c37130c2e29e1b341113bc7abb8bc3a148dbfbed
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* No specific ABI or "processor-specific supplement" defined. */
22
23 /* TODO:
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
28
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/mmix.h"
34 #include "opcode/mmix.h"
35
36 #define MINUS_ONE (((bfd_vma) 0) - 1)
37
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
40 /* Put these everywhere in new code. */
41 #define FATAL_DEBUG \
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
44
45 #define BAD_CASE(x) \
46 _bfd_abort (__FILE__, __LINE__, \
47 "bad case for " #x)
48
49 struct _mmix_elf_section_data
50 {
51 struct bfd_elf_section_data elf;
52 union
53 {
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
56 } bpo;
57
58 struct pushj_stub_info
59 {
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
62
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
65
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
69
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
74 } pjs;
75 };
76
77 #define mmix_elf_section_data(sec) \
78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
79
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
82 NULL. */
83 struct bpo_reloc_section_info
84 {
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
87
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
90
91 /* Running index, used at relocation time. */
92 size_t bpo_index;
93
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
98 };
99
100 /* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102 struct bpo_reloc_request
103 {
104 bfd_vma value;
105
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
108 size_t regindex;
109 size_t offset;
110
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
114 size_t bpo_reloc_no;
115
116 /* Set when the value is computed. Better than coding "guard values"
117 into the other members. Is FALSE only for BPO relocs in a GC:ed
118 section. */
119 bfd_boolean valid;
120 };
121
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
127 collide. */
128 struct bpo_greg_section_info
129 {
130 /* After GC, this reflects the number of remaining, non-excluded
131 BPO-relocs. */
132 size_t n_bpo_relocs;
133
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
139
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
148 size_t n_allocated_bpo_gregs;
149
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
153
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
157 };
158
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 asection *, struct elf_link_hash_entry *));
162
163 static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169 static void mmix_info_to_howto_rela
170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
171
172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
174 static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
176
177 static bfd_boolean mmix_elf_check_relocs
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
180
181 static bfd_boolean mmix_elf_check_common_relocs
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
184
185 static bfd_boolean mmix_elf_relocate_section
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189 static asection * mmix_elf_gc_mark_hook
190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
193 static bfd_boolean mmix_elf_gc_sweep_hook
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
196
197 static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
204 static bfd_boolean mmix_elf_section_from_bfd_section
205 PARAMS ((bfd *, asection *, int *));
206
207 static bfd_boolean mmix_elf_add_symbol_hook
208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
209 const char **, flagword *, asection **, bfd_vma *));
210
211 static bfd_boolean mmix_elf_is_local_label_name
212 PARAMS ((bfd *, const char *));
213
214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
216 static bfd_boolean mmix_elf_relax_section
217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218 bfd_boolean *again));
219
220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
221
222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
224 /* Only intended to be called from a debugger. */
225 extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
228 static void
229 mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
231
232
233 /* Watch out: this currently needs to have elements with the same index as
234 their R_MMIX_ number. */
235 static reloc_howto_type elf_mmix_howto_table[] =
236 {
237 /* This reloc does nothing. */
238 HOWTO (R_MMIX_NONE, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 32, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_NONE", /* name */
247 FALSE, /* partial_inplace */
248 0, /* src_mask */
249 0, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* An 8 bit absolute relocation. */
253 HOWTO (R_MMIX_8, /* type */
254 0, /* rightshift */
255 0, /* size (0 = byte, 1 = short, 2 = long) */
256 8, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_8", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* An 16 bit absolute relocation. */
268 HOWTO (R_MMIX_16, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_16", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 0xffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 24 bit absolute relocation. */
283 HOWTO (R_MMIX_24, /* type */
284 0, /* rightshift */
285 2, /* size (0 = byte, 1 = short, 2 = long) */
286 24, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_24", /* name */
292 FALSE, /* partial_inplace */
293 ~0xffffff, /* src_mask */
294 0xffffff, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* A 32 bit absolute relocation. */
298 HOWTO (R_MMIX_32, /* type */
299 0, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 32, /* bitsize */
302 FALSE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_32", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffffffff, /* dst_mask */
310 FALSE), /* pcrel_offset */
311
312 /* 64 bit relocation. */
313 HOWTO (R_MMIX_64, /* type */
314 0, /* rightshift */
315 4, /* size (0 = byte, 1 = short, 2 = long) */
316 64, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_64", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 MINUS_ONE, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An 8 bit PC-relative relocation. */
328 HOWTO (R_MMIX_PC_8, /* type */
329 0, /* rightshift */
330 0, /* size (0 = byte, 1 = short, 2 = long) */
331 8, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_8", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* An 16 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_16, /* type */
344 0, /* rightshift */
345 1, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_16", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0xffff, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* An 24 bit PC-relative relocation. */
358 HOWTO (R_MMIX_PC_24, /* type */
359 0, /* rightshift */
360 2, /* size (0 = byte, 1 = short, 2 = long) */
361 24, /* bitsize */
362 TRUE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_bitfield, /* complain_on_overflow */
365 bfd_elf_generic_reloc, /* special_function */
366 "R_MMIX_PC_24", /* name */
367 FALSE, /* partial_inplace */
368 ~0xffffff, /* src_mask */
369 0xffffff, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* A 32 bit absolute PC-relative relocation. */
373 HOWTO (R_MMIX_PC_32, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 TRUE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield, /* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_MMIX_PC_32", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0xffffffff, /* dst_mask */
385 TRUE), /* pcrel_offset */
386
387 /* 64 bit PC-relative relocation. */
388 HOWTO (R_MMIX_PC_64, /* type */
389 0, /* rightshift */
390 4, /* size (0 = byte, 1 = short, 2 = long) */
391 64, /* bitsize */
392 TRUE, /* pc_relative */
393 0, /* bitpos */
394 complain_overflow_bitfield, /* complain_on_overflow */
395 bfd_elf_generic_reloc, /* special_function */
396 "R_MMIX_PC_64", /* name */
397 FALSE, /* partial_inplace */
398 0, /* src_mask */
399 MINUS_ONE, /* dst_mask */
400 TRUE), /* pcrel_offset */
401
402 /* GNU extension to record C++ vtable hierarchy. */
403 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
404 0, /* rightshift */
405 0, /* size (0 = byte, 1 = short, 2 = long) */
406 0, /* bitsize */
407 FALSE, /* pc_relative */
408 0, /* bitpos */
409 complain_overflow_dont, /* complain_on_overflow */
410 NULL, /* special_function */
411 "R_MMIX_GNU_VTINHERIT", /* name */
412 FALSE, /* partial_inplace */
413 0, /* src_mask */
414 0, /* dst_mask */
415 TRUE), /* pcrel_offset */
416
417 /* GNU extension to record C++ vtable member usage. */
418 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
419 0, /* rightshift */
420 0, /* size (0 = byte, 1 = short, 2 = long) */
421 0, /* bitsize */
422 FALSE, /* pc_relative */
423 0, /* bitpos */
424 complain_overflow_dont, /* complain_on_overflow */
425 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
426 "R_MMIX_GNU_VTENTRY", /* name */
427 FALSE, /* partial_inplace */
428 0, /* src_mask */
429 0, /* dst_mask */
430 FALSE), /* pcrel_offset */
431
432 /* The GETA relocation is supposed to get any address that could
433 possibly be reached by the GETA instruction. It can silently expand
434 to get a 64-bit operand, but will complain if any of the two least
435 significant bits are set. The howto members reflect a simple GETA. */
436 HOWTO (R_MMIX_GETA, /* type */
437 2, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 19, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 mmix_elf_reloc, /* special_function */
444 "R_MMIX_GETA", /* name */
445 FALSE, /* partial_inplace */
446 ~0x0100ffff, /* src_mask */
447 0x0100ffff, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 HOWTO (R_MMIX_GETA_1, /* type */
451 2, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 19, /* bitsize */
454 TRUE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_signed, /* complain_on_overflow */
457 mmix_elf_reloc, /* special_function */
458 "R_MMIX_GETA_1", /* name */
459 FALSE, /* partial_inplace */
460 ~0x0100ffff, /* src_mask */
461 0x0100ffff, /* dst_mask */
462 TRUE), /* pcrel_offset */
463
464 HOWTO (R_MMIX_GETA_2, /* type */
465 2, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 19, /* bitsize */
468 TRUE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_signed, /* complain_on_overflow */
471 mmix_elf_reloc, /* special_function */
472 "R_MMIX_GETA_2", /* name */
473 FALSE, /* partial_inplace */
474 ~0x0100ffff, /* src_mask */
475 0x0100ffff, /* dst_mask */
476 TRUE), /* pcrel_offset */
477
478 HOWTO (R_MMIX_GETA_3, /* type */
479 2, /* rightshift */
480 2, /* size (0 = byte, 1 = short, 2 = long) */
481 19, /* bitsize */
482 TRUE, /* pc_relative */
483 0, /* bitpos */
484 complain_overflow_signed, /* complain_on_overflow */
485 mmix_elf_reloc, /* special_function */
486 "R_MMIX_GETA_3", /* name */
487 FALSE, /* partial_inplace */
488 ~0x0100ffff, /* src_mask */
489 0x0100ffff, /* dst_mask */
490 TRUE), /* pcrel_offset */
491
492 /* The conditional branches are supposed to reach any (code) address.
493 It can silently expand to a 64-bit operand, but will emit an error if
494 any of the two least significant bits are set. The howto members
495 reflect a simple branch. */
496 HOWTO (R_MMIX_CBRANCH, /* type */
497 2, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 19, /* bitsize */
500 TRUE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_signed, /* complain_on_overflow */
503 mmix_elf_reloc, /* special_function */
504 "R_MMIX_CBRANCH", /* name */
505 FALSE, /* partial_inplace */
506 ~0x0100ffff, /* src_mask */
507 0x0100ffff, /* dst_mask */
508 TRUE), /* pcrel_offset */
509
510 HOWTO (R_MMIX_CBRANCH_J, /* type */
511 2, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 19, /* bitsize */
514 TRUE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_signed, /* complain_on_overflow */
517 mmix_elf_reloc, /* special_function */
518 "R_MMIX_CBRANCH_J", /* name */
519 FALSE, /* partial_inplace */
520 ~0x0100ffff, /* src_mask */
521 0x0100ffff, /* dst_mask */
522 TRUE), /* pcrel_offset */
523
524 HOWTO (R_MMIX_CBRANCH_1, /* type */
525 2, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 19, /* bitsize */
528 TRUE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_signed, /* complain_on_overflow */
531 mmix_elf_reloc, /* special_function */
532 "R_MMIX_CBRANCH_1", /* name */
533 FALSE, /* partial_inplace */
534 ~0x0100ffff, /* src_mask */
535 0x0100ffff, /* dst_mask */
536 TRUE), /* pcrel_offset */
537
538 HOWTO (R_MMIX_CBRANCH_2, /* type */
539 2, /* rightshift */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
541 19, /* bitsize */
542 TRUE, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_signed, /* complain_on_overflow */
545 mmix_elf_reloc, /* special_function */
546 "R_MMIX_CBRANCH_2", /* name */
547 FALSE, /* partial_inplace */
548 ~0x0100ffff, /* src_mask */
549 0x0100ffff, /* dst_mask */
550 TRUE), /* pcrel_offset */
551
552 HOWTO (R_MMIX_CBRANCH_3, /* type */
553 2, /* rightshift */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
555 19, /* bitsize */
556 TRUE, /* pc_relative */
557 0, /* bitpos */
558 complain_overflow_signed, /* complain_on_overflow */
559 mmix_elf_reloc, /* special_function */
560 "R_MMIX_CBRANCH_3", /* name */
561 FALSE, /* partial_inplace */
562 ~0x0100ffff, /* src_mask */
563 0x0100ffff, /* dst_mask */
564 TRUE), /* pcrel_offset */
565
566 /* The PUSHJ instruction can reach any (code) address, as long as it's
567 the beginning of a function (no usable restriction). It can silently
568 expand to a 64-bit operand, but will emit an error if any of the two
569 least significant bits are set. It can also expand into a call to a
570 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
571 PUSHJ. */
572 HOWTO (R_MMIX_PUSHJ, /* type */
573 2, /* rightshift */
574 2, /* size (0 = byte, 1 = short, 2 = long) */
575 19, /* bitsize */
576 TRUE, /* pc_relative */
577 0, /* bitpos */
578 complain_overflow_signed, /* complain_on_overflow */
579 mmix_elf_reloc, /* special_function */
580 "R_MMIX_PUSHJ", /* name */
581 FALSE, /* partial_inplace */
582 ~0x0100ffff, /* src_mask */
583 0x0100ffff, /* dst_mask */
584 TRUE), /* pcrel_offset */
585
586 HOWTO (R_MMIX_PUSHJ_1, /* type */
587 2, /* rightshift */
588 2, /* size (0 = byte, 1 = short, 2 = long) */
589 19, /* bitsize */
590 TRUE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_signed, /* complain_on_overflow */
593 mmix_elf_reloc, /* special_function */
594 "R_MMIX_PUSHJ_1", /* name */
595 FALSE, /* partial_inplace */
596 ~0x0100ffff, /* src_mask */
597 0x0100ffff, /* dst_mask */
598 TRUE), /* pcrel_offset */
599
600 HOWTO (R_MMIX_PUSHJ_2, /* type */
601 2, /* rightshift */
602 2, /* size (0 = byte, 1 = short, 2 = long) */
603 19, /* bitsize */
604 TRUE, /* pc_relative */
605 0, /* bitpos */
606 complain_overflow_signed, /* complain_on_overflow */
607 mmix_elf_reloc, /* special_function */
608 "R_MMIX_PUSHJ_2", /* name */
609 FALSE, /* partial_inplace */
610 ~0x0100ffff, /* src_mask */
611 0x0100ffff, /* dst_mask */
612 TRUE), /* pcrel_offset */
613
614 HOWTO (R_MMIX_PUSHJ_3, /* type */
615 2, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 19, /* bitsize */
618 TRUE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 mmix_elf_reloc, /* special_function */
622 "R_MMIX_PUSHJ_3", /* name */
623 FALSE, /* partial_inplace */
624 ~0x0100ffff, /* src_mask */
625 0x0100ffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* A JMP is supposed to reach any (code) address. By itself, it can
629 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
630 limit is soon reached if you link the program in wildly different
631 memory segments. The howto members reflect a trivial JMP. */
632 HOWTO (R_MMIX_JMP, /* type */
633 2, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 27, /* bitsize */
636 TRUE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 mmix_elf_reloc, /* special_function */
640 "R_MMIX_JMP", /* name */
641 FALSE, /* partial_inplace */
642 ~0x1ffffff, /* src_mask */
643 0x1ffffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 HOWTO (R_MMIX_JMP_1, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 27, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_JMP_1", /* name */
655 FALSE, /* partial_inplace */
656 ~0x1ffffff, /* src_mask */
657 0x1ffffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 HOWTO (R_MMIX_JMP_2, /* type */
661 2, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 27, /* bitsize */
664 TRUE, /* pc_relative */
665 0, /* bitpos */
666 complain_overflow_signed, /* complain_on_overflow */
667 mmix_elf_reloc, /* special_function */
668 "R_MMIX_JMP_2", /* name */
669 FALSE, /* partial_inplace */
670 ~0x1ffffff, /* src_mask */
671 0x1ffffff, /* dst_mask */
672 TRUE), /* pcrel_offset */
673
674 HOWTO (R_MMIX_JMP_3, /* type */
675 2, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 27, /* bitsize */
678 TRUE, /* pc_relative */
679 0, /* bitpos */
680 complain_overflow_signed, /* complain_on_overflow */
681 mmix_elf_reloc, /* special_function */
682 "R_MMIX_JMP_3", /* name */
683 FALSE, /* partial_inplace */
684 ~0x1ffffff, /* src_mask */
685 0x1ffffff, /* dst_mask */
686 TRUE), /* pcrel_offset */
687
688 /* When we don't emit link-time-relaxable code from the assembler, or
689 when relaxation has done all it can do, these relocs are used. For
690 GETA/PUSHJ/branches. */
691 HOWTO (R_MMIX_ADDR19, /* type */
692 2, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 19, /* bitsize */
695 TRUE, /* pc_relative */
696 0, /* bitpos */
697 complain_overflow_signed, /* complain_on_overflow */
698 mmix_elf_reloc, /* special_function */
699 "R_MMIX_ADDR19", /* name */
700 FALSE, /* partial_inplace */
701 ~0x0100ffff, /* src_mask */
702 0x0100ffff, /* dst_mask */
703 TRUE), /* pcrel_offset */
704
705 /* For JMP. */
706 HOWTO (R_MMIX_ADDR27, /* type */
707 2, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 27, /* bitsize */
710 TRUE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_signed, /* complain_on_overflow */
713 mmix_elf_reloc, /* special_function */
714 "R_MMIX_ADDR27", /* name */
715 FALSE, /* partial_inplace */
716 ~0x1ffffff, /* src_mask */
717 0x1ffffff, /* dst_mask */
718 TRUE), /* pcrel_offset */
719
720 /* A general register or the value 0..255. If a value, then the
721 instruction (offset -3) needs adjusting. */
722 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
723 0, /* rightshift */
724 1, /* size (0 = byte, 1 = short, 2 = long) */
725 8, /* bitsize */
726 FALSE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_bitfield, /* complain_on_overflow */
729 mmix_elf_reloc, /* special_function */
730 "R_MMIX_REG_OR_BYTE", /* name */
731 FALSE, /* partial_inplace */
732 0, /* src_mask */
733 0xff, /* dst_mask */
734 FALSE), /* pcrel_offset */
735
736 /* A general register. */
737 HOWTO (R_MMIX_REG, /* type */
738 0, /* rightshift */
739 1, /* size (0 = byte, 1 = short, 2 = long) */
740 8, /* bitsize */
741 FALSE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield, /* complain_on_overflow */
744 mmix_elf_reloc, /* special_function */
745 "R_MMIX_REG", /* name */
746 FALSE, /* partial_inplace */
747 0, /* src_mask */
748 0xff, /* dst_mask */
749 FALSE), /* pcrel_offset */
750
751 /* A register plus an index, corresponding to the relocation expression.
752 The sizes must correspond to the valid range of the expression, while
753 the bitmasks correspond to what we store in the image. */
754 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
755 0, /* rightshift */
756 4, /* size (0 = byte, 1 = short, 2 = long) */
757 64, /* bitsize */
758 FALSE, /* pc_relative */
759 0, /* bitpos */
760 complain_overflow_bitfield, /* complain_on_overflow */
761 mmix_elf_reloc, /* special_function */
762 "R_MMIX_BASE_PLUS_OFFSET", /* name */
763 FALSE, /* partial_inplace */
764 0, /* src_mask */
765 0xffff, /* dst_mask */
766 FALSE), /* pcrel_offset */
767
768 /* A "magic" relocation for a LOCAL expression, asserting that the
769 expression is less than the number of global registers. No actual
770 modification of the contents is done. Implementing this as a
771 relocation was less intrusive than e.g. putting such expressions in a
772 section to discard *after* relocation. */
773 HOWTO (R_MMIX_LOCAL, /* type */
774 0, /* rightshift */
775 0, /* size (0 = byte, 1 = short, 2 = long) */
776 0, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 mmix_elf_reloc, /* special_function */
781 "R_MMIX_LOCAL", /* name */
782 FALSE, /* partial_inplace */
783 0, /* src_mask */
784 0, /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
788 2, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 19, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_signed, /* complain_on_overflow */
794 mmix_elf_reloc, /* special_function */
795 "R_MMIX_PUSHJ_STUBBABLE", /* name */
796 FALSE, /* partial_inplace */
797 ~0x0100ffff, /* src_mask */
798 0x0100ffff, /* dst_mask */
799 TRUE) /* pcrel_offset */
800 };
801
802
803 /* Map BFD reloc types to MMIX ELF reloc types. */
804
805 struct mmix_reloc_map
806 {
807 bfd_reloc_code_real_type bfd_reloc_val;
808 enum elf_mmix_reloc_type elf_reloc_val;
809 };
810
811
812 static const struct mmix_reloc_map mmix_reloc_map[] =
813 {
814 {BFD_RELOC_NONE, R_MMIX_NONE},
815 {BFD_RELOC_8, R_MMIX_8},
816 {BFD_RELOC_16, R_MMIX_16},
817 {BFD_RELOC_24, R_MMIX_24},
818 {BFD_RELOC_32, R_MMIX_32},
819 {BFD_RELOC_64, R_MMIX_64},
820 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
821 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
822 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
823 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
824 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
825 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
826 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
827 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
828 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
829 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
830 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
831 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
832 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
833 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
834 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
835 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
836 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
837 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
838 };
839
840 static reloc_howto_type *
841 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
842 bfd *abfd ATTRIBUTE_UNUSED;
843 bfd_reloc_code_real_type code;
844 {
845 unsigned int i;
846
847 for (i = 0;
848 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
849 i++)
850 {
851 if (mmix_reloc_map[i].bfd_reloc_val == code)
852 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
853 }
854
855 return NULL;
856 }
857
858 static bfd_boolean
859 mmix_elf_new_section_hook (abfd, sec)
860 bfd *abfd;
861 asection *sec;
862 {
863 struct _mmix_elf_section_data *sdata;
864 bfd_size_type amt = sizeof (*sdata);
865
866 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
867 if (sdata == NULL)
868 return FALSE;
869 sec->used_by_bfd = (PTR) sdata;
870
871 return _bfd_elf_new_section_hook (abfd, sec);
872 }
873
874
875 /* This function performs the actual bitfiddling and sanity check for a
876 final relocation. Each relocation gets its *worst*-case expansion
877 in size when it arrives here; any reduction in size should have been
878 caught in linker relaxation earlier. When we get here, the relocation
879 looks like the smallest instruction with SWYM:s (nop:s) appended to the
880 max size. We fill in those nop:s.
881
882 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
883 GETA $N,foo
884 ->
885 SETL $N,foo & 0xffff
886 INCML $N,(foo >> 16) & 0xffff
887 INCMH $N,(foo >> 32) & 0xffff
888 INCH $N,(foo >> 48) & 0xffff
889
890 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
891 condbranches needing relaxation might be rare enough to not be
892 worthwhile.)
893 [P]Bcc $N,foo
894 ->
895 [~P]B~cc $N,.+20
896 SETL $255,foo & ...
897 INCML ...
898 INCMH ...
899 INCH ...
900 GO $255,$255,0
901
902 R_MMIX_PUSHJ: (FIXME: Relaxation...)
903 PUSHJ $N,foo
904 ->
905 SETL $255,foo & ...
906 INCML ...
907 INCMH ...
908 INCH ...
909 PUSHGO $N,$255,0
910
911 R_MMIX_JMP: (FIXME: Relaxation...)
912 JMP foo
913 ->
914 SETL $255,foo & ...
915 INCML ...
916 INCMH ...
917 INCH ...
918 GO $255,$255,0
919
920 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
921
922 static bfd_reloc_status_type
923 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
924 asection *isec;
925 reloc_howto_type *howto;
926 PTR datap;
927 bfd_vma addr;
928 bfd_vma value;
929 {
930 bfd *abfd = isec->owner;
931 bfd_reloc_status_type flag = bfd_reloc_ok;
932 bfd_reloc_status_type r;
933 int offs = 0;
934 int reg = 255;
935
936 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
937 We handle the differences here and the common sequence later. */
938 switch (howto->type)
939 {
940 case R_MMIX_GETA:
941 offs = 0;
942 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
943
944 /* We change to an absolute value. */
945 value += addr;
946 break;
947
948 case R_MMIX_CBRANCH:
949 {
950 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
951
952 /* Invert the condition and prediction bit, and set the offset
953 to five instructions ahead.
954
955 We *can* do better if we want to. If the branch is found to be
956 within limits, we could leave the branch as is; there'll just
957 be a bunch of NOP:s after it. But we shouldn't see this
958 sequence often enough that it's worth doing it. */
959
960 bfd_put_32 (abfd,
961 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
962 | (24/4)),
963 (bfd_byte *) datap);
964
965 /* Put a "GO $255,$255,0" after the common sequence. */
966 bfd_put_32 (abfd,
967 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
968 (bfd_byte *) datap + 20);
969
970 /* Common sequence starts at offset 4. */
971 offs = 4;
972
973 /* We change to an absolute value. */
974 value += addr;
975 }
976 break;
977
978 case R_MMIX_PUSHJ_STUBBABLE:
979 /* If the address fits, we're fine. */
980 if ((value & 3) == 0
981 /* Note rightshift 0; see R_MMIX_JMP case below. */
982 && (r = bfd_check_overflow (complain_overflow_signed,
983 howto->bitsize,
984 0,
985 bfd_arch_bits_per_address (abfd),
986 value)) == bfd_reloc_ok)
987 goto pcrel_mmix_reloc_fits;
988 else
989 {
990 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
991
992 /* We have the bytes at the PUSHJ insn and need to get the
993 position for the stub. There's supposed to be room allocated
994 for the stub. */
995 bfd_byte *stubcontents
996 = ((bfd_byte *) datap
997 - (addr - (isec->output_section->vma + isec->output_offset))
998 + size
999 + mmix_elf_section_data (isec)->pjs.stub_offset);
1000 bfd_vma stubaddr;
1001
1002 /* The address doesn't fit, so redirect the PUSHJ to the
1003 location of the stub. */
1004 r = mmix_elf_perform_relocation (isec,
1005 &elf_mmix_howto_table
1006 [R_MMIX_ADDR19],
1007 datap,
1008 addr,
1009 isec->output_section->vma
1010 + isec->output_offset
1011 + size
1012 + (mmix_elf_section_data (isec)
1013 ->pjs.stub_offset)
1014 - addr);
1015 if (r != bfd_reloc_ok)
1016 return r;
1017
1018 stubaddr
1019 = (isec->output_section->vma
1020 + isec->output_offset
1021 + size
1022 + mmix_elf_section_data (isec)->pjs.stub_offset);
1023
1024 /* We generate a simple JMP if that suffices, else the whole 5
1025 insn stub. */
1026 if (bfd_check_overflow (complain_overflow_signed,
1027 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1028 0,
1029 bfd_arch_bits_per_address (abfd),
1030 addr + value - stubaddr) == bfd_reloc_ok)
1031 {
1032 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1033 r = mmix_elf_perform_relocation (isec,
1034 &elf_mmix_howto_table
1035 [R_MMIX_ADDR27],
1036 stubcontents,
1037 stubaddr,
1038 value + addr - stubaddr);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section
1151 = bpodata->bpo_greg_section;
1152 struct bpo_greg_section_info *gregdata
1153 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1154 size_t bpo_index
1155 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1156
1157 /* A consistency check: The value we now have in "relocation" must
1158 be the same as the value we stored for that relocation. It
1159 doesn't cost much, so can be left in at all times. */
1160 if (value != gregdata->reloc_request[bpo_index].value)
1161 {
1162 (*_bfd_error_handler)
1163 (_("%s: Internal inconsistency error for value for\n\
1164 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1165 bfd_get_filename (isec->owner),
1166 (unsigned long) (value >> 32), (unsigned long) value,
1167 (unsigned long) (gregdata->reloc_request[bpo_index].value
1168 >> 32),
1169 (unsigned long) gregdata->reloc_request[bpo_index].value);
1170 bfd_set_error (bfd_error_bad_value);
1171 return bfd_reloc_overflow;
1172 }
1173
1174 /* Then store the register number and offset for that register
1175 into datap and datap + 1 respectively. */
1176 bfd_put_8 (abfd,
1177 gregdata->reloc_request[bpo_index].regindex
1178 + bpo_greg_section->output_section->vma / 8,
1179 datap);
1180 bfd_put_8 (abfd,
1181 gregdata->reloc_request[bpo_index].offset,
1182 ((unsigned char *) datap) + 1);
1183 return bfd_reloc_ok;
1184 }
1185
1186 case R_MMIX_REG_OR_BYTE:
1187 case R_MMIX_REG:
1188 if (value > 255)
1189 return bfd_reloc_overflow;
1190 bfd_put_8 (abfd, value, datap);
1191 return bfd_reloc_ok;
1192
1193 default:
1194 BAD_CASE (howto->type);
1195 }
1196
1197 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1198 sequence. */
1199
1200 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1201 everything that looks strange. */
1202 if (value & 3)
1203 flag = bfd_reloc_overflow;
1204
1205 bfd_put_32 (abfd,
1206 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1207 (bfd_byte *) datap + offs);
1208 bfd_put_32 (abfd,
1209 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1210 (bfd_byte *) datap + offs + 4);
1211 bfd_put_32 (abfd,
1212 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1213 (bfd_byte *) datap + offs + 8);
1214 bfd_put_32 (abfd,
1215 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1216 (bfd_byte *) datap + offs + 12);
1217
1218 return flag;
1219 }
1220
1221 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1222
1223 static void
1224 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1225 bfd *abfd ATTRIBUTE_UNUSED;
1226 arelent *cache_ptr;
1227 Elf_Internal_Rela *dst;
1228 {
1229 unsigned int r_type;
1230
1231 r_type = ELF64_R_TYPE (dst->r_info);
1232 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1233 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1234 }
1235
1236 /* Any MMIX-specific relocation gets here at assembly time or when linking
1237 to other formats (such as mmo); this is the relocation function from
1238 the reloc_table. We don't get here for final pure ELF linking. */
1239
1240 static bfd_reloc_status_type
1241 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1242 output_bfd, error_message)
1243 bfd *abfd;
1244 arelent *reloc_entry;
1245 asymbol *symbol;
1246 PTR data;
1247 asection *input_section;
1248 bfd *output_bfd;
1249 char **error_message ATTRIBUTE_UNUSED;
1250 {
1251 bfd_vma relocation;
1252 bfd_reloc_status_type r;
1253 asection *reloc_target_output_section;
1254 bfd_reloc_status_type flag = bfd_reloc_ok;
1255 bfd_vma output_base = 0;
1256 bfd_vma addr;
1257
1258 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1259 input_section, output_bfd, error_message);
1260
1261 /* If that was all that was needed (i.e. this isn't a final link, only
1262 some segment adjustments), we're done. */
1263 if (r != bfd_reloc_continue)
1264 return r;
1265
1266 if (bfd_is_und_section (symbol->section)
1267 && (symbol->flags & BSF_WEAK) == 0
1268 && output_bfd == (bfd *) NULL)
1269 return bfd_reloc_undefined;
1270
1271 /* Is the address of the relocation really within the section? */
1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1273 return bfd_reloc_outofrange;
1274
1275 /* Work out which section the relocation is targeted at and the
1276 initial relocation command value. */
1277
1278 /* Get symbol value. (Common symbols are special.) */
1279 if (bfd_is_com_section (symbol->section))
1280 relocation = 0;
1281 else
1282 relocation = symbol->value;
1283
1284 reloc_target_output_section = bfd_get_output_section (symbol);
1285
1286 /* Here the variable relocation holds the final address of the symbol we
1287 are relocating against, plus any addend. */
1288 if (output_bfd)
1289 output_base = 0;
1290 else
1291 output_base = reloc_target_output_section->vma;
1292
1293 relocation += output_base + symbol->section->output_offset;
1294
1295 /* Get position of relocation. */
1296 addr = (reloc_entry->address + input_section->output_section->vma
1297 + input_section->output_offset);
1298 if (output_bfd != (bfd *) NULL)
1299 {
1300 /* Add in supplied addend. */
1301 relocation += reloc_entry->addend;
1302
1303 /* This is a partial relocation, and we want to apply the
1304 relocation to the reloc entry rather than the raw data.
1305 Modify the reloc inplace to reflect what we now know. */
1306 reloc_entry->addend = relocation;
1307 reloc_entry->address += input_section->output_offset;
1308 return flag;
1309 }
1310
1311 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1312 data, reloc_entry->address,
1313 reloc_entry->addend, relocation,
1314 bfd_asymbol_name (symbol),
1315 reloc_target_output_section);
1316 }
1317 \f
1318 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1319 for guidance if you're thinking of copying this. */
1320
1321 static bfd_boolean
1322 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1323 contents, relocs, local_syms, local_sections)
1324 bfd *output_bfd ATTRIBUTE_UNUSED;
1325 struct bfd_link_info *info;
1326 bfd *input_bfd;
1327 asection *input_section;
1328 bfd_byte *contents;
1329 Elf_Internal_Rela *relocs;
1330 Elf_Internal_Sym *local_syms;
1331 asection **local_sections;
1332 {
1333 Elf_Internal_Shdr *symtab_hdr;
1334 struct elf_link_hash_entry **sym_hashes;
1335 Elf_Internal_Rela *rel;
1336 Elf_Internal_Rela *relend;
1337 bfd_size_type size;
1338 size_t pjsno = 0;
1339
1340 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1341 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1342 sym_hashes = elf_sym_hashes (input_bfd);
1343 relend = relocs + input_section->reloc_count;
1344
1345 /* Zero the stub area before we start. */
1346 if (input_section->rawsize != 0
1347 && input_section->size > input_section->rawsize)
1348 memset (contents + input_section->rawsize, 0,
1349 input_section->size - input_section->rawsize);
1350
1351 for (rel = relocs; rel < relend; rel ++)
1352 {
1353 reloc_howto_type *howto;
1354 unsigned long r_symndx;
1355 Elf_Internal_Sym *sym;
1356 asection *sec;
1357 struct elf_link_hash_entry *h;
1358 bfd_vma relocation;
1359 bfd_reloc_status_type r;
1360 const char *name = NULL;
1361 int r_type;
1362 bfd_boolean undefined_signalled = FALSE;
1363
1364 r_type = ELF64_R_TYPE (rel->r_info);
1365
1366 if (r_type == R_MMIX_GNU_VTINHERIT
1367 || r_type == R_MMIX_GNU_VTENTRY)
1368 continue;
1369
1370 r_symndx = ELF64_R_SYM (rel->r_info);
1371
1372 if (info->relocatable)
1373 {
1374 /* This is a relocatable link. For most relocs we don't have to
1375 change anything, unless the reloc is against a section
1376 symbol, in which case we have to adjust according to where
1377 the section symbol winds up in the output section. */
1378 if (r_symndx < symtab_hdr->sh_info)
1379 {
1380 sym = local_syms + r_symndx;
1381
1382 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1383 {
1384 sec = local_sections [r_symndx];
1385 rel->r_addend += sec->output_offset + sym->st_value;
1386 }
1387 }
1388
1389 /* For PUSHJ stub relocs however, we may need to change the
1390 reloc and the section contents, if the reloc doesn't reach
1391 beyond the end of the output section and previous stubs.
1392 Then we change the section contents to be a PUSHJ to the end
1393 of the input section plus stubs (we can do that without using
1394 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1395 at the stub location. */
1396 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1397 {
1398 /* We've already checked whether we need a stub; use that
1399 knowledge. */
1400 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1401 != 0)
1402 {
1403 Elf_Internal_Rela relcpy;
1404
1405 if (mmix_elf_section_data (input_section)
1406 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1407 abort ();
1408
1409 /* There's already a PUSHJ insn there, so just fill in
1410 the offset bits to the stub. */
1411 if (mmix_final_link_relocate (elf_mmix_howto_table
1412 + R_MMIX_ADDR19,
1413 input_section,
1414 contents,
1415 rel->r_offset,
1416 0,
1417 input_section
1418 ->output_section->vma
1419 + input_section->output_offset
1420 + size
1421 + mmix_elf_section_data (input_section)
1422 ->pjs.stub_offset,
1423 NULL, NULL) != bfd_reloc_ok)
1424 return FALSE;
1425
1426 /* Put a JMP insn at the stub; it goes with the
1427 R_MMIX_JMP reloc. */
1428 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1429 contents
1430 + size
1431 + mmix_elf_section_data (input_section)
1432 ->pjs.stub_offset);
1433
1434 /* Change the reloc to be at the stub, and to a full
1435 R_MMIX_JMP reloc. */
1436 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1437 rel->r_offset
1438 = (size
1439 + mmix_elf_section_data (input_section)
1440 ->pjs.stub_offset);
1441
1442 mmix_elf_section_data (input_section)->pjs.stub_offset
1443 += MAX_PUSHJ_STUB_SIZE;
1444
1445 /* Shift this reloc to the end of the relocs to maintain
1446 the r_offset sorted reloc order. */
1447 relcpy = *rel;
1448 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1449 relend[-1] = relcpy;
1450
1451 /* Back up one reloc, or else we'd skip the next reloc
1452 in turn. */
1453 rel--;
1454 }
1455
1456 pjsno++;
1457 }
1458 continue;
1459 }
1460
1461 /* This is a final link. */
1462 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1463 h = NULL;
1464 sym = NULL;
1465 sec = NULL;
1466
1467 if (r_symndx < symtab_hdr->sh_info)
1468 {
1469 sym = local_syms + r_symndx;
1470 sec = local_sections [r_symndx];
1471 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1472
1473 name = bfd_elf_string_from_elf_section (input_bfd,
1474 symtab_hdr->sh_link,
1475 sym->st_name);
1476 if (name == NULL)
1477 name = bfd_section_name (input_bfd, sec);
1478 }
1479 else
1480 {
1481 bfd_boolean unresolved_reloc;
1482
1483 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1484 r_symndx, symtab_hdr, sym_hashes,
1485 h, sec, relocation,
1486 unresolved_reloc, undefined_signalled);
1487 name = h->root.root.string;
1488 }
1489
1490 r = mmix_final_link_relocate (howto, input_section,
1491 contents, rel->r_offset,
1492 rel->r_addend, relocation, name, sec);
1493
1494 if (r != bfd_reloc_ok)
1495 {
1496 bfd_boolean check_ok = TRUE;
1497 const char * msg = (const char *) NULL;
1498
1499 switch (r)
1500 {
1501 case bfd_reloc_overflow:
1502 check_ok = info->callbacks->reloc_overflow
1503 (info, (h ? &h->root : NULL), name, howto->name,
1504 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1505 break;
1506
1507 case bfd_reloc_undefined:
1508 /* We may have sent this message above. */
1509 if (! undefined_signalled)
1510 check_ok = info->callbacks->undefined_symbol
1511 (info, name, input_bfd, input_section, rel->r_offset,
1512 TRUE);
1513 undefined_signalled = TRUE;
1514 break;
1515
1516 case bfd_reloc_outofrange:
1517 msg = _("internal error: out of range error");
1518 break;
1519
1520 case bfd_reloc_notsupported:
1521 msg = _("internal error: unsupported relocation error");
1522 break;
1523
1524 case bfd_reloc_dangerous:
1525 msg = _("internal error: dangerous relocation");
1526 break;
1527
1528 default:
1529 msg = _("internal error: unknown error");
1530 break;
1531 }
1532
1533 if (msg)
1534 check_ok = info->callbacks->warning
1535 (info, msg, name, input_bfd, input_section, rel->r_offset);
1536
1537 if (! check_ok)
1538 return FALSE;
1539 }
1540 }
1541
1542 return TRUE;
1543 }
1544 \f
1545 /* Perform a single relocation. By default we use the standard BFD
1546 routines. A few relocs we have to do ourselves. */
1547
1548 static bfd_reloc_status_type
1549 mmix_final_link_relocate (howto, input_section, contents,
1550 r_offset, r_addend, relocation, symname, symsec)
1551 reloc_howto_type *howto;
1552 asection *input_section;
1553 bfd_byte *contents;
1554 bfd_vma r_offset;
1555 bfd_signed_vma r_addend;
1556 bfd_vma relocation;
1557 const char *symname;
1558 asection *symsec;
1559 {
1560 bfd_reloc_status_type r = bfd_reloc_ok;
1561 bfd_vma addr
1562 = (input_section->output_section->vma
1563 + input_section->output_offset
1564 + r_offset);
1565 bfd_signed_vma srel
1566 = (bfd_signed_vma) relocation + r_addend;
1567
1568 switch (howto->type)
1569 {
1570 /* All these are PC-relative. */
1571 case R_MMIX_PUSHJ_STUBBABLE:
1572 case R_MMIX_PUSHJ:
1573 case R_MMIX_CBRANCH:
1574 case R_MMIX_ADDR19:
1575 case R_MMIX_GETA:
1576 case R_MMIX_ADDR27:
1577 case R_MMIX_JMP:
1578 contents += r_offset;
1579
1580 srel -= (input_section->output_section->vma
1581 + input_section->output_offset
1582 + r_offset);
1583
1584 r = mmix_elf_perform_relocation (input_section, howto, contents,
1585 addr, srel);
1586 break;
1587
1588 case R_MMIX_BASE_PLUS_OFFSET:
1589 if (symsec == NULL)
1590 return bfd_reloc_undefined;
1591
1592 /* Check that we're not relocating against a register symbol. */
1593 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1594 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1595 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1596 MMIX_REG_SECTION_NAME) == 0)
1597 {
1598 /* Note: This is separated out into two messages in order
1599 to ease the translation into other languages. */
1600 if (symname == NULL || *symname == 0)
1601 (*_bfd_error_handler)
1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 bfd_get_filename (input_section->owner),
1604 bfd_get_section_name (symsec->owner, symsec));
1605 else
1606 (*_bfd_error_handler)
1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 bfd_get_filename (input_section->owner), symname,
1609 bfd_get_section_name (symsec->owner, symsec));
1610 return bfd_reloc_overflow;
1611 }
1612 goto do_mmix_reloc;
1613
1614 case R_MMIX_REG_OR_BYTE:
1615 case R_MMIX_REG:
1616 /* For now, we handle these alike. They must refer to an register
1617 symbol, which is either relative to the register section and in
1618 the range 0..255, or is in the register contents section with vma
1619 regno * 8. */
1620
1621 /* FIXME: A better way to check for reg contents section?
1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1623 if (symsec == NULL)
1624 return bfd_reloc_undefined;
1625
1626 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1627 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1628 {
1629 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1630 {
1631 /* The bfd_reloc_outofrange return value, though intuitively
1632 a better value, will not get us an error. */
1633 return bfd_reloc_overflow;
1634 }
1635 srel /= 8;
1636 }
1637 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1638 MMIX_REG_SECTION_NAME) == 0)
1639 {
1640 if (srel < 0 || srel > 255)
1641 /* The bfd_reloc_outofrange return value, though intuitively a
1642 better value, will not get us an error. */
1643 return bfd_reloc_overflow;
1644 }
1645 else
1646 {
1647 /* Note: This is separated out into two messages in order
1648 to ease the translation into other languages. */
1649 if (symname == NULL || *symname == 0)
1650 (*_bfd_error_handler)
1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 bfd_get_filename (input_section->owner),
1653 bfd_get_section_name (symsec->owner, symsec));
1654 else
1655 (*_bfd_error_handler)
1656 (_("%s: register relocation against non-register symbol: %s in %s"),
1657 bfd_get_filename (input_section->owner), symname,
1658 bfd_get_section_name (symsec->owner, symsec));
1659
1660 /* The bfd_reloc_outofrange return value, though intuitively a
1661 better value, will not get us an error. */
1662 return bfd_reloc_overflow;
1663 }
1664 do_mmix_reloc:
1665 contents += r_offset;
1666 r = mmix_elf_perform_relocation (input_section, howto, contents,
1667 addr, srel);
1668 break;
1669
1670 case R_MMIX_LOCAL:
1671 /* This isn't a real relocation, it's just an assertion that the
1672 final relocation value corresponds to a local register. We
1673 ignore the actual relocation; nothing is changed. */
1674 {
1675 asection *regsec
1676 = bfd_get_section_by_name (input_section->output_section->owner,
1677 MMIX_REG_CONTENTS_SECTION_NAME);
1678 bfd_vma first_global;
1679
1680 /* Check that this is an absolute value, or a reference to the
1681 register contents section or the register (symbol) section.
1682 Absolute numbers can get here as undefined section. Undefined
1683 symbols are signalled elsewhere, so there's no conflict in us
1684 accidentally handling it. */
1685 if (!bfd_is_abs_section (symsec)
1686 && !bfd_is_und_section (symsec)
1687 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1688 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1689 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1690 MMIX_REG_SECTION_NAME) != 0)
1691 {
1692 (*_bfd_error_handler)
1693 (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 bfd_get_filename (input_section->owner));
1695
1696 return bfd_reloc_overflow;
1697 }
1698
1699 /* If we don't have a register contents section, then $255 is the
1700 first global register. */
1701 if (regsec == NULL)
1702 first_global = 255;
1703 else
1704 {
1705 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1706 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1708 {
1709 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1710 /* The bfd_reloc_outofrange return value, though
1711 intuitively a better value, will not get us an error. */
1712 return bfd_reloc_overflow;
1713 srel /= 8;
1714 }
1715 }
1716
1717 if ((bfd_vma) srel >= first_global)
1718 {
1719 /* FIXME: Better error message. */
1720 (*_bfd_error_handler)
1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1722 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1723
1724 return bfd_reloc_overflow;
1725 }
1726 }
1727 r = bfd_reloc_ok;
1728 break;
1729
1730 default:
1731 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1732 contents, r_offset,
1733 relocation, r_addend);
1734 }
1735
1736 return r;
1737 }
1738 \f
1739 /* Return the section that should be marked against GC for a given
1740 relocation. */
1741
1742 static asection *
1743 mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1744 asection *sec;
1745 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1746 Elf_Internal_Rela *rel;
1747 struct elf_link_hash_entry *h;
1748 Elf_Internal_Sym *sym;
1749 {
1750 if (h != NULL)
1751 {
1752 switch (ELF64_R_TYPE (rel->r_info))
1753 {
1754 case R_MMIX_GNU_VTINHERIT:
1755 case R_MMIX_GNU_VTENTRY:
1756 break;
1757
1758 default:
1759 switch (h->root.type)
1760 {
1761 case bfd_link_hash_defined:
1762 case bfd_link_hash_defweak:
1763 return h->root.u.def.section;
1764
1765 case bfd_link_hash_common:
1766 return h->root.u.c.p->section;
1767
1768 default:
1769 break;
1770 }
1771 }
1772 }
1773 else
1774 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1775
1776 return NULL;
1777 }
1778
1779 /* Update relocation info for a GC-excluded section. We could supposedly
1780 perform the allocation after GC, but there's no suitable hook between
1781 GC (or section merge) and the point when all input sections must be
1782 present. Better to waste some memory and (perhaps) a little time. */
1783
1784 static bfd_boolean
1785 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1786 bfd *abfd ATTRIBUTE_UNUSED;
1787 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1788 asection *sec ATTRIBUTE_UNUSED;
1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1790 {
1791 struct bpo_reloc_section_info *bpodata
1792 = mmix_elf_section_data (sec)->bpo.reloc;
1793 asection *allocated_gregs_section;
1794
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata == NULL)
1797 return TRUE;
1798
1799 allocated_gregs_section = bpodata->bpo_greg_section;
1800
1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1802 -= bpodata->n_bpo_relocs_this_section;
1803
1804 return TRUE;
1805 }
1806 \f
1807 /* Sort register relocs to come before expanding relocs. */
1808
1809 static int
1810 mmix_elf_sort_relocs (p1, p2)
1811 const PTR p1;
1812 const PTR p2;
1813 {
1814 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1815 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1816 int r1_is_reg, r2_is_reg;
1817
1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1819 insns. */
1820 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1821 return 1;
1822 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1823 return -1;
1824
1825 r1_is_reg
1826 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1827 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1828 r2_is_reg
1829 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1830 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1831 if (r1_is_reg != r2_is_reg)
1832 return r2_is_reg - r1_is_reg;
1833
1834 /* Neither or both are register relocs. Then sort on full offset. */
1835 if (r1->r_offset > r2->r_offset)
1836 return 1;
1837 else if (r1->r_offset < r2->r_offset)
1838 return -1;
1839 return 0;
1840 }
1841
1842 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1843
1844 static bfd_boolean
1845 mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848 asection *sec;
1849 const Elf_Internal_Rela *relocs;
1850 {
1851 bfd *bpo_greg_owner = NULL;
1852 asection *allocated_gregs_section = NULL;
1853 struct bpo_greg_section_info *gregdata = NULL;
1854 struct bpo_reloc_section_info *bpodata = NULL;
1855 const Elf_Internal_Rela *rel;
1856 const Elf_Internal_Rela *rel_end;
1857
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner = (bfd *) info->base_file;
1863
1864 rel_end = relocs + sec->reloc_count;
1865 for (rel = relocs; rel < rel_end; rel++)
1866 {
1867 switch (ELF64_R_TYPE (rel->r_info))
1868 {
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET:
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (info->relocatable)
1877 break;
1878
1879 if (bpo_greg_owner == NULL)
1880 {
1881 bpo_greg_owner = abfd;
1882 info->base_file = (PTR) bpo_greg_owner;
1883 }
1884
1885 if (allocated_gregs_section == NULL)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889
1890 if (allocated_gregs_section == NULL)
1891 {
1892 allocated_gregs_section
1893 = bfd_make_section (bpo_greg_owner,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1896 treated like any other section, and we'd get errors for
1897 address overlap with the text section. Let's set none of
1898 those flags, as that is what currently happens for usual
1899 GREG allocations, and that works. */
1900 if (allocated_gregs_section == NULL
1901 || !bfd_set_section_flags (bpo_greg_owner,
1902 allocated_gregs_section,
1903 (SEC_HAS_CONTENTS
1904 | SEC_IN_MEMORY
1905 | SEC_LINKER_CREATED))
1906 || !bfd_set_section_alignment (bpo_greg_owner,
1907 allocated_gregs_section,
1908 3))
1909 return FALSE;
1910
1911 gregdata = (struct bpo_greg_section_info *)
1912 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1913 if (gregdata == NULL)
1914 return FALSE;
1915 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1916 = gregdata;
1917 }
1918 else if (gregdata == NULL)
1919 gregdata
1920 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1921
1922 /* Get ourselves some auxiliary info for the BPO-relocs. */
1923 if (bpodata == NULL)
1924 {
1925 /* No use doing a separate iteration pass to find the upper
1926 limit - just use the number of relocs. */
1927 bpodata = (struct bpo_reloc_section_info *)
1928 bfd_alloc (bpo_greg_owner,
1929 sizeof (struct bpo_reloc_section_info)
1930 * (sec->reloc_count + 1));
1931 if (bpodata == NULL)
1932 return FALSE;
1933 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1934 bpodata->first_base_plus_offset_reloc
1935 = bpodata->bpo_index
1936 = gregdata->n_max_bpo_relocs;
1937 bpodata->bpo_greg_section
1938 = allocated_gregs_section;
1939 bpodata->n_bpo_relocs_this_section = 0;
1940 }
1941
1942 bpodata->n_bpo_relocs_this_section++;
1943 gregdata->n_max_bpo_relocs++;
1944
1945 /* We don't get another chance to set this before GC; we've not
1946 set up any hook that runs before GC. */
1947 gregdata->n_bpo_relocs
1948 = gregdata->n_max_bpo_relocs;
1949 break;
1950
1951 case R_MMIX_PUSHJ_STUBBABLE:
1952 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1953 break;
1954 }
1955 }
1956
1957 /* Allocate per-reloc stub storage and initialize it to the max stub
1958 size. */
1959 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1960 {
1961 size_t i;
1962
1963 mmix_elf_section_data (sec)->pjs.stub_size
1964 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1965 * sizeof (mmix_elf_section_data (sec)
1966 ->pjs.stub_size[0]));
1967 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1968 return FALSE;
1969
1970 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1971 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1972 }
1973
1974 return TRUE;
1975 }
1976
1977 /* Look through the relocs for a section during the first phase. */
1978
1979 static bfd_boolean
1980 mmix_elf_check_relocs (abfd, info, sec, relocs)
1981 bfd *abfd;
1982 struct bfd_link_info *info;
1983 asection *sec;
1984 const Elf_Internal_Rela *relocs;
1985 {
1986 Elf_Internal_Shdr *symtab_hdr;
1987 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1988 const Elf_Internal_Rela *rel;
1989 const Elf_Internal_Rela *rel_end;
1990
1991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1992 sym_hashes = elf_sym_hashes (abfd);
1993 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1994 if (!elf_bad_symtab (abfd))
1995 sym_hashes_end -= symtab_hdr->sh_info;
1996
1997 /* First we sort the relocs so that any register relocs come before
1998 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1999 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2000 mmix_elf_sort_relocs);
2001
2002 /* Do the common part. */
2003 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2004 return FALSE;
2005
2006 if (info->relocatable)
2007 return TRUE;
2008
2009 rel_end = relocs + sec->reloc_count;
2010 for (rel = relocs; rel < rel_end; rel++)
2011 {
2012 struct elf_link_hash_entry *h;
2013 unsigned long r_symndx;
2014
2015 r_symndx = ELF64_R_SYM (rel->r_info);
2016 if (r_symndx < symtab_hdr->sh_info)
2017 h = NULL;
2018 else
2019 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2020
2021 switch (ELF64_R_TYPE (rel->r_info))
2022 {
2023 /* This relocation describes the C++ object vtable hierarchy.
2024 Reconstruct it for later use during GC. */
2025 case R_MMIX_GNU_VTINHERIT:
2026 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2027 return FALSE;
2028 break;
2029
2030 /* This relocation describes which C++ vtable entries are actually
2031 used. Record for later use during GC. */
2032 case R_MMIX_GNU_VTENTRY:
2033 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2034 return FALSE;
2035 break;
2036 }
2037 }
2038
2039 return TRUE;
2040 }
2041
2042 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2043 Copied from elf_link_add_object_symbols. */
2044
2045 bfd_boolean
2046 _bfd_mmix_check_all_relocs (abfd, info)
2047 bfd *abfd;
2048 struct bfd_link_info *info;
2049 {
2050 asection *o;
2051
2052 for (o = abfd->sections; o != NULL; o = o->next)
2053 {
2054 Elf_Internal_Rela *internal_relocs;
2055 bfd_boolean ok;
2056
2057 if ((o->flags & SEC_RELOC) == 0
2058 || o->reloc_count == 0
2059 || ((info->strip == strip_all || info->strip == strip_debugger)
2060 && (o->flags & SEC_DEBUGGING) != 0)
2061 || bfd_is_abs_section (o->output_section))
2062 continue;
2063
2064 internal_relocs
2065 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2066 (Elf_Internal_Rela *) NULL,
2067 info->keep_memory);
2068 if (internal_relocs == NULL)
2069 return FALSE;
2070
2071 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2072
2073 if (! info->keep_memory)
2074 free (internal_relocs);
2075
2076 if (! ok)
2077 return FALSE;
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Change symbols relative to the reg contents section to instead be to
2084 the register section, and scale them down to correspond to the register
2085 number. */
2086
2087 static bfd_boolean
2088 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2089 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2090 const char *name ATTRIBUTE_UNUSED;
2091 Elf_Internal_Sym *sym;
2092 asection *input_sec;
2093 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2094 {
2095 if (input_sec != NULL
2096 && input_sec->name != NULL
2097 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2098 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2099 {
2100 sym->st_value /= 8;
2101 sym->st_shndx = SHN_REGISTER;
2102 }
2103
2104 return TRUE;
2105 }
2106
2107 /* We fake a register section that holds values that are register numbers.
2108 Having a SHN_REGISTER and register section translates better to other
2109 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2110 This section faking is based on a construct in elf32-mips.c. */
2111 static asection mmix_elf_reg_section;
2112 static asymbol mmix_elf_reg_section_symbol;
2113 static asymbol *mmix_elf_reg_section_symbol_ptr;
2114
2115 /* Handle the special section numbers that a symbol may use. */
2116
2117 void
2118 mmix_elf_symbol_processing (abfd, asym)
2119 bfd *abfd ATTRIBUTE_UNUSED;
2120 asymbol *asym;
2121 {
2122 elf_symbol_type *elfsym;
2123
2124 elfsym = (elf_symbol_type *) asym;
2125 switch (elfsym->internal_elf_sym.st_shndx)
2126 {
2127 case SHN_REGISTER:
2128 if (mmix_elf_reg_section.name == NULL)
2129 {
2130 /* Initialize the register section. */
2131 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2132 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2133 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2134 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2135 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2136 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2137 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2138 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2139 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2140 }
2141 asym->section = &mmix_elf_reg_section;
2142 break;
2143
2144 default:
2145 break;
2146 }
2147 }
2148
2149 /* Given a BFD section, try to locate the corresponding ELF section
2150 index. */
2151
2152 static bfd_boolean
2153 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2154 bfd * abfd ATTRIBUTE_UNUSED;
2155 asection * sec;
2156 int * retval;
2157 {
2158 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2159 *retval = SHN_REGISTER;
2160 else
2161 return FALSE;
2162
2163 return TRUE;
2164 }
2165
2166 /* Hook called by the linker routine which adds symbols from an object
2167 file. We must handle the special SHN_REGISTER section number here.
2168
2169 We also check that we only have *one* each of the section-start
2170 symbols, since otherwise having two with the same value would cause
2171 them to be "merged", but with the contents serialized. */
2172
2173 bfd_boolean
2174 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2175 bfd *abfd;
2176 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2177 Elf_Internal_Sym *sym;
2178 const char **namep ATTRIBUTE_UNUSED;
2179 flagword *flagsp ATTRIBUTE_UNUSED;
2180 asection **secp;
2181 bfd_vma *valp ATTRIBUTE_UNUSED;
2182 {
2183 if (sym->st_shndx == SHN_REGISTER)
2184 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2185 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2186 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2187 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2188 {
2189 /* See if we have another one. */
2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2191 *namep,
2192 FALSE,
2193 FALSE,
2194 FALSE);
2195
2196 if (h != NULL && h->type != bfd_link_hash_undefined)
2197 {
2198 /* How do we get the asymbol (or really: the filename) from h?
2199 h->u.def.section->owner is NULL. */
2200 ((*_bfd_error_handler)
2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2202 bfd_get_filename (abfd), *namep,
2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2204 bfd_set_error (bfd_error_bad_value);
2205 return FALSE;
2206 }
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2213
2214 bfd_boolean
2215 mmix_elf_is_local_label_name (abfd, name)
2216 bfd *abfd;
2217 const char *name;
2218 {
2219 const char *colpos;
2220 int digits;
2221
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd, name))
2224 return TRUE;
2225
2226 if (*name != 'L')
2227 return FALSE;
2228
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos = strchr (name, ':');
2231 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2232 return FALSE;
2233
2234 /* Check that there are remaining characters and that they are digits. */
2235 if (colpos[1] == 0)
2236 return FALSE;
2237
2238 digits = strspn (colpos + 1, "0123456789");
2239 return digits != 0 && colpos[1 + digits] == 0;
2240 }
2241
2242 /* We get rid of the register section here. */
2243
2244 bfd_boolean
2245 mmix_elf_final_link (abfd, info)
2246 bfd *abfd;
2247 struct bfd_link_info *info;
2248 {
2249 /* We never output a register section, though we create one for
2250 temporary measures. Check that nobody entered contents into it. */
2251 asection *reg_section;
2252
2253 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2254
2255 if (reg_section != NULL)
2256 {
2257 /* FIXME: Pass error state gracefully. */
2258 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2259 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2260
2261 /* Really remove the section. */
2262 bfd_section_list_remove (abfd, reg_section);
2263 --abfd->section_count;
2264 }
2265
2266 if (! bfd_elf_final_link (abfd, info))
2267 return FALSE;
2268
2269 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2270 the regular linker machinery. We do it here, like other targets with
2271 special sections. */
2272 if (info->base_file != NULL)
2273 {
2274 asection *greg_section
2275 = bfd_get_section_by_name ((bfd *) info->base_file,
2276 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2277 if (!bfd_set_section_contents (abfd,
2278 greg_section->output_section,
2279 greg_section->contents,
2280 (file_ptr) greg_section->output_offset,
2281 greg_section->size))
2282 return FALSE;
2283 }
2284 return TRUE;
2285 }
2286
2287 /* We need to include the maximum size of PUSHJ-stubs in the initial
2288 section size. This is expected to shrink during linker relaxation. */
2289
2290 static void
2291 mmix_set_relaxable_size (abfd, sec, ptr)
2292 bfd *abfd ATTRIBUTE_UNUSED;
2293 asection *sec;
2294 void *ptr;
2295 {
2296 struct bfd_link_info *info = ptr;
2297
2298 /* Make sure we only do this for section where we know we want this,
2299 otherwise we might end up resetting the size of COMMONs. */
2300 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2301 return;
2302
2303 sec->rawsize = sec->size;
2304 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2305 * MAX_PUSHJ_STUB_SIZE);
2306
2307 /* For use in relocatable link, we start with a max stubs size. See
2308 mmix_elf_relax_section. */
2309 if (info->relocatable && sec->output_section)
2310 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2311 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2312 * MAX_PUSHJ_STUB_SIZE);
2313 }
2314
2315 /* Initialize stuff for the linker-generated GREGs to match
2316 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2317
2318 bfd_boolean
2319 _bfd_mmix_before_linker_allocation (abfd, info)
2320 bfd *abfd ATTRIBUTE_UNUSED;
2321 struct bfd_link_info *info;
2322 {
2323 asection *bpo_gregs_section;
2324 bfd *bpo_greg_owner;
2325 struct bpo_greg_section_info *gregdata;
2326 size_t n_gregs;
2327 bfd_vma gregs_size;
2328 size_t i;
2329 size_t *bpo_reloc_indexes;
2330 bfd *ibfd;
2331
2332 /* Set the initial size of sections. */
2333 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2334 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2335
2336 /* The bpo_greg_owner bfd is supposed to have been set by
2337 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2338 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2339 bpo_greg_owner = (bfd *) info->base_file;
2340 if (bpo_greg_owner == NULL)
2341 return TRUE;
2342
2343 bpo_gregs_section
2344 = bfd_get_section_by_name (bpo_greg_owner,
2345 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2346
2347 if (bpo_gregs_section == NULL)
2348 return TRUE;
2349
2350 /* We use the target-data handle in the ELF section data. */
2351 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2352 if (gregdata == NULL)
2353 return FALSE;
2354
2355 n_gregs = gregdata->n_bpo_relocs;
2356 gregdata->n_allocated_bpo_gregs = n_gregs;
2357
2358 /* When this reaches zero during relaxation, all entries have been
2359 filled in and the size of the linker gregs can be calculated. */
2360 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2361
2362 /* Set the zeroth-order estimate for the GREGs size. */
2363 gregs_size = n_gregs * 8;
2364
2365 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2366 return FALSE;
2367
2368 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2369 time. Note that we must use the max number ever noted for the array,
2370 since the index numbers were created before GC. */
2371 gregdata->reloc_request
2372 = bfd_zalloc (bpo_greg_owner,
2373 sizeof (struct bpo_reloc_request)
2374 * gregdata->n_max_bpo_relocs);
2375
2376 gregdata->bpo_reloc_indexes
2377 = bpo_reloc_indexes
2378 = bfd_alloc (bpo_greg_owner,
2379 gregdata->n_max_bpo_relocs
2380 * sizeof (size_t));
2381 if (bpo_reloc_indexes == NULL)
2382 return FALSE;
2383
2384 /* The default order is an identity mapping. */
2385 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2386 {
2387 bpo_reloc_indexes[i] = i;
2388 gregdata->reloc_request[i].bpo_reloc_no = i;
2389 }
2390
2391 return TRUE;
2392 }
2393 \f
2394 /* Fill in contents in the linker allocated gregs. Everything is
2395 calculated at this point; we just move the contents into place here. */
2396
2397 bfd_boolean
2398 _bfd_mmix_after_linker_allocation (abfd, link_info)
2399 bfd *abfd ATTRIBUTE_UNUSED;
2400 struct bfd_link_info *link_info;
2401 {
2402 asection *bpo_gregs_section;
2403 bfd *bpo_greg_owner;
2404 struct bpo_greg_section_info *gregdata;
2405 size_t n_gregs;
2406 size_t i, j;
2407 size_t lastreg;
2408 bfd_byte *contents;
2409
2410 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2411 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2412 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2413 bpo_greg_owner = (bfd *) link_info->base_file;
2414 if (bpo_greg_owner == NULL)
2415 return TRUE;
2416
2417 bpo_gregs_section
2418 = bfd_get_section_by_name (bpo_greg_owner,
2419 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2420
2421 /* This can't happen without DSO handling. When DSOs are handled
2422 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2423 section. */
2424 if (bpo_gregs_section == NULL)
2425 return TRUE;
2426
2427 /* We use the target-data handle in the ELF section data. */
2428
2429 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2430 if (gregdata == NULL)
2431 return FALSE;
2432
2433 n_gregs = gregdata->n_allocated_bpo_gregs;
2434
2435 bpo_gregs_section->contents
2436 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2437 if (contents == NULL)
2438 return FALSE;
2439
2440 /* Sanity check: If these numbers mismatch, some relocation has not been
2441 accounted for and the rest of gregdata is probably inconsistent.
2442 It's a bug, but it's more helpful to identify it than segfaulting
2443 below. */
2444 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2445 != gregdata->n_bpo_relocs)
2446 {
2447 (*_bfd_error_handler)
2448 (_("Internal inconsistency: remaining %u != max %u.\n\
2449 Please report this bug."),
2450 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2451 gregdata->n_bpo_relocs);
2452 return FALSE;
2453 }
2454
2455 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2456 if (gregdata->reloc_request[i].regindex != lastreg)
2457 {
2458 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2459 contents + j * 8);
2460 lastreg = gregdata->reloc_request[i].regindex;
2461 j++;
2462 }
2463
2464 return TRUE;
2465 }
2466
2467 /* Sort valid relocs to come before non-valid relocs, then on increasing
2468 value. */
2469
2470 static int
2471 bpo_reloc_request_sort_fn (p1, p2)
2472 const PTR p1;
2473 const PTR p2;
2474 {
2475 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2476 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2477
2478 /* Primary function is validity; non-valid relocs sorted after valid
2479 ones. */
2480 if (r1->valid != r2->valid)
2481 return r2->valid - r1->valid;
2482
2483 /* Then sort on value. Don't simplify and return just the difference of
2484 the values: the upper bits of the 64-bit value would be truncated on
2485 a host with 32-bit ints. */
2486 if (r1->value != r2->value)
2487 return r1->value > r2->value ? 1 : -1;
2488
2489 /* As a last re-sort, use the relocation number, so we get a stable
2490 sort. The *addresses* aren't stable since items are swapped during
2491 sorting. It depends on the qsort implementation if this actually
2492 happens. */
2493 return r1->bpo_reloc_no > r2->bpo_reloc_no
2494 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2495 }
2496
2497 /* For debug use only. Dumps the global register allocations resulting
2498 from base-plus-offset relocs. */
2499
2500 void
2501 mmix_dump_bpo_gregs (link_info, pf)
2502 struct bfd_link_info *link_info;
2503 bfd_error_handler_type pf;
2504 {
2505 bfd *bpo_greg_owner;
2506 asection *bpo_gregs_section;
2507 struct bpo_greg_section_info *gregdata;
2508 unsigned int i;
2509
2510 if (link_info == NULL || link_info->base_file == NULL)
2511 return;
2512
2513 bpo_greg_owner = (bfd *) link_info->base_file;
2514
2515 bpo_gregs_section
2516 = bfd_get_section_by_name (bpo_greg_owner,
2517 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2518
2519 if (bpo_gregs_section == NULL)
2520 return;
2521
2522 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2523 if (gregdata == NULL)
2524 return;
2525
2526 if (pf == NULL)
2527 pf = _bfd_error_handler;
2528
2529 /* These format strings are not translated. They are for debug purposes
2530 only and never displayed to an end user. Should they escape, we
2531 surely want them in original. */
2532 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2533 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2534 gregdata->n_max_bpo_relocs,
2535 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2536 gregdata->n_allocated_bpo_gregs);
2537
2538 if (gregdata->reloc_request)
2539 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2540 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2541 i,
2542 (gregdata->bpo_reloc_indexes != NULL
2543 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2544 gregdata->reloc_request[i].bpo_reloc_no,
2545 gregdata->reloc_request[i].valid,
2546
2547 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2548 (unsigned long) gregdata->reloc_request[i].value,
2549 gregdata->reloc_request[i].regindex,
2550 gregdata->reloc_request[i].offset);
2551 }
2552
2553 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2554 when the last such reloc is done, an index-array is sorted according to
2555 the values and iterated over to produce register numbers (indexed by 0
2556 from the first allocated register number) and offsets for use in real
2557 relocation.
2558
2559 PUSHJ stub accounting is also done here.
2560
2561 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2562
2563 static bfd_boolean
2564 mmix_elf_relax_section (abfd, sec, link_info, again)
2565 bfd *abfd;
2566 asection *sec;
2567 struct bfd_link_info *link_info;
2568 bfd_boolean *again;
2569 {
2570 Elf_Internal_Shdr *symtab_hdr;
2571 Elf_Internal_Rela *internal_relocs;
2572 Elf_Internal_Rela *irel, *irelend;
2573 asection *bpo_gregs_section = NULL;
2574 struct bpo_greg_section_info *gregdata;
2575 struct bpo_reloc_section_info *bpodata
2576 = mmix_elf_section_data (sec)->bpo.reloc;
2577 /* The initialization is to quiet compiler warnings. The value is to
2578 spot a missing actual initialization. */
2579 size_t bpono = (size_t) -1;
2580 size_t pjsno = 0;
2581 bfd *bpo_greg_owner;
2582 Elf_Internal_Sym *isymbuf = NULL;
2583 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2584
2585 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2586
2587 /* Assume nothing changes. */
2588 *again = FALSE;
2589
2590 /* We don't have to do anything if this section does not have relocs, or
2591 if this is not a code section. */
2592 if ((sec->flags & SEC_RELOC) == 0
2593 || sec->reloc_count == 0
2594 || (sec->flags & SEC_CODE) == 0
2595 || (sec->flags & SEC_LINKER_CREATED) != 0
2596 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2597 then nothing to do. */
2598 || (bpodata == NULL
2599 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2600 return TRUE;
2601
2602 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2603
2604 bpo_greg_owner = (bfd *) link_info->base_file;
2605
2606 if (bpodata != NULL)
2607 {
2608 bpo_gregs_section = bpodata->bpo_greg_section;
2609 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2610 bpono = bpodata->first_base_plus_offset_reloc;
2611 }
2612 else
2613 gregdata = NULL;
2614
2615 /* Get a copy of the native relocations. */
2616 internal_relocs
2617 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2618 (Elf_Internal_Rela *) NULL,
2619 link_info->keep_memory);
2620 if (internal_relocs == NULL)
2621 goto error_return;
2622
2623 /* Walk through them looking for relaxing opportunities. */
2624 irelend = internal_relocs + sec->reloc_count;
2625 for (irel = internal_relocs; irel < irelend; irel++)
2626 {
2627 bfd_vma symval;
2628 struct elf_link_hash_entry *h = NULL;
2629
2630 /* We only process two relocs. */
2631 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2632 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2633 continue;
2634
2635 /* We process relocs in a distinctly different way when this is a
2636 relocatable link (for one, we don't look at symbols), so we avoid
2637 mixing its code with that for the "normal" relaxation. */
2638 if (link_info->relocatable)
2639 {
2640 /* The only transformation in a relocatable link is to generate
2641 a full stub at the location of the stub calculated for the
2642 input section, if the relocated stub location, the end of the
2643 output section plus earlier stubs, cannot be reached. Thus
2644 relocatable linking can only lead to worse code, but it still
2645 works. */
2646 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2647 {
2648 /* If we can reach the end of the output-section and beyond
2649 any current stubs, then we don't need a stub for this
2650 reloc. The relaxed order of output stub allocation may
2651 not exactly match the straightforward order, so we always
2652 assume presence of output stubs, which will allow
2653 relaxation only on relocations indifferent to the
2654 presence of output stub allocations for other relocations
2655 and thus the order of output stub allocation. */
2656 if (bfd_check_overflow (complain_overflow_signed,
2657 19,
2658 0,
2659 bfd_arch_bits_per_address (abfd),
2660 /* Output-stub location. */
2661 sec->output_section->rawsize
2662 + (mmix_elf_section_data (sec
2663 ->output_section)
2664 ->pjs.stubs_size_sum)
2665 /* Location of this PUSHJ reloc. */
2666 - (sec->output_offset + irel->r_offset)
2667 /* Don't count *this* stub twice. */
2668 - (mmix_elf_section_data (sec)
2669 ->pjs.stub_size[pjsno]
2670 + MAX_PUSHJ_STUB_SIZE))
2671 == bfd_reloc_ok)
2672 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2673
2674 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2675 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2676
2677 pjsno++;
2678 }
2679
2680 continue;
2681 }
2682
2683 /* Get the value of the symbol referred to by the reloc. */
2684 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2685 {
2686 /* A local symbol. */
2687 Elf_Internal_Sym *isym;
2688 asection *sym_sec;
2689
2690 /* Read this BFD's local symbols if we haven't already. */
2691 if (isymbuf == NULL)
2692 {
2693 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2694 if (isymbuf == NULL)
2695 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2696 symtab_hdr->sh_info, 0,
2697 NULL, NULL, NULL);
2698 if (isymbuf == 0)
2699 goto error_return;
2700 }
2701
2702 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2703 if (isym->st_shndx == SHN_UNDEF)
2704 sym_sec = bfd_und_section_ptr;
2705 else if (isym->st_shndx == SHN_ABS)
2706 sym_sec = bfd_abs_section_ptr;
2707 else if (isym->st_shndx == SHN_COMMON)
2708 sym_sec = bfd_com_section_ptr;
2709 else
2710 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2711 symval = (isym->st_value
2712 + sym_sec->output_section->vma
2713 + sym_sec->output_offset);
2714 }
2715 else
2716 {
2717 unsigned long indx;
2718
2719 /* An external symbol. */
2720 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2721 h = elf_sym_hashes (abfd)[indx];
2722 BFD_ASSERT (h != NULL);
2723 if (h->root.type != bfd_link_hash_defined
2724 && h->root.type != bfd_link_hash_defweak)
2725 {
2726 /* This appears to be a reference to an undefined symbol. Just
2727 ignore it--it will be caught by the regular reloc processing.
2728 We need to keep BPO reloc accounting consistent, though
2729 else we'll abort instead of emitting an error message. */
2730 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2731 && gregdata != NULL)
2732 {
2733 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2734 bpono++;
2735 }
2736 continue;
2737 }
2738
2739 symval = (h->root.u.def.value
2740 + h->root.u.def.section->output_section->vma
2741 + h->root.u.def.section->output_offset);
2742 }
2743
2744 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2745 {
2746 bfd_vma value = symval + irel->r_addend;
2747 bfd_vma dot
2748 = (sec->output_section->vma
2749 + sec->output_offset
2750 + irel->r_offset);
2751 bfd_vma stubaddr
2752 = (sec->output_section->vma
2753 + sec->output_offset
2754 + size
2755 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2756
2757 if ((value & 3) == 0
2758 && bfd_check_overflow (complain_overflow_signed,
2759 19,
2760 0,
2761 bfd_arch_bits_per_address (abfd),
2762 value - dot
2763 - (value > dot
2764 ? mmix_elf_section_data (sec)
2765 ->pjs.stub_size[pjsno]
2766 : 0))
2767 == bfd_reloc_ok)
2768 /* If the reloc fits, no stub is needed. */
2769 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2770 else
2771 /* Maybe we can get away with just a JMP insn? */
2772 if ((value & 3) == 0
2773 && bfd_check_overflow (complain_overflow_signed,
2774 27,
2775 0,
2776 bfd_arch_bits_per_address (abfd),
2777 value - stubaddr
2778 - (value > dot
2779 ? mmix_elf_section_data (sec)
2780 ->pjs.stub_size[pjsno] - 4
2781 : 0))
2782 == bfd_reloc_ok)
2783 /* Yep, account for a stub consisting of a single JMP insn. */
2784 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2785 else
2786 /* Nope, go for the full insn stub. It doesn't seem useful to
2787 emit the intermediate sizes; those will only be useful for
2788 a >64M program assuming contiguous code. */
2789 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2790 = MAX_PUSHJ_STUB_SIZE;
2791
2792 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2793 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2794 pjsno++;
2795 continue;
2796 }
2797
2798 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2799
2800 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2801 = symval + irel->r_addend;
2802 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2803 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2804 }
2805
2806 /* Check if that was the last BPO-reloc. If so, sort the values and
2807 calculate how many registers we need to cover them. Set the size of
2808 the linker gregs, and if the number of registers changed, indicate
2809 that we need to relax some more because we have more work to do. */
2810 if (gregdata != NULL
2811 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2812 {
2813 size_t i;
2814 bfd_vma prev_base;
2815 size_t regindex;
2816
2817 /* First, reset the remaining relocs for the next round. */
2818 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2819 = gregdata->n_bpo_relocs;
2820
2821 qsort ((PTR) gregdata->reloc_request,
2822 gregdata->n_max_bpo_relocs,
2823 sizeof (struct bpo_reloc_request),
2824 bpo_reloc_request_sort_fn);
2825
2826 /* Recalculate indexes. When we find a change (however unlikely
2827 after the initial iteration), we know we need to relax again,
2828 since items in the GREG-array are sorted by increasing value and
2829 stored in the relaxation phase. */
2830 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2831 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2832 != i)
2833 {
2834 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2835 = i;
2836 *again = TRUE;
2837 }
2838
2839 /* Allocate register numbers (indexing from 0). Stop at the first
2840 non-valid reloc. */
2841 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2842 i < gregdata->n_bpo_relocs;
2843 i++)
2844 {
2845 if (gregdata->reloc_request[i].value > prev_base + 255)
2846 {
2847 regindex++;
2848 prev_base = gregdata->reloc_request[i].value;
2849 }
2850 gregdata->reloc_request[i].regindex = regindex;
2851 gregdata->reloc_request[i].offset
2852 = gregdata->reloc_request[i].value - prev_base;
2853 }
2854
2855 /* If it's not the same as the last time, we need to relax again,
2856 because the size of the section has changed. I'm not sure we
2857 actually need to do any adjustments since the shrinking happens
2858 at the start of this section, but better safe than sorry. */
2859 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2860 {
2861 gregdata->n_allocated_bpo_gregs = regindex + 1;
2862 *again = TRUE;
2863 }
2864
2865 bpo_gregs_section->size = (regindex + 1) * 8;
2866 }
2867
2868 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2869 {
2870 if (! link_info->keep_memory)
2871 free (isymbuf);
2872 else
2873 {
2874 /* Cache the symbols for elf_link_input_bfd. */
2875 symtab_hdr->contents = (unsigned char *) isymbuf;
2876 }
2877 }
2878
2879 if (internal_relocs != NULL
2880 && elf_section_data (sec)->relocs != internal_relocs)
2881 free (internal_relocs);
2882
2883 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2884 abort ();
2885
2886 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2887 {
2888 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2889 *again = TRUE;
2890 }
2891
2892 return TRUE;
2893
2894 error_return:
2895 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2896 free (isymbuf);
2897 if (internal_relocs != NULL
2898 && elf_section_data (sec)->relocs != internal_relocs)
2899 free (internal_relocs);
2900 return FALSE;
2901 }
2902 \f
2903 #define ELF_ARCH bfd_arch_mmix
2904 #define ELF_MACHINE_CODE EM_MMIX
2905
2906 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2907 However, that's too much for something somewhere in the linker part of
2908 BFD; perhaps the start-address has to be a non-zero multiple of this
2909 number, or larger than this number. The symptom is that the linker
2910 complains: "warning: allocated section `.text' not in segment". We
2911 settle for 64k; the page-size used in examples is 8k.
2912 #define ELF_MAXPAGESIZE 0x10000
2913
2914 Unfortunately, this causes excessive padding in the supposedly small
2915 for-education programs that are the expected usage (where people would
2916 inspect output). We stick to 256 bytes just to have *some* default
2917 alignment. */
2918 #define ELF_MAXPAGESIZE 0x100
2919
2920 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2921 #define TARGET_BIG_NAME "elf64-mmix"
2922
2923 #define elf_info_to_howto_rel NULL
2924 #define elf_info_to_howto mmix_info_to_howto_rela
2925 #define elf_backend_relocate_section mmix_elf_relocate_section
2926 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2927 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2928
2929 #define elf_backend_link_output_symbol_hook \
2930 mmix_elf_link_output_symbol_hook
2931 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2932
2933 #define elf_backend_check_relocs mmix_elf_check_relocs
2934 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2935
2936 #define bfd_elf64_bfd_is_local_label_name \
2937 mmix_elf_is_local_label_name
2938
2939 #define elf_backend_may_use_rel_p 0
2940 #define elf_backend_may_use_rela_p 1
2941 #define elf_backend_default_use_rela_p 1
2942
2943 #define elf_backend_can_gc_sections 1
2944 #define elf_backend_section_from_bfd_section \
2945 mmix_elf_section_from_bfd_section
2946
2947 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2948 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2949 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2950
2951 #include "elf64-target.h"
This page took 0.125411 seconds and 4 git commands to generate.