2005-06-20 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* No specific ABI or "processor-specific supplement" defined. */
22
23 /* TODO:
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
28
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/mmix.h"
34 #include "opcode/mmix.h"
35
36 #define MINUS_ONE (((bfd_vma) 0) - 1)
37
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
40 /* Put these everywhere in new code. */
41 #define FATAL_DEBUG \
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
44
45 #define BAD_CASE(x) \
46 _bfd_abort (__FILE__, __LINE__, \
47 "bad case for " #x)
48
49 struct _mmix_elf_section_data
50 {
51 struct bfd_elf_section_data elf;
52 union
53 {
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
56 } bpo;
57
58 struct pushj_stub_info
59 {
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
62
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
65
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
69
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
74 } pjs;
75 };
76
77 #define mmix_elf_section_data(sec) \
78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
79
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
82 NULL. */
83 struct bpo_reloc_section_info
84 {
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
87
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
90
91 /* Running index, used at relocation time. */
92 size_t bpo_index;
93
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
98 };
99
100 /* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102 struct bpo_reloc_request
103 {
104 bfd_vma value;
105
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
108 size_t regindex;
109 size_t offset;
110
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
114 size_t bpo_reloc_no;
115
116 /* Set when the value is computed. Better than coding "guard values"
117 into the other members. Is FALSE only for BPO relocs in a GC:ed
118 section. */
119 bfd_boolean valid;
120 };
121
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
127 collide. */
128 struct bpo_greg_section_info
129 {
130 /* After GC, this reflects the number of remaining, non-excluded
131 BPO-relocs. */
132 size_t n_bpo_relocs;
133
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
139
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
148 size_t n_allocated_bpo_gregs;
149
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
153
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
157 };
158
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 asection *, struct elf_link_hash_entry *));
162
163 static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169 static void mmix_info_to_howto_rela
170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
171
172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
174 static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
176
177 static bfd_boolean mmix_elf_check_relocs
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
180
181 static bfd_boolean mmix_elf_check_common_relocs
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
184
185 static bfd_boolean mmix_elf_relocate_section
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189 static asection * mmix_elf_gc_mark_hook
190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
193 static bfd_boolean mmix_elf_gc_sweep_hook
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
196
197 static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
204 static bfd_boolean mmix_elf_section_from_bfd_section
205 PARAMS ((bfd *, asection *, int *));
206
207 static bfd_boolean mmix_elf_add_symbol_hook
208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
209 const char **, flagword *, asection **, bfd_vma *));
210
211 static bfd_boolean mmix_elf_is_local_label_name
212 PARAMS ((bfd *, const char *));
213
214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
216 static bfd_boolean mmix_elf_relax_section
217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218 bfd_boolean *again));
219
220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
221
222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
224 /* Only intended to be called from a debugger. */
225 extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
228 static void
229 mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
231
232
233 /* Watch out: this currently needs to have elements with the same index as
234 their R_MMIX_ number. */
235 static reloc_howto_type elf_mmix_howto_table[] =
236 {
237 /* This reloc does nothing. */
238 HOWTO (R_MMIX_NONE, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 32, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_NONE", /* name */
247 FALSE, /* partial_inplace */
248 0, /* src_mask */
249 0, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* An 8 bit absolute relocation. */
253 HOWTO (R_MMIX_8, /* type */
254 0, /* rightshift */
255 0, /* size (0 = byte, 1 = short, 2 = long) */
256 8, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_8", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* An 16 bit absolute relocation. */
268 HOWTO (R_MMIX_16, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_16", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 0xffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 24 bit absolute relocation. */
283 HOWTO (R_MMIX_24, /* type */
284 0, /* rightshift */
285 2, /* size (0 = byte, 1 = short, 2 = long) */
286 24, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_24", /* name */
292 FALSE, /* partial_inplace */
293 ~0xffffff, /* src_mask */
294 0xffffff, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* A 32 bit absolute relocation. */
298 HOWTO (R_MMIX_32, /* type */
299 0, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 32, /* bitsize */
302 FALSE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_32", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffffffff, /* dst_mask */
310 FALSE), /* pcrel_offset */
311
312 /* 64 bit relocation. */
313 HOWTO (R_MMIX_64, /* type */
314 0, /* rightshift */
315 4, /* size (0 = byte, 1 = short, 2 = long) */
316 64, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_64", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 MINUS_ONE, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An 8 bit PC-relative relocation. */
328 HOWTO (R_MMIX_PC_8, /* type */
329 0, /* rightshift */
330 0, /* size (0 = byte, 1 = short, 2 = long) */
331 8, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_8", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* An 16 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_16, /* type */
344 0, /* rightshift */
345 1, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_16", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0xffff, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* An 24 bit PC-relative relocation. */
358 HOWTO (R_MMIX_PC_24, /* type */
359 0, /* rightshift */
360 2, /* size (0 = byte, 1 = short, 2 = long) */
361 24, /* bitsize */
362 TRUE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_bitfield, /* complain_on_overflow */
365 bfd_elf_generic_reloc, /* special_function */
366 "R_MMIX_PC_24", /* name */
367 FALSE, /* partial_inplace */
368 ~0xffffff, /* src_mask */
369 0xffffff, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* A 32 bit absolute PC-relative relocation. */
373 HOWTO (R_MMIX_PC_32, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 TRUE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield, /* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_MMIX_PC_32", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0xffffffff, /* dst_mask */
385 TRUE), /* pcrel_offset */
386
387 /* 64 bit PC-relative relocation. */
388 HOWTO (R_MMIX_PC_64, /* type */
389 0, /* rightshift */
390 4, /* size (0 = byte, 1 = short, 2 = long) */
391 64, /* bitsize */
392 TRUE, /* pc_relative */
393 0, /* bitpos */
394 complain_overflow_bitfield, /* complain_on_overflow */
395 bfd_elf_generic_reloc, /* special_function */
396 "R_MMIX_PC_64", /* name */
397 FALSE, /* partial_inplace */
398 0, /* src_mask */
399 MINUS_ONE, /* dst_mask */
400 TRUE), /* pcrel_offset */
401
402 /* GNU extension to record C++ vtable hierarchy. */
403 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
404 0, /* rightshift */
405 0, /* size (0 = byte, 1 = short, 2 = long) */
406 0, /* bitsize */
407 FALSE, /* pc_relative */
408 0, /* bitpos */
409 complain_overflow_dont, /* complain_on_overflow */
410 NULL, /* special_function */
411 "R_MMIX_GNU_VTINHERIT", /* name */
412 FALSE, /* partial_inplace */
413 0, /* src_mask */
414 0, /* dst_mask */
415 TRUE), /* pcrel_offset */
416
417 /* GNU extension to record C++ vtable member usage. */
418 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
419 0, /* rightshift */
420 0, /* size (0 = byte, 1 = short, 2 = long) */
421 0, /* bitsize */
422 FALSE, /* pc_relative */
423 0, /* bitpos */
424 complain_overflow_dont, /* complain_on_overflow */
425 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
426 "R_MMIX_GNU_VTENTRY", /* name */
427 FALSE, /* partial_inplace */
428 0, /* src_mask */
429 0, /* dst_mask */
430 FALSE), /* pcrel_offset */
431
432 /* The GETA relocation is supposed to get any address that could
433 possibly be reached by the GETA instruction. It can silently expand
434 to get a 64-bit operand, but will complain if any of the two least
435 significant bits are set. The howto members reflect a simple GETA. */
436 HOWTO (R_MMIX_GETA, /* type */
437 2, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 19, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 mmix_elf_reloc, /* special_function */
444 "R_MMIX_GETA", /* name */
445 FALSE, /* partial_inplace */
446 ~0x0100ffff, /* src_mask */
447 0x0100ffff, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 HOWTO (R_MMIX_GETA_1, /* type */
451 2, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 19, /* bitsize */
454 TRUE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_signed, /* complain_on_overflow */
457 mmix_elf_reloc, /* special_function */
458 "R_MMIX_GETA_1", /* name */
459 FALSE, /* partial_inplace */
460 ~0x0100ffff, /* src_mask */
461 0x0100ffff, /* dst_mask */
462 TRUE), /* pcrel_offset */
463
464 HOWTO (R_MMIX_GETA_2, /* type */
465 2, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 19, /* bitsize */
468 TRUE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_signed, /* complain_on_overflow */
471 mmix_elf_reloc, /* special_function */
472 "R_MMIX_GETA_2", /* name */
473 FALSE, /* partial_inplace */
474 ~0x0100ffff, /* src_mask */
475 0x0100ffff, /* dst_mask */
476 TRUE), /* pcrel_offset */
477
478 HOWTO (R_MMIX_GETA_3, /* type */
479 2, /* rightshift */
480 2, /* size (0 = byte, 1 = short, 2 = long) */
481 19, /* bitsize */
482 TRUE, /* pc_relative */
483 0, /* bitpos */
484 complain_overflow_signed, /* complain_on_overflow */
485 mmix_elf_reloc, /* special_function */
486 "R_MMIX_GETA_3", /* name */
487 FALSE, /* partial_inplace */
488 ~0x0100ffff, /* src_mask */
489 0x0100ffff, /* dst_mask */
490 TRUE), /* pcrel_offset */
491
492 /* The conditional branches are supposed to reach any (code) address.
493 It can silently expand to a 64-bit operand, but will emit an error if
494 any of the two least significant bits are set. The howto members
495 reflect a simple branch. */
496 HOWTO (R_MMIX_CBRANCH, /* type */
497 2, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 19, /* bitsize */
500 TRUE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_signed, /* complain_on_overflow */
503 mmix_elf_reloc, /* special_function */
504 "R_MMIX_CBRANCH", /* name */
505 FALSE, /* partial_inplace */
506 ~0x0100ffff, /* src_mask */
507 0x0100ffff, /* dst_mask */
508 TRUE), /* pcrel_offset */
509
510 HOWTO (R_MMIX_CBRANCH_J, /* type */
511 2, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 19, /* bitsize */
514 TRUE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_signed, /* complain_on_overflow */
517 mmix_elf_reloc, /* special_function */
518 "R_MMIX_CBRANCH_J", /* name */
519 FALSE, /* partial_inplace */
520 ~0x0100ffff, /* src_mask */
521 0x0100ffff, /* dst_mask */
522 TRUE), /* pcrel_offset */
523
524 HOWTO (R_MMIX_CBRANCH_1, /* type */
525 2, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 19, /* bitsize */
528 TRUE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_signed, /* complain_on_overflow */
531 mmix_elf_reloc, /* special_function */
532 "R_MMIX_CBRANCH_1", /* name */
533 FALSE, /* partial_inplace */
534 ~0x0100ffff, /* src_mask */
535 0x0100ffff, /* dst_mask */
536 TRUE), /* pcrel_offset */
537
538 HOWTO (R_MMIX_CBRANCH_2, /* type */
539 2, /* rightshift */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
541 19, /* bitsize */
542 TRUE, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_signed, /* complain_on_overflow */
545 mmix_elf_reloc, /* special_function */
546 "R_MMIX_CBRANCH_2", /* name */
547 FALSE, /* partial_inplace */
548 ~0x0100ffff, /* src_mask */
549 0x0100ffff, /* dst_mask */
550 TRUE), /* pcrel_offset */
551
552 HOWTO (R_MMIX_CBRANCH_3, /* type */
553 2, /* rightshift */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
555 19, /* bitsize */
556 TRUE, /* pc_relative */
557 0, /* bitpos */
558 complain_overflow_signed, /* complain_on_overflow */
559 mmix_elf_reloc, /* special_function */
560 "R_MMIX_CBRANCH_3", /* name */
561 FALSE, /* partial_inplace */
562 ~0x0100ffff, /* src_mask */
563 0x0100ffff, /* dst_mask */
564 TRUE), /* pcrel_offset */
565
566 /* The PUSHJ instruction can reach any (code) address, as long as it's
567 the beginning of a function (no usable restriction). It can silently
568 expand to a 64-bit operand, but will emit an error if any of the two
569 least significant bits are set. It can also expand into a call to a
570 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
571 PUSHJ. */
572 HOWTO (R_MMIX_PUSHJ, /* type */
573 2, /* rightshift */
574 2, /* size (0 = byte, 1 = short, 2 = long) */
575 19, /* bitsize */
576 TRUE, /* pc_relative */
577 0, /* bitpos */
578 complain_overflow_signed, /* complain_on_overflow */
579 mmix_elf_reloc, /* special_function */
580 "R_MMIX_PUSHJ", /* name */
581 FALSE, /* partial_inplace */
582 ~0x0100ffff, /* src_mask */
583 0x0100ffff, /* dst_mask */
584 TRUE), /* pcrel_offset */
585
586 HOWTO (R_MMIX_PUSHJ_1, /* type */
587 2, /* rightshift */
588 2, /* size (0 = byte, 1 = short, 2 = long) */
589 19, /* bitsize */
590 TRUE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_signed, /* complain_on_overflow */
593 mmix_elf_reloc, /* special_function */
594 "R_MMIX_PUSHJ_1", /* name */
595 FALSE, /* partial_inplace */
596 ~0x0100ffff, /* src_mask */
597 0x0100ffff, /* dst_mask */
598 TRUE), /* pcrel_offset */
599
600 HOWTO (R_MMIX_PUSHJ_2, /* type */
601 2, /* rightshift */
602 2, /* size (0 = byte, 1 = short, 2 = long) */
603 19, /* bitsize */
604 TRUE, /* pc_relative */
605 0, /* bitpos */
606 complain_overflow_signed, /* complain_on_overflow */
607 mmix_elf_reloc, /* special_function */
608 "R_MMIX_PUSHJ_2", /* name */
609 FALSE, /* partial_inplace */
610 ~0x0100ffff, /* src_mask */
611 0x0100ffff, /* dst_mask */
612 TRUE), /* pcrel_offset */
613
614 HOWTO (R_MMIX_PUSHJ_3, /* type */
615 2, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 19, /* bitsize */
618 TRUE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 mmix_elf_reloc, /* special_function */
622 "R_MMIX_PUSHJ_3", /* name */
623 FALSE, /* partial_inplace */
624 ~0x0100ffff, /* src_mask */
625 0x0100ffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* A JMP is supposed to reach any (code) address. By itself, it can
629 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
630 limit is soon reached if you link the program in wildly different
631 memory segments. The howto members reflect a trivial JMP. */
632 HOWTO (R_MMIX_JMP, /* type */
633 2, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 27, /* bitsize */
636 TRUE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 mmix_elf_reloc, /* special_function */
640 "R_MMIX_JMP", /* name */
641 FALSE, /* partial_inplace */
642 ~0x1ffffff, /* src_mask */
643 0x1ffffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 HOWTO (R_MMIX_JMP_1, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 27, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_JMP_1", /* name */
655 FALSE, /* partial_inplace */
656 ~0x1ffffff, /* src_mask */
657 0x1ffffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 HOWTO (R_MMIX_JMP_2, /* type */
661 2, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 27, /* bitsize */
664 TRUE, /* pc_relative */
665 0, /* bitpos */
666 complain_overflow_signed, /* complain_on_overflow */
667 mmix_elf_reloc, /* special_function */
668 "R_MMIX_JMP_2", /* name */
669 FALSE, /* partial_inplace */
670 ~0x1ffffff, /* src_mask */
671 0x1ffffff, /* dst_mask */
672 TRUE), /* pcrel_offset */
673
674 HOWTO (R_MMIX_JMP_3, /* type */
675 2, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 27, /* bitsize */
678 TRUE, /* pc_relative */
679 0, /* bitpos */
680 complain_overflow_signed, /* complain_on_overflow */
681 mmix_elf_reloc, /* special_function */
682 "R_MMIX_JMP_3", /* name */
683 FALSE, /* partial_inplace */
684 ~0x1ffffff, /* src_mask */
685 0x1ffffff, /* dst_mask */
686 TRUE), /* pcrel_offset */
687
688 /* When we don't emit link-time-relaxable code from the assembler, or
689 when relaxation has done all it can do, these relocs are used. For
690 GETA/PUSHJ/branches. */
691 HOWTO (R_MMIX_ADDR19, /* type */
692 2, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 19, /* bitsize */
695 TRUE, /* pc_relative */
696 0, /* bitpos */
697 complain_overflow_signed, /* complain_on_overflow */
698 mmix_elf_reloc, /* special_function */
699 "R_MMIX_ADDR19", /* name */
700 FALSE, /* partial_inplace */
701 ~0x0100ffff, /* src_mask */
702 0x0100ffff, /* dst_mask */
703 TRUE), /* pcrel_offset */
704
705 /* For JMP. */
706 HOWTO (R_MMIX_ADDR27, /* type */
707 2, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 27, /* bitsize */
710 TRUE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_signed, /* complain_on_overflow */
713 mmix_elf_reloc, /* special_function */
714 "R_MMIX_ADDR27", /* name */
715 FALSE, /* partial_inplace */
716 ~0x1ffffff, /* src_mask */
717 0x1ffffff, /* dst_mask */
718 TRUE), /* pcrel_offset */
719
720 /* A general register or the value 0..255. If a value, then the
721 instruction (offset -3) needs adjusting. */
722 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
723 0, /* rightshift */
724 1, /* size (0 = byte, 1 = short, 2 = long) */
725 8, /* bitsize */
726 FALSE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_bitfield, /* complain_on_overflow */
729 mmix_elf_reloc, /* special_function */
730 "R_MMIX_REG_OR_BYTE", /* name */
731 FALSE, /* partial_inplace */
732 0, /* src_mask */
733 0xff, /* dst_mask */
734 FALSE), /* pcrel_offset */
735
736 /* A general register. */
737 HOWTO (R_MMIX_REG, /* type */
738 0, /* rightshift */
739 1, /* size (0 = byte, 1 = short, 2 = long) */
740 8, /* bitsize */
741 FALSE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield, /* complain_on_overflow */
744 mmix_elf_reloc, /* special_function */
745 "R_MMIX_REG", /* name */
746 FALSE, /* partial_inplace */
747 0, /* src_mask */
748 0xff, /* dst_mask */
749 FALSE), /* pcrel_offset */
750
751 /* A register plus an index, corresponding to the relocation expression.
752 The sizes must correspond to the valid range of the expression, while
753 the bitmasks correspond to what we store in the image. */
754 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
755 0, /* rightshift */
756 4, /* size (0 = byte, 1 = short, 2 = long) */
757 64, /* bitsize */
758 FALSE, /* pc_relative */
759 0, /* bitpos */
760 complain_overflow_bitfield, /* complain_on_overflow */
761 mmix_elf_reloc, /* special_function */
762 "R_MMIX_BASE_PLUS_OFFSET", /* name */
763 FALSE, /* partial_inplace */
764 0, /* src_mask */
765 0xffff, /* dst_mask */
766 FALSE), /* pcrel_offset */
767
768 /* A "magic" relocation for a LOCAL expression, asserting that the
769 expression is less than the number of global registers. No actual
770 modification of the contents is done. Implementing this as a
771 relocation was less intrusive than e.g. putting such expressions in a
772 section to discard *after* relocation. */
773 HOWTO (R_MMIX_LOCAL, /* type */
774 0, /* rightshift */
775 0, /* size (0 = byte, 1 = short, 2 = long) */
776 0, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 mmix_elf_reloc, /* special_function */
781 "R_MMIX_LOCAL", /* name */
782 FALSE, /* partial_inplace */
783 0, /* src_mask */
784 0, /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
788 2, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 19, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_signed, /* complain_on_overflow */
794 mmix_elf_reloc, /* special_function */
795 "R_MMIX_PUSHJ_STUBBABLE", /* name */
796 FALSE, /* partial_inplace */
797 ~0x0100ffff, /* src_mask */
798 0x0100ffff, /* dst_mask */
799 TRUE) /* pcrel_offset */
800 };
801
802
803 /* Map BFD reloc types to MMIX ELF reloc types. */
804
805 struct mmix_reloc_map
806 {
807 bfd_reloc_code_real_type bfd_reloc_val;
808 enum elf_mmix_reloc_type elf_reloc_val;
809 };
810
811
812 static const struct mmix_reloc_map mmix_reloc_map[] =
813 {
814 {BFD_RELOC_NONE, R_MMIX_NONE},
815 {BFD_RELOC_8, R_MMIX_8},
816 {BFD_RELOC_16, R_MMIX_16},
817 {BFD_RELOC_24, R_MMIX_24},
818 {BFD_RELOC_32, R_MMIX_32},
819 {BFD_RELOC_64, R_MMIX_64},
820 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
821 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
822 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
823 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
824 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
825 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
826 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
827 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
828 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
829 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
830 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
831 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
832 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
833 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
834 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
835 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
836 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
837 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
838 };
839
840 static reloc_howto_type *
841 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
842 bfd *abfd ATTRIBUTE_UNUSED;
843 bfd_reloc_code_real_type code;
844 {
845 unsigned int i;
846
847 for (i = 0;
848 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
849 i++)
850 {
851 if (mmix_reloc_map[i].bfd_reloc_val == code)
852 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
853 }
854
855 return NULL;
856 }
857
858 static bfd_boolean
859 mmix_elf_new_section_hook (abfd, sec)
860 bfd *abfd;
861 asection *sec;
862 {
863 struct _mmix_elf_section_data *sdata;
864 bfd_size_type amt = sizeof (*sdata);
865
866 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
867 if (sdata == NULL)
868 return FALSE;
869 sec->used_by_bfd = (PTR) sdata;
870
871 return _bfd_elf_new_section_hook (abfd, sec);
872 }
873
874
875 /* This function performs the actual bitfiddling and sanity check for a
876 final relocation. Each relocation gets its *worst*-case expansion
877 in size when it arrives here; any reduction in size should have been
878 caught in linker relaxation earlier. When we get here, the relocation
879 looks like the smallest instruction with SWYM:s (nop:s) appended to the
880 max size. We fill in those nop:s.
881
882 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
883 GETA $N,foo
884 ->
885 SETL $N,foo & 0xffff
886 INCML $N,(foo >> 16) & 0xffff
887 INCMH $N,(foo >> 32) & 0xffff
888 INCH $N,(foo >> 48) & 0xffff
889
890 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
891 condbranches needing relaxation might be rare enough to not be
892 worthwhile.)
893 [P]Bcc $N,foo
894 ->
895 [~P]B~cc $N,.+20
896 SETL $255,foo & ...
897 INCML ...
898 INCMH ...
899 INCH ...
900 GO $255,$255,0
901
902 R_MMIX_PUSHJ: (FIXME: Relaxation...)
903 PUSHJ $N,foo
904 ->
905 SETL $255,foo & ...
906 INCML ...
907 INCMH ...
908 INCH ...
909 PUSHGO $N,$255,0
910
911 R_MMIX_JMP: (FIXME: Relaxation...)
912 JMP foo
913 ->
914 SETL $255,foo & ...
915 INCML ...
916 INCMH ...
917 INCH ...
918 GO $255,$255,0
919
920 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
921
922 static bfd_reloc_status_type
923 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
924 asection *isec;
925 reloc_howto_type *howto;
926 PTR datap;
927 bfd_vma addr;
928 bfd_vma value;
929 {
930 bfd *abfd = isec->owner;
931 bfd_reloc_status_type flag = bfd_reloc_ok;
932 bfd_reloc_status_type r;
933 int offs = 0;
934 int reg = 255;
935
936 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
937 We handle the differences here and the common sequence later. */
938 switch (howto->type)
939 {
940 case R_MMIX_GETA:
941 offs = 0;
942 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
943
944 /* We change to an absolute value. */
945 value += addr;
946 break;
947
948 case R_MMIX_CBRANCH:
949 {
950 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
951
952 /* Invert the condition and prediction bit, and set the offset
953 to five instructions ahead.
954
955 We *can* do better if we want to. If the branch is found to be
956 within limits, we could leave the branch as is; there'll just
957 be a bunch of NOP:s after it. But we shouldn't see this
958 sequence often enough that it's worth doing it. */
959
960 bfd_put_32 (abfd,
961 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
962 | (24/4)),
963 (bfd_byte *) datap);
964
965 /* Put a "GO $255,$255,0" after the common sequence. */
966 bfd_put_32 (abfd,
967 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
968 (bfd_byte *) datap + 20);
969
970 /* Common sequence starts at offset 4. */
971 offs = 4;
972
973 /* We change to an absolute value. */
974 value += addr;
975 }
976 break;
977
978 case R_MMIX_PUSHJ_STUBBABLE:
979 /* If the address fits, we're fine. */
980 if ((value & 3) == 0
981 /* Note rightshift 0; see R_MMIX_JMP case below. */
982 && (r = bfd_check_overflow (complain_overflow_signed,
983 howto->bitsize,
984 0,
985 bfd_arch_bits_per_address (abfd),
986 value)) == bfd_reloc_ok)
987 goto pcrel_mmix_reloc_fits;
988 else
989 {
990 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
991
992 /* We have the bytes at the PUSHJ insn and need to get the
993 position for the stub. There's supposed to be room allocated
994 for the stub. */
995 bfd_byte *stubcontents
996 = ((bfd_byte *) datap
997 - (addr - (isec->output_section->vma + isec->output_offset))
998 + size
999 + mmix_elf_section_data (isec)->pjs.stub_offset);
1000 bfd_vma stubaddr;
1001
1002 /* The address doesn't fit, so redirect the PUSHJ to the
1003 location of the stub. */
1004 r = mmix_elf_perform_relocation (isec,
1005 &elf_mmix_howto_table
1006 [R_MMIX_ADDR19],
1007 datap,
1008 addr,
1009 isec->output_section->vma
1010 + isec->output_offset
1011 + size
1012 + (mmix_elf_section_data (isec)
1013 ->pjs.stub_offset)
1014 - addr);
1015 if (r != bfd_reloc_ok)
1016 return r;
1017
1018 stubaddr
1019 = (isec->output_section->vma
1020 + isec->output_offset
1021 + size
1022 + mmix_elf_section_data (isec)->pjs.stub_offset);
1023
1024 /* We generate a simple JMP if that suffices, else the whole 5
1025 insn stub. */
1026 if (bfd_check_overflow (complain_overflow_signed,
1027 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1028 0,
1029 bfd_arch_bits_per_address (abfd),
1030 addr + value - stubaddr) == bfd_reloc_ok)
1031 {
1032 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1033 r = mmix_elf_perform_relocation (isec,
1034 &elf_mmix_howto_table
1035 [R_MMIX_ADDR27],
1036 stubcontents,
1037 stubaddr,
1038 value + addr - stubaddr);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section
1151 = bpodata->bpo_greg_section;
1152 struct bpo_greg_section_info *gregdata
1153 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1154 size_t bpo_index
1155 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1156
1157 /* A consistency check: The value we now have in "relocation" must
1158 be the same as the value we stored for that relocation. It
1159 doesn't cost much, so can be left in at all times. */
1160 if (value != gregdata->reloc_request[bpo_index].value)
1161 {
1162 (*_bfd_error_handler)
1163 (_("%s: Internal inconsistency error for value for\n\
1164 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1165 bfd_get_filename (isec->owner),
1166 (unsigned long) (value >> 32), (unsigned long) value,
1167 (unsigned long) (gregdata->reloc_request[bpo_index].value
1168 >> 32),
1169 (unsigned long) gregdata->reloc_request[bpo_index].value);
1170 bfd_set_error (bfd_error_bad_value);
1171 return bfd_reloc_overflow;
1172 }
1173
1174 /* Then store the register number and offset for that register
1175 into datap and datap + 1 respectively. */
1176 bfd_put_8 (abfd,
1177 gregdata->reloc_request[bpo_index].regindex
1178 + bpo_greg_section->output_section->vma / 8,
1179 datap);
1180 bfd_put_8 (abfd,
1181 gregdata->reloc_request[bpo_index].offset,
1182 ((unsigned char *) datap) + 1);
1183 return bfd_reloc_ok;
1184 }
1185
1186 case R_MMIX_REG_OR_BYTE:
1187 case R_MMIX_REG:
1188 if (value > 255)
1189 return bfd_reloc_overflow;
1190 bfd_put_8 (abfd, value, datap);
1191 return bfd_reloc_ok;
1192
1193 default:
1194 BAD_CASE (howto->type);
1195 }
1196
1197 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1198 sequence. */
1199
1200 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1201 everything that looks strange. */
1202 if (value & 3)
1203 flag = bfd_reloc_overflow;
1204
1205 bfd_put_32 (abfd,
1206 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1207 (bfd_byte *) datap + offs);
1208 bfd_put_32 (abfd,
1209 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1210 (bfd_byte *) datap + offs + 4);
1211 bfd_put_32 (abfd,
1212 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1213 (bfd_byte *) datap + offs + 8);
1214 bfd_put_32 (abfd,
1215 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1216 (bfd_byte *) datap + offs + 12);
1217
1218 return flag;
1219 }
1220
1221 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1222
1223 static void
1224 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1225 bfd *abfd ATTRIBUTE_UNUSED;
1226 arelent *cache_ptr;
1227 Elf_Internal_Rela *dst;
1228 {
1229 unsigned int r_type;
1230
1231 r_type = ELF64_R_TYPE (dst->r_info);
1232 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1233 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1234 }
1235
1236 /* Any MMIX-specific relocation gets here at assembly time or when linking
1237 to other formats (such as mmo); this is the relocation function from
1238 the reloc_table. We don't get here for final pure ELF linking. */
1239
1240 static bfd_reloc_status_type
1241 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1242 output_bfd, error_message)
1243 bfd *abfd;
1244 arelent *reloc_entry;
1245 asymbol *symbol;
1246 PTR data;
1247 asection *input_section;
1248 bfd *output_bfd;
1249 char **error_message ATTRIBUTE_UNUSED;
1250 {
1251 bfd_vma relocation;
1252 bfd_reloc_status_type r;
1253 asection *reloc_target_output_section;
1254 bfd_reloc_status_type flag = bfd_reloc_ok;
1255 bfd_vma output_base = 0;
1256 bfd_vma addr;
1257
1258 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1259 input_section, output_bfd, error_message);
1260
1261 /* If that was all that was needed (i.e. this isn't a final link, only
1262 some segment adjustments), we're done. */
1263 if (r != bfd_reloc_continue)
1264 return r;
1265
1266 if (bfd_is_und_section (symbol->section)
1267 && (symbol->flags & BSF_WEAK) == 0
1268 && output_bfd == (bfd *) NULL)
1269 return bfd_reloc_undefined;
1270
1271 /* Is the address of the relocation really within the section? */
1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1273 return bfd_reloc_outofrange;
1274
1275 /* Work out which section the relocation is targeted at and the
1276 initial relocation command value. */
1277
1278 /* Get symbol value. (Common symbols are special.) */
1279 if (bfd_is_com_section (symbol->section))
1280 relocation = 0;
1281 else
1282 relocation = symbol->value;
1283
1284 reloc_target_output_section = bfd_get_output_section (symbol);
1285
1286 /* Here the variable relocation holds the final address of the symbol we
1287 are relocating against, plus any addend. */
1288 if (output_bfd)
1289 output_base = 0;
1290 else
1291 output_base = reloc_target_output_section->vma;
1292
1293 relocation += output_base + symbol->section->output_offset;
1294
1295 /* Get position of relocation. */
1296 addr = (reloc_entry->address + input_section->output_section->vma
1297 + input_section->output_offset);
1298 if (output_bfd != (bfd *) NULL)
1299 {
1300 /* Add in supplied addend. */
1301 relocation += reloc_entry->addend;
1302
1303 /* This is a partial relocation, and we want to apply the
1304 relocation to the reloc entry rather than the raw data.
1305 Modify the reloc inplace to reflect what we now know. */
1306 reloc_entry->addend = relocation;
1307 reloc_entry->address += input_section->output_offset;
1308 return flag;
1309 }
1310
1311 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1312 data, reloc_entry->address,
1313 reloc_entry->addend, relocation,
1314 bfd_asymbol_name (symbol),
1315 reloc_target_output_section);
1316 }
1317 \f
1318 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1319 for guidance if you're thinking of copying this. */
1320
1321 static bfd_boolean
1322 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1323 contents, relocs, local_syms, local_sections)
1324 bfd *output_bfd ATTRIBUTE_UNUSED;
1325 struct bfd_link_info *info;
1326 bfd *input_bfd;
1327 asection *input_section;
1328 bfd_byte *contents;
1329 Elf_Internal_Rela *relocs;
1330 Elf_Internal_Sym *local_syms;
1331 asection **local_sections;
1332 {
1333 Elf_Internal_Shdr *symtab_hdr;
1334 struct elf_link_hash_entry **sym_hashes;
1335 Elf_Internal_Rela *rel;
1336 Elf_Internal_Rela *relend;
1337 bfd_size_type size;
1338 size_t pjsno = 0;
1339
1340 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1341 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1342 sym_hashes = elf_sym_hashes (input_bfd);
1343 relend = relocs + input_section->reloc_count;
1344
1345 /* Zero the stub area before we start. */
1346 if (input_section->rawsize != 0
1347 && input_section->size > input_section->rawsize)
1348 memset (contents + input_section->rawsize, 0,
1349 input_section->size - input_section->rawsize);
1350
1351 for (rel = relocs; rel < relend; rel ++)
1352 {
1353 reloc_howto_type *howto;
1354 unsigned long r_symndx;
1355 Elf_Internal_Sym *sym;
1356 asection *sec;
1357 struct elf_link_hash_entry *h;
1358 bfd_vma relocation;
1359 bfd_reloc_status_type r;
1360 const char *name = NULL;
1361 int r_type;
1362 bfd_boolean undefined_signalled = FALSE;
1363
1364 r_type = ELF64_R_TYPE (rel->r_info);
1365
1366 if (r_type == R_MMIX_GNU_VTINHERIT
1367 || r_type == R_MMIX_GNU_VTENTRY)
1368 continue;
1369
1370 r_symndx = ELF64_R_SYM (rel->r_info);
1371
1372 if (info->relocatable)
1373 {
1374 /* This is a relocatable link. For most relocs we don't have to
1375 change anything, unless the reloc is against a section
1376 symbol, in which case we have to adjust according to where
1377 the section symbol winds up in the output section. */
1378 if (r_symndx < symtab_hdr->sh_info)
1379 {
1380 sym = local_syms + r_symndx;
1381
1382 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1383 {
1384 sec = local_sections [r_symndx];
1385 rel->r_addend += sec->output_offset + sym->st_value;
1386 }
1387 }
1388
1389 /* For PUSHJ stub relocs however, we may need to change the
1390 reloc and the section contents, if the reloc doesn't reach
1391 beyond the end of the output section and previous stubs.
1392 Then we change the section contents to be a PUSHJ to the end
1393 of the input section plus stubs (we can do that without using
1394 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1395 at the stub location. */
1396 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1397 {
1398 /* We've already checked whether we need a stub; use that
1399 knowledge. */
1400 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1401 != 0)
1402 {
1403 Elf_Internal_Rela relcpy;
1404
1405 if (mmix_elf_section_data (input_section)
1406 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1407 abort ();
1408
1409 /* There's already a PUSHJ insn there, so just fill in
1410 the offset bits to the stub. */
1411 if (mmix_final_link_relocate (elf_mmix_howto_table
1412 + R_MMIX_ADDR19,
1413 input_section,
1414 contents,
1415 rel->r_offset,
1416 0,
1417 input_section
1418 ->output_section->vma
1419 + input_section->output_offset
1420 + size
1421 + mmix_elf_section_data (input_section)
1422 ->pjs.stub_offset,
1423 NULL, NULL) != bfd_reloc_ok)
1424 return FALSE;
1425
1426 /* Put a JMP insn at the stub; it goes with the
1427 R_MMIX_JMP reloc. */
1428 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1429 contents
1430 + size
1431 + mmix_elf_section_data (input_section)
1432 ->pjs.stub_offset);
1433
1434 /* Change the reloc to be at the stub, and to a full
1435 R_MMIX_JMP reloc. */
1436 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1437 rel->r_offset
1438 = (size
1439 + mmix_elf_section_data (input_section)
1440 ->pjs.stub_offset);
1441
1442 mmix_elf_section_data (input_section)->pjs.stub_offset
1443 += MAX_PUSHJ_STUB_SIZE;
1444
1445 /* Shift this reloc to the end of the relocs to maintain
1446 the r_offset sorted reloc order. */
1447 relcpy = *rel;
1448 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1449 relend[-1] = relcpy;
1450
1451 /* Back up one reloc, or else we'd skip the next reloc
1452 in turn. */
1453 rel--;
1454 }
1455
1456 pjsno++;
1457 }
1458 continue;
1459 }
1460
1461 /* This is a final link. */
1462 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1463 h = NULL;
1464 sym = NULL;
1465 sec = NULL;
1466
1467 if (r_symndx < symtab_hdr->sh_info)
1468 {
1469 sym = local_syms + r_symndx;
1470 sec = local_sections [r_symndx];
1471 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1472
1473 name = bfd_elf_string_from_elf_section (input_bfd,
1474 symtab_hdr->sh_link,
1475 sym->st_name);
1476 if (name == NULL)
1477 name = bfd_section_name (input_bfd, sec);
1478 }
1479 else
1480 {
1481 bfd_boolean unresolved_reloc;
1482
1483 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1484 r_symndx, symtab_hdr, sym_hashes,
1485 h, sec, relocation,
1486 unresolved_reloc, undefined_signalled);
1487 name = h->root.root.string;
1488 }
1489
1490 r = mmix_final_link_relocate (howto, input_section,
1491 contents, rel->r_offset,
1492 rel->r_addend, relocation, name, sec);
1493
1494 if (r != bfd_reloc_ok)
1495 {
1496 bfd_boolean check_ok = TRUE;
1497 const char * msg = (const char *) NULL;
1498
1499 switch (r)
1500 {
1501 case bfd_reloc_overflow:
1502 check_ok = info->callbacks->reloc_overflow
1503 (info, (h ? &h->root : NULL), name, howto->name,
1504 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1505 break;
1506
1507 case bfd_reloc_undefined:
1508 /* We may have sent this message above. */
1509 if (! undefined_signalled)
1510 check_ok = info->callbacks->undefined_symbol
1511 (info, name, input_bfd, input_section, rel->r_offset,
1512 TRUE);
1513 undefined_signalled = TRUE;
1514 break;
1515
1516 case bfd_reloc_outofrange:
1517 msg = _("internal error: out of range error");
1518 break;
1519
1520 case bfd_reloc_notsupported:
1521 msg = _("internal error: unsupported relocation error");
1522 break;
1523
1524 case bfd_reloc_dangerous:
1525 msg = _("internal error: dangerous relocation");
1526 break;
1527
1528 default:
1529 msg = _("internal error: unknown error");
1530 break;
1531 }
1532
1533 if (msg)
1534 check_ok = info->callbacks->warning
1535 (info, msg, name, input_bfd, input_section, rel->r_offset);
1536
1537 if (! check_ok)
1538 return FALSE;
1539 }
1540 }
1541
1542 return TRUE;
1543 }
1544 \f
1545 /* Perform a single relocation. By default we use the standard BFD
1546 routines. A few relocs we have to do ourselves. */
1547
1548 static bfd_reloc_status_type
1549 mmix_final_link_relocate (howto, input_section, contents,
1550 r_offset, r_addend, relocation, symname, symsec)
1551 reloc_howto_type *howto;
1552 asection *input_section;
1553 bfd_byte *contents;
1554 bfd_vma r_offset;
1555 bfd_signed_vma r_addend;
1556 bfd_vma relocation;
1557 const char *symname;
1558 asection *symsec;
1559 {
1560 bfd_reloc_status_type r = bfd_reloc_ok;
1561 bfd_vma addr
1562 = (input_section->output_section->vma
1563 + input_section->output_offset
1564 + r_offset);
1565 bfd_signed_vma srel
1566 = (bfd_signed_vma) relocation + r_addend;
1567
1568 switch (howto->type)
1569 {
1570 /* All these are PC-relative. */
1571 case R_MMIX_PUSHJ_STUBBABLE:
1572 case R_MMIX_PUSHJ:
1573 case R_MMIX_CBRANCH:
1574 case R_MMIX_ADDR19:
1575 case R_MMIX_GETA:
1576 case R_MMIX_ADDR27:
1577 case R_MMIX_JMP:
1578 contents += r_offset;
1579
1580 srel -= (input_section->output_section->vma
1581 + input_section->output_offset
1582 + r_offset);
1583
1584 r = mmix_elf_perform_relocation (input_section, howto, contents,
1585 addr, srel);
1586 break;
1587
1588 case R_MMIX_BASE_PLUS_OFFSET:
1589 if (symsec == NULL)
1590 return bfd_reloc_undefined;
1591
1592 /* Check that we're not relocating against a register symbol. */
1593 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1594 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1595 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1596 MMIX_REG_SECTION_NAME) == 0)
1597 {
1598 /* Note: This is separated out into two messages in order
1599 to ease the translation into other languages. */
1600 if (symname == NULL || *symname == 0)
1601 (*_bfd_error_handler)
1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 bfd_get_filename (input_section->owner),
1604 bfd_get_section_name (symsec->owner, symsec));
1605 else
1606 (*_bfd_error_handler)
1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 bfd_get_filename (input_section->owner), symname,
1609 bfd_get_section_name (symsec->owner, symsec));
1610 return bfd_reloc_overflow;
1611 }
1612 goto do_mmix_reloc;
1613
1614 case R_MMIX_REG_OR_BYTE:
1615 case R_MMIX_REG:
1616 /* For now, we handle these alike. They must refer to an register
1617 symbol, which is either relative to the register section and in
1618 the range 0..255, or is in the register contents section with vma
1619 regno * 8. */
1620
1621 /* FIXME: A better way to check for reg contents section?
1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1623 if (symsec == NULL)
1624 return bfd_reloc_undefined;
1625
1626 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1627 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1628 {
1629 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1630 {
1631 /* The bfd_reloc_outofrange return value, though intuitively
1632 a better value, will not get us an error. */
1633 return bfd_reloc_overflow;
1634 }
1635 srel /= 8;
1636 }
1637 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1638 MMIX_REG_SECTION_NAME) == 0)
1639 {
1640 if (srel < 0 || srel > 255)
1641 /* The bfd_reloc_outofrange return value, though intuitively a
1642 better value, will not get us an error. */
1643 return bfd_reloc_overflow;
1644 }
1645 else
1646 {
1647 /* Note: This is separated out into two messages in order
1648 to ease the translation into other languages. */
1649 if (symname == NULL || *symname == 0)
1650 (*_bfd_error_handler)
1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 bfd_get_filename (input_section->owner),
1653 bfd_get_section_name (symsec->owner, symsec));
1654 else
1655 (*_bfd_error_handler)
1656 (_("%s: register relocation against non-register symbol: %s in %s"),
1657 bfd_get_filename (input_section->owner), symname,
1658 bfd_get_section_name (symsec->owner, symsec));
1659
1660 /* The bfd_reloc_outofrange return value, though intuitively a
1661 better value, will not get us an error. */
1662 return bfd_reloc_overflow;
1663 }
1664 do_mmix_reloc:
1665 contents += r_offset;
1666 r = mmix_elf_perform_relocation (input_section, howto, contents,
1667 addr, srel);
1668 break;
1669
1670 case R_MMIX_LOCAL:
1671 /* This isn't a real relocation, it's just an assertion that the
1672 final relocation value corresponds to a local register. We
1673 ignore the actual relocation; nothing is changed. */
1674 {
1675 asection *regsec
1676 = bfd_get_section_by_name (input_section->output_section->owner,
1677 MMIX_REG_CONTENTS_SECTION_NAME);
1678 bfd_vma first_global;
1679
1680 /* Check that this is an absolute value, or a reference to the
1681 register contents section or the register (symbol) section.
1682 Absolute numbers can get here as undefined section. Undefined
1683 symbols are signalled elsewhere, so there's no conflict in us
1684 accidentally handling it. */
1685 if (!bfd_is_abs_section (symsec)
1686 && !bfd_is_und_section (symsec)
1687 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1688 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1689 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1690 MMIX_REG_SECTION_NAME) != 0)
1691 {
1692 (*_bfd_error_handler)
1693 (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 bfd_get_filename (input_section->owner));
1695
1696 return bfd_reloc_overflow;
1697 }
1698
1699 /* If we don't have a register contents section, then $255 is the
1700 first global register. */
1701 if (regsec == NULL)
1702 first_global = 255;
1703 else
1704 {
1705 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1706 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1708 {
1709 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1710 /* The bfd_reloc_outofrange return value, though
1711 intuitively a better value, will not get us an error. */
1712 return bfd_reloc_overflow;
1713 srel /= 8;
1714 }
1715 }
1716
1717 if ((bfd_vma) srel >= first_global)
1718 {
1719 /* FIXME: Better error message. */
1720 (*_bfd_error_handler)
1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1722 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1723
1724 return bfd_reloc_overflow;
1725 }
1726 }
1727 r = bfd_reloc_ok;
1728 break;
1729
1730 default:
1731 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1732 contents, r_offset,
1733 relocation, r_addend);
1734 }
1735
1736 return r;
1737 }
1738 \f
1739 /* Return the section that should be marked against GC for a given
1740 relocation. */
1741
1742 static asection *
1743 mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1744 asection *sec;
1745 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1746 Elf_Internal_Rela *rel;
1747 struct elf_link_hash_entry *h;
1748 Elf_Internal_Sym *sym;
1749 {
1750 if (h != NULL)
1751 {
1752 switch (ELF64_R_TYPE (rel->r_info))
1753 {
1754 case R_MMIX_GNU_VTINHERIT:
1755 case R_MMIX_GNU_VTENTRY:
1756 break;
1757
1758 default:
1759 switch (h->root.type)
1760 {
1761 case bfd_link_hash_defined:
1762 case bfd_link_hash_defweak:
1763 return h->root.u.def.section;
1764
1765 case bfd_link_hash_common:
1766 return h->root.u.c.p->section;
1767
1768 default:
1769 break;
1770 }
1771 }
1772 }
1773 else
1774 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1775
1776 return NULL;
1777 }
1778
1779 /* Update relocation info for a GC-excluded section. We could supposedly
1780 perform the allocation after GC, but there's no suitable hook between
1781 GC (or section merge) and the point when all input sections must be
1782 present. Better to waste some memory and (perhaps) a little time. */
1783
1784 static bfd_boolean
1785 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1786 bfd *abfd ATTRIBUTE_UNUSED;
1787 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1788 asection *sec ATTRIBUTE_UNUSED;
1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1790 {
1791 struct bpo_reloc_section_info *bpodata
1792 = mmix_elf_section_data (sec)->bpo.reloc;
1793 asection *allocated_gregs_section;
1794
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata == NULL)
1797 return TRUE;
1798
1799 allocated_gregs_section = bpodata->bpo_greg_section;
1800
1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1802 -= bpodata->n_bpo_relocs_this_section;
1803
1804 return TRUE;
1805 }
1806 \f
1807 /* Sort register relocs to come before expanding relocs. */
1808
1809 static int
1810 mmix_elf_sort_relocs (p1, p2)
1811 const PTR p1;
1812 const PTR p2;
1813 {
1814 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1815 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1816 int r1_is_reg, r2_is_reg;
1817
1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1819 insns. */
1820 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1821 return 1;
1822 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1823 return -1;
1824
1825 r1_is_reg
1826 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1827 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1828 r2_is_reg
1829 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1830 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1831 if (r1_is_reg != r2_is_reg)
1832 return r2_is_reg - r1_is_reg;
1833
1834 /* Neither or both are register relocs. Then sort on full offset. */
1835 if (r1->r_offset > r2->r_offset)
1836 return 1;
1837 else if (r1->r_offset < r2->r_offset)
1838 return -1;
1839 return 0;
1840 }
1841
1842 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1843
1844 static bfd_boolean
1845 mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848 asection *sec;
1849 const Elf_Internal_Rela *relocs;
1850 {
1851 bfd *bpo_greg_owner = NULL;
1852 asection *allocated_gregs_section = NULL;
1853 struct bpo_greg_section_info *gregdata = NULL;
1854 struct bpo_reloc_section_info *bpodata = NULL;
1855 const Elf_Internal_Rela *rel;
1856 const Elf_Internal_Rela *rel_end;
1857
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner = (bfd *) info->base_file;
1863
1864 rel_end = relocs + sec->reloc_count;
1865 for (rel = relocs; rel < rel_end; rel++)
1866 {
1867 switch (ELF64_R_TYPE (rel->r_info))
1868 {
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET:
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (info->relocatable)
1877 break;
1878
1879 if (bpo_greg_owner == NULL)
1880 {
1881 bpo_greg_owner = abfd;
1882 info->base_file = (PTR) bpo_greg_owner;
1883 }
1884
1885 if (allocated_gregs_section == NULL)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889
1890 if (allocated_gregs_section == NULL)
1891 {
1892 allocated_gregs_section
1893 = bfd_make_section_with_flags (bpo_greg_owner,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1895 (SEC_HAS_CONTENTS
1896 | SEC_IN_MEMORY
1897 | SEC_LINKER_CREATED));
1898 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1899 treated like any other section, and we'd get errors for
1900 address overlap with the text section. Let's set none of
1901 those flags, as that is what currently happens for usual
1902 GREG allocations, and that works. */
1903 if (allocated_gregs_section == NULL
1904 || !bfd_set_section_alignment (bpo_greg_owner,
1905 allocated_gregs_section,
1906 3))
1907 return FALSE;
1908
1909 gregdata = (struct bpo_greg_section_info *)
1910 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1911 if (gregdata == NULL)
1912 return FALSE;
1913 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1914 = gregdata;
1915 }
1916 else if (gregdata == NULL)
1917 gregdata
1918 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1919
1920 /* Get ourselves some auxiliary info for the BPO-relocs. */
1921 if (bpodata == NULL)
1922 {
1923 /* No use doing a separate iteration pass to find the upper
1924 limit - just use the number of relocs. */
1925 bpodata = (struct bpo_reloc_section_info *)
1926 bfd_alloc (bpo_greg_owner,
1927 sizeof (struct bpo_reloc_section_info)
1928 * (sec->reloc_count + 1));
1929 if (bpodata == NULL)
1930 return FALSE;
1931 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1932 bpodata->first_base_plus_offset_reloc
1933 = bpodata->bpo_index
1934 = gregdata->n_max_bpo_relocs;
1935 bpodata->bpo_greg_section
1936 = allocated_gregs_section;
1937 bpodata->n_bpo_relocs_this_section = 0;
1938 }
1939
1940 bpodata->n_bpo_relocs_this_section++;
1941 gregdata->n_max_bpo_relocs++;
1942
1943 /* We don't get another chance to set this before GC; we've not
1944 set up any hook that runs before GC. */
1945 gregdata->n_bpo_relocs
1946 = gregdata->n_max_bpo_relocs;
1947 break;
1948
1949 case R_MMIX_PUSHJ_STUBBABLE:
1950 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1951 break;
1952 }
1953 }
1954
1955 /* Allocate per-reloc stub storage and initialize it to the max stub
1956 size. */
1957 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1958 {
1959 size_t i;
1960
1961 mmix_elf_section_data (sec)->pjs.stub_size
1962 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1963 * sizeof (mmix_elf_section_data (sec)
1964 ->pjs.stub_size[0]));
1965 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1966 return FALSE;
1967
1968 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1969 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1970 }
1971
1972 return TRUE;
1973 }
1974
1975 /* Look through the relocs for a section during the first phase. */
1976
1977 static bfd_boolean
1978 mmix_elf_check_relocs (abfd, info, sec, relocs)
1979 bfd *abfd;
1980 struct bfd_link_info *info;
1981 asection *sec;
1982 const Elf_Internal_Rela *relocs;
1983 {
1984 Elf_Internal_Shdr *symtab_hdr;
1985 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1986 const Elf_Internal_Rela *rel;
1987 const Elf_Internal_Rela *rel_end;
1988
1989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1990 sym_hashes = elf_sym_hashes (abfd);
1991 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1992 if (!elf_bad_symtab (abfd))
1993 sym_hashes_end -= symtab_hdr->sh_info;
1994
1995 /* First we sort the relocs so that any register relocs come before
1996 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1997 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1998 mmix_elf_sort_relocs);
1999
2000 /* Do the common part. */
2001 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2002 return FALSE;
2003
2004 if (info->relocatable)
2005 return TRUE;
2006
2007 rel_end = relocs + sec->reloc_count;
2008 for (rel = relocs; rel < rel_end; rel++)
2009 {
2010 struct elf_link_hash_entry *h;
2011 unsigned long r_symndx;
2012
2013 r_symndx = ELF64_R_SYM (rel->r_info);
2014 if (r_symndx < symtab_hdr->sh_info)
2015 h = NULL;
2016 else
2017 {
2018 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2019 while (h->root.type == bfd_link_hash_indirect
2020 || h->root.type == bfd_link_hash_warning)
2021 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2022 }
2023
2024 switch (ELF64_R_TYPE (rel->r_info))
2025 {
2026 /* This relocation describes the C++ object vtable hierarchy.
2027 Reconstruct it for later use during GC. */
2028 case R_MMIX_GNU_VTINHERIT:
2029 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2030 return FALSE;
2031 break;
2032
2033 /* This relocation describes which C++ vtable entries are actually
2034 used. Record for later use during GC. */
2035 case R_MMIX_GNU_VTENTRY:
2036 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2037 return FALSE;
2038 break;
2039 }
2040 }
2041
2042 return TRUE;
2043 }
2044
2045 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2046 Copied from elf_link_add_object_symbols. */
2047
2048 bfd_boolean
2049 _bfd_mmix_check_all_relocs (abfd, info)
2050 bfd *abfd;
2051 struct bfd_link_info *info;
2052 {
2053 asection *o;
2054
2055 for (o = abfd->sections; o != NULL; o = o->next)
2056 {
2057 Elf_Internal_Rela *internal_relocs;
2058 bfd_boolean ok;
2059
2060 if ((o->flags & SEC_RELOC) == 0
2061 || o->reloc_count == 0
2062 || ((info->strip == strip_all || info->strip == strip_debugger)
2063 && (o->flags & SEC_DEBUGGING) != 0)
2064 || bfd_is_abs_section (o->output_section))
2065 continue;
2066
2067 internal_relocs
2068 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2069 (Elf_Internal_Rela *) NULL,
2070 info->keep_memory);
2071 if (internal_relocs == NULL)
2072 return FALSE;
2073
2074 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2075
2076 if (! info->keep_memory)
2077 free (internal_relocs);
2078
2079 if (! ok)
2080 return FALSE;
2081 }
2082
2083 return TRUE;
2084 }
2085 \f
2086 /* Change symbols relative to the reg contents section to instead be to
2087 the register section, and scale them down to correspond to the register
2088 number. */
2089
2090 static bfd_boolean
2091 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2092 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2093 const char *name ATTRIBUTE_UNUSED;
2094 Elf_Internal_Sym *sym;
2095 asection *input_sec;
2096 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2097 {
2098 if (input_sec != NULL
2099 && input_sec->name != NULL
2100 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2101 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2102 {
2103 sym->st_value /= 8;
2104 sym->st_shndx = SHN_REGISTER;
2105 }
2106
2107 return TRUE;
2108 }
2109
2110 /* We fake a register section that holds values that are register numbers.
2111 Having a SHN_REGISTER and register section translates better to other
2112 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2113 This section faking is based on a construct in elf32-mips.c. */
2114 static asection mmix_elf_reg_section;
2115 static asymbol mmix_elf_reg_section_symbol;
2116 static asymbol *mmix_elf_reg_section_symbol_ptr;
2117
2118 /* Handle the special section numbers that a symbol may use. */
2119
2120 void
2121 mmix_elf_symbol_processing (abfd, asym)
2122 bfd *abfd ATTRIBUTE_UNUSED;
2123 asymbol *asym;
2124 {
2125 elf_symbol_type *elfsym;
2126
2127 elfsym = (elf_symbol_type *) asym;
2128 switch (elfsym->internal_elf_sym.st_shndx)
2129 {
2130 case SHN_REGISTER:
2131 if (mmix_elf_reg_section.name == NULL)
2132 {
2133 /* Initialize the register section. */
2134 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2135 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2136 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2137 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2138 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2139 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2140 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2141 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2142 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2143 }
2144 asym->section = &mmix_elf_reg_section;
2145 break;
2146
2147 default:
2148 break;
2149 }
2150 }
2151
2152 /* Given a BFD section, try to locate the corresponding ELF section
2153 index. */
2154
2155 static bfd_boolean
2156 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2157 bfd * abfd ATTRIBUTE_UNUSED;
2158 asection * sec;
2159 int * retval;
2160 {
2161 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2162 *retval = SHN_REGISTER;
2163 else
2164 return FALSE;
2165
2166 return TRUE;
2167 }
2168
2169 /* Hook called by the linker routine which adds symbols from an object
2170 file. We must handle the special SHN_REGISTER section number here.
2171
2172 We also check that we only have *one* each of the section-start
2173 symbols, since otherwise having two with the same value would cause
2174 them to be "merged", but with the contents serialized. */
2175
2176 bfd_boolean
2177 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2178 bfd *abfd;
2179 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2180 Elf_Internal_Sym *sym;
2181 const char **namep ATTRIBUTE_UNUSED;
2182 flagword *flagsp ATTRIBUTE_UNUSED;
2183 asection **secp;
2184 bfd_vma *valp ATTRIBUTE_UNUSED;
2185 {
2186 if (sym->st_shndx == SHN_REGISTER)
2187 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2188 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2189 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2190 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2191 {
2192 /* See if we have another one. */
2193 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2194 *namep,
2195 FALSE,
2196 FALSE,
2197 FALSE);
2198
2199 if (h != NULL && h->type != bfd_link_hash_undefined)
2200 {
2201 /* How do we get the asymbol (or really: the filename) from h?
2202 h->u.def.section->owner is NULL. */
2203 ((*_bfd_error_handler)
2204 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2205 bfd_get_filename (abfd), *namep,
2206 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2207 bfd_set_error (bfd_error_bad_value);
2208 return FALSE;
2209 }
2210 }
2211
2212 return TRUE;
2213 }
2214
2215 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2216
2217 bfd_boolean
2218 mmix_elf_is_local_label_name (abfd, name)
2219 bfd *abfd;
2220 const char *name;
2221 {
2222 const char *colpos;
2223 int digits;
2224
2225 /* Also include the default local-label definition. */
2226 if (_bfd_elf_is_local_label_name (abfd, name))
2227 return TRUE;
2228
2229 if (*name != 'L')
2230 return FALSE;
2231
2232 /* If there's no ":", or more than one, it's not a local symbol. */
2233 colpos = strchr (name, ':');
2234 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2235 return FALSE;
2236
2237 /* Check that there are remaining characters and that they are digits. */
2238 if (colpos[1] == 0)
2239 return FALSE;
2240
2241 digits = strspn (colpos + 1, "0123456789");
2242 return digits != 0 && colpos[1 + digits] == 0;
2243 }
2244
2245 /* We get rid of the register section here. */
2246
2247 bfd_boolean
2248 mmix_elf_final_link (abfd, info)
2249 bfd *abfd;
2250 struct bfd_link_info *info;
2251 {
2252 /* We never output a register section, though we create one for
2253 temporary measures. Check that nobody entered contents into it. */
2254 asection *reg_section;
2255
2256 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2257
2258 if (reg_section != NULL)
2259 {
2260 /* FIXME: Pass error state gracefully. */
2261 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2262 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2263
2264 /* Really remove the section. */
2265 bfd_section_list_remove (abfd, reg_section);
2266 --abfd->section_count;
2267 }
2268
2269 if (! bfd_elf_final_link (abfd, info))
2270 return FALSE;
2271
2272 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2273 the regular linker machinery. We do it here, like other targets with
2274 special sections. */
2275 if (info->base_file != NULL)
2276 {
2277 asection *greg_section
2278 = bfd_get_section_by_name ((bfd *) info->base_file,
2279 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2280 if (!bfd_set_section_contents (abfd,
2281 greg_section->output_section,
2282 greg_section->contents,
2283 (file_ptr) greg_section->output_offset,
2284 greg_section->size))
2285 return FALSE;
2286 }
2287 return TRUE;
2288 }
2289
2290 /* We need to include the maximum size of PUSHJ-stubs in the initial
2291 section size. This is expected to shrink during linker relaxation. */
2292
2293 static void
2294 mmix_set_relaxable_size (abfd, sec, ptr)
2295 bfd *abfd ATTRIBUTE_UNUSED;
2296 asection *sec;
2297 void *ptr;
2298 {
2299 struct bfd_link_info *info = ptr;
2300
2301 /* Make sure we only do this for section where we know we want this,
2302 otherwise we might end up resetting the size of COMMONs. */
2303 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2304 return;
2305
2306 sec->rawsize = sec->size;
2307 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2308 * MAX_PUSHJ_STUB_SIZE);
2309
2310 /* For use in relocatable link, we start with a max stubs size. See
2311 mmix_elf_relax_section. */
2312 if (info->relocatable && sec->output_section)
2313 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2314 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2315 * MAX_PUSHJ_STUB_SIZE);
2316 }
2317
2318 /* Initialize stuff for the linker-generated GREGs to match
2319 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2320
2321 bfd_boolean
2322 _bfd_mmix_before_linker_allocation (abfd, info)
2323 bfd *abfd ATTRIBUTE_UNUSED;
2324 struct bfd_link_info *info;
2325 {
2326 asection *bpo_gregs_section;
2327 bfd *bpo_greg_owner;
2328 struct bpo_greg_section_info *gregdata;
2329 size_t n_gregs;
2330 bfd_vma gregs_size;
2331 size_t i;
2332 size_t *bpo_reloc_indexes;
2333 bfd *ibfd;
2334
2335 /* Set the initial size of sections. */
2336 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2337 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2338
2339 /* The bpo_greg_owner bfd is supposed to have been set by
2340 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2341 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2342 bpo_greg_owner = (bfd *) info->base_file;
2343 if (bpo_greg_owner == NULL)
2344 return TRUE;
2345
2346 bpo_gregs_section
2347 = bfd_get_section_by_name (bpo_greg_owner,
2348 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2349
2350 if (bpo_gregs_section == NULL)
2351 return TRUE;
2352
2353 /* We use the target-data handle in the ELF section data. */
2354 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2355 if (gregdata == NULL)
2356 return FALSE;
2357
2358 n_gregs = gregdata->n_bpo_relocs;
2359 gregdata->n_allocated_bpo_gregs = n_gregs;
2360
2361 /* When this reaches zero during relaxation, all entries have been
2362 filled in and the size of the linker gregs can be calculated. */
2363 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2364
2365 /* Set the zeroth-order estimate for the GREGs size. */
2366 gregs_size = n_gregs * 8;
2367
2368 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2369 return FALSE;
2370
2371 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2372 time. Note that we must use the max number ever noted for the array,
2373 since the index numbers were created before GC. */
2374 gregdata->reloc_request
2375 = bfd_zalloc (bpo_greg_owner,
2376 sizeof (struct bpo_reloc_request)
2377 * gregdata->n_max_bpo_relocs);
2378
2379 gregdata->bpo_reloc_indexes
2380 = bpo_reloc_indexes
2381 = bfd_alloc (bpo_greg_owner,
2382 gregdata->n_max_bpo_relocs
2383 * sizeof (size_t));
2384 if (bpo_reloc_indexes == NULL)
2385 return FALSE;
2386
2387 /* The default order is an identity mapping. */
2388 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2389 {
2390 bpo_reloc_indexes[i] = i;
2391 gregdata->reloc_request[i].bpo_reloc_no = i;
2392 }
2393
2394 return TRUE;
2395 }
2396 \f
2397 /* Fill in contents in the linker allocated gregs. Everything is
2398 calculated at this point; we just move the contents into place here. */
2399
2400 bfd_boolean
2401 _bfd_mmix_after_linker_allocation (abfd, link_info)
2402 bfd *abfd ATTRIBUTE_UNUSED;
2403 struct bfd_link_info *link_info;
2404 {
2405 asection *bpo_gregs_section;
2406 bfd *bpo_greg_owner;
2407 struct bpo_greg_section_info *gregdata;
2408 size_t n_gregs;
2409 size_t i, j;
2410 size_t lastreg;
2411 bfd_byte *contents;
2412
2413 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2414 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2415 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2416 bpo_greg_owner = (bfd *) link_info->base_file;
2417 if (bpo_greg_owner == NULL)
2418 return TRUE;
2419
2420 bpo_gregs_section
2421 = bfd_get_section_by_name (bpo_greg_owner,
2422 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2423
2424 /* This can't happen without DSO handling. When DSOs are handled
2425 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2426 section. */
2427 if (bpo_gregs_section == NULL)
2428 return TRUE;
2429
2430 /* We use the target-data handle in the ELF section data. */
2431
2432 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2433 if (gregdata == NULL)
2434 return FALSE;
2435
2436 n_gregs = gregdata->n_allocated_bpo_gregs;
2437
2438 bpo_gregs_section->contents
2439 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2440 if (contents == NULL)
2441 return FALSE;
2442
2443 /* Sanity check: If these numbers mismatch, some relocation has not been
2444 accounted for and the rest of gregdata is probably inconsistent.
2445 It's a bug, but it's more helpful to identify it than segfaulting
2446 below. */
2447 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2448 != gregdata->n_bpo_relocs)
2449 {
2450 (*_bfd_error_handler)
2451 (_("Internal inconsistency: remaining %u != max %u.\n\
2452 Please report this bug."),
2453 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2454 gregdata->n_bpo_relocs);
2455 return FALSE;
2456 }
2457
2458 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2459 if (gregdata->reloc_request[i].regindex != lastreg)
2460 {
2461 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2462 contents + j * 8);
2463 lastreg = gregdata->reloc_request[i].regindex;
2464 j++;
2465 }
2466
2467 return TRUE;
2468 }
2469
2470 /* Sort valid relocs to come before non-valid relocs, then on increasing
2471 value. */
2472
2473 static int
2474 bpo_reloc_request_sort_fn (p1, p2)
2475 const PTR p1;
2476 const PTR p2;
2477 {
2478 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2479 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2480
2481 /* Primary function is validity; non-valid relocs sorted after valid
2482 ones. */
2483 if (r1->valid != r2->valid)
2484 return r2->valid - r1->valid;
2485
2486 /* Then sort on value. Don't simplify and return just the difference of
2487 the values: the upper bits of the 64-bit value would be truncated on
2488 a host with 32-bit ints. */
2489 if (r1->value != r2->value)
2490 return r1->value > r2->value ? 1 : -1;
2491
2492 /* As a last re-sort, use the relocation number, so we get a stable
2493 sort. The *addresses* aren't stable since items are swapped during
2494 sorting. It depends on the qsort implementation if this actually
2495 happens. */
2496 return r1->bpo_reloc_no > r2->bpo_reloc_no
2497 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2498 }
2499
2500 /* For debug use only. Dumps the global register allocations resulting
2501 from base-plus-offset relocs. */
2502
2503 void
2504 mmix_dump_bpo_gregs (link_info, pf)
2505 struct bfd_link_info *link_info;
2506 bfd_error_handler_type pf;
2507 {
2508 bfd *bpo_greg_owner;
2509 asection *bpo_gregs_section;
2510 struct bpo_greg_section_info *gregdata;
2511 unsigned int i;
2512
2513 if (link_info == NULL || link_info->base_file == NULL)
2514 return;
2515
2516 bpo_greg_owner = (bfd *) link_info->base_file;
2517
2518 bpo_gregs_section
2519 = bfd_get_section_by_name (bpo_greg_owner,
2520 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2521
2522 if (bpo_gregs_section == NULL)
2523 return;
2524
2525 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2526 if (gregdata == NULL)
2527 return;
2528
2529 if (pf == NULL)
2530 pf = _bfd_error_handler;
2531
2532 /* These format strings are not translated. They are for debug purposes
2533 only and never displayed to an end user. Should they escape, we
2534 surely want them in original. */
2535 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2536 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2537 gregdata->n_max_bpo_relocs,
2538 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2539 gregdata->n_allocated_bpo_gregs);
2540
2541 if (gregdata->reloc_request)
2542 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2543 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2544 i,
2545 (gregdata->bpo_reloc_indexes != NULL
2546 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2547 gregdata->reloc_request[i].bpo_reloc_no,
2548 gregdata->reloc_request[i].valid,
2549
2550 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2551 (unsigned long) gregdata->reloc_request[i].value,
2552 gregdata->reloc_request[i].regindex,
2553 gregdata->reloc_request[i].offset);
2554 }
2555
2556 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2557 when the last such reloc is done, an index-array is sorted according to
2558 the values and iterated over to produce register numbers (indexed by 0
2559 from the first allocated register number) and offsets for use in real
2560 relocation.
2561
2562 PUSHJ stub accounting is also done here.
2563
2564 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2565
2566 static bfd_boolean
2567 mmix_elf_relax_section (abfd, sec, link_info, again)
2568 bfd *abfd;
2569 asection *sec;
2570 struct bfd_link_info *link_info;
2571 bfd_boolean *again;
2572 {
2573 Elf_Internal_Shdr *symtab_hdr;
2574 Elf_Internal_Rela *internal_relocs;
2575 Elf_Internal_Rela *irel, *irelend;
2576 asection *bpo_gregs_section = NULL;
2577 struct bpo_greg_section_info *gregdata;
2578 struct bpo_reloc_section_info *bpodata
2579 = mmix_elf_section_data (sec)->bpo.reloc;
2580 /* The initialization is to quiet compiler warnings. The value is to
2581 spot a missing actual initialization. */
2582 size_t bpono = (size_t) -1;
2583 size_t pjsno = 0;
2584 bfd *bpo_greg_owner;
2585 Elf_Internal_Sym *isymbuf = NULL;
2586 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2587
2588 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2589
2590 /* Assume nothing changes. */
2591 *again = FALSE;
2592
2593 /* We don't have to do anything if this section does not have relocs, or
2594 if this is not a code section. */
2595 if ((sec->flags & SEC_RELOC) == 0
2596 || sec->reloc_count == 0
2597 || (sec->flags & SEC_CODE) == 0
2598 || (sec->flags & SEC_LINKER_CREATED) != 0
2599 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2600 then nothing to do. */
2601 || (bpodata == NULL
2602 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2603 return TRUE;
2604
2605 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2606
2607 bpo_greg_owner = (bfd *) link_info->base_file;
2608
2609 if (bpodata != NULL)
2610 {
2611 bpo_gregs_section = bpodata->bpo_greg_section;
2612 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2613 bpono = bpodata->first_base_plus_offset_reloc;
2614 }
2615 else
2616 gregdata = NULL;
2617
2618 /* Get a copy of the native relocations. */
2619 internal_relocs
2620 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2621 (Elf_Internal_Rela *) NULL,
2622 link_info->keep_memory);
2623 if (internal_relocs == NULL)
2624 goto error_return;
2625
2626 /* Walk through them looking for relaxing opportunities. */
2627 irelend = internal_relocs + sec->reloc_count;
2628 for (irel = internal_relocs; irel < irelend; irel++)
2629 {
2630 bfd_vma symval;
2631 struct elf_link_hash_entry *h = NULL;
2632
2633 /* We only process two relocs. */
2634 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2635 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2636 continue;
2637
2638 /* We process relocs in a distinctly different way when this is a
2639 relocatable link (for one, we don't look at symbols), so we avoid
2640 mixing its code with that for the "normal" relaxation. */
2641 if (link_info->relocatable)
2642 {
2643 /* The only transformation in a relocatable link is to generate
2644 a full stub at the location of the stub calculated for the
2645 input section, if the relocated stub location, the end of the
2646 output section plus earlier stubs, cannot be reached. Thus
2647 relocatable linking can only lead to worse code, but it still
2648 works. */
2649 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2650 {
2651 /* If we can reach the end of the output-section and beyond
2652 any current stubs, then we don't need a stub for this
2653 reloc. The relaxed order of output stub allocation may
2654 not exactly match the straightforward order, so we always
2655 assume presence of output stubs, which will allow
2656 relaxation only on relocations indifferent to the
2657 presence of output stub allocations for other relocations
2658 and thus the order of output stub allocation. */
2659 if (bfd_check_overflow (complain_overflow_signed,
2660 19,
2661 0,
2662 bfd_arch_bits_per_address (abfd),
2663 /* Output-stub location. */
2664 sec->output_section->rawsize
2665 + (mmix_elf_section_data (sec
2666 ->output_section)
2667 ->pjs.stubs_size_sum)
2668 /* Location of this PUSHJ reloc. */
2669 - (sec->output_offset + irel->r_offset)
2670 /* Don't count *this* stub twice. */
2671 - (mmix_elf_section_data (sec)
2672 ->pjs.stub_size[pjsno]
2673 + MAX_PUSHJ_STUB_SIZE))
2674 == bfd_reloc_ok)
2675 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2676
2677 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2678 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2679
2680 pjsno++;
2681 }
2682
2683 continue;
2684 }
2685
2686 /* Get the value of the symbol referred to by the reloc. */
2687 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2688 {
2689 /* A local symbol. */
2690 Elf_Internal_Sym *isym;
2691 asection *sym_sec;
2692
2693 /* Read this BFD's local symbols if we haven't already. */
2694 if (isymbuf == NULL)
2695 {
2696 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2697 if (isymbuf == NULL)
2698 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2699 symtab_hdr->sh_info, 0,
2700 NULL, NULL, NULL);
2701 if (isymbuf == 0)
2702 goto error_return;
2703 }
2704
2705 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2706 if (isym->st_shndx == SHN_UNDEF)
2707 sym_sec = bfd_und_section_ptr;
2708 else if (isym->st_shndx == SHN_ABS)
2709 sym_sec = bfd_abs_section_ptr;
2710 else if (isym->st_shndx == SHN_COMMON)
2711 sym_sec = bfd_com_section_ptr;
2712 else
2713 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2714 symval = (isym->st_value
2715 + sym_sec->output_section->vma
2716 + sym_sec->output_offset);
2717 }
2718 else
2719 {
2720 unsigned long indx;
2721
2722 /* An external symbol. */
2723 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2724 h = elf_sym_hashes (abfd)[indx];
2725 BFD_ASSERT (h != NULL);
2726 if (h->root.type != bfd_link_hash_defined
2727 && h->root.type != bfd_link_hash_defweak)
2728 {
2729 /* This appears to be a reference to an undefined symbol. Just
2730 ignore it--it will be caught by the regular reloc processing.
2731 We need to keep BPO reloc accounting consistent, though
2732 else we'll abort instead of emitting an error message. */
2733 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2734 && gregdata != NULL)
2735 {
2736 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2737 bpono++;
2738 }
2739 continue;
2740 }
2741
2742 symval = (h->root.u.def.value
2743 + h->root.u.def.section->output_section->vma
2744 + h->root.u.def.section->output_offset);
2745 }
2746
2747 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2748 {
2749 bfd_vma value = symval + irel->r_addend;
2750 bfd_vma dot
2751 = (sec->output_section->vma
2752 + sec->output_offset
2753 + irel->r_offset);
2754 bfd_vma stubaddr
2755 = (sec->output_section->vma
2756 + sec->output_offset
2757 + size
2758 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2759
2760 if ((value & 3) == 0
2761 && bfd_check_overflow (complain_overflow_signed,
2762 19,
2763 0,
2764 bfd_arch_bits_per_address (abfd),
2765 value - dot
2766 - (value > dot
2767 ? mmix_elf_section_data (sec)
2768 ->pjs.stub_size[pjsno]
2769 : 0))
2770 == bfd_reloc_ok)
2771 /* If the reloc fits, no stub is needed. */
2772 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2773 else
2774 /* Maybe we can get away with just a JMP insn? */
2775 if ((value & 3) == 0
2776 && bfd_check_overflow (complain_overflow_signed,
2777 27,
2778 0,
2779 bfd_arch_bits_per_address (abfd),
2780 value - stubaddr
2781 - (value > dot
2782 ? mmix_elf_section_data (sec)
2783 ->pjs.stub_size[pjsno] - 4
2784 : 0))
2785 == bfd_reloc_ok)
2786 /* Yep, account for a stub consisting of a single JMP insn. */
2787 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2788 else
2789 /* Nope, go for the full insn stub. It doesn't seem useful to
2790 emit the intermediate sizes; those will only be useful for
2791 a >64M program assuming contiguous code. */
2792 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2793 = MAX_PUSHJ_STUB_SIZE;
2794
2795 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2796 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2797 pjsno++;
2798 continue;
2799 }
2800
2801 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2802
2803 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2804 = symval + irel->r_addend;
2805 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2806 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2807 }
2808
2809 /* Check if that was the last BPO-reloc. If so, sort the values and
2810 calculate how many registers we need to cover them. Set the size of
2811 the linker gregs, and if the number of registers changed, indicate
2812 that we need to relax some more because we have more work to do. */
2813 if (gregdata != NULL
2814 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2815 {
2816 size_t i;
2817 bfd_vma prev_base;
2818 size_t regindex;
2819
2820 /* First, reset the remaining relocs for the next round. */
2821 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2822 = gregdata->n_bpo_relocs;
2823
2824 qsort ((PTR) gregdata->reloc_request,
2825 gregdata->n_max_bpo_relocs,
2826 sizeof (struct bpo_reloc_request),
2827 bpo_reloc_request_sort_fn);
2828
2829 /* Recalculate indexes. When we find a change (however unlikely
2830 after the initial iteration), we know we need to relax again,
2831 since items in the GREG-array are sorted by increasing value and
2832 stored in the relaxation phase. */
2833 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2834 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2835 != i)
2836 {
2837 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2838 = i;
2839 *again = TRUE;
2840 }
2841
2842 /* Allocate register numbers (indexing from 0). Stop at the first
2843 non-valid reloc. */
2844 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2845 i < gregdata->n_bpo_relocs;
2846 i++)
2847 {
2848 if (gregdata->reloc_request[i].value > prev_base + 255)
2849 {
2850 regindex++;
2851 prev_base = gregdata->reloc_request[i].value;
2852 }
2853 gregdata->reloc_request[i].regindex = regindex;
2854 gregdata->reloc_request[i].offset
2855 = gregdata->reloc_request[i].value - prev_base;
2856 }
2857
2858 /* If it's not the same as the last time, we need to relax again,
2859 because the size of the section has changed. I'm not sure we
2860 actually need to do any adjustments since the shrinking happens
2861 at the start of this section, but better safe than sorry. */
2862 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2863 {
2864 gregdata->n_allocated_bpo_gregs = regindex + 1;
2865 *again = TRUE;
2866 }
2867
2868 bpo_gregs_section->size = (regindex + 1) * 8;
2869 }
2870
2871 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2872 {
2873 if (! link_info->keep_memory)
2874 free (isymbuf);
2875 else
2876 {
2877 /* Cache the symbols for elf_link_input_bfd. */
2878 symtab_hdr->contents = (unsigned char *) isymbuf;
2879 }
2880 }
2881
2882 if (internal_relocs != NULL
2883 && elf_section_data (sec)->relocs != internal_relocs)
2884 free (internal_relocs);
2885
2886 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2887 abort ();
2888
2889 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2890 {
2891 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2892 *again = TRUE;
2893 }
2894
2895 return TRUE;
2896
2897 error_return:
2898 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2899 free (isymbuf);
2900 if (internal_relocs != NULL
2901 && elf_section_data (sec)->relocs != internal_relocs)
2902 free (internal_relocs);
2903 return FALSE;
2904 }
2905 \f
2906 #define ELF_ARCH bfd_arch_mmix
2907 #define ELF_MACHINE_CODE EM_MMIX
2908
2909 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2910 However, that's too much for something somewhere in the linker part of
2911 BFD; perhaps the start-address has to be a non-zero multiple of this
2912 number, or larger than this number. The symptom is that the linker
2913 complains: "warning: allocated section `.text' not in segment". We
2914 settle for 64k; the page-size used in examples is 8k.
2915 #define ELF_MAXPAGESIZE 0x10000
2916
2917 Unfortunately, this causes excessive padding in the supposedly small
2918 for-education programs that are the expected usage (where people would
2919 inspect output). We stick to 256 bytes just to have *some* default
2920 alignment. */
2921 #define ELF_MAXPAGESIZE 0x100
2922
2923 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2924 #define TARGET_BIG_NAME "elf64-mmix"
2925
2926 #define elf_info_to_howto_rel NULL
2927 #define elf_info_to_howto mmix_info_to_howto_rela
2928 #define elf_backend_relocate_section mmix_elf_relocate_section
2929 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2930 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2931
2932 #define elf_backend_link_output_symbol_hook \
2933 mmix_elf_link_output_symbol_hook
2934 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2935
2936 #define elf_backend_check_relocs mmix_elf_check_relocs
2937 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2938
2939 #define bfd_elf64_bfd_is_local_label_name \
2940 mmix_elf_is_local_label_name
2941
2942 #define elf_backend_may_use_rel_p 0
2943 #define elf_backend_may_use_rela_p 1
2944 #define elf_backend_default_use_rela_p 1
2945
2946 #define elf_backend_can_gc_sections 1
2947 #define elf_backend_section_from_bfd_section \
2948 mmix_elf_section_from_bfd_section
2949
2950 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2951 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2952 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2953
2954 #include "elf64-target.h"
This page took 0.10277 seconds and 4 git commands to generate.