daily update
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* No specific ABI or "processor-specific supplement" defined. */
24
25 /* TODO:
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
39
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
42 /* Put these everywhere in new code. */
43 #define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47 #define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
51 struct _mmix_elf_section_data
52 {
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
84 };
85
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
88
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91 NULL. */
92 struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
127 section. */
128 bfd_boolean valid;
129 };
130
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137 struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
168
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, bfd_error_handler_type);
176
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
186
187
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
195 2, /* size (0 = byte, 1 = short, 2 = long) */
196 32, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_bitfield, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
203 0, /* src_mask */
204 0, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
218 0, /* src_mask */
219 0xff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
227 FALSE, /* pc_relative */
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
233 0, /* src_mask */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
287 TRUE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
293 0, /* src_mask */
294 0xff, /* dst_mask */
295 TRUE), /* pcrel_offset */
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
362 FALSE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
368 0, /* src_mask */
369 0, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
455 TRUE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
531 TRUE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
559 TRUE, /* pc_relative */
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
573 TRUE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
702 0, /* src_mask */
703 0xff, /* dst_mask */
704 FALSE), /* pcrel_offset */
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
719 0, /* src_mask */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
755 };
756
757
758 /* Map BFD reloc types to MMIX ELF reloc types. */
759
760 struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793 };
794
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
798 {
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
810 }
811
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815 {
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
826 }
827
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
835
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843 }
844
845
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
897 {
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
966 + size
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
1009 + size
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
1012 - addr,
1013 error_message);
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
1020 + size
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
1037 value + addr - stubaddr,
1038 error_message);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
1193 (*_bfd_error_handler)
1194 (_("%s: Internal inconsistency error for value for\n\
1195 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1196 bfd_get_filename (isec->owner),
1197 (unsigned long) (value >> 32), (unsigned long) value,
1198 (unsigned long) (gregdata->reloc_request[bpo_index].value
1199 >> 32),
1200 (unsigned long) gregdata->reloc_request[bpo_index].value);
1201 bfd_set_error (bfd_error_bad_value);
1202 return bfd_reloc_overflow;
1203 }
1204
1205 /* Then store the register number and offset for that register
1206 into datap and datap + 1 respectively. */
1207 bfd_put_8 (abfd,
1208 gregdata->reloc_request[bpo_index].regindex
1209 + bpo_greg_section->output_section->vma / 8,
1210 datap);
1211 bfd_put_8 (abfd,
1212 gregdata->reloc_request[bpo_index].offset,
1213 ((unsigned char *) datap) + 1);
1214 return bfd_reloc_ok;
1215 }
1216
1217 case R_MMIX_REG_OR_BYTE:
1218 case R_MMIX_REG:
1219 if (value > 255)
1220 return bfd_reloc_overflow;
1221 bfd_put_8 (abfd, value, datap);
1222 return bfd_reloc_ok;
1223
1224 default:
1225 BAD_CASE (howto->type);
1226 }
1227
1228 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1229 sequence. */
1230
1231 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1232 everything that looks strange. */
1233 if (value & 3)
1234 flag = bfd_reloc_overflow;
1235
1236 bfd_put_32 (abfd,
1237 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1238 (bfd_byte *) datap + offs);
1239 bfd_put_32 (abfd,
1240 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1241 (bfd_byte *) datap + offs + 4);
1242 bfd_put_32 (abfd,
1243 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1244 (bfd_byte *) datap + offs + 8);
1245 bfd_put_32 (abfd,
1246 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1247 (bfd_byte *) datap + offs + 12);
1248
1249 return flag;
1250 }
1251
1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1253
1254 static void
1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1256 arelent *cache_ptr,
1257 Elf_Internal_Rela *dst)
1258 {
1259 unsigned int r_type;
1260
1261 r_type = ELF64_R_TYPE (dst->r_info);
1262 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1263 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1264 }
1265
1266 /* Any MMIX-specific relocation gets here at assembly time or when linking
1267 to other formats (such as mmo); this is the relocation function from
1268 the reloc_table. We don't get here for final pure ELF linking. */
1269
1270 static bfd_reloc_status_type
1271 mmix_elf_reloc (bfd *abfd,
1272 arelent *reloc_entry,
1273 asymbol *symbol,
1274 void * data,
1275 asection *input_section,
1276 bfd *output_bfd,
1277 char **error_message)
1278 {
1279 bfd_vma relocation;
1280 bfd_reloc_status_type r;
1281 asection *reloc_target_output_section;
1282 bfd_reloc_status_type flag = bfd_reloc_ok;
1283 bfd_vma output_base = 0;
1284
1285 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1286 input_section, output_bfd, error_message);
1287
1288 /* If that was all that was needed (i.e. this isn't a final link, only
1289 some segment adjustments), we're done. */
1290 if (r != bfd_reloc_continue)
1291 return r;
1292
1293 if (bfd_is_und_section (symbol->section)
1294 && (symbol->flags & BSF_WEAK) == 0
1295 && output_bfd == (bfd *) NULL)
1296 return bfd_reloc_undefined;
1297
1298 /* Is the address of the relocation really within the section? */
1299 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1300 return bfd_reloc_outofrange;
1301
1302 /* Work out which section the relocation is targeted at and the
1303 initial relocation command value. */
1304
1305 /* Get symbol value. (Common symbols are special.) */
1306 if (bfd_is_com_section (symbol->section))
1307 relocation = 0;
1308 else
1309 relocation = symbol->value;
1310
1311 reloc_target_output_section = bfd_get_output_section (symbol);
1312
1313 /* Here the variable relocation holds the final address of the symbol we
1314 are relocating against, plus any addend. */
1315 if (output_bfd)
1316 output_base = 0;
1317 else
1318 output_base = reloc_target_output_section->vma;
1319
1320 relocation += output_base + symbol->section->output_offset;
1321
1322 if (output_bfd != (bfd *) NULL)
1323 {
1324 /* Add in supplied addend. */
1325 relocation += reloc_entry->addend;
1326
1327 /* This is a partial relocation, and we want to apply the
1328 relocation to the reloc entry rather than the raw data.
1329 Modify the reloc inplace to reflect what we now know. */
1330 reloc_entry->addend = relocation;
1331 reloc_entry->address += input_section->output_offset;
1332 return flag;
1333 }
1334
1335 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1336 data, reloc_entry->address,
1337 reloc_entry->addend, relocation,
1338 bfd_asymbol_name (symbol),
1339 reloc_target_output_section,
1340 error_message);
1341 }
1342 \f
1343 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1344 for guidance if you're thinking of copying this. */
1345
1346 static bfd_boolean
1347 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1348 struct bfd_link_info *info,
1349 bfd *input_bfd,
1350 asection *input_section,
1351 bfd_byte *contents,
1352 Elf_Internal_Rela *relocs,
1353 Elf_Internal_Sym *local_syms,
1354 asection **local_sections)
1355 {
1356 Elf_Internal_Shdr *symtab_hdr;
1357 struct elf_link_hash_entry **sym_hashes;
1358 Elf_Internal_Rela *rel;
1359 Elf_Internal_Rela *relend;
1360 bfd_size_type size;
1361 size_t pjsno = 0;
1362
1363 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1364 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1365 sym_hashes = elf_sym_hashes (input_bfd);
1366 relend = relocs + input_section->reloc_count;
1367
1368 /* Zero the stub area before we start. */
1369 if (input_section->rawsize != 0
1370 && input_section->size > input_section->rawsize)
1371 memset (contents + input_section->rawsize, 0,
1372 input_section->size - input_section->rawsize);
1373
1374 for (rel = relocs; rel < relend; rel ++)
1375 {
1376 reloc_howto_type *howto;
1377 unsigned long r_symndx;
1378 Elf_Internal_Sym *sym;
1379 asection *sec;
1380 struct elf_link_hash_entry *h;
1381 bfd_vma relocation;
1382 bfd_reloc_status_type r;
1383 const char *name = NULL;
1384 int r_type;
1385 bfd_boolean undefined_signalled = FALSE;
1386
1387 r_type = ELF64_R_TYPE (rel->r_info);
1388
1389 if (r_type == R_MMIX_GNU_VTINHERIT
1390 || r_type == R_MMIX_GNU_VTENTRY)
1391 continue;
1392
1393 r_symndx = ELF64_R_SYM (rel->r_info);
1394
1395 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1396 h = NULL;
1397 sym = NULL;
1398 sec = NULL;
1399
1400 if (r_symndx < symtab_hdr->sh_info)
1401 {
1402 sym = local_syms + r_symndx;
1403 sec = local_sections [r_symndx];
1404 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1405
1406 name = bfd_elf_string_from_elf_section (input_bfd,
1407 symtab_hdr->sh_link,
1408 sym->st_name);
1409 if (name == NULL)
1410 name = bfd_section_name (input_bfd, sec);
1411 }
1412 else
1413 {
1414 bfd_boolean unresolved_reloc, ignored;
1415
1416 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1417 r_symndx, symtab_hdr, sym_hashes,
1418 h, sec, relocation,
1419 unresolved_reloc, undefined_signalled,
1420 ignored);
1421 name = h->root.root.string;
1422 }
1423
1424 if (sec != NULL && discarded_section (sec))
1425 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1426 rel, 1, relend, howto, 0, contents);
1427
1428 if (info->relocatable)
1429 {
1430 /* This is a relocatable link. For most relocs we don't have to
1431 change anything, unless the reloc is against a section
1432 symbol, in which case we have to adjust according to where
1433 the section symbol winds up in the output section. */
1434 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1435 rel->r_addend += sec->output_offset;
1436
1437 /* For PUSHJ stub relocs however, we may need to change the
1438 reloc and the section contents, if the reloc doesn't reach
1439 beyond the end of the output section and previous stubs.
1440 Then we change the section contents to be a PUSHJ to the end
1441 of the input section plus stubs (we can do that without using
1442 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1443 at the stub location. */
1444 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1445 {
1446 /* We've already checked whether we need a stub; use that
1447 knowledge. */
1448 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1449 != 0)
1450 {
1451 Elf_Internal_Rela relcpy;
1452
1453 if (mmix_elf_section_data (input_section)
1454 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1455 abort ();
1456
1457 /* There's already a PUSHJ insn there, so just fill in
1458 the offset bits to the stub. */
1459 if (mmix_final_link_relocate (elf_mmix_howto_table
1460 + R_MMIX_ADDR19,
1461 input_section,
1462 contents,
1463 rel->r_offset,
1464 0,
1465 input_section
1466 ->output_section->vma
1467 + input_section->output_offset
1468 + size
1469 + mmix_elf_section_data (input_section)
1470 ->pjs.stub_offset,
1471 NULL, NULL, NULL) != bfd_reloc_ok)
1472 return FALSE;
1473
1474 /* Put a JMP insn at the stub; it goes with the
1475 R_MMIX_JMP reloc. */
1476 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1477 contents
1478 + size
1479 + mmix_elf_section_data (input_section)
1480 ->pjs.stub_offset);
1481
1482 /* Change the reloc to be at the stub, and to a full
1483 R_MMIX_JMP reloc. */
1484 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1485 rel->r_offset
1486 = (size
1487 + mmix_elf_section_data (input_section)
1488 ->pjs.stub_offset);
1489
1490 mmix_elf_section_data (input_section)->pjs.stub_offset
1491 += MAX_PUSHJ_STUB_SIZE;
1492
1493 /* Shift this reloc to the end of the relocs to maintain
1494 the r_offset sorted reloc order. */
1495 relcpy = *rel;
1496 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1497 relend[-1] = relcpy;
1498
1499 /* Back up one reloc, or else we'd skip the next reloc
1500 in turn. */
1501 rel--;
1502 }
1503
1504 pjsno++;
1505 }
1506 continue;
1507 }
1508
1509 r = mmix_final_link_relocate (howto, input_section,
1510 contents, rel->r_offset,
1511 rel->r_addend, relocation, name, sec, NULL);
1512
1513 if (r != bfd_reloc_ok)
1514 {
1515 bfd_boolean check_ok = TRUE;
1516 const char * msg = (const char *) NULL;
1517
1518 switch (r)
1519 {
1520 case bfd_reloc_overflow:
1521 check_ok = info->callbacks->reloc_overflow
1522 (info, (h ? &h->root : NULL), name, howto->name,
1523 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1524 break;
1525
1526 case bfd_reloc_undefined:
1527 /* We may have sent this message above. */
1528 if (! undefined_signalled)
1529 check_ok = info->callbacks->undefined_symbol
1530 (info, name, input_bfd, input_section, rel->r_offset,
1531 TRUE);
1532 undefined_signalled = TRUE;
1533 break;
1534
1535 case bfd_reloc_outofrange:
1536 msg = _("internal error: out of range error");
1537 break;
1538
1539 case bfd_reloc_notsupported:
1540 msg = _("internal error: unsupported relocation error");
1541 break;
1542
1543 case bfd_reloc_dangerous:
1544 msg = _("internal error: dangerous relocation");
1545 break;
1546
1547 default:
1548 msg = _("internal error: unknown error");
1549 break;
1550 }
1551
1552 if (msg)
1553 check_ok = info->callbacks->warning
1554 (info, msg, name, input_bfd, input_section, rel->r_offset);
1555
1556 if (! check_ok)
1557 return FALSE;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563 \f
1564 /* Perform a single relocation. By default we use the standard BFD
1565 routines. A few relocs we have to do ourselves. */
1566
1567 static bfd_reloc_status_type
1568 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1569 bfd_byte *contents, bfd_vma r_offset,
1570 bfd_signed_vma r_addend, bfd_vma relocation,
1571 const char *symname, asection *symsec,
1572 char **error_message)
1573 {
1574 bfd_reloc_status_type r = bfd_reloc_ok;
1575 bfd_vma addr
1576 = (input_section->output_section->vma
1577 + input_section->output_offset
1578 + r_offset);
1579 bfd_signed_vma srel
1580 = (bfd_signed_vma) relocation + r_addend;
1581
1582 switch (howto->type)
1583 {
1584 /* All these are PC-relative. */
1585 case R_MMIX_PUSHJ_STUBBABLE:
1586 case R_MMIX_PUSHJ:
1587 case R_MMIX_CBRANCH:
1588 case R_MMIX_ADDR19:
1589 case R_MMIX_GETA:
1590 case R_MMIX_ADDR27:
1591 case R_MMIX_JMP:
1592 contents += r_offset;
1593
1594 srel -= (input_section->output_section->vma
1595 + input_section->output_offset
1596 + r_offset);
1597
1598 r = mmix_elf_perform_relocation (input_section, howto, contents,
1599 addr, srel, error_message);
1600 break;
1601
1602 case R_MMIX_BASE_PLUS_OFFSET:
1603 if (symsec == NULL)
1604 return bfd_reloc_undefined;
1605
1606 /* Check that we're not relocating against a register symbol. */
1607 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1608 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1609 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1610 MMIX_REG_SECTION_NAME) == 0)
1611 {
1612 /* Note: This is separated out into two messages in order
1613 to ease the translation into other languages. */
1614 if (symname == NULL || *symname == 0)
1615 (*_bfd_error_handler)
1616 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1617 bfd_get_filename (input_section->owner),
1618 bfd_get_section_name (symsec->owner, symsec));
1619 else
1620 (*_bfd_error_handler)
1621 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1622 bfd_get_filename (input_section->owner), symname,
1623 bfd_get_section_name (symsec->owner, symsec));
1624 return bfd_reloc_overflow;
1625 }
1626 goto do_mmix_reloc;
1627
1628 case R_MMIX_REG_OR_BYTE:
1629 case R_MMIX_REG:
1630 /* For now, we handle these alike. They must refer to an register
1631 symbol, which is either relative to the register section and in
1632 the range 0..255, or is in the register contents section with vma
1633 regno * 8. */
1634
1635 /* FIXME: A better way to check for reg contents section?
1636 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1637 if (symsec == NULL)
1638 return bfd_reloc_undefined;
1639
1640 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1641 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1642 {
1643 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1644 {
1645 /* The bfd_reloc_outofrange return value, though intuitively
1646 a better value, will not get us an error. */
1647 return bfd_reloc_overflow;
1648 }
1649 srel /= 8;
1650 }
1651 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1652 MMIX_REG_SECTION_NAME) == 0)
1653 {
1654 if (srel < 0 || srel > 255)
1655 /* The bfd_reloc_outofrange return value, though intuitively a
1656 better value, will not get us an error. */
1657 return bfd_reloc_overflow;
1658 }
1659 else
1660 {
1661 /* Note: This is separated out into two messages in order
1662 to ease the translation into other languages. */
1663 if (symname == NULL || *symname == 0)
1664 (*_bfd_error_handler)
1665 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1666 bfd_get_filename (input_section->owner),
1667 bfd_get_section_name (symsec->owner, symsec));
1668 else
1669 (*_bfd_error_handler)
1670 (_("%s: register relocation against non-register symbol: %s in %s"),
1671 bfd_get_filename (input_section->owner), symname,
1672 bfd_get_section_name (symsec->owner, symsec));
1673
1674 /* The bfd_reloc_outofrange return value, though intuitively a
1675 better value, will not get us an error. */
1676 return bfd_reloc_overflow;
1677 }
1678 do_mmix_reloc:
1679 contents += r_offset;
1680 r = mmix_elf_perform_relocation (input_section, howto, contents,
1681 addr, srel, error_message);
1682 break;
1683
1684 case R_MMIX_LOCAL:
1685 /* This isn't a real relocation, it's just an assertion that the
1686 final relocation value corresponds to a local register. We
1687 ignore the actual relocation; nothing is changed. */
1688 {
1689 asection *regsec
1690 = bfd_get_section_by_name (input_section->output_section->owner,
1691 MMIX_REG_CONTENTS_SECTION_NAME);
1692 bfd_vma first_global;
1693
1694 /* Check that this is an absolute value, or a reference to the
1695 register contents section or the register (symbol) section.
1696 Absolute numbers can get here as undefined section. Undefined
1697 symbols are signalled elsewhere, so there's no conflict in us
1698 accidentally handling it. */
1699 if (!bfd_is_abs_section (symsec)
1700 && !bfd_is_und_section (symsec)
1701 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1702 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1703 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1704 MMIX_REG_SECTION_NAME) != 0)
1705 {
1706 (*_bfd_error_handler)
1707 (_("%s: directive LOCAL valid only with a register or absolute value"),
1708 bfd_get_filename (input_section->owner));
1709
1710 return bfd_reloc_overflow;
1711 }
1712
1713 /* If we don't have a register contents section, then $255 is the
1714 first global register. */
1715 if (regsec == NULL)
1716 first_global = 255;
1717 else
1718 {
1719 first_global
1720 = bfd_get_section_vma (input_section->output_section->owner,
1721 regsec) / 8;
1722 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1723 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1724 {
1725 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1726 /* The bfd_reloc_outofrange return value, though
1727 intuitively a better value, will not get us an error. */
1728 return bfd_reloc_overflow;
1729 srel /= 8;
1730 }
1731 }
1732
1733 if ((bfd_vma) srel >= first_global)
1734 {
1735 /* FIXME: Better error message. */
1736 (*_bfd_error_handler)
1737 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1738 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1739
1740 return bfd_reloc_overflow;
1741 }
1742 }
1743 r = bfd_reloc_ok;
1744 break;
1745
1746 default:
1747 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1748 contents, r_offset,
1749 relocation, r_addend);
1750 }
1751
1752 return r;
1753 }
1754 \f
1755 /* Return the section that should be marked against GC for a given
1756 relocation. */
1757
1758 static asection *
1759 mmix_elf_gc_mark_hook (asection *sec,
1760 struct bfd_link_info *info,
1761 Elf_Internal_Rela *rel,
1762 struct elf_link_hash_entry *h,
1763 Elf_Internal_Sym *sym)
1764 {
1765 if (h != NULL)
1766 switch (ELF64_R_TYPE (rel->r_info))
1767 {
1768 case R_MMIX_GNU_VTINHERIT:
1769 case R_MMIX_GNU_VTENTRY:
1770 return NULL;
1771 }
1772
1773 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1774 }
1775
1776 /* Update relocation info for a GC-excluded section. We could supposedly
1777 perform the allocation after GC, but there's no suitable hook between
1778 GC (or section merge) and the point when all input sections must be
1779 present. Better to waste some memory and (perhaps) a little time. */
1780
1781 static bfd_boolean
1782 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1783 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1784 asection *sec,
1785 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1786 {
1787 struct bpo_reloc_section_info *bpodata
1788 = mmix_elf_section_data (sec)->bpo.reloc;
1789 asection *allocated_gregs_section;
1790
1791 /* If no bpodata here, we have nothing to do. */
1792 if (bpodata == NULL)
1793 return TRUE;
1794
1795 allocated_gregs_section = bpodata->bpo_greg_section;
1796
1797 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1798 -= bpodata->n_bpo_relocs_this_section;
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* Sort register relocs to come before expanding relocs. */
1804
1805 static int
1806 mmix_elf_sort_relocs (const void * p1, const void * p2)
1807 {
1808 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1809 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1810 int r1_is_reg, r2_is_reg;
1811
1812 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1813 insns. */
1814 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1815 return 1;
1816 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1817 return -1;
1818
1819 r1_is_reg
1820 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1821 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1822 r2_is_reg
1823 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1824 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1825 if (r1_is_reg != r2_is_reg)
1826 return r2_is_reg - r1_is_reg;
1827
1828 /* Neither or both are register relocs. Then sort on full offset. */
1829 if (r1->r_offset > r2->r_offset)
1830 return 1;
1831 else if (r1->r_offset < r2->r_offset)
1832 return -1;
1833 return 0;
1834 }
1835
1836 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1837
1838 static bfd_boolean
1839 mmix_elf_check_common_relocs (bfd *abfd,
1840 struct bfd_link_info *info,
1841 asection *sec,
1842 const Elf_Internal_Rela *relocs)
1843 {
1844 bfd *bpo_greg_owner = NULL;
1845 asection *allocated_gregs_section = NULL;
1846 struct bpo_greg_section_info *gregdata = NULL;
1847 struct bpo_reloc_section_info *bpodata = NULL;
1848 const Elf_Internal_Rela *rel;
1849 const Elf_Internal_Rela *rel_end;
1850
1851 /* We currently have to abuse this COFF-specific member, since there's
1852 no target-machine-dedicated member. There's no alternative outside
1853 the bfd_link_info struct; we can't specialize a hash-table since
1854 they're different between ELF and mmo. */
1855 bpo_greg_owner = (bfd *) info->base_file;
1856
1857 rel_end = relocs + sec->reloc_count;
1858 for (rel = relocs; rel < rel_end; rel++)
1859 {
1860 switch (ELF64_R_TYPE (rel->r_info))
1861 {
1862 /* This relocation causes a GREG allocation. We need to count
1863 them, and we need to create a section for them, so we need an
1864 object to fake as the owner of that section. We can't use
1865 the ELF dynobj for this, since the ELF bits assume lots of
1866 DSO-related stuff if that member is non-NULL. */
1867 case R_MMIX_BASE_PLUS_OFFSET:
1868 /* We don't do anything with this reloc for a relocatable link. */
1869 if (info->relocatable)
1870 break;
1871
1872 if (bpo_greg_owner == NULL)
1873 {
1874 bpo_greg_owner = abfd;
1875 info->base_file = bpo_greg_owner;
1876 }
1877
1878 if (allocated_gregs_section == NULL)
1879 allocated_gregs_section
1880 = bfd_get_section_by_name (bpo_greg_owner,
1881 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1882
1883 if (allocated_gregs_section == NULL)
1884 {
1885 allocated_gregs_section
1886 = bfd_make_section_with_flags (bpo_greg_owner,
1887 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1888 (SEC_HAS_CONTENTS
1889 | SEC_IN_MEMORY
1890 | SEC_LINKER_CREATED));
1891 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1892 treated like any other section, and we'd get errors for
1893 address overlap with the text section. Let's set none of
1894 those flags, as that is what currently happens for usual
1895 GREG allocations, and that works. */
1896 if (allocated_gregs_section == NULL
1897 || !bfd_set_section_alignment (bpo_greg_owner,
1898 allocated_gregs_section,
1899 3))
1900 return FALSE;
1901
1902 gregdata = (struct bpo_greg_section_info *)
1903 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1904 if (gregdata == NULL)
1905 return FALSE;
1906 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1907 = gregdata;
1908 }
1909 else if (gregdata == NULL)
1910 gregdata
1911 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1912
1913 /* Get ourselves some auxiliary info for the BPO-relocs. */
1914 if (bpodata == NULL)
1915 {
1916 /* No use doing a separate iteration pass to find the upper
1917 limit - just use the number of relocs. */
1918 bpodata = (struct bpo_reloc_section_info *)
1919 bfd_alloc (bpo_greg_owner,
1920 sizeof (struct bpo_reloc_section_info)
1921 * (sec->reloc_count + 1));
1922 if (bpodata == NULL)
1923 return FALSE;
1924 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1925 bpodata->first_base_plus_offset_reloc
1926 = bpodata->bpo_index
1927 = gregdata->n_max_bpo_relocs;
1928 bpodata->bpo_greg_section
1929 = allocated_gregs_section;
1930 bpodata->n_bpo_relocs_this_section = 0;
1931 }
1932
1933 bpodata->n_bpo_relocs_this_section++;
1934 gregdata->n_max_bpo_relocs++;
1935
1936 /* We don't get another chance to set this before GC; we've not
1937 set up any hook that runs before GC. */
1938 gregdata->n_bpo_relocs
1939 = gregdata->n_max_bpo_relocs;
1940 break;
1941
1942 case R_MMIX_PUSHJ_STUBBABLE:
1943 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1944 break;
1945 }
1946 }
1947
1948 /* Allocate per-reloc stub storage and initialize it to the max stub
1949 size. */
1950 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1951 {
1952 size_t i;
1953
1954 mmix_elf_section_data (sec)->pjs.stub_size
1955 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1956 * sizeof (mmix_elf_section_data (sec)
1957 ->pjs.stub_size[0]));
1958 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1959 return FALSE;
1960
1961 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1962 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1963 }
1964
1965 return TRUE;
1966 }
1967
1968 /* Look through the relocs for a section during the first phase. */
1969
1970 static bfd_boolean
1971 mmix_elf_check_relocs (bfd *abfd,
1972 struct bfd_link_info *info,
1973 asection *sec,
1974 const Elf_Internal_Rela *relocs)
1975 {
1976 Elf_Internal_Shdr *symtab_hdr;
1977 struct elf_link_hash_entry **sym_hashes;
1978 const Elf_Internal_Rela *rel;
1979 const Elf_Internal_Rela *rel_end;
1980
1981 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1982 sym_hashes = elf_sym_hashes (abfd);
1983
1984 /* First we sort the relocs so that any register relocs come before
1985 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1986 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1987 mmix_elf_sort_relocs);
1988
1989 /* Do the common part. */
1990 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1991 return FALSE;
1992
1993 if (info->relocatable)
1994 return TRUE;
1995
1996 rel_end = relocs + sec->reloc_count;
1997 for (rel = relocs; rel < rel_end; rel++)
1998 {
1999 struct elf_link_hash_entry *h;
2000 unsigned long r_symndx;
2001
2002 r_symndx = ELF64_R_SYM (rel->r_info);
2003 if (r_symndx < symtab_hdr->sh_info)
2004 h = NULL;
2005 else
2006 {
2007 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2008 while (h->root.type == bfd_link_hash_indirect
2009 || h->root.type == bfd_link_hash_warning)
2010 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2011
2012 /* PR15323, ref flags aren't set for references in the same
2013 object. */
2014 h->root.non_ir_ref = 1;
2015 }
2016
2017 switch (ELF64_R_TYPE (rel->r_info))
2018 {
2019 /* This relocation describes the C++ object vtable hierarchy.
2020 Reconstruct it for later use during GC. */
2021 case R_MMIX_GNU_VTINHERIT:
2022 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2023 return FALSE;
2024 break;
2025
2026 /* This relocation describes which C++ vtable entries are actually
2027 used. Record for later use during GC. */
2028 case R_MMIX_GNU_VTENTRY:
2029 BFD_ASSERT (h != NULL);
2030 if (h != NULL
2031 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2032 return FALSE;
2033 break;
2034 }
2035 }
2036
2037 return TRUE;
2038 }
2039
2040 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2041 Copied from elf_link_add_object_symbols. */
2042
2043 bfd_boolean
2044 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2045 {
2046 asection *o;
2047
2048 for (o = abfd->sections; o != NULL; o = o->next)
2049 {
2050 Elf_Internal_Rela *internal_relocs;
2051 bfd_boolean ok;
2052
2053 if ((o->flags & SEC_RELOC) == 0
2054 || o->reloc_count == 0
2055 || ((info->strip == strip_all || info->strip == strip_debugger)
2056 && (o->flags & SEC_DEBUGGING) != 0)
2057 || bfd_is_abs_section (o->output_section))
2058 continue;
2059
2060 internal_relocs
2061 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2062 (Elf_Internal_Rela *) NULL,
2063 info->keep_memory);
2064 if (internal_relocs == NULL)
2065 return FALSE;
2066
2067 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2068
2069 if (! info->keep_memory)
2070 free (internal_relocs);
2071
2072 if (! ok)
2073 return FALSE;
2074 }
2075
2076 return TRUE;
2077 }
2078 \f
2079 /* Change symbols relative to the reg contents section to instead be to
2080 the register section, and scale them down to correspond to the register
2081 number. */
2082
2083 static int
2084 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2085 const char *name ATTRIBUTE_UNUSED,
2086 Elf_Internal_Sym *sym,
2087 asection *input_sec,
2088 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2089 {
2090 if (input_sec != NULL
2091 && input_sec->name != NULL
2092 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2093 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2094 {
2095 sym->st_value /= 8;
2096 sym->st_shndx = SHN_REGISTER;
2097 }
2098
2099 return 1;
2100 }
2101
2102 /* We fake a register section that holds values that are register numbers.
2103 Having a SHN_REGISTER and register section translates better to other
2104 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2105 This section faking is based on a construct in elf32-mips.c. */
2106 static asection mmix_elf_reg_section;
2107 static asymbol mmix_elf_reg_section_symbol;
2108 static asymbol *mmix_elf_reg_section_symbol_ptr;
2109
2110 /* Handle the special section numbers that a symbol may use. */
2111
2112 void
2113 mmix_elf_symbol_processing (abfd, asym)
2114 bfd *abfd ATTRIBUTE_UNUSED;
2115 asymbol *asym;
2116 {
2117 elf_symbol_type *elfsym;
2118
2119 elfsym = (elf_symbol_type *) asym;
2120 switch (elfsym->internal_elf_sym.st_shndx)
2121 {
2122 case SHN_REGISTER:
2123 if (mmix_elf_reg_section.name == NULL)
2124 {
2125 /* Initialize the register section. */
2126 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2127 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2128 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2129 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2130 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2131 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2132 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2133 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2134 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2135 }
2136 asym->section = &mmix_elf_reg_section;
2137 break;
2138
2139 default:
2140 break;
2141 }
2142 }
2143
2144 /* Given a BFD section, try to locate the corresponding ELF section
2145 index. */
2146
2147 static bfd_boolean
2148 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2149 asection * sec,
2150 int * retval)
2151 {
2152 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2153 *retval = SHN_REGISTER;
2154 else
2155 return FALSE;
2156
2157 return TRUE;
2158 }
2159
2160 /* Hook called by the linker routine which adds symbols from an object
2161 file. We must handle the special SHN_REGISTER section number here.
2162
2163 We also check that we only have *one* each of the section-start
2164 symbols, since otherwise having two with the same value would cause
2165 them to be "merged", but with the contents serialized. */
2166
2167 static bfd_boolean
2168 mmix_elf_add_symbol_hook (bfd *abfd,
2169 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2170 Elf_Internal_Sym *sym,
2171 const char **namep ATTRIBUTE_UNUSED,
2172 flagword *flagsp ATTRIBUTE_UNUSED,
2173 asection **secp,
2174 bfd_vma *valp ATTRIBUTE_UNUSED)
2175 {
2176 if (sym->st_shndx == SHN_REGISTER)
2177 {
2178 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2179 (*secp)->flags |= SEC_LINKER_CREATED;
2180 }
2181 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2182 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2183 {
2184 /* See if we have another one. */
2185 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2186 *namep,
2187 FALSE,
2188 FALSE,
2189 FALSE);
2190
2191 if (h != NULL && h->type != bfd_link_hash_undefined)
2192 {
2193 /* How do we get the asymbol (or really: the filename) from h?
2194 h->u.def.section->owner is NULL. */
2195 ((*_bfd_error_handler)
2196 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2197 bfd_get_filename (abfd), *namep,
2198 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2199 bfd_set_error (bfd_error_bad_value);
2200 return FALSE;
2201 }
2202 }
2203
2204 return TRUE;
2205 }
2206
2207 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2208
2209 static bfd_boolean
2210 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2211 {
2212 const char *colpos;
2213 int digits;
2214
2215 /* Also include the default local-label definition. */
2216 if (_bfd_elf_is_local_label_name (abfd, name))
2217 return TRUE;
2218
2219 if (*name != 'L')
2220 return FALSE;
2221
2222 /* If there's no ":", or more than one, it's not a local symbol. */
2223 colpos = strchr (name, ':');
2224 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2225 return FALSE;
2226
2227 /* Check that there are remaining characters and that they are digits. */
2228 if (colpos[1] == 0)
2229 return FALSE;
2230
2231 digits = strspn (colpos + 1, "0123456789");
2232 return digits != 0 && colpos[1 + digits] == 0;
2233 }
2234
2235 /* We get rid of the register section here. */
2236
2237 bfd_boolean
2238 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2239 {
2240 /* We never output a register section, though we create one for
2241 temporary measures. Check that nobody entered contents into it. */
2242 asection *reg_section;
2243
2244 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2245
2246 if (reg_section != NULL)
2247 {
2248 /* FIXME: Pass error state gracefully. */
2249 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2250 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2251
2252 /* Really remove the section, if it hasn't already been done. */
2253 if (!bfd_section_removed_from_list (abfd, reg_section))
2254 {
2255 bfd_section_list_remove (abfd, reg_section);
2256 --abfd->section_count;
2257 }
2258 }
2259
2260 if (! bfd_elf_final_link (abfd, info))
2261 return FALSE;
2262
2263 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2264 the regular linker machinery. We do it here, like other targets with
2265 special sections. */
2266 if (info->base_file != NULL)
2267 {
2268 asection *greg_section
2269 = bfd_get_section_by_name ((bfd *) info->base_file,
2270 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2271 if (!bfd_set_section_contents (abfd,
2272 greg_section->output_section,
2273 greg_section->contents,
2274 (file_ptr) greg_section->output_offset,
2275 greg_section->size))
2276 return FALSE;
2277 }
2278 return TRUE;
2279 }
2280
2281 /* We need to include the maximum size of PUSHJ-stubs in the initial
2282 section size. This is expected to shrink during linker relaxation. */
2283
2284 static void
2285 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2286 asection *sec,
2287 void *ptr)
2288 {
2289 struct bfd_link_info *info = ptr;
2290
2291 /* Make sure we only do this for section where we know we want this,
2292 otherwise we might end up resetting the size of COMMONs. */
2293 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2294 return;
2295
2296 sec->rawsize = sec->size;
2297 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2298 * MAX_PUSHJ_STUB_SIZE);
2299
2300 /* For use in relocatable link, we start with a max stubs size. See
2301 mmix_elf_relax_section. */
2302 if (info->relocatable && sec->output_section)
2303 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2304 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2305 * MAX_PUSHJ_STUB_SIZE);
2306 }
2307
2308 /* Initialize stuff for the linker-generated GREGs to match
2309 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2310
2311 bfd_boolean
2312 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2313 struct bfd_link_info *info)
2314 {
2315 asection *bpo_gregs_section;
2316 bfd *bpo_greg_owner;
2317 struct bpo_greg_section_info *gregdata;
2318 size_t n_gregs;
2319 bfd_vma gregs_size;
2320 size_t i;
2321 size_t *bpo_reloc_indexes;
2322 bfd *ibfd;
2323
2324 /* Set the initial size of sections. */
2325 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2326 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2327
2328 /* The bpo_greg_owner bfd is supposed to have been set by
2329 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2330 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2331 bpo_greg_owner = (bfd *) info->base_file;
2332 if (bpo_greg_owner == NULL)
2333 return TRUE;
2334
2335 bpo_gregs_section
2336 = bfd_get_section_by_name (bpo_greg_owner,
2337 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2338
2339 if (bpo_gregs_section == NULL)
2340 return TRUE;
2341
2342 /* We use the target-data handle in the ELF section data. */
2343 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2344 if (gregdata == NULL)
2345 return FALSE;
2346
2347 n_gregs = gregdata->n_bpo_relocs;
2348 gregdata->n_allocated_bpo_gregs = n_gregs;
2349
2350 /* When this reaches zero during relaxation, all entries have been
2351 filled in and the size of the linker gregs can be calculated. */
2352 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2353
2354 /* Set the zeroth-order estimate for the GREGs size. */
2355 gregs_size = n_gregs * 8;
2356
2357 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2358 return FALSE;
2359
2360 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2361 time. Note that we must use the max number ever noted for the array,
2362 since the index numbers were created before GC. */
2363 gregdata->reloc_request
2364 = bfd_zalloc (bpo_greg_owner,
2365 sizeof (struct bpo_reloc_request)
2366 * gregdata->n_max_bpo_relocs);
2367
2368 gregdata->bpo_reloc_indexes
2369 = bpo_reloc_indexes
2370 = bfd_alloc (bpo_greg_owner,
2371 gregdata->n_max_bpo_relocs
2372 * sizeof (size_t));
2373 if (bpo_reloc_indexes == NULL)
2374 return FALSE;
2375
2376 /* The default order is an identity mapping. */
2377 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2378 {
2379 bpo_reloc_indexes[i] = i;
2380 gregdata->reloc_request[i].bpo_reloc_no = i;
2381 }
2382
2383 return TRUE;
2384 }
2385 \f
2386 /* Fill in contents in the linker allocated gregs. Everything is
2387 calculated at this point; we just move the contents into place here. */
2388
2389 bfd_boolean
2390 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2391 struct bfd_link_info *link_info)
2392 {
2393 asection *bpo_gregs_section;
2394 bfd *bpo_greg_owner;
2395 struct bpo_greg_section_info *gregdata;
2396 size_t n_gregs;
2397 size_t i, j;
2398 size_t lastreg;
2399 bfd_byte *contents;
2400
2401 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2402 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2403 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2404 bpo_greg_owner = (bfd *) link_info->base_file;
2405 if (bpo_greg_owner == NULL)
2406 return TRUE;
2407
2408 bpo_gregs_section
2409 = bfd_get_section_by_name (bpo_greg_owner,
2410 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2411
2412 /* This can't happen without DSO handling. When DSOs are handled
2413 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2414 section. */
2415 if (bpo_gregs_section == NULL)
2416 return TRUE;
2417
2418 /* We use the target-data handle in the ELF section data. */
2419
2420 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2421 if (gregdata == NULL)
2422 return FALSE;
2423
2424 n_gregs = gregdata->n_allocated_bpo_gregs;
2425
2426 bpo_gregs_section->contents
2427 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2428 if (contents == NULL)
2429 return FALSE;
2430
2431 /* Sanity check: If these numbers mismatch, some relocation has not been
2432 accounted for and the rest of gregdata is probably inconsistent.
2433 It's a bug, but it's more helpful to identify it than segfaulting
2434 below. */
2435 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2436 != gregdata->n_bpo_relocs)
2437 {
2438 (*_bfd_error_handler)
2439 (_("Internal inconsistency: remaining %u != max %u.\n\
2440 Please report this bug."),
2441 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2442 gregdata->n_bpo_relocs);
2443 return FALSE;
2444 }
2445
2446 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2447 if (gregdata->reloc_request[i].regindex != lastreg)
2448 {
2449 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2450 contents + j * 8);
2451 lastreg = gregdata->reloc_request[i].regindex;
2452 j++;
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Sort valid relocs to come before non-valid relocs, then on increasing
2459 value. */
2460
2461 static int
2462 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2463 {
2464 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2465 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2466
2467 /* Primary function is validity; non-valid relocs sorted after valid
2468 ones. */
2469 if (r1->valid != r2->valid)
2470 return r2->valid - r1->valid;
2471
2472 /* Then sort on value. Don't simplify and return just the difference of
2473 the values: the upper bits of the 64-bit value would be truncated on
2474 a host with 32-bit ints. */
2475 if (r1->value != r2->value)
2476 return r1->value > r2->value ? 1 : -1;
2477
2478 /* As a last re-sort, use the relocation number, so we get a stable
2479 sort. The *addresses* aren't stable since items are swapped during
2480 sorting. It depends on the qsort implementation if this actually
2481 happens. */
2482 return r1->bpo_reloc_no > r2->bpo_reloc_no
2483 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2484 }
2485
2486 /* For debug use only. Dumps the global register allocations resulting
2487 from base-plus-offset relocs. */
2488
2489 void
2490 mmix_dump_bpo_gregs (link_info, pf)
2491 struct bfd_link_info *link_info;
2492 bfd_error_handler_type pf;
2493 {
2494 bfd *bpo_greg_owner;
2495 asection *bpo_gregs_section;
2496 struct bpo_greg_section_info *gregdata;
2497 unsigned int i;
2498
2499 if (link_info == NULL || link_info->base_file == NULL)
2500 return;
2501
2502 bpo_greg_owner = (bfd *) link_info->base_file;
2503
2504 bpo_gregs_section
2505 = bfd_get_section_by_name (bpo_greg_owner,
2506 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2507
2508 if (bpo_gregs_section == NULL)
2509 return;
2510
2511 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2512 if (gregdata == NULL)
2513 return;
2514
2515 if (pf == NULL)
2516 pf = _bfd_error_handler;
2517
2518 /* These format strings are not translated. They are for debug purposes
2519 only and never displayed to an end user. Should they escape, we
2520 surely want them in original. */
2521 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2522 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2523 gregdata->n_max_bpo_relocs,
2524 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2525 gregdata->n_allocated_bpo_gregs);
2526
2527 if (gregdata->reloc_request)
2528 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2529 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2530 i,
2531 (gregdata->bpo_reloc_indexes != NULL
2532 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2533 gregdata->reloc_request[i].bpo_reloc_no,
2534 gregdata->reloc_request[i].valid,
2535
2536 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2537 (unsigned long) gregdata->reloc_request[i].value,
2538 gregdata->reloc_request[i].regindex,
2539 gregdata->reloc_request[i].offset);
2540 }
2541
2542 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2543 when the last such reloc is done, an index-array is sorted according to
2544 the values and iterated over to produce register numbers (indexed by 0
2545 from the first allocated register number) and offsets for use in real
2546 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2547
2548 PUSHJ stub accounting is also done here.
2549
2550 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2551
2552 static bfd_boolean
2553 mmix_elf_relax_section (bfd *abfd,
2554 asection *sec,
2555 struct bfd_link_info *link_info,
2556 bfd_boolean *again)
2557 {
2558 Elf_Internal_Shdr *symtab_hdr;
2559 Elf_Internal_Rela *internal_relocs;
2560 Elf_Internal_Rela *irel, *irelend;
2561 asection *bpo_gregs_section = NULL;
2562 struct bpo_greg_section_info *gregdata;
2563 struct bpo_reloc_section_info *bpodata
2564 = mmix_elf_section_data (sec)->bpo.reloc;
2565 /* The initialization is to quiet compiler warnings. The value is to
2566 spot a missing actual initialization. */
2567 size_t bpono = (size_t) -1;
2568 size_t pjsno = 0;
2569 Elf_Internal_Sym *isymbuf = NULL;
2570 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2571
2572 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2573
2574 /* Assume nothing changes. */
2575 *again = FALSE;
2576
2577 /* We don't have to do anything if this section does not have relocs, or
2578 if this is not a code section. */
2579 if ((sec->flags & SEC_RELOC) == 0
2580 || sec->reloc_count == 0
2581 || (sec->flags & SEC_CODE) == 0
2582 || (sec->flags & SEC_LINKER_CREATED) != 0
2583 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2584 then nothing to do. */
2585 || (bpodata == NULL
2586 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2587 return TRUE;
2588
2589 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2590
2591 if (bpodata != NULL)
2592 {
2593 bpo_gregs_section = bpodata->bpo_greg_section;
2594 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2595 bpono = bpodata->first_base_plus_offset_reloc;
2596 }
2597 else
2598 gregdata = NULL;
2599
2600 /* Get a copy of the native relocations. */
2601 internal_relocs
2602 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2603 (Elf_Internal_Rela *) NULL,
2604 link_info->keep_memory);
2605 if (internal_relocs == NULL)
2606 goto error_return;
2607
2608 /* Walk through them looking for relaxing opportunities. */
2609 irelend = internal_relocs + sec->reloc_count;
2610 for (irel = internal_relocs; irel < irelend; irel++)
2611 {
2612 bfd_vma symval;
2613 struct elf_link_hash_entry *h = NULL;
2614
2615 /* We only process two relocs. */
2616 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2617 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2618 continue;
2619
2620 /* We process relocs in a distinctly different way when this is a
2621 relocatable link (for one, we don't look at symbols), so we avoid
2622 mixing its code with that for the "normal" relaxation. */
2623 if (link_info->relocatable)
2624 {
2625 /* The only transformation in a relocatable link is to generate
2626 a full stub at the location of the stub calculated for the
2627 input section, if the relocated stub location, the end of the
2628 output section plus earlier stubs, cannot be reached. Thus
2629 relocatable linking can only lead to worse code, but it still
2630 works. */
2631 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2632 {
2633 /* If we can reach the end of the output-section and beyond
2634 any current stubs, then we don't need a stub for this
2635 reloc. The relaxed order of output stub allocation may
2636 not exactly match the straightforward order, so we always
2637 assume presence of output stubs, which will allow
2638 relaxation only on relocations indifferent to the
2639 presence of output stub allocations for other relocations
2640 and thus the order of output stub allocation. */
2641 if (bfd_check_overflow (complain_overflow_signed,
2642 19,
2643 0,
2644 bfd_arch_bits_per_address (abfd),
2645 /* Output-stub location. */
2646 sec->output_section->rawsize
2647 + (mmix_elf_section_data (sec
2648 ->output_section)
2649 ->pjs.stubs_size_sum)
2650 /* Location of this PUSHJ reloc. */
2651 - (sec->output_offset + irel->r_offset)
2652 /* Don't count *this* stub twice. */
2653 - (mmix_elf_section_data (sec)
2654 ->pjs.stub_size[pjsno]
2655 + MAX_PUSHJ_STUB_SIZE))
2656 == bfd_reloc_ok)
2657 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2658
2659 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2660 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2661
2662 pjsno++;
2663 }
2664
2665 continue;
2666 }
2667
2668 /* Get the value of the symbol referred to by the reloc. */
2669 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2670 {
2671 /* A local symbol. */
2672 Elf_Internal_Sym *isym;
2673 asection *sym_sec;
2674
2675 /* Read this BFD's local symbols if we haven't already. */
2676 if (isymbuf == NULL)
2677 {
2678 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2679 if (isymbuf == NULL)
2680 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2681 symtab_hdr->sh_info, 0,
2682 NULL, NULL, NULL);
2683 if (isymbuf == 0)
2684 goto error_return;
2685 }
2686
2687 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2688 if (isym->st_shndx == SHN_UNDEF)
2689 sym_sec = bfd_und_section_ptr;
2690 else if (isym->st_shndx == SHN_ABS)
2691 sym_sec = bfd_abs_section_ptr;
2692 else if (isym->st_shndx == SHN_COMMON)
2693 sym_sec = bfd_com_section_ptr;
2694 else
2695 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2696 symval = (isym->st_value
2697 + sym_sec->output_section->vma
2698 + sym_sec->output_offset);
2699 }
2700 else
2701 {
2702 unsigned long indx;
2703
2704 /* An external symbol. */
2705 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2706 h = elf_sym_hashes (abfd)[indx];
2707 BFD_ASSERT (h != NULL);
2708 if (h->root.type != bfd_link_hash_defined
2709 && h->root.type != bfd_link_hash_defweak)
2710 {
2711 /* This appears to be a reference to an undefined symbol. Just
2712 ignore it--it will be caught by the regular reloc processing.
2713 We need to keep BPO reloc accounting consistent, though
2714 else we'll abort instead of emitting an error message. */
2715 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2716 && gregdata != NULL)
2717 {
2718 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2719 bpono++;
2720 }
2721 continue;
2722 }
2723
2724 symval = (h->root.u.def.value
2725 + h->root.u.def.section->output_section->vma
2726 + h->root.u.def.section->output_offset);
2727 }
2728
2729 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2730 {
2731 bfd_vma value = symval + irel->r_addend;
2732 bfd_vma dot
2733 = (sec->output_section->vma
2734 + sec->output_offset
2735 + irel->r_offset);
2736 bfd_vma stubaddr
2737 = (sec->output_section->vma
2738 + sec->output_offset
2739 + size
2740 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2741
2742 if ((value & 3) == 0
2743 && bfd_check_overflow (complain_overflow_signed,
2744 19,
2745 0,
2746 bfd_arch_bits_per_address (abfd),
2747 value - dot
2748 - (value > dot
2749 ? mmix_elf_section_data (sec)
2750 ->pjs.stub_size[pjsno]
2751 : 0))
2752 == bfd_reloc_ok)
2753 /* If the reloc fits, no stub is needed. */
2754 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2755 else
2756 /* Maybe we can get away with just a JMP insn? */
2757 if ((value & 3) == 0
2758 && bfd_check_overflow (complain_overflow_signed,
2759 27,
2760 0,
2761 bfd_arch_bits_per_address (abfd),
2762 value - stubaddr
2763 - (value > dot
2764 ? mmix_elf_section_data (sec)
2765 ->pjs.stub_size[pjsno] - 4
2766 : 0))
2767 == bfd_reloc_ok)
2768 /* Yep, account for a stub consisting of a single JMP insn. */
2769 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2770 else
2771 /* Nope, go for the full insn stub. It doesn't seem useful to
2772 emit the intermediate sizes; those will only be useful for
2773 a >64M program assuming contiguous code. */
2774 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2775 = MAX_PUSHJ_STUB_SIZE;
2776
2777 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2778 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2779 pjsno++;
2780 continue;
2781 }
2782
2783 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2784
2785 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2786 = symval + irel->r_addend;
2787 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2788 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2789 }
2790
2791 /* Check if that was the last BPO-reloc. If so, sort the values and
2792 calculate how many registers we need to cover them. Set the size of
2793 the linker gregs, and if the number of registers changed, indicate
2794 that we need to relax some more because we have more work to do. */
2795 if (gregdata != NULL
2796 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2797 {
2798 size_t i;
2799 bfd_vma prev_base;
2800 size_t regindex;
2801
2802 /* First, reset the remaining relocs for the next round. */
2803 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2804 = gregdata->n_bpo_relocs;
2805
2806 qsort (gregdata->reloc_request,
2807 gregdata->n_max_bpo_relocs,
2808 sizeof (struct bpo_reloc_request),
2809 bpo_reloc_request_sort_fn);
2810
2811 /* Recalculate indexes. When we find a change (however unlikely
2812 after the initial iteration), we know we need to relax again,
2813 since items in the GREG-array are sorted by increasing value and
2814 stored in the relaxation phase. */
2815 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2816 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2817 != i)
2818 {
2819 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2820 = i;
2821 *again = TRUE;
2822 }
2823
2824 /* Allocate register numbers (indexing from 0). Stop at the first
2825 non-valid reloc. */
2826 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2827 i < gregdata->n_bpo_relocs;
2828 i++)
2829 {
2830 if (gregdata->reloc_request[i].value > prev_base + 255)
2831 {
2832 regindex++;
2833 prev_base = gregdata->reloc_request[i].value;
2834 }
2835 gregdata->reloc_request[i].regindex = regindex;
2836 gregdata->reloc_request[i].offset
2837 = gregdata->reloc_request[i].value - prev_base;
2838 }
2839
2840 /* If it's not the same as the last time, we need to relax again,
2841 because the size of the section has changed. I'm not sure we
2842 actually need to do any adjustments since the shrinking happens
2843 at the start of this section, but better safe than sorry. */
2844 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2845 {
2846 gregdata->n_allocated_bpo_gregs = regindex + 1;
2847 *again = TRUE;
2848 }
2849
2850 bpo_gregs_section->size = (regindex + 1) * 8;
2851 }
2852
2853 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2854 {
2855 if (! link_info->keep_memory)
2856 free (isymbuf);
2857 else
2858 {
2859 /* Cache the symbols for elf_link_input_bfd. */
2860 symtab_hdr->contents = (unsigned char *) isymbuf;
2861 }
2862 }
2863
2864 if (internal_relocs != NULL
2865 && elf_section_data (sec)->relocs != internal_relocs)
2866 free (internal_relocs);
2867
2868 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2869 abort ();
2870
2871 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2872 {
2873 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2874 *again = TRUE;
2875 }
2876
2877 return TRUE;
2878
2879 error_return:
2880 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2881 free (isymbuf);
2882 if (internal_relocs != NULL
2883 && elf_section_data (sec)->relocs != internal_relocs)
2884 free (internal_relocs);
2885 return FALSE;
2886 }
2887 \f
2888 #define ELF_ARCH bfd_arch_mmix
2889 #define ELF_MACHINE_CODE EM_MMIX
2890
2891 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2892 However, that's too much for something somewhere in the linker part of
2893 BFD; perhaps the start-address has to be a non-zero multiple of this
2894 number, or larger than this number. The symptom is that the linker
2895 complains: "warning: allocated section `.text' not in segment". We
2896 settle for 64k; the page-size used in examples is 8k.
2897 #define ELF_MAXPAGESIZE 0x10000
2898
2899 Unfortunately, this causes excessive padding in the supposedly small
2900 for-education programs that are the expected usage (where people would
2901 inspect output). We stick to 256 bytes just to have *some* default
2902 alignment. */
2903 #define ELF_MAXPAGESIZE 0x100
2904
2905 #define TARGET_BIG_SYM mmix_elf64_vec
2906 #define TARGET_BIG_NAME "elf64-mmix"
2907
2908 #define elf_info_to_howto_rel NULL
2909 #define elf_info_to_howto mmix_info_to_howto_rela
2910 #define elf_backend_relocate_section mmix_elf_relocate_section
2911 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2912 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2913
2914 #define elf_backend_link_output_symbol_hook \
2915 mmix_elf_link_output_symbol_hook
2916 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2917
2918 #define elf_backend_check_relocs mmix_elf_check_relocs
2919 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2920 #define elf_backend_omit_section_dynsym \
2921 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2922
2923 #define bfd_elf64_bfd_is_local_label_name \
2924 mmix_elf_is_local_label_name
2925
2926 #define elf_backend_may_use_rel_p 0
2927 #define elf_backend_may_use_rela_p 1
2928 #define elf_backend_default_use_rela_p 1
2929
2930 #define elf_backend_can_gc_sections 1
2931 #define elf_backend_section_from_bfd_section \
2932 mmix_elf_section_from_bfd_section
2933
2934 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2935 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2936 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2937
2938 #include "elf64-target.h"
This page took 0.090008 seconds and 4 git commands to generate.