info *info = (struct bfd_link_info *)data;
1023 struct elf64_hppa_link_hash_table *hppa_info;
1024
1025 hppa_info = elf64_hppa_hash_table (info);
1026
1027 if (h->root.type == bfd_link_hash_warning)
1028 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1029
1030 if (h
1031 && (h->root.type == bfd_link_hash_defined
1032 || h->root.type == bfd_link_hash_defweak)
1033 && h->root.u.def.section->output_section != NULL
1034 && h->type == STT_FUNC)
1035 {
1036 struct elf64_hppa_dyn_hash_entry *dyn_h;
1037
1038 /* Add this symbol to the PA64 linker hash table. */
1039 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1040 h->root.root.string, true, true);
1041 BFD_ASSERT (dyn_h);
1042 dyn_h->h = h;
1043
1044 if (! hppa_info->opd_sec
1045 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1046 return false;
1047
1048 dyn_h->want_opd = 1;
1049 /* Put a flag here for output_symbol_hook. */
1050 dyn_h->st_shndx = -1;
1051 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1052 }
1053
1054 return true;
1055 }
1056
1057 /* Allocate space for a DLT entry. */
1058
1059 static boolean
1060 allocate_global_data_dlt (dyn_h, data)
1061 struct elf64_hppa_dyn_hash_entry *dyn_h;
1062 PTR data;
1063 {
1064 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1065
1066 if (dyn_h->want_dlt)
1067 {
1068 struct elf_link_hash_entry *h = dyn_h->h;
1069
1070 if (x->info->shared)
1071 {
1072 /* Possibly add the symbol to the local dynamic symbol
1073 table since we might need to create a dynamic relocation
1074 against it. */
1075 if (! h
1076 || (h && h->dynindx == -1))
1077 {
1078 bfd *owner;
1079 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1080
1081 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1082 (x->info, owner, dyn_h->sym_indx)))
1083 return false;
1084 }
1085 }
1086
1087 dyn_h->dlt_offset = x->ofs;
1088 x->ofs += DLT_ENTRY_SIZE;
1089 }
1090 return true;
1091 }
1092
1093 /* Allocate space for a DLT.PLT entry. */
1094
1095 static boolean
1096 allocate_global_data_plt (dyn_h, data)
1097 struct elf64_hppa_dyn_hash_entry *dyn_h;
1098 PTR data;
1099 {
1100 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1101
1102 if (dyn_h->want_plt
1103 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1104 && !((dyn_h->h->root.type == bfd_link_hash_defined
1105 || dyn_h->h->root.type == bfd_link_hash_defweak)
1106 && dyn_h->h->root.u.def.section->output_section != NULL))
1107 {
1108 dyn_h->plt_offset = x->ofs;
1109 x->ofs += PLT_ENTRY_SIZE;
1110 if (dyn_h->plt_offset < 0x2000)
1111 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1112 }
1113 else
1114 dyn_h->want_plt = 0;
1115
1116 return true;
1117 }
1118
1119 /* Allocate space for a STUB entry. */
1120
1121 static boolean
1122 allocate_global_data_stub (dyn_h, data)
1123 struct elf64_hppa_dyn_hash_entry *dyn_h;
1124 PTR data;
1125 {
1126 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1127
1128 if (dyn_h->want_stub
1129 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1130 && !((dyn_h->h->root.type == bfd_link_hash_defined
1131 || dyn_h->h->root.type == bfd_link_hash_defweak)
1132 && dyn_h->h->root.u.def.section->output_section != NULL))
1133 {
1134 dyn_h->stub_offset = x->ofs;
1135 x->ofs += sizeof (plt_stub);
1136 }
1137 else
1138 dyn_h->want_stub = 0;
1139 return true;
1140 }
1141
1142 /* Allocate space for a FPTR entry. */
1143
1144 static boolean
1145 allocate_global_data_opd (dyn_h, data)
1146 struct elf64_hppa_dyn_hash_entry *dyn_h;
1147 PTR data;
1148 {
1149 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1150
1151 if (dyn_h->want_opd)
1152 {
1153 struct elf_link_hash_entry *h = dyn_h->h;
1154
1155 if (h)
1156 while (h->root.type == bfd_link_hash_indirect
1157 || h->root.type == bfd_link_hash_warning)
1158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1159
1160 /* We never need an opd entry for a symbol which is not
1161 defined by this output file. */
1162 if (h && h->root.type == bfd_link_hash_undefined)
1163 dyn_h->want_opd = 0;
1164
1165 /* If we are creating a shared library, took the address of a local
1166 function or might export this function from this object file, then
1167 we have to create an opd descriptor. */
1168 else if (x->info->shared
1169 || h == NULL
1170 || h->dynindx == -1
1171 || ((h->root.type == bfd_link_hash_defined
1172 || h->root.type == bfd_link_hash_defweak)
1173 && h->root.u.def.section->output_section != NULL))
1174 {
1175 /* If we are creating a shared library, then we will have to
1176 create a runtime relocation for the symbol to properly
1177 initialize the .opd entry. Make sure the symbol gets
1178 added to the dynamic symbol table. */
1179 if (x->info->shared
1180 && (h == NULL || (h->dynindx == -1)))
1181 {
1182 bfd *owner;
1183 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1184
1185 if (!_bfd_elf64_link_record_local_dynamic_symbol
1186 (x->info, owner, dyn_h->sym_indx))
1187 return false;
1188 }
1189
1190 /* This may not be necessary or desirable anymore now that
1191 we have some support for dealing with section symbols
1192 in dynamic relocs. But name munging does make the result
1193 much easier to debug. ie, the EPLT reloc will reference
1194 a symbol like .foobar, instead of .text + offset. */
1195 if (x->info->shared && h)
1196 {
1197 char *new_name;
1198 struct elf_link_hash_entry *nh;
1199
1200 new_name = alloca (strlen (h->root.root.string) + 2);
1201 new_name[0] = '.';
1202 strcpy (new_name + 1, h->root.root.string);
1203
1204 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1205 new_name, true, true, true);
1206
1207 nh->root.type = h->root.type;
1208 nh->root.u.def.value = h->root.u.def.value;
1209 nh->root.u.def.section = h->root.u.def.section;
1210
1211 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1212 return false;
1213
1214 }
1215 dyn_h->opd_offset = x->ofs;
1216 x->ofs += OPD_ENTRY_SIZE;
1217 }
1218
1219 /* Otherwise we do not need an opd entry. */
1220 else
1221 dyn_h->want_opd = 0;
1222 }
1223 return true;
1224 }
1225
1226 /* HP requires the EI_OSABI field to be filled in. The assignment to
1227 EI_ABIVERSION may not be strictly necessary. */
1228
1229 static void
1230 elf64_hppa_post_process_headers (abfd, link_info)
1231 bfd * abfd;
1232 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1233 {
1234 Elf_Internal_Ehdr * i_ehdrp;
1235
1236 i_ehdrp = elf_elfheader (abfd);
1237
1238 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1239 {
1240 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1241 }
1242 else
1243 {
1244 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1245 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1246 }
1247 }
1248
1249 /* Create function descriptor section (.opd). This section is called .opd
1250 because it contains "official prodecure descriptors". The "official"
1251 refers to the fact that these descriptors are used when taking the address
1252 of a procedure, thus ensuring a unique address for each procedure. */
1253
1254 static boolean
1255 get_opd (abfd, info, hppa_info)
1256 bfd *abfd;
1257 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1258 struct elf64_hppa_link_hash_table *hppa_info;
1259 {
1260 asection *opd;
1261 bfd *dynobj;
1262
1263 opd = hppa_info->opd_sec;
1264 if (!opd)
1265 {
1266 dynobj = hppa_info->root.dynobj;
1267 if (!dynobj)
1268 hppa_info->root.dynobj = dynobj = abfd;
1269
1270 opd = bfd_make_section (dynobj, ".opd");
1271 if (!opd
1272 || !bfd_set_section_flags (dynobj, opd,
1273 (SEC_ALLOC
1274 | SEC_LOAD
1275 | SEC_HAS_CONTENTS
1276 | SEC_IN_MEMORY
1277 | SEC_LINKER_CREATED))
1278 || !bfd_set_section_alignment (abfd, opd, 3))
1279 {
1280 BFD_ASSERT (0);
1281 return false;
1282 }
1283
1284 hppa_info->opd_sec = opd;
1285 }
1286
1287 return true;
1288 }
1289
1290 /* Create the PLT section. */
1291
1292 static boolean
1293 get_plt (abfd, info, hppa_info)
1294 bfd *abfd;
1295 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1296 struct elf64_hppa_link_hash_table *hppa_info;
1297 {
1298 asection *plt;
1299 bfd *dynobj;
1300
1301 plt = hppa_info->plt_sec;
1302 if (!plt)
1303 {
1304 dynobj = hppa_info->root.dynobj;
1305 if (!dynobj)
1306 hppa_info->root.dynobj = dynobj = abfd;
1307
1308 plt = bfd_make_section (dynobj, ".plt");
1309 if (!plt
1310 || !bfd_set_section_flags (dynobj, plt,
1311 (SEC_ALLOC
1312 | SEC_LOAD
1313 | SEC_HAS_CONTENTS
1314 | SEC_IN_MEMORY
1315 | SEC_LINKER_CREATED))
1316 || !bfd_set_section_alignment (abfd, plt, 3))
1317 {
1318 BFD_ASSERT (0);
1319 return false;
1320 }
1321
1322 hppa_info->plt_sec = plt;
1323 }
1324
1325 return true;
1326 }
1327
1328 /* Create the DLT section. */
1329
1330 static boolean
1331 get_dlt (abfd, info, hppa_info)
1332 bfd *abfd;
1333 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1334 struct elf64_hppa_link_hash_table *hppa_info;
1335 {
1336 asection *dlt;
1337 bfd *dynobj;
1338
1339 dlt = hppa_info->dlt_sec;
1340 if (!dlt)
1341 {
1342 dynobj = hppa_info->root.dynobj;
1343 if (!dynobj)
1344 hppa_info->root.dynobj = dynobj = abfd;
1345
1346 dlt = bfd_make_section (dynobj, ".dlt");
1347 if (!dlt
1348 || !bfd_set_section_flags (dynobj, dlt,
1349 (SEC_ALLOC
1350 | SEC_LOAD
1351 | SEC_HAS_CONTENTS
1352 | SEC_IN_MEMORY
1353 | SEC_LINKER_CREATED))
1354 || !bfd_set_section_alignment (abfd, dlt, 3))
1355 {
1356 BFD_ASSERT (0);
1357 return false;
1358 }
1359
1360 hppa_info->dlt_sec = dlt;
1361 }
1362
1363 return true;
1364 }
1365
1366 /* Create the stubs section. */
1367
1368 static boolean
1369 get_stub (abfd, info, hppa_info)
1370 bfd *abfd;
1371 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1372 struct elf64_hppa_link_hash_table *hppa_info;
1373 {
1374 asection *stub;
1375 bfd *dynobj;
1376
1377 stub = hppa_info->stub_sec;
1378 if (!stub)
1379 {
1380 dynobj = hppa_info->root.dynobj;
1381 if (!dynobj)
1382 hppa_info->root.dynobj = dynobj = abfd;
1383
1384 stub = bfd_make_section (dynobj, ".stub");
1385 if (!stub
1386 || !bfd_set_section_flags (dynobj, stub,
1387 (SEC_ALLOC
1388 | SEC_LOAD
1389 | SEC_HAS_CONTENTS
1390 | SEC_IN_MEMORY
1391 | SEC_READONLY
1392 | SEC_LINKER_CREATED))
1393 || !bfd_set_section_alignment (abfd, stub, 3))
1394 {
1395 BFD_ASSERT (0);
1396 return false;
1397 }
1398
1399 hppa_info->stub_sec = stub;
1400 }
1401
1402 return true;
1403 }
1404
1405 /* Create sections necessary for dynamic linking. This is only a rough
1406 cut and will likely change as we learn more about the somewhat
1407 unusual dynamic linking scheme HP uses.
1408
1409 .stub:
1410 Contains code to implement cross-space calls. The first time one
1411 of the stubs is used it will call into the dynamic linker, later
1412 calls will go straight to the target.
1413
1414 The only stub we support right now looks like
1415
1416 ldd OFFSET(%dp),%r1
1417 bve %r0(%r1)
1418 ldd OFFSET+8(%dp),%dp
1419
1420 Other stubs may be needed in the future. We may want the remove
1421 the break/nop instruction. It is only used right now to keep the
1422 offset of a .plt entry and a .stub entry in sync.
1423
1424 .dlt:
1425 This is what most people call the .got. HP used a different name.
1426 Losers.
1427
1428 .rela.dlt:
1429 Relocations for the DLT.
1430
1431 .plt:
1432 Function pointers as address,gp pairs.
1433
1434 .rela.plt:
1435 Should contain dynamic IPLT (and EPLT?) relocations.
1436
1437 .opd:
1438 FPTRS
1439
1440 .rela.opd:
1441 EPLT relocations for symbols exported from shared libraries. */
1442
1443 static boolean
1444 elf64_hppa_create_dynamic_sections (abfd, info)
1445 bfd *abfd;
1446 struct bfd_link_info *info;
1447 {
1448 asection *s;
1449
1450 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1451 return false;
1452
1453 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1454 return false;
1455
1456 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1457 return false;
1458
1459 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1460 return false;
1461
1462 s = bfd_make_section(abfd, ".rela.dlt");
1463 if (s == NULL
1464 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1465 | SEC_HAS_CONTENTS
1466 | SEC_IN_MEMORY
1467 | SEC_READONLY
1468 | SEC_LINKER_CREATED))
1469 || !bfd_set_section_alignment (abfd, s, 3))
1470 return false;
1471 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1472
1473 s = bfd_make_section(abfd, ".rela.plt");
1474 if (s == NULL
1475 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1476 | SEC_HAS_CONTENTS
1477 | SEC_IN_MEMORY
1478 | SEC_READONLY
1479 | SEC_LINKER_CREATED))
1480 || !bfd_set_section_alignment (abfd, s, 3))
1481 return false;
1482 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1483
1484 s = bfd_make_section(abfd, ".rela.data");
1485 if (s == NULL
1486 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1487 | SEC_HAS_CONTENTS
1488 | SEC_IN_MEMORY
1489 | SEC_READONLY
1490 | SEC_LINKER_CREATED))
1491 || !bfd_set_section_alignment (abfd, s, 3))
1492 return false;
1493 elf64_hppa_hash_table (info)->other_rel_sec = s;
1494
1495 s = bfd_make_section(abfd, ".rela.opd");
1496 if (s == NULL
1497 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1498 | SEC_HAS_CONTENTS
1499 | SEC_IN_MEMORY
1500 | SEC_READONLY
1501 | SEC_LINKER_CREATED))
1502 || !bfd_set_section_alignment (abfd, s, 3))
1503 return false;
1504 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1505
1506 return true;
1507 }
1508
1509 /* Allocate dynamic relocations for those symbols that turned out
1510 to be dynamic. */
1511
1512 static boolean
1513 allocate_dynrel_entries (dyn_h, data)
1514 struct elf64_hppa_dyn_hash_entry *dyn_h;
1515 PTR data;
1516 {
1517 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1518 struct elf64_hppa_link_hash_table *hppa_info;
1519 struct elf64_hppa_dyn_reloc_entry *rent;
1520 boolean dynamic_symbol, shared;
1521
1522 hppa_info = elf64_hppa_hash_table (x->info);
1523 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1524 shared = x->info->shared;
1525
1526 /* We may need to allocate relocations for a non-dynamic symbol
1527 when creating a shared library. */
1528 if (!dynamic_symbol && !shared)
1529 return true;
1530
1531 /* Take care of the normal data relocations. */
1532
1533 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1534 {
1535 switch (rent->type)
1536 {
1537 case R_PARISC_FPTR64:
1538 /* Allocate one iff we are not building a shared library and
1539 !want_opd, which by this point will be true only if we're
1540 actually allocating one statically in the main executable. */
1541 if (!x->info->shared && dyn_h->want_opd)
1542 continue;
1543 break;
1544 }
1545 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1546
1547 /* Make sure this symbol gets into the dynamic symbol table if it is
1548 not already recorded. ?!? This should not be in the loop since
1549 the symbol need only be added once. */
1550 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1551 if (!_bfd_elf64_link_record_local_dynamic_symbol
1552 (x->info, rent->sec->owner, dyn_h->sym_indx))
1553 return false;
1554 }
1555
1556 /* Take care of the GOT and PLT relocations. */
1557
1558 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1559 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1560
1561 /* If we are building a shared library, then every symbol that has an
1562 opd entry will need an EPLT relocation to relocate the symbol's address
1563 and __gp value based on the runtime load address. */
1564 if (shared && dyn_h->want_opd)
1565 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1566
1567 if (dyn_h->want_plt && dynamic_symbol)
1568 {
1569 bfd_size_type t = 0;
1570
1571 /* Dynamic symbols get one IPLT relocation. Local symbols in
1572 shared libraries get two REL relocations. Local symbols in
1573 main applications get nothing. */
1574 if (dynamic_symbol)
1575 t = sizeof (Elf64_External_Rela);
1576 else if (shared)
1577 t = 2 * sizeof (Elf64_External_Rela);
1578
1579 hppa_info->plt_rel_sec->_raw_size += t;
1580 }
1581
1582 return true;
1583 }
1584
1585 /* Adjust a symbol defined by a dynamic object and referenced by a
1586 regular object. */
1587
1588 static boolean
1589 elf64_hppa_adjust_dynamic_symbol (info, h)
1590 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1591 struct elf_link_hash_entry *h;
1592 {
1593 /* ??? Undefined symbols with PLT entries should be re-defined
1594 to be the PLT entry. */
1595
1596 /* If this is a weak symbol, and there is a real definition, the
1597 processor independent code will have arranged for us to see the
1598 real definition first, and we can just use the same value. */
1599 if (h->weakdef != NULL)
1600 {
1601 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1602 || h->weakdef->root.type == bfd_link_hash_defweak);
1603 h->root.u.def.section = h->weakdef->root.u.def.section;
1604 h->root.u.def.value = h->weakdef->root.u.def.value;
1605 return true;
1606 }
1607
1608 /* If this is a reference to a symbol defined by a dynamic object which
1609 is not a function, we might allocate the symbol in our .dynbss section
1610 and allocate a COPY dynamic relocation.
1611
1612 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1613 of hackery. */
1614
1615 return true;
1616 }
1617
1618 /* Set the final sizes of the dynamic sections and allocate memory for
1619 the contents of our special sections. */
1620
1621 static boolean
1622 elf64_hppa_size_dynamic_sections (output_bfd, info)
1623 bfd *output_bfd;
1624 struct bfd_link_info *info;
1625 {
1626 bfd *dynobj;
1627 asection *s;
1628 boolean plt;
1629 boolean relocs;
1630 boolean reltext;
1631 struct elf64_hppa_allocate_data data;
1632 struct elf64_hppa_link_hash_table *hppa_info;
1633
1634 hppa_info = elf64_hppa_hash_table (info);
1635
1636 dynobj = elf_hash_table (info)->dynobj;
1637 BFD_ASSERT (dynobj != NULL);
1638
1639 if (elf_hash_table (info)->dynamic_sections_created)
1640 {
1641 /* Set the contents of the .interp section to the interpreter. */
1642 if (! info->shared)
1643 {
1644 s = bfd_get_section_by_name (dynobj, ".interp");
1645 BFD_ASSERT (s != NULL);
1646 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1647 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1648 }
1649 }
1650 else
1651 {
1652 /* We may have created entries in the .rela.got section.
1653 However, if we are not creating the dynamic sections, we will
1654 not actually use these entries. Reset the size of .rela.dlt,
1655 which will cause it to get stripped from the output file
1656 below. */
1657 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1658 if (s != NULL)
1659 s->_raw_size = 0;
1660 }
1661
1662 /* Allocate the GOT entries. */
1663
1664 data.info = info;
1665 if (elf64_hppa_hash_table (info)->dlt_sec)
1666 {
1667 data.ofs = 0x0;
1668 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1669 allocate_global_data_dlt, &data);
1670 hppa_info->dlt_sec->_raw_size = data.ofs;
1671
1672 data.ofs = 0x0;
1673 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1674 allocate_global_data_plt, &data);
1675 hppa_info->plt_sec->_raw_size = data.ofs;
1676
1677 data.ofs = 0x0;
1678 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1679 allocate_global_data_stub, &data);
1680 hppa_info->stub_sec->_raw_size = data.ofs;
1681 }
1682
1683 /* Mark each function this program exports so that we will allocate
1684 space in the .opd section for each function's FPTR.
1685
1686 We have to traverse the main linker hash table since we have to
1687 find functions which may not have been mentioned in any relocs. */
1688 elf_link_hash_traverse (elf_hash_table (info),
1689 elf64_hppa_mark_exported_functions,
1690 info);
1691
1692 /* Allocate space for entries in the .opd section. */
1693 if (elf64_hppa_hash_table (info)->opd_sec)
1694 {
1695 data.ofs = 0;
1696 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1697 allocate_global_data_opd, &data);
1698 hppa_info->opd_sec->_raw_size = data.ofs;
1699 }
1700
1701 /* Now allocate space for dynamic relocations, if necessary. */
1702 if (hppa_info->root.dynamic_sections_created)
1703 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1704 allocate_dynrel_entries, &data);
1705
1706 /* The sizes of all the sections are set. Allocate memory for them. */
1707 plt = false;
1708 relocs = false;
1709 reltext = false;
1710 for (s = dynobj->sections; s != NULL; s = s->next)
1711 {
1712 const char *name;
1713 boolean strip;
1714
1715 if ((s->flags & SEC_LINKER_CREATED) == 0)
1716 continue;
1717
1718 /* It's OK to base decisions on the section name, because none
1719 of the dynobj section names depend upon the input files. */
1720 name = bfd_get_section_name (dynobj, s);
1721
1722 strip = 0;
1723
1724 if (strcmp (name, ".plt") == 0)
1725 {
1726 if (s->_raw_size == 0)
1727 {
1728 /* Strip this section if we don't need it; see the
1729 comment below. */
1730 strip = true;
1731 }
1732 else
1733 {
1734 /* Remember whether there is a PLT. */
1735 plt = true;
1736 }
1737 }
1738 else if (strcmp (name, ".dlt") == 0)
1739 {
1740 if (s->_raw_size == 0)
1741 {
1742 /* Strip this section if we don't need it; see the
1743 comment below. */
1744 strip = true;
1745 }
1746 }
1747 else if (strcmp (name, ".opd") == 0)
1748 {
1749 if (s->_raw_size == 0)
1750 {
1751 /* Strip this section if we don't need it; see the
1752 comment below. */
1753 strip = true;
1754 }
1755 }
1756 else if (strncmp (name, ".rela", 4) == 0)
1757 {
1758 if (s->_raw_size == 0)
1759 {
1760 /* If we don't need this section, strip it from the
1761 output file. This is mostly to handle .rela.bss and
1762 .rela.plt. We must create both sections in
1763 create_dynamic_sections, because they must be created
1764 before the linker maps input sections to output
1765 sections. The linker does that before
1766 adjust_dynamic_symbol is called, and it is that
1767 function which decides whether anything needs to go
1768 into these sections. */
1769 strip = true;
1770 }
1771 else
1772 {
1773 asection *target;
1774
1775 /* Remember whether there are any reloc sections other
1776 than .rela.plt. */
1777 if (strcmp (name, ".rela.plt") != 0)
1778 {
1779 const char *outname;
1780
1781 relocs = true;
1782
1783 /* If this relocation section applies to a read only
1784 section, then we probably need a DT_TEXTREL
1785 entry. The entries in the .rela.plt section
1786 really apply to the .got section, which we
1787 created ourselves and so know is not readonly. */
1788 outname = bfd_get_section_name (output_bfd,
1789 s->output_section);
1790 target = bfd_get_section_by_name (output_bfd, outname + 4);
1791 if (target != NULL
1792 && (target->flags & SEC_READONLY) != 0
1793 && (target->flags & SEC_ALLOC) != 0)
1794 reltext = true;
1795 }
1796
1797 /* We use the reloc_count field as a counter if we need
1798 to copy relocs into the output file. */
1799 s->reloc_count = 0;
1800 }
1801 }
1802 else if (strncmp (name, ".dlt", 4) != 0
1803 && strcmp (name, ".stub") != 0
1804 && strcmp (name, ".got") != 0)
1805 {
1806 /* It's not one of our sections, so don't allocate space. */
1807 continue;
1808 }
1809
1810 if (strip)
1811 {
1812 _bfd_strip_section_from_output (info, s);
1813 continue;
1814 }
1815
1816 /* Allocate memory for the section contents if it has not
1817 been allocated already. We use bfd_zalloc here in case
1818 unused entries are not reclaimed before the section's
1819 contents are written out. This should not happen, but this
1820 way if it does, we get a R_PARISC_NONE reloc instead of
1821 garbage. */
1822 if (s->contents == NULL)
1823 {
1824 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1825 if (s->contents == NULL && s->_raw_size != 0)
1826 return false;
1827 }
1828 }
1829
1830 if (elf_hash_table (info)->dynamic_sections_created)
1831 {
1832 /* Always create a DT_PLTGOT. It actually has nothing to do with
1833 the PLT, it is how we communicate the __gp value of a load
1834 module to the dynamic linker. */
1835 #define add_dynamic_entry(TAG, VAL) \
1836 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1837
1838 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1839 || !add_dynamic_entry (DT_PLTGOT, 0))
1840 return false;
1841
1842 /* Add some entries to the .dynamic section. We fill in the
1843 values later, in elf64_hppa_finish_dynamic_sections, but we
1844 must add the entries now so that we get the correct size for
1845 the .dynamic section. The DT_DEBUG entry is filled in by the
1846 dynamic linker and used by the debugger. */
1847 if (! info->shared)
1848 {
1849 if (!add_dynamic_entry (DT_DEBUG, 0)
1850 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1851 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1852 return false;
1853 }
1854
1855 if (plt)
1856 {
1857 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1858 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1859 || !add_dynamic_entry (DT_JMPREL, 0))
1860 return false;
1861 }
1862
1863 if (relocs)
1864 {
1865 if (!add_dynamic_entry (DT_RELA, 0)
1866 || !add_dynamic_entry (DT_RELASZ, 0)
1867 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1868 return false;
1869 }
1870
1871 if (reltext)
1872 {
1873 if (!add_dynamic_entry (DT_TEXTREL, 0))
1874 return false;
1875 info->flags |= DF_TEXTREL;
1876 }
1877 }
1878 #undef add_dynamic_entry
1879
1880 return true;
1881 }
1882
1883 /* Called after we have output the symbol into the dynamic symbol
1884 table, but before we output the symbol into the normal symbol
1885 table.
1886
1887 For some symbols we had to change their address when outputting
1888 the dynamic symbol table. We undo that change here so that
1889 the symbols have their expected value in the normal symbol
1890 table. Ick. */
1891
1892 static boolean
1893 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1894 bfd *abfd ATTRIBUTE_UNUSED;
1895 struct bfd_link_info *info;
1896 const char *name;
1897 Elf_Internal_Sym *sym;
1898 asection *input_sec ATTRIBUTE_UNUSED;
1899 {
1900 struct elf64_hppa_link_hash_table *hppa_info;
1901 struct elf64_hppa_dyn_hash_entry *dyn_h;
1902
1903 /* We may be called with the file symbol or section symbols.
1904 They never need munging, so it is safe to ignore them. */
1905 if (!name)
1906 return true;
1907
1908 /* Get the PA dyn_symbol (if any) associated with NAME. */
1909 hppa_info = elf64_hppa_hash_table (info);
1910 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1911 name, false, false);
1912
1913 /* Function symbols for which we created .opd entries *may* have been
1914 munged by finish_dynamic_symbol and have to be un-munged here.
1915
1916 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1917 into non-dynamic ones, so we initialize st_shndx to -1 in
1918 mark_exported_functions and check to see if it was overwritten
1919 here instead of just checking dyn_h->h->dynindx. */
1920 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1921 {
1922 /* Restore the saved value and section index. */
1923 sym->st_value = dyn_h->st_value;
1924 sym->st_shndx = dyn_h->st_shndx;
1925 }
1926
1927 return true;
1928 }
1929
1930 /* Finish up dynamic symbol handling. We set the contents of various
1931 dynamic sections here. */
1932
1933 static boolean
1934 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1935 bfd *output_bfd;
1936 struct bfd_link_info *info;
1937 struct elf_link_hash_entry *h;
1938 Elf_Internal_Sym *sym;
1939 {
1940 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1941 struct elf64_hppa_link_hash_table *hppa_info;
1942 struct elf64_hppa_dyn_hash_entry *dyn_h;
1943
1944 hppa_info = elf64_hppa_hash_table (info);
1945 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1946 h->root.root.string, false, false);
1947
1948 stub = hppa_info->stub_sec;
1949 splt = hppa_info->plt_sec;
1950 sdlt = hppa_info->dlt_sec;
1951 sopd = hppa_info->opd_sec;
1952 spltrel = hppa_info->plt_rel_sec;
1953 sdltrel = hppa_info->dlt_rel_sec;
1954
1955 BFD_ASSERT (stub != NULL && splt != NULL
1956 && sopd != NULL && sdlt != NULL)
1957
1958 /* Incredible. It is actually necessary to NOT use the symbol's real
1959 value when building the dynamic symbol table for a shared library.
1960 At least for symbols that refer to functions.
1961
1962 We will store a new value and section index into the symbol long
1963 enough to output it into the dynamic symbol table, then we restore
1964 the original values (in elf64_hppa_link_output_symbol_hook). */
1965 if (dyn_h && dyn_h->want_opd)
1966 {
1967 /* Save away the original value and section index so that we
1968 can restore them later. */
1969 dyn_h->st_value = sym->st_value;
1970 dyn_h->st_shndx = sym->st_shndx;
1971
1972 /* For the dynamic symbol table entry, we want the value to be
1973 address of this symbol's entry within the .opd section. */
1974 sym->st_value = (dyn_h->opd_offset
1975 + sopd->output_offset
1976 + sopd->output_section->vma);
1977 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1978 sopd->output_section);
1979 }
1980
1981 /* Initialize a .plt entry if requested. */
1982 if (dyn_h && dyn_h->want_plt
1983 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1984 {
1985 bfd_vma value;
1986 Elf_Internal_Rela rel;
1987
1988 /* We do not actually care about the value in the PLT entry
1989 if we are creating a shared library and the symbol is
1990 still undefined, we create a dynamic relocation to fill
1991 in the correct value. */
1992 if (info->shared && h->root.type == bfd_link_hash_undefined)
1993 value = 0;
1994 else
1995 value = (h->root.u.def.value + h->root.u.def.section->vma);
1996
1997 /* Fill in the entry in the procedure linkage table.
1998
1999 The format of a plt entry is
2000 <funcaddr> <__gp>.
2001
2002 plt_offset is the offset within the PLT section at which to
2003 install the PLT entry.
2004
2005 We are modifying the in-memory PLT contents here, so we do not add
2006 in the output_offset of the PLT section. */
2007
2008 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2009 value = _bfd_get_gp_value (splt->output_section->owner);
2010 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2011
2012 /* Create a dynamic IPLT relocation for this entry.
2013
2014 We are creating a relocation in the output file's PLT section,
2015 which is included within the DLT secton. So we do need to include
2016 the PLT's output_offset in the computation of the relocation's
2017 address. */
2018 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2019 + splt->output_section->vma);
2020 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2021 rel.r_addend = 0;
2022
2023 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2024 (((Elf64_External_Rela *)
2025 spltrel->contents)
2026 + spltrel->reloc_count));
2027 spltrel->reloc_count++;
2028 }
2029
2030 /* Initialize an external call stub entry if requested. */
2031 if (dyn_h && dyn_h->want_stub
2032 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2033 {
2034 bfd_vma value;
2035 int insn;
2036 unsigned int max_offset;
2037
2038 /* Install the generic stub template.
2039
2040 We are modifying the contents of the stub section, so we do not
2041 need to include the stub section's output_offset here. */
2042 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2043
2044 /* Fix up the first ldd instruction.
2045
2046 We are modifying the contents of the STUB section in memory,
2047 so we do not need to include its output offset in this computation.
2048
2049 Note the plt_offset value is the value of the PLT entry relative to
2050 the start of the PLT section. These instructions will reference
2051 data relative to the value of __gp, which may not necessarily have
2052 the same address as the start of the PLT section.
2053
2054 gp_offset contains the offset of __gp within the PLT section. */
2055 value = dyn_h->plt_offset - hppa_info->gp_offset;
2056
2057 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2058 if (output_bfd->arch_info->mach >= 25)
2059 {
2060 /* Wide mode allows 16 bit offsets. */
2061 max_offset = 32768;
2062 insn &= ~ 0xfff1;
2063 insn |= re_assemble_16 ((int) value);
2064 }
2065 else
2066 {
2067 max_offset = 8192;
2068 insn &= ~ 0x3ff1;
2069 insn |= re_assemble_14 ((int) value);
2070 }
2071
2072 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2073 {
2074 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2075 dyn_h->root.string,
2076 (long) value);
2077 return false;
2078 }
2079
2080 bfd_put_32 (stub->owner, (bfd_vma) insn,
2081 stub->contents + dyn_h->stub_offset);
2082
2083 /* Fix up the second ldd instruction. */
2084 value += 8;
2085 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2086 if (output_bfd->arch_info->mach >= 25)
2087 {
2088 insn &= ~ 0xfff1;
2089 insn |= re_assemble_16 ((int) value);
2090 }
2091 else
2092 {
2093 insn &= ~ 0x3ff1;
2094 insn |= re_assemble_14 ((int) value);
2095 }
2096 bfd_put_32 (stub->owner, (bfd_vma) insn,
2097 stub->contents + dyn_h->stub_offset + 8);
2098 }
2099
2100 /* Millicode symbols should not be put in the dynamic
2101 symbol table under any circumstances. */
2102 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2103 h->dynindx = -1;
2104
2105 return true;
2106 }
2107
2108 /* The .opd section contains FPTRs for each function this file
2109 exports. Initialize the FPTR entries. */
2110
2111 static boolean
2112 elf64_hppa_finalize_opd (dyn_h, data)
2113 struct elf64_hppa_dyn_hash_entry *dyn_h;
2114 PTR data;
2115 {
2116 struct bfd_link_info *info = (struct bfd_link_info *)data;
2117 struct elf64_hppa_link_hash_table *hppa_info;
2118 struct elf_link_hash_entry *h = dyn_h->h;
2119 asection *sopd;
2120 asection *sopdrel;
2121
2122 hppa_info = elf64_hppa_hash_table (info);
2123 sopd = hppa_info->opd_sec;
2124 sopdrel = hppa_info->opd_rel_sec;
2125
2126 if (h && dyn_h && dyn_h->want_opd)
2127 {
2128 bfd_vma value;
2129
2130 /* The first two words of an .opd entry are zero.
2131
2132 We are modifying the contents of the OPD section in memory, so we
2133 do not need to include its output offset in this computation. */
2134 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2135
2136 value = (h->root.u.def.value
2137 + h->root.u.def.section->output_section->vma
2138 + h->root.u.def.section->output_offset);
2139
2140 /* The next word is the address of the function. */
2141 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2142
2143 /* The last word is our local __gp value. */
2144 value = _bfd_get_gp_value (sopd->output_section->owner);
2145 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2146 }
2147
2148 /* If we are generating a shared library, we must generate EPLT relocations
2149 for each entry in the .opd, even for static functions (they may have
2150 had their address taken). */
2151 if (info->shared && dyn_h && dyn_h->want_opd)
2152 {
2153 Elf64_Internal_Rela rel;
2154 int dynindx;
2155
2156 /* We may need to do a relocation against a local symbol, in
2157 which case we have to look up it's dynamic symbol index off
2158 the local symbol hash table. */
2159 if (h && h->dynindx != -1)
2160 dynindx = h->dynindx;
2161 else
2162 dynindx
2163 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2164 dyn_h->sym_indx);
2165
2166 /* The offset of this relocation is the absolute address of the
2167 .opd entry for this symbol. */
2168 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2169 + sopd->output_section->vma);
2170
2171 /* If H is non-null, then we have an external symbol.
2172
2173 It is imperative that we use a different dynamic symbol for the
2174 EPLT relocation if the symbol has global scope.
2175
2176 In the dynamic symbol table, the function symbol will have a value
2177 which is address of the function's .opd entry.
2178
2179 Thus, we can not use that dynamic symbol for the EPLT relocation
2180 (if we did, the data in the .opd would reference itself rather
2181 than the actual address of the function). Instead we have to use
2182 a new dynamic symbol which has the same value as the original global
2183 function symbol.
2184
2185 We prefix the original symbol with a "." and use the new symbol in
2186 the EPLT relocation. This new symbol has already been recorded in
2187 the symbol table, we just have to look it up and use it.
2188
2189 We do not have such problems with static functions because we do
2190 not make their addresses in the dynamic symbol table point to
2191 the .opd entry. Ultimately this should be safe since a static
2192 function can not be directly referenced outside of its shared
2193 library.
2194
2195 We do have to play similar games for FPTR relocations in shared
2196 libraries, including those for static symbols. See the FPTR
2197 handling in elf64_hppa_finalize_dynreloc. */
2198 if (h)
2199 {
2200 char *new_name;
2201 struct elf_link_hash_entry *nh;
2202
2203 new_name = alloca (strlen (h->root.root.string) + 2);
2204 new_name[0] = '.';
2205 strcpy (new_name + 1, h->root.root.string);
2206
2207 nh = elf_link_hash_lookup (elf_hash_table (info),
2208 new_name, false, false, false);
2209
2210 /* All we really want from the new symbol is its dynamic
2211 symbol index. */
2212 dynindx = nh->dynindx;
2213 }
2214
2215 rel.r_addend = 0;
2216 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2217
2218 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2219 (((Elf64_External_Rela *)
2220 sopdrel->contents)
2221 + sopdrel->reloc_count));
2222 sopdrel->reloc_count++;
2223 }
2224 return true;
2225 }
2226
2227 /* The .dlt section contains addresses for items referenced through the
2228 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2229 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2230
2231 static boolean
2232 elf64_hppa_finalize_dlt (dyn_h, data)
2233 struct elf64_hppa_dyn_hash_entry *dyn_h;
2234 PTR data;
2235 {
2236 struct bfd_link_info *info = (struct bfd_link_info *)data;
2237 struct elf64_hppa_link_hash_table *hppa_info;
2238 asection *sdlt, *sdltrel;
2239 struct elf_link_hash_entry *h = dyn_h->h;
2240
2241 hppa_info = elf64_hppa_hash_table (info);
2242
2243 sdlt = hppa_info->dlt_sec;
2244 sdltrel = hppa_info->dlt_rel_sec;
2245
2246 /* H/DYN_H may refer to a local variable and we know it's
2247 address, so there is no need to create a relocation. Just install
2248 the proper value into the DLT, note this shortcut can not be
2249 skipped when building a shared library. */
2250 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2251 {
2252 bfd_vma value;
2253
2254 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2255 to point to the FPTR entry in the .opd section.
2256
2257 We include the OPD's output offset in this computation as
2258 we are referring to an absolute address in the resulting
2259 object file. */
2260 if (dyn_h->want_opd)
2261 {
2262 value = (dyn_h->opd_offset
2263 + hppa_info->opd_sec->output_offset
2264 + hppa_info->opd_sec->output_section->vma);
2265 }
2266 else
2267 {
2268 value = (h->root.u.def.value
2269 + h->root.u.def.section->output_offset);
2270
2271 if (h->root.u.def.section->output_section)
2272 value += h->root.u.def.section->output_section->vma;
2273 else
2274 value += h->root.u.def.section->vma;
2275 }
2276
2277 /* We do not need to include the output offset of the DLT section
2278 here because we are modifying the in-memory contents. */
2279 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2280 }
2281
2282 /* Create a relocation for the DLT entry assocated with this symbol.
2283 When building a shared library the symbol does not have to be dynamic. */
2284 if (dyn_h->want_dlt
2285 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2286 {
2287 Elf64_Internal_Rela rel;
2288 int dynindx;
2289
2290 /* We may need to do a relocation against a local symbol, in
2291 which case we have to look up it's dynamic symbol index off
2292 the local symbol hash table. */
2293 if (h && h->dynindx != -1)
2294 dynindx = h->dynindx;
2295 else
2296 dynindx
2297 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2298 dyn_h->sym_indx);
2299
2300 /* Create a dynamic relocation for this entry. Do include the output
2301 offset of the DLT entry since we need an absolute address in the
2302 resulting object file. */
2303 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2304 + sdlt->output_section->vma);
2305 if (h && h->type == STT_FUNC)
2306 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2307 else
2308 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2309 rel.r_addend = 0;
2310
2311 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2312 (((Elf64_External_Rela *)
2313 sdltrel->contents)
2314 + sdltrel->reloc_count));
2315 sdltrel->reloc_count++;
2316 }
2317 return true;
2318 }
2319
2320 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2321 for dynamic functions used to initialize static data. */
2322
2323 static boolean
2324 elf64_hppa_finalize_dynreloc (dyn_h, data)
2325 struct elf64_hppa_dyn_hash_entry *dyn_h;
2326 PTR data;
2327 {
2328 struct bfd_link_info *info = (struct bfd_link_info *)data;
2329 struct elf64_hppa_link_hash_table *hppa_info;
2330 struct elf_link_hash_entry *h;
2331 int dynamic_symbol;
2332
2333 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2334
2335 if (!dynamic_symbol && !info->shared)
2336 return true;
2337
2338 if (dyn_h->reloc_entries)
2339 {
2340 struct elf64_hppa_dyn_reloc_entry *rent;
2341 int dynindx;
2342
2343 hppa_info = elf64_hppa_hash_table (info);
2344 h = dyn_h->h;
2345
2346 /* We may need to do a relocation against a local symbol, in
2347 which case we have to look up it's dynamic symbol index off
2348 the local symbol hash table. */
2349 if (h && h->dynindx != -1)
2350 dynindx = h->dynindx;
2351 else
2352 dynindx
2353 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2354 dyn_h->sym_indx);
2355
2356 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2357 {
2358 Elf64_Internal_Rela rel;
2359
2360 switch (rent->type)
2361 {
2362 case R_PARISC_FPTR64:
2363 /* Allocate one iff we are not building a shared library and
2364 !want_opd, which by this point will be true only if we're
2365 actually allocating one statically in the main executable. */
2366 if (!info->shared && dyn_h->want_opd)
2367 continue;
2368 break;
2369 }
2370
2371 /* Create a dynamic relocation for this entry.
2372
2373 We need the output offset for the reloc's section because
2374 we are creating an absolute address in the resulting object
2375 file. */
2376 rel.r_offset = (rent->offset + rent->sec->output_offset
2377 + rent->sec->output_section->vma);
2378
2379 /* An FPTR64 relocation implies that we took the address of
2380 a function and that the function has an entry in the .opd
2381 section. We want the FPTR64 relocation to reference the
2382 entry in .opd.
2383
2384 We could munge the symbol value in the dynamic symbol table
2385 (in fact we already do for functions with global scope) to point
2386 to the .opd entry. Then we could use that dynamic symbol in
2387 this relocation.
2388
2389 Or we could do something sensible, not munge the symbol's
2390 address and instead just use a different symbol to reference
2391 the .opd entry. At least that seems sensible until you
2392 realize there's no local dynamic symbols we can use for that
2393 purpose. Thus the hair in the check_relocs routine.
2394
2395 We use a section symbol recorded by check_relocs as the
2396 base symbol for the relocation. The addend is the difference
2397 between the section symbol and the address of the .opd entry. */
2398 if (info->shared && rent->type == R_PARISC_FPTR64)
2399 {
2400 bfd_vma value, value2;
2401
2402 /* First compute the address of the opd entry for this symbol. */
2403 value = (dyn_h->opd_offset
2404 + hppa_info->opd_sec->output_section->vma
2405 + hppa_info->opd_sec->output_offset);
2406
2407 /* Compute the value of the start of the section with
2408 the relocation. */
2409 value2 = (rent->sec->output_section->vma
2410 + rent->sec->output_offset);
2411
2412 /* Compute the difference between the start of the section
2413 with the relocation and the opd entry. */
2414 value -= value2;
2415
2416 /* The result becomes the addend of the relocation. */
2417 rel.r_addend = value;
2418
2419 /* The section symbol becomes the symbol for the dynamic
2420 relocation. */
2421 dynindx
2422 = _bfd_elf_link_lookup_local_dynindx (info,
2423 rent->sec->owner,
2424 rent->sec_symndx);
2425 }
2426 else
2427 rel.r_addend = rent->addend;
2428
2429 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2430
2431 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2432 &rel,
2433 (((Elf64_External_Rela *)
2434 hppa_info->other_rel_sec->contents)
2435 + hppa_info->other_rel_sec->reloc_count));
2436 hppa_info->other_rel_sec->reloc_count++;
2437 }
2438 }
2439
2440 return true;
2441 }
2442
2443 /* Finish up the dynamic sections. */
2444
2445 static boolean
2446 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2447 bfd *output_bfd;
2448 struct bfd_link_info *info;
2449 {
2450 bfd *dynobj;
2451 asection *sdyn;
2452 struct elf64_hppa_link_hash_table *hppa_info;
2453
2454 hppa_info = elf64_hppa_hash_table (info);
2455
2456 /* Finalize the contents of the .opd section. */
2457 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2458 elf64_hppa_finalize_opd,
2459 info);
2460
2461 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2462 elf64_hppa_finalize_dynreloc,
2463 info);
2464
2465 /* Finalize the contents of the .dlt section. */
2466 dynobj = elf_hash_table (info)->dynobj;
2467 /* Finalize the contents of the .dlt section. */
2468 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2469 elf64_hppa_finalize_dlt,
2470 info);
2471
2472 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2473
2474 if (elf_hash_table (info)->dynamic_sections_created)
2475 {
2476 Elf64_External_Dyn *dyncon, *dynconend;
2477
2478 BFD_ASSERT (sdyn != NULL);
2479
2480 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2481 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2482 for (; dyncon < dynconend; dyncon++)
2483 {
2484 Elf_Internal_Dyn dyn;
2485 asection *s;
2486
2487 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2488
2489 switch (dyn.d_tag)
2490 {
2491 default:
2492 break;
2493
2494 case DT_HP_LOAD_MAP:
2495 /* Compute the absolute address of 16byte scratchpad area
2496 for the dynamic linker.
2497
2498 By convention the linker script will allocate the scratchpad
2499 area at the start of the .data section. So all we have to
2500 to is find the start of the .data section. */
2501 s = bfd_get_section_by_name (output_bfd, ".data");
2502 dyn.d_un.d_ptr = s->vma;
2503 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2504 break;
2505
2506 case DT_PLTGOT:
2507 /* HP's use PLTGOT to set the GOT register. */
2508 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2509 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2510 break;
2511
2512 case DT_JMPREL:
2513 s = hppa_info->plt_rel_sec;
2514 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2515 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2516 break;
2517
2518 case DT_PLTRELSZ:
2519 s = hppa_info->plt_rel_sec;
2520 dyn.d_un.d_val = s->_raw_size;
2521 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2522 break;
2523
2524 case DT_RELA:
2525 s = hppa_info->other_rel_sec;
2526 if (! s)
2527 s = hppa_info->dlt_rel_sec;
2528 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2529 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2530 break;
2531
2532 case DT_RELASZ:
2533 s = hppa_info->other_rel_sec;
2534 dyn.d_un.d_val = s->_raw_size;
2535 s = hppa_info->dlt_rel_sec;
2536 dyn.d_un.d_val += s->_raw_size;
2537 s = hppa_info->opd_rel_sec;
2538 dyn.d_un.d_val += s->_raw_size;
2539 /* There is some question about whether or not the size of
2540 the PLT relocs should be included here. HP's tools do
2541 it, so we'll emulate them. */
2542 s = hppa_info->plt_rel_sec;
2543 dyn.d_un.d_val += s->_raw_size;
2544 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2545 break;
2546
2547 }
2548 }
2549 }
2550
2551 return true;
2552 }
2553
2554 /* Return the number of additional phdrs we will need.
2555
2556 The generic ELF code only creates PT_PHDRs for executables. The HP
2557 dynamic linker requires PT_PHDRs for dynamic libraries too.
2558
2559 This routine indicates that the backend needs one additional program
2560 header for that case.
2561
2562 Note we do not have access to the link info structure here, so we have
2563 to guess whether or not we are building a shared library based on the
2564 existence of a .interp section. */
2565
2566 static int
2567 elf64_hppa_additional_program_headers (abfd)
2568 bfd *abfd;
2569 {
2570 asection *s;
2571
2572 /* If we are creating a shared library, then we have to create a
2573 PT_PHDR segment. HP's dynamic linker chokes without it. */
2574 s = bfd_get_section_by_name (abfd, ".interp");
2575 if (! s)
2576 return 1;
2577 return 0;
2578 }
2579
2580 /* Allocate and initialize any program headers required by this
2581 specific backend.
2582
2583 The generic ELF code only creates PT_PHDRs for executables. The HP
2584 dynamic linker requires PT_PHDRs for dynamic libraries too.
2585
2586 This allocates the PT_PHDR and initializes it in a manner suitable
2587 for the HP linker.
2588
2589 Note we do not have access to the link info structure here, so we have
2590 to guess whether or not we are building a shared library based on the
2591 existence of a .interp section. */
2592
2593 static boolean
2594 elf64_hppa_modify_segment_map (abfd)
2595 bfd *abfd;
2596 {
2597 struct elf_segment_map *m;
2598 asection *s;
2599
2600 s = bfd_get_section_by_name (abfd, ".interp");
2601 if (! s)
2602 {
2603 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2604 if (m->p_type == PT_PHDR)
2605 break;
2606 if (m == NULL)
2607 {
2608 m = ((struct elf_segment_map *)
2609 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2610 if (m == NULL)
2611 return false;
2612
2613 m->p_type = PT_PHDR;
2614 m->p_flags = PF_R | PF_X;
2615 m->p_flags_valid = 1;
2616 m->p_paddr_valid = 1;
2617 m->includes_phdrs = 1;
2618
2619 m->next = elf_tdata (abfd)->segment_map;
2620 elf_tdata (abfd)->segment_map = m;
2621 }
2622 }
2623
2624 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2625 if (m->p_type == PT_LOAD)
2626 {
2627 unsigned int i;
2628
2629 for (i = 0; i < m->count; i++)
2630 {
2631 /* The code "hint" is not really a hint. It is a requirement
2632 for certain versions of the HP dynamic linker. Worse yet,
2633 it must be set even if the shared library does not have
2634 any code in its "text" segment (thus the check for .hash
2635 to catch this situation). */
2636 if (m->sections[i]->flags & SEC_CODE
2637 || (strcmp (m->sections[i]->name, ".hash") == 0))
2638 m->p_flags |= (PF_X | PF_HP_CODE);
2639 }
2640 }
2641
2642 return true;
2643 }
2644
2645 /* Called when writing out an object file to decide the type of a
2646 symbol. */
2647 static int
2648 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2649 Elf_Internal_Sym *elf_sym;
2650 int type;
2651 {
2652 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2653 return STT_PARISC_MILLI;
2654 else
2655 return type;
2656 }
2657
2658 /* The hash bucket size is the standard one, namely 4. */
2659
2660 const struct elf_size_info hppa64_elf_size_info =
2661 {
2662 sizeof (Elf64_External_Ehdr),
2663 sizeof (Elf64_External_Phdr),
2664 sizeof (Elf64_External_Shdr),
2665 sizeof (Elf64_External_Rel),
2666 sizeof (Elf64_External_Rela),
2667 sizeof (Elf64_External_Sym),
2668 sizeof (Elf64_External_Dyn),
2669 sizeof (Elf_External_Note),
2670 4,
2671 1,
2672 64, 8,
2673 ELFCLASS64, EV_CURRENT,
2674 bfd_elf64_write_out_phdrs,
2675 bfd_elf64_write_shdrs_and_ehdr,
2676 bfd_elf64_write_relocs,
2677 bfd_elf64_swap_symbol_in,
2678 bfd_elf64_swap_symbol_out,
2679 bfd_elf64_slurp_reloc_table,
2680 bfd_elf64_slurp_symbol_table,
2681 bfd_elf64_swap_dyn_in,
2682 bfd_elf64_swap_dyn_out,
2683 NULL,
2684 NULL,
2685 NULL,
2686 NULL
2687 };
2688
2689 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2690 #define TARGET_BIG_NAME "elf64-hppa"
2691 #define ELF_ARCH bfd_arch_hppa
2692 #define ELF_MACHINE_CODE EM_PARISC
2693 /* This is not strictly correct. The maximum page size for PA2.0 is
2694 64M. But everything still uses 4k. */
2695 #define ELF_MAXPAGESIZE 0x1000
2696 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2697 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2698 #define elf_info_to_howto elf_hppa_info_to_howto
2699 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2700
2701 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2702 #define elf_backend_object_p elf64_hppa_object_p
2703 #define elf_backend_final_write_processing \
2704 elf_hppa_final_write_processing
2705 #define elf_backend_fake_sections elf_hppa_fake_sections
2706 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2707
2708 #define elf_backend_relocate_section elf_hppa_relocate_section
2709
2710 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2711
2712 #define elf_backend_create_dynamic_sections \
2713 elf64_hppa_create_dynamic_sections
2714 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2715
2716 #define elf_backend_adjust_dynamic_symbol \
2717 elf64_hppa_adjust_dynamic_symbol
2718
2719 #define elf_backend_size_dynamic_sections \
2720 elf64_hppa_size_dynamic_sections
2721
2722 #define elf_backend_finish_dynamic_symbol \
2723 elf64_hppa_finish_dynamic_symbol
2724 #define elf_backend_finish_dynamic_sections \
2725 elf64_hppa_finish_dynamic_sections
2726
2727 /* Stuff for the BFD linker: */
2728 #define bfd_elf64_bfd_link_hash_table_create \
2729 elf64_hppa_hash_table_create
2730
2731 #define elf_backend_check_relocs \
2732 elf64_hppa_check_relocs
2733
2734 #define elf_backend_size_info \
2735 hppa64_elf_size_info
2736
2737 #define elf_backend_additional_program_headers \
2738 elf64_hppa_additional_program_headers
2739
2740 #define elf_backend_modify_segment_map \
2741 elf64_hppa_modify_segment_map
2742
2743 #define elf_backend_link_output_symbol_hook \
2744 elf64_hppa_link_output_symbol_hook
2745
2746 #define elf_backend_want_got_plt 0
2747 #define elf_backend_plt_readonly 0
2748 #define elf_backend_want_plt_sym 0
2749 #define elf_backend_got_header_size 0
2750 #define elf_backend_plt_header_size 0
2751 #define elf_backend_type_change_ok true
2752 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2753
2754 #include "elf64-target.h"
2755
2756 #undef TARGET_BIG_SYM
2757 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2758 #undef TARGET_BIG_NAME
2759 #define TARGET_BIG_NAME "elf64-hppa-linux"
2760
2761 #define INCLUDED_TARGET_FILE 1
2762 #include "elf64-target.h"
This page took 0.104452 seconds and 5 git commands to generate.