aarch64: Add base support for Armv8-R
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
39 #define OCTETS_PER_BYTE(ABFD, SEC) 1
40
41 static bfd_reloc_status_type ppc64_elf_ha_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_branch_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_toc64_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_reloc_status_type ppc64_elf_prefix_reloc
58 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
59 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
60 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
61 static bfd_vma opd_entry_value
62 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
63
64 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
65 #define TARGET_LITTLE_NAME "elf64-powerpcle"
66 #define TARGET_BIG_SYM powerpc_elf64_vec
67 #define TARGET_BIG_NAME "elf64-powerpc"
68 #define ELF_ARCH bfd_arch_powerpc
69 #define ELF_TARGET_ID PPC64_ELF_DATA
70 #define ELF_MACHINE_CODE EM_PPC64
71 #define ELF_MAXPAGESIZE 0x10000
72 #define ELF_COMMONPAGESIZE 0x1000
73 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
74 #define elf_info_to_howto ppc64_elf_info_to_howto
75
76 #define elf_backend_want_got_sym 0
77 #define elf_backend_want_plt_sym 0
78 #define elf_backend_plt_alignment 3
79 #define elf_backend_plt_not_loaded 1
80 #define elf_backend_got_header_size 8
81 #define elf_backend_want_dynrelro 1
82 #define elf_backend_can_gc_sections 1
83 #define elf_backend_can_refcount 1
84 #define elf_backend_rela_normal 1
85 #define elf_backend_dtrel_excludes_plt 1
86 #define elf_backend_default_execstack 0
87
88 #define bfd_elf64_mkobject ppc64_elf_mkobject
89 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
90 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
91 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
92 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
93 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
94 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
95 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
96 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
97 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
98
99 #define elf_backend_object_p ppc64_elf_object_p
100 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
101 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
102 #define elf_backend_write_core_note ppc64_elf_write_core_note
103 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
104 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
105 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
106 #define elf_backend_check_directives ppc64_elf_before_check_relocs
107 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
108 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
109 #define elf_backend_check_relocs ppc64_elf_check_relocs
110 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
111 #define elf_backend_gc_keep ppc64_elf_gc_keep
112 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
113 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
114 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
115 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
116 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
117 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
118 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
119 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
120 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
121 #define elf_backend_action_discarded ppc64_elf_action_discarded
122 #define elf_backend_relocate_section ppc64_elf_relocate_section
123 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
124 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
125 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
126 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
127 #define elf_backend_special_sections ppc64_elf_special_sections
128 #define elf_backend_section_flags ppc64_elf_section_flags
129 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
130 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
131 #define elf_backend_get_reloc_section bfd_get_section_by_name
132
133 /* The name of the dynamic interpreter. This is put in the .interp
134 section. */
135 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
136
137 /* The size in bytes of an entry in the procedure linkage table. */
138 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
139 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
140
141 /* The initial size of the plt reserved for the dynamic linker. */
142 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
143
144 /* Offsets to some stack save slots. */
145 #define STK_LR 16
146 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
147 /* This one is dodgy. ELFv2 does not have a linker word, so use the
148 CR save slot. Used only by optimised __tls_get_addr call stub,
149 relying on __tls_get_addr_opt not saving CR.. */
150 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
151
152 /* TOC base pointers offset from start of TOC. */
153 #define TOC_BASE_OFF 0x8000
154 /* TOC base alignment. */
155 #define TOC_BASE_ALIGN 256
156
157 /* Offset of tp and dtp pointers from start of TLS block. */
158 #define TP_OFFSET 0x7000
159 #define DTP_OFFSET 0x8000
160
161 /* .plt call stub instructions. The normal stub is like this, but
162 sometimes the .plt entry crosses a 64k boundary and we need to
163 insert an addi to adjust r11. */
164 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
165 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
166 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
167 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
168 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
169 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
170 #define BCTR 0x4e800420 /* bctr */
171
172 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
173 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
174 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
175 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
176 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
177
178 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
179 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
180 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
181 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
182 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
183 #define BNECTR 0x4ca20420 /* bnectr+ */
184 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
185
186 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
187 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
188 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
189
190 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
191 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
192 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
193
194 #define LI_R11_0 0x39600000 /* li %r11,0 */
195 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
196 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
197 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
198 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
199 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
200 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
201 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
202 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
203 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
204 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
205 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
206 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
207 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
208 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
209 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
210 #define PADDI_R12_PC 0x0610000039800000ULL
211 #define PLD_R12_PC 0x04100000e5800000ULL
212 #define PNOP 0x0700000000000000ULL
213
214 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
215 #define GLINK_PLTRESOLVE_SIZE(htab) \
216 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
217 /* 0: */
218 /* .quad plt0-1f */
219 /* __glink: */
220 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
221 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
222 /* 1: */
223 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
224 /* ld %2,(0b-1b)(%11) */
225 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
226 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
227 /* ld %12,0(%11) */
228 /* ld %2,8(%11) */
229 /* mtctr %12 */
230 /* ld %11,16(%11) */
231 /* bctr */
232 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
233 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
234 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
235 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
236 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
237
238 /* Pad with this. */
239 #define NOP 0x60000000
240
241 /* Some other nops. */
242 #define CROR_151515 0x4def7b82
243 #define CROR_313131 0x4ffffb82
244
245 /* .glink entries for the first 32k functions are two instructions. */
246 #define LI_R0_0 0x38000000 /* li %r0,0 */
247 #define B_DOT 0x48000000 /* b . */
248
249 /* After that, we need two instructions to load the index, followed by
250 a branch. */
251 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
252 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
253
254 /* Instructions used by the save and restore reg functions. */
255 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
256 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
257 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
258 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
259 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
260 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
261 #define LI_R12_0 0x39800000 /* li %r12,0 */
262 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
263 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
264 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
265 #define BLR 0x4e800020 /* blr */
266
267 /* Since .opd is an array of descriptors and each entry will end up
268 with identical R_PPC64_RELATIVE relocs, there is really no need to
269 propagate .opd relocs; The dynamic linker should be taught to
270 relocate .opd without reloc entries. */
271 #ifndef NO_OPD_RELOCS
272 #define NO_OPD_RELOCS 0
273 #endif
274
275 #ifndef ARRAY_SIZE
276 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
277 #endif
278
279 static inline int
280 abiversion (bfd *abfd)
281 {
282 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
283 }
284
285 static inline void
286 set_abiversion (bfd *abfd, int ver)
287 {
288 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
289 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
290 }
291 \f
292 /* Relocation HOWTO's. */
293 /* Like other ELF RELA targets that don't apply multiple
294 field-altering relocations to the same localation, src_mask is
295 always zero and pcrel_offset is the same as pc_relative.
296 PowerPC can always use a zero bitpos, even when the field is not at
297 the LSB. For example, a REL24 could use rightshift=2, bisize=24
298 and bitpos=2 which matches the ABI description, or as we do here,
299 rightshift=0, bitsize=26 and bitpos=0. */
300 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
301 complain, special_func) \
302 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
303 complain_overflow_ ## complain, special_func, \
304 #type, FALSE, 0, mask, pc_relative)
305
306 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
307
308 static reloc_howto_type ppc64_elf_howto_raw[] =
309 {
310 /* This reloc does nothing. */
311 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
312 bfd_elf_generic_reloc),
313
314 /* A standard 32 bit relocation. */
315 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
316 bfd_elf_generic_reloc),
317
318 /* An absolute 26 bit branch; the lower two bits must be zero.
319 FIXME: we don't check that, we just clear them. */
320 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A standard 16 bit relocation. */
324 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
325 bfd_elf_generic_reloc),
326
327 /* A 16 bit relocation without overflow. */
328 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address. */
332 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
333 bfd_elf_generic_reloc),
334
335 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
336 bits, treated as a signed number, is negative. */
337 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
338 ppc64_elf_ha_reloc),
339
340 /* An absolute 16 bit branch; the lower two bits must be zero.
341 FIXME: we don't check that, we just clear them. */
342 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
343 ppc64_elf_branch_reloc),
344
345 /* An absolute 16 bit branch, for which bit 10 should be set to
346 indicate that the branch is expected to be taken. The lower two
347 bits must be zero. */
348 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
349 ppc64_elf_brtaken_reloc),
350
351 /* An absolute 16 bit branch, for which bit 10 should be set to
352 indicate that the branch is not expected to be taken. The lower
353 two bits must be zero. */
354 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
355 ppc64_elf_brtaken_reloc),
356
357 /* A relative 26 bit branch; the lower two bits must be zero. */
358 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
362 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch; the lower two bits must be zero. */
366 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
367 ppc64_elf_branch_reloc),
368
369 /* A relative 16 bit branch. Bit 10 should be set to indicate that
370 the branch is expected to be taken. The lower two bits must be
371 zero. */
372 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
373 ppc64_elf_brtaken_reloc),
374
375 /* A relative 16 bit branch. Bit 10 should be set to indicate that
376 the branch is not expected to be taken. The lower two bits must
377 be zero. */
378 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
379 ppc64_elf_brtaken_reloc),
380
381 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
382 symbol. */
383 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
384 ppc64_elf_unhandled_reloc),
385
386 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
387 the symbol. */
388 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
389 ppc64_elf_unhandled_reloc),
390
391 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
392 the symbol. */
393 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
394 ppc64_elf_unhandled_reloc),
395
396 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
397 the symbol. */
398 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
399 ppc64_elf_unhandled_reloc),
400
401 /* This is used only by the dynamic linker. The symbol should exist
402 both in the object being run and in some shared library. The
403 dynamic linker copies the data addressed by the symbol from the
404 shared library into the object, because the object being
405 run has to have the data at some particular address. */
406 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
407 ppc64_elf_unhandled_reloc),
408
409 /* Like R_PPC64_ADDR64, but used when setting global offset table
410 entries. */
411 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
412 ppc64_elf_unhandled_reloc),
413
414 /* Created by the link editor. Marks a procedure linkage table
415 entry for a symbol. */
416 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
417 ppc64_elf_unhandled_reloc),
418
419 /* Used only by the dynamic linker. When the object is run, this
420 doubleword64 is set to the load address of the object, plus the
421 addend. */
422 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR32, but may be unaligned. */
426 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* Like R_PPC64_ADDR16, but may be unaligned. */
430 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit PC relative. */
434 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
435 bfd_elf_generic_reloc),
436
437 /* 32-bit relocation to the symbol's procedure linkage table. */
438 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
439 ppc64_elf_unhandled_reloc),
440
441 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
442 FIXME: R_PPC64_PLTREL32 not supported. */
443 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
444 ppc64_elf_unhandled_reloc),
445
446 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
447 the symbol. */
448 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
449 ppc64_elf_unhandled_reloc),
450
451 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
452 the symbol. */
453 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
454 ppc64_elf_unhandled_reloc),
455
456 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
457 the symbol. */
458 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
459 ppc64_elf_unhandled_reloc),
460
461 /* 16-bit section relative relocation. */
462 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
463 ppc64_elf_sectoff_reloc),
464
465 /* Like R_PPC64_SECTOFF, but no overflow warning. */
466 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_reloc),
472
473 /* 16-bit upper half adjusted section relative relocation. */
474 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
475 ppc64_elf_sectoff_ha_reloc),
476
477 /* Like R_PPC64_REL24 without touching the two least significant bits. */
478 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
479 bfd_elf_generic_reloc),
480
481 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
482
483 /* A standard 64-bit relocation. */
484 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address. */
488 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
489 bfd_elf_generic_reloc),
490
491 /* The bits 32-47 of an address, plus 1 if the contents of the low
492 16 bits, treated as a signed number, is negative. */
493 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
494 ppc64_elf_ha_reloc),
495
496 /* The bits 48-63 of an address. */
497 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
498 bfd_elf_generic_reloc),
499
500 /* The bits 48-63 of an address, plus 1 if the contents of the low
501 16 bits, treated as a signed number, is negative. */
502 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
503 ppc64_elf_ha_reloc),
504
505 /* Like ADDR64, but may be unaligned. */
506 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relative relocation. */
510 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
511 bfd_elf_generic_reloc),
512
513 /* 64-bit relocation to the symbol's procedure linkage table. */
514 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
515 ppc64_elf_unhandled_reloc),
516
517 /* 64-bit PC relative relocation to the symbol's procedure linkage
518 table. */
519 /* FIXME: R_PPC64_PLTREL64 not supported. */
520 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
521 ppc64_elf_unhandled_reloc),
522
523 /* 16 bit TOC-relative relocation. */
524 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
525 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
526 ppc64_elf_toc_reloc),
527
528 /* 16 bit TOC-relative relocation without overflow. */
529 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
530 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
531 ppc64_elf_toc_reloc),
532
533 /* 16 bit TOC-relative relocation, high 16 bits. */
534 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
535 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
536 ppc64_elf_toc_reloc),
537
538 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
539 contents of the low 16 bits, treated as a signed number, is
540 negative. */
541 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
542 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
543 ppc64_elf_toc_ha_reloc),
544
545 /* 64-bit relocation; insert value of TOC base (.TOC.). */
546 /* R_PPC64_TOC 51 doubleword64 .TOC. */
547 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
548 ppc64_elf_toc64_reloc),
549
550 /* Like R_PPC64_GOT16, but also informs the link editor that the
551 value to relocate may (!) refer to a PLT entry which the link
552 editor (a) may replace with the symbol value. If the link editor
553 is unable to fully resolve the symbol, it may (b) create a PLT
554 entry and store the address to the new PLT entry in the GOT.
555 This permits lazy resolution of function symbols at run time.
556 The link editor may also skip all of this and just (c) emit a
557 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
558 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
559 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
560 ppc64_elf_unhandled_reloc),
561
562 /* Like R_PPC64_PLTGOT16, but without overflow. */
563 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
564 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
565 ppc64_elf_unhandled_reloc),
566
567 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
568 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
569 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
570 ppc64_elf_unhandled_reloc),
571
572 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
573 1 if the contents of the low 16 bits, treated as a signed number,
574 is negative. */
575 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
576 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
577 ppc64_elf_unhandled_reloc),
578
579 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
584 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
585 bfd_elf_generic_reloc),
586
587 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
596 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
597 ppc64_elf_unhandled_reloc),
598
599 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
604 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
605 ppc64_elf_sectoff_reloc),
606
607 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
612 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
613 ppc64_elf_toc_reloc),
614
615 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
616 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
617 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
618 ppc64_elf_unhandled_reloc),
619
620 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
621 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
622 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
623 ppc64_elf_unhandled_reloc),
624
625 /* Marker relocs for TLS. */
626 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
627 bfd_elf_generic_reloc),
628
629 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
630 bfd_elf_generic_reloc),
631
632 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
633 bfd_elf_generic_reloc),
634
635 /* Marker reloc for optimizing r2 save in prologue rather than on
636 each plt call stub. */
637 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 /* Marker relocs on inline plt call instructions. */
641 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
642 bfd_elf_generic_reloc),
643
644 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
645 bfd_elf_generic_reloc),
646
647 /* Computes the load module index of the load module that contains the
648 definition of its TLS sym. */
649 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
650 ppc64_elf_unhandled_reloc),
651
652 /* Computes a dtv-relative displacement, the difference between the value
653 of sym+add and the base address of the thread-local storage block that
654 contains the definition of sym, minus 0x8000. */
655 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
656 ppc64_elf_unhandled_reloc),
657
658 /* A 16 bit dtprel reloc. */
659 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16, but no overflow. */
663 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_LO, but next higher group of 16 bits. */
667 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but adjust for low 16 bits. */
671 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HI, but next higher group of 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
687 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16, but for insns with a DS field. */
691 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
692 ppc64_elf_unhandled_reloc),
693
694 /* Like DTPREL16_DS, but no overflow. */
695 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
696 ppc64_elf_unhandled_reloc),
697
698 /* Computes a tp-relative displacement, the difference between the value of
699 sym+add and the value of the thread pointer (r13). */
700 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
701 ppc64_elf_unhandled_reloc),
702
703 /* A 16 bit tprel reloc. */
704 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16, but no overflow. */
708 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_LO, but next higher group of 16 bits. */
712 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but adjust for low 16 bits. */
716 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HI, but next higher group of 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
732 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16, but for insns with a DS field. */
736 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
737 ppc64_elf_unhandled_reloc),
738
739 /* Like TPREL16_DS, but no overflow. */
740 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
741 ppc64_elf_unhandled_reloc),
742
743 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
744 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
745 to the first entry relative to the TOC base (r2). */
746 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16, but no overflow. */
750 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
758 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
759 ppc64_elf_unhandled_reloc),
760
761 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
762 with values (sym+add)@dtpmod and zero, and computes the offset to the
763 first entry relative to the TOC base (r2). */
764 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16, but no overflow. */
768 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
776 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
777 ppc64_elf_unhandled_reloc),
778
779 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
780 the offset to the entry relative to the TOC base (r2). */
781 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_DS, but no overflow. */
785 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
793 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
794 ppc64_elf_unhandled_reloc),
795
796 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
797 offset to the entry relative to the TOC base (r2). */
798 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_DS, but no overflow. */
802 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
810 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
811 ppc64_elf_unhandled_reloc),
812
813 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
814 ppc64_elf_unhandled_reloc),
815
816 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation. */
820 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
821 bfd_elf_generic_reloc),
822
823 /* A 16 bit relative relocation without overflow. */
824 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address. */
828 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
829 bfd_elf_generic_reloc),
830
831 /* The high order 16 bits of a relative address, plus 1 if the contents of
832 the low 16 bits, treated as a signed number, is negative. */
833 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
834 ppc64_elf_ha_reloc),
835
836 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
837 bfd_elf_generic_reloc),
838
839 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
840 ppc64_elf_ha_reloc),
841
842 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
843 bfd_elf_generic_reloc),
844
845 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
846 ppc64_elf_ha_reloc),
847
848 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
849 bfd_elf_generic_reloc),
850
851 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
852 ppc64_elf_ha_reloc),
853
854 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
855 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
859 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
860 ppc64_elf_ha_reloc),
861
862 /* Like R_PPC64_ADDR16_HI, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
864 bfd_elf_generic_reloc),
865
866 /* Like R_PPC64_ADDR16_HA, but no overflow. */
867 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_ha_reloc),
869
870 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
875 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HI, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Like R_PPC64_TPREL16_HA, but no overflow. */
883 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
884 ppc64_elf_unhandled_reloc),
885
886 /* Marker reloc on ELFv2 large-model function entry. */
887 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 /* Like ADDR64, but use local entry point of function. */
891 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
892 bfd_elf_generic_reloc),
893
894 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
895 bfd_elf_generic_reloc),
896
897 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
898 bfd_elf_generic_reloc),
899
900 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
901 bfd_elf_generic_reloc),
902
903 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
904 ppc64_elf_prefix_reloc),
905
906 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
907 ppc64_elf_prefix_reloc),
908
909 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
910 ppc64_elf_prefix_reloc),
911
912 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
913 ppc64_elf_prefix_reloc),
914
915 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
916 ppc64_elf_prefix_reloc),
917
918 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
919 ppc64_elf_unhandled_reloc),
920
921 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
922 ppc64_elf_unhandled_reloc),
923
924 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
925 ppc64_elf_unhandled_reloc),
926
927 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
928 ppc64_elf_unhandled_reloc),
929
930 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
931 ppc64_elf_unhandled_reloc),
932
933 HOW (R_PPC64_GOT_TLSGD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
934 ppc64_elf_unhandled_reloc),
935
936 HOW (R_PPC64_GOT_TLSLD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
937 ppc64_elf_unhandled_reloc),
938
939 HOW (R_PPC64_GOT_TPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
940 ppc64_elf_unhandled_reloc),
941
942 HOW (R_PPC64_GOT_DTPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
943 ppc64_elf_unhandled_reloc),
944
945 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
946 bfd_elf_generic_reloc),
947
948 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
949 ppc64_elf_ha_reloc),
950
951 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
952 bfd_elf_generic_reloc),
953
954 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
955 ppc64_elf_ha_reloc),
956
957 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
958 bfd_elf_generic_reloc),
959
960 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
961 ppc64_elf_ha_reloc),
962
963 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
964 bfd_elf_generic_reloc),
965
966 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
967 ppc64_elf_ha_reloc),
968
969 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
970 ppc64_elf_prefix_reloc),
971
972 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
973 ppc64_elf_prefix_reloc),
974
975 /* GNU extension to record C++ vtable hierarchy. */
976 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978
979 /* GNU extension to record C++ vtable member usage. */
980 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
981 NULL),
982 };
983
984 \f
985 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
986 be done. */
987
988 static void
989 ppc_howto_init (void)
990 {
991 unsigned int i, type;
992
993 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
994 {
995 type = ppc64_elf_howto_raw[i].type;
996 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
997 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
998 }
999 }
1000
1001 static reloc_howto_type *
1002 ppc64_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
1003 {
1004 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1005
1006 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1007 /* Initialize howto table if needed. */
1008 ppc_howto_init ();
1009
1010 switch (code)
1011 {
1012 default:
1013 /* xgettext:c-format */
1014 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1015 (int) code);
1016 bfd_set_error (bfd_error_bad_value);
1017 return NULL;
1018
1019 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1020 break;
1021 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1022 break;
1023 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1024 break;
1025 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1026 break;
1027 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1028 break;
1029 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1030 break;
1031 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1032 break;
1033 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1034 break;
1035 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1036 break;
1037 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1038 break;
1039 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1040 break;
1041 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1042 break;
1043 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1044 break;
1045 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1046 break;
1047 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1048 break;
1049 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1050 break;
1051 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1052 break;
1053 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1054 break;
1055 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1056 break;
1057 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1058 break;
1059 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1060 break;
1061 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1062 break;
1063 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1064 break;
1065 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1066 break;
1067 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1068 break;
1069 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1070 break;
1071 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1072 break;
1073 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1074 break;
1075 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1076 break;
1077 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1078 break;
1079 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1080 break;
1081 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1082 break;
1083 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1084 break;
1085 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1086 break;
1087 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1088 break;
1089 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1090 break;
1091 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1092 break;
1093 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1094 break;
1095 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1096 break;
1097 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1098 break;
1099 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1100 break;
1101 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1102 break;
1103 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1104 break;
1105 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1106 break;
1107 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1108 break;
1109 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1110 break;
1111 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1112 break;
1113 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1114 break;
1115 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1116 break;
1117 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1118 break;
1119 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1120 break;
1121 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1122 break;
1123 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1124 break;
1125 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1126 break;
1127 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1128 break;
1129 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1130 break;
1131 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1132 break;
1133 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1134 break;
1135 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1136 break;
1137 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1138 break;
1139 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1140 break;
1141 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1142 break;
1143 case BFD_RELOC_PPC64_TLS_PCREL:
1144 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1145 break;
1146 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1147 break;
1148 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1149 break;
1150 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1151 break;
1152 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1153 break;
1154 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1155 break;
1156 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1157 break;
1158 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1159 break;
1160 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1161 break;
1162 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1163 break;
1164 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1165 break;
1166 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1167 break;
1168 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1169 break;
1170 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1171 break;
1172 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1173 break;
1174 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1175 break;
1176 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1177 break;
1178 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1179 break;
1180 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1181 break;
1182 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1183 break;
1184 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1185 break;
1186 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1187 break;
1188 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1189 break;
1190 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1191 break;
1192 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1193 break;
1194 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1195 break;
1196 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1197 break;
1198 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1199 break;
1200 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1201 break;
1202 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1203 break;
1204 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1205 break;
1206 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1207 break;
1208 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1209 break;
1210 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1211 break;
1212 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1213 break;
1214 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1215 break;
1216 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1217 break;
1218 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1219 break;
1220 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1221 break;
1222 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1223 break;
1224 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1225 break;
1226 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1227 break;
1228 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1229 break;
1230 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1231 break;
1232 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1233 break;
1234 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1235 break;
1236 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1237 break;
1238 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1239 break;
1240 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1241 break;
1242 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1243 break;
1244 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1245 break;
1246 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1247 break;
1248 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1249 break;
1250 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1251 break;
1252 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1253 break;
1254 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1255 break;
1256 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1257 break;
1258 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1259 break;
1260 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1261 break;
1262 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1263 break;
1264 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1265 break;
1266 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1267 break;
1268 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1269 break;
1270 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1271 break;
1272 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1273 break;
1274 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1275 break;
1276 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1277 break;
1278 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1279 break;
1280 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1281 break;
1282 case BFD_RELOC_PPC64_GOT_TLSGD_PCREL34: r = R_PPC64_GOT_TLSGD_PCREL34;
1283 break;
1284 case BFD_RELOC_PPC64_GOT_TLSLD_PCREL34: r = R_PPC64_GOT_TLSLD_PCREL34;
1285 break;
1286 case BFD_RELOC_PPC64_GOT_TPREL_PCREL34: r = R_PPC64_GOT_TPREL_PCREL34;
1287 break;
1288 case BFD_RELOC_PPC64_GOT_DTPREL_PCREL34: r = R_PPC64_GOT_DTPREL_PCREL34;
1289 break;
1290 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1291 break;
1292 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1293 break;
1294 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1295 break;
1296 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1297 break;
1298 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1299 break;
1300 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1301 break;
1302 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1303 break;
1304 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1305 break;
1306 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1307 break;
1308 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1309 break;
1310 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1311 break;
1312 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1313 break;
1314 }
1315
1316 return ppc64_elf_howto_table[r];
1317 };
1318
1319 static reloc_howto_type *
1320 ppc64_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
1321 {
1322 unsigned int i;
1323 static char *compat_map[][2] = {
1324 { "R_PPC64_GOT_TLSGD34", "R_PPC64_GOT_TLSGD_PCREL34" },
1325 { "R_PPC64_GOT_TLSLD34", "R_PPC64_GOT_TLSLD_PCREL34" },
1326 { "R_PPC64_GOT_TPREL34", "R_PPC64_GOT_TPREL_PCREL34" },
1327 { "R_PPC64_GOT_DTPREL34", "R_PPC64_GOT_DTPREL_PCREL34" }
1328 };
1329
1330 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1331 if (ppc64_elf_howto_raw[i].name != NULL
1332 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1333 return &ppc64_elf_howto_raw[i];
1334
1335 /* Handle old names of relocations in case they were used by
1336 .reloc directives.
1337 FIXME: Remove this soon. Mapping the reloc names is very likely
1338 completely unnecessary. */
1339 for (i = 0; i < ARRAY_SIZE (compat_map); i++)
1340 if (strcasecmp (compat_map[i][0], r_name) == 0)
1341 {
1342 _bfd_error_handler (_("warning: %s should be used rather than %s"),
1343 compat_map[i][1], compat_map[i][0]);
1344 return ppc64_elf_reloc_name_lookup (abfd, compat_map[i][1]);
1345 }
1346
1347 return NULL;
1348 }
1349
1350 /* Set the howto pointer for a PowerPC ELF reloc. */
1351
1352 static bfd_boolean
1353 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1354 Elf_Internal_Rela *dst)
1355 {
1356 unsigned int type;
1357
1358 /* Initialize howto table if needed. */
1359 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1360 ppc_howto_init ();
1361
1362 type = ELF64_R_TYPE (dst->r_info);
1363 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1364 {
1365 /* xgettext:c-format */
1366 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1367 abfd, type);
1368 bfd_set_error (bfd_error_bad_value);
1369 return FALSE;
1370 }
1371 cache_ptr->howto = ppc64_elf_howto_table[type];
1372 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1373 {
1374 /* xgettext:c-format */
1375 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1376 abfd, type);
1377 bfd_set_error (bfd_error_bad_value);
1378 return FALSE;
1379 }
1380
1381 return TRUE;
1382 }
1383
1384 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1385
1386 static bfd_reloc_status_type
1387 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1388 void *data, asection *input_section,
1389 bfd *output_bfd, char **error_message)
1390 {
1391 enum elf_ppc64_reloc_type r_type;
1392 long insn;
1393 bfd_size_type octets;
1394 bfd_vma value;
1395
1396 /* If this is a relocatable link (output_bfd test tells us), just
1397 call the generic function. Any adjustment will be done at final
1398 link time. */
1399 if (output_bfd != NULL)
1400 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1401 input_section, output_bfd, error_message);
1402
1403 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1404 We won't actually be using the low bits, so trashing them
1405 doesn't matter. */
1406 r_type = reloc_entry->howto->type;
1407 if (r_type == R_PPC64_ADDR16_HIGHERA34
1408 || r_type == R_PPC64_ADDR16_HIGHESTA34
1409 || r_type == R_PPC64_REL16_HIGHERA34
1410 || r_type == R_PPC64_REL16_HIGHESTA34)
1411 reloc_entry->addend += 1ULL << 33;
1412 else
1413 reloc_entry->addend += 1U << 15;
1414 if (r_type != R_PPC64_REL16DX_HA)
1415 return bfd_reloc_continue;
1416
1417 value = 0;
1418 if (!bfd_is_com_section (symbol->section))
1419 value = symbol->value;
1420 value += (reloc_entry->addend
1421 + symbol->section->output_offset
1422 + symbol->section->output_section->vma);
1423 value -= (reloc_entry->address
1424 + input_section->output_offset
1425 + input_section->output_section->vma);
1426 value = (bfd_signed_vma) value >> 16;
1427
1428 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1429 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1430 insn &= ~0x1fffc1;
1431 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1432 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1433 if (value + 0x8000 > 0xffff)
1434 return bfd_reloc_overflow;
1435 return bfd_reloc_ok;
1436 }
1437
1438 static bfd_reloc_status_type
1439 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1440 void *data, asection *input_section,
1441 bfd *output_bfd, char **error_message)
1442 {
1443 if (output_bfd != NULL)
1444 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1445 input_section, output_bfd, error_message);
1446
1447 if (strcmp (symbol->section->name, ".opd") == 0
1448 && (symbol->section->owner->flags & DYNAMIC) == 0)
1449 {
1450 bfd_vma dest = opd_entry_value (symbol->section,
1451 symbol->value + reloc_entry->addend,
1452 NULL, NULL, FALSE);
1453 if (dest != (bfd_vma) -1)
1454 reloc_entry->addend = dest - (symbol->value
1455 + symbol->section->output_section->vma
1456 + symbol->section->output_offset);
1457 }
1458 else
1459 {
1460 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1461
1462 if (symbol->section->owner != abfd
1463 && symbol->section->owner != NULL
1464 && abiversion (symbol->section->owner) >= 2)
1465 {
1466 unsigned int i;
1467
1468 for (i = 0; i < symbol->section->owner->symcount; ++i)
1469 {
1470 asymbol *symdef = symbol->section->owner->outsymbols[i];
1471
1472 if (strcmp (symdef->name, symbol->name) == 0)
1473 {
1474 elfsym = (elf_symbol_type *) symdef;
1475 break;
1476 }
1477 }
1478 }
1479 reloc_entry->addend
1480 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1481 }
1482 return bfd_reloc_continue;
1483 }
1484
1485 static bfd_reloc_status_type
1486 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1487 void *data, asection *input_section,
1488 bfd *output_bfd, char **error_message)
1489 {
1490 long insn;
1491 enum elf_ppc64_reloc_type r_type;
1492 bfd_size_type octets;
1493 /* Assume 'at' branch hints. */
1494 bfd_boolean is_isa_v2 = TRUE;
1495
1496 /* If this is a relocatable link (output_bfd test tells us), just
1497 call the generic function. Any adjustment will be done at final
1498 link time. */
1499 if (output_bfd != NULL)
1500 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1501 input_section, output_bfd, error_message);
1502
1503 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1504 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1505 insn &= ~(0x01 << 21);
1506 r_type = reloc_entry->howto->type;
1507 if (r_type == R_PPC64_ADDR14_BRTAKEN
1508 || r_type == R_PPC64_REL14_BRTAKEN)
1509 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1510
1511 if (is_isa_v2)
1512 {
1513 /* Set 'a' bit. This is 0b00010 in BO field for branch
1514 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1515 for branch on CTR insns (BO == 1a00t or 1a01t). */
1516 if ((insn & (0x14 << 21)) == (0x04 << 21))
1517 insn |= 0x02 << 21;
1518 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1519 insn |= 0x08 << 21;
1520 else
1521 goto out;
1522 }
1523 else
1524 {
1525 bfd_vma target = 0;
1526 bfd_vma from;
1527
1528 if (!bfd_is_com_section (symbol->section))
1529 target = symbol->value;
1530 target += symbol->section->output_section->vma;
1531 target += symbol->section->output_offset;
1532 target += reloc_entry->addend;
1533
1534 from = (reloc_entry->address
1535 + input_section->output_offset
1536 + input_section->output_section->vma);
1537
1538 /* Invert 'y' bit if not the default. */
1539 if ((bfd_signed_vma) (target - from) < 0)
1540 insn ^= 0x01 << 21;
1541 }
1542 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1543 out:
1544 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1545 input_section, output_bfd, error_message);
1546 }
1547
1548 static bfd_reloc_status_type
1549 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1550 void *data, asection *input_section,
1551 bfd *output_bfd, char **error_message)
1552 {
1553 /* If this is a relocatable link (output_bfd test tells us), just
1554 call the generic function. Any adjustment will be done at final
1555 link time. */
1556 if (output_bfd != NULL)
1557 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1558 input_section, output_bfd, error_message);
1559
1560 /* Subtract the symbol section base address. */
1561 reloc_entry->addend -= symbol->section->output_section->vma;
1562 return bfd_reloc_continue;
1563 }
1564
1565 static bfd_reloc_status_type
1566 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1567 void *data, asection *input_section,
1568 bfd *output_bfd, char **error_message)
1569 {
1570 /* If this is a relocatable link (output_bfd test tells us), just
1571 call the generic function. Any adjustment will be done at final
1572 link time. */
1573 if (output_bfd != NULL)
1574 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1575 input_section, output_bfd, error_message);
1576
1577 /* Subtract the symbol section base address. */
1578 reloc_entry->addend -= symbol->section->output_section->vma;
1579
1580 /* Adjust the addend for sign extension of the low 16 bits. */
1581 reloc_entry->addend += 0x8000;
1582 return bfd_reloc_continue;
1583 }
1584
1585 static bfd_reloc_status_type
1586 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1587 void *data, asection *input_section,
1588 bfd *output_bfd, char **error_message)
1589 {
1590 bfd_vma TOCstart;
1591
1592 /* If this is a relocatable link (output_bfd test tells us), just
1593 call the generic function. Any adjustment will be done at final
1594 link time. */
1595 if (output_bfd != NULL)
1596 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1597 input_section, output_bfd, error_message);
1598
1599 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1600 if (TOCstart == 0)
1601 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1602
1603 /* Subtract the TOC base address. */
1604 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1605 return bfd_reloc_continue;
1606 }
1607
1608 static bfd_reloc_status_type
1609 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1610 void *data, asection *input_section,
1611 bfd *output_bfd, char **error_message)
1612 {
1613 bfd_vma TOCstart;
1614
1615 /* If this is a relocatable link (output_bfd test tells us), just
1616 call the generic function. Any adjustment will be done at final
1617 link time. */
1618 if (output_bfd != NULL)
1619 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1620 input_section, output_bfd, error_message);
1621
1622 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1623 if (TOCstart == 0)
1624 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1625
1626 /* Subtract the TOC base address. */
1627 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1628
1629 /* Adjust the addend for sign extension of the low 16 bits. */
1630 reloc_entry->addend += 0x8000;
1631 return bfd_reloc_continue;
1632 }
1633
1634 static bfd_reloc_status_type
1635 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1636 void *data, asection *input_section,
1637 bfd *output_bfd, char **error_message)
1638 {
1639 bfd_vma TOCstart;
1640 bfd_size_type octets;
1641
1642 /* If this is a relocatable link (output_bfd test tells us), just
1643 call the generic function. Any adjustment will be done at final
1644 link time. */
1645 if (output_bfd != NULL)
1646 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1647 input_section, output_bfd, error_message);
1648
1649 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1650 if (TOCstart == 0)
1651 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1652
1653 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1654 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1655 return bfd_reloc_ok;
1656 }
1657
1658 static bfd_reloc_status_type
1659 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1660 void *data, asection *input_section,
1661 bfd *output_bfd, char **error_message)
1662 {
1663 uint64_t insn;
1664 bfd_vma targ;
1665
1666 if (output_bfd != NULL)
1667 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1668 input_section, output_bfd, error_message);
1669
1670 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1671 insn <<= 32;
1672 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1673
1674 targ = (symbol->section->output_section->vma
1675 + symbol->section->output_offset
1676 + reloc_entry->addend);
1677 if (!bfd_is_com_section (symbol->section))
1678 targ += symbol->value;
1679 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1680 targ += 1ULL << 33;
1681 if (reloc_entry->howto->pc_relative)
1682 {
1683 bfd_vma from = (reloc_entry->address
1684 + input_section->output_offset
1685 + input_section->output_section->vma);
1686 targ -=from;
1687 }
1688 targ >>= reloc_entry->howto->rightshift;
1689 insn &= ~reloc_entry->howto->dst_mask;
1690 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1691 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1692 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1693 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1694 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1695 >= 1ULL << reloc_entry->howto->bitsize))
1696 return bfd_reloc_overflow;
1697 return bfd_reloc_ok;
1698 }
1699
1700 static bfd_reloc_status_type
1701 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1702 void *data, asection *input_section,
1703 bfd *output_bfd, char **error_message)
1704 {
1705 /* If this is a relocatable link (output_bfd test tells us), just
1706 call the generic function. Any adjustment will be done at final
1707 link time. */
1708 if (output_bfd != NULL)
1709 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1710 input_section, output_bfd, error_message);
1711
1712 if (error_message != NULL)
1713 {
1714 static char buf[60];
1715 sprintf (buf, "generic linker can't handle %s",
1716 reloc_entry->howto->name);
1717 *error_message = buf;
1718 }
1719 return bfd_reloc_dangerous;
1720 }
1721
1722 /* Track GOT entries needed for a given symbol. We might need more
1723 than one got entry per symbol. */
1724 struct got_entry
1725 {
1726 struct got_entry *next;
1727
1728 /* The symbol addend that we'll be placing in the GOT. */
1729 bfd_vma addend;
1730
1731 /* Unlike other ELF targets, we use separate GOT entries for the same
1732 symbol referenced from different input files. This is to support
1733 automatic multiple TOC/GOT sections, where the TOC base can vary
1734 from one input file to another. After partitioning into TOC groups
1735 we merge entries within the group.
1736
1737 Point to the BFD owning this GOT entry. */
1738 bfd *owner;
1739
1740 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1741 TLS_TPREL or TLS_DTPREL for tls entries. */
1742 unsigned char tls_type;
1743
1744 /* Non-zero if got.ent points to real entry. */
1745 unsigned char is_indirect;
1746
1747 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1748 union
1749 {
1750 bfd_signed_vma refcount;
1751 bfd_vma offset;
1752 struct got_entry *ent;
1753 } got;
1754 };
1755
1756 /* The same for PLT. */
1757 struct plt_entry
1758 {
1759 struct plt_entry *next;
1760
1761 bfd_vma addend;
1762
1763 union
1764 {
1765 bfd_signed_vma refcount;
1766 bfd_vma offset;
1767 } plt;
1768 };
1769
1770 struct ppc64_elf_obj_tdata
1771 {
1772 struct elf_obj_tdata elf;
1773
1774 /* Shortcuts to dynamic linker sections. */
1775 asection *got;
1776 asection *relgot;
1777
1778 /* Used during garbage collection. We attach global symbols defined
1779 on removed .opd entries to this section so that the sym is removed. */
1780 asection *deleted_section;
1781
1782 /* TLS local dynamic got entry handling. Support for multiple GOT
1783 sections means we potentially need one of these for each input bfd. */
1784 struct got_entry tlsld_got;
1785
1786 union
1787 {
1788 /* A copy of relocs before they are modified for --emit-relocs. */
1789 Elf_Internal_Rela *relocs;
1790
1791 /* Section contents. */
1792 bfd_byte *contents;
1793 } opd;
1794
1795 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1796 the reloc to be in the range -32768 to 32767. */
1797 unsigned int has_small_toc_reloc : 1;
1798
1799 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1800 instruction not one we handle. */
1801 unsigned int unexpected_toc_insn : 1;
1802
1803 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1804 this file. */
1805 unsigned int has_optrel : 1;
1806 };
1807
1808 #define ppc64_elf_tdata(bfd) \
1809 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1810
1811 #define ppc64_tlsld_got(bfd) \
1812 (&ppc64_elf_tdata (bfd)->tlsld_got)
1813
1814 #define is_ppc64_elf(bfd) \
1815 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1816 && elf_object_id (bfd) == PPC64_ELF_DATA)
1817
1818 /* Override the generic function because we store some extras. */
1819
1820 static bfd_boolean
1821 ppc64_elf_mkobject (bfd *abfd)
1822 {
1823 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1824 PPC64_ELF_DATA);
1825 }
1826
1827 /* Fix bad default arch selected for a 64 bit input bfd when the
1828 default is 32 bit. Also select arch based on apuinfo. */
1829
1830 static bfd_boolean
1831 ppc64_elf_object_p (bfd *abfd)
1832 {
1833 if (!abfd->arch_info->the_default)
1834 return TRUE;
1835
1836 if (abfd->arch_info->bits_per_word == 32)
1837 {
1838 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1839
1840 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1841 {
1842 /* Relies on arch after 32 bit default being 64 bit default. */
1843 abfd->arch_info = abfd->arch_info->next;
1844 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1845 }
1846 }
1847 return _bfd_elf_ppc_set_arch (abfd);
1848 }
1849
1850 /* Support for core dump NOTE sections. */
1851
1852 static bfd_boolean
1853 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1854 {
1855 size_t offset, size;
1856
1857 if (note->descsz != 504)
1858 return FALSE;
1859
1860 /* pr_cursig */
1861 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1862
1863 /* pr_pid */
1864 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1865
1866 /* pr_reg */
1867 offset = 112;
1868 size = 384;
1869
1870 /* Make a ".reg/999" section. */
1871 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1872 size, note->descpos + offset);
1873 }
1874
1875 static bfd_boolean
1876 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1877 {
1878 if (note->descsz != 136)
1879 return FALSE;
1880
1881 elf_tdata (abfd)->core->pid
1882 = bfd_get_32 (abfd, note->descdata + 24);
1883 elf_tdata (abfd)->core->program
1884 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1885 elf_tdata (abfd)->core->command
1886 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1887
1888 return TRUE;
1889 }
1890
1891 static char *
1892 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1893 ...)
1894 {
1895 switch (note_type)
1896 {
1897 default:
1898 return NULL;
1899
1900 case NT_PRPSINFO:
1901 {
1902 char data[136] ATTRIBUTE_NONSTRING;
1903 va_list ap;
1904
1905 va_start (ap, note_type);
1906 memset (data, 0, sizeof (data));
1907 strncpy (data + 40, va_arg (ap, const char *), 16);
1908 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1909 DIAGNOSTIC_PUSH;
1910 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1911 -Wstringop-truncation:
1912 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1913 */
1914 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1915 #endif
1916 strncpy (data + 56, va_arg (ap, const char *), 80);
1917 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1918 DIAGNOSTIC_POP;
1919 #endif
1920 va_end (ap);
1921 return elfcore_write_note (abfd, buf, bufsiz,
1922 "CORE", note_type, data, sizeof (data));
1923 }
1924
1925 case NT_PRSTATUS:
1926 {
1927 char data[504];
1928 va_list ap;
1929 long pid;
1930 int cursig;
1931 const void *greg;
1932
1933 va_start (ap, note_type);
1934 memset (data, 0, 112);
1935 pid = va_arg (ap, long);
1936 bfd_put_32 (abfd, pid, data + 32);
1937 cursig = va_arg (ap, int);
1938 bfd_put_16 (abfd, cursig, data + 12);
1939 greg = va_arg (ap, const void *);
1940 memcpy (data + 112, greg, 384);
1941 memset (data + 496, 0, 8);
1942 va_end (ap);
1943 return elfcore_write_note (abfd, buf, bufsiz,
1944 "CORE", note_type, data, sizeof (data));
1945 }
1946 }
1947 }
1948
1949 /* Add extra PPC sections. */
1950
1951 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1952 {
1953 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1954 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1955 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1956 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1957 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1958 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1959 { NULL, 0, 0, 0, 0 }
1960 };
1961
1962 enum _ppc64_sec_type {
1963 sec_normal = 0,
1964 sec_opd = 1,
1965 sec_toc = 2
1966 };
1967
1968 struct _ppc64_elf_section_data
1969 {
1970 struct bfd_elf_section_data elf;
1971
1972 union
1973 {
1974 /* An array with one entry for each opd function descriptor,
1975 and some spares since opd entries may be either 16 or 24 bytes. */
1976 #define OPD_NDX(OFF) ((OFF) >> 4)
1977 struct _opd_sec_data
1978 {
1979 /* Points to the function code section for local opd entries. */
1980 asection **func_sec;
1981
1982 /* After editing .opd, adjust references to opd local syms. */
1983 long *adjust;
1984 } opd;
1985
1986 /* An array for toc sections, indexed by offset/8. */
1987 struct _toc_sec_data
1988 {
1989 /* Specifies the relocation symbol index used at a given toc offset. */
1990 unsigned *symndx;
1991
1992 /* And the relocation addend. */
1993 bfd_vma *add;
1994 } toc;
1995 } u;
1996
1997 enum _ppc64_sec_type sec_type:2;
1998
1999 /* Flag set when small branches are detected. Used to
2000 select suitable defaults for the stub group size. */
2001 unsigned int has_14bit_branch:1;
2002
2003 /* Flag set when PLTCALL relocs are detected. */
2004 unsigned int has_pltcall:1;
2005
2006 /* Flag set when section has PLT/GOT/TOC relocations that can be
2007 optimised. */
2008 unsigned int has_optrel:1;
2009 };
2010
2011 #define ppc64_elf_section_data(sec) \
2012 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2013
2014 static bfd_boolean
2015 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2016 {
2017 if (!sec->used_by_bfd)
2018 {
2019 struct _ppc64_elf_section_data *sdata;
2020 size_t amt = sizeof (*sdata);
2021
2022 sdata = bfd_zalloc (abfd, amt);
2023 if (sdata == NULL)
2024 return FALSE;
2025 sec->used_by_bfd = sdata;
2026 }
2027
2028 return _bfd_elf_new_section_hook (abfd, sec);
2029 }
2030
2031 static bfd_boolean
2032 ppc64_elf_section_flags (const Elf_Internal_Shdr *hdr)
2033 {
2034 const char *name = hdr->bfd_section->name;
2035
2036 if (strncmp (name, ".sbss", 5) == 0
2037 || strncmp (name, ".sdata", 6) == 0)
2038 hdr->bfd_section->flags |= SEC_SMALL_DATA;
2039
2040 return TRUE;
2041 }
2042
2043 static struct _opd_sec_data *
2044 get_opd_info (asection * sec)
2045 {
2046 if (sec != NULL
2047 && ppc64_elf_section_data (sec) != NULL
2048 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2049 return &ppc64_elf_section_data (sec)->u.opd;
2050 return NULL;
2051 }
2052 \f
2053 /* Parameters for the qsort hook. */
2054 static bfd_boolean synthetic_relocatable;
2055 static asection *synthetic_opd;
2056
2057 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2058
2059 static int
2060 compare_symbols (const void *ap, const void *bp)
2061 {
2062 const asymbol *a = *(const asymbol **) ap;
2063 const asymbol *b = *(const asymbol **) bp;
2064
2065 /* Section symbols first. */
2066 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2067 return -1;
2068 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2069 return 1;
2070
2071 /* then .opd symbols. */
2072 if (synthetic_opd != NULL)
2073 {
2074 if (strcmp (a->section->name, ".opd") == 0
2075 && strcmp (b->section->name, ".opd") != 0)
2076 return -1;
2077 if (strcmp (a->section->name, ".opd") != 0
2078 && strcmp (b->section->name, ".opd") == 0)
2079 return 1;
2080 }
2081
2082 /* then other code symbols. */
2083 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2084 == (SEC_CODE | SEC_ALLOC))
2085 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2086 != (SEC_CODE | SEC_ALLOC)))
2087 return -1;
2088
2089 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2090 != (SEC_CODE | SEC_ALLOC))
2091 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2092 == (SEC_CODE | SEC_ALLOC)))
2093 return 1;
2094
2095 if (synthetic_relocatable)
2096 {
2097 if (a->section->id < b->section->id)
2098 return -1;
2099
2100 if (a->section->id > b->section->id)
2101 return 1;
2102 }
2103
2104 if (a->value + a->section->vma < b->value + b->section->vma)
2105 return -1;
2106
2107 if (a->value + a->section->vma > b->value + b->section->vma)
2108 return 1;
2109
2110 /* For syms with the same value, prefer strong dynamic global function
2111 syms over other syms. */
2112 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2113 return -1;
2114
2115 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2116 return 1;
2117
2118 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2119 return -1;
2120
2121 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2122 return 1;
2123
2124 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2125 return -1;
2126
2127 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2128 return 1;
2129
2130 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2131 return -1;
2132
2133 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2134 return 1;
2135
2136 /* Finally, sort on where the symbol is in memory. The symbols will
2137 be in at most two malloc'd blocks, one for static syms, one for
2138 dynamic syms, and we distinguish the two blocks above by testing
2139 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2140 originally in the same order as the symbols (and we're not
2141 sorting the symbols themselves), this ensures a stable sort. */
2142 if (a < b)
2143 return -1;
2144 if (a > b)
2145 return 1;
2146 return 0;
2147 }
2148
2149 /* Search SYMS for a symbol of the given VALUE. */
2150
2151 static asymbol *
2152 sym_exists_at (asymbol **syms, size_t lo, size_t hi, unsigned int id,
2153 bfd_vma value)
2154 {
2155 size_t mid;
2156
2157 if (id == (unsigned) -1)
2158 {
2159 while (lo < hi)
2160 {
2161 mid = (lo + hi) >> 1;
2162 if (syms[mid]->value + syms[mid]->section->vma < value)
2163 lo = mid + 1;
2164 else if (syms[mid]->value + syms[mid]->section->vma > value)
2165 hi = mid;
2166 else
2167 return syms[mid];
2168 }
2169 }
2170 else
2171 {
2172 while (lo < hi)
2173 {
2174 mid = (lo + hi) >> 1;
2175 if (syms[mid]->section->id < id)
2176 lo = mid + 1;
2177 else if (syms[mid]->section->id > id)
2178 hi = mid;
2179 else if (syms[mid]->value < value)
2180 lo = mid + 1;
2181 else if (syms[mid]->value > value)
2182 hi = mid;
2183 else
2184 return syms[mid];
2185 }
2186 }
2187 return NULL;
2188 }
2189
2190 static bfd_boolean
2191 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2192 {
2193 bfd_vma vma = *(bfd_vma *) ptr;
2194 return ((section->flags & SEC_ALLOC) != 0
2195 && section->vma <= vma
2196 && vma < section->vma + section->size);
2197 }
2198
2199 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2200 entry syms. Also generate @plt symbols for the glink branch table.
2201 Returns count of synthetic symbols in RET or -1 on error. */
2202
2203 static long
2204 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2205 long static_count, asymbol **static_syms,
2206 long dyn_count, asymbol **dyn_syms,
2207 asymbol **ret)
2208 {
2209 asymbol *s;
2210 size_t i, j, count;
2211 char *names;
2212 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2213 asection *opd = NULL;
2214 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2215 asymbol **syms;
2216 int abi = abiversion (abfd);
2217
2218 *ret = NULL;
2219
2220 if (abi < 2)
2221 {
2222 opd = bfd_get_section_by_name (abfd, ".opd");
2223 if (opd == NULL && abi == 1)
2224 return 0;
2225 }
2226
2227 syms = NULL;
2228 codesecsym = 0;
2229 codesecsymend = 0;
2230 secsymend = 0;
2231 opdsymend = 0;
2232 symcount = 0;
2233 if (opd != NULL)
2234 {
2235 symcount = static_count;
2236 if (!relocatable)
2237 symcount += dyn_count;
2238 if (symcount == 0)
2239 return 0;
2240
2241 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2242 if (syms == NULL)
2243 return -1;
2244
2245 if (!relocatable && static_count != 0 && dyn_count != 0)
2246 {
2247 /* Use both symbol tables. */
2248 memcpy (syms, static_syms, static_count * sizeof (*syms));
2249 memcpy (syms + static_count, dyn_syms,
2250 (dyn_count + 1) * sizeof (*syms));
2251 }
2252 else if (!relocatable && static_count == 0)
2253 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2254 else
2255 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2256
2257 /* Trim uninteresting symbols. Interesting symbols are section,
2258 function, and notype symbols. */
2259 for (i = 0, j = 0; i < symcount; ++i)
2260 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2261 | BSF_RELC | BSF_SRELC)) == 0)
2262 syms[j++] = syms[i];
2263 symcount = j;
2264
2265 synthetic_relocatable = relocatable;
2266 synthetic_opd = opd;
2267 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2268
2269 if (!relocatable && symcount > 1)
2270 {
2271 /* Trim duplicate syms, since we may have merged the normal
2272 and dynamic symbols. Actually, we only care about syms
2273 that have different values, so trim any with the same
2274 value. Don't consider ifunc and ifunc resolver symbols
2275 duplicates however, because GDB wants to know whether a
2276 text symbol is an ifunc resolver. */
2277 for (i = 1, j = 1; i < symcount; ++i)
2278 {
2279 const asymbol *s0 = syms[i - 1];
2280 const asymbol *s1 = syms[i];
2281
2282 if ((s0->value + s0->section->vma
2283 != s1->value + s1->section->vma)
2284 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2285 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2286 syms[j++] = syms[i];
2287 }
2288 symcount = j;
2289 }
2290
2291 i = 0;
2292 /* Note that here and in compare_symbols we can't compare opd and
2293 sym->section directly. With separate debug info files, the
2294 symbols will be extracted from the debug file while abfd passed
2295 to this function is the real binary. */
2296 if (strcmp (syms[i]->section->name, ".opd") == 0)
2297 ++i;
2298 codesecsym = i;
2299
2300 for (; i < symcount; ++i)
2301 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2302 | SEC_THREAD_LOCAL))
2303 != (SEC_CODE | SEC_ALLOC))
2304 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2305 break;
2306 codesecsymend = i;
2307
2308 for (; i < symcount; ++i)
2309 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2310 break;
2311 secsymend = i;
2312
2313 for (; i < symcount; ++i)
2314 if (strcmp (syms[i]->section->name, ".opd") != 0)
2315 break;
2316 opdsymend = i;
2317
2318 for (; i < symcount; ++i)
2319 if (((syms[i]->section->flags
2320 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2321 != (SEC_CODE | SEC_ALLOC))
2322 break;
2323 symcount = i;
2324 }
2325 count = 0;
2326
2327 if (relocatable)
2328 {
2329 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2330 arelent *r;
2331 size_t size;
2332 size_t relcount;
2333
2334 if (opdsymend == secsymend)
2335 goto done;
2336
2337 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2338 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2339 if (relcount == 0)
2340 goto done;
2341
2342 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2343 {
2344 count = -1;
2345 goto done;
2346 }
2347
2348 size = 0;
2349 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2350 {
2351 asymbol *sym;
2352
2353 while (r < opd->relocation + relcount
2354 && r->address < syms[i]->value + opd->vma)
2355 ++r;
2356
2357 if (r == opd->relocation + relcount)
2358 break;
2359
2360 if (r->address != syms[i]->value + opd->vma)
2361 continue;
2362
2363 if (r->howto->type != R_PPC64_ADDR64)
2364 continue;
2365
2366 sym = *r->sym_ptr_ptr;
2367 if (!sym_exists_at (syms, opdsymend, symcount,
2368 sym->section->id, sym->value + r->addend))
2369 {
2370 ++count;
2371 size += sizeof (asymbol);
2372 size += strlen (syms[i]->name) + 2;
2373 }
2374 }
2375
2376 if (size == 0)
2377 goto done;
2378 s = *ret = bfd_malloc (size);
2379 if (s == NULL)
2380 {
2381 count = -1;
2382 goto done;
2383 }
2384
2385 names = (char *) (s + count);
2386
2387 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2388 {
2389 asymbol *sym;
2390
2391 while (r < opd->relocation + relcount
2392 && r->address < syms[i]->value + opd->vma)
2393 ++r;
2394
2395 if (r == opd->relocation + relcount)
2396 break;
2397
2398 if (r->address != syms[i]->value + opd->vma)
2399 continue;
2400
2401 if (r->howto->type != R_PPC64_ADDR64)
2402 continue;
2403
2404 sym = *r->sym_ptr_ptr;
2405 if (!sym_exists_at (syms, opdsymend, symcount,
2406 sym->section->id, sym->value + r->addend))
2407 {
2408 size_t len;
2409
2410 *s = *syms[i];
2411 s->flags |= BSF_SYNTHETIC;
2412 s->section = sym->section;
2413 s->value = sym->value + r->addend;
2414 s->name = names;
2415 *names++ = '.';
2416 len = strlen (syms[i]->name);
2417 memcpy (names, syms[i]->name, len + 1);
2418 names += len + 1;
2419 /* Have udata.p point back to the original symbol this
2420 synthetic symbol was derived from. */
2421 s->udata.p = syms[i];
2422 s++;
2423 }
2424 }
2425 }
2426 else
2427 {
2428 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2429 bfd_byte *contents = NULL;
2430 size_t size;
2431 size_t plt_count = 0;
2432 bfd_vma glink_vma = 0, resolv_vma = 0;
2433 asection *dynamic, *glink = NULL, *relplt = NULL;
2434 arelent *p;
2435
2436 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2437 {
2438 free_contents_and_exit_err:
2439 count = -1;
2440 free_contents_and_exit:
2441 free (contents);
2442 goto done;
2443 }
2444
2445 size = 0;
2446 for (i = secsymend; i < opdsymend; ++i)
2447 {
2448 bfd_vma ent;
2449
2450 /* Ignore bogus symbols. */
2451 if (syms[i]->value > opd->size - 8)
2452 continue;
2453
2454 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2455 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2456 {
2457 ++count;
2458 size += sizeof (asymbol);
2459 size += strlen (syms[i]->name) + 2;
2460 }
2461 }
2462
2463 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2464 if (dyn_count != 0
2465 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2466 {
2467 bfd_byte *dynbuf, *extdyn, *extdynend;
2468 size_t extdynsize;
2469 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2470
2471 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2472 goto free_contents_and_exit_err;
2473
2474 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2475 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2476
2477 extdyn = dynbuf;
2478 extdynend = extdyn + dynamic->size;
2479 for (; extdyn < extdynend; extdyn += extdynsize)
2480 {
2481 Elf_Internal_Dyn dyn;
2482 (*swap_dyn_in) (abfd, extdyn, &dyn);
2483
2484 if (dyn.d_tag == DT_NULL)
2485 break;
2486
2487 if (dyn.d_tag == DT_PPC64_GLINK)
2488 {
2489 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2490 See comment in ppc64_elf_finish_dynamic_sections. */
2491 glink_vma = dyn.d_un.d_val + 8 * 4;
2492 /* The .glink section usually does not survive the final
2493 link; search for the section (usually .text) where the
2494 glink stubs now reside. */
2495 glink = bfd_sections_find_if (abfd, section_covers_vma,
2496 &glink_vma);
2497 break;
2498 }
2499 }
2500
2501 free (dynbuf);
2502 }
2503
2504 if (glink != NULL)
2505 {
2506 /* Determine __glink trampoline by reading the relative branch
2507 from the first glink stub. */
2508 bfd_byte buf[4];
2509 unsigned int off = 0;
2510
2511 while (bfd_get_section_contents (abfd, glink, buf,
2512 glink_vma + off - glink->vma, 4))
2513 {
2514 unsigned int insn = bfd_get_32 (abfd, buf);
2515 insn ^= B_DOT;
2516 if ((insn & ~0x3fffffc) == 0)
2517 {
2518 resolv_vma
2519 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2520 break;
2521 }
2522 off += 4;
2523 if (off > 4)
2524 break;
2525 }
2526
2527 if (resolv_vma)
2528 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2529
2530 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2531 if (relplt != NULL)
2532 {
2533 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2534 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2535 goto free_contents_and_exit_err;
2536
2537 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2538 size += plt_count * sizeof (asymbol);
2539
2540 p = relplt->relocation;
2541 for (i = 0; i < plt_count; i++, p++)
2542 {
2543 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2544 if (p->addend != 0)
2545 size += sizeof ("+0x") - 1 + 16;
2546 }
2547 }
2548 }
2549
2550 if (size == 0)
2551 goto free_contents_and_exit;
2552 s = *ret = bfd_malloc (size);
2553 if (s == NULL)
2554 goto free_contents_and_exit_err;
2555
2556 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2557
2558 for (i = secsymend; i < opdsymend; ++i)
2559 {
2560 bfd_vma ent;
2561
2562 if (syms[i]->value > opd->size - 8)
2563 continue;
2564
2565 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2566 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2567 {
2568 size_t lo, hi;
2569 size_t len;
2570 asection *sec = abfd->sections;
2571
2572 *s = *syms[i];
2573 lo = codesecsym;
2574 hi = codesecsymend;
2575 while (lo < hi)
2576 {
2577 size_t mid = (lo + hi) >> 1;
2578 if (syms[mid]->section->vma < ent)
2579 lo = mid + 1;
2580 else if (syms[mid]->section->vma > ent)
2581 hi = mid;
2582 else
2583 {
2584 sec = syms[mid]->section;
2585 break;
2586 }
2587 }
2588
2589 if (lo >= hi && lo > codesecsym)
2590 sec = syms[lo - 1]->section;
2591
2592 for (; sec != NULL; sec = sec->next)
2593 {
2594 if (sec->vma > ent)
2595 break;
2596 /* SEC_LOAD may not be set if SEC is from a separate debug
2597 info file. */
2598 if ((sec->flags & SEC_ALLOC) == 0)
2599 break;
2600 if ((sec->flags & SEC_CODE) != 0)
2601 s->section = sec;
2602 }
2603 s->flags |= BSF_SYNTHETIC;
2604 s->value = ent - s->section->vma;
2605 s->name = names;
2606 *names++ = '.';
2607 len = strlen (syms[i]->name);
2608 memcpy (names, syms[i]->name, len + 1);
2609 names += len + 1;
2610 /* Have udata.p point back to the original symbol this
2611 synthetic symbol was derived from. */
2612 s->udata.p = syms[i];
2613 s++;
2614 }
2615 }
2616 free (contents);
2617
2618 if (glink != NULL && relplt != NULL)
2619 {
2620 if (resolv_vma)
2621 {
2622 /* Add a symbol for the main glink trampoline. */
2623 memset (s, 0, sizeof *s);
2624 s->the_bfd = abfd;
2625 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2626 s->section = glink;
2627 s->value = resolv_vma - glink->vma;
2628 s->name = names;
2629 memcpy (names, "__glink_PLTresolve",
2630 sizeof ("__glink_PLTresolve"));
2631 names += sizeof ("__glink_PLTresolve");
2632 s++;
2633 count++;
2634 }
2635
2636 /* FIXME: It would be very much nicer to put sym@plt on the
2637 stub rather than on the glink branch table entry. The
2638 objdump disassembler would then use a sensible symbol
2639 name on plt calls. The difficulty in doing so is
2640 a) finding the stubs, and,
2641 b) matching stubs against plt entries, and,
2642 c) there can be multiple stubs for a given plt entry.
2643
2644 Solving (a) could be done by code scanning, but older
2645 ppc64 binaries used different stubs to current code.
2646 (b) is the tricky one since you need to known the toc
2647 pointer for at least one function that uses a pic stub to
2648 be able to calculate the plt address referenced.
2649 (c) means gdb would need to set multiple breakpoints (or
2650 find the glink branch itself) when setting breakpoints
2651 for pending shared library loads. */
2652 p = relplt->relocation;
2653 for (i = 0; i < plt_count; i++, p++)
2654 {
2655 size_t len;
2656
2657 *s = **p->sym_ptr_ptr;
2658 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2659 we are defining a symbol, ensure one of them is set. */
2660 if ((s->flags & BSF_LOCAL) == 0)
2661 s->flags |= BSF_GLOBAL;
2662 s->flags |= BSF_SYNTHETIC;
2663 s->section = glink;
2664 s->value = glink_vma - glink->vma;
2665 s->name = names;
2666 s->udata.p = NULL;
2667 len = strlen ((*p->sym_ptr_ptr)->name);
2668 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2669 names += len;
2670 if (p->addend != 0)
2671 {
2672 memcpy (names, "+0x", sizeof ("+0x") - 1);
2673 names += sizeof ("+0x") - 1;
2674 bfd_sprintf_vma (abfd, names, p->addend);
2675 names += strlen (names);
2676 }
2677 memcpy (names, "@plt", sizeof ("@plt"));
2678 names += sizeof ("@plt");
2679 s++;
2680 if (abi < 2)
2681 {
2682 glink_vma += 8;
2683 if (i >= 0x8000)
2684 glink_vma += 4;
2685 }
2686 else
2687 glink_vma += 4;
2688 }
2689 count += plt_count;
2690 }
2691 }
2692
2693 done:
2694 free (syms);
2695 return count;
2696 }
2697 \f
2698 /* The following functions are specific to the ELF linker, while
2699 functions above are used generally. Those named ppc64_elf_* are
2700 called by the main ELF linker code. They appear in this file more
2701 or less in the order in which they are called. eg.
2702 ppc64_elf_check_relocs is called early in the link process,
2703 ppc64_elf_finish_dynamic_sections is one of the last functions
2704 called.
2705
2706 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2707 functions have both a function code symbol and a function descriptor
2708 symbol. A call to foo in a relocatable object file looks like:
2709
2710 . .text
2711 . x:
2712 . bl .foo
2713 . nop
2714
2715 The function definition in another object file might be:
2716
2717 . .section .opd
2718 . foo: .quad .foo
2719 . .quad .TOC.@tocbase
2720 . .quad 0
2721 .
2722 . .text
2723 . .foo: blr
2724
2725 When the linker resolves the call during a static link, the branch
2726 unsurprisingly just goes to .foo and the .opd information is unused.
2727 If the function definition is in a shared library, things are a little
2728 different: The call goes via a plt call stub, the opd information gets
2729 copied to the plt, and the linker patches the nop.
2730
2731 . x:
2732 . bl .foo_stub
2733 . ld 2,40(1)
2734 .
2735 .
2736 . .foo_stub:
2737 . std 2,40(1) # in practice, the call stub
2738 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2739 . addi 11,11,Lfoo@toc@l # this is the general idea
2740 . ld 12,0(11)
2741 . ld 2,8(11)
2742 . mtctr 12
2743 . ld 11,16(11)
2744 . bctr
2745 .
2746 . .section .plt
2747 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2748
2749 The "reloc ()" notation is supposed to indicate that the linker emits
2750 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2751 copying.
2752
2753 What are the difficulties here? Well, firstly, the relocations
2754 examined by the linker in check_relocs are against the function code
2755 sym .foo, while the dynamic relocation in the plt is emitted against
2756 the function descriptor symbol, foo. Somewhere along the line, we need
2757 to carefully copy dynamic link information from one symbol to the other.
2758 Secondly, the generic part of the elf linker will make .foo a dynamic
2759 symbol as is normal for most other backends. We need foo dynamic
2760 instead, at least for an application final link. However, when
2761 creating a shared library containing foo, we need to have both symbols
2762 dynamic so that references to .foo are satisfied during the early
2763 stages of linking. Otherwise the linker might decide to pull in a
2764 definition from some other object, eg. a static library.
2765
2766 Update: As of August 2004, we support a new convention. Function
2767 calls may use the function descriptor symbol, ie. "bl foo". This
2768 behaves exactly as "bl .foo". */
2769
2770 /* Of those relocs that might be copied as dynamic relocs, this
2771 function selects those that must be copied when linking a shared
2772 library or PIE, even when the symbol is local. */
2773
2774 static int
2775 must_be_dyn_reloc (struct bfd_link_info *info,
2776 enum elf_ppc64_reloc_type r_type)
2777 {
2778 switch (r_type)
2779 {
2780 default:
2781 /* Only relative relocs can be resolved when the object load
2782 address isn't fixed. DTPREL64 is excluded because the
2783 dynamic linker needs to differentiate global dynamic from
2784 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2785 return 1;
2786
2787 case R_PPC64_REL32:
2788 case R_PPC64_REL64:
2789 case R_PPC64_REL30:
2790 case R_PPC64_TOC16:
2791 case R_PPC64_TOC16_DS:
2792 case R_PPC64_TOC16_LO:
2793 case R_PPC64_TOC16_HI:
2794 case R_PPC64_TOC16_HA:
2795 case R_PPC64_TOC16_LO_DS:
2796 return 0;
2797
2798 case R_PPC64_TPREL16:
2799 case R_PPC64_TPREL16_LO:
2800 case R_PPC64_TPREL16_HI:
2801 case R_PPC64_TPREL16_HA:
2802 case R_PPC64_TPREL16_DS:
2803 case R_PPC64_TPREL16_LO_DS:
2804 case R_PPC64_TPREL16_HIGH:
2805 case R_PPC64_TPREL16_HIGHA:
2806 case R_PPC64_TPREL16_HIGHER:
2807 case R_PPC64_TPREL16_HIGHERA:
2808 case R_PPC64_TPREL16_HIGHEST:
2809 case R_PPC64_TPREL16_HIGHESTA:
2810 case R_PPC64_TPREL64:
2811 case R_PPC64_TPREL34:
2812 /* These relocations are relative but in a shared library the
2813 linker doesn't know the thread pointer base. */
2814 return bfd_link_dll (info);
2815 }
2816 }
2817
2818 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2819 copying dynamic variables from a shared lib into an app's .dynbss
2820 section, and instead use a dynamic relocation to point into the
2821 shared lib. With code that gcc generates it is vital that this be
2822 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2823 actually the address of a function descriptor which resides in the
2824 .opd section. gcc uses the descriptor directly rather than going
2825 via the GOT as some other ABIs do, which means that initialized
2826 function pointers reference the descriptor. Thus, a function
2827 pointer initialized to the address of a function in a shared
2828 library will either require a .dynbss copy and a copy reloc, or a
2829 dynamic reloc. Using a .dynbss copy redefines the function
2830 descriptor symbol to point to the copy. This presents a problem as
2831 a PLT entry for that function is also initialized from the function
2832 descriptor symbol and the copy may not be initialized first. */
2833 #define ELIMINATE_COPY_RELOCS 1
2834
2835 /* Section name for stubs is the associated section name plus this
2836 string. */
2837 #define STUB_SUFFIX ".stub"
2838
2839 /* Linker stubs.
2840 ppc_stub_long_branch:
2841 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2842 destination, but a 24 bit branch in a stub section will reach.
2843 . b dest
2844
2845 ppc_stub_plt_branch:
2846 Similar to the above, but a 24 bit branch in the stub section won't
2847 reach its destination.
2848 . addis %r12,%r2,xxx@toc@ha
2849 . ld %r12,xxx@toc@l(%r12)
2850 . mtctr %r12
2851 . bctr
2852
2853 ppc_stub_plt_call:
2854 Used to call a function in a shared library. If it so happens that
2855 the plt entry referenced crosses a 64k boundary, then an extra
2856 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2857 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2858 . addis %r11,%r2,xxx@toc@ha
2859 . ld %r12,xxx+0@toc@l(%r11)
2860 . mtctr %r12
2861 . ld %r2,xxx+8@toc@l(%r11)
2862 . ld %r11,xxx+16@toc@l(%r11)
2863 . bctr
2864
2865 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2866 code to adjust the value and save r2 to support multiple toc sections.
2867 A ppc_stub_long_branch with an r2 offset looks like:
2868 . std %r2,40(%r1)
2869 . addis %r2,%r2,off@ha
2870 . addi %r2,%r2,off@l
2871 . b dest
2872
2873 A ppc_stub_plt_branch with an r2 offset looks like:
2874 . std %r2,40(%r1)
2875 . addis %r12,%r2,xxx@toc@ha
2876 . ld %r12,xxx@toc@l(%r12)
2877 . addis %r2,%r2,off@ha
2878 . addi %r2,%r2,off@l
2879 . mtctr %r12
2880 . bctr
2881
2882 All of the above stubs are shown as their ELFv1 variants. ELFv2
2883 variants exist too, simpler for plt calls since a new toc pointer
2884 and static chain are not loaded by the stub. In addition, ELFv2
2885 has some more complex stubs to handle calls marked with NOTOC
2886 relocs from functions where r2 is not a valid toc pointer. These
2887 come in two flavours, the ones shown below, and _both variants that
2888 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2889 one call is from a function where r2 is used as the toc pointer but
2890 needs a toc adjusting stub for small-model multi-toc, and another
2891 call is from a function where r2 is not valid.
2892 ppc_stub_long_branch_notoc:
2893 . mflr %r12
2894 . bcl 20,31,1f
2895 . 1:
2896 . mflr %r11
2897 . mtlr %r12
2898 . addis %r12,%r11,dest-1b@ha
2899 . addi %r12,%r12,dest-1b@l
2900 . b dest
2901
2902 ppc_stub_plt_branch_notoc:
2903 . mflr %r12
2904 . bcl 20,31,1f
2905 . 1:
2906 . mflr %r11
2907 . mtlr %r12
2908 . lis %r12,xxx-1b@highest
2909 . ori %r12,%r12,xxx-1b@higher
2910 . sldi %r12,%r12,32
2911 . oris %r12,%r12,xxx-1b@high
2912 . ori %r12,%r12,xxx-1b@l
2913 . add %r12,%r11,%r12
2914 . mtctr %r12
2915 . bctr
2916
2917 ppc_stub_plt_call_notoc:
2918 . mflr %r12
2919 . bcl 20,31,1f
2920 . 1:
2921 . mflr %r11
2922 . mtlr %r12
2923 . lis %r12,xxx-1b@highest
2924 . ori %r12,%r12,xxx-1b@higher
2925 . sldi %r12,%r12,32
2926 . oris %r12,%r12,xxx-1b@high
2927 . ori %r12,%r12,xxx-1b@l
2928 . ldx %r12,%r11,%r12
2929 . mtctr %r12
2930 . bctr
2931
2932 There are also ELFv1 power10 variants of these stubs.
2933 ppc_stub_long_branch_notoc:
2934 . pla %r12,dest@pcrel
2935 . b dest
2936 ppc_stub_plt_branch_notoc:
2937 . lis %r11,(dest-1f)@highesta34
2938 . ori %r11,%r11,(dest-1f)@highera34
2939 . sldi %r11,%r11,34
2940 . 1: pla %r12,dest@pcrel
2941 . add %r12,%r11,%r12
2942 . mtctr %r12
2943 . bctr
2944 ppc_stub_plt_call_notoc:
2945 . lis %r11,(xxx-1f)@highesta34
2946 . ori %r11,%r11,(xxx-1f)@highera34
2947 . sldi %r11,%r11,34
2948 . 1: pla %r12,xxx@pcrel
2949 . ldx %r12,%r11,%r12
2950 . mtctr %r12
2951 . bctr
2952
2953 In cases where the high instructions would add zero, they are
2954 omitted and following instructions modified in some cases.
2955 For example, a power10 ppc_stub_plt_call_notoc might simplify down
2956 to
2957 . pld %r12,xxx@pcrel
2958 . mtctr %r12
2959 . bctr
2960
2961 For a given stub group (a set of sections all using the same toc
2962 pointer value) there will be just one stub type used for any
2963 particular function symbol. For example, if printf is called from
2964 code with the tocsave optimization (ie. r2 saved in function
2965 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2966 and from other code without the tocsave optimization requiring a
2967 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2968 type will be created. Calls with the tocsave optimization will
2969 enter this stub after the instruction saving r2. A similar
2970 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2971 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2972 to call an external function like printf. If other calls to printf
2973 require a ppc_stub_plt_call linkage stub then a single
2974 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2975 call. If other calls to printf require a ppc_stub_plt_call_r2save
2976 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2977 be created and calls not requiring r2 to be saved will enter the
2978 stub after the r2 save instruction. There is an analogous
2979 hierarchy of long branch and plt branch stubs for local call
2980 linkage. */
2981
2982 enum ppc_stub_type
2983 {
2984 ppc_stub_none,
2985 ppc_stub_long_branch,
2986 ppc_stub_long_branch_r2off,
2987 ppc_stub_long_branch_notoc,
2988 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2989 ppc_stub_plt_branch,
2990 ppc_stub_plt_branch_r2off,
2991 ppc_stub_plt_branch_notoc,
2992 ppc_stub_plt_branch_both,
2993 ppc_stub_plt_call,
2994 ppc_stub_plt_call_r2save,
2995 ppc_stub_plt_call_notoc,
2996 ppc_stub_plt_call_both,
2997 ppc_stub_global_entry,
2998 ppc_stub_save_res
2999 };
3000
3001 /* Information on stub grouping. */
3002 struct map_stub
3003 {
3004 /* The stub section. */
3005 asection *stub_sec;
3006 /* This is the section to which stubs in the group will be attached. */
3007 asection *link_sec;
3008 /* Next group. */
3009 struct map_stub *next;
3010 /* Whether to emit a copy of register save/restore functions in this
3011 group. */
3012 int needs_save_res;
3013 /* Current offset within stubs after the insn restoring lr in a
3014 _notoc or _both stub using bcl for pc-relative addressing, or
3015 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3016 unsigned int lr_restore;
3017 /* Accumulated size of EH info emitted to describe return address
3018 if stubs modify lr. Does not include 17 byte FDE header. */
3019 unsigned int eh_size;
3020 /* Offset in glink_eh_frame to the start of EH info for this group. */
3021 unsigned int eh_base;
3022 };
3023
3024 struct ppc_stub_hash_entry
3025 {
3026 /* Base hash table entry structure. */
3027 struct bfd_hash_entry root;
3028
3029 enum ppc_stub_type stub_type;
3030
3031 /* Group information. */
3032 struct map_stub *group;
3033
3034 /* Offset within stub_sec of the beginning of this stub. */
3035 bfd_vma stub_offset;
3036
3037 /* Given the symbol's value and its section we can determine its final
3038 value when building the stubs (so the stub knows where to jump. */
3039 bfd_vma target_value;
3040 asection *target_section;
3041
3042 /* The symbol table entry, if any, that this was derived from. */
3043 struct ppc_link_hash_entry *h;
3044 struct plt_entry *plt_ent;
3045
3046 /* Symbol type. */
3047 unsigned char symtype;
3048
3049 /* Symbol st_other. */
3050 unsigned char other;
3051 };
3052
3053 struct ppc_branch_hash_entry
3054 {
3055 /* Base hash table entry structure. */
3056 struct bfd_hash_entry root;
3057
3058 /* Offset within branch lookup table. */
3059 unsigned int offset;
3060
3061 /* Generation marker. */
3062 unsigned int iter;
3063 };
3064
3065 /* Used to track dynamic relocations for local symbols. */
3066 struct ppc_dyn_relocs
3067 {
3068 struct ppc_dyn_relocs *next;
3069
3070 /* The input section of the reloc. */
3071 asection *sec;
3072
3073 /* Total number of relocs copied for the input section. */
3074 unsigned int count : 31;
3075
3076 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3077 unsigned int ifunc : 1;
3078 };
3079
3080 struct ppc_link_hash_entry
3081 {
3082 struct elf_link_hash_entry elf;
3083
3084 union
3085 {
3086 /* A pointer to the most recently used stub hash entry against this
3087 symbol. */
3088 struct ppc_stub_hash_entry *stub_cache;
3089
3090 /* A pointer to the next symbol starting with a '.' */
3091 struct ppc_link_hash_entry *next_dot_sym;
3092 } u;
3093
3094 /* Link between function code and descriptor symbols. */
3095 struct ppc_link_hash_entry *oh;
3096
3097 /* Flag function code and descriptor symbols. */
3098 unsigned int is_func:1;
3099 unsigned int is_func_descriptor:1;
3100 unsigned int fake:1;
3101
3102 /* Whether global opd/toc sym has been adjusted or not.
3103 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3104 should be set for all globals defined in any opd/toc section. */
3105 unsigned int adjust_done:1;
3106
3107 /* Set if this is an out-of-line register save/restore function,
3108 with non-standard calling convention. */
3109 unsigned int save_res:1;
3110
3111 /* Set if a duplicate symbol with non-zero localentry is detected,
3112 even when the duplicate symbol does not provide a definition. */
3113 unsigned int non_zero_localentry:1;
3114
3115 /* Contexts in which symbol is used in the GOT (or TOC).
3116 Bits are or'd into the mask as the corresponding relocs are
3117 encountered during check_relocs, with TLS_TLS being set when any
3118 of the other TLS bits are set. tls_optimize clears bits when
3119 optimizing to indicate the corresponding GOT entry type is not
3120 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3121 set TLS_GDIE when a GD reloc turns into an IE one.
3122 These flags are also kept for local symbols. */
3123 #define TLS_TLS 1 /* Any TLS reloc. */
3124 #define TLS_GD 2 /* GD reloc. */
3125 #define TLS_LD 4 /* LD reloc. */
3126 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3127 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3128 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3129 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3130 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3131 unsigned char tls_mask;
3132
3133 /* The above field is also used to mark function symbols. In which
3134 case TLS_TLS will be 0. */
3135 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3136 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3137 #define NON_GOT 256 /* local symbol plt, not stored. */
3138 };
3139
3140 static inline struct ppc_link_hash_entry *
3141 ppc_elf_hash_entry (struct elf_link_hash_entry *ent)
3142 {
3143 return (struct ppc_link_hash_entry *) ent;
3144 }
3145
3146 /* ppc64 ELF linker hash table. */
3147
3148 struct ppc_link_hash_table
3149 {
3150 struct elf_link_hash_table elf;
3151
3152 /* The stub hash table. */
3153 struct bfd_hash_table stub_hash_table;
3154
3155 /* Another hash table for plt_branch stubs. */
3156 struct bfd_hash_table branch_hash_table;
3157
3158 /* Hash table for function prologue tocsave. */
3159 htab_t tocsave_htab;
3160
3161 /* Various options and other info passed from the linker. */
3162 struct ppc64_elf_params *params;
3163
3164 /* The size of sec_info below. */
3165 unsigned int sec_info_arr_size;
3166
3167 /* Per-section array of extra section info. Done this way rather
3168 than as part of ppc64_elf_section_data so we have the info for
3169 non-ppc64 sections. */
3170 struct
3171 {
3172 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3173 bfd_vma toc_off;
3174
3175 union
3176 {
3177 /* The section group that this section belongs to. */
3178 struct map_stub *group;
3179 /* A temp section list pointer. */
3180 asection *list;
3181 } u;
3182 } *sec_info;
3183
3184 /* Linked list of groups. */
3185 struct map_stub *group;
3186
3187 /* Temp used when calculating TOC pointers. */
3188 bfd_vma toc_curr;
3189 bfd *toc_bfd;
3190 asection *toc_first_sec;
3191
3192 /* Used when adding symbols. */
3193 struct ppc_link_hash_entry *dot_syms;
3194
3195 /* Shortcuts to get to dynamic linker sections. */
3196 asection *glink;
3197 asection *global_entry;
3198 asection *sfpr;
3199 asection *pltlocal;
3200 asection *relpltlocal;
3201 asection *brlt;
3202 asection *relbrlt;
3203 asection *glink_eh_frame;
3204
3205 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3206 struct ppc_link_hash_entry *tls_get_addr;
3207 struct ppc_link_hash_entry *tls_get_addr_fd;
3208 struct ppc_link_hash_entry *tga_desc;
3209 struct ppc_link_hash_entry *tga_desc_fd;
3210 struct map_stub *tga_group;
3211
3212 /* The size of reliplt used by got entry relocs. */
3213 bfd_size_type got_reli_size;
3214
3215 /* Statistics. */
3216 unsigned long stub_count[ppc_stub_global_entry];
3217
3218 /* Number of stubs against global syms. */
3219 unsigned long stub_globals;
3220
3221 /* Set if we're linking code with function descriptors. */
3222 unsigned int opd_abi:1;
3223
3224 /* Support for multiple toc sections. */
3225 unsigned int do_multi_toc:1;
3226 unsigned int multi_toc_needed:1;
3227 unsigned int second_toc_pass:1;
3228 unsigned int do_toc_opt:1;
3229
3230 /* Set if tls optimization is enabled. */
3231 unsigned int do_tls_opt:1;
3232
3233 /* Set if inline plt calls should be converted to direct calls. */
3234 unsigned int can_convert_all_inline_plt:1;
3235
3236 /* Set on error. */
3237 unsigned int stub_error:1;
3238
3239 /* Whether func_desc_adjust needs to be run over symbols. */
3240 unsigned int need_func_desc_adj:1;
3241
3242 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3243 unsigned int has_plt_localentry0:1;
3244
3245 /* Whether calls are made via the PLT from NOTOC functions. */
3246 unsigned int notoc_plt:1;
3247
3248 /* Whether any code linked seems to be Power10. */
3249 unsigned int has_power10_relocs:1;
3250
3251 /* Incremented every time we size stubs. */
3252 unsigned int stub_iteration;
3253 };
3254
3255 /* Rename some of the generic section flags to better document how they
3256 are used here. */
3257
3258 /* Nonzero if this section has TLS related relocations. */
3259 #define has_tls_reloc sec_flg0
3260
3261 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3262 relocations. */
3263 #define nomark_tls_get_addr sec_flg1
3264
3265 /* Nonzero if this section has any toc or got relocs. */
3266 #define has_toc_reloc sec_flg2
3267
3268 /* Nonzero if this section has a call to another section that uses
3269 the toc or got. */
3270 #define makes_toc_func_call sec_flg3
3271
3272 /* Recursion protection when determining above flag. */
3273 #define call_check_in_progress sec_flg4
3274 #define call_check_done sec_flg5
3275
3276 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3277
3278 #define ppc_hash_table(p) \
3279 ((is_elf_hash_table ((p)->hash) \
3280 && elf_hash_table_id (elf_hash_table (p)) == PPC64_ELF_DATA) \
3281 ? (struct ppc_link_hash_table *) (p)->hash : NULL)
3282
3283 #define ppc_stub_hash_lookup(table, string, create, copy) \
3284 ((struct ppc_stub_hash_entry *) \
3285 bfd_hash_lookup ((table), (string), (create), (copy)))
3286
3287 #define ppc_branch_hash_lookup(table, string, create, copy) \
3288 ((struct ppc_branch_hash_entry *) \
3289 bfd_hash_lookup ((table), (string), (create), (copy)))
3290
3291 /* Create an entry in the stub hash table. */
3292
3293 static struct bfd_hash_entry *
3294 stub_hash_newfunc (struct bfd_hash_entry *entry,
3295 struct bfd_hash_table *table,
3296 const char *string)
3297 {
3298 /* Allocate the structure if it has not already been allocated by a
3299 subclass. */
3300 if (entry == NULL)
3301 {
3302 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3303 if (entry == NULL)
3304 return entry;
3305 }
3306
3307 /* Call the allocation method of the superclass. */
3308 entry = bfd_hash_newfunc (entry, table, string);
3309 if (entry != NULL)
3310 {
3311 struct ppc_stub_hash_entry *eh;
3312
3313 /* Initialize the local fields. */
3314 eh = (struct ppc_stub_hash_entry *) entry;
3315 eh->stub_type = ppc_stub_none;
3316 eh->group = NULL;
3317 eh->stub_offset = 0;
3318 eh->target_value = 0;
3319 eh->target_section = NULL;
3320 eh->h = NULL;
3321 eh->plt_ent = NULL;
3322 eh->other = 0;
3323 }
3324
3325 return entry;
3326 }
3327
3328 /* Create an entry in the branch hash table. */
3329
3330 static struct bfd_hash_entry *
3331 branch_hash_newfunc (struct bfd_hash_entry *entry,
3332 struct bfd_hash_table *table,
3333 const char *string)
3334 {
3335 /* Allocate the structure if it has not already been allocated by a
3336 subclass. */
3337 if (entry == NULL)
3338 {
3339 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3340 if (entry == NULL)
3341 return entry;
3342 }
3343
3344 /* Call the allocation method of the superclass. */
3345 entry = bfd_hash_newfunc (entry, table, string);
3346 if (entry != NULL)
3347 {
3348 struct ppc_branch_hash_entry *eh;
3349
3350 /* Initialize the local fields. */
3351 eh = (struct ppc_branch_hash_entry *) entry;
3352 eh->offset = 0;
3353 eh->iter = 0;
3354 }
3355
3356 return entry;
3357 }
3358
3359 /* Create an entry in a ppc64 ELF linker hash table. */
3360
3361 static struct bfd_hash_entry *
3362 link_hash_newfunc (struct bfd_hash_entry *entry,
3363 struct bfd_hash_table *table,
3364 const char *string)
3365 {
3366 /* Allocate the structure if it has not already been allocated by a
3367 subclass. */
3368 if (entry == NULL)
3369 {
3370 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3371 if (entry == NULL)
3372 return entry;
3373 }
3374
3375 /* Call the allocation method of the superclass. */
3376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3377 if (entry != NULL)
3378 {
3379 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3380
3381 memset (&eh->u.stub_cache, 0,
3382 (sizeof (struct ppc_link_hash_entry)
3383 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3384
3385 /* When making function calls, old ABI code references function entry
3386 points (dot symbols), while new ABI code references the function
3387 descriptor symbol. We need to make any combination of reference and
3388 definition work together, without breaking archive linking.
3389
3390 For a defined function "foo" and an undefined call to "bar":
3391 An old object defines "foo" and ".foo", references ".bar" (possibly
3392 "bar" too).
3393 A new object defines "foo" and references "bar".
3394
3395 A new object thus has no problem with its undefined symbols being
3396 satisfied by definitions in an old object. On the other hand, the
3397 old object won't have ".bar" satisfied by a new object.
3398
3399 Keep a list of newly added dot-symbols. */
3400
3401 if (string[0] == '.')
3402 {
3403 struct ppc_link_hash_table *htab;
3404
3405 htab = (struct ppc_link_hash_table *) table;
3406 eh->u.next_dot_sym = htab->dot_syms;
3407 htab->dot_syms = eh;
3408 }
3409 }
3410
3411 return entry;
3412 }
3413
3414 struct tocsave_entry
3415 {
3416 asection *sec;
3417 bfd_vma offset;
3418 };
3419
3420 static hashval_t
3421 tocsave_htab_hash (const void *p)
3422 {
3423 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3424 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3425 }
3426
3427 static int
3428 tocsave_htab_eq (const void *p1, const void *p2)
3429 {
3430 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3431 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3432 return e1->sec == e2->sec && e1->offset == e2->offset;
3433 }
3434
3435 /* Destroy a ppc64 ELF linker hash table. */
3436
3437 static void
3438 ppc64_elf_link_hash_table_free (bfd *obfd)
3439 {
3440 struct ppc_link_hash_table *htab;
3441
3442 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3443 if (htab->tocsave_htab)
3444 htab_delete (htab->tocsave_htab);
3445 bfd_hash_table_free (&htab->branch_hash_table);
3446 bfd_hash_table_free (&htab->stub_hash_table);
3447 _bfd_elf_link_hash_table_free (obfd);
3448 }
3449
3450 /* Create a ppc64 ELF linker hash table. */
3451
3452 static struct bfd_link_hash_table *
3453 ppc64_elf_link_hash_table_create (bfd *abfd)
3454 {
3455 struct ppc_link_hash_table *htab;
3456 size_t amt = sizeof (struct ppc_link_hash_table);
3457
3458 htab = bfd_zmalloc (amt);
3459 if (htab == NULL)
3460 return NULL;
3461
3462 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3463 sizeof (struct ppc_link_hash_entry),
3464 PPC64_ELF_DATA))
3465 {
3466 free (htab);
3467 return NULL;
3468 }
3469
3470 /* Init the stub hash table too. */
3471 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3472 sizeof (struct ppc_stub_hash_entry)))
3473 {
3474 _bfd_elf_link_hash_table_free (abfd);
3475 return NULL;
3476 }
3477
3478 /* And the branch hash table. */
3479 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3480 sizeof (struct ppc_branch_hash_entry)))
3481 {
3482 bfd_hash_table_free (&htab->stub_hash_table);
3483 _bfd_elf_link_hash_table_free (abfd);
3484 return NULL;
3485 }
3486
3487 htab->tocsave_htab = htab_try_create (1024,
3488 tocsave_htab_hash,
3489 tocsave_htab_eq,
3490 NULL);
3491 if (htab->tocsave_htab == NULL)
3492 {
3493 ppc64_elf_link_hash_table_free (abfd);
3494 return NULL;
3495 }
3496 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3497
3498 /* Initializing two fields of the union is just cosmetic. We really
3499 only care about glist, but when compiled on a 32-bit host the
3500 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3501 debugger inspection of these fields look nicer. */
3502 htab->elf.init_got_refcount.refcount = 0;
3503 htab->elf.init_got_refcount.glist = NULL;
3504 htab->elf.init_plt_refcount.refcount = 0;
3505 htab->elf.init_plt_refcount.glist = NULL;
3506 htab->elf.init_got_offset.offset = 0;
3507 htab->elf.init_got_offset.glist = NULL;
3508 htab->elf.init_plt_offset.offset = 0;
3509 htab->elf.init_plt_offset.glist = NULL;
3510
3511 return &htab->elf.root;
3512 }
3513
3514 /* Create sections for linker generated code. */
3515
3516 static bfd_boolean
3517 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3518 {
3519 struct ppc_link_hash_table *htab;
3520 flagword flags;
3521
3522 htab = ppc_hash_table (info);
3523
3524 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3525 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3526 if (htab->params->save_restore_funcs)
3527 {
3528 /* Create .sfpr for code to save and restore fp regs. */
3529 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3530 flags);
3531 if (htab->sfpr == NULL
3532 || !bfd_set_section_alignment (htab->sfpr, 2))
3533 return FALSE;
3534 }
3535
3536 if (bfd_link_relocatable (info))
3537 return TRUE;
3538
3539 /* Create .glink for lazy dynamic linking support. */
3540 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3541 flags);
3542 if (htab->glink == NULL
3543 || !bfd_set_section_alignment (htab->glink, 3))
3544 return FALSE;
3545
3546 /* The part of .glink used by global entry stubs, separate so that
3547 it can be aligned appropriately without affecting htab->glink. */
3548 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3549 flags);
3550 if (htab->global_entry == NULL
3551 || !bfd_set_section_alignment (htab->global_entry, 2))
3552 return FALSE;
3553
3554 if (!info->no_ld_generated_unwind_info)
3555 {
3556 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3557 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3558 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3559 ".eh_frame",
3560 flags);
3561 if (htab->glink_eh_frame == NULL
3562 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3563 return FALSE;
3564 }
3565
3566 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3567 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3568 if (htab->elf.iplt == NULL
3569 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3570 return FALSE;
3571
3572 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3573 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3574 htab->elf.irelplt
3575 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3576 if (htab->elf.irelplt == NULL
3577 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3578 return FALSE;
3579
3580 /* Create branch lookup table for plt_branch stubs. */
3581 flags = (SEC_ALLOC | SEC_LOAD
3582 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3583 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3584 flags);
3585 if (htab->brlt == NULL
3586 || !bfd_set_section_alignment (htab->brlt, 3))
3587 return FALSE;
3588
3589 /* Local plt entries, put in .branch_lt but a separate section for
3590 convenience. */
3591 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3592 flags);
3593 if (htab->pltlocal == NULL
3594 || !bfd_set_section_alignment (htab->pltlocal, 3))
3595 return FALSE;
3596
3597 if (!bfd_link_pic (info))
3598 return TRUE;
3599
3600 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3601 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3602 htab->relbrlt
3603 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3604 if (htab->relbrlt == NULL
3605 || !bfd_set_section_alignment (htab->relbrlt, 3))
3606 return FALSE;
3607
3608 htab->relpltlocal
3609 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3610 if (htab->relpltlocal == NULL
3611 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3612 return FALSE;
3613
3614 return TRUE;
3615 }
3616
3617 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3618
3619 bfd_boolean
3620 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3621 struct ppc64_elf_params *params)
3622 {
3623 struct ppc_link_hash_table *htab;
3624
3625 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3626
3627 /* Always hook our dynamic sections into the first bfd, which is the
3628 linker created stub bfd. This ensures that the GOT header is at
3629 the start of the output TOC section. */
3630 htab = ppc_hash_table (info);
3631 htab->elf.dynobj = params->stub_bfd;
3632 htab->params = params;
3633
3634 return create_linkage_sections (htab->elf.dynobj, info);
3635 }
3636
3637 /* Build a name for an entry in the stub hash table. */
3638
3639 static char *
3640 ppc_stub_name (const asection *input_section,
3641 const asection *sym_sec,
3642 const struct ppc_link_hash_entry *h,
3643 const Elf_Internal_Rela *rel)
3644 {
3645 char *stub_name;
3646 ssize_t len;
3647
3648 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3649 offsets from a sym as a branch target? In fact, we could
3650 probably assume the addend is always zero. */
3651 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3652
3653 if (h)
3654 {
3655 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3656 stub_name = bfd_malloc (len);
3657 if (stub_name == NULL)
3658 return stub_name;
3659
3660 len = sprintf (stub_name, "%08x.%s+%x",
3661 input_section->id & 0xffffffff,
3662 h->elf.root.root.string,
3663 (int) rel->r_addend & 0xffffffff);
3664 }
3665 else
3666 {
3667 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3668 stub_name = bfd_malloc (len);
3669 if (stub_name == NULL)
3670 return stub_name;
3671
3672 len = sprintf (stub_name, "%08x.%x:%x+%x",
3673 input_section->id & 0xffffffff,
3674 sym_sec->id & 0xffffffff,
3675 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3676 (int) rel->r_addend & 0xffffffff);
3677 }
3678 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3679 stub_name[len - 2] = 0;
3680 return stub_name;
3681 }
3682
3683 /* If mixing power10 with non-power10 code and --power10-stubs is not
3684 specified (or is auto) then calls using @notoc relocations that
3685 need a stub will utilize power10 instructions in the stub, and
3686 calls without @notoc relocations will not use power10 instructions.
3687 The two classes of stubs are stored in separate stub_hash_table
3688 entries having the same key string. The two entries will always be
3689 adjacent on entry->root.next chain, even if hash table resizing
3690 occurs. This function selects the correct entry to use. */
3691
3692 static struct ppc_stub_hash_entry *
3693 select_alt_stub (struct ppc_stub_hash_entry *entry, bfd_boolean notoc)
3694 {
3695 bfd_boolean have_notoc;
3696
3697 have_notoc = (entry->stub_type == ppc_stub_plt_call_notoc
3698 || entry->stub_type == ppc_stub_plt_branch_notoc
3699 || entry->stub_type == ppc_stub_long_branch_notoc);
3700
3701 if (have_notoc != notoc)
3702 {
3703 const char *stub_name = entry->root.string;
3704
3705 entry = (struct ppc_stub_hash_entry *) entry->root.next;
3706 if (entry != NULL
3707 && entry->root.string != stub_name)
3708 entry = NULL;
3709 }
3710
3711 return entry;
3712 }
3713
3714 /* Look up an entry in the stub hash. Stub entries are cached because
3715 creating the stub name takes a bit of time. */
3716
3717 static struct ppc_stub_hash_entry *
3718 ppc_get_stub_entry (const asection *input_section,
3719 const asection *sym_sec,
3720 struct ppc_link_hash_entry *h,
3721 const Elf_Internal_Rela *rel,
3722 struct ppc_link_hash_table *htab)
3723 {
3724 struct ppc_stub_hash_entry *stub_entry;
3725 struct map_stub *group;
3726
3727 /* If this input section is part of a group of sections sharing one
3728 stub section, then use the id of the first section in the group.
3729 Stub names need to include a section id, as there may well be
3730 more than one stub used to reach say, printf, and we need to
3731 distinguish between them. */
3732 group = htab->sec_info[input_section->id].u.group;
3733 if (group == NULL)
3734 return NULL;
3735
3736 if (h != NULL && h->u.stub_cache != NULL
3737 && h->u.stub_cache->h == h
3738 && h->u.stub_cache->group == group)
3739 {
3740 stub_entry = h->u.stub_cache;
3741 }
3742 else
3743 {
3744 char *stub_name;
3745
3746 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3747 if (stub_name == NULL)
3748 return NULL;
3749
3750 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3751 stub_name, FALSE, FALSE);
3752 if (h != NULL)
3753 h->u.stub_cache = stub_entry;
3754
3755 free (stub_name);
3756 }
3757
3758 if (stub_entry != NULL && htab->params->power10_stubs == -1)
3759 {
3760 bfd_boolean notoc = ELF64_R_TYPE (rel->r_info) == R_PPC64_REL24_NOTOC;
3761
3762 stub_entry = select_alt_stub (stub_entry, notoc);
3763 }
3764
3765 return stub_entry;
3766 }
3767
3768 /* Add a new stub entry to the stub hash. Not all fields of the new
3769 stub entry are initialised. */
3770
3771 static struct ppc_stub_hash_entry *
3772 ppc_add_stub (const char *stub_name,
3773 asection *section,
3774 struct bfd_link_info *info)
3775 {
3776 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3777 struct map_stub *group;
3778 asection *link_sec;
3779 asection *stub_sec;
3780 struct ppc_stub_hash_entry *stub_entry;
3781
3782 group = htab->sec_info[section->id].u.group;
3783 link_sec = group->link_sec;
3784 stub_sec = group->stub_sec;
3785 if (stub_sec == NULL)
3786 {
3787 size_t namelen;
3788 bfd_size_type len;
3789 char *s_name;
3790
3791 namelen = strlen (link_sec->name);
3792 len = namelen + sizeof (STUB_SUFFIX);
3793 s_name = bfd_alloc (htab->params->stub_bfd, len);
3794 if (s_name == NULL)
3795 return NULL;
3796
3797 memcpy (s_name, link_sec->name, namelen);
3798 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3799 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3800 if (stub_sec == NULL)
3801 return NULL;
3802 group->stub_sec = stub_sec;
3803 }
3804
3805 /* Enter this entry into the linker stub hash table. */
3806 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3807 TRUE, FALSE);
3808 if (stub_entry == NULL)
3809 {
3810 /* xgettext:c-format */
3811 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3812 section->owner, stub_name);
3813 return NULL;
3814 }
3815
3816 stub_entry->group = group;
3817 stub_entry->stub_offset = 0;
3818 return stub_entry;
3819 }
3820
3821 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3822 not already done. */
3823
3824 static bfd_boolean
3825 create_got_section (bfd *abfd, struct bfd_link_info *info)
3826 {
3827 asection *got, *relgot;
3828 flagword flags;
3829 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3830
3831 if (!is_ppc64_elf (abfd))
3832 return FALSE;
3833 if (htab == NULL)
3834 return FALSE;
3835
3836 if (!htab->elf.sgot
3837 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3838 return FALSE;
3839
3840 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3841 | SEC_LINKER_CREATED);
3842
3843 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3844 if (!got
3845 || !bfd_set_section_alignment (got, 3))
3846 return FALSE;
3847
3848 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3849 flags | SEC_READONLY);
3850 if (!relgot
3851 || !bfd_set_section_alignment (relgot, 3))
3852 return FALSE;
3853
3854 ppc64_elf_tdata (abfd)->got = got;
3855 ppc64_elf_tdata (abfd)->relgot = relgot;
3856 return TRUE;
3857 }
3858
3859 /* Follow indirect and warning symbol links. */
3860
3861 static inline struct bfd_link_hash_entry *
3862 follow_link (struct bfd_link_hash_entry *h)
3863 {
3864 while (h->type == bfd_link_hash_indirect
3865 || h->type == bfd_link_hash_warning)
3866 h = h->u.i.link;
3867 return h;
3868 }
3869
3870 static inline struct elf_link_hash_entry *
3871 elf_follow_link (struct elf_link_hash_entry *h)
3872 {
3873 return (struct elf_link_hash_entry *) follow_link (&h->root);
3874 }
3875
3876 static inline struct ppc_link_hash_entry *
3877 ppc_follow_link (struct ppc_link_hash_entry *h)
3878 {
3879 return ppc_elf_hash_entry (elf_follow_link (&h->elf));
3880 }
3881
3882 /* Merge PLT info on FROM with that on TO. */
3883
3884 static void
3885 move_plt_plist (struct ppc_link_hash_entry *from,
3886 struct ppc_link_hash_entry *to)
3887 {
3888 if (from->elf.plt.plist != NULL)
3889 {
3890 if (to->elf.plt.plist != NULL)
3891 {
3892 struct plt_entry **entp;
3893 struct plt_entry *ent;
3894
3895 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3896 {
3897 struct plt_entry *dent;
3898
3899 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3900 if (dent->addend == ent->addend)
3901 {
3902 dent->plt.refcount += ent->plt.refcount;
3903 *entp = ent->next;
3904 break;
3905 }
3906 if (dent == NULL)
3907 entp = &ent->next;
3908 }
3909 *entp = to->elf.plt.plist;
3910 }
3911
3912 to->elf.plt.plist = from->elf.plt.plist;
3913 from->elf.plt.plist = NULL;
3914 }
3915 }
3916
3917 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3918
3919 static void
3920 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3921 struct elf_link_hash_entry *dir,
3922 struct elf_link_hash_entry *ind)
3923 {
3924 struct ppc_link_hash_entry *edir, *eind;
3925
3926 edir = ppc_elf_hash_entry (dir);
3927 eind = ppc_elf_hash_entry (ind);
3928
3929 edir->is_func |= eind->is_func;
3930 edir->is_func_descriptor |= eind->is_func_descriptor;
3931 edir->tls_mask |= eind->tls_mask;
3932 if (eind->oh != NULL)
3933 edir->oh = ppc_follow_link (eind->oh);
3934
3935 if (edir->elf.versioned != versioned_hidden)
3936 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3937 edir->elf.ref_regular |= eind->elf.ref_regular;
3938 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3939 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3940 edir->elf.needs_plt |= eind->elf.needs_plt;
3941 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3942
3943 /* If we were called to copy over info for a weak sym, don't copy
3944 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3945 in order to simplify readonly_dynrelocs and save a field in the
3946 symbol hash entry, but that means dyn_relocs can't be used in any
3947 tests about a specific symbol, or affect other symbol flags which
3948 are then tested. */
3949 if (eind->elf.root.type != bfd_link_hash_indirect)
3950 return;
3951
3952 /* Copy over any dynamic relocs we may have on the indirect sym. */
3953 if (ind->dyn_relocs != NULL)
3954 {
3955 if (dir->dyn_relocs != NULL)
3956 {
3957 struct elf_dyn_relocs **pp;
3958 struct elf_dyn_relocs *p;
3959
3960 /* Add reloc counts against the indirect sym to the direct sym
3961 list. Merge any entries against the same section. */
3962 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
3963 {
3964 struct elf_dyn_relocs *q;
3965
3966 for (q = dir->dyn_relocs; q != NULL; q = q->next)
3967 if (q->sec == p->sec)
3968 {
3969 q->pc_count += p->pc_count;
3970 q->count += p->count;
3971 *pp = p->next;
3972 break;
3973 }
3974 if (q == NULL)
3975 pp = &p->next;
3976 }
3977 *pp = dir->dyn_relocs;
3978 }
3979
3980 dir->dyn_relocs = ind->dyn_relocs;
3981 ind->dyn_relocs = NULL;
3982 }
3983
3984 /* Copy over got entries that we may have already seen to the
3985 symbol which just became indirect. */
3986 if (eind->elf.got.glist != NULL)
3987 {
3988 if (edir->elf.got.glist != NULL)
3989 {
3990 struct got_entry **entp;
3991 struct got_entry *ent;
3992
3993 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3994 {
3995 struct got_entry *dent;
3996
3997 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3998 if (dent->addend == ent->addend
3999 && dent->owner == ent->owner
4000 && dent->tls_type == ent->tls_type)
4001 {
4002 dent->got.refcount += ent->got.refcount;
4003 *entp = ent->next;
4004 break;
4005 }
4006 if (dent == NULL)
4007 entp = &ent->next;
4008 }
4009 *entp = edir->elf.got.glist;
4010 }
4011
4012 edir->elf.got.glist = eind->elf.got.glist;
4013 eind->elf.got.glist = NULL;
4014 }
4015
4016 /* And plt entries. */
4017 move_plt_plist (eind, edir);
4018
4019 if (eind->elf.dynindx != -1)
4020 {
4021 if (edir->elf.dynindx != -1)
4022 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4023 edir->elf.dynstr_index);
4024 edir->elf.dynindx = eind->elf.dynindx;
4025 edir->elf.dynstr_index = eind->elf.dynstr_index;
4026 eind->elf.dynindx = -1;
4027 eind->elf.dynstr_index = 0;
4028 }
4029 }
4030
4031 /* Find the function descriptor hash entry from the given function code
4032 hash entry FH. Link the entries via their OH fields. */
4033
4034 static struct ppc_link_hash_entry *
4035 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4036 {
4037 struct ppc_link_hash_entry *fdh = fh->oh;
4038
4039 if (fdh == NULL)
4040 {
4041 const char *fd_name = fh->elf.root.root.string + 1;
4042
4043 fdh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, fd_name,
4044 FALSE, FALSE, FALSE));
4045 if (fdh == NULL)
4046 return fdh;
4047
4048 fdh->is_func_descriptor = 1;
4049 fdh->oh = fh;
4050 fh->is_func = 1;
4051 fh->oh = fdh;
4052 }
4053
4054 fdh = ppc_follow_link (fdh);
4055 fdh->is_func_descriptor = 1;
4056 fdh->oh = fh;
4057 return fdh;
4058 }
4059
4060 /* Make a fake function descriptor sym for the undefined code sym FH. */
4061
4062 static struct ppc_link_hash_entry *
4063 make_fdh (struct bfd_link_info *info,
4064 struct ppc_link_hash_entry *fh)
4065 {
4066 bfd *abfd = fh->elf.root.u.undef.abfd;
4067 struct bfd_link_hash_entry *bh = NULL;
4068 struct ppc_link_hash_entry *fdh;
4069 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
4070 ? BSF_WEAK
4071 : BSF_GLOBAL);
4072
4073 if (!_bfd_generic_link_add_one_symbol (info, abfd,
4074 fh->elf.root.root.string + 1,
4075 flags, bfd_und_section_ptr, 0,
4076 NULL, FALSE, FALSE, &bh))
4077 return NULL;
4078
4079 fdh = (struct ppc_link_hash_entry *) bh;
4080 fdh->elf.non_elf = 0;
4081 fdh->fake = 1;
4082 fdh->is_func_descriptor = 1;
4083 fdh->oh = fh;
4084 fh->is_func = 1;
4085 fh->oh = fdh;
4086 return fdh;
4087 }
4088
4089 /* Fix function descriptor symbols defined in .opd sections to be
4090 function type. */
4091
4092 static bfd_boolean
4093 ppc64_elf_add_symbol_hook (bfd *ibfd,
4094 struct bfd_link_info *info,
4095 Elf_Internal_Sym *isym,
4096 const char **name,
4097 flagword *flags ATTRIBUTE_UNUSED,
4098 asection **sec,
4099 bfd_vma *value)
4100 {
4101 if (*sec != NULL
4102 && strcmp ((*sec)->name, ".opd") == 0)
4103 {
4104 asection *code_sec;
4105
4106 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4107 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4108 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4109
4110 /* If the symbol is a function defined in .opd, and the function
4111 code is in a discarded group, let it appear to be undefined. */
4112 if (!bfd_link_relocatable (info)
4113 && (*sec)->reloc_count != 0
4114 && opd_entry_value (*sec, *value, &code_sec, NULL,
4115 FALSE) != (bfd_vma) -1
4116 && discarded_section (code_sec))
4117 {
4118 *sec = bfd_und_section_ptr;
4119 isym->st_shndx = SHN_UNDEF;
4120 }
4121 }
4122 else if (*sec != NULL
4123 && strcmp ((*sec)->name, ".toc") == 0
4124 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4125 {
4126 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4127 if (htab != NULL)
4128 htab->params->object_in_toc = 1;
4129 }
4130
4131 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4132 {
4133 if (abiversion (ibfd) == 0)
4134 set_abiversion (ibfd, 2);
4135 else if (abiversion (ibfd) == 1)
4136 {
4137 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4138 " for ABI version 1"), *name);
4139 bfd_set_error (bfd_error_bad_value);
4140 return FALSE;
4141 }
4142 }
4143
4144 return TRUE;
4145 }
4146
4147 /* Merge non-visibility st_other attributes: local entry point. */
4148
4149 static void
4150 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4151 const Elf_Internal_Sym *isym,
4152 bfd_boolean definition,
4153 bfd_boolean dynamic)
4154 {
4155 if (definition && (!dynamic || !h->def_regular))
4156 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4157 | ELF_ST_VISIBILITY (h->other));
4158 }
4159
4160 /* Hook called on merging a symbol. We use this to clear "fake" since
4161 we now have a real symbol. */
4162
4163 static bfd_boolean
4164 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4165 const Elf_Internal_Sym *isym,
4166 asection **psec ATTRIBUTE_UNUSED,
4167 bfd_boolean newdef ATTRIBUTE_UNUSED,
4168 bfd_boolean olddef ATTRIBUTE_UNUSED,
4169 bfd *oldbfd ATTRIBUTE_UNUSED,
4170 const asection *oldsec ATTRIBUTE_UNUSED)
4171 {
4172 ppc_elf_hash_entry (h)->fake = 0;
4173 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4174 ppc_elf_hash_entry (h)->non_zero_localentry = 1;
4175 return TRUE;
4176 }
4177
4178 /* This function makes an old ABI object reference to ".bar" cause the
4179 inclusion of a new ABI object archive that defines "bar".
4180 NAME is a symbol defined in an archive. Return a symbol in the hash
4181 table that might be satisfied by the archive symbols. */
4182
4183 static struct elf_link_hash_entry *
4184 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4185 struct bfd_link_info *info,
4186 const char *name)
4187 {
4188 struct elf_link_hash_entry *h;
4189 char *dot_name;
4190 size_t len;
4191
4192 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4193 if (h != NULL
4194 /* Don't return this sym if it is a fake function descriptor
4195 created by add_symbol_adjust. */
4196 && !ppc_elf_hash_entry (h)->fake)
4197 return h;
4198
4199 if (name[0] == '.')
4200 return h;
4201
4202 len = strlen (name);
4203 dot_name = bfd_alloc (abfd, len + 2);
4204 if (dot_name == NULL)
4205 return (struct elf_link_hash_entry *) -1;
4206 dot_name[0] = '.';
4207 memcpy (dot_name + 1, name, len + 1);
4208 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4209 bfd_release (abfd, dot_name);
4210 if (h != NULL)
4211 return h;
4212
4213 if (strcmp (name, "__tls_get_addr_opt") == 0)
4214 h = _bfd_elf_archive_symbol_lookup (abfd, info, "__tls_get_addr_desc");
4215 return h;
4216 }
4217
4218 /* This function satisfies all old ABI object references to ".bar" if a
4219 new ABI object defines "bar". Well, at least, undefined dot symbols
4220 are made weak. This stops later archive searches from including an
4221 object if we already have a function descriptor definition. It also
4222 prevents the linker complaining about undefined symbols.
4223 We also check and correct mismatched symbol visibility here. The
4224 most restrictive visibility of the function descriptor and the
4225 function entry symbol is used. */
4226
4227 static bfd_boolean
4228 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4229 {
4230 struct ppc_link_hash_table *htab;
4231 struct ppc_link_hash_entry *fdh;
4232
4233 if (eh->elf.root.type == bfd_link_hash_warning)
4234 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4235
4236 if (eh->elf.root.type == bfd_link_hash_indirect)
4237 return TRUE;
4238
4239 if (eh->elf.root.root.string[0] != '.')
4240 abort ();
4241
4242 htab = ppc_hash_table (info);
4243 if (htab == NULL)
4244 return FALSE;
4245
4246 fdh = lookup_fdh (eh, htab);
4247 if (fdh == NULL
4248 && !bfd_link_relocatable (info)
4249 && (eh->elf.root.type == bfd_link_hash_undefined
4250 || eh->elf.root.type == bfd_link_hash_undefweak)
4251 && eh->elf.ref_regular)
4252 {
4253 /* Make an undefined function descriptor sym, in order to
4254 pull in an --as-needed shared lib. Archives are handled
4255 elsewhere. */
4256 fdh = make_fdh (info, eh);
4257 if (fdh == NULL)
4258 return FALSE;
4259 }
4260
4261 if (fdh != NULL)
4262 {
4263 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4264 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4265
4266 /* Make both descriptor and entry symbol have the most
4267 constraining visibility of either symbol. */
4268 if (entry_vis < descr_vis)
4269 fdh->elf.other += entry_vis - descr_vis;
4270 else if (entry_vis > descr_vis)
4271 eh->elf.other += descr_vis - entry_vis;
4272
4273 /* Propagate reference flags from entry symbol to function
4274 descriptor symbol. */
4275 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4276 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4277 fdh->elf.ref_regular |= eh->elf.ref_regular;
4278 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4279
4280 if (!fdh->elf.forced_local
4281 && fdh->elf.dynindx == -1
4282 && fdh->elf.versioned != versioned_hidden
4283 && (bfd_link_dll (info)
4284 || fdh->elf.def_dynamic
4285 || fdh->elf.ref_dynamic)
4286 && (eh->elf.ref_regular
4287 || eh->elf.def_regular))
4288 {
4289 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4290 return FALSE;
4291 }
4292 }
4293
4294 return TRUE;
4295 }
4296
4297 /* Set up opd section info and abiversion for IBFD, and process list
4298 of dot-symbols we made in link_hash_newfunc. */
4299
4300 static bfd_boolean
4301 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4302 {
4303 struct ppc_link_hash_table *htab;
4304 struct ppc_link_hash_entry **p, *eh;
4305 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4306
4307 if (opd != NULL && opd->size != 0)
4308 {
4309 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4310 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4311
4312 if (abiversion (ibfd) == 0)
4313 set_abiversion (ibfd, 1);
4314 else if (abiversion (ibfd) >= 2)
4315 {
4316 /* xgettext:c-format */
4317 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4318 ibfd, abiversion (ibfd));
4319 bfd_set_error (bfd_error_bad_value);
4320 return FALSE;
4321 }
4322 }
4323
4324 if (is_ppc64_elf (info->output_bfd))
4325 {
4326 /* For input files without an explicit abiversion in e_flags
4327 we should have flagged any with symbol st_other bits set
4328 as ELFv1 and above flagged those with .opd as ELFv2.
4329 Set the output abiversion if not yet set, and for any input
4330 still ambiguous, take its abiversion from the output.
4331 Differences in ABI are reported later. */
4332 if (abiversion (info->output_bfd) == 0)
4333 set_abiversion (info->output_bfd, abiversion (ibfd));
4334 else if (abiversion (ibfd) == 0)
4335 set_abiversion (ibfd, abiversion (info->output_bfd));
4336 }
4337
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return TRUE;
4341
4342 if (opd != NULL && opd->size != 0
4343 && (ibfd->flags & DYNAMIC) == 0
4344 && (opd->flags & SEC_RELOC) != 0
4345 && opd->reloc_count != 0
4346 && !bfd_is_abs_section (opd->output_section)
4347 && info->gc_sections)
4348 {
4349 /* Garbage collection needs some extra help with .opd sections.
4350 We don't want to necessarily keep everything referenced by
4351 relocs in .opd, as that would keep all functions. Instead,
4352 if we reference an .opd symbol (a function descriptor), we
4353 want to keep the function code symbol's section. This is
4354 easy for global symbols, but for local syms we need to keep
4355 information about the associated function section. */
4356 bfd_size_type amt;
4357 asection **opd_sym_map;
4358 Elf_Internal_Shdr *symtab_hdr;
4359 Elf_Internal_Rela *relocs, *rel_end, *rel;
4360
4361 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4362 opd_sym_map = bfd_zalloc (ibfd, amt);
4363 if (opd_sym_map == NULL)
4364 return FALSE;
4365 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4366 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4367 info->keep_memory);
4368 if (relocs == NULL)
4369 return FALSE;
4370 symtab_hdr = &elf_symtab_hdr (ibfd);
4371 rel_end = relocs + opd->reloc_count - 1;
4372 for (rel = relocs; rel < rel_end; rel++)
4373 {
4374 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4375 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4376
4377 if (r_type == R_PPC64_ADDR64
4378 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4379 && r_symndx < symtab_hdr->sh_info)
4380 {
4381 Elf_Internal_Sym *isym;
4382 asection *s;
4383
4384 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, ibfd,
4385 r_symndx);
4386 if (isym == NULL)
4387 {
4388 if (elf_section_data (opd)->relocs != relocs)
4389 free (relocs);
4390 return FALSE;
4391 }
4392
4393 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4394 if (s != NULL && s != opd)
4395 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4396 }
4397 }
4398 if (elf_section_data (opd)->relocs != relocs)
4399 free (relocs);
4400 }
4401
4402 p = &htab->dot_syms;
4403 while ((eh = *p) != NULL)
4404 {
4405 *p = NULL;
4406 if (&eh->elf == htab->elf.hgot)
4407 ;
4408 else if (htab->elf.hgot == NULL
4409 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4410 htab->elf.hgot = &eh->elf;
4411 else if (abiversion (ibfd) <= 1)
4412 {
4413 htab->need_func_desc_adj = 1;
4414 if (!add_symbol_adjust (eh, info))
4415 return FALSE;
4416 }
4417 p = &eh->u.next_dot_sym;
4418 }
4419 return TRUE;
4420 }
4421
4422 /* Undo hash table changes when an --as-needed input file is determined
4423 not to be needed. */
4424
4425 static bfd_boolean
4426 ppc64_elf_notice_as_needed (bfd *ibfd,
4427 struct bfd_link_info *info,
4428 enum notice_asneeded_action act)
4429 {
4430 if (act == notice_not_needed)
4431 {
4432 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4433
4434 if (htab == NULL)
4435 return FALSE;
4436
4437 htab->dot_syms = NULL;
4438 }
4439 return _bfd_elf_notice_as_needed (ibfd, info, act);
4440 }
4441
4442 /* If --just-symbols against a final linked binary, then assume we need
4443 toc adjusting stubs when calling functions defined there. */
4444
4445 static void
4446 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4447 {
4448 if ((sec->flags & SEC_CODE) != 0
4449 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4450 && is_ppc64_elf (sec->owner))
4451 {
4452 if (abiversion (sec->owner) >= 2
4453 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4454 sec->has_toc_reloc = 1;
4455 }
4456 _bfd_elf_link_just_syms (sec, info);
4457 }
4458
4459 static struct plt_entry **
4460 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4461 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4462 {
4463 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4464 struct plt_entry **local_plt;
4465 unsigned char *local_got_tls_masks;
4466
4467 if (local_got_ents == NULL)
4468 {
4469 bfd_size_type size = symtab_hdr->sh_info;
4470
4471 size *= (sizeof (*local_got_ents)
4472 + sizeof (*local_plt)
4473 + sizeof (*local_got_tls_masks));
4474 local_got_ents = bfd_zalloc (abfd, size);
4475 if (local_got_ents == NULL)
4476 return NULL;
4477 elf_local_got_ents (abfd) = local_got_ents;
4478 }
4479
4480 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4481 {
4482 struct got_entry *ent;
4483
4484 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4485 if (ent->addend == r_addend
4486 && ent->owner == abfd
4487 && ent->tls_type == tls_type)
4488 break;
4489 if (ent == NULL)
4490 {
4491 size_t amt = sizeof (*ent);
4492 ent = bfd_alloc (abfd, amt);
4493 if (ent == NULL)
4494 return FALSE;
4495 ent->next = local_got_ents[r_symndx];
4496 ent->addend = r_addend;
4497 ent->owner = abfd;
4498 ent->tls_type = tls_type;
4499 ent->is_indirect = FALSE;
4500 ent->got.refcount = 0;
4501 local_got_ents[r_symndx] = ent;
4502 }
4503 ent->got.refcount += 1;
4504 }
4505
4506 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4507 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4508 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4509
4510 return local_plt + r_symndx;
4511 }
4512
4513 static bfd_boolean
4514 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4515 {
4516 struct plt_entry *ent;
4517
4518 for (ent = *plist; ent != NULL; ent = ent->next)
4519 if (ent->addend == addend)
4520 break;
4521 if (ent == NULL)
4522 {
4523 size_t amt = sizeof (*ent);
4524 ent = bfd_alloc (abfd, amt);
4525 if (ent == NULL)
4526 return FALSE;
4527 ent->next = *plist;
4528 ent->addend = addend;
4529 ent->plt.refcount = 0;
4530 *plist = ent;
4531 }
4532 ent->plt.refcount += 1;
4533 return TRUE;
4534 }
4535
4536 static bfd_boolean
4537 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4538 {
4539 return (r_type == R_PPC64_REL24
4540 || r_type == R_PPC64_REL24_NOTOC
4541 || r_type == R_PPC64_REL14
4542 || r_type == R_PPC64_REL14_BRTAKEN
4543 || r_type == R_PPC64_REL14_BRNTAKEN
4544 || r_type == R_PPC64_ADDR24
4545 || r_type == R_PPC64_ADDR14
4546 || r_type == R_PPC64_ADDR14_BRTAKEN
4547 || r_type == R_PPC64_ADDR14_BRNTAKEN
4548 || r_type == R_PPC64_PLTCALL
4549 || r_type == R_PPC64_PLTCALL_NOTOC);
4550 }
4551
4552 /* Relocs on inline plt call sequence insns prior to the call. */
4553
4554 static bfd_boolean
4555 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4556 {
4557 return (r_type == R_PPC64_PLT16_HA
4558 || r_type == R_PPC64_PLT16_HI
4559 || r_type == R_PPC64_PLT16_LO
4560 || r_type == R_PPC64_PLT16_LO_DS
4561 || r_type == R_PPC64_PLT_PCREL34
4562 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4563 || r_type == R_PPC64_PLTSEQ
4564 || r_type == R_PPC64_PLTSEQ_NOTOC);
4565 }
4566
4567 /* Look through the relocs for a section during the first phase, and
4568 calculate needed space in the global offset table, procedure
4569 linkage table, and dynamic reloc sections. */
4570
4571 static bfd_boolean
4572 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4573 asection *sec, const Elf_Internal_Rela *relocs)
4574 {
4575 struct ppc_link_hash_table *htab;
4576 Elf_Internal_Shdr *symtab_hdr;
4577 struct elf_link_hash_entry **sym_hashes;
4578 const Elf_Internal_Rela *rel;
4579 const Elf_Internal_Rela *rel_end;
4580 asection *sreloc;
4581 struct elf_link_hash_entry *tga, *dottga;
4582 bfd_boolean is_opd;
4583
4584 if (bfd_link_relocatable (info))
4585 return TRUE;
4586
4587 BFD_ASSERT (is_ppc64_elf (abfd));
4588
4589 htab = ppc_hash_table (info);
4590 if (htab == NULL)
4591 return FALSE;
4592
4593 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4594 FALSE, FALSE, TRUE);
4595 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4596 FALSE, FALSE, TRUE);
4597 symtab_hdr = &elf_symtab_hdr (abfd);
4598 sym_hashes = elf_sym_hashes (abfd);
4599 sreloc = NULL;
4600 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4601 rel_end = relocs + sec->reloc_count;
4602 for (rel = relocs; rel < rel_end; rel++)
4603 {
4604 unsigned long r_symndx;
4605 struct elf_link_hash_entry *h;
4606 enum elf_ppc64_reloc_type r_type;
4607 int tls_type;
4608 struct _ppc64_elf_section_data *ppc64_sec;
4609 struct plt_entry **ifunc, **plt_list;
4610
4611 r_symndx = ELF64_R_SYM (rel->r_info);
4612 if (r_symndx < symtab_hdr->sh_info)
4613 h = NULL;
4614 else
4615 {
4616 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4617 h = elf_follow_link (h);
4618
4619 if (h == htab->elf.hgot)
4620 sec->has_toc_reloc = 1;
4621 }
4622
4623 r_type = ELF64_R_TYPE (rel->r_info);
4624 switch (r_type)
4625 {
4626 case R_PPC64_D34:
4627 case R_PPC64_D34_LO:
4628 case R_PPC64_D34_HI30:
4629 case R_PPC64_D34_HA30:
4630 case R_PPC64_D28:
4631 case R_PPC64_TPREL34:
4632 case R_PPC64_DTPREL34:
4633 case R_PPC64_PCREL34:
4634 case R_PPC64_GOT_PCREL34:
4635 case R_PPC64_GOT_TLSGD_PCREL34:
4636 case R_PPC64_GOT_TLSLD_PCREL34:
4637 case R_PPC64_GOT_TPREL_PCREL34:
4638 case R_PPC64_GOT_DTPREL_PCREL34:
4639 case R_PPC64_PLT_PCREL34:
4640 case R_PPC64_PLT_PCREL34_NOTOC:
4641 case R_PPC64_PCREL28:
4642 htab->has_power10_relocs = 1;
4643 break;
4644 default:
4645 break;
4646 }
4647
4648 switch (r_type)
4649 {
4650 case R_PPC64_PLT16_HA:
4651 case R_PPC64_GOT_TLSLD16_HA:
4652 case R_PPC64_GOT_TLSGD16_HA:
4653 case R_PPC64_GOT_TPREL16_HA:
4654 case R_PPC64_GOT_DTPREL16_HA:
4655 case R_PPC64_GOT16_HA:
4656 case R_PPC64_TOC16_HA:
4657 case R_PPC64_PLT16_LO:
4658 case R_PPC64_PLT16_LO_DS:
4659 case R_PPC64_GOT_TLSLD16_LO:
4660 case R_PPC64_GOT_TLSGD16_LO:
4661 case R_PPC64_GOT_TPREL16_LO_DS:
4662 case R_PPC64_GOT_DTPREL16_LO_DS:
4663 case R_PPC64_GOT16_LO:
4664 case R_PPC64_GOT16_LO_DS:
4665 case R_PPC64_TOC16_LO:
4666 case R_PPC64_TOC16_LO_DS:
4667 case R_PPC64_GOT_PCREL34:
4668 ppc64_elf_tdata (abfd)->has_optrel = 1;
4669 ppc64_elf_section_data (sec)->has_optrel = 1;
4670 break;
4671 default:
4672 break;
4673 }
4674
4675 ifunc = NULL;
4676 if (h != NULL)
4677 {
4678 if (h->type == STT_GNU_IFUNC)
4679 {
4680 h->needs_plt = 1;
4681 ifunc = &h->plt.plist;
4682 }
4683 }
4684 else
4685 {
4686 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4687 abfd, r_symndx);
4688 if (isym == NULL)
4689 return FALSE;
4690
4691 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4692 {
4693 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4694 rel->r_addend,
4695 NON_GOT | PLT_IFUNC);
4696 if (ifunc == NULL)
4697 return FALSE;
4698 }
4699 }
4700
4701 tls_type = 0;
4702 switch (r_type)
4703 {
4704 case R_PPC64_TLSGD:
4705 case R_PPC64_TLSLD:
4706 /* These special tls relocs tie a call to __tls_get_addr with
4707 its parameter symbol. */
4708 if (h != NULL)
4709 ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
4710 else
4711 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4712 rel->r_addend,
4713 NON_GOT | TLS_TLS | TLS_MARK))
4714 return FALSE;
4715 sec->has_tls_reloc = 1;
4716 break;
4717
4718 case R_PPC64_GOT_TLSLD16:
4719 case R_PPC64_GOT_TLSLD16_LO:
4720 case R_PPC64_GOT_TLSLD16_HI:
4721 case R_PPC64_GOT_TLSLD16_HA:
4722 case R_PPC64_GOT_TLSLD_PCREL34:
4723 tls_type = TLS_TLS | TLS_LD;
4724 goto dogottls;
4725
4726 case R_PPC64_GOT_TLSGD16:
4727 case R_PPC64_GOT_TLSGD16_LO:
4728 case R_PPC64_GOT_TLSGD16_HI:
4729 case R_PPC64_GOT_TLSGD16_HA:
4730 case R_PPC64_GOT_TLSGD_PCREL34:
4731 tls_type = TLS_TLS | TLS_GD;
4732 goto dogottls;
4733
4734 case R_PPC64_GOT_TPREL16_DS:
4735 case R_PPC64_GOT_TPREL16_LO_DS:
4736 case R_PPC64_GOT_TPREL16_HI:
4737 case R_PPC64_GOT_TPREL16_HA:
4738 case R_PPC64_GOT_TPREL_PCREL34:
4739 if (bfd_link_dll (info))
4740 info->flags |= DF_STATIC_TLS;
4741 tls_type = TLS_TLS | TLS_TPREL;
4742 goto dogottls;
4743
4744 case R_PPC64_GOT_DTPREL16_DS:
4745 case R_PPC64_GOT_DTPREL16_LO_DS:
4746 case R_PPC64_GOT_DTPREL16_HI:
4747 case R_PPC64_GOT_DTPREL16_HA:
4748 case R_PPC64_GOT_DTPREL_PCREL34:
4749 tls_type = TLS_TLS | TLS_DTPREL;
4750 dogottls:
4751 sec->has_tls_reloc = 1;
4752 goto dogot;
4753
4754 case R_PPC64_GOT16:
4755 case R_PPC64_GOT16_LO:
4756 case R_PPC64_GOT16_HI:
4757 case R_PPC64_GOT16_HA:
4758 case R_PPC64_GOT16_DS:
4759 case R_PPC64_GOT16_LO_DS:
4760 case R_PPC64_GOT_PCREL34:
4761 dogot:
4762 /* This symbol requires a global offset table entry. */
4763 sec->has_toc_reloc = 1;
4764 if (r_type == R_PPC64_GOT_TLSLD16
4765 || r_type == R_PPC64_GOT_TLSGD16
4766 || r_type == R_PPC64_GOT_TPREL16_DS
4767 || r_type == R_PPC64_GOT_DTPREL16_DS
4768 || r_type == R_PPC64_GOT16
4769 || r_type == R_PPC64_GOT16_DS)
4770 {
4771 htab->do_multi_toc = 1;
4772 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4773 }
4774
4775 if (ppc64_elf_tdata (abfd)->got == NULL
4776 && !create_got_section (abfd, info))
4777 return FALSE;
4778
4779 if (h != NULL)
4780 {
4781 struct ppc_link_hash_entry *eh;
4782 struct got_entry *ent;
4783
4784 eh = ppc_elf_hash_entry (h);
4785 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4786 if (ent->addend == rel->r_addend
4787 && ent->owner == abfd
4788 && ent->tls_type == tls_type)
4789 break;
4790 if (ent == NULL)
4791 {
4792 size_t amt = sizeof (*ent);
4793 ent = bfd_alloc (abfd, amt);
4794 if (ent == NULL)
4795 return FALSE;
4796 ent->next = eh->elf.got.glist;
4797 ent->addend = rel->r_addend;
4798 ent->owner = abfd;
4799 ent->tls_type = tls_type;
4800 ent->is_indirect = FALSE;
4801 ent->got.refcount = 0;
4802 eh->elf.got.glist = ent;
4803 }
4804 ent->got.refcount += 1;
4805 eh->tls_mask |= tls_type;
4806 }
4807 else
4808 /* This is a global offset table entry for a local symbol. */
4809 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4810 rel->r_addend, tls_type))
4811 return FALSE;
4812 break;
4813
4814 case R_PPC64_PLT16_HA:
4815 case R_PPC64_PLT16_HI:
4816 case R_PPC64_PLT16_LO:
4817 case R_PPC64_PLT16_LO_DS:
4818 case R_PPC64_PLT_PCREL34:
4819 case R_PPC64_PLT_PCREL34_NOTOC:
4820 case R_PPC64_PLT32:
4821 case R_PPC64_PLT64:
4822 /* This symbol requires a procedure linkage table entry. */
4823 plt_list = ifunc;
4824 if (h != NULL)
4825 {
4826 h->needs_plt = 1;
4827 if (h->root.root.string[0] == '.'
4828 && h->root.root.string[1] != '\0')
4829 ppc_elf_hash_entry (h)->is_func = 1;
4830 ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
4831 plt_list = &h->plt.plist;
4832 }
4833 if (plt_list == NULL)
4834 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4835 rel->r_addend,
4836 NON_GOT | PLT_KEEP);
4837 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4838 return FALSE;
4839 break;
4840
4841 /* The following relocations don't need to propagate the
4842 relocation if linking a shared object since they are
4843 section relative. */
4844 case R_PPC64_SECTOFF:
4845 case R_PPC64_SECTOFF_LO:
4846 case R_PPC64_SECTOFF_HI:
4847 case R_PPC64_SECTOFF_HA:
4848 case R_PPC64_SECTOFF_DS:
4849 case R_PPC64_SECTOFF_LO_DS:
4850 case R_PPC64_DTPREL16:
4851 case R_PPC64_DTPREL16_LO:
4852 case R_PPC64_DTPREL16_HI:
4853 case R_PPC64_DTPREL16_HA:
4854 case R_PPC64_DTPREL16_DS:
4855 case R_PPC64_DTPREL16_LO_DS:
4856 case R_PPC64_DTPREL16_HIGH:
4857 case R_PPC64_DTPREL16_HIGHA:
4858 case R_PPC64_DTPREL16_HIGHER:
4859 case R_PPC64_DTPREL16_HIGHERA:
4860 case R_PPC64_DTPREL16_HIGHEST:
4861 case R_PPC64_DTPREL16_HIGHESTA:
4862 break;
4863
4864 /* Nor do these. */
4865 case R_PPC64_REL16:
4866 case R_PPC64_REL16_LO:
4867 case R_PPC64_REL16_HI:
4868 case R_PPC64_REL16_HA:
4869 case R_PPC64_REL16_HIGH:
4870 case R_PPC64_REL16_HIGHA:
4871 case R_PPC64_REL16_HIGHER:
4872 case R_PPC64_REL16_HIGHERA:
4873 case R_PPC64_REL16_HIGHEST:
4874 case R_PPC64_REL16_HIGHESTA:
4875 case R_PPC64_REL16_HIGHER34:
4876 case R_PPC64_REL16_HIGHERA34:
4877 case R_PPC64_REL16_HIGHEST34:
4878 case R_PPC64_REL16_HIGHESTA34:
4879 case R_PPC64_REL16DX_HA:
4880 break;
4881
4882 /* Not supported as a dynamic relocation. */
4883 case R_PPC64_ADDR64_LOCAL:
4884 if (bfd_link_pic (info))
4885 {
4886 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4887 ppc_howto_init ();
4888 /* xgettext:c-format */
4889 info->callbacks->einfo (_("%H: %s reloc unsupported "
4890 "in shared libraries and PIEs\n"),
4891 abfd, sec, rel->r_offset,
4892 ppc64_elf_howto_table[r_type]->name);
4893 bfd_set_error (bfd_error_bad_value);
4894 return FALSE;
4895 }
4896 break;
4897
4898 case R_PPC64_TOC16:
4899 case R_PPC64_TOC16_DS:
4900 htab->do_multi_toc = 1;
4901 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4902 /* Fall through. */
4903 case R_PPC64_TOC16_LO:
4904 case R_PPC64_TOC16_HI:
4905 case R_PPC64_TOC16_HA:
4906 case R_PPC64_TOC16_LO_DS:
4907 sec->has_toc_reloc = 1;
4908 if (h != NULL && bfd_link_executable (info))
4909 {
4910 /* We may need a copy reloc. */
4911 h->non_got_ref = 1;
4912 /* Strongly prefer a copy reloc over a dynamic reloc.
4913 glibc ld.so as of 2019-08 will error out if one of
4914 these relocations is emitted. */
4915 h->needs_copy = 1;
4916 goto dodyn;
4917 }
4918 break;
4919
4920 /* Marker reloc. */
4921 case R_PPC64_ENTRY:
4922 break;
4923
4924 /* This relocation describes the C++ object vtable hierarchy.
4925 Reconstruct it for later use during GC. */
4926 case R_PPC64_GNU_VTINHERIT:
4927 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4928 return FALSE;
4929 break;
4930
4931 /* This relocation describes which C++ vtable entries are actually
4932 used. Record for later use during GC. */
4933 case R_PPC64_GNU_VTENTRY:
4934 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4935 return FALSE;
4936 break;
4937
4938 case R_PPC64_REL14:
4939 case R_PPC64_REL14_BRTAKEN:
4940 case R_PPC64_REL14_BRNTAKEN:
4941 {
4942 asection *dest = NULL;
4943
4944 /* Heuristic: If jumping outside our section, chances are
4945 we are going to need a stub. */
4946 if (h != NULL)
4947 {
4948 /* If the sym is weak it may be overridden later, so
4949 don't assume we know where a weak sym lives. */
4950 if (h->root.type == bfd_link_hash_defined)
4951 dest = h->root.u.def.section;
4952 }
4953 else
4954 {
4955 Elf_Internal_Sym *isym;
4956
4957 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4958 abfd, r_symndx);
4959 if (isym == NULL)
4960 return FALSE;
4961
4962 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4963 }
4964
4965 if (dest != sec)
4966 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4967 }
4968 goto rel24;
4969
4970 case R_PPC64_PLTCALL:
4971 case R_PPC64_PLTCALL_NOTOC:
4972 ppc64_elf_section_data (sec)->has_pltcall = 1;
4973 /* Fall through. */
4974
4975 case R_PPC64_REL24:
4976 case R_PPC64_REL24_NOTOC:
4977 rel24:
4978 plt_list = ifunc;
4979 if (h != NULL)
4980 {
4981 h->needs_plt = 1;
4982 if (h->root.root.string[0] == '.'
4983 && h->root.root.string[1] != '\0')
4984 ppc_elf_hash_entry (h)->is_func = 1;
4985
4986 if (h == tga || h == dottga)
4987 {
4988 sec->has_tls_reloc = 1;
4989 if (rel != relocs
4990 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4991 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4992 /* We have a new-style __tls_get_addr call with
4993 a marker reloc. */
4994 ;
4995 else
4996 /* Mark this section as having an old-style call. */
4997 sec->nomark_tls_get_addr = 1;
4998 }
4999 plt_list = &h->plt.plist;
5000 }
5001
5002 /* We may need a .plt entry if the function this reloc
5003 refers to is in a shared lib. */
5004 if (plt_list
5005 && !update_plt_info (abfd, plt_list, rel->r_addend))
5006 return FALSE;
5007 break;
5008
5009 case R_PPC64_ADDR14:
5010 case R_PPC64_ADDR14_BRNTAKEN:
5011 case R_PPC64_ADDR14_BRTAKEN:
5012 case R_PPC64_ADDR24:
5013 goto dodyn;
5014
5015 case R_PPC64_TPREL64:
5016 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5017 if (bfd_link_dll (info))
5018 info->flags |= DF_STATIC_TLS;
5019 goto dotlstoc;
5020
5021 case R_PPC64_DTPMOD64:
5022 if (rel + 1 < rel_end
5023 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5024 && rel[1].r_offset == rel->r_offset + 8)
5025 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5026 else
5027 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5028 goto dotlstoc;
5029
5030 case R_PPC64_DTPREL64:
5031 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5032 if (rel != relocs
5033 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5034 && rel[-1].r_offset == rel->r_offset - 8)
5035 /* This is the second reloc of a dtpmod, dtprel pair.
5036 Don't mark with TLS_DTPREL. */
5037 goto dodyn;
5038
5039 dotlstoc:
5040 sec->has_tls_reloc = 1;
5041 if (h != NULL)
5042 ppc_elf_hash_entry (h)->tls_mask |= tls_type & 0xff;
5043 else
5044 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5045 rel->r_addend, tls_type))
5046 return FALSE;
5047
5048 ppc64_sec = ppc64_elf_section_data (sec);
5049 if (ppc64_sec->sec_type != sec_toc)
5050 {
5051 bfd_size_type amt;
5052
5053 /* One extra to simplify get_tls_mask. */
5054 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5055 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5056 if (ppc64_sec->u.toc.symndx == NULL)
5057 return FALSE;
5058 amt = sec->size * sizeof (bfd_vma) / 8;
5059 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5060 if (ppc64_sec->u.toc.add == NULL)
5061 return FALSE;
5062 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5063 ppc64_sec->sec_type = sec_toc;
5064 }
5065 BFD_ASSERT (rel->r_offset % 8 == 0);
5066 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5067 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5068
5069 /* Mark the second slot of a GD or LD entry.
5070 -1 to indicate GD and -2 to indicate LD. */
5071 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5072 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5073 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5074 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5075 goto dodyn;
5076
5077 case R_PPC64_TPREL16_HI:
5078 case R_PPC64_TPREL16_HA:
5079 case R_PPC64_TPREL16_HIGH:
5080 case R_PPC64_TPREL16_HIGHA:
5081 case R_PPC64_TPREL16_HIGHER:
5082 case R_PPC64_TPREL16_HIGHERA:
5083 case R_PPC64_TPREL16_HIGHEST:
5084 case R_PPC64_TPREL16_HIGHESTA:
5085 sec->has_tls_reloc = 1;
5086 /* Fall through. */
5087 case R_PPC64_TPREL34:
5088 case R_PPC64_TPREL16:
5089 case R_PPC64_TPREL16_DS:
5090 case R_PPC64_TPREL16_LO:
5091 case R_PPC64_TPREL16_LO_DS:
5092 if (bfd_link_dll (info))
5093 info->flags |= DF_STATIC_TLS;
5094 goto dodyn;
5095
5096 case R_PPC64_ADDR64:
5097 if (is_opd
5098 && rel + 1 < rel_end
5099 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5100 {
5101 if (h != NULL)
5102 ppc_elf_hash_entry (h)->is_func = 1;
5103 }
5104 /* Fall through. */
5105
5106 case R_PPC64_ADDR16:
5107 case R_PPC64_ADDR16_DS:
5108 case R_PPC64_ADDR16_HA:
5109 case R_PPC64_ADDR16_HI:
5110 case R_PPC64_ADDR16_HIGH:
5111 case R_PPC64_ADDR16_HIGHA:
5112 case R_PPC64_ADDR16_HIGHER:
5113 case R_PPC64_ADDR16_HIGHERA:
5114 case R_PPC64_ADDR16_HIGHEST:
5115 case R_PPC64_ADDR16_HIGHESTA:
5116 case R_PPC64_ADDR16_LO:
5117 case R_PPC64_ADDR16_LO_DS:
5118 case R_PPC64_D34:
5119 case R_PPC64_D34_LO:
5120 case R_PPC64_D34_HI30:
5121 case R_PPC64_D34_HA30:
5122 case R_PPC64_ADDR16_HIGHER34:
5123 case R_PPC64_ADDR16_HIGHERA34:
5124 case R_PPC64_ADDR16_HIGHEST34:
5125 case R_PPC64_ADDR16_HIGHESTA34:
5126 case R_PPC64_D28:
5127 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5128 && rel->r_addend == 0)
5129 {
5130 /* We may need a .plt entry if this reloc refers to a
5131 function in a shared lib. */
5132 if (!update_plt_info (abfd, &h->plt.plist, 0))
5133 return FALSE;
5134 h->pointer_equality_needed = 1;
5135 }
5136 /* Fall through. */
5137
5138 case R_PPC64_REL30:
5139 case R_PPC64_REL32:
5140 case R_PPC64_REL64:
5141 case R_PPC64_ADDR32:
5142 case R_PPC64_UADDR16:
5143 case R_PPC64_UADDR32:
5144 case R_PPC64_UADDR64:
5145 case R_PPC64_TOC:
5146 if (h != NULL && bfd_link_executable (info))
5147 /* We may need a copy reloc. */
5148 h->non_got_ref = 1;
5149
5150 /* Don't propagate .opd relocs. */
5151 if (NO_OPD_RELOCS && is_opd)
5152 break;
5153
5154 /* If we are creating a shared library, and this is a reloc
5155 against a global symbol, or a non PC relative reloc
5156 against a local symbol, then we need to copy the reloc
5157 into the shared library. However, if we are linking with
5158 -Bsymbolic, we do not need to copy a reloc against a
5159 global symbol which is defined in an object we are
5160 including in the link (i.e., DEF_REGULAR is set). At
5161 this point we have not seen all the input files, so it is
5162 possible that DEF_REGULAR is not set now but will be set
5163 later (it is never cleared). In case of a weak definition,
5164 DEF_REGULAR may be cleared later by a strong definition in
5165 a shared library. We account for that possibility below by
5166 storing information in the dyn_relocs field of the hash
5167 table entry. A similar situation occurs when creating
5168 shared libraries and symbol visibility changes render the
5169 symbol local.
5170
5171 If on the other hand, we are creating an executable, we
5172 may need to keep relocations for symbols satisfied by a
5173 dynamic library if we manage to avoid copy relocs for the
5174 symbol. */
5175 dodyn:
5176 if ((h != NULL
5177 && (h->root.type == bfd_link_hash_defweak
5178 || !h->def_regular))
5179 || (h != NULL
5180 && !bfd_link_executable (info)
5181 && !SYMBOLIC_BIND (info, h))
5182 || (bfd_link_pic (info)
5183 && must_be_dyn_reloc (info, r_type))
5184 || (!bfd_link_pic (info)
5185 && ifunc != NULL))
5186 {
5187 /* We must copy these reloc types into the output file.
5188 Create a reloc section in dynobj and make room for
5189 this reloc. */
5190 if (sreloc == NULL)
5191 {
5192 sreloc = _bfd_elf_make_dynamic_reloc_section
5193 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5194
5195 if (sreloc == NULL)
5196 return FALSE;
5197 }
5198
5199 /* If this is a global symbol, we count the number of
5200 relocations we need for this symbol. */
5201 if (h != NULL)
5202 {
5203 struct elf_dyn_relocs *p;
5204 struct elf_dyn_relocs **head;
5205
5206 head = &h->dyn_relocs;
5207 p = *head;
5208 if (p == NULL || p->sec != sec)
5209 {
5210 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5211 if (p == NULL)
5212 return FALSE;
5213 p->next = *head;
5214 *head = p;
5215 p->sec = sec;
5216 p->count = 0;
5217 p->pc_count = 0;
5218 }
5219 p->count += 1;
5220 if (!must_be_dyn_reloc (info, r_type))
5221 p->pc_count += 1;
5222 }
5223 else
5224 {
5225 /* Track dynamic relocs needed for local syms too.
5226 We really need local syms available to do this
5227 easily. Oh well. */
5228 struct ppc_dyn_relocs *p;
5229 struct ppc_dyn_relocs **head;
5230 bfd_boolean is_ifunc;
5231 asection *s;
5232 void *vpp;
5233 Elf_Internal_Sym *isym;
5234
5235 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
5236 abfd, r_symndx);
5237 if (isym == NULL)
5238 return FALSE;
5239
5240 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5241 if (s == NULL)
5242 s = sec;
5243
5244 vpp = &elf_section_data (s)->local_dynrel;
5245 head = (struct ppc_dyn_relocs **) vpp;
5246 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5247 p = *head;
5248 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5249 p = p->next;
5250 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5251 {
5252 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5253 if (p == NULL)
5254 return FALSE;
5255 p->next = *head;
5256 *head = p;
5257 p->sec = sec;
5258 p->ifunc = is_ifunc;
5259 p->count = 0;
5260 }
5261 p->count += 1;
5262 }
5263 }
5264 break;
5265
5266 default:
5267 break;
5268 }
5269 }
5270
5271 return TRUE;
5272 }
5273
5274 /* Merge backend specific data from an object file to the output
5275 object file when linking. */
5276
5277 static bfd_boolean
5278 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5279 {
5280 bfd *obfd = info->output_bfd;
5281 unsigned long iflags, oflags;
5282
5283 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5284 return TRUE;
5285
5286 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5287 return TRUE;
5288
5289 if (!_bfd_generic_verify_endian_match (ibfd, info))
5290 return FALSE;
5291
5292 iflags = elf_elfheader (ibfd)->e_flags;
5293 oflags = elf_elfheader (obfd)->e_flags;
5294
5295 if (iflags & ~EF_PPC64_ABI)
5296 {
5297 _bfd_error_handler
5298 /* xgettext:c-format */
5299 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5300 bfd_set_error (bfd_error_bad_value);
5301 return FALSE;
5302 }
5303 else if (iflags != oflags && iflags != 0)
5304 {
5305 _bfd_error_handler
5306 /* xgettext:c-format */
5307 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5308 ibfd, iflags, oflags);
5309 bfd_set_error (bfd_error_bad_value);
5310 return FALSE;
5311 }
5312
5313 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5314 return FALSE;
5315
5316 /* Merge Tag_compatibility attributes and any common GNU ones. */
5317 return _bfd_elf_merge_object_attributes (ibfd, info);
5318 }
5319
5320 static bfd_boolean
5321 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5322 {
5323 /* Print normal ELF private data. */
5324 _bfd_elf_print_private_bfd_data (abfd, ptr);
5325
5326 if (elf_elfheader (abfd)->e_flags != 0)
5327 {
5328 FILE *file = ptr;
5329
5330 fprintf (file, _("private flags = 0x%lx:"),
5331 elf_elfheader (abfd)->e_flags);
5332
5333 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5334 fprintf (file, _(" [abiv%ld]"),
5335 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5336 fputc ('\n', file);
5337 }
5338
5339 return TRUE;
5340 }
5341
5342 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5343 of the code entry point, and its section, which must be in the same
5344 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5345
5346 static bfd_vma
5347 opd_entry_value (asection *opd_sec,
5348 bfd_vma offset,
5349 asection **code_sec,
5350 bfd_vma *code_off,
5351 bfd_boolean in_code_sec)
5352 {
5353 bfd *opd_bfd = opd_sec->owner;
5354 Elf_Internal_Rela *relocs;
5355 Elf_Internal_Rela *lo, *hi, *look;
5356 bfd_vma val;
5357
5358 /* No relocs implies we are linking a --just-symbols object, or looking
5359 at a final linked executable with addr2line or somesuch. */
5360 if (opd_sec->reloc_count == 0)
5361 {
5362 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5363
5364 if (contents == NULL)
5365 {
5366 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5367 return (bfd_vma) -1;
5368 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5369 }
5370
5371 /* PR 17512: file: 64b9dfbb. */
5372 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5373 return (bfd_vma) -1;
5374
5375 val = bfd_get_64 (opd_bfd, contents + offset);
5376 if (code_sec != NULL)
5377 {
5378 asection *sec, *likely = NULL;
5379
5380 if (in_code_sec)
5381 {
5382 sec = *code_sec;
5383 if (sec->vma <= val
5384 && val < sec->vma + sec->size)
5385 likely = sec;
5386 else
5387 val = -1;
5388 }
5389 else
5390 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5391 if (sec->vma <= val
5392 && (sec->flags & SEC_LOAD) != 0
5393 && (sec->flags & SEC_ALLOC) != 0)
5394 likely = sec;
5395 if (likely != NULL)
5396 {
5397 *code_sec = likely;
5398 if (code_off != NULL)
5399 *code_off = val - likely->vma;
5400 }
5401 }
5402 return val;
5403 }
5404
5405 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5406
5407 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5408 if (relocs == NULL)
5409 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5410 /* PR 17512: file: df8e1fd6. */
5411 if (relocs == NULL)
5412 return (bfd_vma) -1;
5413
5414 /* Go find the opd reloc at the sym address. */
5415 lo = relocs;
5416 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5417 val = (bfd_vma) -1;
5418 while (lo < hi)
5419 {
5420 look = lo + (hi - lo) / 2;
5421 if (look->r_offset < offset)
5422 lo = look + 1;
5423 else if (look->r_offset > offset)
5424 hi = look;
5425 else
5426 {
5427 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5428
5429 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5430 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5431 {
5432 unsigned long symndx = ELF64_R_SYM (look->r_info);
5433 asection *sec = NULL;
5434
5435 if (symndx >= symtab_hdr->sh_info
5436 && elf_sym_hashes (opd_bfd) != NULL)
5437 {
5438 struct elf_link_hash_entry **sym_hashes;
5439 struct elf_link_hash_entry *rh;
5440
5441 sym_hashes = elf_sym_hashes (opd_bfd);
5442 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5443 if (rh != NULL)
5444 {
5445 rh = elf_follow_link (rh);
5446 if (rh->root.type != bfd_link_hash_defined
5447 && rh->root.type != bfd_link_hash_defweak)
5448 break;
5449 if (rh->root.u.def.section->owner == opd_bfd)
5450 {
5451 val = rh->root.u.def.value;
5452 sec = rh->root.u.def.section;
5453 }
5454 }
5455 }
5456
5457 if (sec == NULL)
5458 {
5459 Elf_Internal_Sym *sym;
5460
5461 if (symndx < symtab_hdr->sh_info)
5462 {
5463 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5464 if (sym == NULL)
5465 {
5466 size_t symcnt = symtab_hdr->sh_info;
5467 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5468 symcnt, 0,
5469 NULL, NULL, NULL);
5470 if (sym == NULL)
5471 break;
5472 symtab_hdr->contents = (bfd_byte *) sym;
5473 }
5474 sym += symndx;
5475 }
5476 else
5477 {
5478 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5479 1, symndx,
5480 NULL, NULL, NULL);
5481 if (sym == NULL)
5482 break;
5483 }
5484 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5485 if (sec == NULL)
5486 break;
5487 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5488 val = sym->st_value;
5489 }
5490
5491 val += look->r_addend;
5492 if (code_off != NULL)
5493 *code_off = val;
5494 if (code_sec != NULL)
5495 {
5496 if (in_code_sec && *code_sec != sec)
5497 return -1;
5498 else
5499 *code_sec = sec;
5500 }
5501 if (sec->output_section != NULL)
5502 val += sec->output_section->vma + sec->output_offset;
5503 }
5504 break;
5505 }
5506 }
5507
5508 return val;
5509 }
5510
5511 /* If the ELF symbol SYM might be a function in SEC, return the
5512 function size and set *CODE_OFF to the function's entry point,
5513 otherwise return zero. */
5514
5515 static bfd_size_type
5516 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5517 bfd_vma *code_off)
5518 {
5519 bfd_size_type size;
5520
5521 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5522 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5523 return 0;
5524
5525 size = 0;
5526 if (!(sym->flags & BSF_SYNTHETIC))
5527 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5528
5529 if (strcmp (sym->section->name, ".opd") == 0)
5530 {
5531 struct _opd_sec_data *opd = get_opd_info (sym->section);
5532 bfd_vma symval = sym->value;
5533
5534 if (opd != NULL
5535 && opd->adjust != NULL
5536 && elf_section_data (sym->section)->relocs != NULL)
5537 {
5538 /* opd_entry_value will use cached relocs that have been
5539 adjusted, but with raw symbols. That means both local
5540 and global symbols need adjusting. */
5541 long adjust = opd->adjust[OPD_NDX (symval)];
5542 if (adjust == -1)
5543 return 0;
5544 symval += adjust;
5545 }
5546
5547 if (opd_entry_value (sym->section, symval,
5548 &sec, code_off, TRUE) == (bfd_vma) -1)
5549 return 0;
5550 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5551 symbol. This size has nothing to do with the code size of the
5552 function, which is what we're supposed to return, but the
5553 code size isn't available without looking up the dot-sym.
5554 However, doing that would be a waste of time particularly
5555 since elf_find_function will look at the dot-sym anyway.
5556 Now, elf_find_function will keep the largest size of any
5557 function sym found at the code address of interest, so return
5558 1 here to avoid it incorrectly caching a larger function size
5559 for a small function. This does mean we return the wrong
5560 size for a new-ABI function of size 24, but all that does is
5561 disable caching for such functions. */
5562 if (size == 24)
5563 size = 1;
5564 }
5565 else
5566 {
5567 if (sym->section != sec)
5568 return 0;
5569 *code_off = sym->value;
5570 }
5571 if (size == 0)
5572 size = 1;
5573 return size;
5574 }
5575
5576 /* Return true if symbol is a strong function defined in an ELFv2
5577 object with st_other localentry bits of zero, ie. its local entry
5578 point coincides with its global entry point. */
5579
5580 static bfd_boolean
5581 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5582 {
5583 return (h != NULL
5584 && h->type == STT_FUNC
5585 && h->root.type == bfd_link_hash_defined
5586 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5587 && !ppc_elf_hash_entry (h)->non_zero_localentry
5588 && is_ppc64_elf (h->root.u.def.section->owner)
5589 && abiversion (h->root.u.def.section->owner) >= 2);
5590 }
5591
5592 /* Return true if symbol is defined in a regular object file. */
5593
5594 static bfd_boolean
5595 is_static_defined (struct elf_link_hash_entry *h)
5596 {
5597 return ((h->root.type == bfd_link_hash_defined
5598 || h->root.type == bfd_link_hash_defweak)
5599 && h->root.u.def.section != NULL
5600 && h->root.u.def.section->output_section != NULL);
5601 }
5602
5603 /* If FDH is a function descriptor symbol, return the associated code
5604 entry symbol if it is defined. Return NULL otherwise. */
5605
5606 static struct ppc_link_hash_entry *
5607 defined_code_entry (struct ppc_link_hash_entry *fdh)
5608 {
5609 if (fdh->is_func_descriptor)
5610 {
5611 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5612 if (fh->elf.root.type == bfd_link_hash_defined
5613 || fh->elf.root.type == bfd_link_hash_defweak)
5614 return fh;
5615 }
5616 return NULL;
5617 }
5618
5619 /* If FH is a function code entry symbol, return the associated
5620 function descriptor symbol if it is defined. Return NULL otherwise. */
5621
5622 static struct ppc_link_hash_entry *
5623 defined_func_desc (struct ppc_link_hash_entry *fh)
5624 {
5625 if (fh->oh != NULL
5626 && fh->oh->is_func_descriptor)
5627 {
5628 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5629 if (fdh->elf.root.type == bfd_link_hash_defined
5630 || fdh->elf.root.type == bfd_link_hash_defweak)
5631 return fdh;
5632 }
5633 return NULL;
5634 }
5635
5636 /* Given H is a symbol that satisfies is_static_defined, return the
5637 value in the output file. */
5638
5639 static bfd_vma
5640 defined_sym_val (struct elf_link_hash_entry *h)
5641 {
5642 return (h->root.u.def.section->output_section->vma
5643 + h->root.u.def.section->output_offset
5644 + h->root.u.def.value);
5645 }
5646
5647 /* Return true if H matches __tls_get_addr or one of its variants. */
5648
5649 static bfd_boolean
5650 is_tls_get_addr (struct elf_link_hash_entry *h,
5651 struct ppc_link_hash_table *htab)
5652 {
5653 return (h == (struct elf_link_hash_entry *) htab->tls_get_addr_fd
5654 || h == (struct elf_link_hash_entry *) htab->tga_desc_fd
5655 || h == (struct elf_link_hash_entry *) htab->tls_get_addr
5656 || h == (struct elf_link_hash_entry *) htab->tga_desc);
5657 }
5658
5659 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5660
5661 /* Garbage collect sections, after first dealing with dot-symbols. */
5662
5663 static bfd_boolean
5664 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5665 {
5666 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5667
5668 if (htab != NULL && htab->need_func_desc_adj)
5669 {
5670 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5671 htab->need_func_desc_adj = 0;
5672 }
5673 return bfd_elf_gc_sections (abfd, info);
5674 }
5675
5676 /* Mark all our entry sym sections, both opd and code section. */
5677
5678 static void
5679 ppc64_elf_gc_keep (struct bfd_link_info *info)
5680 {
5681 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5682 struct bfd_sym_chain *sym;
5683
5684 if (htab == NULL)
5685 return;
5686
5687 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5688 {
5689 struct ppc_link_hash_entry *eh, *fh;
5690 asection *sec;
5691
5692 eh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym->name,
5693 FALSE, FALSE, TRUE));
5694 if (eh == NULL)
5695 continue;
5696 if (eh->elf.root.type != bfd_link_hash_defined
5697 && eh->elf.root.type != bfd_link_hash_defweak)
5698 continue;
5699
5700 fh = defined_code_entry (eh);
5701 if (fh != NULL)
5702 {
5703 sec = fh->elf.root.u.def.section;
5704 sec->flags |= SEC_KEEP;
5705 }
5706 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5707 && opd_entry_value (eh->elf.root.u.def.section,
5708 eh->elf.root.u.def.value,
5709 &sec, NULL, FALSE) != (bfd_vma) -1)
5710 sec->flags |= SEC_KEEP;
5711
5712 sec = eh->elf.root.u.def.section;
5713 sec->flags |= SEC_KEEP;
5714 }
5715 }
5716
5717 /* Mark sections containing dynamically referenced symbols. When
5718 building shared libraries, we must assume that any visible symbol is
5719 referenced. */
5720
5721 static bfd_boolean
5722 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5723 {
5724 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5725 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
5726 struct ppc_link_hash_entry *fdh;
5727 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5728
5729 /* Dynamic linking info is on the func descriptor sym. */
5730 fdh = defined_func_desc (eh);
5731 if (fdh != NULL)
5732 eh = fdh;
5733
5734 if ((eh->elf.root.type == bfd_link_hash_defined
5735 || eh->elf.root.type == bfd_link_hash_defweak)
5736 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5737 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5738 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5739 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5740 && (!bfd_link_executable (info)
5741 || info->gc_keep_exported
5742 || info->export_dynamic
5743 || (eh->elf.dynamic
5744 && d != NULL
5745 && (*d->match) (&d->head, NULL,
5746 eh->elf.root.root.string)))
5747 && (eh->elf.versioned >= versioned
5748 || !bfd_hide_sym_by_version (info->version_info,
5749 eh->elf.root.root.string)))))
5750 {
5751 asection *code_sec;
5752 struct ppc_link_hash_entry *fh;
5753
5754 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5755
5756 /* Function descriptor syms cause the associated
5757 function code sym section to be marked. */
5758 fh = defined_code_entry (eh);
5759 if (fh != NULL)
5760 {
5761 code_sec = fh->elf.root.u.def.section;
5762 code_sec->flags |= SEC_KEEP;
5763 }
5764 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5765 && opd_entry_value (eh->elf.root.u.def.section,
5766 eh->elf.root.u.def.value,
5767 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5768 code_sec->flags |= SEC_KEEP;
5769 }
5770
5771 return TRUE;
5772 }
5773
5774 /* Return the section that should be marked against GC for a given
5775 relocation. */
5776
5777 static asection *
5778 ppc64_elf_gc_mark_hook (asection *sec,
5779 struct bfd_link_info *info,
5780 Elf_Internal_Rela *rel,
5781 struct elf_link_hash_entry *h,
5782 Elf_Internal_Sym *sym)
5783 {
5784 asection *rsec;
5785
5786 /* Syms return NULL if we're marking .opd, so we avoid marking all
5787 function sections, as all functions are referenced in .opd. */
5788 rsec = NULL;
5789 if (get_opd_info (sec) != NULL)
5790 return rsec;
5791
5792 if (h != NULL)
5793 {
5794 enum elf_ppc64_reloc_type r_type;
5795 struct ppc_link_hash_entry *eh, *fh, *fdh;
5796
5797 r_type = ELF64_R_TYPE (rel->r_info);
5798 switch (r_type)
5799 {
5800 case R_PPC64_GNU_VTINHERIT:
5801 case R_PPC64_GNU_VTENTRY:
5802 break;
5803
5804 default:
5805 switch (h->root.type)
5806 {
5807 case bfd_link_hash_defined:
5808 case bfd_link_hash_defweak:
5809 eh = ppc_elf_hash_entry (h);
5810 fdh = defined_func_desc (eh);
5811 if (fdh != NULL)
5812 {
5813 /* -mcall-aixdesc code references the dot-symbol on
5814 a call reloc. Mark the function descriptor too
5815 against garbage collection. */
5816 fdh->elf.mark = 1;
5817 if (fdh->elf.is_weakalias)
5818 weakdef (&fdh->elf)->mark = 1;
5819 eh = fdh;
5820 }
5821
5822 /* Function descriptor syms cause the associated
5823 function code sym section to be marked. */
5824 fh = defined_code_entry (eh);
5825 if (fh != NULL)
5826 {
5827 /* They also mark their opd section. */
5828 eh->elf.root.u.def.section->gc_mark = 1;
5829
5830 rsec = fh->elf.root.u.def.section;
5831 }
5832 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5833 && opd_entry_value (eh->elf.root.u.def.section,
5834 eh->elf.root.u.def.value,
5835 &rsec, NULL, FALSE) != (bfd_vma) -1)
5836 eh->elf.root.u.def.section->gc_mark = 1;
5837 else
5838 rsec = h->root.u.def.section;
5839 break;
5840
5841 case bfd_link_hash_common:
5842 rsec = h->root.u.c.p->section;
5843 break;
5844
5845 default:
5846 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5847 }
5848 }
5849 }
5850 else
5851 {
5852 struct _opd_sec_data *opd;
5853
5854 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5855 opd = get_opd_info (rsec);
5856 if (opd != NULL && opd->func_sec != NULL)
5857 {
5858 rsec->gc_mark = 1;
5859
5860 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5861 }
5862 }
5863
5864 return rsec;
5865 }
5866
5867 /* The maximum size of .sfpr. */
5868 #define SFPR_MAX (218*4)
5869
5870 struct sfpr_def_parms
5871 {
5872 const char name[12];
5873 unsigned char lo, hi;
5874 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5875 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5876 };
5877
5878 /* Auto-generate _save*, _rest* functions in .sfpr.
5879 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5880 instead. */
5881
5882 static bfd_boolean
5883 sfpr_define (struct bfd_link_info *info,
5884 const struct sfpr_def_parms *parm,
5885 asection *stub_sec)
5886 {
5887 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5888 unsigned int i;
5889 size_t len = strlen (parm->name);
5890 bfd_boolean writing = FALSE;
5891 char sym[16];
5892
5893 if (htab == NULL)
5894 return FALSE;
5895
5896 memcpy (sym, parm->name, len);
5897 sym[len + 2] = 0;
5898
5899 for (i = parm->lo; i <= parm->hi; i++)
5900 {
5901 struct ppc_link_hash_entry *h;
5902
5903 sym[len + 0] = i / 10 + '0';
5904 sym[len + 1] = i % 10 + '0';
5905 h = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym,
5906 writing, TRUE, TRUE));
5907 if (stub_sec != NULL)
5908 {
5909 if (h != NULL
5910 && h->elf.root.type == bfd_link_hash_defined
5911 && h->elf.root.u.def.section == htab->sfpr)
5912 {
5913 struct elf_link_hash_entry *s;
5914 char buf[32];
5915 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5916 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5917 if (s == NULL)
5918 return FALSE;
5919 if (s->root.type == bfd_link_hash_new)
5920 {
5921 s->root.type = bfd_link_hash_defined;
5922 s->root.u.def.section = stub_sec;
5923 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5924 + h->elf.root.u.def.value);
5925 s->ref_regular = 1;
5926 s->def_regular = 1;
5927 s->ref_regular_nonweak = 1;
5928 s->forced_local = 1;
5929 s->non_elf = 0;
5930 s->root.linker_def = 1;
5931 }
5932 }
5933 continue;
5934 }
5935 if (h != NULL)
5936 {
5937 h->save_res = 1;
5938 if (!h->elf.def_regular)
5939 {
5940 h->elf.root.type = bfd_link_hash_defined;
5941 h->elf.root.u.def.section = htab->sfpr;
5942 h->elf.root.u.def.value = htab->sfpr->size;
5943 h->elf.type = STT_FUNC;
5944 h->elf.def_regular = 1;
5945 h->elf.non_elf = 0;
5946 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5947 writing = TRUE;
5948 if (htab->sfpr->contents == NULL)
5949 {
5950 htab->sfpr->contents
5951 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5952 if (htab->sfpr->contents == NULL)
5953 return FALSE;
5954 }
5955 }
5956 }
5957 if (writing)
5958 {
5959 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5960 if (i != parm->hi)
5961 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5962 else
5963 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5964 htab->sfpr->size = p - htab->sfpr->contents;
5965 }
5966 }
5967
5968 return TRUE;
5969 }
5970
5971 static bfd_byte *
5972 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5973 {
5974 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5975 return p + 4;
5976 }
5977
5978 static bfd_byte *
5979 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5980 {
5981 p = savegpr0 (abfd, p, r);
5982 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5983 p = p + 4;
5984 bfd_put_32 (abfd, BLR, p);
5985 return p + 4;
5986 }
5987
5988 static bfd_byte *
5989 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5990 {
5991 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5992 return p + 4;
5993 }
5994
5995 static bfd_byte *
5996 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5997 {
5998 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5999 p = p + 4;
6000 p = restgpr0 (abfd, p, r);
6001 bfd_put_32 (abfd, MTLR_R0, p);
6002 p = p + 4;
6003 if (r == 29)
6004 {
6005 p = restgpr0 (abfd, p, 30);
6006 p = restgpr0 (abfd, p, 31);
6007 }
6008 bfd_put_32 (abfd, BLR, p);
6009 return p + 4;
6010 }
6011
6012 static bfd_byte *
6013 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6014 {
6015 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6016 return p + 4;
6017 }
6018
6019 static bfd_byte *
6020 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6021 {
6022 p = savegpr1 (abfd, p, r);
6023 bfd_put_32 (abfd, BLR, p);
6024 return p + 4;
6025 }
6026
6027 static bfd_byte *
6028 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6029 {
6030 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6031 return p + 4;
6032 }
6033
6034 static bfd_byte *
6035 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6036 {
6037 p = restgpr1 (abfd, p, r);
6038 bfd_put_32 (abfd, BLR, p);
6039 return p + 4;
6040 }
6041
6042 static bfd_byte *
6043 savefpr (bfd *abfd, bfd_byte *p, int r)
6044 {
6045 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6046 return p + 4;
6047 }
6048
6049 static bfd_byte *
6050 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6051 {
6052 p = savefpr (abfd, p, r);
6053 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6054 p = p + 4;
6055 bfd_put_32 (abfd, BLR, p);
6056 return p + 4;
6057 }
6058
6059 static bfd_byte *
6060 restfpr (bfd *abfd, bfd_byte *p, int r)
6061 {
6062 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6063 return p + 4;
6064 }
6065
6066 static bfd_byte *
6067 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6068 {
6069 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6070 p = p + 4;
6071 p = restfpr (abfd, p, r);
6072 bfd_put_32 (abfd, MTLR_R0, p);
6073 p = p + 4;
6074 if (r == 29)
6075 {
6076 p = restfpr (abfd, p, 30);
6077 p = restfpr (abfd, p, 31);
6078 }
6079 bfd_put_32 (abfd, BLR, p);
6080 return p + 4;
6081 }
6082
6083 static bfd_byte *
6084 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6085 {
6086 p = savefpr (abfd, p, r);
6087 bfd_put_32 (abfd, BLR, p);
6088 return p + 4;
6089 }
6090
6091 static bfd_byte *
6092 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6093 {
6094 p = restfpr (abfd, p, r);
6095 bfd_put_32 (abfd, BLR, p);
6096 return p + 4;
6097 }
6098
6099 static bfd_byte *
6100 savevr (bfd *abfd, bfd_byte *p, int r)
6101 {
6102 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6103 p = p + 4;
6104 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6105 return p + 4;
6106 }
6107
6108 static bfd_byte *
6109 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6110 {
6111 p = savevr (abfd, p, r);
6112 bfd_put_32 (abfd, BLR, p);
6113 return p + 4;
6114 }
6115
6116 static bfd_byte *
6117 restvr (bfd *abfd, bfd_byte *p, int r)
6118 {
6119 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6120 p = p + 4;
6121 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6122 return p + 4;
6123 }
6124
6125 static bfd_byte *
6126 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6127 {
6128 p = restvr (abfd, p, r);
6129 bfd_put_32 (abfd, BLR, p);
6130 return p + 4;
6131 }
6132
6133 #define STDU_R1_0R1 0xf8210001
6134 #define ADDI_R1_R1 0x38210000
6135
6136 /* Emit prologue of wrapper preserving regs around a call to
6137 __tls_get_addr_opt. */
6138
6139 static bfd_byte *
6140 tls_get_addr_prologue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6141 {
6142 unsigned int i;
6143
6144 bfd_put_32 (obfd, MFLR_R0, p);
6145 p += 4;
6146 bfd_put_32 (obfd, STD_R0_0R1 + 16, p);
6147 p += 4;
6148
6149 if (htab->opd_abi)
6150 {
6151 for (i = 4; i < 12; i++)
6152 {
6153 bfd_put_32 (obfd,
6154 STD_R0_0R1 | i << 21 | (-(13 - i) * 8 & 0xffff), p);
6155 p += 4;
6156 }
6157 bfd_put_32 (obfd, STDU_R1_0R1 | (-128 & 0xffff), p);
6158 p += 4;
6159 }
6160 else
6161 {
6162 for (i = 4; i < 12; i++)
6163 {
6164 bfd_put_32 (obfd,
6165 STD_R0_0R1 | i << 21 | (-(12 - i) * 8 & 0xffff), p);
6166 p += 4;
6167 }
6168 bfd_put_32 (obfd, STDU_R1_0R1 | (-96 & 0xffff), p);
6169 p += 4;
6170 }
6171 return p;
6172 }
6173
6174 /* Emit epilogue of wrapper preserving regs around a call to
6175 __tls_get_addr_opt. */
6176
6177 static bfd_byte *
6178 tls_get_addr_epilogue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6179 {
6180 unsigned int i;
6181
6182 if (htab->opd_abi)
6183 {
6184 for (i = 4; i < 12; i++)
6185 {
6186 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (128 - (13 - i) * 8), p);
6187 p += 4;
6188 }
6189 bfd_put_32 (obfd, ADDI_R1_R1 | 128, p);
6190 p += 4;
6191 }
6192 else
6193 {
6194 for (i = 4; i < 12; i++)
6195 {
6196 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (96 - (12 - i) * 8), p);
6197 p += 4;
6198 }
6199 bfd_put_32 (obfd, ADDI_R1_R1 | 96, p);
6200 p += 4;
6201 }
6202 bfd_put_32 (obfd, LD_R0_0R1 | 16, p);
6203 p += 4;
6204 bfd_put_32 (obfd, MTLR_R0, p);
6205 p += 4;
6206 bfd_put_32 (obfd, BLR, p);
6207 p += 4;
6208 return p;
6209 }
6210
6211 /* Called via elf_link_hash_traverse to transfer dynamic linking
6212 information on function code symbol entries to their corresponding
6213 function descriptor symbol entries. */
6214
6215 static bfd_boolean
6216 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6217 {
6218 struct bfd_link_info *info;
6219 struct ppc_link_hash_table *htab;
6220 struct ppc_link_hash_entry *fh;
6221 struct ppc_link_hash_entry *fdh;
6222 bfd_boolean force_local;
6223
6224 fh = ppc_elf_hash_entry (h);
6225 if (fh->elf.root.type == bfd_link_hash_indirect)
6226 return TRUE;
6227
6228 if (!fh->is_func)
6229 return TRUE;
6230
6231 if (fh->elf.root.root.string[0] != '.'
6232 || fh->elf.root.root.string[1] == '\0')
6233 return TRUE;
6234
6235 info = inf;
6236 htab = ppc_hash_table (info);
6237 if (htab == NULL)
6238 return FALSE;
6239
6240 /* Find the corresponding function descriptor symbol. */
6241 fdh = lookup_fdh (fh, htab);
6242
6243 /* Resolve undefined references to dot-symbols as the value
6244 in the function descriptor, if we have one in a regular object.
6245 This is to satisfy cases like ".quad .foo". Calls to functions
6246 in dynamic objects are handled elsewhere. */
6247 if ((fh->elf.root.type == bfd_link_hash_undefined
6248 || fh->elf.root.type == bfd_link_hash_undefweak)
6249 && (fdh->elf.root.type == bfd_link_hash_defined
6250 || fdh->elf.root.type == bfd_link_hash_defweak)
6251 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6252 && opd_entry_value (fdh->elf.root.u.def.section,
6253 fdh->elf.root.u.def.value,
6254 &fh->elf.root.u.def.section,
6255 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6256 {
6257 fh->elf.root.type = fdh->elf.root.type;
6258 fh->elf.forced_local = 1;
6259 fh->elf.def_regular = fdh->elf.def_regular;
6260 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6261 }
6262
6263 if (!fh->elf.dynamic)
6264 {
6265 struct plt_entry *ent;
6266
6267 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6268 if (ent->plt.refcount > 0)
6269 break;
6270 if (ent == NULL)
6271 return TRUE;
6272 }
6273
6274 /* Create a descriptor as undefined if necessary. */
6275 if (fdh == NULL
6276 && !bfd_link_executable (info)
6277 && (fh->elf.root.type == bfd_link_hash_undefined
6278 || fh->elf.root.type == bfd_link_hash_undefweak))
6279 {
6280 fdh = make_fdh (info, fh);
6281 if (fdh == NULL)
6282 return FALSE;
6283 }
6284
6285 /* We can't support overriding of symbols on a fake descriptor. */
6286 if (fdh != NULL
6287 && fdh->fake
6288 && (fh->elf.root.type == bfd_link_hash_defined
6289 || fh->elf.root.type == bfd_link_hash_defweak))
6290 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6291
6292 /* Transfer dynamic linking information to the function descriptor. */
6293 if (fdh != NULL)
6294 {
6295 fdh->elf.ref_regular |= fh->elf.ref_regular;
6296 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6297 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6298 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6299 fdh->elf.dynamic |= fh->elf.dynamic;
6300 fdh->elf.needs_plt |= (fh->elf.needs_plt
6301 || fh->elf.type == STT_FUNC
6302 || fh->elf.type == STT_GNU_IFUNC);
6303 move_plt_plist (fh, fdh);
6304
6305 if (!fdh->elf.forced_local
6306 && fh->elf.dynindx != -1)
6307 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6308 return FALSE;
6309 }
6310
6311 /* Now that the info is on the function descriptor, clear the
6312 function code sym info. Any function code syms for which we
6313 don't have a definition in a regular file, we force local.
6314 This prevents a shared library from exporting syms that have
6315 been imported from another library. Function code syms that
6316 are really in the library we must leave global to prevent the
6317 linker dragging in a definition from a static library. */
6318 force_local = (!fh->elf.def_regular
6319 || fdh == NULL
6320 || !fdh->elf.def_regular
6321 || fdh->elf.forced_local);
6322 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6323
6324 return TRUE;
6325 }
6326
6327 static const struct sfpr_def_parms save_res_funcs[] =
6328 {
6329 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6330 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6331 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6332 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6333 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6334 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6335 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6336 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6337 { "._savef", 14, 31, savefpr, savefpr1_tail },
6338 { "._restf", 14, 31, restfpr, restfpr1_tail },
6339 { "_savevr_", 20, 31, savevr, savevr_tail },
6340 { "_restvr_", 20, 31, restvr, restvr_tail }
6341 };
6342
6343 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6344 this hook to a) provide some gcc support functions, and b) transfer
6345 dynamic linking information gathered so far on function code symbol
6346 entries, to their corresponding function descriptor symbol entries. */
6347
6348 static bfd_boolean
6349 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6350 struct bfd_link_info *info)
6351 {
6352 struct ppc_link_hash_table *htab;
6353
6354 htab = ppc_hash_table (info);
6355 if (htab == NULL)
6356 return FALSE;
6357
6358 /* Provide any missing _save* and _rest* functions. */
6359 if (htab->sfpr != NULL)
6360 {
6361 unsigned int i;
6362
6363 htab->sfpr->size = 0;
6364 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6365 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6366 return FALSE;
6367 if (htab->sfpr->size == 0)
6368 htab->sfpr->flags |= SEC_EXCLUDE;
6369 }
6370
6371 if (bfd_link_relocatable (info))
6372 return TRUE;
6373
6374 if (htab->elf.hgot != NULL)
6375 {
6376 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6377 /* Make .TOC. defined so as to prevent it being made dynamic.
6378 The wrong value here is fixed later in ppc64_elf_set_toc. */
6379 if (!htab->elf.hgot->def_regular
6380 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6381 {
6382 htab->elf.hgot->root.type = bfd_link_hash_defined;
6383 htab->elf.hgot->root.u.def.value = 0;
6384 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6385 htab->elf.hgot->def_regular = 1;
6386 htab->elf.hgot->root.linker_def = 1;
6387 }
6388 htab->elf.hgot->type = STT_OBJECT;
6389 htab->elf.hgot->other
6390 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6391 }
6392
6393 if (htab->need_func_desc_adj)
6394 {
6395 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6396 htab->need_func_desc_adj = 0;
6397 }
6398
6399 return TRUE;
6400 }
6401
6402 /* Return true if we have dynamic relocs against H or any of its weak
6403 aliases, that apply to read-only sections. Cannot be used after
6404 size_dynamic_sections. */
6405
6406 static bfd_boolean
6407 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6408 {
6409 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6410 do
6411 {
6412 if (_bfd_elf_readonly_dynrelocs (&eh->elf))
6413 return TRUE;
6414 eh = ppc_elf_hash_entry (eh->elf.u.alias);
6415 }
6416 while (eh != NULL && &eh->elf != h);
6417
6418 return FALSE;
6419 }
6420
6421 /* Return whether EH has pc-relative dynamic relocs. */
6422
6423 static bfd_boolean
6424 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6425 {
6426 struct elf_dyn_relocs *p;
6427
6428 for (p = eh->elf.dyn_relocs; p != NULL; p = p->next)
6429 if (p->pc_count != 0)
6430 return TRUE;
6431 return FALSE;
6432 }
6433
6434 /* Return true if a global entry stub will be created for H. Valid
6435 for ELFv2 before plt entries have been allocated. */
6436
6437 static bfd_boolean
6438 global_entry_stub (struct elf_link_hash_entry *h)
6439 {
6440 struct plt_entry *pent;
6441
6442 if (!h->pointer_equality_needed
6443 || h->def_regular)
6444 return FALSE;
6445
6446 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6447 if (pent->plt.refcount > 0
6448 && pent->addend == 0)
6449 return TRUE;
6450
6451 return FALSE;
6452 }
6453
6454 /* Adjust a symbol defined by a dynamic object and referenced by a
6455 regular object. The current definition is in some section of the
6456 dynamic object, but we're not including those sections. We have to
6457 change the definition to something the rest of the link can
6458 understand. */
6459
6460 static bfd_boolean
6461 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6462 struct elf_link_hash_entry *h)
6463 {
6464 struct ppc_link_hash_table *htab;
6465 asection *s, *srel;
6466
6467 htab = ppc_hash_table (info);
6468 if (htab == NULL)
6469 return FALSE;
6470
6471 /* Deal with function syms. */
6472 if (h->type == STT_FUNC
6473 || h->type == STT_GNU_IFUNC
6474 || h->needs_plt)
6475 {
6476 bfd_boolean local = (ppc_elf_hash_entry (h)->save_res
6477 || SYMBOL_CALLS_LOCAL (info, h)
6478 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6479 /* Discard dyn_relocs when non-pic if we've decided that a
6480 function symbol is local and not an ifunc. We keep dynamic
6481 relocs for ifuncs when local rather than always emitting a
6482 plt call stub for them and defining the symbol on the call
6483 stub. We can't do that for ELFv1 anyway (a function symbol
6484 is defined on a descriptor, not code) and it can be faster at
6485 run-time due to not needing to bounce through a stub. The
6486 dyn_relocs for ifuncs will be applied even in a static
6487 executable. */
6488 if (!bfd_link_pic (info)
6489 && h->type != STT_GNU_IFUNC
6490 && local)
6491 h->dyn_relocs = NULL;
6492
6493 /* Clear procedure linkage table information for any symbol that
6494 won't need a .plt entry. */
6495 struct plt_entry *ent;
6496 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6497 if (ent->plt.refcount > 0)
6498 break;
6499 if (ent == NULL
6500 || (h->type != STT_GNU_IFUNC
6501 && local
6502 && (htab->can_convert_all_inline_plt
6503 || (ppc_elf_hash_entry (h)->tls_mask
6504 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6505 {
6506 h->plt.plist = NULL;
6507 h->needs_plt = 0;
6508 h->pointer_equality_needed = 0;
6509 }
6510 else if (abiversion (info->output_bfd) >= 2)
6511 {
6512 /* Taking a function's address in a read/write section
6513 doesn't require us to define the function symbol in the
6514 executable on a global entry stub. A dynamic reloc can
6515 be used instead. The reason we prefer a few more dynamic
6516 relocs is that calling via a global entry stub costs a
6517 few more instructions, and pointer_equality_needed causes
6518 extra work in ld.so when resolving these symbols. */
6519 if (global_entry_stub (h))
6520 {
6521 if (!_bfd_elf_readonly_dynrelocs (h))
6522 {
6523 h->pointer_equality_needed = 0;
6524 /* If we haven't seen a branch reloc and the symbol
6525 isn't an ifunc then we don't need a plt entry. */
6526 if (!h->needs_plt)
6527 h->plt.plist = NULL;
6528 }
6529 else if (!bfd_link_pic (info))
6530 /* We are going to be defining the function symbol on the
6531 plt stub, so no dyn_relocs needed when non-pic. */
6532 h->dyn_relocs = NULL;
6533 }
6534
6535 /* ELFv2 function symbols can't have copy relocs. */
6536 return TRUE;
6537 }
6538 else if (!h->needs_plt
6539 && !_bfd_elf_readonly_dynrelocs (h))
6540 {
6541 /* If we haven't seen a branch reloc and the symbol isn't an
6542 ifunc then we don't need a plt entry. */
6543 h->plt.plist = NULL;
6544 h->pointer_equality_needed = 0;
6545 return TRUE;
6546 }
6547 }
6548 else
6549 h->plt.plist = NULL;
6550
6551 /* If this is a weak symbol, and there is a real definition, the
6552 processor independent code will have arranged for us to see the
6553 real definition first, and we can just use the same value. */
6554 if (h->is_weakalias)
6555 {
6556 struct elf_link_hash_entry *def = weakdef (h);
6557 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6558 h->root.u.def.section = def->root.u.def.section;
6559 h->root.u.def.value = def->root.u.def.value;
6560 if (def->root.u.def.section == htab->elf.sdynbss
6561 || def->root.u.def.section == htab->elf.sdynrelro)
6562 h->dyn_relocs = NULL;
6563 return TRUE;
6564 }
6565
6566 /* If we are creating a shared library, we must presume that the
6567 only references to the symbol are via the global offset table.
6568 For such cases we need not do anything here; the relocations will
6569 be handled correctly by relocate_section. */
6570 if (!bfd_link_executable (info))
6571 return TRUE;
6572
6573 /* If there are no references to this symbol that do not use the
6574 GOT, we don't need to generate a copy reloc. */
6575 if (!h->non_got_ref)
6576 return TRUE;
6577
6578 /* Don't generate a copy reloc for symbols defined in the executable. */
6579 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6580
6581 /* If -z nocopyreloc was given, don't generate them either. */
6582 || info->nocopyreloc
6583
6584 /* If we don't find any dynamic relocs in read-only sections, then
6585 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6586 || (ELIMINATE_COPY_RELOCS
6587 && !h->needs_copy
6588 && !alias_readonly_dynrelocs (h))
6589
6590 /* Protected variables do not work with .dynbss. The copy in
6591 .dynbss won't be used by the shared library with the protected
6592 definition for the variable. Text relocations are preferable
6593 to an incorrect program. */
6594 || h->protected_def)
6595 return TRUE;
6596
6597 if (h->type == STT_FUNC
6598 || h->type == STT_GNU_IFUNC)
6599 {
6600 /* .dynbss copies of function symbols only work if we have
6601 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6602 use dot-symbols and set the function symbol size to the text
6603 size of the function rather than the size of the descriptor.
6604 That's wrong for copying a descriptor. */
6605 if (ppc_elf_hash_entry (h)->oh == NULL
6606 || !(h->size == 24 || h->size == 16))
6607 return TRUE;
6608
6609 /* We should never get here, but unfortunately there are old
6610 versions of gcc (circa gcc-3.2) that improperly for the
6611 ELFv1 ABI put initialized function pointers, vtable refs and
6612 suchlike in read-only sections. Allow them to proceed, but
6613 warn that this might break at runtime. */
6614 info->callbacks->einfo
6615 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6616 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6617 h->root.root.string);
6618 }
6619
6620 /* This is a reference to a symbol defined by a dynamic object which
6621 is not a function. */
6622
6623 /* We must allocate the symbol in our .dynbss section, which will
6624 become part of the .bss section of the executable. There will be
6625 an entry for this symbol in the .dynsym section. The dynamic
6626 object will contain position independent code, so all references
6627 from the dynamic object to this symbol will go through the global
6628 offset table. The dynamic linker will use the .dynsym entry to
6629 determine the address it must put in the global offset table, so
6630 both the dynamic object and the regular object will refer to the
6631 same memory location for the variable. */
6632 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6633 {
6634 s = htab->elf.sdynrelro;
6635 srel = htab->elf.sreldynrelro;
6636 }
6637 else
6638 {
6639 s = htab->elf.sdynbss;
6640 srel = htab->elf.srelbss;
6641 }
6642 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6643 {
6644 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6645 linker to copy the initial value out of the dynamic object
6646 and into the runtime process image. */
6647 srel->size += sizeof (Elf64_External_Rela);
6648 h->needs_copy = 1;
6649 }
6650
6651 /* We no longer want dyn_relocs. */
6652 h->dyn_relocs = NULL;
6653 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6654 }
6655
6656 /* If given a function descriptor symbol, hide both the function code
6657 sym and the descriptor. */
6658 static void
6659 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6660 struct elf_link_hash_entry *h,
6661 bfd_boolean force_local)
6662 {
6663 struct ppc_link_hash_entry *eh;
6664 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6665
6666 if (ppc_hash_table (info) == NULL)
6667 return;
6668
6669 eh = ppc_elf_hash_entry (h);
6670 if (eh->is_func_descriptor)
6671 {
6672 struct ppc_link_hash_entry *fh = eh->oh;
6673
6674 if (fh == NULL)
6675 {
6676 const char *p, *q;
6677 struct elf_link_hash_table *htab = elf_hash_table (info);
6678 char save;
6679
6680 /* We aren't supposed to use alloca in BFD because on
6681 systems which do not have alloca the version in libiberty
6682 calls xmalloc, which might cause the program to crash
6683 when it runs out of memory. This function doesn't have a
6684 return status, so there's no way to gracefully return an
6685 error. So cheat. We know that string[-1] can be safely
6686 accessed; It's either a string in an ELF string table,
6687 or allocated in an objalloc structure. */
6688
6689 p = eh->elf.root.root.string - 1;
6690 save = *p;
6691 *(char *) p = '.';
6692 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6693 FALSE, FALSE));
6694 *(char *) p = save;
6695
6696 /* Unfortunately, if it so happens that the string we were
6697 looking for was allocated immediately before this string,
6698 then we overwrote the string terminator. That's the only
6699 reason the lookup should fail. */
6700 if (fh == NULL)
6701 {
6702 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6703 while (q >= eh->elf.root.root.string && *q == *p)
6704 --q, --p;
6705 if (q < eh->elf.root.root.string && *p == '.')
6706 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6707 FALSE, FALSE));
6708 }
6709 if (fh != NULL)
6710 {
6711 eh->oh = fh;
6712 fh->oh = eh;
6713 }
6714 }
6715 if (fh != NULL)
6716 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6717 }
6718 }
6719
6720 static bfd_boolean
6721 get_sym_h (struct elf_link_hash_entry **hp,
6722 Elf_Internal_Sym **symp,
6723 asection **symsecp,
6724 unsigned char **tls_maskp,
6725 Elf_Internal_Sym **locsymsp,
6726 unsigned long r_symndx,
6727 bfd *ibfd)
6728 {
6729 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6730
6731 if (r_symndx >= symtab_hdr->sh_info)
6732 {
6733 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6734 struct elf_link_hash_entry *h;
6735
6736 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6737 h = elf_follow_link (h);
6738
6739 if (hp != NULL)
6740 *hp = h;
6741
6742 if (symp != NULL)
6743 *symp = NULL;
6744
6745 if (symsecp != NULL)
6746 {
6747 asection *symsec = NULL;
6748 if (h->root.type == bfd_link_hash_defined
6749 || h->root.type == bfd_link_hash_defweak)
6750 symsec = h->root.u.def.section;
6751 *symsecp = symsec;
6752 }
6753
6754 if (tls_maskp != NULL)
6755 *tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
6756 }
6757 else
6758 {
6759 Elf_Internal_Sym *sym;
6760 Elf_Internal_Sym *locsyms = *locsymsp;
6761
6762 if (locsyms == NULL)
6763 {
6764 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6765 if (locsyms == NULL)
6766 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6767 symtab_hdr->sh_info,
6768 0, NULL, NULL, NULL);
6769 if (locsyms == NULL)
6770 return FALSE;
6771 *locsymsp = locsyms;
6772 }
6773 sym = locsyms + r_symndx;
6774
6775 if (hp != NULL)
6776 *hp = NULL;
6777
6778 if (symp != NULL)
6779 *symp = sym;
6780
6781 if (symsecp != NULL)
6782 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6783
6784 if (tls_maskp != NULL)
6785 {
6786 struct got_entry **lgot_ents;
6787 unsigned char *tls_mask;
6788
6789 tls_mask = NULL;
6790 lgot_ents = elf_local_got_ents (ibfd);
6791 if (lgot_ents != NULL)
6792 {
6793 struct plt_entry **local_plt = (struct plt_entry **)
6794 (lgot_ents + symtab_hdr->sh_info);
6795 unsigned char *lgot_masks = (unsigned char *)
6796 (local_plt + symtab_hdr->sh_info);
6797 tls_mask = &lgot_masks[r_symndx];
6798 }
6799 *tls_maskp = tls_mask;
6800 }
6801 }
6802 return TRUE;
6803 }
6804
6805 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6806 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6807 type suitable for optimization, and 1 otherwise. */
6808
6809 static int
6810 get_tls_mask (unsigned char **tls_maskp,
6811 unsigned long *toc_symndx,
6812 bfd_vma *toc_addend,
6813 Elf_Internal_Sym **locsymsp,
6814 const Elf_Internal_Rela *rel,
6815 bfd *ibfd)
6816 {
6817 unsigned long r_symndx;
6818 int next_r;
6819 struct elf_link_hash_entry *h;
6820 Elf_Internal_Sym *sym;
6821 asection *sec;
6822 bfd_vma off;
6823
6824 r_symndx = ELF64_R_SYM (rel->r_info);
6825 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6826 return 0;
6827
6828 if ((*tls_maskp != NULL
6829 && (**tls_maskp & TLS_TLS) != 0
6830 && **tls_maskp != (TLS_TLS | TLS_MARK))
6831 || sec == NULL
6832 || ppc64_elf_section_data (sec) == NULL
6833 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6834 return 1;
6835
6836 /* Look inside a TOC section too. */
6837 if (h != NULL)
6838 {
6839 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6840 off = h->root.u.def.value;
6841 }
6842 else
6843 off = sym->st_value;
6844 off += rel->r_addend;
6845 BFD_ASSERT (off % 8 == 0);
6846 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6847 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6848 if (toc_symndx != NULL)
6849 *toc_symndx = r_symndx;
6850 if (toc_addend != NULL)
6851 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6852 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6853 return 0;
6854 if ((h == NULL || is_static_defined (h))
6855 && (next_r == -1 || next_r == -2))
6856 return 1 - next_r;
6857 return 1;
6858 }
6859
6860 /* Find (or create) an entry in the tocsave hash table. */
6861
6862 static struct tocsave_entry *
6863 tocsave_find (struct ppc_link_hash_table *htab,
6864 enum insert_option insert,
6865 Elf_Internal_Sym **local_syms,
6866 const Elf_Internal_Rela *irela,
6867 bfd *ibfd)
6868 {
6869 unsigned long r_indx;
6870 struct elf_link_hash_entry *h;
6871 Elf_Internal_Sym *sym;
6872 struct tocsave_entry ent, *p;
6873 hashval_t hash;
6874 struct tocsave_entry **slot;
6875
6876 r_indx = ELF64_R_SYM (irela->r_info);
6877 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6878 return NULL;
6879 if (ent.sec == NULL || ent.sec->output_section == NULL)
6880 {
6881 _bfd_error_handler
6882 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6883 return NULL;
6884 }
6885
6886 if (h != NULL)
6887 ent.offset = h->root.u.def.value;
6888 else
6889 ent.offset = sym->st_value;
6890 ent.offset += irela->r_addend;
6891
6892 hash = tocsave_htab_hash (&ent);
6893 slot = ((struct tocsave_entry **)
6894 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6895 if (slot == NULL)
6896 return NULL;
6897
6898 if (*slot == NULL)
6899 {
6900 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6901 if (p == NULL)
6902 return NULL;
6903 *p = ent;
6904 *slot = p;
6905 }
6906 return *slot;
6907 }
6908
6909 /* Adjust all global syms defined in opd sections. In gcc generated
6910 code for the old ABI, these will already have been done. */
6911
6912 static bfd_boolean
6913 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6914 {
6915 struct ppc_link_hash_entry *eh;
6916 asection *sym_sec;
6917 struct _opd_sec_data *opd;
6918
6919 if (h->root.type == bfd_link_hash_indirect)
6920 return TRUE;
6921
6922 if (h->root.type != bfd_link_hash_defined
6923 && h->root.type != bfd_link_hash_defweak)
6924 return TRUE;
6925
6926 eh = ppc_elf_hash_entry (h);
6927 if (eh->adjust_done)
6928 return TRUE;
6929
6930 sym_sec = eh->elf.root.u.def.section;
6931 opd = get_opd_info (sym_sec);
6932 if (opd != NULL && opd->adjust != NULL)
6933 {
6934 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6935 if (adjust == -1)
6936 {
6937 /* This entry has been deleted. */
6938 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6939 if (dsec == NULL)
6940 {
6941 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6942 if (discarded_section (dsec))
6943 {
6944 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6945 break;
6946 }
6947 }
6948 eh->elf.root.u.def.value = 0;
6949 eh->elf.root.u.def.section = dsec;
6950 }
6951 else
6952 eh->elf.root.u.def.value += adjust;
6953 eh->adjust_done = 1;
6954 }
6955 return TRUE;
6956 }
6957
6958 /* Handles decrementing dynamic reloc counts for the reloc specified by
6959 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6960 have already been determined. */
6961
6962 static bfd_boolean
6963 dec_dynrel_count (bfd_vma r_info,
6964 asection *sec,
6965 struct bfd_link_info *info,
6966 Elf_Internal_Sym **local_syms,
6967 struct elf_link_hash_entry *h,
6968 Elf_Internal_Sym *sym)
6969 {
6970 enum elf_ppc64_reloc_type r_type;
6971 asection *sym_sec = NULL;
6972
6973 /* Can this reloc be dynamic? This switch, and later tests here
6974 should be kept in sync with the code in check_relocs. */
6975 r_type = ELF64_R_TYPE (r_info);
6976 switch (r_type)
6977 {
6978 default:
6979 return TRUE;
6980
6981 case R_PPC64_TOC16:
6982 case R_PPC64_TOC16_DS:
6983 case R_PPC64_TOC16_LO:
6984 case R_PPC64_TOC16_HI:
6985 case R_PPC64_TOC16_HA:
6986 case R_PPC64_TOC16_LO_DS:
6987 if (h == NULL)
6988 return TRUE;
6989 break;
6990
6991 case R_PPC64_TPREL16:
6992 case R_PPC64_TPREL16_LO:
6993 case R_PPC64_TPREL16_HI:
6994 case R_PPC64_TPREL16_HA:
6995 case R_PPC64_TPREL16_DS:
6996 case R_PPC64_TPREL16_LO_DS:
6997 case R_PPC64_TPREL16_HIGH:
6998 case R_PPC64_TPREL16_HIGHA:
6999 case R_PPC64_TPREL16_HIGHER:
7000 case R_PPC64_TPREL16_HIGHERA:
7001 case R_PPC64_TPREL16_HIGHEST:
7002 case R_PPC64_TPREL16_HIGHESTA:
7003 case R_PPC64_TPREL64:
7004 case R_PPC64_TPREL34:
7005 case R_PPC64_DTPMOD64:
7006 case R_PPC64_DTPREL64:
7007 case R_PPC64_ADDR64:
7008 case R_PPC64_REL30:
7009 case R_PPC64_REL32:
7010 case R_PPC64_REL64:
7011 case R_PPC64_ADDR14:
7012 case R_PPC64_ADDR14_BRNTAKEN:
7013 case R_PPC64_ADDR14_BRTAKEN:
7014 case R_PPC64_ADDR16:
7015 case R_PPC64_ADDR16_DS:
7016 case R_PPC64_ADDR16_HA:
7017 case R_PPC64_ADDR16_HI:
7018 case R_PPC64_ADDR16_HIGH:
7019 case R_PPC64_ADDR16_HIGHA:
7020 case R_PPC64_ADDR16_HIGHER:
7021 case R_PPC64_ADDR16_HIGHERA:
7022 case R_PPC64_ADDR16_HIGHEST:
7023 case R_PPC64_ADDR16_HIGHESTA:
7024 case R_PPC64_ADDR16_LO:
7025 case R_PPC64_ADDR16_LO_DS:
7026 case R_PPC64_ADDR24:
7027 case R_PPC64_ADDR32:
7028 case R_PPC64_UADDR16:
7029 case R_PPC64_UADDR32:
7030 case R_PPC64_UADDR64:
7031 case R_PPC64_TOC:
7032 case R_PPC64_D34:
7033 case R_PPC64_D34_LO:
7034 case R_PPC64_D34_HI30:
7035 case R_PPC64_D34_HA30:
7036 case R_PPC64_ADDR16_HIGHER34:
7037 case R_PPC64_ADDR16_HIGHERA34:
7038 case R_PPC64_ADDR16_HIGHEST34:
7039 case R_PPC64_ADDR16_HIGHESTA34:
7040 case R_PPC64_D28:
7041 break;
7042 }
7043
7044 if (local_syms != NULL)
7045 {
7046 unsigned long r_symndx;
7047 bfd *ibfd = sec->owner;
7048
7049 r_symndx = ELF64_R_SYM (r_info);
7050 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7051 return FALSE;
7052 }
7053
7054 if ((h != NULL
7055 && (h->root.type == bfd_link_hash_defweak
7056 || !h->def_regular))
7057 || (h != NULL
7058 && !bfd_link_executable (info)
7059 && !SYMBOLIC_BIND (info, h))
7060 || (bfd_link_pic (info)
7061 && must_be_dyn_reloc (info, r_type))
7062 || (!bfd_link_pic (info)
7063 && (h != NULL
7064 ? h->type == STT_GNU_IFUNC
7065 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
7066 ;
7067 else
7068 return TRUE;
7069
7070 if (h != NULL)
7071 {
7072 struct elf_dyn_relocs *p;
7073 struct elf_dyn_relocs **pp;
7074 pp = &h->dyn_relocs;
7075
7076 /* elf_gc_sweep may have already removed all dyn relocs associated
7077 with local syms for a given section. Also, symbol flags are
7078 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7079 report a dynreloc miscount. */
7080 if (*pp == NULL && info->gc_sections)
7081 return TRUE;
7082
7083 while ((p = *pp) != NULL)
7084 {
7085 if (p->sec == sec)
7086 {
7087 if (!must_be_dyn_reloc (info, r_type))
7088 p->pc_count -= 1;
7089 p->count -= 1;
7090 if (p->count == 0)
7091 *pp = p->next;
7092 return TRUE;
7093 }
7094 pp = &p->next;
7095 }
7096 }
7097 else
7098 {
7099 struct ppc_dyn_relocs *p;
7100 struct ppc_dyn_relocs **pp;
7101 void *vpp;
7102 bfd_boolean is_ifunc;
7103
7104 if (local_syms == NULL)
7105 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7106 if (sym_sec == NULL)
7107 sym_sec = sec;
7108
7109 vpp = &elf_section_data (sym_sec)->local_dynrel;
7110 pp = (struct ppc_dyn_relocs **) vpp;
7111
7112 if (*pp == NULL && info->gc_sections)
7113 return TRUE;
7114
7115 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7116 while ((p = *pp) != NULL)
7117 {
7118 if (p->sec == sec && p->ifunc == is_ifunc)
7119 {
7120 p->count -= 1;
7121 if (p->count == 0)
7122 *pp = p->next;
7123 return TRUE;
7124 }
7125 pp = &p->next;
7126 }
7127 }
7128
7129 /* xgettext:c-format */
7130 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7131 sec->owner, sec);
7132 bfd_set_error (bfd_error_bad_value);
7133 return FALSE;
7134 }
7135
7136 /* Remove unused Official Procedure Descriptor entries. Currently we
7137 only remove those associated with functions in discarded link-once
7138 sections, or weakly defined functions that have been overridden. It
7139 would be possible to remove many more entries for statically linked
7140 applications. */
7141
7142 bfd_boolean
7143 ppc64_elf_edit_opd (struct bfd_link_info *info)
7144 {
7145 bfd *ibfd;
7146 bfd_boolean some_edited = FALSE;
7147 asection *need_pad = NULL;
7148 struct ppc_link_hash_table *htab;
7149
7150 htab = ppc_hash_table (info);
7151 if (htab == NULL)
7152 return FALSE;
7153
7154 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7155 {
7156 asection *sec;
7157 Elf_Internal_Rela *relstart, *rel, *relend;
7158 Elf_Internal_Shdr *symtab_hdr;
7159 Elf_Internal_Sym *local_syms;
7160 struct _opd_sec_data *opd;
7161 bfd_boolean need_edit, add_aux_fields, broken;
7162 bfd_size_type cnt_16b = 0;
7163
7164 if (!is_ppc64_elf (ibfd))
7165 continue;
7166
7167 sec = bfd_get_section_by_name (ibfd, ".opd");
7168 if (sec == NULL || sec->size == 0)
7169 continue;
7170
7171 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7172 continue;
7173
7174 if (sec->output_section == bfd_abs_section_ptr)
7175 continue;
7176
7177 /* Look through the section relocs. */
7178 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7179 continue;
7180
7181 local_syms = NULL;
7182 symtab_hdr = &elf_symtab_hdr (ibfd);
7183
7184 /* Read the relocations. */
7185 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7186 info->keep_memory);
7187 if (relstart == NULL)
7188 return FALSE;
7189
7190 /* First run through the relocs to check they are sane, and to
7191 determine whether we need to edit this opd section. */
7192 need_edit = FALSE;
7193 broken = FALSE;
7194 need_pad = sec;
7195 relend = relstart + sec->reloc_count;
7196 for (rel = relstart; rel < relend; )
7197 {
7198 enum elf_ppc64_reloc_type r_type;
7199 unsigned long r_symndx;
7200 asection *sym_sec;
7201 struct elf_link_hash_entry *h;
7202 Elf_Internal_Sym *sym;
7203 bfd_vma offset;
7204
7205 /* .opd contains an array of 16 or 24 byte entries. We're
7206 only interested in the reloc pointing to a function entry
7207 point. */
7208 offset = rel->r_offset;
7209 if (rel + 1 == relend
7210 || rel[1].r_offset != offset + 8)
7211 {
7212 /* If someone messes with .opd alignment then after a
7213 "ld -r" we might have padding in the middle of .opd.
7214 Also, there's nothing to prevent someone putting
7215 something silly in .opd with the assembler. No .opd
7216 optimization for them! */
7217 broken_opd:
7218 _bfd_error_handler
7219 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7220 broken = TRUE;
7221 break;
7222 }
7223
7224 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7225 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7226 {
7227 _bfd_error_handler
7228 /* xgettext:c-format */
7229 (_("%pB: unexpected reloc type %u in .opd section"),
7230 ibfd, r_type);
7231 broken = TRUE;
7232 break;
7233 }
7234
7235 r_symndx = ELF64_R_SYM (rel->r_info);
7236 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7237 r_symndx, ibfd))
7238 goto error_ret;
7239
7240 if (sym_sec == NULL || sym_sec->owner == NULL)
7241 {
7242 const char *sym_name;
7243 if (h != NULL)
7244 sym_name = h->root.root.string;
7245 else
7246 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7247 sym_sec);
7248
7249 _bfd_error_handler
7250 /* xgettext:c-format */
7251 (_("%pB: undefined sym `%s' in .opd section"),
7252 ibfd, sym_name);
7253 broken = TRUE;
7254 break;
7255 }
7256
7257 /* opd entries are always for functions defined in the
7258 current input bfd. If the symbol isn't defined in the
7259 input bfd, then we won't be using the function in this
7260 bfd; It must be defined in a linkonce section in another
7261 bfd, or is weak. It's also possible that we are
7262 discarding the function due to a linker script /DISCARD/,
7263 which we test for via the output_section. */
7264 if (sym_sec->owner != ibfd
7265 || sym_sec->output_section == bfd_abs_section_ptr)
7266 need_edit = TRUE;
7267
7268 rel += 2;
7269 if (rel + 1 == relend
7270 || (rel + 2 < relend
7271 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7272 ++rel;
7273
7274 if (rel == relend)
7275 {
7276 if (sec->size == offset + 24)
7277 {
7278 need_pad = NULL;
7279 break;
7280 }
7281 if (sec->size == offset + 16)
7282 {
7283 cnt_16b++;
7284 break;
7285 }
7286 goto broken_opd;
7287 }
7288 else if (rel + 1 < relend
7289 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7290 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7291 {
7292 if (rel[0].r_offset == offset + 16)
7293 cnt_16b++;
7294 else if (rel[0].r_offset != offset + 24)
7295 goto broken_opd;
7296 }
7297 else
7298 goto broken_opd;
7299 }
7300
7301 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7302
7303 if (!broken && (need_edit || add_aux_fields))
7304 {
7305 Elf_Internal_Rela *write_rel;
7306 Elf_Internal_Shdr *rel_hdr;
7307 bfd_byte *rptr, *wptr;
7308 bfd_byte *new_contents;
7309 bfd_size_type amt;
7310
7311 new_contents = NULL;
7312 amt = OPD_NDX (sec->size) * sizeof (long);
7313 opd = &ppc64_elf_section_data (sec)->u.opd;
7314 opd->adjust = bfd_zalloc (sec->owner, amt);
7315 if (opd->adjust == NULL)
7316 return FALSE;
7317
7318 /* This seems a waste of time as input .opd sections are all
7319 zeros as generated by gcc, but I suppose there's no reason
7320 this will always be so. We might start putting something in
7321 the third word of .opd entries. */
7322 if ((sec->flags & SEC_IN_MEMORY) == 0)
7323 {
7324 bfd_byte *loc;
7325 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7326 {
7327 free (loc);
7328 error_ret:
7329 if (symtab_hdr->contents != (unsigned char *) local_syms)
7330 free (local_syms);
7331 if (elf_section_data (sec)->relocs != relstart)
7332 free (relstart);
7333 return FALSE;
7334 }
7335 sec->contents = loc;
7336 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7337 }
7338
7339 elf_section_data (sec)->relocs = relstart;
7340
7341 new_contents = sec->contents;
7342 if (add_aux_fields)
7343 {
7344 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7345 if (new_contents == NULL)
7346 return FALSE;
7347 need_pad = NULL;
7348 }
7349 wptr = new_contents;
7350 rptr = sec->contents;
7351 write_rel = relstart;
7352 for (rel = relstart; rel < relend; )
7353 {
7354 unsigned long r_symndx;
7355 asection *sym_sec;
7356 struct elf_link_hash_entry *h;
7357 struct ppc_link_hash_entry *fdh = NULL;
7358 Elf_Internal_Sym *sym;
7359 long opd_ent_size;
7360 Elf_Internal_Rela *next_rel;
7361 bfd_boolean skip;
7362
7363 r_symndx = ELF64_R_SYM (rel->r_info);
7364 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7365 r_symndx, ibfd))
7366 goto error_ret;
7367
7368 next_rel = rel + 2;
7369 if (next_rel + 1 == relend
7370 || (next_rel + 2 < relend
7371 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7372 ++next_rel;
7373
7374 /* See if the .opd entry is full 24 byte or
7375 16 byte (with fd_aux entry overlapped with next
7376 fd_func). */
7377 opd_ent_size = 24;
7378 if (next_rel == relend)
7379 {
7380 if (sec->size == rel->r_offset + 16)
7381 opd_ent_size = 16;
7382 }
7383 else if (next_rel->r_offset == rel->r_offset + 16)
7384 opd_ent_size = 16;
7385
7386 if (h != NULL
7387 && h->root.root.string[0] == '.')
7388 {
7389 fdh = ppc_elf_hash_entry (h)->oh;
7390 if (fdh != NULL)
7391 {
7392 fdh = ppc_follow_link (fdh);
7393 if (fdh->elf.root.type != bfd_link_hash_defined
7394 && fdh->elf.root.type != bfd_link_hash_defweak)
7395 fdh = NULL;
7396 }
7397 }
7398
7399 skip = (sym_sec->owner != ibfd
7400 || sym_sec->output_section == bfd_abs_section_ptr);
7401 if (skip)
7402 {
7403 if (fdh != NULL && sym_sec->owner == ibfd)
7404 {
7405 /* Arrange for the function descriptor sym
7406 to be dropped. */
7407 fdh->elf.root.u.def.value = 0;
7408 fdh->elf.root.u.def.section = sym_sec;
7409 }
7410 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7411
7412 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7413 rel = next_rel;
7414 else
7415 while (1)
7416 {
7417 if (!dec_dynrel_count (rel->r_info, sec, info,
7418 NULL, h, sym))
7419 goto error_ret;
7420
7421 if (++rel == next_rel)
7422 break;
7423
7424 r_symndx = ELF64_R_SYM (rel->r_info);
7425 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7426 r_symndx, ibfd))
7427 goto error_ret;
7428 }
7429 }
7430 else
7431 {
7432 /* We'll be keeping this opd entry. */
7433 long adjust;
7434
7435 if (fdh != NULL)
7436 {
7437 /* Redefine the function descriptor symbol to
7438 this location in the opd section. It is
7439 necessary to update the value here rather
7440 than using an array of adjustments as we do
7441 for local symbols, because various places
7442 in the generic ELF code use the value
7443 stored in u.def.value. */
7444 fdh->elf.root.u.def.value = wptr - new_contents;
7445 fdh->adjust_done = 1;
7446 }
7447
7448 /* Local syms are a bit tricky. We could
7449 tweak them as they can be cached, but
7450 we'd need to look through the local syms
7451 for the function descriptor sym which we
7452 don't have at the moment. So keep an
7453 array of adjustments. */
7454 adjust = (wptr - new_contents) - (rptr - sec->contents);
7455 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7456
7457 if (wptr != rptr)
7458 memcpy (wptr, rptr, opd_ent_size);
7459 wptr += opd_ent_size;
7460 if (add_aux_fields && opd_ent_size == 16)
7461 {
7462 memset (wptr, '\0', 8);
7463 wptr += 8;
7464 }
7465
7466 /* We need to adjust any reloc offsets to point to the
7467 new opd entries. */
7468 for ( ; rel != next_rel; ++rel)
7469 {
7470 rel->r_offset += adjust;
7471 if (write_rel != rel)
7472 memcpy (write_rel, rel, sizeof (*rel));
7473 ++write_rel;
7474 }
7475 }
7476
7477 rptr += opd_ent_size;
7478 }
7479
7480 sec->size = wptr - new_contents;
7481 sec->reloc_count = write_rel - relstart;
7482 if (add_aux_fields)
7483 {
7484 free (sec->contents);
7485 sec->contents = new_contents;
7486 }
7487
7488 /* Fudge the header size too, as this is used later in
7489 elf_bfd_final_link if we are emitting relocs. */
7490 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7491 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7492 some_edited = TRUE;
7493 }
7494 else if (elf_section_data (sec)->relocs != relstart)
7495 free (relstart);
7496
7497 if (local_syms != NULL
7498 && symtab_hdr->contents != (unsigned char *) local_syms)
7499 {
7500 if (!info->keep_memory)
7501 free (local_syms);
7502 else
7503 symtab_hdr->contents = (unsigned char *) local_syms;
7504 }
7505 }
7506
7507 if (some_edited)
7508 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7509
7510 /* If we are doing a final link and the last .opd entry is just 16 byte
7511 long, add a 8 byte padding after it. */
7512 if (need_pad != NULL && !bfd_link_relocatable (info))
7513 {
7514 bfd_byte *p;
7515
7516 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7517 {
7518 BFD_ASSERT (need_pad->size > 0);
7519
7520 p = bfd_malloc (need_pad->size + 8);
7521 if (p == NULL)
7522 return FALSE;
7523
7524 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7525 p, 0, need_pad->size))
7526 return FALSE;
7527
7528 need_pad->contents = p;
7529 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7530 }
7531 else
7532 {
7533 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7534 if (p == NULL)
7535 return FALSE;
7536
7537 need_pad->contents = p;
7538 }
7539
7540 memset (need_pad->contents + need_pad->size, 0, 8);
7541 need_pad->size += 8;
7542 }
7543
7544 return TRUE;
7545 }
7546
7547 /* Analyze inline PLT call relocations to see whether calls to locally
7548 defined functions can be converted to direct calls. */
7549
7550 bfd_boolean
7551 ppc64_elf_inline_plt (struct bfd_link_info *info)
7552 {
7553 struct ppc_link_hash_table *htab;
7554 bfd *ibfd;
7555 asection *sec;
7556 bfd_vma low_vma, high_vma, limit;
7557
7558 htab = ppc_hash_table (info);
7559 if (htab == NULL)
7560 return FALSE;
7561
7562 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7563 reduced somewhat to cater for possible stubs that might be added
7564 between the call and its destination. */
7565 if (htab->params->group_size < 0)
7566 {
7567 limit = -htab->params->group_size;
7568 if (limit == 1)
7569 limit = 0x1e00000;
7570 }
7571 else
7572 {
7573 limit = htab->params->group_size;
7574 if (limit == 1)
7575 limit = 0x1c00000;
7576 }
7577
7578 low_vma = -1;
7579 high_vma = 0;
7580 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7581 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7582 {
7583 if (low_vma > sec->vma)
7584 low_vma = sec->vma;
7585 if (high_vma < sec->vma + sec->size)
7586 high_vma = sec->vma + sec->size;
7587 }
7588
7589 /* If a "bl" can reach anywhere in local code sections, then we can
7590 convert all inline PLT sequences to direct calls when the symbol
7591 is local. */
7592 if (high_vma - low_vma < limit)
7593 {
7594 htab->can_convert_all_inline_plt = 1;
7595 return TRUE;
7596 }
7597
7598 /* Otherwise, go looking through relocs for cases where a direct
7599 call won't reach. Mark the symbol on any such reloc to disable
7600 the optimization and keep the PLT entry as it seems likely that
7601 this will be better than creating trampolines. Note that this
7602 will disable the optimization for all inline PLT calls to a
7603 particular symbol, not just those that won't reach. The
7604 difficulty in doing a more precise optimization is that the
7605 linker needs to make a decision depending on whether a
7606 particular R_PPC64_PLTCALL insn can be turned into a direct
7607 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7608 the sequence, and there is nothing that ties those relocs
7609 together except their symbol. */
7610
7611 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7612 {
7613 Elf_Internal_Shdr *symtab_hdr;
7614 Elf_Internal_Sym *local_syms;
7615
7616 if (!is_ppc64_elf (ibfd))
7617 continue;
7618
7619 local_syms = NULL;
7620 symtab_hdr = &elf_symtab_hdr (ibfd);
7621
7622 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7623 if (ppc64_elf_section_data (sec)->has_pltcall
7624 && !bfd_is_abs_section (sec->output_section))
7625 {
7626 Elf_Internal_Rela *relstart, *rel, *relend;
7627
7628 /* Read the relocations. */
7629 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7630 info->keep_memory);
7631 if (relstart == NULL)
7632 return FALSE;
7633
7634 relend = relstart + sec->reloc_count;
7635 for (rel = relstart; rel < relend; rel++)
7636 {
7637 enum elf_ppc64_reloc_type r_type;
7638 unsigned long r_symndx;
7639 asection *sym_sec;
7640 struct elf_link_hash_entry *h;
7641 Elf_Internal_Sym *sym;
7642 unsigned char *tls_maskp;
7643
7644 r_type = ELF64_R_TYPE (rel->r_info);
7645 if (r_type != R_PPC64_PLTCALL
7646 && r_type != R_PPC64_PLTCALL_NOTOC)
7647 continue;
7648
7649 r_symndx = ELF64_R_SYM (rel->r_info);
7650 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7651 r_symndx, ibfd))
7652 {
7653 if (elf_section_data (sec)->relocs != relstart)
7654 free (relstart);
7655 if (symtab_hdr->contents != (bfd_byte *) local_syms)
7656 free (local_syms);
7657 return FALSE;
7658 }
7659
7660 if (sym_sec != NULL && sym_sec->output_section != NULL)
7661 {
7662 bfd_vma from, to;
7663 if (h != NULL)
7664 to = h->root.u.def.value;
7665 else
7666 to = sym->st_value;
7667 to += (rel->r_addend
7668 + sym_sec->output_offset
7669 + sym_sec->output_section->vma);
7670 from = (rel->r_offset
7671 + sec->output_offset
7672 + sec->output_section->vma);
7673 if (to - from + limit < 2 * limit
7674 && !(r_type == R_PPC64_PLTCALL_NOTOC
7675 && (((h ? h->other : sym->st_other)
7676 & STO_PPC64_LOCAL_MASK)
7677 > 1 << STO_PPC64_LOCAL_BIT)))
7678 *tls_maskp &= ~PLT_KEEP;
7679 }
7680 }
7681 if (elf_section_data (sec)->relocs != relstart)
7682 free (relstart);
7683 }
7684
7685 if (local_syms != NULL
7686 && symtab_hdr->contents != (unsigned char *) local_syms)
7687 {
7688 if (!info->keep_memory)
7689 free (local_syms);
7690 else
7691 symtab_hdr->contents = (unsigned char *) local_syms;
7692 }
7693 }
7694
7695 return TRUE;
7696 }
7697
7698 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7699
7700 asection *
7701 ppc64_elf_tls_setup (struct bfd_link_info *info)
7702 {
7703 struct ppc_link_hash_table *htab;
7704 struct elf_link_hash_entry *tga, *tga_fd, *desc, *desc_fd;
7705
7706 htab = ppc_hash_table (info);
7707 if (htab == NULL)
7708 return NULL;
7709
7710 if (abiversion (info->output_bfd) == 1)
7711 htab->opd_abi = 1;
7712
7713 if (htab->params->no_multi_toc)
7714 htab->do_multi_toc = 0;
7715 else if (!htab->do_multi_toc)
7716 htab->params->no_multi_toc = 1;
7717
7718 /* Default to --no-plt-localentry, as this option can cause problems
7719 with symbol interposition. For example, glibc libpthread.so and
7720 libc.so duplicate many pthread symbols, with a fallback
7721 implementation in libc.so. In some cases the fallback does more
7722 work than the pthread implementation. __pthread_condattr_destroy
7723 is one such symbol: the libpthread.so implementation is
7724 localentry:0 while the libc.so implementation is localentry:8.
7725 An app that "cleverly" uses dlopen to only load necessary
7726 libraries at runtime may omit loading libpthread.so when not
7727 running multi-threaded, which then results in the libc.so
7728 fallback symbols being used and ld.so complaining. Now there
7729 are workarounds in ld (see non_zero_localentry) to detect the
7730 pthread situation, but that may not be the only case where
7731 --plt-localentry can cause trouble. */
7732 if (htab->params->plt_localentry0 < 0)
7733 htab->params->plt_localentry0 = 0;
7734 if (htab->params->plt_localentry0
7735 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7736 FALSE, FALSE, FALSE) == NULL)
7737 _bfd_error_handler
7738 (_("warning: --plt-localentry is especially dangerous without "
7739 "ld.so support to detect ABI violations"));
7740
7741 tga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7742 FALSE, FALSE, TRUE);
7743 htab->tls_get_addr = ppc_elf_hash_entry (tga);
7744
7745 /* Move dynamic linking info to the function descriptor sym. */
7746 if (tga != NULL)
7747 func_desc_adjust (tga, info);
7748 tga_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7749 FALSE, FALSE, TRUE);
7750 htab->tls_get_addr_fd = ppc_elf_hash_entry (tga_fd);
7751
7752 desc = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_desc",
7753 FALSE, FALSE, TRUE);
7754 htab->tga_desc = ppc_elf_hash_entry (desc);
7755 if (desc != NULL)
7756 func_desc_adjust (desc, info);
7757 desc_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_desc",
7758 FALSE, FALSE, TRUE);
7759 htab->tga_desc_fd = ppc_elf_hash_entry (desc_fd);
7760
7761 if (htab->params->tls_get_addr_opt)
7762 {
7763 struct elf_link_hash_entry *opt, *opt_fd;
7764
7765 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7766 FALSE, FALSE, TRUE);
7767 if (opt != NULL)
7768 func_desc_adjust (opt, info);
7769 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7770 FALSE, FALSE, TRUE);
7771 if (opt_fd != NULL
7772 && (opt_fd->root.type == bfd_link_hash_defined
7773 || opt_fd->root.type == bfd_link_hash_defweak))
7774 {
7775 /* If glibc supports an optimized __tls_get_addr call stub,
7776 signalled by the presence of __tls_get_addr_opt, and we'll
7777 be calling __tls_get_addr via a plt call stub, then
7778 make __tls_get_addr point to __tls_get_addr_opt. */
7779 if (!(htab->elf.dynamic_sections_created
7780 && tga_fd != NULL
7781 && (tga_fd->type == STT_FUNC
7782 || tga_fd->needs_plt)
7783 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7784 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd))))
7785 tga_fd = NULL;
7786 if (!(htab->elf.dynamic_sections_created
7787 && desc_fd != NULL
7788 && (desc_fd->type == STT_FUNC
7789 || desc_fd->needs_plt)
7790 && !(SYMBOL_CALLS_LOCAL (info, desc_fd)
7791 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, desc_fd))))
7792 desc_fd = NULL;
7793
7794 if (tga_fd != NULL || desc_fd != NULL)
7795 {
7796 struct plt_entry *ent = NULL;
7797
7798 if (tga_fd != NULL)
7799 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7800 if (ent->plt.refcount > 0)
7801 break;
7802 if (ent == NULL && desc_fd != NULL)
7803 for (ent = desc_fd->plt.plist; ent != NULL; ent = ent->next)
7804 if (ent->plt.refcount > 0)
7805 break;
7806 if (ent != NULL)
7807 {
7808 if (tga_fd != NULL)
7809 {
7810 tga_fd->root.type = bfd_link_hash_indirect;
7811 tga_fd->root.u.i.link = &opt_fd->root;
7812 tga_fd->root.u.i.warning = NULL;
7813 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7814 }
7815 if (desc_fd != NULL)
7816 {
7817 desc_fd->root.type = bfd_link_hash_indirect;
7818 desc_fd->root.u.i.link = &opt_fd->root;
7819 desc_fd->root.u.i.warning = NULL;
7820 ppc64_elf_copy_indirect_symbol (info, opt_fd, desc_fd);
7821 }
7822 opt_fd->mark = 1;
7823 if (opt_fd->dynindx != -1)
7824 {
7825 /* Use __tls_get_addr_opt in dynamic relocations. */
7826 opt_fd->dynindx = -1;
7827 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7828 opt_fd->dynstr_index);
7829 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7830 return NULL;
7831 }
7832 if (tga_fd != NULL)
7833 {
7834 htab->tls_get_addr_fd = ppc_elf_hash_entry (opt_fd);
7835 tga = (struct elf_link_hash_entry *) htab->tls_get_addr;
7836 if (opt != NULL && tga != NULL)
7837 {
7838 tga->root.type = bfd_link_hash_indirect;
7839 tga->root.u.i.link = &opt->root;
7840 tga->root.u.i.warning = NULL;
7841 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7842 opt->mark = 1;
7843 _bfd_elf_link_hash_hide_symbol (info, opt,
7844 tga->forced_local);
7845 htab->tls_get_addr = ppc_elf_hash_entry (opt);
7846 }
7847 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7848 htab->tls_get_addr_fd->is_func_descriptor = 1;
7849 if (htab->tls_get_addr != NULL)
7850 {
7851 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7852 htab->tls_get_addr->is_func = 1;
7853 }
7854 }
7855 if (desc_fd != NULL)
7856 {
7857 htab->tga_desc_fd = ppc_elf_hash_entry (opt_fd);
7858 if (opt != NULL && desc != NULL)
7859 {
7860 desc->root.type = bfd_link_hash_indirect;
7861 desc->root.u.i.link = &opt->root;
7862 desc->root.u.i.warning = NULL;
7863 ppc64_elf_copy_indirect_symbol (info, opt, desc);
7864 opt->mark = 1;
7865 _bfd_elf_link_hash_hide_symbol (info, opt,
7866 desc->forced_local);
7867 htab->tga_desc = ppc_elf_hash_entry (opt);
7868 }
7869 htab->tga_desc_fd->oh = htab->tga_desc;
7870 htab->tga_desc_fd->is_func_descriptor = 1;
7871 if (htab->tga_desc != NULL)
7872 {
7873 htab->tga_desc->oh = htab->tga_desc_fd;
7874 htab->tga_desc->is_func = 1;
7875 }
7876 }
7877 }
7878 }
7879 }
7880 else if (htab->params->tls_get_addr_opt < 0)
7881 htab->params->tls_get_addr_opt = 0;
7882 }
7883
7884 if (htab->tga_desc_fd != NULL
7885 && htab->params->tls_get_addr_opt
7886 && htab->params->no_tls_get_addr_regsave == -1)
7887 htab->params->no_tls_get_addr_regsave = 0;
7888
7889 return _bfd_elf_tls_setup (info->output_bfd, info);
7890 }
7891
7892 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7893 any of HASH1, HASH2, HASH3, or HASH4. */
7894
7895 static bfd_boolean
7896 branch_reloc_hash_match (const bfd *ibfd,
7897 const Elf_Internal_Rela *rel,
7898 const struct ppc_link_hash_entry *hash1,
7899 const struct ppc_link_hash_entry *hash2,
7900 const struct ppc_link_hash_entry *hash3,
7901 const struct ppc_link_hash_entry *hash4)
7902 {
7903 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7904 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7905 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7906
7907 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7908 {
7909 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7910 struct elf_link_hash_entry *h;
7911
7912 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7913 h = elf_follow_link (h);
7914 if (h == (struct elf_link_hash_entry *) hash1
7915 || h == (struct elf_link_hash_entry *) hash2
7916 || h == (struct elf_link_hash_entry *) hash3
7917 || h == (struct elf_link_hash_entry *) hash4)
7918 return TRUE;
7919 }
7920 return FALSE;
7921 }
7922
7923 /* Run through all the TLS relocs looking for optimization
7924 opportunities. The linker has been hacked (see ppc64elf.em) to do
7925 a preliminary section layout so that we know the TLS segment
7926 offsets. We can't optimize earlier because some optimizations need
7927 to know the tp offset, and we need to optimize before allocating
7928 dynamic relocations. */
7929
7930 bfd_boolean
7931 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7932 {
7933 bfd *ibfd;
7934 asection *sec;
7935 struct ppc_link_hash_table *htab;
7936 unsigned char *toc_ref;
7937 int pass;
7938
7939 if (!bfd_link_executable (info))
7940 return TRUE;
7941
7942 htab = ppc_hash_table (info);
7943 if (htab == NULL)
7944 return FALSE;
7945
7946 htab->do_tls_opt = 1;
7947
7948 /* Make two passes over the relocs. On the first pass, mark toc
7949 entries involved with tls relocs, and check that tls relocs
7950 involved in setting up a tls_get_addr call are indeed followed by
7951 such a call. If they are not, we can't do any tls optimization.
7952 On the second pass twiddle tls_mask flags to notify
7953 relocate_section that optimization can be done, and adjust got
7954 and plt refcounts. */
7955 toc_ref = NULL;
7956 for (pass = 0; pass < 2; ++pass)
7957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7958 {
7959 Elf_Internal_Sym *locsyms = NULL;
7960 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7961
7962 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7963 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7964 {
7965 Elf_Internal_Rela *relstart, *rel, *relend;
7966 bfd_boolean found_tls_get_addr_arg = 0;
7967
7968 /* Read the relocations. */
7969 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7970 info->keep_memory);
7971 if (relstart == NULL)
7972 {
7973 free (toc_ref);
7974 return FALSE;
7975 }
7976
7977 relend = relstart + sec->reloc_count;
7978 for (rel = relstart; rel < relend; rel++)
7979 {
7980 enum elf_ppc64_reloc_type r_type;
7981 unsigned long r_symndx;
7982 struct elf_link_hash_entry *h;
7983 Elf_Internal_Sym *sym;
7984 asection *sym_sec;
7985 unsigned char *tls_mask;
7986 unsigned int tls_set, tls_clear, tls_type = 0;
7987 bfd_vma value;
7988 bfd_boolean ok_tprel, is_local;
7989 long toc_ref_index = 0;
7990 int expecting_tls_get_addr = 0;
7991 bfd_boolean ret = FALSE;
7992
7993 r_symndx = ELF64_R_SYM (rel->r_info);
7994 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7995 r_symndx, ibfd))
7996 {
7997 err_free_rel:
7998 if (elf_section_data (sec)->relocs != relstart)
7999 free (relstart);
8000 free (toc_ref);
8001 if (elf_symtab_hdr (ibfd).contents
8002 != (unsigned char *) locsyms)
8003 free (locsyms);
8004 return ret;
8005 }
8006
8007 if (h != NULL)
8008 {
8009 if (h->root.type == bfd_link_hash_defined
8010 || h->root.type == bfd_link_hash_defweak)
8011 value = h->root.u.def.value;
8012 else if (h->root.type == bfd_link_hash_undefweak)
8013 value = 0;
8014 else
8015 {
8016 found_tls_get_addr_arg = 0;
8017 continue;
8018 }
8019 }
8020 else
8021 /* Symbols referenced by TLS relocs must be of type
8022 STT_TLS. So no need for .opd local sym adjust. */
8023 value = sym->st_value;
8024
8025 ok_tprel = FALSE;
8026 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
8027 if (is_local)
8028 {
8029 if (h != NULL
8030 && h->root.type == bfd_link_hash_undefweak)
8031 ok_tprel = TRUE;
8032 else if (sym_sec != NULL
8033 && sym_sec->output_section != NULL)
8034 {
8035 value += sym_sec->output_offset;
8036 value += sym_sec->output_section->vma;
8037 value -= htab->elf.tls_sec->vma + TP_OFFSET;
8038 /* Note that even though the prefix insns
8039 allow a 1<<33 offset we use the same test
8040 as for addis;addi. There may be a mix of
8041 pcrel and non-pcrel code and the decision
8042 to optimise is per symbol, not per TLS
8043 sequence. */
8044 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
8045 }
8046 }
8047
8048 r_type = ELF64_R_TYPE (rel->r_info);
8049 /* If this section has old-style __tls_get_addr calls
8050 without marker relocs, then check that each
8051 __tls_get_addr call reloc is preceded by a reloc
8052 that conceivably belongs to the __tls_get_addr arg
8053 setup insn. If we don't find matching arg setup
8054 relocs, don't do any tls optimization. */
8055 if (pass == 0
8056 && sec->nomark_tls_get_addr
8057 && h != NULL
8058 && is_tls_get_addr (h, htab)
8059 && !found_tls_get_addr_arg
8060 && is_branch_reloc (r_type))
8061 {
8062 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8063 "TLS optimization disabled\n"),
8064 ibfd, sec, rel->r_offset);
8065 ret = TRUE;
8066 goto err_free_rel;
8067 }
8068
8069 found_tls_get_addr_arg = 0;
8070 switch (r_type)
8071 {
8072 case R_PPC64_GOT_TLSLD16:
8073 case R_PPC64_GOT_TLSLD16_LO:
8074 case R_PPC64_GOT_TLSLD_PCREL34:
8075 expecting_tls_get_addr = 1;
8076 found_tls_get_addr_arg = 1;
8077 /* Fall through. */
8078
8079 case R_PPC64_GOT_TLSLD16_HI:
8080 case R_PPC64_GOT_TLSLD16_HA:
8081 /* These relocs should never be against a symbol
8082 defined in a shared lib. Leave them alone if
8083 that turns out to be the case. */
8084 if (!is_local)
8085 continue;
8086
8087 /* LD -> LE */
8088 tls_set = 0;
8089 tls_clear = TLS_LD;
8090 tls_type = TLS_TLS | TLS_LD;
8091 break;
8092
8093 case R_PPC64_GOT_TLSGD16:
8094 case R_PPC64_GOT_TLSGD16_LO:
8095 case R_PPC64_GOT_TLSGD_PCREL34:
8096 expecting_tls_get_addr = 1;
8097 found_tls_get_addr_arg = 1;
8098 /* Fall through. */
8099
8100 case R_PPC64_GOT_TLSGD16_HI:
8101 case R_PPC64_GOT_TLSGD16_HA:
8102 if (ok_tprel)
8103 /* GD -> LE */
8104 tls_set = 0;
8105 else
8106 /* GD -> IE */
8107 tls_set = TLS_TLS | TLS_GDIE;
8108 tls_clear = TLS_GD;
8109 tls_type = TLS_TLS | TLS_GD;
8110 break;
8111
8112 case R_PPC64_GOT_TPREL_PCREL34:
8113 case R_PPC64_GOT_TPREL16_DS:
8114 case R_PPC64_GOT_TPREL16_LO_DS:
8115 case R_PPC64_GOT_TPREL16_HI:
8116 case R_PPC64_GOT_TPREL16_HA:
8117 if (ok_tprel)
8118 {
8119 /* IE -> LE */
8120 tls_set = 0;
8121 tls_clear = TLS_TPREL;
8122 tls_type = TLS_TLS | TLS_TPREL;
8123 break;
8124 }
8125 continue;
8126
8127 case R_PPC64_TLSLD:
8128 if (!is_local)
8129 continue;
8130 /* Fall through. */
8131 case R_PPC64_TLSGD:
8132 if (rel + 1 < relend
8133 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
8134 {
8135 if (pass != 0
8136 && (ELF64_R_TYPE (rel[1].r_info)
8137 != R_PPC64_PLTSEQ)
8138 && (ELF64_R_TYPE (rel[1].r_info)
8139 != R_PPC64_PLTSEQ_NOTOC))
8140 {
8141 r_symndx = ELF64_R_SYM (rel[1].r_info);
8142 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
8143 r_symndx, ibfd))
8144 goto err_free_rel;
8145 if (h != NULL)
8146 {
8147 struct plt_entry *ent = NULL;
8148
8149 for (ent = h->plt.plist;
8150 ent != NULL;
8151 ent = ent->next)
8152 if (ent->addend == rel[1].r_addend)
8153 break;
8154
8155 if (ent != NULL
8156 && ent->plt.refcount > 0)
8157 ent->plt.refcount -= 1;
8158 }
8159 }
8160 continue;
8161 }
8162 found_tls_get_addr_arg = 1;
8163 /* Fall through. */
8164
8165 case R_PPC64_TLS:
8166 case R_PPC64_TOC16:
8167 case R_PPC64_TOC16_LO:
8168 if (sym_sec == NULL || sym_sec != toc)
8169 continue;
8170
8171 /* Mark this toc entry as referenced by a TLS
8172 code sequence. We can do that now in the
8173 case of R_PPC64_TLS, and after checking for
8174 tls_get_addr for the TOC16 relocs. */
8175 if (toc_ref == NULL)
8176 toc_ref
8177 = bfd_zmalloc (toc->output_section->rawsize / 8);
8178 if (toc_ref == NULL)
8179 goto err_free_rel;
8180
8181 if (h != NULL)
8182 value = h->root.u.def.value;
8183 else
8184 value = sym->st_value;
8185 value += rel->r_addend;
8186 if (value % 8 != 0)
8187 continue;
8188 BFD_ASSERT (value < toc->size
8189 && toc->output_offset % 8 == 0);
8190 toc_ref_index = (value + toc->output_offset) / 8;
8191 if (r_type == R_PPC64_TLS
8192 || r_type == R_PPC64_TLSGD
8193 || r_type == R_PPC64_TLSLD)
8194 {
8195 toc_ref[toc_ref_index] = 1;
8196 continue;
8197 }
8198
8199 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8200 continue;
8201
8202 tls_set = 0;
8203 tls_clear = 0;
8204 expecting_tls_get_addr = 2;
8205 break;
8206
8207 case R_PPC64_TPREL64:
8208 if (pass == 0
8209 || sec != toc
8210 || toc_ref == NULL
8211 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8212 continue;
8213 if (ok_tprel)
8214 {
8215 /* IE -> LE */
8216 tls_set = TLS_EXPLICIT;
8217 tls_clear = TLS_TPREL;
8218 break;
8219 }
8220 continue;
8221
8222 case R_PPC64_DTPMOD64:
8223 if (pass == 0
8224 || sec != toc
8225 || toc_ref == NULL
8226 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8227 continue;
8228 if (rel + 1 < relend
8229 && (rel[1].r_info
8230 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8231 && rel[1].r_offset == rel->r_offset + 8)
8232 {
8233 if (ok_tprel)
8234 /* GD -> LE */
8235 tls_set = TLS_EXPLICIT | TLS_GD;
8236 else
8237 /* GD -> IE */
8238 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8239 tls_clear = TLS_GD;
8240 }
8241 else
8242 {
8243 if (!is_local)
8244 continue;
8245
8246 /* LD -> LE */
8247 tls_set = TLS_EXPLICIT;
8248 tls_clear = TLS_LD;
8249 }
8250 break;
8251
8252 case R_PPC64_TPREL16_HA:
8253 if (pass == 0)
8254 {
8255 unsigned char buf[4];
8256 unsigned int insn;
8257 bfd_vma off = rel->r_offset & ~3;
8258 if (!bfd_get_section_contents (ibfd, sec, buf,
8259 off, 4))
8260 goto err_free_rel;
8261 insn = bfd_get_32 (ibfd, buf);
8262 /* addis rt,13,imm */
8263 if ((insn & ((0x3fu << 26) | 0x1f << 16))
8264 != ((15u << 26) | (13 << 16)))
8265 {
8266 /* xgettext:c-format */
8267 info->callbacks->minfo
8268 (_("%H: warning: %s unexpected insn %#x.\n"),
8269 ibfd, sec, off, "R_PPC64_TPREL16_HA", insn);
8270 htab->do_tls_opt = 0;
8271 }
8272 }
8273 continue;
8274
8275 case R_PPC64_TPREL16_HI:
8276 case R_PPC64_TPREL16_HIGH:
8277 case R_PPC64_TPREL16_HIGHA:
8278 case R_PPC64_TPREL16_HIGHER:
8279 case R_PPC64_TPREL16_HIGHERA:
8280 case R_PPC64_TPREL16_HIGHEST:
8281 case R_PPC64_TPREL16_HIGHESTA:
8282 /* These can all be used in sequences along with
8283 TPREL16_LO or TPREL16_LO_DS in ways we aren't
8284 able to verify easily. */
8285 htab->do_tls_opt = 0;
8286 continue;
8287
8288 default:
8289 continue;
8290 }
8291
8292 if (pass == 0)
8293 {
8294 if (!expecting_tls_get_addr
8295 || !sec->nomark_tls_get_addr)
8296 continue;
8297
8298 if (rel + 1 < relend
8299 && branch_reloc_hash_match (ibfd, rel + 1,
8300 htab->tls_get_addr_fd,
8301 htab->tga_desc_fd,
8302 htab->tls_get_addr,
8303 htab->tga_desc))
8304 {
8305 if (expecting_tls_get_addr == 2)
8306 {
8307 /* Check for toc tls entries. */
8308 unsigned char *toc_tls;
8309 int retval;
8310
8311 retval = get_tls_mask (&toc_tls, NULL, NULL,
8312 &locsyms,
8313 rel, ibfd);
8314 if (retval == 0)
8315 goto err_free_rel;
8316 if (toc_tls != NULL)
8317 {
8318 if ((*toc_tls & TLS_TLS) != 0
8319 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8320 found_tls_get_addr_arg = 1;
8321 if (retval > 1)
8322 toc_ref[toc_ref_index] = 1;
8323 }
8324 }
8325 continue;
8326 }
8327
8328 /* Uh oh, we didn't find the expected call. We
8329 could just mark this symbol to exclude it
8330 from tls optimization but it's safer to skip
8331 the entire optimization. */
8332 /* xgettext:c-format */
8333 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8334 "TLS optimization disabled\n"),
8335 ibfd, sec, rel->r_offset);
8336 ret = TRUE;
8337 goto err_free_rel;
8338 }
8339
8340 /* If we don't have old-style __tls_get_addr calls
8341 without TLSGD/TLSLD marker relocs, and we haven't
8342 found a new-style __tls_get_addr call with a
8343 marker for this symbol, then we either have a
8344 broken object file or an -mlongcall style
8345 indirect call to __tls_get_addr without a marker.
8346 Disable optimization in this case. */
8347 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8348 && (tls_set & TLS_EXPLICIT) == 0
8349 && !sec->nomark_tls_get_addr
8350 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8351 != (TLS_TLS | TLS_MARK)))
8352 continue;
8353
8354 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8355 {
8356 struct plt_entry *ent = NULL;
8357
8358 if (htab->tls_get_addr_fd != NULL)
8359 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8360 ent != NULL;
8361 ent = ent->next)
8362 if (ent->addend == 0)
8363 break;
8364
8365 if (ent == NULL && htab->tga_desc_fd != NULL)
8366 for (ent = htab->tga_desc_fd->elf.plt.plist;
8367 ent != NULL;
8368 ent = ent->next)
8369 if (ent->addend == 0)
8370 break;
8371
8372 if (ent == NULL && htab->tls_get_addr != NULL)
8373 for (ent = htab->tls_get_addr->elf.plt.plist;
8374 ent != NULL;
8375 ent = ent->next)
8376 if (ent->addend == 0)
8377 break;
8378
8379 if (ent == NULL && htab->tga_desc != NULL)
8380 for (ent = htab->tga_desc->elf.plt.plist;
8381 ent != NULL;
8382 ent = ent->next)
8383 if (ent->addend == 0)
8384 break;
8385
8386 if (ent != NULL
8387 && ent->plt.refcount > 0)
8388 ent->plt.refcount -= 1;
8389 }
8390
8391 if (tls_clear == 0)
8392 continue;
8393
8394 if ((tls_set & TLS_EXPLICIT) == 0)
8395 {
8396 struct got_entry *ent;
8397
8398 /* Adjust got entry for this reloc. */
8399 if (h != NULL)
8400 ent = h->got.glist;
8401 else
8402 ent = elf_local_got_ents (ibfd)[r_symndx];
8403
8404 for (; ent != NULL; ent = ent->next)
8405 if (ent->addend == rel->r_addend
8406 && ent->owner == ibfd
8407 && ent->tls_type == tls_type)
8408 break;
8409 if (ent == NULL)
8410 abort ();
8411
8412 if (tls_set == 0)
8413 {
8414 /* We managed to get rid of a got entry. */
8415 if (ent->got.refcount > 0)
8416 ent->got.refcount -= 1;
8417 }
8418 }
8419 else
8420 {
8421 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8422 we'll lose one or two dyn relocs. */
8423 if (!dec_dynrel_count (rel->r_info, sec, info,
8424 NULL, h, sym))
8425 return FALSE;
8426
8427 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8428 {
8429 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8430 NULL, h, sym))
8431 return FALSE;
8432 }
8433 }
8434
8435 *tls_mask |= tls_set & 0xff;
8436 *tls_mask &= ~tls_clear;
8437 }
8438
8439 if (elf_section_data (sec)->relocs != relstart)
8440 free (relstart);
8441 }
8442
8443 if (locsyms != NULL
8444 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8445 {
8446 if (!info->keep_memory)
8447 free (locsyms);
8448 else
8449 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8450 }
8451 }
8452
8453 free (toc_ref);
8454 return TRUE;
8455 }
8456
8457 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8458 the values of any global symbols in a toc section that has been
8459 edited. Globals in toc sections should be a rarity, so this function
8460 sets a flag if any are found in toc sections other than the one just
8461 edited, so that further hash table traversals can be avoided. */
8462
8463 struct adjust_toc_info
8464 {
8465 asection *toc;
8466 unsigned long *skip;
8467 bfd_boolean global_toc_syms;
8468 };
8469
8470 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8471
8472 static bfd_boolean
8473 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8474 {
8475 struct ppc_link_hash_entry *eh;
8476 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8477 unsigned long i;
8478
8479 if (h->root.type != bfd_link_hash_defined
8480 && h->root.type != bfd_link_hash_defweak)
8481 return TRUE;
8482
8483 eh = ppc_elf_hash_entry (h);
8484 if (eh->adjust_done)
8485 return TRUE;
8486
8487 if (eh->elf.root.u.def.section == toc_inf->toc)
8488 {
8489 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8490 i = toc_inf->toc->rawsize >> 3;
8491 else
8492 i = eh->elf.root.u.def.value >> 3;
8493
8494 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8495 {
8496 _bfd_error_handler
8497 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8498 do
8499 ++i;
8500 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8501 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8502 }
8503
8504 eh->elf.root.u.def.value -= toc_inf->skip[i];
8505 eh->adjust_done = 1;
8506 }
8507 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8508 toc_inf->global_toc_syms = TRUE;
8509
8510 return TRUE;
8511 }
8512
8513 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8514 on a _LO variety toc/got reloc. */
8515
8516 static bfd_boolean
8517 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8518 {
8519 return ((insn & (0x3fu << 26)) == 12u << 26 /* addic */
8520 || (insn & (0x3fu << 26)) == 14u << 26 /* addi */
8521 || (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
8522 || (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
8523 || (insn & (0x3fu << 26)) == 36u << 26 /* stw */
8524 || (insn & (0x3fu << 26)) == 38u << 26 /* stb */
8525 || (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
8526 || (insn & (0x3fu << 26)) == 42u << 26 /* lha */
8527 || (insn & (0x3fu << 26)) == 44u << 26 /* sth */
8528 || (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
8529 || (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
8530 || (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
8531 || (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
8532 || (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
8533 || (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
8534 || (insn & (0x3fu << 26)) == 56u << 26 /* lq,lfq */
8535 || ((insn & (0x3fu << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8536 /* Exclude lfqu by testing reloc. If relocs are ever
8537 defined for the reduced D field in psq_lu then those
8538 will need testing too. */
8539 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8540 || ((insn & (0x3fu << 26)) == 58u << 26 /* ld,lwa */
8541 && (insn & 1) == 0)
8542 || (insn & (0x3fu << 26)) == 60u << 26 /* stfq */
8543 || ((insn & (0x3fu << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8544 /* Exclude stfqu. psq_stu as above for psq_lu. */
8545 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8546 || ((insn & (0x3fu << 26)) == 62u << 26 /* std,stq */
8547 && (insn & 1) == 0));
8548 }
8549
8550 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8551 pld ra,symbol@got@pcrel
8552 load/store rt,off(ra)
8553 or
8554 pla ra,symbol@pcrel
8555 load/store rt,off(ra)
8556 may be translated to
8557 pload/pstore rt,symbol+off@pcrel
8558 nop.
8559 This function returns true if the optimization is possible, placing
8560 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8561
8562 On entry to this function, the linker has already determined that
8563 the pld can be replaced with pla: *PINSN1 is that pla insn,
8564 while *PINSN2 is the second instruction. */
8565
8566 static bfd_boolean
8567 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8568 {
8569 uint64_t insn1 = *pinsn1;
8570 uint64_t insn2 = *pinsn2;
8571 bfd_signed_vma off;
8572
8573 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8574 {
8575 /* Check that regs match. */
8576 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8577 return FALSE;
8578
8579 /* P8LS or PMLS form, non-pcrel. */
8580 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8581 return FALSE;
8582
8583 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8584 *pinsn2 = PNOP;
8585 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8586 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8587 return TRUE;
8588 }
8589
8590 insn2 >>= 32;
8591
8592 /* Check that regs match. */
8593 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8594 return FALSE;
8595
8596 switch ((insn2 >> 26) & 63)
8597 {
8598 default:
8599 return FALSE;
8600
8601 case 32: /* lwz */
8602 case 34: /* lbz */
8603 case 36: /* stw */
8604 case 38: /* stb */
8605 case 40: /* lhz */
8606 case 42: /* lha */
8607 case 44: /* sth */
8608 case 48: /* lfs */
8609 case 50: /* lfd */
8610 case 52: /* stfs */
8611 case 54: /* stfd */
8612 /* These are the PMLS cases, where we just need to tack a prefix
8613 on the insn. */
8614 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8615 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8616 off = insn2 & 0xffff;
8617 break;
8618
8619 case 58: /* lwa, ld */
8620 if ((insn2 & 1) != 0)
8621 return FALSE;
8622 insn1 = ((1ULL << 58) | (1ULL << 52)
8623 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8624 | (insn2 & (31ULL << 21)));
8625 off = insn2 & 0xfffc;
8626 break;
8627
8628 case 57: /* lxsd, lxssp */
8629 if ((insn2 & 3) < 2)
8630 return FALSE;
8631 insn1 = ((1ULL << 58) | (1ULL << 52)
8632 | ((40ULL | (insn2 & 3)) << 26)
8633 | (insn2 & (31ULL << 21)));
8634 off = insn2 & 0xfffc;
8635 break;
8636
8637 case 61: /* stxsd, stxssp, lxv, stxv */
8638 if ((insn2 & 3) == 0)
8639 return FALSE;
8640 else if ((insn2 & 3) >= 2)
8641 {
8642 insn1 = ((1ULL << 58) | (1ULL << 52)
8643 | ((44ULL | (insn2 & 3)) << 26)
8644 | (insn2 & (31ULL << 21)));
8645 off = insn2 & 0xfffc;
8646 }
8647 else
8648 {
8649 insn1 = ((1ULL << 58) | (1ULL << 52)
8650 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8651 | (insn2 & (31ULL << 21)));
8652 off = insn2 & 0xfff0;
8653 }
8654 break;
8655
8656 case 56: /* lq */
8657 insn1 = ((1ULL << 58) | (1ULL << 52)
8658 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8659 off = insn2 & 0xffff;
8660 break;
8661
8662 case 6: /* lxvp, stxvp */
8663 if ((insn2 & 0xe) != 0)
8664 return FALSE;
8665 insn1 = ((1ULL << 58) | (1ULL << 52)
8666 | ((insn2 & 1) == 0 ? 58ULL << 26 : 62ULL << 26)
8667 | (insn2 & (31ULL << 21)));
8668 off = insn2 & 0xfff0;
8669 break;
8670
8671 case 62: /* std, stq */
8672 if ((insn2 & 1) != 0)
8673 return FALSE;
8674 insn1 = ((1ULL << 58) | (1ULL << 52)
8675 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8676 | (insn2 & (31ULL << 21)));
8677 off = insn2 & 0xfffc;
8678 break;
8679 }
8680
8681 *pinsn1 = insn1;
8682 *pinsn2 = (uint64_t) NOP << 32;
8683 *poff = (off ^ 0x8000) - 0x8000;
8684 return TRUE;
8685 }
8686
8687 /* Examine all relocs referencing .toc sections in order to remove
8688 unused .toc entries. */
8689
8690 bfd_boolean
8691 ppc64_elf_edit_toc (struct bfd_link_info *info)
8692 {
8693 bfd *ibfd;
8694 struct adjust_toc_info toc_inf;
8695 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8696
8697 htab->do_toc_opt = 1;
8698 toc_inf.global_toc_syms = TRUE;
8699 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8700 {
8701 asection *toc, *sec;
8702 Elf_Internal_Shdr *symtab_hdr;
8703 Elf_Internal_Sym *local_syms;
8704 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8705 unsigned long *skip, *drop;
8706 unsigned char *used;
8707 unsigned char *keep, last, some_unused;
8708
8709 if (!is_ppc64_elf (ibfd))
8710 continue;
8711
8712 toc = bfd_get_section_by_name (ibfd, ".toc");
8713 if (toc == NULL
8714 || toc->size == 0
8715 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8716 || discarded_section (toc))
8717 continue;
8718
8719 toc_relocs = NULL;
8720 local_syms = NULL;
8721 symtab_hdr = &elf_symtab_hdr (ibfd);
8722
8723 /* Look at sections dropped from the final link. */
8724 skip = NULL;
8725 relstart = NULL;
8726 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8727 {
8728 if (sec->reloc_count == 0
8729 || !discarded_section (sec)
8730 || get_opd_info (sec)
8731 || (sec->flags & SEC_ALLOC) == 0
8732 || (sec->flags & SEC_DEBUGGING) != 0)
8733 continue;
8734
8735 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8736 if (relstart == NULL)
8737 goto error_ret;
8738
8739 /* Run through the relocs to see which toc entries might be
8740 unused. */
8741 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8742 {
8743 enum elf_ppc64_reloc_type r_type;
8744 unsigned long r_symndx;
8745 asection *sym_sec;
8746 struct elf_link_hash_entry *h;
8747 Elf_Internal_Sym *sym;
8748 bfd_vma val;
8749
8750 r_type = ELF64_R_TYPE (rel->r_info);
8751 switch (r_type)
8752 {
8753 default:
8754 continue;
8755
8756 case R_PPC64_TOC16:
8757 case R_PPC64_TOC16_LO:
8758 case R_PPC64_TOC16_HI:
8759 case R_PPC64_TOC16_HA:
8760 case R_PPC64_TOC16_DS:
8761 case R_PPC64_TOC16_LO_DS:
8762 break;
8763 }
8764
8765 r_symndx = ELF64_R_SYM (rel->r_info);
8766 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8767 r_symndx, ibfd))
8768 goto error_ret;
8769
8770 if (sym_sec != toc)
8771 continue;
8772
8773 if (h != NULL)
8774 val = h->root.u.def.value;
8775 else
8776 val = sym->st_value;
8777 val += rel->r_addend;
8778
8779 if (val >= toc->size)
8780 continue;
8781
8782 /* Anything in the toc ought to be aligned to 8 bytes.
8783 If not, don't mark as unused. */
8784 if (val & 7)
8785 continue;
8786
8787 if (skip == NULL)
8788 {
8789 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8790 if (skip == NULL)
8791 goto error_ret;
8792 }
8793
8794 skip[val >> 3] = ref_from_discarded;
8795 }
8796
8797 if (elf_section_data (sec)->relocs != relstart)
8798 free (relstart);
8799 }
8800
8801 /* For largetoc loads of address constants, we can convert
8802 . addis rx,2,addr@got@ha
8803 . ld ry,addr@got@l(rx)
8804 to
8805 . addis rx,2,addr@toc@ha
8806 . addi ry,rx,addr@toc@l
8807 when addr is within 2G of the toc pointer. This then means
8808 that the word storing "addr" in the toc is no longer needed. */
8809
8810 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8811 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8812 && toc->reloc_count != 0)
8813 {
8814 /* Read toc relocs. */
8815 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8816 info->keep_memory);
8817 if (toc_relocs == NULL)
8818 goto error_ret;
8819
8820 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8821 {
8822 enum elf_ppc64_reloc_type r_type;
8823 unsigned long r_symndx;
8824 asection *sym_sec;
8825 struct elf_link_hash_entry *h;
8826 Elf_Internal_Sym *sym;
8827 bfd_vma val, addr;
8828
8829 r_type = ELF64_R_TYPE (rel->r_info);
8830 if (r_type != R_PPC64_ADDR64)
8831 continue;
8832
8833 r_symndx = ELF64_R_SYM (rel->r_info);
8834 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8835 r_symndx, ibfd))
8836 goto error_ret;
8837
8838 if (sym_sec == NULL
8839 || sym_sec->output_section == NULL
8840 || discarded_section (sym_sec))
8841 continue;
8842
8843 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8844 continue;
8845
8846 if (h != NULL)
8847 {
8848 if (h->type == STT_GNU_IFUNC)
8849 continue;
8850 val = h->root.u.def.value;
8851 }
8852 else
8853 {
8854 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8855 continue;
8856 val = sym->st_value;
8857 }
8858 val += rel->r_addend;
8859 val += sym_sec->output_section->vma + sym_sec->output_offset;
8860
8861 /* We don't yet know the exact toc pointer value, but we
8862 know it will be somewhere in the toc section. Don't
8863 optimize if the difference from any possible toc
8864 pointer is outside [ff..f80008000, 7fff7fff]. */
8865 addr = toc->output_section->vma + TOC_BASE_OFF;
8866 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8867 continue;
8868
8869 addr = toc->output_section->vma + toc->output_section->rawsize;
8870 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8871 continue;
8872
8873 if (skip == NULL)
8874 {
8875 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8876 if (skip == NULL)
8877 goto error_ret;
8878 }
8879
8880 skip[rel->r_offset >> 3]
8881 |= can_optimize | ((rel - toc_relocs) << 2);
8882 }
8883 }
8884
8885 if (skip == NULL)
8886 continue;
8887
8888 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8889 if (used == NULL)
8890 {
8891 error_ret:
8892 if (symtab_hdr->contents != (unsigned char *) local_syms)
8893 free (local_syms);
8894 if (sec != NULL
8895 && elf_section_data (sec)->relocs != relstart)
8896 free (relstart);
8897 if (elf_section_data (toc)->relocs != toc_relocs)
8898 free (toc_relocs);
8899 free (skip);
8900 return FALSE;
8901 }
8902
8903 /* Now check all kept sections that might reference the toc.
8904 Check the toc itself last. */
8905 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8906 : ibfd->sections);
8907 sec != NULL;
8908 sec = (sec == toc ? NULL
8909 : sec->next == NULL ? toc
8910 : sec->next == toc && toc->next ? toc->next
8911 : sec->next))
8912 {
8913 int repeat;
8914
8915 if (sec->reloc_count == 0
8916 || discarded_section (sec)
8917 || get_opd_info (sec)
8918 || (sec->flags & SEC_ALLOC) == 0
8919 || (sec->flags & SEC_DEBUGGING) != 0)
8920 continue;
8921
8922 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8923 info->keep_memory);
8924 if (relstart == NULL)
8925 {
8926 free (used);
8927 goto error_ret;
8928 }
8929
8930 /* Mark toc entries referenced as used. */
8931 do
8932 {
8933 repeat = 0;
8934 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8935 {
8936 enum elf_ppc64_reloc_type r_type;
8937 unsigned long r_symndx;
8938 asection *sym_sec;
8939 struct elf_link_hash_entry *h;
8940 Elf_Internal_Sym *sym;
8941 bfd_vma val;
8942
8943 r_type = ELF64_R_TYPE (rel->r_info);
8944 switch (r_type)
8945 {
8946 case R_PPC64_TOC16:
8947 case R_PPC64_TOC16_LO:
8948 case R_PPC64_TOC16_HI:
8949 case R_PPC64_TOC16_HA:
8950 case R_PPC64_TOC16_DS:
8951 case R_PPC64_TOC16_LO_DS:
8952 /* In case we're taking addresses of toc entries. */
8953 case R_PPC64_ADDR64:
8954 break;
8955
8956 default:
8957 continue;
8958 }
8959
8960 r_symndx = ELF64_R_SYM (rel->r_info);
8961 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8962 r_symndx, ibfd))
8963 {
8964 free (used);
8965 goto error_ret;
8966 }
8967
8968 if (sym_sec != toc)
8969 continue;
8970
8971 if (h != NULL)
8972 val = h->root.u.def.value;
8973 else
8974 val = sym->st_value;
8975 val += rel->r_addend;
8976
8977 if (val >= toc->size)
8978 continue;
8979
8980 if ((skip[val >> 3] & can_optimize) != 0)
8981 {
8982 bfd_vma off;
8983 unsigned char opc;
8984
8985 switch (r_type)
8986 {
8987 case R_PPC64_TOC16_HA:
8988 break;
8989
8990 case R_PPC64_TOC16_LO_DS:
8991 off = rel->r_offset;
8992 off += (bfd_big_endian (ibfd) ? -2 : 3);
8993 if (!bfd_get_section_contents (ibfd, sec, &opc,
8994 off, 1))
8995 {
8996 free (used);
8997 goto error_ret;
8998 }
8999 if ((opc & (0x3f << 2)) == (58u << 2))
9000 break;
9001 /* Fall through. */
9002
9003 default:
9004 /* Wrong sort of reloc, or not a ld. We may
9005 as well clear ref_from_discarded too. */
9006 skip[val >> 3] = 0;
9007 }
9008 }
9009
9010 if (sec != toc)
9011 used[val >> 3] = 1;
9012 /* For the toc section, we only mark as used if this
9013 entry itself isn't unused. */
9014 else if ((used[rel->r_offset >> 3]
9015 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9016 && !used[val >> 3])
9017 {
9018 /* Do all the relocs again, to catch reference
9019 chains. */
9020 repeat = 1;
9021 used[val >> 3] = 1;
9022 }
9023 }
9024 }
9025 while (repeat);
9026
9027 if (elf_section_data (sec)->relocs != relstart)
9028 free (relstart);
9029 }
9030
9031 /* Merge the used and skip arrays. Assume that TOC
9032 doublewords not appearing as either used or unused belong
9033 to an entry more than one doubleword in size. */
9034 for (drop = skip, keep = used, last = 0, some_unused = 0;
9035 drop < skip + (toc->size + 7) / 8;
9036 ++drop, ++keep)
9037 {
9038 if (*keep)
9039 {
9040 *drop &= ~ref_from_discarded;
9041 if ((*drop & can_optimize) != 0)
9042 some_unused = 1;
9043 last = 0;
9044 }
9045 else if ((*drop & ref_from_discarded) != 0)
9046 {
9047 some_unused = 1;
9048 last = ref_from_discarded;
9049 }
9050 else
9051 *drop = last;
9052 }
9053
9054 free (used);
9055
9056 if (some_unused)
9057 {
9058 bfd_byte *contents, *src;
9059 unsigned long off;
9060 Elf_Internal_Sym *sym;
9061 bfd_boolean local_toc_syms = FALSE;
9062
9063 /* Shuffle the toc contents, and at the same time convert the
9064 skip array from booleans into offsets. */
9065 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9066 goto error_ret;
9067
9068 elf_section_data (toc)->this_hdr.contents = contents;
9069
9070 for (src = contents, off = 0, drop = skip;
9071 src < contents + toc->size;
9072 src += 8, ++drop)
9073 {
9074 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9075 off += 8;
9076 else if (off != 0)
9077 {
9078 *drop = off;
9079 memcpy (src - off, src, 8);
9080 }
9081 }
9082 *drop = off;
9083 toc->rawsize = toc->size;
9084 toc->size = src - contents - off;
9085
9086 /* Adjust addends for relocs against the toc section sym,
9087 and optimize any accesses we can. */
9088 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9089 {
9090 if (sec->reloc_count == 0
9091 || discarded_section (sec))
9092 continue;
9093
9094 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9095 info->keep_memory);
9096 if (relstart == NULL)
9097 goto error_ret;
9098
9099 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9100 {
9101 enum elf_ppc64_reloc_type r_type;
9102 unsigned long r_symndx;
9103 asection *sym_sec;
9104 struct elf_link_hash_entry *h;
9105 bfd_vma val;
9106
9107 r_type = ELF64_R_TYPE (rel->r_info);
9108 switch (r_type)
9109 {
9110 default:
9111 continue;
9112
9113 case R_PPC64_TOC16:
9114 case R_PPC64_TOC16_LO:
9115 case R_PPC64_TOC16_HI:
9116 case R_PPC64_TOC16_HA:
9117 case R_PPC64_TOC16_DS:
9118 case R_PPC64_TOC16_LO_DS:
9119 case R_PPC64_ADDR64:
9120 break;
9121 }
9122
9123 r_symndx = ELF64_R_SYM (rel->r_info);
9124 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9125 r_symndx, ibfd))
9126 goto error_ret;
9127
9128 if (sym_sec != toc)
9129 continue;
9130
9131 if (h != NULL)
9132 val = h->root.u.def.value;
9133 else
9134 {
9135 val = sym->st_value;
9136 if (val != 0)
9137 local_toc_syms = TRUE;
9138 }
9139
9140 val += rel->r_addend;
9141
9142 if (val > toc->rawsize)
9143 val = toc->rawsize;
9144 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9145 continue;
9146 else if ((skip[val >> 3] & can_optimize) != 0)
9147 {
9148 Elf_Internal_Rela *tocrel
9149 = toc_relocs + (skip[val >> 3] >> 2);
9150 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9151
9152 switch (r_type)
9153 {
9154 case R_PPC64_TOC16_HA:
9155 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9156 break;
9157
9158 case R_PPC64_TOC16_LO_DS:
9159 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9160 break;
9161
9162 default:
9163 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9164 ppc_howto_init ();
9165 info->callbacks->einfo
9166 /* xgettext:c-format */
9167 (_("%H: %s references "
9168 "optimized away TOC entry\n"),
9169 ibfd, sec, rel->r_offset,
9170 ppc64_elf_howto_table[r_type]->name);
9171 bfd_set_error (bfd_error_bad_value);
9172 goto error_ret;
9173 }
9174 rel->r_addend = tocrel->r_addend;
9175 elf_section_data (sec)->relocs = relstart;
9176 continue;
9177 }
9178
9179 if (h != NULL || sym->st_value != 0)
9180 continue;
9181
9182 rel->r_addend -= skip[val >> 3];
9183 elf_section_data (sec)->relocs = relstart;
9184 }
9185
9186 if (elf_section_data (sec)->relocs != relstart)
9187 free (relstart);
9188 }
9189
9190 /* We shouldn't have local or global symbols defined in the TOC,
9191 but handle them anyway. */
9192 if (local_syms != NULL)
9193 for (sym = local_syms;
9194 sym < local_syms + symtab_hdr->sh_info;
9195 ++sym)
9196 if (sym->st_value != 0
9197 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9198 {
9199 unsigned long i;
9200
9201 if (sym->st_value > toc->rawsize)
9202 i = toc->rawsize >> 3;
9203 else
9204 i = sym->st_value >> 3;
9205
9206 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9207 {
9208 if (local_toc_syms)
9209 _bfd_error_handler
9210 (_("%s defined on removed toc entry"),
9211 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9212 do
9213 ++i;
9214 while ((skip[i] & (ref_from_discarded | can_optimize)));
9215 sym->st_value = (bfd_vma) i << 3;
9216 }
9217
9218 sym->st_value -= skip[i];
9219 symtab_hdr->contents = (unsigned char *) local_syms;
9220 }
9221
9222 /* Adjust any global syms defined in this toc input section. */
9223 if (toc_inf.global_toc_syms)
9224 {
9225 toc_inf.toc = toc;
9226 toc_inf.skip = skip;
9227 toc_inf.global_toc_syms = FALSE;
9228 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9229 &toc_inf);
9230 }
9231
9232 if (toc->reloc_count != 0)
9233 {
9234 Elf_Internal_Shdr *rel_hdr;
9235 Elf_Internal_Rela *wrel;
9236 bfd_size_type sz;
9237
9238 /* Remove unused toc relocs, and adjust those we keep. */
9239 if (toc_relocs == NULL)
9240 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9241 info->keep_memory);
9242 if (toc_relocs == NULL)
9243 goto error_ret;
9244
9245 wrel = toc_relocs;
9246 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9247 if ((skip[rel->r_offset >> 3]
9248 & (ref_from_discarded | can_optimize)) == 0)
9249 {
9250 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9251 wrel->r_info = rel->r_info;
9252 wrel->r_addend = rel->r_addend;
9253 ++wrel;
9254 }
9255 else if (!dec_dynrel_count (rel->r_info, toc, info,
9256 &local_syms, NULL, NULL))
9257 goto error_ret;
9258
9259 elf_section_data (toc)->relocs = toc_relocs;
9260 toc->reloc_count = wrel - toc_relocs;
9261 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9262 sz = rel_hdr->sh_entsize;
9263 rel_hdr->sh_size = toc->reloc_count * sz;
9264 }
9265 }
9266 else if (elf_section_data (toc)->relocs != toc_relocs)
9267 free (toc_relocs);
9268
9269 if (local_syms != NULL
9270 && symtab_hdr->contents != (unsigned char *) local_syms)
9271 {
9272 if (!info->keep_memory)
9273 free (local_syms);
9274 else
9275 symtab_hdr->contents = (unsigned char *) local_syms;
9276 }
9277 free (skip);
9278 }
9279
9280 /* Look for cases where we can change an indirect GOT access to
9281 a GOT relative or PC relative access, possibly reducing the
9282 number of GOT entries. */
9283 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9284 {
9285 asection *sec;
9286 Elf_Internal_Shdr *symtab_hdr;
9287 Elf_Internal_Sym *local_syms;
9288 Elf_Internal_Rela *relstart, *rel;
9289 bfd_vma got;
9290
9291 if (!is_ppc64_elf (ibfd))
9292 continue;
9293
9294 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9295 continue;
9296
9297 sec = ppc64_elf_tdata (ibfd)->got;
9298 got = 0;
9299 if (sec != NULL)
9300 got = sec->output_section->vma + sec->output_offset + 0x8000;
9301
9302 local_syms = NULL;
9303 symtab_hdr = &elf_symtab_hdr (ibfd);
9304
9305 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9306 {
9307 if (sec->reloc_count == 0
9308 || !ppc64_elf_section_data (sec)->has_optrel
9309 || discarded_section (sec))
9310 continue;
9311
9312 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9313 info->keep_memory);
9314 if (relstart == NULL)
9315 {
9316 got_error_ret:
9317 if (symtab_hdr->contents != (unsigned char *) local_syms)
9318 free (local_syms);
9319 if (sec != NULL
9320 && elf_section_data (sec)->relocs != relstart)
9321 free (relstart);
9322 return FALSE;
9323 }
9324
9325 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9326 {
9327 enum elf_ppc64_reloc_type r_type;
9328 unsigned long r_symndx;
9329 Elf_Internal_Sym *sym;
9330 asection *sym_sec;
9331 struct elf_link_hash_entry *h;
9332 struct got_entry *ent;
9333 bfd_vma val, pc;
9334 unsigned char buf[8];
9335 unsigned int insn;
9336 enum {no_check, check_lo, check_ha} insn_check;
9337
9338 r_type = ELF64_R_TYPE (rel->r_info);
9339 switch (r_type)
9340 {
9341 default:
9342 insn_check = no_check;
9343 break;
9344
9345 case R_PPC64_PLT16_HA:
9346 case R_PPC64_GOT_TLSLD16_HA:
9347 case R_PPC64_GOT_TLSGD16_HA:
9348 case R_PPC64_GOT_TPREL16_HA:
9349 case R_PPC64_GOT_DTPREL16_HA:
9350 case R_PPC64_GOT16_HA:
9351 case R_PPC64_TOC16_HA:
9352 insn_check = check_ha;
9353 break;
9354
9355 case R_PPC64_PLT16_LO:
9356 case R_PPC64_PLT16_LO_DS:
9357 case R_PPC64_GOT_TLSLD16_LO:
9358 case R_PPC64_GOT_TLSGD16_LO:
9359 case R_PPC64_GOT_TPREL16_LO_DS:
9360 case R_PPC64_GOT_DTPREL16_LO_DS:
9361 case R_PPC64_GOT16_LO:
9362 case R_PPC64_GOT16_LO_DS:
9363 case R_PPC64_TOC16_LO:
9364 case R_PPC64_TOC16_LO_DS:
9365 insn_check = check_lo;
9366 break;
9367 }
9368
9369 if (insn_check != no_check)
9370 {
9371 bfd_vma off = rel->r_offset & ~3;
9372
9373 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9374 goto got_error_ret;
9375
9376 insn = bfd_get_32 (ibfd, buf);
9377 if (insn_check == check_lo
9378 ? !ok_lo_toc_insn (insn, r_type)
9379 : ((insn & ((0x3fu << 26) | 0x1f << 16))
9380 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9381 {
9382 char str[12];
9383
9384 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9385 sprintf (str, "%#08x", insn);
9386 info->callbacks->einfo
9387 /* xgettext:c-format */
9388 (_("%H: got/toc optimization is not supported for"
9389 " %s instruction\n"),
9390 ibfd, sec, rel->r_offset & ~3, str);
9391 continue;
9392 }
9393 }
9394
9395 switch (r_type)
9396 {
9397 /* Note that we don't delete GOT entries for
9398 R_PPC64_GOT16_DS since we'd need a lot more
9399 analysis. For starters, the preliminary layout is
9400 before the GOT, PLT, dynamic sections and stubs are
9401 laid out. Then we'd need to allow for changes in
9402 distance between sections caused by alignment. */
9403 default:
9404 continue;
9405
9406 case R_PPC64_GOT16_HA:
9407 case R_PPC64_GOT16_LO_DS:
9408 case R_PPC64_GOT_PCREL34:
9409 break;
9410 }
9411
9412 r_symndx = ELF64_R_SYM (rel->r_info);
9413 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9414 r_symndx, ibfd))
9415 goto got_error_ret;
9416
9417 if (sym_sec == NULL
9418 || sym_sec->output_section == NULL
9419 || discarded_section (sym_sec))
9420 continue;
9421
9422 if ((h ? h->type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
9423 continue;
9424
9425 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9426 continue;
9427
9428 if (h != NULL)
9429 val = h->root.u.def.value;
9430 else
9431 val = sym->st_value;
9432 val += rel->r_addend;
9433 val += sym_sec->output_section->vma + sym_sec->output_offset;
9434
9435 /* Fudge factor to allow for the fact that the preliminary layout
9436 isn't exact. Reduce limits by this factor. */
9437 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9438
9439 switch (r_type)
9440 {
9441 default:
9442 continue;
9443
9444 case R_PPC64_GOT16_HA:
9445 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9446 >= LIMIT_ADJUST (0x100000000ULL))
9447 continue;
9448
9449 if (!bfd_get_section_contents (ibfd, sec, buf,
9450 rel->r_offset & ~3, 4))
9451 goto got_error_ret;
9452 insn = bfd_get_32 (ibfd, buf);
9453 if (((insn & ((0x3fu << 26) | 0x1f << 16))
9454 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9455 continue;
9456 break;
9457
9458 case R_PPC64_GOT16_LO_DS:
9459 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9460 >= LIMIT_ADJUST (0x100000000ULL))
9461 continue;
9462 if (!bfd_get_section_contents (ibfd, sec, buf,
9463 rel->r_offset & ~3, 4))
9464 goto got_error_ret;
9465 insn = bfd_get_32 (ibfd, buf);
9466 if ((insn & (0x3fu << 26 | 0x3)) != 58u << 26 /* ld */)
9467 continue;
9468 break;
9469
9470 case R_PPC64_GOT_PCREL34:
9471 pc = rel->r_offset;
9472 pc += sec->output_section->vma + sec->output_offset;
9473 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9474 >= LIMIT_ADJUST (1ULL << 34))
9475 continue;
9476 if (!bfd_get_section_contents (ibfd, sec, buf,
9477 rel->r_offset & ~3, 8))
9478 goto got_error_ret;
9479 insn = bfd_get_32 (ibfd, buf);
9480 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9481 continue;
9482 insn = bfd_get_32 (ibfd, buf + 4);
9483 if ((insn & (0x3fu << 26)) != 57u << 26)
9484 continue;
9485 break;
9486 }
9487 #undef LIMIT_ADJUST
9488
9489 if (h != NULL)
9490 ent = h->got.glist;
9491 else
9492 {
9493 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9494 ent = local_got_ents[r_symndx];
9495 }
9496 for (; ent != NULL; ent = ent->next)
9497 if (ent->addend == rel->r_addend
9498 && ent->owner == ibfd
9499 && ent->tls_type == 0)
9500 break;
9501 BFD_ASSERT (ent && ent->got.refcount > 0);
9502 ent->got.refcount -= 1;
9503 }
9504
9505 if (elf_section_data (sec)->relocs != relstart)
9506 free (relstart);
9507 }
9508
9509 if (local_syms != NULL
9510 && symtab_hdr->contents != (unsigned char *) local_syms)
9511 {
9512 if (!info->keep_memory)
9513 free (local_syms);
9514 else
9515 symtab_hdr->contents = (unsigned char *) local_syms;
9516 }
9517 }
9518
9519 return TRUE;
9520 }
9521
9522 /* Return true iff input section I references the TOC using
9523 instructions limited to +/-32k offsets. */
9524
9525 bfd_boolean
9526 ppc64_elf_has_small_toc_reloc (asection *i)
9527 {
9528 return (is_ppc64_elf (i->owner)
9529 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9530 }
9531
9532 /* Allocate space for one GOT entry. */
9533
9534 static void
9535 allocate_got (struct elf_link_hash_entry *h,
9536 struct bfd_link_info *info,
9537 struct got_entry *gent)
9538 {
9539 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9540 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
9541 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9542 ? 16 : 8);
9543 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9544 ? 2 : 1) * sizeof (Elf64_External_Rela);
9545 asection *got = ppc64_elf_tdata (gent->owner)->got;
9546
9547 gent->got.offset = got->size;
9548 got->size += entsize;
9549
9550 if (h->type == STT_GNU_IFUNC)
9551 {
9552 htab->elf.irelplt->size += rentsize;
9553 htab->got_reli_size += rentsize;
9554 }
9555 else if (((bfd_link_pic (info)
9556 && !(gent->tls_type != 0
9557 && bfd_link_executable (info)
9558 && SYMBOL_REFERENCES_LOCAL (info, h)))
9559 || (htab->elf.dynamic_sections_created
9560 && h->dynindx != -1
9561 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9562 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9563 {
9564 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9565 relgot->size += rentsize;
9566 }
9567 }
9568
9569 /* This function merges got entries in the same toc group. */
9570
9571 static void
9572 merge_got_entries (struct got_entry **pent)
9573 {
9574 struct got_entry *ent, *ent2;
9575
9576 for (ent = *pent; ent != NULL; ent = ent->next)
9577 if (!ent->is_indirect)
9578 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9579 if (!ent2->is_indirect
9580 && ent2->addend == ent->addend
9581 && ent2->tls_type == ent->tls_type
9582 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9583 {
9584 ent2->is_indirect = TRUE;
9585 ent2->got.ent = ent;
9586 }
9587 }
9588
9589 /* If H is undefined, make it dynamic if that makes sense. */
9590
9591 static bfd_boolean
9592 ensure_undef_dynamic (struct bfd_link_info *info,
9593 struct elf_link_hash_entry *h)
9594 {
9595 struct elf_link_hash_table *htab = elf_hash_table (info);
9596
9597 if (htab->dynamic_sections_created
9598 && ((info->dynamic_undefined_weak != 0
9599 && h->root.type == bfd_link_hash_undefweak)
9600 || h->root.type == bfd_link_hash_undefined)
9601 && h->dynindx == -1
9602 && !h->forced_local
9603 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9604 return bfd_elf_link_record_dynamic_symbol (info, h);
9605 return TRUE;
9606 }
9607
9608 /* Allocate space in .plt, .got and associated reloc sections for
9609 dynamic relocs. */
9610
9611 static bfd_boolean
9612 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9613 {
9614 struct bfd_link_info *info;
9615 struct ppc_link_hash_table *htab;
9616 asection *s;
9617 struct ppc_link_hash_entry *eh;
9618 struct got_entry **pgent, *gent;
9619
9620 if (h->root.type == bfd_link_hash_indirect)
9621 return TRUE;
9622
9623 info = (struct bfd_link_info *) inf;
9624 htab = ppc_hash_table (info);
9625 if (htab == NULL)
9626 return FALSE;
9627
9628 eh = ppc_elf_hash_entry (h);
9629 /* Run through the TLS GD got entries first if we're changing them
9630 to TPREL. */
9631 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9632 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9633 if (gent->got.refcount > 0
9634 && (gent->tls_type & TLS_GD) != 0)
9635 {
9636 /* This was a GD entry that has been converted to TPREL. If
9637 there happens to be a TPREL entry we can use that one. */
9638 struct got_entry *ent;
9639 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9640 if (ent->got.refcount > 0
9641 && (ent->tls_type & TLS_TPREL) != 0
9642 && ent->addend == gent->addend
9643 && ent->owner == gent->owner)
9644 {
9645 gent->got.refcount = 0;
9646 break;
9647 }
9648
9649 /* If not, then we'll be using our own TPREL entry. */
9650 if (gent->got.refcount != 0)
9651 gent->tls_type = TLS_TLS | TLS_TPREL;
9652 }
9653
9654 /* Remove any list entry that won't generate a word in the GOT before
9655 we call merge_got_entries. Otherwise we risk merging to empty
9656 entries. */
9657 pgent = &h->got.glist;
9658 while ((gent = *pgent) != NULL)
9659 if (gent->got.refcount > 0)
9660 {
9661 if ((gent->tls_type & TLS_LD) != 0
9662 && SYMBOL_REFERENCES_LOCAL (info, h))
9663 {
9664 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9665 *pgent = gent->next;
9666 }
9667 else
9668 pgent = &gent->next;
9669 }
9670 else
9671 *pgent = gent->next;
9672
9673 if (!htab->do_multi_toc)
9674 merge_got_entries (&h->got.glist);
9675
9676 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9677 if (!gent->is_indirect)
9678 {
9679 /* Ensure we catch all the cases where this symbol should
9680 be made dynamic. */
9681 if (!ensure_undef_dynamic (info, h))
9682 return FALSE;
9683
9684 if (!is_ppc64_elf (gent->owner))
9685 abort ();
9686
9687 allocate_got (h, info, gent);
9688 }
9689
9690 /* If no dynamic sections we can't have dynamic relocs, except for
9691 IFUNCs which are handled even in static executables. */
9692 if (!htab->elf.dynamic_sections_created
9693 && h->type != STT_GNU_IFUNC)
9694 h->dyn_relocs = NULL;
9695
9696 /* Discard relocs on undefined symbols that must be local. */
9697 else if (h->root.type == bfd_link_hash_undefined
9698 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9699 h->dyn_relocs = NULL;
9700
9701 /* Also discard relocs on undefined weak syms with non-default
9702 visibility, or when dynamic_undefined_weak says so. */
9703 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9704 h->dyn_relocs = NULL;
9705
9706 if (h->dyn_relocs != NULL)
9707 {
9708 struct elf_dyn_relocs *p, **pp;
9709
9710 /* In the shared -Bsymbolic case, discard space allocated for
9711 dynamic pc-relative relocs against symbols which turn out to
9712 be defined in regular objects. For the normal shared case,
9713 discard space for relocs that have become local due to symbol
9714 visibility changes. */
9715 if (bfd_link_pic (info))
9716 {
9717 /* Relocs that use pc_count are those that appear on a call
9718 insn, or certain REL relocs (see must_be_dyn_reloc) that
9719 can be generated via assembly. We want calls to
9720 protected symbols to resolve directly to the function
9721 rather than going via the plt. If people want function
9722 pointer comparisons to work as expected then they should
9723 avoid writing weird assembly. */
9724 if (SYMBOL_CALLS_LOCAL (info, h))
9725 {
9726 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
9727 {
9728 p->count -= p->pc_count;
9729 p->pc_count = 0;
9730 if (p->count == 0)
9731 *pp = p->next;
9732 else
9733 pp = &p->next;
9734 }
9735 }
9736
9737 if (h->dyn_relocs != NULL)
9738 {
9739 /* Ensure we catch all the cases where this symbol
9740 should be made dynamic. */
9741 if (!ensure_undef_dynamic (info, h))
9742 return FALSE;
9743 }
9744 }
9745
9746 /* For a fixed position executable, discard space for
9747 relocs against symbols which are not dynamic. */
9748 else if (h->type != STT_GNU_IFUNC)
9749 {
9750 if (h->dynamic_adjusted
9751 && !h->def_regular
9752 && !ELF_COMMON_DEF_P (h))
9753 {
9754 /* Ensure we catch all the cases where this symbol
9755 should be made dynamic. */
9756 if (!ensure_undef_dynamic (info, h))
9757 return FALSE;
9758
9759 /* But if that didn't work out, discard dynamic relocs. */
9760 if (h->dynindx == -1)
9761 h->dyn_relocs = NULL;
9762 }
9763 else
9764 h->dyn_relocs = NULL;
9765 }
9766
9767 /* Finally, allocate space. */
9768 for (p = h->dyn_relocs; p != NULL; p = p->next)
9769 {
9770 asection *sreloc = elf_section_data (p->sec)->sreloc;
9771 if (eh->elf.type == STT_GNU_IFUNC)
9772 sreloc = htab->elf.irelplt;
9773 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9774 }
9775 }
9776
9777 /* We might need a PLT entry when the symbol
9778 a) is dynamic, or
9779 b) is an ifunc, or
9780 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9781 d) has plt16 relocs and we are linking statically. */
9782 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9783 || h->type == STT_GNU_IFUNC
9784 || (h->needs_plt && h->dynamic_adjusted)
9785 || (h->needs_plt
9786 && h->def_regular
9787 && !htab->elf.dynamic_sections_created
9788 && !htab->can_convert_all_inline_plt
9789 && (ppc_elf_hash_entry (h)->tls_mask
9790 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9791 {
9792 struct plt_entry *pent;
9793 bfd_boolean doneone = FALSE;
9794 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9795 if (pent->plt.refcount > 0)
9796 {
9797 if (!htab->elf.dynamic_sections_created
9798 || h->dynindx == -1)
9799 {
9800 if (h->type == STT_GNU_IFUNC)
9801 {
9802 s = htab->elf.iplt;
9803 pent->plt.offset = s->size;
9804 s->size += PLT_ENTRY_SIZE (htab);
9805 s = htab->elf.irelplt;
9806 }
9807 else
9808 {
9809 s = htab->pltlocal;
9810 pent->plt.offset = s->size;
9811 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9812 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9813 }
9814 }
9815 else
9816 {
9817 /* If this is the first .plt entry, make room for the special
9818 first entry. */
9819 s = htab->elf.splt;
9820 if (s->size == 0)
9821 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9822
9823 pent->plt.offset = s->size;
9824
9825 /* Make room for this entry. */
9826 s->size += PLT_ENTRY_SIZE (htab);
9827
9828 /* Make room for the .glink code. */
9829 s = htab->glink;
9830 if (s->size == 0)
9831 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9832 if (htab->opd_abi)
9833 {
9834 /* We need bigger stubs past index 32767. */
9835 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9836 s->size += 4;
9837 s->size += 2*4;
9838 }
9839 else
9840 s->size += 4;
9841
9842 /* We also need to make an entry in the .rela.plt section. */
9843 s = htab->elf.srelplt;
9844 }
9845 if (s != NULL)
9846 s->size += sizeof (Elf64_External_Rela);
9847 doneone = TRUE;
9848 }
9849 else
9850 pent->plt.offset = (bfd_vma) -1;
9851 if (!doneone)
9852 {
9853 h->plt.plist = NULL;
9854 h->needs_plt = 0;
9855 }
9856 }
9857 else
9858 {
9859 h->plt.plist = NULL;
9860 h->needs_plt = 0;
9861 }
9862
9863 return TRUE;
9864 }
9865
9866 #define PPC_LO(v) ((v) & 0xffff)
9867 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9868 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9869 #define D34(v) \
9870 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9871 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9872
9873 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9874 to set up space for global entry stubs. These are put in glink,
9875 after the branch table. */
9876
9877 static bfd_boolean
9878 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9879 {
9880 struct bfd_link_info *info;
9881 struct ppc_link_hash_table *htab;
9882 struct plt_entry *pent;
9883 asection *s, *plt;
9884
9885 if (h->root.type == bfd_link_hash_indirect)
9886 return TRUE;
9887
9888 if (!h->pointer_equality_needed)
9889 return TRUE;
9890
9891 if (h->def_regular)
9892 return TRUE;
9893
9894 info = inf;
9895 htab = ppc_hash_table (info);
9896 if (htab == NULL)
9897 return FALSE;
9898
9899 s = htab->global_entry;
9900 plt = htab->elf.splt;
9901 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9902 if (pent->plt.offset != (bfd_vma) -1
9903 && pent->addend == 0)
9904 {
9905 /* For ELFv2, if this symbol is not defined in a regular file
9906 and we are not generating a shared library or pie, then we
9907 need to define the symbol in the executable on a call stub.
9908 This is to avoid text relocations. */
9909 bfd_vma off, stub_align, stub_off, stub_size;
9910 unsigned int align_power;
9911
9912 stub_size = 16;
9913 stub_off = s->size;
9914 if (htab->params->plt_stub_align >= 0)
9915 align_power = htab->params->plt_stub_align;
9916 else
9917 align_power = -htab->params->plt_stub_align;
9918 /* Setting section alignment is delayed until we know it is
9919 non-empty. Otherwise the .text output section will be
9920 aligned at least to plt_stub_align even when no global
9921 entry stubs are needed. */
9922 if (s->alignment_power < align_power)
9923 s->alignment_power = align_power;
9924 stub_align = (bfd_vma) 1 << align_power;
9925 if (htab->params->plt_stub_align >= 0
9926 || ((((stub_off + stub_size - 1) & -stub_align)
9927 - (stub_off & -stub_align))
9928 > ((stub_size - 1) & -stub_align)))
9929 stub_off = (stub_off + stub_align - 1) & -stub_align;
9930 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9931 off -= stub_off + s->output_offset + s->output_section->vma;
9932 /* Note that for --plt-stub-align negative we have a possible
9933 dependency between stub offset and size. Break that
9934 dependency by assuming the max stub size when calculating
9935 the stub offset. */
9936 if (PPC_HA (off) == 0)
9937 stub_size -= 4;
9938 h->root.type = bfd_link_hash_defined;
9939 h->root.u.def.section = s;
9940 h->root.u.def.value = stub_off;
9941 s->size = stub_off + stub_size;
9942 break;
9943 }
9944 return TRUE;
9945 }
9946
9947 /* Set the sizes of the dynamic sections. */
9948
9949 static bfd_boolean
9950 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9951 struct bfd_link_info *info)
9952 {
9953 struct ppc_link_hash_table *htab;
9954 bfd *dynobj;
9955 asection *s;
9956 bfd_boolean relocs;
9957 bfd *ibfd;
9958 struct got_entry *first_tlsld;
9959
9960 htab = ppc_hash_table (info);
9961 if (htab == NULL)
9962 return FALSE;
9963
9964 dynobj = htab->elf.dynobj;
9965 if (dynobj == NULL)
9966 abort ();
9967
9968 if (htab->elf.dynamic_sections_created)
9969 {
9970 /* Set the contents of the .interp section to the interpreter. */
9971 if (bfd_link_executable (info) && !info->nointerp)
9972 {
9973 s = bfd_get_linker_section (dynobj, ".interp");
9974 if (s == NULL)
9975 abort ();
9976 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9977 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9978 }
9979 }
9980
9981 /* Set up .got offsets for local syms, and space for local dynamic
9982 relocs. */
9983 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9984 {
9985 struct got_entry **lgot_ents;
9986 struct got_entry **end_lgot_ents;
9987 struct plt_entry **local_plt;
9988 struct plt_entry **end_local_plt;
9989 unsigned char *lgot_masks;
9990 bfd_size_type locsymcount;
9991 Elf_Internal_Shdr *symtab_hdr;
9992
9993 if (!is_ppc64_elf (ibfd))
9994 continue;
9995
9996 for (s = ibfd->sections; s != NULL; s = s->next)
9997 {
9998 struct ppc_dyn_relocs *p;
9999
10000 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10001 {
10002 if (!bfd_is_abs_section (p->sec)
10003 && bfd_is_abs_section (p->sec->output_section))
10004 {
10005 /* Input section has been discarded, either because
10006 it is a copy of a linkonce section or due to
10007 linker script /DISCARD/, so we'll be discarding
10008 the relocs too. */
10009 }
10010 else if (p->count != 0)
10011 {
10012 asection *srel = elf_section_data (p->sec)->sreloc;
10013 if (p->ifunc)
10014 srel = htab->elf.irelplt;
10015 srel->size += p->count * sizeof (Elf64_External_Rela);
10016 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
10017 info->flags |= DF_TEXTREL;
10018 }
10019 }
10020 }
10021
10022 lgot_ents = elf_local_got_ents (ibfd);
10023 if (!lgot_ents)
10024 continue;
10025
10026 symtab_hdr = &elf_symtab_hdr (ibfd);
10027 locsymcount = symtab_hdr->sh_info;
10028 end_lgot_ents = lgot_ents + locsymcount;
10029 local_plt = (struct plt_entry **) end_lgot_ents;
10030 end_local_plt = local_plt + locsymcount;
10031 lgot_masks = (unsigned char *) end_local_plt;
10032 s = ppc64_elf_tdata (ibfd)->got;
10033 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10034 {
10035 struct got_entry **pent, *ent;
10036
10037 pent = lgot_ents;
10038 while ((ent = *pent) != NULL)
10039 if (ent->got.refcount > 0)
10040 {
10041 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
10042 {
10043 ppc64_tlsld_got (ibfd)->got.refcount += 1;
10044 *pent = ent->next;
10045 }
10046 else
10047 {
10048 unsigned int ent_size = 8;
10049 unsigned int rel_size = sizeof (Elf64_External_Rela);
10050
10051 ent->got.offset = s->size;
10052 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10053 {
10054 ent_size *= 2;
10055 rel_size *= 2;
10056 }
10057 s->size += ent_size;
10058 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10059 {
10060 htab->elf.irelplt->size += rel_size;
10061 htab->got_reli_size += rel_size;
10062 }
10063 else if (bfd_link_pic (info)
10064 && !(ent->tls_type != 0
10065 && bfd_link_executable (info)))
10066 {
10067 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10068 srel->size += rel_size;
10069 }
10070 pent = &ent->next;
10071 }
10072 }
10073 else
10074 *pent = ent->next;
10075 }
10076
10077 /* Allocate space for plt calls to local syms. */
10078 lgot_masks = (unsigned char *) end_local_plt;
10079 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
10080 {
10081 struct plt_entry *ent;
10082
10083 for (ent = *local_plt; ent != NULL; ent = ent->next)
10084 if (ent->plt.refcount > 0)
10085 {
10086 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10087 {
10088 s = htab->elf.iplt;
10089 ent->plt.offset = s->size;
10090 s->size += PLT_ENTRY_SIZE (htab);
10091 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
10092 }
10093 else if (htab->can_convert_all_inline_plt
10094 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
10095 ent->plt.offset = (bfd_vma) -1;
10096 else
10097 {
10098 s = htab->pltlocal;
10099 ent->plt.offset = s->size;
10100 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
10101 if (bfd_link_pic (info))
10102 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
10103 }
10104 }
10105 else
10106 ent->plt.offset = (bfd_vma) -1;
10107 }
10108 }
10109
10110 /* Allocate global sym .plt and .got entries, and space for global
10111 sym dynamic relocs. */
10112 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
10113
10114 if (!htab->opd_abi && !bfd_link_pic (info))
10115 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
10116
10117 first_tlsld = NULL;
10118 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10119 {
10120 struct got_entry *ent;
10121
10122 if (!is_ppc64_elf (ibfd))
10123 continue;
10124
10125 ent = ppc64_tlsld_got (ibfd);
10126 if (ent->got.refcount > 0)
10127 {
10128 if (!htab->do_multi_toc && first_tlsld != NULL)
10129 {
10130 ent->is_indirect = TRUE;
10131 ent->got.ent = first_tlsld;
10132 }
10133 else
10134 {
10135 if (first_tlsld == NULL)
10136 first_tlsld = ent;
10137 s = ppc64_elf_tdata (ibfd)->got;
10138 ent->got.offset = s->size;
10139 ent->owner = ibfd;
10140 s->size += 16;
10141 if (bfd_link_dll (info))
10142 {
10143 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10144 srel->size += sizeof (Elf64_External_Rela);
10145 }
10146 }
10147 }
10148 else
10149 ent->got.offset = (bfd_vma) -1;
10150 }
10151
10152 /* We now have determined the sizes of the various dynamic sections.
10153 Allocate memory for them. */
10154 relocs = FALSE;
10155 for (s = dynobj->sections; s != NULL; s = s->next)
10156 {
10157 if ((s->flags & SEC_LINKER_CREATED) == 0)
10158 continue;
10159
10160 if (s == htab->brlt || s == htab->relbrlt)
10161 /* These haven't been allocated yet; don't strip. */
10162 continue;
10163 else if (s == htab->elf.sgot
10164 || s == htab->elf.splt
10165 || s == htab->elf.iplt
10166 || s == htab->pltlocal
10167 || s == htab->glink
10168 || s == htab->global_entry
10169 || s == htab->elf.sdynbss
10170 || s == htab->elf.sdynrelro)
10171 {
10172 /* Strip this section if we don't need it; see the
10173 comment below. */
10174 }
10175 else if (s == htab->glink_eh_frame)
10176 {
10177 if (!bfd_is_abs_section (s->output_section))
10178 /* Not sized yet. */
10179 continue;
10180 }
10181 else if (CONST_STRNEQ (s->name, ".rela"))
10182 {
10183 if (s->size != 0)
10184 {
10185 if (s != htab->elf.srelplt)
10186 relocs = TRUE;
10187
10188 /* We use the reloc_count field as a counter if we need
10189 to copy relocs into the output file. */
10190 s->reloc_count = 0;
10191 }
10192 }
10193 else
10194 {
10195 /* It's not one of our sections, so don't allocate space. */
10196 continue;
10197 }
10198
10199 if (s->size == 0)
10200 {
10201 /* If we don't need this section, strip it from the
10202 output file. This is mostly to handle .rela.bss and
10203 .rela.plt. We must create both sections in
10204 create_dynamic_sections, because they must be created
10205 before the linker maps input sections to output
10206 sections. The linker does that before
10207 adjust_dynamic_symbol is called, and it is that
10208 function which decides whether anything needs to go
10209 into these sections. */
10210 s->flags |= SEC_EXCLUDE;
10211 continue;
10212 }
10213
10214 if (bfd_is_abs_section (s->output_section))
10215 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10216 s->name);
10217
10218 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10219 continue;
10220
10221 /* Allocate memory for the section contents. We use bfd_zalloc
10222 here in case unused entries are not reclaimed before the
10223 section's contents are written out. This should not happen,
10224 but this way if it does we get a R_PPC64_NONE reloc in .rela
10225 sections instead of garbage.
10226 We also rely on the section contents being zero when writing
10227 the GOT and .dynrelro. */
10228 s->contents = bfd_zalloc (dynobj, s->size);
10229 if (s->contents == NULL)
10230 return FALSE;
10231 }
10232
10233 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10234 {
10235 if (!is_ppc64_elf (ibfd))
10236 continue;
10237
10238 s = ppc64_elf_tdata (ibfd)->got;
10239 if (s != NULL && s != htab->elf.sgot)
10240 {
10241 if (s->size == 0)
10242 s->flags |= SEC_EXCLUDE;
10243 else
10244 {
10245 s->contents = bfd_zalloc (ibfd, s->size);
10246 if (s->contents == NULL)
10247 return FALSE;
10248 }
10249 }
10250 s = ppc64_elf_tdata (ibfd)->relgot;
10251 if (s != NULL)
10252 {
10253 if (s->size == 0)
10254 s->flags |= SEC_EXCLUDE;
10255 else
10256 {
10257 s->contents = bfd_zalloc (ibfd, s->size);
10258 if (s->contents == NULL)
10259 return FALSE;
10260 relocs = TRUE;
10261 s->reloc_count = 0;
10262 }
10263 }
10264 }
10265
10266 if (htab->elf.dynamic_sections_created)
10267 {
10268 bfd_boolean tls_opt;
10269
10270 /* Add some entries to the .dynamic section. We fill in the
10271 values later, in ppc64_elf_finish_dynamic_sections, but we
10272 must add the entries now so that we get the correct size for
10273 the .dynamic section. The DT_DEBUG entry is filled in by the
10274 dynamic linker and used by the debugger. */
10275 #define add_dynamic_entry(TAG, VAL) \
10276 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10277
10278 if (bfd_link_executable (info))
10279 {
10280 if (!add_dynamic_entry (DT_DEBUG, 0))
10281 return FALSE;
10282 }
10283
10284 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10285 {
10286 if (!add_dynamic_entry (DT_PLTGOT, 0)
10287 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10288 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10289 || !add_dynamic_entry (DT_JMPREL, 0)
10290 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10291 return FALSE;
10292 }
10293
10294 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10295 {
10296 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10297 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10298 return FALSE;
10299 }
10300
10301 tls_opt = (htab->params->tls_get_addr_opt
10302 && ((htab->tls_get_addr_fd != NULL
10303 && htab->tls_get_addr_fd->elf.plt.plist != NULL)
10304 || (htab->tga_desc_fd != NULL
10305 && htab->tga_desc_fd->elf.plt.plist != NULL)));
10306 if (tls_opt || !htab->opd_abi)
10307 {
10308 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10309 return FALSE;
10310 }
10311
10312 if (relocs)
10313 {
10314 if (!add_dynamic_entry (DT_RELA, 0)
10315 || !add_dynamic_entry (DT_RELASZ, 0)
10316 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10317 return FALSE;
10318
10319 /* If any dynamic relocs apply to a read-only section,
10320 then we need a DT_TEXTREL entry. */
10321 if ((info->flags & DF_TEXTREL) == 0)
10322 elf_link_hash_traverse (&htab->elf,
10323 _bfd_elf_maybe_set_textrel, info);
10324
10325 if ((info->flags & DF_TEXTREL) != 0)
10326 {
10327 if (!add_dynamic_entry (DT_TEXTREL, 0))
10328 return FALSE;
10329 }
10330 }
10331 }
10332 #undef add_dynamic_entry
10333
10334 return TRUE;
10335 }
10336
10337 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10338
10339 static bfd_boolean
10340 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10341 {
10342 if (h->plt.plist != NULL
10343 && !h->def_regular
10344 && !h->pointer_equality_needed)
10345 return FALSE;
10346
10347 return _bfd_elf_hash_symbol (h);
10348 }
10349
10350 /* Determine the type of stub needed, if any, for a call. */
10351
10352 static inline enum ppc_stub_type
10353 ppc_type_of_stub (asection *input_sec,
10354 const Elf_Internal_Rela *rel,
10355 struct ppc_link_hash_entry **hash,
10356 struct plt_entry **plt_ent,
10357 bfd_vma destination,
10358 unsigned long local_off)
10359 {
10360 struct ppc_link_hash_entry *h = *hash;
10361 bfd_vma location;
10362 bfd_vma branch_offset;
10363 bfd_vma max_branch_offset;
10364 enum elf_ppc64_reloc_type r_type;
10365
10366 if (h != NULL)
10367 {
10368 struct plt_entry *ent;
10369 struct ppc_link_hash_entry *fdh = h;
10370 if (h->oh != NULL
10371 && h->oh->is_func_descriptor)
10372 {
10373 fdh = ppc_follow_link (h->oh);
10374 *hash = fdh;
10375 }
10376
10377 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10378 if (ent->addend == rel->r_addend
10379 && ent->plt.offset != (bfd_vma) -1)
10380 {
10381 *plt_ent = ent;
10382 return ppc_stub_plt_call;
10383 }
10384
10385 /* Here, we know we don't have a plt entry. If we don't have a
10386 either a defined function descriptor or a defined entry symbol
10387 in a regular object file, then it is pointless trying to make
10388 any other type of stub. */
10389 if (!is_static_defined (&fdh->elf)
10390 && !is_static_defined (&h->elf))
10391 return ppc_stub_none;
10392 }
10393 else if (elf_local_got_ents (input_sec->owner) != NULL)
10394 {
10395 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10396 struct plt_entry **local_plt = (struct plt_entry **)
10397 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10398 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10399
10400 if (local_plt[r_symndx] != NULL)
10401 {
10402 struct plt_entry *ent;
10403
10404 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10405 if (ent->addend == rel->r_addend
10406 && ent->plt.offset != (bfd_vma) -1)
10407 {
10408 *plt_ent = ent;
10409 return ppc_stub_plt_call;
10410 }
10411 }
10412 }
10413
10414 /* Determine where the call point is. */
10415 location = (input_sec->output_offset
10416 + input_sec->output_section->vma
10417 + rel->r_offset);
10418
10419 branch_offset = destination - location;
10420 r_type = ELF64_R_TYPE (rel->r_info);
10421
10422 /* Determine if a long branch stub is needed. */
10423 max_branch_offset = 1 << 25;
10424 if (r_type == R_PPC64_REL14
10425 || r_type == R_PPC64_REL14_BRTAKEN
10426 || r_type == R_PPC64_REL14_BRNTAKEN)
10427 max_branch_offset = 1 << 15;
10428
10429 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10430 /* We need a stub. Figure out whether a long_branch or plt_branch
10431 is needed later. */
10432 return ppc_stub_long_branch;
10433
10434 return ppc_stub_none;
10435 }
10436
10437 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10438 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10439 . mflr %r12
10440 . bcl 20,31,1f
10441 .1: mflr %r11
10442 . mtlr %r12
10443 . lis %r12,xxx-1b@highest
10444 . ori %r12,%r12,xxx-1b@higher
10445 . sldi %r12,%r12,32
10446 . oris %r12,%r12,xxx-1b@high
10447 . ori %r12,%r12,xxx-1b@l
10448 . add/ldx %r12,%r11,%r12 */
10449
10450 static bfd_byte *
10451 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10452 {
10453 bfd_put_32 (abfd, MFLR_R12, p);
10454 p += 4;
10455 bfd_put_32 (abfd, BCL_20_31, p);
10456 p += 4;
10457 bfd_put_32 (abfd, MFLR_R11, p);
10458 p += 4;
10459 bfd_put_32 (abfd, MTLR_R12, p);
10460 p += 4;
10461 if (off + 0x8000 < 0x10000)
10462 {
10463 if (load)
10464 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10465 else
10466 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10467 p += 4;
10468 }
10469 else if (off + 0x80008000ULL < 0x100000000ULL)
10470 {
10471 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10472 p += 4;
10473 if (load)
10474 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10475 else
10476 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10477 p += 4;
10478 }
10479 else
10480 {
10481 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10482 {
10483 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10484 p += 4;
10485 }
10486 else
10487 {
10488 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10489 p += 4;
10490 if (((off >> 32) & 0xffff) != 0)
10491 {
10492 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10493 p += 4;
10494 }
10495 }
10496 if (((off >> 32) & 0xffffffffULL) != 0)
10497 {
10498 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10499 p += 4;
10500 }
10501 if (PPC_HI (off) != 0)
10502 {
10503 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10504 p += 4;
10505 }
10506 if (PPC_LO (off) != 0)
10507 {
10508 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10509 p += 4;
10510 }
10511 if (load)
10512 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10513 else
10514 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10515 p += 4;
10516 }
10517 return p;
10518 }
10519
10520 static unsigned int
10521 size_offset (bfd_vma off)
10522 {
10523 unsigned int size;
10524 if (off + 0x8000 < 0x10000)
10525 size = 4;
10526 else if (off + 0x80008000ULL < 0x100000000ULL)
10527 size = 8;
10528 else
10529 {
10530 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10531 size = 4;
10532 else
10533 {
10534 size = 4;
10535 if (((off >> 32) & 0xffff) != 0)
10536 size += 4;
10537 }
10538 if (((off >> 32) & 0xffffffffULL) != 0)
10539 size += 4;
10540 if (PPC_HI (off) != 0)
10541 size += 4;
10542 if (PPC_LO (off) != 0)
10543 size += 4;
10544 size += 4;
10545 }
10546 return size + 16;
10547 }
10548
10549 static unsigned int
10550 num_relocs_for_offset (bfd_vma off)
10551 {
10552 unsigned int num_rel;
10553 if (off + 0x8000 < 0x10000)
10554 num_rel = 1;
10555 else if (off + 0x80008000ULL < 0x100000000ULL)
10556 num_rel = 2;
10557 else
10558 {
10559 num_rel = 1;
10560 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10561 && ((off >> 32) & 0xffff) != 0)
10562 num_rel += 1;
10563 if (PPC_HI (off) != 0)
10564 num_rel += 1;
10565 if (PPC_LO (off) != 0)
10566 num_rel += 1;
10567 }
10568 return num_rel;
10569 }
10570
10571 static Elf_Internal_Rela *
10572 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10573 bfd_vma roff, bfd_vma targ, bfd_vma off)
10574 {
10575 bfd_vma relative_targ = targ - (roff - 8);
10576 if (bfd_big_endian (info->output_bfd))
10577 roff += 2;
10578 r->r_offset = roff;
10579 r->r_addend = relative_targ + roff;
10580 if (off + 0x8000 < 0x10000)
10581 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10582 else if (off + 0x80008000ULL < 0x100000000ULL)
10583 {
10584 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10585 ++r;
10586 roff += 4;
10587 r->r_offset = roff;
10588 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10589 r->r_addend = relative_targ + roff;
10590 }
10591 else
10592 {
10593 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10594 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10595 else
10596 {
10597 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10598 if (((off >> 32) & 0xffff) != 0)
10599 {
10600 ++r;
10601 roff += 4;
10602 r->r_offset = roff;
10603 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10604 r->r_addend = relative_targ + roff;
10605 }
10606 }
10607 if (((off >> 32) & 0xffffffffULL) != 0)
10608 roff += 4;
10609 if (PPC_HI (off) != 0)
10610 {
10611 ++r;
10612 roff += 4;
10613 r->r_offset = roff;
10614 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10615 r->r_addend = relative_targ + roff;
10616 }
10617 if (PPC_LO (off) != 0)
10618 {
10619 ++r;
10620 roff += 4;
10621 r->r_offset = roff;
10622 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10623 r->r_addend = relative_targ + roff;
10624 }
10625 }
10626 return r;
10627 }
10628
10629 static bfd_byte *
10630 build_power10_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10631 bfd_boolean load)
10632 {
10633 uint64_t insn;
10634 if (off - odd + (1ULL << 33) < 1ULL << 34)
10635 {
10636 off -= odd;
10637 if (odd)
10638 {
10639 bfd_put_32 (abfd, NOP, p);
10640 p += 4;
10641 }
10642 if (load)
10643 insn = PLD_R12_PC;
10644 else
10645 insn = PADDI_R12_PC;
10646 insn |= D34 (off);
10647 bfd_put_32 (abfd, insn >> 32, p);
10648 p += 4;
10649 bfd_put_32 (abfd, insn, p);
10650 }
10651 /* The minimum value for paddi is -0x200000000. The minimum value
10652 for li is -0x8000, which when shifted by 34 and added gives a
10653 minimum value of -0x2000200000000. The maximum value is
10654 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10655 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10656 {
10657 off -= 8 - odd;
10658 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10659 p += 4;
10660 if (!odd)
10661 {
10662 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10663 p += 4;
10664 }
10665 insn = PADDI_R12_PC | D34 (off);
10666 bfd_put_32 (abfd, insn >> 32, p);
10667 p += 4;
10668 bfd_put_32 (abfd, insn, p);
10669 p += 4;
10670 if (odd)
10671 {
10672 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10673 p += 4;
10674 }
10675 if (load)
10676 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10677 else
10678 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10679 }
10680 else
10681 {
10682 off -= odd + 8;
10683 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10684 p += 4;
10685 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10686 p += 4;
10687 if (odd)
10688 {
10689 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10690 p += 4;
10691 }
10692 insn = PADDI_R12_PC | D34 (off);
10693 bfd_put_32 (abfd, insn >> 32, p);
10694 p += 4;
10695 bfd_put_32 (abfd, insn, p);
10696 p += 4;
10697 if (!odd)
10698 {
10699 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10700 p += 4;
10701 }
10702 if (load)
10703 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10704 else
10705 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10706 }
10707 p += 4;
10708 return p;
10709 }
10710
10711 static unsigned int
10712 size_power10_offset (bfd_vma off, int odd)
10713 {
10714 if (off - odd + (1ULL << 33) < 1ULL << 34)
10715 return odd + 8;
10716 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10717 return 20;
10718 else
10719 return 24;
10720 }
10721
10722 static unsigned int
10723 num_relocs_for_power10_offset (bfd_vma off, int odd)
10724 {
10725 if (off - odd + (1ULL << 33) < 1ULL << 34)
10726 return 1;
10727 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10728 return 2;
10729 else
10730 return 3;
10731 }
10732
10733 static Elf_Internal_Rela *
10734 emit_relocs_for_power10_offset (struct bfd_link_info *info,
10735 Elf_Internal_Rela *r, bfd_vma roff,
10736 bfd_vma targ, bfd_vma off, int odd)
10737 {
10738 if (off - odd + (1ULL << 33) < 1ULL << 34)
10739 roff += odd;
10740 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10741 {
10742 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10743 r->r_offset = roff + d_offset;
10744 r->r_addend = targ + 8 - odd - d_offset;
10745 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10746 ++r;
10747 roff += 8 - odd;
10748 }
10749 else
10750 {
10751 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10752 r->r_offset = roff + d_offset;
10753 r->r_addend = targ + 8 + odd - d_offset;
10754 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10755 ++r;
10756 roff += 4;
10757 r->r_offset = roff + d_offset;
10758 r->r_addend = targ + 4 + odd - d_offset;
10759 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10760 ++r;
10761 roff += 4 + odd;
10762 }
10763 r->r_offset = roff;
10764 r->r_addend = targ;
10765 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10766 return r;
10767 }
10768
10769 /* Emit .eh_frame opcode to advance pc by DELTA. */
10770
10771 static bfd_byte *
10772 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10773 {
10774 delta /= 4;
10775 if (delta < 64)
10776 *eh++ = DW_CFA_advance_loc + delta;
10777 else if (delta < 256)
10778 {
10779 *eh++ = DW_CFA_advance_loc1;
10780 *eh++ = delta;
10781 }
10782 else if (delta < 65536)
10783 {
10784 *eh++ = DW_CFA_advance_loc2;
10785 bfd_put_16 (abfd, delta, eh);
10786 eh += 2;
10787 }
10788 else
10789 {
10790 *eh++ = DW_CFA_advance_loc4;
10791 bfd_put_32 (abfd, delta, eh);
10792 eh += 4;
10793 }
10794 return eh;
10795 }
10796
10797 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10798
10799 static unsigned int
10800 eh_advance_size (unsigned int delta)
10801 {
10802 if (delta < 64 * 4)
10803 /* DW_CFA_advance_loc+[1..63]. */
10804 return 1;
10805 if (delta < 256 * 4)
10806 /* DW_CFA_advance_loc1, byte. */
10807 return 2;
10808 if (delta < 65536 * 4)
10809 /* DW_CFA_advance_loc2, 2 bytes. */
10810 return 3;
10811 /* DW_CFA_advance_loc4, 4 bytes. */
10812 return 5;
10813 }
10814
10815 /* With power7 weakly ordered memory model, it is possible for ld.so
10816 to update a plt entry in one thread and have another thread see a
10817 stale zero toc entry. To avoid this we need some sort of acquire
10818 barrier in the call stub. One solution is to make the load of the
10819 toc word seem to appear to depend on the load of the function entry
10820 word. Another solution is to test for r2 being zero, and branch to
10821 the appropriate glink entry if so.
10822
10823 . fake dep barrier compare
10824 . ld 12,xxx(2) ld 12,xxx(2)
10825 . mtctr 12 mtctr 12
10826 . xor 11,12,12 ld 2,xxx+8(2)
10827 . add 2,2,11 cmpldi 2,0
10828 . ld 2,xxx+8(2) bnectr+
10829 . bctr b <glink_entry>
10830
10831 The solution involving the compare turns out to be faster, so
10832 that's what we use unless the branch won't reach. */
10833
10834 #define ALWAYS_USE_FAKE_DEP 0
10835 #define ALWAYS_EMIT_R2SAVE 0
10836
10837 static inline unsigned int
10838 plt_stub_size (struct ppc_link_hash_table *htab,
10839 struct ppc_stub_hash_entry *stub_entry,
10840 bfd_vma off)
10841 {
10842 unsigned size;
10843
10844 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10845 {
10846 if (htab->params->power10_stubs != 0)
10847 {
10848 bfd_vma start = (stub_entry->stub_offset
10849 + stub_entry->group->stub_sec->output_offset
10850 + stub_entry->group->stub_sec->output_section->vma);
10851 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10852 start += 4;
10853 size = 8 + size_power10_offset (off, start & 4);
10854 }
10855 else
10856 size = 8 + size_offset (off - 8);
10857 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10858 size += 4;
10859 return size;
10860 }
10861
10862 size = 12;
10863 if (ALWAYS_EMIT_R2SAVE
10864 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10865 size += 4;
10866 if (PPC_HA (off) != 0)
10867 size += 4;
10868 if (htab->opd_abi)
10869 {
10870 size += 4;
10871 if (htab->params->plt_static_chain)
10872 size += 4;
10873 if (htab->params->plt_thread_safe
10874 && htab->elf.dynamic_sections_created
10875 && stub_entry->h != NULL
10876 && stub_entry->h->elf.dynindx != -1)
10877 size += 8;
10878 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10879 size += 4;
10880 }
10881 if (stub_entry->h != NULL
10882 && is_tls_get_addr (&stub_entry->h->elf, htab)
10883 && htab->params->tls_get_addr_opt)
10884 {
10885 if (htab->params->no_tls_get_addr_regsave)
10886 {
10887 size += 7 * 4;
10888 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10889 size += 6 * 4;
10890 }
10891 else
10892 {
10893 size += 30 * 4;
10894 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10895 size += 4;
10896 }
10897 }
10898 return size;
10899 }
10900
10901 /* Depending on the sign of plt_stub_align:
10902 If positive, return the padding to align to a 2**plt_stub_align
10903 boundary.
10904 If negative, if this stub would cross fewer 2**plt_stub_align
10905 boundaries if we align, then return the padding needed to do so. */
10906
10907 static inline unsigned int
10908 plt_stub_pad (struct ppc_link_hash_table *htab,
10909 struct ppc_stub_hash_entry *stub_entry,
10910 bfd_vma plt_off)
10911 {
10912 int stub_align;
10913 unsigned stub_size;
10914 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10915
10916 if (htab->params->plt_stub_align >= 0)
10917 {
10918 stub_align = 1 << htab->params->plt_stub_align;
10919 if ((stub_off & (stub_align - 1)) != 0)
10920 return stub_align - (stub_off & (stub_align - 1));
10921 return 0;
10922 }
10923
10924 stub_align = 1 << -htab->params->plt_stub_align;
10925 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10926 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10927 > ((stub_size - 1) & -stub_align))
10928 return stub_align - (stub_off & (stub_align - 1));
10929 return 0;
10930 }
10931
10932 /* Build a .plt call stub. */
10933
10934 static inline bfd_byte *
10935 build_plt_stub (struct ppc_link_hash_table *htab,
10936 struct ppc_stub_hash_entry *stub_entry,
10937 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10938 {
10939 bfd *obfd = htab->params->stub_bfd;
10940 bfd_boolean plt_load_toc = htab->opd_abi;
10941 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10942 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10943 && htab->elf.dynamic_sections_created
10944 && stub_entry->h != NULL
10945 && stub_entry->h->elf.dynindx != -1);
10946 bfd_boolean use_fake_dep = plt_thread_safe;
10947 bfd_vma cmp_branch_off = 0;
10948
10949 if (!ALWAYS_USE_FAKE_DEP
10950 && plt_load_toc
10951 && plt_thread_safe
10952 && !(stub_entry->h != NULL
10953 && is_tls_get_addr (&stub_entry->h->elf, htab)
10954 && htab->params->tls_get_addr_opt))
10955 {
10956 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10957 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10958 / PLT_ENTRY_SIZE (htab));
10959 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10960 bfd_vma to, from;
10961
10962 if (pltindex > 32768)
10963 glinkoff += (pltindex - 32768) * 4;
10964 to = (glinkoff
10965 + htab->glink->output_offset
10966 + htab->glink->output_section->vma);
10967 from = (p - stub_entry->group->stub_sec->contents
10968 + 4 * (ALWAYS_EMIT_R2SAVE
10969 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10970 + 4 * (PPC_HA (offset) != 0)
10971 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10972 != PPC_HA (offset))
10973 + 4 * (plt_static_chain != 0)
10974 + 20
10975 + stub_entry->group->stub_sec->output_offset
10976 + stub_entry->group->stub_sec->output_section->vma);
10977 cmp_branch_off = to - from;
10978 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10979 }
10980
10981 if (PPC_HA (offset) != 0)
10982 {
10983 if (r != NULL)
10984 {
10985 if (ALWAYS_EMIT_R2SAVE
10986 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10987 r[0].r_offset += 4;
10988 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10989 r[1].r_offset = r[0].r_offset + 4;
10990 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10991 r[1].r_addend = r[0].r_addend;
10992 if (plt_load_toc)
10993 {
10994 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10995 {
10996 r[2].r_offset = r[1].r_offset + 4;
10997 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10998 r[2].r_addend = r[0].r_addend;
10999 }
11000 else
11001 {
11002 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
11003 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11004 r[2].r_addend = r[0].r_addend + 8;
11005 if (plt_static_chain)
11006 {
11007 r[3].r_offset = r[2].r_offset + 4;
11008 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11009 r[3].r_addend = r[0].r_addend + 16;
11010 }
11011 }
11012 }
11013 }
11014 if (ALWAYS_EMIT_R2SAVE
11015 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11016 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11017 if (plt_load_toc)
11018 {
11019 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
11020 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
11021 }
11022 else
11023 {
11024 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
11025 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
11026 }
11027 if (plt_load_toc
11028 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11029 {
11030 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
11031 offset = 0;
11032 }
11033 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11034 if (plt_load_toc)
11035 {
11036 if (use_fake_dep)
11037 {
11038 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
11039 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
11040 }
11041 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
11042 if (plt_static_chain)
11043 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
11044 }
11045 }
11046 else
11047 {
11048 if (r != NULL)
11049 {
11050 if (ALWAYS_EMIT_R2SAVE
11051 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11052 r[0].r_offset += 4;
11053 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11054 if (plt_load_toc)
11055 {
11056 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11057 {
11058 r[1].r_offset = r[0].r_offset + 4;
11059 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
11060 r[1].r_addend = r[0].r_addend;
11061 }
11062 else
11063 {
11064 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
11065 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11066 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
11067 if (plt_static_chain)
11068 {
11069 r[2].r_offset = r[1].r_offset + 4;
11070 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11071 r[2].r_addend = r[0].r_addend + 8;
11072 }
11073 }
11074 }
11075 }
11076 if (ALWAYS_EMIT_R2SAVE
11077 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11078 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11079 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
11080 if (plt_load_toc
11081 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11082 {
11083 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
11084 offset = 0;
11085 }
11086 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11087 if (plt_load_toc)
11088 {
11089 if (use_fake_dep)
11090 {
11091 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
11092 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
11093 }
11094 if (plt_static_chain)
11095 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
11096 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
11097 }
11098 }
11099 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
11100 {
11101 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
11102 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
11103 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
11104 }
11105 else
11106 bfd_put_32 (obfd, BCTR, p), p += 4;
11107 return p;
11108 }
11109
11110 /* Build a special .plt call stub for __tls_get_addr. */
11111
11112 #define LD_R0_0R3 0xe8030000
11113 #define LD_R12_0R3 0xe9830000
11114 #define MR_R0_R3 0x7c601b78
11115 #define CMPDI_R0_0 0x2c200000
11116 #define ADD_R3_R12_R13 0x7c6c6a14
11117 #define BEQLR 0x4d820020
11118 #define MR_R3_R0 0x7c030378
11119 #define BCTRL 0x4e800421
11120
11121 static inline bfd_byte *
11122 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
11123 struct ppc_stub_hash_entry *stub_entry,
11124 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
11125 {
11126 bfd *obfd = htab->params->stub_bfd;
11127 bfd_byte *loc = p;
11128 unsigned int i;
11129
11130 bfd_put_32 (obfd, LD_R0_0R3 + 0, p), p += 4;
11131 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
11132 bfd_put_32 (obfd, CMPDI_R0_0, p), p += 4;
11133 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
11134 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
11135 bfd_put_32 (obfd, BEQLR, p), p += 4;
11136 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
11137 if (htab->params->no_tls_get_addr_regsave)
11138 {
11139 if (r != NULL)
11140 r[0].r_offset += 7 * 4;
11141 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
11142 return build_plt_stub (htab, stub_entry, p, offset, r);
11143
11144 bfd_put_32 (obfd, MFLR_R0, p);
11145 p += 4;
11146 bfd_put_32 (obfd, STD_R0_0R1 + STK_LINKER (htab), p);
11147 p += 4;
11148
11149 if (r != NULL)
11150 r[0].r_offset += 2 * 4;
11151 p = build_plt_stub (htab, stub_entry, p, offset, r);
11152 bfd_put_32 (obfd, BCTRL, p - 4);
11153
11154 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11155 p += 4;
11156 bfd_put_32 (obfd, LD_R0_0R1 + STK_LINKER (htab), p);
11157 p += 4;
11158 bfd_put_32 (obfd, MTLR_R0, p);
11159 p += 4;
11160 bfd_put_32 (obfd, BLR, p);
11161 p += 4;
11162 }
11163 else
11164 {
11165 p = tls_get_addr_prologue (obfd, p, htab);
11166
11167 if (r != NULL)
11168 r[0].r_offset += 18 * 4;
11169
11170 p = build_plt_stub (htab, stub_entry, p, offset, r);
11171 bfd_put_32 (obfd, BCTRL, p - 4);
11172
11173 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
11174 {
11175 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11176 p += 4;
11177 }
11178
11179 p = tls_get_addr_epilogue (obfd, p, htab);
11180 }
11181
11182 if (htab->glink_eh_frame != NULL
11183 && htab->glink_eh_frame->size != 0)
11184 {
11185 bfd_byte *base, *eh;
11186
11187 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
11188 eh = base + stub_entry->group->eh_size;
11189 if (htab->params->no_tls_get_addr_regsave)
11190 {
11191 unsigned int lr_used, delta;
11192 lr_used = stub_entry->stub_offset + (p - 20 - loc);
11193 delta = lr_used - stub_entry->group->lr_restore;
11194 stub_entry->group->lr_restore = lr_used + 16;
11195 eh = eh_advance (htab->elf.dynobj, eh, delta);
11196 *eh++ = DW_CFA_offset_extended_sf;
11197 *eh++ = 65;
11198 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
11199 *eh++ = DW_CFA_advance_loc + 4;
11200 }
11201 else
11202 {
11203 unsigned int cfa_updt, delta;
11204 /* After the bctrl, lr has been modified so we need to emit
11205 .eh_frame info saying the return address is on the stack. In
11206 fact we must put the EH info at or before the call rather
11207 than after it, because the EH info for a call needs to be
11208 specified by that point.
11209 See libgcc/unwind-dw2.c execute_cfa_program.
11210 Any stack pointer update must be described immediately after
11211 the instruction making the change, and since the stdu occurs
11212 after saving regs we put all the reg saves and the cfa
11213 change there. */
11214 cfa_updt = stub_entry->stub_offset + 18 * 4;
11215 delta = cfa_updt - stub_entry->group->lr_restore;
11216 stub_entry->group->lr_restore
11217 = stub_entry->stub_offset + (p - loc) - 4;
11218 eh = eh_advance (htab->elf.dynobj, eh, delta);
11219 *eh++ = DW_CFA_def_cfa_offset;
11220 if (htab->opd_abi)
11221 {
11222 *eh++ = 128;
11223 *eh++ = 1;
11224 }
11225 else
11226 *eh++ = 96;
11227 *eh++ = DW_CFA_offset_extended_sf;
11228 *eh++ = 65;
11229 *eh++ = (-16 / 8) & 0x7f;
11230 for (i = 4; i < 12; i++)
11231 {
11232 *eh++ = DW_CFA_offset + i;
11233 *eh++ = (htab->opd_abi ? 13 : 12) - i;
11234 }
11235 *eh++ = (DW_CFA_advance_loc
11236 + (stub_entry->group->lr_restore - 8 - cfa_updt) / 4);
11237 *eh++ = DW_CFA_def_cfa_offset;
11238 *eh++ = 0;
11239 for (i = 4; i < 12; i++)
11240 *eh++ = DW_CFA_restore + i;
11241 *eh++ = DW_CFA_advance_loc + 2;
11242 }
11243 *eh++ = DW_CFA_restore_extended;
11244 *eh++ = 65;
11245 stub_entry->group->eh_size = eh - base;
11246 }
11247 return p;
11248 }
11249
11250 static Elf_Internal_Rela *
11251 get_relocs (asection *sec, int count)
11252 {
11253 Elf_Internal_Rela *relocs;
11254 struct bfd_elf_section_data *elfsec_data;
11255
11256 elfsec_data = elf_section_data (sec);
11257 relocs = elfsec_data->relocs;
11258 if (relocs == NULL)
11259 {
11260 bfd_size_type relsize;
11261 relsize = sec->reloc_count * sizeof (*relocs);
11262 relocs = bfd_alloc (sec->owner, relsize);
11263 if (relocs == NULL)
11264 return NULL;
11265 elfsec_data->relocs = relocs;
11266 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
11267 sizeof (Elf_Internal_Shdr));
11268 if (elfsec_data->rela.hdr == NULL)
11269 return NULL;
11270 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
11271 * sizeof (Elf64_External_Rela));
11272 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
11273 sec->reloc_count = 0;
11274 }
11275 relocs += sec->reloc_count;
11276 sec->reloc_count += count;
11277 return relocs;
11278 }
11279
11280 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11281 forms, to the equivalent relocs against the global symbol given by
11282 STUB_ENTRY->H. */
11283
11284 static bfd_boolean
11285 use_global_in_relocs (struct ppc_link_hash_table *htab,
11286 struct ppc_stub_hash_entry *stub_entry,
11287 Elf_Internal_Rela *r, unsigned int num_rel)
11288 {
11289 struct elf_link_hash_entry **hashes;
11290 unsigned long symndx;
11291 struct ppc_link_hash_entry *h;
11292 bfd_vma symval;
11293
11294 /* Relocs are always against symbols in their own object file. Fake
11295 up global sym hashes for the stub bfd (which has no symbols). */
11296 hashes = elf_sym_hashes (htab->params->stub_bfd);
11297 if (hashes == NULL)
11298 {
11299 bfd_size_type hsize;
11300
11301 /* When called the first time, stub_globals will contain the
11302 total number of symbols seen during stub sizing. After
11303 allocating, stub_globals is used as an index to fill the
11304 hashes array. */
11305 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
11306 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
11307 if (hashes == NULL)
11308 return FALSE;
11309 elf_sym_hashes (htab->params->stub_bfd) = hashes;
11310 htab->stub_globals = 1;
11311 }
11312 symndx = htab->stub_globals++;
11313 h = stub_entry->h;
11314 hashes[symndx] = &h->elf;
11315 if (h->oh != NULL && h->oh->is_func)
11316 h = ppc_follow_link (h->oh);
11317 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
11318 || h->elf.root.type == bfd_link_hash_defweak);
11319 symval = defined_sym_val (&h->elf);
11320 while (num_rel-- != 0)
11321 {
11322 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
11323 if (h->elf.root.u.def.section != stub_entry->target_section)
11324 {
11325 /* H is an opd symbol. The addend must be zero, and the
11326 branch reloc is the only one we can convert. */
11327 r->r_addend = 0;
11328 break;
11329 }
11330 else
11331 r->r_addend -= symval;
11332 --r;
11333 }
11334 return TRUE;
11335 }
11336
11337 static bfd_vma
11338 get_r2off (struct bfd_link_info *info,
11339 struct ppc_stub_hash_entry *stub_entry)
11340 {
11341 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11342 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11343
11344 if (r2off == 0)
11345 {
11346 /* Support linking -R objects. Get the toc pointer from the
11347 opd entry. */
11348 char buf[8];
11349 if (!htab->opd_abi)
11350 return r2off;
11351 asection *opd = stub_entry->h->elf.root.u.def.section;
11352 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11353
11354 if (strcmp (opd->name, ".opd") != 0
11355 || opd->reloc_count != 0)
11356 {
11357 info->callbacks->einfo
11358 (_("%P: cannot find opd entry toc for `%pT'\n"),
11359 stub_entry->h->elf.root.root.string);
11360 bfd_set_error (bfd_error_bad_value);
11361 return (bfd_vma) -1;
11362 }
11363 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11364 return (bfd_vma) -1;
11365 r2off = bfd_get_64 (opd->owner, buf);
11366 r2off -= elf_gp (info->output_bfd);
11367 }
11368 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11369 return r2off;
11370 }
11371
11372 static bfd_boolean
11373 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11374 {
11375 struct ppc_stub_hash_entry *stub_entry;
11376 struct ppc_branch_hash_entry *br_entry;
11377 struct bfd_link_info *info;
11378 struct ppc_link_hash_table *htab;
11379 bfd_byte *loc;
11380 bfd_byte *p, *relp;
11381 bfd_vma targ, off;
11382 Elf_Internal_Rela *r;
11383 asection *plt;
11384 int num_rel;
11385 int odd;
11386
11387 /* Massage our args to the form they really have. */
11388 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11389 info = in_arg;
11390
11391 /* Fail if the target section could not be assigned to an output
11392 section. The user should fix his linker script. */
11393 if (stub_entry->target_section != NULL
11394 && stub_entry->target_section->output_section == NULL
11395 && info->non_contiguous_regions)
11396 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11397 "Retry without --enable-non-contiguous-regions.\n"),
11398 stub_entry->target_section);
11399
11400 /* Same for the group. */
11401 if (stub_entry->group->stub_sec != NULL
11402 && stub_entry->group->stub_sec->output_section == NULL
11403 && info->non_contiguous_regions)
11404 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11405 "output section. Retry without "
11406 "--enable-non-contiguous-regions.\n"),
11407 stub_entry->group->stub_sec,
11408 stub_entry->target_section);
11409
11410 htab = ppc_hash_table (info);
11411 if (htab == NULL)
11412 return FALSE;
11413
11414 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11415 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11416
11417 htab->stub_count[stub_entry->stub_type - 1] += 1;
11418 switch (stub_entry->stub_type)
11419 {
11420 case ppc_stub_long_branch:
11421 case ppc_stub_long_branch_r2off:
11422 /* Branches are relative. This is where we are going to. */
11423 targ = (stub_entry->target_value
11424 + stub_entry->target_section->output_offset
11425 + stub_entry->target_section->output_section->vma);
11426 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11427
11428 /* And this is where we are coming from. */
11429 off = (stub_entry->stub_offset
11430 + stub_entry->group->stub_sec->output_offset
11431 + stub_entry->group->stub_sec->output_section->vma);
11432 off = targ - off;
11433
11434 p = loc;
11435 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11436 {
11437 bfd_vma r2off = get_r2off (info, stub_entry);
11438
11439 if (r2off == (bfd_vma) -1)
11440 {
11441 htab->stub_error = TRUE;
11442 return FALSE;
11443 }
11444 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11445 p += 4;
11446 if (PPC_HA (r2off) != 0)
11447 {
11448 bfd_put_32 (htab->params->stub_bfd,
11449 ADDIS_R2_R2 | PPC_HA (r2off), p);
11450 p += 4;
11451 }
11452 if (PPC_LO (r2off) != 0)
11453 {
11454 bfd_put_32 (htab->params->stub_bfd,
11455 ADDI_R2_R2 | PPC_LO (r2off), p);
11456 p += 4;
11457 }
11458 off -= p - loc;
11459 }
11460 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
11461 p += 4;
11462
11463 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11464 {
11465 _bfd_error_handler
11466 (_("long branch stub `%s' offset overflow"),
11467 stub_entry->root.string);
11468 htab->stub_error = TRUE;
11469 return FALSE;
11470 }
11471
11472 if (info->emitrelocations)
11473 {
11474 r = get_relocs (stub_entry->group->stub_sec, 1);
11475 if (r == NULL)
11476 return FALSE;
11477 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11478 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11479 r->r_addend = targ;
11480 if (stub_entry->h != NULL
11481 && !use_global_in_relocs (htab, stub_entry, r, 1))
11482 return FALSE;
11483 }
11484 break;
11485
11486 case ppc_stub_plt_branch:
11487 case ppc_stub_plt_branch_r2off:
11488 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11489 stub_entry->root.string + 9,
11490 FALSE, FALSE);
11491 if (br_entry == NULL)
11492 {
11493 _bfd_error_handler (_("can't find branch stub `%s'"),
11494 stub_entry->root.string);
11495 htab->stub_error = TRUE;
11496 return FALSE;
11497 }
11498
11499 targ = (stub_entry->target_value
11500 + stub_entry->target_section->output_offset
11501 + stub_entry->target_section->output_section->vma);
11502 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11503 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11504
11505 bfd_put_64 (htab->brlt->owner, targ,
11506 htab->brlt->contents + br_entry->offset);
11507
11508 if (br_entry->iter == htab->stub_iteration)
11509 {
11510 br_entry->iter = 0;
11511
11512 if (htab->relbrlt != NULL)
11513 {
11514 /* Create a reloc for the branch lookup table entry. */
11515 Elf_Internal_Rela rela;
11516 bfd_byte *rl;
11517
11518 rela.r_offset = (br_entry->offset
11519 + htab->brlt->output_offset
11520 + htab->brlt->output_section->vma);
11521 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11522 rela.r_addend = targ;
11523
11524 rl = htab->relbrlt->contents;
11525 rl += (htab->relbrlt->reloc_count++
11526 * sizeof (Elf64_External_Rela));
11527 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11528 }
11529 else if (info->emitrelocations)
11530 {
11531 r = get_relocs (htab->brlt, 1);
11532 if (r == NULL)
11533 return FALSE;
11534 /* brlt, being SEC_LINKER_CREATED does not go through the
11535 normal reloc processing. Symbols and offsets are not
11536 translated from input file to output file form, so
11537 set up the offset per the output file. */
11538 r->r_offset = (br_entry->offset
11539 + htab->brlt->output_offset
11540 + htab->brlt->output_section->vma);
11541 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11542 r->r_addend = targ;
11543 }
11544 }
11545
11546 targ = (br_entry->offset
11547 + htab->brlt->output_offset
11548 + htab->brlt->output_section->vma);
11549
11550 off = (elf_gp (info->output_bfd)
11551 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11552 off = targ - off;
11553
11554 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11555 {
11556 info->callbacks->einfo
11557 (_("%P: linkage table error against `%pT'\n"),
11558 stub_entry->root.string);
11559 bfd_set_error (bfd_error_bad_value);
11560 htab->stub_error = TRUE;
11561 return FALSE;
11562 }
11563
11564 if (info->emitrelocations)
11565 {
11566 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11567 if (r == NULL)
11568 return FALSE;
11569 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11570 if (bfd_big_endian (info->output_bfd))
11571 r[0].r_offset += 2;
11572 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11573 r[0].r_offset += 4;
11574 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11575 r[0].r_addend = targ;
11576 if (PPC_HA (off) != 0)
11577 {
11578 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11579 r[1].r_offset = r[0].r_offset + 4;
11580 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11581 r[1].r_addend = r[0].r_addend;
11582 }
11583 }
11584
11585 p = loc;
11586 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11587 {
11588 if (PPC_HA (off) != 0)
11589 {
11590 bfd_put_32 (htab->params->stub_bfd,
11591 ADDIS_R12_R2 | PPC_HA (off), p);
11592 p += 4;
11593 bfd_put_32 (htab->params->stub_bfd,
11594 LD_R12_0R12 | PPC_LO (off), p);
11595 }
11596 else
11597 bfd_put_32 (htab->params->stub_bfd,
11598 LD_R12_0R2 | PPC_LO (off), p);
11599 }
11600 else
11601 {
11602 bfd_vma r2off = get_r2off (info, stub_entry);
11603
11604 if (r2off == (bfd_vma) -1)
11605 {
11606 htab->stub_error = TRUE;
11607 return FALSE;
11608 }
11609
11610 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11611 p += 4;
11612 if (PPC_HA (off) != 0)
11613 {
11614 bfd_put_32 (htab->params->stub_bfd,
11615 ADDIS_R12_R2 | PPC_HA (off), p);
11616 p += 4;
11617 bfd_put_32 (htab->params->stub_bfd,
11618 LD_R12_0R12 | PPC_LO (off), p);
11619 }
11620 else
11621 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11622
11623 if (PPC_HA (r2off) != 0)
11624 {
11625 p += 4;
11626 bfd_put_32 (htab->params->stub_bfd,
11627 ADDIS_R2_R2 | PPC_HA (r2off), p);
11628 }
11629 if (PPC_LO (r2off) != 0)
11630 {
11631 p += 4;
11632 bfd_put_32 (htab->params->stub_bfd,
11633 ADDI_R2_R2 | PPC_LO (r2off), p);
11634 }
11635 }
11636 p += 4;
11637 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11638 p += 4;
11639 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11640 p += 4;
11641 break;
11642
11643 case ppc_stub_long_branch_notoc:
11644 case ppc_stub_long_branch_both:
11645 case ppc_stub_plt_branch_notoc:
11646 case ppc_stub_plt_branch_both:
11647 case ppc_stub_plt_call_notoc:
11648 case ppc_stub_plt_call_both:
11649 p = loc;
11650 off = (stub_entry->stub_offset
11651 + stub_entry->group->stub_sec->output_offset
11652 + stub_entry->group->stub_sec->output_section->vma);
11653 if (stub_entry->stub_type == ppc_stub_long_branch_both
11654 || stub_entry->stub_type == ppc_stub_plt_branch_both
11655 || stub_entry->stub_type == ppc_stub_plt_call_both)
11656 {
11657 off += 4;
11658 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11659 p += 4;
11660 }
11661 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11662 {
11663 targ = stub_entry->plt_ent->plt.offset & ~1;
11664 if (targ >= (bfd_vma) -2)
11665 abort ();
11666
11667 plt = htab->elf.splt;
11668 if (!htab->elf.dynamic_sections_created
11669 || stub_entry->h == NULL
11670 || stub_entry->h->elf.dynindx == -1)
11671 {
11672 if (stub_entry->symtype == STT_GNU_IFUNC)
11673 plt = htab->elf.iplt;
11674 else
11675 plt = htab->pltlocal;
11676 }
11677 targ += plt->output_offset + plt->output_section->vma;
11678 }
11679 else
11680 targ = (stub_entry->target_value
11681 + stub_entry->target_section->output_offset
11682 + stub_entry->target_section->output_section->vma);
11683 odd = off & 4;
11684 off = targ - off;
11685
11686 relp = p;
11687 num_rel = 0;
11688 if (htab->params->power10_stubs != 0)
11689 {
11690 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11691 p = build_power10_offset (htab->params->stub_bfd, p, off, odd, load);
11692 }
11693 else
11694 {
11695 /* The notoc stubs calculate their target (either a PLT entry or
11696 the global entry point of a function) relative to the PC
11697 returned by the "bcl" two instructions past the start of the
11698 sequence emitted by build_offset. The offset is therefore 8
11699 less than calculated from the start of the sequence. */
11700 off -= 8;
11701 p = build_offset (htab->params->stub_bfd, p, off,
11702 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11703 }
11704
11705 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11706 {
11707 bfd_vma from;
11708 num_rel = 1;
11709 from = (stub_entry->stub_offset
11710 + stub_entry->group->stub_sec->output_offset
11711 + stub_entry->group->stub_sec->output_section->vma
11712 + (p - loc));
11713 bfd_put_32 (htab->params->stub_bfd,
11714 B_DOT | ((targ - from) & 0x3fffffc), p);
11715 }
11716 else
11717 {
11718 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11719 p += 4;
11720 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11721 }
11722 p += 4;
11723
11724 if (info->emitrelocations)
11725 {
11726 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11727 if (htab->params->power10_stubs != 0)
11728 num_rel += num_relocs_for_power10_offset (off, odd);
11729 else
11730 {
11731 num_rel += num_relocs_for_offset (off);
11732 roff += 16;
11733 }
11734 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11735 if (r == NULL)
11736 return FALSE;
11737 if (htab->params->power10_stubs != 0)
11738 r = emit_relocs_for_power10_offset (info, r, roff, targ, off, odd);
11739 else
11740 r = emit_relocs_for_offset (info, r, roff, targ, off);
11741 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11742 || stub_entry->stub_type == ppc_stub_long_branch_both)
11743 {
11744 ++r;
11745 roff = p - 4 - stub_entry->group->stub_sec->contents;
11746 r->r_offset = roff;
11747 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11748 r->r_addend = targ;
11749 if (stub_entry->h != NULL
11750 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11751 return FALSE;
11752 }
11753 }
11754
11755 if (htab->params->power10_stubs == 0
11756 && htab->glink_eh_frame != NULL
11757 && htab->glink_eh_frame->size != 0)
11758 {
11759 bfd_byte *base, *eh;
11760 unsigned int lr_used, delta;
11761
11762 base = (htab->glink_eh_frame->contents
11763 + stub_entry->group->eh_base + 17);
11764 eh = base + stub_entry->group->eh_size;
11765 lr_used = stub_entry->stub_offset + 8;
11766 if (stub_entry->stub_type == ppc_stub_long_branch_both
11767 || stub_entry->stub_type == ppc_stub_plt_branch_both
11768 || stub_entry->stub_type == ppc_stub_plt_call_both)
11769 lr_used += 4;
11770 delta = lr_used - stub_entry->group->lr_restore;
11771 stub_entry->group->lr_restore = lr_used + 8;
11772 eh = eh_advance (htab->elf.dynobj, eh, delta);
11773 *eh++ = DW_CFA_register;
11774 *eh++ = 65;
11775 *eh++ = 12;
11776 *eh++ = DW_CFA_advance_loc + 2;
11777 *eh++ = DW_CFA_restore_extended;
11778 *eh++ = 65;
11779 stub_entry->group->eh_size = eh - base;
11780 }
11781 break;
11782
11783 case ppc_stub_plt_call:
11784 case ppc_stub_plt_call_r2save:
11785 if (stub_entry->h != NULL
11786 && stub_entry->h->is_func_descriptor
11787 && stub_entry->h->oh != NULL)
11788 {
11789 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11790
11791 /* If the old-ABI "dot-symbol" is undefined make it weak so
11792 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11793 if (fh->elf.root.type == bfd_link_hash_undefined
11794 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11795 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11796 fh->elf.root.type = bfd_link_hash_undefweak;
11797 }
11798
11799 /* Now build the stub. */
11800 targ = stub_entry->plt_ent->plt.offset & ~1;
11801 if (targ >= (bfd_vma) -2)
11802 abort ();
11803
11804 plt = htab->elf.splt;
11805 if (!htab->elf.dynamic_sections_created
11806 || stub_entry->h == NULL
11807 || stub_entry->h->elf.dynindx == -1)
11808 {
11809 if (stub_entry->symtype == STT_GNU_IFUNC)
11810 plt = htab->elf.iplt;
11811 else
11812 plt = htab->pltlocal;
11813 }
11814 targ += plt->output_offset + plt->output_section->vma;
11815
11816 off = (elf_gp (info->output_bfd)
11817 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11818 off = targ - off;
11819
11820 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11821 {
11822 info->callbacks->einfo
11823 /* xgettext:c-format */
11824 (_("%P: linkage table error against `%pT'\n"),
11825 stub_entry->h != NULL
11826 ? stub_entry->h->elf.root.root.string
11827 : "<local sym>");
11828 bfd_set_error (bfd_error_bad_value);
11829 htab->stub_error = TRUE;
11830 return FALSE;
11831 }
11832
11833 r = NULL;
11834 if (info->emitrelocations)
11835 {
11836 r = get_relocs (stub_entry->group->stub_sec,
11837 ((PPC_HA (off) != 0)
11838 + (htab->opd_abi
11839 ? 2 + (htab->params->plt_static_chain
11840 && PPC_HA (off + 16) == PPC_HA (off))
11841 : 1)));
11842 if (r == NULL)
11843 return FALSE;
11844 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11845 if (bfd_big_endian (info->output_bfd))
11846 r[0].r_offset += 2;
11847 r[0].r_addend = targ;
11848 }
11849 if (stub_entry->h != NULL
11850 && is_tls_get_addr (&stub_entry->h->elf, htab)
11851 && htab->params->tls_get_addr_opt)
11852 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11853 else
11854 p = build_plt_stub (htab, stub_entry, loc, off, r);
11855 break;
11856
11857 case ppc_stub_save_res:
11858 return TRUE;
11859
11860 default:
11861 BFD_FAIL ();
11862 return FALSE;
11863 }
11864
11865 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11866
11867 if (htab->params->emit_stub_syms)
11868 {
11869 struct elf_link_hash_entry *h;
11870 size_t len1, len2;
11871 char *name;
11872 const char *const stub_str[] = { "long_branch",
11873 "long_branch",
11874 "long_branch",
11875 "long_branch",
11876 "plt_branch",
11877 "plt_branch",
11878 "plt_branch",
11879 "plt_branch",
11880 "plt_call",
11881 "plt_call",
11882 "plt_call",
11883 "plt_call" };
11884
11885 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11886 len2 = strlen (stub_entry->root.string);
11887 name = bfd_malloc (len1 + len2 + 2);
11888 if (name == NULL)
11889 return FALSE;
11890 memcpy (name, stub_entry->root.string, 9);
11891 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11892 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11893 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11894 if (h == NULL)
11895 return FALSE;
11896 if (h->root.type == bfd_link_hash_new)
11897 {
11898 h->root.type = bfd_link_hash_defined;
11899 h->root.u.def.section = stub_entry->group->stub_sec;
11900 h->root.u.def.value = stub_entry->stub_offset;
11901 h->ref_regular = 1;
11902 h->def_regular = 1;
11903 h->ref_regular_nonweak = 1;
11904 h->forced_local = 1;
11905 h->non_elf = 0;
11906 h->root.linker_def = 1;
11907 }
11908 }
11909
11910 return TRUE;
11911 }
11912
11913 /* As above, but don't actually build the stub. Just bump offset so
11914 we know stub section sizes, and select plt_branch stubs where
11915 long_branch stubs won't do. */
11916
11917 static bfd_boolean
11918 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11919 {
11920 struct ppc_stub_hash_entry *stub_entry;
11921 struct bfd_link_info *info;
11922 struct ppc_link_hash_table *htab;
11923 asection *plt;
11924 bfd_vma targ, off, r2off;
11925 unsigned int size, extra, lr_used, delta, odd;
11926
11927 /* Massage our args to the form they really have. */
11928 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11929 info = in_arg;
11930
11931 htab = ppc_hash_table (info);
11932 if (htab == NULL)
11933 return FALSE;
11934
11935 /* Fail if the target section could not be assigned to an output
11936 section. The user should fix his linker script. */
11937 if (stub_entry->target_section != NULL
11938 && stub_entry->target_section->output_section == NULL
11939 && info->non_contiguous_regions)
11940 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output section. "
11941 "Retry without --enable-non-contiguous-regions.\n"),
11942 stub_entry->target_section);
11943
11944 /* Same for the group. */
11945 if (stub_entry->group->stub_sec != NULL
11946 && stub_entry->group->stub_sec->output_section == NULL
11947 && info->non_contiguous_regions)
11948 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11949 "output section. Retry without "
11950 "--enable-non-contiguous-regions.\n"),
11951 stub_entry->group->stub_sec,
11952 stub_entry->target_section);
11953
11954 /* Make a note of the offset within the stubs for this entry. */
11955 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11956
11957 if (stub_entry->h != NULL
11958 && stub_entry->h->save_res
11959 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11960 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11961 {
11962 /* Don't make stubs to out-of-line register save/restore
11963 functions. Instead, emit copies of the functions. */
11964 stub_entry->group->needs_save_res = 1;
11965 stub_entry->stub_type = ppc_stub_save_res;
11966 return TRUE;
11967 }
11968
11969 switch (stub_entry->stub_type)
11970 {
11971 case ppc_stub_plt_branch:
11972 case ppc_stub_plt_branch_r2off:
11973 /* Reset the stub type from the plt branch variant in case we now
11974 can reach with a shorter stub. */
11975 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11976 /* Fall through. */
11977 case ppc_stub_long_branch:
11978 case ppc_stub_long_branch_r2off:
11979 targ = (stub_entry->target_value
11980 + stub_entry->target_section->output_offset
11981 + stub_entry->target_section->output_section->vma);
11982 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11983 off = (stub_entry->stub_offset
11984 + stub_entry->group->stub_sec->output_offset
11985 + stub_entry->group->stub_sec->output_section->vma);
11986
11987 size = 4;
11988 r2off = 0;
11989 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11990 {
11991 r2off = get_r2off (info, stub_entry);
11992 if (r2off == (bfd_vma) -1)
11993 {
11994 htab->stub_error = TRUE;
11995 return FALSE;
11996 }
11997 size = 8;
11998 if (PPC_HA (r2off) != 0)
11999 size += 4;
12000 if (PPC_LO (r2off) != 0)
12001 size += 4;
12002 off += size - 4;
12003 }
12004 off = targ - off;
12005
12006 /* If the branch offset is too big, use a ppc_stub_plt_branch.
12007 Do the same for -R objects without function descriptors. */
12008 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
12009 && r2off == 0
12010 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
12011 || off + (1 << 25) >= (bfd_vma) (1 << 26))
12012 {
12013 struct ppc_branch_hash_entry *br_entry;
12014
12015 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
12016 stub_entry->root.string + 9,
12017 TRUE, FALSE);
12018 if (br_entry == NULL)
12019 {
12020 _bfd_error_handler (_("can't build branch stub `%s'"),
12021 stub_entry->root.string);
12022 htab->stub_error = TRUE;
12023 return FALSE;
12024 }
12025
12026 if (br_entry->iter != htab->stub_iteration)
12027 {
12028 br_entry->iter = htab->stub_iteration;
12029 br_entry->offset = htab->brlt->size;
12030 htab->brlt->size += 8;
12031
12032 if (htab->relbrlt != NULL)
12033 htab->relbrlt->size += sizeof (Elf64_External_Rela);
12034 else if (info->emitrelocations)
12035 {
12036 htab->brlt->reloc_count += 1;
12037 htab->brlt->flags |= SEC_RELOC;
12038 }
12039 }
12040
12041 targ = (br_entry->offset
12042 + htab->brlt->output_offset
12043 + htab->brlt->output_section->vma);
12044 off = (elf_gp (info->output_bfd)
12045 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12046 off = targ - off;
12047
12048 if (info->emitrelocations)
12049 {
12050 stub_entry->group->stub_sec->reloc_count
12051 += 1 + (PPC_HA (off) != 0);
12052 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12053 }
12054
12055 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
12056 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
12057 {
12058 size = 12;
12059 if (PPC_HA (off) != 0)
12060 size = 16;
12061 }
12062 else
12063 {
12064 size = 16;
12065 if (PPC_HA (off) != 0)
12066 size += 4;
12067
12068 if (PPC_HA (r2off) != 0)
12069 size += 4;
12070 if (PPC_LO (r2off) != 0)
12071 size += 4;
12072 }
12073 }
12074 else if (info->emitrelocations)
12075 {
12076 stub_entry->group->stub_sec->reloc_count += 1;
12077 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12078 }
12079 break;
12080
12081 case ppc_stub_plt_branch_notoc:
12082 case ppc_stub_plt_branch_both:
12083 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12084 /* Fall through. */
12085 case ppc_stub_long_branch_notoc:
12086 case ppc_stub_long_branch_both:
12087 off = (stub_entry->stub_offset
12088 + stub_entry->group->stub_sec->output_offset
12089 + stub_entry->group->stub_sec->output_section->vma);
12090 size = 0;
12091 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12092 size = 4;
12093 off += size;
12094 targ = (stub_entry->target_value
12095 + stub_entry->target_section->output_offset
12096 + stub_entry->target_section->output_section->vma);
12097 odd = off & 4;
12098 off = targ - off;
12099
12100 if (info->emitrelocations)
12101 {
12102 unsigned int num_rel;
12103 if (htab->params->power10_stubs != 0)
12104 num_rel = num_relocs_for_power10_offset (off, odd);
12105 else
12106 num_rel = num_relocs_for_offset (off - 8);
12107 stub_entry->group->stub_sec->reloc_count += num_rel;
12108 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12109 }
12110
12111 if (htab->params->power10_stubs != 0)
12112 extra = size_power10_offset (off, odd);
12113 else
12114 extra = size_offset (off - 8);
12115 /* Include branch insn plus those in the offset sequence. */
12116 size += 4 + extra;
12117 /* The branch insn is at the end, or "extra" bytes along. So
12118 its offset will be "extra" bytes less that that already
12119 calculated. */
12120 off -= extra;
12121
12122 if (htab->params->power10_stubs == 0)
12123 {
12124 /* After the bcl, lr has been modified so we need to emit
12125 .eh_frame info saying the return address is in r12. */
12126 lr_used = stub_entry->stub_offset + 8;
12127 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12128 lr_used += 4;
12129 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12130 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12131 DW_CFA_restore_extended 65. */
12132 delta = lr_used - stub_entry->group->lr_restore;
12133 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12134 stub_entry->group->lr_restore = lr_used + 8;
12135 }
12136
12137 /* If the branch can't reach, use a plt_branch. */
12138 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
12139 {
12140 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
12141 - ppc_stub_long_branch_notoc);
12142 size += 4;
12143 }
12144 else if (info->emitrelocations)
12145 stub_entry->group->stub_sec->reloc_count +=1;
12146 break;
12147
12148 case ppc_stub_plt_call_notoc:
12149 case ppc_stub_plt_call_both:
12150 off = (stub_entry->stub_offset
12151 + stub_entry->group->stub_sec->output_offset
12152 + stub_entry->group->stub_sec->output_section->vma);
12153 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12154 off += 4;
12155 targ = stub_entry->plt_ent->plt.offset & ~1;
12156 if (targ >= (bfd_vma) -2)
12157 abort ();
12158
12159 plt = htab->elf.splt;
12160 if (!htab->elf.dynamic_sections_created
12161 || stub_entry->h == NULL
12162 || stub_entry->h->elf.dynindx == -1)
12163 {
12164 if (stub_entry->symtype == STT_GNU_IFUNC)
12165 plt = htab->elf.iplt;
12166 else
12167 plt = htab->pltlocal;
12168 }
12169 targ += plt->output_offset + plt->output_section->vma;
12170 odd = off & 4;
12171 off = targ - off;
12172
12173 if (htab->params->plt_stub_align != 0)
12174 {
12175 unsigned pad = plt_stub_pad (htab, stub_entry, off);
12176
12177 stub_entry->group->stub_sec->size += pad;
12178 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12179 off -= pad;
12180 }
12181
12182 if (info->emitrelocations)
12183 {
12184 unsigned int num_rel;
12185 if (htab->params->power10_stubs != 0)
12186 num_rel = num_relocs_for_power10_offset (off, odd);
12187 else
12188 num_rel = num_relocs_for_offset (off - 8);
12189 stub_entry->group->stub_sec->reloc_count += num_rel;
12190 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12191 }
12192
12193 size = plt_stub_size (htab, stub_entry, off);
12194
12195 if (htab->params->power10_stubs == 0)
12196 {
12197 /* After the bcl, lr has been modified so we need to emit
12198 .eh_frame info saying the return address is in r12. */
12199 lr_used = stub_entry->stub_offset + 8;
12200 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12201 lr_used += 4;
12202 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12203 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12204 DW_CFA_restore_extended 65. */
12205 delta = lr_used - stub_entry->group->lr_restore;
12206 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12207 stub_entry->group->lr_restore = lr_used + 8;
12208 }
12209 break;
12210
12211 case ppc_stub_plt_call:
12212 case ppc_stub_plt_call_r2save:
12213 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
12214 if (targ >= (bfd_vma) -2)
12215 abort ();
12216 plt = htab->elf.splt;
12217 if (!htab->elf.dynamic_sections_created
12218 || stub_entry->h == NULL
12219 || stub_entry->h->elf.dynindx == -1)
12220 {
12221 if (stub_entry->symtype == STT_GNU_IFUNC)
12222 plt = htab->elf.iplt;
12223 else
12224 plt = htab->pltlocal;
12225 }
12226 targ += plt->output_offset + plt->output_section->vma;
12227
12228 off = (elf_gp (info->output_bfd)
12229 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12230 off = targ - off;
12231
12232 if (htab->params->plt_stub_align != 0)
12233 {
12234 unsigned pad = plt_stub_pad (htab, stub_entry, off);
12235
12236 stub_entry->group->stub_sec->size += pad;
12237 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12238 }
12239
12240 if (info->emitrelocations)
12241 {
12242 stub_entry->group->stub_sec->reloc_count
12243 += ((PPC_HA (off) != 0)
12244 + (htab->opd_abi
12245 ? 2 + (htab->params->plt_static_chain
12246 && PPC_HA (off + 16) == PPC_HA (off))
12247 : 1));
12248 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12249 }
12250
12251 size = plt_stub_size (htab, stub_entry, off);
12252
12253 if (stub_entry->h != NULL
12254 && is_tls_get_addr (&stub_entry->h->elf, htab)
12255 && htab->params->tls_get_addr_opt
12256 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
12257 {
12258 if (htab->params->no_tls_get_addr_regsave)
12259 {
12260 lr_used = stub_entry->stub_offset + size - 20;
12261 /* The eh_frame info will consist of a DW_CFA_advance_loc
12262 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12263 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12264 delta = lr_used - stub_entry->group->lr_restore;
12265 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12266 }
12267 else
12268 {
12269 /* Adjustments to r1 need to be described. */
12270 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12271 delta = cfa_updt - stub_entry->group->lr_restore;
12272 stub_entry->group->eh_size += eh_advance_size (delta);
12273 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12274 }
12275 stub_entry->group->lr_restore = size - 4;
12276 }
12277 break;
12278
12279 default:
12280 BFD_FAIL ();
12281 return FALSE;
12282 }
12283
12284 stub_entry->group->stub_sec->size += size;
12285 return TRUE;
12286 }
12287
12288 /* Set up various things so that we can make a list of input sections
12289 for each output section included in the link. Returns -1 on error,
12290 0 when no stubs will be needed, and 1 on success. */
12291
12292 int
12293 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
12294 {
12295 unsigned int id;
12296 size_t amt;
12297 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12298
12299 if (htab == NULL)
12300 return -1;
12301
12302 htab->sec_info_arr_size = _bfd_section_id;
12303 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
12304 htab->sec_info = bfd_zmalloc (amt);
12305 if (htab->sec_info == NULL)
12306 return -1;
12307
12308 /* Set toc_off for com, und, abs and ind sections. */
12309 for (id = 0; id < 3; id++)
12310 htab->sec_info[id].toc_off = TOC_BASE_OFF;
12311
12312 return 1;
12313 }
12314
12315 /* Set up for first pass at multitoc partitioning. */
12316
12317 void
12318 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
12319 {
12320 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12321
12322 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
12323 htab->toc_bfd = NULL;
12324 htab->toc_first_sec = NULL;
12325 }
12326
12327 /* The linker repeatedly calls this function for each TOC input section
12328 and linker generated GOT section. Group input bfds such that the toc
12329 within a group is less than 64k in size. */
12330
12331 bfd_boolean
12332 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
12333 {
12334 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12335 bfd_vma addr, off, limit;
12336
12337 if (htab == NULL)
12338 return FALSE;
12339
12340 if (!htab->second_toc_pass)
12341 {
12342 /* Keep track of the first .toc or .got section for this input bfd. */
12343 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
12344
12345 if (new_bfd)
12346 {
12347 htab->toc_bfd = isec->owner;
12348 htab->toc_first_sec = isec;
12349 }
12350
12351 addr = isec->output_offset + isec->output_section->vma;
12352 off = addr - htab->toc_curr;
12353 limit = 0x80008000;
12354 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
12355 limit = 0x10000;
12356 if (off + isec->size > limit)
12357 {
12358 addr = (htab->toc_first_sec->output_offset
12359 + htab->toc_first_sec->output_section->vma);
12360 htab->toc_curr = addr;
12361 htab->toc_curr &= -TOC_BASE_ALIGN;
12362 }
12363
12364 /* toc_curr is the base address of this toc group. Set elf_gp
12365 for the input section to be the offset relative to the
12366 output toc base plus 0x8000. Making the input elf_gp an
12367 offset allows us to move the toc as a whole without
12368 recalculating input elf_gp. */
12369 off = htab->toc_curr - elf_gp (info->output_bfd);
12370 off += TOC_BASE_OFF;
12371
12372 /* Die if someone uses a linker script that doesn't keep input
12373 file .toc and .got together. */
12374 if (new_bfd
12375 && elf_gp (isec->owner) != 0
12376 && elf_gp (isec->owner) != off)
12377 return FALSE;
12378
12379 elf_gp (isec->owner) = off;
12380 return TRUE;
12381 }
12382
12383 /* During the second pass toc_first_sec points to the start of
12384 a toc group, and toc_curr is used to track the old elf_gp.
12385 We use toc_bfd to ensure we only look at each bfd once. */
12386 if (htab->toc_bfd == isec->owner)
12387 return TRUE;
12388 htab->toc_bfd = isec->owner;
12389
12390 if (htab->toc_first_sec == NULL
12391 || htab->toc_curr != elf_gp (isec->owner))
12392 {
12393 htab->toc_curr = elf_gp (isec->owner);
12394 htab->toc_first_sec = isec;
12395 }
12396 addr = (htab->toc_first_sec->output_offset
12397 + htab->toc_first_sec->output_section->vma);
12398 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12399 elf_gp (isec->owner) = off;
12400
12401 return TRUE;
12402 }
12403
12404 /* Called via elf_link_hash_traverse to merge GOT entries for global
12405 symbol H. */
12406
12407 static bfd_boolean
12408 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12409 {
12410 if (h->root.type == bfd_link_hash_indirect)
12411 return TRUE;
12412
12413 merge_got_entries (&h->got.glist);
12414
12415 return TRUE;
12416 }
12417
12418 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12419 symbol H. */
12420
12421 static bfd_boolean
12422 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12423 {
12424 struct got_entry *gent;
12425
12426 if (h->root.type == bfd_link_hash_indirect)
12427 return TRUE;
12428
12429 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12430 if (!gent->is_indirect)
12431 allocate_got (h, (struct bfd_link_info *) inf, gent);
12432 return TRUE;
12433 }
12434
12435 /* Called on the first multitoc pass after the last call to
12436 ppc64_elf_next_toc_section. This function removes duplicate GOT
12437 entries. */
12438
12439 bfd_boolean
12440 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12441 {
12442 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12443 struct bfd *ibfd, *ibfd2;
12444 bfd_boolean done_something;
12445
12446 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12447
12448 if (!htab->do_multi_toc)
12449 return FALSE;
12450
12451 /* Merge global sym got entries within a toc group. */
12452 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12453
12454 /* And tlsld_got. */
12455 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12456 {
12457 struct got_entry *ent, *ent2;
12458
12459 if (!is_ppc64_elf (ibfd))
12460 continue;
12461
12462 ent = ppc64_tlsld_got (ibfd);
12463 if (!ent->is_indirect
12464 && ent->got.offset != (bfd_vma) -1)
12465 {
12466 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12467 {
12468 if (!is_ppc64_elf (ibfd2))
12469 continue;
12470
12471 ent2 = ppc64_tlsld_got (ibfd2);
12472 if (!ent2->is_indirect
12473 && ent2->got.offset != (bfd_vma) -1
12474 && elf_gp (ibfd2) == elf_gp (ibfd))
12475 {
12476 ent2->is_indirect = TRUE;
12477 ent2->got.ent = ent;
12478 }
12479 }
12480 }
12481 }
12482
12483 /* Zap sizes of got sections. */
12484 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12485 htab->elf.irelplt->size -= htab->got_reli_size;
12486 htab->got_reli_size = 0;
12487
12488 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12489 {
12490 asection *got, *relgot;
12491
12492 if (!is_ppc64_elf (ibfd))
12493 continue;
12494
12495 got = ppc64_elf_tdata (ibfd)->got;
12496 if (got != NULL)
12497 {
12498 got->rawsize = got->size;
12499 got->size = 0;
12500 relgot = ppc64_elf_tdata (ibfd)->relgot;
12501 relgot->rawsize = relgot->size;
12502 relgot->size = 0;
12503 }
12504 }
12505
12506 /* Now reallocate the got, local syms first. We don't need to
12507 allocate section contents again since we never increase size. */
12508 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12509 {
12510 struct got_entry **lgot_ents;
12511 struct got_entry **end_lgot_ents;
12512 struct plt_entry **local_plt;
12513 struct plt_entry **end_local_plt;
12514 unsigned char *lgot_masks;
12515 bfd_size_type locsymcount;
12516 Elf_Internal_Shdr *symtab_hdr;
12517 asection *s;
12518
12519 if (!is_ppc64_elf (ibfd))
12520 continue;
12521
12522 lgot_ents = elf_local_got_ents (ibfd);
12523 if (!lgot_ents)
12524 continue;
12525
12526 symtab_hdr = &elf_symtab_hdr (ibfd);
12527 locsymcount = symtab_hdr->sh_info;
12528 end_lgot_ents = lgot_ents + locsymcount;
12529 local_plt = (struct plt_entry **) end_lgot_ents;
12530 end_local_plt = local_plt + locsymcount;
12531 lgot_masks = (unsigned char *) end_local_plt;
12532 s = ppc64_elf_tdata (ibfd)->got;
12533 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12534 {
12535 struct got_entry *ent;
12536
12537 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12538 {
12539 unsigned int ent_size = 8;
12540 unsigned int rel_size = sizeof (Elf64_External_Rela);
12541
12542 ent->got.offset = s->size;
12543 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12544 {
12545 ent_size *= 2;
12546 rel_size *= 2;
12547 }
12548 s->size += ent_size;
12549 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12550 {
12551 htab->elf.irelplt->size += rel_size;
12552 htab->got_reli_size += rel_size;
12553 }
12554 else if (bfd_link_pic (info)
12555 && !(ent->tls_type != 0
12556 && bfd_link_executable (info)))
12557 {
12558 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12559 srel->size += rel_size;
12560 }
12561 }
12562 }
12563 }
12564
12565 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12566
12567 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12568 {
12569 struct got_entry *ent;
12570
12571 if (!is_ppc64_elf (ibfd))
12572 continue;
12573
12574 ent = ppc64_tlsld_got (ibfd);
12575 if (!ent->is_indirect
12576 && ent->got.offset != (bfd_vma) -1)
12577 {
12578 asection *s = ppc64_elf_tdata (ibfd)->got;
12579 ent->got.offset = s->size;
12580 s->size += 16;
12581 if (bfd_link_dll (info))
12582 {
12583 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12584 srel->size += sizeof (Elf64_External_Rela);
12585 }
12586 }
12587 }
12588
12589 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12590 if (!done_something)
12591 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12592 {
12593 asection *got;
12594
12595 if (!is_ppc64_elf (ibfd))
12596 continue;
12597
12598 got = ppc64_elf_tdata (ibfd)->got;
12599 if (got != NULL)
12600 {
12601 done_something = got->rawsize != got->size;
12602 if (done_something)
12603 break;
12604 }
12605 }
12606
12607 if (done_something)
12608 (*htab->params->layout_sections_again) ();
12609
12610 /* Set up for second pass over toc sections to recalculate elf_gp
12611 on input sections. */
12612 htab->toc_bfd = NULL;
12613 htab->toc_first_sec = NULL;
12614 htab->second_toc_pass = TRUE;
12615 return done_something;
12616 }
12617
12618 /* Called after second pass of multitoc partitioning. */
12619
12620 void
12621 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12622 {
12623 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12624
12625 /* After the second pass, toc_curr tracks the TOC offset used
12626 for code sections below in ppc64_elf_next_input_section. */
12627 htab->toc_curr = TOC_BASE_OFF;
12628 }
12629
12630 /* No toc references were found in ISEC. If the code in ISEC makes no
12631 calls, then there's no need to use toc adjusting stubs when branching
12632 into ISEC. Actually, indirect calls from ISEC are OK as they will
12633 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12634 needed, and 2 if a cyclical call-graph was found but no other reason
12635 for a stub was detected. If called from the top level, a return of
12636 2 means the same as a return of 0. */
12637
12638 static int
12639 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12640 {
12641 int ret;
12642
12643 /* Mark this section as checked. */
12644 isec->call_check_done = 1;
12645
12646 /* We know none of our code bearing sections will need toc stubs. */
12647 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12648 return 0;
12649
12650 if (isec->size == 0)
12651 return 0;
12652
12653 if (isec->output_section == NULL)
12654 return 0;
12655
12656 ret = 0;
12657 if (isec->reloc_count != 0)
12658 {
12659 Elf_Internal_Rela *relstart, *rel;
12660 Elf_Internal_Sym *local_syms;
12661 struct ppc_link_hash_table *htab;
12662
12663 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12664 info->keep_memory);
12665 if (relstart == NULL)
12666 return -1;
12667
12668 /* Look for branches to outside of this section. */
12669 local_syms = NULL;
12670 htab = ppc_hash_table (info);
12671 if (htab == NULL)
12672 return -1;
12673
12674 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12675 {
12676 enum elf_ppc64_reloc_type r_type;
12677 unsigned long r_symndx;
12678 struct elf_link_hash_entry *h;
12679 struct ppc_link_hash_entry *eh;
12680 Elf_Internal_Sym *sym;
12681 asection *sym_sec;
12682 struct _opd_sec_data *opd;
12683 bfd_vma sym_value;
12684 bfd_vma dest;
12685
12686 r_type = ELF64_R_TYPE (rel->r_info);
12687 if (r_type != R_PPC64_REL24
12688 && r_type != R_PPC64_REL24_NOTOC
12689 && r_type != R_PPC64_REL14
12690 && r_type != R_PPC64_REL14_BRTAKEN
12691 && r_type != R_PPC64_REL14_BRNTAKEN
12692 && r_type != R_PPC64_PLTCALL
12693 && r_type != R_PPC64_PLTCALL_NOTOC)
12694 continue;
12695
12696 r_symndx = ELF64_R_SYM (rel->r_info);
12697 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12698 isec->owner))
12699 {
12700 ret = -1;
12701 break;
12702 }
12703
12704 /* Calls to dynamic lib functions go through a plt call stub
12705 that uses r2. */
12706 eh = ppc_elf_hash_entry (h);
12707 if (eh != NULL
12708 && (eh->elf.plt.plist != NULL
12709 || (eh->oh != NULL
12710 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12711 {
12712 ret = 1;
12713 break;
12714 }
12715
12716 if (sym_sec == NULL)
12717 /* Ignore other undefined symbols. */
12718 continue;
12719
12720 /* Assume branches to other sections not included in the
12721 link need stubs too, to cover -R and absolute syms. */
12722 if (sym_sec->output_section == NULL)
12723 {
12724 ret = 1;
12725 break;
12726 }
12727
12728 if (h == NULL)
12729 sym_value = sym->st_value;
12730 else
12731 {
12732 if (h->root.type != bfd_link_hash_defined
12733 && h->root.type != bfd_link_hash_defweak)
12734 abort ();
12735 sym_value = h->root.u.def.value;
12736 }
12737 sym_value += rel->r_addend;
12738
12739 /* If this branch reloc uses an opd sym, find the code section. */
12740 opd = get_opd_info (sym_sec);
12741 if (opd != NULL)
12742 {
12743 if (h == NULL && opd->adjust != NULL)
12744 {
12745 long adjust;
12746
12747 adjust = opd->adjust[OPD_NDX (sym_value)];
12748 if (adjust == -1)
12749 /* Assume deleted functions won't ever be called. */
12750 continue;
12751 sym_value += adjust;
12752 }
12753
12754 dest = opd_entry_value (sym_sec, sym_value,
12755 &sym_sec, NULL, FALSE);
12756 if (dest == (bfd_vma) -1)
12757 continue;
12758 }
12759 else
12760 dest = (sym_value
12761 + sym_sec->output_offset
12762 + sym_sec->output_section->vma);
12763
12764 /* Ignore branch to self. */
12765 if (sym_sec == isec)
12766 continue;
12767
12768 /* If the called function uses the toc, we need a stub. */
12769 if (sym_sec->has_toc_reloc
12770 || sym_sec->makes_toc_func_call)
12771 {
12772 ret = 1;
12773 break;
12774 }
12775
12776 /* Assume any branch that needs a long branch stub might in fact
12777 need a plt_branch stub. A plt_branch stub uses r2. */
12778 else if (dest - (isec->output_offset
12779 + isec->output_section->vma
12780 + rel->r_offset) + (1 << 25)
12781 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12782 ? h->other
12783 : sym->st_other))
12784 {
12785 ret = 1;
12786 break;
12787 }
12788
12789 /* If calling back to a section in the process of being
12790 tested, we can't say for sure that no toc adjusting stubs
12791 are needed, so don't return zero. */
12792 else if (sym_sec->call_check_in_progress)
12793 ret = 2;
12794
12795 /* Branches to another section that itself doesn't have any TOC
12796 references are OK. Recursively call ourselves to check. */
12797 else if (!sym_sec->call_check_done)
12798 {
12799 int recur;
12800
12801 /* Mark current section as indeterminate, so that other
12802 sections that call back to current won't be marked as
12803 known. */
12804 isec->call_check_in_progress = 1;
12805 recur = toc_adjusting_stub_needed (info, sym_sec);
12806 isec->call_check_in_progress = 0;
12807
12808 if (recur != 0)
12809 {
12810 ret = recur;
12811 if (recur != 2)
12812 break;
12813 }
12814 }
12815 }
12816
12817 if (elf_symtab_hdr (isec->owner).contents
12818 != (unsigned char *) local_syms)
12819 free (local_syms);
12820 if (elf_section_data (isec)->relocs != relstart)
12821 free (relstart);
12822 }
12823
12824 if ((ret & 1) == 0
12825 && isec->map_head.s != NULL
12826 && (strcmp (isec->output_section->name, ".init") == 0
12827 || strcmp (isec->output_section->name, ".fini") == 0))
12828 {
12829 if (isec->map_head.s->has_toc_reloc
12830 || isec->map_head.s->makes_toc_func_call)
12831 ret = 1;
12832 else if (!isec->map_head.s->call_check_done)
12833 {
12834 int recur;
12835 isec->call_check_in_progress = 1;
12836 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12837 isec->call_check_in_progress = 0;
12838 if (recur != 0)
12839 ret = recur;
12840 }
12841 }
12842
12843 if (ret == 1)
12844 isec->makes_toc_func_call = 1;
12845
12846 return ret;
12847 }
12848
12849 /* The linker repeatedly calls this function for each input section,
12850 in the order that input sections are linked into output sections.
12851 Build lists of input sections to determine groupings between which
12852 we may insert linker stubs. */
12853
12854 bfd_boolean
12855 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12856 {
12857 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12858
12859 if (htab == NULL)
12860 return FALSE;
12861
12862 if ((isec->output_section->flags & SEC_CODE) != 0
12863 && isec->output_section->id < htab->sec_info_arr_size)
12864 {
12865 /* This happens to make the list in reverse order,
12866 which is what we want. */
12867 htab->sec_info[isec->id].u.list
12868 = htab->sec_info[isec->output_section->id].u.list;
12869 htab->sec_info[isec->output_section->id].u.list = isec;
12870 }
12871
12872 if (htab->multi_toc_needed)
12873 {
12874 /* Analyse sections that aren't already flagged as needing a
12875 valid toc pointer. Exclude .fixup for the linux kernel.
12876 .fixup contains branches, but only back to the function that
12877 hit an exception. */
12878 if (!(isec->has_toc_reloc
12879 || (isec->flags & SEC_CODE) == 0
12880 || strcmp (isec->name, ".fixup") == 0
12881 || isec->call_check_done))
12882 {
12883 if (toc_adjusting_stub_needed (info, isec) < 0)
12884 return FALSE;
12885 }
12886 /* Make all sections use the TOC assigned for this object file.
12887 This will be wrong for pasted sections; We fix that in
12888 check_pasted_section(). */
12889 if (elf_gp (isec->owner) != 0)
12890 htab->toc_curr = elf_gp (isec->owner);
12891 }
12892
12893 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12894 return TRUE;
12895 }
12896
12897 /* Check that all .init and .fini sections use the same toc, if they
12898 have toc relocs. */
12899
12900 static bfd_boolean
12901 check_pasted_section (struct bfd_link_info *info, const char *name)
12902 {
12903 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12904
12905 if (o != NULL)
12906 {
12907 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12908 bfd_vma toc_off = 0;
12909 asection *i;
12910
12911 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12912 if (i->has_toc_reloc)
12913 {
12914 if (toc_off == 0)
12915 toc_off = htab->sec_info[i->id].toc_off;
12916 else if (toc_off != htab->sec_info[i->id].toc_off)
12917 return FALSE;
12918 }
12919
12920 if (toc_off == 0)
12921 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12922 if (i->makes_toc_func_call)
12923 {
12924 toc_off = htab->sec_info[i->id].toc_off;
12925 break;
12926 }
12927
12928 /* Make sure the whole pasted function uses the same toc offset. */
12929 if (toc_off != 0)
12930 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12931 htab->sec_info[i->id].toc_off = toc_off;
12932 }
12933 return TRUE;
12934 }
12935
12936 bfd_boolean
12937 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12938 {
12939 return (check_pasted_section (info, ".init")
12940 & check_pasted_section (info, ".fini"));
12941 }
12942
12943 /* See whether we can group stub sections together. Grouping stub
12944 sections may result in fewer stubs. More importantly, we need to
12945 put all .init* and .fini* stubs at the beginning of the .init or
12946 .fini output sections respectively, because glibc splits the
12947 _init and _fini functions into multiple parts. Putting a stub in
12948 the middle of a function is not a good idea. */
12949
12950 static bfd_boolean
12951 group_sections (struct bfd_link_info *info,
12952 bfd_size_type stub_group_size,
12953 bfd_boolean stubs_always_before_branch)
12954 {
12955 struct ppc_link_hash_table *htab;
12956 asection *osec;
12957 bfd_boolean suppress_size_errors;
12958
12959 htab = ppc_hash_table (info);
12960 if (htab == NULL)
12961 return FALSE;
12962
12963 suppress_size_errors = FALSE;
12964 if (stub_group_size == 1)
12965 {
12966 /* Default values. */
12967 if (stubs_always_before_branch)
12968 stub_group_size = 0x1e00000;
12969 else
12970 stub_group_size = 0x1c00000;
12971 suppress_size_errors = TRUE;
12972 }
12973
12974 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12975 {
12976 asection *tail;
12977
12978 if (osec->id >= htab->sec_info_arr_size)
12979 continue;
12980
12981 tail = htab->sec_info[osec->id].u.list;
12982 while (tail != NULL)
12983 {
12984 asection *curr;
12985 asection *prev;
12986 bfd_size_type total;
12987 bfd_boolean big_sec;
12988 bfd_vma curr_toc;
12989 struct map_stub *group;
12990 bfd_size_type group_size;
12991
12992 curr = tail;
12993 total = tail->size;
12994 group_size = (ppc64_elf_section_data (tail) != NULL
12995 && ppc64_elf_section_data (tail)->has_14bit_branch
12996 ? stub_group_size >> 10 : stub_group_size);
12997
12998 big_sec = total > group_size;
12999 if (big_sec && !suppress_size_errors)
13000 /* xgettext:c-format */
13001 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
13002 tail->owner, tail);
13003 curr_toc = htab->sec_info[tail->id].toc_off;
13004
13005 while ((prev = htab->sec_info[curr->id].u.list) != NULL
13006 && ((total += curr->output_offset - prev->output_offset)
13007 < (ppc64_elf_section_data (prev) != NULL
13008 && ppc64_elf_section_data (prev)->has_14bit_branch
13009 ? (group_size = stub_group_size >> 10) : group_size))
13010 && htab->sec_info[prev->id].toc_off == curr_toc)
13011 curr = prev;
13012
13013 /* OK, the size from the start of CURR to the end is less
13014 than group_size and thus can be handled by one stub
13015 section. (or the tail section is itself larger than
13016 group_size, in which case we may be toast.) We should
13017 really be keeping track of the total size of stubs added
13018 here, as stubs contribute to the final output section
13019 size. That's a little tricky, and this way will only
13020 break if stubs added make the total size more than 2^25,
13021 ie. for the default stub_group_size, if stubs total more
13022 than 2097152 bytes, or nearly 75000 plt call stubs. */
13023 group = bfd_alloc (curr->owner, sizeof (*group));
13024 if (group == NULL)
13025 return FALSE;
13026 group->link_sec = curr;
13027 group->stub_sec = NULL;
13028 group->needs_save_res = 0;
13029 group->lr_restore = 0;
13030 group->eh_size = 0;
13031 group->eh_base = 0;
13032 group->next = htab->group;
13033 htab->group = group;
13034 do
13035 {
13036 prev = htab->sec_info[tail->id].u.list;
13037 /* Set up this stub group. */
13038 htab->sec_info[tail->id].u.group = group;
13039 }
13040 while (tail != curr && (tail = prev) != NULL);
13041
13042 /* But wait, there's more! Input sections up to group_size
13043 bytes before the stub section can be handled by it too.
13044 Don't do this if we have a really large section after the
13045 stubs, as adding more stubs increases the chance that
13046 branches may not reach into the stub section. */
13047 if (!stubs_always_before_branch && !big_sec)
13048 {
13049 total = 0;
13050 while (prev != NULL
13051 && ((total += tail->output_offset - prev->output_offset)
13052 < (ppc64_elf_section_data (prev) != NULL
13053 && ppc64_elf_section_data (prev)->has_14bit_branch
13054 ? (group_size = stub_group_size >> 10)
13055 : group_size))
13056 && htab->sec_info[prev->id].toc_off == curr_toc)
13057 {
13058 tail = prev;
13059 prev = htab->sec_info[tail->id].u.list;
13060 htab->sec_info[tail->id].u.group = group;
13061 }
13062 }
13063 tail = prev;
13064 }
13065 }
13066 return TRUE;
13067 }
13068
13069 static const unsigned char glink_eh_frame_cie[] =
13070 {
13071 0, 0, 0, 16, /* length. */
13072 0, 0, 0, 0, /* id. */
13073 1, /* CIE version. */
13074 'z', 'R', 0, /* Augmentation string. */
13075 4, /* Code alignment. */
13076 0x78, /* Data alignment. */
13077 65, /* RA reg. */
13078 1, /* Augmentation size. */
13079 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
13080 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
13081 };
13082
13083 /* Stripping output sections is normally done before dynamic section
13084 symbols have been allocated. This function is called later, and
13085 handles cases like htab->brlt which is mapped to its own output
13086 section. */
13087
13088 static void
13089 maybe_strip_output (struct bfd_link_info *info, asection *isec)
13090 {
13091 if (isec->size == 0
13092 && isec->output_section->size == 0
13093 && !(isec->output_section->flags & SEC_KEEP)
13094 && !bfd_section_removed_from_list (info->output_bfd,
13095 isec->output_section)
13096 && elf_section_data (isec->output_section)->dynindx == 0)
13097 {
13098 isec->output_section->flags |= SEC_EXCLUDE;
13099 bfd_section_list_remove (info->output_bfd, isec->output_section);
13100 info->output_bfd->section_count--;
13101 }
13102 }
13103
13104 /* Determine and set the size of the stub section for a final link.
13105
13106 The basic idea here is to examine all the relocations looking for
13107 PC-relative calls to a target that is unreachable with a "bl"
13108 instruction. */
13109
13110 bfd_boolean
13111 ppc64_elf_size_stubs (struct bfd_link_info *info)
13112 {
13113 bfd_size_type stub_group_size;
13114 bfd_boolean stubs_always_before_branch;
13115 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13116
13117 if (htab == NULL)
13118 return FALSE;
13119
13120 if (htab->params->power10_stubs == -1 && !htab->has_power10_relocs)
13121 htab->params->power10_stubs = 0;
13122
13123 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
13124 htab->params->plt_thread_safe = 1;
13125 if (!htab->opd_abi)
13126 htab->params->plt_thread_safe = 0;
13127 else if (htab->params->plt_thread_safe == -1)
13128 {
13129 static const char *const thread_starter[] =
13130 {
13131 "pthread_create",
13132 /* libstdc++ */
13133 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13134 /* librt */
13135 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13136 "mq_notify", "create_timer",
13137 /* libanl */
13138 "getaddrinfo_a",
13139 /* libgomp */
13140 "GOMP_parallel",
13141 "GOMP_parallel_start",
13142 "GOMP_parallel_loop_static",
13143 "GOMP_parallel_loop_static_start",
13144 "GOMP_parallel_loop_dynamic",
13145 "GOMP_parallel_loop_dynamic_start",
13146 "GOMP_parallel_loop_guided",
13147 "GOMP_parallel_loop_guided_start",
13148 "GOMP_parallel_loop_runtime",
13149 "GOMP_parallel_loop_runtime_start",
13150 "GOMP_parallel_sections",
13151 "GOMP_parallel_sections_start",
13152 /* libgo */
13153 "__go_go",
13154 };
13155 unsigned i;
13156
13157 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
13158 {
13159 struct elf_link_hash_entry *h;
13160 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
13161 FALSE, FALSE, TRUE);
13162 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
13163 if (htab->params->plt_thread_safe)
13164 break;
13165 }
13166 }
13167 stubs_always_before_branch = htab->params->group_size < 0;
13168 if (htab->params->group_size < 0)
13169 stub_group_size = -htab->params->group_size;
13170 else
13171 stub_group_size = htab->params->group_size;
13172
13173 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
13174 return FALSE;
13175
13176 htab->tga_group = NULL;
13177 if (!htab->params->no_tls_get_addr_regsave
13178 && htab->tga_desc_fd != NULL
13179 && (htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefined
13180 || htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefweak)
13181 && htab->tls_get_addr_fd != NULL
13182 && is_static_defined (&htab->tls_get_addr_fd->elf))
13183 {
13184 asection *sym_sec, *code_sec, *stub_sec;
13185 bfd_vma sym_value;
13186 struct _opd_sec_data *opd;
13187
13188 sym_sec = htab->tls_get_addr_fd->elf.root.u.def.section;
13189 sym_value = defined_sym_val (&htab->tls_get_addr_fd->elf);
13190 code_sec = sym_sec;
13191 opd = get_opd_info (sym_sec);
13192 if (opd != NULL)
13193 opd_entry_value (sym_sec, sym_value, &code_sec, NULL, FALSE);
13194 htab->tga_group = htab->sec_info[code_sec->id].u.group;
13195 stub_sec = (*htab->params->add_stub_section) (".tga_desc.stub",
13196 htab->tga_group->link_sec);
13197 if (stub_sec == NULL)
13198 return FALSE;
13199 htab->tga_group->stub_sec = stub_sec;
13200
13201 htab->tga_desc_fd->elf.root.type = bfd_link_hash_defined;
13202 htab->tga_desc_fd->elf.root.u.def.section = stub_sec;
13203 htab->tga_desc_fd->elf.root.u.def.value = 0;
13204 htab->tga_desc_fd->elf.type = STT_FUNC;
13205 htab->tga_desc_fd->elf.def_regular = 1;
13206 htab->tga_desc_fd->elf.non_elf = 0;
13207 _bfd_elf_link_hash_hide_symbol (info, &htab->tga_desc_fd->elf, TRUE);
13208 }
13209
13210 #define STUB_SHRINK_ITER 20
13211 /* Loop until no stubs added. After iteration 20 of this loop we may
13212 exit on a stub section shrinking. This is to break out of a
13213 pathological case where adding stubs on one iteration decreases
13214 section gaps (perhaps due to alignment), which then requires
13215 fewer or smaller stubs on the next iteration. */
13216
13217 while (1)
13218 {
13219 bfd *input_bfd;
13220 unsigned int bfd_indx;
13221 struct map_stub *group;
13222
13223 htab->stub_iteration += 1;
13224
13225 for (input_bfd = info->input_bfds, bfd_indx = 0;
13226 input_bfd != NULL;
13227 input_bfd = input_bfd->link.next, bfd_indx++)
13228 {
13229 Elf_Internal_Shdr *symtab_hdr;
13230 asection *section;
13231 Elf_Internal_Sym *local_syms = NULL;
13232
13233 if (!is_ppc64_elf (input_bfd))
13234 continue;
13235
13236 /* We'll need the symbol table in a second. */
13237 symtab_hdr = &elf_symtab_hdr (input_bfd);
13238 if (symtab_hdr->sh_info == 0)
13239 continue;
13240
13241 /* Walk over each section attached to the input bfd. */
13242 for (section = input_bfd->sections;
13243 section != NULL;
13244 section = section->next)
13245 {
13246 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
13247
13248 /* If there aren't any relocs, then there's nothing more
13249 to do. */
13250 if ((section->flags & SEC_RELOC) == 0
13251 || (section->flags & SEC_ALLOC) == 0
13252 || (section->flags & SEC_LOAD) == 0
13253 || (section->flags & SEC_CODE) == 0
13254 || section->reloc_count == 0)
13255 continue;
13256
13257 /* If this section is a link-once section that will be
13258 discarded, then don't create any stubs. */
13259 if (section->output_section == NULL
13260 || section->output_section->owner != info->output_bfd)
13261 continue;
13262
13263 /* Get the relocs. */
13264 internal_relocs
13265 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
13266 info->keep_memory);
13267 if (internal_relocs == NULL)
13268 goto error_ret_free_local;
13269
13270 /* Now examine each relocation. */
13271 irela = internal_relocs;
13272 irelaend = irela + section->reloc_count;
13273 for (; irela < irelaend; irela++)
13274 {
13275 enum elf_ppc64_reloc_type r_type;
13276 unsigned int r_indx;
13277 enum ppc_stub_type stub_type;
13278 struct ppc_stub_hash_entry *stub_entry;
13279 asection *sym_sec, *code_sec;
13280 bfd_vma sym_value, code_value;
13281 bfd_vma destination;
13282 unsigned long local_off;
13283 bfd_boolean ok_dest;
13284 struct ppc_link_hash_entry *hash;
13285 struct ppc_link_hash_entry *fdh;
13286 struct elf_link_hash_entry *h;
13287 Elf_Internal_Sym *sym;
13288 char *stub_name;
13289 const asection *id_sec;
13290 struct _opd_sec_data *opd;
13291 struct plt_entry *plt_ent;
13292
13293 r_type = ELF64_R_TYPE (irela->r_info);
13294 r_indx = ELF64_R_SYM (irela->r_info);
13295
13296 if (r_type >= R_PPC64_max)
13297 {
13298 bfd_set_error (bfd_error_bad_value);
13299 goto error_ret_free_internal;
13300 }
13301
13302 /* Only look for stubs on branch instructions. */
13303 if (r_type != R_PPC64_REL24
13304 && r_type != R_PPC64_REL24_NOTOC
13305 && r_type != R_PPC64_REL14
13306 && r_type != R_PPC64_REL14_BRTAKEN
13307 && r_type != R_PPC64_REL14_BRNTAKEN)
13308 continue;
13309
13310 /* Now determine the call target, its name, value,
13311 section. */
13312 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
13313 r_indx, input_bfd))
13314 goto error_ret_free_internal;
13315 hash = ppc_elf_hash_entry (h);
13316
13317 ok_dest = FALSE;
13318 fdh = NULL;
13319 sym_value = 0;
13320 if (hash == NULL)
13321 {
13322 sym_value = sym->st_value;
13323 if (sym_sec != NULL
13324 && sym_sec->output_section != NULL)
13325 ok_dest = TRUE;
13326 }
13327 else if (hash->elf.root.type == bfd_link_hash_defined
13328 || hash->elf.root.type == bfd_link_hash_defweak)
13329 {
13330 sym_value = hash->elf.root.u.def.value;
13331 if (sym_sec->output_section != NULL)
13332 ok_dest = TRUE;
13333 }
13334 else if (hash->elf.root.type == bfd_link_hash_undefweak
13335 || hash->elf.root.type == bfd_link_hash_undefined)
13336 {
13337 /* Recognise an old ABI func code entry sym, and
13338 use the func descriptor sym instead if it is
13339 defined. */
13340 if (hash->elf.root.root.string[0] == '.'
13341 && hash->oh != NULL)
13342 {
13343 fdh = ppc_follow_link (hash->oh);
13344 if (fdh->elf.root.type == bfd_link_hash_defined
13345 || fdh->elf.root.type == bfd_link_hash_defweak)
13346 {
13347 sym_sec = fdh->elf.root.u.def.section;
13348 sym_value = fdh->elf.root.u.def.value;
13349 if (sym_sec->output_section != NULL)
13350 ok_dest = TRUE;
13351 }
13352 else
13353 fdh = NULL;
13354 }
13355 }
13356 else
13357 {
13358 bfd_set_error (bfd_error_bad_value);
13359 goto error_ret_free_internal;
13360 }
13361
13362 destination = 0;
13363 local_off = 0;
13364 if (ok_dest)
13365 {
13366 sym_value += irela->r_addend;
13367 destination = (sym_value
13368 + sym_sec->output_offset
13369 + sym_sec->output_section->vma);
13370 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
13371 ? hash->elf.other
13372 : sym->st_other);
13373 }
13374
13375 code_sec = sym_sec;
13376 code_value = sym_value;
13377 opd = get_opd_info (sym_sec);
13378 if (opd != NULL)
13379 {
13380 bfd_vma dest;
13381
13382 if (hash == NULL && opd->adjust != NULL)
13383 {
13384 long adjust = opd->adjust[OPD_NDX (sym_value)];
13385 if (adjust == -1)
13386 continue;
13387 code_value += adjust;
13388 sym_value += adjust;
13389 }
13390 dest = opd_entry_value (sym_sec, sym_value,
13391 &code_sec, &code_value, FALSE);
13392 if (dest != (bfd_vma) -1)
13393 {
13394 destination = dest;
13395 if (fdh != NULL)
13396 {
13397 /* Fixup old ABI sym to point at code
13398 entry. */
13399 hash->elf.root.type = bfd_link_hash_defweak;
13400 hash->elf.root.u.def.section = code_sec;
13401 hash->elf.root.u.def.value = code_value;
13402 }
13403 }
13404 }
13405
13406 /* Determine what (if any) linker stub is needed. */
13407 plt_ent = NULL;
13408 stub_type = ppc_type_of_stub (section, irela, &hash,
13409 &plt_ent, destination,
13410 local_off);
13411
13412 if (r_type == R_PPC64_REL24_NOTOC)
13413 {
13414 if (stub_type == ppc_stub_plt_call)
13415 stub_type = ppc_stub_plt_call_notoc;
13416 else if (stub_type == ppc_stub_long_branch
13417 || (code_sec != NULL
13418 && code_sec->output_section != NULL
13419 && (((hash ? hash->elf.other : sym->st_other)
13420 & STO_PPC64_LOCAL_MASK)
13421 > 1 << STO_PPC64_LOCAL_BIT)))
13422 stub_type = ppc_stub_long_branch_notoc;
13423 }
13424 else if (stub_type != ppc_stub_plt_call)
13425 {
13426 /* Check whether we need a TOC adjusting stub.
13427 Since the linker pastes together pieces from
13428 different object files when creating the
13429 _init and _fini functions, it may be that a
13430 call to what looks like a local sym is in
13431 fact a call needing a TOC adjustment. */
13432 if ((code_sec != NULL
13433 && code_sec->output_section != NULL
13434 && (code_sec->has_toc_reloc
13435 || code_sec->makes_toc_func_call)
13436 && (htab->sec_info[code_sec->id].toc_off
13437 != htab->sec_info[section->id].toc_off))
13438 || (((hash ? hash->elf.other : sym->st_other)
13439 & STO_PPC64_LOCAL_MASK)
13440 == 1 << STO_PPC64_LOCAL_BIT))
13441 stub_type = ppc_stub_long_branch_r2off;
13442 }
13443
13444 if (stub_type == ppc_stub_none)
13445 continue;
13446
13447 /* __tls_get_addr calls might be eliminated. */
13448 if (stub_type != ppc_stub_plt_call
13449 && stub_type != ppc_stub_plt_call_notoc
13450 && hash != NULL
13451 && is_tls_get_addr (&hash->elf, htab)
13452 && section->has_tls_reloc
13453 && irela != internal_relocs)
13454 {
13455 /* Get tls info. */
13456 unsigned char *tls_mask;
13457
13458 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13459 irela - 1, input_bfd))
13460 goto error_ret_free_internal;
13461 if ((*tls_mask & TLS_TLS) != 0
13462 && (*tls_mask & (TLS_GD | TLS_LD)) == 0)
13463 continue;
13464 }
13465
13466 if (stub_type == ppc_stub_plt_call)
13467 {
13468 if (!htab->opd_abi
13469 && htab->params->plt_localentry0 != 0
13470 && is_elfv2_localentry0 (&hash->elf))
13471 htab->has_plt_localentry0 = 1;
13472 else if (irela + 1 < irelaend
13473 && irela[1].r_offset == irela->r_offset + 4
13474 && (ELF64_R_TYPE (irela[1].r_info)
13475 == R_PPC64_TOCSAVE))
13476 {
13477 if (!tocsave_find (htab, INSERT,
13478 &local_syms, irela + 1, input_bfd))
13479 goto error_ret_free_internal;
13480 }
13481 else
13482 stub_type = ppc_stub_plt_call_r2save;
13483 }
13484
13485 /* Support for grouping stub sections. */
13486 id_sec = htab->sec_info[section->id].u.group->link_sec;
13487
13488 /* Get the name of this stub. */
13489 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13490 if (!stub_name)
13491 goto error_ret_free_internal;
13492
13493 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13494 stub_name, FALSE, FALSE);
13495 if (stub_entry != NULL)
13496 {
13497 enum ppc_stub_type old_type;
13498
13499 /* A stub has already been created, but it may
13500 not be the required type. We shouldn't be
13501 transitioning from plt_call to long_branch
13502 stubs or vice versa, but we might be
13503 upgrading from plt_call to plt_call_r2save or
13504 from long_branch to long_branch_r2off. */
13505 free (stub_name);
13506 if (htab->params->power10_stubs == -1)
13507 {
13508 /* For --power10-stubs=auto, don't merge _notoc
13509 and other varieties of stubs. (The _both
13510 variety won't be created.) */
13511 bfd_boolean notoc = r_type == R_PPC64_REL24_NOTOC;
13512 struct ppc_stub_hash_entry *alt_stub
13513 = select_alt_stub (stub_entry, notoc);
13514
13515 if (alt_stub == NULL)
13516 {
13517 alt_stub = (struct ppc_stub_hash_entry *)
13518 stub_hash_newfunc (NULL,
13519 &htab->stub_hash_table,
13520 stub_entry->root.string);
13521 if (alt_stub == NULL)
13522 {
13523 /* xgettext:c-format */
13524 _bfd_error_handler
13525 (_("%pB: cannot create stub entry %s"),
13526 section->owner, stub_entry->root.string);
13527 goto error_ret_free_internal;
13528 }
13529 *alt_stub = *stub_entry;
13530 stub_entry->root.next = &alt_stub->root;
13531 if (notoc)
13532 /* Sort notoc stubs first, for no good
13533 reason. */
13534 alt_stub = stub_entry;
13535 alt_stub->stub_type = stub_type;
13536 }
13537 stub_entry = alt_stub;
13538 }
13539 old_type = stub_entry->stub_type;
13540 switch (old_type)
13541 {
13542 default:
13543 abort ();
13544
13545 case ppc_stub_save_res:
13546 continue;
13547
13548 case ppc_stub_plt_call:
13549 case ppc_stub_plt_call_r2save:
13550 case ppc_stub_plt_call_notoc:
13551 case ppc_stub_plt_call_both:
13552 if (stub_type == ppc_stub_plt_call)
13553 continue;
13554 else if (stub_type == ppc_stub_plt_call_r2save)
13555 {
13556 if (old_type == ppc_stub_plt_call_notoc)
13557 stub_type = ppc_stub_plt_call_both;
13558 }
13559 else if (stub_type == ppc_stub_plt_call_notoc)
13560 {
13561 if (old_type == ppc_stub_plt_call_r2save)
13562 stub_type = ppc_stub_plt_call_both;
13563 }
13564 else
13565 abort ();
13566 break;
13567
13568 case ppc_stub_plt_branch:
13569 case ppc_stub_plt_branch_r2off:
13570 case ppc_stub_plt_branch_notoc:
13571 case ppc_stub_plt_branch_both:
13572 old_type += (ppc_stub_long_branch
13573 - ppc_stub_plt_branch);
13574 /* Fall through. */
13575 case ppc_stub_long_branch:
13576 case ppc_stub_long_branch_r2off:
13577 case ppc_stub_long_branch_notoc:
13578 case ppc_stub_long_branch_both:
13579 if (stub_type == ppc_stub_long_branch)
13580 continue;
13581 else if (stub_type == ppc_stub_long_branch_r2off)
13582 {
13583 if (old_type == ppc_stub_long_branch_notoc)
13584 stub_type = ppc_stub_long_branch_both;
13585 }
13586 else if (stub_type == ppc_stub_long_branch_notoc)
13587 {
13588 if (old_type == ppc_stub_long_branch_r2off)
13589 stub_type = ppc_stub_long_branch_both;
13590 }
13591 else
13592 abort ();
13593 break;
13594 }
13595 if (old_type < stub_type)
13596 stub_entry->stub_type = stub_type;
13597 continue;
13598 }
13599
13600 stub_entry = ppc_add_stub (stub_name, section, info);
13601 if (stub_entry == NULL)
13602 {
13603 free (stub_name);
13604 error_ret_free_internal:
13605 if (elf_section_data (section)->relocs == NULL)
13606 free (internal_relocs);
13607 error_ret_free_local:
13608 if (symtab_hdr->contents
13609 != (unsigned char *) local_syms)
13610 free (local_syms);
13611 return FALSE;
13612 }
13613
13614 stub_entry->stub_type = stub_type;
13615 if (stub_type >= ppc_stub_plt_call
13616 && stub_type <= ppc_stub_plt_call_both)
13617 {
13618 stub_entry->target_value = sym_value;
13619 stub_entry->target_section = sym_sec;
13620 }
13621 else
13622 {
13623 stub_entry->target_value = code_value;
13624 stub_entry->target_section = code_sec;
13625 }
13626 stub_entry->h = hash;
13627 stub_entry->plt_ent = plt_ent;
13628 stub_entry->symtype
13629 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13630 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13631
13632 if (hash != NULL
13633 && (hash->elf.root.type == bfd_link_hash_defined
13634 || hash->elf.root.type == bfd_link_hash_defweak))
13635 htab->stub_globals += 1;
13636 }
13637
13638 /* We're done with the internal relocs, free them. */
13639 if (elf_section_data (section)->relocs != internal_relocs)
13640 free (internal_relocs);
13641 }
13642
13643 if (local_syms != NULL
13644 && symtab_hdr->contents != (unsigned char *) local_syms)
13645 {
13646 if (!info->keep_memory)
13647 free (local_syms);
13648 else
13649 symtab_hdr->contents = (unsigned char *) local_syms;
13650 }
13651 }
13652
13653 /* We may have added some stubs. Find out the new size of the
13654 stub sections. */
13655 for (group = htab->group; group != NULL; group = group->next)
13656 {
13657 group->lr_restore = 0;
13658 group->eh_size = 0;
13659 if (group->stub_sec != NULL)
13660 {
13661 asection *stub_sec = group->stub_sec;
13662
13663 if (htab->stub_iteration <= STUB_SHRINK_ITER
13664 || stub_sec->rawsize < stub_sec->size)
13665 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13666 stub_sec->rawsize = stub_sec->size;
13667 stub_sec->size = 0;
13668 stub_sec->reloc_count = 0;
13669 stub_sec->flags &= ~SEC_RELOC;
13670 }
13671 }
13672 if (htab->tga_group != NULL)
13673 {
13674 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13675 htab->tga_group->eh_size
13676 = 1 + 2 + (htab->opd_abi != 0) + 3 + 8 * 2 + 3 + 8 + 3;
13677 htab->tga_group->lr_restore = 23 * 4;
13678 htab->tga_group->stub_sec->size = 24 * 4;
13679 }
13680
13681 if (htab->stub_iteration <= STUB_SHRINK_ITER
13682 || htab->brlt->rawsize < htab->brlt->size)
13683 htab->brlt->rawsize = htab->brlt->size;
13684 htab->brlt->size = 0;
13685 htab->brlt->reloc_count = 0;
13686 htab->brlt->flags &= ~SEC_RELOC;
13687 if (htab->relbrlt != NULL)
13688 htab->relbrlt->size = 0;
13689
13690 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13691
13692 for (group = htab->group; group != NULL; group = group->next)
13693 if (group->needs_save_res)
13694 group->stub_sec->size += htab->sfpr->size;
13695
13696 if (info->emitrelocations
13697 && htab->glink != NULL && htab->glink->size != 0)
13698 {
13699 htab->glink->reloc_count = 1;
13700 htab->glink->flags |= SEC_RELOC;
13701 }
13702
13703 if (htab->glink_eh_frame != NULL
13704 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13705 && htab->glink_eh_frame->output_section->size > 8)
13706 {
13707 size_t size = 0, align = 4;
13708
13709 for (group = htab->group; group != NULL; group = group->next)
13710 if (group->eh_size != 0)
13711 size += (group->eh_size + 17 + align - 1) & -align;
13712 if (htab->glink != NULL && htab->glink->size != 0)
13713 size += (24 + align - 1) & -align;
13714 if (size != 0)
13715 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13716 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13717 size = (size + align - 1) & -align;
13718 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13719 htab->glink_eh_frame->size = size;
13720 }
13721
13722 if (htab->params->plt_stub_align != 0)
13723 for (group = htab->group; group != NULL; group = group->next)
13724 if (group->stub_sec != NULL)
13725 {
13726 int align = abs (htab->params->plt_stub_align);
13727 group->stub_sec->size
13728 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13729 }
13730
13731 for (group = htab->group; group != NULL; group = group->next)
13732 if (group->stub_sec != NULL
13733 && group->stub_sec->rawsize != group->stub_sec->size
13734 && (htab->stub_iteration <= STUB_SHRINK_ITER
13735 || group->stub_sec->rawsize < group->stub_sec->size))
13736 break;
13737
13738 if (group == NULL
13739 && (htab->brlt->rawsize == htab->brlt->size
13740 || (htab->stub_iteration > STUB_SHRINK_ITER
13741 && htab->brlt->rawsize > htab->brlt->size))
13742 && (htab->glink_eh_frame == NULL
13743 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)
13744 && (htab->tga_group == NULL
13745 || htab->stub_iteration > 1))
13746 break;
13747
13748 /* Ask the linker to do its stuff. */
13749 (*htab->params->layout_sections_again) ();
13750 }
13751
13752 if (htab->glink_eh_frame != NULL
13753 && htab->glink_eh_frame->size != 0)
13754 {
13755 bfd_vma val;
13756 bfd_byte *p, *last_fde;
13757 size_t last_fde_len, size, align, pad;
13758 struct map_stub *group;
13759
13760 /* It is necessary to at least have a rough outline of the
13761 linker generated CIEs and FDEs written before
13762 bfd_elf_discard_info is run, in order for these FDEs to be
13763 indexed in .eh_frame_hdr. */
13764 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13765 if (p == NULL)
13766 return FALSE;
13767 htab->glink_eh_frame->contents = p;
13768 last_fde = p;
13769 align = 4;
13770
13771 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13772 /* CIE length (rewrite in case little-endian). */
13773 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13774 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13775 p += last_fde_len + 4;
13776
13777 for (group = htab->group; group != NULL; group = group->next)
13778 if (group->eh_size != 0)
13779 {
13780 group->eh_base = p - htab->glink_eh_frame->contents;
13781 last_fde = p;
13782 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13783 /* FDE length. */
13784 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13785 p += 4;
13786 /* CIE pointer. */
13787 val = p - htab->glink_eh_frame->contents;
13788 bfd_put_32 (htab->elf.dynobj, val, p);
13789 p += 4;
13790 /* Offset to stub section, written later. */
13791 p += 4;
13792 /* stub section size. */
13793 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13794 p += 4;
13795 /* Augmentation. */
13796 p += 1;
13797 /* Make sure we don't have all nops. This is enough for
13798 elf-eh-frame.c to detect the last non-nop opcode. */
13799 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13800 p = last_fde + last_fde_len + 4;
13801 }
13802 if (htab->glink != NULL && htab->glink->size != 0)
13803 {
13804 last_fde = p;
13805 last_fde_len = ((24 + align - 1) & -align) - 4;
13806 /* FDE length. */
13807 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13808 p += 4;
13809 /* CIE pointer. */
13810 val = p - htab->glink_eh_frame->contents;
13811 bfd_put_32 (htab->elf.dynobj, val, p);
13812 p += 4;
13813 /* Offset to .glink, written later. */
13814 p += 4;
13815 /* .glink size. */
13816 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13817 p += 4;
13818 /* Augmentation. */
13819 p += 1;
13820
13821 *p++ = DW_CFA_advance_loc + 1;
13822 *p++ = DW_CFA_register;
13823 *p++ = 65;
13824 *p++ = htab->opd_abi ? 12 : 0;
13825 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13826 *p++ = DW_CFA_restore_extended;
13827 *p++ = 65;
13828 p += ((24 + align - 1) & -align) - 24;
13829 }
13830 /* Subsume any padding into the last FDE if user .eh_frame
13831 sections are aligned more than glink_eh_frame. Otherwise any
13832 zero padding will be seen as a terminator. */
13833 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13834 size = p - htab->glink_eh_frame->contents;
13835 pad = ((size + align - 1) & -align) - size;
13836 htab->glink_eh_frame->size = size + pad;
13837 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13838 }
13839
13840 maybe_strip_output (info, htab->brlt);
13841 if (htab->relbrlt != NULL)
13842 maybe_strip_output (info, htab->relbrlt);
13843 if (htab->glink_eh_frame != NULL)
13844 maybe_strip_output (info, htab->glink_eh_frame);
13845
13846 return TRUE;
13847 }
13848
13849 /* Called after we have determined section placement. If sections
13850 move, we'll be called again. Provide a value for TOCstart. */
13851
13852 bfd_vma
13853 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13854 {
13855 asection *s;
13856 bfd_vma TOCstart, adjust;
13857
13858 if (info != NULL)
13859 {
13860 struct elf_link_hash_entry *h;
13861 struct elf_link_hash_table *htab = elf_hash_table (info);
13862
13863 if (is_elf_hash_table (htab)
13864 && htab->hgot != NULL)
13865 h = htab->hgot;
13866 else
13867 {
13868 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13869 if (is_elf_hash_table (htab))
13870 htab->hgot = h;
13871 }
13872 if (h != NULL
13873 && h->root.type == bfd_link_hash_defined
13874 && !h->root.linker_def
13875 && (!is_elf_hash_table (htab)
13876 || h->def_regular))
13877 {
13878 TOCstart = defined_sym_val (h) - TOC_BASE_OFF;
13879 _bfd_set_gp_value (obfd, TOCstart);
13880 return TOCstart;
13881 }
13882 }
13883
13884 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13885 order. The TOC starts where the first of these sections starts. */
13886 s = bfd_get_section_by_name (obfd, ".got");
13887 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13888 s = bfd_get_section_by_name (obfd, ".toc");
13889 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13890 s = bfd_get_section_by_name (obfd, ".tocbss");
13891 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13892 s = bfd_get_section_by_name (obfd, ".plt");
13893 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13894 {
13895 /* This may happen for
13896 o references to TOC base (SYM@toc / TOC[tc0]) without a
13897 .toc directive
13898 o bad linker script
13899 o --gc-sections and empty TOC sections
13900
13901 FIXME: Warn user? */
13902
13903 /* Look for a likely section. We probably won't even be
13904 using TOCstart. */
13905 for (s = obfd->sections; s != NULL; s = s->next)
13906 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13907 | SEC_EXCLUDE))
13908 == (SEC_ALLOC | SEC_SMALL_DATA))
13909 break;
13910 if (s == NULL)
13911 for (s = obfd->sections; s != NULL; s = s->next)
13912 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13913 == (SEC_ALLOC | SEC_SMALL_DATA))
13914 break;
13915 if (s == NULL)
13916 for (s = obfd->sections; s != NULL; s = s->next)
13917 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13918 == SEC_ALLOC)
13919 break;
13920 if (s == NULL)
13921 for (s = obfd->sections; s != NULL; s = s->next)
13922 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13923 break;
13924 }
13925
13926 TOCstart = 0;
13927 if (s != NULL)
13928 TOCstart = s->output_section->vma + s->output_offset;
13929
13930 /* Force alignment. */
13931 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13932 TOCstart -= adjust;
13933 _bfd_set_gp_value (obfd, TOCstart);
13934
13935 if (info != NULL && s != NULL)
13936 {
13937 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13938
13939 if (htab != NULL)
13940 {
13941 if (htab->elf.hgot != NULL)
13942 {
13943 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13944 htab->elf.hgot->root.u.def.section = s;
13945 }
13946 }
13947 else
13948 {
13949 struct bfd_link_hash_entry *bh = NULL;
13950 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13951 s, TOC_BASE_OFF - adjust,
13952 NULL, FALSE, FALSE, &bh);
13953 }
13954 }
13955 return TOCstart;
13956 }
13957
13958 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13959 write out any global entry stubs, and PLT relocations. */
13960
13961 static bfd_boolean
13962 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13963 {
13964 struct bfd_link_info *info;
13965 struct ppc_link_hash_table *htab;
13966 struct plt_entry *ent;
13967 asection *s;
13968
13969 if (h->root.type == bfd_link_hash_indirect)
13970 return TRUE;
13971
13972 info = inf;
13973 htab = ppc_hash_table (info);
13974 if (htab == NULL)
13975 return FALSE;
13976
13977 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13978 if (ent->plt.offset != (bfd_vma) -1)
13979 {
13980 /* This symbol has an entry in the procedure linkage
13981 table. Set it up. */
13982 Elf_Internal_Rela rela;
13983 asection *plt, *relplt;
13984 bfd_byte *loc;
13985
13986 if (!htab->elf.dynamic_sections_created
13987 || h->dynindx == -1)
13988 {
13989 if (!(h->def_regular
13990 && (h->root.type == bfd_link_hash_defined
13991 || h->root.type == bfd_link_hash_defweak)))
13992 continue;
13993 if (h->type == STT_GNU_IFUNC)
13994 {
13995 plt = htab->elf.iplt;
13996 relplt = htab->elf.irelplt;
13997 htab->elf.ifunc_resolvers = TRUE;
13998 if (htab->opd_abi)
13999 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14000 else
14001 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14002 }
14003 else
14004 {
14005 plt = htab->pltlocal;
14006 if (bfd_link_pic (info))
14007 {
14008 relplt = htab->relpltlocal;
14009 if (htab->opd_abi)
14010 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14011 else
14012 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14013 }
14014 else
14015 relplt = NULL;
14016 }
14017 rela.r_addend = defined_sym_val (h) + ent->addend;
14018
14019 if (relplt == NULL)
14020 {
14021 loc = plt->contents + ent->plt.offset;
14022 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
14023 if (htab->opd_abi)
14024 {
14025 bfd_vma toc = elf_gp (info->output_bfd);
14026 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
14027 bfd_put_64 (info->output_bfd, toc, loc + 8);
14028 }
14029 }
14030 else
14031 {
14032 rela.r_offset = (plt->output_section->vma
14033 + plt->output_offset
14034 + ent->plt.offset);
14035 loc = relplt->contents + (relplt->reloc_count++
14036 * sizeof (Elf64_External_Rela));
14037 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14038 }
14039 }
14040 else
14041 {
14042 rela.r_offset = (htab->elf.splt->output_section->vma
14043 + htab->elf.splt->output_offset
14044 + ent->plt.offset);
14045 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14046 rela.r_addend = ent->addend;
14047 loc = (htab->elf.srelplt->contents
14048 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14049 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14050 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
14051 htab->elf.ifunc_resolvers = TRUE;
14052 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14053 }
14054 }
14055
14056 if (!h->pointer_equality_needed)
14057 return TRUE;
14058
14059 if (h->def_regular)
14060 return TRUE;
14061
14062 s = htab->global_entry;
14063 if (s == NULL || s->size == 0)
14064 return TRUE;
14065
14066 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14067 if (ent->plt.offset != (bfd_vma) -1
14068 && ent->addend == 0)
14069 {
14070 bfd_byte *p;
14071 asection *plt;
14072 bfd_vma off;
14073
14074 p = s->contents + h->root.u.def.value;
14075 plt = htab->elf.splt;
14076 if (!htab->elf.dynamic_sections_created
14077 || h->dynindx == -1)
14078 {
14079 if (h->type == STT_GNU_IFUNC)
14080 plt = htab->elf.iplt;
14081 else
14082 plt = htab->pltlocal;
14083 }
14084 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
14085 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
14086
14087 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
14088 {
14089 info->callbacks->einfo
14090 (_("%P: linkage table error against `%pT'\n"),
14091 h->root.root.string);
14092 bfd_set_error (bfd_error_bad_value);
14093 htab->stub_error = TRUE;
14094 }
14095
14096 htab->stub_count[ppc_stub_global_entry - 1] += 1;
14097 if (htab->params->emit_stub_syms)
14098 {
14099 size_t len = strlen (h->root.root.string);
14100 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
14101
14102 if (name == NULL)
14103 return FALSE;
14104
14105 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
14106 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
14107 if (h == NULL)
14108 return FALSE;
14109 if (h->root.type == bfd_link_hash_new)
14110 {
14111 h->root.type = bfd_link_hash_defined;
14112 h->root.u.def.section = s;
14113 h->root.u.def.value = p - s->contents;
14114 h->ref_regular = 1;
14115 h->def_regular = 1;
14116 h->ref_regular_nonweak = 1;
14117 h->forced_local = 1;
14118 h->non_elf = 0;
14119 h->root.linker_def = 1;
14120 }
14121 }
14122
14123 if (PPC_HA (off) != 0)
14124 {
14125 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
14126 p += 4;
14127 }
14128 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
14129 p += 4;
14130 bfd_put_32 (s->owner, MTCTR_R12, p);
14131 p += 4;
14132 bfd_put_32 (s->owner, BCTR, p);
14133 break;
14134 }
14135 return TRUE;
14136 }
14137
14138 /* Write PLT relocs for locals. */
14139
14140 static bfd_boolean
14141 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
14142 {
14143 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14144 bfd *ibfd;
14145
14146 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14147 {
14148 struct got_entry **lgot_ents, **end_lgot_ents;
14149 struct plt_entry **local_plt, **lplt, **end_local_plt;
14150 Elf_Internal_Shdr *symtab_hdr;
14151 bfd_size_type locsymcount;
14152 Elf_Internal_Sym *local_syms = NULL;
14153 struct plt_entry *ent;
14154
14155 if (!is_ppc64_elf (ibfd))
14156 continue;
14157
14158 lgot_ents = elf_local_got_ents (ibfd);
14159 if (!lgot_ents)
14160 continue;
14161
14162 symtab_hdr = &elf_symtab_hdr (ibfd);
14163 locsymcount = symtab_hdr->sh_info;
14164 end_lgot_ents = lgot_ents + locsymcount;
14165 local_plt = (struct plt_entry **) end_lgot_ents;
14166 end_local_plt = local_plt + locsymcount;
14167 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
14168 for (ent = *lplt; ent != NULL; ent = ent->next)
14169 if (ent->plt.offset != (bfd_vma) -1)
14170 {
14171 Elf_Internal_Sym *sym;
14172 asection *sym_sec;
14173 asection *plt, *relplt;
14174 bfd_byte *loc;
14175 bfd_vma val;
14176
14177 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
14178 lplt - local_plt, ibfd))
14179 {
14180 if (symtab_hdr->contents != (unsigned char *) local_syms)
14181 free (local_syms);
14182 return FALSE;
14183 }
14184
14185 val = sym->st_value + ent->addend;
14186 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
14187 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
14188 if (sym_sec != NULL && sym_sec->output_section != NULL)
14189 val += sym_sec->output_offset + sym_sec->output_section->vma;
14190
14191 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14192 {
14193 htab->elf.ifunc_resolvers = TRUE;
14194 plt = htab->elf.iplt;
14195 relplt = htab->elf.irelplt;
14196 }
14197 else
14198 {
14199 plt = htab->pltlocal;
14200 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
14201 }
14202
14203 if (relplt == NULL)
14204 {
14205 loc = plt->contents + ent->plt.offset;
14206 bfd_put_64 (info->output_bfd, val, loc);
14207 if (htab->opd_abi)
14208 {
14209 bfd_vma toc = elf_gp (ibfd);
14210 bfd_put_64 (info->output_bfd, toc, loc + 8);
14211 }
14212 }
14213 else
14214 {
14215 Elf_Internal_Rela rela;
14216 rela.r_offset = (ent->plt.offset
14217 + plt->output_offset
14218 + plt->output_section->vma);
14219 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14220 {
14221 if (htab->opd_abi)
14222 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14223 else
14224 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14225 }
14226 else
14227 {
14228 if (htab->opd_abi)
14229 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14230 else
14231 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14232 }
14233 rela.r_addend = val;
14234 loc = relplt->contents + (relplt->reloc_count++
14235 * sizeof (Elf64_External_Rela));
14236 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14237 }
14238 }
14239
14240 if (local_syms != NULL
14241 && symtab_hdr->contents != (unsigned char *) local_syms)
14242 {
14243 if (!info->keep_memory)
14244 free (local_syms);
14245 else
14246 symtab_hdr->contents = (unsigned char *) local_syms;
14247 }
14248 }
14249 return TRUE;
14250 }
14251
14252 /* Emit the static wrapper function preserving registers around a
14253 __tls_get_addr_opt call. */
14254
14255 static bfd_boolean
14256 emit_tga_desc (struct ppc_link_hash_table *htab)
14257 {
14258 asection *stub_sec = htab->tga_group->stub_sec;
14259 unsigned int cfa_updt = 11 * 4;
14260 bfd_byte *p;
14261 bfd_vma to, from, delta;
14262
14263 BFD_ASSERT (htab->tga_desc_fd->elf.root.type == bfd_link_hash_defined
14264 && htab->tga_desc_fd->elf.root.u.def.section == stub_sec
14265 && htab->tga_desc_fd->elf.root.u.def.value == 0);
14266 to = defined_sym_val (&htab->tls_get_addr_fd->elf);
14267 from = defined_sym_val (&htab->tga_desc_fd->elf) + cfa_updt;
14268 delta = to - from;
14269 if (delta + (1 << 25) >= 1 << 26)
14270 {
14271 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14272 htab->stub_error = TRUE;
14273 return FALSE;
14274 }
14275
14276 p = stub_sec->contents;
14277 p = tls_get_addr_prologue (htab->elf.dynobj, p, htab);
14278 bfd_put_32 (stub_sec->owner, B_DOT | 1 | (delta & 0x3fffffc), p);
14279 p += 4;
14280 p = tls_get_addr_epilogue (htab->elf.dynobj, p, htab);
14281 return stub_sec->size == (bfd_size_type) (p - stub_sec->contents);
14282 }
14283
14284 /* Emit eh_frame describing the static wrapper function. */
14285
14286 static bfd_byte *
14287 emit_tga_desc_eh_frame (struct ppc_link_hash_table *htab, bfd_byte *p)
14288 {
14289 unsigned int cfa_updt = 11 * 4;
14290 unsigned int i;
14291
14292 *p++ = DW_CFA_advance_loc + cfa_updt / 4;
14293 *p++ = DW_CFA_def_cfa_offset;
14294 if (htab->opd_abi)
14295 {
14296 *p++ = 128;
14297 *p++ = 1;
14298 }
14299 else
14300 *p++ = 96;
14301 *p++ = DW_CFA_offset_extended_sf;
14302 *p++ = 65;
14303 *p++ = (-16 / 8) & 0x7f;
14304 for (i = 4; i < 12; i++)
14305 {
14306 *p++ = DW_CFA_offset + i;
14307 *p++ = (htab->opd_abi ? 13 : 12) - i;
14308 }
14309 *p++ = DW_CFA_advance_loc + 10;
14310 *p++ = DW_CFA_def_cfa_offset;
14311 *p++ = 0;
14312 for (i = 4; i < 12; i++)
14313 *p++ = DW_CFA_restore + i;
14314 *p++ = DW_CFA_advance_loc + 2;
14315 *p++ = DW_CFA_restore_extended;
14316 *p++ = 65;
14317 return p;
14318 }
14319
14320 /* Build all the stubs associated with the current output file.
14321 The stubs are kept in a hash table attached to the main linker
14322 hash table. This function is called via gldelf64ppc_finish. */
14323
14324 bfd_boolean
14325 ppc64_elf_build_stubs (struct bfd_link_info *info,
14326 char **stats)
14327 {
14328 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14329 struct map_stub *group;
14330 asection *stub_sec;
14331 bfd_byte *p;
14332 int stub_sec_count = 0;
14333
14334 if (htab == NULL)
14335 return FALSE;
14336
14337 /* Allocate memory to hold the linker stubs. */
14338 for (group = htab->group; group != NULL; group = group->next)
14339 {
14340 group->eh_size = 0;
14341 group->lr_restore = 0;
14342 if ((stub_sec = group->stub_sec) != NULL
14343 && stub_sec->size != 0)
14344 {
14345 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
14346 stub_sec->size);
14347 if (stub_sec->contents == NULL)
14348 return FALSE;
14349 stub_sec->size = 0;
14350 }
14351 }
14352
14353 if (htab->glink != NULL && htab->glink->size != 0)
14354 {
14355 unsigned int indx;
14356 bfd_vma plt0;
14357
14358 /* Build the .glink plt call stub. */
14359 if (htab->params->emit_stub_syms)
14360 {
14361 struct elf_link_hash_entry *h;
14362 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
14363 TRUE, FALSE, FALSE);
14364 if (h == NULL)
14365 return FALSE;
14366 if (h->root.type == bfd_link_hash_new)
14367 {
14368 h->root.type = bfd_link_hash_defined;
14369 h->root.u.def.section = htab->glink;
14370 h->root.u.def.value = 8;
14371 h->ref_regular = 1;
14372 h->def_regular = 1;
14373 h->ref_regular_nonweak = 1;
14374 h->forced_local = 1;
14375 h->non_elf = 0;
14376 h->root.linker_def = 1;
14377 }
14378 }
14379 plt0 = (htab->elf.splt->output_section->vma
14380 + htab->elf.splt->output_offset
14381 - 16);
14382 if (info->emitrelocations)
14383 {
14384 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
14385 if (r == NULL)
14386 return FALSE;
14387 r->r_offset = (htab->glink->output_offset
14388 + htab->glink->output_section->vma);
14389 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
14390 r->r_addend = plt0;
14391 }
14392 p = htab->glink->contents;
14393 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
14394 bfd_put_64 (htab->glink->owner, plt0, p);
14395 p += 8;
14396 if (htab->opd_abi)
14397 {
14398 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
14399 p += 4;
14400 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14401 p += 4;
14402 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14403 p += 4;
14404 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14405 p += 4;
14406 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
14407 p += 4;
14408 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14409 p += 4;
14410 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14411 p += 4;
14412 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
14413 p += 4;
14414 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14415 p += 4;
14416 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
14417 p += 4;
14418 }
14419 else
14420 {
14421 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
14422 p += 4;
14423 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14424 p += 4;
14425 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14426 p += 4;
14427 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
14428 p += 4;
14429 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14430 p += 4;
14431 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
14432 p += 4;
14433 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
14434 p += 4;
14435 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14436 p += 4;
14437 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
14438 p += 4;
14439 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14440 p += 4;
14441 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
14442 p += 4;
14443 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14444 p += 4;
14445 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
14446 p += 4;
14447 }
14448 bfd_put_32 (htab->glink->owner, BCTR, p);
14449 p += 4;
14450 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
14451
14452 /* Build the .glink lazy link call stubs. */
14453 indx = 0;
14454 while (p < htab->glink->contents + htab->glink->size)
14455 {
14456 if (htab->opd_abi)
14457 {
14458 if (indx < 0x8000)
14459 {
14460 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
14461 p += 4;
14462 }
14463 else
14464 {
14465 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
14466 p += 4;
14467 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
14468 p);
14469 p += 4;
14470 }
14471 }
14472 bfd_put_32 (htab->glink->owner,
14473 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
14474 indx++;
14475 p += 4;
14476 }
14477 }
14478
14479 if (htab->tga_group != NULL)
14480 {
14481 htab->tga_group->lr_restore = 23 * 4;
14482 htab->tga_group->stub_sec->size = 24 * 4;
14483 if (!emit_tga_desc (htab))
14484 return FALSE;
14485 if (htab->glink_eh_frame != NULL
14486 && htab->glink_eh_frame->size != 0)
14487 {
14488 size_t align = 4;
14489
14490 p = htab->glink_eh_frame->contents;
14491 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14492 p += 17;
14493 htab->tga_group->eh_size = emit_tga_desc_eh_frame (htab, p) - p;
14494 }
14495 }
14496
14497 /* Build .glink global entry stubs, and PLT relocs for globals. */
14498 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
14499
14500 if (!write_plt_relocs_for_local_syms (info))
14501 return FALSE;
14502
14503 if (htab->brlt != NULL && htab->brlt->size != 0)
14504 {
14505 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
14506 htab->brlt->size);
14507 if (htab->brlt->contents == NULL)
14508 return FALSE;
14509 }
14510 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
14511 {
14512 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
14513 htab->relbrlt->size);
14514 if (htab->relbrlt->contents == NULL)
14515 return FALSE;
14516 }
14517
14518 /* Build the stubs as directed by the stub hash table. */
14519 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
14520
14521 for (group = htab->group; group != NULL; group = group->next)
14522 if (group->needs_save_res)
14523 group->stub_sec->size += htab->sfpr->size;
14524
14525 if (htab->relbrlt != NULL)
14526 htab->relbrlt->reloc_count = 0;
14527
14528 if (htab->params->plt_stub_align != 0)
14529 for (group = htab->group; group != NULL; group = group->next)
14530 if ((stub_sec = group->stub_sec) != NULL)
14531 {
14532 int align = abs (htab->params->plt_stub_align);
14533 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14534 }
14535
14536 for (group = htab->group; group != NULL; group = group->next)
14537 if (group->needs_save_res)
14538 {
14539 stub_sec = group->stub_sec;
14540 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14541 htab->sfpr->contents, htab->sfpr->size);
14542 if (htab->params->emit_stub_syms)
14543 {
14544 unsigned int i;
14545
14546 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14547 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14548 return FALSE;
14549 }
14550 }
14551
14552 if (htab->glink_eh_frame != NULL
14553 && htab->glink_eh_frame->size != 0)
14554 {
14555 bfd_vma val;
14556 size_t align = 4;
14557
14558 p = htab->glink_eh_frame->contents;
14559 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14560
14561 for (group = htab->group; group != NULL; group = group->next)
14562 if (group->eh_size != 0)
14563 {
14564 /* Offset to stub section. */
14565 val = (group->stub_sec->output_section->vma
14566 + group->stub_sec->output_offset);
14567 val -= (htab->glink_eh_frame->output_section->vma
14568 + htab->glink_eh_frame->output_offset
14569 + (p + 8 - htab->glink_eh_frame->contents));
14570 if (val + 0x80000000 > 0xffffffff)
14571 {
14572 _bfd_error_handler
14573 (_("%s offset too large for .eh_frame sdata4 encoding"),
14574 group->stub_sec->name);
14575 return FALSE;
14576 }
14577 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14578 p += (group->eh_size + 17 + 3) & -4;
14579 }
14580 if (htab->glink != NULL && htab->glink->size != 0)
14581 {
14582 /* Offset to .glink. */
14583 val = (htab->glink->output_section->vma
14584 + htab->glink->output_offset
14585 + 8);
14586 val -= (htab->glink_eh_frame->output_section->vma
14587 + htab->glink_eh_frame->output_offset
14588 + (p + 8 - htab->glink_eh_frame->contents));
14589 if (val + 0x80000000 > 0xffffffff)
14590 {
14591 _bfd_error_handler
14592 (_("%s offset too large for .eh_frame sdata4 encoding"),
14593 htab->glink->name);
14594 return FALSE;
14595 }
14596 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14597 p += (24 + align - 1) & -align;
14598 }
14599 }
14600
14601 for (group = htab->group; group != NULL; group = group->next)
14602 if ((stub_sec = group->stub_sec) != NULL)
14603 {
14604 stub_sec_count += 1;
14605 if (stub_sec->rawsize != stub_sec->size
14606 && (htab->stub_iteration <= STUB_SHRINK_ITER
14607 || stub_sec->rawsize < stub_sec->size))
14608 break;
14609 }
14610
14611 if (group != NULL)
14612 {
14613 htab->stub_error = TRUE;
14614 _bfd_error_handler (_("stubs don't match calculated size"));
14615 }
14616
14617 if (htab->stub_error)
14618 return FALSE;
14619
14620 if (stats != NULL)
14621 {
14622 char *groupmsg;
14623 if (asprintf (&groupmsg,
14624 ngettext ("linker stubs in %u group\n",
14625 "linker stubs in %u groups\n",
14626 stub_sec_count),
14627 stub_sec_count) < 0)
14628 *stats = NULL;
14629 else
14630 {
14631 if (asprintf (stats, _("%s"
14632 " branch %lu\n"
14633 " branch toc adj %lu\n"
14634 " branch notoc %lu\n"
14635 " branch both %lu\n"
14636 " long branch %lu\n"
14637 " long toc adj %lu\n"
14638 " long notoc %lu\n"
14639 " long both %lu\n"
14640 " plt call %lu\n"
14641 " plt call save %lu\n"
14642 " plt call notoc %lu\n"
14643 " plt call both %lu\n"
14644 " global entry %lu"),
14645 groupmsg,
14646 htab->stub_count[ppc_stub_long_branch - 1],
14647 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14648 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14649 htab->stub_count[ppc_stub_long_branch_both - 1],
14650 htab->stub_count[ppc_stub_plt_branch - 1],
14651 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14652 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14653 htab->stub_count[ppc_stub_plt_branch_both - 1],
14654 htab->stub_count[ppc_stub_plt_call - 1],
14655 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14656 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14657 htab->stub_count[ppc_stub_plt_call_both - 1],
14658 htab->stub_count[ppc_stub_global_entry - 1]) < 0)
14659 *stats = NULL;
14660 free (groupmsg);
14661 }
14662 }
14663 return TRUE;
14664 }
14665
14666 /* What to do when ld finds relocations against symbols defined in
14667 discarded sections. */
14668
14669 static unsigned int
14670 ppc64_elf_action_discarded (asection *sec)
14671 {
14672 if (strcmp (".opd", sec->name) == 0)
14673 return 0;
14674
14675 if (strcmp (".toc", sec->name) == 0)
14676 return 0;
14677
14678 if (strcmp (".toc1", sec->name) == 0)
14679 return 0;
14680
14681 return _bfd_elf_default_action_discarded (sec);
14682 }
14683
14684 /* These are the dynamic relocations supported by glibc. */
14685
14686 static bfd_boolean
14687 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14688 {
14689 switch (r_type)
14690 {
14691 case R_PPC64_RELATIVE:
14692 case R_PPC64_NONE:
14693 case R_PPC64_ADDR64:
14694 case R_PPC64_GLOB_DAT:
14695 case R_PPC64_IRELATIVE:
14696 case R_PPC64_JMP_IREL:
14697 case R_PPC64_JMP_SLOT:
14698 case R_PPC64_DTPMOD64:
14699 case R_PPC64_DTPREL64:
14700 case R_PPC64_TPREL64:
14701 case R_PPC64_TPREL16_LO_DS:
14702 case R_PPC64_TPREL16_DS:
14703 case R_PPC64_TPREL16:
14704 case R_PPC64_TPREL16_LO:
14705 case R_PPC64_TPREL16_HI:
14706 case R_PPC64_TPREL16_HIGH:
14707 case R_PPC64_TPREL16_HA:
14708 case R_PPC64_TPREL16_HIGHA:
14709 case R_PPC64_TPREL16_HIGHER:
14710 case R_PPC64_TPREL16_HIGHEST:
14711 case R_PPC64_TPREL16_HIGHERA:
14712 case R_PPC64_TPREL16_HIGHESTA:
14713 case R_PPC64_ADDR16_LO_DS:
14714 case R_PPC64_ADDR16_LO:
14715 case R_PPC64_ADDR16_HI:
14716 case R_PPC64_ADDR16_HIGH:
14717 case R_PPC64_ADDR16_HA:
14718 case R_PPC64_ADDR16_HIGHA:
14719 case R_PPC64_REL30:
14720 case R_PPC64_COPY:
14721 case R_PPC64_UADDR64:
14722 case R_PPC64_UADDR32:
14723 case R_PPC64_ADDR32:
14724 case R_PPC64_ADDR24:
14725 case R_PPC64_ADDR16:
14726 case R_PPC64_UADDR16:
14727 case R_PPC64_ADDR16_DS:
14728 case R_PPC64_ADDR16_HIGHER:
14729 case R_PPC64_ADDR16_HIGHEST:
14730 case R_PPC64_ADDR16_HIGHERA:
14731 case R_PPC64_ADDR16_HIGHESTA:
14732 case R_PPC64_ADDR14:
14733 case R_PPC64_ADDR14_BRTAKEN:
14734 case R_PPC64_ADDR14_BRNTAKEN:
14735 case R_PPC64_REL32:
14736 case R_PPC64_REL64:
14737 return TRUE;
14738
14739 default:
14740 return FALSE;
14741 }
14742 }
14743
14744 /* The RELOCATE_SECTION function is called by the ELF backend linker
14745 to handle the relocations for a section.
14746
14747 The relocs are always passed as Rela structures; if the section
14748 actually uses Rel structures, the r_addend field will always be
14749 zero.
14750
14751 This function is responsible for adjust the section contents as
14752 necessary, and (if using Rela relocs and generating a
14753 relocatable output file) adjusting the reloc addend as
14754 necessary.
14755
14756 This function does not have to worry about setting the reloc
14757 address or the reloc symbol index.
14758
14759 LOCAL_SYMS is a pointer to the swapped in local symbols.
14760
14761 LOCAL_SECTIONS is an array giving the section in the input file
14762 corresponding to the st_shndx field of each local symbol.
14763
14764 The global hash table entry for the global symbols can be found
14765 via elf_sym_hashes (input_bfd).
14766
14767 When generating relocatable output, this function must handle
14768 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14769 going to be the section symbol corresponding to the output
14770 section, which means that the addend must be adjusted
14771 accordingly. */
14772
14773 static bfd_boolean
14774 ppc64_elf_relocate_section (bfd *output_bfd,
14775 struct bfd_link_info *info,
14776 bfd *input_bfd,
14777 asection *input_section,
14778 bfd_byte *contents,
14779 Elf_Internal_Rela *relocs,
14780 Elf_Internal_Sym *local_syms,
14781 asection **local_sections)
14782 {
14783 struct ppc_link_hash_table *htab;
14784 Elf_Internal_Shdr *symtab_hdr;
14785 struct elf_link_hash_entry **sym_hashes;
14786 Elf_Internal_Rela *rel;
14787 Elf_Internal_Rela *wrel;
14788 Elf_Internal_Rela *relend;
14789 Elf_Internal_Rela outrel;
14790 bfd_byte *loc;
14791 struct got_entry **local_got_ents;
14792 bfd_vma TOCstart;
14793 bfd_boolean ret = TRUE;
14794 bfd_boolean is_opd;
14795 /* Assume 'at' branch hints. */
14796 bfd_boolean is_isa_v2 = TRUE;
14797 bfd_boolean warned_dynamic = FALSE;
14798 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14799
14800 /* Initialize howto table if needed. */
14801 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14802 ppc_howto_init ();
14803
14804 htab = ppc_hash_table (info);
14805 if (htab == NULL)
14806 return FALSE;
14807
14808 /* Don't relocate stub sections. */
14809 if (input_section->owner == htab->params->stub_bfd)
14810 return TRUE;
14811
14812 if (!is_ppc64_elf (input_bfd))
14813 {
14814 bfd_set_error (bfd_error_wrong_format);
14815 return FALSE;
14816 }
14817
14818 local_got_ents = elf_local_got_ents (input_bfd);
14819 TOCstart = elf_gp (output_bfd);
14820 symtab_hdr = &elf_symtab_hdr (input_bfd);
14821 sym_hashes = elf_sym_hashes (input_bfd);
14822 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14823
14824 rel = wrel = relocs;
14825 relend = relocs + input_section->reloc_count;
14826 for (; rel < relend; wrel++, rel++)
14827 {
14828 enum elf_ppc64_reloc_type r_type;
14829 bfd_vma addend;
14830 bfd_reloc_status_type r;
14831 Elf_Internal_Sym *sym;
14832 asection *sec;
14833 struct elf_link_hash_entry *h_elf;
14834 struct ppc_link_hash_entry *h;
14835 struct ppc_link_hash_entry *fdh;
14836 const char *sym_name;
14837 unsigned long r_symndx, toc_symndx;
14838 bfd_vma toc_addend;
14839 unsigned char tls_mask, tls_gd, tls_type;
14840 unsigned char sym_type;
14841 bfd_vma relocation;
14842 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14843 bfd_boolean warned;
14844 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14845 unsigned int insn;
14846 unsigned int mask;
14847 struct ppc_stub_hash_entry *stub_entry;
14848 bfd_vma max_br_offset;
14849 bfd_vma from;
14850 Elf_Internal_Rela orig_rel;
14851 reloc_howto_type *howto;
14852 struct reloc_howto_struct alt_howto;
14853 uint64_t pinsn;
14854 bfd_vma offset;
14855
14856 again:
14857 orig_rel = *rel;
14858
14859 r_type = ELF64_R_TYPE (rel->r_info);
14860 r_symndx = ELF64_R_SYM (rel->r_info);
14861
14862 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14863 symbol of the previous ADDR64 reloc. The symbol gives us the
14864 proper TOC base to use. */
14865 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14866 && wrel != relocs
14867 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14868 && is_opd)
14869 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14870
14871 sym = NULL;
14872 sec = NULL;
14873 h_elf = NULL;
14874 sym_name = NULL;
14875 unresolved_reloc = FALSE;
14876 warned = FALSE;
14877
14878 if (r_symndx < symtab_hdr->sh_info)
14879 {
14880 /* It's a local symbol. */
14881 struct _opd_sec_data *opd;
14882
14883 sym = local_syms + r_symndx;
14884 sec = local_sections[r_symndx];
14885 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14886 sym_type = ELF64_ST_TYPE (sym->st_info);
14887 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14888 opd = get_opd_info (sec);
14889 if (opd != NULL && opd->adjust != NULL)
14890 {
14891 long adjust = opd->adjust[OPD_NDX (sym->st_value
14892 + rel->r_addend)];
14893 if (adjust == -1)
14894 relocation = 0;
14895 else
14896 {
14897 /* If this is a relocation against the opd section sym
14898 and we have edited .opd, adjust the reloc addend so
14899 that ld -r and ld --emit-relocs output is correct.
14900 If it is a reloc against some other .opd symbol,
14901 then the symbol value will be adjusted later. */
14902 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14903 rel->r_addend += adjust;
14904 else
14905 relocation += adjust;
14906 }
14907 }
14908 }
14909 else
14910 {
14911 bfd_boolean ignored;
14912
14913 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14914 r_symndx, symtab_hdr, sym_hashes,
14915 h_elf, sec, relocation,
14916 unresolved_reloc, warned, ignored);
14917 sym_name = h_elf->root.root.string;
14918 sym_type = h_elf->type;
14919 if (sec != NULL
14920 && sec->owner == output_bfd
14921 && strcmp (sec->name, ".opd") == 0)
14922 {
14923 /* This is a symbol defined in a linker script. All
14924 such are defined in output sections, even those
14925 defined by simple assignment from a symbol defined in
14926 an input section. Transfer the symbol to an
14927 appropriate input .opd section, so that a branch to
14928 this symbol will be mapped to the location specified
14929 by the opd entry. */
14930 struct bfd_link_order *lo;
14931 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14932 if (lo->type == bfd_indirect_link_order)
14933 {
14934 asection *isec = lo->u.indirect.section;
14935 if (h_elf->root.u.def.value >= isec->output_offset
14936 && h_elf->root.u.def.value < (isec->output_offset
14937 + isec->size))
14938 {
14939 h_elf->root.u.def.value -= isec->output_offset;
14940 h_elf->root.u.def.section = isec;
14941 sec = isec;
14942 break;
14943 }
14944 }
14945 }
14946 }
14947 h = ppc_elf_hash_entry (h_elf);
14948
14949 if (sec != NULL && discarded_section (sec))
14950 {
14951 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14952 input_bfd, input_section,
14953 contents, rel->r_offset);
14954 wrel->r_offset = rel->r_offset;
14955 wrel->r_info = 0;
14956 wrel->r_addend = 0;
14957
14958 /* For ld -r, remove relocations in debug sections against
14959 symbols defined in discarded sections. Not done for
14960 non-debug to preserve relocs in .eh_frame which the
14961 eh_frame editing code expects to be present. */
14962 if (bfd_link_relocatable (info)
14963 && (input_section->flags & SEC_DEBUGGING))
14964 wrel--;
14965
14966 continue;
14967 }
14968
14969 if (bfd_link_relocatable (info))
14970 goto copy_reloc;
14971
14972 if (h != NULL && &h->elf == htab->elf.hgot)
14973 {
14974 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14975 sec = bfd_abs_section_ptr;
14976 unresolved_reloc = FALSE;
14977 }
14978
14979 /* TLS optimizations. Replace instruction sequences and relocs
14980 based on information we collected in tls_optimize. We edit
14981 RELOCS so that --emit-relocs will output something sensible
14982 for the final instruction stream. */
14983 tls_mask = 0;
14984 tls_gd = 0;
14985 toc_symndx = 0;
14986 if (h != NULL)
14987 tls_mask = h->tls_mask;
14988 else if (local_got_ents != NULL)
14989 {
14990 struct plt_entry **local_plt = (struct plt_entry **)
14991 (local_got_ents + symtab_hdr->sh_info);
14992 unsigned char *lgot_masks = (unsigned char *)
14993 (local_plt + symtab_hdr->sh_info);
14994 tls_mask = lgot_masks[r_symndx];
14995 }
14996 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14997 && (r_type == R_PPC64_TLS
14998 || r_type == R_PPC64_TLSGD
14999 || r_type == R_PPC64_TLSLD))
15000 {
15001 /* Check for toc tls entries. */
15002 unsigned char *toc_tls;
15003
15004 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15005 &local_syms, rel, input_bfd))
15006 return FALSE;
15007
15008 if (toc_tls)
15009 tls_mask = *toc_tls;
15010 }
15011
15012 /* Check that tls relocs are used with tls syms, and non-tls
15013 relocs are used with non-tls syms. */
15014 if (r_symndx != STN_UNDEF
15015 && r_type != R_PPC64_NONE
15016 && (h == NULL
15017 || h->elf.root.type == bfd_link_hash_defined
15018 || h->elf.root.type == bfd_link_hash_defweak)
15019 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
15020 {
15021 if ((tls_mask & TLS_TLS) != 0
15022 && (r_type == R_PPC64_TLS
15023 || r_type == R_PPC64_TLSGD
15024 || r_type == R_PPC64_TLSLD))
15025 /* R_PPC64_TLS is OK against a symbol in the TOC. */
15026 ;
15027 else
15028 info->callbacks->einfo
15029 (!IS_PPC64_TLS_RELOC (r_type)
15030 /* xgettext:c-format */
15031 ? _("%H: %s used with TLS symbol `%pT'\n")
15032 /* xgettext:c-format */
15033 : _("%H: %s used with non-TLS symbol `%pT'\n"),
15034 input_bfd, input_section, rel->r_offset,
15035 ppc64_elf_howto_table[r_type]->name,
15036 sym_name);
15037 }
15038
15039 /* Ensure reloc mapping code below stays sane. */
15040 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
15041 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
15042 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
15043 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
15044 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
15045 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
15046 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
15047 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
15048 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
15049 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
15050 abort ();
15051
15052 switch (r_type)
15053 {
15054 default:
15055 break;
15056
15057 case R_PPC64_LO_DS_OPT:
15058 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
15059 if ((insn & (0x3fu << 26)) != 58u << 26)
15060 abort ();
15061 insn += (14u << 26) - (58u << 26);
15062 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
15063 r_type = R_PPC64_TOC16_LO;
15064 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15065 break;
15066
15067 case R_PPC64_TOC16:
15068 case R_PPC64_TOC16_LO:
15069 case R_PPC64_TOC16_DS:
15070 case R_PPC64_TOC16_LO_DS:
15071 {
15072 /* Check for toc tls entries. */
15073 unsigned char *toc_tls;
15074 int retval;
15075
15076 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15077 &local_syms, rel, input_bfd);
15078 if (retval == 0)
15079 return FALSE;
15080
15081 if (toc_tls)
15082 {
15083 tls_mask = *toc_tls;
15084 if (r_type == R_PPC64_TOC16_DS
15085 || r_type == R_PPC64_TOC16_LO_DS)
15086 {
15087 if ((tls_mask & TLS_TLS) != 0
15088 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
15089 goto toctprel;
15090 }
15091 else
15092 {
15093 /* If we found a GD reloc pair, then we might be
15094 doing a GD->IE transition. */
15095 if (retval == 2)
15096 {
15097 tls_gd = TLS_GDIE;
15098 if ((tls_mask & TLS_TLS) != 0
15099 && (tls_mask & TLS_GD) == 0)
15100 goto tls_ldgd_opt;
15101 }
15102 else if (retval == 3)
15103 {
15104 if ((tls_mask & TLS_TLS) != 0
15105 && (tls_mask & TLS_LD) == 0)
15106 goto tls_ldgd_opt;
15107 }
15108 }
15109 }
15110 }
15111 break;
15112
15113 case R_PPC64_GOT_TPREL16_HI:
15114 case R_PPC64_GOT_TPREL16_HA:
15115 if ((tls_mask & TLS_TLS) != 0
15116 && (tls_mask & TLS_TPREL) == 0)
15117 {
15118 rel->r_offset -= d_offset;
15119 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15120 r_type = R_PPC64_NONE;
15121 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15122 }
15123 break;
15124
15125 case R_PPC64_GOT_TPREL16_DS:
15126 case R_PPC64_GOT_TPREL16_LO_DS:
15127 if ((tls_mask & TLS_TLS) != 0
15128 && (tls_mask & TLS_TPREL) == 0)
15129 {
15130 toctprel:
15131 insn = bfd_get_32 (input_bfd,
15132 contents + rel->r_offset - d_offset);
15133 insn &= 31 << 21;
15134 insn |= 0x3c0d0000; /* addis 0,13,0 */
15135 bfd_put_32 (input_bfd, insn,
15136 contents + rel->r_offset - d_offset);
15137 r_type = R_PPC64_TPREL16_HA;
15138 if (toc_symndx != 0)
15139 {
15140 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15141 rel->r_addend = toc_addend;
15142 /* We changed the symbol. Start over in order to
15143 get h, sym, sec etc. right. */
15144 goto again;
15145 }
15146 else
15147 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15148 }
15149 break;
15150
15151 case R_PPC64_GOT_TPREL_PCREL34:
15152 if ((tls_mask & TLS_TLS) != 0
15153 && (tls_mask & TLS_TPREL) == 0)
15154 {
15155 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15156 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15157 pinsn <<= 32;
15158 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15159 pinsn += ((2ULL << 56) + (-1ULL << 52)
15160 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15161 bfd_put_32 (input_bfd, pinsn >> 32,
15162 contents + rel->r_offset);
15163 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15164 contents + rel->r_offset + 4);
15165 r_type = R_PPC64_TPREL34;
15166 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15167 }
15168 break;
15169
15170 case R_PPC64_TLS:
15171 if ((tls_mask & TLS_TLS) != 0
15172 && (tls_mask & TLS_TPREL) == 0)
15173 {
15174 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15175 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
15176 if (insn == 0)
15177 break;
15178 if ((rel->r_offset & 3) == 0)
15179 {
15180 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15181 /* Was PPC64_TLS which sits on insn boundary, now
15182 PPC64_TPREL16_LO which is at low-order half-word. */
15183 rel->r_offset += d_offset;
15184 r_type = R_PPC64_TPREL16_LO;
15185 if (toc_symndx != 0)
15186 {
15187 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15188 rel->r_addend = toc_addend;
15189 /* We changed the symbol. Start over in order to
15190 get h, sym, sec etc. right. */
15191 goto again;
15192 }
15193 else
15194 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15195 }
15196 else if ((rel->r_offset & 3) == 1)
15197 {
15198 /* For pcrel IE to LE we already have the full
15199 offset and thus don't need an addi here. A nop
15200 or mr will do. */
15201 if ((insn & (0x3fu << 26)) == 14 << 26)
15202 {
15203 /* Extract regs from addi rt,ra,si. */
15204 unsigned int rt = (insn >> 21) & 0x1f;
15205 unsigned int ra = (insn >> 16) & 0x1f;
15206 if (rt == ra)
15207 insn = NOP;
15208 else
15209 {
15210 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15211 insn = (rt << 16) | (ra << 21) | (ra << 11);
15212 insn |= (31u << 26) | (444u << 1);
15213 }
15214 }
15215 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
15216 }
15217 }
15218 break;
15219
15220 case R_PPC64_GOT_TLSGD16_HI:
15221 case R_PPC64_GOT_TLSGD16_HA:
15222 tls_gd = TLS_GDIE;
15223 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15224 goto tls_gdld_hi;
15225 break;
15226
15227 case R_PPC64_GOT_TLSLD16_HI:
15228 case R_PPC64_GOT_TLSLD16_HA:
15229 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15230 {
15231 tls_gdld_hi:
15232 if ((tls_mask & tls_gd) != 0)
15233 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
15234 + R_PPC64_GOT_TPREL16_DS);
15235 else
15236 {
15237 rel->r_offset -= d_offset;
15238 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15239 r_type = R_PPC64_NONE;
15240 }
15241 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15242 }
15243 break;
15244
15245 case R_PPC64_GOT_TLSGD16:
15246 case R_PPC64_GOT_TLSGD16_LO:
15247 tls_gd = TLS_GDIE;
15248 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15249 goto tls_ldgd_opt;
15250 break;
15251
15252 case R_PPC64_GOT_TLSLD16:
15253 case R_PPC64_GOT_TLSLD16_LO:
15254 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15255 {
15256 unsigned int insn1, insn2;
15257
15258 tls_ldgd_opt:
15259 offset = (bfd_vma) -1;
15260 /* If not using the newer R_PPC64_TLSGD/LD to mark
15261 __tls_get_addr calls, we must trust that the call
15262 stays with its arg setup insns, ie. that the next
15263 reloc is the __tls_get_addr call associated with
15264 the current reloc. Edit both insns. */
15265 if (input_section->nomark_tls_get_addr
15266 && rel + 1 < relend
15267 && branch_reloc_hash_match (input_bfd, rel + 1,
15268 htab->tls_get_addr_fd,
15269 htab->tga_desc_fd,
15270 htab->tls_get_addr,
15271 htab->tga_desc))
15272 offset = rel[1].r_offset;
15273 /* We read the low GOT_TLS (or TOC16) insn because we
15274 need to keep the destination reg. It may be
15275 something other than the usual r3, and moved to r3
15276 before the call by intervening code. */
15277 insn1 = bfd_get_32 (input_bfd,
15278 contents + rel->r_offset - d_offset);
15279 if ((tls_mask & tls_gd) != 0)
15280 {
15281 /* IE */
15282 insn1 &= (0x1f << 21) | (0x1f << 16);
15283 insn1 |= 58u << 26; /* ld */
15284 insn2 = 0x7c636a14; /* add 3,3,13 */
15285 if (offset != (bfd_vma) -1)
15286 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15287 if (r_type == R_PPC64_TOC16
15288 || r_type == R_PPC64_TOC16_LO)
15289 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
15290 else
15291 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
15292 + R_PPC64_GOT_TPREL16_DS);
15293 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15294 }
15295 else
15296 {
15297 /* LE */
15298 insn1 &= 0x1f << 21;
15299 insn1 |= 0x3c0d0000; /* addis r,13,0 */
15300 insn2 = 0x38630000; /* addi 3,3,0 */
15301 if (tls_gd == 0)
15302 {
15303 /* Was an LD reloc. */
15304 r_symndx = STN_UNDEF;
15305 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15306 }
15307 else if (toc_symndx != 0)
15308 {
15309 r_symndx = toc_symndx;
15310 rel->r_addend = toc_addend;
15311 }
15312 r_type = R_PPC64_TPREL16_HA;
15313 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15314 if (offset != (bfd_vma) -1)
15315 {
15316 rel[1].r_info = ELF64_R_INFO (r_symndx,
15317 R_PPC64_TPREL16_LO);
15318 rel[1].r_offset = offset + d_offset;
15319 rel[1].r_addend = rel->r_addend;
15320 }
15321 }
15322 bfd_put_32 (input_bfd, insn1,
15323 contents + rel->r_offset - d_offset);
15324 if (offset != (bfd_vma) -1)
15325 {
15326 bfd_put_32 (input_bfd, insn2, contents + offset);
15327 if (offset + 8 <= input_section->size)
15328 {
15329 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15330 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
15331 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
15332 }
15333 }
15334 if ((tls_mask & tls_gd) == 0
15335 && (tls_gd == 0 || toc_symndx != 0))
15336 {
15337 /* We changed the symbol. Start over in order
15338 to get h, sym, sec etc. right. */
15339 goto again;
15340 }
15341 }
15342 break;
15343
15344 case R_PPC64_GOT_TLSGD_PCREL34:
15345 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15346 {
15347 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15348 pinsn <<= 32;
15349 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15350 if ((tls_mask & TLS_GDIE) != 0)
15351 {
15352 /* IE, pla -> pld */
15353 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15354 r_type = R_PPC64_GOT_TPREL_PCREL34;
15355 }
15356 else
15357 {
15358 /* LE, pla pcrel -> paddi r13 */
15359 pinsn += (-1ULL << 52) + (13ULL << 16);
15360 r_type = R_PPC64_TPREL34;
15361 }
15362 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15363 bfd_put_32 (input_bfd, pinsn >> 32,
15364 contents + rel->r_offset);
15365 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15366 contents + rel->r_offset + 4);
15367 }
15368 break;
15369
15370 case R_PPC64_GOT_TLSLD_PCREL34:
15371 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15372 {
15373 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15374 pinsn <<= 32;
15375 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15376 pinsn += (-1ULL << 52) + (13ULL << 16);
15377 bfd_put_32 (input_bfd, pinsn >> 32,
15378 contents + rel->r_offset);
15379 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15380 contents + rel->r_offset + 4);
15381 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15382 r_symndx = STN_UNDEF;
15383 r_type = R_PPC64_TPREL34;
15384 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15385 goto again;
15386 }
15387 break;
15388
15389 case R_PPC64_TLSGD:
15390 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
15391 && rel + 1 < relend)
15392 {
15393 unsigned int insn2;
15394 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15395
15396 offset = rel->r_offset;
15397 if (is_plt_seq_reloc (r_type1))
15398 {
15399 bfd_put_32 (output_bfd, NOP, contents + offset);
15400 if (r_type1 == R_PPC64_PLT_PCREL34
15401 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15402 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15403 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15404 break;
15405 }
15406
15407 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15408 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15409
15410 if ((tls_mask & TLS_GDIE) != 0)
15411 {
15412 /* IE */
15413 r_type = R_PPC64_NONE;
15414 insn2 = 0x7c636a14; /* add 3,3,13 */
15415 }
15416 else
15417 {
15418 /* LE */
15419 if (toc_symndx != 0)
15420 {
15421 r_symndx = toc_symndx;
15422 rel->r_addend = toc_addend;
15423 }
15424 if (r_type1 == R_PPC64_REL24_NOTOC
15425 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15426 {
15427 r_type = R_PPC64_NONE;
15428 insn2 = NOP;
15429 }
15430 else
15431 {
15432 rel->r_offset = offset + d_offset;
15433 r_type = R_PPC64_TPREL16_LO;
15434 insn2 = 0x38630000; /* addi 3,3,0 */
15435 }
15436 }
15437 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15438 /* Zap the reloc on the _tls_get_addr call too. */
15439 BFD_ASSERT (offset == rel[1].r_offset);
15440 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15441 bfd_put_32 (input_bfd, insn2, contents + offset);
15442 if ((tls_mask & TLS_GDIE) == 0
15443 && toc_symndx != 0
15444 && r_type != R_PPC64_NONE)
15445 goto again;
15446 }
15447 break;
15448
15449 case R_PPC64_TLSLD:
15450 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
15451 && rel + 1 < relend)
15452 {
15453 unsigned int insn2;
15454 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15455
15456 offset = rel->r_offset;
15457 if (is_plt_seq_reloc (r_type1))
15458 {
15459 bfd_put_32 (output_bfd, NOP, contents + offset);
15460 if (r_type1 == R_PPC64_PLT_PCREL34
15461 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15462 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15463 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15464 break;
15465 }
15466
15467 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15468 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15469
15470 if (r_type1 == R_PPC64_REL24_NOTOC
15471 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15472 {
15473 r_type = R_PPC64_NONE;
15474 insn2 = NOP;
15475 }
15476 else
15477 {
15478 rel->r_offset = offset + d_offset;
15479 r_symndx = STN_UNDEF;
15480 r_type = R_PPC64_TPREL16_LO;
15481 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15482 insn2 = 0x38630000; /* addi 3,3,0 */
15483 }
15484 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15485 /* Zap the reloc on the _tls_get_addr call too. */
15486 BFD_ASSERT (offset == rel[1].r_offset);
15487 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15488 bfd_put_32 (input_bfd, insn2, contents + offset);
15489 if (r_type != R_PPC64_NONE)
15490 goto again;
15491 }
15492 break;
15493
15494 case R_PPC64_DTPMOD64:
15495 if (rel + 1 < relend
15496 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
15497 && rel[1].r_offset == rel->r_offset + 8)
15498 {
15499 if ((tls_mask & TLS_GD) == 0)
15500 {
15501 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
15502 if ((tls_mask & TLS_GDIE) != 0)
15503 r_type = R_PPC64_TPREL64;
15504 else
15505 {
15506 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15507 r_type = R_PPC64_NONE;
15508 }
15509 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15510 }
15511 }
15512 else
15513 {
15514 if ((tls_mask & TLS_LD) == 0)
15515 {
15516 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15517 r_type = R_PPC64_NONE;
15518 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15519 }
15520 }
15521 break;
15522
15523 case R_PPC64_TPREL64:
15524 if ((tls_mask & TLS_TPREL) == 0)
15525 {
15526 r_type = R_PPC64_NONE;
15527 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15528 }
15529 break;
15530
15531 case R_PPC64_ENTRY:
15532 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15533 if (!bfd_link_pic (info)
15534 && !info->traditional_format
15535 && relocation + 0x80008000 <= 0xffffffff)
15536 {
15537 unsigned int insn1, insn2;
15538
15539 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15540 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15541 if ((insn1 & ~0xfffc) == LD_R2_0R12
15542 && insn2 == ADD_R2_R2_R12)
15543 {
15544 bfd_put_32 (input_bfd,
15545 LIS_R2 + PPC_HA (relocation),
15546 contents + rel->r_offset);
15547 bfd_put_32 (input_bfd,
15548 ADDI_R2_R2 + PPC_LO (relocation),
15549 contents + rel->r_offset + 4);
15550 }
15551 }
15552 else
15553 {
15554 relocation -= (rel->r_offset
15555 + input_section->output_offset
15556 + input_section->output_section->vma);
15557 if (relocation + 0x80008000 <= 0xffffffff)
15558 {
15559 unsigned int insn1, insn2;
15560
15561 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15562 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15563 if ((insn1 & ~0xfffc) == LD_R2_0R12
15564 && insn2 == ADD_R2_R2_R12)
15565 {
15566 bfd_put_32 (input_bfd,
15567 ADDIS_R2_R12 + PPC_HA (relocation),
15568 contents + rel->r_offset);
15569 bfd_put_32 (input_bfd,
15570 ADDI_R2_R2 + PPC_LO (relocation),
15571 contents + rel->r_offset + 4);
15572 }
15573 }
15574 }
15575 break;
15576
15577 case R_PPC64_REL16_HA:
15578 /* If we are generating a non-PIC executable, edit
15579 . 0: addis 2,12,.TOC.-0b@ha
15580 . addi 2,2,.TOC.-0b@l
15581 used by ELFv2 global entry points to set up r2, to
15582 . lis 2,.TOC.@ha
15583 . addi 2,2,.TOC.@l
15584 if .TOC. is in range. */
15585 if (!bfd_link_pic (info)
15586 && !info->traditional_format
15587 && !htab->opd_abi
15588 && rel->r_addend == d_offset
15589 && h != NULL && &h->elf == htab->elf.hgot
15590 && rel + 1 < relend
15591 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15592 && rel[1].r_offset == rel->r_offset + 4
15593 && rel[1].r_addend == rel->r_addend + 4
15594 && relocation + 0x80008000 <= 0xffffffff)
15595 {
15596 unsigned int insn1, insn2;
15597 offset = rel->r_offset - d_offset;
15598 insn1 = bfd_get_32 (input_bfd, contents + offset);
15599 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15600 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15601 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15602 {
15603 r_type = R_PPC64_ADDR16_HA;
15604 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15605 rel->r_addend -= d_offset;
15606 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15607 rel[1].r_addend -= d_offset + 4;
15608 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15609 }
15610 }
15611 break;
15612 }
15613
15614 /* Handle other relocations that tweak non-addend part of insn. */
15615 insn = 0;
15616 max_br_offset = 1 << 25;
15617 addend = rel->r_addend;
15618 reloc_dest = DEST_NORMAL;
15619 switch (r_type)
15620 {
15621 default:
15622 break;
15623
15624 case R_PPC64_TOCSAVE:
15625 if (relocation + addend == (rel->r_offset
15626 + input_section->output_offset
15627 + input_section->output_section->vma)
15628 && tocsave_find (htab, NO_INSERT,
15629 &local_syms, rel, input_bfd))
15630 {
15631 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15632 if (insn == NOP
15633 || insn == CROR_151515 || insn == CROR_313131)
15634 bfd_put_32 (input_bfd,
15635 STD_R2_0R1 + STK_TOC (htab),
15636 contents + rel->r_offset);
15637 }
15638 break;
15639
15640 /* Branch taken prediction relocations. */
15641 case R_PPC64_ADDR14_BRTAKEN:
15642 case R_PPC64_REL14_BRTAKEN:
15643 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15644 /* Fall through. */
15645
15646 /* Branch not taken prediction relocations. */
15647 case R_PPC64_ADDR14_BRNTAKEN:
15648 case R_PPC64_REL14_BRNTAKEN:
15649 insn |= bfd_get_32 (input_bfd,
15650 contents + rel->r_offset) & ~(0x01 << 21);
15651 /* Fall through. */
15652
15653 case R_PPC64_REL14:
15654 max_br_offset = 1 << 15;
15655 /* Fall through. */
15656
15657 case R_PPC64_REL24:
15658 case R_PPC64_REL24_NOTOC:
15659 case R_PPC64_PLTCALL:
15660 case R_PPC64_PLTCALL_NOTOC:
15661 /* Calls to functions with a different TOC, such as calls to
15662 shared objects, need to alter the TOC pointer. This is
15663 done using a linkage stub. A REL24 branching to these
15664 linkage stubs needs to be followed by a nop, as the nop
15665 will be replaced with an instruction to restore the TOC
15666 base pointer. */
15667 fdh = h;
15668 if (h != NULL
15669 && h->oh != NULL
15670 && h->oh->is_func_descriptor)
15671 fdh = ppc_follow_link (h->oh);
15672 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15673 htab);
15674 if ((r_type == R_PPC64_PLTCALL
15675 || r_type == R_PPC64_PLTCALL_NOTOC)
15676 && stub_entry != NULL
15677 && stub_entry->stub_type >= ppc_stub_plt_call
15678 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15679 stub_entry = NULL;
15680
15681 if (stub_entry != NULL
15682 && ((stub_entry->stub_type >= ppc_stub_plt_call
15683 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15684 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15685 || stub_entry->stub_type == ppc_stub_plt_branch_both
15686 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15687 || stub_entry->stub_type == ppc_stub_long_branch_both))
15688 {
15689 bfd_boolean can_plt_call = FALSE;
15690
15691 if (stub_entry->stub_type == ppc_stub_plt_call
15692 && !htab->opd_abi
15693 && htab->params->plt_localentry0 != 0
15694 && h != NULL
15695 && is_elfv2_localentry0 (&h->elf))
15696 {
15697 /* The function doesn't use or change r2. */
15698 can_plt_call = TRUE;
15699 }
15700 else if (r_type == R_PPC64_REL24_NOTOC)
15701 {
15702 /* NOTOC calls don't need to restore r2. */
15703 can_plt_call = TRUE;
15704 }
15705
15706 /* All of these stubs may modify r2, so there must be a
15707 branch and link followed by a nop. The nop is
15708 replaced by an insn to restore r2. */
15709 else if (rel->r_offset + 8 <= input_section->size)
15710 {
15711 unsigned long br;
15712
15713 br = bfd_get_32 (input_bfd,
15714 contents + rel->r_offset);
15715 if ((br & 1) != 0)
15716 {
15717 unsigned long nop;
15718
15719 nop = bfd_get_32 (input_bfd,
15720 contents + rel->r_offset + 4);
15721 if (nop == LD_R2_0R1 + STK_TOC (htab))
15722 can_plt_call = TRUE;
15723 else if (nop == NOP
15724 || nop == CROR_151515
15725 || nop == CROR_313131)
15726 {
15727 if (h != NULL
15728 && is_tls_get_addr (&h->elf, htab)
15729 && htab->params->tls_get_addr_opt)
15730 {
15731 /* Special stub used, leave nop alone. */
15732 }
15733 else
15734 bfd_put_32 (input_bfd,
15735 LD_R2_0R1 + STK_TOC (htab),
15736 contents + rel->r_offset + 4);
15737 can_plt_call = TRUE;
15738 }
15739 }
15740 }
15741
15742 if (!can_plt_call && h != NULL)
15743 {
15744 const char *name = h->elf.root.root.string;
15745
15746 if (*name == '.')
15747 ++name;
15748
15749 if (strncmp (name, "__libc_start_main", 17) == 0
15750 && (name[17] == 0 || name[17] == '@'))
15751 {
15752 /* Allow crt1 branch to go via a toc adjusting
15753 stub. Other calls that never return could do
15754 the same, if we could detect such. */
15755 can_plt_call = TRUE;
15756 }
15757 }
15758
15759 if (!can_plt_call)
15760 {
15761 /* g++ as of 20130507 emits self-calls without a
15762 following nop. This is arguably wrong since we
15763 have conflicting information. On the one hand a
15764 global symbol and on the other a local call
15765 sequence, but don't error for this special case.
15766 It isn't possible to cheaply verify we have
15767 exactly such a call. Allow all calls to the same
15768 section. */
15769 asection *code_sec = sec;
15770
15771 if (get_opd_info (sec) != NULL)
15772 {
15773 bfd_vma off = (relocation + addend
15774 - sec->output_section->vma
15775 - sec->output_offset);
15776
15777 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15778 }
15779 if (code_sec == input_section)
15780 can_plt_call = TRUE;
15781 }
15782
15783 if (!can_plt_call)
15784 {
15785 if (stub_entry->stub_type >= ppc_stub_plt_call
15786 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15787 info->callbacks->einfo
15788 /* xgettext:c-format */
15789 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15790 "(plt call stub)\n"),
15791 input_bfd, input_section, rel->r_offset, sym_name);
15792 else
15793 info->callbacks->einfo
15794 /* xgettext:c-format */
15795 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15796 "(toc save/adjust stub)\n"),
15797 input_bfd, input_section, rel->r_offset, sym_name);
15798
15799 bfd_set_error (bfd_error_bad_value);
15800 ret = FALSE;
15801 }
15802
15803 if (can_plt_call
15804 && stub_entry->stub_type >= ppc_stub_plt_call
15805 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15806 unresolved_reloc = FALSE;
15807 }
15808
15809 if ((stub_entry == NULL
15810 || stub_entry->stub_type == ppc_stub_long_branch
15811 || stub_entry->stub_type == ppc_stub_plt_branch)
15812 && get_opd_info (sec) != NULL)
15813 {
15814 /* The branch destination is the value of the opd entry. */
15815 bfd_vma off = (relocation + addend
15816 - sec->output_section->vma
15817 - sec->output_offset);
15818 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15819 if (dest != (bfd_vma) -1)
15820 {
15821 relocation = dest;
15822 addend = 0;
15823 reloc_dest = DEST_OPD;
15824 }
15825 }
15826
15827 /* If the branch is out of reach we ought to have a long
15828 branch stub. */
15829 from = (rel->r_offset
15830 + input_section->output_offset
15831 + input_section->output_section->vma);
15832
15833 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15834 ? fdh->elf.other
15835 : sym->st_other);
15836
15837 if (stub_entry != NULL
15838 && (stub_entry->stub_type == ppc_stub_long_branch
15839 || stub_entry->stub_type == ppc_stub_plt_branch)
15840 && (r_type == R_PPC64_ADDR14_BRTAKEN
15841 || r_type == R_PPC64_ADDR14_BRNTAKEN
15842 || (relocation + addend - from + max_br_offset
15843 < 2 * max_br_offset)))
15844 /* Don't use the stub if this branch is in range. */
15845 stub_entry = NULL;
15846
15847 if (stub_entry != NULL
15848 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15849 || stub_entry->stub_type == ppc_stub_long_branch_both
15850 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15851 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15852 && (r_type != R_PPC64_REL24_NOTOC
15853 || ((fdh ? fdh->elf.other : sym->st_other)
15854 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15855 && (relocation + addend - from + max_br_offset
15856 < 2 * max_br_offset))
15857 stub_entry = NULL;
15858
15859 if (stub_entry != NULL
15860 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15861 || stub_entry->stub_type == ppc_stub_long_branch_both
15862 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15863 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15864 && r_type == R_PPC64_REL24_NOTOC
15865 && (relocation + addend - from + max_br_offset
15866 < 2 * max_br_offset))
15867 stub_entry = NULL;
15868
15869 if (stub_entry != NULL)
15870 {
15871 /* Munge up the value and addend so that we call the stub
15872 rather than the procedure directly. */
15873 asection *stub_sec = stub_entry->group->stub_sec;
15874
15875 if (stub_entry->stub_type == ppc_stub_save_res)
15876 relocation += (stub_sec->output_offset
15877 + stub_sec->output_section->vma
15878 + stub_sec->size - htab->sfpr->size
15879 - htab->sfpr->output_offset
15880 - htab->sfpr->output_section->vma);
15881 else
15882 relocation = (stub_entry->stub_offset
15883 + stub_sec->output_offset
15884 + stub_sec->output_section->vma);
15885 addend = 0;
15886 reloc_dest = DEST_STUB;
15887
15888 if (((stub_entry->stub_type == ppc_stub_plt_call
15889 && ALWAYS_EMIT_R2SAVE)
15890 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15891 || stub_entry->stub_type == ppc_stub_plt_call_both)
15892 && !(h != NULL
15893 && is_tls_get_addr (&h->elf, htab)
15894 && htab->params->tls_get_addr_opt)
15895 && rel + 1 < relend
15896 && rel[1].r_offset == rel->r_offset + 4
15897 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15898 relocation += 4;
15899 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15900 || stub_entry->stub_type == ppc_stub_plt_branch_both
15901 || stub_entry->stub_type == ppc_stub_plt_call_both)
15902 && r_type == R_PPC64_REL24_NOTOC)
15903 relocation += 4;
15904
15905 if (r_type == R_PPC64_REL24_NOTOC
15906 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15907 || stub_entry->stub_type == ppc_stub_plt_call_both))
15908 htab->notoc_plt = 1;
15909 }
15910
15911 if (insn != 0)
15912 {
15913 if (is_isa_v2)
15914 {
15915 /* Set 'a' bit. This is 0b00010 in BO field for branch
15916 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15917 for branch on CTR insns (BO == 1a00t or 1a01t). */
15918 if ((insn & (0x14 << 21)) == (0x04 << 21))
15919 insn |= 0x02 << 21;
15920 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15921 insn |= 0x08 << 21;
15922 else
15923 break;
15924 }
15925 else
15926 {
15927 /* Invert 'y' bit if not the default. */
15928 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15929 insn ^= 0x01 << 21;
15930 }
15931
15932 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15933 }
15934
15935 /* NOP out calls to undefined weak functions.
15936 We can thus call a weak function without first
15937 checking whether the function is defined. */
15938 else if (h != NULL
15939 && h->elf.root.type == bfd_link_hash_undefweak
15940 && h->elf.dynindx == -1
15941 && (r_type == R_PPC64_REL24
15942 || r_type == R_PPC64_REL24_NOTOC)
15943 && relocation == 0
15944 && addend == 0)
15945 {
15946 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15947 goto copy_reloc;
15948 }
15949 break;
15950
15951 case R_PPC64_GOT16_DS:
15952 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
15953 || !htab->do_toc_opt)
15954 break;
15955 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15956 if (relocation + addend - from + 0x8000 < 0x10000
15957 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
15958 {
15959 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15960 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
15961 {
15962 insn += (14u << 26) - (58u << 26);
15963 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15964 r_type = R_PPC64_TOC16;
15965 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15966 }
15967 }
15968 break;
15969
15970 case R_PPC64_GOT16_LO_DS:
15971 case R_PPC64_GOT16_HA:
15972 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
15973 || !htab->do_toc_opt)
15974 break;
15975 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15976 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15977 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
15978 {
15979 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15980 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
15981 {
15982 insn += (14u << 26) - (58u << 26);
15983 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15984 r_type = R_PPC64_TOC16_LO;
15985 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15986 }
15987 else if ((insn & (0x3fu << 26)) == 15u << 26 /* addis */)
15988 {
15989 r_type = R_PPC64_TOC16_HA;
15990 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15991 }
15992 }
15993 break;
15994
15995 case R_PPC64_GOT_PCREL34:
15996 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
15997 || !htab->do_toc_opt)
15998 break;
15999 from = (rel->r_offset
16000 + input_section->output_section->vma
16001 + input_section->output_offset);
16002 if (!(relocation - from + (1ULL << 33) < 1ULL << 34
16003 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
16004 break;
16005
16006 offset = rel->r_offset;
16007 pinsn = bfd_get_32 (input_bfd, contents + offset);
16008 pinsn <<= 32;
16009 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16010 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16011 != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
16012 break;
16013
16014 /* Replace with paddi. */
16015 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
16016 r_type = R_PPC64_PCREL34;
16017 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16018 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
16019 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
16020 /* Fall through. */
16021
16022 case R_PPC64_PCREL34:
16023 if (!htab->params->no_pcrel_opt
16024 && rel + 1 < relend
16025 && rel[1].r_offset == rel->r_offset
16026 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT)
16027 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16028 {
16029 offset = rel->r_offset;
16030 pinsn = bfd_get_32 (input_bfd, contents + offset);
16031 pinsn <<= 32;
16032 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16033 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16034 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
16035 | (14ULL << 26) /* paddi */))
16036 {
16037 bfd_vma off2 = rel[1].r_addend;
16038 if (off2 == 0)
16039 /* zero means next insn. */
16040 off2 = 8;
16041 off2 += offset;
16042 if (off2 + 4 <= input_section->size)
16043 {
16044 uint64_t pinsn2;
16045 bfd_signed_vma addend_off;
16046 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
16047 pinsn2 <<= 32;
16048 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16049 {
16050 if (off2 + 8 > input_section->size)
16051 break;
16052 pinsn2 |= bfd_get_32 (input_bfd,
16053 contents + off2 + 4);
16054 }
16055 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
16056 {
16057 addend += addend_off;
16058 rel->r_addend = addend;
16059 bfd_put_32 (input_bfd, pinsn >> 32,
16060 contents + offset);
16061 bfd_put_32 (input_bfd, pinsn,
16062 contents + offset + 4);
16063 bfd_put_32 (input_bfd, pinsn2 >> 32,
16064 contents + off2);
16065 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16066 bfd_put_32 (input_bfd, pinsn2,
16067 contents + off2 + 4);
16068 }
16069 }
16070 }
16071 }
16072 break;
16073 }
16074
16075 tls_type = 0;
16076 save_unresolved_reloc = unresolved_reloc;
16077 switch (r_type)
16078 {
16079 default:
16080 /* xgettext:c-format */
16081 _bfd_error_handler (_("%pB: %s unsupported"),
16082 input_bfd, ppc64_elf_howto_table[r_type]->name);
16083
16084 bfd_set_error (bfd_error_bad_value);
16085 ret = FALSE;
16086 goto copy_reloc;
16087
16088 case R_PPC64_NONE:
16089 case R_PPC64_TLS:
16090 case R_PPC64_TLSGD:
16091 case R_PPC64_TLSLD:
16092 case R_PPC64_TOCSAVE:
16093 case R_PPC64_GNU_VTINHERIT:
16094 case R_PPC64_GNU_VTENTRY:
16095 case R_PPC64_ENTRY:
16096 case R_PPC64_PCREL_OPT:
16097 goto copy_reloc;
16098
16099 /* GOT16 relocations. Like an ADDR16 using the symbol's
16100 address in the GOT as relocation value instead of the
16101 symbol's value itself. Also, create a GOT entry for the
16102 symbol and put the symbol value there. */
16103 case R_PPC64_GOT_TLSGD16:
16104 case R_PPC64_GOT_TLSGD16_LO:
16105 case R_PPC64_GOT_TLSGD16_HI:
16106 case R_PPC64_GOT_TLSGD16_HA:
16107 case R_PPC64_GOT_TLSGD_PCREL34:
16108 tls_type = TLS_TLS | TLS_GD;
16109 goto dogot;
16110
16111 case R_PPC64_GOT_TLSLD16:
16112 case R_PPC64_GOT_TLSLD16_LO:
16113 case R_PPC64_GOT_TLSLD16_HI:
16114 case R_PPC64_GOT_TLSLD16_HA:
16115 case R_PPC64_GOT_TLSLD_PCREL34:
16116 tls_type = TLS_TLS | TLS_LD;
16117 goto dogot;
16118
16119 case R_PPC64_GOT_TPREL16_DS:
16120 case R_PPC64_GOT_TPREL16_LO_DS:
16121 case R_PPC64_GOT_TPREL16_HI:
16122 case R_PPC64_GOT_TPREL16_HA:
16123 case R_PPC64_GOT_TPREL_PCREL34:
16124 tls_type = TLS_TLS | TLS_TPREL;
16125 goto dogot;
16126
16127 case R_PPC64_GOT_DTPREL16_DS:
16128 case R_PPC64_GOT_DTPREL16_LO_DS:
16129 case R_PPC64_GOT_DTPREL16_HI:
16130 case R_PPC64_GOT_DTPREL16_HA:
16131 case R_PPC64_GOT_DTPREL_PCREL34:
16132 tls_type = TLS_TLS | TLS_DTPREL;
16133 goto dogot;
16134
16135 case R_PPC64_GOT16:
16136 case R_PPC64_GOT16_LO:
16137 case R_PPC64_GOT16_HI:
16138 case R_PPC64_GOT16_HA:
16139 case R_PPC64_GOT16_DS:
16140 case R_PPC64_GOT16_LO_DS:
16141 case R_PPC64_GOT_PCREL34:
16142 dogot:
16143 {
16144 /* Relocation is to the entry for this symbol in the global
16145 offset table. */
16146 asection *got;
16147 bfd_vma *offp;
16148 bfd_vma off;
16149 unsigned long indx = 0;
16150 struct got_entry *ent;
16151
16152 if (tls_type == (TLS_TLS | TLS_LD)
16153 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16154 ent = ppc64_tlsld_got (input_bfd);
16155 else
16156 {
16157 if (h != NULL)
16158 {
16159 if (!htab->elf.dynamic_sections_created
16160 || h->elf.dynindx == -1
16161 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16162 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16163 /* This is actually a static link, or it is a
16164 -Bsymbolic link and the symbol is defined
16165 locally, or the symbol was forced to be local
16166 because of a version file. */
16167 ;
16168 else
16169 {
16170 indx = h->elf.dynindx;
16171 unresolved_reloc = FALSE;
16172 }
16173 ent = h->elf.got.glist;
16174 }
16175 else
16176 {
16177 if (local_got_ents == NULL)
16178 abort ();
16179 ent = local_got_ents[r_symndx];
16180 }
16181
16182 for (; ent != NULL; ent = ent->next)
16183 if (ent->addend == orig_rel.r_addend
16184 && ent->owner == input_bfd
16185 && ent->tls_type == tls_type)
16186 break;
16187 }
16188
16189 if (ent == NULL)
16190 abort ();
16191 if (ent->is_indirect)
16192 ent = ent->got.ent;
16193 offp = &ent->got.offset;
16194 got = ppc64_elf_tdata (ent->owner)->got;
16195 if (got == NULL)
16196 abort ();
16197
16198 /* The offset must always be a multiple of 8. We use the
16199 least significant bit to record whether we have already
16200 processed this entry. */
16201 off = *offp;
16202 if ((off & 1) != 0)
16203 off &= ~1;
16204 else
16205 {
16206 /* Generate relocs for the dynamic linker, except in
16207 the case of TLSLD where we'll use one entry per
16208 module. */
16209 asection *relgot;
16210 bfd_boolean ifunc;
16211
16212 *offp = off | 1;
16213 relgot = NULL;
16214 ifunc = (h != NULL
16215 ? h->elf.type == STT_GNU_IFUNC
16216 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
16217 if (ifunc)
16218 {
16219 relgot = htab->elf.irelplt;
16220 if (indx == 0 || is_static_defined (&h->elf))
16221 htab->elf.ifunc_resolvers = TRUE;
16222 }
16223 else if (indx != 0
16224 || (bfd_link_pic (info)
16225 && (h == NULL
16226 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16227 && !(tls_type != 0
16228 && bfd_link_executable (info)
16229 && (h == NULL
16230 || SYMBOL_REFERENCES_LOCAL (info,
16231 &h->elf)))))
16232 relgot = ppc64_elf_tdata (ent->owner)->relgot;
16233 if (relgot != NULL)
16234 {
16235 outrel.r_offset = (got->output_section->vma
16236 + got->output_offset
16237 + off);
16238 outrel.r_addend = orig_rel.r_addend;
16239 if (tls_type & (TLS_LD | TLS_GD))
16240 {
16241 outrel.r_addend = 0;
16242 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
16243 if (tls_type == (TLS_TLS | TLS_GD))
16244 {
16245 loc = relgot->contents;
16246 loc += (relgot->reloc_count++
16247 * sizeof (Elf64_External_Rela));
16248 bfd_elf64_swap_reloca_out (output_bfd,
16249 &outrel, loc);
16250 outrel.r_offset += 8;
16251 outrel.r_addend = orig_rel.r_addend;
16252 outrel.r_info
16253 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16254 }
16255 }
16256 else if (tls_type == (TLS_TLS | TLS_DTPREL))
16257 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16258 else if (tls_type == (TLS_TLS | TLS_TPREL))
16259 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
16260 else if (indx != 0)
16261 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
16262 else
16263 {
16264 if (ifunc)
16265 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16266 else
16267 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16268
16269 /* Write the .got section contents for the sake
16270 of prelink. */
16271 loc = got->contents + off;
16272 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
16273 loc);
16274 }
16275
16276 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
16277 {
16278 outrel.r_addend += relocation;
16279 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
16280 {
16281 if (htab->elf.tls_sec == NULL)
16282 outrel.r_addend = 0;
16283 else
16284 outrel.r_addend -= htab->elf.tls_sec->vma;
16285 }
16286 }
16287 loc = relgot->contents;
16288 loc += (relgot->reloc_count++
16289 * sizeof (Elf64_External_Rela));
16290 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16291 }
16292
16293 /* Init the .got section contents here if we're not
16294 emitting a reloc. */
16295 else
16296 {
16297 relocation += orig_rel.r_addend;
16298 if (tls_type != 0)
16299 {
16300 if (htab->elf.tls_sec == NULL)
16301 relocation = 0;
16302 else
16303 {
16304 if (tls_type & TLS_LD)
16305 relocation = 0;
16306 else
16307 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
16308 if (tls_type & TLS_TPREL)
16309 relocation += DTP_OFFSET - TP_OFFSET;
16310 }
16311
16312 if (tls_type & (TLS_GD | TLS_LD))
16313 {
16314 bfd_put_64 (output_bfd, relocation,
16315 got->contents + off + 8);
16316 relocation = 1;
16317 }
16318 }
16319 bfd_put_64 (output_bfd, relocation,
16320 got->contents + off);
16321 }
16322 }
16323
16324 if (off >= (bfd_vma) -2)
16325 abort ();
16326
16327 relocation = got->output_section->vma + got->output_offset + off;
16328 addend = 0;
16329 if (!(r_type == R_PPC64_GOT_PCREL34
16330 || r_type == R_PPC64_GOT_TLSGD_PCREL34
16331 || r_type == R_PPC64_GOT_TLSLD_PCREL34
16332 || r_type == R_PPC64_GOT_TPREL_PCREL34
16333 || r_type == R_PPC64_GOT_DTPREL_PCREL34))
16334 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
16335 }
16336 break;
16337
16338 case R_PPC64_PLT16_HA:
16339 case R_PPC64_PLT16_HI:
16340 case R_PPC64_PLT16_LO:
16341 case R_PPC64_PLT16_LO_DS:
16342 case R_PPC64_PLT_PCREL34:
16343 case R_PPC64_PLT_PCREL34_NOTOC:
16344 case R_PPC64_PLT32:
16345 case R_PPC64_PLT64:
16346 case R_PPC64_PLTSEQ:
16347 case R_PPC64_PLTSEQ_NOTOC:
16348 case R_PPC64_PLTCALL:
16349 case R_PPC64_PLTCALL_NOTOC:
16350 /* Relocation is to the entry for this symbol in the
16351 procedure linkage table. */
16352 unresolved_reloc = TRUE;
16353 {
16354 struct plt_entry **plt_list = NULL;
16355 if (h != NULL)
16356 plt_list = &h->elf.plt.plist;
16357 else if (local_got_ents != NULL)
16358 {
16359 struct plt_entry **local_plt = (struct plt_entry **)
16360 (local_got_ents + symtab_hdr->sh_info);
16361 plt_list = local_plt + r_symndx;
16362 }
16363 if (plt_list)
16364 {
16365 struct plt_entry *ent;
16366
16367 for (ent = *plt_list; ent != NULL; ent = ent->next)
16368 if (ent->plt.offset != (bfd_vma) -1
16369 && ent->addend == orig_rel.r_addend)
16370 {
16371 asection *plt;
16372 bfd_vma got;
16373
16374 plt = htab->elf.splt;
16375 if (!htab->elf.dynamic_sections_created
16376 || h == NULL
16377 || h->elf.dynindx == -1)
16378 {
16379 if (h != NULL
16380 ? h->elf.type == STT_GNU_IFUNC
16381 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16382 plt = htab->elf.iplt;
16383 else
16384 plt = htab->pltlocal;
16385 }
16386 relocation = (plt->output_section->vma
16387 + plt->output_offset
16388 + ent->plt.offset);
16389 if (r_type == R_PPC64_PLT16_HA
16390 || r_type == R_PPC64_PLT16_HI
16391 || r_type == R_PPC64_PLT16_LO
16392 || r_type == R_PPC64_PLT16_LO_DS)
16393 {
16394 got = (elf_gp (output_bfd)
16395 + htab->sec_info[input_section->id].toc_off);
16396 relocation -= got;
16397 }
16398 addend = 0;
16399 unresolved_reloc = FALSE;
16400 break;
16401 }
16402 }
16403 }
16404 break;
16405
16406 case R_PPC64_TOC:
16407 /* Relocation value is TOC base. */
16408 relocation = TOCstart;
16409 if (r_symndx == STN_UNDEF)
16410 relocation += htab->sec_info[input_section->id].toc_off;
16411 else if (unresolved_reloc)
16412 ;
16413 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
16414 relocation += htab->sec_info[sec->id].toc_off;
16415 else
16416 unresolved_reloc = TRUE;
16417 goto dodyn;
16418
16419 /* TOC16 relocs. We want the offset relative to the TOC base,
16420 which is the address of the start of the TOC plus 0x8000.
16421 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16422 in this order. */
16423 case R_PPC64_TOC16:
16424 case R_PPC64_TOC16_LO:
16425 case R_PPC64_TOC16_HI:
16426 case R_PPC64_TOC16_DS:
16427 case R_PPC64_TOC16_LO_DS:
16428 case R_PPC64_TOC16_HA:
16429 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
16430 if (h != NULL)
16431 goto dodyn;
16432 break;
16433
16434 /* Relocate against the beginning of the section. */
16435 case R_PPC64_SECTOFF:
16436 case R_PPC64_SECTOFF_LO:
16437 case R_PPC64_SECTOFF_HI:
16438 case R_PPC64_SECTOFF_DS:
16439 case R_PPC64_SECTOFF_LO_DS:
16440 case R_PPC64_SECTOFF_HA:
16441 if (sec != NULL)
16442 addend -= sec->output_section->vma;
16443 break;
16444
16445 case R_PPC64_REL16:
16446 case R_PPC64_REL16_LO:
16447 case R_PPC64_REL16_HI:
16448 case R_PPC64_REL16_HA:
16449 case R_PPC64_REL16_HIGH:
16450 case R_PPC64_REL16_HIGHA:
16451 case R_PPC64_REL16_HIGHER:
16452 case R_PPC64_REL16_HIGHERA:
16453 case R_PPC64_REL16_HIGHEST:
16454 case R_PPC64_REL16_HIGHESTA:
16455 case R_PPC64_REL16_HIGHER34:
16456 case R_PPC64_REL16_HIGHERA34:
16457 case R_PPC64_REL16_HIGHEST34:
16458 case R_PPC64_REL16_HIGHESTA34:
16459 case R_PPC64_REL16DX_HA:
16460 case R_PPC64_REL14:
16461 case R_PPC64_REL14_BRNTAKEN:
16462 case R_PPC64_REL14_BRTAKEN:
16463 case R_PPC64_REL24:
16464 case R_PPC64_REL24_NOTOC:
16465 case R_PPC64_PCREL34:
16466 case R_PPC64_PCREL28:
16467 break;
16468
16469 case R_PPC64_TPREL16:
16470 case R_PPC64_TPREL16_LO:
16471 case R_PPC64_TPREL16_HI:
16472 case R_PPC64_TPREL16_HA:
16473 case R_PPC64_TPREL16_DS:
16474 case R_PPC64_TPREL16_LO_DS:
16475 case R_PPC64_TPREL16_HIGH:
16476 case R_PPC64_TPREL16_HIGHA:
16477 case R_PPC64_TPREL16_HIGHER:
16478 case R_PPC64_TPREL16_HIGHERA:
16479 case R_PPC64_TPREL16_HIGHEST:
16480 case R_PPC64_TPREL16_HIGHESTA:
16481 case R_PPC64_TPREL34:
16482 if (h != NULL
16483 && h->elf.root.type == bfd_link_hash_undefweak
16484 && h->elf.dynindx == -1)
16485 {
16486 /* Make this relocation against an undefined weak symbol
16487 resolve to zero. This is really just a tweak, since
16488 code using weak externs ought to check that they are
16489 defined before using them. */
16490 bfd_byte *p = contents + rel->r_offset - d_offset;
16491
16492 insn = bfd_get_32 (input_bfd, p);
16493 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
16494 if (insn != 0)
16495 bfd_put_32 (input_bfd, insn, p);
16496 break;
16497 }
16498 if (htab->elf.tls_sec != NULL)
16499 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16500 /* The TPREL16 relocs shouldn't really be used in shared
16501 libs or with non-local symbols as that will result in
16502 DT_TEXTREL being set, but support them anyway. */
16503 goto dodyn;
16504
16505 case R_PPC64_DTPREL16:
16506 case R_PPC64_DTPREL16_LO:
16507 case R_PPC64_DTPREL16_HI:
16508 case R_PPC64_DTPREL16_HA:
16509 case R_PPC64_DTPREL16_DS:
16510 case R_PPC64_DTPREL16_LO_DS:
16511 case R_PPC64_DTPREL16_HIGH:
16512 case R_PPC64_DTPREL16_HIGHA:
16513 case R_PPC64_DTPREL16_HIGHER:
16514 case R_PPC64_DTPREL16_HIGHERA:
16515 case R_PPC64_DTPREL16_HIGHEST:
16516 case R_PPC64_DTPREL16_HIGHESTA:
16517 case R_PPC64_DTPREL34:
16518 if (htab->elf.tls_sec != NULL)
16519 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16520 break;
16521
16522 case R_PPC64_ADDR64_LOCAL:
16523 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
16524 ? h->elf.other
16525 : sym->st_other);
16526 break;
16527
16528 case R_PPC64_DTPMOD64:
16529 relocation = 1;
16530 addend = 0;
16531 goto dodyn;
16532
16533 case R_PPC64_TPREL64:
16534 if (htab->elf.tls_sec != NULL)
16535 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16536 goto dodyn;
16537
16538 case R_PPC64_DTPREL64:
16539 if (htab->elf.tls_sec != NULL)
16540 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16541 /* Fall through. */
16542
16543 /* Relocations that may need to be propagated if this is a
16544 dynamic object. */
16545 case R_PPC64_REL30:
16546 case R_PPC64_REL32:
16547 case R_PPC64_REL64:
16548 case R_PPC64_ADDR14:
16549 case R_PPC64_ADDR14_BRNTAKEN:
16550 case R_PPC64_ADDR14_BRTAKEN:
16551 case R_PPC64_ADDR16:
16552 case R_PPC64_ADDR16_DS:
16553 case R_PPC64_ADDR16_HA:
16554 case R_PPC64_ADDR16_HI:
16555 case R_PPC64_ADDR16_HIGH:
16556 case R_PPC64_ADDR16_HIGHA:
16557 case R_PPC64_ADDR16_HIGHER:
16558 case R_PPC64_ADDR16_HIGHERA:
16559 case R_PPC64_ADDR16_HIGHEST:
16560 case R_PPC64_ADDR16_HIGHESTA:
16561 case R_PPC64_ADDR16_LO:
16562 case R_PPC64_ADDR16_LO_DS:
16563 case R_PPC64_ADDR16_HIGHER34:
16564 case R_PPC64_ADDR16_HIGHERA34:
16565 case R_PPC64_ADDR16_HIGHEST34:
16566 case R_PPC64_ADDR16_HIGHESTA34:
16567 case R_PPC64_ADDR24:
16568 case R_PPC64_ADDR32:
16569 case R_PPC64_ADDR64:
16570 case R_PPC64_UADDR16:
16571 case R_PPC64_UADDR32:
16572 case R_PPC64_UADDR64:
16573 case R_PPC64_D34:
16574 case R_PPC64_D34_LO:
16575 case R_PPC64_D34_HI30:
16576 case R_PPC64_D34_HA30:
16577 case R_PPC64_D28:
16578 dodyn:
16579 if ((input_section->flags & SEC_ALLOC) == 0)
16580 break;
16581
16582 if (NO_OPD_RELOCS && is_opd)
16583 break;
16584
16585 if (bfd_link_pic (info)
16586 ? ((h == NULL
16587 || h->elf.dyn_relocs != NULL)
16588 && ((h != NULL && pc_dynrelocs (h))
16589 || must_be_dyn_reloc (info, r_type)))
16590 : (h != NULL
16591 ? h->elf.dyn_relocs != NULL
16592 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16593 {
16594 bfd_boolean skip, relocate;
16595 asection *sreloc;
16596 bfd_vma out_off;
16597 long indx = 0;
16598
16599 /* When generating a dynamic object, these relocations
16600 are copied into the output file to be resolved at run
16601 time. */
16602
16603 skip = FALSE;
16604 relocate = FALSE;
16605
16606 out_off = _bfd_elf_section_offset (output_bfd, info,
16607 input_section, rel->r_offset);
16608 if (out_off == (bfd_vma) -1)
16609 skip = TRUE;
16610 else if (out_off == (bfd_vma) -2)
16611 skip = TRUE, relocate = TRUE;
16612 out_off += (input_section->output_section->vma
16613 + input_section->output_offset);
16614 outrel.r_offset = out_off;
16615 outrel.r_addend = rel->r_addend;
16616
16617 /* Optimize unaligned reloc use. */
16618 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16619 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16620 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16621 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16622 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16623 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16624 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16625 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16626 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16627
16628 if (skip)
16629 memset (&outrel, 0, sizeof outrel);
16630 else if (h != NULL
16631 && !SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16632 && !is_opd
16633 && r_type != R_PPC64_TOC)
16634 {
16635 indx = h->elf.dynindx;
16636 BFD_ASSERT (indx != -1);
16637 outrel.r_info = ELF64_R_INFO (indx, r_type);
16638 }
16639 else
16640 {
16641 /* This symbol is local, or marked to become local,
16642 or this is an opd section reloc which must point
16643 at a local function. */
16644 outrel.r_addend += relocation;
16645 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16646 {
16647 if (is_opd && h != NULL)
16648 {
16649 /* Lie about opd entries. This case occurs
16650 when building shared libraries and we
16651 reference a function in another shared
16652 lib. The same thing happens for a weak
16653 definition in an application that's
16654 overridden by a strong definition in a
16655 shared lib. (I believe this is a generic
16656 bug in binutils handling of weak syms.)
16657 In these cases we won't use the opd
16658 entry in this lib. */
16659 unresolved_reloc = FALSE;
16660 }
16661 if (!is_opd
16662 && r_type == R_PPC64_ADDR64
16663 && (h != NULL
16664 ? h->elf.type == STT_GNU_IFUNC
16665 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16666 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16667 else
16668 {
16669 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16670
16671 /* We need to relocate .opd contents for ld.so.
16672 Prelink also wants simple and consistent rules
16673 for relocs. This make all RELATIVE relocs have
16674 *r_offset equal to r_addend. */
16675 relocate = TRUE;
16676 }
16677 }
16678 else
16679 {
16680 if (h != NULL
16681 ? h->elf.type == STT_GNU_IFUNC
16682 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16683 {
16684 info->callbacks->einfo
16685 /* xgettext:c-format */
16686 (_("%H: %s for indirect "
16687 "function `%pT' unsupported\n"),
16688 input_bfd, input_section, rel->r_offset,
16689 ppc64_elf_howto_table[r_type]->name,
16690 sym_name);
16691 ret = FALSE;
16692 }
16693 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16694 ;
16695 else if (sec == NULL || sec->owner == NULL)
16696 {
16697 bfd_set_error (bfd_error_bad_value);
16698 return FALSE;
16699 }
16700 else
16701 {
16702 asection *osec = sec->output_section;
16703
16704 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16705 {
16706 /* TLS symbol values are relative to the
16707 TLS segment. Dynamic relocations for
16708 local TLS symbols therefore can't be
16709 reduced to a relocation against their
16710 section symbol because it holds the
16711 address of the section, not a value
16712 relative to the TLS segment. We could
16713 change the .tdata dynamic section symbol
16714 to be zero value but STN_UNDEF works
16715 and is used elsewhere, eg. for TPREL64
16716 GOT relocs against local TLS symbols. */
16717 osec = htab->elf.tls_sec;
16718 indx = 0;
16719 }
16720 else
16721 {
16722 indx = elf_section_data (osec)->dynindx;
16723 if (indx == 0)
16724 {
16725 if ((osec->flags & SEC_READONLY) == 0
16726 && htab->elf.data_index_section != NULL)
16727 osec = htab->elf.data_index_section;
16728 else
16729 osec = htab->elf.text_index_section;
16730 indx = elf_section_data (osec)->dynindx;
16731 }
16732 BFD_ASSERT (indx != 0);
16733 }
16734
16735 /* We are turning this relocation into one
16736 against a section symbol, so subtract out
16737 the output section's address but not the
16738 offset of the input section in the output
16739 section. */
16740 outrel.r_addend -= osec->vma;
16741 }
16742
16743 outrel.r_info = ELF64_R_INFO (indx, r_type);
16744 }
16745 }
16746
16747 sreloc = elf_section_data (input_section)->sreloc;
16748 if (h != NULL
16749 ? h->elf.type == STT_GNU_IFUNC
16750 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16751 {
16752 sreloc = htab->elf.irelplt;
16753 if (indx == 0 || is_static_defined (&h->elf))
16754 htab->elf.ifunc_resolvers = TRUE;
16755 }
16756 if (sreloc == NULL)
16757 abort ();
16758
16759 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16760 >= sreloc->size)
16761 abort ();
16762 loc = sreloc->contents;
16763 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16764 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16765
16766 if (!warned_dynamic
16767 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16768 {
16769 info->callbacks->einfo
16770 /* xgettext:c-format */
16771 (_("%X%P: %pB: %s against %pT "
16772 "is not supported by glibc as a dynamic relocation\n"),
16773 input_bfd,
16774 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16775 sym_name);
16776 warned_dynamic = TRUE;
16777 }
16778
16779 /* If this reloc is against an external symbol, it will
16780 be computed at runtime, so there's no need to do
16781 anything now. However, for the sake of prelink ensure
16782 that the section contents are a known value. */
16783 if (!relocate)
16784 {
16785 unresolved_reloc = FALSE;
16786 /* The value chosen here is quite arbitrary as ld.so
16787 ignores section contents except for the special
16788 case of .opd where the contents might be accessed
16789 before relocation. Choose zero, as that won't
16790 cause reloc overflow. */
16791 relocation = 0;
16792 addend = 0;
16793 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16794 to improve backward compatibility with older
16795 versions of ld. */
16796 if (r_type == R_PPC64_ADDR64)
16797 addend = outrel.r_addend;
16798 /* Adjust pc_relative relocs to have zero in *r_offset. */
16799 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16800 addend = outrel.r_offset;
16801 }
16802 }
16803 break;
16804
16805 case R_PPC64_COPY:
16806 case R_PPC64_GLOB_DAT:
16807 case R_PPC64_JMP_SLOT:
16808 case R_PPC64_JMP_IREL:
16809 case R_PPC64_RELATIVE:
16810 /* We shouldn't ever see these dynamic relocs in relocatable
16811 files. */
16812 /* Fall through. */
16813
16814 case R_PPC64_PLTGOT16:
16815 case R_PPC64_PLTGOT16_DS:
16816 case R_PPC64_PLTGOT16_HA:
16817 case R_PPC64_PLTGOT16_HI:
16818 case R_PPC64_PLTGOT16_LO:
16819 case R_PPC64_PLTGOT16_LO_DS:
16820 case R_PPC64_PLTREL32:
16821 case R_PPC64_PLTREL64:
16822 /* These ones haven't been implemented yet. */
16823
16824 info->callbacks->einfo
16825 /* xgettext:c-format */
16826 (_("%P: %pB: %s is not supported for `%pT'\n"),
16827 input_bfd,
16828 ppc64_elf_howto_table[r_type]->name, sym_name);
16829
16830 bfd_set_error (bfd_error_invalid_operation);
16831 ret = FALSE;
16832 goto copy_reloc;
16833 }
16834
16835 /* Multi-instruction sequences that access the TOC can be
16836 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16837 to nop; addi rb,r2,x; */
16838 switch (r_type)
16839 {
16840 default:
16841 break;
16842
16843 case R_PPC64_GOT_TLSLD16_HI:
16844 case R_PPC64_GOT_TLSGD16_HI:
16845 case R_PPC64_GOT_TPREL16_HI:
16846 case R_PPC64_GOT_DTPREL16_HI:
16847 case R_PPC64_GOT16_HI:
16848 case R_PPC64_TOC16_HI:
16849 /* These relocs would only be useful if building up an
16850 offset to later add to r2, perhaps in an indexed
16851 addressing mode instruction. Don't try to optimize.
16852 Unfortunately, the possibility of someone building up an
16853 offset like this or even with the HA relocs, means that
16854 we need to check the high insn when optimizing the low
16855 insn. */
16856 break;
16857
16858 case R_PPC64_PLTCALL_NOTOC:
16859 if (!unresolved_reloc)
16860 htab->notoc_plt = 1;
16861 /* Fall through. */
16862 case R_PPC64_PLTCALL:
16863 if (unresolved_reloc)
16864 {
16865 /* No plt entry. Make this into a direct call. */
16866 bfd_byte *p = contents + rel->r_offset;
16867 insn = bfd_get_32 (input_bfd, p);
16868 insn &= 1;
16869 bfd_put_32 (input_bfd, B_DOT | insn, p);
16870 if (r_type == R_PPC64_PLTCALL)
16871 bfd_put_32 (input_bfd, NOP, p + 4);
16872 unresolved_reloc = save_unresolved_reloc;
16873 r_type = R_PPC64_REL24;
16874 }
16875 break;
16876
16877 case R_PPC64_PLTSEQ_NOTOC:
16878 case R_PPC64_PLTSEQ:
16879 if (unresolved_reloc)
16880 {
16881 unresolved_reloc = FALSE;
16882 goto nop_it;
16883 }
16884 break;
16885
16886 case R_PPC64_PLT_PCREL34_NOTOC:
16887 if (!unresolved_reloc)
16888 htab->notoc_plt = 1;
16889 /* Fall through. */
16890 case R_PPC64_PLT_PCREL34:
16891 if (unresolved_reloc)
16892 {
16893 bfd_byte *p = contents + rel->r_offset;
16894 bfd_put_32 (input_bfd, PNOP >> 32, p);
16895 bfd_put_32 (input_bfd, PNOP, p + 4);
16896 unresolved_reloc = FALSE;
16897 goto copy_reloc;
16898 }
16899 break;
16900
16901 case R_PPC64_PLT16_HA:
16902 if (unresolved_reloc)
16903 {
16904 unresolved_reloc = FALSE;
16905 goto nop_it;
16906 }
16907 /* Fall through. */
16908 case R_PPC64_GOT_TLSLD16_HA:
16909 case R_PPC64_GOT_TLSGD16_HA:
16910 case R_PPC64_GOT_TPREL16_HA:
16911 case R_PPC64_GOT_DTPREL16_HA:
16912 case R_PPC64_GOT16_HA:
16913 case R_PPC64_TOC16_HA:
16914 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16915 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16916 {
16917 bfd_byte *p;
16918 nop_it:
16919 p = contents + (rel->r_offset & ~3);
16920 bfd_put_32 (input_bfd, NOP, p);
16921 goto copy_reloc;
16922 }
16923 break;
16924
16925 case R_PPC64_PLT16_LO:
16926 case R_PPC64_PLT16_LO_DS:
16927 if (unresolved_reloc)
16928 {
16929 unresolved_reloc = FALSE;
16930 goto nop_it;
16931 }
16932 /* Fall through. */
16933 case R_PPC64_GOT_TLSLD16_LO:
16934 case R_PPC64_GOT_TLSGD16_LO:
16935 case R_PPC64_GOT_TPREL16_LO_DS:
16936 case R_PPC64_GOT_DTPREL16_LO_DS:
16937 case R_PPC64_GOT16_LO:
16938 case R_PPC64_GOT16_LO_DS:
16939 case R_PPC64_TOC16_LO:
16940 case R_PPC64_TOC16_LO_DS:
16941 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16942 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16943 {
16944 bfd_byte *p = contents + (rel->r_offset & ~3);
16945 insn = bfd_get_32 (input_bfd, p);
16946 if ((insn & (0x3fu << 26)) == 12u << 26 /* addic */)
16947 {
16948 /* Transform addic to addi when we change reg. */
16949 insn &= ~((0x3fu << 26) | (0x1f << 16));
16950 insn |= (14u << 26) | (2 << 16);
16951 }
16952 else
16953 {
16954 insn &= ~(0x1f << 16);
16955 insn |= 2 << 16;
16956 }
16957 bfd_put_32 (input_bfd, insn, p);
16958 }
16959 break;
16960
16961 case R_PPC64_TPREL16_HA:
16962 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16963 {
16964 bfd_byte *p = contents + (rel->r_offset & ~3);
16965 bfd_put_32 (input_bfd, NOP, p);
16966 goto copy_reloc;
16967 }
16968 break;
16969
16970 case R_PPC64_TPREL16_LO:
16971 case R_PPC64_TPREL16_LO_DS:
16972 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16973 {
16974 bfd_byte *p = contents + (rel->r_offset & ~3);
16975 insn = bfd_get_32 (input_bfd, p);
16976 insn &= ~(0x1f << 16);
16977 insn |= 13 << 16;
16978 bfd_put_32 (input_bfd, insn, p);
16979 }
16980 break;
16981 }
16982
16983 /* Do any further special processing. */
16984 switch (r_type)
16985 {
16986 default:
16987 break;
16988
16989 case R_PPC64_REL16_HA:
16990 case R_PPC64_REL16_HIGHA:
16991 case R_PPC64_REL16_HIGHERA:
16992 case R_PPC64_REL16_HIGHESTA:
16993 case R_PPC64_REL16DX_HA:
16994 case R_PPC64_ADDR16_HA:
16995 case R_PPC64_ADDR16_HIGHA:
16996 case R_PPC64_ADDR16_HIGHERA:
16997 case R_PPC64_ADDR16_HIGHESTA:
16998 case R_PPC64_TOC16_HA:
16999 case R_PPC64_SECTOFF_HA:
17000 case R_PPC64_TPREL16_HA:
17001 case R_PPC64_TPREL16_HIGHA:
17002 case R_PPC64_TPREL16_HIGHERA:
17003 case R_PPC64_TPREL16_HIGHESTA:
17004 case R_PPC64_DTPREL16_HA:
17005 case R_PPC64_DTPREL16_HIGHA:
17006 case R_PPC64_DTPREL16_HIGHERA:
17007 case R_PPC64_DTPREL16_HIGHESTA:
17008 /* It's just possible that this symbol is a weak symbol
17009 that's not actually defined anywhere. In that case,
17010 'sec' would be NULL, and we should leave the symbol
17011 alone (it will be set to zero elsewhere in the link). */
17012 if (sec == NULL)
17013 break;
17014 /* Fall through. */
17015
17016 case R_PPC64_GOT16_HA:
17017 case R_PPC64_PLTGOT16_HA:
17018 case R_PPC64_PLT16_HA:
17019 case R_PPC64_GOT_TLSGD16_HA:
17020 case R_PPC64_GOT_TLSLD16_HA:
17021 case R_PPC64_GOT_TPREL16_HA:
17022 case R_PPC64_GOT_DTPREL16_HA:
17023 /* Add 0x10000 if sign bit in 0:15 is set.
17024 Bits 0:15 are not used. */
17025 addend += 0x8000;
17026 break;
17027
17028 case R_PPC64_D34_HA30:
17029 case R_PPC64_ADDR16_HIGHERA34:
17030 case R_PPC64_ADDR16_HIGHESTA34:
17031 case R_PPC64_REL16_HIGHERA34:
17032 case R_PPC64_REL16_HIGHESTA34:
17033 if (sec != NULL)
17034 addend += 1ULL << 33;
17035 break;
17036
17037 case R_PPC64_ADDR16_DS:
17038 case R_PPC64_ADDR16_LO_DS:
17039 case R_PPC64_GOT16_DS:
17040 case R_PPC64_GOT16_LO_DS:
17041 case R_PPC64_PLT16_LO_DS:
17042 case R_PPC64_SECTOFF_DS:
17043 case R_PPC64_SECTOFF_LO_DS:
17044 case R_PPC64_TOC16_DS:
17045 case R_PPC64_TOC16_LO_DS:
17046 case R_PPC64_PLTGOT16_DS:
17047 case R_PPC64_PLTGOT16_LO_DS:
17048 case R_PPC64_GOT_TPREL16_DS:
17049 case R_PPC64_GOT_TPREL16_LO_DS:
17050 case R_PPC64_GOT_DTPREL16_DS:
17051 case R_PPC64_GOT_DTPREL16_LO_DS:
17052 case R_PPC64_TPREL16_DS:
17053 case R_PPC64_TPREL16_LO_DS:
17054 case R_PPC64_DTPREL16_DS:
17055 case R_PPC64_DTPREL16_LO_DS:
17056 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17057 mask = 3;
17058 /* If this reloc is against an lq, lxv, or stxv insn, then
17059 the value must be a multiple of 16. This is somewhat of
17060 a hack, but the "correct" way to do this by defining _DQ
17061 forms of all the _DS relocs bloats all reloc switches in
17062 this file. It doesn't make much sense to use these
17063 relocs in data, so testing the insn should be safe. */
17064 if ((insn & (0x3fu << 26)) == (56u << 26)
17065 || ((insn & (0x3fu << 26)) == (61u << 26) && (insn & 3) == 1))
17066 mask = 15;
17067 relocation += addend;
17068 addend = insn & (mask ^ 3);
17069 if ((relocation & mask) != 0)
17070 {
17071 relocation ^= relocation & mask;
17072 info->callbacks->einfo
17073 /* xgettext:c-format */
17074 (_("%H: error: %s not a multiple of %u\n"),
17075 input_bfd, input_section, rel->r_offset,
17076 ppc64_elf_howto_table[r_type]->name,
17077 mask + 1);
17078 bfd_set_error (bfd_error_bad_value);
17079 ret = FALSE;
17080 goto copy_reloc;
17081 }
17082 break;
17083 }
17084
17085 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17086 because such sections are not SEC_ALLOC and thus ld.so will
17087 not process them. */
17088 howto = ppc64_elf_howto_table[(int) r_type];
17089 if (unresolved_reloc
17090 && !((input_section->flags & SEC_DEBUGGING) != 0
17091 && h->elf.def_dynamic)
17092 && _bfd_elf_section_offset (output_bfd, info, input_section,
17093 rel->r_offset) != (bfd_vma) -1)
17094 {
17095 info->callbacks->einfo
17096 /* xgettext:c-format */
17097 (_("%H: unresolvable %s against `%pT'\n"),
17098 input_bfd, input_section, rel->r_offset,
17099 howto->name,
17100 h->elf.root.root.string);
17101 ret = FALSE;
17102 }
17103
17104 /* 16-bit fields in insns mostly have signed values, but a
17105 few insns have 16-bit unsigned values. Really, we should
17106 have different reloc types. */
17107 if (howto->complain_on_overflow != complain_overflow_dont
17108 && howto->dst_mask == 0xffff
17109 && (input_section->flags & SEC_CODE) != 0)
17110 {
17111 enum complain_overflow complain = complain_overflow_signed;
17112
17113 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17114 if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
17115 complain = complain_overflow_bitfield;
17116 else if (howto->rightshift == 0
17117 ? ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
17118 || (insn & (0x3fu << 26)) == 24u << 26 /* ori */
17119 || (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
17120 : ((insn & (0x3fu << 26)) == 29u << 26 /* andis */
17121 || (insn & (0x3fu << 26)) == 25u << 26 /* oris */
17122 || (insn & (0x3fu << 26)) == 27u << 26 /* xoris */))
17123 complain = complain_overflow_unsigned;
17124 if (howto->complain_on_overflow != complain)
17125 {
17126 alt_howto = *howto;
17127 alt_howto.complain_on_overflow = complain;
17128 howto = &alt_howto;
17129 }
17130 }
17131
17132 switch (r_type)
17133 {
17134 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17135 case R_PPC64_D34:
17136 case R_PPC64_D34_LO:
17137 case R_PPC64_D34_HI30:
17138 case R_PPC64_D34_HA30:
17139 case R_PPC64_PCREL34:
17140 case R_PPC64_GOT_PCREL34:
17141 case R_PPC64_TPREL34:
17142 case R_PPC64_DTPREL34:
17143 case R_PPC64_GOT_TLSGD_PCREL34:
17144 case R_PPC64_GOT_TLSLD_PCREL34:
17145 case R_PPC64_GOT_TPREL_PCREL34:
17146 case R_PPC64_GOT_DTPREL_PCREL34:
17147 case R_PPC64_PLT_PCREL34:
17148 case R_PPC64_PLT_PCREL34_NOTOC:
17149 case R_PPC64_D28:
17150 case R_PPC64_PCREL28:
17151 if (rel->r_offset + 8 > input_section->size)
17152 r = bfd_reloc_outofrange;
17153 else
17154 {
17155 relocation += addend;
17156 if (howto->pc_relative)
17157 relocation -= (rel->r_offset
17158 + input_section->output_offset
17159 + input_section->output_section->vma);
17160 relocation >>= howto->rightshift;
17161
17162 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17163 pinsn <<= 32;
17164 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
17165
17166 pinsn &= ~howto->dst_mask;
17167 pinsn |= (((relocation << 16) | (relocation & 0xffff))
17168 & howto->dst_mask);
17169 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
17170 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
17171 r = bfd_reloc_ok;
17172 if (howto->complain_on_overflow == complain_overflow_signed
17173 && (relocation + (1ULL << (howto->bitsize - 1))
17174 >= 1ULL << howto->bitsize))
17175 r = bfd_reloc_overflow;
17176 }
17177 break;
17178
17179 case R_PPC64_REL16DX_HA:
17180 if (rel->r_offset + 4 > input_section->size)
17181 r = bfd_reloc_outofrange;
17182 else
17183 {
17184 relocation += addend;
17185 relocation -= (rel->r_offset
17186 + input_section->output_offset
17187 + input_section->output_section->vma);
17188 relocation = (bfd_signed_vma) relocation >> 16;
17189 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17190 insn &= ~0x1fffc1;
17191 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
17192 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
17193 r = bfd_reloc_ok;
17194 if (relocation + 0x8000 > 0xffff)
17195 r = bfd_reloc_overflow;
17196 }
17197 break;
17198
17199 default:
17200 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
17201 contents, rel->r_offset,
17202 relocation, addend);
17203 }
17204
17205 if (r != bfd_reloc_ok)
17206 {
17207 char *more_info = NULL;
17208 const char *reloc_name = howto->name;
17209
17210 if (reloc_dest != DEST_NORMAL)
17211 {
17212 more_info = bfd_malloc (strlen (reloc_name) + 8);
17213 if (more_info != NULL)
17214 {
17215 strcpy (more_info, reloc_name);
17216 strcat (more_info, (reloc_dest == DEST_OPD
17217 ? " (OPD)" : " (stub)"));
17218 reloc_name = more_info;
17219 }
17220 }
17221
17222 if (r == bfd_reloc_overflow)
17223 {
17224 /* On code like "if (foo) foo();" don't report overflow
17225 on a branch to zero when foo is undefined. */
17226 if (!warned
17227 && (reloc_dest == DEST_STUB
17228 || !(h != NULL
17229 && (h->elf.root.type == bfd_link_hash_undefweak
17230 || h->elf.root.type == bfd_link_hash_undefined)
17231 && is_branch_reloc (r_type))))
17232 info->callbacks->reloc_overflow
17233 (info, (struct bfd_link_hash_entry *) h, sym_name,
17234 reloc_name, orig_rel.r_addend, input_bfd, input_section,
17235 rel->r_offset);
17236 }
17237 else
17238 {
17239 info->callbacks->einfo
17240 /* xgettext:c-format */
17241 (_("%H: %s against `%pT': error %d\n"),
17242 input_bfd, input_section, rel->r_offset,
17243 reloc_name, sym_name, (int) r);
17244 ret = FALSE;
17245 }
17246 free (more_info);
17247 }
17248 copy_reloc:
17249 if (wrel != rel)
17250 *wrel = *rel;
17251 }
17252
17253 if (wrel != rel)
17254 {
17255 Elf_Internal_Shdr *rel_hdr;
17256 size_t deleted = rel - wrel;
17257
17258 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
17259 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17260 if (rel_hdr->sh_size == 0)
17261 {
17262 /* It is too late to remove an empty reloc section. Leave
17263 one NONE reloc.
17264 ??? What is wrong with an empty section??? */
17265 rel_hdr->sh_size = rel_hdr->sh_entsize;
17266 deleted -= 1;
17267 }
17268 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
17269 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17270 input_section->reloc_count -= deleted;
17271 }
17272
17273 /* If we're emitting relocations, then shortly after this function
17274 returns, reloc offsets and addends for this section will be
17275 adjusted. Worse, reloc symbol indices will be for the output
17276 file rather than the input. Save a copy of the relocs for
17277 opd_entry_value. */
17278 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
17279 {
17280 bfd_size_type amt;
17281 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
17282 rel = bfd_alloc (input_bfd, amt);
17283 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
17284 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
17285 if (rel == NULL)
17286 return FALSE;
17287 memcpy (rel, relocs, amt);
17288 }
17289 return ret;
17290 }
17291
17292 /* Adjust the value of any local symbols in opd sections. */
17293
17294 static int
17295 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
17296 const char *name ATTRIBUTE_UNUSED,
17297 Elf_Internal_Sym *elfsym,
17298 asection *input_sec,
17299 struct elf_link_hash_entry *h)
17300 {
17301 struct _opd_sec_data *opd;
17302 long adjust;
17303 bfd_vma value;
17304
17305 if (h != NULL)
17306 return 1;
17307
17308 opd = get_opd_info (input_sec);
17309 if (opd == NULL || opd->adjust == NULL)
17310 return 1;
17311
17312 value = elfsym->st_value - input_sec->output_offset;
17313 if (!bfd_link_relocatable (info))
17314 value -= input_sec->output_section->vma;
17315
17316 adjust = opd->adjust[OPD_NDX (value)];
17317 if (adjust == -1)
17318 return 2;
17319
17320 elfsym->st_value += adjust;
17321 return 1;
17322 }
17323
17324 /* Finish up dynamic symbol handling. We set the contents of various
17325 dynamic sections here. */
17326
17327 static bfd_boolean
17328 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
17329 struct bfd_link_info *info,
17330 struct elf_link_hash_entry *h,
17331 Elf_Internal_Sym *sym)
17332 {
17333 struct ppc_link_hash_table *htab;
17334 struct plt_entry *ent;
17335
17336 htab = ppc_hash_table (info);
17337 if (htab == NULL)
17338 return FALSE;
17339
17340 if (!htab->opd_abi && !h->def_regular)
17341 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
17342 if (ent->plt.offset != (bfd_vma) -1)
17343 {
17344 /* Mark the symbol as undefined, rather than as
17345 defined in glink. Leave the value if there were
17346 any relocations where pointer equality matters
17347 (this is a clue for the dynamic linker, to make
17348 function pointer comparisons work between an
17349 application and shared library), otherwise set it
17350 to zero. */
17351 sym->st_shndx = SHN_UNDEF;
17352 if (!h->pointer_equality_needed)
17353 sym->st_value = 0;
17354 else if (!h->ref_regular_nonweak)
17355 {
17356 /* This breaks function pointer comparisons, but
17357 that is better than breaking tests for a NULL
17358 function pointer. */
17359 sym->st_value = 0;
17360 }
17361 break;
17362 }
17363
17364 if (h->needs_copy
17365 && (h->root.type == bfd_link_hash_defined
17366 || h->root.type == bfd_link_hash_defweak)
17367 && (h->root.u.def.section == htab->elf.sdynbss
17368 || h->root.u.def.section == htab->elf.sdynrelro))
17369 {
17370 /* This symbol needs a copy reloc. Set it up. */
17371 Elf_Internal_Rela rela;
17372 asection *srel;
17373 bfd_byte *loc;
17374
17375 if (h->dynindx == -1)
17376 abort ();
17377
17378 rela.r_offset = defined_sym_val (h);
17379 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
17380 rela.r_addend = 0;
17381 if (h->root.u.def.section == htab->elf.sdynrelro)
17382 srel = htab->elf.sreldynrelro;
17383 else
17384 srel = htab->elf.srelbss;
17385 loc = srel->contents;
17386 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
17387 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
17388 }
17389
17390 return TRUE;
17391 }
17392
17393 /* Used to decide how to sort relocs in an optimal manner for the
17394 dynamic linker, before writing them out. */
17395
17396 static enum elf_reloc_type_class
17397 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
17398 const asection *rel_sec,
17399 const Elf_Internal_Rela *rela)
17400 {
17401 enum elf_ppc64_reloc_type r_type;
17402 struct ppc_link_hash_table *htab = ppc_hash_table (info);
17403
17404 if (rel_sec == htab->elf.irelplt)
17405 return reloc_class_ifunc;
17406
17407 r_type = ELF64_R_TYPE (rela->r_info);
17408 switch (r_type)
17409 {
17410 case R_PPC64_RELATIVE:
17411 return reloc_class_relative;
17412 case R_PPC64_JMP_SLOT:
17413 return reloc_class_plt;
17414 case R_PPC64_COPY:
17415 return reloc_class_copy;
17416 default:
17417 return reloc_class_normal;
17418 }
17419 }
17420
17421 /* Finish up the dynamic sections. */
17422
17423 static bfd_boolean
17424 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
17425 struct bfd_link_info *info)
17426 {
17427 struct ppc_link_hash_table *htab;
17428 bfd *dynobj;
17429 asection *sdyn;
17430
17431 htab = ppc_hash_table (info);
17432 if (htab == NULL)
17433 return FALSE;
17434
17435 dynobj = htab->elf.dynobj;
17436 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17437
17438 if (htab->elf.dynamic_sections_created)
17439 {
17440 Elf64_External_Dyn *dyncon, *dynconend;
17441
17442 if (sdyn == NULL || htab->elf.sgot == NULL)
17443 abort ();
17444
17445 dyncon = (Elf64_External_Dyn *) sdyn->contents;
17446 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
17447 for (; dyncon < dynconend; dyncon++)
17448 {
17449 Elf_Internal_Dyn dyn;
17450 asection *s;
17451
17452 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
17453
17454 switch (dyn.d_tag)
17455 {
17456 default:
17457 continue;
17458
17459 case DT_PPC64_GLINK:
17460 s = htab->glink;
17461 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17462 /* We stupidly defined DT_PPC64_GLINK to be the start
17463 of glink rather than the first entry point, which is
17464 what ld.so needs, and now have a bigger stub to
17465 support automatic multiple TOCs. */
17466 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
17467 break;
17468
17469 case DT_PPC64_OPD:
17470 s = bfd_get_section_by_name (output_bfd, ".opd");
17471 if (s == NULL)
17472 continue;
17473 dyn.d_un.d_ptr = s->vma;
17474 break;
17475
17476 case DT_PPC64_OPT:
17477 if ((htab->do_multi_toc && htab->multi_toc_needed)
17478 || htab->notoc_plt)
17479 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
17480 if (htab->has_plt_localentry0)
17481 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
17482 break;
17483
17484 case DT_PPC64_OPDSZ:
17485 s = bfd_get_section_by_name (output_bfd, ".opd");
17486 if (s == NULL)
17487 continue;
17488 dyn.d_un.d_val = s->size;
17489 break;
17490
17491 case DT_PLTGOT:
17492 s = htab->elf.splt;
17493 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17494 break;
17495
17496 case DT_JMPREL:
17497 s = htab->elf.srelplt;
17498 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17499 break;
17500
17501 case DT_PLTRELSZ:
17502 dyn.d_un.d_val = htab->elf.srelplt->size;
17503 break;
17504
17505 case DT_TEXTREL:
17506 if (htab->elf.ifunc_resolvers)
17507 info->callbacks->einfo
17508 (_("%P: warning: text relocations and GNU indirect "
17509 "functions may result in a segfault at runtime\n"));
17510 continue;
17511 }
17512
17513 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
17514 }
17515 }
17516
17517 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
17518 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17519 {
17520 /* Fill in the first entry in the global offset table.
17521 We use it to hold the link-time TOCbase. */
17522 bfd_put_64 (output_bfd,
17523 elf_gp (output_bfd) + TOC_BASE_OFF,
17524 htab->elf.sgot->contents);
17525
17526 /* Set .got entry size. */
17527 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17528 = 8;
17529 }
17530
17531 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17532 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17533 {
17534 /* Set .plt entry size. */
17535 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17536 = PLT_ENTRY_SIZE (htab);
17537 }
17538
17539 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17540 brlt ourselves if emitrelocations. */
17541 if (htab->brlt != NULL
17542 && htab->brlt->reloc_count != 0
17543 && !_bfd_elf_link_output_relocs (output_bfd,
17544 htab->brlt,
17545 elf_section_data (htab->brlt)->rela.hdr,
17546 elf_section_data (htab->brlt)->relocs,
17547 NULL))
17548 return FALSE;
17549
17550 if (htab->glink != NULL
17551 && htab->glink->reloc_count != 0
17552 && !_bfd_elf_link_output_relocs (output_bfd,
17553 htab->glink,
17554 elf_section_data (htab->glink)->rela.hdr,
17555 elf_section_data (htab->glink)->relocs,
17556 NULL))
17557 return FALSE;
17558
17559
17560 if (htab->glink_eh_frame != NULL
17561 && htab->glink_eh_frame->size != 0
17562 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17563 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17564 htab->glink_eh_frame,
17565 htab->glink_eh_frame->contents))
17566 return FALSE;
17567
17568 /* We need to handle writing out multiple GOT sections ourselves,
17569 since we didn't add them to DYNOBJ. We know dynobj is the first
17570 bfd. */
17571 while ((dynobj = dynobj->link.next) != NULL)
17572 {
17573 asection *s;
17574
17575 if (!is_ppc64_elf (dynobj))
17576 continue;
17577
17578 s = ppc64_elf_tdata (dynobj)->got;
17579 if (s != NULL
17580 && s->size != 0
17581 && s->output_section != bfd_abs_section_ptr
17582 && !bfd_set_section_contents (output_bfd, s->output_section,
17583 s->contents, s->output_offset,
17584 s->size))
17585 return FALSE;
17586 s = ppc64_elf_tdata (dynobj)->relgot;
17587 if (s != NULL
17588 && s->size != 0
17589 && s->output_section != bfd_abs_section_ptr
17590 && !bfd_set_section_contents (output_bfd, s->output_section,
17591 s->contents, s->output_offset,
17592 s->size))
17593 return FALSE;
17594 }
17595
17596 return TRUE;
17597 }
17598
17599 #include "elf64-target.h"
17600
17601 /* FreeBSD support */
17602
17603 #undef TARGET_LITTLE_SYM
17604 #undef TARGET_LITTLE_NAME
17605
17606 #undef TARGET_BIG_SYM
17607 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17608 #undef TARGET_BIG_NAME
17609 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17610
17611 #undef ELF_OSABI
17612 #define ELF_OSABI ELFOSABI_FREEBSD
17613
17614 #undef elf64_bed
17615 #define elf64_bed elf64_powerpc_fbsd_bed
17616
17617 #include "elf64-target.h"
This page took 0.472017 seconds and 4 git commands to generate.