* elf-bfd.h (struct sym_sec_cache): Delete.
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *);
58
59 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_MACHINE_CODE EM_PPC64
65 #define ELF_MAXPAGESIZE 0x10000
66 #define ELF_COMMONPAGESIZE 0x1000
67 #define elf_info_to_howto ppc64_elf_info_to_howto
68
69 #define elf_backend_want_got_sym 0
70 #define elf_backend_want_plt_sym 0
71 #define elf_backend_plt_alignment 3
72 #define elf_backend_plt_not_loaded 1
73 #define elf_backend_got_header_size 8
74 #define elf_backend_can_gc_sections 1
75 #define elf_backend_can_refcount 1
76 #define elf_backend_rela_normal 1
77 #define elf_backend_default_execstack 0
78
79 #define bfd_elf64_mkobject ppc64_elf_mkobject
80 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
81 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
82 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
83 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
84 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
85 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
86 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
87
88 #define elf_backend_object_p ppc64_elf_object_p
89 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
90 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
91 #define elf_backend_write_core_note ppc64_elf_write_core_note
92 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
93 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
94 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
95 #define elf_backend_check_directives ppc64_elf_process_dot_syms
96 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
97 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
98 #define elf_backend_check_relocs ppc64_elf_check_relocs
99 #define elf_backend_gc_keep ppc64_elf_gc_keep
100 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
101 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
102 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
103 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
104 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
105 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
106 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
107 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
108 #define elf_backend_action_discarded ppc64_elf_action_discarded
109 #define elf_backend_relocate_section ppc64_elf_relocate_section
110 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
111 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
112 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
113 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
114 #define elf_backend_special_sections ppc64_elf_special_sections
115
116 /* The name of the dynamic interpreter. This is put in the .interp
117 section. */
118 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
119
120 /* The size in bytes of an entry in the procedure linkage table. */
121 #define PLT_ENTRY_SIZE 24
122
123 /* The initial size of the plt reserved for the dynamic linker. */
124 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
125
126 /* TOC base pointers offset from start of TOC. */
127 #define TOC_BASE_OFF 0x8000
128
129 /* Offset of tp and dtp pointers from start of TLS block. */
130 #define TP_OFFSET 0x7000
131 #define DTP_OFFSET 0x8000
132
133 /* .plt call stub instructions. The normal stub is like this, but
134 sometimes the .plt entry crosses a 64k boundary and we need to
135 insert an addi to adjust r12. */
136 #define PLT_CALL_STUB_SIZE (7*4)
137 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
138 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
139 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
140 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
141 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
142 /* ld %r11,xxx+16@l(%r12) */
143 #define BCTR 0x4e800420 /* bctr */
144
145
146 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
147 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
148 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
149 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
150
151 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
152 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
153
154 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
155
156 /* glink call stub instructions. We enter with the index in R0. */
157 #define GLINK_CALL_STUB_SIZE (16*4)
158 /* 0: */
159 /* .quad plt0-1f */
160 /* __glink: */
161 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
162 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
163 /* 1: */
164 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
165 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
166 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
167 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
168 /* ld %11,0(%12) */
169 /* ld %2,8(%12) */
170 /* mtctr %11 */
171 /* ld %11,16(%12) */
172 /* bctr */
173
174 /* Pad with this. */
175 #define NOP 0x60000000
176
177 /* Some other nops. */
178 #define CROR_151515 0x4def7b82
179 #define CROR_313131 0x4ffffb82
180
181 /* .glink entries for the first 32k functions are two instructions. */
182 #define LI_R0_0 0x38000000 /* li %r0,0 */
183 #define B_DOT 0x48000000 /* b . */
184
185 /* After that, we need two instructions to load the index, followed by
186 a branch. */
187 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
188 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
189
190 /* Instructions used by the save and restore reg functions. */
191 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
192 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
193 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
194 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
195 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
196 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
197 #define LI_R12_0 0x39800000 /* li %r12,0 */
198 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
199 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
200 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
201 #define BLR 0x4e800020 /* blr */
202
203 /* Since .opd is an array of descriptors and each entry will end up
204 with identical R_PPC64_RELATIVE relocs, there is really no need to
205 propagate .opd relocs; The dynamic linker should be taught to
206 relocate .opd without reloc entries. */
207 #ifndef NO_OPD_RELOCS
208 #define NO_OPD_RELOCS 0
209 #endif
210 \f
211 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
212
213 /* Relocation HOWTO's. */
214 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
215
216 static reloc_howto_type ppc64_elf_howto_raw[] = {
217 /* This reloc does nothing. */
218 HOWTO (R_PPC64_NONE, /* type */
219 0, /* rightshift */
220 2, /* size (0 = byte, 1 = short, 2 = long) */
221 32, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_dont, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_PPC64_NONE", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 /* A standard 32 bit relocation. */
233 HOWTO (R_PPC64_ADDR32, /* type */
234 0, /* rightshift */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
236 32, /* bitsize */
237 FALSE, /* pc_relative */
238 0, /* bitpos */
239 complain_overflow_bitfield, /* complain_on_overflow */
240 bfd_elf_generic_reloc, /* special_function */
241 "R_PPC64_ADDR32", /* name */
242 FALSE, /* partial_inplace */
243 0, /* src_mask */
244 0xffffffff, /* dst_mask */
245 FALSE), /* pcrel_offset */
246
247 /* An absolute 26 bit branch; the lower two bits must be zero.
248 FIXME: we don't check that, we just clear them. */
249 HOWTO (R_PPC64_ADDR24, /* type */
250 0, /* rightshift */
251 2, /* size (0 = byte, 1 = short, 2 = long) */
252 26, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_bitfield, /* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_PPC64_ADDR24", /* name */
258 FALSE, /* partial_inplace */
259 0, /* src_mask */
260 0x03fffffc, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 /* A standard 16 bit relocation. */
264 HOWTO (R_PPC64_ADDR16, /* type */
265 0, /* rightshift */
266 1, /* size (0 = byte, 1 = short, 2 = long) */
267 16, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield, /* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_PPC64_ADDR16", /* name */
273 FALSE, /* partial_inplace */
274 0, /* src_mask */
275 0xffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 /* A 16 bit relocation without overflow. */
279 HOWTO (R_PPC64_ADDR16_LO, /* type */
280 0, /* rightshift */
281 1, /* size (0 = byte, 1 = short, 2 = long) */
282 16, /* bitsize */
283 FALSE, /* pc_relative */
284 0, /* bitpos */
285 complain_overflow_dont,/* complain_on_overflow */
286 bfd_elf_generic_reloc, /* special_function */
287 "R_PPC64_ADDR16_LO", /* name */
288 FALSE, /* partial_inplace */
289 0, /* src_mask */
290 0xffff, /* dst_mask */
291 FALSE), /* pcrel_offset */
292
293 /* Bits 16-31 of an address. */
294 HOWTO (R_PPC64_ADDR16_HI, /* type */
295 16, /* rightshift */
296 1, /* size (0 = byte, 1 = short, 2 = long) */
297 16, /* bitsize */
298 FALSE, /* pc_relative */
299 0, /* bitpos */
300 complain_overflow_dont, /* complain_on_overflow */
301 bfd_elf_generic_reloc, /* special_function */
302 "R_PPC64_ADDR16_HI", /* name */
303 FALSE, /* partial_inplace */
304 0, /* src_mask */
305 0xffff, /* dst_mask */
306 FALSE), /* pcrel_offset */
307
308 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
309 bits, treated as a signed number, is negative. */
310 HOWTO (R_PPC64_ADDR16_HA, /* type */
311 16, /* rightshift */
312 1, /* size (0 = byte, 1 = short, 2 = long) */
313 16, /* bitsize */
314 FALSE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_dont, /* complain_on_overflow */
317 ppc64_elf_ha_reloc, /* special_function */
318 "R_PPC64_ADDR16_HA", /* name */
319 FALSE, /* partial_inplace */
320 0, /* src_mask */
321 0xffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
323
324 /* An absolute 16 bit branch; the lower two bits must be zero.
325 FIXME: we don't check that, we just clear them. */
326 HOWTO (R_PPC64_ADDR14, /* type */
327 0, /* rightshift */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
329 16, /* bitsize */
330 FALSE, /* pc_relative */
331 0, /* bitpos */
332 complain_overflow_bitfield, /* complain_on_overflow */
333 ppc64_elf_branch_reloc, /* special_function */
334 "R_PPC64_ADDR14", /* name */
335 FALSE, /* partial_inplace */
336 0, /* src_mask */
337 0x0000fffc, /* dst_mask */
338 FALSE), /* pcrel_offset */
339
340 /* An absolute 16 bit branch, for which bit 10 should be set to
341 indicate that the branch is expected to be taken. The lower two
342 bits must be zero. */
343 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 ppc64_elf_brtaken_reloc, /* special_function */
351 "R_PPC64_ADDR14_BRTAKEN",/* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0x0000fffc, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 /* An absolute 16 bit branch, for which bit 10 should be set to
358 indicate that the branch is not expected to be taken. The lower
359 two bits must be zero. */
360 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
361 0, /* rightshift */
362 2, /* size (0 = byte, 1 = short, 2 = long) */
363 16, /* bitsize */
364 FALSE, /* pc_relative */
365 0, /* bitpos */
366 complain_overflow_bitfield, /* complain_on_overflow */
367 ppc64_elf_brtaken_reloc, /* special_function */
368 "R_PPC64_ADDR14_BRNTAKEN",/* name */
369 FALSE, /* partial_inplace */
370 0, /* src_mask */
371 0x0000fffc, /* dst_mask */
372 FALSE), /* pcrel_offset */
373
374 /* A relative 26 bit branch; the lower two bits must be zero. */
375 HOWTO (R_PPC64_REL24, /* type */
376 0, /* rightshift */
377 2, /* size (0 = byte, 1 = short, 2 = long) */
378 26, /* bitsize */
379 TRUE, /* pc_relative */
380 0, /* bitpos */
381 complain_overflow_signed, /* complain_on_overflow */
382 ppc64_elf_branch_reloc, /* special_function */
383 "R_PPC64_REL24", /* name */
384 FALSE, /* partial_inplace */
385 0, /* src_mask */
386 0x03fffffc, /* dst_mask */
387 TRUE), /* pcrel_offset */
388
389 /* A relative 16 bit branch; the lower two bits must be zero. */
390 HOWTO (R_PPC64_REL14, /* type */
391 0, /* rightshift */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
393 16, /* bitsize */
394 TRUE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_signed, /* complain_on_overflow */
397 ppc64_elf_branch_reloc, /* special_function */
398 "R_PPC64_REL14", /* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0x0000fffc, /* dst_mask */
402 TRUE), /* pcrel_offset */
403
404 /* A relative 16 bit branch. Bit 10 should be set to indicate that
405 the branch is expected to be taken. The lower two bits must be
406 zero. */
407 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
408 0, /* rightshift */
409 2, /* size (0 = byte, 1 = short, 2 = long) */
410 16, /* bitsize */
411 TRUE, /* pc_relative */
412 0, /* bitpos */
413 complain_overflow_signed, /* complain_on_overflow */
414 ppc64_elf_brtaken_reloc, /* special_function */
415 "R_PPC64_REL14_BRTAKEN", /* name */
416 FALSE, /* partial_inplace */
417 0, /* src_mask */
418 0x0000fffc, /* dst_mask */
419 TRUE), /* pcrel_offset */
420
421 /* A relative 16 bit branch. Bit 10 should be set to indicate that
422 the branch is not expected to be taken. The lower two bits must
423 be zero. */
424 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 16, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 ppc64_elf_brtaken_reloc, /* special_function */
432 "R_PPC64_REL14_BRNTAKEN",/* name */
433 FALSE, /* partial_inplace */
434 0, /* src_mask */
435 0x0000fffc, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
439 symbol. */
440 HOWTO (R_PPC64_GOT16, /* type */
441 0, /* rightshift */
442 1, /* size (0 = byte, 1 = short, 2 = long) */
443 16, /* bitsize */
444 FALSE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 ppc64_elf_unhandled_reloc, /* special_function */
448 "R_PPC64_GOT16", /* name */
449 FALSE, /* partial_inplace */
450 0, /* src_mask */
451 0xffff, /* dst_mask */
452 FALSE), /* pcrel_offset */
453
454 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
455 the symbol. */
456 HOWTO (R_PPC64_GOT16_LO, /* type */
457 0, /* rightshift */
458 1, /* size (0 = byte, 1 = short, 2 = long) */
459 16, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 ppc64_elf_unhandled_reloc, /* special_function */
464 "R_PPC64_GOT16_LO", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0xffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
471 the symbol. */
472 HOWTO (R_PPC64_GOT16_HI, /* type */
473 16, /* rightshift */
474 1, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont,/* complain_on_overflow */
479 ppc64_elf_unhandled_reloc, /* special_function */
480 "R_PPC64_GOT16_HI", /* name */
481 FALSE, /* partial_inplace */
482 0, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
487 the symbol. */
488 HOWTO (R_PPC64_GOT16_HA, /* type */
489 16, /* rightshift */
490 1, /* size (0 = byte, 1 = short, 2 = long) */
491 16, /* bitsize */
492 FALSE, /* pc_relative */
493 0, /* bitpos */
494 complain_overflow_dont,/* complain_on_overflow */
495 ppc64_elf_unhandled_reloc, /* special_function */
496 "R_PPC64_GOT16_HA", /* name */
497 FALSE, /* partial_inplace */
498 0, /* src_mask */
499 0xffff, /* dst_mask */
500 FALSE), /* pcrel_offset */
501
502 /* This is used only by the dynamic linker. The symbol should exist
503 both in the object being run and in some shared library. The
504 dynamic linker copies the data addressed by the symbol from the
505 shared library into the object, because the object being
506 run has to have the data at some particular address. */
507 HOWTO (R_PPC64_COPY, /* type */
508 0, /* rightshift */
509 0, /* this one is variable size */
510 0, /* bitsize */
511 FALSE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_dont, /* complain_on_overflow */
514 ppc64_elf_unhandled_reloc, /* special_function */
515 "R_PPC64_COPY", /* name */
516 FALSE, /* partial_inplace */
517 0, /* src_mask */
518 0, /* dst_mask */
519 FALSE), /* pcrel_offset */
520
521 /* Like R_PPC64_ADDR64, but used when setting global offset table
522 entries. */
523 HOWTO (R_PPC64_GLOB_DAT, /* type */
524 0, /* rightshift */
525 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
526 64, /* bitsize */
527 FALSE, /* pc_relative */
528 0, /* bitpos */
529 complain_overflow_dont, /* complain_on_overflow */
530 ppc64_elf_unhandled_reloc, /* special_function */
531 "R_PPC64_GLOB_DAT", /* name */
532 FALSE, /* partial_inplace */
533 0, /* src_mask */
534 ONES (64), /* dst_mask */
535 FALSE), /* pcrel_offset */
536
537 /* Created by the link editor. Marks a procedure linkage table
538 entry for a symbol. */
539 HOWTO (R_PPC64_JMP_SLOT, /* type */
540 0, /* rightshift */
541 0, /* size (0 = byte, 1 = short, 2 = long) */
542 0, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 ppc64_elf_unhandled_reloc, /* special_function */
547 "R_PPC64_JMP_SLOT", /* name */
548 FALSE, /* partial_inplace */
549 0, /* src_mask */
550 0, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* Used only by the dynamic linker. When the object is run, this
554 doubleword64 is set to the load address of the object, plus the
555 addend. */
556 HOWTO (R_PPC64_RELATIVE, /* type */
557 0, /* rightshift */
558 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
559 64, /* bitsize */
560 FALSE, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_dont, /* complain_on_overflow */
563 bfd_elf_generic_reloc, /* special_function */
564 "R_PPC64_RELATIVE", /* name */
565 FALSE, /* partial_inplace */
566 0, /* src_mask */
567 ONES (64), /* dst_mask */
568 FALSE), /* pcrel_offset */
569
570 /* Like R_PPC64_ADDR32, but may be unaligned. */
571 HOWTO (R_PPC64_UADDR32, /* type */
572 0, /* rightshift */
573 2, /* size (0 = byte, 1 = short, 2 = long) */
574 32, /* bitsize */
575 FALSE, /* pc_relative */
576 0, /* bitpos */
577 complain_overflow_bitfield, /* complain_on_overflow */
578 bfd_elf_generic_reloc, /* special_function */
579 "R_PPC64_UADDR32", /* name */
580 FALSE, /* partial_inplace */
581 0, /* src_mask */
582 0xffffffff, /* dst_mask */
583 FALSE), /* pcrel_offset */
584
585 /* Like R_PPC64_ADDR16, but may be unaligned. */
586 HOWTO (R_PPC64_UADDR16, /* type */
587 0, /* rightshift */
588 1, /* size (0 = byte, 1 = short, 2 = long) */
589 16, /* bitsize */
590 FALSE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_bitfield, /* complain_on_overflow */
593 bfd_elf_generic_reloc, /* special_function */
594 "R_PPC64_UADDR16", /* name */
595 FALSE, /* partial_inplace */
596 0, /* src_mask */
597 0xffff, /* dst_mask */
598 FALSE), /* pcrel_offset */
599
600 /* 32-bit PC relative. */
601 HOWTO (R_PPC64_REL32, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 32, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 /* FIXME: Verify. Was complain_overflow_bitfield. */
608 complain_overflow_signed, /* complain_on_overflow */
609 bfd_elf_generic_reloc, /* special_function */
610 "R_PPC64_REL32", /* name */
611 FALSE, /* partial_inplace */
612 0, /* src_mask */
613 0xffffffff, /* dst_mask */
614 TRUE), /* pcrel_offset */
615
616 /* 32-bit relocation to the symbol's procedure linkage table. */
617 HOWTO (R_PPC64_PLT32, /* type */
618 0, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 32, /* bitsize */
621 FALSE, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_bitfield, /* complain_on_overflow */
624 ppc64_elf_unhandled_reloc, /* special_function */
625 "R_PPC64_PLT32", /* name */
626 FALSE, /* partial_inplace */
627 0, /* src_mask */
628 0xffffffff, /* dst_mask */
629 FALSE), /* pcrel_offset */
630
631 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
632 FIXME: R_PPC64_PLTREL32 not supported. */
633 HOWTO (R_PPC64_PLTREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_PPC64_PLTREL32", /* name */
642 FALSE, /* partial_inplace */
643 0, /* src_mask */
644 0xffffffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
648 the symbol. */
649 HOWTO (R_PPC64_PLT16_LO, /* type */
650 0, /* rightshift */
651 1, /* size (0 = byte, 1 = short, 2 = long) */
652 16, /* bitsize */
653 FALSE, /* pc_relative */
654 0, /* bitpos */
655 complain_overflow_dont, /* complain_on_overflow */
656 ppc64_elf_unhandled_reloc, /* special_function */
657 "R_PPC64_PLT16_LO", /* name */
658 FALSE, /* partial_inplace */
659 0, /* src_mask */
660 0xffff, /* dst_mask */
661 FALSE), /* pcrel_offset */
662
663 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
664 the symbol. */
665 HOWTO (R_PPC64_PLT16_HI, /* type */
666 16, /* rightshift */
667 1, /* size (0 = byte, 1 = short, 2 = long) */
668 16, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_dont, /* complain_on_overflow */
672 ppc64_elf_unhandled_reloc, /* special_function */
673 "R_PPC64_PLT16_HI", /* name */
674 FALSE, /* partial_inplace */
675 0, /* src_mask */
676 0xffff, /* dst_mask */
677 FALSE), /* pcrel_offset */
678
679 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
680 the symbol. */
681 HOWTO (R_PPC64_PLT16_HA, /* type */
682 16, /* rightshift */
683 1, /* size (0 = byte, 1 = short, 2 = long) */
684 16, /* bitsize */
685 FALSE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 ppc64_elf_unhandled_reloc, /* special_function */
689 "R_PPC64_PLT16_HA", /* name */
690 FALSE, /* partial_inplace */
691 0, /* src_mask */
692 0xffff, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* 16-bit section relative relocation. */
696 HOWTO (R_PPC64_SECTOFF, /* type */
697 0, /* rightshift */
698 1, /* size (0 = byte, 1 = short, 2 = long) */
699 16, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_bitfield, /* complain_on_overflow */
703 ppc64_elf_sectoff_reloc, /* special_function */
704 "R_PPC64_SECTOFF", /* name */
705 FALSE, /* partial_inplace */
706 0, /* src_mask */
707 0xffff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Like R_PPC64_SECTOFF, but no overflow warning. */
711 HOWTO (R_PPC64_SECTOFF_LO, /* type */
712 0, /* rightshift */
713 1, /* size (0 = byte, 1 = short, 2 = long) */
714 16, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_dont, /* complain_on_overflow */
718 ppc64_elf_sectoff_reloc, /* special_function */
719 "R_PPC64_SECTOFF_LO", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* 16-bit upper half section relative relocation. */
726 HOWTO (R_PPC64_SECTOFF_HI, /* type */
727 16, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 16, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_dont, /* complain_on_overflow */
733 ppc64_elf_sectoff_reloc, /* special_function */
734 "R_PPC64_SECTOFF_HI", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xffff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* 16-bit upper half adjusted section relative relocation. */
741 HOWTO (R_PPC64_SECTOFF_HA, /* type */
742 16, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont, /* complain_on_overflow */
748 ppc64_elf_sectoff_ha_reloc, /* special_function */
749 "R_PPC64_SECTOFF_HA", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xffff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* Like R_PPC64_REL24 without touching the two least significant bits. */
756 HOWTO (R_PPC64_REL30, /* type */
757 2, /* rightshift */
758 2, /* size (0 = byte, 1 = short, 2 = long) */
759 30, /* bitsize */
760 TRUE, /* pc_relative */
761 0, /* bitpos */
762 complain_overflow_dont, /* complain_on_overflow */
763 bfd_elf_generic_reloc, /* special_function */
764 "R_PPC64_REL30", /* name */
765 FALSE, /* partial_inplace */
766 0, /* src_mask */
767 0xfffffffc, /* dst_mask */
768 TRUE), /* pcrel_offset */
769
770 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
771
772 /* A standard 64-bit relocation. */
773 HOWTO (R_PPC64_ADDR64, /* type */
774 0, /* rightshift */
775 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
776 64, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_PPC64_ADDR64", /* name */
782 FALSE, /* partial_inplace */
783 0, /* src_mask */
784 ONES (64), /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* The bits 32-47 of an address. */
788 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
789 32, /* rightshift */
790 1, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_PPC64_ADDR16_HIGHER", /* name */
797 FALSE, /* partial_inplace */
798 0, /* src_mask */
799 0xffff, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* The bits 32-47 of an address, plus 1 if the contents of the low
803 16 bits, treated as a signed number, is negative. */
804 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
805 32, /* rightshift */
806 1, /* size (0 = byte, 1 = short, 2 = long) */
807 16, /* bitsize */
808 FALSE, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_dont, /* complain_on_overflow */
811 ppc64_elf_ha_reloc, /* special_function */
812 "R_PPC64_ADDR16_HIGHERA", /* name */
813 FALSE, /* partial_inplace */
814 0, /* src_mask */
815 0xffff, /* dst_mask */
816 FALSE), /* pcrel_offset */
817
818 /* The bits 48-63 of an address. */
819 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
820 48, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 16, /* bitsize */
823 FALSE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_dont, /* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_PPC64_ADDR16_HIGHEST", /* name */
828 FALSE, /* partial_inplace */
829 0, /* src_mask */
830 0xffff, /* dst_mask */
831 FALSE), /* pcrel_offset */
832
833 /* The bits 48-63 of an address, plus 1 if the contents of the low
834 16 bits, treated as a signed number, is negative. */
835 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
836 48, /* rightshift */
837 1, /* size (0 = byte, 1 = short, 2 = long) */
838 16, /* bitsize */
839 FALSE, /* pc_relative */
840 0, /* bitpos */
841 complain_overflow_dont, /* complain_on_overflow */
842 ppc64_elf_ha_reloc, /* special_function */
843 "R_PPC64_ADDR16_HIGHESTA", /* name */
844 FALSE, /* partial_inplace */
845 0, /* src_mask */
846 0xffff, /* dst_mask */
847 FALSE), /* pcrel_offset */
848
849 /* Like ADDR64, but may be unaligned. */
850 HOWTO (R_PPC64_UADDR64, /* type */
851 0, /* rightshift */
852 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
853 64, /* bitsize */
854 FALSE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_PPC64_UADDR64", /* name */
859 FALSE, /* partial_inplace */
860 0, /* src_mask */
861 ONES (64), /* dst_mask */
862 FALSE), /* pcrel_offset */
863
864 /* 64-bit relative relocation. */
865 HOWTO (R_PPC64_REL64, /* type */
866 0, /* rightshift */
867 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
868 64, /* bitsize */
869 TRUE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_PPC64_REL64", /* name */
874 FALSE, /* partial_inplace */
875 0, /* src_mask */
876 ONES (64), /* dst_mask */
877 TRUE), /* pcrel_offset */
878
879 /* 64-bit relocation to the symbol's procedure linkage table. */
880 HOWTO (R_PPC64_PLT64, /* type */
881 0, /* rightshift */
882 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
883 64, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 ppc64_elf_unhandled_reloc, /* special_function */
888 "R_PPC64_PLT64", /* name */
889 FALSE, /* partial_inplace */
890 0, /* src_mask */
891 ONES (64), /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* 64-bit PC relative relocation to the symbol's procedure linkage
895 table. */
896 /* FIXME: R_PPC64_PLTREL64 not supported. */
897 HOWTO (R_PPC64_PLTREL64, /* type */
898 0, /* rightshift */
899 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
900 64, /* bitsize */
901 TRUE, /* pc_relative */
902 0, /* bitpos */
903 complain_overflow_dont, /* complain_on_overflow */
904 ppc64_elf_unhandled_reloc, /* special_function */
905 "R_PPC64_PLTREL64", /* name */
906 FALSE, /* partial_inplace */
907 0, /* src_mask */
908 ONES (64), /* dst_mask */
909 TRUE), /* pcrel_offset */
910
911 /* 16 bit TOC-relative relocation. */
912
913 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
914 HOWTO (R_PPC64_TOC16, /* type */
915 0, /* rightshift */
916 1, /* size (0 = byte, 1 = short, 2 = long) */
917 16, /* bitsize */
918 FALSE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_signed, /* complain_on_overflow */
921 ppc64_elf_toc_reloc, /* special_function */
922 "R_PPC64_TOC16", /* name */
923 FALSE, /* partial_inplace */
924 0, /* src_mask */
925 0xffff, /* dst_mask */
926 FALSE), /* pcrel_offset */
927
928 /* 16 bit TOC-relative relocation without overflow. */
929
930 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
931 HOWTO (R_PPC64_TOC16_LO, /* type */
932 0, /* rightshift */
933 1, /* size (0 = byte, 1 = short, 2 = long) */
934 16, /* bitsize */
935 FALSE, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 ppc64_elf_toc_reloc, /* special_function */
939 "R_PPC64_TOC16_LO", /* name */
940 FALSE, /* partial_inplace */
941 0, /* src_mask */
942 0xffff, /* dst_mask */
943 FALSE), /* pcrel_offset */
944
945 /* 16 bit TOC-relative relocation, high 16 bits. */
946
947 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
948 HOWTO (R_PPC64_TOC16_HI, /* type */
949 16, /* rightshift */
950 1, /* size (0 = byte, 1 = short, 2 = long) */
951 16, /* bitsize */
952 FALSE, /* pc_relative */
953 0, /* bitpos */
954 complain_overflow_dont, /* complain_on_overflow */
955 ppc64_elf_toc_reloc, /* special_function */
956 "R_PPC64_TOC16_HI", /* name */
957 FALSE, /* partial_inplace */
958 0, /* src_mask */
959 0xffff, /* dst_mask */
960 FALSE), /* pcrel_offset */
961
962 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
963 contents of the low 16 bits, treated as a signed number, is
964 negative. */
965
966 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
967 HOWTO (R_PPC64_TOC16_HA, /* type */
968 16, /* rightshift */
969 1, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 FALSE, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_dont, /* complain_on_overflow */
974 ppc64_elf_toc_ha_reloc, /* special_function */
975 "R_PPC64_TOC16_HA", /* name */
976 FALSE, /* partial_inplace */
977 0, /* src_mask */
978 0xffff, /* dst_mask */
979 FALSE), /* pcrel_offset */
980
981 /* 64-bit relocation; insert value of TOC base (.TOC.). */
982
983 /* R_PPC64_TOC 51 doubleword64 .TOC. */
984 HOWTO (R_PPC64_TOC, /* type */
985 0, /* rightshift */
986 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
987 64, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_bitfield, /* complain_on_overflow */
991 ppc64_elf_toc64_reloc, /* special_function */
992 "R_PPC64_TOC", /* name */
993 FALSE, /* partial_inplace */
994 0, /* src_mask */
995 ONES (64), /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* Like R_PPC64_GOT16, but also informs the link editor that the
999 value to relocate may (!) refer to a PLT entry which the link
1000 editor (a) may replace with the symbol value. If the link editor
1001 is unable to fully resolve the symbol, it may (b) create a PLT
1002 entry and store the address to the new PLT entry in the GOT.
1003 This permits lazy resolution of function symbols at run time.
1004 The link editor may also skip all of this and just (c) emit a
1005 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1006 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1007 HOWTO (R_PPC64_PLTGOT16, /* type */
1008 0, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_unhandled_reloc, /* special_function */
1015 "R_PPC64_PLTGOT16", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* Like R_PPC64_PLTGOT16, but without overflow. */
1022 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1023 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1024 0, /* rightshift */
1025 1, /* size (0 = byte, 1 = short, 2 = long) */
1026 16, /* bitsize */
1027 FALSE, /* pc_relative */
1028 0, /* bitpos */
1029 complain_overflow_dont, /* complain_on_overflow */
1030 ppc64_elf_unhandled_reloc, /* special_function */
1031 "R_PPC64_PLTGOT16_LO", /* name */
1032 FALSE, /* partial_inplace */
1033 0, /* src_mask */
1034 0xffff, /* dst_mask */
1035 FALSE), /* pcrel_offset */
1036
1037 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1038 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1039 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1040 16, /* rightshift */
1041 1, /* size (0 = byte, 1 = short, 2 = long) */
1042 16, /* bitsize */
1043 FALSE, /* pc_relative */
1044 0, /* bitpos */
1045 complain_overflow_dont, /* complain_on_overflow */
1046 ppc64_elf_unhandled_reloc, /* special_function */
1047 "R_PPC64_PLTGOT16_HI", /* name */
1048 FALSE, /* partial_inplace */
1049 0, /* src_mask */
1050 0xffff, /* dst_mask */
1051 FALSE), /* pcrel_offset */
1052
1053 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1054 1 if the contents of the low 16 bits, treated as a signed number,
1055 is negative. */
1056 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1057 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1058 16, /* rightshift */
1059 1, /* size (0 = byte, 1 = short, 2 = long) */
1060 16, /* bitsize */
1061 FALSE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont,/* complain_on_overflow */
1064 ppc64_elf_unhandled_reloc, /* special_function */
1065 "R_PPC64_PLTGOT16_HA", /* name */
1066 FALSE, /* partial_inplace */
1067 0, /* src_mask */
1068 0xffff, /* dst_mask */
1069 FALSE), /* pcrel_offset */
1070
1071 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1072 HOWTO (R_PPC64_ADDR16_DS, /* type */
1073 0, /* rightshift */
1074 1, /* size (0 = byte, 1 = short, 2 = long) */
1075 16, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_bitfield, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_PPC64_ADDR16_DS", /* name */
1081 FALSE, /* partial_inplace */
1082 0, /* src_mask */
1083 0xfffc, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1087 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1088 0, /* rightshift */
1089 1, /* size (0 = byte, 1 = short, 2 = long) */
1090 16, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_PPC64_ADDR16_LO_DS",/* name */
1096 FALSE, /* partial_inplace */
1097 0, /* src_mask */
1098 0xfffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1102 HOWTO (R_PPC64_GOT16_DS, /* type */
1103 0, /* rightshift */
1104 1, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_signed, /* complain_on_overflow */
1109 ppc64_elf_unhandled_reloc, /* special_function */
1110 "R_PPC64_GOT16_DS", /* name */
1111 FALSE, /* partial_inplace */
1112 0, /* src_mask */
1113 0xfffc, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1117 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1118 0, /* rightshift */
1119 1, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont, /* complain_on_overflow */
1124 ppc64_elf_unhandled_reloc, /* special_function */
1125 "R_PPC64_GOT16_LO_DS", /* name */
1126 FALSE, /* partial_inplace */
1127 0, /* src_mask */
1128 0xfffc, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1132 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1133 0, /* rightshift */
1134 1, /* size (0 = byte, 1 = short, 2 = long) */
1135 16, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont, /* complain_on_overflow */
1139 ppc64_elf_unhandled_reloc, /* special_function */
1140 "R_PPC64_PLT16_LO_DS", /* name */
1141 FALSE, /* partial_inplace */
1142 0, /* src_mask */
1143 0xfffc, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1147 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1148 0, /* rightshift */
1149 1, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_bitfield, /* complain_on_overflow */
1154 ppc64_elf_sectoff_reloc, /* special_function */
1155 "R_PPC64_SECTOFF_DS", /* name */
1156 FALSE, /* partial_inplace */
1157 0, /* src_mask */
1158 0xfffc, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1162 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1163 0, /* rightshift */
1164 1, /* size (0 = byte, 1 = short, 2 = long) */
1165 16, /* bitsize */
1166 FALSE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont, /* complain_on_overflow */
1169 ppc64_elf_sectoff_reloc, /* special_function */
1170 "R_PPC64_SECTOFF_LO_DS",/* name */
1171 FALSE, /* partial_inplace */
1172 0, /* src_mask */
1173 0xfffc, /* dst_mask */
1174 FALSE), /* pcrel_offset */
1175
1176 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1177 HOWTO (R_PPC64_TOC16_DS, /* type */
1178 0, /* rightshift */
1179 1, /* size (0 = byte, 1 = short, 2 = long) */
1180 16, /* bitsize */
1181 FALSE, /* pc_relative */
1182 0, /* bitpos */
1183 complain_overflow_signed, /* complain_on_overflow */
1184 ppc64_elf_toc_reloc, /* special_function */
1185 "R_PPC64_TOC16_DS", /* name */
1186 FALSE, /* partial_inplace */
1187 0, /* src_mask */
1188 0xfffc, /* dst_mask */
1189 FALSE), /* pcrel_offset */
1190
1191 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1192 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1193 0, /* rightshift */
1194 1, /* size (0 = byte, 1 = short, 2 = long) */
1195 16, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 ppc64_elf_toc_reloc, /* special_function */
1200 "R_PPC64_TOC16_LO_DS", /* name */
1201 FALSE, /* partial_inplace */
1202 0, /* src_mask */
1203 0xfffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1207 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1208 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1209 0, /* rightshift */
1210 1, /* size (0 = byte, 1 = short, 2 = long) */
1211 16, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_signed, /* complain_on_overflow */
1215 ppc64_elf_unhandled_reloc, /* special_function */
1216 "R_PPC64_PLTGOT16_DS", /* name */
1217 FALSE, /* partial_inplace */
1218 0, /* src_mask */
1219 0xfffc, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1223 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1224 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1225 0, /* rightshift */
1226 1, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 ppc64_elf_unhandled_reloc, /* special_function */
1232 "R_PPC64_PLTGOT16_LO_DS",/* name */
1233 FALSE, /* partial_inplace */
1234 0, /* src_mask */
1235 0xfffc, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Marker relocs for TLS. */
1239 HOWTO (R_PPC64_TLS,
1240 0, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 32, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 "R_PPC64_TLS", /* name */
1248 FALSE, /* partial_inplace */
1249 0, /* src_mask */
1250 0, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 HOWTO (R_PPC64_TLSGD,
1254 0, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 32, /* bitsize */
1257 FALSE, /* pc_relative */
1258 0, /* bitpos */
1259 complain_overflow_dont, /* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 "R_PPC64_TLSGD", /* name */
1262 FALSE, /* partial_inplace */
1263 0, /* src_mask */
1264 0, /* dst_mask */
1265 FALSE), /* pcrel_offset */
1266
1267 HOWTO (R_PPC64_TLSLD,
1268 0, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 32, /* bitsize */
1271 FALSE, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 "R_PPC64_TLSLD", /* name */
1276 FALSE, /* partial_inplace */
1277 0, /* src_mask */
1278 0, /* dst_mask */
1279 FALSE), /* pcrel_offset */
1280
1281 /* Computes the load module index of the load module that contains the
1282 definition of its TLS sym. */
1283 HOWTO (R_PPC64_DTPMOD64,
1284 0, /* rightshift */
1285 4, /* size (0 = byte, 1 = short, 2 = long) */
1286 64, /* bitsize */
1287 FALSE, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 ppc64_elf_unhandled_reloc, /* special_function */
1291 "R_PPC64_DTPMOD64", /* name */
1292 FALSE, /* partial_inplace */
1293 0, /* src_mask */
1294 ONES (64), /* dst_mask */
1295 FALSE), /* pcrel_offset */
1296
1297 /* Computes a dtv-relative displacement, the difference between the value
1298 of sym+add and the base address of the thread-local storage block that
1299 contains the definition of sym, minus 0x8000. */
1300 HOWTO (R_PPC64_DTPREL64,
1301 0, /* rightshift */
1302 4, /* size (0 = byte, 1 = short, 2 = long) */
1303 64, /* bitsize */
1304 FALSE, /* pc_relative */
1305 0, /* bitpos */
1306 complain_overflow_dont, /* complain_on_overflow */
1307 ppc64_elf_unhandled_reloc, /* special_function */
1308 "R_PPC64_DTPREL64", /* name */
1309 FALSE, /* partial_inplace */
1310 0, /* src_mask */
1311 ONES (64), /* dst_mask */
1312 FALSE), /* pcrel_offset */
1313
1314 /* A 16 bit dtprel reloc. */
1315 HOWTO (R_PPC64_DTPREL16,
1316 0, /* rightshift */
1317 1, /* size (0 = byte, 1 = short, 2 = long) */
1318 16, /* bitsize */
1319 FALSE, /* pc_relative */
1320 0, /* bitpos */
1321 complain_overflow_signed, /* complain_on_overflow */
1322 ppc64_elf_unhandled_reloc, /* special_function */
1323 "R_PPC64_DTPREL16", /* name */
1324 FALSE, /* partial_inplace */
1325 0, /* src_mask */
1326 0xffff, /* dst_mask */
1327 FALSE), /* pcrel_offset */
1328
1329 /* Like DTPREL16, but no overflow. */
1330 HOWTO (R_PPC64_DTPREL16_LO,
1331 0, /* rightshift */
1332 1, /* size (0 = byte, 1 = short, 2 = long) */
1333 16, /* bitsize */
1334 FALSE, /* pc_relative */
1335 0, /* bitpos */
1336 complain_overflow_dont, /* complain_on_overflow */
1337 ppc64_elf_unhandled_reloc, /* special_function */
1338 "R_PPC64_DTPREL16_LO", /* name */
1339 FALSE, /* partial_inplace */
1340 0, /* src_mask */
1341 0xffff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1343
1344 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1345 HOWTO (R_PPC64_DTPREL16_HI,
1346 16, /* rightshift */
1347 1, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont, /* complain_on_overflow */
1352 ppc64_elf_unhandled_reloc, /* special_function */
1353 "R_PPC64_DTPREL16_HI", /* name */
1354 FALSE, /* partial_inplace */
1355 0, /* src_mask */
1356 0xffff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1360 HOWTO (R_PPC64_DTPREL16_HA,
1361 16, /* rightshift */
1362 1, /* size (0 = byte, 1 = short, 2 = long) */
1363 16, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_dont, /* complain_on_overflow */
1367 ppc64_elf_unhandled_reloc, /* special_function */
1368 "R_PPC64_DTPREL16_HA", /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 0xffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1375 HOWTO (R_PPC64_DTPREL16_HIGHER,
1376 32, /* rightshift */
1377 1, /* size (0 = byte, 1 = short, 2 = long) */
1378 16, /* bitsize */
1379 FALSE, /* pc_relative */
1380 0, /* bitpos */
1381 complain_overflow_dont, /* complain_on_overflow */
1382 ppc64_elf_unhandled_reloc, /* special_function */
1383 "R_PPC64_DTPREL16_HIGHER", /* name */
1384 FALSE, /* partial_inplace */
1385 0, /* src_mask */
1386 0xffff, /* dst_mask */
1387 FALSE), /* pcrel_offset */
1388
1389 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1390 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1391 32, /* rightshift */
1392 1, /* size (0 = byte, 1 = short, 2 = long) */
1393 16, /* bitsize */
1394 FALSE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 ppc64_elf_unhandled_reloc, /* special_function */
1398 "R_PPC64_DTPREL16_HIGHERA", /* name */
1399 FALSE, /* partial_inplace */
1400 0, /* src_mask */
1401 0xffff, /* dst_mask */
1402 FALSE), /* pcrel_offset */
1403
1404 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1405 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1406 48, /* rightshift */
1407 1, /* size (0 = byte, 1 = short, 2 = long) */
1408 16, /* bitsize */
1409 FALSE, /* pc_relative */
1410 0, /* bitpos */
1411 complain_overflow_dont, /* complain_on_overflow */
1412 ppc64_elf_unhandled_reloc, /* special_function */
1413 "R_PPC64_DTPREL16_HIGHEST", /* name */
1414 FALSE, /* partial_inplace */
1415 0, /* src_mask */
1416 0xffff, /* dst_mask */
1417 FALSE), /* pcrel_offset */
1418
1419 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1420 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1421 48, /* rightshift */
1422 1, /* size (0 = byte, 1 = short, 2 = long) */
1423 16, /* bitsize */
1424 FALSE, /* pc_relative */
1425 0, /* bitpos */
1426 complain_overflow_dont, /* complain_on_overflow */
1427 ppc64_elf_unhandled_reloc, /* special_function */
1428 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1429 FALSE, /* partial_inplace */
1430 0, /* src_mask */
1431 0xffff, /* dst_mask */
1432 FALSE), /* pcrel_offset */
1433
1434 /* Like DTPREL16, but for insns with a DS field. */
1435 HOWTO (R_PPC64_DTPREL16_DS,
1436 0, /* rightshift */
1437 1, /* size (0 = byte, 1 = short, 2 = long) */
1438 16, /* bitsize */
1439 FALSE, /* pc_relative */
1440 0, /* bitpos */
1441 complain_overflow_signed, /* complain_on_overflow */
1442 ppc64_elf_unhandled_reloc, /* special_function */
1443 "R_PPC64_DTPREL16_DS", /* name */
1444 FALSE, /* partial_inplace */
1445 0, /* src_mask */
1446 0xfffc, /* dst_mask */
1447 FALSE), /* pcrel_offset */
1448
1449 /* Like DTPREL16_DS, but no overflow. */
1450 HOWTO (R_PPC64_DTPREL16_LO_DS,
1451 0, /* rightshift */
1452 1, /* size (0 = byte, 1 = short, 2 = long) */
1453 16, /* bitsize */
1454 FALSE, /* pc_relative */
1455 0, /* bitpos */
1456 complain_overflow_dont, /* complain_on_overflow */
1457 ppc64_elf_unhandled_reloc, /* special_function */
1458 "R_PPC64_DTPREL16_LO_DS", /* name */
1459 FALSE, /* partial_inplace */
1460 0, /* src_mask */
1461 0xfffc, /* dst_mask */
1462 FALSE), /* pcrel_offset */
1463
1464 /* Computes a tp-relative displacement, the difference between the value of
1465 sym+add and the value of the thread pointer (r13). */
1466 HOWTO (R_PPC64_TPREL64,
1467 0, /* rightshift */
1468 4, /* size (0 = byte, 1 = short, 2 = long) */
1469 64, /* bitsize */
1470 FALSE, /* pc_relative */
1471 0, /* bitpos */
1472 complain_overflow_dont, /* complain_on_overflow */
1473 ppc64_elf_unhandled_reloc, /* special_function */
1474 "R_PPC64_TPREL64", /* name */
1475 FALSE, /* partial_inplace */
1476 0, /* src_mask */
1477 ONES (64), /* dst_mask */
1478 FALSE), /* pcrel_offset */
1479
1480 /* A 16 bit tprel reloc. */
1481 HOWTO (R_PPC64_TPREL16,
1482 0, /* rightshift */
1483 1, /* size (0 = byte, 1 = short, 2 = long) */
1484 16, /* bitsize */
1485 FALSE, /* pc_relative */
1486 0, /* bitpos */
1487 complain_overflow_signed, /* complain_on_overflow */
1488 ppc64_elf_unhandled_reloc, /* special_function */
1489 "R_PPC64_TPREL16", /* name */
1490 FALSE, /* partial_inplace */
1491 0, /* src_mask */
1492 0xffff, /* dst_mask */
1493 FALSE), /* pcrel_offset */
1494
1495 /* Like TPREL16, but no overflow. */
1496 HOWTO (R_PPC64_TPREL16_LO,
1497 0, /* rightshift */
1498 1, /* size (0 = byte, 1 = short, 2 = long) */
1499 16, /* bitsize */
1500 FALSE, /* pc_relative */
1501 0, /* bitpos */
1502 complain_overflow_dont, /* complain_on_overflow */
1503 ppc64_elf_unhandled_reloc, /* special_function */
1504 "R_PPC64_TPREL16_LO", /* name */
1505 FALSE, /* partial_inplace */
1506 0, /* src_mask */
1507 0xffff, /* dst_mask */
1508 FALSE), /* pcrel_offset */
1509
1510 /* Like TPREL16_LO, but next higher group of 16 bits. */
1511 HOWTO (R_PPC64_TPREL16_HI,
1512 16, /* rightshift */
1513 1, /* size (0 = byte, 1 = short, 2 = long) */
1514 16, /* bitsize */
1515 FALSE, /* pc_relative */
1516 0, /* bitpos */
1517 complain_overflow_dont, /* complain_on_overflow */
1518 ppc64_elf_unhandled_reloc, /* special_function */
1519 "R_PPC64_TPREL16_HI", /* name */
1520 FALSE, /* partial_inplace */
1521 0, /* src_mask */
1522 0xffff, /* dst_mask */
1523 FALSE), /* pcrel_offset */
1524
1525 /* Like TPREL16_HI, but adjust for low 16 bits. */
1526 HOWTO (R_PPC64_TPREL16_HA,
1527 16, /* rightshift */
1528 1, /* size (0 = byte, 1 = short, 2 = long) */
1529 16, /* bitsize */
1530 FALSE, /* pc_relative */
1531 0, /* bitpos */
1532 complain_overflow_dont, /* complain_on_overflow */
1533 ppc64_elf_unhandled_reloc, /* special_function */
1534 "R_PPC64_TPREL16_HA", /* name */
1535 FALSE, /* partial_inplace */
1536 0, /* src_mask */
1537 0xffff, /* dst_mask */
1538 FALSE), /* pcrel_offset */
1539
1540 /* Like TPREL16_HI, but next higher group of 16 bits. */
1541 HOWTO (R_PPC64_TPREL16_HIGHER,
1542 32, /* rightshift */
1543 1, /* size (0 = byte, 1 = short, 2 = long) */
1544 16, /* bitsize */
1545 FALSE, /* pc_relative */
1546 0, /* bitpos */
1547 complain_overflow_dont, /* complain_on_overflow */
1548 ppc64_elf_unhandled_reloc, /* special_function */
1549 "R_PPC64_TPREL16_HIGHER", /* name */
1550 FALSE, /* partial_inplace */
1551 0, /* src_mask */
1552 0xffff, /* dst_mask */
1553 FALSE), /* pcrel_offset */
1554
1555 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1556 HOWTO (R_PPC64_TPREL16_HIGHERA,
1557 32, /* rightshift */
1558 1, /* size (0 = byte, 1 = short, 2 = long) */
1559 16, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_dont, /* complain_on_overflow */
1563 ppc64_elf_unhandled_reloc, /* special_function */
1564 "R_PPC64_TPREL16_HIGHERA", /* name */
1565 FALSE, /* partial_inplace */
1566 0, /* src_mask */
1567 0xffff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1571 HOWTO (R_PPC64_TPREL16_HIGHEST,
1572 48, /* rightshift */
1573 1, /* size (0 = byte, 1 = short, 2 = long) */
1574 16, /* bitsize */
1575 FALSE, /* pc_relative */
1576 0, /* bitpos */
1577 complain_overflow_dont, /* complain_on_overflow */
1578 ppc64_elf_unhandled_reloc, /* special_function */
1579 "R_PPC64_TPREL16_HIGHEST", /* name */
1580 FALSE, /* partial_inplace */
1581 0, /* src_mask */
1582 0xffff, /* dst_mask */
1583 FALSE), /* pcrel_offset */
1584
1585 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1586 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1587 48, /* rightshift */
1588 1, /* size (0 = byte, 1 = short, 2 = long) */
1589 16, /* bitsize */
1590 FALSE, /* pc_relative */
1591 0, /* bitpos */
1592 complain_overflow_dont, /* complain_on_overflow */
1593 ppc64_elf_unhandled_reloc, /* special_function */
1594 "R_PPC64_TPREL16_HIGHESTA", /* name */
1595 FALSE, /* partial_inplace */
1596 0, /* src_mask */
1597 0xffff, /* dst_mask */
1598 FALSE), /* pcrel_offset */
1599
1600 /* Like TPREL16, but for insns with a DS field. */
1601 HOWTO (R_PPC64_TPREL16_DS,
1602 0, /* rightshift */
1603 1, /* size (0 = byte, 1 = short, 2 = long) */
1604 16, /* bitsize */
1605 FALSE, /* pc_relative */
1606 0, /* bitpos */
1607 complain_overflow_signed, /* complain_on_overflow */
1608 ppc64_elf_unhandled_reloc, /* special_function */
1609 "R_PPC64_TPREL16_DS", /* name */
1610 FALSE, /* partial_inplace */
1611 0, /* src_mask */
1612 0xfffc, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1614
1615 /* Like TPREL16_DS, but no overflow. */
1616 HOWTO (R_PPC64_TPREL16_LO_DS,
1617 0, /* rightshift */
1618 1, /* size (0 = byte, 1 = short, 2 = long) */
1619 16, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_dont, /* complain_on_overflow */
1623 ppc64_elf_unhandled_reloc, /* special_function */
1624 "R_PPC64_TPREL16_LO_DS", /* name */
1625 FALSE, /* partial_inplace */
1626 0, /* src_mask */
1627 0xfffc, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1631 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1632 to the first entry relative to the TOC base (r2). */
1633 HOWTO (R_PPC64_GOT_TLSGD16,
1634 0, /* rightshift */
1635 1, /* size (0 = byte, 1 = short, 2 = long) */
1636 16, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_signed, /* complain_on_overflow */
1640 ppc64_elf_unhandled_reloc, /* special_function */
1641 "R_PPC64_GOT_TLSGD16", /* name */
1642 FALSE, /* partial_inplace */
1643 0, /* src_mask */
1644 0xffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
1647 /* Like GOT_TLSGD16, but no overflow. */
1648 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1649 0, /* rightshift */
1650 1, /* size (0 = byte, 1 = short, 2 = long) */
1651 16, /* bitsize */
1652 FALSE, /* pc_relative */
1653 0, /* bitpos */
1654 complain_overflow_dont, /* complain_on_overflow */
1655 ppc64_elf_unhandled_reloc, /* special_function */
1656 "R_PPC64_GOT_TLSGD16_LO", /* name */
1657 FALSE, /* partial_inplace */
1658 0, /* src_mask */
1659 0xffff, /* dst_mask */
1660 FALSE), /* pcrel_offset */
1661
1662 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1663 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1664 16, /* rightshift */
1665 1, /* size (0 = byte, 1 = short, 2 = long) */
1666 16, /* bitsize */
1667 FALSE, /* pc_relative */
1668 0, /* bitpos */
1669 complain_overflow_dont, /* complain_on_overflow */
1670 ppc64_elf_unhandled_reloc, /* special_function */
1671 "R_PPC64_GOT_TLSGD16_HI", /* name */
1672 FALSE, /* partial_inplace */
1673 0, /* src_mask */
1674 0xffff, /* dst_mask */
1675 FALSE), /* pcrel_offset */
1676
1677 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1678 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1679 16, /* rightshift */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1681 16, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_dont, /* complain_on_overflow */
1685 ppc64_elf_unhandled_reloc, /* special_function */
1686 "R_PPC64_GOT_TLSGD16_HA", /* name */
1687 FALSE, /* partial_inplace */
1688 0, /* src_mask */
1689 0xffff, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691
1692 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1693 with values (sym+add)@dtpmod and zero, and computes the offset to the
1694 first entry relative to the TOC base (r2). */
1695 HOWTO (R_PPC64_GOT_TLSLD16,
1696 0, /* rightshift */
1697 1, /* size (0 = byte, 1 = short, 2 = long) */
1698 16, /* bitsize */
1699 FALSE, /* pc_relative */
1700 0, /* bitpos */
1701 complain_overflow_signed, /* complain_on_overflow */
1702 ppc64_elf_unhandled_reloc, /* special_function */
1703 "R_PPC64_GOT_TLSLD16", /* name */
1704 FALSE, /* partial_inplace */
1705 0, /* src_mask */
1706 0xffff, /* dst_mask */
1707 FALSE), /* pcrel_offset */
1708
1709 /* Like GOT_TLSLD16, but no overflow. */
1710 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1711 0, /* rightshift */
1712 1, /* size (0 = byte, 1 = short, 2 = long) */
1713 16, /* bitsize */
1714 FALSE, /* pc_relative */
1715 0, /* bitpos */
1716 complain_overflow_dont, /* complain_on_overflow */
1717 ppc64_elf_unhandled_reloc, /* special_function */
1718 "R_PPC64_GOT_TLSLD16_LO", /* name */
1719 FALSE, /* partial_inplace */
1720 0, /* src_mask */
1721 0xffff, /* dst_mask */
1722 FALSE), /* pcrel_offset */
1723
1724 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1725 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1726 16, /* rightshift */
1727 1, /* size (0 = byte, 1 = short, 2 = long) */
1728 16, /* bitsize */
1729 FALSE, /* pc_relative */
1730 0, /* bitpos */
1731 complain_overflow_dont, /* complain_on_overflow */
1732 ppc64_elf_unhandled_reloc, /* special_function */
1733 "R_PPC64_GOT_TLSLD16_HI", /* name */
1734 FALSE, /* partial_inplace */
1735 0, /* src_mask */
1736 0xffff, /* dst_mask */
1737 FALSE), /* pcrel_offset */
1738
1739 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1740 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1741 16, /* rightshift */
1742 1, /* size (0 = byte, 1 = short, 2 = long) */
1743 16, /* bitsize */
1744 FALSE, /* pc_relative */
1745 0, /* bitpos */
1746 complain_overflow_dont, /* complain_on_overflow */
1747 ppc64_elf_unhandled_reloc, /* special_function */
1748 "R_PPC64_GOT_TLSLD16_HA", /* name */
1749 FALSE, /* partial_inplace */
1750 0, /* src_mask */
1751 0xffff, /* dst_mask */
1752 FALSE), /* pcrel_offset */
1753
1754 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1755 the offset to the entry relative to the TOC base (r2). */
1756 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1757 0, /* rightshift */
1758 1, /* size (0 = byte, 1 = short, 2 = long) */
1759 16, /* bitsize */
1760 FALSE, /* pc_relative */
1761 0, /* bitpos */
1762 complain_overflow_signed, /* complain_on_overflow */
1763 ppc64_elf_unhandled_reloc, /* special_function */
1764 "R_PPC64_GOT_DTPREL16_DS", /* name */
1765 FALSE, /* partial_inplace */
1766 0, /* src_mask */
1767 0xfffc, /* dst_mask */
1768 FALSE), /* pcrel_offset */
1769
1770 /* Like GOT_DTPREL16_DS, but no overflow. */
1771 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1772 0, /* rightshift */
1773 1, /* size (0 = byte, 1 = short, 2 = long) */
1774 16, /* bitsize */
1775 FALSE, /* pc_relative */
1776 0, /* bitpos */
1777 complain_overflow_dont, /* complain_on_overflow */
1778 ppc64_elf_unhandled_reloc, /* special_function */
1779 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1780 FALSE, /* partial_inplace */
1781 0, /* src_mask */
1782 0xfffc, /* dst_mask */
1783 FALSE), /* pcrel_offset */
1784
1785 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1786 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1787 16, /* rightshift */
1788 1, /* size (0 = byte, 1 = short, 2 = long) */
1789 16, /* bitsize */
1790 FALSE, /* pc_relative */
1791 0, /* bitpos */
1792 complain_overflow_dont, /* complain_on_overflow */
1793 ppc64_elf_unhandled_reloc, /* special_function */
1794 "R_PPC64_GOT_DTPREL16_HI", /* name */
1795 FALSE, /* partial_inplace */
1796 0, /* src_mask */
1797 0xffff, /* dst_mask */
1798 FALSE), /* pcrel_offset */
1799
1800 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1801 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1802 16, /* rightshift */
1803 1, /* size (0 = byte, 1 = short, 2 = long) */
1804 16, /* bitsize */
1805 FALSE, /* pc_relative */
1806 0, /* bitpos */
1807 complain_overflow_dont, /* complain_on_overflow */
1808 ppc64_elf_unhandled_reloc, /* special_function */
1809 "R_PPC64_GOT_DTPREL16_HA", /* name */
1810 FALSE, /* partial_inplace */
1811 0, /* src_mask */
1812 0xffff, /* dst_mask */
1813 FALSE), /* pcrel_offset */
1814
1815 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1816 offset to the entry relative to the TOC base (r2). */
1817 HOWTO (R_PPC64_GOT_TPREL16_DS,
1818 0, /* rightshift */
1819 1, /* size (0 = byte, 1 = short, 2 = long) */
1820 16, /* bitsize */
1821 FALSE, /* pc_relative */
1822 0, /* bitpos */
1823 complain_overflow_signed, /* complain_on_overflow */
1824 ppc64_elf_unhandled_reloc, /* special_function */
1825 "R_PPC64_GOT_TPREL16_DS", /* name */
1826 FALSE, /* partial_inplace */
1827 0, /* src_mask */
1828 0xfffc, /* dst_mask */
1829 FALSE), /* pcrel_offset */
1830
1831 /* Like GOT_TPREL16_DS, but no overflow. */
1832 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1833 0, /* rightshift */
1834 1, /* size (0 = byte, 1 = short, 2 = long) */
1835 16, /* bitsize */
1836 FALSE, /* pc_relative */
1837 0, /* bitpos */
1838 complain_overflow_dont, /* complain_on_overflow */
1839 ppc64_elf_unhandled_reloc, /* special_function */
1840 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1841 FALSE, /* partial_inplace */
1842 0, /* src_mask */
1843 0xfffc, /* dst_mask */
1844 FALSE), /* pcrel_offset */
1845
1846 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1847 HOWTO (R_PPC64_GOT_TPREL16_HI,
1848 16, /* rightshift */
1849 1, /* size (0 = byte, 1 = short, 2 = long) */
1850 16, /* bitsize */
1851 FALSE, /* pc_relative */
1852 0, /* bitpos */
1853 complain_overflow_dont, /* complain_on_overflow */
1854 ppc64_elf_unhandled_reloc, /* special_function */
1855 "R_PPC64_GOT_TPREL16_HI", /* name */
1856 FALSE, /* partial_inplace */
1857 0, /* src_mask */
1858 0xffff, /* dst_mask */
1859 FALSE), /* pcrel_offset */
1860
1861 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1862 HOWTO (R_PPC64_GOT_TPREL16_HA,
1863 16, /* rightshift */
1864 1, /* size (0 = byte, 1 = short, 2 = long) */
1865 16, /* bitsize */
1866 FALSE, /* pc_relative */
1867 0, /* bitpos */
1868 complain_overflow_dont, /* complain_on_overflow */
1869 ppc64_elf_unhandled_reloc, /* special_function */
1870 "R_PPC64_GOT_TPREL16_HA", /* name */
1871 FALSE, /* partial_inplace */
1872 0, /* src_mask */
1873 0xffff, /* dst_mask */
1874 FALSE), /* pcrel_offset */
1875
1876 /* GNU extension to record C++ vtable hierarchy. */
1877 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1878 0, /* rightshift */
1879 0, /* size (0 = byte, 1 = short, 2 = long) */
1880 0, /* bitsize */
1881 FALSE, /* pc_relative */
1882 0, /* bitpos */
1883 complain_overflow_dont, /* complain_on_overflow */
1884 NULL, /* special_function */
1885 "R_PPC64_GNU_VTINHERIT", /* name */
1886 FALSE, /* partial_inplace */
1887 0, /* src_mask */
1888 0, /* dst_mask */
1889 FALSE), /* pcrel_offset */
1890
1891 /* GNU extension to record C++ vtable member usage. */
1892 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1893 0, /* rightshift */
1894 0, /* size (0 = byte, 1 = short, 2 = long) */
1895 0, /* bitsize */
1896 FALSE, /* pc_relative */
1897 0, /* bitpos */
1898 complain_overflow_dont, /* complain_on_overflow */
1899 NULL, /* special_function */
1900 "R_PPC64_GNU_VTENTRY", /* name */
1901 FALSE, /* partial_inplace */
1902 0, /* src_mask */
1903 0, /* dst_mask */
1904 FALSE), /* pcrel_offset */
1905 };
1906
1907 \f
1908 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1909 be done. */
1910
1911 static void
1912 ppc_howto_init (void)
1913 {
1914 unsigned int i, type;
1915
1916 for (i = 0;
1917 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1918 i++)
1919 {
1920 type = ppc64_elf_howto_raw[i].type;
1921 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1922 / sizeof (ppc64_elf_howto_table[0])));
1923 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1924 }
1925 }
1926
1927 static reloc_howto_type *
1928 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1929 bfd_reloc_code_real_type code)
1930 {
1931 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1932
1933 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1934 /* Initialize howto table if needed. */
1935 ppc_howto_init ();
1936
1937 switch (code)
1938 {
1939 default:
1940 return NULL;
1941
1942 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1943 break;
1944 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1945 break;
1946 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1947 break;
1948 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1949 break;
1950 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1951 break;
1952 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1953 break;
1954 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1955 break;
1956 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1957 break;
1958 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1959 break;
1960 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1961 break;
1962 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1963 break;
1964 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1965 break;
1966 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1967 break;
1968 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1969 break;
1970 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1971 break;
1972 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1973 break;
1974 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1975 break;
1976 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1977 break;
1978 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1979 break;
1980 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1981 break;
1982 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1983 break;
1984 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1985 break;
1986 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1987 break;
1988 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1989 break;
1990 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1991 break;
1992 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1993 break;
1994 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1995 break;
1996 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1997 break;
1998 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1999 break;
2000 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2001 break;
2002 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2003 break;
2004 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2005 break;
2006 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2007 break;
2008 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2009 break;
2010 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2011 break;
2012 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2013 break;
2014 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2015 break;
2016 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2017 break;
2018 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2019 break;
2020 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2021 break;
2022 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2023 break;
2024 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2025 break;
2026 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2027 break;
2028 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2029 break;
2030 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2031 break;
2032 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2033 break;
2034 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2035 break;
2036 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2037 break;
2038 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2039 break;
2040 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2041 break;
2042 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2043 break;
2044 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2045 break;
2046 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2047 break;
2048 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2049 break;
2050 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2051 break;
2052 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2053 break;
2054 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2055 break;
2056 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2057 break;
2058 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2059 break;
2060 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2061 break;
2062 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2063 break;
2064 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2065 break;
2066 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2067 break;
2068 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2069 break;
2070 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2071 break;
2072 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2073 break;
2074 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2075 break;
2076 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2077 break;
2078 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2079 break;
2080 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2081 break;
2082 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2083 break;
2084 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2085 break;
2086 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2087 break;
2088 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2089 break;
2090 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2091 break;
2092 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2093 break;
2094 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2095 break;
2096 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2097 break;
2098 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2099 break;
2100 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2101 break;
2102 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2103 break;
2104 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2105 break;
2106 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2107 break;
2108 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2109 break;
2110 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2111 break;
2112 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2113 break;
2114 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2115 break;
2116 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2117 break;
2118 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2119 break;
2120 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2121 break;
2122 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2123 break;
2124 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2125 break;
2126 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2127 break;
2128 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2129 break;
2130 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2131 break;
2132 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2133 break;
2134 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2135 break;
2136 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2137 break;
2138 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2139 break;
2140 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2141 break;
2142 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2143 break;
2144 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2145 break;
2146 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2147 break;
2148 }
2149
2150 return ppc64_elf_howto_table[r];
2151 };
2152
2153 static reloc_howto_type *
2154 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2155 const char *r_name)
2156 {
2157 unsigned int i;
2158
2159 for (i = 0;
2160 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2161 i++)
2162 if (ppc64_elf_howto_raw[i].name != NULL
2163 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2164 return &ppc64_elf_howto_raw[i];
2165
2166 return NULL;
2167 }
2168
2169 /* Set the howto pointer for a PowerPC ELF reloc. */
2170
2171 static void
2172 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2173 Elf_Internal_Rela *dst)
2174 {
2175 unsigned int type;
2176
2177 /* Initialize howto table if needed. */
2178 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2179 ppc_howto_init ();
2180
2181 type = ELF64_R_TYPE (dst->r_info);
2182 if (type >= (sizeof (ppc64_elf_howto_table)
2183 / sizeof (ppc64_elf_howto_table[0])))
2184 {
2185 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2186 abfd, (int) type);
2187 type = R_PPC64_NONE;
2188 }
2189 cache_ptr->howto = ppc64_elf_howto_table[type];
2190 }
2191
2192 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2193
2194 static bfd_reloc_status_type
2195 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2196 void *data, asection *input_section,
2197 bfd *output_bfd, char **error_message)
2198 {
2199 /* If this is a relocatable link (output_bfd test tells us), just
2200 call the generic function. Any adjustment will be done at final
2201 link time. */
2202 if (output_bfd != NULL)
2203 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2204 input_section, output_bfd, error_message);
2205
2206 /* Adjust the addend for sign extension of the low 16 bits.
2207 We won't actually be using the low 16 bits, so trashing them
2208 doesn't matter. */
2209 reloc_entry->addend += 0x8000;
2210 return bfd_reloc_continue;
2211 }
2212
2213 static bfd_reloc_status_type
2214 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2215 void *data, asection *input_section,
2216 bfd *output_bfd, char **error_message)
2217 {
2218 if (output_bfd != NULL)
2219 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2220 input_section, output_bfd, error_message);
2221
2222 if (strcmp (symbol->section->name, ".opd") == 0
2223 && (symbol->section->owner->flags & DYNAMIC) == 0)
2224 {
2225 bfd_vma dest = opd_entry_value (symbol->section,
2226 symbol->value + reloc_entry->addend,
2227 NULL, NULL);
2228 if (dest != (bfd_vma) -1)
2229 reloc_entry->addend = dest - (symbol->value
2230 + symbol->section->output_section->vma
2231 + symbol->section->output_offset);
2232 }
2233 return bfd_reloc_continue;
2234 }
2235
2236 static bfd_reloc_status_type
2237 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2238 void *data, asection *input_section,
2239 bfd *output_bfd, char **error_message)
2240 {
2241 long insn;
2242 enum elf_ppc64_reloc_type r_type;
2243 bfd_size_type octets;
2244 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2245 bfd_boolean is_power4 = FALSE;
2246
2247 /* If this is a relocatable link (output_bfd test tells us), just
2248 call the generic function. Any adjustment will be done at final
2249 link time. */
2250 if (output_bfd != NULL)
2251 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2252 input_section, output_bfd, error_message);
2253
2254 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2255 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2256 insn &= ~(0x01 << 21);
2257 r_type = reloc_entry->howto->type;
2258 if (r_type == R_PPC64_ADDR14_BRTAKEN
2259 || r_type == R_PPC64_REL14_BRTAKEN)
2260 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2261
2262 if (is_power4)
2263 {
2264 /* Set 'a' bit. This is 0b00010 in BO field for branch
2265 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2266 for branch on CTR insns (BO == 1a00t or 1a01t). */
2267 if ((insn & (0x14 << 21)) == (0x04 << 21))
2268 insn |= 0x02 << 21;
2269 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2270 insn |= 0x08 << 21;
2271 else
2272 goto out;
2273 }
2274 else
2275 {
2276 bfd_vma target = 0;
2277 bfd_vma from;
2278
2279 if (!bfd_is_com_section (symbol->section))
2280 target = symbol->value;
2281 target += symbol->section->output_section->vma;
2282 target += symbol->section->output_offset;
2283 target += reloc_entry->addend;
2284
2285 from = (reloc_entry->address
2286 + input_section->output_offset
2287 + input_section->output_section->vma);
2288
2289 /* Invert 'y' bit if not the default. */
2290 if ((bfd_signed_vma) (target - from) < 0)
2291 insn ^= 0x01 << 21;
2292 }
2293 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2294 out:
2295 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2296 input_section, output_bfd, error_message);
2297 }
2298
2299 static bfd_reloc_status_type
2300 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2301 void *data, asection *input_section,
2302 bfd *output_bfd, char **error_message)
2303 {
2304 /* If this is a relocatable link (output_bfd test tells us), just
2305 call the generic function. Any adjustment will be done at final
2306 link time. */
2307 if (output_bfd != NULL)
2308 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2309 input_section, output_bfd, error_message);
2310
2311 /* Subtract the symbol section base address. */
2312 reloc_entry->addend -= symbol->section->output_section->vma;
2313 return bfd_reloc_continue;
2314 }
2315
2316 static bfd_reloc_status_type
2317 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2318 void *data, asection *input_section,
2319 bfd *output_bfd, char **error_message)
2320 {
2321 /* If this is a relocatable link (output_bfd test tells us), just
2322 call the generic function. Any adjustment will be done at final
2323 link time. */
2324 if (output_bfd != NULL)
2325 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2326 input_section, output_bfd, error_message);
2327
2328 /* Subtract the symbol section base address. */
2329 reloc_entry->addend -= symbol->section->output_section->vma;
2330
2331 /* Adjust the addend for sign extension of the low 16 bits. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 bfd_vma TOCstart;
2342
2343 /* If this is a relocatable link (output_bfd test tells us), just
2344 call the generic function. Any adjustment will be done at final
2345 link time. */
2346 if (output_bfd != NULL)
2347 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2348 input_section, output_bfd, error_message);
2349
2350 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2351 if (TOCstart == 0)
2352 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2353
2354 /* Subtract the TOC base address. */
2355 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 bfd_vma TOCstart;
2365
2366 /* If this is a relocatable link (output_bfd test tells us), just
2367 call the generic function. Any adjustment will be done at final
2368 link time. */
2369 if (output_bfd != NULL)
2370 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2371 input_section, output_bfd, error_message);
2372
2373 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2374 if (TOCstart == 0)
2375 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2376
2377 /* Subtract the TOC base address. */
2378 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2379
2380 /* Adjust the addend for sign extension of the low 16 bits. */
2381 reloc_entry->addend += 0x8000;
2382 return bfd_reloc_continue;
2383 }
2384
2385 static bfd_reloc_status_type
2386 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2387 void *data, asection *input_section,
2388 bfd *output_bfd, char **error_message)
2389 {
2390 bfd_vma TOCstart;
2391 bfd_size_type octets;
2392
2393 /* If this is a relocatable link (output_bfd test tells us), just
2394 call the generic function. Any adjustment will be done at final
2395 link time. */
2396 if (output_bfd != NULL)
2397 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2398 input_section, output_bfd, error_message);
2399
2400 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2401 if (TOCstart == 0)
2402 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2403
2404 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2405 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2406 return bfd_reloc_ok;
2407 }
2408
2409 static bfd_reloc_status_type
2410 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2411 void *data, asection *input_section,
2412 bfd *output_bfd, char **error_message)
2413 {
2414 /* If this is a relocatable link (output_bfd test tells us), just
2415 call the generic function. Any adjustment will be done at final
2416 link time. */
2417 if (output_bfd != NULL)
2418 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420
2421 if (error_message != NULL)
2422 {
2423 static char buf[60];
2424 sprintf (buf, "generic linker can't handle %s",
2425 reloc_entry->howto->name);
2426 *error_message = buf;
2427 }
2428 return bfd_reloc_dangerous;
2429 }
2430
2431 struct ppc64_elf_obj_tdata
2432 {
2433 struct elf_obj_tdata elf;
2434
2435 /* Shortcuts to dynamic linker sections. */
2436 asection *got;
2437 asection *relgot;
2438
2439 /* Used during garbage collection. We attach global symbols defined
2440 on removed .opd entries to this section so that the sym is removed. */
2441 asection *deleted_section;
2442
2443 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2444 sections means we potentially need one of these for each input bfd. */
2445 union {
2446 bfd_signed_vma refcount;
2447 bfd_vma offset;
2448 } tlsld_got;
2449
2450 /* A copy of relocs before they are modified for --emit-relocs. */
2451 Elf_Internal_Rela *opd_relocs;
2452 };
2453
2454 #define ppc64_elf_tdata(bfd) \
2455 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2456
2457 #define ppc64_tlsld_got(bfd) \
2458 (&ppc64_elf_tdata (bfd)->tlsld_got)
2459
2460 #define is_ppc64_elf(bfd) \
2461 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2462 && elf_object_id (bfd) == PPC64_ELF_TDATA)
2463
2464 /* Override the generic function because we store some extras. */
2465
2466 static bfd_boolean
2467 ppc64_elf_mkobject (bfd *abfd)
2468 {
2469 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2470 PPC64_ELF_TDATA);
2471 }
2472
2473 /* Fix bad default arch selected for a 64 bit input bfd when the
2474 default is 32 bit. */
2475
2476 static bfd_boolean
2477 ppc64_elf_object_p (bfd *abfd)
2478 {
2479 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2480 {
2481 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2482
2483 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2484 {
2485 /* Relies on arch after 32 bit default being 64 bit default. */
2486 abfd->arch_info = abfd->arch_info->next;
2487 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2488 }
2489 }
2490 return TRUE;
2491 }
2492
2493 /* Support for core dump NOTE sections. */
2494
2495 static bfd_boolean
2496 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2497 {
2498 size_t offset, size;
2499
2500 if (note->descsz != 504)
2501 return FALSE;
2502
2503 /* pr_cursig */
2504 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2505
2506 /* pr_pid */
2507 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2508
2509 /* pr_reg */
2510 offset = 112;
2511 size = 384;
2512
2513 /* Make a ".reg/999" section. */
2514 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2515 size, note->descpos + offset);
2516 }
2517
2518 static bfd_boolean
2519 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2520 {
2521 if (note->descsz != 136)
2522 return FALSE;
2523
2524 elf_tdata (abfd)->core_program
2525 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2526 elf_tdata (abfd)->core_command
2527 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2528
2529 return TRUE;
2530 }
2531
2532 static char *
2533 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2534 ...)
2535 {
2536 switch (note_type)
2537 {
2538 default:
2539 return NULL;
2540
2541 case NT_PRPSINFO:
2542 {
2543 char data[136];
2544 va_list ap;
2545
2546 va_start (ap, note_type);
2547 memset (data, 0, 40);
2548 strncpy (data + 40, va_arg (ap, const char *), 16);
2549 strncpy (data + 56, va_arg (ap, const char *), 80);
2550 va_end (ap);
2551 return elfcore_write_note (abfd, buf, bufsiz,
2552 "CORE", note_type, data, sizeof (data));
2553 }
2554
2555 case NT_PRSTATUS:
2556 {
2557 char data[504];
2558 va_list ap;
2559 long pid;
2560 int cursig;
2561 const void *greg;
2562
2563 va_start (ap, note_type);
2564 memset (data, 0, 112);
2565 pid = va_arg (ap, long);
2566 bfd_put_32 (abfd, pid, data + 32);
2567 cursig = va_arg (ap, int);
2568 bfd_put_16 (abfd, cursig, data + 12);
2569 greg = va_arg (ap, const void *);
2570 memcpy (data + 112, greg, 384);
2571 memset (data + 496, 0, 8);
2572 va_end (ap);
2573 return elfcore_write_note (abfd, buf, bufsiz,
2574 "CORE", note_type, data, sizeof (data));
2575 }
2576 }
2577 }
2578
2579 /* Merge backend specific data from an object file to the output
2580 object file when linking. */
2581
2582 static bfd_boolean
2583 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2584 {
2585 /* Check if we have the same endianess. */
2586 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2587 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2588 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2589 {
2590 const char *msg;
2591
2592 if (bfd_big_endian (ibfd))
2593 msg = _("%B: compiled for a big endian system "
2594 "and target is little endian");
2595 else
2596 msg = _("%B: compiled for a little endian system "
2597 "and target is big endian");
2598
2599 (*_bfd_error_handler) (msg, ibfd);
2600
2601 bfd_set_error (bfd_error_wrong_format);
2602 return FALSE;
2603 }
2604
2605 return TRUE;
2606 }
2607
2608 /* Add extra PPC sections. */
2609
2610 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2611 {
2612 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2613 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2614 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2615 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2616 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2617 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2618 { NULL, 0, 0, 0, 0 }
2619 };
2620
2621 enum _ppc64_sec_type {
2622 sec_normal = 0,
2623 sec_opd = 1,
2624 sec_toc = 2
2625 };
2626
2627 struct _ppc64_elf_section_data
2628 {
2629 struct bfd_elf_section_data elf;
2630
2631 union
2632 {
2633 /* An array with one entry for each opd function descriptor. */
2634 struct _opd_sec_data
2635 {
2636 /* Points to the function code section for local opd entries. */
2637 asection **func_sec;
2638
2639 /* After editing .opd, adjust references to opd local syms. */
2640 long *adjust;
2641 } opd;
2642
2643 /* An array for toc sections, indexed by offset/8. */
2644 struct _toc_sec_data
2645 {
2646 /* Specifies the relocation symbol index used at a given toc offset. */
2647 unsigned *symndx;
2648
2649 /* And the relocation addend. */
2650 bfd_vma *add;
2651 } toc;
2652 } u;
2653
2654 enum _ppc64_sec_type sec_type:2;
2655
2656 /* Flag set when small branches are detected. Used to
2657 select suitable defaults for the stub group size. */
2658 unsigned int has_14bit_branch:1;
2659 };
2660
2661 #define ppc64_elf_section_data(sec) \
2662 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2663
2664 static bfd_boolean
2665 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2666 {
2667 if (!sec->used_by_bfd)
2668 {
2669 struct _ppc64_elf_section_data *sdata;
2670 bfd_size_type amt = sizeof (*sdata);
2671
2672 sdata = bfd_zalloc (abfd, amt);
2673 if (sdata == NULL)
2674 return FALSE;
2675 sec->used_by_bfd = sdata;
2676 }
2677
2678 return _bfd_elf_new_section_hook (abfd, sec);
2679 }
2680
2681 static struct _opd_sec_data *
2682 get_opd_info (asection * sec)
2683 {
2684 if (sec != NULL
2685 && ppc64_elf_section_data (sec) != NULL
2686 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2687 return &ppc64_elf_section_data (sec)->u.opd;
2688 return NULL;
2689 }
2690 \f
2691 /* Parameters for the qsort hook. */
2692 static bfd_boolean synthetic_relocatable;
2693
2694 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2695
2696 static int
2697 compare_symbols (const void *ap, const void *bp)
2698 {
2699 const asymbol *a = * (const asymbol **) ap;
2700 const asymbol *b = * (const asymbol **) bp;
2701
2702 /* Section symbols first. */
2703 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2704 return -1;
2705 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2706 return 1;
2707
2708 /* then .opd symbols. */
2709 if (strcmp (a->section->name, ".opd") == 0
2710 && strcmp (b->section->name, ".opd") != 0)
2711 return -1;
2712 if (strcmp (a->section->name, ".opd") != 0
2713 && strcmp (b->section->name, ".opd") == 0)
2714 return 1;
2715
2716 /* then other code symbols. */
2717 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2718 == (SEC_CODE | SEC_ALLOC)
2719 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2720 != (SEC_CODE | SEC_ALLOC))
2721 return -1;
2722
2723 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2724 != (SEC_CODE | SEC_ALLOC)
2725 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2726 == (SEC_CODE | SEC_ALLOC))
2727 return 1;
2728
2729 if (synthetic_relocatable)
2730 {
2731 if (a->section->id < b->section->id)
2732 return -1;
2733
2734 if (a->section->id > b->section->id)
2735 return 1;
2736 }
2737
2738 if (a->value + a->section->vma < b->value + b->section->vma)
2739 return -1;
2740
2741 if (a->value + a->section->vma > b->value + b->section->vma)
2742 return 1;
2743
2744 /* For syms with the same value, prefer strong dynamic global function
2745 syms over other syms. */
2746 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2747 return -1;
2748
2749 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2750 return 1;
2751
2752 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2753 return -1;
2754
2755 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2756 return 1;
2757
2758 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2759 return -1;
2760
2761 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2762 return 1;
2763
2764 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2765 return -1;
2766
2767 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2768 return 1;
2769
2770 return 0;
2771 }
2772
2773 /* Search SYMS for a symbol of the given VALUE. */
2774
2775 static asymbol *
2776 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2777 {
2778 long mid;
2779
2780 if (id == -1)
2781 {
2782 while (lo < hi)
2783 {
2784 mid = (lo + hi) >> 1;
2785 if (syms[mid]->value + syms[mid]->section->vma < value)
2786 lo = mid + 1;
2787 else if (syms[mid]->value + syms[mid]->section->vma > value)
2788 hi = mid;
2789 else
2790 return syms[mid];
2791 }
2792 }
2793 else
2794 {
2795 while (lo < hi)
2796 {
2797 mid = (lo + hi) >> 1;
2798 if (syms[mid]->section->id < id)
2799 lo = mid + 1;
2800 else if (syms[mid]->section->id > id)
2801 hi = mid;
2802 else if (syms[mid]->value < value)
2803 lo = mid + 1;
2804 else if (syms[mid]->value > value)
2805 hi = mid;
2806 else
2807 return syms[mid];
2808 }
2809 }
2810 return NULL;
2811 }
2812
2813 static bfd_boolean
2814 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2815 {
2816 bfd_vma vma = *(bfd_vma *) ptr;
2817 return ((section->flags & SEC_ALLOC) != 0
2818 && section->vma <= vma
2819 && vma < section->vma + section->size);
2820 }
2821
2822 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2823 entry syms. Also generate @plt symbols for the glink branch table. */
2824
2825 static long
2826 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2827 long static_count, asymbol **static_syms,
2828 long dyn_count, asymbol **dyn_syms,
2829 asymbol **ret)
2830 {
2831 asymbol *s;
2832 long i;
2833 long count;
2834 char *names;
2835 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2836 asection *opd;
2837 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2838 asymbol **syms;
2839
2840 *ret = NULL;
2841
2842 opd = bfd_get_section_by_name (abfd, ".opd");
2843 if (opd == NULL)
2844 return 0;
2845
2846 symcount = static_count;
2847 if (!relocatable)
2848 symcount += dyn_count;
2849 if (symcount == 0)
2850 return 0;
2851
2852 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2853 if (syms == NULL)
2854 return -1;
2855
2856 if (!relocatable && static_count != 0 && dyn_count != 0)
2857 {
2858 /* Use both symbol tables. */
2859 memcpy (syms, static_syms, static_count * sizeof (*syms));
2860 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2861 }
2862 else if (!relocatable && static_count == 0)
2863 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2864 else
2865 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2866
2867 synthetic_relocatable = relocatable;
2868 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2869
2870 if (!relocatable && symcount > 1)
2871 {
2872 long j;
2873 /* Trim duplicate syms, since we may have merged the normal and
2874 dynamic symbols. Actually, we only care about syms that have
2875 different values, so trim any with the same value. */
2876 for (i = 1, j = 1; i < symcount; ++i)
2877 if (syms[i - 1]->value + syms[i - 1]->section->vma
2878 != syms[i]->value + syms[i]->section->vma)
2879 syms[j++] = syms[i];
2880 symcount = j;
2881 }
2882
2883 i = 0;
2884 if (strcmp (syms[i]->section->name, ".opd") == 0)
2885 ++i;
2886 codesecsym = i;
2887
2888 for (; i < symcount; ++i)
2889 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2890 != (SEC_CODE | SEC_ALLOC))
2891 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2892 break;
2893 codesecsymend = i;
2894
2895 for (; i < symcount; ++i)
2896 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2897 break;
2898 secsymend = i;
2899
2900 for (; i < symcount; ++i)
2901 if (strcmp (syms[i]->section->name, ".opd") != 0)
2902 break;
2903 opdsymend = i;
2904
2905 for (; i < symcount; ++i)
2906 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2907 != (SEC_CODE | SEC_ALLOC))
2908 break;
2909 symcount = i;
2910
2911 count = 0;
2912
2913 if (relocatable)
2914 {
2915 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2916 arelent *r;
2917 size_t size;
2918 long relcount;
2919
2920 if (opdsymend == secsymend)
2921 goto done;
2922
2923 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2924 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2925 if (relcount == 0)
2926 goto done;
2927
2928 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2929 {
2930 count = -1;
2931 goto done;
2932 }
2933
2934 size = 0;
2935 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2936 {
2937 asymbol *sym;
2938
2939 while (r < opd->relocation + relcount
2940 && r->address < syms[i]->value + opd->vma)
2941 ++r;
2942
2943 if (r == opd->relocation + relcount)
2944 break;
2945
2946 if (r->address != syms[i]->value + opd->vma)
2947 continue;
2948
2949 if (r->howto->type != R_PPC64_ADDR64)
2950 continue;
2951
2952 sym = *r->sym_ptr_ptr;
2953 if (!sym_exists_at (syms, opdsymend, symcount,
2954 sym->section->id, sym->value + r->addend))
2955 {
2956 ++count;
2957 size += sizeof (asymbol);
2958 size += strlen (syms[i]->name) + 2;
2959 }
2960 }
2961
2962 s = *ret = bfd_malloc (size);
2963 if (s == NULL)
2964 {
2965 count = -1;
2966 goto done;
2967 }
2968
2969 names = (char *) (s + count);
2970
2971 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2972 {
2973 asymbol *sym;
2974
2975 while (r < opd->relocation + relcount
2976 && r->address < syms[i]->value + opd->vma)
2977 ++r;
2978
2979 if (r == opd->relocation + relcount)
2980 break;
2981
2982 if (r->address != syms[i]->value + opd->vma)
2983 continue;
2984
2985 if (r->howto->type != R_PPC64_ADDR64)
2986 continue;
2987
2988 sym = *r->sym_ptr_ptr;
2989 if (!sym_exists_at (syms, opdsymend, symcount,
2990 sym->section->id, sym->value + r->addend))
2991 {
2992 size_t len;
2993
2994 *s = *syms[i];
2995 s->flags |= BSF_SYNTHETIC;
2996 s->section = sym->section;
2997 s->value = sym->value + r->addend;
2998 s->name = names;
2999 *names++ = '.';
3000 len = strlen (syms[i]->name);
3001 memcpy (names, syms[i]->name, len + 1);
3002 names += len + 1;
3003 /* Have udata.p point back to the original symbol this
3004 synthetic symbol was derived from. */
3005 s->udata.p = syms[i];
3006 s++;
3007 }
3008 }
3009 }
3010 else
3011 {
3012 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3013 bfd_byte *contents;
3014 size_t size;
3015 long plt_count = 0;
3016 bfd_vma glink_vma = 0, resolv_vma = 0;
3017 asection *dynamic, *glink = NULL, *relplt = NULL;
3018 arelent *p;
3019
3020 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3021 {
3022 if (contents)
3023 {
3024 free_contents_and_exit:
3025 free (contents);
3026 }
3027 count = -1;
3028 goto done;
3029 }
3030
3031 size = 0;
3032 for (i = secsymend; i < opdsymend; ++i)
3033 {
3034 bfd_vma ent;
3035
3036 /* Ignore bogus symbols. */
3037 if (syms[i]->value > opd->size - 8)
3038 continue;
3039
3040 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3041 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3042 {
3043 ++count;
3044 size += sizeof (asymbol);
3045 size += strlen (syms[i]->name) + 2;
3046 }
3047 }
3048
3049 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3050 if (dyn_count != 0
3051 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3052 {
3053 bfd_byte *dynbuf, *extdyn, *extdynend;
3054 size_t extdynsize;
3055 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3056
3057 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3058 goto free_contents_and_exit;
3059
3060 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3061 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3062
3063 extdyn = dynbuf;
3064 extdynend = extdyn + dynamic->size;
3065 for (; extdyn < extdynend; extdyn += extdynsize)
3066 {
3067 Elf_Internal_Dyn dyn;
3068 (*swap_dyn_in) (abfd, extdyn, &dyn);
3069
3070 if (dyn.d_tag == DT_NULL)
3071 break;
3072
3073 if (dyn.d_tag == DT_PPC64_GLINK)
3074 {
3075 /* The first glink stub starts at offset 32; see comment in
3076 ppc64_elf_finish_dynamic_sections. */
3077 glink_vma = dyn.d_un.d_val + 32;
3078 /* The .glink section usually does not survive the final
3079 link; search for the section (usually .text) where the
3080 glink stubs now reside. */
3081 glink = bfd_sections_find_if (abfd, section_covers_vma,
3082 &glink_vma);
3083 break;
3084 }
3085 }
3086
3087 free (dynbuf);
3088 }
3089
3090 if (glink != NULL)
3091 {
3092 /* Determine __glink trampoline by reading the relative branch
3093 from the first glink stub. */
3094 bfd_byte buf[4];
3095 if (bfd_get_section_contents (abfd, glink, buf,
3096 glink_vma + 4 - glink->vma, 4))
3097 {
3098 unsigned int insn = bfd_get_32 (abfd, buf);
3099 insn ^= B_DOT;
3100 if ((insn & ~0x3fffffc) == 0)
3101 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3102 }
3103
3104 if (resolv_vma)
3105 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3106
3107 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3108 if (relplt != NULL)
3109 {
3110 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3111 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3112 goto free_contents_and_exit;
3113
3114 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3115 size += plt_count * sizeof (asymbol);
3116
3117 p = relplt->relocation;
3118 for (i = 0; i < plt_count; i++, p++)
3119 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3120 }
3121 }
3122
3123 s = *ret = bfd_malloc (size);
3124 if (s == NULL)
3125 goto free_contents_and_exit;
3126
3127 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3128
3129 for (i = secsymend; i < opdsymend; ++i)
3130 {
3131 bfd_vma ent;
3132
3133 if (syms[i]->value > opd->size - 8)
3134 continue;
3135
3136 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3137 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3138 {
3139 long lo, hi;
3140 size_t len;
3141 asection *sec = abfd->sections;
3142
3143 *s = *syms[i];
3144 lo = codesecsym;
3145 hi = codesecsymend;
3146 while (lo < hi)
3147 {
3148 long mid = (lo + hi) >> 1;
3149 if (syms[mid]->section->vma < ent)
3150 lo = mid + 1;
3151 else if (syms[mid]->section->vma > ent)
3152 hi = mid;
3153 else
3154 {
3155 sec = syms[mid]->section;
3156 break;
3157 }
3158 }
3159
3160 if (lo >= hi && lo > codesecsym)
3161 sec = syms[lo - 1]->section;
3162
3163 for (; sec != NULL; sec = sec->next)
3164 {
3165 if (sec->vma > ent)
3166 break;
3167 if ((sec->flags & SEC_ALLOC) == 0
3168 || (sec->flags & SEC_LOAD) == 0)
3169 break;
3170 if ((sec->flags & SEC_CODE) != 0)
3171 s->section = sec;
3172 }
3173 s->flags |= BSF_SYNTHETIC;
3174 s->value = ent - s->section->vma;
3175 s->name = names;
3176 *names++ = '.';
3177 len = strlen (syms[i]->name);
3178 memcpy (names, syms[i]->name, len + 1);
3179 names += len + 1;
3180 /* Have udata.p point back to the original symbol this
3181 synthetic symbol was derived from. */
3182 s->udata.p = syms[i];
3183 s++;
3184 }
3185 }
3186 free (contents);
3187
3188 if (glink != NULL && relplt != NULL)
3189 {
3190 if (resolv_vma)
3191 {
3192 /* Add a symbol for the main glink trampoline. */
3193 memset (s, 0, sizeof *s);
3194 s->the_bfd = abfd;
3195 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3196 s->section = glink;
3197 s->value = resolv_vma - glink->vma;
3198 s->name = names;
3199 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3200 names += sizeof ("__glink_PLTresolve");
3201 s++;
3202 count++;
3203 }
3204
3205 /* FIXME: It would be very much nicer to put sym@plt on the
3206 stub rather than on the glink branch table entry. The
3207 objdump disassembler would then use a sensible symbol
3208 name on plt calls. The difficulty in doing so is
3209 a) finding the stubs, and,
3210 b) matching stubs against plt entries, and,
3211 c) there can be multiple stubs for a given plt entry.
3212
3213 Solving (a) could be done by code scanning, but older
3214 ppc64 binaries used different stubs to current code.
3215 (b) is the tricky one since you need to known the toc
3216 pointer for at least one function that uses a pic stub to
3217 be able to calculate the plt address referenced.
3218 (c) means gdb would need to set multiple breakpoints (or
3219 find the glink branch itself) when setting breakpoints
3220 for pending shared library loads. */
3221 p = relplt->relocation;
3222 for (i = 0; i < plt_count; i++, p++)
3223 {
3224 size_t len;
3225
3226 *s = **p->sym_ptr_ptr;
3227 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3228 we are defining a symbol, ensure one of them is set. */
3229 if ((s->flags & BSF_LOCAL) == 0)
3230 s->flags |= BSF_GLOBAL;
3231 s->flags |= BSF_SYNTHETIC;
3232 s->section = glink;
3233 s->value = glink_vma - glink->vma;
3234 s->name = names;
3235 s->udata.p = NULL;
3236 len = strlen ((*p->sym_ptr_ptr)->name);
3237 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3238 names += len;
3239 memcpy (names, "@plt", sizeof ("@plt"));
3240 names += sizeof ("@plt");
3241 s++;
3242 glink_vma += 8;
3243 if (i >= 0x8000)
3244 glink_vma += 4;
3245 }
3246 count += plt_count;
3247 }
3248 }
3249
3250 done:
3251 free (syms);
3252 return count;
3253 }
3254 \f
3255 /* The following functions are specific to the ELF linker, while
3256 functions above are used generally. Those named ppc64_elf_* are
3257 called by the main ELF linker code. They appear in this file more
3258 or less in the order in which they are called. eg.
3259 ppc64_elf_check_relocs is called early in the link process,
3260 ppc64_elf_finish_dynamic_sections is one of the last functions
3261 called.
3262
3263 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3264 functions have both a function code symbol and a function descriptor
3265 symbol. A call to foo in a relocatable object file looks like:
3266
3267 . .text
3268 . x:
3269 . bl .foo
3270 . nop
3271
3272 The function definition in another object file might be:
3273
3274 . .section .opd
3275 . foo: .quad .foo
3276 . .quad .TOC.@tocbase
3277 . .quad 0
3278 .
3279 . .text
3280 . .foo: blr
3281
3282 When the linker resolves the call during a static link, the branch
3283 unsurprisingly just goes to .foo and the .opd information is unused.
3284 If the function definition is in a shared library, things are a little
3285 different: The call goes via a plt call stub, the opd information gets
3286 copied to the plt, and the linker patches the nop.
3287
3288 . x:
3289 . bl .foo_stub
3290 . ld 2,40(1)
3291 .
3292 .
3293 . .foo_stub:
3294 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3295 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3296 . std 2,40(1) # this is the general idea
3297 . ld 11,0(12)
3298 . ld 2,8(12)
3299 . mtctr 11
3300 . ld 11,16(12)
3301 . bctr
3302 .
3303 . .section .plt
3304 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3305
3306 The "reloc ()" notation is supposed to indicate that the linker emits
3307 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3308 copying.
3309
3310 What are the difficulties here? Well, firstly, the relocations
3311 examined by the linker in check_relocs are against the function code
3312 sym .foo, while the dynamic relocation in the plt is emitted against
3313 the function descriptor symbol, foo. Somewhere along the line, we need
3314 to carefully copy dynamic link information from one symbol to the other.
3315 Secondly, the generic part of the elf linker will make .foo a dynamic
3316 symbol as is normal for most other backends. We need foo dynamic
3317 instead, at least for an application final link. However, when
3318 creating a shared library containing foo, we need to have both symbols
3319 dynamic so that references to .foo are satisfied during the early
3320 stages of linking. Otherwise the linker might decide to pull in a
3321 definition from some other object, eg. a static library.
3322
3323 Update: As of August 2004, we support a new convention. Function
3324 calls may use the function descriptor symbol, ie. "bl foo". This
3325 behaves exactly as "bl .foo". */
3326
3327 /* The linker needs to keep track of the number of relocs that it
3328 decides to copy as dynamic relocs in check_relocs for each symbol.
3329 This is so that it can later discard them if they are found to be
3330 unnecessary. We store the information in a field extending the
3331 regular ELF linker hash table. */
3332
3333 struct ppc_dyn_relocs
3334 {
3335 struct ppc_dyn_relocs *next;
3336
3337 /* The input section of the reloc. */
3338 asection *sec;
3339
3340 /* Total number of relocs copied for the input section. */
3341 bfd_size_type count;
3342
3343 /* Number of pc-relative relocs copied for the input section. */
3344 bfd_size_type pc_count;
3345 };
3346
3347 /* Track GOT entries needed for a given symbol. We might need more
3348 than one got entry per symbol. */
3349 struct got_entry
3350 {
3351 struct got_entry *next;
3352
3353 /* The symbol addend that we'll be placing in the GOT. */
3354 bfd_vma addend;
3355
3356 /* Unlike other ELF targets, we use separate GOT entries for the same
3357 symbol referenced from different input files. This is to support
3358 automatic multiple TOC/GOT sections, where the TOC base can vary
3359 from one input file to another. FIXME: After group_sections we
3360 ought to merge entries within the group.
3361
3362 Point to the BFD owning this GOT entry. */
3363 bfd *owner;
3364
3365 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3366 TLS_TPREL or TLS_DTPREL for tls entries. */
3367 char tls_type;
3368
3369 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3370 union
3371 {
3372 bfd_signed_vma refcount;
3373 bfd_vma offset;
3374 } got;
3375 };
3376
3377 /* The same for PLT. */
3378 struct plt_entry
3379 {
3380 struct plt_entry *next;
3381
3382 bfd_vma addend;
3383
3384 union
3385 {
3386 bfd_signed_vma refcount;
3387 bfd_vma offset;
3388 } plt;
3389 };
3390
3391 /* Of those relocs that might be copied as dynamic relocs, this function
3392 selects those that must be copied when linking a shared library,
3393 even when the symbol is local. */
3394
3395 static int
3396 must_be_dyn_reloc (struct bfd_link_info *info,
3397 enum elf_ppc64_reloc_type r_type)
3398 {
3399 switch (r_type)
3400 {
3401 default:
3402 return 1;
3403
3404 case R_PPC64_REL32:
3405 case R_PPC64_REL64:
3406 case R_PPC64_REL30:
3407 return 0;
3408
3409 case R_PPC64_TPREL16:
3410 case R_PPC64_TPREL16_LO:
3411 case R_PPC64_TPREL16_HI:
3412 case R_PPC64_TPREL16_HA:
3413 case R_PPC64_TPREL16_DS:
3414 case R_PPC64_TPREL16_LO_DS:
3415 case R_PPC64_TPREL16_HIGHER:
3416 case R_PPC64_TPREL16_HIGHERA:
3417 case R_PPC64_TPREL16_HIGHEST:
3418 case R_PPC64_TPREL16_HIGHESTA:
3419 case R_PPC64_TPREL64:
3420 return !info->executable;
3421 }
3422 }
3423
3424 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3425 copying dynamic variables from a shared lib into an app's dynbss
3426 section, and instead use a dynamic relocation to point into the
3427 shared lib. With code that gcc generates, it's vital that this be
3428 enabled; In the PowerPC64 ABI, the address of a function is actually
3429 the address of a function descriptor, which resides in the .opd
3430 section. gcc uses the descriptor directly rather than going via the
3431 GOT as some other ABI's do, which means that initialized function
3432 pointers must reference the descriptor. Thus, a function pointer
3433 initialized to the address of a function in a shared library will
3434 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3435 redefines the function descriptor symbol to point to the copy. This
3436 presents a problem as a plt entry for that function is also
3437 initialized from the function descriptor symbol and the copy reloc
3438 may not be initialized first. */
3439 #define ELIMINATE_COPY_RELOCS 1
3440
3441 /* Section name for stubs is the associated section name plus this
3442 string. */
3443 #define STUB_SUFFIX ".stub"
3444
3445 /* Linker stubs.
3446 ppc_stub_long_branch:
3447 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3448 destination, but a 24 bit branch in a stub section will reach.
3449 . b dest
3450
3451 ppc_stub_plt_branch:
3452 Similar to the above, but a 24 bit branch in the stub section won't
3453 reach its destination.
3454 . addis %r12,%r2,xxx@toc@ha
3455 . ld %r11,xxx@toc@l(%r12)
3456 . mtctr %r11
3457 . bctr
3458
3459 ppc_stub_plt_call:
3460 Used to call a function in a shared library. If it so happens that
3461 the plt entry referenced crosses a 64k boundary, then an extra
3462 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3463 . addis %r12,%r2,xxx@toc@ha
3464 . std %r2,40(%r1)
3465 . ld %r11,xxx+0@toc@l(%r12)
3466 . mtctr %r11
3467 . ld %r2,xxx+8@toc@l(%r12)
3468 . ld %r11,xxx+16@toc@l(%r12)
3469 . bctr
3470
3471 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3472 code to adjust the value and save r2 to support multiple toc sections.
3473 A ppc_stub_long_branch with an r2 offset looks like:
3474 . std %r2,40(%r1)
3475 . addis %r2,%r2,off@ha
3476 . addi %r2,%r2,off@l
3477 . b dest
3478
3479 A ppc_stub_plt_branch with an r2 offset looks like:
3480 . std %r2,40(%r1)
3481 . addis %r12,%r2,xxx@toc@ha
3482 . ld %r11,xxx@toc@l(%r12)
3483 . addis %r2,%r2,off@ha
3484 . addi %r2,%r2,off@l
3485 . mtctr %r11
3486 . bctr
3487
3488 In cases where the "addis" instruction would add zero, the "addis" is
3489 omitted and following instructions modified slightly in some cases.
3490 */
3491
3492 enum ppc_stub_type {
3493 ppc_stub_none,
3494 ppc_stub_long_branch,
3495 ppc_stub_long_branch_r2off,
3496 ppc_stub_plt_branch,
3497 ppc_stub_plt_branch_r2off,
3498 ppc_stub_plt_call
3499 };
3500
3501 struct ppc_stub_hash_entry {
3502
3503 /* Base hash table entry structure. */
3504 struct bfd_hash_entry root;
3505
3506 enum ppc_stub_type stub_type;
3507
3508 /* The stub section. */
3509 asection *stub_sec;
3510
3511 /* Offset within stub_sec of the beginning of this stub. */
3512 bfd_vma stub_offset;
3513
3514 /* Given the symbol's value and its section we can determine its final
3515 value when building the stubs (so the stub knows where to jump. */
3516 bfd_vma target_value;
3517 asection *target_section;
3518
3519 /* The symbol table entry, if any, that this was derived from. */
3520 struct ppc_link_hash_entry *h;
3521
3522 /* And the reloc addend that this was derived from. */
3523 bfd_vma addend;
3524
3525 /* Where this stub is being called from, or, in the case of combined
3526 stub sections, the first input section in the group. */
3527 asection *id_sec;
3528 };
3529
3530 struct ppc_branch_hash_entry {
3531
3532 /* Base hash table entry structure. */
3533 struct bfd_hash_entry root;
3534
3535 /* Offset within branch lookup table. */
3536 unsigned int offset;
3537
3538 /* Generation marker. */
3539 unsigned int iter;
3540 };
3541
3542 struct ppc_link_hash_entry
3543 {
3544 struct elf_link_hash_entry elf;
3545
3546 union {
3547 /* A pointer to the most recently used stub hash entry against this
3548 symbol. */
3549 struct ppc_stub_hash_entry *stub_cache;
3550
3551 /* A pointer to the next symbol starting with a '.' */
3552 struct ppc_link_hash_entry *next_dot_sym;
3553 } u;
3554
3555 /* Track dynamic relocs copied for this symbol. */
3556 struct ppc_dyn_relocs *dyn_relocs;
3557
3558 /* Link between function code and descriptor symbols. */
3559 struct ppc_link_hash_entry *oh;
3560
3561 /* Flag function code and descriptor symbols. */
3562 unsigned int is_func:1;
3563 unsigned int is_func_descriptor:1;
3564 unsigned int fake:1;
3565
3566 /* Whether global opd/toc sym has been adjusted or not.
3567 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3568 should be set for all globals defined in any opd/toc section. */
3569 unsigned int adjust_done:1;
3570
3571 /* Set if we twiddled this symbol to weak at some stage. */
3572 unsigned int was_undefined:1;
3573
3574 /* Contexts in which symbol is used in the GOT (or TOC).
3575 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3576 corresponding relocs are encountered during check_relocs.
3577 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3578 indicate the corresponding GOT entry type is not needed.
3579 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3580 a TPREL one. We use a separate flag rather than setting TPREL
3581 just for convenience in distinguishing the two cases. */
3582 #define TLS_GD 1 /* GD reloc. */
3583 #define TLS_LD 2 /* LD reloc. */
3584 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3585 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3586 #define TLS_TLS 16 /* Any TLS reloc. */
3587 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3588 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3589 char tls_mask;
3590 };
3591
3592 /* ppc64 ELF linker hash table. */
3593
3594 struct ppc_link_hash_table
3595 {
3596 struct elf_link_hash_table elf;
3597
3598 /* The stub hash table. */
3599 struct bfd_hash_table stub_hash_table;
3600
3601 /* Another hash table for plt_branch stubs. */
3602 struct bfd_hash_table branch_hash_table;
3603
3604 /* Linker stub bfd. */
3605 bfd *stub_bfd;
3606
3607 /* Linker call-backs. */
3608 asection * (*add_stub_section) (const char *, asection *);
3609 void (*layout_sections_again) (void);
3610
3611 /* Array to keep track of which stub sections have been created, and
3612 information on stub grouping. */
3613 struct map_stub {
3614 /* This is the section to which stubs in the group will be attached. */
3615 asection *link_sec;
3616 /* The stub section. */
3617 asection *stub_sec;
3618 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3619 bfd_vma toc_off;
3620 } *stub_group;
3621
3622 /* Temp used when calculating TOC pointers. */
3623 bfd_vma toc_curr;
3624
3625 /* Highest input section id. */
3626 int top_id;
3627
3628 /* Highest output section index. */
3629 int top_index;
3630
3631 /* Used when adding symbols. */
3632 struct ppc_link_hash_entry *dot_syms;
3633
3634 /* List of input sections for each output section. */
3635 asection **input_list;
3636
3637 /* Short-cuts to get to dynamic linker sections. */
3638 asection *got;
3639 asection *plt;
3640 asection *relplt;
3641 asection *dynbss;
3642 asection *relbss;
3643 asection *glink;
3644 asection *sfpr;
3645 asection *brlt;
3646 asection *relbrlt;
3647
3648 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3649 struct ppc_link_hash_entry *tls_get_addr;
3650 struct ppc_link_hash_entry *tls_get_addr_fd;
3651
3652 /* Statistics. */
3653 unsigned long stub_count[ppc_stub_plt_call];
3654
3655 /* Number of stubs against global syms. */
3656 unsigned long stub_globals;
3657
3658 /* Set if we should emit symbols for stubs. */
3659 unsigned int emit_stub_syms:1;
3660
3661 /* Support for multiple toc sections. */
3662 unsigned int no_multi_toc:1;
3663 unsigned int multi_toc_needed:1;
3664
3665 /* Set on error. */
3666 unsigned int stub_error:1;
3667
3668 /* Temp used by ppc64_elf_process_dot_syms. */
3669 unsigned int twiddled_syms:1;
3670
3671 /* Incremented every time we size stubs. */
3672 unsigned int stub_iteration;
3673
3674 /* Small local sym cache. */
3675 struct sym_cache sym_cache;
3676 };
3677
3678 /* Rename some of the generic section flags to better document how they
3679 are used here. */
3680 #define has_toc_reloc has_gp_reloc
3681 #define makes_toc_func_call need_finalize_relax
3682 #define call_check_in_progress reloc_done
3683
3684 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3685
3686 #define ppc_hash_table(p) \
3687 ((struct ppc_link_hash_table *) ((p)->hash))
3688
3689 #define ppc_stub_hash_lookup(table, string, create, copy) \
3690 ((struct ppc_stub_hash_entry *) \
3691 bfd_hash_lookup ((table), (string), (create), (copy)))
3692
3693 #define ppc_branch_hash_lookup(table, string, create, copy) \
3694 ((struct ppc_branch_hash_entry *) \
3695 bfd_hash_lookup ((table), (string), (create), (copy)))
3696
3697 /* Create an entry in the stub hash table. */
3698
3699 static struct bfd_hash_entry *
3700 stub_hash_newfunc (struct bfd_hash_entry *entry,
3701 struct bfd_hash_table *table,
3702 const char *string)
3703 {
3704 /* Allocate the structure if it has not already been allocated by a
3705 subclass. */
3706 if (entry == NULL)
3707 {
3708 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3709 if (entry == NULL)
3710 return entry;
3711 }
3712
3713 /* Call the allocation method of the superclass. */
3714 entry = bfd_hash_newfunc (entry, table, string);
3715 if (entry != NULL)
3716 {
3717 struct ppc_stub_hash_entry *eh;
3718
3719 /* Initialize the local fields. */
3720 eh = (struct ppc_stub_hash_entry *) entry;
3721 eh->stub_type = ppc_stub_none;
3722 eh->stub_sec = NULL;
3723 eh->stub_offset = 0;
3724 eh->target_value = 0;
3725 eh->target_section = NULL;
3726 eh->h = NULL;
3727 eh->id_sec = NULL;
3728 }
3729
3730 return entry;
3731 }
3732
3733 /* Create an entry in the branch hash table. */
3734
3735 static struct bfd_hash_entry *
3736 branch_hash_newfunc (struct bfd_hash_entry *entry,
3737 struct bfd_hash_table *table,
3738 const char *string)
3739 {
3740 /* Allocate the structure if it has not already been allocated by a
3741 subclass. */
3742 if (entry == NULL)
3743 {
3744 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3745 if (entry == NULL)
3746 return entry;
3747 }
3748
3749 /* Call the allocation method of the superclass. */
3750 entry = bfd_hash_newfunc (entry, table, string);
3751 if (entry != NULL)
3752 {
3753 struct ppc_branch_hash_entry *eh;
3754
3755 /* Initialize the local fields. */
3756 eh = (struct ppc_branch_hash_entry *) entry;
3757 eh->offset = 0;
3758 eh->iter = 0;
3759 }
3760
3761 return entry;
3762 }
3763
3764 /* Create an entry in a ppc64 ELF linker hash table. */
3765
3766 static struct bfd_hash_entry *
3767 link_hash_newfunc (struct bfd_hash_entry *entry,
3768 struct bfd_hash_table *table,
3769 const char *string)
3770 {
3771 /* Allocate the structure if it has not already been allocated by a
3772 subclass. */
3773 if (entry == NULL)
3774 {
3775 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3776 if (entry == NULL)
3777 return entry;
3778 }
3779
3780 /* Call the allocation method of the superclass. */
3781 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3782 if (entry != NULL)
3783 {
3784 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3785
3786 memset (&eh->u.stub_cache, 0,
3787 (sizeof (struct ppc_link_hash_entry)
3788 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3789
3790 /* When making function calls, old ABI code references function entry
3791 points (dot symbols), while new ABI code references the function
3792 descriptor symbol. We need to make any combination of reference and
3793 definition work together, without breaking archive linking.
3794
3795 For a defined function "foo" and an undefined call to "bar":
3796 An old object defines "foo" and ".foo", references ".bar" (possibly
3797 "bar" too).
3798 A new object defines "foo" and references "bar".
3799
3800 A new object thus has no problem with its undefined symbols being
3801 satisfied by definitions in an old object. On the other hand, the
3802 old object won't have ".bar" satisfied by a new object.
3803
3804 Keep a list of newly added dot-symbols. */
3805
3806 if (string[0] == '.')
3807 {
3808 struct ppc_link_hash_table *htab;
3809
3810 htab = (struct ppc_link_hash_table *) table;
3811 eh->u.next_dot_sym = htab->dot_syms;
3812 htab->dot_syms = eh;
3813 }
3814 }
3815
3816 return entry;
3817 }
3818
3819 /* Create a ppc64 ELF linker hash table. */
3820
3821 static struct bfd_link_hash_table *
3822 ppc64_elf_link_hash_table_create (bfd *abfd)
3823 {
3824 struct ppc_link_hash_table *htab;
3825 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3826
3827 htab = bfd_zmalloc (amt);
3828 if (htab == NULL)
3829 return NULL;
3830
3831 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3832 sizeof (struct ppc_link_hash_entry)))
3833 {
3834 free (htab);
3835 return NULL;
3836 }
3837
3838 /* Init the stub hash table too. */
3839 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3840 sizeof (struct ppc_stub_hash_entry)))
3841 return NULL;
3842
3843 /* And the branch hash table. */
3844 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3845 sizeof (struct ppc_branch_hash_entry)))
3846 return NULL;
3847
3848 /* Initializing two fields of the union is just cosmetic. We really
3849 only care about glist, but when compiled on a 32-bit host the
3850 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3851 debugger inspection of these fields look nicer. */
3852 htab->elf.init_got_refcount.refcount = 0;
3853 htab->elf.init_got_refcount.glist = NULL;
3854 htab->elf.init_plt_refcount.refcount = 0;
3855 htab->elf.init_plt_refcount.glist = NULL;
3856 htab->elf.init_got_offset.offset = 0;
3857 htab->elf.init_got_offset.glist = NULL;
3858 htab->elf.init_plt_offset.offset = 0;
3859 htab->elf.init_plt_offset.glist = NULL;
3860
3861 return &htab->elf.root;
3862 }
3863
3864 /* Free the derived linker hash table. */
3865
3866 static void
3867 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3868 {
3869 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3870
3871 bfd_hash_table_free (&ret->stub_hash_table);
3872 bfd_hash_table_free (&ret->branch_hash_table);
3873 _bfd_generic_link_hash_table_free (hash);
3874 }
3875
3876 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3877
3878 void
3879 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3880 {
3881 struct ppc_link_hash_table *htab;
3882
3883 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3884
3885 /* Always hook our dynamic sections into the first bfd, which is the
3886 linker created stub bfd. This ensures that the GOT header is at
3887 the start of the output TOC section. */
3888 htab = ppc_hash_table (info);
3889 htab->stub_bfd = abfd;
3890 htab->elf.dynobj = abfd;
3891 }
3892
3893 /* Build a name for an entry in the stub hash table. */
3894
3895 static char *
3896 ppc_stub_name (const asection *input_section,
3897 const asection *sym_sec,
3898 const struct ppc_link_hash_entry *h,
3899 const Elf_Internal_Rela *rel)
3900 {
3901 char *stub_name;
3902 bfd_size_type len;
3903
3904 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3905 offsets from a sym as a branch target? In fact, we could
3906 probably assume the addend is always zero. */
3907 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3908
3909 if (h)
3910 {
3911 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3912 stub_name = bfd_malloc (len);
3913 if (stub_name == NULL)
3914 return stub_name;
3915
3916 sprintf (stub_name, "%08x.%s+%x",
3917 input_section->id & 0xffffffff,
3918 h->elf.root.root.string,
3919 (int) rel->r_addend & 0xffffffff);
3920 }
3921 else
3922 {
3923 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3924 stub_name = bfd_malloc (len);
3925 if (stub_name == NULL)
3926 return stub_name;
3927
3928 sprintf (stub_name, "%08x.%x:%x+%x",
3929 input_section->id & 0xffffffff,
3930 sym_sec->id & 0xffffffff,
3931 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3932 (int) rel->r_addend & 0xffffffff);
3933 }
3934 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3935 stub_name[len - 2] = 0;
3936 return stub_name;
3937 }
3938
3939 /* Look up an entry in the stub hash. Stub entries are cached because
3940 creating the stub name takes a bit of time. */
3941
3942 static struct ppc_stub_hash_entry *
3943 ppc_get_stub_entry (const asection *input_section,
3944 const asection *sym_sec,
3945 struct ppc_link_hash_entry *h,
3946 const Elf_Internal_Rela *rel,
3947 struct ppc_link_hash_table *htab)
3948 {
3949 struct ppc_stub_hash_entry *stub_entry;
3950 const asection *id_sec;
3951
3952 /* If this input section is part of a group of sections sharing one
3953 stub section, then use the id of the first section in the group.
3954 Stub names need to include a section id, as there may well be
3955 more than one stub used to reach say, printf, and we need to
3956 distinguish between them. */
3957 id_sec = htab->stub_group[input_section->id].link_sec;
3958
3959 if (h != NULL && h->u.stub_cache != NULL
3960 && h->u.stub_cache->h == h
3961 && h->u.stub_cache->id_sec == id_sec)
3962 {
3963 stub_entry = h->u.stub_cache;
3964 }
3965 else
3966 {
3967 char *stub_name;
3968
3969 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3970 if (stub_name == NULL)
3971 return NULL;
3972
3973 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3974 stub_name, FALSE, FALSE);
3975 if (h != NULL)
3976 h->u.stub_cache = stub_entry;
3977
3978 free (stub_name);
3979 }
3980
3981 return stub_entry;
3982 }
3983
3984 /* Add a new stub entry to the stub hash. Not all fields of the new
3985 stub entry are initialised. */
3986
3987 static struct ppc_stub_hash_entry *
3988 ppc_add_stub (const char *stub_name,
3989 asection *section,
3990 struct ppc_link_hash_table *htab)
3991 {
3992 asection *link_sec;
3993 asection *stub_sec;
3994 struct ppc_stub_hash_entry *stub_entry;
3995
3996 link_sec = htab->stub_group[section->id].link_sec;
3997 stub_sec = htab->stub_group[section->id].stub_sec;
3998 if (stub_sec == NULL)
3999 {
4000 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4001 if (stub_sec == NULL)
4002 {
4003 size_t namelen;
4004 bfd_size_type len;
4005 char *s_name;
4006
4007 namelen = strlen (link_sec->name);
4008 len = namelen + sizeof (STUB_SUFFIX);
4009 s_name = bfd_alloc (htab->stub_bfd, len);
4010 if (s_name == NULL)
4011 return NULL;
4012
4013 memcpy (s_name, link_sec->name, namelen);
4014 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4015 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4016 if (stub_sec == NULL)
4017 return NULL;
4018 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4019 }
4020 htab->stub_group[section->id].stub_sec = stub_sec;
4021 }
4022
4023 /* Enter this entry into the linker stub hash table. */
4024 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4025 TRUE, FALSE);
4026 if (stub_entry == NULL)
4027 {
4028 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
4029 section->owner, stub_name);
4030 return NULL;
4031 }
4032
4033 stub_entry->stub_sec = stub_sec;
4034 stub_entry->stub_offset = 0;
4035 stub_entry->id_sec = link_sec;
4036 return stub_entry;
4037 }
4038
4039 /* Create sections for linker generated code. */
4040
4041 static bfd_boolean
4042 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4043 {
4044 struct ppc_link_hash_table *htab;
4045 flagword flags;
4046
4047 htab = ppc_hash_table (info);
4048
4049 /* Create .sfpr for code to save and restore fp regs. */
4050 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4051 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4052 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4053 flags);
4054 if (htab->sfpr == NULL
4055 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4056 return FALSE;
4057
4058 /* Create .glink for lazy dynamic linking support. */
4059 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4060 flags);
4061 if (htab->glink == NULL
4062 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4063 return FALSE;
4064
4065 /* Create branch lookup table for plt_branch stubs. */
4066 flags = (SEC_ALLOC | SEC_LOAD
4067 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4068 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4069 flags);
4070 if (htab->brlt == NULL
4071 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4072 return FALSE;
4073
4074 if (!info->shared)
4075 return TRUE;
4076
4077 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4078 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4079 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4080 ".rela.branch_lt",
4081 flags);
4082 if (!htab->relbrlt
4083 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4084 return FALSE;
4085
4086 return TRUE;
4087 }
4088
4089 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4090 not already done. */
4091
4092 static bfd_boolean
4093 create_got_section (bfd *abfd, struct bfd_link_info *info)
4094 {
4095 asection *got, *relgot;
4096 flagword flags;
4097 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4098
4099 if (!is_ppc64_elf (abfd))
4100 return FALSE;
4101
4102 if (!htab->got)
4103 {
4104 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4105 return FALSE;
4106
4107 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
4108 if (!htab->got)
4109 abort ();
4110 }
4111
4112 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4113 | SEC_LINKER_CREATED);
4114
4115 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4116 if (!got
4117 || !bfd_set_section_alignment (abfd, got, 3))
4118 return FALSE;
4119
4120 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4121 flags | SEC_READONLY);
4122 if (!relgot
4123 || ! bfd_set_section_alignment (abfd, relgot, 3))
4124 return FALSE;
4125
4126 ppc64_elf_tdata (abfd)->got = got;
4127 ppc64_elf_tdata (abfd)->relgot = relgot;
4128 return TRUE;
4129 }
4130
4131 /* Create the dynamic sections, and set up shortcuts. */
4132
4133 static bfd_boolean
4134 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4135 {
4136 struct ppc_link_hash_table *htab;
4137
4138 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4139 return FALSE;
4140
4141 htab = ppc_hash_table (info);
4142 if (!htab->got)
4143 htab->got = bfd_get_section_by_name (dynobj, ".got");
4144 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
4145 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
4146 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
4147 if (!info->shared)
4148 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
4149
4150 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4151 || (!info->shared && !htab->relbss))
4152 abort ();
4153
4154 return TRUE;
4155 }
4156
4157 /* Merge PLT info on FROM with that on TO. */
4158
4159 static void
4160 move_plt_plist (struct ppc_link_hash_entry *from,
4161 struct ppc_link_hash_entry *to)
4162 {
4163 if (from->elf.plt.plist != NULL)
4164 {
4165 if (to->elf.plt.plist != NULL)
4166 {
4167 struct plt_entry **entp;
4168 struct plt_entry *ent;
4169
4170 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4171 {
4172 struct plt_entry *dent;
4173
4174 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4175 if (dent->addend == ent->addend)
4176 {
4177 dent->plt.refcount += ent->plt.refcount;
4178 *entp = ent->next;
4179 break;
4180 }
4181 if (dent == NULL)
4182 entp = &ent->next;
4183 }
4184 *entp = to->elf.plt.plist;
4185 }
4186
4187 to->elf.plt.plist = from->elf.plt.plist;
4188 from->elf.plt.plist = NULL;
4189 }
4190 }
4191
4192 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4193
4194 static void
4195 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4196 struct elf_link_hash_entry *dir,
4197 struct elf_link_hash_entry *ind)
4198 {
4199 struct ppc_link_hash_entry *edir, *eind;
4200
4201 edir = (struct ppc_link_hash_entry *) dir;
4202 eind = (struct ppc_link_hash_entry *) ind;
4203
4204 /* Copy over any dynamic relocs we may have on the indirect sym. */
4205 if (eind->dyn_relocs != NULL)
4206 {
4207 if (edir->dyn_relocs != NULL)
4208 {
4209 struct ppc_dyn_relocs **pp;
4210 struct ppc_dyn_relocs *p;
4211
4212 /* Add reloc counts against the indirect sym to the direct sym
4213 list. Merge any entries against the same section. */
4214 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4215 {
4216 struct ppc_dyn_relocs *q;
4217
4218 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4219 if (q->sec == p->sec)
4220 {
4221 q->pc_count += p->pc_count;
4222 q->count += p->count;
4223 *pp = p->next;
4224 break;
4225 }
4226 if (q == NULL)
4227 pp = &p->next;
4228 }
4229 *pp = edir->dyn_relocs;
4230 }
4231
4232 edir->dyn_relocs = eind->dyn_relocs;
4233 eind->dyn_relocs = NULL;
4234 }
4235
4236 edir->is_func |= eind->is_func;
4237 edir->is_func_descriptor |= eind->is_func_descriptor;
4238 edir->tls_mask |= eind->tls_mask;
4239
4240 /* If called to transfer flags for a weakdef during processing
4241 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4242 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4243 if (!(ELIMINATE_COPY_RELOCS
4244 && eind->elf.root.type != bfd_link_hash_indirect
4245 && edir->elf.dynamic_adjusted))
4246 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4247
4248 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4249 edir->elf.ref_regular |= eind->elf.ref_regular;
4250 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4251 edir->elf.needs_plt |= eind->elf.needs_plt;
4252
4253 /* If we were called to copy over info for a weak sym, that's all. */
4254 if (eind->elf.root.type != bfd_link_hash_indirect)
4255 return;
4256
4257 /* Copy over got entries that we may have already seen to the
4258 symbol which just became indirect. */
4259 if (eind->elf.got.glist != NULL)
4260 {
4261 if (edir->elf.got.glist != NULL)
4262 {
4263 struct got_entry **entp;
4264 struct got_entry *ent;
4265
4266 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4267 {
4268 struct got_entry *dent;
4269
4270 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4271 if (dent->addend == ent->addend
4272 && dent->owner == ent->owner
4273 && dent->tls_type == ent->tls_type)
4274 {
4275 dent->got.refcount += ent->got.refcount;
4276 *entp = ent->next;
4277 break;
4278 }
4279 if (dent == NULL)
4280 entp = &ent->next;
4281 }
4282 *entp = edir->elf.got.glist;
4283 }
4284
4285 edir->elf.got.glist = eind->elf.got.glist;
4286 eind->elf.got.glist = NULL;
4287 }
4288
4289 /* And plt entries. */
4290 move_plt_plist (eind, edir);
4291
4292 if (eind->elf.dynindx != -1)
4293 {
4294 if (edir->elf.dynindx != -1)
4295 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4296 edir->elf.dynstr_index);
4297 edir->elf.dynindx = eind->elf.dynindx;
4298 edir->elf.dynstr_index = eind->elf.dynstr_index;
4299 eind->elf.dynindx = -1;
4300 eind->elf.dynstr_index = 0;
4301 }
4302 }
4303
4304 /* Find the function descriptor hash entry from the given function code
4305 hash entry FH. Link the entries via their OH fields. */
4306
4307 static struct ppc_link_hash_entry *
4308 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4309 {
4310 struct ppc_link_hash_entry *fdh = fh->oh;
4311
4312 if (fdh == NULL)
4313 {
4314 const char *fd_name = fh->elf.root.root.string + 1;
4315
4316 fdh = (struct ppc_link_hash_entry *)
4317 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4318 if (fdh != NULL)
4319 {
4320 fdh->is_func_descriptor = 1;
4321 fdh->oh = fh;
4322 fh->is_func = 1;
4323 fh->oh = fdh;
4324 }
4325 }
4326
4327 return fdh;
4328 }
4329
4330 /* Make a fake function descriptor sym for the code sym FH. */
4331
4332 static struct ppc_link_hash_entry *
4333 make_fdh (struct bfd_link_info *info,
4334 struct ppc_link_hash_entry *fh)
4335 {
4336 bfd *abfd;
4337 asymbol *newsym;
4338 struct bfd_link_hash_entry *bh;
4339 struct ppc_link_hash_entry *fdh;
4340
4341 abfd = fh->elf.root.u.undef.abfd;
4342 newsym = bfd_make_empty_symbol (abfd);
4343 newsym->name = fh->elf.root.root.string + 1;
4344 newsym->section = bfd_und_section_ptr;
4345 newsym->value = 0;
4346 newsym->flags = BSF_WEAK;
4347
4348 bh = NULL;
4349 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4350 newsym->flags, newsym->section,
4351 newsym->value, NULL, FALSE, FALSE,
4352 &bh))
4353 return NULL;
4354
4355 fdh = (struct ppc_link_hash_entry *) bh;
4356 fdh->elf.non_elf = 0;
4357 fdh->fake = 1;
4358 fdh->is_func_descriptor = 1;
4359 fdh->oh = fh;
4360 fh->is_func = 1;
4361 fh->oh = fdh;
4362 return fdh;
4363 }
4364
4365 /* Fix function descriptor symbols defined in .opd sections to be
4366 function type. */
4367
4368 static bfd_boolean
4369 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4370 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4371 Elf_Internal_Sym *isym,
4372 const char **name ATTRIBUTE_UNUSED,
4373 flagword *flags ATTRIBUTE_UNUSED,
4374 asection **sec,
4375 bfd_vma *value ATTRIBUTE_UNUSED)
4376 {
4377 if (*sec != NULL
4378 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4379 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4380
4381 return TRUE;
4382 }
4383
4384 /* This function makes an old ABI object reference to ".bar" cause the
4385 inclusion of a new ABI object archive that defines "bar".
4386 NAME is a symbol defined in an archive. Return a symbol in the hash
4387 table that might be satisfied by the archive symbols. */
4388
4389 static struct elf_link_hash_entry *
4390 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4391 struct bfd_link_info *info,
4392 const char *name)
4393 {
4394 struct elf_link_hash_entry *h;
4395 char *dot_name;
4396 size_t len;
4397
4398 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4399 if (h != NULL
4400 /* Don't return this sym if it is a fake function descriptor
4401 created by add_symbol_adjust. */
4402 && !(h->root.type == bfd_link_hash_undefweak
4403 && ((struct ppc_link_hash_entry *) h)->fake))
4404 return h;
4405
4406 if (name[0] == '.')
4407 return h;
4408
4409 len = strlen (name);
4410 dot_name = bfd_alloc (abfd, len + 2);
4411 if (dot_name == NULL)
4412 return (struct elf_link_hash_entry *) 0 - 1;
4413 dot_name[0] = '.';
4414 memcpy (dot_name + 1, name, len + 1);
4415 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4416 bfd_release (abfd, dot_name);
4417 return h;
4418 }
4419
4420 /* This function satisfies all old ABI object references to ".bar" if a
4421 new ABI object defines "bar". Well, at least, undefined dot symbols
4422 are made weak. This stops later archive searches from including an
4423 object if we already have a function descriptor definition. It also
4424 prevents the linker complaining about undefined symbols.
4425 We also check and correct mismatched symbol visibility here. The
4426 most restrictive visibility of the function descriptor and the
4427 function entry symbol is used. */
4428
4429 static bfd_boolean
4430 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4431 {
4432 struct ppc_link_hash_table *htab;
4433 struct ppc_link_hash_entry *fdh;
4434
4435 if (eh->elf.root.type == bfd_link_hash_indirect)
4436 return TRUE;
4437
4438 if (eh->elf.root.type == bfd_link_hash_warning)
4439 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4440
4441 if (eh->elf.root.root.string[0] != '.')
4442 abort ();
4443
4444 htab = ppc_hash_table (info);
4445 fdh = get_fdh (eh, htab);
4446 if (fdh == NULL
4447 && !info->relocatable
4448 && (eh->elf.root.type == bfd_link_hash_undefined
4449 || eh->elf.root.type == bfd_link_hash_undefweak)
4450 && eh->elf.ref_regular)
4451 {
4452 /* Make an undefweak function descriptor sym, which is enough to
4453 pull in an --as-needed shared lib, but won't cause link
4454 errors. Archives are handled elsewhere. */
4455 fdh = make_fdh (info, eh);
4456 if (fdh == NULL)
4457 return FALSE;
4458 else
4459 fdh->elf.ref_regular = 1;
4460 }
4461 else if (fdh != NULL)
4462 {
4463 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4464 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4465 if (entry_vis < descr_vis)
4466 fdh->elf.other += entry_vis - descr_vis;
4467 else if (entry_vis > descr_vis)
4468 eh->elf.other += descr_vis - entry_vis;
4469
4470 if ((fdh->elf.root.type == bfd_link_hash_defined
4471 || fdh->elf.root.type == bfd_link_hash_defweak)
4472 && eh->elf.root.type == bfd_link_hash_undefined)
4473 {
4474 eh->elf.root.type = bfd_link_hash_undefweak;
4475 eh->was_undefined = 1;
4476 htab->twiddled_syms = 1;
4477 }
4478 }
4479
4480 return TRUE;
4481 }
4482
4483 /* Process list of dot-symbols we made in link_hash_newfunc. */
4484
4485 static bfd_boolean
4486 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4487 {
4488 struct ppc_link_hash_table *htab;
4489 struct ppc_link_hash_entry **p, *eh;
4490
4491 htab = ppc_hash_table (info);
4492 if (!is_ppc64_elf (info->output_bfd))
4493 return TRUE;
4494
4495 if (is_ppc64_elf (ibfd))
4496 {
4497 p = &htab->dot_syms;
4498 while ((eh = *p) != NULL)
4499 {
4500 *p = NULL;
4501 if (!add_symbol_adjust (eh, info))
4502 return FALSE;
4503 p = &eh->u.next_dot_sym;
4504 }
4505 }
4506
4507 /* Clear the list for non-ppc64 input files. */
4508 p = &htab->dot_syms;
4509 while ((eh = *p) != NULL)
4510 {
4511 *p = NULL;
4512 p = &eh->u.next_dot_sym;
4513 }
4514
4515 /* We need to fix the undefs list for any syms we have twiddled to
4516 undef_weak. */
4517 if (htab->twiddled_syms)
4518 {
4519 bfd_link_repair_undef_list (&htab->elf.root);
4520 htab->twiddled_syms = 0;
4521 }
4522 return TRUE;
4523 }
4524
4525 /* Undo hash table changes when an --as-needed input file is determined
4526 not to be needed. */
4527
4528 static bfd_boolean
4529 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4530 struct bfd_link_info *info)
4531 {
4532 ppc_hash_table (info)->dot_syms = NULL;
4533 return TRUE;
4534 }
4535
4536 static bfd_boolean
4537 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4538 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4539 {
4540 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4541 char *local_got_tls_masks;
4542
4543 if (local_got_ents == NULL)
4544 {
4545 bfd_size_type size = symtab_hdr->sh_info;
4546
4547 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4548 local_got_ents = bfd_zalloc (abfd, size);
4549 if (local_got_ents == NULL)
4550 return FALSE;
4551 elf_local_got_ents (abfd) = local_got_ents;
4552 }
4553
4554 if ((tls_type & TLS_EXPLICIT) == 0)
4555 {
4556 struct got_entry *ent;
4557
4558 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4559 if (ent->addend == r_addend
4560 && ent->owner == abfd
4561 && ent->tls_type == tls_type)
4562 break;
4563 if (ent == NULL)
4564 {
4565 bfd_size_type amt = sizeof (*ent);
4566 ent = bfd_alloc (abfd, amt);
4567 if (ent == NULL)
4568 return FALSE;
4569 ent->next = local_got_ents[r_symndx];
4570 ent->addend = r_addend;
4571 ent->owner = abfd;
4572 ent->tls_type = tls_type;
4573 ent->got.refcount = 0;
4574 local_got_ents[r_symndx] = ent;
4575 }
4576 ent->got.refcount += 1;
4577 }
4578
4579 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4580 local_got_tls_masks[r_symndx] |= tls_type;
4581 return TRUE;
4582 }
4583
4584 static bfd_boolean
4585 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4586 {
4587 struct plt_entry *ent;
4588
4589 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4590 if (ent->addend == addend)
4591 break;
4592 if (ent == NULL)
4593 {
4594 bfd_size_type amt = sizeof (*ent);
4595 ent = bfd_alloc (abfd, amt);
4596 if (ent == NULL)
4597 return FALSE;
4598 ent->next = eh->elf.plt.plist;
4599 ent->addend = addend;
4600 ent->plt.refcount = 0;
4601 eh->elf.plt.plist = ent;
4602 }
4603 ent->plt.refcount += 1;
4604 eh->elf.needs_plt = 1;
4605 if (eh->elf.root.root.string[0] == '.'
4606 && eh->elf.root.root.string[1] != '\0')
4607 eh->is_func = 1;
4608 return TRUE;
4609 }
4610
4611 /* Look through the relocs for a section during the first phase, and
4612 calculate needed space in the global offset table, procedure
4613 linkage table, and dynamic reloc sections. */
4614
4615 static bfd_boolean
4616 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4617 asection *sec, const Elf_Internal_Rela *relocs)
4618 {
4619 struct ppc_link_hash_table *htab;
4620 Elf_Internal_Shdr *symtab_hdr;
4621 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4622 const Elf_Internal_Rela *rel;
4623 const Elf_Internal_Rela *rel_end;
4624 asection *sreloc;
4625 asection **opd_sym_map;
4626 struct elf_link_hash_entry *tga, *dottga;
4627
4628 if (info->relocatable)
4629 return TRUE;
4630
4631 /* Don't do anything special with non-loaded, non-alloced sections.
4632 In particular, any relocs in such sections should not affect GOT
4633 and PLT reference counting (ie. we don't allow them to create GOT
4634 or PLT entries), there's no possibility or desire to optimize TLS
4635 relocs, and there's not much point in propagating relocs to shared
4636 libs that the dynamic linker won't relocate. */
4637 if ((sec->flags & SEC_ALLOC) == 0)
4638 return TRUE;
4639
4640 BFD_ASSERT (is_ppc64_elf (abfd));
4641
4642 htab = ppc_hash_table (info);
4643 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4644 FALSE, FALSE, TRUE);
4645 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4646 FALSE, FALSE, TRUE);
4647 symtab_hdr = &elf_symtab_hdr (abfd);
4648
4649 sym_hashes = elf_sym_hashes (abfd);
4650 sym_hashes_end = (sym_hashes
4651 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4652 - symtab_hdr->sh_info);
4653
4654 sreloc = NULL;
4655 opd_sym_map = NULL;
4656 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4657 {
4658 /* Garbage collection needs some extra help with .opd sections.
4659 We don't want to necessarily keep everything referenced by
4660 relocs in .opd, as that would keep all functions. Instead,
4661 if we reference an .opd symbol (a function descriptor), we
4662 want to keep the function code symbol's section. This is
4663 easy for global symbols, but for local syms we need to keep
4664 information about the associated function section. */
4665 bfd_size_type amt;
4666
4667 amt = sec->size * sizeof (*opd_sym_map) / 8;
4668 opd_sym_map = bfd_zalloc (abfd, amt);
4669 if (opd_sym_map == NULL)
4670 return FALSE;
4671 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4672 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4673 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4674 }
4675
4676 if (htab->sfpr == NULL
4677 && !create_linkage_sections (htab->elf.dynobj, info))
4678 return FALSE;
4679
4680 rel_end = relocs + sec->reloc_count;
4681 for (rel = relocs; rel < rel_end; rel++)
4682 {
4683 unsigned long r_symndx;
4684 struct elf_link_hash_entry *h;
4685 enum elf_ppc64_reloc_type r_type;
4686 int tls_type;
4687 struct _ppc64_elf_section_data *ppc64_sec;
4688
4689 r_symndx = ELF64_R_SYM (rel->r_info);
4690 if (r_symndx < symtab_hdr->sh_info)
4691 h = NULL;
4692 else
4693 {
4694 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4695 while (h->root.type == bfd_link_hash_indirect
4696 || h->root.type == bfd_link_hash_warning)
4697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4698 }
4699
4700 tls_type = 0;
4701 r_type = ELF64_R_TYPE (rel->r_info);
4702 if (h != NULL && (h == tga || h == dottga))
4703 switch (r_type)
4704 {
4705 default:
4706 break;
4707
4708 case R_PPC64_REL24:
4709 case R_PPC64_REL14:
4710 case R_PPC64_REL14_BRTAKEN:
4711 case R_PPC64_REL14_BRNTAKEN:
4712 case R_PPC64_ADDR24:
4713 case R_PPC64_ADDR14:
4714 case R_PPC64_ADDR14_BRTAKEN:
4715 case R_PPC64_ADDR14_BRNTAKEN:
4716 if (rel != relocs
4717 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4718 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4719 /* We have a new-style __tls_get_addr call with a marker
4720 reloc. */
4721 ;
4722 else
4723 /* Mark this section as having an old-style call. */
4724 sec->has_tls_get_addr_call = 1;
4725 break;
4726 }
4727
4728 switch (r_type)
4729 {
4730 case R_PPC64_TLSGD:
4731 case R_PPC64_TLSLD:
4732 /* These special tls relocs tie a call to __tls_get_addr with
4733 its parameter symbol. */
4734 break;
4735
4736 case R_PPC64_GOT_TLSLD16:
4737 case R_PPC64_GOT_TLSLD16_LO:
4738 case R_PPC64_GOT_TLSLD16_HI:
4739 case R_PPC64_GOT_TLSLD16_HA:
4740 tls_type = TLS_TLS | TLS_LD;
4741 goto dogottls;
4742
4743 case R_PPC64_GOT_TLSGD16:
4744 case R_PPC64_GOT_TLSGD16_LO:
4745 case R_PPC64_GOT_TLSGD16_HI:
4746 case R_PPC64_GOT_TLSGD16_HA:
4747 tls_type = TLS_TLS | TLS_GD;
4748 goto dogottls;
4749
4750 case R_PPC64_GOT_TPREL16_DS:
4751 case R_PPC64_GOT_TPREL16_LO_DS:
4752 case R_PPC64_GOT_TPREL16_HI:
4753 case R_PPC64_GOT_TPREL16_HA:
4754 if (!info->executable)
4755 info->flags |= DF_STATIC_TLS;
4756 tls_type = TLS_TLS | TLS_TPREL;
4757 goto dogottls;
4758
4759 case R_PPC64_GOT_DTPREL16_DS:
4760 case R_PPC64_GOT_DTPREL16_LO_DS:
4761 case R_PPC64_GOT_DTPREL16_HI:
4762 case R_PPC64_GOT_DTPREL16_HA:
4763 tls_type = TLS_TLS | TLS_DTPREL;
4764 dogottls:
4765 sec->has_tls_reloc = 1;
4766 /* Fall thru */
4767
4768 case R_PPC64_GOT16:
4769 case R_PPC64_GOT16_DS:
4770 case R_PPC64_GOT16_HA:
4771 case R_PPC64_GOT16_HI:
4772 case R_PPC64_GOT16_LO:
4773 case R_PPC64_GOT16_LO_DS:
4774 /* This symbol requires a global offset table entry. */
4775 sec->has_toc_reloc = 1;
4776 if (ppc64_elf_tdata (abfd)->got == NULL
4777 && !create_got_section (abfd, info))
4778 return FALSE;
4779
4780 if (h != NULL)
4781 {
4782 struct ppc_link_hash_entry *eh;
4783 struct got_entry *ent;
4784
4785 eh = (struct ppc_link_hash_entry *) h;
4786 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4787 if (ent->addend == rel->r_addend
4788 && ent->owner == abfd
4789 && ent->tls_type == tls_type)
4790 break;
4791 if (ent == NULL)
4792 {
4793 bfd_size_type amt = sizeof (*ent);
4794 ent = bfd_alloc (abfd, amt);
4795 if (ent == NULL)
4796 return FALSE;
4797 ent->next = eh->elf.got.glist;
4798 ent->addend = rel->r_addend;
4799 ent->owner = abfd;
4800 ent->tls_type = tls_type;
4801 ent->got.refcount = 0;
4802 eh->elf.got.glist = ent;
4803 }
4804 ent->got.refcount += 1;
4805 eh->tls_mask |= tls_type;
4806 }
4807 else
4808 /* This is a global offset table entry for a local symbol. */
4809 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4810 rel->r_addend, tls_type))
4811 return FALSE;
4812 break;
4813
4814 case R_PPC64_PLT16_HA:
4815 case R_PPC64_PLT16_HI:
4816 case R_PPC64_PLT16_LO:
4817 case R_PPC64_PLT32:
4818 case R_PPC64_PLT64:
4819 /* This symbol requires a procedure linkage table entry. We
4820 actually build the entry in adjust_dynamic_symbol,
4821 because this might be a case of linking PIC code without
4822 linking in any dynamic objects, in which case we don't
4823 need to generate a procedure linkage table after all. */
4824 if (h == NULL)
4825 {
4826 /* It does not make sense to have a procedure linkage
4827 table entry for a local symbol. */
4828 bfd_set_error (bfd_error_bad_value);
4829 return FALSE;
4830 }
4831 else
4832 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4833 rel->r_addend))
4834 return FALSE;
4835 break;
4836
4837 /* The following relocations don't need to propagate the
4838 relocation if linking a shared object since they are
4839 section relative. */
4840 case R_PPC64_SECTOFF:
4841 case R_PPC64_SECTOFF_LO:
4842 case R_PPC64_SECTOFF_HI:
4843 case R_PPC64_SECTOFF_HA:
4844 case R_PPC64_SECTOFF_DS:
4845 case R_PPC64_SECTOFF_LO_DS:
4846 case R_PPC64_DTPREL16:
4847 case R_PPC64_DTPREL16_LO:
4848 case R_PPC64_DTPREL16_HI:
4849 case R_PPC64_DTPREL16_HA:
4850 case R_PPC64_DTPREL16_DS:
4851 case R_PPC64_DTPREL16_LO_DS:
4852 case R_PPC64_DTPREL16_HIGHER:
4853 case R_PPC64_DTPREL16_HIGHERA:
4854 case R_PPC64_DTPREL16_HIGHEST:
4855 case R_PPC64_DTPREL16_HIGHESTA:
4856 break;
4857
4858 /* Nor do these. */
4859 case R_PPC64_TOC16:
4860 case R_PPC64_TOC16_LO:
4861 case R_PPC64_TOC16_HI:
4862 case R_PPC64_TOC16_HA:
4863 case R_PPC64_TOC16_DS:
4864 case R_PPC64_TOC16_LO_DS:
4865 sec->has_toc_reloc = 1;
4866 break;
4867
4868 /* This relocation describes the C++ object vtable hierarchy.
4869 Reconstruct it for later use during GC. */
4870 case R_PPC64_GNU_VTINHERIT:
4871 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4872 return FALSE;
4873 break;
4874
4875 /* This relocation describes which C++ vtable entries are actually
4876 used. Record for later use during GC. */
4877 case R_PPC64_GNU_VTENTRY:
4878 BFD_ASSERT (h != NULL);
4879 if (h != NULL
4880 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4881 return FALSE;
4882 break;
4883
4884 case R_PPC64_REL14:
4885 case R_PPC64_REL14_BRTAKEN:
4886 case R_PPC64_REL14_BRNTAKEN:
4887 {
4888 asection *dest = NULL;
4889
4890 /* Heuristic: If jumping outside our section, chances are
4891 we are going to need a stub. */
4892 if (h != NULL)
4893 {
4894 /* If the sym is weak it may be overridden later, so
4895 don't assume we know where a weak sym lives. */
4896 if (h->root.type == bfd_link_hash_defined)
4897 dest = h->root.u.def.section;
4898 }
4899 else
4900 {
4901 Elf_Internal_Sym *isym;
4902
4903 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4904 abfd, r_symndx);
4905 if (isym == NULL)
4906 return FALSE;
4907
4908 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4909 }
4910
4911 if (dest != sec)
4912 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4913 }
4914 /* Fall through. */
4915
4916 case R_PPC64_REL24:
4917 if (h != NULL)
4918 {
4919 /* We may need a .plt entry if the function this reloc
4920 refers to is in a shared lib. */
4921 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4922 rel->r_addend))
4923 return FALSE;
4924 if (h == tga || h == dottga)
4925 sec->has_tls_reloc = 1;
4926 }
4927 break;
4928
4929 case R_PPC64_TPREL64:
4930 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4931 if (!info->executable)
4932 info->flags |= DF_STATIC_TLS;
4933 goto dotlstoc;
4934
4935 case R_PPC64_DTPMOD64:
4936 if (rel + 1 < rel_end
4937 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4938 && rel[1].r_offset == rel->r_offset + 8)
4939 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4940 else
4941 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4942 goto dotlstoc;
4943
4944 case R_PPC64_DTPREL64:
4945 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4946 if (rel != relocs
4947 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4948 && rel[-1].r_offset == rel->r_offset - 8)
4949 /* This is the second reloc of a dtpmod, dtprel pair.
4950 Don't mark with TLS_DTPREL. */
4951 goto dodyn;
4952
4953 dotlstoc:
4954 sec->has_tls_reloc = 1;
4955 if (h != NULL)
4956 {
4957 struct ppc_link_hash_entry *eh;
4958 eh = (struct ppc_link_hash_entry *) h;
4959 eh->tls_mask |= tls_type;
4960 }
4961 else
4962 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4963 rel->r_addend, tls_type))
4964 return FALSE;
4965
4966 ppc64_sec = ppc64_elf_section_data (sec);
4967 if (ppc64_sec->sec_type != sec_toc)
4968 {
4969 bfd_size_type amt;
4970
4971 /* One extra to simplify get_tls_mask. */
4972 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
4973 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
4974 if (ppc64_sec->u.toc.symndx == NULL)
4975 return FALSE;
4976 amt = sec->size * sizeof (bfd_vma) / 8;
4977 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
4978 if (ppc64_sec->u.toc.add == NULL)
4979 return FALSE;
4980 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4981 ppc64_sec->sec_type = sec_toc;
4982 }
4983 BFD_ASSERT (rel->r_offset % 8 == 0);
4984 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
4985 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
4986
4987 /* Mark the second slot of a GD or LD entry.
4988 -1 to indicate GD and -2 to indicate LD. */
4989 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4990 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
4991 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4992 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
4993 goto dodyn;
4994
4995 case R_PPC64_TPREL16:
4996 case R_PPC64_TPREL16_LO:
4997 case R_PPC64_TPREL16_HI:
4998 case R_PPC64_TPREL16_HA:
4999 case R_PPC64_TPREL16_DS:
5000 case R_PPC64_TPREL16_LO_DS:
5001 case R_PPC64_TPREL16_HIGHER:
5002 case R_PPC64_TPREL16_HIGHERA:
5003 case R_PPC64_TPREL16_HIGHEST:
5004 case R_PPC64_TPREL16_HIGHESTA:
5005 if (info->shared)
5006 {
5007 if (!info->executable)
5008 info->flags |= DF_STATIC_TLS;
5009 goto dodyn;
5010 }
5011 break;
5012
5013 case R_PPC64_ADDR64:
5014 if (opd_sym_map != NULL
5015 && rel + 1 < rel_end
5016 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5017 {
5018 if (h != NULL)
5019 {
5020 if (h->root.root.string[0] == '.'
5021 && h->root.root.string[1] != 0
5022 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
5023 ;
5024 else
5025 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5026 }
5027 else
5028 {
5029 asection *s;
5030 Elf_Internal_Sym *isym;
5031
5032 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5033 abfd, r_symndx);
5034 if (isym == NULL)
5035 return FALSE;
5036
5037 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5038 if (s != NULL && s != sec)
5039 opd_sym_map[rel->r_offset / 8] = s;
5040 }
5041 }
5042 /* Fall through. */
5043
5044 case R_PPC64_REL30:
5045 case R_PPC64_REL32:
5046 case R_PPC64_REL64:
5047 case R_PPC64_ADDR14:
5048 case R_PPC64_ADDR14_BRNTAKEN:
5049 case R_PPC64_ADDR14_BRTAKEN:
5050 case R_PPC64_ADDR16:
5051 case R_PPC64_ADDR16_DS:
5052 case R_PPC64_ADDR16_HA:
5053 case R_PPC64_ADDR16_HI:
5054 case R_PPC64_ADDR16_HIGHER:
5055 case R_PPC64_ADDR16_HIGHERA:
5056 case R_PPC64_ADDR16_HIGHEST:
5057 case R_PPC64_ADDR16_HIGHESTA:
5058 case R_PPC64_ADDR16_LO:
5059 case R_PPC64_ADDR16_LO_DS:
5060 case R_PPC64_ADDR24:
5061 case R_PPC64_ADDR32:
5062 case R_PPC64_UADDR16:
5063 case R_PPC64_UADDR32:
5064 case R_PPC64_UADDR64:
5065 case R_PPC64_TOC:
5066 if (h != NULL && !info->shared)
5067 /* We may need a copy reloc. */
5068 h->non_got_ref = 1;
5069
5070 /* Don't propagate .opd relocs. */
5071 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5072 break;
5073
5074 /* If we are creating a shared library, and this is a reloc
5075 against a global symbol, or a non PC relative reloc
5076 against a local symbol, then we need to copy the reloc
5077 into the shared library. However, if we are linking with
5078 -Bsymbolic, we do not need to copy a reloc against a
5079 global symbol which is defined in an object we are
5080 including in the link (i.e., DEF_REGULAR is set). At
5081 this point we have not seen all the input files, so it is
5082 possible that DEF_REGULAR is not set now but will be set
5083 later (it is never cleared). In case of a weak definition,
5084 DEF_REGULAR may be cleared later by a strong definition in
5085 a shared library. We account for that possibility below by
5086 storing information in the dyn_relocs field of the hash
5087 table entry. A similar situation occurs when creating
5088 shared libraries and symbol visibility changes render the
5089 symbol local.
5090
5091 If on the other hand, we are creating an executable, we
5092 may need to keep relocations for symbols satisfied by a
5093 dynamic library if we manage to avoid copy relocs for the
5094 symbol. */
5095 dodyn:
5096 if ((info->shared
5097 && (must_be_dyn_reloc (info, r_type)
5098 || (h != NULL
5099 && (! info->symbolic
5100 || h->root.type == bfd_link_hash_defweak
5101 || !h->def_regular))))
5102 || (ELIMINATE_COPY_RELOCS
5103 && !info->shared
5104 && h != NULL
5105 && (h->root.type == bfd_link_hash_defweak
5106 || !h->def_regular)))
5107 {
5108 struct ppc_dyn_relocs *p;
5109 struct ppc_dyn_relocs **head;
5110
5111 /* We must copy these reloc types into the output file.
5112 Create a reloc section in dynobj and make room for
5113 this reloc. */
5114 if (sreloc == NULL)
5115 {
5116 sreloc = _bfd_elf_make_dynamic_reloc_section
5117 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5118
5119 if (sreloc == NULL)
5120 return FALSE;
5121 }
5122
5123 /* If this is a global symbol, we count the number of
5124 relocations we need for this symbol. */
5125 if (h != NULL)
5126 {
5127 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5128 }
5129 else
5130 {
5131 /* Track dynamic relocs needed for local syms too.
5132 We really need local syms available to do this
5133 easily. Oh well. */
5134 asection *s;
5135 void *vpp;
5136 Elf_Internal_Sym *isym;
5137
5138 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5139 abfd, r_symndx);
5140 if (isym == NULL)
5141 return FALSE;
5142
5143 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5144 if (s == NULL)
5145 s = sec;
5146
5147 vpp = &elf_section_data (s)->local_dynrel;
5148 head = (struct ppc_dyn_relocs **) vpp;
5149 }
5150
5151 p = *head;
5152 if (p == NULL || p->sec != sec)
5153 {
5154 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5155 if (p == NULL)
5156 return FALSE;
5157 p->next = *head;
5158 *head = p;
5159 p->sec = sec;
5160 p->count = 0;
5161 p->pc_count = 0;
5162 }
5163
5164 p->count += 1;
5165 if (!must_be_dyn_reloc (info, r_type))
5166 p->pc_count += 1;
5167 }
5168 break;
5169
5170 default:
5171 break;
5172 }
5173 }
5174
5175 return TRUE;
5176 }
5177
5178 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5179 of the code entry point, and its section. */
5180
5181 static bfd_vma
5182 opd_entry_value (asection *opd_sec,
5183 bfd_vma offset,
5184 asection **code_sec,
5185 bfd_vma *code_off)
5186 {
5187 bfd *opd_bfd = opd_sec->owner;
5188 Elf_Internal_Rela *relocs;
5189 Elf_Internal_Rela *lo, *hi, *look;
5190 bfd_vma val;
5191
5192 /* No relocs implies we are linking a --just-symbols object. */
5193 if (opd_sec->reloc_count == 0)
5194 {
5195 bfd_vma val;
5196
5197 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
5198 return (bfd_vma) -1;
5199
5200 if (code_sec != NULL)
5201 {
5202 asection *sec, *likely = NULL;
5203 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5204 if (sec->vma <= val
5205 && (sec->flags & SEC_LOAD) != 0
5206 && (sec->flags & SEC_ALLOC) != 0)
5207 likely = sec;
5208 if (likely != NULL)
5209 {
5210 *code_sec = likely;
5211 if (code_off != NULL)
5212 *code_off = val - likely->vma;
5213 }
5214 }
5215 return val;
5216 }
5217
5218 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5219
5220 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5221 if (relocs == NULL)
5222 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5223
5224 /* Go find the opd reloc at the sym address. */
5225 lo = relocs;
5226 BFD_ASSERT (lo != NULL);
5227 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5228 val = (bfd_vma) -1;
5229 while (lo < hi)
5230 {
5231 look = lo + (hi - lo) / 2;
5232 if (look->r_offset < offset)
5233 lo = look + 1;
5234 else if (look->r_offset > offset)
5235 hi = look;
5236 else
5237 {
5238 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5239
5240 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5241 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5242 {
5243 unsigned long symndx = ELF64_R_SYM (look->r_info);
5244 asection *sec;
5245
5246 if (symndx < symtab_hdr->sh_info)
5247 {
5248 Elf_Internal_Sym *sym;
5249
5250 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5251 if (sym == NULL)
5252 {
5253 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5254 symtab_hdr->sh_info,
5255 0, NULL, NULL, NULL);
5256 if (sym == NULL)
5257 break;
5258 symtab_hdr->contents = (bfd_byte *) sym;
5259 }
5260
5261 sym += symndx;
5262 val = sym->st_value;
5263 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5264 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5265 }
5266 else
5267 {
5268 struct elf_link_hash_entry **sym_hashes;
5269 struct elf_link_hash_entry *rh;
5270
5271 sym_hashes = elf_sym_hashes (opd_bfd);
5272 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5273 while (rh->root.type == bfd_link_hash_indirect
5274 || rh->root.type == bfd_link_hash_warning)
5275 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
5276 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5277 || rh->root.type == bfd_link_hash_defweak);
5278 val = rh->root.u.def.value;
5279 sec = rh->root.u.def.section;
5280 }
5281 val += look->r_addend;
5282 if (code_off != NULL)
5283 *code_off = val;
5284 if (code_sec != NULL)
5285 *code_sec = sec;
5286 if (sec != NULL && sec->output_section != NULL)
5287 val += sec->output_section->vma + sec->output_offset;
5288 }
5289 break;
5290 }
5291 }
5292
5293 return val;
5294 }
5295
5296 /* Mark all our entry sym sections, both opd and code section. */
5297
5298 static void
5299 ppc64_elf_gc_keep (struct bfd_link_info *info)
5300 {
5301 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5302 struct bfd_sym_chain *sym;
5303
5304 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5305 {
5306 struct ppc_link_hash_entry *eh;
5307 asection *sec;
5308
5309 eh = (struct ppc_link_hash_entry *)
5310 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
5311 if (eh == NULL)
5312 continue;
5313 if (eh->elf.root.type != bfd_link_hash_defined
5314 && eh->elf.root.type != bfd_link_hash_defweak)
5315 continue;
5316
5317 if (eh->is_func_descriptor
5318 && (eh->oh->elf.root.type == bfd_link_hash_defined
5319 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5320 {
5321 sec = eh->oh->elf.root.u.def.section;
5322 sec->flags |= SEC_KEEP;
5323 }
5324 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5325 && opd_entry_value (eh->elf.root.u.def.section,
5326 eh->elf.root.u.def.value,
5327 &sec, NULL) != (bfd_vma) -1)
5328 sec->flags |= SEC_KEEP;
5329
5330 sec = eh->elf.root.u.def.section;
5331 sec->flags |= SEC_KEEP;
5332 }
5333 }
5334
5335 /* Mark sections containing dynamically referenced symbols. When
5336 building shared libraries, we must assume that any visible symbol is
5337 referenced. */
5338
5339 static bfd_boolean
5340 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5341 {
5342 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5343 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5344
5345 if (eh->elf.root.type == bfd_link_hash_warning)
5346 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
5347
5348 /* Dynamic linking info is on the func descriptor sym. */
5349 if (eh->oh != NULL
5350 && eh->oh->is_func_descriptor
5351 && (eh->oh->elf.root.type == bfd_link_hash_defined
5352 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5353 eh = eh->oh;
5354
5355 if ((eh->elf.root.type == bfd_link_hash_defined
5356 || eh->elf.root.type == bfd_link_hash_defweak)
5357 && (eh->elf.ref_dynamic
5358 || (!info->executable
5359 && eh->elf.def_regular
5360 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5361 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN)))
5362 {
5363 asection *code_sec;
5364
5365 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5366
5367 /* Function descriptor syms cause the associated
5368 function code sym section to be marked. */
5369 if (eh->is_func_descriptor
5370 && (eh->oh->elf.root.type == bfd_link_hash_defined
5371 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5372 eh->oh->elf.root.u.def.section->flags |= SEC_KEEP;
5373 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5374 && opd_entry_value (eh->elf.root.u.def.section,
5375 eh->elf.root.u.def.value,
5376 &code_sec, NULL) != (bfd_vma) -1)
5377 code_sec->flags |= SEC_KEEP;
5378 }
5379
5380 return TRUE;
5381 }
5382
5383 /* Return the section that should be marked against GC for a given
5384 relocation. */
5385
5386 static asection *
5387 ppc64_elf_gc_mark_hook (asection *sec,
5388 struct bfd_link_info *info ATTRIBUTE_UNUSED,
5389 Elf_Internal_Rela *rel,
5390 struct elf_link_hash_entry *h,
5391 Elf_Internal_Sym *sym)
5392 {
5393 asection *rsec;
5394
5395 /* Syms return NULL if we're marking .opd, so we avoid marking all
5396 function sections, as all functions are referenced in .opd. */
5397 rsec = NULL;
5398 if (get_opd_info (sec) != NULL)
5399 return rsec;
5400
5401 if (h != NULL)
5402 {
5403 enum elf_ppc64_reloc_type r_type;
5404 struct ppc_link_hash_entry *eh;
5405
5406 r_type = ELF64_R_TYPE (rel->r_info);
5407 switch (r_type)
5408 {
5409 case R_PPC64_GNU_VTINHERIT:
5410 case R_PPC64_GNU_VTENTRY:
5411 break;
5412
5413 default:
5414 switch (h->root.type)
5415 {
5416 case bfd_link_hash_defined:
5417 case bfd_link_hash_defweak:
5418 eh = (struct ppc_link_hash_entry *) h;
5419 if (eh->oh != NULL
5420 && eh->oh->is_func_descriptor
5421 && (eh->oh->elf.root.type == bfd_link_hash_defined
5422 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5423 eh = eh->oh;
5424
5425 /* Function descriptor syms cause the associated
5426 function code sym section to be marked. */
5427 if (eh->is_func_descriptor
5428 && (eh->oh->elf.root.type == bfd_link_hash_defined
5429 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5430 {
5431 /* They also mark their opd section. */
5432 eh->elf.root.u.def.section->gc_mark = 1;
5433
5434 rsec = eh->oh->elf.root.u.def.section;
5435 }
5436 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5437 && opd_entry_value (eh->elf.root.u.def.section,
5438 eh->elf.root.u.def.value,
5439 &rsec, NULL) != (bfd_vma) -1)
5440 eh->elf.root.u.def.section->gc_mark = 1;
5441 else
5442 rsec = h->root.u.def.section;
5443 break;
5444
5445 case bfd_link_hash_common:
5446 rsec = h->root.u.c.p->section;
5447 break;
5448
5449 default:
5450 break;
5451 }
5452 }
5453 }
5454 else
5455 {
5456 struct _opd_sec_data *opd;
5457
5458 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5459 opd = get_opd_info (rsec);
5460 if (opd != NULL && opd->func_sec != NULL)
5461 {
5462 rsec->gc_mark = 1;
5463
5464 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5465 }
5466 }
5467
5468 return rsec;
5469 }
5470
5471 /* Update the .got, .plt. and dynamic reloc reference counts for the
5472 section being removed. */
5473
5474 static bfd_boolean
5475 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5476 asection *sec, const Elf_Internal_Rela *relocs)
5477 {
5478 struct ppc_link_hash_table *htab;
5479 Elf_Internal_Shdr *symtab_hdr;
5480 struct elf_link_hash_entry **sym_hashes;
5481 struct got_entry **local_got_ents;
5482 const Elf_Internal_Rela *rel, *relend;
5483
5484 if (info->relocatable)
5485 return TRUE;
5486
5487 if ((sec->flags & SEC_ALLOC) == 0)
5488 return TRUE;
5489
5490 elf_section_data (sec)->local_dynrel = NULL;
5491
5492 htab = ppc_hash_table (info);
5493 symtab_hdr = &elf_symtab_hdr (abfd);
5494 sym_hashes = elf_sym_hashes (abfd);
5495 local_got_ents = elf_local_got_ents (abfd);
5496
5497 relend = relocs + sec->reloc_count;
5498 for (rel = relocs; rel < relend; rel++)
5499 {
5500 unsigned long r_symndx;
5501 enum elf_ppc64_reloc_type r_type;
5502 struct elf_link_hash_entry *h = NULL;
5503 char tls_type = 0;
5504
5505 r_symndx = ELF64_R_SYM (rel->r_info);
5506 r_type = ELF64_R_TYPE (rel->r_info);
5507 if (r_symndx >= symtab_hdr->sh_info)
5508 {
5509 struct ppc_link_hash_entry *eh;
5510 struct ppc_dyn_relocs **pp;
5511 struct ppc_dyn_relocs *p;
5512
5513 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5514 while (h->root.type == bfd_link_hash_indirect
5515 || h->root.type == bfd_link_hash_warning)
5516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5517 eh = (struct ppc_link_hash_entry *) h;
5518
5519 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5520 if (p->sec == sec)
5521 {
5522 /* Everything must go for SEC. */
5523 *pp = p->next;
5524 break;
5525 }
5526 }
5527
5528 switch (r_type)
5529 {
5530 case R_PPC64_GOT_TLSLD16:
5531 case R_PPC64_GOT_TLSLD16_LO:
5532 case R_PPC64_GOT_TLSLD16_HI:
5533 case R_PPC64_GOT_TLSLD16_HA:
5534 tls_type = TLS_TLS | TLS_LD;
5535 goto dogot;
5536
5537 case R_PPC64_GOT_TLSGD16:
5538 case R_PPC64_GOT_TLSGD16_LO:
5539 case R_PPC64_GOT_TLSGD16_HI:
5540 case R_PPC64_GOT_TLSGD16_HA:
5541 tls_type = TLS_TLS | TLS_GD;
5542 goto dogot;
5543
5544 case R_PPC64_GOT_TPREL16_DS:
5545 case R_PPC64_GOT_TPREL16_LO_DS:
5546 case R_PPC64_GOT_TPREL16_HI:
5547 case R_PPC64_GOT_TPREL16_HA:
5548 tls_type = TLS_TLS | TLS_TPREL;
5549 goto dogot;
5550
5551 case R_PPC64_GOT_DTPREL16_DS:
5552 case R_PPC64_GOT_DTPREL16_LO_DS:
5553 case R_PPC64_GOT_DTPREL16_HI:
5554 case R_PPC64_GOT_DTPREL16_HA:
5555 tls_type = TLS_TLS | TLS_DTPREL;
5556 goto dogot;
5557
5558 case R_PPC64_GOT16:
5559 case R_PPC64_GOT16_DS:
5560 case R_PPC64_GOT16_HA:
5561 case R_PPC64_GOT16_HI:
5562 case R_PPC64_GOT16_LO:
5563 case R_PPC64_GOT16_LO_DS:
5564 dogot:
5565 {
5566 struct got_entry *ent;
5567
5568 if (h != NULL)
5569 ent = h->got.glist;
5570 else
5571 ent = local_got_ents[r_symndx];
5572
5573 for (; ent != NULL; ent = ent->next)
5574 if (ent->addend == rel->r_addend
5575 && ent->owner == abfd
5576 && ent->tls_type == tls_type)
5577 break;
5578 if (ent == NULL)
5579 abort ();
5580 if (ent->got.refcount > 0)
5581 ent->got.refcount -= 1;
5582 }
5583 break;
5584
5585 case R_PPC64_PLT16_HA:
5586 case R_PPC64_PLT16_HI:
5587 case R_PPC64_PLT16_LO:
5588 case R_PPC64_PLT32:
5589 case R_PPC64_PLT64:
5590 case R_PPC64_REL14:
5591 case R_PPC64_REL14_BRNTAKEN:
5592 case R_PPC64_REL14_BRTAKEN:
5593 case R_PPC64_REL24:
5594 if (h != NULL)
5595 {
5596 struct plt_entry *ent;
5597
5598 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5599 if (ent->addend == rel->r_addend)
5600 break;
5601 if (ent == NULL)
5602 abort ();
5603 if (ent->plt.refcount > 0)
5604 ent->plt.refcount -= 1;
5605 }
5606 break;
5607
5608 default:
5609 break;
5610 }
5611 }
5612 return TRUE;
5613 }
5614
5615 /* The maximum size of .sfpr. */
5616 #define SFPR_MAX (218*4)
5617
5618 struct sfpr_def_parms
5619 {
5620 const char name[12];
5621 unsigned char lo, hi;
5622 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5623 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5624 };
5625
5626 /* Auto-generate _save*, _rest* functions in .sfpr. */
5627
5628 static unsigned int
5629 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5630 {
5631 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5632 unsigned int i;
5633 size_t len = strlen (parm->name);
5634 bfd_boolean writing = FALSE;
5635 char sym[16];
5636
5637 memcpy (sym, parm->name, len);
5638 sym[len + 2] = 0;
5639
5640 for (i = parm->lo; i <= parm->hi; i++)
5641 {
5642 struct elf_link_hash_entry *h;
5643
5644 sym[len + 0] = i / 10 + '0';
5645 sym[len + 1] = i % 10 + '0';
5646 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5647 if (h != NULL
5648 && !h->def_regular)
5649 {
5650 h->root.type = bfd_link_hash_defined;
5651 h->root.u.def.section = htab->sfpr;
5652 h->root.u.def.value = htab->sfpr->size;
5653 h->type = STT_FUNC;
5654 h->def_regular = 1;
5655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5656 writing = TRUE;
5657 if (htab->sfpr->contents == NULL)
5658 {
5659 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5660 if (htab->sfpr->contents == NULL)
5661 return FALSE;
5662 }
5663 }
5664 if (writing)
5665 {
5666 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5667 if (i != parm->hi)
5668 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5669 else
5670 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5671 htab->sfpr->size = p - htab->sfpr->contents;
5672 }
5673 }
5674
5675 return TRUE;
5676 }
5677
5678 static bfd_byte *
5679 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5680 {
5681 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5682 return p + 4;
5683 }
5684
5685 static bfd_byte *
5686 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5687 {
5688 p = savegpr0 (abfd, p, r);
5689 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5690 p = p + 4;
5691 bfd_put_32 (abfd, BLR, p);
5692 return p + 4;
5693 }
5694
5695 static bfd_byte *
5696 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5697 {
5698 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5699 return p + 4;
5700 }
5701
5702 static bfd_byte *
5703 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5704 {
5705 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5706 p = p + 4;
5707 p = restgpr0 (abfd, p, r);
5708 bfd_put_32 (abfd, MTLR_R0, p);
5709 p = p + 4;
5710 if (r == 29)
5711 {
5712 p = restgpr0 (abfd, p, 30);
5713 p = restgpr0 (abfd, p, 31);
5714 }
5715 bfd_put_32 (abfd, BLR, p);
5716 return p + 4;
5717 }
5718
5719 static bfd_byte *
5720 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5721 {
5722 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5723 return p + 4;
5724 }
5725
5726 static bfd_byte *
5727 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5728 {
5729 p = savegpr1 (abfd, p, r);
5730 bfd_put_32 (abfd, BLR, p);
5731 return p + 4;
5732 }
5733
5734 static bfd_byte *
5735 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5736 {
5737 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5738 return p + 4;
5739 }
5740
5741 static bfd_byte *
5742 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5743 {
5744 p = restgpr1 (abfd, p, r);
5745 bfd_put_32 (abfd, BLR, p);
5746 return p + 4;
5747 }
5748
5749 static bfd_byte *
5750 savefpr (bfd *abfd, bfd_byte *p, int r)
5751 {
5752 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5753 return p + 4;
5754 }
5755
5756 static bfd_byte *
5757 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5758 {
5759 p = savefpr (abfd, p, r);
5760 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5761 p = p + 4;
5762 bfd_put_32 (abfd, BLR, p);
5763 return p + 4;
5764 }
5765
5766 static bfd_byte *
5767 restfpr (bfd *abfd, bfd_byte *p, int r)
5768 {
5769 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5770 return p + 4;
5771 }
5772
5773 static bfd_byte *
5774 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5775 {
5776 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5777 p = p + 4;
5778 p = restfpr (abfd, p, r);
5779 bfd_put_32 (abfd, MTLR_R0, p);
5780 p = p + 4;
5781 if (r == 29)
5782 {
5783 p = restfpr (abfd, p, 30);
5784 p = restfpr (abfd, p, 31);
5785 }
5786 bfd_put_32 (abfd, BLR, p);
5787 return p + 4;
5788 }
5789
5790 static bfd_byte *
5791 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5792 {
5793 p = savefpr (abfd, p, r);
5794 bfd_put_32 (abfd, BLR, p);
5795 return p + 4;
5796 }
5797
5798 static bfd_byte *
5799 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5800 {
5801 p = restfpr (abfd, p, r);
5802 bfd_put_32 (abfd, BLR, p);
5803 return p + 4;
5804 }
5805
5806 static bfd_byte *
5807 savevr (bfd *abfd, bfd_byte *p, int r)
5808 {
5809 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5810 p = p + 4;
5811 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5812 return p + 4;
5813 }
5814
5815 static bfd_byte *
5816 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5817 {
5818 p = savevr (abfd, p, r);
5819 bfd_put_32 (abfd, BLR, p);
5820 return p + 4;
5821 }
5822
5823 static bfd_byte *
5824 restvr (bfd *abfd, bfd_byte *p, int r)
5825 {
5826 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5827 p = p + 4;
5828 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5829 return p + 4;
5830 }
5831
5832 static bfd_byte *
5833 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5834 {
5835 p = restvr (abfd, p, r);
5836 bfd_put_32 (abfd, BLR, p);
5837 return p + 4;
5838 }
5839
5840 /* Called via elf_link_hash_traverse to transfer dynamic linking
5841 information on function code symbol entries to their corresponding
5842 function descriptor symbol entries. */
5843
5844 static bfd_boolean
5845 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5846 {
5847 struct bfd_link_info *info;
5848 struct ppc_link_hash_table *htab;
5849 struct plt_entry *ent;
5850 struct ppc_link_hash_entry *fh;
5851 struct ppc_link_hash_entry *fdh;
5852 bfd_boolean force_local;
5853
5854 fh = (struct ppc_link_hash_entry *) h;
5855 if (fh->elf.root.type == bfd_link_hash_indirect)
5856 return TRUE;
5857
5858 if (fh->elf.root.type == bfd_link_hash_warning)
5859 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5860
5861 info = inf;
5862 htab = ppc_hash_table (info);
5863
5864 /* Resolve undefined references to dot-symbols as the value
5865 in the function descriptor, if we have one in a regular object.
5866 This is to satisfy cases like ".quad .foo". Calls to functions
5867 in dynamic objects are handled elsewhere. */
5868 if (fh->elf.root.type == bfd_link_hash_undefweak
5869 && fh->was_undefined
5870 && (fh->oh->elf.root.type == bfd_link_hash_defined
5871 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5872 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5873 && opd_entry_value (fh->oh->elf.root.u.def.section,
5874 fh->oh->elf.root.u.def.value,
5875 &fh->elf.root.u.def.section,
5876 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5877 {
5878 fh->elf.root.type = fh->oh->elf.root.type;
5879 fh->elf.forced_local = 1;
5880 fh->elf.def_regular = fh->oh->elf.def_regular;
5881 fh->elf.def_dynamic = fh->oh->elf.def_dynamic;
5882 }
5883
5884 /* If this is a function code symbol, transfer dynamic linking
5885 information to the function descriptor symbol. */
5886 if (!fh->is_func)
5887 return TRUE;
5888
5889 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5890 if (ent->plt.refcount > 0)
5891 break;
5892 if (ent == NULL
5893 || fh->elf.root.root.string[0] != '.'
5894 || fh->elf.root.root.string[1] == '\0')
5895 return TRUE;
5896
5897 /* Find the corresponding function descriptor symbol. Create it
5898 as undefined if necessary. */
5899
5900 fdh = get_fdh (fh, htab);
5901 if (fdh != NULL)
5902 while (fdh->elf.root.type == bfd_link_hash_indirect
5903 || fdh->elf.root.type == bfd_link_hash_warning)
5904 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5905
5906 if (fdh == NULL
5907 && !info->executable
5908 && (fh->elf.root.type == bfd_link_hash_undefined
5909 || fh->elf.root.type == bfd_link_hash_undefweak))
5910 {
5911 fdh = make_fdh (info, fh);
5912 if (fdh == NULL)
5913 return FALSE;
5914 }
5915
5916 /* Fake function descriptors are made undefweak. If the function
5917 code symbol is strong undefined, make the fake sym the same.
5918 If the function code symbol is defined, then force the fake
5919 descriptor local; We can't support overriding of symbols in a
5920 shared library on a fake descriptor. */
5921
5922 if (fdh != NULL
5923 && fdh->fake
5924 && fdh->elf.root.type == bfd_link_hash_undefweak)
5925 {
5926 if (fh->elf.root.type == bfd_link_hash_undefined)
5927 {
5928 fdh->elf.root.type = bfd_link_hash_undefined;
5929 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5930 }
5931 else if (fh->elf.root.type == bfd_link_hash_defined
5932 || fh->elf.root.type == bfd_link_hash_defweak)
5933 {
5934 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5935 }
5936 }
5937
5938 if (fdh != NULL
5939 && !fdh->elf.forced_local
5940 && (!info->executable
5941 || fdh->elf.def_dynamic
5942 || fdh->elf.ref_dynamic
5943 || (fdh->elf.root.type == bfd_link_hash_undefweak
5944 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5945 {
5946 if (fdh->elf.dynindx == -1)
5947 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5948 return FALSE;
5949 fdh->elf.ref_regular |= fh->elf.ref_regular;
5950 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5951 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5952 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5953 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5954 {
5955 move_plt_plist (fh, fdh);
5956 fdh->elf.needs_plt = 1;
5957 }
5958 fdh->is_func_descriptor = 1;
5959 fdh->oh = fh;
5960 fh->oh = fdh;
5961 }
5962
5963 /* Now that the info is on the function descriptor, clear the
5964 function code sym info. Any function code syms for which we
5965 don't have a definition in a regular file, we force local.
5966 This prevents a shared library from exporting syms that have
5967 been imported from another library. Function code syms that
5968 are really in the library we must leave global to prevent the
5969 linker dragging in a definition from a static library. */
5970 force_local = (!fh->elf.def_regular
5971 || fdh == NULL
5972 || !fdh->elf.def_regular
5973 || fdh->elf.forced_local);
5974 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5975
5976 return TRUE;
5977 }
5978
5979 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5980 this hook to a) provide some gcc support functions, and b) transfer
5981 dynamic linking information gathered so far on function code symbol
5982 entries, to their corresponding function descriptor symbol entries. */
5983
5984 static bfd_boolean
5985 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5986 struct bfd_link_info *info)
5987 {
5988 struct ppc_link_hash_table *htab;
5989 unsigned int i;
5990 const struct sfpr_def_parms funcs[] =
5991 {
5992 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5993 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5994 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5995 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5996 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5997 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5998 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5999 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6000 { "._savef", 14, 31, savefpr, savefpr1_tail },
6001 { "._restf", 14, 31, restfpr, restfpr1_tail },
6002 { "_savevr_", 20, 31, savevr, savevr_tail },
6003 { "_restvr_", 20, 31, restvr, restvr_tail }
6004 };
6005
6006 htab = ppc_hash_table (info);
6007 if (htab->sfpr == NULL)
6008 /* We don't have any relocs. */
6009 return TRUE;
6010
6011 /* Provide any missing _save* and _rest* functions. */
6012 htab->sfpr->size = 0;
6013 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6014 if (!sfpr_define (info, &funcs[i]))
6015 return FALSE;
6016
6017 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6018
6019 if (htab->sfpr->size == 0)
6020 htab->sfpr->flags |= SEC_EXCLUDE;
6021
6022 return TRUE;
6023 }
6024
6025 /* Adjust a symbol defined by a dynamic object and referenced by a
6026 regular object. The current definition is in some section of the
6027 dynamic object, but we're not including those sections. We have to
6028 change the definition to something the rest of the link can
6029 understand. */
6030
6031 static bfd_boolean
6032 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6033 struct elf_link_hash_entry *h)
6034 {
6035 struct ppc_link_hash_table *htab;
6036 asection *s;
6037
6038 htab = ppc_hash_table (info);
6039
6040 /* Deal with function syms. */
6041 if (h->type == STT_FUNC
6042 || h->needs_plt)
6043 {
6044 /* Clear procedure linkage table information for any symbol that
6045 won't need a .plt entry. */
6046 struct plt_entry *ent;
6047 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6048 if (ent->plt.refcount > 0)
6049 break;
6050 if (ent == NULL
6051 || SYMBOL_CALLS_LOCAL (info, h)
6052 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6053 && h->root.type == bfd_link_hash_undefweak))
6054 {
6055 h->plt.plist = NULL;
6056 h->needs_plt = 0;
6057 }
6058 }
6059 else
6060 h->plt.plist = NULL;
6061
6062 /* If this is a weak symbol, and there is a real definition, the
6063 processor independent code will have arranged for us to see the
6064 real definition first, and we can just use the same value. */
6065 if (h->u.weakdef != NULL)
6066 {
6067 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6068 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6069 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6070 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6071 if (ELIMINATE_COPY_RELOCS)
6072 h->non_got_ref = h->u.weakdef->non_got_ref;
6073 return TRUE;
6074 }
6075
6076 /* If we are creating a shared library, we must presume that the
6077 only references to the symbol are via the global offset table.
6078 For such cases we need not do anything here; the relocations will
6079 be handled correctly by relocate_section. */
6080 if (info->shared)
6081 return TRUE;
6082
6083 /* If there are no references to this symbol that do not use the
6084 GOT, we don't need to generate a copy reloc. */
6085 if (!h->non_got_ref)
6086 return TRUE;
6087
6088 /* Don't generate a copy reloc for symbols defined in the executable. */
6089 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6090 return TRUE;
6091
6092 if (ELIMINATE_COPY_RELOCS)
6093 {
6094 struct ppc_link_hash_entry * eh;
6095 struct ppc_dyn_relocs *p;
6096
6097 eh = (struct ppc_link_hash_entry *) h;
6098 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6099 {
6100 s = p->sec->output_section;
6101 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6102 break;
6103 }
6104
6105 /* If we didn't find any dynamic relocs in read-only sections, then
6106 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6107 if (p == NULL)
6108 {
6109 h->non_got_ref = 0;
6110 return TRUE;
6111 }
6112 }
6113
6114 if (h->plt.plist != NULL)
6115 {
6116 /* We should never get here, but unfortunately there are versions
6117 of gcc out there that improperly (for this ABI) put initialized
6118 function pointers, vtable refs and suchlike in read-only
6119 sections. Allow them to proceed, but warn that this might
6120 break at runtime. */
6121 (*_bfd_error_handler)
6122 (_("copy reloc against `%s' requires lazy plt linking; "
6123 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
6124 h->root.root.string);
6125 }
6126
6127 /* This is a reference to a symbol defined by a dynamic object which
6128 is not a function. */
6129
6130 if (h->size == 0)
6131 {
6132 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
6133 h->root.root.string);
6134 return TRUE;
6135 }
6136
6137 /* We must allocate the symbol in our .dynbss section, which will
6138 become part of the .bss section of the executable. There will be
6139 an entry for this symbol in the .dynsym section. The dynamic
6140 object will contain position independent code, so all references
6141 from the dynamic object to this symbol will go through the global
6142 offset table. The dynamic linker will use the .dynsym entry to
6143 determine the address it must put in the global offset table, so
6144 both the dynamic object and the regular object will refer to the
6145 same memory location for the variable. */
6146
6147 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6148 to copy the initial value out of the dynamic object and into the
6149 runtime process image. We need to remember the offset into the
6150 .rela.bss section we are going to use. */
6151 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
6152 {
6153 htab->relbss->size += sizeof (Elf64_External_Rela);
6154 h->needs_copy = 1;
6155 }
6156
6157 s = htab->dynbss;
6158
6159 return _bfd_elf_adjust_dynamic_copy (h, s);
6160 }
6161
6162 /* If given a function descriptor symbol, hide both the function code
6163 sym and the descriptor. */
6164 static void
6165 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6166 struct elf_link_hash_entry *h,
6167 bfd_boolean force_local)
6168 {
6169 struct ppc_link_hash_entry *eh;
6170 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6171
6172 eh = (struct ppc_link_hash_entry *) h;
6173 if (eh->is_func_descriptor)
6174 {
6175 struct ppc_link_hash_entry *fh = eh->oh;
6176
6177 if (fh == NULL)
6178 {
6179 const char *p, *q;
6180 struct ppc_link_hash_table *htab;
6181 char save;
6182
6183 /* We aren't supposed to use alloca in BFD because on
6184 systems which do not have alloca the version in libiberty
6185 calls xmalloc, which might cause the program to crash
6186 when it runs out of memory. This function doesn't have a
6187 return status, so there's no way to gracefully return an
6188 error. So cheat. We know that string[-1] can be safely
6189 accessed; It's either a string in an ELF string table,
6190 or allocated in an objalloc structure. */
6191
6192 p = eh->elf.root.root.string - 1;
6193 save = *p;
6194 *(char *) p = '.';
6195 htab = ppc_hash_table (info);
6196 fh = (struct ppc_link_hash_entry *)
6197 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6198 *(char *) p = save;
6199
6200 /* Unfortunately, if it so happens that the string we were
6201 looking for was allocated immediately before this string,
6202 then we overwrote the string terminator. That's the only
6203 reason the lookup should fail. */
6204 if (fh == NULL)
6205 {
6206 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6207 while (q >= eh->elf.root.root.string && *q == *p)
6208 --q, --p;
6209 if (q < eh->elf.root.root.string && *p == '.')
6210 fh = (struct ppc_link_hash_entry *)
6211 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6212 }
6213 if (fh != NULL)
6214 {
6215 eh->oh = fh;
6216 fh->oh = eh;
6217 }
6218 }
6219 if (fh != NULL)
6220 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6221 }
6222 }
6223
6224 static bfd_boolean
6225 get_sym_h (struct elf_link_hash_entry **hp,
6226 Elf_Internal_Sym **symp,
6227 asection **symsecp,
6228 char **tls_maskp,
6229 Elf_Internal_Sym **locsymsp,
6230 unsigned long r_symndx,
6231 bfd *ibfd)
6232 {
6233 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6234
6235 if (r_symndx >= symtab_hdr->sh_info)
6236 {
6237 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6238 struct elf_link_hash_entry *h;
6239
6240 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6241 while (h->root.type == bfd_link_hash_indirect
6242 || h->root.type == bfd_link_hash_warning)
6243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6244
6245 if (hp != NULL)
6246 *hp = h;
6247
6248 if (symp != NULL)
6249 *symp = NULL;
6250
6251 if (symsecp != NULL)
6252 {
6253 asection *symsec = NULL;
6254 if (h->root.type == bfd_link_hash_defined
6255 || h->root.type == bfd_link_hash_defweak)
6256 symsec = h->root.u.def.section;
6257 *symsecp = symsec;
6258 }
6259
6260 if (tls_maskp != NULL)
6261 {
6262 struct ppc_link_hash_entry *eh;
6263
6264 eh = (struct ppc_link_hash_entry *) h;
6265 *tls_maskp = &eh->tls_mask;
6266 }
6267 }
6268 else
6269 {
6270 Elf_Internal_Sym *sym;
6271 Elf_Internal_Sym *locsyms = *locsymsp;
6272
6273 if (locsyms == NULL)
6274 {
6275 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6276 if (locsyms == NULL)
6277 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6278 symtab_hdr->sh_info,
6279 0, NULL, NULL, NULL);
6280 if (locsyms == NULL)
6281 return FALSE;
6282 *locsymsp = locsyms;
6283 }
6284 sym = locsyms + r_symndx;
6285
6286 if (hp != NULL)
6287 *hp = NULL;
6288
6289 if (symp != NULL)
6290 *symp = sym;
6291
6292 if (symsecp != NULL)
6293 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6294
6295 if (tls_maskp != NULL)
6296 {
6297 struct got_entry **lgot_ents;
6298 char *tls_mask;
6299
6300 tls_mask = NULL;
6301 lgot_ents = elf_local_got_ents (ibfd);
6302 if (lgot_ents != NULL)
6303 {
6304 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
6305 tls_mask = &lgot_masks[r_symndx];
6306 }
6307 *tls_maskp = tls_mask;
6308 }
6309 }
6310 return TRUE;
6311 }
6312
6313 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6314 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6315 type suitable for optimization, and 1 otherwise. */
6316
6317 static int
6318 get_tls_mask (char **tls_maskp,
6319 unsigned long *toc_symndx,
6320 bfd_vma *toc_addend,
6321 Elf_Internal_Sym **locsymsp,
6322 const Elf_Internal_Rela *rel,
6323 bfd *ibfd)
6324 {
6325 unsigned long r_symndx;
6326 int next_r;
6327 struct elf_link_hash_entry *h;
6328 Elf_Internal_Sym *sym;
6329 asection *sec;
6330 bfd_vma off;
6331
6332 r_symndx = ELF64_R_SYM (rel->r_info);
6333 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6334 return 0;
6335
6336 if ((*tls_maskp != NULL && **tls_maskp != 0)
6337 || sec == NULL
6338 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6339 return 1;
6340
6341 /* Look inside a TOC section too. */
6342 if (h != NULL)
6343 {
6344 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6345 off = h->root.u.def.value;
6346 }
6347 else
6348 off = sym->st_value;
6349 off += rel->r_addend;
6350 BFD_ASSERT (off % 8 == 0);
6351 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6352 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6353 if (toc_symndx != NULL)
6354 *toc_symndx = r_symndx;
6355 if (toc_addend != NULL)
6356 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6357 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6358 return 0;
6359 if ((h == NULL
6360 || ((h->root.type == bfd_link_hash_defined
6361 || h->root.type == bfd_link_hash_defweak)
6362 && !h->def_dynamic))
6363 && (next_r == -1 || next_r == -2))
6364 return 1 - next_r;
6365 return 1;
6366 }
6367
6368 /* Adjust all global syms defined in opd sections. In gcc generated
6369 code for the old ABI, these will already have been done. */
6370
6371 static bfd_boolean
6372 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6373 {
6374 struct ppc_link_hash_entry *eh;
6375 asection *sym_sec;
6376 struct _opd_sec_data *opd;
6377
6378 if (h->root.type == bfd_link_hash_indirect)
6379 return TRUE;
6380
6381 if (h->root.type == bfd_link_hash_warning)
6382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6383
6384 if (h->root.type != bfd_link_hash_defined
6385 && h->root.type != bfd_link_hash_defweak)
6386 return TRUE;
6387
6388 eh = (struct ppc_link_hash_entry *) h;
6389 if (eh->adjust_done)
6390 return TRUE;
6391
6392 sym_sec = eh->elf.root.u.def.section;
6393 opd = get_opd_info (sym_sec);
6394 if (opd != NULL && opd->adjust != NULL)
6395 {
6396 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6397 if (adjust == -1)
6398 {
6399 /* This entry has been deleted. */
6400 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6401 if (dsec == NULL)
6402 {
6403 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6404 if (elf_discarded_section (dsec))
6405 {
6406 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6407 break;
6408 }
6409 }
6410 eh->elf.root.u.def.value = 0;
6411 eh->elf.root.u.def.section = dsec;
6412 }
6413 else
6414 eh->elf.root.u.def.value += adjust;
6415 eh->adjust_done = 1;
6416 }
6417 return TRUE;
6418 }
6419
6420 /* Handles decrementing dynamic reloc counts for the reloc specified by
6421 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6422 have already been determined. */
6423
6424 static bfd_boolean
6425 dec_dynrel_count (bfd_vma r_info,
6426 asection *sec,
6427 struct bfd_link_info *info,
6428 Elf_Internal_Sym **local_syms,
6429 struct elf_link_hash_entry *h,
6430 asection *sym_sec)
6431 {
6432 enum elf_ppc64_reloc_type r_type;
6433 struct ppc_dyn_relocs *p;
6434 struct ppc_dyn_relocs **pp;
6435
6436 /* Can this reloc be dynamic? This switch, and later tests here
6437 should be kept in sync with the code in check_relocs. */
6438 r_type = ELF64_R_TYPE (r_info);
6439 switch (r_type)
6440 {
6441 default:
6442 return TRUE;
6443
6444 case R_PPC64_TPREL16:
6445 case R_PPC64_TPREL16_LO:
6446 case R_PPC64_TPREL16_HI:
6447 case R_PPC64_TPREL16_HA:
6448 case R_PPC64_TPREL16_DS:
6449 case R_PPC64_TPREL16_LO_DS:
6450 case R_PPC64_TPREL16_HIGHER:
6451 case R_PPC64_TPREL16_HIGHERA:
6452 case R_PPC64_TPREL16_HIGHEST:
6453 case R_PPC64_TPREL16_HIGHESTA:
6454 if (!info->shared)
6455 return TRUE;
6456
6457 case R_PPC64_TPREL64:
6458 case R_PPC64_DTPMOD64:
6459 case R_PPC64_DTPREL64:
6460 case R_PPC64_ADDR64:
6461 case R_PPC64_REL30:
6462 case R_PPC64_REL32:
6463 case R_PPC64_REL64:
6464 case R_PPC64_ADDR14:
6465 case R_PPC64_ADDR14_BRNTAKEN:
6466 case R_PPC64_ADDR14_BRTAKEN:
6467 case R_PPC64_ADDR16:
6468 case R_PPC64_ADDR16_DS:
6469 case R_PPC64_ADDR16_HA:
6470 case R_PPC64_ADDR16_HI:
6471 case R_PPC64_ADDR16_HIGHER:
6472 case R_PPC64_ADDR16_HIGHERA:
6473 case R_PPC64_ADDR16_HIGHEST:
6474 case R_PPC64_ADDR16_HIGHESTA:
6475 case R_PPC64_ADDR16_LO:
6476 case R_PPC64_ADDR16_LO_DS:
6477 case R_PPC64_ADDR24:
6478 case R_PPC64_ADDR32:
6479 case R_PPC64_UADDR16:
6480 case R_PPC64_UADDR32:
6481 case R_PPC64_UADDR64:
6482 case R_PPC64_TOC:
6483 break;
6484 }
6485
6486 if (local_syms != NULL)
6487 {
6488 unsigned long r_symndx;
6489 Elf_Internal_Sym *sym;
6490 bfd *ibfd = sec->owner;
6491
6492 r_symndx = ELF64_R_SYM (r_info);
6493 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6494 return FALSE;
6495 }
6496
6497 if ((info->shared
6498 && (must_be_dyn_reloc (info, r_type)
6499 || (h != NULL
6500 && (!info->symbolic
6501 || h->root.type == bfd_link_hash_defweak
6502 || !h->def_regular))))
6503 || (ELIMINATE_COPY_RELOCS
6504 && !info->shared
6505 && h != NULL
6506 && (h->root.type == bfd_link_hash_defweak
6507 || !h->def_regular)))
6508 ;
6509 else
6510 return TRUE;
6511
6512 if (h != NULL)
6513 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6514 else
6515 {
6516 if (sym_sec != NULL)
6517 {
6518 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
6519 pp = (struct ppc_dyn_relocs **) vpp;
6520 }
6521 else
6522 {
6523 void *vpp = &elf_section_data (sec)->local_dynrel;
6524 pp = (struct ppc_dyn_relocs **) vpp;
6525 }
6526
6527 /* elf_gc_sweep may have already removed all dyn relocs associated
6528 with local syms for a given section. Don't report a dynreloc
6529 miscount. */
6530 if (*pp == NULL)
6531 return TRUE;
6532 }
6533
6534 while ((p = *pp) != NULL)
6535 {
6536 if (p->sec == sec)
6537 {
6538 if (!must_be_dyn_reloc (info, r_type))
6539 p->pc_count -= 1;
6540 p->count -= 1;
6541 if (p->count == 0)
6542 *pp = p->next;
6543 return TRUE;
6544 }
6545 pp = &p->next;
6546 }
6547
6548 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6549 sec->owner, sec);
6550 bfd_set_error (bfd_error_bad_value);
6551 return FALSE;
6552 }
6553
6554 /* Remove unused Official Procedure Descriptor entries. Currently we
6555 only remove those associated with functions in discarded link-once
6556 sections, or weakly defined functions that have been overridden. It
6557 would be possible to remove many more entries for statically linked
6558 applications. */
6559
6560 bfd_boolean
6561 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6562 bfd_boolean non_overlapping)
6563 {
6564 bfd *ibfd;
6565 bfd_boolean some_edited = FALSE;
6566 asection *need_pad = NULL;
6567
6568 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6569 {
6570 asection *sec;
6571 Elf_Internal_Rela *relstart, *rel, *relend;
6572 Elf_Internal_Shdr *symtab_hdr;
6573 Elf_Internal_Sym *local_syms;
6574 struct elf_link_hash_entry **sym_hashes;
6575 bfd_vma offset;
6576 struct _opd_sec_data *opd;
6577 bfd_boolean need_edit, add_aux_fields;
6578 bfd_size_type cnt_16b = 0;
6579
6580 sec = bfd_get_section_by_name (ibfd, ".opd");
6581 if (sec == NULL || sec->size == 0)
6582 continue;
6583
6584 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6585 continue;
6586
6587 if (sec->output_section == bfd_abs_section_ptr)
6588 continue;
6589
6590 /* Look through the section relocs. */
6591 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6592 continue;
6593
6594 local_syms = NULL;
6595 symtab_hdr = &elf_symtab_hdr (ibfd);
6596 sym_hashes = elf_sym_hashes (ibfd);
6597
6598 /* Read the relocations. */
6599 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6600 info->keep_memory);
6601 if (relstart == NULL)
6602 return FALSE;
6603
6604 /* First run through the relocs to check they are sane, and to
6605 determine whether we need to edit this opd section. */
6606 need_edit = FALSE;
6607 need_pad = sec;
6608 offset = 0;
6609 relend = relstart + sec->reloc_count;
6610 for (rel = relstart; rel < relend; )
6611 {
6612 enum elf_ppc64_reloc_type r_type;
6613 unsigned long r_symndx;
6614 asection *sym_sec;
6615 struct elf_link_hash_entry *h;
6616 Elf_Internal_Sym *sym;
6617
6618 /* .opd contains a regular array of 16 or 24 byte entries. We're
6619 only interested in the reloc pointing to a function entry
6620 point. */
6621 if (rel->r_offset != offset
6622 || rel + 1 >= relend
6623 || (rel + 1)->r_offset != offset + 8)
6624 {
6625 /* If someone messes with .opd alignment then after a
6626 "ld -r" we might have padding in the middle of .opd.
6627 Also, there's nothing to prevent someone putting
6628 something silly in .opd with the assembler. No .opd
6629 optimization for them! */
6630 broken_opd:
6631 (*_bfd_error_handler)
6632 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6633 need_edit = FALSE;
6634 break;
6635 }
6636
6637 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6638 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6639 {
6640 (*_bfd_error_handler)
6641 (_("%B: unexpected reloc type %u in .opd section"),
6642 ibfd, r_type);
6643 need_edit = FALSE;
6644 break;
6645 }
6646
6647 r_symndx = ELF64_R_SYM (rel->r_info);
6648 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6649 r_symndx, ibfd))
6650 goto error_ret;
6651
6652 if (sym_sec == NULL || sym_sec->owner == NULL)
6653 {
6654 const char *sym_name;
6655 if (h != NULL)
6656 sym_name = h->root.root.string;
6657 else
6658 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6659 sym_sec);
6660
6661 (*_bfd_error_handler)
6662 (_("%B: undefined sym `%s' in .opd section"),
6663 ibfd, sym_name);
6664 need_edit = FALSE;
6665 break;
6666 }
6667
6668 /* opd entries are always for functions defined in the
6669 current input bfd. If the symbol isn't defined in the
6670 input bfd, then we won't be using the function in this
6671 bfd; It must be defined in a linkonce section in another
6672 bfd, or is weak. It's also possible that we are
6673 discarding the function due to a linker script /DISCARD/,
6674 which we test for via the output_section. */
6675 if (sym_sec->owner != ibfd
6676 || sym_sec->output_section == bfd_abs_section_ptr)
6677 need_edit = TRUE;
6678
6679 rel += 2;
6680 if (rel == relend
6681 || (rel + 1 == relend && rel->r_offset == offset + 16))
6682 {
6683 if (sec->size == offset + 24)
6684 {
6685 need_pad = NULL;
6686 break;
6687 }
6688 if (rel == relend && sec->size == offset + 16)
6689 {
6690 cnt_16b++;
6691 break;
6692 }
6693 goto broken_opd;
6694 }
6695
6696 if (rel->r_offset == offset + 24)
6697 offset += 24;
6698 else if (rel->r_offset != offset + 16)
6699 goto broken_opd;
6700 else if (rel + 1 < relend
6701 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6702 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6703 {
6704 offset += 16;
6705 cnt_16b++;
6706 }
6707 else if (rel + 2 < relend
6708 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6709 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6710 {
6711 offset += 24;
6712 rel += 1;
6713 }
6714 else
6715 goto broken_opd;
6716 }
6717
6718 add_aux_fields = non_overlapping && cnt_16b > 0;
6719
6720 if (need_edit || add_aux_fields)
6721 {
6722 Elf_Internal_Rela *write_rel;
6723 bfd_byte *rptr, *wptr;
6724 bfd_byte *new_contents = NULL;
6725 bfd_boolean skip;
6726 long opd_ent_size;
6727 bfd_size_type amt;
6728
6729 amt = sec->size * sizeof (long) / 8;
6730 opd = &ppc64_elf_section_data (sec)->u.opd;
6731 opd->adjust = bfd_zalloc (obfd, amt);
6732 if (opd->adjust == NULL)
6733 return FALSE;
6734 ppc64_elf_section_data (sec)->sec_type = sec_opd;
6735
6736 /* This seems a waste of time as input .opd sections are all
6737 zeros as generated by gcc, but I suppose there's no reason
6738 this will always be so. We might start putting something in
6739 the third word of .opd entries. */
6740 if ((sec->flags & SEC_IN_MEMORY) == 0)
6741 {
6742 bfd_byte *loc;
6743 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6744 {
6745 if (loc != NULL)
6746 free (loc);
6747 error_ret:
6748 if (local_syms != NULL
6749 && symtab_hdr->contents != (unsigned char *) local_syms)
6750 free (local_syms);
6751 if (elf_section_data (sec)->relocs != relstart)
6752 free (relstart);
6753 return FALSE;
6754 }
6755 sec->contents = loc;
6756 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6757 }
6758
6759 elf_section_data (sec)->relocs = relstart;
6760
6761 new_contents = sec->contents;
6762 if (add_aux_fields)
6763 {
6764 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6765 if (new_contents == NULL)
6766 return FALSE;
6767 need_pad = FALSE;
6768 }
6769 wptr = new_contents;
6770 rptr = sec->contents;
6771
6772 write_rel = relstart;
6773 skip = FALSE;
6774 offset = 0;
6775 opd_ent_size = 0;
6776 for (rel = relstart; rel < relend; rel++)
6777 {
6778 unsigned long r_symndx;
6779 asection *sym_sec;
6780 struct elf_link_hash_entry *h;
6781 Elf_Internal_Sym *sym;
6782
6783 r_symndx = ELF64_R_SYM (rel->r_info);
6784 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6785 r_symndx, ibfd))
6786 goto error_ret;
6787
6788 if (rel->r_offset == offset)
6789 {
6790 struct ppc_link_hash_entry *fdh = NULL;
6791
6792 /* See if the .opd entry is full 24 byte or
6793 16 byte (with fd_aux entry overlapped with next
6794 fd_func). */
6795 opd_ent_size = 24;
6796 if ((rel + 2 == relend && sec->size == offset + 16)
6797 || (rel + 3 < relend
6798 && rel[2].r_offset == offset + 16
6799 && rel[3].r_offset == offset + 24
6800 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6801 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6802 opd_ent_size = 16;
6803
6804 if (h != NULL
6805 && h->root.root.string[0] == '.')
6806 {
6807 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6808 ppc_hash_table (info));
6809 if (fdh != NULL
6810 && fdh->elf.root.type != bfd_link_hash_defined
6811 && fdh->elf.root.type != bfd_link_hash_defweak)
6812 fdh = NULL;
6813 }
6814
6815 skip = (sym_sec->owner != ibfd
6816 || sym_sec->output_section == bfd_abs_section_ptr);
6817 if (skip)
6818 {
6819 if (fdh != NULL && sym_sec->owner == ibfd)
6820 {
6821 /* Arrange for the function descriptor sym
6822 to be dropped. */
6823 fdh->elf.root.u.def.value = 0;
6824 fdh->elf.root.u.def.section = sym_sec;
6825 }
6826 opd->adjust[rel->r_offset / 8] = -1;
6827 }
6828 else
6829 {
6830 /* We'll be keeping this opd entry. */
6831
6832 if (fdh != NULL)
6833 {
6834 /* Redefine the function descriptor symbol to
6835 this location in the opd section. It is
6836 necessary to update the value here rather
6837 than using an array of adjustments as we do
6838 for local symbols, because various places
6839 in the generic ELF code use the value
6840 stored in u.def.value. */
6841 fdh->elf.root.u.def.value = wptr - new_contents;
6842 fdh->adjust_done = 1;
6843 }
6844
6845 /* Local syms are a bit tricky. We could
6846 tweak them as they can be cached, but
6847 we'd need to look through the local syms
6848 for the function descriptor sym which we
6849 don't have at the moment. So keep an
6850 array of adjustments. */
6851 opd->adjust[rel->r_offset / 8]
6852 = (wptr - new_contents) - (rptr - sec->contents);
6853
6854 if (wptr != rptr)
6855 memcpy (wptr, rptr, opd_ent_size);
6856 wptr += opd_ent_size;
6857 if (add_aux_fields && opd_ent_size == 16)
6858 {
6859 memset (wptr, '\0', 8);
6860 wptr += 8;
6861 }
6862 }
6863 rptr += opd_ent_size;
6864 offset += opd_ent_size;
6865 }
6866
6867 if (skip)
6868 {
6869 if (!NO_OPD_RELOCS
6870 && !info->relocatable
6871 && !dec_dynrel_count (rel->r_info, sec, info,
6872 NULL, h, sym_sec))
6873 goto error_ret;
6874 }
6875 else
6876 {
6877 /* We need to adjust any reloc offsets to point to the
6878 new opd entries. While we're at it, we may as well
6879 remove redundant relocs. */
6880 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
6881 if (write_rel != rel)
6882 memcpy (write_rel, rel, sizeof (*rel));
6883 ++write_rel;
6884 }
6885 }
6886
6887 sec->size = wptr - new_contents;
6888 sec->reloc_count = write_rel - relstart;
6889 if (add_aux_fields)
6890 {
6891 free (sec->contents);
6892 sec->contents = new_contents;
6893 }
6894
6895 /* Fudge the header size too, as this is used later in
6896 elf_bfd_final_link if we are emitting relocs. */
6897 elf_section_data (sec)->rel_hdr.sh_size
6898 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6899 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6900 some_edited = TRUE;
6901 }
6902 else if (elf_section_data (sec)->relocs != relstart)
6903 free (relstart);
6904
6905 if (local_syms != NULL
6906 && symtab_hdr->contents != (unsigned char *) local_syms)
6907 {
6908 if (!info->keep_memory)
6909 free (local_syms);
6910 else
6911 symtab_hdr->contents = (unsigned char *) local_syms;
6912 }
6913 }
6914
6915 if (some_edited)
6916 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6917
6918 /* If we are doing a final link and the last .opd entry is just 16 byte
6919 long, add a 8 byte padding after it. */
6920 if (need_pad != NULL && !info->relocatable)
6921 {
6922 bfd_byte *p;
6923
6924 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6925 {
6926 BFD_ASSERT (need_pad->size > 0);
6927
6928 p = bfd_malloc (need_pad->size + 8);
6929 if (p == NULL)
6930 return FALSE;
6931
6932 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6933 p, 0, need_pad->size))
6934 return FALSE;
6935
6936 need_pad->contents = p;
6937 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6938 }
6939 else
6940 {
6941 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6942 if (p == NULL)
6943 return FALSE;
6944
6945 need_pad->contents = p;
6946 }
6947
6948 memset (need_pad->contents + need_pad->size, 0, 8);
6949 need_pad->size += 8;
6950 }
6951
6952 return TRUE;
6953 }
6954
6955 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6956
6957 asection *
6958 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6959 {
6960 struct ppc_link_hash_table *htab;
6961
6962 htab = ppc_hash_table (info);
6963 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
6964 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
6965 FALSE, FALSE, TRUE));
6966 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
6967 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
6968 FALSE, FALSE, TRUE));
6969 return _bfd_elf_tls_setup (obfd, info);
6970 }
6971
6972 /* Return TRUE iff REL is a branch reloc with a global symbol matching
6973 HASH1 or HASH2. */
6974
6975 static bfd_boolean
6976 branch_reloc_hash_match (const bfd *ibfd,
6977 const Elf_Internal_Rela *rel,
6978 const struct ppc_link_hash_entry *hash1,
6979 const struct ppc_link_hash_entry *hash2)
6980 {
6981 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6982 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
6983 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
6984
6985 if (r_symndx >= symtab_hdr->sh_info
6986 && (r_type == R_PPC64_REL24
6987 || r_type == R_PPC64_REL14
6988 || r_type == R_PPC64_REL14_BRTAKEN
6989 || r_type == R_PPC64_REL14_BRNTAKEN
6990 || r_type == R_PPC64_ADDR24
6991 || r_type == R_PPC64_ADDR14
6992 || r_type == R_PPC64_ADDR14_BRTAKEN
6993 || r_type == R_PPC64_ADDR14_BRNTAKEN))
6994 {
6995 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6996 struct elf_link_hash_entry *h;
6997
6998 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6999 while (h->root.type == bfd_link_hash_indirect
7000 || h->root.type == bfd_link_hash_warning)
7001 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7002 if (h == &hash1->elf || h == &hash2->elf)
7003 return TRUE;
7004 }
7005 return FALSE;
7006 }
7007
7008 /* Run through all the TLS relocs looking for optimization
7009 opportunities. The linker has been hacked (see ppc64elf.em) to do
7010 a preliminary section layout so that we know the TLS segment
7011 offsets. We can't optimize earlier because some optimizations need
7012 to know the tp offset, and we need to optimize before allocating
7013 dynamic relocations. */
7014
7015 bfd_boolean
7016 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
7017 {
7018 bfd *ibfd;
7019 asection *sec;
7020 struct ppc_link_hash_table *htab;
7021 int pass;
7022
7023 if (info->relocatable || !info->executable)
7024 return TRUE;
7025
7026 htab = ppc_hash_table (info);
7027 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7028 {
7029 Elf_Internal_Sym *locsyms = NULL;
7030 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7031 unsigned char *toc_ref = NULL;
7032
7033 /* Look at all the sections for this file. Make two passes over
7034 the relocs. On the first pass, mark toc entries involved
7035 with tls relocs, and check that tls relocs involved in
7036 setting up a tls_get_addr call are indeed followed by such a
7037 call. If they are not, exclude them from the optimizations
7038 done on the second pass. */
7039 for (pass = 0; pass < 2; ++pass)
7040 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7041 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7042 {
7043 Elf_Internal_Rela *relstart, *rel, *relend;
7044
7045 /* Read the relocations. */
7046 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7047 info->keep_memory);
7048 if (relstart == NULL)
7049 return FALSE;
7050
7051 relend = relstart + sec->reloc_count;
7052 for (rel = relstart; rel < relend; rel++)
7053 {
7054 enum elf_ppc64_reloc_type r_type;
7055 unsigned long r_symndx;
7056 struct elf_link_hash_entry *h;
7057 Elf_Internal_Sym *sym;
7058 asection *sym_sec;
7059 char *tls_mask;
7060 char tls_set, tls_clear, tls_type = 0;
7061 bfd_vma value;
7062 bfd_boolean ok_tprel, is_local;
7063 long toc_ref_index = 0;
7064 int expecting_tls_get_addr = 0;
7065
7066 r_symndx = ELF64_R_SYM (rel->r_info);
7067 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7068 r_symndx, ibfd))
7069 {
7070 err_free_rel:
7071 if (elf_section_data (sec)->relocs != relstart)
7072 free (relstart);
7073 if (toc_ref != NULL)
7074 free (toc_ref);
7075 if (locsyms != NULL
7076 && (elf_symtab_hdr (ibfd).contents
7077 != (unsigned char *) locsyms))
7078 free (locsyms);
7079 return FALSE;
7080 }
7081
7082 if (h != NULL)
7083 {
7084 if (h->root.type != bfd_link_hash_defined
7085 && h->root.type != bfd_link_hash_defweak)
7086 continue;
7087 value = h->root.u.def.value;
7088 }
7089 else
7090 /* Symbols referenced by TLS relocs must be of type
7091 STT_TLS. So no need for .opd local sym adjust. */
7092 value = sym->st_value;
7093
7094 ok_tprel = FALSE;
7095 is_local = FALSE;
7096 if (h == NULL
7097 || !h->def_dynamic)
7098 {
7099 is_local = TRUE;
7100 value += sym_sec->output_offset;
7101 value += sym_sec->output_section->vma;
7102 value -= htab->elf.tls_sec->vma;
7103 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7104 < (bfd_vma) 1 << 32);
7105 }
7106
7107 r_type = ELF64_R_TYPE (rel->r_info);
7108 switch (r_type)
7109 {
7110 case R_PPC64_GOT_TLSLD16:
7111 case R_PPC64_GOT_TLSLD16_LO:
7112 expecting_tls_get_addr = 1;
7113 /* Fall thru */
7114
7115 case R_PPC64_GOT_TLSLD16_HI:
7116 case R_PPC64_GOT_TLSLD16_HA:
7117 /* These relocs should never be against a symbol
7118 defined in a shared lib. Leave them alone if
7119 that turns out to be the case. */
7120 if (!is_local)
7121 continue;
7122
7123 /* LD -> LE */
7124 tls_set = 0;
7125 tls_clear = TLS_LD;
7126 tls_type = TLS_TLS | TLS_LD;
7127 break;
7128
7129 case R_PPC64_GOT_TLSGD16:
7130 case R_PPC64_GOT_TLSGD16_LO:
7131 expecting_tls_get_addr = 1;
7132 /* Fall thru */
7133
7134 case R_PPC64_GOT_TLSGD16_HI:
7135 case R_PPC64_GOT_TLSGD16_HA:
7136 if (ok_tprel)
7137 /* GD -> LE */
7138 tls_set = 0;
7139 else
7140 /* GD -> IE */
7141 tls_set = TLS_TLS | TLS_TPRELGD;
7142 tls_clear = TLS_GD;
7143 tls_type = TLS_TLS | TLS_GD;
7144 break;
7145
7146 case R_PPC64_GOT_TPREL16_DS:
7147 case R_PPC64_GOT_TPREL16_LO_DS:
7148 case R_PPC64_GOT_TPREL16_HI:
7149 case R_PPC64_GOT_TPREL16_HA:
7150 if (ok_tprel)
7151 {
7152 /* IE -> LE */
7153 tls_set = 0;
7154 tls_clear = TLS_TPREL;
7155 tls_type = TLS_TLS | TLS_TPREL;
7156 break;
7157 }
7158 continue;
7159
7160 case R_PPC64_TOC16:
7161 case R_PPC64_TOC16_LO:
7162 case R_PPC64_TLS:
7163 case R_PPC64_TLSGD:
7164 case R_PPC64_TLSLD:
7165 if (sym_sec == NULL || sym_sec != toc)
7166 continue;
7167
7168 /* Mark this toc entry as referenced by a TLS
7169 code sequence. We can do that now in the
7170 case of R_PPC64_TLS, and after checking for
7171 tls_get_addr for the TOC16 relocs. */
7172 if (toc_ref == NULL)
7173 {
7174 toc_ref = bfd_zmalloc (toc->size / 8);
7175 if (toc_ref == NULL)
7176 goto err_free_rel;
7177 }
7178 if (h != NULL)
7179 value = h->root.u.def.value;
7180 else
7181 value = sym->st_value;
7182 value += rel->r_addend;
7183 BFD_ASSERT (value < toc->size && value % 8 == 0);
7184 toc_ref_index = value / 8;
7185 if (r_type == R_PPC64_TLS
7186 || r_type == R_PPC64_TLSGD
7187 || r_type == R_PPC64_TLSLD)
7188 {
7189 toc_ref[toc_ref_index] = 1;
7190 continue;
7191 }
7192
7193 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7194 continue;
7195
7196 tls_set = 0;
7197 tls_clear = 0;
7198 expecting_tls_get_addr = 2;
7199 break;
7200
7201 case R_PPC64_TPREL64:
7202 if (pass == 0
7203 || sec != toc
7204 || toc_ref == NULL
7205 || !toc_ref[rel->r_offset / 8])
7206 continue;
7207 if (ok_tprel)
7208 {
7209 /* IE -> LE */
7210 tls_set = TLS_EXPLICIT;
7211 tls_clear = TLS_TPREL;
7212 break;
7213 }
7214 continue;
7215
7216 case R_PPC64_DTPMOD64:
7217 if (pass == 0
7218 || sec != toc
7219 || toc_ref == NULL
7220 || !toc_ref[rel->r_offset / 8])
7221 continue;
7222 if (rel + 1 < relend
7223 && (rel[1].r_info
7224 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7225 && rel[1].r_offset == rel->r_offset + 8)
7226 {
7227 if (ok_tprel)
7228 /* GD -> LE */
7229 tls_set = TLS_EXPLICIT | TLS_GD;
7230 else
7231 /* GD -> IE */
7232 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7233 tls_clear = TLS_GD;
7234 }
7235 else
7236 {
7237 if (!is_local)
7238 continue;
7239
7240 /* LD -> LE */
7241 tls_set = TLS_EXPLICIT;
7242 tls_clear = TLS_LD;
7243 }
7244 break;
7245
7246 default:
7247 continue;
7248 }
7249
7250 if (pass == 0)
7251 {
7252 if (!expecting_tls_get_addr
7253 || !sec->has_tls_get_addr_call)
7254 continue;
7255
7256 if (rel + 1 < relend
7257 && branch_reloc_hash_match (ibfd, rel + 1,
7258 htab->tls_get_addr,
7259 htab->tls_get_addr_fd))
7260 {
7261 if (expecting_tls_get_addr == 2)
7262 {
7263 /* Check for toc tls entries. */
7264 char *toc_tls;
7265 int retval;
7266
7267 retval = get_tls_mask (&toc_tls, NULL, NULL,
7268 &locsyms,
7269 rel, ibfd);
7270 if (retval == 0)
7271 goto err_free_rel;
7272 if (retval > 1 && toc_tls != NULL)
7273 toc_ref[toc_ref_index] = 1;
7274 }
7275 continue;
7276 }
7277
7278 if (expecting_tls_get_addr != 1)
7279 continue;
7280
7281 /* Uh oh, we didn't find the expected call. We
7282 could just mark this symbol to exclude it
7283 from tls optimization but it's safer to skip
7284 the entire section. */
7285 sec->has_tls_reloc = 0;
7286 break;
7287 }
7288
7289 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7290 {
7291 struct plt_entry *ent;
7292 for (ent = htab->tls_get_addr->elf.plt.plist;
7293 ent != NULL;
7294 ent = ent->next)
7295 if (ent->addend == 0)
7296 {
7297 if (ent->plt.refcount > 0)
7298 {
7299 ent->plt.refcount -= 1;
7300 expecting_tls_get_addr = 0;
7301 }
7302 break;
7303 }
7304 }
7305
7306 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7307 {
7308 struct plt_entry *ent;
7309 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7310 ent != NULL;
7311 ent = ent->next)
7312 if (ent->addend == 0)
7313 {
7314 if (ent->plt.refcount > 0)
7315 ent->plt.refcount -= 1;
7316 break;
7317 }
7318 }
7319
7320 if (tls_clear == 0)
7321 continue;
7322
7323 if ((tls_set & TLS_EXPLICIT) == 0)
7324 {
7325 struct got_entry *ent;
7326
7327 /* Adjust got entry for this reloc. */
7328 if (h != NULL)
7329 ent = h->got.glist;
7330 else
7331 ent = elf_local_got_ents (ibfd)[r_symndx];
7332
7333 for (; ent != NULL; ent = ent->next)
7334 if (ent->addend == rel->r_addend
7335 && ent->owner == ibfd
7336 && ent->tls_type == tls_type)
7337 break;
7338 if (ent == NULL)
7339 abort ();
7340
7341 if (tls_set == 0)
7342 {
7343 /* We managed to get rid of a got entry. */
7344 if (ent->got.refcount > 0)
7345 ent->got.refcount -= 1;
7346 }
7347 }
7348 else
7349 {
7350 /* If we got rid of a DTPMOD/DTPREL reloc pair then
7351 we'll lose one or two dyn relocs. */
7352 if (!dec_dynrel_count (rel->r_info, sec, info,
7353 NULL, h, sym_sec))
7354 return FALSE;
7355
7356 if (tls_set == (TLS_EXPLICIT | TLS_GD))
7357 {
7358 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
7359 NULL, h, sym_sec))
7360 return FALSE;
7361 }
7362 }
7363
7364 *tls_mask |= tls_set;
7365 *tls_mask &= ~tls_clear;
7366 }
7367
7368 if (elf_section_data (sec)->relocs != relstart)
7369 free (relstart);
7370 }
7371
7372 if (toc_ref != NULL)
7373 free (toc_ref);
7374
7375 if (locsyms != NULL
7376 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
7377 {
7378 if (!info->keep_memory)
7379 free (locsyms);
7380 else
7381 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
7382 }
7383 }
7384 return TRUE;
7385 }
7386
7387 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
7388 the values of any global symbols in a toc section that has been
7389 edited. Globals in toc sections should be a rarity, so this function
7390 sets a flag if any are found in toc sections other than the one just
7391 edited, so that futher hash table traversals can be avoided. */
7392
7393 struct adjust_toc_info
7394 {
7395 asection *toc;
7396 unsigned long *skip;
7397 bfd_boolean global_toc_syms;
7398 };
7399
7400 static bfd_boolean
7401 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
7402 {
7403 struct ppc_link_hash_entry *eh;
7404 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
7405
7406 if (h->root.type == bfd_link_hash_indirect)
7407 return TRUE;
7408
7409 if (h->root.type == bfd_link_hash_warning)
7410 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7411
7412 if (h->root.type != bfd_link_hash_defined
7413 && h->root.type != bfd_link_hash_defweak)
7414 return TRUE;
7415
7416 eh = (struct ppc_link_hash_entry *) h;
7417 if (eh->adjust_done)
7418 return TRUE;
7419
7420 if (eh->elf.root.u.def.section == toc_inf->toc)
7421 {
7422 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
7423 if (skip != (unsigned long) -1)
7424 eh->elf.root.u.def.value -= skip;
7425 else
7426 {
7427 (*_bfd_error_handler)
7428 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
7429 eh->elf.root.u.def.section = &bfd_abs_section;
7430 eh->elf.root.u.def.value = 0;
7431 }
7432 eh->adjust_done = 1;
7433 }
7434 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
7435 toc_inf->global_toc_syms = TRUE;
7436
7437 return TRUE;
7438 }
7439
7440 /* Examine all relocs referencing .toc sections in order to remove
7441 unused .toc entries. */
7442
7443 bfd_boolean
7444 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
7445 {
7446 bfd *ibfd;
7447 struct adjust_toc_info toc_inf;
7448
7449 toc_inf.global_toc_syms = TRUE;
7450 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7451 {
7452 asection *toc, *sec;
7453 Elf_Internal_Shdr *symtab_hdr;
7454 Elf_Internal_Sym *local_syms;
7455 struct elf_link_hash_entry **sym_hashes;
7456 Elf_Internal_Rela *relstart, *rel;
7457 unsigned long *skip, *drop;
7458 unsigned char *used;
7459 unsigned char *keep, last, some_unused;
7460
7461 toc = bfd_get_section_by_name (ibfd, ".toc");
7462 if (toc == NULL
7463 || toc->size == 0
7464 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
7465 || elf_discarded_section (toc))
7466 continue;
7467
7468 local_syms = NULL;
7469 symtab_hdr = &elf_symtab_hdr (ibfd);
7470 sym_hashes = elf_sym_hashes (ibfd);
7471
7472 /* Look at sections dropped from the final link. */
7473 skip = NULL;
7474 relstart = NULL;
7475 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7476 {
7477 if (sec->reloc_count == 0
7478 || !elf_discarded_section (sec)
7479 || get_opd_info (sec)
7480 || (sec->flags & SEC_ALLOC) == 0
7481 || (sec->flags & SEC_DEBUGGING) != 0)
7482 continue;
7483
7484 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
7485 if (relstart == NULL)
7486 goto error_ret;
7487
7488 /* Run through the relocs to see which toc entries might be
7489 unused. */
7490 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7491 {
7492 enum elf_ppc64_reloc_type r_type;
7493 unsigned long r_symndx;
7494 asection *sym_sec;
7495 struct elf_link_hash_entry *h;
7496 Elf_Internal_Sym *sym;
7497 bfd_vma val;
7498
7499 r_type = ELF64_R_TYPE (rel->r_info);
7500 switch (r_type)
7501 {
7502 default:
7503 continue;
7504
7505 case R_PPC64_TOC16:
7506 case R_PPC64_TOC16_LO:
7507 case R_PPC64_TOC16_HI:
7508 case R_PPC64_TOC16_HA:
7509 case R_PPC64_TOC16_DS:
7510 case R_PPC64_TOC16_LO_DS:
7511 break;
7512 }
7513
7514 r_symndx = ELF64_R_SYM (rel->r_info);
7515 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7516 r_symndx, ibfd))
7517 goto error_ret;
7518
7519 if (sym_sec != toc)
7520 continue;
7521
7522 if (h != NULL)
7523 val = h->root.u.def.value;
7524 else
7525 val = sym->st_value;
7526 val += rel->r_addend;
7527
7528 if (val >= toc->size)
7529 continue;
7530
7531 /* Anything in the toc ought to be aligned to 8 bytes.
7532 If not, don't mark as unused. */
7533 if (val & 7)
7534 continue;
7535
7536 if (skip == NULL)
7537 {
7538 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7539 if (skip == NULL)
7540 goto error_ret;
7541 }
7542
7543 skip[val >> 3] = 1;
7544 }
7545
7546 if (elf_section_data (sec)->relocs != relstart)
7547 free (relstart);
7548 }
7549
7550 if (skip == NULL)
7551 continue;
7552
7553 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7554 if (used == NULL)
7555 {
7556 error_ret:
7557 if (local_syms != NULL
7558 && symtab_hdr->contents != (unsigned char *) local_syms)
7559 free (local_syms);
7560 if (sec != NULL
7561 && relstart != NULL
7562 && elf_section_data (sec)->relocs != relstart)
7563 free (relstart);
7564 if (skip != NULL)
7565 free (skip);
7566 return FALSE;
7567 }
7568
7569 /* Now check all kept sections that might reference the toc.
7570 Check the toc itself last. */
7571 for (sec = (ibfd->sections == toc && toc->next ? toc->next
7572 : ibfd->sections);
7573 sec != NULL;
7574 sec = (sec == toc ? NULL
7575 : sec->next == NULL ? toc
7576 : sec->next == toc && toc->next ? toc->next
7577 : sec->next))
7578 {
7579 int repeat;
7580
7581 if (sec->reloc_count == 0
7582 || elf_discarded_section (sec)
7583 || get_opd_info (sec)
7584 || (sec->flags & SEC_ALLOC) == 0
7585 || (sec->flags & SEC_DEBUGGING) != 0)
7586 continue;
7587
7588 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7589 if (relstart == NULL)
7590 goto error_ret;
7591
7592 /* Mark toc entries referenced as used. */
7593 repeat = 0;
7594 do
7595 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7596 {
7597 enum elf_ppc64_reloc_type r_type;
7598 unsigned long r_symndx;
7599 asection *sym_sec;
7600 struct elf_link_hash_entry *h;
7601 Elf_Internal_Sym *sym;
7602 bfd_vma val;
7603
7604 r_type = ELF64_R_TYPE (rel->r_info);
7605 switch (r_type)
7606 {
7607 case R_PPC64_TOC16:
7608 case R_PPC64_TOC16_LO:
7609 case R_PPC64_TOC16_HI:
7610 case R_PPC64_TOC16_HA:
7611 case R_PPC64_TOC16_DS:
7612 case R_PPC64_TOC16_LO_DS:
7613 /* In case we're taking addresses of toc entries. */
7614 case R_PPC64_ADDR64:
7615 break;
7616
7617 default:
7618 continue;
7619 }
7620
7621 r_symndx = ELF64_R_SYM (rel->r_info);
7622 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7623 r_symndx, ibfd))
7624 {
7625 free (used);
7626 goto error_ret;
7627 }
7628
7629 if (sym_sec != toc)
7630 continue;
7631
7632 if (h != NULL)
7633 val = h->root.u.def.value;
7634 else
7635 val = sym->st_value;
7636 val += rel->r_addend;
7637
7638 if (val >= toc->size)
7639 continue;
7640
7641 /* For the toc section, we only mark as used if
7642 this entry itself isn't unused. */
7643 if (sec == toc
7644 && !used[val >> 3]
7645 && (used[rel->r_offset >> 3]
7646 || !skip[rel->r_offset >> 3]))
7647 /* Do all the relocs again, to catch reference
7648 chains. */
7649 repeat = 1;
7650
7651 used[val >> 3] = 1;
7652 }
7653 while (repeat);
7654 }
7655
7656 /* Merge the used and skip arrays. Assume that TOC
7657 doublewords not appearing as either used or unused belong
7658 to to an entry more than one doubleword in size. */
7659 for (drop = skip, keep = used, last = 0, some_unused = 0;
7660 drop < skip + (toc->size + 7) / 8;
7661 ++drop, ++keep)
7662 {
7663 if (*keep)
7664 {
7665 *drop = 0;
7666 last = 0;
7667 }
7668 else if (*drop)
7669 {
7670 some_unused = 1;
7671 last = 1;
7672 }
7673 else
7674 *drop = last;
7675 }
7676
7677 free (used);
7678
7679 if (some_unused)
7680 {
7681 bfd_byte *contents, *src;
7682 unsigned long off;
7683
7684 /* Shuffle the toc contents, and at the same time convert the
7685 skip array from booleans into offsets. */
7686 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7687 goto error_ret;
7688
7689 elf_section_data (toc)->this_hdr.contents = contents;
7690
7691 for (src = contents, off = 0, drop = skip;
7692 src < contents + toc->size;
7693 src += 8, ++drop)
7694 {
7695 if (*drop)
7696 {
7697 *drop = (unsigned long) -1;
7698 off += 8;
7699 }
7700 else if (off != 0)
7701 {
7702 *drop = off;
7703 memcpy (src - off, src, 8);
7704 }
7705 }
7706 toc->rawsize = toc->size;
7707 toc->size = src - contents - off;
7708
7709 if (toc->reloc_count != 0)
7710 {
7711 Elf_Internal_Rela *wrel;
7712 bfd_size_type sz;
7713
7714 /* Read toc relocs. */
7715 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7716 TRUE);
7717 if (relstart == NULL)
7718 goto error_ret;
7719
7720 /* Remove unused toc relocs, and adjust those we keep. */
7721 wrel = relstart;
7722 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7723 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7724 {
7725 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7726 wrel->r_info = rel->r_info;
7727 wrel->r_addend = rel->r_addend;
7728 ++wrel;
7729 }
7730 else if (!dec_dynrel_count (rel->r_info, toc, info,
7731 &local_syms, NULL, NULL))
7732 goto error_ret;
7733
7734 toc->reloc_count = wrel - relstart;
7735 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7736 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7737 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7738 }
7739
7740 /* Adjust addends for relocs against the toc section sym. */
7741 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7742 {
7743 if (sec->reloc_count == 0
7744 || elf_discarded_section (sec))
7745 continue;
7746
7747 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7748 TRUE);
7749 if (relstart == NULL)
7750 goto error_ret;
7751
7752 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7753 {
7754 enum elf_ppc64_reloc_type r_type;
7755 unsigned long r_symndx;
7756 asection *sym_sec;
7757 struct elf_link_hash_entry *h;
7758 Elf_Internal_Sym *sym;
7759
7760 r_type = ELF64_R_TYPE (rel->r_info);
7761 switch (r_type)
7762 {
7763 default:
7764 continue;
7765
7766 case R_PPC64_TOC16:
7767 case R_PPC64_TOC16_LO:
7768 case R_PPC64_TOC16_HI:
7769 case R_PPC64_TOC16_HA:
7770 case R_PPC64_TOC16_DS:
7771 case R_PPC64_TOC16_LO_DS:
7772 case R_PPC64_ADDR64:
7773 break;
7774 }
7775
7776 r_symndx = ELF64_R_SYM (rel->r_info);
7777 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7778 r_symndx, ibfd))
7779 goto error_ret;
7780
7781 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7782 continue;
7783
7784 rel->r_addend -= skip[rel->r_addend >> 3];
7785 }
7786 }
7787
7788 /* We shouldn't have local or global symbols defined in the TOC,
7789 but handle them anyway. */
7790 if (local_syms != NULL)
7791 {
7792 Elf_Internal_Sym *sym;
7793
7794 for (sym = local_syms;
7795 sym < local_syms + symtab_hdr->sh_info;
7796 ++sym)
7797 if (sym->st_value != 0
7798 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7799 {
7800 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7801 sym->st_value -= skip[sym->st_value >> 3];
7802 else
7803 {
7804 (*_bfd_error_handler)
7805 (_("%s defined in removed toc entry"),
7806 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7807 NULL));
7808 sym->st_value = 0;
7809 sym->st_shndx = SHN_ABS;
7810 }
7811 symtab_hdr->contents = (unsigned char *) local_syms;
7812 }
7813 }
7814
7815 /* Finally, adjust any global syms defined in the toc. */
7816 if (toc_inf.global_toc_syms)
7817 {
7818 toc_inf.toc = toc;
7819 toc_inf.skip = skip;
7820 toc_inf.global_toc_syms = FALSE;
7821 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7822 &toc_inf);
7823 }
7824 }
7825
7826 if (local_syms != NULL
7827 && symtab_hdr->contents != (unsigned char *) local_syms)
7828 {
7829 if (!info->keep_memory)
7830 free (local_syms);
7831 else
7832 symtab_hdr->contents = (unsigned char *) local_syms;
7833 }
7834 free (skip);
7835 }
7836
7837 return TRUE;
7838 }
7839
7840 /* Allocate space in .plt, .got and associated reloc sections for
7841 dynamic relocs. */
7842
7843 static bfd_boolean
7844 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7845 {
7846 struct bfd_link_info *info;
7847 struct ppc_link_hash_table *htab;
7848 asection *s;
7849 struct ppc_link_hash_entry *eh;
7850 struct ppc_dyn_relocs *p;
7851 struct got_entry *gent;
7852
7853 if (h->root.type == bfd_link_hash_indirect)
7854 return TRUE;
7855
7856 if (h->root.type == bfd_link_hash_warning)
7857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7858
7859 info = (struct bfd_link_info *) inf;
7860 htab = ppc_hash_table (info);
7861
7862 if (htab->elf.dynamic_sections_created
7863 && h->dynindx != -1
7864 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7865 {
7866 struct plt_entry *pent;
7867 bfd_boolean doneone = FALSE;
7868 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7869 if (pent->plt.refcount > 0)
7870 {
7871 /* If this is the first .plt entry, make room for the special
7872 first entry. */
7873 s = htab->plt;
7874 if (s->size == 0)
7875 s->size += PLT_INITIAL_ENTRY_SIZE;
7876
7877 pent->plt.offset = s->size;
7878
7879 /* Make room for this entry. */
7880 s->size += PLT_ENTRY_SIZE;
7881
7882 /* Make room for the .glink code. */
7883 s = htab->glink;
7884 if (s->size == 0)
7885 s->size += GLINK_CALL_STUB_SIZE;
7886 /* We need bigger stubs past index 32767. */
7887 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7888 s->size += 4;
7889 s->size += 2*4;
7890
7891 /* We also need to make an entry in the .rela.plt section. */
7892 s = htab->relplt;
7893 s->size += sizeof (Elf64_External_Rela);
7894 doneone = TRUE;
7895 }
7896 else
7897 pent->plt.offset = (bfd_vma) -1;
7898 if (!doneone)
7899 {
7900 h->plt.plist = NULL;
7901 h->needs_plt = 0;
7902 }
7903 }
7904 else
7905 {
7906 h->plt.plist = NULL;
7907 h->needs_plt = 0;
7908 }
7909
7910 eh = (struct ppc_link_hash_entry *) h;
7911 /* Run through the TLS GD got entries first if we're changing them
7912 to TPREL. */
7913 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7914 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7915 if (gent->got.refcount > 0
7916 && (gent->tls_type & TLS_GD) != 0)
7917 {
7918 /* This was a GD entry that has been converted to TPREL. If
7919 there happens to be a TPREL entry we can use that one. */
7920 struct got_entry *ent;
7921 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7922 if (ent->got.refcount > 0
7923 && (ent->tls_type & TLS_TPREL) != 0
7924 && ent->addend == gent->addend
7925 && ent->owner == gent->owner)
7926 {
7927 gent->got.refcount = 0;
7928 break;
7929 }
7930
7931 /* If not, then we'll be using our own TPREL entry. */
7932 if (gent->got.refcount != 0)
7933 gent->tls_type = TLS_TLS | TLS_TPREL;
7934 }
7935
7936 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7937 if (gent->got.refcount > 0)
7938 {
7939 bfd_boolean dyn;
7940
7941 /* Make sure this symbol is output as a dynamic symbol.
7942 Undefined weak syms won't yet be marked as dynamic,
7943 nor will all TLS symbols. */
7944 if (h->dynindx == -1
7945 && !h->forced_local
7946 && htab->elf.dynamic_sections_created)
7947 {
7948 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7949 return FALSE;
7950 }
7951
7952 if ((gent->tls_type & TLS_LD) != 0
7953 && !h->def_dynamic)
7954 {
7955 ppc64_tlsld_got (gent->owner)->refcount += 1;
7956 gent->got.offset = (bfd_vma) -1;
7957 continue;
7958 }
7959
7960 if (!is_ppc64_elf (gent->owner))
7961 continue;
7962
7963 s = ppc64_elf_tdata (gent->owner)->got;
7964 gent->got.offset = s->size;
7965 s->size
7966 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7967 dyn = htab->elf.dynamic_sections_created;
7968 if ((info->shared
7969 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7970 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7971 || h->root.type != bfd_link_hash_undefweak))
7972 ppc64_elf_tdata (gent->owner)->relgot->size
7973 += (gent->tls_type & eh->tls_mask & TLS_GD
7974 ? 2 * sizeof (Elf64_External_Rela)
7975 : sizeof (Elf64_External_Rela));
7976 }
7977 else
7978 gent->got.offset = (bfd_vma) -1;
7979
7980 if (eh->dyn_relocs == NULL
7981 || !htab->elf.dynamic_sections_created)
7982 return TRUE;
7983
7984 /* In the shared -Bsymbolic case, discard space allocated for
7985 dynamic pc-relative relocs against symbols which turn out to be
7986 defined in regular objects. For the normal shared case, discard
7987 space for relocs that have become local due to symbol visibility
7988 changes. */
7989
7990 if (info->shared)
7991 {
7992 /* Relocs that use pc_count are those that appear on a call insn,
7993 or certain REL relocs (see must_be_dyn_reloc) that can be
7994 generated via assembly. We want calls to protected symbols to
7995 resolve directly to the function rather than going via the plt.
7996 If people want function pointer comparisons to work as expected
7997 then they should avoid writing weird assembly. */
7998 if (SYMBOL_CALLS_LOCAL (info, h))
7999 {
8000 struct ppc_dyn_relocs **pp;
8001
8002 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
8003 {
8004 p->count -= p->pc_count;
8005 p->pc_count = 0;
8006 if (p->count == 0)
8007 *pp = p->next;
8008 else
8009 pp = &p->next;
8010 }
8011 }
8012
8013 /* Also discard relocs on undefined weak syms with non-default
8014 visibility. */
8015 if (eh->dyn_relocs != NULL
8016 && h->root.type == bfd_link_hash_undefweak)
8017 {
8018 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8019 eh->dyn_relocs = NULL;
8020
8021 /* Make sure this symbol is output as a dynamic symbol.
8022 Undefined weak syms won't yet be marked as dynamic. */
8023 else if (h->dynindx == -1
8024 && !h->forced_local)
8025 {
8026 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8027 return FALSE;
8028 }
8029 }
8030 }
8031 else if (ELIMINATE_COPY_RELOCS)
8032 {
8033 /* For the non-shared case, discard space for relocs against
8034 symbols which turn out to need copy relocs or are not
8035 dynamic. */
8036
8037 if (!h->non_got_ref
8038 && !h->def_regular)
8039 {
8040 /* Make sure this symbol is output as a dynamic symbol.
8041 Undefined weak syms won't yet be marked as dynamic. */
8042 if (h->dynindx == -1
8043 && !h->forced_local)
8044 {
8045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8046 return FALSE;
8047 }
8048
8049 /* If that succeeded, we know we'll be keeping all the
8050 relocs. */
8051 if (h->dynindx != -1)
8052 goto keep;
8053 }
8054
8055 eh->dyn_relocs = NULL;
8056
8057 keep: ;
8058 }
8059
8060 /* Finally, allocate space. */
8061 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8062 {
8063 asection *sreloc = elf_section_data (p->sec)->sreloc;
8064 sreloc->size += p->count * sizeof (Elf64_External_Rela);
8065 }
8066
8067 return TRUE;
8068 }
8069
8070 /* Find any dynamic relocs that apply to read-only sections. */
8071
8072 static bfd_boolean
8073 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8074 {
8075 struct ppc_link_hash_entry *eh;
8076 struct ppc_dyn_relocs *p;
8077
8078 if (h->root.type == bfd_link_hash_warning)
8079 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8080
8081 eh = (struct ppc_link_hash_entry *) h;
8082 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8083 {
8084 asection *s = p->sec->output_section;
8085
8086 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8087 {
8088 struct bfd_link_info *info = inf;
8089
8090 info->flags |= DF_TEXTREL;
8091
8092 /* Not an error, just cut short the traversal. */
8093 return FALSE;
8094 }
8095 }
8096 return TRUE;
8097 }
8098
8099 /* Set the sizes of the dynamic sections. */
8100
8101 static bfd_boolean
8102 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8103 struct bfd_link_info *info)
8104 {
8105 struct ppc_link_hash_table *htab;
8106 bfd *dynobj;
8107 asection *s;
8108 bfd_boolean relocs;
8109 bfd *ibfd;
8110
8111 htab = ppc_hash_table (info);
8112 dynobj = htab->elf.dynobj;
8113 if (dynobj == NULL)
8114 abort ();
8115
8116 if (htab->elf.dynamic_sections_created)
8117 {
8118 /* Set the contents of the .interp section to the interpreter. */
8119 if (info->executable)
8120 {
8121 s = bfd_get_section_by_name (dynobj, ".interp");
8122 if (s == NULL)
8123 abort ();
8124 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8125 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8126 }
8127 }
8128
8129 /* Set up .got offsets for local syms, and space for local dynamic
8130 relocs. */
8131 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8132 {
8133 struct got_entry **lgot_ents;
8134 struct got_entry **end_lgot_ents;
8135 char *lgot_masks;
8136 bfd_size_type locsymcount;
8137 Elf_Internal_Shdr *symtab_hdr;
8138 asection *srel;
8139
8140 if (!is_ppc64_elf (ibfd))
8141 continue;
8142
8143 for (s = ibfd->sections; s != NULL; s = s->next)
8144 {
8145 struct ppc_dyn_relocs *p;
8146
8147 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8148 {
8149 if (!bfd_is_abs_section (p->sec)
8150 && bfd_is_abs_section (p->sec->output_section))
8151 {
8152 /* Input section has been discarded, either because
8153 it is a copy of a linkonce section or due to
8154 linker script /DISCARD/, so we'll be discarding
8155 the relocs too. */
8156 }
8157 else if (p->count != 0)
8158 {
8159 srel = elf_section_data (p->sec)->sreloc;
8160 srel->size += p->count * sizeof (Elf64_External_Rela);
8161 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8162 info->flags |= DF_TEXTREL;
8163 }
8164 }
8165 }
8166
8167 lgot_ents = elf_local_got_ents (ibfd);
8168 if (!lgot_ents)
8169 continue;
8170
8171 symtab_hdr = &elf_symtab_hdr (ibfd);
8172 locsymcount = symtab_hdr->sh_info;
8173 end_lgot_ents = lgot_ents + locsymcount;
8174 lgot_masks = (char *) end_lgot_ents;
8175 s = ppc64_elf_tdata (ibfd)->got;
8176 srel = ppc64_elf_tdata (ibfd)->relgot;
8177 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
8178 {
8179 struct got_entry *ent;
8180
8181 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
8182 if (ent->got.refcount > 0)
8183 {
8184 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
8185 {
8186 ppc64_tlsld_got (ibfd)->refcount += 1;
8187 ent->got.offset = (bfd_vma) -1;
8188 }
8189 else
8190 {
8191 ent->got.offset = s->size;
8192 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
8193 {
8194 s->size += 16;
8195 if (info->shared)
8196 srel->size += 2 * sizeof (Elf64_External_Rela);
8197 }
8198 else
8199 {
8200 s->size += 8;
8201 if (info->shared)
8202 srel->size += sizeof (Elf64_External_Rela);
8203 }
8204 }
8205 }
8206 else
8207 ent->got.offset = (bfd_vma) -1;
8208 }
8209 }
8210
8211 /* Allocate global sym .plt and .got entries, and space for global
8212 sym dynamic relocs. */
8213 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
8214
8215 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8216 {
8217 if (!is_ppc64_elf (ibfd))
8218 continue;
8219
8220 if (ppc64_tlsld_got (ibfd)->refcount > 0)
8221 {
8222 s = ppc64_elf_tdata (ibfd)->got;
8223 ppc64_tlsld_got (ibfd)->offset = s->size;
8224 s->size += 16;
8225 if (info->shared)
8226 {
8227 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
8228 srel->size += sizeof (Elf64_External_Rela);
8229 }
8230 }
8231 else
8232 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
8233 }
8234
8235 /* We now have determined the sizes of the various dynamic sections.
8236 Allocate memory for them. */
8237 relocs = FALSE;
8238 for (s = dynobj->sections; s != NULL; s = s->next)
8239 {
8240 if ((s->flags & SEC_LINKER_CREATED) == 0)
8241 continue;
8242
8243 if (s == htab->brlt || s == htab->relbrlt)
8244 /* These haven't been allocated yet; don't strip. */
8245 continue;
8246 else if (s == htab->got
8247 || s == htab->plt
8248 || s == htab->glink
8249 || s == htab->dynbss)
8250 {
8251 /* Strip this section if we don't need it; see the
8252 comment below. */
8253 }
8254 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8255 {
8256 if (s->size != 0)
8257 {
8258 if (s != htab->relplt)
8259 relocs = TRUE;
8260
8261 /* We use the reloc_count field as a counter if we need
8262 to copy relocs into the output file. */
8263 s->reloc_count = 0;
8264 }
8265 }
8266 else
8267 {
8268 /* It's not one of our sections, so don't allocate space. */
8269 continue;
8270 }
8271
8272 if (s->size == 0)
8273 {
8274 /* If we don't need this section, strip it from the
8275 output file. This is mostly to handle .rela.bss and
8276 .rela.plt. We must create both sections in
8277 create_dynamic_sections, because they must be created
8278 before the linker maps input sections to output
8279 sections. The linker does that before
8280 adjust_dynamic_symbol is called, and it is that
8281 function which decides whether anything needs to go
8282 into these sections. */
8283 s->flags |= SEC_EXCLUDE;
8284 continue;
8285 }
8286
8287 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8288 continue;
8289
8290 /* Allocate memory for the section contents. We use bfd_zalloc
8291 here in case unused entries are not reclaimed before the
8292 section's contents are written out. This should not happen,
8293 but this way if it does we get a R_PPC64_NONE reloc in .rela
8294 sections instead of garbage.
8295 We also rely on the section contents being zero when writing
8296 the GOT. */
8297 s->contents = bfd_zalloc (dynobj, s->size);
8298 if (s->contents == NULL)
8299 return FALSE;
8300 }
8301
8302 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8303 {
8304 if (!is_ppc64_elf (ibfd))
8305 continue;
8306
8307 s = ppc64_elf_tdata (ibfd)->got;
8308 if (s != NULL && s != htab->got)
8309 {
8310 if (s->size == 0)
8311 s->flags |= SEC_EXCLUDE;
8312 else
8313 {
8314 s->contents = bfd_zalloc (ibfd, s->size);
8315 if (s->contents == NULL)
8316 return FALSE;
8317 }
8318 }
8319 s = ppc64_elf_tdata (ibfd)->relgot;
8320 if (s != NULL)
8321 {
8322 if (s->size == 0)
8323 s->flags |= SEC_EXCLUDE;
8324 else
8325 {
8326 s->contents = bfd_zalloc (ibfd, s->size);
8327 if (s->contents == NULL)
8328 return FALSE;
8329 relocs = TRUE;
8330 s->reloc_count = 0;
8331 }
8332 }
8333 }
8334
8335 if (htab->elf.dynamic_sections_created)
8336 {
8337 /* Add some entries to the .dynamic section. We fill in the
8338 values later, in ppc64_elf_finish_dynamic_sections, but we
8339 must add the entries now so that we get the correct size for
8340 the .dynamic section. The DT_DEBUG entry is filled in by the
8341 dynamic linker and used by the debugger. */
8342 #define add_dynamic_entry(TAG, VAL) \
8343 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8344
8345 if (info->executable)
8346 {
8347 if (!add_dynamic_entry (DT_DEBUG, 0))
8348 return FALSE;
8349 }
8350
8351 if (htab->plt != NULL && htab->plt->size != 0)
8352 {
8353 if (!add_dynamic_entry (DT_PLTGOT, 0)
8354 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8355 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8356 || !add_dynamic_entry (DT_JMPREL, 0)
8357 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
8358 return FALSE;
8359 }
8360
8361 if (NO_OPD_RELOCS)
8362 {
8363 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
8364 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
8365 return FALSE;
8366 }
8367
8368 if (relocs)
8369 {
8370 if (!add_dynamic_entry (DT_RELA, 0)
8371 || !add_dynamic_entry (DT_RELASZ, 0)
8372 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
8373 return FALSE;
8374
8375 /* If any dynamic relocs apply to a read-only section,
8376 then we need a DT_TEXTREL entry. */
8377 if ((info->flags & DF_TEXTREL) == 0)
8378 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
8379
8380 if ((info->flags & DF_TEXTREL) != 0)
8381 {
8382 if (!add_dynamic_entry (DT_TEXTREL, 0))
8383 return FALSE;
8384 }
8385 }
8386 }
8387 #undef add_dynamic_entry
8388
8389 return TRUE;
8390 }
8391
8392 /* Determine the type of stub needed, if any, for a call. */
8393
8394 static inline enum ppc_stub_type
8395 ppc_type_of_stub (asection *input_sec,
8396 const Elf_Internal_Rela *rel,
8397 struct ppc_link_hash_entry **hash,
8398 bfd_vma destination)
8399 {
8400 struct ppc_link_hash_entry *h = *hash;
8401 bfd_vma location;
8402 bfd_vma branch_offset;
8403 bfd_vma max_branch_offset;
8404 enum elf_ppc64_reloc_type r_type;
8405
8406 if (h != NULL)
8407 {
8408 struct ppc_link_hash_entry *fdh = h;
8409 if (fdh->oh != NULL
8410 && fdh->oh->is_func_descriptor)
8411 fdh = fdh->oh;
8412
8413 if (fdh->elf.dynindx != -1)
8414 {
8415 struct plt_entry *ent;
8416
8417 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
8418 if (ent->addend == rel->r_addend
8419 && ent->plt.offset != (bfd_vma) -1)
8420 {
8421 *hash = fdh;
8422 return ppc_stub_plt_call;
8423 }
8424 }
8425
8426 /* Here, we know we don't have a plt entry. If we don't have a
8427 either a defined function descriptor or a defined entry symbol
8428 in a regular object file, then it is pointless trying to make
8429 any other type of stub. */
8430 if (!((fdh->elf.root.type == bfd_link_hash_defined
8431 || fdh->elf.root.type == bfd_link_hash_defweak)
8432 && fdh->elf.root.u.def.section->output_section != NULL)
8433 && !((h->elf.root.type == bfd_link_hash_defined
8434 || h->elf.root.type == bfd_link_hash_defweak)
8435 && h->elf.root.u.def.section->output_section != NULL))
8436 return ppc_stub_none;
8437 }
8438
8439 /* Determine where the call point is. */
8440 location = (input_sec->output_offset
8441 + input_sec->output_section->vma
8442 + rel->r_offset);
8443
8444 branch_offset = destination - location;
8445 r_type = ELF64_R_TYPE (rel->r_info);
8446
8447 /* Determine if a long branch stub is needed. */
8448 max_branch_offset = 1 << 25;
8449 if (r_type != R_PPC64_REL24)
8450 max_branch_offset = 1 << 15;
8451
8452 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
8453 /* We need a stub. Figure out whether a long_branch or plt_branch
8454 is needed later. */
8455 return ppc_stub_long_branch;
8456
8457 return ppc_stub_none;
8458 }
8459
8460 /* Build a .plt call stub. */
8461
8462 static inline bfd_byte *
8463 build_plt_stub (bfd *obfd, bfd_byte *p, int offset, Elf_Internal_Rela *r)
8464 {
8465 #define PPC_LO(v) ((v) & 0xffff)
8466 #define PPC_HI(v) (((v) >> 16) & 0xffff)
8467 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
8468
8469 if (PPC_HA (offset) != 0)
8470 {
8471 if (r != NULL)
8472 {
8473 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
8474 r[1].r_offset = r[0].r_offset + 8;
8475 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8476 r[1].r_addend = r[0].r_addend;
8477 if (PPC_HA (offset + 16) != PPC_HA (offset))
8478 {
8479 r[2].r_offset = r[1].r_offset + 4;
8480 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
8481 r[2].r_addend = r[0].r_addend;
8482 }
8483 else
8484 {
8485 r[2].r_offset = r[1].r_offset + 8;
8486 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8487 r[2].r_addend = r[0].r_addend + 8;
8488 r[3].r_offset = r[2].r_offset + 4;
8489 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8490 r[3].r_addend = r[0].r_addend + 16;
8491 }
8492 }
8493 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
8494 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8495 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
8496 if (PPC_HA (offset + 16) != PPC_HA (offset))
8497 {
8498 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
8499 offset = 0;
8500 }
8501 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8502 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
8503 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
8504 bfd_put_32 (obfd, BCTR, p), p += 4;
8505 }
8506 else
8507 {
8508 if (r != NULL)
8509 {
8510 r[0].r_offset += 4;
8511 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8512 if (PPC_HA (offset + 16) != PPC_HA (offset))
8513 {
8514 r[1].r_offset = r[0].r_offset + 4;
8515 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
8516 r[1].r_addend = r[0].r_addend;
8517 }
8518 else
8519 {
8520 r[1].r_offset = r[0].r_offset + 8;
8521 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8522 r[1].r_addend = r[0].r_addend + 16;
8523 r[2].r_offset = r[1].r_offset + 4;
8524 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8525 r[2].r_addend = r[0].r_addend + 8;
8526 }
8527 }
8528 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8529 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
8530 if (PPC_HA (offset + 16) != PPC_HA (offset))
8531 {
8532 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
8533 offset = 0;
8534 }
8535 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8536 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
8537 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
8538 bfd_put_32 (obfd, BCTR, p), p += 4;
8539 }
8540 return p;
8541 }
8542
8543 static Elf_Internal_Rela *
8544 get_relocs (asection *sec, int count)
8545 {
8546 Elf_Internal_Rela *relocs;
8547 struct bfd_elf_section_data *elfsec_data;
8548
8549 elfsec_data = elf_section_data (sec);
8550 relocs = elfsec_data->relocs;
8551 if (relocs == NULL)
8552 {
8553 bfd_size_type relsize;
8554 relsize = sec->reloc_count * sizeof (*relocs);
8555 relocs = bfd_alloc (sec->owner, relsize);
8556 if (relocs == NULL)
8557 return NULL;
8558 elfsec_data->relocs = relocs;
8559 elfsec_data->rel_hdr.sh_size = (sec->reloc_count
8560 * sizeof (Elf64_External_Rela));
8561 elfsec_data->rel_hdr.sh_entsize = sizeof (Elf64_External_Rela);
8562 sec->reloc_count = 0;
8563 }
8564 relocs += sec->reloc_count;
8565 sec->reloc_count += count;
8566 return relocs;
8567 }
8568
8569 static bfd_boolean
8570 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8571 {
8572 struct ppc_stub_hash_entry *stub_entry;
8573 struct ppc_branch_hash_entry *br_entry;
8574 struct bfd_link_info *info;
8575 struct ppc_link_hash_table *htab;
8576 bfd_byte *loc;
8577 bfd_byte *p;
8578 struct plt_entry *ent;
8579 bfd_vma dest, off;
8580 int size;
8581 Elf_Internal_Rela *r;
8582
8583 /* Massage our args to the form they really have. */
8584 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8585 info = in_arg;
8586
8587 htab = ppc_hash_table (info);
8588
8589 /* Make a note of the offset within the stubs for this entry. */
8590 stub_entry->stub_offset = stub_entry->stub_sec->size;
8591 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
8592
8593 htab->stub_count[stub_entry->stub_type - 1] += 1;
8594 switch (stub_entry->stub_type)
8595 {
8596 case ppc_stub_long_branch:
8597 case ppc_stub_long_branch_r2off:
8598 /* Branches are relative. This is where we are going to. */
8599 off = dest = (stub_entry->target_value
8600 + stub_entry->target_section->output_offset
8601 + stub_entry->target_section->output_section->vma);
8602
8603 /* And this is where we are coming from. */
8604 off -= (stub_entry->stub_offset
8605 + stub_entry->stub_sec->output_offset
8606 + stub_entry->stub_sec->output_section->vma);
8607
8608 size = 4;
8609 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8610 {
8611 bfd_vma r2off;
8612
8613 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8614 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8615 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8616 loc += 4;
8617 size = 12;
8618 if (PPC_HA (r2off) != 0)
8619 {
8620 size = 16;
8621 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8622 loc += 4;
8623 }
8624 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8625 loc += 4;
8626 off -= size - 4;
8627 }
8628 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8629
8630 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8631 {
8632 (*_bfd_error_handler) (_("long branch stub `%s' offset overflow"),
8633 stub_entry->root.string);
8634 htab->stub_error = TRUE;
8635 return FALSE;
8636 }
8637
8638 if (info->emitrelocations)
8639 {
8640 r = get_relocs (stub_entry->stub_sec, 1);
8641 if (r == NULL)
8642 return FALSE;
8643 r->r_offset = loc - stub_entry->stub_sec->contents;
8644 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8645 r->r_addend = dest;
8646 if (stub_entry->h != NULL)
8647 {
8648 struct elf_link_hash_entry **hashes;
8649 unsigned long symndx;
8650 struct ppc_link_hash_entry *h;
8651
8652 hashes = elf_sym_hashes (htab->stub_bfd);
8653 if (hashes == NULL)
8654 {
8655 bfd_size_type hsize;
8656
8657 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8658 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8659 if (hashes == NULL)
8660 return FALSE;
8661 elf_sym_hashes (htab->stub_bfd) = hashes;
8662 htab->stub_globals = 1;
8663 }
8664 symndx = htab->stub_globals++;
8665 h = stub_entry->h;
8666 hashes[symndx] = &h->elf;
8667 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8668 if (h->oh != NULL && h->oh->is_func)
8669 h = h->oh;
8670 if (h->elf.root.u.def.section != stub_entry->target_section)
8671 /* H is an opd symbol. The addend must be zero. */
8672 r->r_addend = 0;
8673 else
8674 {
8675 off = (h->elf.root.u.def.value
8676 + h->elf.root.u.def.section->output_offset
8677 + h->elf.root.u.def.section->output_section->vma);
8678 r->r_addend -= off;
8679 }
8680 }
8681 }
8682 break;
8683
8684 case ppc_stub_plt_branch:
8685 case ppc_stub_plt_branch_r2off:
8686 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8687 stub_entry->root.string + 9,
8688 FALSE, FALSE);
8689 if (br_entry == NULL)
8690 {
8691 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8692 stub_entry->root.string);
8693 htab->stub_error = TRUE;
8694 return FALSE;
8695 }
8696
8697 dest = (stub_entry->target_value
8698 + stub_entry->target_section->output_offset
8699 + stub_entry->target_section->output_section->vma);
8700
8701 bfd_put_64 (htab->brlt->owner, dest,
8702 htab->brlt->contents + br_entry->offset);
8703
8704 if (br_entry->iter == htab->stub_iteration)
8705 {
8706 br_entry->iter = 0;
8707
8708 if (htab->relbrlt != NULL)
8709 {
8710 /* Create a reloc for the branch lookup table entry. */
8711 Elf_Internal_Rela rela;
8712 bfd_byte *rl;
8713
8714 rela.r_offset = (br_entry->offset
8715 + htab->brlt->output_offset
8716 + htab->brlt->output_section->vma);
8717 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8718 rela.r_addend = dest;
8719
8720 rl = htab->relbrlt->contents;
8721 rl += (htab->relbrlt->reloc_count++
8722 * sizeof (Elf64_External_Rela));
8723 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8724 }
8725 else if (info->emitrelocations)
8726 {
8727 r = get_relocs (htab->brlt, 1);
8728 if (r == NULL)
8729 return FALSE;
8730 /* brlt, being SEC_LINKER_CREATED does not go through the
8731 normal reloc processing. Symbols and offsets are not
8732 translated from input file to output file form, so
8733 set up the offset per the output file. */
8734 r->r_offset = (br_entry->offset
8735 + htab->brlt->output_offset
8736 + htab->brlt->output_section->vma);
8737 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8738 r->r_addend = dest;
8739 }
8740 }
8741
8742 dest = (br_entry->offset
8743 + htab->brlt->output_offset
8744 + htab->brlt->output_section->vma);
8745
8746 off = (dest
8747 - elf_gp (htab->brlt->output_section->owner)
8748 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8749
8750 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8751 {
8752 (*_bfd_error_handler)
8753 (_("linkage table error against `%s'"),
8754 stub_entry->root.string);
8755 bfd_set_error (bfd_error_bad_value);
8756 htab->stub_error = TRUE;
8757 return FALSE;
8758 }
8759
8760 if (info->emitrelocations)
8761 {
8762 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
8763 if (r == NULL)
8764 return FALSE;
8765 r[0].r_offset = loc - stub_entry->stub_sec->contents;
8766 if (bfd_big_endian (info->output_bfd))
8767 r[0].r_offset += 2;
8768 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
8769 r[0].r_offset += 4;
8770 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8771 r[0].r_addend = dest;
8772 if (PPC_HA (off) != 0)
8773 {
8774 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
8775 r[1].r_offset = r[0].r_offset + 4;
8776 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8777 r[1].r_addend = r[0].r_addend;
8778 }
8779 }
8780
8781 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8782 {
8783 if (PPC_HA (off) != 0)
8784 {
8785 size = 16;
8786 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
8787 loc += 4;
8788 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
8789 }
8790 else
8791 {
8792 size = 12;
8793 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
8794 }
8795 }
8796 else
8797 {
8798 bfd_vma r2off;
8799
8800 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8801 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8802 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8803 loc += 4;
8804 size = 20;
8805 if (PPC_HA (off) != 0)
8806 {
8807 size += 4;
8808 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
8809 loc += 4;
8810 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
8811 loc += 4;
8812 }
8813 else
8814 {
8815 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
8816 loc += 4;
8817 }
8818
8819 if (PPC_HA (r2off) != 0)
8820 {
8821 size += 4;
8822 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8823 loc += 4;
8824 }
8825 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8826 }
8827 loc += 4;
8828 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8829 loc += 4;
8830 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8831 break;
8832
8833 case ppc_stub_plt_call:
8834 /* Do the best we can for shared libraries built without
8835 exporting ".foo" for each "foo". This can happen when symbol
8836 versioning scripts strip all bar a subset of symbols. */
8837 if (stub_entry->h->oh != NULL
8838 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8839 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8840 {
8841 /* Point the symbol at the stub. There may be multiple stubs,
8842 we don't really care; The main thing is to make this sym
8843 defined somewhere. Maybe defining the symbol in the stub
8844 section is a silly idea. If we didn't do this, htab->top_id
8845 could disappear. */
8846 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8847 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8848 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8849 }
8850
8851 /* Now build the stub. */
8852 dest = (bfd_vma) -1;
8853 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8854 if (ent->addend == stub_entry->addend)
8855 {
8856 dest = ent->plt.offset;
8857 break;
8858 }
8859 if (dest >= (bfd_vma) -2)
8860 abort ();
8861
8862 dest &= ~ (bfd_vma) 1;
8863 dest += (htab->plt->output_offset
8864 + htab->plt->output_section->vma);
8865
8866 off = (dest
8867 - elf_gp (htab->plt->output_section->owner)
8868 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8869
8870 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8871 {
8872 (*_bfd_error_handler)
8873 (_("linkage table error against `%s'"),
8874 stub_entry->h->elf.root.root.string);
8875 bfd_set_error (bfd_error_bad_value);
8876 htab->stub_error = TRUE;
8877 return FALSE;
8878 }
8879
8880 r = NULL;
8881 if (info->emitrelocations)
8882 {
8883 r = get_relocs (stub_entry->stub_sec,
8884 (2 + (PPC_HA (off) != 0)
8885 + (PPC_HA (off + 16) == PPC_HA (off))));
8886 if (r == NULL)
8887 return FALSE;
8888 r[0].r_offset = loc - stub_entry->stub_sec->contents;
8889 if (bfd_big_endian (info->output_bfd))
8890 r[0].r_offset += 2;
8891 r[0].r_addend = dest;
8892 }
8893 p = build_plt_stub (htab->stub_bfd, loc, off, r);
8894 size = p - loc;
8895 break;
8896
8897 default:
8898 BFD_FAIL ();
8899 return FALSE;
8900 }
8901
8902 stub_entry->stub_sec->size += size;
8903
8904 if (htab->emit_stub_syms)
8905 {
8906 struct elf_link_hash_entry *h;
8907 size_t len1, len2;
8908 char *name;
8909 const char *const stub_str[] = { "long_branch",
8910 "long_branch_r2off",
8911 "plt_branch",
8912 "plt_branch_r2off",
8913 "plt_call" };
8914
8915 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8916 len2 = strlen (stub_entry->root.string);
8917 name = bfd_malloc (len1 + len2 + 2);
8918 if (name == NULL)
8919 return FALSE;
8920 memcpy (name, stub_entry->root.string, 9);
8921 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8922 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8923 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8924 if (h == NULL)
8925 return FALSE;
8926 if (h->root.type == bfd_link_hash_new)
8927 {
8928 h->root.type = bfd_link_hash_defined;
8929 h->root.u.def.section = stub_entry->stub_sec;
8930 h->root.u.def.value = stub_entry->stub_offset;
8931 h->ref_regular = 1;
8932 h->def_regular = 1;
8933 h->ref_regular_nonweak = 1;
8934 h->forced_local = 1;
8935 h->non_elf = 0;
8936 }
8937 }
8938
8939 return TRUE;
8940 }
8941
8942 /* As above, but don't actually build the stub. Just bump offset so
8943 we know stub section sizes, and select plt_branch stubs where
8944 long_branch stubs won't do. */
8945
8946 static bfd_boolean
8947 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8948 {
8949 struct ppc_stub_hash_entry *stub_entry;
8950 struct bfd_link_info *info;
8951 struct ppc_link_hash_table *htab;
8952 bfd_vma off;
8953 int size;
8954
8955 /* Massage our args to the form they really have. */
8956 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8957 info = in_arg;
8958
8959 htab = ppc_hash_table (info);
8960
8961 if (stub_entry->stub_type == ppc_stub_plt_call)
8962 {
8963 struct plt_entry *ent;
8964 off = (bfd_vma) -1;
8965 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8966 if (ent->addend == stub_entry->addend)
8967 {
8968 off = ent->plt.offset & ~(bfd_vma) 1;
8969 break;
8970 }
8971 if (off >= (bfd_vma) -2)
8972 abort ();
8973 off += (htab->plt->output_offset
8974 + htab->plt->output_section->vma
8975 - elf_gp (htab->plt->output_section->owner)
8976 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8977
8978 size = PLT_CALL_STUB_SIZE;
8979 if (PPC_HA (off) == 0)
8980 size -= 4;
8981 if (PPC_HA (off + 16) != PPC_HA (off))
8982 size += 4;
8983 if (info->emitrelocations)
8984 {
8985 stub_entry->stub_sec->reloc_count
8986 += 2 + (PPC_HA (off) != 0) + (PPC_HA (off + 16) == PPC_HA (off));
8987 stub_entry->stub_sec->flags |= SEC_RELOC;
8988 }
8989 }
8990 else
8991 {
8992 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8993 variants. */
8994 bfd_vma r2off = 0;
8995
8996 off = (stub_entry->target_value
8997 + stub_entry->target_section->output_offset
8998 + stub_entry->target_section->output_section->vma);
8999 off -= (stub_entry->stub_sec->size
9000 + stub_entry->stub_sec->output_offset
9001 + stub_entry->stub_sec->output_section->vma);
9002
9003 /* Reset the stub type from the plt variant in case we now
9004 can reach with a shorter stub. */
9005 if (stub_entry->stub_type >= ppc_stub_plt_branch)
9006 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
9007
9008 size = 4;
9009 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9010 {
9011 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
9012 - htab->stub_group[stub_entry->id_sec->id].toc_off);
9013 size = 12;
9014 if (PPC_HA (r2off) != 0)
9015 size = 16;
9016 off -= size - 4;
9017 }
9018
9019 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
9020 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
9021 {
9022 struct ppc_branch_hash_entry *br_entry;
9023
9024 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
9025 stub_entry->root.string + 9,
9026 TRUE, FALSE);
9027 if (br_entry == NULL)
9028 {
9029 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
9030 stub_entry->root.string);
9031 htab->stub_error = TRUE;
9032 return FALSE;
9033 }
9034
9035 if (br_entry->iter != htab->stub_iteration)
9036 {
9037 br_entry->iter = htab->stub_iteration;
9038 br_entry->offset = htab->brlt->size;
9039 htab->brlt->size += 8;
9040
9041 if (htab->relbrlt != NULL)
9042 htab->relbrlt->size += sizeof (Elf64_External_Rela);
9043 else if (info->emitrelocations)
9044 {
9045 htab->brlt->reloc_count += 1;
9046 htab->brlt->flags |= SEC_RELOC;
9047 }
9048 }
9049
9050 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
9051 off = (br_entry->offset
9052 + htab->brlt->output_offset
9053 + htab->brlt->output_section->vma
9054 - elf_gp (htab->brlt->output_section->owner)
9055 - htab->stub_group[stub_entry->id_sec->id].toc_off);
9056
9057 if (info->emitrelocations)
9058 {
9059 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
9060 stub_entry->stub_sec->flags |= SEC_RELOC;
9061 }
9062
9063 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
9064 {
9065 size = 12;
9066 if (PPC_HA (off) != 0)
9067 size = 16;
9068 }
9069 else
9070 {
9071 size = 20;
9072 if (PPC_HA (off) != 0)
9073 size += 4;
9074
9075 if (PPC_HA (r2off) != 0)
9076 size += 4;
9077 }
9078 }
9079 else if (info->emitrelocations)
9080 {
9081 stub_entry->stub_sec->reloc_count += 1;
9082 stub_entry->stub_sec->flags |= SEC_RELOC;
9083 }
9084 }
9085
9086 stub_entry->stub_sec->size += size;
9087 return TRUE;
9088 }
9089
9090 /* Set up various things so that we can make a list of input sections
9091 for each output section included in the link. Returns -1 on error,
9092 0 when no stubs will be needed, and 1 on success. */
9093
9094 int
9095 ppc64_elf_setup_section_lists (bfd *output_bfd,
9096 struct bfd_link_info *info,
9097 int no_multi_toc)
9098 {
9099 bfd *input_bfd;
9100 int top_id, top_index, id;
9101 asection *section;
9102 asection **input_list;
9103 bfd_size_type amt;
9104 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9105
9106 htab->no_multi_toc = no_multi_toc;
9107
9108 if (htab->brlt == NULL)
9109 return 0;
9110
9111 /* Find the top input section id. */
9112 for (input_bfd = info->input_bfds, top_id = 3;
9113 input_bfd != NULL;
9114 input_bfd = input_bfd->link_next)
9115 {
9116 for (section = input_bfd->sections;
9117 section != NULL;
9118 section = section->next)
9119 {
9120 if (top_id < section->id)
9121 top_id = section->id;
9122 }
9123 }
9124
9125 htab->top_id = top_id;
9126 amt = sizeof (struct map_stub) * (top_id + 1);
9127 htab->stub_group = bfd_zmalloc (amt);
9128 if (htab->stub_group == NULL)
9129 return -1;
9130
9131 /* Set toc_off for com, und, abs and ind sections. */
9132 for (id = 0; id < 3; id++)
9133 htab->stub_group[id].toc_off = TOC_BASE_OFF;
9134
9135 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
9136
9137 /* We can't use output_bfd->section_count here to find the top output
9138 section index as some sections may have been removed, and
9139 strip_excluded_output_sections doesn't renumber the indices. */
9140 for (section = output_bfd->sections, top_index = 0;
9141 section != NULL;
9142 section = section->next)
9143 {
9144 if (top_index < section->index)
9145 top_index = section->index;
9146 }
9147
9148 htab->top_index = top_index;
9149 amt = sizeof (asection *) * (top_index + 1);
9150 input_list = bfd_zmalloc (amt);
9151 htab->input_list = input_list;
9152 if (input_list == NULL)
9153 return -1;
9154
9155 return 1;
9156 }
9157
9158 /* The linker repeatedly calls this function for each TOC input section
9159 and linker generated GOT section. Group input bfds such that the toc
9160 within a group is less than 64k in size. Will break with cute linker
9161 scripts that play games with dot in the output toc section. */
9162
9163 void
9164 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
9165 {
9166 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9167
9168 if (!htab->no_multi_toc)
9169 {
9170 bfd_vma addr = isec->output_offset + isec->output_section->vma;
9171 bfd_vma off = addr - htab->toc_curr;
9172
9173 if (off + isec->size > 0x10000)
9174 htab->toc_curr = addr;
9175
9176 elf_gp (isec->owner) = (htab->toc_curr
9177 - elf_gp (isec->output_section->owner)
9178 + TOC_BASE_OFF);
9179 }
9180 }
9181
9182 /* Called after the last call to the above function. */
9183
9184 void
9185 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
9186 {
9187 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9188
9189 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
9190
9191 /* toc_curr tracks the TOC offset used for code sections below in
9192 ppc64_elf_next_input_section. Start off at 0x8000. */
9193 htab->toc_curr = TOC_BASE_OFF;
9194 }
9195
9196 /* No toc references were found in ISEC. If the code in ISEC makes no
9197 calls, then there's no need to use toc adjusting stubs when branching
9198 into ISEC. Actually, indirect calls from ISEC are OK as they will
9199 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
9200 needed, and 2 if a cyclical call-graph was found but no other reason
9201 for a stub was detected. If called from the top level, a return of
9202 2 means the same as a return of 0. */
9203
9204 static int
9205 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
9206 {
9207 Elf_Internal_Rela *relstart, *rel;
9208 Elf_Internal_Sym *local_syms;
9209 int ret;
9210 struct ppc_link_hash_table *htab;
9211
9212 /* We know none of our code bearing sections will need toc stubs. */
9213 if ((isec->flags & SEC_LINKER_CREATED) != 0)
9214 return 0;
9215
9216 if (isec->size == 0)
9217 return 0;
9218
9219 if (isec->output_section == NULL)
9220 return 0;
9221
9222 if (isec->reloc_count == 0)
9223 return 0;
9224
9225 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
9226 info->keep_memory);
9227 if (relstart == NULL)
9228 return -1;
9229
9230 /* Look for branches to outside of this section. */
9231 local_syms = NULL;
9232 ret = 0;
9233 htab = ppc_hash_table (info);
9234 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
9235 {
9236 enum elf_ppc64_reloc_type r_type;
9237 unsigned long r_symndx;
9238 struct elf_link_hash_entry *h;
9239 struct ppc_link_hash_entry *eh;
9240 Elf_Internal_Sym *sym;
9241 asection *sym_sec;
9242 struct _opd_sec_data *opd;
9243 bfd_vma sym_value;
9244 bfd_vma dest;
9245
9246 r_type = ELF64_R_TYPE (rel->r_info);
9247 if (r_type != R_PPC64_REL24
9248 && r_type != R_PPC64_REL14
9249 && r_type != R_PPC64_REL14_BRTAKEN
9250 && r_type != R_PPC64_REL14_BRNTAKEN)
9251 continue;
9252
9253 r_symndx = ELF64_R_SYM (rel->r_info);
9254 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
9255 isec->owner))
9256 {
9257 ret = -1;
9258 break;
9259 }
9260
9261 /* Calls to dynamic lib functions go through a plt call stub
9262 that uses r2. */
9263 eh = (struct ppc_link_hash_entry *) h;
9264 if (eh != NULL
9265 && (eh->elf.plt.plist != NULL
9266 || (eh->oh != NULL
9267 && eh->oh->elf.plt.plist != NULL)))
9268 {
9269 ret = 1;
9270 break;
9271 }
9272
9273 if (sym_sec == NULL)
9274 /* Ignore other undefined symbols. */
9275 continue;
9276
9277 /* Assume branches to other sections not included in the link need
9278 stubs too, to cover -R and absolute syms. */
9279 if (sym_sec->output_section == NULL)
9280 {
9281 ret = 1;
9282 break;
9283 }
9284
9285 if (h == NULL)
9286 sym_value = sym->st_value;
9287 else
9288 {
9289 if (h->root.type != bfd_link_hash_defined
9290 && h->root.type != bfd_link_hash_defweak)
9291 abort ();
9292 sym_value = h->root.u.def.value;
9293 }
9294 sym_value += rel->r_addend;
9295
9296 /* If this branch reloc uses an opd sym, find the code section. */
9297 opd = get_opd_info (sym_sec);
9298 if (opd != NULL)
9299 {
9300 if (h == NULL && opd->adjust != NULL)
9301 {
9302 long adjust;
9303
9304 adjust = opd->adjust[sym->st_value / 8];
9305 if (adjust == -1)
9306 /* Assume deleted functions won't ever be called. */
9307 continue;
9308 sym_value += adjust;
9309 }
9310
9311 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
9312 if (dest == (bfd_vma) -1)
9313 continue;
9314 }
9315 else
9316 dest = (sym_value
9317 + sym_sec->output_offset
9318 + sym_sec->output_section->vma);
9319
9320 /* Ignore branch to self. */
9321 if (sym_sec == isec)
9322 continue;
9323
9324 /* If the called function uses the toc, we need a stub. */
9325 if (sym_sec->has_toc_reloc
9326 || sym_sec->makes_toc_func_call)
9327 {
9328 ret = 1;
9329 break;
9330 }
9331
9332 /* Assume any branch that needs a long branch stub might in fact
9333 need a plt_branch stub. A plt_branch stub uses r2. */
9334 else if (dest - (isec->output_offset
9335 + isec->output_section->vma
9336 + rel->r_offset) + (1 << 25) >= (2 << 25))
9337 {
9338 ret = 1;
9339 break;
9340 }
9341
9342 /* If calling back to a section in the process of being tested, we
9343 can't say for sure that no toc adjusting stubs are needed, so
9344 don't return zero. */
9345 else if (sym_sec->call_check_in_progress)
9346 ret = 2;
9347
9348 /* Branches to another section that itself doesn't have any TOC
9349 references are OK. Recursively call ourselves to check. */
9350 else if (sym_sec->id <= htab->top_id
9351 && htab->stub_group[sym_sec->id].toc_off == 0)
9352 {
9353 int recur;
9354
9355 /* Mark current section as indeterminate, so that other
9356 sections that call back to current won't be marked as
9357 known. */
9358 isec->call_check_in_progress = 1;
9359 recur = toc_adjusting_stub_needed (info, sym_sec);
9360 isec->call_check_in_progress = 0;
9361
9362 if (recur < 0)
9363 {
9364 /* An error. Exit. */
9365 ret = -1;
9366 break;
9367 }
9368 else if (recur <= 1)
9369 {
9370 /* Known result. Mark as checked and set section flag. */
9371 htab->stub_group[sym_sec->id].toc_off = 1;
9372 if (recur != 0)
9373 {
9374 sym_sec->makes_toc_func_call = 1;
9375 ret = 1;
9376 break;
9377 }
9378 }
9379 else
9380 {
9381 /* Unknown result. Continue checking. */
9382 ret = 2;
9383 }
9384 }
9385 }
9386
9387 if (local_syms != NULL
9388 && (elf_symtab_hdr (isec->owner).contents != (unsigned char *) local_syms))
9389 free (local_syms);
9390 if (elf_section_data (isec)->relocs != relstart)
9391 free (relstart);
9392
9393 return ret;
9394 }
9395
9396 /* The linker repeatedly calls this function for each input section,
9397 in the order that input sections are linked into output sections.
9398 Build lists of input sections to determine groupings between which
9399 we may insert linker stubs. */
9400
9401 bfd_boolean
9402 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
9403 {
9404 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9405
9406 if ((isec->output_section->flags & SEC_CODE) != 0
9407 && isec->output_section->index <= htab->top_index)
9408 {
9409 asection **list = htab->input_list + isec->output_section->index;
9410 /* Steal the link_sec pointer for our list. */
9411 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
9412 /* This happens to make the list in reverse order,
9413 which is what we want. */
9414 PREV_SEC (isec) = *list;
9415 *list = isec;
9416 }
9417
9418 if (htab->multi_toc_needed)
9419 {
9420 /* If a code section has a function that uses the TOC then we need
9421 to use the right TOC (obviously). Also, make sure that .opd gets
9422 the correct TOC value for R_PPC64_TOC relocs that don't have or
9423 can't find their function symbol (shouldn't ever happen now).
9424 Also specially treat .fixup for the linux kernel. .fixup
9425 contains branches, but only back to the function that hit an
9426 exception. */
9427 if (isec->has_toc_reloc
9428 || (isec->flags & SEC_CODE) == 0
9429 || strcmp (isec->name, ".fixup") == 0)
9430 {
9431 if (elf_gp (isec->owner) != 0)
9432 htab->toc_curr = elf_gp (isec->owner);
9433 }
9434 else if (htab->stub_group[isec->id].toc_off == 0)
9435 {
9436 int ret = toc_adjusting_stub_needed (info, isec);
9437 if (ret < 0)
9438 return FALSE;
9439 else
9440 isec->makes_toc_func_call = ret & 1;
9441 }
9442 }
9443
9444 /* Functions that don't use the TOC can belong in any TOC group.
9445 Use the last TOC base. This happens to make _init and _fini
9446 pasting work. */
9447 htab->stub_group[isec->id].toc_off = htab->toc_curr;
9448 return TRUE;
9449 }
9450
9451 /* See whether we can group stub sections together. Grouping stub
9452 sections may result in fewer stubs. More importantly, we need to
9453 put all .init* and .fini* stubs at the beginning of the .init or
9454 .fini output sections respectively, because glibc splits the
9455 _init and _fini functions into multiple parts. Putting a stub in
9456 the middle of a function is not a good idea. */
9457
9458 static void
9459 group_sections (struct ppc_link_hash_table *htab,
9460 bfd_size_type stub_group_size,
9461 bfd_boolean stubs_always_before_branch)
9462 {
9463 asection **list;
9464 bfd_size_type stub14_group_size;
9465 bfd_boolean suppress_size_errors;
9466
9467 suppress_size_errors = FALSE;
9468 stub14_group_size = stub_group_size;
9469 if (stub_group_size == 1)
9470 {
9471 /* Default values. */
9472 if (stubs_always_before_branch)
9473 {
9474 stub_group_size = 0x1e00000;
9475 stub14_group_size = 0x7800;
9476 }
9477 else
9478 {
9479 stub_group_size = 0x1c00000;
9480 stub14_group_size = 0x7000;
9481 }
9482 suppress_size_errors = TRUE;
9483 }
9484
9485 list = htab->input_list + htab->top_index;
9486 do
9487 {
9488 asection *tail = *list;
9489 while (tail != NULL)
9490 {
9491 asection *curr;
9492 asection *prev;
9493 bfd_size_type total;
9494 bfd_boolean big_sec;
9495 bfd_vma curr_toc;
9496
9497 curr = tail;
9498 total = tail->size;
9499 big_sec = total > (ppc64_elf_section_data (tail)->has_14bit_branch
9500 ? stub14_group_size : stub_group_size);
9501 if (big_sec && !suppress_size_errors)
9502 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
9503 tail->owner, tail);
9504 curr_toc = htab->stub_group[tail->id].toc_off;
9505
9506 while ((prev = PREV_SEC (curr)) != NULL
9507 && ((total += curr->output_offset - prev->output_offset)
9508 < (ppc64_elf_section_data (prev)->has_14bit_branch
9509 ? stub14_group_size : stub_group_size))
9510 && htab->stub_group[prev->id].toc_off == curr_toc)
9511 curr = prev;
9512
9513 /* OK, the size from the start of CURR to the end is less
9514 than stub_group_size and thus can be handled by one stub
9515 section. (or the tail section is itself larger than
9516 stub_group_size, in which case we may be toast.) We
9517 should really be keeping track of the total size of stubs
9518 added here, as stubs contribute to the final output
9519 section size. That's a little tricky, and this way will
9520 only break if stubs added make the total size more than
9521 2^25, ie. for the default stub_group_size, if stubs total
9522 more than 2097152 bytes, or nearly 75000 plt call stubs. */
9523 do
9524 {
9525 prev = PREV_SEC (tail);
9526 /* Set up this stub group. */
9527 htab->stub_group[tail->id].link_sec = curr;
9528 }
9529 while (tail != curr && (tail = prev) != NULL);
9530
9531 /* But wait, there's more! Input sections up to stub_group_size
9532 bytes before the stub section can be handled by it too.
9533 Don't do this if we have a really large section after the
9534 stubs, as adding more stubs increases the chance that
9535 branches may not reach into the stub section. */
9536 if (!stubs_always_before_branch && !big_sec)
9537 {
9538 total = 0;
9539 while (prev != NULL
9540 && ((total += tail->output_offset - prev->output_offset)
9541 < (ppc64_elf_section_data (prev)->has_14bit_branch
9542 ? stub14_group_size : stub_group_size))
9543 && htab->stub_group[prev->id].toc_off == curr_toc)
9544 {
9545 tail = prev;
9546 prev = PREV_SEC (tail);
9547 htab->stub_group[tail->id].link_sec = curr;
9548 }
9549 }
9550 tail = prev;
9551 }
9552 }
9553 while (list-- != htab->input_list);
9554 free (htab->input_list);
9555 #undef PREV_SEC
9556 }
9557
9558 /* Determine and set the size of the stub section for a final link.
9559
9560 The basic idea here is to examine all the relocations looking for
9561 PC-relative calls to a target that is unreachable with a "bl"
9562 instruction. */
9563
9564 bfd_boolean
9565 ppc64_elf_size_stubs (bfd *output_bfd,
9566 struct bfd_link_info *info,
9567 bfd_signed_vma group_size,
9568 asection *(*add_stub_section) (const char *, asection *),
9569 void (*layout_sections_again) (void))
9570 {
9571 bfd_size_type stub_group_size;
9572 bfd_boolean stubs_always_before_branch;
9573 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9574
9575 /* Stash our params away. */
9576 htab->add_stub_section = add_stub_section;
9577 htab->layout_sections_again = layout_sections_again;
9578 stubs_always_before_branch = group_size < 0;
9579 if (group_size < 0)
9580 stub_group_size = -group_size;
9581 else
9582 stub_group_size = group_size;
9583
9584 group_sections (htab, stub_group_size, stubs_always_before_branch);
9585
9586 while (1)
9587 {
9588 bfd *input_bfd;
9589 unsigned int bfd_indx;
9590 asection *stub_sec;
9591
9592 htab->stub_iteration += 1;
9593
9594 for (input_bfd = info->input_bfds, bfd_indx = 0;
9595 input_bfd != NULL;
9596 input_bfd = input_bfd->link_next, bfd_indx++)
9597 {
9598 Elf_Internal_Shdr *symtab_hdr;
9599 asection *section;
9600 Elf_Internal_Sym *local_syms = NULL;
9601
9602 if (!is_ppc64_elf (input_bfd))
9603 continue;
9604
9605 /* We'll need the symbol table in a second. */
9606 symtab_hdr = &elf_symtab_hdr (input_bfd);
9607 if (symtab_hdr->sh_info == 0)
9608 continue;
9609
9610 /* Walk over each section attached to the input bfd. */
9611 for (section = input_bfd->sections;
9612 section != NULL;
9613 section = section->next)
9614 {
9615 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
9616
9617 /* If there aren't any relocs, then there's nothing more
9618 to do. */
9619 if ((section->flags & SEC_RELOC) == 0
9620 || (section->flags & SEC_ALLOC) == 0
9621 || (section->flags & SEC_LOAD) == 0
9622 || (section->flags & SEC_CODE) == 0
9623 || section->reloc_count == 0)
9624 continue;
9625
9626 /* If this section is a link-once section that will be
9627 discarded, then don't create any stubs. */
9628 if (section->output_section == NULL
9629 || section->output_section->owner != output_bfd)
9630 continue;
9631
9632 /* Get the relocs. */
9633 internal_relocs
9634 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
9635 info->keep_memory);
9636 if (internal_relocs == NULL)
9637 goto error_ret_free_local;
9638
9639 /* Now examine each relocation. */
9640 irela = internal_relocs;
9641 irelaend = irela + section->reloc_count;
9642 for (; irela < irelaend; irela++)
9643 {
9644 enum elf_ppc64_reloc_type r_type;
9645 unsigned int r_indx;
9646 enum ppc_stub_type stub_type;
9647 struct ppc_stub_hash_entry *stub_entry;
9648 asection *sym_sec, *code_sec;
9649 bfd_vma sym_value;
9650 bfd_vma destination;
9651 bfd_boolean ok_dest;
9652 struct ppc_link_hash_entry *hash;
9653 struct ppc_link_hash_entry *fdh;
9654 struct elf_link_hash_entry *h;
9655 Elf_Internal_Sym *sym;
9656 char *stub_name;
9657 const asection *id_sec;
9658 struct _opd_sec_data *opd;
9659
9660 r_type = ELF64_R_TYPE (irela->r_info);
9661 r_indx = ELF64_R_SYM (irela->r_info);
9662
9663 if (r_type >= R_PPC64_max)
9664 {
9665 bfd_set_error (bfd_error_bad_value);
9666 goto error_ret_free_internal;
9667 }
9668
9669 /* Only look for stubs on branch instructions. */
9670 if (r_type != R_PPC64_REL24
9671 && r_type != R_PPC64_REL14
9672 && r_type != R_PPC64_REL14_BRTAKEN
9673 && r_type != R_PPC64_REL14_BRNTAKEN)
9674 continue;
9675
9676 /* Now determine the call target, its name, value,
9677 section. */
9678 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9679 r_indx, input_bfd))
9680 goto error_ret_free_internal;
9681 hash = (struct ppc_link_hash_entry *) h;
9682
9683 ok_dest = FALSE;
9684 fdh = NULL;
9685 sym_value = 0;
9686 if (hash == NULL)
9687 {
9688 sym_value = sym->st_value;
9689 ok_dest = TRUE;
9690 }
9691 else if (hash->elf.root.type == bfd_link_hash_defined
9692 || hash->elf.root.type == bfd_link_hash_defweak)
9693 {
9694 sym_value = hash->elf.root.u.def.value;
9695 if (sym_sec->output_section != NULL)
9696 ok_dest = TRUE;
9697 }
9698 else if (hash->elf.root.type == bfd_link_hash_undefweak
9699 || hash->elf.root.type == bfd_link_hash_undefined)
9700 {
9701 /* Recognise an old ABI func code entry sym, and
9702 use the func descriptor sym instead if it is
9703 defined. */
9704 if (hash->elf.root.root.string[0] == '.'
9705 && (fdh = get_fdh (hash, htab)) != NULL)
9706 {
9707 if (fdh->elf.root.type == bfd_link_hash_defined
9708 || fdh->elf.root.type == bfd_link_hash_defweak)
9709 {
9710 sym_sec = fdh->elf.root.u.def.section;
9711 sym_value = fdh->elf.root.u.def.value;
9712 if (sym_sec->output_section != NULL)
9713 ok_dest = TRUE;
9714 }
9715 else
9716 fdh = NULL;
9717 }
9718 }
9719 else
9720 {
9721 bfd_set_error (bfd_error_bad_value);
9722 goto error_ret_free_internal;
9723 }
9724
9725 destination = 0;
9726 if (ok_dest)
9727 {
9728 sym_value += irela->r_addend;
9729 destination = (sym_value
9730 + sym_sec->output_offset
9731 + sym_sec->output_section->vma);
9732 }
9733
9734 code_sec = sym_sec;
9735 opd = get_opd_info (sym_sec);
9736 if (opd != NULL)
9737 {
9738 bfd_vma dest;
9739
9740 if (hash == NULL && opd->adjust != NULL)
9741 {
9742 long adjust = opd->adjust[sym_value / 8];
9743 if (adjust == -1)
9744 continue;
9745 sym_value += adjust;
9746 }
9747 dest = opd_entry_value (sym_sec, sym_value,
9748 &code_sec, &sym_value);
9749 if (dest != (bfd_vma) -1)
9750 {
9751 destination = dest;
9752 if (fdh != NULL)
9753 {
9754 /* Fixup old ABI sym to point at code
9755 entry. */
9756 hash->elf.root.type = bfd_link_hash_defweak;
9757 hash->elf.root.u.def.section = code_sec;
9758 hash->elf.root.u.def.value = sym_value;
9759 }
9760 }
9761 }
9762
9763 /* Determine what (if any) linker stub is needed. */
9764 stub_type = ppc_type_of_stub (section, irela, &hash,
9765 destination);
9766
9767 if (stub_type != ppc_stub_plt_call)
9768 {
9769 /* Check whether we need a TOC adjusting stub.
9770 Since the linker pastes together pieces from
9771 different object files when creating the
9772 _init and _fini functions, it may be that a
9773 call to what looks like a local sym is in
9774 fact a call needing a TOC adjustment. */
9775 if (code_sec != NULL
9776 && code_sec->output_section != NULL
9777 && (htab->stub_group[code_sec->id].toc_off
9778 != htab->stub_group[section->id].toc_off)
9779 && (code_sec->has_toc_reloc
9780 || code_sec->makes_toc_func_call))
9781 stub_type = ppc_stub_long_branch_r2off;
9782 }
9783
9784 if (stub_type == ppc_stub_none)
9785 continue;
9786
9787 /* __tls_get_addr calls might be eliminated. */
9788 if (stub_type != ppc_stub_plt_call
9789 && hash != NULL
9790 && (hash == htab->tls_get_addr
9791 || hash == htab->tls_get_addr_fd)
9792 && section->has_tls_reloc
9793 && irela != internal_relocs)
9794 {
9795 /* Get tls info. */
9796 char *tls_mask;
9797
9798 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
9799 irela - 1, input_bfd))
9800 goto error_ret_free_internal;
9801 if (*tls_mask != 0)
9802 continue;
9803 }
9804
9805 /* Support for grouping stub sections. */
9806 id_sec = htab->stub_group[section->id].link_sec;
9807
9808 /* Get the name of this stub. */
9809 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9810 if (!stub_name)
9811 goto error_ret_free_internal;
9812
9813 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9814 stub_name, FALSE, FALSE);
9815 if (stub_entry != NULL)
9816 {
9817 /* The proper stub has already been created. */
9818 free (stub_name);
9819 continue;
9820 }
9821
9822 stub_entry = ppc_add_stub (stub_name, section, htab);
9823 if (stub_entry == NULL)
9824 {
9825 free (stub_name);
9826 error_ret_free_internal:
9827 if (elf_section_data (section)->relocs == NULL)
9828 free (internal_relocs);
9829 error_ret_free_local:
9830 if (local_syms != NULL
9831 && (symtab_hdr->contents
9832 != (unsigned char *) local_syms))
9833 free (local_syms);
9834 return FALSE;
9835 }
9836
9837 stub_entry->stub_type = stub_type;
9838 stub_entry->target_value = sym_value;
9839 stub_entry->target_section = code_sec;
9840 stub_entry->h = hash;
9841 stub_entry->addend = irela->r_addend;
9842
9843 if (stub_entry->h != NULL)
9844 htab->stub_globals += 1;
9845 }
9846
9847 /* We're done with the internal relocs, free them. */
9848 if (elf_section_data (section)->relocs != internal_relocs)
9849 free (internal_relocs);
9850 }
9851
9852 if (local_syms != NULL
9853 && symtab_hdr->contents != (unsigned char *) local_syms)
9854 {
9855 if (!info->keep_memory)
9856 free (local_syms);
9857 else
9858 symtab_hdr->contents = (unsigned char *) local_syms;
9859 }
9860 }
9861
9862 /* We may have added some stubs. Find out the new size of the
9863 stub sections. */
9864 for (stub_sec = htab->stub_bfd->sections;
9865 stub_sec != NULL;
9866 stub_sec = stub_sec->next)
9867 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9868 {
9869 stub_sec->rawsize = stub_sec->size;
9870 stub_sec->size = 0;
9871 stub_sec->reloc_count = 0;
9872 stub_sec->flags &= ~SEC_RELOC;
9873 }
9874
9875 htab->brlt->size = 0;
9876 htab->brlt->reloc_count = 0;
9877 htab->brlt->flags &= ~SEC_RELOC;
9878 if (htab->relbrlt != NULL)
9879 htab->relbrlt->size = 0;
9880
9881 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9882
9883 if (info->emitrelocations
9884 && htab->glink != NULL && htab->glink->size != 0)
9885 {
9886 htab->glink->reloc_count = 1;
9887 htab->glink->flags |= SEC_RELOC;
9888 }
9889
9890 for (stub_sec = htab->stub_bfd->sections;
9891 stub_sec != NULL;
9892 stub_sec = stub_sec->next)
9893 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9894 && stub_sec->rawsize != stub_sec->size)
9895 break;
9896
9897 /* Exit from this loop when no stubs have been added, and no stubs
9898 have changed size. */
9899 if (stub_sec == NULL)
9900 break;
9901
9902 /* Ask the linker to do its stuff. */
9903 (*htab->layout_sections_again) ();
9904 }
9905
9906 /* It would be nice to strip htab->brlt from the output if the
9907 section is empty, but it's too late. If we strip sections here,
9908 the dynamic symbol table is corrupted since the section symbol
9909 for the stripped section isn't written. */
9910
9911 return TRUE;
9912 }
9913
9914 /* Called after we have determined section placement. If sections
9915 move, we'll be called again. Provide a value for TOCstart. */
9916
9917 bfd_vma
9918 ppc64_elf_toc (bfd *obfd)
9919 {
9920 asection *s;
9921 bfd_vma TOCstart;
9922
9923 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9924 order. The TOC starts where the first of these sections starts. */
9925 s = bfd_get_section_by_name (obfd, ".got");
9926 if (s == NULL)
9927 s = bfd_get_section_by_name (obfd, ".toc");
9928 if (s == NULL)
9929 s = bfd_get_section_by_name (obfd, ".tocbss");
9930 if (s == NULL)
9931 s = bfd_get_section_by_name (obfd, ".plt");
9932 if (s == NULL)
9933 {
9934 /* This may happen for
9935 o references to TOC base (SYM@toc / TOC[tc0]) without a
9936 .toc directive
9937 o bad linker script
9938 o --gc-sections and empty TOC sections
9939
9940 FIXME: Warn user? */
9941
9942 /* Look for a likely section. We probably won't even be
9943 using TOCstart. */
9944 for (s = obfd->sections; s != NULL; s = s->next)
9945 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9946 == (SEC_ALLOC | SEC_SMALL_DATA))
9947 break;
9948 if (s == NULL)
9949 for (s = obfd->sections; s != NULL; s = s->next)
9950 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9951 == (SEC_ALLOC | SEC_SMALL_DATA))
9952 break;
9953 if (s == NULL)
9954 for (s = obfd->sections; s != NULL; s = s->next)
9955 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9956 break;
9957 if (s == NULL)
9958 for (s = obfd->sections; s != NULL; s = s->next)
9959 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9960 break;
9961 }
9962
9963 TOCstart = 0;
9964 if (s != NULL)
9965 TOCstart = s->output_section->vma + s->output_offset;
9966
9967 return TOCstart;
9968 }
9969
9970 /* Build all the stubs associated with the current output file.
9971 The stubs are kept in a hash table attached to the main linker
9972 hash table. This function is called via gldelf64ppc_finish. */
9973
9974 bfd_boolean
9975 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9976 struct bfd_link_info *info,
9977 char **stats)
9978 {
9979 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9980 asection *stub_sec;
9981 bfd_byte *p;
9982 int stub_sec_count = 0;
9983
9984 htab->emit_stub_syms = emit_stub_syms;
9985
9986 /* Allocate memory to hold the linker stubs. */
9987 for (stub_sec = htab->stub_bfd->sections;
9988 stub_sec != NULL;
9989 stub_sec = stub_sec->next)
9990 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9991 && stub_sec->size != 0)
9992 {
9993 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9994 if (stub_sec->contents == NULL)
9995 return FALSE;
9996 /* We want to check that built size is the same as calculated
9997 size. rawsize is a convenient location to use. */
9998 stub_sec->rawsize = stub_sec->size;
9999 stub_sec->size = 0;
10000 }
10001
10002 if (htab->glink != NULL && htab->glink->size != 0)
10003 {
10004 unsigned int indx;
10005 bfd_vma plt0;
10006
10007 /* Build the .glink plt call stub. */
10008 if (htab->emit_stub_syms)
10009 {
10010 struct elf_link_hash_entry *h;
10011 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
10012 TRUE, FALSE, FALSE);
10013 if (h == NULL)
10014 return FALSE;
10015 if (h->root.type == bfd_link_hash_new)
10016 {
10017 h->root.type = bfd_link_hash_defined;
10018 h->root.u.def.section = htab->glink;
10019 h->root.u.def.value = 8;
10020 h->ref_regular = 1;
10021 h->def_regular = 1;
10022 h->ref_regular_nonweak = 1;
10023 h->forced_local = 1;
10024 h->non_elf = 0;
10025 }
10026 }
10027 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
10028 if (info->emitrelocations)
10029 {
10030 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
10031 if (r == NULL)
10032 return FALSE;
10033 r->r_offset = (htab->glink->output_offset
10034 + htab->glink->output_section->vma);
10035 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
10036 r->r_addend = plt0;
10037 }
10038 p = htab->glink->contents;
10039 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
10040 bfd_put_64 (htab->glink->owner, plt0, p);
10041 p += 8;
10042 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
10043 p += 4;
10044 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
10045 p += 4;
10046 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
10047 p += 4;
10048 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
10049 p += 4;
10050 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
10051 p += 4;
10052 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
10053 p += 4;
10054 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
10055 p += 4;
10056 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
10057 p += 4;
10058 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
10059 p += 4;
10060 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
10061 p += 4;
10062 bfd_put_32 (htab->glink->owner, BCTR, p);
10063 p += 4;
10064 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
10065 {
10066 bfd_put_32 (htab->glink->owner, NOP, p);
10067 p += 4;
10068 }
10069
10070 /* Build the .glink lazy link call stubs. */
10071 indx = 0;
10072 while (p < htab->glink->contents + htab->glink->size)
10073 {
10074 if (indx < 0x8000)
10075 {
10076 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
10077 p += 4;
10078 }
10079 else
10080 {
10081 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
10082 p += 4;
10083 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
10084 p += 4;
10085 }
10086 bfd_put_32 (htab->glink->owner,
10087 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
10088 indx++;
10089 p += 4;
10090 }
10091 htab->glink->rawsize = p - htab->glink->contents;
10092 }
10093
10094 if (htab->brlt->size != 0)
10095 {
10096 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
10097 htab->brlt->size);
10098 if (htab->brlt->contents == NULL)
10099 return FALSE;
10100 }
10101 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
10102 {
10103 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
10104 htab->relbrlt->size);
10105 if (htab->relbrlt->contents == NULL)
10106 return FALSE;
10107 }
10108
10109 /* Build the stubs as directed by the stub hash table. */
10110 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
10111
10112 if (htab->relbrlt != NULL)
10113 htab->relbrlt->reloc_count = 0;
10114
10115 for (stub_sec = htab->stub_bfd->sections;
10116 stub_sec != NULL;
10117 stub_sec = stub_sec->next)
10118 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
10119 {
10120 stub_sec_count += 1;
10121 if (stub_sec->rawsize != stub_sec->size)
10122 break;
10123 }
10124
10125 if (stub_sec != NULL
10126 || htab->glink->rawsize != htab->glink->size)
10127 {
10128 htab->stub_error = TRUE;
10129 (*_bfd_error_handler) (_("stubs don't match calculated size"));
10130 }
10131
10132 if (htab->stub_error)
10133 return FALSE;
10134
10135 if (stats != NULL)
10136 {
10137 *stats = bfd_malloc (500);
10138 if (*stats == NULL)
10139 return FALSE;
10140
10141 sprintf (*stats, _("linker stubs in %u group%s\n"
10142 " branch %lu\n"
10143 " toc adjust %lu\n"
10144 " long branch %lu\n"
10145 " long toc adj %lu\n"
10146 " plt call %lu"),
10147 stub_sec_count,
10148 stub_sec_count == 1 ? "" : "s",
10149 htab->stub_count[ppc_stub_long_branch - 1],
10150 htab->stub_count[ppc_stub_long_branch_r2off - 1],
10151 htab->stub_count[ppc_stub_plt_branch - 1],
10152 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
10153 htab->stub_count[ppc_stub_plt_call - 1]);
10154 }
10155 return TRUE;
10156 }
10157
10158 /* This function undoes the changes made by add_symbol_adjust. */
10159
10160 static bfd_boolean
10161 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10162 {
10163 struct ppc_link_hash_entry *eh;
10164
10165 if (h->root.type == bfd_link_hash_indirect)
10166 return TRUE;
10167
10168 if (h->root.type == bfd_link_hash_warning)
10169 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10170
10171 eh = (struct ppc_link_hash_entry *) h;
10172 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
10173 return TRUE;
10174
10175 eh->elf.root.type = bfd_link_hash_undefined;
10176 return TRUE;
10177 }
10178
10179 void
10180 ppc64_elf_restore_symbols (struct bfd_link_info *info)
10181 {
10182 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10183 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
10184 }
10185
10186 /* What to do when ld finds relocations against symbols defined in
10187 discarded sections. */
10188
10189 static unsigned int
10190 ppc64_elf_action_discarded (asection *sec)
10191 {
10192 if (strcmp (".opd", sec->name) == 0)
10193 return 0;
10194
10195 if (strcmp (".toc", sec->name) == 0)
10196 return 0;
10197
10198 if (strcmp (".toc1", sec->name) == 0)
10199 return 0;
10200
10201 return _bfd_elf_default_action_discarded (sec);
10202 }
10203
10204 /* The RELOCATE_SECTION function is called by the ELF backend linker
10205 to handle the relocations for a section.
10206
10207 The relocs are always passed as Rela structures; if the section
10208 actually uses Rel structures, the r_addend field will always be
10209 zero.
10210
10211 This function is responsible for adjust the section contents as
10212 necessary, and (if using Rela relocs and generating a
10213 relocatable output file) adjusting the reloc addend as
10214 necessary.
10215
10216 This function does not have to worry about setting the reloc
10217 address or the reloc symbol index.
10218
10219 LOCAL_SYMS is a pointer to the swapped in local symbols.
10220
10221 LOCAL_SECTIONS is an array giving the section in the input file
10222 corresponding to the st_shndx field of each local symbol.
10223
10224 The global hash table entry for the global symbols can be found
10225 via elf_sym_hashes (input_bfd).
10226
10227 When generating relocatable output, this function must handle
10228 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
10229 going to be the section symbol corresponding to the output
10230 section, which means that the addend must be adjusted
10231 accordingly. */
10232
10233 static bfd_boolean
10234 ppc64_elf_relocate_section (bfd *output_bfd,
10235 struct bfd_link_info *info,
10236 bfd *input_bfd,
10237 asection *input_section,
10238 bfd_byte *contents,
10239 Elf_Internal_Rela *relocs,
10240 Elf_Internal_Sym *local_syms,
10241 asection **local_sections)
10242 {
10243 struct ppc_link_hash_table *htab;
10244 Elf_Internal_Shdr *symtab_hdr;
10245 struct elf_link_hash_entry **sym_hashes;
10246 Elf_Internal_Rela *rel;
10247 Elf_Internal_Rela *relend;
10248 Elf_Internal_Rela outrel;
10249 bfd_byte *loc;
10250 struct got_entry **local_got_ents;
10251 bfd_vma TOCstart;
10252 bfd_boolean ret = TRUE;
10253 bfd_boolean is_opd;
10254 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
10255 bfd_boolean is_power4 = FALSE;
10256 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
10257
10258 /* Initialize howto table if needed. */
10259 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
10260 ppc_howto_init ();
10261
10262 htab = ppc_hash_table (info);
10263
10264 /* Don't relocate stub sections. */
10265 if (input_section->owner == htab->stub_bfd)
10266 return TRUE;
10267
10268 BFD_ASSERT (is_ppc64_elf (input_bfd));
10269
10270 local_got_ents = elf_local_got_ents (input_bfd);
10271 TOCstart = elf_gp (output_bfd);
10272 symtab_hdr = &elf_symtab_hdr (input_bfd);
10273 sym_hashes = elf_sym_hashes (input_bfd);
10274 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
10275
10276 rel = relocs;
10277 relend = relocs + input_section->reloc_count;
10278 for (; rel < relend; rel++)
10279 {
10280 enum elf_ppc64_reloc_type r_type;
10281 bfd_vma addend, orig_addend;
10282 bfd_reloc_status_type r;
10283 Elf_Internal_Sym *sym;
10284 asection *sec;
10285 struct elf_link_hash_entry *h_elf;
10286 struct ppc_link_hash_entry *h;
10287 struct ppc_link_hash_entry *fdh;
10288 const char *sym_name;
10289 unsigned long r_symndx, toc_symndx;
10290 bfd_vma toc_addend;
10291 char tls_mask, tls_gd, tls_type;
10292 char sym_type;
10293 bfd_vma relocation;
10294 bfd_boolean unresolved_reloc;
10295 bfd_boolean warned;
10296 unsigned long insn, mask;
10297 struct ppc_stub_hash_entry *stub_entry;
10298 bfd_vma max_br_offset;
10299 bfd_vma from;
10300
10301 r_type = ELF64_R_TYPE (rel->r_info);
10302 r_symndx = ELF64_R_SYM (rel->r_info);
10303
10304 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
10305 symbol of the previous ADDR64 reloc. The symbol gives us the
10306 proper TOC base to use. */
10307 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
10308 && rel != relocs
10309 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
10310 && is_opd)
10311 r_symndx = ELF64_R_SYM (rel[-1].r_info);
10312
10313 sym = NULL;
10314 sec = NULL;
10315 h_elf = NULL;
10316 sym_name = NULL;
10317 unresolved_reloc = FALSE;
10318 warned = FALSE;
10319 orig_addend = rel->r_addend;
10320
10321 if (r_symndx < symtab_hdr->sh_info)
10322 {
10323 /* It's a local symbol. */
10324 struct _opd_sec_data *opd;
10325
10326 sym = local_syms + r_symndx;
10327 sec = local_sections[r_symndx];
10328 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
10329 sym_type = ELF64_ST_TYPE (sym->st_info);
10330 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10331 opd = get_opd_info (sec);
10332 if (opd != NULL && opd->adjust != NULL)
10333 {
10334 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
10335 if (adjust == -1)
10336 relocation = 0;
10337 else
10338 {
10339 /* If this is a relocation against the opd section sym
10340 and we have edited .opd, adjust the reloc addend so
10341 that ld -r and ld --emit-relocs output is correct.
10342 If it is a reloc against some other .opd symbol,
10343 then the symbol value will be adjusted later. */
10344 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10345 rel->r_addend += adjust;
10346 else
10347 relocation += adjust;
10348 }
10349 }
10350 }
10351 else
10352 {
10353 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10354 r_symndx, symtab_hdr, sym_hashes,
10355 h_elf, sec, relocation,
10356 unresolved_reloc, warned);
10357 sym_name = h_elf->root.root.string;
10358 sym_type = h_elf->type;
10359 }
10360 h = (struct ppc_link_hash_entry *) h_elf;
10361
10362 if (sec != NULL && elf_discarded_section (sec))
10363 {
10364 /* For relocs against symbols from removed linkonce sections,
10365 or sections discarded by a linker script, we just want the
10366 section contents zeroed. Avoid any special processing. */
10367 _bfd_clear_contents (ppc64_elf_howto_table[r_type], input_bfd,
10368 contents + rel->r_offset);
10369 rel->r_info = 0;
10370 rel->r_addend = 0;
10371 continue;
10372 }
10373
10374 if (info->relocatable)
10375 continue;
10376
10377 /* TLS optimizations. Replace instruction sequences and relocs
10378 based on information we collected in tls_optimize. We edit
10379 RELOCS so that --emit-relocs will output something sensible
10380 for the final instruction stream. */
10381 tls_mask = 0;
10382 tls_gd = 0;
10383 toc_symndx = 0;
10384 if (h != NULL)
10385 tls_mask = h->tls_mask;
10386 else if (local_got_ents != NULL)
10387 {
10388 char *lgot_masks;
10389 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
10390 tls_mask = lgot_masks[r_symndx];
10391 }
10392 if (tls_mask == 0
10393 && (r_type == R_PPC64_TLS
10394 || r_type == R_PPC64_TLSGD
10395 || r_type == R_PPC64_TLSLD))
10396 {
10397 /* Check for toc tls entries. */
10398 char *toc_tls;
10399
10400 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
10401 &local_syms, rel, input_bfd))
10402 return FALSE;
10403
10404 if (toc_tls)
10405 tls_mask = *toc_tls;
10406 }
10407
10408 /* Check that tls relocs are used with tls syms, and non-tls
10409 relocs are used with non-tls syms. */
10410 if (r_symndx != 0
10411 && r_type != R_PPC64_NONE
10412 && (h == NULL
10413 || h->elf.root.type == bfd_link_hash_defined
10414 || h->elf.root.type == bfd_link_hash_defweak)
10415 && (IS_PPC64_TLS_RELOC (r_type)
10416 != (sym_type == STT_TLS
10417 || (sym_type == STT_SECTION
10418 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
10419 {
10420 if (tls_mask != 0
10421 && (r_type == R_PPC64_TLS
10422 || r_type == R_PPC64_TLSGD
10423 || r_type == R_PPC64_TLSLD))
10424 /* R_PPC64_TLS is OK against a symbol in the TOC. */
10425 ;
10426 else
10427 (*_bfd_error_handler)
10428 (!IS_PPC64_TLS_RELOC (r_type)
10429 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10430 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
10431 input_bfd,
10432 input_section,
10433 (long) rel->r_offset,
10434 ppc64_elf_howto_table[r_type]->name,
10435 sym_name);
10436 }
10437
10438 /* Ensure reloc mapping code below stays sane. */
10439 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
10440 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
10441 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
10442 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
10443 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
10444 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
10445 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
10446 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
10447 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
10448 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
10449 abort ();
10450
10451 switch (r_type)
10452 {
10453 default:
10454 break;
10455
10456 case R_PPC64_TOC16:
10457 case R_PPC64_TOC16_LO:
10458 case R_PPC64_TOC16_DS:
10459 case R_PPC64_TOC16_LO_DS:
10460 {
10461 /* Check for toc tls entries. */
10462 char *toc_tls;
10463 int retval;
10464
10465 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
10466 &local_syms, rel, input_bfd);
10467 if (retval == 0)
10468 return FALSE;
10469
10470 if (toc_tls)
10471 {
10472 tls_mask = *toc_tls;
10473 if (r_type == R_PPC64_TOC16_DS
10474 || r_type == R_PPC64_TOC16_LO_DS)
10475 {
10476 if (tls_mask != 0
10477 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
10478 goto toctprel;
10479 }
10480 else
10481 {
10482 /* If we found a GD reloc pair, then we might be
10483 doing a GD->IE transition. */
10484 if (retval == 2)
10485 {
10486 tls_gd = TLS_TPRELGD;
10487 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10488 goto tls_ldgd_opt;
10489 }
10490 else if (retval == 3)
10491 {
10492 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10493 goto tls_ldgd_opt;
10494 }
10495 }
10496 }
10497 }
10498 break;
10499
10500 case R_PPC64_GOT_TPREL16_DS:
10501 case R_PPC64_GOT_TPREL16_LO_DS:
10502 if (tls_mask != 0
10503 && (tls_mask & TLS_TPREL) == 0)
10504 {
10505 toctprel:
10506 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
10507 insn &= 31 << 21;
10508 insn |= 0x3c0d0000; /* addis 0,13,0 */
10509 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
10510 r_type = R_PPC64_TPREL16_HA;
10511 if (toc_symndx != 0)
10512 {
10513 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10514 rel->r_addend = toc_addend;
10515 /* We changed the symbol. Start over in order to
10516 get h, sym, sec etc. right. */
10517 rel--;
10518 continue;
10519 }
10520 else
10521 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10522 }
10523 break;
10524
10525 case R_PPC64_TLS:
10526 if (tls_mask != 0
10527 && (tls_mask & TLS_TPREL) == 0)
10528 {
10529 bfd_vma rtra;
10530 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
10531 if ((insn & ((0x3f << 26) | (31 << 11)))
10532 == ((31 << 26) | (13 << 11)))
10533 rtra = insn & ((1 << 26) - (1 << 16));
10534 else if ((insn & ((0x3f << 26) | (31 << 16)))
10535 == ((31 << 26) | (13 << 16)))
10536 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
10537 else
10538 abort ();
10539 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
10540 /* add -> addi. */
10541 insn = 14 << 26;
10542 else if ((insn & (31 << 1)) == 23 << 1
10543 && ((insn & (31 << 6)) < 14 << 6
10544 || ((insn & (31 << 6)) >= 16 << 6
10545 && (insn & (31 << 6)) < 24 << 6)))
10546 /* load and store indexed -> dform. */
10547 insn = (32 | ((insn >> 6) & 31)) << 26;
10548 else if ((insn & (31 << 1)) == 21 << 1
10549 && (insn & (0x1a << 6)) == 0)
10550 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
10551 insn = (((58 | ((insn >> 6) & 4)) << 26)
10552 | ((insn >> 6) & 1));
10553 else if ((insn & (31 << 1)) == 21 << 1
10554 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
10555 /* lwax -> lwa. */
10556 insn = (58 << 26) | 2;
10557 else
10558 abort ();
10559 insn |= rtra;
10560 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10561 /* Was PPC64_TLS which sits on insn boundary, now
10562 PPC64_TPREL16_LO which is at low-order half-word. */
10563 rel->r_offset += d_offset;
10564 r_type = R_PPC64_TPREL16_LO;
10565 if (toc_symndx != 0)
10566 {
10567 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10568 rel->r_addend = toc_addend;
10569 /* We changed the symbol. Start over in order to
10570 get h, sym, sec etc. right. */
10571 rel--;
10572 continue;
10573 }
10574 else
10575 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10576 }
10577 break;
10578
10579 case R_PPC64_GOT_TLSGD16_HI:
10580 case R_PPC64_GOT_TLSGD16_HA:
10581 tls_gd = TLS_TPRELGD;
10582 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10583 goto tls_gdld_hi;
10584 break;
10585
10586 case R_PPC64_GOT_TLSLD16_HI:
10587 case R_PPC64_GOT_TLSLD16_HA:
10588 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10589 {
10590 tls_gdld_hi:
10591 if ((tls_mask & tls_gd) != 0)
10592 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10593 + R_PPC64_GOT_TPREL16_DS);
10594 else
10595 {
10596 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10597 rel->r_offset -= d_offset;
10598 r_type = R_PPC64_NONE;
10599 }
10600 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10601 }
10602 break;
10603
10604 case R_PPC64_GOT_TLSGD16:
10605 case R_PPC64_GOT_TLSGD16_LO:
10606 tls_gd = TLS_TPRELGD;
10607 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10608 goto tls_ldgd_opt;
10609 break;
10610
10611 case R_PPC64_GOT_TLSLD16:
10612 case R_PPC64_GOT_TLSLD16_LO:
10613 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10614 {
10615 unsigned int insn1, insn2, insn3;
10616 bfd_vma offset;
10617
10618 tls_ldgd_opt:
10619 offset = (bfd_vma) -1;
10620 /* If not using the newer R_PPC64_TLSGD/LD to mark
10621 __tls_get_addr calls, we must trust that the call
10622 stays with its arg setup insns, ie. that the next
10623 reloc is the __tls_get_addr call associated with
10624 the current reloc. Edit both insns. */
10625 if (input_section->has_tls_get_addr_call
10626 && rel + 1 < relend
10627 && branch_reloc_hash_match (input_bfd, rel + 1,
10628 htab->tls_get_addr,
10629 htab->tls_get_addr_fd))
10630 offset = rel[1].r_offset;
10631 if ((tls_mask & tls_gd) != 0)
10632 {
10633 /* IE */
10634 insn1 = bfd_get_32 (output_bfd,
10635 contents + rel->r_offset - d_offset);
10636 insn1 &= (1 << 26) - (1 << 2);
10637 insn1 |= 58 << 26; /* ld */
10638 insn2 = 0x7c636a14; /* add 3,3,13 */
10639 if (offset != (bfd_vma) -1)
10640 rel[1].r_info = ELF64_R_INFO (ELF64_R_SYM (rel[1].r_info),
10641 R_PPC64_NONE);
10642 if ((tls_mask & TLS_EXPLICIT) == 0)
10643 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10644 + R_PPC64_GOT_TPREL16_DS);
10645 else
10646 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
10647 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10648 }
10649 else
10650 {
10651 /* LE */
10652 insn1 = 0x3c6d0000; /* addis 3,13,0 */
10653 insn2 = 0x38630000; /* addi 3,3,0 */
10654 if (tls_gd == 0)
10655 {
10656 /* Was an LD reloc. */
10657 if (toc_symndx)
10658 sec = local_sections[toc_symndx];
10659 for (r_symndx = 0;
10660 r_symndx < symtab_hdr->sh_info;
10661 r_symndx++)
10662 if (local_sections[r_symndx] == sec)
10663 break;
10664 if (r_symndx >= symtab_hdr->sh_info)
10665 r_symndx = 0;
10666 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10667 if (r_symndx != 0)
10668 rel->r_addend -= (local_syms[r_symndx].st_value
10669 + sec->output_offset
10670 + sec->output_section->vma);
10671 }
10672 else if (toc_symndx != 0)
10673 {
10674 r_symndx = toc_symndx;
10675 rel->r_addend = toc_addend;
10676 }
10677 r_type = R_PPC64_TPREL16_HA;
10678 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10679 if (offset != (bfd_vma) -1)
10680 {
10681 rel[1].r_info = ELF64_R_INFO (r_symndx,
10682 R_PPC64_TPREL16_LO);
10683 rel[1].r_offset = offset + d_offset;
10684 rel[1].r_addend = rel->r_addend;
10685 }
10686 }
10687 bfd_put_32 (output_bfd, insn1,
10688 contents + rel->r_offset - d_offset);
10689 if (offset != (bfd_vma) -1)
10690 {
10691 insn3 = bfd_get_32 (output_bfd,
10692 contents + offset + 4);
10693 if (insn3 == NOP
10694 || insn3 == CROR_151515 || insn3 == CROR_313131)
10695 {
10696 rel[1].r_offset += 4;
10697 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
10698 insn2 = NOP;
10699 }
10700 bfd_put_32 (output_bfd, insn2, contents + offset);
10701 }
10702 if ((tls_mask & tls_gd) == 0
10703 && (tls_gd == 0 || toc_symndx != 0))
10704 {
10705 /* We changed the symbol. Start over in order
10706 to get h, sym, sec etc. right. */
10707 rel--;
10708 continue;
10709 }
10710 }
10711 break;
10712
10713 case R_PPC64_TLSGD:
10714 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10715 {
10716 unsigned int insn2, insn3;
10717 bfd_vma offset = rel->r_offset;
10718
10719 if ((tls_mask & TLS_TPRELGD) != 0)
10720 {
10721 /* IE */
10722 r_type = R_PPC64_NONE;
10723 insn2 = 0x7c636a14; /* add 3,3,13 */
10724 }
10725 else
10726 {
10727 /* LE */
10728 if (toc_symndx != 0)
10729 {
10730 r_symndx = toc_symndx;
10731 rel->r_addend = toc_addend;
10732 }
10733 r_type = R_PPC64_TPREL16_LO;
10734 rel->r_offset = offset + d_offset;
10735 insn2 = 0x38630000; /* addi 3,3,0 */
10736 }
10737 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10738 /* Zap the reloc on the _tls_get_addr call too. */
10739 BFD_ASSERT (offset == rel[1].r_offset);
10740 rel[1].r_info = ELF64_R_INFO (ELF64_R_SYM (rel[1].r_info),
10741 R_PPC64_NONE);
10742 insn3 = bfd_get_32 (output_bfd,
10743 contents + offset + 4);
10744 if (insn3 == NOP
10745 || insn3 == CROR_151515 || insn3 == CROR_313131)
10746 {
10747 rel->r_offset += 4;
10748 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
10749 insn2 = NOP;
10750 }
10751 bfd_put_32 (output_bfd, insn2, contents + offset);
10752 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
10753 {
10754 rel--;
10755 continue;
10756 }
10757 }
10758 break;
10759
10760 case R_PPC64_TLSLD:
10761 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10762 {
10763 unsigned int insn2, insn3;
10764 bfd_vma offset = rel->r_offset;
10765
10766 if (toc_symndx)
10767 sec = local_sections[toc_symndx];
10768 for (r_symndx = 0;
10769 r_symndx < symtab_hdr->sh_info;
10770 r_symndx++)
10771 if (local_sections[r_symndx] == sec)
10772 break;
10773 if (r_symndx >= symtab_hdr->sh_info)
10774 r_symndx = 0;
10775 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10776 if (r_symndx != 0)
10777 rel->r_addend -= (local_syms[r_symndx].st_value
10778 + sec->output_offset
10779 + sec->output_section->vma);
10780
10781 r_type = R_PPC64_TPREL16_LO;
10782 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10783 rel->r_offset = offset + d_offset;
10784 /* Zap the reloc on the _tls_get_addr call too. */
10785 BFD_ASSERT (offset == rel[1].r_offset);
10786 rel[1].r_info = ELF64_R_INFO (ELF64_R_SYM (rel[1].r_info),
10787 R_PPC64_NONE);
10788 insn2 = 0x38630000; /* addi 3,3,0 */
10789 insn3 = bfd_get_32 (output_bfd,
10790 contents + offset + 4);
10791 if (insn3 == NOP
10792 || insn3 == CROR_151515 || insn3 == CROR_313131)
10793 {
10794 rel->r_offset += 4;
10795 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
10796 insn2 = NOP;
10797 }
10798 bfd_put_32 (output_bfd, insn2, contents + offset);
10799 rel--;
10800 continue;
10801 }
10802 break;
10803
10804 case R_PPC64_DTPMOD64:
10805 if (rel + 1 < relend
10806 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
10807 && rel[1].r_offset == rel->r_offset + 8)
10808 {
10809 if ((tls_mask & TLS_GD) == 0)
10810 {
10811 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
10812 if ((tls_mask & TLS_TPRELGD) != 0)
10813 r_type = R_PPC64_TPREL64;
10814 else
10815 {
10816 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10817 r_type = R_PPC64_NONE;
10818 }
10819 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10820 }
10821 }
10822 else
10823 {
10824 if ((tls_mask & TLS_LD) == 0)
10825 {
10826 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10827 r_type = R_PPC64_NONE;
10828 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10829 }
10830 }
10831 break;
10832
10833 case R_PPC64_TPREL64:
10834 if ((tls_mask & TLS_TPREL) == 0)
10835 {
10836 r_type = R_PPC64_NONE;
10837 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10838 }
10839 break;
10840 }
10841
10842 /* Handle other relocations that tweak non-addend part of insn. */
10843 insn = 0;
10844 max_br_offset = 1 << 25;
10845 addend = rel->r_addend;
10846 switch (r_type)
10847 {
10848 default:
10849 break;
10850
10851 /* Branch taken prediction relocations. */
10852 case R_PPC64_ADDR14_BRTAKEN:
10853 case R_PPC64_REL14_BRTAKEN:
10854 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
10855 /* Fall thru. */
10856
10857 /* Branch not taken prediction relocations. */
10858 case R_PPC64_ADDR14_BRNTAKEN:
10859 case R_PPC64_REL14_BRNTAKEN:
10860 insn |= bfd_get_32 (output_bfd,
10861 contents + rel->r_offset) & ~(0x01 << 21);
10862 /* Fall thru. */
10863
10864 case R_PPC64_REL14:
10865 max_br_offset = 1 << 15;
10866 /* Fall thru. */
10867
10868 case R_PPC64_REL24:
10869 /* Calls to functions with a different TOC, such as calls to
10870 shared objects, need to alter the TOC pointer. This is
10871 done using a linkage stub. A REL24 branching to these
10872 linkage stubs needs to be followed by a nop, as the nop
10873 will be replaced with an instruction to restore the TOC
10874 base pointer. */
10875 stub_entry = NULL;
10876 fdh = h;
10877 if (((h != NULL
10878 && (((fdh = h->oh) != NULL
10879 && fdh->elf.plt.plist != NULL)
10880 || (fdh = h)->elf.plt.plist != NULL))
10881 || (sec != NULL
10882 && sec->output_section != NULL
10883 && sec->id <= htab->top_id
10884 && (htab->stub_group[sec->id].toc_off
10885 != htab->stub_group[input_section->id].toc_off)))
10886 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
10887 rel, htab)) != NULL
10888 && (stub_entry->stub_type == ppc_stub_plt_call
10889 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
10890 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
10891 {
10892 bfd_boolean can_plt_call = FALSE;
10893
10894 if (rel->r_offset + 8 <= input_section->size)
10895 {
10896 unsigned long nop;
10897 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
10898 if (nop == NOP
10899 || nop == CROR_151515 || nop == CROR_313131)
10900 {
10901 bfd_put_32 (input_bfd, LD_R2_40R1,
10902 contents + rel->r_offset + 4);
10903 can_plt_call = TRUE;
10904 }
10905 }
10906
10907 if (!can_plt_call)
10908 {
10909 if (stub_entry->stub_type == ppc_stub_plt_call)
10910 {
10911 /* If this is a plain branch rather than a branch
10912 and link, don't require a nop. However, don't
10913 allow tail calls in a shared library as they
10914 will result in r2 being corrupted. */
10915 unsigned long br;
10916 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10917 if (info->executable && (br & 1) == 0)
10918 can_plt_call = TRUE;
10919 else
10920 stub_entry = NULL;
10921 }
10922 else if (h != NULL
10923 && strcmp (h->elf.root.root.string,
10924 ".__libc_start_main") == 0)
10925 {
10926 /* Allow crt1 branch to go via a toc adjusting stub. */
10927 can_plt_call = TRUE;
10928 }
10929 else
10930 {
10931 if (strcmp (input_section->output_section->name,
10932 ".init") == 0
10933 || strcmp (input_section->output_section->name,
10934 ".fini") == 0)
10935 (*_bfd_error_handler)
10936 (_("%B(%A+0x%lx): automatic multiple TOCs "
10937 "not supported using your crt files; "
10938 "recompile with -mminimal-toc or upgrade gcc"),
10939 input_bfd,
10940 input_section,
10941 (long) rel->r_offset);
10942 else
10943 (*_bfd_error_handler)
10944 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10945 "does not allow automatic multiple TOCs; "
10946 "recompile with -mminimal-toc or "
10947 "-fno-optimize-sibling-calls, "
10948 "or make `%s' extern"),
10949 input_bfd,
10950 input_section,
10951 (long) rel->r_offset,
10952 sym_name,
10953 sym_name);
10954 bfd_set_error (bfd_error_bad_value);
10955 ret = FALSE;
10956 }
10957 }
10958
10959 if (can_plt_call
10960 && stub_entry->stub_type == ppc_stub_plt_call)
10961 unresolved_reloc = FALSE;
10962 }
10963
10964 if (stub_entry == NULL
10965 && get_opd_info (sec) != NULL)
10966 {
10967 /* The branch destination is the value of the opd entry. */
10968 bfd_vma off = (relocation + addend
10969 - sec->output_section->vma
10970 - sec->output_offset);
10971 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10972 if (dest != (bfd_vma) -1)
10973 {
10974 relocation = dest;
10975 addend = 0;
10976 }
10977 }
10978
10979 /* If the branch is out of reach we ought to have a long
10980 branch stub. */
10981 from = (rel->r_offset
10982 + input_section->output_offset
10983 + input_section->output_section->vma);
10984
10985 if (stub_entry == NULL
10986 && (relocation + addend - from + max_br_offset
10987 >= 2 * max_br_offset)
10988 && r_type != R_PPC64_ADDR14_BRTAKEN
10989 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10990 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10991 htab);
10992
10993 if (stub_entry != NULL)
10994 {
10995 /* Munge up the value and addend so that we call the stub
10996 rather than the procedure directly. */
10997 relocation = (stub_entry->stub_offset
10998 + stub_entry->stub_sec->output_offset
10999 + stub_entry->stub_sec->output_section->vma);
11000 addend = 0;
11001 }
11002
11003 if (insn != 0)
11004 {
11005 if (is_power4)
11006 {
11007 /* Set 'a' bit. This is 0b00010 in BO field for branch
11008 on CR(BI) insns (BO == 001at or 011at), and 0b01000
11009 for branch on CTR insns (BO == 1a00t or 1a01t). */
11010 if ((insn & (0x14 << 21)) == (0x04 << 21))
11011 insn |= 0x02 << 21;
11012 else if ((insn & (0x14 << 21)) == (0x10 << 21))
11013 insn |= 0x08 << 21;
11014 else
11015 break;
11016 }
11017 else
11018 {
11019 /* Invert 'y' bit if not the default. */
11020 if ((bfd_signed_vma) (relocation + addend - from) < 0)
11021 insn ^= 0x01 << 21;
11022 }
11023
11024 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
11025 }
11026
11027 /* NOP out calls to undefined weak functions.
11028 We can thus call a weak function without first
11029 checking whether the function is defined. */
11030 else if (h != NULL
11031 && h->elf.root.type == bfd_link_hash_undefweak
11032 && r_type == R_PPC64_REL24
11033 && relocation == 0
11034 && addend == 0)
11035 {
11036 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
11037 continue;
11038 }
11039 break;
11040 }
11041
11042 /* Set `addend'. */
11043 tls_type = 0;
11044 switch (r_type)
11045 {
11046 default:
11047 (*_bfd_error_handler)
11048 (_("%B: unknown relocation type %d for symbol %s"),
11049 input_bfd, (int) r_type, sym_name);
11050
11051 bfd_set_error (bfd_error_bad_value);
11052 ret = FALSE;
11053 continue;
11054
11055 case R_PPC64_NONE:
11056 case R_PPC64_TLS:
11057 case R_PPC64_TLSGD:
11058 case R_PPC64_TLSLD:
11059 case R_PPC64_GNU_VTINHERIT:
11060 case R_PPC64_GNU_VTENTRY:
11061 continue;
11062
11063 /* GOT16 relocations. Like an ADDR16 using the symbol's
11064 address in the GOT as relocation value instead of the
11065 symbol's value itself. Also, create a GOT entry for the
11066 symbol and put the symbol value there. */
11067 case R_PPC64_GOT_TLSGD16:
11068 case R_PPC64_GOT_TLSGD16_LO:
11069 case R_PPC64_GOT_TLSGD16_HI:
11070 case R_PPC64_GOT_TLSGD16_HA:
11071 tls_type = TLS_TLS | TLS_GD;
11072 goto dogot;
11073
11074 case R_PPC64_GOT_TLSLD16:
11075 case R_PPC64_GOT_TLSLD16_LO:
11076 case R_PPC64_GOT_TLSLD16_HI:
11077 case R_PPC64_GOT_TLSLD16_HA:
11078 tls_type = TLS_TLS | TLS_LD;
11079 goto dogot;
11080
11081 case R_PPC64_GOT_TPREL16_DS:
11082 case R_PPC64_GOT_TPREL16_LO_DS:
11083 case R_PPC64_GOT_TPREL16_HI:
11084 case R_PPC64_GOT_TPREL16_HA:
11085 tls_type = TLS_TLS | TLS_TPREL;
11086 goto dogot;
11087
11088 case R_PPC64_GOT_DTPREL16_DS:
11089 case R_PPC64_GOT_DTPREL16_LO_DS:
11090 case R_PPC64_GOT_DTPREL16_HI:
11091 case R_PPC64_GOT_DTPREL16_HA:
11092 tls_type = TLS_TLS | TLS_DTPREL;
11093 goto dogot;
11094
11095 case R_PPC64_GOT16:
11096 case R_PPC64_GOT16_LO:
11097 case R_PPC64_GOT16_HI:
11098 case R_PPC64_GOT16_HA:
11099 case R_PPC64_GOT16_DS:
11100 case R_PPC64_GOT16_LO_DS:
11101 dogot:
11102 {
11103 /* Relocation is to the entry for this symbol in the global
11104 offset table. */
11105 asection *got;
11106 bfd_vma *offp;
11107 bfd_vma off;
11108 unsigned long indx = 0;
11109
11110 if (tls_type == (TLS_TLS | TLS_LD)
11111 && (h == NULL
11112 || !h->elf.def_dynamic))
11113 offp = &ppc64_tlsld_got (input_bfd)->offset;
11114 else
11115 {
11116 struct got_entry *ent;
11117
11118 if (h != NULL)
11119 {
11120 bfd_boolean dyn = htab->elf.dynamic_sections_created;
11121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
11122 &h->elf)
11123 || (info->shared
11124 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
11125 /* This is actually a static link, or it is a
11126 -Bsymbolic link and the symbol is defined
11127 locally, or the symbol was forced to be local
11128 because of a version file. */
11129 ;
11130 else
11131 {
11132 indx = h->elf.dynindx;
11133 unresolved_reloc = FALSE;
11134 }
11135 ent = h->elf.got.glist;
11136 }
11137 else
11138 {
11139 if (local_got_ents == NULL)
11140 abort ();
11141 ent = local_got_ents[r_symndx];
11142 }
11143
11144 for (; ent != NULL; ent = ent->next)
11145 if (ent->addend == orig_addend
11146 && ent->owner == input_bfd
11147 && ent->tls_type == tls_type)
11148 break;
11149 if (ent == NULL)
11150 abort ();
11151 offp = &ent->got.offset;
11152 }
11153
11154 got = ppc64_elf_tdata (input_bfd)->got;
11155 if (got == NULL)
11156 abort ();
11157
11158 /* The offset must always be a multiple of 8. We use the
11159 least significant bit to record whether we have already
11160 processed this entry. */
11161 off = *offp;
11162 if ((off & 1) != 0)
11163 off &= ~1;
11164 else
11165 {
11166 /* Generate relocs for the dynamic linker, except in
11167 the case of TLSLD where we'll use one entry per
11168 module. */
11169 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
11170
11171 *offp = off | 1;
11172 if ((info->shared || indx != 0)
11173 && (offp == &ppc64_tlsld_got (input_bfd)->offset
11174 || h == NULL
11175 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
11176 || h->elf.root.type != bfd_link_hash_undefweak))
11177 {
11178 outrel.r_offset = (got->output_section->vma
11179 + got->output_offset
11180 + off);
11181 outrel.r_addend = addend;
11182 if (tls_type & (TLS_LD | TLS_GD))
11183 {
11184 outrel.r_addend = 0;
11185 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
11186 if (tls_type == (TLS_TLS | TLS_GD))
11187 {
11188 loc = relgot->contents;
11189 loc += (relgot->reloc_count++
11190 * sizeof (Elf64_External_Rela));
11191 bfd_elf64_swap_reloca_out (output_bfd,
11192 &outrel, loc);
11193 outrel.r_offset += 8;
11194 outrel.r_addend = addend;
11195 outrel.r_info
11196 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
11197 }
11198 }
11199 else if (tls_type == (TLS_TLS | TLS_DTPREL))
11200 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
11201 else if (tls_type == (TLS_TLS | TLS_TPREL))
11202 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
11203 else if (indx == 0)
11204 {
11205 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
11206
11207 /* Write the .got section contents for the sake
11208 of prelink. */
11209 loc = got->contents + off;
11210 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
11211 loc);
11212 }
11213 else
11214 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
11215
11216 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
11217 {
11218 outrel.r_addend += relocation;
11219 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
11220 outrel.r_addend -= htab->elf.tls_sec->vma;
11221 }
11222 loc = relgot->contents;
11223 loc += (relgot->reloc_count++
11224 * sizeof (Elf64_External_Rela));
11225 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
11226 }
11227
11228 /* Init the .got section contents here if we're not
11229 emitting a reloc. */
11230 else
11231 {
11232 relocation += addend;
11233 if (tls_type == (TLS_TLS | TLS_LD))
11234 relocation = 1;
11235 else if (tls_type != 0)
11236 {
11237 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
11238 if (tls_type == (TLS_TLS | TLS_TPREL))
11239 relocation += DTP_OFFSET - TP_OFFSET;
11240
11241 if (tls_type == (TLS_TLS | TLS_GD))
11242 {
11243 bfd_put_64 (output_bfd, relocation,
11244 got->contents + off + 8);
11245 relocation = 1;
11246 }
11247 }
11248
11249 bfd_put_64 (output_bfd, relocation,
11250 got->contents + off);
11251 }
11252 }
11253
11254 if (off >= (bfd_vma) -2)
11255 abort ();
11256
11257 relocation = got->output_offset + off;
11258
11259 /* TOC base (r2) is TOC start plus 0x8000. */
11260 addend = -TOC_BASE_OFF;
11261 }
11262 break;
11263
11264 case R_PPC64_PLT16_HA:
11265 case R_PPC64_PLT16_HI:
11266 case R_PPC64_PLT16_LO:
11267 case R_PPC64_PLT32:
11268 case R_PPC64_PLT64:
11269 /* Relocation is to the entry for this symbol in the
11270 procedure linkage table. */
11271
11272 /* Resolve a PLT reloc against a local symbol directly,
11273 without using the procedure linkage table. */
11274 if (h == NULL)
11275 break;
11276
11277 /* It's possible that we didn't make a PLT entry for this
11278 symbol. This happens when statically linking PIC code,
11279 or when using -Bsymbolic. Go find a match if there is a
11280 PLT entry. */
11281 if (htab->plt != NULL)
11282 {
11283 struct plt_entry *ent;
11284 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
11285 if (ent->addend == orig_addend
11286 && ent->plt.offset != (bfd_vma) -1)
11287 {
11288 relocation = (htab->plt->output_section->vma
11289 + htab->plt->output_offset
11290 + ent->plt.offset);
11291 unresolved_reloc = FALSE;
11292 }
11293 }
11294 break;
11295
11296 case R_PPC64_TOC:
11297 /* Relocation value is TOC base. */
11298 relocation = TOCstart;
11299 if (r_symndx == 0)
11300 relocation += htab->stub_group[input_section->id].toc_off;
11301 else if (unresolved_reloc)
11302 ;
11303 else if (sec != NULL && sec->id <= htab->top_id)
11304 relocation += htab->stub_group[sec->id].toc_off;
11305 else
11306 unresolved_reloc = TRUE;
11307 goto dodyn;
11308
11309 /* TOC16 relocs. We want the offset relative to the TOC base,
11310 which is the address of the start of the TOC plus 0x8000.
11311 The TOC consists of sections .got, .toc, .tocbss, and .plt,
11312 in this order. */
11313 case R_PPC64_TOC16:
11314 case R_PPC64_TOC16_LO:
11315 case R_PPC64_TOC16_HI:
11316 case R_PPC64_TOC16_DS:
11317 case R_PPC64_TOC16_LO_DS:
11318 case R_PPC64_TOC16_HA:
11319 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
11320 break;
11321
11322 /* Relocate against the beginning of the section. */
11323 case R_PPC64_SECTOFF:
11324 case R_PPC64_SECTOFF_LO:
11325 case R_PPC64_SECTOFF_HI:
11326 case R_PPC64_SECTOFF_DS:
11327 case R_PPC64_SECTOFF_LO_DS:
11328 case R_PPC64_SECTOFF_HA:
11329 if (sec != NULL)
11330 addend -= sec->output_section->vma;
11331 break;
11332
11333 case R_PPC64_REL14:
11334 case R_PPC64_REL14_BRNTAKEN:
11335 case R_PPC64_REL14_BRTAKEN:
11336 case R_PPC64_REL24:
11337 break;
11338
11339 case R_PPC64_TPREL16:
11340 case R_PPC64_TPREL16_LO:
11341 case R_PPC64_TPREL16_HI:
11342 case R_PPC64_TPREL16_HA:
11343 case R_PPC64_TPREL16_DS:
11344 case R_PPC64_TPREL16_LO_DS:
11345 case R_PPC64_TPREL16_HIGHER:
11346 case R_PPC64_TPREL16_HIGHERA:
11347 case R_PPC64_TPREL16_HIGHEST:
11348 case R_PPC64_TPREL16_HIGHESTA:
11349 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
11350 if (info->shared)
11351 /* The TPREL16 relocs shouldn't really be used in shared
11352 libs as they will result in DT_TEXTREL being set, but
11353 support them anyway. */
11354 goto dodyn;
11355 break;
11356
11357 case R_PPC64_DTPREL16:
11358 case R_PPC64_DTPREL16_LO:
11359 case R_PPC64_DTPREL16_HI:
11360 case R_PPC64_DTPREL16_HA:
11361 case R_PPC64_DTPREL16_DS:
11362 case R_PPC64_DTPREL16_LO_DS:
11363 case R_PPC64_DTPREL16_HIGHER:
11364 case R_PPC64_DTPREL16_HIGHERA:
11365 case R_PPC64_DTPREL16_HIGHEST:
11366 case R_PPC64_DTPREL16_HIGHESTA:
11367 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
11368 break;
11369
11370 case R_PPC64_DTPMOD64:
11371 relocation = 1;
11372 addend = 0;
11373 goto dodyn;
11374
11375 case R_PPC64_TPREL64:
11376 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
11377 goto dodyn;
11378
11379 case R_PPC64_DTPREL64:
11380 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
11381 /* Fall thru */
11382
11383 /* Relocations that may need to be propagated if this is a
11384 dynamic object. */
11385 case R_PPC64_REL30:
11386 case R_PPC64_REL32:
11387 case R_PPC64_REL64:
11388 case R_PPC64_ADDR14:
11389 case R_PPC64_ADDR14_BRNTAKEN:
11390 case R_PPC64_ADDR14_BRTAKEN:
11391 case R_PPC64_ADDR16:
11392 case R_PPC64_ADDR16_DS:
11393 case R_PPC64_ADDR16_HA:
11394 case R_PPC64_ADDR16_HI:
11395 case R_PPC64_ADDR16_HIGHER:
11396 case R_PPC64_ADDR16_HIGHERA:
11397 case R_PPC64_ADDR16_HIGHEST:
11398 case R_PPC64_ADDR16_HIGHESTA:
11399 case R_PPC64_ADDR16_LO:
11400 case R_PPC64_ADDR16_LO_DS:
11401 case R_PPC64_ADDR24:
11402 case R_PPC64_ADDR32:
11403 case R_PPC64_ADDR64:
11404 case R_PPC64_UADDR16:
11405 case R_PPC64_UADDR32:
11406 case R_PPC64_UADDR64:
11407 dodyn:
11408 if ((input_section->flags & SEC_ALLOC) == 0)
11409 break;
11410
11411 if (NO_OPD_RELOCS && is_opd)
11412 break;
11413
11414 if ((info->shared
11415 && (h == NULL
11416 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
11417 || h->elf.root.type != bfd_link_hash_undefweak)
11418 && (must_be_dyn_reloc (info, r_type)
11419 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
11420 || (ELIMINATE_COPY_RELOCS
11421 && !info->shared
11422 && h != NULL
11423 && h->elf.dynindx != -1
11424 && !h->elf.non_got_ref
11425 && !h->elf.def_regular))
11426 {
11427 Elf_Internal_Rela outrel;
11428 bfd_boolean skip, relocate;
11429 asection *sreloc;
11430 bfd_byte *loc;
11431 bfd_vma out_off;
11432
11433 /* When generating a dynamic object, these relocations
11434 are copied into the output file to be resolved at run
11435 time. */
11436
11437 skip = FALSE;
11438 relocate = FALSE;
11439
11440 out_off = _bfd_elf_section_offset (output_bfd, info,
11441 input_section, rel->r_offset);
11442 if (out_off == (bfd_vma) -1)
11443 skip = TRUE;
11444 else if (out_off == (bfd_vma) -2)
11445 skip = TRUE, relocate = TRUE;
11446 out_off += (input_section->output_section->vma
11447 + input_section->output_offset);
11448 outrel.r_offset = out_off;
11449 outrel.r_addend = rel->r_addend;
11450
11451 /* Optimize unaligned reloc use. */
11452 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
11453 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
11454 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
11455 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
11456 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
11457 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
11458 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
11459 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
11460 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
11461
11462 if (skip)
11463 memset (&outrel, 0, sizeof outrel);
11464 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
11465 && !is_opd
11466 && r_type != R_PPC64_TOC)
11467 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
11468 else
11469 {
11470 /* This symbol is local, or marked to become local,
11471 or this is an opd section reloc which must point
11472 at a local function. */
11473 outrel.r_addend += relocation;
11474 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
11475 {
11476 if (is_opd && h != NULL)
11477 {
11478 /* Lie about opd entries. This case occurs
11479 when building shared libraries and we
11480 reference a function in another shared
11481 lib. The same thing happens for a weak
11482 definition in an application that's
11483 overridden by a strong definition in a
11484 shared lib. (I believe this is a generic
11485 bug in binutils handling of weak syms.)
11486 In these cases we won't use the opd
11487 entry in this lib. */
11488 unresolved_reloc = FALSE;
11489 }
11490 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11491
11492 /* We need to relocate .opd contents for ld.so.
11493 Prelink also wants simple and consistent rules
11494 for relocs. This make all RELATIVE relocs have
11495 *r_offset equal to r_addend. */
11496 relocate = TRUE;
11497 }
11498 else
11499 {
11500 long indx = 0;
11501
11502 if (r_symndx == 0 || bfd_is_abs_section (sec))
11503 ;
11504 else if (sec == NULL || sec->owner == NULL)
11505 {
11506 bfd_set_error (bfd_error_bad_value);
11507 return FALSE;
11508 }
11509 else
11510 {
11511 asection *osec;
11512
11513 osec = sec->output_section;
11514 indx = elf_section_data (osec)->dynindx;
11515
11516 if (indx == 0)
11517 {
11518 if ((osec->flags & SEC_READONLY) == 0
11519 && htab->elf.data_index_section != NULL)
11520 osec = htab->elf.data_index_section;
11521 else
11522 osec = htab->elf.text_index_section;
11523 indx = elf_section_data (osec)->dynindx;
11524 }
11525 BFD_ASSERT (indx != 0);
11526
11527 /* We are turning this relocation into one
11528 against a section symbol, so subtract out
11529 the output section's address but not the
11530 offset of the input section in the output
11531 section. */
11532 outrel.r_addend -= osec->vma;
11533 }
11534
11535 outrel.r_info = ELF64_R_INFO (indx, r_type);
11536 }
11537 }
11538
11539 sreloc = elf_section_data (input_section)->sreloc;
11540 if (sreloc == NULL)
11541 abort ();
11542
11543 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
11544 >= sreloc->size)
11545 abort ();
11546 loc = sreloc->contents;
11547 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
11548 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
11549
11550 /* If this reloc is against an external symbol, it will
11551 be computed at runtime, so there's no need to do
11552 anything now. However, for the sake of prelink ensure
11553 that the section contents are a known value. */
11554 if (! relocate)
11555 {
11556 unresolved_reloc = FALSE;
11557 /* The value chosen here is quite arbitrary as ld.so
11558 ignores section contents except for the special
11559 case of .opd where the contents might be accessed
11560 before relocation. Choose zero, as that won't
11561 cause reloc overflow. */
11562 relocation = 0;
11563 addend = 0;
11564 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
11565 to improve backward compatibility with older
11566 versions of ld. */
11567 if (r_type == R_PPC64_ADDR64)
11568 addend = outrel.r_addend;
11569 /* Adjust pc_relative relocs to have zero in *r_offset. */
11570 else if (ppc64_elf_howto_table[r_type]->pc_relative)
11571 addend = (input_section->output_section->vma
11572 + input_section->output_offset
11573 + rel->r_offset);
11574 }
11575 }
11576 break;
11577
11578 case R_PPC64_COPY:
11579 case R_PPC64_GLOB_DAT:
11580 case R_PPC64_JMP_SLOT:
11581 case R_PPC64_RELATIVE:
11582 /* We shouldn't ever see these dynamic relocs in relocatable
11583 files. */
11584 /* Fall through. */
11585
11586 case R_PPC64_PLTGOT16:
11587 case R_PPC64_PLTGOT16_DS:
11588 case R_PPC64_PLTGOT16_HA:
11589 case R_PPC64_PLTGOT16_HI:
11590 case R_PPC64_PLTGOT16_LO:
11591 case R_PPC64_PLTGOT16_LO_DS:
11592 case R_PPC64_PLTREL32:
11593 case R_PPC64_PLTREL64:
11594 /* These ones haven't been implemented yet. */
11595
11596 (*_bfd_error_handler)
11597 (_("%B: relocation %s is not supported for symbol %s."),
11598 input_bfd,
11599 ppc64_elf_howto_table[r_type]->name, sym_name);
11600
11601 bfd_set_error (bfd_error_invalid_operation);
11602 ret = FALSE;
11603 continue;
11604 }
11605
11606 /* Do any further special processing. */
11607 switch (r_type)
11608 {
11609 default:
11610 break;
11611
11612 case R_PPC64_ADDR16_HA:
11613 case R_PPC64_ADDR16_HIGHERA:
11614 case R_PPC64_ADDR16_HIGHESTA:
11615 case R_PPC64_TOC16_HA:
11616 case R_PPC64_SECTOFF_HA:
11617 case R_PPC64_TPREL16_HA:
11618 case R_PPC64_DTPREL16_HA:
11619 case R_PPC64_TPREL16_HIGHER:
11620 case R_PPC64_TPREL16_HIGHERA:
11621 case R_PPC64_TPREL16_HIGHEST:
11622 case R_PPC64_TPREL16_HIGHESTA:
11623 case R_PPC64_DTPREL16_HIGHER:
11624 case R_PPC64_DTPREL16_HIGHERA:
11625 case R_PPC64_DTPREL16_HIGHEST:
11626 case R_PPC64_DTPREL16_HIGHESTA:
11627 /* It's just possible that this symbol is a weak symbol
11628 that's not actually defined anywhere. In that case,
11629 'sec' would be NULL, and we should leave the symbol
11630 alone (it will be set to zero elsewhere in the link). */
11631 if (sec == NULL)
11632 break;
11633 /* Fall thru */
11634
11635 case R_PPC64_GOT16_HA:
11636 case R_PPC64_PLTGOT16_HA:
11637 case R_PPC64_PLT16_HA:
11638 case R_PPC64_GOT_TLSGD16_HA:
11639 case R_PPC64_GOT_TLSLD16_HA:
11640 case R_PPC64_GOT_TPREL16_HA:
11641 case R_PPC64_GOT_DTPREL16_HA:
11642 /* Add 0x10000 if sign bit in 0:15 is set.
11643 Bits 0:15 are not used. */
11644 addend += 0x8000;
11645 break;
11646
11647 case R_PPC64_ADDR16_DS:
11648 case R_PPC64_ADDR16_LO_DS:
11649 case R_PPC64_GOT16_DS:
11650 case R_PPC64_GOT16_LO_DS:
11651 case R_PPC64_PLT16_LO_DS:
11652 case R_PPC64_SECTOFF_DS:
11653 case R_PPC64_SECTOFF_LO_DS:
11654 case R_PPC64_TOC16_DS:
11655 case R_PPC64_TOC16_LO_DS:
11656 case R_PPC64_PLTGOT16_DS:
11657 case R_PPC64_PLTGOT16_LO_DS:
11658 case R_PPC64_GOT_TPREL16_DS:
11659 case R_PPC64_GOT_TPREL16_LO_DS:
11660 case R_PPC64_GOT_DTPREL16_DS:
11661 case R_PPC64_GOT_DTPREL16_LO_DS:
11662 case R_PPC64_TPREL16_DS:
11663 case R_PPC64_TPREL16_LO_DS:
11664 case R_PPC64_DTPREL16_DS:
11665 case R_PPC64_DTPREL16_LO_DS:
11666 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
11667 mask = 3;
11668 /* If this reloc is against an lq insn, then the value must be
11669 a multiple of 16. This is somewhat of a hack, but the
11670 "correct" way to do this by defining _DQ forms of all the
11671 _DS relocs bloats all reloc switches in this file. It
11672 doesn't seem to make much sense to use any of these relocs
11673 in data, so testing the insn should be safe. */
11674 if ((insn & (0x3f << 26)) == (56u << 26))
11675 mask = 15;
11676 if (((relocation + addend) & mask) != 0)
11677 {
11678 (*_bfd_error_handler)
11679 (_("%B: error: relocation %s not a multiple of %d"),
11680 input_bfd,
11681 ppc64_elf_howto_table[r_type]->name,
11682 mask + 1);
11683 bfd_set_error (bfd_error_bad_value);
11684 ret = FALSE;
11685 continue;
11686 }
11687 break;
11688 }
11689
11690 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11691 because such sections are not SEC_ALLOC and thus ld.so will
11692 not process them. */
11693 if (unresolved_reloc
11694 && !((input_section->flags & SEC_DEBUGGING) != 0
11695 && h->elf.def_dynamic))
11696 {
11697 (*_bfd_error_handler)
11698 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11699 input_bfd,
11700 input_section,
11701 (long) rel->r_offset,
11702 ppc64_elf_howto_table[(int) r_type]->name,
11703 h->elf.root.root.string);
11704 ret = FALSE;
11705 }
11706
11707 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
11708 input_bfd,
11709 input_section,
11710 contents,
11711 rel->r_offset,
11712 relocation,
11713 addend);
11714
11715 if (r != bfd_reloc_ok)
11716 {
11717 if (sym_name == NULL)
11718 sym_name = "(null)";
11719 if (r == bfd_reloc_overflow)
11720 {
11721 if (warned)
11722 continue;
11723 if (h != NULL
11724 && h->elf.root.type == bfd_link_hash_undefweak
11725 && ppc64_elf_howto_table[r_type]->pc_relative)
11726 {
11727 /* Assume this is a call protected by other code that
11728 detects the symbol is undefined. If this is the case,
11729 we can safely ignore the overflow. If not, the
11730 program is hosed anyway, and a little warning isn't
11731 going to help. */
11732
11733 continue;
11734 }
11735
11736 if (!((*info->callbacks->reloc_overflow)
11737 (info, (h ? &h->elf.root : NULL), sym_name,
11738 ppc64_elf_howto_table[r_type]->name,
11739 orig_addend, input_bfd, input_section, rel->r_offset)))
11740 return FALSE;
11741 }
11742 else
11743 {
11744 (*_bfd_error_handler)
11745 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
11746 input_bfd,
11747 input_section,
11748 (long) rel->r_offset,
11749 ppc64_elf_howto_table[r_type]->name,
11750 sym_name,
11751 (int) r);
11752 ret = FALSE;
11753 }
11754 }
11755 }
11756
11757 /* If we're emitting relocations, then shortly after this function
11758 returns, reloc offsets and addends for this section will be
11759 adjusted. Worse, reloc symbol indices will be for the output
11760 file rather than the input. Save a copy of the relocs for
11761 opd_entry_value. */
11762 if (is_opd && (info->emitrelocations || info->relocatable))
11763 {
11764 bfd_size_type amt;
11765 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
11766 rel = bfd_alloc (input_bfd, amt);
11767 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
11768 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
11769 if (rel == NULL)
11770 return FALSE;
11771 memcpy (rel, relocs, amt);
11772 }
11773 return ret;
11774 }
11775
11776 /* Adjust the value of any local symbols in opd sections. */
11777
11778 static int
11779 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
11780 const char *name ATTRIBUTE_UNUSED,
11781 Elf_Internal_Sym *elfsym,
11782 asection *input_sec,
11783 struct elf_link_hash_entry *h)
11784 {
11785 struct _opd_sec_data *opd;
11786 long adjust;
11787 bfd_vma value;
11788
11789 if (h != NULL)
11790 return 1;
11791
11792 opd = get_opd_info (input_sec);
11793 if (opd == NULL || opd->adjust == NULL)
11794 return 1;
11795
11796 value = elfsym->st_value - input_sec->output_offset;
11797 if (!info->relocatable)
11798 value -= input_sec->output_section->vma;
11799
11800 adjust = opd->adjust[value / 8];
11801 if (adjust == -1)
11802 return 2;
11803
11804 elfsym->st_value += adjust;
11805 return 1;
11806 }
11807
11808 /* Finish up dynamic symbol handling. We set the contents of various
11809 dynamic sections here. */
11810
11811 static bfd_boolean
11812 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
11813 struct bfd_link_info *info,
11814 struct elf_link_hash_entry *h,
11815 Elf_Internal_Sym *sym)
11816 {
11817 struct ppc_link_hash_table *htab;
11818 struct plt_entry *ent;
11819 Elf_Internal_Rela rela;
11820 bfd_byte *loc;
11821
11822 htab = ppc_hash_table (info);
11823
11824 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
11825 if (ent->plt.offset != (bfd_vma) -1)
11826 {
11827 /* This symbol has an entry in the procedure linkage
11828 table. Set it up. */
11829
11830 if (htab->plt == NULL
11831 || htab->relplt == NULL
11832 || htab->glink == NULL)
11833 abort ();
11834
11835 /* Create a JMP_SLOT reloc to inform the dynamic linker to
11836 fill in the PLT entry. */
11837 rela.r_offset = (htab->plt->output_section->vma
11838 + htab->plt->output_offset
11839 + ent->plt.offset);
11840 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
11841 rela.r_addend = ent->addend;
11842
11843 loc = htab->relplt->contents;
11844 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
11845 * sizeof (Elf64_External_Rela));
11846 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11847 }
11848
11849 if (h->needs_copy)
11850 {
11851 Elf_Internal_Rela rela;
11852 bfd_byte *loc;
11853
11854 /* This symbol needs a copy reloc. Set it up. */
11855
11856 if (h->dynindx == -1
11857 || (h->root.type != bfd_link_hash_defined
11858 && h->root.type != bfd_link_hash_defweak)
11859 || htab->relbss == NULL)
11860 abort ();
11861
11862 rela.r_offset = (h->root.u.def.value
11863 + h->root.u.def.section->output_section->vma
11864 + h->root.u.def.section->output_offset);
11865 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
11866 rela.r_addend = 0;
11867 loc = htab->relbss->contents;
11868 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
11869 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11870 }
11871
11872 /* Mark some specially defined symbols as absolute. */
11873 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
11874 sym->st_shndx = SHN_ABS;
11875
11876 return TRUE;
11877 }
11878
11879 /* Used to decide how to sort relocs in an optimal manner for the
11880 dynamic linker, before writing them out. */
11881
11882 static enum elf_reloc_type_class
11883 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
11884 {
11885 enum elf_ppc64_reloc_type r_type;
11886
11887 r_type = ELF64_R_TYPE (rela->r_info);
11888 switch (r_type)
11889 {
11890 case R_PPC64_RELATIVE:
11891 return reloc_class_relative;
11892 case R_PPC64_JMP_SLOT:
11893 return reloc_class_plt;
11894 case R_PPC64_COPY:
11895 return reloc_class_copy;
11896 default:
11897 return reloc_class_normal;
11898 }
11899 }
11900
11901 /* Finish up the dynamic sections. */
11902
11903 static bfd_boolean
11904 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
11905 struct bfd_link_info *info)
11906 {
11907 struct ppc_link_hash_table *htab;
11908 bfd *dynobj;
11909 asection *sdyn;
11910
11911 htab = ppc_hash_table (info);
11912 dynobj = htab->elf.dynobj;
11913 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11914
11915 if (htab->elf.dynamic_sections_created)
11916 {
11917 Elf64_External_Dyn *dyncon, *dynconend;
11918
11919 if (sdyn == NULL || htab->got == NULL)
11920 abort ();
11921
11922 dyncon = (Elf64_External_Dyn *) sdyn->contents;
11923 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
11924 for (; dyncon < dynconend; dyncon++)
11925 {
11926 Elf_Internal_Dyn dyn;
11927 asection *s;
11928
11929 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11930
11931 switch (dyn.d_tag)
11932 {
11933 default:
11934 continue;
11935
11936 case DT_PPC64_GLINK:
11937 s = htab->glink;
11938 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11939 /* We stupidly defined DT_PPC64_GLINK to be the start
11940 of glink rather than the first entry point, which is
11941 what ld.so needs, and now have a bigger stub to
11942 support automatic multiple TOCs. */
11943 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11944 break;
11945
11946 case DT_PPC64_OPD:
11947 s = bfd_get_section_by_name (output_bfd, ".opd");
11948 if (s == NULL)
11949 continue;
11950 dyn.d_un.d_ptr = s->vma;
11951 break;
11952
11953 case DT_PPC64_OPDSZ:
11954 s = bfd_get_section_by_name (output_bfd, ".opd");
11955 if (s == NULL)
11956 continue;
11957 dyn.d_un.d_val = s->size;
11958 break;
11959
11960 case DT_PLTGOT:
11961 s = htab->plt;
11962 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11963 break;
11964
11965 case DT_JMPREL:
11966 s = htab->relplt;
11967 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11968 break;
11969
11970 case DT_PLTRELSZ:
11971 dyn.d_un.d_val = htab->relplt->size;
11972 break;
11973
11974 case DT_RELASZ:
11975 /* Don't count procedure linkage table relocs in the
11976 overall reloc count. */
11977 s = htab->relplt;
11978 if (s == NULL)
11979 continue;
11980 dyn.d_un.d_val -= s->size;
11981 break;
11982
11983 case DT_RELA:
11984 /* We may not be using the standard ELF linker script.
11985 If .rela.plt is the first .rela section, we adjust
11986 DT_RELA to not include it. */
11987 s = htab->relplt;
11988 if (s == NULL)
11989 continue;
11990 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11991 continue;
11992 dyn.d_un.d_ptr += s->size;
11993 break;
11994 }
11995
11996 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11997 }
11998 }
11999
12000 if (htab->got != NULL && htab->got->size != 0)
12001 {
12002 /* Fill in the first entry in the global offset table.
12003 We use it to hold the link-time TOCbase. */
12004 bfd_put_64 (output_bfd,
12005 elf_gp (output_bfd) + TOC_BASE_OFF,
12006 htab->got->contents);
12007
12008 /* Set .got entry size. */
12009 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
12010 }
12011
12012 if (htab->plt != NULL && htab->plt->size != 0)
12013 {
12014 /* Set .plt entry size. */
12015 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
12016 = PLT_ENTRY_SIZE;
12017 }
12018
12019 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
12020 brlt ourselves if emitrelocations. */
12021 if (htab->brlt != NULL
12022 && htab->brlt->reloc_count != 0
12023 && !_bfd_elf_link_output_relocs (output_bfd,
12024 htab->brlt,
12025 &elf_section_data (htab->brlt)->rel_hdr,
12026 elf_section_data (htab->brlt)->relocs,
12027 NULL))
12028 return FALSE;
12029
12030 if (htab->glink != NULL
12031 && htab->glink->reloc_count != 0
12032 && !_bfd_elf_link_output_relocs (output_bfd,
12033 htab->glink,
12034 &elf_section_data (htab->glink)->rel_hdr,
12035 elf_section_data (htab->glink)->relocs,
12036 NULL))
12037 return FALSE;
12038
12039 /* We need to handle writing out multiple GOT sections ourselves,
12040 since we didn't add them to DYNOBJ. We know dynobj is the first
12041 bfd. */
12042 while ((dynobj = dynobj->link_next) != NULL)
12043 {
12044 asection *s;
12045
12046 if (!is_ppc64_elf (dynobj))
12047 continue;
12048
12049 s = ppc64_elf_tdata (dynobj)->got;
12050 if (s != NULL
12051 && s->size != 0
12052 && s->output_section != bfd_abs_section_ptr
12053 && !bfd_set_section_contents (output_bfd, s->output_section,
12054 s->contents, s->output_offset,
12055 s->size))
12056 return FALSE;
12057 s = ppc64_elf_tdata (dynobj)->relgot;
12058 if (s != NULL
12059 && s->size != 0
12060 && s->output_section != bfd_abs_section_ptr
12061 && !bfd_set_section_contents (output_bfd, s->output_section,
12062 s->contents, s->output_offset,
12063 s->size))
12064 return FALSE;
12065 }
12066
12067 return TRUE;
12068 }
12069
12070 #include "elf64-target.h"
This page took 0.305481 seconds and 4 git commands to generate.