24c733e21dcd9f8b15cbe5725272be7c3bb5663d
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
85 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
86 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
87 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
88 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
89 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
90 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
91
92 #define elf_backend_object_p ppc64_elf_object_p
93 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
94 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
95 #define elf_backend_write_core_note ppc64_elf_write_core_note
96 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
97 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
98 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
99 #define elf_backend_check_directives ppc64_elf_process_dot_syms
100 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
101 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
102 #define elf_backend_check_relocs ppc64_elf_check_relocs
103 #define elf_backend_gc_keep ppc64_elf_gc_keep
104 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
105 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
106 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
107 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
108 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
109 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
110 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
111 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
112 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
113 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
114 #define elf_backend_action_discarded ppc64_elf_action_discarded
115 #define elf_backend_relocate_section ppc64_elf_relocate_section
116 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
117 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
118 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
119 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
120 #define elf_backend_special_sections ppc64_elf_special_sections
121 #define elf_backend_post_process_headers _bfd_elf_set_osabi
122 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
123
124 /* The name of the dynamic interpreter. This is put in the .interp
125 section. */
126 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
127
128 /* The size in bytes of an entry in the procedure linkage table. */
129 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
130
131 /* The initial size of the plt reserved for the dynamic linker. */
132 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
133
134 /* Offsets to some stack save slots. */
135 #define STK_LR 16
136 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
137 /* This one is dodgy. ABIv2 does not have a linker word, so use the
138 CR save slot. Used only by optimised __tls_get_addr call stub,
139 relying on __tls_get_addr_opt not saving CR.. */
140 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
141
142 /* TOC base pointers offset from start of TOC. */
143 #define TOC_BASE_OFF 0x8000
144
145 /* Offset of tp and dtp pointers from start of TLS block. */
146 #define TP_OFFSET 0x7000
147 #define DTP_OFFSET 0x8000
148
149 /* .plt call stub instructions. The normal stub is like this, but
150 sometimes the .plt entry crosses a 64k boundary and we need to
151 insert an addi to adjust r11. */
152 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
153 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
154 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
155 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
156 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
157 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
158 #define BCTR 0x4e800420 /* bctr */
159
160 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
161 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
162 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
163
164 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
165 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
166 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
167 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
168 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
169 #define BNECTR 0x4ca20420 /* bnectr+ */
170 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
171
172 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
173 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
174 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
175
176 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
177
178 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
179 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
180
181 /* glink call stub instructions. We enter with the index in R0. */
182 #define GLINK_CALL_STUB_SIZE (16*4)
183 /* 0: */
184 /* .quad plt0-1f */
185 /* __glink: */
186 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
187 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
188 /* 1: */
189 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
190 /* ld %2,(0b-1b)(%11) */
191 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
192 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
193 /* ld %12,0(%11) */
194 /* ld %2,8(%11) */
195 /* mtctr %12 */
196 /* ld %11,16(%11) */
197 /* bctr */
198 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
199 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
200 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
201 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
202 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
203
204 /* Pad with this. */
205 #define NOP 0x60000000
206
207 /* Some other nops. */
208 #define CROR_151515 0x4def7b82
209 #define CROR_313131 0x4ffffb82
210
211 /* .glink entries for the first 32k functions are two instructions. */
212 #define LI_R0_0 0x38000000 /* li %r0,0 */
213 #define B_DOT 0x48000000 /* b . */
214
215 /* After that, we need two instructions to load the index, followed by
216 a branch. */
217 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
218 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
219
220 /* Instructions used by the save and restore reg functions. */
221 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
222 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
223 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
224 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
225 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
226 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
227 #define LI_R12_0 0x39800000 /* li %r12,0 */
228 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
229 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
230 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
231 #define BLR 0x4e800020 /* blr */
232
233 /* Since .opd is an array of descriptors and each entry will end up
234 with identical R_PPC64_RELATIVE relocs, there is really no need to
235 propagate .opd relocs; The dynamic linker should be taught to
236 relocate .opd without reloc entries. */
237 #ifndef NO_OPD_RELOCS
238 #define NO_OPD_RELOCS 0
239 #endif
240 \f
241 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
242
243 /* Relocation HOWTO's. */
244 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
245
246 static reloc_howto_type ppc64_elf_howto_raw[] = {
247 /* This reloc does nothing. */
248 HOWTO (R_PPC64_NONE, /* type */
249 0, /* rightshift */
250 2, /* size (0 = byte, 1 = short, 2 = long) */
251 32, /* bitsize */
252 FALSE, /* pc_relative */
253 0, /* bitpos */
254 complain_overflow_dont, /* complain_on_overflow */
255 bfd_elf_generic_reloc, /* special_function */
256 "R_PPC64_NONE", /* name */
257 FALSE, /* partial_inplace */
258 0, /* src_mask */
259 0, /* dst_mask */
260 FALSE), /* pcrel_offset */
261
262 /* A standard 32 bit relocation. */
263 HOWTO (R_PPC64_ADDR32, /* type */
264 0, /* rightshift */
265 2, /* size (0 = byte, 1 = short, 2 = long) */
266 32, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_bitfield, /* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_PPC64_ADDR32", /* name */
272 FALSE, /* partial_inplace */
273 0, /* src_mask */
274 0xffffffff, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 /* An absolute 26 bit branch; the lower two bits must be zero.
278 FIXME: we don't check that, we just clear them. */
279 HOWTO (R_PPC64_ADDR24, /* type */
280 0, /* rightshift */
281 2, /* size (0 = byte, 1 = short, 2 = long) */
282 26, /* bitsize */
283 FALSE, /* pc_relative */
284 0, /* bitpos */
285 complain_overflow_bitfield, /* complain_on_overflow */
286 bfd_elf_generic_reloc, /* special_function */
287 "R_PPC64_ADDR24", /* name */
288 FALSE, /* partial_inplace */
289 0, /* src_mask */
290 0x03fffffc, /* dst_mask */
291 FALSE), /* pcrel_offset */
292
293 /* A standard 16 bit relocation. */
294 HOWTO (R_PPC64_ADDR16, /* type */
295 0, /* rightshift */
296 1, /* size (0 = byte, 1 = short, 2 = long) */
297 16, /* bitsize */
298 FALSE, /* pc_relative */
299 0, /* bitpos */
300 complain_overflow_bitfield, /* complain_on_overflow */
301 bfd_elf_generic_reloc, /* special_function */
302 "R_PPC64_ADDR16", /* name */
303 FALSE, /* partial_inplace */
304 0, /* src_mask */
305 0xffff, /* dst_mask */
306 FALSE), /* pcrel_offset */
307
308 /* A 16 bit relocation without overflow. */
309 HOWTO (R_PPC64_ADDR16_LO, /* type */
310 0, /* rightshift */
311 1, /* size (0 = byte, 1 = short, 2 = long) */
312 16, /* bitsize */
313 FALSE, /* pc_relative */
314 0, /* bitpos */
315 complain_overflow_dont,/* complain_on_overflow */
316 bfd_elf_generic_reloc, /* special_function */
317 "R_PPC64_ADDR16_LO", /* name */
318 FALSE, /* partial_inplace */
319 0, /* src_mask */
320 0xffff, /* dst_mask */
321 FALSE), /* pcrel_offset */
322
323 /* Bits 16-31 of an address. */
324 HOWTO (R_PPC64_ADDR16_HI, /* type */
325 16, /* rightshift */
326 1, /* size (0 = byte, 1 = short, 2 = long) */
327 16, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_signed, /* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_PPC64_ADDR16_HI", /* name */
333 FALSE, /* partial_inplace */
334 0, /* src_mask */
335 0xffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
339 bits, treated as a signed number, is negative. */
340 HOWTO (R_PPC64_ADDR16_HA, /* type */
341 16, /* rightshift */
342 1, /* size (0 = byte, 1 = short, 2 = long) */
343 16, /* bitsize */
344 FALSE, /* pc_relative */
345 0, /* bitpos */
346 complain_overflow_signed, /* complain_on_overflow */
347 ppc64_elf_ha_reloc, /* special_function */
348 "R_PPC64_ADDR16_HA", /* name */
349 FALSE, /* partial_inplace */
350 0, /* src_mask */
351 0xffff, /* dst_mask */
352 FALSE), /* pcrel_offset */
353
354 /* An absolute 16 bit branch; the lower two bits must be zero.
355 FIXME: we don't check that, we just clear them. */
356 HOWTO (R_PPC64_ADDR14, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 16, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield, /* complain_on_overflow */
363 ppc64_elf_branch_reloc, /* special_function */
364 "R_PPC64_ADDR14", /* name */
365 FALSE, /* partial_inplace */
366 0, /* src_mask */
367 0x0000fffc, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* An absolute 16 bit branch, for which bit 10 should be set to
371 indicate that the branch is expected to be taken. The lower two
372 bits must be zero. */
373 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 16, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield, /* complain_on_overflow */
380 ppc64_elf_brtaken_reloc, /* special_function */
381 "R_PPC64_ADDR14_BRTAKEN",/* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0x0000fffc, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* An absolute 16 bit branch, for which bit 10 should be set to
388 indicate that the branch is not expected to be taken. The lower
389 two bits must be zero. */
390 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
391 0, /* rightshift */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
393 16, /* bitsize */
394 FALSE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_bitfield, /* complain_on_overflow */
397 ppc64_elf_brtaken_reloc, /* special_function */
398 "R_PPC64_ADDR14_BRNTAKEN",/* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0x0000fffc, /* dst_mask */
402 FALSE), /* pcrel_offset */
403
404 /* A relative 26 bit branch; the lower two bits must be zero. */
405 HOWTO (R_PPC64_REL24, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 26, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 ppc64_elf_branch_reloc, /* special_function */
413 "R_PPC64_REL24", /* name */
414 FALSE, /* partial_inplace */
415 0, /* src_mask */
416 0x03fffffc, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 /* A relative 16 bit branch; the lower two bits must be zero. */
420 HOWTO (R_PPC64_REL14, /* type */
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 TRUE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_signed, /* complain_on_overflow */
427 ppc64_elf_branch_reloc, /* special_function */
428 "R_PPC64_REL14", /* name */
429 FALSE, /* partial_inplace */
430 0, /* src_mask */
431 0x0000fffc, /* dst_mask */
432 TRUE), /* pcrel_offset */
433
434 /* A relative 16 bit branch. Bit 10 should be set to indicate that
435 the branch is expected to be taken. The lower two bits must be
436 zero. */
437 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
438 0, /* rightshift */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
440 16, /* bitsize */
441 TRUE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_signed, /* complain_on_overflow */
444 ppc64_elf_brtaken_reloc, /* special_function */
445 "R_PPC64_REL14_BRTAKEN", /* name */
446 FALSE, /* partial_inplace */
447 0, /* src_mask */
448 0x0000fffc, /* dst_mask */
449 TRUE), /* pcrel_offset */
450
451 /* A relative 16 bit branch. Bit 10 should be set to indicate that
452 the branch is not expected to be taken. The lower two bits must
453 be zero. */
454 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
455 0, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 16, /* bitsize */
458 TRUE, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_signed, /* complain_on_overflow */
461 ppc64_elf_brtaken_reloc, /* special_function */
462 "R_PPC64_REL14_BRNTAKEN",/* name */
463 FALSE, /* partial_inplace */
464 0, /* src_mask */
465 0x0000fffc, /* dst_mask */
466 TRUE), /* pcrel_offset */
467
468 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
469 symbol. */
470 HOWTO (R_PPC64_GOT16, /* type */
471 0, /* rightshift */
472 1, /* size (0 = byte, 1 = short, 2 = long) */
473 16, /* bitsize */
474 FALSE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_signed, /* complain_on_overflow */
477 ppc64_elf_unhandled_reloc, /* special_function */
478 "R_PPC64_GOT16", /* name */
479 FALSE, /* partial_inplace */
480 0, /* src_mask */
481 0xffff, /* dst_mask */
482 FALSE), /* pcrel_offset */
483
484 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
485 the symbol. */
486 HOWTO (R_PPC64_GOT16_LO, /* type */
487 0, /* rightshift */
488 1, /* size (0 = byte, 1 = short, 2 = long) */
489 16, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_dont, /* complain_on_overflow */
493 ppc64_elf_unhandled_reloc, /* special_function */
494 "R_PPC64_GOT16_LO", /* name */
495 FALSE, /* partial_inplace */
496 0, /* src_mask */
497 0xffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
501 the symbol. */
502 HOWTO (R_PPC64_GOT16_HI, /* type */
503 16, /* rightshift */
504 1, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_signed,/* complain_on_overflow */
509 ppc64_elf_unhandled_reloc, /* special_function */
510 "R_PPC64_GOT16_HI", /* name */
511 FALSE, /* partial_inplace */
512 0, /* src_mask */
513 0xffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
517 the symbol. */
518 HOWTO (R_PPC64_GOT16_HA, /* type */
519 16, /* rightshift */
520 1, /* size (0 = byte, 1 = short, 2 = long) */
521 16, /* bitsize */
522 FALSE, /* pc_relative */
523 0, /* bitpos */
524 complain_overflow_signed,/* complain_on_overflow */
525 ppc64_elf_unhandled_reloc, /* special_function */
526 "R_PPC64_GOT16_HA", /* name */
527 FALSE, /* partial_inplace */
528 0, /* src_mask */
529 0xffff, /* dst_mask */
530 FALSE), /* pcrel_offset */
531
532 /* This is used only by the dynamic linker. The symbol should exist
533 both in the object being run and in some shared library. The
534 dynamic linker copies the data addressed by the symbol from the
535 shared library into the object, because the object being
536 run has to have the data at some particular address. */
537 HOWTO (R_PPC64_COPY, /* type */
538 0, /* rightshift */
539 0, /* this one is variable size */
540 0, /* bitsize */
541 FALSE, /* pc_relative */
542 0, /* bitpos */
543 complain_overflow_dont, /* complain_on_overflow */
544 ppc64_elf_unhandled_reloc, /* special_function */
545 "R_PPC64_COPY", /* name */
546 FALSE, /* partial_inplace */
547 0, /* src_mask */
548 0, /* dst_mask */
549 FALSE), /* pcrel_offset */
550
551 /* Like R_PPC64_ADDR64, but used when setting global offset table
552 entries. */
553 HOWTO (R_PPC64_GLOB_DAT, /* type */
554 0, /* rightshift */
555 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
556 64, /* bitsize */
557 FALSE, /* pc_relative */
558 0, /* bitpos */
559 complain_overflow_dont, /* complain_on_overflow */
560 ppc64_elf_unhandled_reloc, /* special_function */
561 "R_PPC64_GLOB_DAT", /* name */
562 FALSE, /* partial_inplace */
563 0, /* src_mask */
564 ONES (64), /* dst_mask */
565 FALSE), /* pcrel_offset */
566
567 /* Created by the link editor. Marks a procedure linkage table
568 entry for a symbol. */
569 HOWTO (R_PPC64_JMP_SLOT, /* type */
570 0, /* rightshift */
571 0, /* size (0 = byte, 1 = short, 2 = long) */
572 0, /* bitsize */
573 FALSE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_dont, /* complain_on_overflow */
576 ppc64_elf_unhandled_reloc, /* special_function */
577 "R_PPC64_JMP_SLOT", /* name */
578 FALSE, /* partial_inplace */
579 0, /* src_mask */
580 0, /* dst_mask */
581 FALSE), /* pcrel_offset */
582
583 /* Used only by the dynamic linker. When the object is run, this
584 doubleword64 is set to the load address of the object, plus the
585 addend. */
586 HOWTO (R_PPC64_RELATIVE, /* type */
587 0, /* rightshift */
588 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
589 64, /* bitsize */
590 FALSE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_dont, /* complain_on_overflow */
593 bfd_elf_generic_reloc, /* special_function */
594 "R_PPC64_RELATIVE", /* name */
595 FALSE, /* partial_inplace */
596 0, /* src_mask */
597 ONES (64), /* dst_mask */
598 FALSE), /* pcrel_offset */
599
600 /* Like R_PPC64_ADDR32, but may be unaligned. */
601 HOWTO (R_PPC64_UADDR32, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 32, /* bitsize */
605 FALSE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_bitfield, /* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_PPC64_UADDR32", /* name */
610 FALSE, /* partial_inplace */
611 0, /* src_mask */
612 0xffffffff, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 /* Like R_PPC64_ADDR16, but may be unaligned. */
616 HOWTO (R_PPC64_UADDR16, /* type */
617 0, /* rightshift */
618 1, /* size (0 = byte, 1 = short, 2 = long) */
619 16, /* bitsize */
620 FALSE, /* pc_relative */
621 0, /* bitpos */
622 complain_overflow_bitfield, /* complain_on_overflow */
623 bfd_elf_generic_reloc, /* special_function */
624 "R_PPC64_UADDR16", /* name */
625 FALSE, /* partial_inplace */
626 0, /* src_mask */
627 0xffff, /* dst_mask */
628 FALSE), /* pcrel_offset */
629
630 /* 32-bit PC relative. */
631 HOWTO (R_PPC64_REL32, /* type */
632 0, /* rightshift */
633 2, /* size (0 = byte, 1 = short, 2 = long) */
634 32, /* bitsize */
635 TRUE, /* pc_relative */
636 0, /* bitpos */
637 /* FIXME: Verify. Was complain_overflow_bitfield. */
638 complain_overflow_signed, /* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_PPC64_REL32", /* name */
641 FALSE, /* partial_inplace */
642 0, /* src_mask */
643 0xffffffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 /* 32-bit relocation to the symbol's procedure linkage table. */
647 HOWTO (R_PPC64_PLT32, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 FALSE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 ppc64_elf_unhandled_reloc, /* special_function */
655 "R_PPC64_PLT32", /* name */
656 FALSE, /* partial_inplace */
657 0, /* src_mask */
658 0xffffffff, /* dst_mask */
659 FALSE), /* pcrel_offset */
660
661 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
662 FIXME: R_PPC64_PLTREL32 not supported. */
663 HOWTO (R_PPC64_PLTREL32, /* type */
664 0, /* rightshift */
665 2, /* size (0 = byte, 1 = short, 2 = long) */
666 32, /* bitsize */
667 TRUE, /* pc_relative */
668 0, /* bitpos */
669 complain_overflow_signed, /* complain_on_overflow */
670 bfd_elf_generic_reloc, /* special_function */
671 "R_PPC64_PLTREL32", /* name */
672 FALSE, /* partial_inplace */
673 0, /* src_mask */
674 0xffffffff, /* dst_mask */
675 TRUE), /* pcrel_offset */
676
677 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
678 the symbol. */
679 HOWTO (R_PPC64_PLT16_LO, /* type */
680 0, /* rightshift */
681 1, /* size (0 = byte, 1 = short, 2 = long) */
682 16, /* bitsize */
683 FALSE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_dont, /* complain_on_overflow */
686 ppc64_elf_unhandled_reloc, /* special_function */
687 "R_PPC64_PLT16_LO", /* name */
688 FALSE, /* partial_inplace */
689 0, /* src_mask */
690 0xffff, /* dst_mask */
691 FALSE), /* pcrel_offset */
692
693 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
694 the symbol. */
695 HOWTO (R_PPC64_PLT16_HI, /* type */
696 16, /* rightshift */
697 1, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_signed, /* complain_on_overflow */
702 ppc64_elf_unhandled_reloc, /* special_function */
703 "R_PPC64_PLT16_HI", /* name */
704 FALSE, /* partial_inplace */
705 0, /* src_mask */
706 0xffff, /* dst_mask */
707 FALSE), /* pcrel_offset */
708
709 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
710 the symbol. */
711 HOWTO (R_PPC64_PLT16_HA, /* type */
712 16, /* rightshift */
713 1, /* size (0 = byte, 1 = short, 2 = long) */
714 16, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_signed, /* complain_on_overflow */
718 ppc64_elf_unhandled_reloc, /* special_function */
719 "R_PPC64_PLT16_HA", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* 16-bit section relative relocation. */
726 HOWTO (R_PPC64_SECTOFF, /* type */
727 0, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 16, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_bitfield, /* complain_on_overflow */
733 ppc64_elf_sectoff_reloc, /* special_function */
734 "R_PPC64_SECTOFF", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xffff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* Like R_PPC64_SECTOFF, but no overflow warning. */
741 HOWTO (R_PPC64_SECTOFF_LO, /* type */
742 0, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont, /* complain_on_overflow */
748 ppc64_elf_sectoff_reloc, /* special_function */
749 "R_PPC64_SECTOFF_LO", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xffff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* 16-bit upper half section relative relocation. */
756 HOWTO (R_PPC64_SECTOFF_HI, /* type */
757 16, /* rightshift */
758 1, /* size (0 = byte, 1 = short, 2 = long) */
759 16, /* bitsize */
760 FALSE, /* pc_relative */
761 0, /* bitpos */
762 complain_overflow_signed, /* complain_on_overflow */
763 ppc64_elf_sectoff_reloc, /* special_function */
764 "R_PPC64_SECTOFF_HI", /* name */
765 FALSE, /* partial_inplace */
766 0, /* src_mask */
767 0xffff, /* dst_mask */
768 FALSE), /* pcrel_offset */
769
770 /* 16-bit upper half adjusted section relative relocation. */
771 HOWTO (R_PPC64_SECTOFF_HA, /* type */
772 16, /* rightshift */
773 1, /* size (0 = byte, 1 = short, 2 = long) */
774 16, /* bitsize */
775 FALSE, /* pc_relative */
776 0, /* bitpos */
777 complain_overflow_signed, /* complain_on_overflow */
778 ppc64_elf_sectoff_ha_reloc, /* special_function */
779 "R_PPC64_SECTOFF_HA", /* name */
780 FALSE, /* partial_inplace */
781 0, /* src_mask */
782 0xffff, /* dst_mask */
783 FALSE), /* pcrel_offset */
784
785 /* Like R_PPC64_REL24 without touching the two least significant bits. */
786 HOWTO (R_PPC64_REL30, /* type */
787 2, /* rightshift */
788 2, /* size (0 = byte, 1 = short, 2 = long) */
789 30, /* bitsize */
790 TRUE, /* pc_relative */
791 0, /* bitpos */
792 complain_overflow_dont, /* complain_on_overflow */
793 bfd_elf_generic_reloc, /* special_function */
794 "R_PPC64_REL30", /* name */
795 FALSE, /* partial_inplace */
796 0, /* src_mask */
797 0xfffffffc, /* dst_mask */
798 TRUE), /* pcrel_offset */
799
800 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
801
802 /* A standard 64-bit relocation. */
803 HOWTO (R_PPC64_ADDR64, /* type */
804 0, /* rightshift */
805 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
806 64, /* bitsize */
807 FALSE, /* pc_relative */
808 0, /* bitpos */
809 complain_overflow_dont, /* complain_on_overflow */
810 bfd_elf_generic_reloc, /* special_function */
811 "R_PPC64_ADDR64", /* name */
812 FALSE, /* partial_inplace */
813 0, /* src_mask */
814 ONES (64), /* dst_mask */
815 FALSE), /* pcrel_offset */
816
817 /* The bits 32-47 of an address. */
818 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
819 32, /* rightshift */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
821 16, /* bitsize */
822 FALSE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_dont, /* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 "R_PPC64_ADDR16_HIGHER", /* name */
827 FALSE, /* partial_inplace */
828 0, /* src_mask */
829 0xffff, /* dst_mask */
830 FALSE), /* pcrel_offset */
831
832 /* The bits 32-47 of an address, plus 1 if the contents of the low
833 16 bits, treated as a signed number, is negative. */
834 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
835 32, /* rightshift */
836 1, /* size (0 = byte, 1 = short, 2 = long) */
837 16, /* bitsize */
838 FALSE, /* pc_relative */
839 0, /* bitpos */
840 complain_overflow_dont, /* complain_on_overflow */
841 ppc64_elf_ha_reloc, /* special_function */
842 "R_PPC64_ADDR16_HIGHERA", /* name */
843 FALSE, /* partial_inplace */
844 0, /* src_mask */
845 0xffff, /* dst_mask */
846 FALSE), /* pcrel_offset */
847
848 /* The bits 48-63 of an address. */
849 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
850 48, /* rightshift */
851 1, /* size (0 = byte, 1 = short, 2 = long) */
852 16, /* bitsize */
853 FALSE, /* pc_relative */
854 0, /* bitpos */
855 complain_overflow_dont, /* complain_on_overflow */
856 bfd_elf_generic_reloc, /* special_function */
857 "R_PPC64_ADDR16_HIGHEST", /* name */
858 FALSE, /* partial_inplace */
859 0, /* src_mask */
860 0xffff, /* dst_mask */
861 FALSE), /* pcrel_offset */
862
863 /* The bits 48-63 of an address, plus 1 if the contents of the low
864 16 bits, treated as a signed number, is negative. */
865 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
866 48, /* rightshift */
867 1, /* size (0 = byte, 1 = short, 2 = long) */
868 16, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 ppc64_elf_ha_reloc, /* special_function */
873 "R_PPC64_ADDR16_HIGHESTA", /* name */
874 FALSE, /* partial_inplace */
875 0, /* src_mask */
876 0xffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 /* Like ADDR64, but may be unaligned. */
880 HOWTO (R_PPC64_UADDR64, /* type */
881 0, /* rightshift */
882 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
883 64, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_PPC64_UADDR64", /* name */
889 FALSE, /* partial_inplace */
890 0, /* src_mask */
891 ONES (64), /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* 64-bit relative relocation. */
895 HOWTO (R_PPC64_REL64, /* type */
896 0, /* rightshift */
897 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
898 64, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_PPC64_REL64", /* name */
904 FALSE, /* partial_inplace */
905 0, /* src_mask */
906 ONES (64), /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 /* 64-bit relocation to the symbol's procedure linkage table. */
910 HOWTO (R_PPC64_PLT64, /* type */
911 0, /* rightshift */
912 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
913 64, /* bitsize */
914 FALSE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 ppc64_elf_unhandled_reloc, /* special_function */
918 "R_PPC64_PLT64", /* name */
919 FALSE, /* partial_inplace */
920 0, /* src_mask */
921 ONES (64), /* dst_mask */
922 FALSE), /* pcrel_offset */
923
924 /* 64-bit PC relative relocation to the symbol's procedure linkage
925 table. */
926 /* FIXME: R_PPC64_PLTREL64 not supported. */
927 HOWTO (R_PPC64_PLTREL64, /* type */
928 0, /* rightshift */
929 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
930 64, /* bitsize */
931 TRUE, /* pc_relative */
932 0, /* bitpos */
933 complain_overflow_dont, /* complain_on_overflow */
934 ppc64_elf_unhandled_reloc, /* special_function */
935 "R_PPC64_PLTREL64", /* name */
936 FALSE, /* partial_inplace */
937 0, /* src_mask */
938 ONES (64), /* dst_mask */
939 TRUE), /* pcrel_offset */
940
941 /* 16 bit TOC-relative relocation. */
942
943 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
944 HOWTO (R_PPC64_TOC16, /* type */
945 0, /* rightshift */
946 1, /* size (0 = byte, 1 = short, 2 = long) */
947 16, /* bitsize */
948 FALSE, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_signed, /* complain_on_overflow */
951 ppc64_elf_toc_reloc, /* special_function */
952 "R_PPC64_TOC16", /* name */
953 FALSE, /* partial_inplace */
954 0, /* src_mask */
955 0xffff, /* dst_mask */
956 FALSE), /* pcrel_offset */
957
958 /* 16 bit TOC-relative relocation without overflow. */
959
960 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
961 HOWTO (R_PPC64_TOC16_LO, /* type */
962 0, /* rightshift */
963 1, /* size (0 = byte, 1 = short, 2 = long) */
964 16, /* bitsize */
965 FALSE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont, /* complain_on_overflow */
968 ppc64_elf_toc_reloc, /* special_function */
969 "R_PPC64_TOC16_LO", /* name */
970 FALSE, /* partial_inplace */
971 0, /* src_mask */
972 0xffff, /* dst_mask */
973 FALSE), /* pcrel_offset */
974
975 /* 16 bit TOC-relative relocation, high 16 bits. */
976
977 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
978 HOWTO (R_PPC64_TOC16_HI, /* type */
979 16, /* rightshift */
980 1, /* size (0 = byte, 1 = short, 2 = long) */
981 16, /* bitsize */
982 FALSE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_signed, /* complain_on_overflow */
985 ppc64_elf_toc_reloc, /* special_function */
986 "R_PPC64_TOC16_HI", /* name */
987 FALSE, /* partial_inplace */
988 0, /* src_mask */
989 0xffff, /* dst_mask */
990 FALSE), /* pcrel_offset */
991
992 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
993 contents of the low 16 bits, treated as a signed number, is
994 negative. */
995
996 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
997 HOWTO (R_PPC64_TOC16_HA, /* type */
998 16, /* rightshift */
999 1, /* size (0 = byte, 1 = short, 2 = long) */
1000 16, /* bitsize */
1001 FALSE, /* pc_relative */
1002 0, /* bitpos */
1003 complain_overflow_signed, /* complain_on_overflow */
1004 ppc64_elf_toc_ha_reloc, /* special_function */
1005 "R_PPC64_TOC16_HA", /* name */
1006 FALSE, /* partial_inplace */
1007 0, /* src_mask */
1008 0xffff, /* dst_mask */
1009 FALSE), /* pcrel_offset */
1010
1011 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1012
1013 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1014 HOWTO (R_PPC64_TOC, /* type */
1015 0, /* rightshift */
1016 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1017 64, /* bitsize */
1018 FALSE, /* pc_relative */
1019 0, /* bitpos */
1020 complain_overflow_bitfield, /* complain_on_overflow */
1021 ppc64_elf_toc64_reloc, /* special_function */
1022 "R_PPC64_TOC", /* name */
1023 FALSE, /* partial_inplace */
1024 0, /* src_mask */
1025 ONES (64), /* dst_mask */
1026 FALSE), /* pcrel_offset */
1027
1028 /* Like R_PPC64_GOT16, but also informs the link editor that the
1029 value to relocate may (!) refer to a PLT entry which the link
1030 editor (a) may replace with the symbol value. If the link editor
1031 is unable to fully resolve the symbol, it may (b) create a PLT
1032 entry and store the address to the new PLT entry in the GOT.
1033 This permits lazy resolution of function symbols at run time.
1034 The link editor may also skip all of this and just (c) emit a
1035 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1036 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1037 HOWTO (R_PPC64_PLTGOT16, /* type */
1038 0, /* rightshift */
1039 1, /* size (0 = byte, 1 = short, 2 = long) */
1040 16, /* bitsize */
1041 FALSE, /* pc_relative */
1042 0, /* bitpos */
1043 complain_overflow_signed, /* complain_on_overflow */
1044 ppc64_elf_unhandled_reloc, /* special_function */
1045 "R_PPC64_PLTGOT16", /* name */
1046 FALSE, /* partial_inplace */
1047 0, /* src_mask */
1048 0xffff, /* dst_mask */
1049 FALSE), /* pcrel_offset */
1050
1051 /* Like R_PPC64_PLTGOT16, but without overflow. */
1052 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1053 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1054 0, /* rightshift */
1055 1, /* size (0 = byte, 1 = short, 2 = long) */
1056 16, /* bitsize */
1057 FALSE, /* pc_relative */
1058 0, /* bitpos */
1059 complain_overflow_dont, /* complain_on_overflow */
1060 ppc64_elf_unhandled_reloc, /* special_function */
1061 "R_PPC64_PLTGOT16_LO", /* name */
1062 FALSE, /* partial_inplace */
1063 0, /* src_mask */
1064 0xffff, /* dst_mask */
1065 FALSE), /* pcrel_offset */
1066
1067 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1068 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_signed, /* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HI", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1084 1 if the contents of the low 16 bits, treated as a signed number,
1085 is negative. */
1086 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1087 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1088 16, /* rightshift */
1089 1, /* size (0 = byte, 1 = short, 2 = long) */
1090 16, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_signed, /* complain_on_overflow */
1094 ppc64_elf_unhandled_reloc, /* special_function */
1095 "R_PPC64_PLTGOT16_HA", /* name */
1096 FALSE, /* partial_inplace */
1097 0, /* src_mask */
1098 0xffff, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1102 HOWTO (R_PPC64_ADDR16_DS, /* type */
1103 0, /* rightshift */
1104 1, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_bitfield, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 "R_PPC64_ADDR16_DS", /* name */
1111 FALSE, /* partial_inplace */
1112 0, /* src_mask */
1113 0xfffc, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1117 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1118 0, /* rightshift */
1119 1, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont,/* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 "R_PPC64_ADDR16_LO_DS",/* name */
1126 FALSE, /* partial_inplace */
1127 0, /* src_mask */
1128 0xfffc, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1132 HOWTO (R_PPC64_GOT16_DS, /* type */
1133 0, /* rightshift */
1134 1, /* size (0 = byte, 1 = short, 2 = long) */
1135 16, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_signed, /* complain_on_overflow */
1139 ppc64_elf_unhandled_reloc, /* special_function */
1140 "R_PPC64_GOT16_DS", /* name */
1141 FALSE, /* partial_inplace */
1142 0, /* src_mask */
1143 0xfffc, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1147 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1148 0, /* rightshift */
1149 1, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont, /* complain_on_overflow */
1154 ppc64_elf_unhandled_reloc, /* special_function */
1155 "R_PPC64_GOT16_LO_DS", /* name */
1156 FALSE, /* partial_inplace */
1157 0, /* src_mask */
1158 0xfffc, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1162 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1163 0, /* rightshift */
1164 1, /* size (0 = byte, 1 = short, 2 = long) */
1165 16, /* bitsize */
1166 FALSE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont, /* complain_on_overflow */
1169 ppc64_elf_unhandled_reloc, /* special_function */
1170 "R_PPC64_PLT16_LO_DS", /* name */
1171 FALSE, /* partial_inplace */
1172 0, /* src_mask */
1173 0xfffc, /* dst_mask */
1174 FALSE), /* pcrel_offset */
1175
1176 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1177 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1178 0, /* rightshift */
1179 1, /* size (0 = byte, 1 = short, 2 = long) */
1180 16, /* bitsize */
1181 FALSE, /* pc_relative */
1182 0, /* bitpos */
1183 complain_overflow_bitfield, /* complain_on_overflow */
1184 ppc64_elf_sectoff_reloc, /* special_function */
1185 "R_PPC64_SECTOFF_DS", /* name */
1186 FALSE, /* partial_inplace */
1187 0, /* src_mask */
1188 0xfffc, /* dst_mask */
1189 FALSE), /* pcrel_offset */
1190
1191 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1192 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1193 0, /* rightshift */
1194 1, /* size (0 = byte, 1 = short, 2 = long) */
1195 16, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 ppc64_elf_sectoff_reloc, /* special_function */
1200 "R_PPC64_SECTOFF_LO_DS",/* name */
1201 FALSE, /* partial_inplace */
1202 0, /* src_mask */
1203 0xfffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1207 HOWTO (R_PPC64_TOC16_DS, /* type */
1208 0, /* rightshift */
1209 1, /* size (0 = byte, 1 = short, 2 = long) */
1210 16, /* bitsize */
1211 FALSE, /* pc_relative */
1212 0, /* bitpos */
1213 complain_overflow_signed, /* complain_on_overflow */
1214 ppc64_elf_toc_reloc, /* special_function */
1215 "R_PPC64_TOC16_DS", /* name */
1216 FALSE, /* partial_inplace */
1217 0, /* src_mask */
1218 0xfffc, /* dst_mask */
1219 FALSE), /* pcrel_offset */
1220
1221 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1222 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1223 0, /* rightshift */
1224 1, /* size (0 = byte, 1 = short, 2 = long) */
1225 16, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 ppc64_elf_toc_reloc, /* special_function */
1230 "R_PPC64_TOC16_LO_DS", /* name */
1231 FALSE, /* partial_inplace */
1232 0, /* src_mask */
1233 0xfffc, /* dst_mask */
1234 FALSE), /* pcrel_offset */
1235
1236 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1237 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1238 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1239 0, /* rightshift */
1240 1, /* size (0 = byte, 1 = short, 2 = long) */
1241 16, /* bitsize */
1242 FALSE, /* pc_relative */
1243 0, /* bitpos */
1244 complain_overflow_signed, /* complain_on_overflow */
1245 ppc64_elf_unhandled_reloc, /* special_function */
1246 "R_PPC64_PLTGOT16_DS", /* name */
1247 FALSE, /* partial_inplace */
1248 0, /* src_mask */
1249 0xfffc, /* dst_mask */
1250 FALSE), /* pcrel_offset */
1251
1252 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1253 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1254 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1255 0, /* rightshift */
1256 1, /* size (0 = byte, 1 = short, 2 = long) */
1257 16, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 ppc64_elf_unhandled_reloc, /* special_function */
1262 "R_PPC64_PLTGOT16_LO_DS",/* name */
1263 FALSE, /* partial_inplace */
1264 0, /* src_mask */
1265 0xfffc, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 /* Marker relocs for TLS. */
1269 HOWTO (R_PPC64_TLS,
1270 0, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 32, /* bitsize */
1273 FALSE, /* pc_relative */
1274 0, /* bitpos */
1275 complain_overflow_dont, /* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 "R_PPC64_TLS", /* name */
1278 FALSE, /* partial_inplace */
1279 0, /* src_mask */
1280 0, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 HOWTO (R_PPC64_TLSGD,
1284 0, /* rightshift */
1285 2, /* size (0 = byte, 1 = short, 2 = long) */
1286 32, /* bitsize */
1287 FALSE, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_PPC64_TLSGD", /* name */
1292 FALSE, /* partial_inplace */
1293 0, /* src_mask */
1294 0, /* dst_mask */
1295 FALSE), /* pcrel_offset */
1296
1297 HOWTO (R_PPC64_TLSLD,
1298 0, /* rightshift */
1299 2, /* size (0 = byte, 1 = short, 2 = long) */
1300 32, /* bitsize */
1301 FALSE, /* pc_relative */
1302 0, /* bitpos */
1303 complain_overflow_dont, /* complain_on_overflow */
1304 bfd_elf_generic_reloc, /* special_function */
1305 "R_PPC64_TLSLD", /* name */
1306 FALSE, /* partial_inplace */
1307 0, /* src_mask */
1308 0, /* dst_mask */
1309 FALSE), /* pcrel_offset */
1310
1311 HOWTO (R_PPC64_TOCSAVE,
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 32, /* bitsize */
1315 FALSE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_dont, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 "R_PPC64_TOCSAVE", /* name */
1320 FALSE, /* partial_inplace */
1321 0, /* src_mask */
1322 0, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 /* Computes the load module index of the load module that contains the
1326 definition of its TLS sym. */
1327 HOWTO (R_PPC64_DTPMOD64,
1328 0, /* rightshift */
1329 4, /* size (0 = byte, 1 = short, 2 = long) */
1330 64, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_dont, /* complain_on_overflow */
1334 ppc64_elf_unhandled_reloc, /* special_function */
1335 "R_PPC64_DTPMOD64", /* name */
1336 FALSE, /* partial_inplace */
1337 0, /* src_mask */
1338 ONES (64), /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 /* Computes a dtv-relative displacement, the difference between the value
1342 of sym+add and the base address of the thread-local storage block that
1343 contains the definition of sym, minus 0x8000. */
1344 HOWTO (R_PPC64_DTPREL64,
1345 0, /* rightshift */
1346 4, /* size (0 = byte, 1 = short, 2 = long) */
1347 64, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont, /* complain_on_overflow */
1351 ppc64_elf_unhandled_reloc, /* special_function */
1352 "R_PPC64_DTPREL64", /* name */
1353 FALSE, /* partial_inplace */
1354 0, /* src_mask */
1355 ONES (64), /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 /* A 16 bit dtprel reloc. */
1359 HOWTO (R_PPC64_DTPREL16,
1360 0, /* rightshift */
1361 1, /* size (0 = byte, 1 = short, 2 = long) */
1362 16, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_signed, /* complain_on_overflow */
1366 ppc64_elf_unhandled_reloc, /* special_function */
1367 "R_PPC64_DTPREL16", /* name */
1368 FALSE, /* partial_inplace */
1369 0, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 /* Like DTPREL16, but no overflow. */
1374 HOWTO (R_PPC64_DTPREL16_LO,
1375 0, /* rightshift */
1376 1, /* size (0 = byte, 1 = short, 2 = long) */
1377 16, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont, /* complain_on_overflow */
1381 ppc64_elf_unhandled_reloc, /* special_function */
1382 "R_PPC64_DTPREL16_LO", /* name */
1383 FALSE, /* partial_inplace */
1384 0, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1389 HOWTO (R_PPC64_DTPREL16_HI,
1390 16, /* rightshift */
1391 1, /* size (0 = byte, 1 = short, 2 = long) */
1392 16, /* bitsize */
1393 FALSE, /* pc_relative */
1394 0, /* bitpos */
1395 complain_overflow_signed, /* complain_on_overflow */
1396 ppc64_elf_unhandled_reloc, /* special_function */
1397 "R_PPC64_DTPREL16_HI", /* name */
1398 FALSE, /* partial_inplace */
1399 0, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE), /* pcrel_offset */
1402
1403 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1404 HOWTO (R_PPC64_DTPREL16_HA,
1405 16, /* rightshift */
1406 1, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_signed, /* complain_on_overflow */
1411 ppc64_elf_unhandled_reloc, /* special_function */
1412 "R_PPC64_DTPREL16_HA", /* name */
1413 FALSE, /* partial_inplace */
1414 0, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1419 HOWTO (R_PPC64_DTPREL16_HIGHER,
1420 32, /* rightshift */
1421 1, /* size (0 = byte, 1 = short, 2 = long) */
1422 16, /* bitsize */
1423 FALSE, /* pc_relative */
1424 0, /* bitpos */
1425 complain_overflow_dont, /* complain_on_overflow */
1426 ppc64_elf_unhandled_reloc, /* special_function */
1427 "R_PPC64_DTPREL16_HIGHER", /* name */
1428 FALSE, /* partial_inplace */
1429 0, /* src_mask */
1430 0xffff, /* dst_mask */
1431 FALSE), /* pcrel_offset */
1432
1433 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1434 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1435 32, /* rightshift */
1436 1, /* size (0 = byte, 1 = short, 2 = long) */
1437 16, /* bitsize */
1438 FALSE, /* pc_relative */
1439 0, /* bitpos */
1440 complain_overflow_dont, /* complain_on_overflow */
1441 ppc64_elf_unhandled_reloc, /* special_function */
1442 "R_PPC64_DTPREL16_HIGHERA", /* name */
1443 FALSE, /* partial_inplace */
1444 0, /* src_mask */
1445 0xffff, /* dst_mask */
1446 FALSE), /* pcrel_offset */
1447
1448 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1449 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1450 48, /* rightshift */
1451 1, /* size (0 = byte, 1 = short, 2 = long) */
1452 16, /* bitsize */
1453 FALSE, /* pc_relative */
1454 0, /* bitpos */
1455 complain_overflow_dont, /* complain_on_overflow */
1456 ppc64_elf_unhandled_reloc, /* special_function */
1457 "R_PPC64_DTPREL16_HIGHEST", /* name */
1458 FALSE, /* partial_inplace */
1459 0, /* src_mask */
1460 0xffff, /* dst_mask */
1461 FALSE), /* pcrel_offset */
1462
1463 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1464 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1465 48, /* rightshift */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1467 16, /* bitsize */
1468 FALSE, /* pc_relative */
1469 0, /* bitpos */
1470 complain_overflow_dont, /* complain_on_overflow */
1471 ppc64_elf_unhandled_reloc, /* special_function */
1472 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1473 FALSE, /* partial_inplace */
1474 0, /* src_mask */
1475 0xffff, /* dst_mask */
1476 FALSE), /* pcrel_offset */
1477
1478 /* Like DTPREL16, but for insns with a DS field. */
1479 HOWTO (R_PPC64_DTPREL16_DS,
1480 0, /* rightshift */
1481 1, /* size (0 = byte, 1 = short, 2 = long) */
1482 16, /* bitsize */
1483 FALSE, /* pc_relative */
1484 0, /* bitpos */
1485 complain_overflow_signed, /* complain_on_overflow */
1486 ppc64_elf_unhandled_reloc, /* special_function */
1487 "R_PPC64_DTPREL16_DS", /* name */
1488 FALSE, /* partial_inplace */
1489 0, /* src_mask */
1490 0xfffc, /* dst_mask */
1491 FALSE), /* pcrel_offset */
1492
1493 /* Like DTPREL16_DS, but no overflow. */
1494 HOWTO (R_PPC64_DTPREL16_LO_DS,
1495 0, /* rightshift */
1496 1, /* size (0 = byte, 1 = short, 2 = long) */
1497 16, /* bitsize */
1498 FALSE, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_dont, /* complain_on_overflow */
1501 ppc64_elf_unhandled_reloc, /* special_function */
1502 "R_PPC64_DTPREL16_LO_DS", /* name */
1503 FALSE, /* partial_inplace */
1504 0, /* src_mask */
1505 0xfffc, /* dst_mask */
1506 FALSE), /* pcrel_offset */
1507
1508 /* Computes a tp-relative displacement, the difference between the value of
1509 sym+add and the value of the thread pointer (r13). */
1510 HOWTO (R_PPC64_TPREL64,
1511 0, /* rightshift */
1512 4, /* size (0 = byte, 1 = short, 2 = long) */
1513 64, /* bitsize */
1514 FALSE, /* pc_relative */
1515 0, /* bitpos */
1516 complain_overflow_dont, /* complain_on_overflow */
1517 ppc64_elf_unhandled_reloc, /* special_function */
1518 "R_PPC64_TPREL64", /* name */
1519 FALSE, /* partial_inplace */
1520 0, /* src_mask */
1521 ONES (64), /* dst_mask */
1522 FALSE), /* pcrel_offset */
1523
1524 /* A 16 bit tprel reloc. */
1525 HOWTO (R_PPC64_TPREL16,
1526 0, /* rightshift */
1527 1, /* size (0 = byte, 1 = short, 2 = long) */
1528 16, /* bitsize */
1529 FALSE, /* pc_relative */
1530 0, /* bitpos */
1531 complain_overflow_signed, /* complain_on_overflow */
1532 ppc64_elf_unhandled_reloc, /* special_function */
1533 "R_PPC64_TPREL16", /* name */
1534 FALSE, /* partial_inplace */
1535 0, /* src_mask */
1536 0xffff, /* dst_mask */
1537 FALSE), /* pcrel_offset */
1538
1539 /* Like TPREL16, but no overflow. */
1540 HOWTO (R_PPC64_TPREL16_LO,
1541 0, /* rightshift */
1542 1, /* size (0 = byte, 1 = short, 2 = long) */
1543 16, /* bitsize */
1544 FALSE, /* pc_relative */
1545 0, /* bitpos */
1546 complain_overflow_dont, /* complain_on_overflow */
1547 ppc64_elf_unhandled_reloc, /* special_function */
1548 "R_PPC64_TPREL16_LO", /* name */
1549 FALSE, /* partial_inplace */
1550 0, /* src_mask */
1551 0xffff, /* dst_mask */
1552 FALSE), /* pcrel_offset */
1553
1554 /* Like TPREL16_LO, but next higher group of 16 bits. */
1555 HOWTO (R_PPC64_TPREL16_HI,
1556 16, /* rightshift */
1557 1, /* size (0 = byte, 1 = short, 2 = long) */
1558 16, /* bitsize */
1559 FALSE, /* pc_relative */
1560 0, /* bitpos */
1561 complain_overflow_signed, /* complain_on_overflow */
1562 ppc64_elf_unhandled_reloc, /* special_function */
1563 "R_PPC64_TPREL16_HI", /* name */
1564 FALSE, /* partial_inplace */
1565 0, /* src_mask */
1566 0xffff, /* dst_mask */
1567 FALSE), /* pcrel_offset */
1568
1569 /* Like TPREL16_HI, but adjust for low 16 bits. */
1570 HOWTO (R_PPC64_TPREL16_HA,
1571 16, /* rightshift */
1572 1, /* size (0 = byte, 1 = short, 2 = long) */
1573 16, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_signed, /* complain_on_overflow */
1577 ppc64_elf_unhandled_reloc, /* special_function */
1578 "R_PPC64_TPREL16_HA", /* name */
1579 FALSE, /* partial_inplace */
1580 0, /* src_mask */
1581 0xffff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 /* Like TPREL16_HI, but next higher group of 16 bits. */
1585 HOWTO (R_PPC64_TPREL16_HIGHER,
1586 32, /* rightshift */
1587 1, /* size (0 = byte, 1 = short, 2 = long) */
1588 16, /* bitsize */
1589 FALSE, /* pc_relative */
1590 0, /* bitpos */
1591 complain_overflow_dont, /* complain_on_overflow */
1592 ppc64_elf_unhandled_reloc, /* special_function */
1593 "R_PPC64_TPREL16_HIGHER", /* name */
1594 FALSE, /* partial_inplace */
1595 0, /* src_mask */
1596 0xffff, /* dst_mask */
1597 FALSE), /* pcrel_offset */
1598
1599 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1600 HOWTO (R_PPC64_TPREL16_HIGHERA,
1601 32, /* rightshift */
1602 1, /* size (0 = byte, 1 = short, 2 = long) */
1603 16, /* bitsize */
1604 FALSE, /* pc_relative */
1605 0, /* bitpos */
1606 complain_overflow_dont, /* complain_on_overflow */
1607 ppc64_elf_unhandled_reloc, /* special_function */
1608 "R_PPC64_TPREL16_HIGHERA", /* name */
1609 FALSE, /* partial_inplace */
1610 0, /* src_mask */
1611 0xffff, /* dst_mask */
1612 FALSE), /* pcrel_offset */
1613
1614 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1615 HOWTO (R_PPC64_TPREL16_HIGHEST,
1616 48, /* rightshift */
1617 1, /* size (0 = byte, 1 = short, 2 = long) */
1618 16, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_dont, /* complain_on_overflow */
1622 ppc64_elf_unhandled_reloc, /* special_function */
1623 "R_PPC64_TPREL16_HIGHEST", /* name */
1624 FALSE, /* partial_inplace */
1625 0, /* src_mask */
1626 0xffff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1630 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1631 48, /* rightshift */
1632 1, /* size (0 = byte, 1 = short, 2 = long) */
1633 16, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_dont, /* complain_on_overflow */
1637 ppc64_elf_unhandled_reloc, /* special_function */
1638 "R_PPC64_TPREL16_HIGHESTA", /* name */
1639 FALSE, /* partial_inplace */
1640 0, /* src_mask */
1641 0xffff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 /* Like TPREL16, but for insns with a DS field. */
1645 HOWTO (R_PPC64_TPREL16_DS,
1646 0, /* rightshift */
1647 1, /* size (0 = byte, 1 = short, 2 = long) */
1648 16, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_signed, /* complain_on_overflow */
1652 ppc64_elf_unhandled_reloc, /* special_function */
1653 "R_PPC64_TPREL16_DS", /* name */
1654 FALSE, /* partial_inplace */
1655 0, /* src_mask */
1656 0xfffc, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 /* Like TPREL16_DS, but no overflow. */
1660 HOWTO (R_PPC64_TPREL16_LO_DS,
1661 0, /* rightshift */
1662 1, /* size (0 = byte, 1 = short, 2 = long) */
1663 16, /* bitsize */
1664 FALSE, /* pc_relative */
1665 0, /* bitpos */
1666 complain_overflow_dont, /* complain_on_overflow */
1667 ppc64_elf_unhandled_reloc, /* special_function */
1668 "R_PPC64_TPREL16_LO_DS", /* name */
1669 FALSE, /* partial_inplace */
1670 0, /* src_mask */
1671 0xfffc, /* dst_mask */
1672 FALSE), /* pcrel_offset */
1673
1674 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1675 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1676 to the first entry relative to the TOC base (r2). */
1677 HOWTO (R_PPC64_GOT_TLSGD16,
1678 0, /* rightshift */
1679 1, /* size (0 = byte, 1 = short, 2 = long) */
1680 16, /* bitsize */
1681 FALSE, /* pc_relative */
1682 0, /* bitpos */
1683 complain_overflow_signed, /* complain_on_overflow */
1684 ppc64_elf_unhandled_reloc, /* special_function */
1685 "R_PPC64_GOT_TLSGD16", /* name */
1686 FALSE, /* partial_inplace */
1687 0, /* src_mask */
1688 0xffff, /* dst_mask */
1689 FALSE), /* pcrel_offset */
1690
1691 /* Like GOT_TLSGD16, but no overflow. */
1692 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1693 0, /* rightshift */
1694 1, /* size (0 = byte, 1 = short, 2 = long) */
1695 16, /* bitsize */
1696 FALSE, /* pc_relative */
1697 0, /* bitpos */
1698 complain_overflow_dont, /* complain_on_overflow */
1699 ppc64_elf_unhandled_reloc, /* special_function */
1700 "R_PPC64_GOT_TLSGD16_LO", /* name */
1701 FALSE, /* partial_inplace */
1702 0, /* src_mask */
1703 0xffff, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1707 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1708 16, /* rightshift */
1709 1, /* size (0 = byte, 1 = short, 2 = long) */
1710 16, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_signed, /* complain_on_overflow */
1714 ppc64_elf_unhandled_reloc, /* special_function */
1715 "R_PPC64_GOT_TLSGD16_HI", /* name */
1716 FALSE, /* partial_inplace */
1717 0, /* src_mask */
1718 0xffff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1722 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1723 16, /* rightshift */
1724 1, /* size (0 = byte, 1 = short, 2 = long) */
1725 16, /* bitsize */
1726 FALSE, /* pc_relative */
1727 0, /* bitpos */
1728 complain_overflow_signed, /* complain_on_overflow */
1729 ppc64_elf_unhandled_reloc, /* special_function */
1730 "R_PPC64_GOT_TLSGD16_HA", /* name */
1731 FALSE, /* partial_inplace */
1732 0, /* src_mask */
1733 0xffff, /* dst_mask */
1734 FALSE), /* pcrel_offset */
1735
1736 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1737 with values (sym+add)@dtpmod and zero, and computes the offset to the
1738 first entry relative to the TOC base (r2). */
1739 HOWTO (R_PPC64_GOT_TLSLD16,
1740 0, /* rightshift */
1741 1, /* size (0 = byte, 1 = short, 2 = long) */
1742 16, /* bitsize */
1743 FALSE, /* pc_relative */
1744 0, /* bitpos */
1745 complain_overflow_signed, /* complain_on_overflow */
1746 ppc64_elf_unhandled_reloc, /* special_function */
1747 "R_PPC64_GOT_TLSLD16", /* name */
1748 FALSE, /* partial_inplace */
1749 0, /* src_mask */
1750 0xffff, /* dst_mask */
1751 FALSE), /* pcrel_offset */
1752
1753 /* Like GOT_TLSLD16, but no overflow. */
1754 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1755 0, /* rightshift */
1756 1, /* size (0 = byte, 1 = short, 2 = long) */
1757 16, /* bitsize */
1758 FALSE, /* pc_relative */
1759 0, /* bitpos */
1760 complain_overflow_dont, /* complain_on_overflow */
1761 ppc64_elf_unhandled_reloc, /* special_function */
1762 "R_PPC64_GOT_TLSLD16_LO", /* name */
1763 FALSE, /* partial_inplace */
1764 0, /* src_mask */
1765 0xffff, /* dst_mask */
1766 FALSE), /* pcrel_offset */
1767
1768 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1769 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1770 16, /* rightshift */
1771 1, /* size (0 = byte, 1 = short, 2 = long) */
1772 16, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_signed, /* complain_on_overflow */
1776 ppc64_elf_unhandled_reloc, /* special_function */
1777 "R_PPC64_GOT_TLSLD16_HI", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0xffff, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1784 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1785 16, /* rightshift */
1786 1, /* size (0 = byte, 1 = short, 2 = long) */
1787 16, /* bitsize */
1788 FALSE, /* pc_relative */
1789 0, /* bitpos */
1790 complain_overflow_signed, /* complain_on_overflow */
1791 ppc64_elf_unhandled_reloc, /* special_function */
1792 "R_PPC64_GOT_TLSLD16_HA", /* name */
1793 FALSE, /* partial_inplace */
1794 0, /* src_mask */
1795 0xffff, /* dst_mask */
1796 FALSE), /* pcrel_offset */
1797
1798 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1799 the offset to the entry relative to the TOC base (r2). */
1800 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1801 0, /* rightshift */
1802 1, /* size (0 = byte, 1 = short, 2 = long) */
1803 16, /* bitsize */
1804 FALSE, /* pc_relative */
1805 0, /* bitpos */
1806 complain_overflow_signed, /* complain_on_overflow */
1807 ppc64_elf_unhandled_reloc, /* special_function */
1808 "R_PPC64_GOT_DTPREL16_DS", /* name */
1809 FALSE, /* partial_inplace */
1810 0, /* src_mask */
1811 0xfffc, /* dst_mask */
1812 FALSE), /* pcrel_offset */
1813
1814 /* Like GOT_DTPREL16_DS, but no overflow. */
1815 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1816 0, /* rightshift */
1817 1, /* size (0 = byte, 1 = short, 2 = long) */
1818 16, /* bitsize */
1819 FALSE, /* pc_relative */
1820 0, /* bitpos */
1821 complain_overflow_dont, /* complain_on_overflow */
1822 ppc64_elf_unhandled_reloc, /* special_function */
1823 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1824 FALSE, /* partial_inplace */
1825 0, /* src_mask */
1826 0xfffc, /* dst_mask */
1827 FALSE), /* pcrel_offset */
1828
1829 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1830 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1831 16, /* rightshift */
1832 1, /* size (0 = byte, 1 = short, 2 = long) */
1833 16, /* bitsize */
1834 FALSE, /* pc_relative */
1835 0, /* bitpos */
1836 complain_overflow_signed, /* complain_on_overflow */
1837 ppc64_elf_unhandled_reloc, /* special_function */
1838 "R_PPC64_GOT_DTPREL16_HI", /* name */
1839 FALSE, /* partial_inplace */
1840 0, /* src_mask */
1841 0xffff, /* dst_mask */
1842 FALSE), /* pcrel_offset */
1843
1844 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1845 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1846 16, /* rightshift */
1847 1, /* size (0 = byte, 1 = short, 2 = long) */
1848 16, /* bitsize */
1849 FALSE, /* pc_relative */
1850 0, /* bitpos */
1851 complain_overflow_signed, /* complain_on_overflow */
1852 ppc64_elf_unhandled_reloc, /* special_function */
1853 "R_PPC64_GOT_DTPREL16_HA", /* name */
1854 FALSE, /* partial_inplace */
1855 0, /* src_mask */
1856 0xffff, /* dst_mask */
1857 FALSE), /* pcrel_offset */
1858
1859 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1860 offset to the entry relative to the TOC base (r2). */
1861 HOWTO (R_PPC64_GOT_TPREL16_DS,
1862 0, /* rightshift */
1863 1, /* size (0 = byte, 1 = short, 2 = long) */
1864 16, /* bitsize */
1865 FALSE, /* pc_relative */
1866 0, /* bitpos */
1867 complain_overflow_signed, /* complain_on_overflow */
1868 ppc64_elf_unhandled_reloc, /* special_function */
1869 "R_PPC64_GOT_TPREL16_DS", /* name */
1870 FALSE, /* partial_inplace */
1871 0, /* src_mask */
1872 0xfffc, /* dst_mask */
1873 FALSE), /* pcrel_offset */
1874
1875 /* Like GOT_TPREL16_DS, but no overflow. */
1876 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1877 0, /* rightshift */
1878 1, /* size (0 = byte, 1 = short, 2 = long) */
1879 16, /* bitsize */
1880 FALSE, /* pc_relative */
1881 0, /* bitpos */
1882 complain_overflow_dont, /* complain_on_overflow */
1883 ppc64_elf_unhandled_reloc, /* special_function */
1884 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1885 FALSE, /* partial_inplace */
1886 0, /* src_mask */
1887 0xfffc, /* dst_mask */
1888 FALSE), /* pcrel_offset */
1889
1890 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1891 HOWTO (R_PPC64_GOT_TPREL16_HI,
1892 16, /* rightshift */
1893 1, /* size (0 = byte, 1 = short, 2 = long) */
1894 16, /* bitsize */
1895 FALSE, /* pc_relative */
1896 0, /* bitpos */
1897 complain_overflow_signed, /* complain_on_overflow */
1898 ppc64_elf_unhandled_reloc, /* special_function */
1899 "R_PPC64_GOT_TPREL16_HI", /* name */
1900 FALSE, /* partial_inplace */
1901 0, /* src_mask */
1902 0xffff, /* dst_mask */
1903 FALSE), /* pcrel_offset */
1904
1905 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1906 HOWTO (R_PPC64_GOT_TPREL16_HA,
1907 16, /* rightshift */
1908 1, /* size (0 = byte, 1 = short, 2 = long) */
1909 16, /* bitsize */
1910 FALSE, /* pc_relative */
1911 0, /* bitpos */
1912 complain_overflow_signed, /* complain_on_overflow */
1913 ppc64_elf_unhandled_reloc, /* special_function */
1914 "R_PPC64_GOT_TPREL16_HA", /* name */
1915 FALSE, /* partial_inplace */
1916 0, /* src_mask */
1917 0xffff, /* dst_mask */
1918 FALSE), /* pcrel_offset */
1919
1920 HOWTO (R_PPC64_JMP_IREL, /* type */
1921 0, /* rightshift */
1922 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1923 0, /* bitsize */
1924 FALSE, /* pc_relative */
1925 0, /* bitpos */
1926 complain_overflow_dont, /* complain_on_overflow */
1927 ppc64_elf_unhandled_reloc, /* special_function */
1928 "R_PPC64_JMP_IREL", /* name */
1929 FALSE, /* partial_inplace */
1930 0, /* src_mask */
1931 0, /* dst_mask */
1932 FALSE), /* pcrel_offset */
1933
1934 HOWTO (R_PPC64_IRELATIVE, /* type */
1935 0, /* rightshift */
1936 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1937 64, /* bitsize */
1938 FALSE, /* pc_relative */
1939 0, /* bitpos */
1940 complain_overflow_dont, /* complain_on_overflow */
1941 bfd_elf_generic_reloc, /* special_function */
1942 "R_PPC64_IRELATIVE", /* name */
1943 FALSE, /* partial_inplace */
1944 0, /* src_mask */
1945 ONES (64), /* dst_mask */
1946 FALSE), /* pcrel_offset */
1947
1948 /* A 16 bit relative relocation. */
1949 HOWTO (R_PPC64_REL16, /* type */
1950 0, /* rightshift */
1951 1, /* size (0 = byte, 1 = short, 2 = long) */
1952 16, /* bitsize */
1953 TRUE, /* pc_relative */
1954 0, /* bitpos */
1955 complain_overflow_bitfield, /* complain_on_overflow */
1956 bfd_elf_generic_reloc, /* special_function */
1957 "R_PPC64_REL16", /* name */
1958 FALSE, /* partial_inplace */
1959 0, /* src_mask */
1960 0xffff, /* dst_mask */
1961 TRUE), /* pcrel_offset */
1962
1963 /* A 16 bit relative relocation without overflow. */
1964 HOWTO (R_PPC64_REL16_LO, /* type */
1965 0, /* rightshift */
1966 1, /* size (0 = byte, 1 = short, 2 = long) */
1967 16, /* bitsize */
1968 TRUE, /* pc_relative */
1969 0, /* bitpos */
1970 complain_overflow_dont,/* complain_on_overflow */
1971 bfd_elf_generic_reloc, /* special_function */
1972 "R_PPC64_REL16_LO", /* name */
1973 FALSE, /* partial_inplace */
1974 0, /* src_mask */
1975 0xffff, /* dst_mask */
1976 TRUE), /* pcrel_offset */
1977
1978 /* The high order 16 bits of a relative address. */
1979 HOWTO (R_PPC64_REL16_HI, /* type */
1980 16, /* rightshift */
1981 1, /* size (0 = byte, 1 = short, 2 = long) */
1982 16, /* bitsize */
1983 TRUE, /* pc_relative */
1984 0, /* bitpos */
1985 complain_overflow_signed, /* complain_on_overflow */
1986 bfd_elf_generic_reloc, /* special_function */
1987 "R_PPC64_REL16_HI", /* name */
1988 FALSE, /* partial_inplace */
1989 0, /* src_mask */
1990 0xffff, /* dst_mask */
1991 TRUE), /* pcrel_offset */
1992
1993 /* The high order 16 bits of a relative address, plus 1 if the contents of
1994 the low 16 bits, treated as a signed number, is negative. */
1995 HOWTO (R_PPC64_REL16_HA, /* type */
1996 16, /* rightshift */
1997 1, /* size (0 = byte, 1 = short, 2 = long) */
1998 16, /* bitsize */
1999 TRUE, /* pc_relative */
2000 0, /* bitpos */
2001 complain_overflow_signed, /* complain_on_overflow */
2002 ppc64_elf_ha_reloc, /* special_function */
2003 "R_PPC64_REL16_HA", /* name */
2004 FALSE, /* partial_inplace */
2005 0, /* src_mask */
2006 0xffff, /* dst_mask */
2007 TRUE), /* pcrel_offset */
2008
2009 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2010 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2011 16, /* rightshift */
2012 1, /* size (0 = byte, 1 = short, 2 = long) */
2013 16, /* bitsize */
2014 FALSE, /* pc_relative */
2015 0, /* bitpos */
2016 complain_overflow_dont, /* complain_on_overflow */
2017 bfd_elf_generic_reloc, /* special_function */
2018 "R_PPC64_ADDR16_HIGH", /* name */
2019 FALSE, /* partial_inplace */
2020 0, /* src_mask */
2021 0xffff, /* dst_mask */
2022 FALSE), /* pcrel_offset */
2023
2024 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2025 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2026 16, /* rightshift */
2027 1, /* size (0 = byte, 1 = short, 2 = long) */
2028 16, /* bitsize */
2029 FALSE, /* pc_relative */
2030 0, /* bitpos */
2031 complain_overflow_dont, /* complain_on_overflow */
2032 ppc64_elf_ha_reloc, /* special_function */
2033 "R_PPC64_ADDR16_HIGHA", /* name */
2034 FALSE, /* partial_inplace */
2035 0, /* src_mask */
2036 0xffff, /* dst_mask */
2037 FALSE), /* pcrel_offset */
2038
2039 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2040 HOWTO (R_PPC64_DTPREL16_HIGH,
2041 16, /* rightshift */
2042 1, /* size (0 = byte, 1 = short, 2 = long) */
2043 16, /* bitsize */
2044 FALSE, /* pc_relative */
2045 0, /* bitpos */
2046 complain_overflow_dont, /* complain_on_overflow */
2047 ppc64_elf_unhandled_reloc, /* special_function */
2048 "R_PPC64_DTPREL16_HIGH", /* name */
2049 FALSE, /* partial_inplace */
2050 0, /* src_mask */
2051 0xffff, /* dst_mask */
2052 FALSE), /* pcrel_offset */
2053
2054 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2055 HOWTO (R_PPC64_DTPREL16_HIGHA,
2056 16, /* rightshift */
2057 1, /* size (0 = byte, 1 = short, 2 = long) */
2058 16, /* bitsize */
2059 FALSE, /* pc_relative */
2060 0, /* bitpos */
2061 complain_overflow_dont, /* complain_on_overflow */
2062 ppc64_elf_unhandled_reloc, /* special_function */
2063 "R_PPC64_DTPREL16_HIGHA", /* name */
2064 FALSE, /* partial_inplace */
2065 0, /* src_mask */
2066 0xffff, /* dst_mask */
2067 FALSE), /* pcrel_offset */
2068
2069 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2070 HOWTO (R_PPC64_TPREL16_HIGH,
2071 16, /* rightshift */
2072 1, /* size (0 = byte, 1 = short, 2 = long) */
2073 16, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 ppc64_elf_unhandled_reloc, /* special_function */
2078 "R_PPC64_TPREL16_HIGH", /* name */
2079 FALSE, /* partial_inplace */
2080 0, /* src_mask */
2081 0xffff, /* dst_mask */
2082 FALSE), /* pcrel_offset */
2083
2084 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2085 HOWTO (R_PPC64_TPREL16_HIGHA,
2086 16, /* rightshift */
2087 1, /* size (0 = byte, 1 = short, 2 = long) */
2088 16, /* bitsize */
2089 FALSE, /* pc_relative */
2090 0, /* bitpos */
2091 complain_overflow_dont, /* complain_on_overflow */
2092 ppc64_elf_unhandled_reloc, /* special_function */
2093 "R_PPC64_TPREL16_HIGHA", /* name */
2094 FALSE, /* partial_inplace */
2095 0, /* src_mask */
2096 0xffff, /* dst_mask */
2097 FALSE), /* pcrel_offset */
2098
2099 /* GNU extension to record C++ vtable hierarchy. */
2100 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2101 0, /* rightshift */
2102 0, /* size (0 = byte, 1 = short, 2 = long) */
2103 0, /* bitsize */
2104 FALSE, /* pc_relative */
2105 0, /* bitpos */
2106 complain_overflow_dont, /* complain_on_overflow */
2107 NULL, /* special_function */
2108 "R_PPC64_GNU_VTINHERIT", /* name */
2109 FALSE, /* partial_inplace */
2110 0, /* src_mask */
2111 0, /* dst_mask */
2112 FALSE), /* pcrel_offset */
2113
2114 /* GNU extension to record C++ vtable member usage. */
2115 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2116 0, /* rightshift */
2117 0, /* size (0 = byte, 1 = short, 2 = long) */
2118 0, /* bitsize */
2119 FALSE, /* pc_relative */
2120 0, /* bitpos */
2121 complain_overflow_dont, /* complain_on_overflow */
2122 NULL, /* special_function */
2123 "R_PPC64_GNU_VTENTRY", /* name */
2124 FALSE, /* partial_inplace */
2125 0, /* src_mask */
2126 0, /* dst_mask */
2127 FALSE), /* pcrel_offset */
2128 };
2129
2130 \f
2131 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2132 be done. */
2133
2134 static void
2135 ppc_howto_init (void)
2136 {
2137 unsigned int i, type;
2138
2139 for (i = 0;
2140 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2141 i++)
2142 {
2143 type = ppc64_elf_howto_raw[i].type;
2144 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2145 / sizeof (ppc64_elf_howto_table[0])));
2146 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2147 }
2148 }
2149
2150 static reloc_howto_type *
2151 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2152 bfd_reloc_code_real_type code)
2153 {
2154 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2155
2156 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2157 /* Initialize howto table if needed. */
2158 ppc_howto_init ();
2159
2160 switch (code)
2161 {
2162 default:
2163 return NULL;
2164
2165 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2166 break;
2167 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2168 break;
2169 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2170 break;
2171 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2172 break;
2173 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2174 break;
2175 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2176 break;
2177 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2178 break;
2179 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2180 break;
2181 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2182 break;
2183 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2184 break;
2185 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2186 break;
2187 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2188 break;
2189 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2190 break;
2191 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2192 break;
2193 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2194 break;
2195 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2196 break;
2197 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2198 break;
2199 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2200 break;
2201 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2202 break;
2203 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2204 break;
2205 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2206 break;
2207 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2208 break;
2209 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2210 break;
2211 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2212 break;
2213 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2214 break;
2215 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2216 break;
2217 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2218 break;
2219 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2220 break;
2221 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2222 break;
2223 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2224 break;
2225 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2226 break;
2227 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2228 break;
2229 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2230 break;
2231 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2232 break;
2233 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2234 break;
2235 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2236 break;
2237 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2238 break;
2239 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2240 break;
2241 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2242 break;
2243 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2244 break;
2245 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2246 break;
2247 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2248 break;
2249 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2250 break;
2251 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2252 break;
2253 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2254 break;
2255 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2256 break;
2257 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2258 break;
2259 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2260 break;
2261 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2262 break;
2263 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2264 break;
2265 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2266 break;
2267 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2268 break;
2269 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2270 break;
2271 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2272 break;
2273 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2274 break;
2275 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2276 break;
2277 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2278 break;
2279 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2280 break;
2281 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2282 break;
2283 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2284 break;
2285 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2286 break;
2287 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2288 break;
2289 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2290 break;
2291 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2292 break;
2293 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2294 break;
2295 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2296 break;
2297 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2298 break;
2299 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2300 break;
2301 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2302 break;
2303 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2304 break;
2305 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2306 break;
2307 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2308 break;
2309 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2310 break;
2311 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2312 break;
2313 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2314 break;
2315 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2316 break;
2317 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2318 break;
2319 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2320 break;
2321 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2322 break;
2323 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2324 break;
2325 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2326 break;
2327 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2328 break;
2329 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2330 break;
2331 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2332 break;
2333 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2334 break;
2335 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2336 break;
2337 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2338 break;
2339 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2340 break;
2341 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2342 break;
2343 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2344 break;
2345 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2346 break;
2347 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2348 break;
2349 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2350 break;
2351 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2352 break;
2353 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2354 break;
2355 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2356 break;
2357 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2358 break;
2359 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2360 break;
2361 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2362 break;
2363 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2364 break;
2365 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2366 break;
2367 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2368 break;
2369 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2370 break;
2371 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2372 break;
2373 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2374 break;
2375 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2376 break;
2377 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2378 break;
2379 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2380 break;
2381 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2382 break;
2383 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2384 break;
2385 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2386 break;
2387 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2388 break;
2389 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2390 break;
2391 }
2392
2393 return ppc64_elf_howto_table[r];
2394 };
2395
2396 static reloc_howto_type *
2397 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2398 const char *r_name)
2399 {
2400 unsigned int i;
2401
2402 for (i = 0;
2403 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2404 i++)
2405 if (ppc64_elf_howto_raw[i].name != NULL
2406 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2407 return &ppc64_elf_howto_raw[i];
2408
2409 return NULL;
2410 }
2411
2412 /* Set the howto pointer for a PowerPC ELF reloc. */
2413
2414 static void
2415 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2416 Elf_Internal_Rela *dst)
2417 {
2418 unsigned int type;
2419
2420 /* Initialize howto table if needed. */
2421 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2422 ppc_howto_init ();
2423
2424 type = ELF64_R_TYPE (dst->r_info);
2425 if (type >= (sizeof (ppc64_elf_howto_table)
2426 / sizeof (ppc64_elf_howto_table[0])))
2427 {
2428 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2429 abfd, (int) type);
2430 type = R_PPC64_NONE;
2431 }
2432 cache_ptr->howto = ppc64_elf_howto_table[type];
2433 }
2434
2435 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2436
2437 static bfd_reloc_status_type
2438 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2439 void *data, asection *input_section,
2440 bfd *output_bfd, char **error_message)
2441 {
2442 /* If this is a relocatable link (output_bfd test tells us), just
2443 call the generic function. Any adjustment will be done at final
2444 link time. */
2445 if (output_bfd != NULL)
2446 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2447 input_section, output_bfd, error_message);
2448
2449 /* Adjust the addend for sign extension of the low 16 bits.
2450 We won't actually be using the low 16 bits, so trashing them
2451 doesn't matter. */
2452 reloc_entry->addend += 0x8000;
2453 return bfd_reloc_continue;
2454 }
2455
2456 static bfd_reloc_status_type
2457 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2458 void *data, asection *input_section,
2459 bfd *output_bfd, char **error_message)
2460 {
2461 if (output_bfd != NULL)
2462 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2463 input_section, output_bfd, error_message);
2464
2465 if (strcmp (symbol->section->name, ".opd") == 0
2466 && (symbol->section->owner->flags & DYNAMIC) == 0)
2467 {
2468 bfd_vma dest = opd_entry_value (symbol->section,
2469 symbol->value + reloc_entry->addend,
2470 NULL, NULL, FALSE);
2471 if (dest != (bfd_vma) -1)
2472 reloc_entry->addend = dest - (symbol->value
2473 + symbol->section->output_section->vma
2474 + symbol->section->output_offset);
2475 }
2476 return bfd_reloc_continue;
2477 }
2478
2479 static bfd_reloc_status_type
2480 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 long insn;
2485 enum elf_ppc64_reloc_type r_type;
2486 bfd_size_type octets;
2487 /* Assume 'at' branch hints. */
2488 bfd_boolean is_isa_v2 = TRUE;
2489
2490 /* If this is a relocatable link (output_bfd test tells us), just
2491 call the generic function. Any adjustment will be done at final
2492 link time. */
2493 if (output_bfd != NULL)
2494 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2495 input_section, output_bfd, error_message);
2496
2497 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2498 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2499 insn &= ~(0x01 << 21);
2500 r_type = reloc_entry->howto->type;
2501 if (r_type == R_PPC64_ADDR14_BRTAKEN
2502 || r_type == R_PPC64_REL14_BRTAKEN)
2503 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2504
2505 if (is_isa_v2)
2506 {
2507 /* Set 'a' bit. This is 0b00010 in BO field for branch
2508 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2509 for branch on CTR insns (BO == 1a00t or 1a01t). */
2510 if ((insn & (0x14 << 21)) == (0x04 << 21))
2511 insn |= 0x02 << 21;
2512 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2513 insn |= 0x08 << 21;
2514 else
2515 goto out;
2516 }
2517 else
2518 {
2519 bfd_vma target = 0;
2520 bfd_vma from;
2521
2522 if (!bfd_is_com_section (symbol->section))
2523 target = symbol->value;
2524 target += symbol->section->output_section->vma;
2525 target += symbol->section->output_offset;
2526 target += reloc_entry->addend;
2527
2528 from = (reloc_entry->address
2529 + input_section->output_offset
2530 + input_section->output_section->vma);
2531
2532 /* Invert 'y' bit if not the default. */
2533 if ((bfd_signed_vma) (target - from) < 0)
2534 insn ^= 0x01 << 21;
2535 }
2536 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2537 out:
2538 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2539 input_section, output_bfd, error_message);
2540 }
2541
2542 static bfd_reloc_status_type
2543 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2544 void *data, asection *input_section,
2545 bfd *output_bfd, char **error_message)
2546 {
2547 /* If this is a relocatable link (output_bfd test tells us), just
2548 call the generic function. Any adjustment will be done at final
2549 link time. */
2550 if (output_bfd != NULL)
2551 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2552 input_section, output_bfd, error_message);
2553
2554 /* Subtract the symbol section base address. */
2555 reloc_entry->addend -= symbol->section->output_section->vma;
2556 return bfd_reloc_continue;
2557 }
2558
2559 static bfd_reloc_status_type
2560 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2561 void *data, asection *input_section,
2562 bfd *output_bfd, char **error_message)
2563 {
2564 /* If this is a relocatable link (output_bfd test tells us), just
2565 call the generic function. Any adjustment will be done at final
2566 link time. */
2567 if (output_bfd != NULL)
2568 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2569 input_section, output_bfd, error_message);
2570
2571 /* Subtract the symbol section base address. */
2572 reloc_entry->addend -= symbol->section->output_section->vma;
2573
2574 /* Adjust the addend for sign extension of the low 16 bits. */
2575 reloc_entry->addend += 0x8000;
2576 return bfd_reloc_continue;
2577 }
2578
2579 static bfd_reloc_status_type
2580 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2581 void *data, asection *input_section,
2582 bfd *output_bfd, char **error_message)
2583 {
2584 bfd_vma TOCstart;
2585
2586 /* If this is a relocatable link (output_bfd test tells us), just
2587 call the generic function. Any adjustment will be done at final
2588 link time. */
2589 if (output_bfd != NULL)
2590 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd, error_message);
2592
2593 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2594 if (TOCstart == 0)
2595 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2596
2597 /* Subtract the TOC base address. */
2598 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2599 return bfd_reloc_continue;
2600 }
2601
2602 static bfd_reloc_status_type
2603 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2604 void *data, asection *input_section,
2605 bfd *output_bfd, char **error_message)
2606 {
2607 bfd_vma TOCstart;
2608
2609 /* If this is a relocatable link (output_bfd test tells us), just
2610 call the generic function. Any adjustment will be done at final
2611 link time. */
2612 if (output_bfd != NULL)
2613 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2614 input_section, output_bfd, error_message);
2615
2616 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2617 if (TOCstart == 0)
2618 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2619
2620 /* Subtract the TOC base address. */
2621 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2622
2623 /* Adjust the addend for sign extension of the low 16 bits. */
2624 reloc_entry->addend += 0x8000;
2625 return bfd_reloc_continue;
2626 }
2627
2628 static bfd_reloc_status_type
2629 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2630 void *data, asection *input_section,
2631 bfd *output_bfd, char **error_message)
2632 {
2633 bfd_vma TOCstart;
2634 bfd_size_type octets;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2648 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2649 return bfd_reloc_ok;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 /* If this is a relocatable link (output_bfd test tells us), just
2658 call the generic function. Any adjustment will be done at final
2659 link time. */
2660 if (output_bfd != NULL)
2661 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2662 input_section, output_bfd, error_message);
2663
2664 if (error_message != NULL)
2665 {
2666 static char buf[60];
2667 sprintf (buf, "generic linker can't handle %s",
2668 reloc_entry->howto->name);
2669 *error_message = buf;
2670 }
2671 return bfd_reloc_dangerous;
2672 }
2673
2674 /* Track GOT entries needed for a given symbol. We might need more
2675 than one got entry per symbol. */
2676 struct got_entry
2677 {
2678 struct got_entry *next;
2679
2680 /* The symbol addend that we'll be placing in the GOT. */
2681 bfd_vma addend;
2682
2683 /* Unlike other ELF targets, we use separate GOT entries for the same
2684 symbol referenced from different input files. This is to support
2685 automatic multiple TOC/GOT sections, where the TOC base can vary
2686 from one input file to another. After partitioning into TOC groups
2687 we merge entries within the group.
2688
2689 Point to the BFD owning this GOT entry. */
2690 bfd *owner;
2691
2692 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2693 TLS_TPREL or TLS_DTPREL for tls entries. */
2694 unsigned char tls_type;
2695
2696 /* Non-zero if got.ent points to real entry. */
2697 unsigned char is_indirect;
2698
2699 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2700 union
2701 {
2702 bfd_signed_vma refcount;
2703 bfd_vma offset;
2704 struct got_entry *ent;
2705 } got;
2706 };
2707
2708 /* The same for PLT. */
2709 struct plt_entry
2710 {
2711 struct plt_entry *next;
2712
2713 bfd_vma addend;
2714
2715 union
2716 {
2717 bfd_signed_vma refcount;
2718 bfd_vma offset;
2719 } plt;
2720 };
2721
2722 struct ppc64_elf_obj_tdata
2723 {
2724 struct elf_obj_tdata elf;
2725
2726 /* Shortcuts to dynamic linker sections. */
2727 asection *got;
2728 asection *relgot;
2729
2730 /* Used during garbage collection. We attach global symbols defined
2731 on removed .opd entries to this section so that the sym is removed. */
2732 asection *deleted_section;
2733
2734 /* TLS local dynamic got entry handling. Support for multiple GOT
2735 sections means we potentially need one of these for each input bfd. */
2736 struct got_entry tlsld_got;
2737
2738 union {
2739 /* A copy of relocs before they are modified for --emit-relocs. */
2740 Elf_Internal_Rela *relocs;
2741
2742 /* Section contents. */
2743 bfd_byte *contents;
2744 } opd;
2745
2746 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2747 the reloc to be in the range -32768 to 32767. */
2748 unsigned int has_small_toc_reloc : 1;
2749
2750 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2751 instruction not one we handle. */
2752 unsigned int unexpected_toc_insn : 1;
2753 };
2754
2755 #define ppc64_elf_tdata(bfd) \
2756 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2757
2758 #define ppc64_tlsld_got(bfd) \
2759 (&ppc64_elf_tdata (bfd)->tlsld_got)
2760
2761 #define is_ppc64_elf(bfd) \
2762 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2763 && elf_object_id (bfd) == PPC64_ELF_DATA)
2764
2765 /* Override the generic function because we store some extras. */
2766
2767 static bfd_boolean
2768 ppc64_elf_mkobject (bfd *abfd)
2769 {
2770 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2771 PPC64_ELF_DATA);
2772 }
2773
2774 /* Fix bad default arch selected for a 64 bit input bfd when the
2775 default is 32 bit. */
2776
2777 static bfd_boolean
2778 ppc64_elf_object_p (bfd *abfd)
2779 {
2780 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2781 {
2782 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2783
2784 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2785 {
2786 /* Relies on arch after 32 bit default being 64 bit default. */
2787 abfd->arch_info = abfd->arch_info->next;
2788 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2789 }
2790 }
2791 return TRUE;
2792 }
2793
2794 /* Support for core dump NOTE sections. */
2795
2796 static bfd_boolean
2797 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2798 {
2799 size_t offset, size;
2800
2801 if (note->descsz != 504)
2802 return FALSE;
2803
2804 /* pr_cursig */
2805 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2806
2807 /* pr_pid */
2808 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2809
2810 /* pr_reg */
2811 offset = 112;
2812 size = 384;
2813
2814 /* Make a ".reg/999" section. */
2815 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2816 size, note->descpos + offset);
2817 }
2818
2819 static bfd_boolean
2820 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2821 {
2822 if (note->descsz != 136)
2823 return FALSE;
2824
2825 elf_tdata (abfd)->core->pid
2826 = bfd_get_32 (abfd, note->descdata + 24);
2827 elf_tdata (abfd)->core->program
2828 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2829 elf_tdata (abfd)->core->command
2830 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2831
2832 return TRUE;
2833 }
2834
2835 static char *
2836 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2837 ...)
2838 {
2839 switch (note_type)
2840 {
2841 default:
2842 return NULL;
2843
2844 case NT_PRPSINFO:
2845 {
2846 char data[136];
2847 va_list ap;
2848
2849 va_start (ap, note_type);
2850 memset (data, 0, sizeof (data));
2851 strncpy (data + 40, va_arg (ap, const char *), 16);
2852 strncpy (data + 56, va_arg (ap, const char *), 80);
2853 va_end (ap);
2854 return elfcore_write_note (abfd, buf, bufsiz,
2855 "CORE", note_type, data, sizeof (data));
2856 }
2857
2858 case NT_PRSTATUS:
2859 {
2860 char data[504];
2861 va_list ap;
2862 long pid;
2863 int cursig;
2864 const void *greg;
2865
2866 va_start (ap, note_type);
2867 memset (data, 0, 112);
2868 pid = va_arg (ap, long);
2869 bfd_put_32 (abfd, pid, data + 32);
2870 cursig = va_arg (ap, int);
2871 bfd_put_16 (abfd, cursig, data + 12);
2872 greg = va_arg (ap, const void *);
2873 memcpy (data + 112, greg, 384);
2874 memset (data + 496, 0, 8);
2875 va_end (ap);
2876 return elfcore_write_note (abfd, buf, bufsiz,
2877 "CORE", note_type, data, sizeof (data));
2878 }
2879 }
2880 }
2881
2882 /* Add extra PPC sections. */
2883
2884 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2885 {
2886 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2887 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2888 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2889 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2890 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2891 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2892 { NULL, 0, 0, 0, 0 }
2893 };
2894
2895 enum _ppc64_sec_type {
2896 sec_normal = 0,
2897 sec_opd = 1,
2898 sec_toc = 2
2899 };
2900
2901 struct _ppc64_elf_section_data
2902 {
2903 struct bfd_elf_section_data elf;
2904
2905 union
2906 {
2907 /* An array with one entry for each opd function descriptor. */
2908 struct _opd_sec_data
2909 {
2910 /* Points to the function code section for local opd entries. */
2911 asection **func_sec;
2912
2913 /* After editing .opd, adjust references to opd local syms. */
2914 long *adjust;
2915 } opd;
2916
2917 /* An array for toc sections, indexed by offset/8. */
2918 struct _toc_sec_data
2919 {
2920 /* Specifies the relocation symbol index used at a given toc offset. */
2921 unsigned *symndx;
2922
2923 /* And the relocation addend. */
2924 bfd_vma *add;
2925 } toc;
2926 } u;
2927
2928 enum _ppc64_sec_type sec_type:2;
2929
2930 /* Flag set when small branches are detected. Used to
2931 select suitable defaults for the stub group size. */
2932 unsigned int has_14bit_branch:1;
2933 };
2934
2935 #define ppc64_elf_section_data(sec) \
2936 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2937
2938 static bfd_boolean
2939 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2940 {
2941 if (!sec->used_by_bfd)
2942 {
2943 struct _ppc64_elf_section_data *sdata;
2944 bfd_size_type amt = sizeof (*sdata);
2945
2946 sdata = bfd_zalloc (abfd, amt);
2947 if (sdata == NULL)
2948 return FALSE;
2949 sec->used_by_bfd = sdata;
2950 }
2951
2952 return _bfd_elf_new_section_hook (abfd, sec);
2953 }
2954
2955 static struct _opd_sec_data *
2956 get_opd_info (asection * sec)
2957 {
2958 if (sec != NULL
2959 && ppc64_elf_section_data (sec) != NULL
2960 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2961 return &ppc64_elf_section_data (sec)->u.opd;
2962 return NULL;
2963 }
2964
2965 static inline int
2966 abiversion (bfd *abfd)
2967 {
2968 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
2969 }
2970
2971 static inline void
2972 set_abiversion (bfd *abfd, int ver)
2973 {
2974 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
2975 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
2976 }
2977 \f
2978 /* Parameters for the qsort hook. */
2979 static bfd_boolean synthetic_relocatable;
2980
2981 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2982
2983 static int
2984 compare_symbols (const void *ap, const void *bp)
2985 {
2986 const asymbol *a = * (const asymbol **) ap;
2987 const asymbol *b = * (const asymbol **) bp;
2988
2989 /* Section symbols first. */
2990 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2991 return -1;
2992 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2993 return 1;
2994
2995 /* then .opd symbols. */
2996 if (strcmp (a->section->name, ".opd") == 0
2997 && strcmp (b->section->name, ".opd") != 0)
2998 return -1;
2999 if (strcmp (a->section->name, ".opd") != 0
3000 && strcmp (b->section->name, ".opd") == 0)
3001 return 1;
3002
3003 /* then other code symbols. */
3004 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3005 == (SEC_CODE | SEC_ALLOC)
3006 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3007 != (SEC_CODE | SEC_ALLOC))
3008 return -1;
3009
3010 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3011 != (SEC_CODE | SEC_ALLOC)
3012 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3013 == (SEC_CODE | SEC_ALLOC))
3014 return 1;
3015
3016 if (synthetic_relocatable)
3017 {
3018 if (a->section->id < b->section->id)
3019 return -1;
3020
3021 if (a->section->id > b->section->id)
3022 return 1;
3023 }
3024
3025 if (a->value + a->section->vma < b->value + b->section->vma)
3026 return -1;
3027
3028 if (a->value + a->section->vma > b->value + b->section->vma)
3029 return 1;
3030
3031 /* For syms with the same value, prefer strong dynamic global function
3032 syms over other syms. */
3033 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3034 return -1;
3035
3036 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3037 return 1;
3038
3039 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3040 return -1;
3041
3042 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3043 return 1;
3044
3045 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3046 return -1;
3047
3048 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3049 return 1;
3050
3051 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3052 return -1;
3053
3054 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3055 return 1;
3056
3057 return 0;
3058 }
3059
3060 /* Search SYMS for a symbol of the given VALUE. */
3061
3062 static asymbol *
3063 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3064 {
3065 long mid;
3066
3067 if (id == -1)
3068 {
3069 while (lo < hi)
3070 {
3071 mid = (lo + hi) >> 1;
3072 if (syms[mid]->value + syms[mid]->section->vma < value)
3073 lo = mid + 1;
3074 else if (syms[mid]->value + syms[mid]->section->vma > value)
3075 hi = mid;
3076 else
3077 return syms[mid];
3078 }
3079 }
3080 else
3081 {
3082 while (lo < hi)
3083 {
3084 mid = (lo + hi) >> 1;
3085 if (syms[mid]->section->id < id)
3086 lo = mid + 1;
3087 else if (syms[mid]->section->id > id)
3088 hi = mid;
3089 else if (syms[mid]->value < value)
3090 lo = mid + 1;
3091 else if (syms[mid]->value > value)
3092 hi = mid;
3093 else
3094 return syms[mid];
3095 }
3096 }
3097 return NULL;
3098 }
3099
3100 static bfd_boolean
3101 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3102 {
3103 bfd_vma vma = *(bfd_vma *) ptr;
3104 return ((section->flags & SEC_ALLOC) != 0
3105 && section->vma <= vma
3106 && vma < section->vma + section->size);
3107 }
3108
3109 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3110 entry syms. Also generate @plt symbols for the glink branch table. */
3111
3112 static long
3113 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3114 long static_count, asymbol **static_syms,
3115 long dyn_count, asymbol **dyn_syms,
3116 asymbol **ret)
3117 {
3118 asymbol *s;
3119 long i;
3120 long count;
3121 char *names;
3122 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3123 asection *opd = NULL;
3124 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3125 asymbol **syms;
3126 int abi = abiversion (abfd);
3127
3128 *ret = NULL;
3129
3130 if (abi < 2)
3131 {
3132 opd = bfd_get_section_by_name (abfd, ".opd");
3133 if (opd == NULL && abi == 1)
3134 return 0;
3135 }
3136
3137 symcount = static_count;
3138 if (!relocatable)
3139 symcount += dyn_count;
3140 if (symcount == 0)
3141 return 0;
3142
3143 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3144 if (syms == NULL)
3145 return -1;
3146
3147 if (!relocatable && static_count != 0 && dyn_count != 0)
3148 {
3149 /* Use both symbol tables. */
3150 memcpy (syms, static_syms, static_count * sizeof (*syms));
3151 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3152 }
3153 else if (!relocatable && static_count == 0)
3154 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3155 else
3156 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3157
3158 synthetic_relocatable = relocatable;
3159 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3160
3161 if (!relocatable && symcount > 1)
3162 {
3163 long j;
3164 /* Trim duplicate syms, since we may have merged the normal and
3165 dynamic symbols. Actually, we only care about syms that have
3166 different values, so trim any with the same value. */
3167 for (i = 1, j = 1; i < symcount; ++i)
3168 if (syms[i - 1]->value + syms[i - 1]->section->vma
3169 != syms[i]->value + syms[i]->section->vma)
3170 syms[j++] = syms[i];
3171 symcount = j;
3172 }
3173
3174 i = 0;
3175 if (strcmp (syms[i]->section->name, ".opd") == 0)
3176 ++i;
3177 codesecsym = i;
3178
3179 for (; i < symcount; ++i)
3180 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3181 != (SEC_CODE | SEC_ALLOC))
3182 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3183 break;
3184 codesecsymend = i;
3185
3186 for (; i < symcount; ++i)
3187 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3188 break;
3189 secsymend = i;
3190
3191 for (; i < symcount; ++i)
3192 if (strcmp (syms[i]->section->name, ".opd") != 0)
3193 break;
3194 opdsymend = i;
3195
3196 for (; i < symcount; ++i)
3197 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3198 != (SEC_CODE | SEC_ALLOC))
3199 break;
3200 symcount = i;
3201
3202 count = 0;
3203
3204 if (relocatable)
3205 {
3206 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3207 arelent *r;
3208 size_t size;
3209 long relcount;
3210
3211 if (opdsymend == secsymend)
3212 goto done;
3213
3214 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3215 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3216 if (relcount == 0)
3217 goto done;
3218
3219 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3220 {
3221 count = -1;
3222 goto done;
3223 }
3224
3225 size = 0;
3226 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3227 {
3228 asymbol *sym;
3229
3230 while (r < opd->relocation + relcount
3231 && r->address < syms[i]->value + opd->vma)
3232 ++r;
3233
3234 if (r == opd->relocation + relcount)
3235 break;
3236
3237 if (r->address != syms[i]->value + opd->vma)
3238 continue;
3239
3240 if (r->howto->type != R_PPC64_ADDR64)
3241 continue;
3242
3243 sym = *r->sym_ptr_ptr;
3244 if (!sym_exists_at (syms, opdsymend, symcount,
3245 sym->section->id, sym->value + r->addend))
3246 {
3247 ++count;
3248 size += sizeof (asymbol);
3249 size += strlen (syms[i]->name) + 2;
3250 }
3251 }
3252
3253 s = *ret = bfd_malloc (size);
3254 if (s == NULL)
3255 {
3256 count = -1;
3257 goto done;
3258 }
3259
3260 names = (char *) (s + count);
3261
3262 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3263 {
3264 asymbol *sym;
3265
3266 while (r < opd->relocation + relcount
3267 && r->address < syms[i]->value + opd->vma)
3268 ++r;
3269
3270 if (r == opd->relocation + relcount)
3271 break;
3272
3273 if (r->address != syms[i]->value + opd->vma)
3274 continue;
3275
3276 if (r->howto->type != R_PPC64_ADDR64)
3277 continue;
3278
3279 sym = *r->sym_ptr_ptr;
3280 if (!sym_exists_at (syms, opdsymend, symcount,
3281 sym->section->id, sym->value + r->addend))
3282 {
3283 size_t len;
3284
3285 *s = *syms[i];
3286 s->flags |= BSF_SYNTHETIC;
3287 s->section = sym->section;
3288 s->value = sym->value + r->addend;
3289 s->name = names;
3290 *names++ = '.';
3291 len = strlen (syms[i]->name);
3292 memcpy (names, syms[i]->name, len + 1);
3293 names += len + 1;
3294 /* Have udata.p point back to the original symbol this
3295 synthetic symbol was derived from. */
3296 s->udata.p = syms[i];
3297 s++;
3298 }
3299 }
3300 }
3301 else
3302 {
3303 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3304 bfd_byte *contents = NULL;
3305 size_t size;
3306 long plt_count = 0;
3307 bfd_vma glink_vma = 0, resolv_vma = 0;
3308 asection *dynamic, *glink = NULL, *relplt = NULL;
3309 arelent *p;
3310
3311 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3312 {
3313 free_contents_and_exit:
3314 if (contents)
3315 free (contents);
3316 count = -1;
3317 goto done;
3318 }
3319
3320 size = 0;
3321 for (i = secsymend; i < opdsymend; ++i)
3322 {
3323 bfd_vma ent;
3324
3325 /* Ignore bogus symbols. */
3326 if (syms[i]->value > opd->size - 8)
3327 continue;
3328
3329 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3330 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3331 {
3332 ++count;
3333 size += sizeof (asymbol);
3334 size += strlen (syms[i]->name) + 2;
3335 }
3336 }
3337
3338 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3339 if (dyn_count != 0
3340 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3341 {
3342 bfd_byte *dynbuf, *extdyn, *extdynend;
3343 size_t extdynsize;
3344 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3345
3346 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3347 goto free_contents_and_exit;
3348
3349 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3350 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3351
3352 extdyn = dynbuf;
3353 extdynend = extdyn + dynamic->size;
3354 for (; extdyn < extdynend; extdyn += extdynsize)
3355 {
3356 Elf_Internal_Dyn dyn;
3357 (*swap_dyn_in) (abfd, extdyn, &dyn);
3358
3359 if (dyn.d_tag == DT_NULL)
3360 break;
3361
3362 if (dyn.d_tag == DT_PPC64_GLINK)
3363 {
3364 /* The first glink stub starts at offset 32; see
3365 comment in ppc64_elf_finish_dynamic_sections. */
3366 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3367 /* The .glink section usually does not survive the final
3368 link; search for the section (usually .text) where the
3369 glink stubs now reside. */
3370 glink = bfd_sections_find_if (abfd, section_covers_vma,
3371 &glink_vma);
3372 break;
3373 }
3374 }
3375
3376 free (dynbuf);
3377 }
3378
3379 if (glink != NULL)
3380 {
3381 /* Determine __glink trampoline by reading the relative branch
3382 from the first glink stub. */
3383 bfd_byte buf[4];
3384 unsigned int off = 0;
3385
3386 while (bfd_get_section_contents (abfd, glink, buf,
3387 glink_vma + off - glink->vma, 4))
3388 {
3389 unsigned int insn = bfd_get_32 (abfd, buf);
3390 insn ^= B_DOT;
3391 if ((insn & ~0x3fffffc) == 0)
3392 {
3393 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3394 break;
3395 }
3396 off += 4;
3397 if (off > 4)
3398 break;
3399 }
3400
3401 if (resolv_vma)
3402 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3403
3404 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3405 if (relplt != NULL)
3406 {
3407 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3408 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3409 goto free_contents_and_exit;
3410
3411 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3412 size += plt_count * sizeof (asymbol);
3413
3414 p = relplt->relocation;
3415 for (i = 0; i < plt_count; i++, p++)
3416 {
3417 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3418 if (p->addend != 0)
3419 size += sizeof ("+0x") - 1 + 16;
3420 }
3421 }
3422 }
3423
3424 s = *ret = bfd_malloc (size);
3425 if (s == NULL)
3426 goto free_contents_and_exit;
3427
3428 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3429
3430 for (i = secsymend; i < opdsymend; ++i)
3431 {
3432 bfd_vma ent;
3433
3434 if (syms[i]->value > opd->size - 8)
3435 continue;
3436
3437 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3438 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3439 {
3440 long lo, hi;
3441 size_t len;
3442 asection *sec = abfd->sections;
3443
3444 *s = *syms[i];
3445 lo = codesecsym;
3446 hi = codesecsymend;
3447 while (lo < hi)
3448 {
3449 long mid = (lo + hi) >> 1;
3450 if (syms[mid]->section->vma < ent)
3451 lo = mid + 1;
3452 else if (syms[mid]->section->vma > ent)
3453 hi = mid;
3454 else
3455 {
3456 sec = syms[mid]->section;
3457 break;
3458 }
3459 }
3460
3461 if (lo >= hi && lo > codesecsym)
3462 sec = syms[lo - 1]->section;
3463
3464 for (; sec != NULL; sec = sec->next)
3465 {
3466 if (sec->vma > ent)
3467 break;
3468 /* SEC_LOAD may not be set if SEC is from a separate debug
3469 info file. */
3470 if ((sec->flags & SEC_ALLOC) == 0)
3471 break;
3472 if ((sec->flags & SEC_CODE) != 0)
3473 s->section = sec;
3474 }
3475 s->flags |= BSF_SYNTHETIC;
3476 s->value = ent - s->section->vma;
3477 s->name = names;
3478 *names++ = '.';
3479 len = strlen (syms[i]->name);
3480 memcpy (names, syms[i]->name, len + 1);
3481 names += len + 1;
3482 /* Have udata.p point back to the original symbol this
3483 synthetic symbol was derived from. */
3484 s->udata.p = syms[i];
3485 s++;
3486 }
3487 }
3488 free (contents);
3489
3490 if (glink != NULL && relplt != NULL)
3491 {
3492 if (resolv_vma)
3493 {
3494 /* Add a symbol for the main glink trampoline. */
3495 memset (s, 0, sizeof *s);
3496 s->the_bfd = abfd;
3497 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3498 s->section = glink;
3499 s->value = resolv_vma - glink->vma;
3500 s->name = names;
3501 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3502 names += sizeof ("__glink_PLTresolve");
3503 s++;
3504 count++;
3505 }
3506
3507 /* FIXME: It would be very much nicer to put sym@plt on the
3508 stub rather than on the glink branch table entry. The
3509 objdump disassembler would then use a sensible symbol
3510 name on plt calls. The difficulty in doing so is
3511 a) finding the stubs, and,
3512 b) matching stubs against plt entries, and,
3513 c) there can be multiple stubs for a given plt entry.
3514
3515 Solving (a) could be done by code scanning, but older
3516 ppc64 binaries used different stubs to current code.
3517 (b) is the tricky one since you need to known the toc
3518 pointer for at least one function that uses a pic stub to
3519 be able to calculate the plt address referenced.
3520 (c) means gdb would need to set multiple breakpoints (or
3521 find the glink branch itself) when setting breakpoints
3522 for pending shared library loads. */
3523 p = relplt->relocation;
3524 for (i = 0; i < plt_count; i++, p++)
3525 {
3526 size_t len;
3527
3528 *s = **p->sym_ptr_ptr;
3529 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3530 we are defining a symbol, ensure one of them is set. */
3531 if ((s->flags & BSF_LOCAL) == 0)
3532 s->flags |= BSF_GLOBAL;
3533 s->flags |= BSF_SYNTHETIC;
3534 s->section = glink;
3535 s->value = glink_vma - glink->vma;
3536 s->name = names;
3537 s->udata.p = NULL;
3538 len = strlen ((*p->sym_ptr_ptr)->name);
3539 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3540 names += len;
3541 if (p->addend != 0)
3542 {
3543 memcpy (names, "+0x", sizeof ("+0x") - 1);
3544 names += sizeof ("+0x") - 1;
3545 bfd_sprintf_vma (abfd, names, p->addend);
3546 names += strlen (names);
3547 }
3548 memcpy (names, "@plt", sizeof ("@plt"));
3549 names += sizeof ("@plt");
3550 s++;
3551 if (abi < 2)
3552 {
3553 glink_vma += 8;
3554 if (i >= 0x8000)
3555 glink_vma += 4;
3556 }
3557 else
3558 glink_vma += 4;
3559 }
3560 count += plt_count;
3561 }
3562 }
3563
3564 done:
3565 free (syms);
3566 return count;
3567 }
3568 \f
3569 /* The following functions are specific to the ELF linker, while
3570 functions above are used generally. Those named ppc64_elf_* are
3571 called by the main ELF linker code. They appear in this file more
3572 or less in the order in which they are called. eg.
3573 ppc64_elf_check_relocs is called early in the link process,
3574 ppc64_elf_finish_dynamic_sections is one of the last functions
3575 called.
3576
3577 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3578 functions have both a function code symbol and a function descriptor
3579 symbol. A call to foo in a relocatable object file looks like:
3580
3581 . .text
3582 . x:
3583 . bl .foo
3584 . nop
3585
3586 The function definition in another object file might be:
3587
3588 . .section .opd
3589 . foo: .quad .foo
3590 . .quad .TOC.@tocbase
3591 . .quad 0
3592 .
3593 . .text
3594 . .foo: blr
3595
3596 When the linker resolves the call during a static link, the branch
3597 unsurprisingly just goes to .foo and the .opd information is unused.
3598 If the function definition is in a shared library, things are a little
3599 different: The call goes via a plt call stub, the opd information gets
3600 copied to the plt, and the linker patches the nop.
3601
3602 . x:
3603 . bl .foo_stub
3604 . ld 2,40(1)
3605 .
3606 .
3607 . .foo_stub:
3608 . std 2,40(1) # in practice, the call stub
3609 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3610 . addi 11,11,Lfoo@toc@l # this is the general idea
3611 . ld 12,0(11)
3612 . ld 2,8(11)
3613 . mtctr 12
3614 . ld 11,16(11)
3615 . bctr
3616 .
3617 . .section .plt
3618 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3619
3620 The "reloc ()" notation is supposed to indicate that the linker emits
3621 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3622 copying.
3623
3624 What are the difficulties here? Well, firstly, the relocations
3625 examined by the linker in check_relocs are against the function code
3626 sym .foo, while the dynamic relocation in the plt is emitted against
3627 the function descriptor symbol, foo. Somewhere along the line, we need
3628 to carefully copy dynamic link information from one symbol to the other.
3629 Secondly, the generic part of the elf linker will make .foo a dynamic
3630 symbol as is normal for most other backends. We need foo dynamic
3631 instead, at least for an application final link. However, when
3632 creating a shared library containing foo, we need to have both symbols
3633 dynamic so that references to .foo are satisfied during the early
3634 stages of linking. Otherwise the linker might decide to pull in a
3635 definition from some other object, eg. a static library.
3636
3637 Update: As of August 2004, we support a new convention. Function
3638 calls may use the function descriptor symbol, ie. "bl foo". This
3639 behaves exactly as "bl .foo". */
3640
3641 /* Of those relocs that might be copied as dynamic relocs, this function
3642 selects those that must be copied when linking a shared library,
3643 even when the symbol is local. */
3644
3645 static int
3646 must_be_dyn_reloc (struct bfd_link_info *info,
3647 enum elf_ppc64_reloc_type r_type)
3648 {
3649 switch (r_type)
3650 {
3651 default:
3652 return 1;
3653
3654 case R_PPC64_REL32:
3655 case R_PPC64_REL64:
3656 case R_PPC64_REL30:
3657 return 0;
3658
3659 case R_PPC64_TPREL16:
3660 case R_PPC64_TPREL16_LO:
3661 case R_PPC64_TPREL16_HI:
3662 case R_PPC64_TPREL16_HA:
3663 case R_PPC64_TPREL16_DS:
3664 case R_PPC64_TPREL16_LO_DS:
3665 case R_PPC64_TPREL16_HIGH:
3666 case R_PPC64_TPREL16_HIGHA:
3667 case R_PPC64_TPREL16_HIGHER:
3668 case R_PPC64_TPREL16_HIGHERA:
3669 case R_PPC64_TPREL16_HIGHEST:
3670 case R_PPC64_TPREL16_HIGHESTA:
3671 case R_PPC64_TPREL64:
3672 return !info->executable;
3673 }
3674 }
3675
3676 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3677 copying dynamic variables from a shared lib into an app's dynbss
3678 section, and instead use a dynamic relocation to point into the
3679 shared lib. With code that gcc generates, it's vital that this be
3680 enabled; In the PowerPC64 ABI, the address of a function is actually
3681 the address of a function descriptor, which resides in the .opd
3682 section. gcc uses the descriptor directly rather than going via the
3683 GOT as some other ABI's do, which means that initialized function
3684 pointers must reference the descriptor. Thus, a function pointer
3685 initialized to the address of a function in a shared library will
3686 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3687 redefines the function descriptor symbol to point to the copy. This
3688 presents a problem as a plt entry for that function is also
3689 initialized from the function descriptor symbol and the copy reloc
3690 may not be initialized first. */
3691 #define ELIMINATE_COPY_RELOCS 1
3692
3693 /* Section name for stubs is the associated section name plus this
3694 string. */
3695 #define STUB_SUFFIX ".stub"
3696
3697 /* Linker stubs.
3698 ppc_stub_long_branch:
3699 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3700 destination, but a 24 bit branch in a stub section will reach.
3701 . b dest
3702
3703 ppc_stub_plt_branch:
3704 Similar to the above, but a 24 bit branch in the stub section won't
3705 reach its destination.
3706 . addis %r11,%r2,xxx@toc@ha
3707 . ld %r12,xxx@toc@l(%r11)
3708 . mtctr %r12
3709 . bctr
3710
3711 ppc_stub_plt_call:
3712 Used to call a function in a shared library. If it so happens that
3713 the plt entry referenced crosses a 64k boundary, then an extra
3714 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3715 . std %r2,40(%r1)
3716 . addis %r11,%r2,xxx@toc@ha
3717 . ld %r12,xxx+0@toc@l(%r11)
3718 . mtctr %r12
3719 . ld %r2,xxx+8@toc@l(%r11)
3720 . ld %r11,xxx+16@toc@l(%r11)
3721 . bctr
3722
3723 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3724 code to adjust the value and save r2 to support multiple toc sections.
3725 A ppc_stub_long_branch with an r2 offset looks like:
3726 . std %r2,40(%r1)
3727 . addis %r2,%r2,off@ha
3728 . addi %r2,%r2,off@l
3729 . b dest
3730
3731 A ppc_stub_plt_branch with an r2 offset looks like:
3732 . std %r2,40(%r1)
3733 . addis %r11,%r2,xxx@toc@ha
3734 . ld %r12,xxx@toc@l(%r11)
3735 . addis %r2,%r2,off@ha
3736 . addi %r2,%r2,off@l
3737 . mtctr %r12
3738 . bctr
3739
3740 In cases where the "addis" instruction would add zero, the "addis" is
3741 omitted and following instructions modified slightly in some cases.
3742 */
3743
3744 enum ppc_stub_type {
3745 ppc_stub_none,
3746 ppc_stub_long_branch,
3747 ppc_stub_long_branch_r2off,
3748 ppc_stub_plt_branch,
3749 ppc_stub_plt_branch_r2off,
3750 ppc_stub_plt_call,
3751 ppc_stub_plt_call_r2save
3752 };
3753
3754 struct ppc_stub_hash_entry {
3755
3756 /* Base hash table entry structure. */
3757 struct bfd_hash_entry root;
3758
3759 enum ppc_stub_type stub_type;
3760
3761 /* The stub section. */
3762 asection *stub_sec;
3763
3764 /* Offset within stub_sec of the beginning of this stub. */
3765 bfd_vma stub_offset;
3766
3767 /* Given the symbol's value and its section we can determine its final
3768 value when building the stubs (so the stub knows where to jump. */
3769 bfd_vma target_value;
3770 asection *target_section;
3771
3772 /* The symbol table entry, if any, that this was derived from. */
3773 struct ppc_link_hash_entry *h;
3774 struct plt_entry *plt_ent;
3775
3776 /* Where this stub is being called from, or, in the case of combined
3777 stub sections, the first input section in the group. */
3778 asection *id_sec;
3779
3780 /* Symbol st_other. */
3781 unsigned char other;
3782 };
3783
3784 struct ppc_branch_hash_entry {
3785
3786 /* Base hash table entry structure. */
3787 struct bfd_hash_entry root;
3788
3789 /* Offset within branch lookup table. */
3790 unsigned int offset;
3791
3792 /* Generation marker. */
3793 unsigned int iter;
3794 };
3795
3796 /* Used to track dynamic relocations for local symbols. */
3797 struct ppc_dyn_relocs
3798 {
3799 struct ppc_dyn_relocs *next;
3800
3801 /* The input section of the reloc. */
3802 asection *sec;
3803
3804 /* Total number of relocs copied for the input section. */
3805 unsigned int count : 31;
3806
3807 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3808 unsigned int ifunc : 1;
3809 };
3810
3811 struct ppc_link_hash_entry
3812 {
3813 struct elf_link_hash_entry elf;
3814
3815 union {
3816 /* A pointer to the most recently used stub hash entry against this
3817 symbol. */
3818 struct ppc_stub_hash_entry *stub_cache;
3819
3820 /* A pointer to the next symbol starting with a '.' */
3821 struct ppc_link_hash_entry *next_dot_sym;
3822 } u;
3823
3824 /* Track dynamic relocs copied for this symbol. */
3825 struct elf_dyn_relocs *dyn_relocs;
3826
3827 /* Link between function code and descriptor symbols. */
3828 struct ppc_link_hash_entry *oh;
3829
3830 /* Flag function code and descriptor symbols. */
3831 unsigned int is_func:1;
3832 unsigned int is_func_descriptor:1;
3833 unsigned int fake:1;
3834
3835 /* Whether global opd/toc sym has been adjusted or not.
3836 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3837 should be set for all globals defined in any opd/toc section. */
3838 unsigned int adjust_done:1;
3839
3840 /* Set if we twiddled this symbol to weak at some stage. */
3841 unsigned int was_undefined:1;
3842
3843 /* Contexts in which symbol is used in the GOT (or TOC).
3844 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3845 corresponding relocs are encountered during check_relocs.
3846 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3847 indicate the corresponding GOT entry type is not needed.
3848 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3849 a TPREL one. We use a separate flag rather than setting TPREL
3850 just for convenience in distinguishing the two cases. */
3851 #define TLS_GD 1 /* GD reloc. */
3852 #define TLS_LD 2 /* LD reloc. */
3853 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3854 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3855 #define TLS_TLS 16 /* Any TLS reloc. */
3856 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3857 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3858 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3859 unsigned char tls_mask;
3860 };
3861
3862 /* ppc64 ELF linker hash table. */
3863
3864 struct ppc_link_hash_table
3865 {
3866 struct elf_link_hash_table elf;
3867
3868 /* The stub hash table. */
3869 struct bfd_hash_table stub_hash_table;
3870
3871 /* Another hash table for plt_branch stubs. */
3872 struct bfd_hash_table branch_hash_table;
3873
3874 /* Hash table for function prologue tocsave. */
3875 htab_t tocsave_htab;
3876
3877 /* Linker stub bfd. */
3878 bfd *stub_bfd;
3879
3880 /* Linker call-backs. */
3881 asection * (*add_stub_section) (const char *, asection *);
3882 void (*layout_sections_again) (void);
3883
3884 /* Array to keep track of which stub sections have been created, and
3885 information on stub grouping. */
3886 struct map_stub {
3887 /* This is the section to which stubs in the group will be attached. */
3888 asection *link_sec;
3889 /* The stub section. */
3890 asection *stub_sec;
3891 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3892 bfd_vma toc_off;
3893 } *stub_group;
3894
3895 /* Temp used when calculating TOC pointers. */
3896 bfd_vma toc_curr;
3897 bfd *toc_bfd;
3898 asection *toc_first_sec;
3899
3900 /* Highest input section id. */
3901 int top_id;
3902
3903 /* Highest output section index. */
3904 int top_index;
3905
3906 /* Used when adding symbols. */
3907 struct ppc_link_hash_entry *dot_syms;
3908
3909 /* List of input sections for each output section. */
3910 asection **input_list;
3911
3912 /* Shortcuts to get to dynamic linker sections. */
3913 asection *dynbss;
3914 asection *relbss;
3915 asection *glink;
3916 asection *sfpr;
3917 asection *brlt;
3918 asection *relbrlt;
3919 asection *glink_eh_frame;
3920
3921 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3922 struct ppc_link_hash_entry *tls_get_addr;
3923 struct ppc_link_hash_entry *tls_get_addr_fd;
3924
3925 /* The size of reliplt used by got entry relocs. */
3926 bfd_size_type got_reli_size;
3927
3928 /* Statistics. */
3929 unsigned long stub_count[ppc_stub_plt_call_r2save];
3930
3931 /* Number of stubs against global syms. */
3932 unsigned long stub_globals;
3933
3934 /* Alignment of PLT call stubs. */
3935 unsigned int plt_stub_align:4;
3936
3937 /* Set if we're linking code with function descriptors. */
3938 unsigned int opd_abi:1;
3939
3940 /* Set if PLT call stubs should load r11. */
3941 unsigned int plt_static_chain:1;
3942
3943 /* Set if PLT call stubs need a read-read barrier. */
3944 unsigned int plt_thread_safe:1;
3945
3946 /* Set if we should emit symbols for stubs. */
3947 unsigned int emit_stub_syms:1;
3948
3949 /* Set if __tls_get_addr optimization should not be done. */
3950 unsigned int no_tls_get_addr_opt:1;
3951
3952 /* Support for multiple toc sections. */
3953 unsigned int do_multi_toc:1;
3954 unsigned int multi_toc_needed:1;
3955 unsigned int second_toc_pass:1;
3956 unsigned int do_toc_opt:1;
3957
3958 /* Set on error. */
3959 unsigned int stub_error:1;
3960
3961 /* Temp used by ppc64_elf_process_dot_syms. */
3962 unsigned int twiddled_syms:1;
3963
3964 /* Incremented every time we size stubs. */
3965 unsigned int stub_iteration;
3966
3967 /* Small local sym cache. */
3968 struct sym_cache sym_cache;
3969 };
3970
3971 /* Rename some of the generic section flags to better document how they
3972 are used here. */
3973
3974 /* Nonzero if this section has TLS related relocations. */
3975 #define has_tls_reloc sec_flg0
3976
3977 /* Nonzero if this section has a call to __tls_get_addr. */
3978 #define has_tls_get_addr_call sec_flg1
3979
3980 /* Nonzero if this section has any toc or got relocs. */
3981 #define has_toc_reloc sec_flg2
3982
3983 /* Nonzero if this section has a call to another section that uses
3984 the toc or got. */
3985 #define makes_toc_func_call sec_flg3
3986
3987 /* Recursion protection when determining above flag. */
3988 #define call_check_in_progress sec_flg4
3989 #define call_check_done sec_flg5
3990
3991 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3992
3993 #define ppc_hash_table(p) \
3994 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3995 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3996
3997 #define ppc_stub_hash_lookup(table, string, create, copy) \
3998 ((struct ppc_stub_hash_entry *) \
3999 bfd_hash_lookup ((table), (string), (create), (copy)))
4000
4001 #define ppc_branch_hash_lookup(table, string, create, copy) \
4002 ((struct ppc_branch_hash_entry *) \
4003 bfd_hash_lookup ((table), (string), (create), (copy)))
4004
4005 /* Create an entry in the stub hash table. */
4006
4007 static struct bfd_hash_entry *
4008 stub_hash_newfunc (struct bfd_hash_entry *entry,
4009 struct bfd_hash_table *table,
4010 const char *string)
4011 {
4012 /* Allocate the structure if it has not already been allocated by a
4013 subclass. */
4014 if (entry == NULL)
4015 {
4016 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4017 if (entry == NULL)
4018 return entry;
4019 }
4020
4021 /* Call the allocation method of the superclass. */
4022 entry = bfd_hash_newfunc (entry, table, string);
4023 if (entry != NULL)
4024 {
4025 struct ppc_stub_hash_entry *eh;
4026
4027 /* Initialize the local fields. */
4028 eh = (struct ppc_stub_hash_entry *) entry;
4029 eh->stub_type = ppc_stub_none;
4030 eh->stub_sec = NULL;
4031 eh->stub_offset = 0;
4032 eh->target_value = 0;
4033 eh->target_section = NULL;
4034 eh->h = NULL;
4035 eh->plt_ent = NULL;
4036 eh->id_sec = NULL;
4037 eh->other = 0;
4038 }
4039
4040 return entry;
4041 }
4042
4043 /* Create an entry in the branch hash table. */
4044
4045 static struct bfd_hash_entry *
4046 branch_hash_newfunc (struct bfd_hash_entry *entry,
4047 struct bfd_hash_table *table,
4048 const char *string)
4049 {
4050 /* Allocate the structure if it has not already been allocated by a
4051 subclass. */
4052 if (entry == NULL)
4053 {
4054 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4055 if (entry == NULL)
4056 return entry;
4057 }
4058
4059 /* Call the allocation method of the superclass. */
4060 entry = bfd_hash_newfunc (entry, table, string);
4061 if (entry != NULL)
4062 {
4063 struct ppc_branch_hash_entry *eh;
4064
4065 /* Initialize the local fields. */
4066 eh = (struct ppc_branch_hash_entry *) entry;
4067 eh->offset = 0;
4068 eh->iter = 0;
4069 }
4070
4071 return entry;
4072 }
4073
4074 /* Create an entry in a ppc64 ELF linker hash table. */
4075
4076 static struct bfd_hash_entry *
4077 link_hash_newfunc (struct bfd_hash_entry *entry,
4078 struct bfd_hash_table *table,
4079 const char *string)
4080 {
4081 /* Allocate the structure if it has not already been allocated by a
4082 subclass. */
4083 if (entry == NULL)
4084 {
4085 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4086 if (entry == NULL)
4087 return entry;
4088 }
4089
4090 /* Call the allocation method of the superclass. */
4091 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4092 if (entry != NULL)
4093 {
4094 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4095
4096 memset (&eh->u.stub_cache, 0,
4097 (sizeof (struct ppc_link_hash_entry)
4098 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4099
4100 /* When making function calls, old ABI code references function entry
4101 points (dot symbols), while new ABI code references the function
4102 descriptor symbol. We need to make any combination of reference and
4103 definition work together, without breaking archive linking.
4104
4105 For a defined function "foo" and an undefined call to "bar":
4106 An old object defines "foo" and ".foo", references ".bar" (possibly
4107 "bar" too).
4108 A new object defines "foo" and references "bar".
4109
4110 A new object thus has no problem with its undefined symbols being
4111 satisfied by definitions in an old object. On the other hand, the
4112 old object won't have ".bar" satisfied by a new object.
4113
4114 Keep a list of newly added dot-symbols. */
4115
4116 if (string[0] == '.')
4117 {
4118 struct ppc_link_hash_table *htab;
4119
4120 htab = (struct ppc_link_hash_table *) table;
4121 eh->u.next_dot_sym = htab->dot_syms;
4122 htab->dot_syms = eh;
4123 }
4124 }
4125
4126 return entry;
4127 }
4128
4129 struct tocsave_entry {
4130 asection *sec;
4131 bfd_vma offset;
4132 };
4133
4134 static hashval_t
4135 tocsave_htab_hash (const void *p)
4136 {
4137 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4138 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4139 }
4140
4141 static int
4142 tocsave_htab_eq (const void *p1, const void *p2)
4143 {
4144 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4145 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4146 return e1->sec == e2->sec && e1->offset == e2->offset;
4147 }
4148
4149 /* Create a ppc64 ELF linker hash table. */
4150
4151 static struct bfd_link_hash_table *
4152 ppc64_elf_link_hash_table_create (bfd *abfd)
4153 {
4154 struct ppc_link_hash_table *htab;
4155 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4156
4157 htab = bfd_zmalloc (amt);
4158 if (htab == NULL)
4159 return NULL;
4160
4161 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4162 sizeof (struct ppc_link_hash_entry),
4163 PPC64_ELF_DATA))
4164 {
4165 free (htab);
4166 return NULL;
4167 }
4168
4169 /* Init the stub hash table too. */
4170 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4171 sizeof (struct ppc_stub_hash_entry)))
4172 return NULL;
4173
4174 /* And the branch hash table. */
4175 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4176 sizeof (struct ppc_branch_hash_entry)))
4177 return NULL;
4178
4179 htab->tocsave_htab = htab_try_create (1024,
4180 tocsave_htab_hash,
4181 tocsave_htab_eq,
4182 NULL);
4183 if (htab->tocsave_htab == NULL)
4184 return NULL;
4185
4186 /* Initializing two fields of the union is just cosmetic. We really
4187 only care about glist, but when compiled on a 32-bit host the
4188 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4189 debugger inspection of these fields look nicer. */
4190 htab->elf.init_got_refcount.refcount = 0;
4191 htab->elf.init_got_refcount.glist = NULL;
4192 htab->elf.init_plt_refcount.refcount = 0;
4193 htab->elf.init_plt_refcount.glist = NULL;
4194 htab->elf.init_got_offset.offset = 0;
4195 htab->elf.init_got_offset.glist = NULL;
4196 htab->elf.init_plt_offset.offset = 0;
4197 htab->elf.init_plt_offset.glist = NULL;
4198
4199 return &htab->elf.root;
4200 }
4201
4202 /* Free the derived linker hash table. */
4203
4204 static void
4205 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4206 {
4207 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4208
4209 bfd_hash_table_free (&htab->stub_hash_table);
4210 bfd_hash_table_free (&htab->branch_hash_table);
4211 if (htab->tocsave_htab)
4212 htab_delete (htab->tocsave_htab);
4213 _bfd_elf_link_hash_table_free (hash);
4214 }
4215
4216 /* Create sections for linker generated code. */
4217
4218 static bfd_boolean
4219 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4220 {
4221 struct ppc_link_hash_table *htab;
4222 flagword flags;
4223
4224 htab = ppc_hash_table (info);
4225
4226 /* Create .sfpr for code to save and restore fp regs. */
4227 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4228 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4229 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4230 flags);
4231 if (htab->sfpr == NULL
4232 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4233 return FALSE;
4234
4235 /* Create .glink for lazy dynamic linking support. */
4236 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4237 flags);
4238 if (htab->glink == NULL
4239 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4240 return FALSE;
4241
4242 if (!info->no_ld_generated_unwind_info)
4243 {
4244 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4245 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4246 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4247 ".eh_frame",
4248 flags);
4249 if (htab->glink_eh_frame == NULL
4250 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4251 return FALSE;
4252 }
4253
4254 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4255 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4256 if (htab->elf.iplt == NULL
4257 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4258 return FALSE;
4259
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->elf.irelplt
4263 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4264 if (htab->elf.irelplt == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4266 return FALSE;
4267
4268 /* Create branch lookup table for plt_branch stubs. */
4269 flags = (SEC_ALLOC | SEC_LOAD
4270 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4271 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4272 flags);
4273 if (htab->brlt == NULL
4274 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4275 return FALSE;
4276
4277 if (!info->shared)
4278 return TRUE;
4279
4280 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4281 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4282 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4283 ".rela.branch_lt",
4284 flags);
4285 if (htab->relbrlt == NULL
4286 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4287 return FALSE;
4288
4289 return TRUE;
4290 }
4291
4292 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4293
4294 bfd_boolean
4295 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4296 {
4297 struct ppc_link_hash_table *htab;
4298
4299 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4300
4301 /* Always hook our dynamic sections into the first bfd, which is the
4302 linker created stub bfd. This ensures that the GOT header is at
4303 the start of the output TOC section. */
4304 htab = ppc_hash_table (info);
4305 if (htab == NULL)
4306 return FALSE;
4307 htab->stub_bfd = abfd;
4308 htab->elf.dynobj = abfd;
4309
4310 if (info->relocatable)
4311 return TRUE;
4312
4313 return create_linkage_sections (htab->elf.dynobj, info);
4314 }
4315
4316 /* Build a name for an entry in the stub hash table. */
4317
4318 static char *
4319 ppc_stub_name (const asection *input_section,
4320 const asection *sym_sec,
4321 const struct ppc_link_hash_entry *h,
4322 const Elf_Internal_Rela *rel)
4323 {
4324 char *stub_name;
4325 ssize_t len;
4326
4327 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4328 offsets from a sym as a branch target? In fact, we could
4329 probably assume the addend is always zero. */
4330 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4331
4332 if (h)
4333 {
4334 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4335 stub_name = bfd_malloc (len);
4336 if (stub_name == NULL)
4337 return stub_name;
4338
4339 len = sprintf (stub_name, "%08x.%s+%x",
4340 input_section->id & 0xffffffff,
4341 h->elf.root.root.string,
4342 (int) rel->r_addend & 0xffffffff);
4343 }
4344 else
4345 {
4346 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4347 stub_name = bfd_malloc (len);
4348 if (stub_name == NULL)
4349 return stub_name;
4350
4351 len = sprintf (stub_name, "%08x.%x:%x+%x",
4352 input_section->id & 0xffffffff,
4353 sym_sec->id & 0xffffffff,
4354 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4355 (int) rel->r_addend & 0xffffffff);
4356 }
4357 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4358 stub_name[len - 2] = 0;
4359 return stub_name;
4360 }
4361
4362 /* Look up an entry in the stub hash. Stub entries are cached because
4363 creating the stub name takes a bit of time. */
4364
4365 static struct ppc_stub_hash_entry *
4366 ppc_get_stub_entry (const asection *input_section,
4367 const asection *sym_sec,
4368 struct ppc_link_hash_entry *h,
4369 const Elf_Internal_Rela *rel,
4370 struct ppc_link_hash_table *htab)
4371 {
4372 struct ppc_stub_hash_entry *stub_entry;
4373 const asection *id_sec;
4374
4375 /* If this input section is part of a group of sections sharing one
4376 stub section, then use the id of the first section in the group.
4377 Stub names need to include a section id, as there may well be
4378 more than one stub used to reach say, printf, and we need to
4379 distinguish between them. */
4380 id_sec = htab->stub_group[input_section->id].link_sec;
4381
4382 if (h != NULL && h->u.stub_cache != NULL
4383 && h->u.stub_cache->h == h
4384 && h->u.stub_cache->id_sec == id_sec)
4385 {
4386 stub_entry = h->u.stub_cache;
4387 }
4388 else
4389 {
4390 char *stub_name;
4391
4392 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4393 if (stub_name == NULL)
4394 return NULL;
4395
4396 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4397 stub_name, FALSE, FALSE);
4398 if (h != NULL)
4399 h->u.stub_cache = stub_entry;
4400
4401 free (stub_name);
4402 }
4403
4404 return stub_entry;
4405 }
4406
4407 /* Add a new stub entry to the stub hash. Not all fields of the new
4408 stub entry are initialised. */
4409
4410 static struct ppc_stub_hash_entry *
4411 ppc_add_stub (const char *stub_name,
4412 asection *section,
4413 struct bfd_link_info *info)
4414 {
4415 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4416 asection *link_sec;
4417 asection *stub_sec;
4418 struct ppc_stub_hash_entry *stub_entry;
4419
4420 link_sec = htab->stub_group[section->id].link_sec;
4421 stub_sec = htab->stub_group[section->id].stub_sec;
4422 if (stub_sec == NULL)
4423 {
4424 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4425 if (stub_sec == NULL)
4426 {
4427 size_t namelen;
4428 bfd_size_type len;
4429 char *s_name;
4430
4431 namelen = strlen (link_sec->name);
4432 len = namelen + sizeof (STUB_SUFFIX);
4433 s_name = bfd_alloc (htab->stub_bfd, len);
4434 if (s_name == NULL)
4435 return NULL;
4436
4437 memcpy (s_name, link_sec->name, namelen);
4438 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4439 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4440 if (stub_sec == NULL)
4441 return NULL;
4442 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4443 }
4444 htab->stub_group[section->id].stub_sec = stub_sec;
4445 }
4446
4447 /* Enter this entry into the linker stub hash table. */
4448 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4449 TRUE, FALSE);
4450 if (stub_entry == NULL)
4451 {
4452 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4453 section->owner, stub_name);
4454 return NULL;
4455 }
4456
4457 stub_entry->stub_sec = stub_sec;
4458 stub_entry->stub_offset = 0;
4459 stub_entry->id_sec = link_sec;
4460 return stub_entry;
4461 }
4462
4463 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4464 not already done. */
4465
4466 static bfd_boolean
4467 create_got_section (bfd *abfd, struct bfd_link_info *info)
4468 {
4469 asection *got, *relgot;
4470 flagword flags;
4471 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4472
4473 if (!is_ppc64_elf (abfd))
4474 return FALSE;
4475 if (htab == NULL)
4476 return FALSE;
4477
4478 if (!htab->elf.sgot
4479 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4480 return FALSE;
4481
4482 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4483 | SEC_LINKER_CREATED);
4484
4485 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4486 if (!got
4487 || !bfd_set_section_alignment (abfd, got, 3))
4488 return FALSE;
4489
4490 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4491 flags | SEC_READONLY);
4492 if (!relgot
4493 || ! bfd_set_section_alignment (abfd, relgot, 3))
4494 return FALSE;
4495
4496 ppc64_elf_tdata (abfd)->got = got;
4497 ppc64_elf_tdata (abfd)->relgot = relgot;
4498 return TRUE;
4499 }
4500
4501 /* Create the dynamic sections, and set up shortcuts. */
4502
4503 static bfd_boolean
4504 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4505 {
4506 struct ppc_link_hash_table *htab;
4507
4508 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4509 return FALSE;
4510
4511 htab = ppc_hash_table (info);
4512 if (htab == NULL)
4513 return FALSE;
4514
4515 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4516 if (!info->shared)
4517 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4518
4519 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4520 || (!info->shared && !htab->relbss))
4521 abort ();
4522
4523 return TRUE;
4524 }
4525
4526 /* Follow indirect and warning symbol links. */
4527
4528 static inline struct bfd_link_hash_entry *
4529 follow_link (struct bfd_link_hash_entry *h)
4530 {
4531 while (h->type == bfd_link_hash_indirect
4532 || h->type == bfd_link_hash_warning)
4533 h = h->u.i.link;
4534 return h;
4535 }
4536
4537 static inline struct elf_link_hash_entry *
4538 elf_follow_link (struct elf_link_hash_entry *h)
4539 {
4540 return (struct elf_link_hash_entry *) follow_link (&h->root);
4541 }
4542
4543 static inline struct ppc_link_hash_entry *
4544 ppc_follow_link (struct ppc_link_hash_entry *h)
4545 {
4546 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4547 }
4548
4549 /* Merge PLT info on FROM with that on TO. */
4550
4551 static void
4552 move_plt_plist (struct ppc_link_hash_entry *from,
4553 struct ppc_link_hash_entry *to)
4554 {
4555 if (from->elf.plt.plist != NULL)
4556 {
4557 if (to->elf.plt.plist != NULL)
4558 {
4559 struct plt_entry **entp;
4560 struct plt_entry *ent;
4561
4562 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4563 {
4564 struct plt_entry *dent;
4565
4566 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4567 if (dent->addend == ent->addend)
4568 {
4569 dent->plt.refcount += ent->plt.refcount;
4570 *entp = ent->next;
4571 break;
4572 }
4573 if (dent == NULL)
4574 entp = &ent->next;
4575 }
4576 *entp = to->elf.plt.plist;
4577 }
4578
4579 to->elf.plt.plist = from->elf.plt.plist;
4580 from->elf.plt.plist = NULL;
4581 }
4582 }
4583
4584 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4585
4586 static void
4587 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4588 struct elf_link_hash_entry *dir,
4589 struct elf_link_hash_entry *ind)
4590 {
4591 struct ppc_link_hash_entry *edir, *eind;
4592
4593 edir = (struct ppc_link_hash_entry *) dir;
4594 eind = (struct ppc_link_hash_entry *) ind;
4595
4596 edir->is_func |= eind->is_func;
4597 edir->is_func_descriptor |= eind->is_func_descriptor;
4598 edir->tls_mask |= eind->tls_mask;
4599 if (eind->oh != NULL)
4600 edir->oh = ppc_follow_link (eind->oh);
4601
4602 /* If called to transfer flags for a weakdef during processing
4603 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4604 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4605 if (!(ELIMINATE_COPY_RELOCS
4606 && eind->elf.root.type != bfd_link_hash_indirect
4607 && edir->elf.dynamic_adjusted))
4608 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4609
4610 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4611 edir->elf.ref_regular |= eind->elf.ref_regular;
4612 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4613 edir->elf.needs_plt |= eind->elf.needs_plt;
4614 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4615
4616 /* Copy over any dynamic relocs we may have on the indirect sym. */
4617 if (eind->dyn_relocs != NULL)
4618 {
4619 if (edir->dyn_relocs != NULL)
4620 {
4621 struct elf_dyn_relocs **pp;
4622 struct elf_dyn_relocs *p;
4623
4624 /* Add reloc counts against the indirect sym to the direct sym
4625 list. Merge any entries against the same section. */
4626 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4627 {
4628 struct elf_dyn_relocs *q;
4629
4630 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4631 if (q->sec == p->sec)
4632 {
4633 q->pc_count += p->pc_count;
4634 q->count += p->count;
4635 *pp = p->next;
4636 break;
4637 }
4638 if (q == NULL)
4639 pp = &p->next;
4640 }
4641 *pp = edir->dyn_relocs;
4642 }
4643
4644 edir->dyn_relocs = eind->dyn_relocs;
4645 eind->dyn_relocs = NULL;
4646 }
4647
4648 /* If we were called to copy over info for a weak sym, that's all.
4649 You might think dyn_relocs need not be copied over; After all,
4650 both syms will be dynamic or both non-dynamic so we're just
4651 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4652 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4653 dyn_relocs in read-only sections, and it does so on what is the
4654 DIR sym here. */
4655 if (eind->elf.root.type != bfd_link_hash_indirect)
4656 return;
4657
4658 /* Copy over got entries that we may have already seen to the
4659 symbol which just became indirect. */
4660 if (eind->elf.got.glist != NULL)
4661 {
4662 if (edir->elf.got.glist != NULL)
4663 {
4664 struct got_entry **entp;
4665 struct got_entry *ent;
4666
4667 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4668 {
4669 struct got_entry *dent;
4670
4671 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4672 if (dent->addend == ent->addend
4673 && dent->owner == ent->owner
4674 && dent->tls_type == ent->tls_type)
4675 {
4676 dent->got.refcount += ent->got.refcount;
4677 *entp = ent->next;
4678 break;
4679 }
4680 if (dent == NULL)
4681 entp = &ent->next;
4682 }
4683 *entp = edir->elf.got.glist;
4684 }
4685
4686 edir->elf.got.glist = eind->elf.got.glist;
4687 eind->elf.got.glist = NULL;
4688 }
4689
4690 /* And plt entries. */
4691 move_plt_plist (eind, edir);
4692
4693 if (eind->elf.dynindx != -1)
4694 {
4695 if (edir->elf.dynindx != -1)
4696 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4697 edir->elf.dynstr_index);
4698 edir->elf.dynindx = eind->elf.dynindx;
4699 edir->elf.dynstr_index = eind->elf.dynstr_index;
4700 eind->elf.dynindx = -1;
4701 eind->elf.dynstr_index = 0;
4702 }
4703 }
4704
4705 /* Find the function descriptor hash entry from the given function code
4706 hash entry FH. Link the entries via their OH fields. */
4707
4708 static struct ppc_link_hash_entry *
4709 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4710 {
4711 struct ppc_link_hash_entry *fdh = fh->oh;
4712
4713 if (fdh == NULL)
4714 {
4715 const char *fd_name = fh->elf.root.root.string + 1;
4716
4717 fdh = (struct ppc_link_hash_entry *)
4718 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4719 if (fdh == NULL)
4720 return fdh;
4721
4722 fdh->is_func_descriptor = 1;
4723 fdh->oh = fh;
4724 fh->is_func = 1;
4725 fh->oh = fdh;
4726 }
4727
4728 return ppc_follow_link (fdh);
4729 }
4730
4731 /* Make a fake function descriptor sym for the code sym FH. */
4732
4733 static struct ppc_link_hash_entry *
4734 make_fdh (struct bfd_link_info *info,
4735 struct ppc_link_hash_entry *fh)
4736 {
4737 bfd *abfd;
4738 asymbol *newsym;
4739 struct bfd_link_hash_entry *bh;
4740 struct ppc_link_hash_entry *fdh;
4741
4742 abfd = fh->elf.root.u.undef.abfd;
4743 newsym = bfd_make_empty_symbol (abfd);
4744 newsym->name = fh->elf.root.root.string + 1;
4745 newsym->section = bfd_und_section_ptr;
4746 newsym->value = 0;
4747 newsym->flags = BSF_WEAK;
4748
4749 bh = NULL;
4750 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4751 newsym->flags, newsym->section,
4752 newsym->value, NULL, FALSE, FALSE,
4753 &bh))
4754 return NULL;
4755
4756 fdh = (struct ppc_link_hash_entry *) bh;
4757 fdh->elf.non_elf = 0;
4758 fdh->fake = 1;
4759 fdh->is_func_descriptor = 1;
4760 fdh->oh = fh;
4761 fh->is_func = 1;
4762 fh->oh = fdh;
4763 return fdh;
4764 }
4765
4766 /* Fix function descriptor symbols defined in .opd sections to be
4767 function type. */
4768
4769 static bfd_boolean
4770 ppc64_elf_add_symbol_hook (bfd *ibfd,
4771 struct bfd_link_info *info,
4772 Elf_Internal_Sym *isym,
4773 const char **name,
4774 flagword *flags ATTRIBUTE_UNUSED,
4775 asection **sec,
4776 bfd_vma *value ATTRIBUTE_UNUSED)
4777 {
4778 if ((ibfd->flags & DYNAMIC) == 0
4779 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4780 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4781
4782 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4783 {
4784 if ((ibfd->flags & DYNAMIC) == 0)
4785 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4786 }
4787 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4788 ;
4789 else if (*sec != NULL
4790 && strcmp ((*sec)->name, ".opd") == 0)
4791 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4792
4793 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4794 {
4795 if (abiversion (ibfd) == 0)
4796 set_abiversion (ibfd, 2);
4797 else if (abiversion (ibfd) == 1)
4798 {
4799 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4800 " for ABI version 1\n"), name);
4801 bfd_set_error (bfd_error_bad_value);
4802 return FALSE;
4803 }
4804 }
4805
4806 return TRUE;
4807 }
4808
4809 /* Merge non-visibility st_other attributes: local entry point. */
4810
4811 static void
4812 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4813 const Elf_Internal_Sym *isym,
4814 bfd_boolean definition,
4815 bfd_boolean dynamic)
4816 {
4817 if (definition && !dynamic)
4818 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4819 | ELF_ST_VISIBILITY (h->other));
4820 }
4821
4822 /* This function makes an old ABI object reference to ".bar" cause the
4823 inclusion of a new ABI object archive that defines "bar".
4824 NAME is a symbol defined in an archive. Return a symbol in the hash
4825 table that might be satisfied by the archive symbols. */
4826
4827 static struct elf_link_hash_entry *
4828 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4829 struct bfd_link_info *info,
4830 const char *name)
4831 {
4832 struct elf_link_hash_entry *h;
4833 char *dot_name;
4834 size_t len;
4835
4836 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4837 if (h != NULL
4838 /* Don't return this sym if it is a fake function descriptor
4839 created by add_symbol_adjust. */
4840 && !(h->root.type == bfd_link_hash_undefweak
4841 && ((struct ppc_link_hash_entry *) h)->fake))
4842 return h;
4843
4844 if (name[0] == '.')
4845 return h;
4846
4847 len = strlen (name);
4848 dot_name = bfd_alloc (abfd, len + 2);
4849 if (dot_name == NULL)
4850 return (struct elf_link_hash_entry *) 0 - 1;
4851 dot_name[0] = '.';
4852 memcpy (dot_name + 1, name, len + 1);
4853 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4854 bfd_release (abfd, dot_name);
4855 return h;
4856 }
4857
4858 /* This function satisfies all old ABI object references to ".bar" if a
4859 new ABI object defines "bar". Well, at least, undefined dot symbols
4860 are made weak. This stops later archive searches from including an
4861 object if we already have a function descriptor definition. It also
4862 prevents the linker complaining about undefined symbols.
4863 We also check and correct mismatched symbol visibility here. The
4864 most restrictive visibility of the function descriptor and the
4865 function entry symbol is used. */
4866
4867 static bfd_boolean
4868 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4869 {
4870 struct ppc_link_hash_table *htab;
4871 struct ppc_link_hash_entry *fdh;
4872
4873 if (eh->elf.root.type == bfd_link_hash_indirect)
4874 return TRUE;
4875
4876 if (eh->elf.root.type == bfd_link_hash_warning)
4877 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4878
4879 if (eh->elf.root.root.string[0] != '.')
4880 abort ();
4881
4882 htab = ppc_hash_table (info);
4883 if (htab == NULL)
4884 return FALSE;
4885
4886 fdh = lookup_fdh (eh, htab);
4887 if (fdh == NULL)
4888 {
4889 if (!info->relocatable
4890 && (eh->elf.root.type == bfd_link_hash_undefined
4891 || eh->elf.root.type == bfd_link_hash_undefweak)
4892 && eh->elf.ref_regular)
4893 {
4894 /* Make an undefweak function descriptor sym, which is enough to
4895 pull in an --as-needed shared lib, but won't cause link
4896 errors. Archives are handled elsewhere. */
4897 fdh = make_fdh (info, eh);
4898 if (fdh == NULL)
4899 return FALSE;
4900 fdh->elf.ref_regular = 1;
4901 }
4902 }
4903 else
4904 {
4905 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4906 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4907 if (entry_vis < descr_vis)
4908 fdh->elf.other += entry_vis - descr_vis;
4909 else if (entry_vis > descr_vis)
4910 eh->elf.other += descr_vis - entry_vis;
4911
4912 if ((fdh->elf.root.type == bfd_link_hash_defined
4913 || fdh->elf.root.type == bfd_link_hash_defweak)
4914 && eh->elf.root.type == bfd_link_hash_undefined)
4915 {
4916 eh->elf.root.type = bfd_link_hash_undefweak;
4917 eh->was_undefined = 1;
4918 htab->twiddled_syms = 1;
4919 }
4920 }
4921
4922 return TRUE;
4923 }
4924
4925 /* Process list of dot-symbols we made in link_hash_newfunc. */
4926
4927 static bfd_boolean
4928 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4929 {
4930 struct ppc_link_hash_table *htab;
4931 struct ppc_link_hash_entry **p, *eh;
4932
4933 if (!is_ppc64_elf (info->output_bfd))
4934 return TRUE;
4935 htab = ppc_hash_table (info);
4936 if (htab == NULL)
4937 return FALSE;
4938
4939 if (is_ppc64_elf (ibfd))
4940 {
4941 p = &htab->dot_syms;
4942 while ((eh = *p) != NULL)
4943 {
4944 *p = NULL;
4945 if (&eh->elf == htab->elf.hgot)
4946 ;
4947 else if (htab->elf.hgot == NULL
4948 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4949 htab->elf.hgot = &eh->elf;
4950 else if (!add_symbol_adjust (eh, info))
4951 return FALSE;
4952 p = &eh->u.next_dot_sym;
4953 }
4954 }
4955
4956 /* Clear the list for non-ppc64 input files. */
4957 p = &htab->dot_syms;
4958 while ((eh = *p) != NULL)
4959 {
4960 *p = NULL;
4961 p = &eh->u.next_dot_sym;
4962 }
4963
4964 /* We need to fix the undefs list for any syms we have twiddled to
4965 undef_weak. */
4966 if (htab->twiddled_syms)
4967 {
4968 bfd_link_repair_undef_list (&htab->elf.root);
4969 htab->twiddled_syms = 0;
4970 }
4971 return TRUE;
4972 }
4973
4974 /* Undo hash table changes when an --as-needed input file is determined
4975 not to be needed. */
4976
4977 static bfd_boolean
4978 ppc64_elf_notice_as_needed (bfd *ibfd,
4979 struct bfd_link_info *info,
4980 enum notice_asneeded_action act)
4981 {
4982 if (act == notice_not_needed)
4983 {
4984 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4985
4986 if (htab == NULL)
4987 return FALSE;
4988
4989 htab->dot_syms = NULL;
4990 }
4991 return _bfd_elf_notice_as_needed (ibfd, info, act);
4992 }
4993
4994 /* If --just-symbols against a final linked binary, then assume we need
4995 toc adjusting stubs when calling functions defined there. */
4996
4997 static void
4998 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4999 {
5000 if ((sec->flags & SEC_CODE) != 0
5001 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5002 && is_ppc64_elf (sec->owner))
5003 {
5004 asection *got = bfd_get_section_by_name (sec->owner, ".got");
5005 if (got != NULL
5006 && got->size >= elf_backend_got_header_size
5007 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5008 sec->has_toc_reloc = 1;
5009 }
5010 _bfd_elf_link_just_syms (sec, info);
5011 }
5012
5013 static struct plt_entry **
5014 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5015 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5016 {
5017 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5018 struct plt_entry **local_plt;
5019 unsigned char *local_got_tls_masks;
5020
5021 if (local_got_ents == NULL)
5022 {
5023 bfd_size_type size = symtab_hdr->sh_info;
5024
5025 size *= (sizeof (*local_got_ents)
5026 + sizeof (*local_plt)
5027 + sizeof (*local_got_tls_masks));
5028 local_got_ents = bfd_zalloc (abfd, size);
5029 if (local_got_ents == NULL)
5030 return NULL;
5031 elf_local_got_ents (abfd) = local_got_ents;
5032 }
5033
5034 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5035 {
5036 struct got_entry *ent;
5037
5038 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5039 if (ent->addend == r_addend
5040 && ent->owner == abfd
5041 && ent->tls_type == tls_type)
5042 break;
5043 if (ent == NULL)
5044 {
5045 bfd_size_type amt = sizeof (*ent);
5046 ent = bfd_alloc (abfd, amt);
5047 if (ent == NULL)
5048 return FALSE;
5049 ent->next = local_got_ents[r_symndx];
5050 ent->addend = r_addend;
5051 ent->owner = abfd;
5052 ent->tls_type = tls_type;
5053 ent->is_indirect = FALSE;
5054 ent->got.refcount = 0;
5055 local_got_ents[r_symndx] = ent;
5056 }
5057 ent->got.refcount += 1;
5058 }
5059
5060 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5061 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5062 local_got_tls_masks[r_symndx] |= tls_type;
5063
5064 return local_plt + r_symndx;
5065 }
5066
5067 static bfd_boolean
5068 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5069 {
5070 struct plt_entry *ent;
5071
5072 for (ent = *plist; ent != NULL; ent = ent->next)
5073 if (ent->addend == addend)
5074 break;
5075 if (ent == NULL)
5076 {
5077 bfd_size_type amt = sizeof (*ent);
5078 ent = bfd_alloc (abfd, amt);
5079 if (ent == NULL)
5080 return FALSE;
5081 ent->next = *plist;
5082 ent->addend = addend;
5083 ent->plt.refcount = 0;
5084 *plist = ent;
5085 }
5086 ent->plt.refcount += 1;
5087 return TRUE;
5088 }
5089
5090 static bfd_boolean
5091 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5092 {
5093 return (r_type == R_PPC64_REL24
5094 || r_type == R_PPC64_REL14
5095 || r_type == R_PPC64_REL14_BRTAKEN
5096 || r_type == R_PPC64_REL14_BRNTAKEN
5097 || r_type == R_PPC64_ADDR24
5098 || r_type == R_PPC64_ADDR14
5099 || r_type == R_PPC64_ADDR14_BRTAKEN
5100 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5101 }
5102
5103 /* Look through the relocs for a section during the first phase, and
5104 calculate needed space in the global offset table, procedure
5105 linkage table, and dynamic reloc sections. */
5106
5107 static bfd_boolean
5108 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5109 asection *sec, const Elf_Internal_Rela *relocs)
5110 {
5111 struct ppc_link_hash_table *htab;
5112 Elf_Internal_Shdr *symtab_hdr;
5113 struct elf_link_hash_entry **sym_hashes;
5114 const Elf_Internal_Rela *rel;
5115 const Elf_Internal_Rela *rel_end;
5116 asection *sreloc;
5117 asection **opd_sym_map;
5118 struct elf_link_hash_entry *tga, *dottga;
5119
5120 if (info->relocatable)
5121 return TRUE;
5122
5123 /* Don't do anything special with non-loaded, non-alloced sections.
5124 In particular, any relocs in such sections should not affect GOT
5125 and PLT reference counting (ie. we don't allow them to create GOT
5126 or PLT entries), there's no possibility or desire to optimize TLS
5127 relocs, and there's not much point in propagating relocs to shared
5128 libs that the dynamic linker won't relocate. */
5129 if ((sec->flags & SEC_ALLOC) == 0)
5130 return TRUE;
5131
5132 BFD_ASSERT (is_ppc64_elf (abfd));
5133
5134 htab = ppc_hash_table (info);
5135 if (htab == NULL)
5136 return FALSE;
5137
5138 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5139 FALSE, FALSE, TRUE);
5140 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5141 FALSE, FALSE, TRUE);
5142 symtab_hdr = &elf_symtab_hdr (abfd);
5143 sym_hashes = elf_sym_hashes (abfd);
5144 sreloc = NULL;
5145 opd_sym_map = NULL;
5146 if (strcmp (sec->name, ".opd") == 0)
5147 {
5148 /* Garbage collection needs some extra help with .opd sections.
5149 We don't want to necessarily keep everything referenced by
5150 relocs in .opd, as that would keep all functions. Instead,
5151 if we reference an .opd symbol (a function descriptor), we
5152 want to keep the function code symbol's section. This is
5153 easy for global symbols, but for local syms we need to keep
5154 information about the associated function section. */
5155 bfd_size_type amt;
5156
5157 if (abiversion (abfd) == 0)
5158 set_abiversion (abfd, 1);
5159 else if (abiversion (abfd) == 2)
5160 {
5161 info->callbacks->einfo (_("%P: .opd not allowed in ABI version %d\n"),
5162 abiversion (abfd));
5163 bfd_set_error (bfd_error_bad_value);
5164 return FALSE;
5165 }
5166 amt = sec->size * sizeof (*opd_sym_map) / 8;
5167 opd_sym_map = bfd_zalloc (abfd, amt);
5168 if (opd_sym_map == NULL)
5169 return FALSE;
5170 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
5171 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
5172 ppc64_elf_section_data (sec)->sec_type = sec_opd;
5173 }
5174
5175 rel_end = relocs + sec->reloc_count;
5176 for (rel = relocs; rel < rel_end; rel++)
5177 {
5178 unsigned long r_symndx;
5179 struct elf_link_hash_entry *h;
5180 enum elf_ppc64_reloc_type r_type;
5181 int tls_type;
5182 struct _ppc64_elf_section_data *ppc64_sec;
5183 struct plt_entry **ifunc;
5184
5185 r_symndx = ELF64_R_SYM (rel->r_info);
5186 if (r_symndx < symtab_hdr->sh_info)
5187 h = NULL;
5188 else
5189 {
5190 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5191 h = elf_follow_link (h);
5192
5193 /* PR15323, ref flags aren't set for references in the same
5194 object. */
5195 h->root.non_ir_ref = 1;
5196
5197 if (h == htab->elf.hgot)
5198 sec->has_toc_reloc = 1;
5199 }
5200
5201 tls_type = 0;
5202 ifunc = NULL;
5203 if (h != NULL)
5204 {
5205 if (h->type == STT_GNU_IFUNC)
5206 {
5207 h->needs_plt = 1;
5208 ifunc = &h->plt.plist;
5209 }
5210 }
5211 else
5212 {
5213 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5214 abfd, r_symndx);
5215 if (isym == NULL)
5216 return FALSE;
5217
5218 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5219 {
5220 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5221 rel->r_addend, PLT_IFUNC);
5222 if (ifunc == NULL)
5223 return FALSE;
5224 }
5225 }
5226 r_type = ELF64_R_TYPE (rel->r_info);
5227 if (is_branch_reloc (r_type))
5228 {
5229 if (h != NULL && (h == tga || h == dottga))
5230 {
5231 if (rel != relocs
5232 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5233 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5234 /* We have a new-style __tls_get_addr call with a marker
5235 reloc. */
5236 ;
5237 else
5238 /* Mark this section as having an old-style call. */
5239 sec->has_tls_get_addr_call = 1;
5240 }
5241
5242 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5243 if (ifunc != NULL
5244 && !update_plt_info (abfd, ifunc, rel->r_addend))
5245 return FALSE;
5246 }
5247
5248 switch (r_type)
5249 {
5250 case R_PPC64_TLSGD:
5251 case R_PPC64_TLSLD:
5252 /* These special tls relocs tie a call to __tls_get_addr with
5253 its parameter symbol. */
5254 break;
5255
5256 case R_PPC64_GOT_TLSLD16:
5257 case R_PPC64_GOT_TLSLD16_LO:
5258 case R_PPC64_GOT_TLSLD16_HI:
5259 case R_PPC64_GOT_TLSLD16_HA:
5260 tls_type = TLS_TLS | TLS_LD;
5261 goto dogottls;
5262
5263 case R_PPC64_GOT_TLSGD16:
5264 case R_PPC64_GOT_TLSGD16_LO:
5265 case R_PPC64_GOT_TLSGD16_HI:
5266 case R_PPC64_GOT_TLSGD16_HA:
5267 tls_type = TLS_TLS | TLS_GD;
5268 goto dogottls;
5269
5270 case R_PPC64_GOT_TPREL16_DS:
5271 case R_PPC64_GOT_TPREL16_LO_DS:
5272 case R_PPC64_GOT_TPREL16_HI:
5273 case R_PPC64_GOT_TPREL16_HA:
5274 if (!info->executable)
5275 info->flags |= DF_STATIC_TLS;
5276 tls_type = TLS_TLS | TLS_TPREL;
5277 goto dogottls;
5278
5279 case R_PPC64_GOT_DTPREL16_DS:
5280 case R_PPC64_GOT_DTPREL16_LO_DS:
5281 case R_PPC64_GOT_DTPREL16_HI:
5282 case R_PPC64_GOT_DTPREL16_HA:
5283 tls_type = TLS_TLS | TLS_DTPREL;
5284 dogottls:
5285 sec->has_tls_reloc = 1;
5286 /* Fall thru */
5287
5288 case R_PPC64_GOT16:
5289 case R_PPC64_GOT16_DS:
5290 case R_PPC64_GOT16_HA:
5291 case R_PPC64_GOT16_HI:
5292 case R_PPC64_GOT16_LO:
5293 case R_PPC64_GOT16_LO_DS:
5294 /* This symbol requires a global offset table entry. */
5295 sec->has_toc_reloc = 1;
5296 if (r_type == R_PPC64_GOT_TLSLD16
5297 || r_type == R_PPC64_GOT_TLSGD16
5298 || r_type == R_PPC64_GOT_TPREL16_DS
5299 || r_type == R_PPC64_GOT_DTPREL16_DS
5300 || r_type == R_PPC64_GOT16
5301 || r_type == R_PPC64_GOT16_DS)
5302 {
5303 htab->do_multi_toc = 1;
5304 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5305 }
5306
5307 if (ppc64_elf_tdata (abfd)->got == NULL
5308 && !create_got_section (abfd, info))
5309 return FALSE;
5310
5311 if (h != NULL)
5312 {
5313 struct ppc_link_hash_entry *eh;
5314 struct got_entry *ent;
5315
5316 eh = (struct ppc_link_hash_entry *) h;
5317 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5318 if (ent->addend == rel->r_addend
5319 && ent->owner == abfd
5320 && ent->tls_type == tls_type)
5321 break;
5322 if (ent == NULL)
5323 {
5324 bfd_size_type amt = sizeof (*ent);
5325 ent = bfd_alloc (abfd, amt);
5326 if (ent == NULL)
5327 return FALSE;
5328 ent->next = eh->elf.got.glist;
5329 ent->addend = rel->r_addend;
5330 ent->owner = abfd;
5331 ent->tls_type = tls_type;
5332 ent->is_indirect = FALSE;
5333 ent->got.refcount = 0;
5334 eh->elf.got.glist = ent;
5335 }
5336 ent->got.refcount += 1;
5337 eh->tls_mask |= tls_type;
5338 }
5339 else
5340 /* This is a global offset table entry for a local symbol. */
5341 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5342 rel->r_addend, tls_type))
5343 return FALSE;
5344
5345 /* We may also need a plt entry if the symbol turns out to be
5346 an ifunc. */
5347 if (h != NULL && !info->shared && abiversion (abfd) == 2)
5348 {
5349 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5350 return FALSE;
5351 }
5352 break;
5353
5354 case R_PPC64_PLT16_HA:
5355 case R_PPC64_PLT16_HI:
5356 case R_PPC64_PLT16_LO:
5357 case R_PPC64_PLT32:
5358 case R_PPC64_PLT64:
5359 /* This symbol requires a procedure linkage table entry. We
5360 actually build the entry in adjust_dynamic_symbol,
5361 because this might be a case of linking PIC code without
5362 linking in any dynamic objects, in which case we don't
5363 need to generate a procedure linkage table after all. */
5364 if (h == NULL)
5365 {
5366 /* It does not make sense to have a procedure linkage
5367 table entry for a local symbol. */
5368 bfd_set_error (bfd_error_bad_value);
5369 return FALSE;
5370 }
5371 else
5372 {
5373 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5374 return FALSE;
5375 h->needs_plt = 1;
5376 if (h->root.root.string[0] == '.'
5377 && h->root.root.string[1] != '\0')
5378 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5379 }
5380 break;
5381
5382 /* The following relocations don't need to propagate the
5383 relocation if linking a shared object since they are
5384 section relative. */
5385 case R_PPC64_SECTOFF:
5386 case R_PPC64_SECTOFF_LO:
5387 case R_PPC64_SECTOFF_HI:
5388 case R_PPC64_SECTOFF_HA:
5389 case R_PPC64_SECTOFF_DS:
5390 case R_PPC64_SECTOFF_LO_DS:
5391 case R_PPC64_DTPREL16:
5392 case R_PPC64_DTPREL16_LO:
5393 case R_PPC64_DTPREL16_HI:
5394 case R_PPC64_DTPREL16_HA:
5395 case R_PPC64_DTPREL16_DS:
5396 case R_PPC64_DTPREL16_LO_DS:
5397 case R_PPC64_DTPREL16_HIGH:
5398 case R_PPC64_DTPREL16_HIGHA:
5399 case R_PPC64_DTPREL16_HIGHER:
5400 case R_PPC64_DTPREL16_HIGHERA:
5401 case R_PPC64_DTPREL16_HIGHEST:
5402 case R_PPC64_DTPREL16_HIGHESTA:
5403 break;
5404
5405 /* Nor do these. */
5406 case R_PPC64_REL16:
5407 case R_PPC64_REL16_LO:
5408 case R_PPC64_REL16_HI:
5409 case R_PPC64_REL16_HA:
5410 break;
5411
5412 case R_PPC64_TOC16:
5413 case R_PPC64_TOC16_DS:
5414 htab->do_multi_toc = 1;
5415 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5416 case R_PPC64_TOC16_LO:
5417 case R_PPC64_TOC16_HI:
5418 case R_PPC64_TOC16_HA:
5419 case R_PPC64_TOC16_LO_DS:
5420 sec->has_toc_reloc = 1;
5421 break;
5422
5423 /* This relocation describes the C++ object vtable hierarchy.
5424 Reconstruct it for later use during GC. */
5425 case R_PPC64_GNU_VTINHERIT:
5426 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5427 return FALSE;
5428 break;
5429
5430 /* This relocation describes which C++ vtable entries are actually
5431 used. Record for later use during GC. */
5432 case R_PPC64_GNU_VTENTRY:
5433 BFD_ASSERT (h != NULL);
5434 if (h != NULL
5435 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5436 return FALSE;
5437 break;
5438
5439 case R_PPC64_REL14:
5440 case R_PPC64_REL14_BRTAKEN:
5441 case R_PPC64_REL14_BRNTAKEN:
5442 {
5443 asection *dest = NULL;
5444
5445 /* Heuristic: If jumping outside our section, chances are
5446 we are going to need a stub. */
5447 if (h != NULL)
5448 {
5449 /* If the sym is weak it may be overridden later, so
5450 don't assume we know where a weak sym lives. */
5451 if (h->root.type == bfd_link_hash_defined)
5452 dest = h->root.u.def.section;
5453 }
5454 else
5455 {
5456 Elf_Internal_Sym *isym;
5457
5458 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5459 abfd, r_symndx);
5460 if (isym == NULL)
5461 return FALSE;
5462
5463 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5464 }
5465
5466 if (dest != sec)
5467 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5468 }
5469 /* Fall through. */
5470
5471 case R_PPC64_REL24:
5472 if (h != NULL && ifunc == NULL)
5473 {
5474 /* We may need a .plt entry if the function this reloc
5475 refers to is in a shared lib. */
5476 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5477 return FALSE;
5478 h->needs_plt = 1;
5479 if (h->root.root.string[0] == '.'
5480 && h->root.root.string[1] != '\0')
5481 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5482 if (h == tga || h == dottga)
5483 sec->has_tls_reloc = 1;
5484 }
5485 break;
5486
5487 case R_PPC64_TPREL64:
5488 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5489 if (!info->executable)
5490 info->flags |= DF_STATIC_TLS;
5491 goto dotlstoc;
5492
5493 case R_PPC64_DTPMOD64:
5494 if (rel + 1 < rel_end
5495 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5496 && rel[1].r_offset == rel->r_offset + 8)
5497 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5498 else
5499 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5500 goto dotlstoc;
5501
5502 case R_PPC64_DTPREL64:
5503 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5504 if (rel != relocs
5505 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5506 && rel[-1].r_offset == rel->r_offset - 8)
5507 /* This is the second reloc of a dtpmod, dtprel pair.
5508 Don't mark with TLS_DTPREL. */
5509 goto dodyn;
5510
5511 dotlstoc:
5512 sec->has_tls_reloc = 1;
5513 if (h != NULL)
5514 {
5515 struct ppc_link_hash_entry *eh;
5516 eh = (struct ppc_link_hash_entry *) h;
5517 eh->tls_mask |= tls_type;
5518 }
5519 else
5520 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5521 rel->r_addend, tls_type))
5522 return FALSE;
5523
5524 ppc64_sec = ppc64_elf_section_data (sec);
5525 if (ppc64_sec->sec_type != sec_toc)
5526 {
5527 bfd_size_type amt;
5528
5529 /* One extra to simplify get_tls_mask. */
5530 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5531 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5532 if (ppc64_sec->u.toc.symndx == NULL)
5533 return FALSE;
5534 amt = sec->size * sizeof (bfd_vma) / 8;
5535 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5536 if (ppc64_sec->u.toc.add == NULL)
5537 return FALSE;
5538 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5539 ppc64_sec->sec_type = sec_toc;
5540 }
5541 BFD_ASSERT (rel->r_offset % 8 == 0);
5542 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5543 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5544
5545 /* Mark the second slot of a GD or LD entry.
5546 -1 to indicate GD and -2 to indicate LD. */
5547 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5548 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5549 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5550 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5551 goto dodyn;
5552
5553 case R_PPC64_TPREL16:
5554 case R_PPC64_TPREL16_LO:
5555 case R_PPC64_TPREL16_HI:
5556 case R_PPC64_TPREL16_HA:
5557 case R_PPC64_TPREL16_DS:
5558 case R_PPC64_TPREL16_LO_DS:
5559 case R_PPC64_TPREL16_HIGH:
5560 case R_PPC64_TPREL16_HIGHA:
5561 case R_PPC64_TPREL16_HIGHER:
5562 case R_PPC64_TPREL16_HIGHERA:
5563 case R_PPC64_TPREL16_HIGHEST:
5564 case R_PPC64_TPREL16_HIGHESTA:
5565 if (info->shared)
5566 {
5567 if (!info->executable)
5568 info->flags |= DF_STATIC_TLS;
5569 goto dodyn;
5570 }
5571 break;
5572
5573 case R_PPC64_ADDR64:
5574 if (opd_sym_map != NULL
5575 && rel + 1 < rel_end
5576 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5577 {
5578 if (h != NULL)
5579 {
5580 if (h->root.root.string[0] == '.'
5581 && h->root.root.string[1] != 0
5582 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5583 ;
5584 else
5585 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5586 }
5587 else
5588 {
5589 asection *s;
5590 Elf_Internal_Sym *isym;
5591
5592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5593 abfd, r_symndx);
5594 if (isym == NULL)
5595 return FALSE;
5596
5597 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5598 if (s != NULL && s != sec)
5599 opd_sym_map[rel->r_offset / 8] = s;
5600 }
5601 }
5602 /* Fall through. */
5603
5604 case R_PPC64_ADDR16:
5605 case R_PPC64_ADDR16_DS:
5606 case R_PPC64_ADDR16_HA:
5607 case R_PPC64_ADDR16_HI:
5608 case R_PPC64_ADDR16_HIGH:
5609 case R_PPC64_ADDR16_HIGHA:
5610 case R_PPC64_ADDR16_HIGHER:
5611 case R_PPC64_ADDR16_HIGHERA:
5612 case R_PPC64_ADDR16_HIGHEST:
5613 case R_PPC64_ADDR16_HIGHESTA:
5614 case R_PPC64_ADDR16_LO:
5615 case R_PPC64_ADDR16_LO_DS:
5616 if (h != NULL && !info->shared && abiversion (abfd) == 2
5617 && rel->r_addend == 0)
5618 {
5619 /* We may need a .plt entry if this reloc refers to a
5620 function in a shared lib. */
5621 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5622 return FALSE;
5623 h->pointer_equality_needed = 1;
5624 }
5625 /* Fall through. */
5626
5627 case R_PPC64_REL30:
5628 case R_PPC64_REL32:
5629 case R_PPC64_REL64:
5630 case R_PPC64_ADDR14:
5631 case R_PPC64_ADDR14_BRNTAKEN:
5632 case R_PPC64_ADDR14_BRTAKEN:
5633 case R_PPC64_ADDR24:
5634 case R_PPC64_ADDR32:
5635 case R_PPC64_UADDR16:
5636 case R_PPC64_UADDR32:
5637 case R_PPC64_UADDR64:
5638 case R_PPC64_TOC:
5639 if (h != NULL && !info->shared)
5640 /* We may need a copy reloc. */
5641 h->non_got_ref = 1;
5642
5643 /* Don't propagate .opd relocs. */
5644 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5645 break;
5646
5647 /* If we are creating a shared library, and this is a reloc
5648 against a global symbol, or a non PC relative reloc
5649 against a local symbol, then we need to copy the reloc
5650 into the shared library. However, if we are linking with
5651 -Bsymbolic, we do not need to copy a reloc against a
5652 global symbol which is defined in an object we are
5653 including in the link (i.e., DEF_REGULAR is set). At
5654 this point we have not seen all the input files, so it is
5655 possible that DEF_REGULAR is not set now but will be set
5656 later (it is never cleared). In case of a weak definition,
5657 DEF_REGULAR may be cleared later by a strong definition in
5658 a shared library. We account for that possibility below by
5659 storing information in the dyn_relocs field of the hash
5660 table entry. A similar situation occurs when creating
5661 shared libraries and symbol visibility changes render the
5662 symbol local.
5663
5664 If on the other hand, we are creating an executable, we
5665 may need to keep relocations for symbols satisfied by a
5666 dynamic library if we manage to avoid copy relocs for the
5667 symbol. */
5668 dodyn:
5669 if ((info->shared
5670 && (must_be_dyn_reloc (info, r_type)
5671 || (h != NULL
5672 && (!SYMBOLIC_BIND (info, h)
5673 || h->root.type == bfd_link_hash_defweak
5674 || !h->def_regular))))
5675 || (ELIMINATE_COPY_RELOCS
5676 && !info->shared
5677 && h != NULL
5678 && (h->root.type == bfd_link_hash_defweak
5679 || !h->def_regular))
5680 || (!info->shared
5681 && ifunc != NULL))
5682 {
5683 /* We must copy these reloc types into the output file.
5684 Create a reloc section in dynobj and make room for
5685 this reloc. */
5686 if (sreloc == NULL)
5687 {
5688 sreloc = _bfd_elf_make_dynamic_reloc_section
5689 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5690
5691 if (sreloc == NULL)
5692 return FALSE;
5693 }
5694
5695 /* If this is a global symbol, we count the number of
5696 relocations we need for this symbol. */
5697 if (h != NULL)
5698 {
5699 struct elf_dyn_relocs *p;
5700 struct elf_dyn_relocs **head;
5701
5702 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5703 p = *head;
5704 if (p == NULL || p->sec != sec)
5705 {
5706 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5707 if (p == NULL)
5708 return FALSE;
5709 p->next = *head;
5710 *head = p;
5711 p->sec = sec;
5712 p->count = 0;
5713 p->pc_count = 0;
5714 }
5715 p->count += 1;
5716 if (!must_be_dyn_reloc (info, r_type))
5717 p->pc_count += 1;
5718 }
5719 else
5720 {
5721 /* Track dynamic relocs needed for local syms too.
5722 We really need local syms available to do this
5723 easily. Oh well. */
5724 struct ppc_dyn_relocs *p;
5725 struct ppc_dyn_relocs **head;
5726 bfd_boolean is_ifunc;
5727 asection *s;
5728 void *vpp;
5729 Elf_Internal_Sym *isym;
5730
5731 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5732 abfd, r_symndx);
5733 if (isym == NULL)
5734 return FALSE;
5735
5736 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5737 if (s == NULL)
5738 s = sec;
5739
5740 vpp = &elf_section_data (s)->local_dynrel;
5741 head = (struct ppc_dyn_relocs **) vpp;
5742 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5743 p = *head;
5744 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5745 p = p->next;
5746 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5747 {
5748 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5749 if (p == NULL)
5750 return FALSE;
5751 p->next = *head;
5752 *head = p;
5753 p->sec = sec;
5754 p->ifunc = is_ifunc;
5755 p->count = 0;
5756 }
5757 p->count += 1;
5758 }
5759 }
5760 break;
5761
5762 default:
5763 break;
5764 }
5765 }
5766
5767 return TRUE;
5768 }
5769
5770 /* Merge backend specific data from an object file to the output
5771 object file when linking. */
5772
5773 static bfd_boolean
5774 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5775 {
5776 unsigned long iflags, oflags;
5777
5778 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5779 return TRUE;
5780
5781 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5782 return TRUE;
5783
5784 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5785 return FALSE;
5786
5787 iflags = elf_elfheader (ibfd)->e_flags;
5788 oflags = elf_elfheader (obfd)->e_flags;
5789
5790 if (!elf_flags_init (obfd) || oflags == 0)
5791 {
5792 elf_flags_init (obfd) = TRUE;
5793 elf_elfheader (obfd)->e_flags = iflags;
5794 }
5795 else if (iflags == oflags || iflags == 0)
5796 ;
5797 else if (iflags & ~EF_PPC64_ABI)
5798 {
5799 (*_bfd_error_handler)
5800 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5801 bfd_set_error (bfd_error_bad_value);
5802 return FALSE;
5803 }
5804 else
5805 {
5806 (*_bfd_error_handler)
5807 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5808 ibfd, iflags, oflags);
5809 bfd_set_error (bfd_error_bad_value);
5810 return FALSE;
5811 }
5812
5813 /* Merge Tag_compatibility attributes and any common GNU ones. */
5814 _bfd_elf_merge_object_attributes (ibfd, obfd);
5815
5816 return TRUE;
5817 }
5818
5819 static bfd_boolean
5820 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5821 {
5822 /* Print normal ELF private data. */
5823 _bfd_elf_print_private_bfd_data (abfd, ptr);
5824
5825 if (elf_elfheader (abfd)->e_flags != 0)
5826 {
5827 FILE *file = ptr;
5828
5829 /* xgettext:c-format */
5830 fprintf (file, _("private flags = 0x%lx:"),
5831 elf_elfheader (abfd)->e_flags);
5832
5833 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5834 fprintf (file, _(" [abiv%ld]"),
5835 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5836 fputc ('\n', file);
5837 }
5838
5839 return TRUE;
5840 }
5841
5842 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5843 of the code entry point, and its section. */
5844
5845 static bfd_vma
5846 opd_entry_value (asection *opd_sec,
5847 bfd_vma offset,
5848 asection **code_sec,
5849 bfd_vma *code_off,
5850 bfd_boolean in_code_sec)
5851 {
5852 bfd *opd_bfd = opd_sec->owner;
5853 Elf_Internal_Rela *relocs;
5854 Elf_Internal_Rela *lo, *hi, *look;
5855 bfd_vma val;
5856
5857 /* No relocs implies we are linking a --just-symbols object, or looking
5858 at a final linked executable with addr2line or somesuch. */
5859 if (opd_sec->reloc_count == 0)
5860 {
5861 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5862
5863 if (contents == NULL)
5864 {
5865 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5866 return (bfd_vma) -1;
5867 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5868 }
5869
5870 val = bfd_get_64 (opd_bfd, contents + offset);
5871 if (code_sec != NULL)
5872 {
5873 asection *sec, *likely = NULL;
5874
5875 if (in_code_sec)
5876 {
5877 sec = *code_sec;
5878 if (sec->vma <= val
5879 && val < sec->vma + sec->size)
5880 likely = sec;
5881 else
5882 val = -1;
5883 }
5884 else
5885 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5886 if (sec->vma <= val
5887 && (sec->flags & SEC_LOAD) != 0
5888 && (sec->flags & SEC_ALLOC) != 0)
5889 likely = sec;
5890 if (likely != NULL)
5891 {
5892 *code_sec = likely;
5893 if (code_off != NULL)
5894 *code_off = val - likely->vma;
5895 }
5896 }
5897 return val;
5898 }
5899
5900 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5901
5902 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5903 if (relocs == NULL)
5904 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5905
5906 /* Go find the opd reloc at the sym address. */
5907 lo = relocs;
5908 BFD_ASSERT (lo != NULL);
5909 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5910 val = (bfd_vma) -1;
5911 while (lo < hi)
5912 {
5913 look = lo + (hi - lo) / 2;
5914 if (look->r_offset < offset)
5915 lo = look + 1;
5916 else if (look->r_offset > offset)
5917 hi = look;
5918 else
5919 {
5920 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5921
5922 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5923 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5924 {
5925 unsigned long symndx = ELF64_R_SYM (look->r_info);
5926 asection *sec;
5927
5928 if (symndx < symtab_hdr->sh_info
5929 || elf_sym_hashes (opd_bfd) == NULL)
5930 {
5931 Elf_Internal_Sym *sym;
5932
5933 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5934 if (sym == NULL)
5935 {
5936 size_t symcnt = symtab_hdr->sh_info;
5937 if (elf_sym_hashes (opd_bfd) == NULL)
5938 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5939 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5940 0, NULL, NULL, NULL);
5941 if (sym == NULL)
5942 break;
5943 symtab_hdr->contents = (bfd_byte *) sym;
5944 }
5945
5946 sym += symndx;
5947 val = sym->st_value;
5948 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5949 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5950 }
5951 else
5952 {
5953 struct elf_link_hash_entry **sym_hashes;
5954 struct elf_link_hash_entry *rh;
5955
5956 sym_hashes = elf_sym_hashes (opd_bfd);
5957 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5958 if (rh != NULL)
5959 {
5960 rh = elf_follow_link (rh);
5961 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5962 || rh->root.type == bfd_link_hash_defweak);
5963 val = rh->root.u.def.value;
5964 sec = rh->root.u.def.section;
5965 }
5966 else
5967 {
5968 /* Handle the odd case where we can be called
5969 during bfd_elf_link_add_symbols before the
5970 symbol hashes have been fully populated. */
5971 Elf_Internal_Sym *sym;
5972
5973 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
5974 symndx, NULL, NULL, NULL);
5975 if (sym == NULL)
5976 break;
5977
5978 val = sym->st_value;
5979 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5980 free (sym);
5981 }
5982 }
5983 val += look->r_addend;
5984 if (code_off != NULL)
5985 *code_off = val;
5986 if (code_sec != NULL)
5987 {
5988 if (in_code_sec && *code_sec != sec)
5989 return -1;
5990 else
5991 *code_sec = sec;
5992 }
5993 if (sec != NULL && sec->output_section != NULL)
5994 val += sec->output_section->vma + sec->output_offset;
5995 }
5996 break;
5997 }
5998 }
5999
6000 return val;
6001 }
6002
6003 /* If the ELF symbol SYM might be a function in SEC, return the
6004 function size and set *CODE_OFF to the function's entry point,
6005 otherwise return zero. */
6006
6007 static bfd_size_type
6008 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6009 bfd_vma *code_off)
6010 {
6011 bfd_size_type size;
6012
6013 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6014 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6015 return 0;
6016
6017 size = 0;
6018 if (!(sym->flags & BSF_SYNTHETIC))
6019 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6020
6021 if (strcmp (sym->section->name, ".opd") == 0)
6022 {
6023 if (opd_entry_value (sym->section, sym->value,
6024 &sec, code_off, TRUE) == (bfd_vma) -1)
6025 return 0;
6026 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6027 symbol. This size has nothing to do with the code size of the
6028 function, which is what we're supposed to return, but the
6029 code size isn't available without looking up the dot-sym.
6030 However, doing that would be a waste of time particularly
6031 since elf_find_function will look at the dot-sym anyway.
6032 Now, elf_find_function will keep the largest size of any
6033 function sym found at the code address of interest, so return
6034 1 here to avoid it incorrectly caching a larger function size
6035 for a small function. This does mean we return the wrong
6036 size for a new-ABI function of size 24, but all that does is
6037 disable caching for such functions. */
6038 if (size == 24)
6039 size = 1;
6040 }
6041 else
6042 {
6043 if (sym->section != sec)
6044 return 0;
6045 *code_off = sym->value;
6046 }
6047 if (size == 0)
6048 size = 1;
6049 return size;
6050 }
6051
6052 /* Return true if symbol is defined in a regular object file. */
6053
6054 static bfd_boolean
6055 is_static_defined (struct elf_link_hash_entry *h)
6056 {
6057 return ((h->root.type == bfd_link_hash_defined
6058 || h->root.type == bfd_link_hash_defweak)
6059 && h->root.u.def.section != NULL
6060 && h->root.u.def.section->output_section != NULL);
6061 }
6062
6063 /* If FDH is a function descriptor symbol, return the associated code
6064 entry symbol if it is defined. Return NULL otherwise. */
6065
6066 static struct ppc_link_hash_entry *
6067 defined_code_entry (struct ppc_link_hash_entry *fdh)
6068 {
6069 if (fdh->is_func_descriptor)
6070 {
6071 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6072 if (fh->elf.root.type == bfd_link_hash_defined
6073 || fh->elf.root.type == bfd_link_hash_defweak)
6074 return fh;
6075 }
6076 return NULL;
6077 }
6078
6079 /* If FH is a function code entry symbol, return the associated
6080 function descriptor symbol if it is defined. Return NULL otherwise. */
6081
6082 static struct ppc_link_hash_entry *
6083 defined_func_desc (struct ppc_link_hash_entry *fh)
6084 {
6085 if (fh->oh != NULL
6086 && fh->oh->is_func_descriptor)
6087 {
6088 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6089 if (fdh->elf.root.type == bfd_link_hash_defined
6090 || fdh->elf.root.type == bfd_link_hash_defweak)
6091 return fdh;
6092 }
6093 return NULL;
6094 }
6095
6096 /* Mark all our entry sym sections, both opd and code section. */
6097
6098 static void
6099 ppc64_elf_gc_keep (struct bfd_link_info *info)
6100 {
6101 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6102 struct bfd_sym_chain *sym;
6103
6104 if (htab == NULL)
6105 return;
6106
6107 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6108 {
6109 struct ppc_link_hash_entry *eh, *fh;
6110 asection *sec;
6111
6112 eh = (struct ppc_link_hash_entry *)
6113 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6114 if (eh == NULL)
6115 continue;
6116 if (eh->elf.root.type != bfd_link_hash_defined
6117 && eh->elf.root.type != bfd_link_hash_defweak)
6118 continue;
6119
6120 fh = defined_code_entry (eh);
6121 if (fh != NULL)
6122 {
6123 sec = fh->elf.root.u.def.section;
6124 sec->flags |= SEC_KEEP;
6125 }
6126 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6127 && opd_entry_value (eh->elf.root.u.def.section,
6128 eh->elf.root.u.def.value,
6129 &sec, NULL, FALSE) != (bfd_vma) -1)
6130 sec->flags |= SEC_KEEP;
6131
6132 sec = eh->elf.root.u.def.section;
6133 sec->flags |= SEC_KEEP;
6134 }
6135 }
6136
6137 /* Mark sections containing dynamically referenced symbols. When
6138 building shared libraries, we must assume that any visible symbol is
6139 referenced. */
6140
6141 static bfd_boolean
6142 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6143 {
6144 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6145 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6146 struct ppc_link_hash_entry *fdh;
6147
6148 /* Dynamic linking info is on the func descriptor sym. */
6149 fdh = defined_func_desc (eh);
6150 if (fdh != NULL)
6151 eh = fdh;
6152
6153 if ((eh->elf.root.type == bfd_link_hash_defined
6154 || eh->elf.root.type == bfd_link_hash_defweak)
6155 && (eh->elf.ref_dynamic
6156 || (!info->executable
6157 && eh->elf.def_regular
6158 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6159 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6160 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6161 || !bfd_hide_sym_by_version (info->version_info,
6162 eh->elf.root.root.string)))))
6163 {
6164 asection *code_sec;
6165 struct ppc_link_hash_entry *fh;
6166
6167 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6168
6169 /* Function descriptor syms cause the associated
6170 function code sym section to be marked. */
6171 fh = defined_code_entry (eh);
6172 if (fh != NULL)
6173 {
6174 code_sec = fh->elf.root.u.def.section;
6175 code_sec->flags |= SEC_KEEP;
6176 }
6177 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6178 && opd_entry_value (eh->elf.root.u.def.section,
6179 eh->elf.root.u.def.value,
6180 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6181 code_sec->flags |= SEC_KEEP;
6182 }
6183
6184 return TRUE;
6185 }
6186
6187 /* Return the section that should be marked against GC for a given
6188 relocation. */
6189
6190 static asection *
6191 ppc64_elf_gc_mark_hook (asection *sec,
6192 struct bfd_link_info *info,
6193 Elf_Internal_Rela *rel,
6194 struct elf_link_hash_entry *h,
6195 Elf_Internal_Sym *sym)
6196 {
6197 asection *rsec;
6198
6199 /* Syms return NULL if we're marking .opd, so we avoid marking all
6200 function sections, as all functions are referenced in .opd. */
6201 rsec = NULL;
6202 if (get_opd_info (sec) != NULL)
6203 return rsec;
6204
6205 if (h != NULL)
6206 {
6207 enum elf_ppc64_reloc_type r_type;
6208 struct ppc_link_hash_entry *eh, *fh, *fdh;
6209
6210 r_type = ELF64_R_TYPE (rel->r_info);
6211 switch (r_type)
6212 {
6213 case R_PPC64_GNU_VTINHERIT:
6214 case R_PPC64_GNU_VTENTRY:
6215 break;
6216
6217 default:
6218 switch (h->root.type)
6219 {
6220 case bfd_link_hash_defined:
6221 case bfd_link_hash_defweak:
6222 eh = (struct ppc_link_hash_entry *) h;
6223 fdh = defined_func_desc (eh);
6224 if (fdh != NULL)
6225 eh = fdh;
6226
6227 /* Function descriptor syms cause the associated
6228 function code sym section to be marked. */
6229 fh = defined_code_entry (eh);
6230 if (fh != NULL)
6231 {
6232 /* They also mark their opd section. */
6233 eh->elf.root.u.def.section->gc_mark = 1;
6234
6235 rsec = fh->elf.root.u.def.section;
6236 }
6237 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6238 && opd_entry_value (eh->elf.root.u.def.section,
6239 eh->elf.root.u.def.value,
6240 &rsec, NULL, FALSE) != (bfd_vma) -1)
6241 eh->elf.root.u.def.section->gc_mark = 1;
6242 else
6243 rsec = h->root.u.def.section;
6244 break;
6245
6246 case bfd_link_hash_common:
6247 rsec = h->root.u.c.p->section;
6248 break;
6249
6250 default:
6251 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6252 }
6253 }
6254 }
6255 else
6256 {
6257 struct _opd_sec_data *opd;
6258
6259 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6260 opd = get_opd_info (rsec);
6261 if (opd != NULL && opd->func_sec != NULL)
6262 {
6263 rsec->gc_mark = 1;
6264
6265 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6266 }
6267 }
6268
6269 return rsec;
6270 }
6271
6272 /* Update the .got, .plt. and dynamic reloc reference counts for the
6273 section being removed. */
6274
6275 static bfd_boolean
6276 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6277 asection *sec, const Elf_Internal_Rela *relocs)
6278 {
6279 struct ppc_link_hash_table *htab;
6280 Elf_Internal_Shdr *symtab_hdr;
6281 struct elf_link_hash_entry **sym_hashes;
6282 struct got_entry **local_got_ents;
6283 const Elf_Internal_Rela *rel, *relend;
6284
6285 if (info->relocatable)
6286 return TRUE;
6287
6288 if ((sec->flags & SEC_ALLOC) == 0)
6289 return TRUE;
6290
6291 elf_section_data (sec)->local_dynrel = NULL;
6292
6293 htab = ppc_hash_table (info);
6294 if (htab == NULL)
6295 return FALSE;
6296
6297 symtab_hdr = &elf_symtab_hdr (abfd);
6298 sym_hashes = elf_sym_hashes (abfd);
6299 local_got_ents = elf_local_got_ents (abfd);
6300
6301 relend = relocs + sec->reloc_count;
6302 for (rel = relocs; rel < relend; rel++)
6303 {
6304 unsigned long r_symndx;
6305 enum elf_ppc64_reloc_type r_type;
6306 struct elf_link_hash_entry *h = NULL;
6307 unsigned char tls_type = 0;
6308
6309 r_symndx = ELF64_R_SYM (rel->r_info);
6310 r_type = ELF64_R_TYPE (rel->r_info);
6311 if (r_symndx >= symtab_hdr->sh_info)
6312 {
6313 struct ppc_link_hash_entry *eh;
6314 struct elf_dyn_relocs **pp;
6315 struct elf_dyn_relocs *p;
6316
6317 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6318 h = elf_follow_link (h);
6319 eh = (struct ppc_link_hash_entry *) h;
6320
6321 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6322 if (p->sec == sec)
6323 {
6324 /* Everything must go for SEC. */
6325 *pp = p->next;
6326 break;
6327 }
6328 }
6329
6330 if (is_branch_reloc (r_type))
6331 {
6332 struct plt_entry **ifunc = NULL;
6333 if (h != NULL)
6334 {
6335 if (h->type == STT_GNU_IFUNC)
6336 ifunc = &h->plt.plist;
6337 }
6338 else if (local_got_ents != NULL)
6339 {
6340 struct plt_entry **local_plt = (struct plt_entry **)
6341 (local_got_ents + symtab_hdr->sh_info);
6342 unsigned char *local_got_tls_masks = (unsigned char *)
6343 (local_plt + symtab_hdr->sh_info);
6344 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6345 ifunc = local_plt + r_symndx;
6346 }
6347 if (ifunc != NULL)
6348 {
6349 struct plt_entry *ent;
6350
6351 for (ent = *ifunc; ent != NULL; ent = ent->next)
6352 if (ent->addend == rel->r_addend)
6353 break;
6354 if (ent == NULL)
6355 abort ();
6356 if (ent->plt.refcount > 0)
6357 ent->plt.refcount -= 1;
6358 continue;
6359 }
6360 }
6361
6362 switch (r_type)
6363 {
6364 case R_PPC64_GOT_TLSLD16:
6365 case R_PPC64_GOT_TLSLD16_LO:
6366 case R_PPC64_GOT_TLSLD16_HI:
6367 case R_PPC64_GOT_TLSLD16_HA:
6368 tls_type = TLS_TLS | TLS_LD;
6369 goto dogot;
6370
6371 case R_PPC64_GOT_TLSGD16:
6372 case R_PPC64_GOT_TLSGD16_LO:
6373 case R_PPC64_GOT_TLSGD16_HI:
6374 case R_PPC64_GOT_TLSGD16_HA:
6375 tls_type = TLS_TLS | TLS_GD;
6376 goto dogot;
6377
6378 case R_PPC64_GOT_TPREL16_DS:
6379 case R_PPC64_GOT_TPREL16_LO_DS:
6380 case R_PPC64_GOT_TPREL16_HI:
6381 case R_PPC64_GOT_TPREL16_HA:
6382 tls_type = TLS_TLS | TLS_TPREL;
6383 goto dogot;
6384
6385 case R_PPC64_GOT_DTPREL16_DS:
6386 case R_PPC64_GOT_DTPREL16_LO_DS:
6387 case R_PPC64_GOT_DTPREL16_HI:
6388 case R_PPC64_GOT_DTPREL16_HA:
6389 tls_type = TLS_TLS | TLS_DTPREL;
6390 goto dogot;
6391
6392 case R_PPC64_GOT16:
6393 case R_PPC64_GOT16_DS:
6394 case R_PPC64_GOT16_HA:
6395 case R_PPC64_GOT16_HI:
6396 case R_PPC64_GOT16_LO:
6397 case R_PPC64_GOT16_LO_DS:
6398 dogot:
6399 {
6400 struct got_entry *ent;
6401
6402 if (h != NULL)
6403 ent = h->got.glist;
6404 else
6405 ent = local_got_ents[r_symndx];
6406
6407 for (; ent != NULL; ent = ent->next)
6408 if (ent->addend == rel->r_addend
6409 && ent->owner == abfd
6410 && ent->tls_type == tls_type)
6411 break;
6412 if (ent == NULL)
6413 abort ();
6414 if (ent->got.refcount > 0)
6415 ent->got.refcount -= 1;
6416 }
6417 break;
6418
6419 case R_PPC64_PLT16_HA:
6420 case R_PPC64_PLT16_HI:
6421 case R_PPC64_PLT16_LO:
6422 case R_PPC64_PLT32:
6423 case R_PPC64_PLT64:
6424 case R_PPC64_REL14:
6425 case R_PPC64_REL14_BRNTAKEN:
6426 case R_PPC64_REL14_BRTAKEN:
6427 case R_PPC64_REL24:
6428 if (h != NULL)
6429 {
6430 struct plt_entry *ent;
6431
6432 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6433 if (ent->addend == rel->r_addend)
6434 break;
6435 if (ent != NULL && ent->plt.refcount > 0)
6436 ent->plt.refcount -= 1;
6437 }
6438 break;
6439
6440 default:
6441 break;
6442 }
6443 }
6444 return TRUE;
6445 }
6446
6447 /* The maximum size of .sfpr. */
6448 #define SFPR_MAX (218*4)
6449
6450 struct sfpr_def_parms
6451 {
6452 const char name[12];
6453 unsigned char lo, hi;
6454 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6455 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6456 };
6457
6458 /* Auto-generate _save*, _rest* functions in .sfpr. */
6459
6460 static bfd_boolean
6461 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6462 {
6463 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6464 unsigned int i;
6465 size_t len = strlen (parm->name);
6466 bfd_boolean writing = FALSE;
6467 char sym[16];
6468
6469 if (htab == NULL)
6470 return FALSE;
6471
6472 memcpy (sym, parm->name, len);
6473 sym[len + 2] = 0;
6474
6475 for (i = parm->lo; i <= parm->hi; i++)
6476 {
6477 struct elf_link_hash_entry *h;
6478
6479 sym[len + 0] = i / 10 + '0';
6480 sym[len + 1] = i % 10 + '0';
6481 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6482 if (h != NULL
6483 && !h->def_regular)
6484 {
6485 h->root.type = bfd_link_hash_defined;
6486 h->root.u.def.section = htab->sfpr;
6487 h->root.u.def.value = htab->sfpr->size;
6488 h->type = STT_FUNC;
6489 h->def_regular = 1;
6490 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6491 writing = TRUE;
6492 if (htab->sfpr->contents == NULL)
6493 {
6494 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6495 if (htab->sfpr->contents == NULL)
6496 return FALSE;
6497 }
6498 }
6499 if (writing)
6500 {
6501 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6502 if (i != parm->hi)
6503 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6504 else
6505 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6506 htab->sfpr->size = p - htab->sfpr->contents;
6507 }
6508 }
6509
6510 return TRUE;
6511 }
6512
6513 static bfd_byte *
6514 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6515 {
6516 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6517 return p + 4;
6518 }
6519
6520 static bfd_byte *
6521 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6522 {
6523 p = savegpr0 (abfd, p, r);
6524 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6525 p = p + 4;
6526 bfd_put_32 (abfd, BLR, p);
6527 return p + 4;
6528 }
6529
6530 static bfd_byte *
6531 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6532 {
6533 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6534 return p + 4;
6535 }
6536
6537 static bfd_byte *
6538 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6539 {
6540 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6541 p = p + 4;
6542 p = restgpr0 (abfd, p, r);
6543 bfd_put_32 (abfd, MTLR_R0, p);
6544 p = p + 4;
6545 if (r == 29)
6546 {
6547 p = restgpr0 (abfd, p, 30);
6548 p = restgpr0 (abfd, p, 31);
6549 }
6550 bfd_put_32 (abfd, BLR, p);
6551 return p + 4;
6552 }
6553
6554 static bfd_byte *
6555 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6556 {
6557 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6558 return p + 4;
6559 }
6560
6561 static bfd_byte *
6562 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6563 {
6564 p = savegpr1 (abfd, p, r);
6565 bfd_put_32 (abfd, BLR, p);
6566 return p + 4;
6567 }
6568
6569 static bfd_byte *
6570 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6571 {
6572 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6573 return p + 4;
6574 }
6575
6576 static bfd_byte *
6577 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6578 {
6579 p = restgpr1 (abfd, p, r);
6580 bfd_put_32 (abfd, BLR, p);
6581 return p + 4;
6582 }
6583
6584 static bfd_byte *
6585 savefpr (bfd *abfd, bfd_byte *p, int r)
6586 {
6587 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6588 return p + 4;
6589 }
6590
6591 static bfd_byte *
6592 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6593 {
6594 p = savefpr (abfd, p, r);
6595 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6596 p = p + 4;
6597 bfd_put_32 (abfd, BLR, p);
6598 return p + 4;
6599 }
6600
6601 static bfd_byte *
6602 restfpr (bfd *abfd, bfd_byte *p, int r)
6603 {
6604 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6605 return p + 4;
6606 }
6607
6608 static bfd_byte *
6609 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6610 {
6611 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6612 p = p + 4;
6613 p = restfpr (abfd, p, r);
6614 bfd_put_32 (abfd, MTLR_R0, p);
6615 p = p + 4;
6616 if (r == 29)
6617 {
6618 p = restfpr (abfd, p, 30);
6619 p = restfpr (abfd, p, 31);
6620 }
6621 bfd_put_32 (abfd, BLR, p);
6622 return p + 4;
6623 }
6624
6625 static bfd_byte *
6626 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6627 {
6628 p = savefpr (abfd, p, r);
6629 bfd_put_32 (abfd, BLR, p);
6630 return p + 4;
6631 }
6632
6633 static bfd_byte *
6634 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6635 {
6636 p = restfpr (abfd, p, r);
6637 bfd_put_32 (abfd, BLR, p);
6638 return p + 4;
6639 }
6640
6641 static bfd_byte *
6642 savevr (bfd *abfd, bfd_byte *p, int r)
6643 {
6644 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6645 p = p + 4;
6646 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6647 return p + 4;
6648 }
6649
6650 static bfd_byte *
6651 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6652 {
6653 p = savevr (abfd, p, r);
6654 bfd_put_32 (abfd, BLR, p);
6655 return p + 4;
6656 }
6657
6658 static bfd_byte *
6659 restvr (bfd *abfd, bfd_byte *p, int r)
6660 {
6661 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6662 p = p + 4;
6663 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6664 return p + 4;
6665 }
6666
6667 static bfd_byte *
6668 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6669 {
6670 p = restvr (abfd, p, r);
6671 bfd_put_32 (abfd, BLR, p);
6672 return p + 4;
6673 }
6674
6675 /* Called via elf_link_hash_traverse to transfer dynamic linking
6676 information on function code symbol entries to their corresponding
6677 function descriptor symbol entries. */
6678
6679 static bfd_boolean
6680 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6681 {
6682 struct bfd_link_info *info;
6683 struct ppc_link_hash_table *htab;
6684 struct plt_entry *ent;
6685 struct ppc_link_hash_entry *fh;
6686 struct ppc_link_hash_entry *fdh;
6687 bfd_boolean force_local;
6688
6689 fh = (struct ppc_link_hash_entry *) h;
6690 if (fh->elf.root.type == bfd_link_hash_indirect)
6691 return TRUE;
6692
6693 info = inf;
6694 htab = ppc_hash_table (info);
6695 if (htab == NULL)
6696 return FALSE;
6697
6698 /* Resolve undefined references to dot-symbols as the value
6699 in the function descriptor, if we have one in a regular object.
6700 This is to satisfy cases like ".quad .foo". Calls to functions
6701 in dynamic objects are handled elsewhere. */
6702 if (fh->elf.root.type == bfd_link_hash_undefweak
6703 && fh->was_undefined
6704 && (fdh = defined_func_desc (fh)) != NULL
6705 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6706 && opd_entry_value (fdh->elf.root.u.def.section,
6707 fdh->elf.root.u.def.value,
6708 &fh->elf.root.u.def.section,
6709 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6710 {
6711 fh->elf.root.type = fdh->elf.root.type;
6712 fh->elf.forced_local = 1;
6713 fh->elf.def_regular = fdh->elf.def_regular;
6714 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6715 }
6716
6717 /* If this is a function code symbol, transfer dynamic linking
6718 information to the function descriptor symbol. */
6719 if (!fh->is_func)
6720 return TRUE;
6721
6722 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6723 if (ent->plt.refcount > 0)
6724 break;
6725 if (ent == NULL
6726 || fh->elf.root.root.string[0] != '.'
6727 || fh->elf.root.root.string[1] == '\0')
6728 return TRUE;
6729
6730 /* Find the corresponding function descriptor symbol. Create it
6731 as undefined if necessary. */
6732
6733 fdh = lookup_fdh (fh, htab);
6734 if (fdh == NULL
6735 && !info->executable
6736 && (fh->elf.root.type == bfd_link_hash_undefined
6737 || fh->elf.root.type == bfd_link_hash_undefweak))
6738 {
6739 fdh = make_fdh (info, fh);
6740 if (fdh == NULL)
6741 return FALSE;
6742 }
6743
6744 /* Fake function descriptors are made undefweak. If the function
6745 code symbol is strong undefined, make the fake sym the same.
6746 If the function code symbol is defined, then force the fake
6747 descriptor local; We can't support overriding of symbols in a
6748 shared library on a fake descriptor. */
6749
6750 if (fdh != NULL
6751 && fdh->fake
6752 && fdh->elf.root.type == bfd_link_hash_undefweak)
6753 {
6754 if (fh->elf.root.type == bfd_link_hash_undefined)
6755 {
6756 fdh->elf.root.type = bfd_link_hash_undefined;
6757 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6758 }
6759 else if (fh->elf.root.type == bfd_link_hash_defined
6760 || fh->elf.root.type == bfd_link_hash_defweak)
6761 {
6762 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6763 }
6764 }
6765
6766 if (fdh != NULL
6767 && !fdh->elf.forced_local
6768 && (!info->executable
6769 || fdh->elf.def_dynamic
6770 || fdh->elf.ref_dynamic
6771 || (fdh->elf.root.type == bfd_link_hash_undefweak
6772 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6773 {
6774 if (fdh->elf.dynindx == -1)
6775 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6776 return FALSE;
6777 fdh->elf.ref_regular |= fh->elf.ref_regular;
6778 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6779 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6780 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6781 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6782 {
6783 move_plt_plist (fh, fdh);
6784 fdh->elf.needs_plt = 1;
6785 }
6786 fdh->is_func_descriptor = 1;
6787 fdh->oh = fh;
6788 fh->oh = fdh;
6789 }
6790
6791 /* Now that the info is on the function descriptor, clear the
6792 function code sym info. Any function code syms for which we
6793 don't have a definition in a regular file, we force local.
6794 This prevents a shared library from exporting syms that have
6795 been imported from another library. Function code syms that
6796 are really in the library we must leave global to prevent the
6797 linker dragging in a definition from a static library. */
6798 force_local = (!fh->elf.def_regular
6799 || fdh == NULL
6800 || !fdh->elf.def_regular
6801 || fdh->elf.forced_local);
6802 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6803
6804 return TRUE;
6805 }
6806
6807 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6808 this hook to a) provide some gcc support functions, and b) transfer
6809 dynamic linking information gathered so far on function code symbol
6810 entries, to their corresponding function descriptor symbol entries. */
6811
6812 static bfd_boolean
6813 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6814 struct bfd_link_info *info)
6815 {
6816 struct ppc_link_hash_table *htab;
6817 unsigned int i;
6818 static const struct sfpr_def_parms funcs[] =
6819 {
6820 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6821 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6822 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6823 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6824 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6825 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6826 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6827 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6828 { "._savef", 14, 31, savefpr, savefpr1_tail },
6829 { "._restf", 14, 31, restfpr, restfpr1_tail },
6830 { "_savevr_", 20, 31, savevr, savevr_tail },
6831 { "_restvr_", 20, 31, restvr, restvr_tail }
6832 };
6833
6834 htab = ppc_hash_table (info);
6835 if (htab == NULL)
6836 return FALSE;
6837
6838 if (!info->relocatable
6839 && htab->elf.hgot != NULL)
6840 {
6841 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6842 /* Make .TOC. defined so as to prevent it being made dynamic.
6843 The wrong value here is fixed later in ppc64_elf_set_toc. */
6844 htab->elf.hgot->type = STT_OBJECT;
6845 htab->elf.hgot->root.type = bfd_link_hash_defined;
6846 htab->elf.hgot->root.u.def.value = 0;
6847 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6848 htab->elf.hgot->def_regular = 1;
6849 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6850 | STV_HIDDEN);
6851 }
6852
6853 if (htab->sfpr == NULL)
6854 /* We don't have any relocs. */
6855 return TRUE;
6856
6857 /* Provide any missing _save* and _rest* functions. */
6858 htab->sfpr->size = 0;
6859 if (!info->relocatable)
6860 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6861 if (!sfpr_define (info, &funcs[i]))
6862 return FALSE;
6863
6864 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6865
6866 if (htab->sfpr->size == 0)
6867 htab->sfpr->flags |= SEC_EXCLUDE;
6868
6869 return TRUE;
6870 }
6871
6872 /* Return true if we have dynamic relocs that apply to read-only sections. */
6873
6874 static bfd_boolean
6875 readonly_dynrelocs (struct elf_link_hash_entry *h)
6876 {
6877 struct ppc_link_hash_entry *eh;
6878 struct elf_dyn_relocs *p;
6879
6880 eh = (struct ppc_link_hash_entry *) h;
6881 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6882 {
6883 asection *s = p->sec->output_section;
6884
6885 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6886 return TRUE;
6887 }
6888 return FALSE;
6889 }
6890
6891 /* Adjust a symbol defined by a dynamic object and referenced by a
6892 regular object. The current definition is in some section of the
6893 dynamic object, but we're not including those sections. We have to
6894 change the definition to something the rest of the link can
6895 understand. */
6896
6897 static bfd_boolean
6898 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6899 struct elf_link_hash_entry *h)
6900 {
6901 struct ppc_link_hash_table *htab;
6902 asection *s;
6903
6904 htab = ppc_hash_table (info);
6905 if (htab == NULL)
6906 return FALSE;
6907
6908 /* Deal with function syms. */
6909 if (h->type == STT_FUNC
6910 || h->type == STT_GNU_IFUNC
6911 || h->needs_plt)
6912 {
6913 /* Clear procedure linkage table information for any symbol that
6914 won't need a .plt entry. */
6915 struct plt_entry *ent;
6916 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6917 if (ent->plt.refcount > 0)
6918 break;
6919 if (ent == NULL
6920 || (h->type != STT_GNU_IFUNC
6921 && (SYMBOL_CALLS_LOCAL (info, h)
6922 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6923 && h->root.type == bfd_link_hash_undefweak))))
6924 {
6925 h->plt.plist = NULL;
6926 h->needs_plt = 0;
6927 }
6928 else if (abiversion (info->output_bfd) == 2)
6929 {
6930 /* After adjust_dynamic_symbol, non_got_ref set in the
6931 non-shared case means that we have allocated space in
6932 .dynbss for the symbol and thus dyn_relocs for this
6933 symbol should be discarded.
6934 If we get here we know we are making a PLT entry for this
6935 symbol, and in an executable we'd normally resolve
6936 relocations against this symbol to the PLT entry. Allow
6937 dynamic relocs if the reference is weak, and the dynamic
6938 relocs will not cause text relocation. */
6939 if (!h->ref_regular_nonweak
6940 && h->non_got_ref
6941 && h->type != STT_GNU_IFUNC
6942 && !readonly_dynrelocs (h))
6943 h->non_got_ref = 0;
6944
6945 /* If making a plt entry, then we don't need copy relocs. */
6946 return TRUE;
6947 }
6948 }
6949 else
6950 h->plt.plist = NULL;
6951
6952 /* If this is a weak symbol, and there is a real definition, the
6953 processor independent code will have arranged for us to see the
6954 real definition first, and we can just use the same value. */
6955 if (h->u.weakdef != NULL)
6956 {
6957 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6958 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6959 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6960 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6961 if (ELIMINATE_COPY_RELOCS)
6962 h->non_got_ref = h->u.weakdef->non_got_ref;
6963 return TRUE;
6964 }
6965
6966 /* If we are creating a shared library, we must presume that the
6967 only references to the symbol are via the global offset table.
6968 For such cases we need not do anything here; the relocations will
6969 be handled correctly by relocate_section. */
6970 if (info->shared)
6971 return TRUE;
6972
6973 /* If there are no references to this symbol that do not use the
6974 GOT, we don't need to generate a copy reloc. */
6975 if (!h->non_got_ref)
6976 return TRUE;
6977
6978 /* Don't generate a copy reloc for symbols defined in the executable. */
6979 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6980 return TRUE;
6981
6982 /* If we didn't find any dynamic relocs in read-only sections, then
6983 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6984 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
6985 {
6986 h->non_got_ref = 0;
6987 return TRUE;
6988 }
6989
6990 if (h->plt.plist != NULL)
6991 {
6992 /* We should never get here, but unfortunately there are versions
6993 of gcc out there that improperly (for this ABI) put initialized
6994 function pointers, vtable refs and suchlike in read-only
6995 sections. Allow them to proceed, but warn that this might
6996 break at runtime. */
6997 info->callbacks->einfo
6998 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6999 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7000 h->root.root.string);
7001 }
7002
7003 /* This is a reference to a symbol defined by a dynamic object which
7004 is not a function. */
7005
7006 /* We must allocate the symbol in our .dynbss section, which will
7007 become part of the .bss section of the executable. There will be
7008 an entry for this symbol in the .dynsym section. The dynamic
7009 object will contain position independent code, so all references
7010 from the dynamic object to this symbol will go through the global
7011 offset table. The dynamic linker will use the .dynsym entry to
7012 determine the address it must put in the global offset table, so
7013 both the dynamic object and the regular object will refer to the
7014 same memory location for the variable. */
7015
7016 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7017 to copy the initial value out of the dynamic object and into the
7018 runtime process image. We need to remember the offset into the
7019 .rela.bss section we are going to use. */
7020 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7021 {
7022 htab->relbss->size += sizeof (Elf64_External_Rela);
7023 h->needs_copy = 1;
7024 }
7025
7026 s = htab->dynbss;
7027
7028 return _bfd_elf_adjust_dynamic_copy (h, s);
7029 }
7030
7031 /* If given a function descriptor symbol, hide both the function code
7032 sym and the descriptor. */
7033 static void
7034 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7035 struct elf_link_hash_entry *h,
7036 bfd_boolean force_local)
7037 {
7038 struct ppc_link_hash_entry *eh;
7039 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7040
7041 eh = (struct ppc_link_hash_entry *) h;
7042 if (eh->is_func_descriptor)
7043 {
7044 struct ppc_link_hash_entry *fh = eh->oh;
7045
7046 if (fh == NULL)
7047 {
7048 const char *p, *q;
7049 struct ppc_link_hash_table *htab;
7050 char save;
7051
7052 /* We aren't supposed to use alloca in BFD because on
7053 systems which do not have alloca the version in libiberty
7054 calls xmalloc, which might cause the program to crash
7055 when it runs out of memory. This function doesn't have a
7056 return status, so there's no way to gracefully return an
7057 error. So cheat. We know that string[-1] can be safely
7058 accessed; It's either a string in an ELF string table,
7059 or allocated in an objalloc structure. */
7060
7061 p = eh->elf.root.root.string - 1;
7062 save = *p;
7063 *(char *) p = '.';
7064 htab = ppc_hash_table (info);
7065 if (htab == NULL)
7066 return;
7067
7068 fh = (struct ppc_link_hash_entry *)
7069 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7070 *(char *) p = save;
7071
7072 /* Unfortunately, if it so happens that the string we were
7073 looking for was allocated immediately before this string,
7074 then we overwrote the string terminator. That's the only
7075 reason the lookup should fail. */
7076 if (fh == NULL)
7077 {
7078 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7079 while (q >= eh->elf.root.root.string && *q == *p)
7080 --q, --p;
7081 if (q < eh->elf.root.root.string && *p == '.')
7082 fh = (struct ppc_link_hash_entry *)
7083 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7084 }
7085 if (fh != NULL)
7086 {
7087 eh->oh = fh;
7088 fh->oh = eh;
7089 }
7090 }
7091 if (fh != NULL)
7092 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7093 }
7094 }
7095
7096 static bfd_boolean
7097 get_sym_h (struct elf_link_hash_entry **hp,
7098 Elf_Internal_Sym **symp,
7099 asection **symsecp,
7100 unsigned char **tls_maskp,
7101 Elf_Internal_Sym **locsymsp,
7102 unsigned long r_symndx,
7103 bfd *ibfd)
7104 {
7105 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7106
7107 if (r_symndx >= symtab_hdr->sh_info)
7108 {
7109 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7110 struct elf_link_hash_entry *h;
7111
7112 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7113 h = elf_follow_link (h);
7114
7115 if (hp != NULL)
7116 *hp = h;
7117
7118 if (symp != NULL)
7119 *symp = NULL;
7120
7121 if (symsecp != NULL)
7122 {
7123 asection *symsec = NULL;
7124 if (h->root.type == bfd_link_hash_defined
7125 || h->root.type == bfd_link_hash_defweak)
7126 symsec = h->root.u.def.section;
7127 *symsecp = symsec;
7128 }
7129
7130 if (tls_maskp != NULL)
7131 {
7132 struct ppc_link_hash_entry *eh;
7133
7134 eh = (struct ppc_link_hash_entry *) h;
7135 *tls_maskp = &eh->tls_mask;
7136 }
7137 }
7138 else
7139 {
7140 Elf_Internal_Sym *sym;
7141 Elf_Internal_Sym *locsyms = *locsymsp;
7142
7143 if (locsyms == NULL)
7144 {
7145 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7146 if (locsyms == NULL)
7147 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7148 symtab_hdr->sh_info,
7149 0, NULL, NULL, NULL);
7150 if (locsyms == NULL)
7151 return FALSE;
7152 *locsymsp = locsyms;
7153 }
7154 sym = locsyms + r_symndx;
7155
7156 if (hp != NULL)
7157 *hp = NULL;
7158
7159 if (symp != NULL)
7160 *symp = sym;
7161
7162 if (symsecp != NULL)
7163 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7164
7165 if (tls_maskp != NULL)
7166 {
7167 struct got_entry **lgot_ents;
7168 unsigned char *tls_mask;
7169
7170 tls_mask = NULL;
7171 lgot_ents = elf_local_got_ents (ibfd);
7172 if (lgot_ents != NULL)
7173 {
7174 struct plt_entry **local_plt = (struct plt_entry **)
7175 (lgot_ents + symtab_hdr->sh_info);
7176 unsigned char *lgot_masks = (unsigned char *)
7177 (local_plt + symtab_hdr->sh_info);
7178 tls_mask = &lgot_masks[r_symndx];
7179 }
7180 *tls_maskp = tls_mask;
7181 }
7182 }
7183 return TRUE;
7184 }
7185
7186 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7187 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7188 type suitable for optimization, and 1 otherwise. */
7189
7190 static int
7191 get_tls_mask (unsigned char **tls_maskp,
7192 unsigned long *toc_symndx,
7193 bfd_vma *toc_addend,
7194 Elf_Internal_Sym **locsymsp,
7195 const Elf_Internal_Rela *rel,
7196 bfd *ibfd)
7197 {
7198 unsigned long r_symndx;
7199 int next_r;
7200 struct elf_link_hash_entry *h;
7201 Elf_Internal_Sym *sym;
7202 asection *sec;
7203 bfd_vma off;
7204
7205 r_symndx = ELF64_R_SYM (rel->r_info);
7206 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7207 return 0;
7208
7209 if ((*tls_maskp != NULL && **tls_maskp != 0)
7210 || sec == NULL
7211 || ppc64_elf_section_data (sec) == NULL
7212 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7213 return 1;
7214
7215 /* Look inside a TOC section too. */
7216 if (h != NULL)
7217 {
7218 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7219 off = h->root.u.def.value;
7220 }
7221 else
7222 off = sym->st_value;
7223 off += rel->r_addend;
7224 BFD_ASSERT (off % 8 == 0);
7225 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7226 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7227 if (toc_symndx != NULL)
7228 *toc_symndx = r_symndx;
7229 if (toc_addend != NULL)
7230 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7231 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7232 return 0;
7233 if ((h == NULL || is_static_defined (h))
7234 && (next_r == -1 || next_r == -2))
7235 return 1 - next_r;
7236 return 1;
7237 }
7238
7239 /* Find (or create) an entry in the tocsave hash table. */
7240
7241 static struct tocsave_entry *
7242 tocsave_find (struct ppc_link_hash_table *htab,
7243 enum insert_option insert,
7244 Elf_Internal_Sym **local_syms,
7245 const Elf_Internal_Rela *irela,
7246 bfd *ibfd)
7247 {
7248 unsigned long r_indx;
7249 struct elf_link_hash_entry *h;
7250 Elf_Internal_Sym *sym;
7251 struct tocsave_entry ent, *p;
7252 hashval_t hash;
7253 struct tocsave_entry **slot;
7254
7255 r_indx = ELF64_R_SYM (irela->r_info);
7256 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7257 return NULL;
7258 if (ent.sec == NULL || ent.sec->output_section == NULL)
7259 {
7260 (*_bfd_error_handler)
7261 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7262 return NULL;
7263 }
7264
7265 if (h != NULL)
7266 ent.offset = h->root.u.def.value;
7267 else
7268 ent.offset = sym->st_value;
7269 ent.offset += irela->r_addend;
7270
7271 hash = tocsave_htab_hash (&ent);
7272 slot = ((struct tocsave_entry **)
7273 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7274 if (slot == NULL)
7275 return NULL;
7276
7277 if (*slot == NULL)
7278 {
7279 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7280 if (p == NULL)
7281 return NULL;
7282 *p = ent;
7283 *slot = p;
7284 }
7285 return *slot;
7286 }
7287
7288 /* Adjust all global syms defined in opd sections. In gcc generated
7289 code for the old ABI, these will already have been done. */
7290
7291 static bfd_boolean
7292 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7293 {
7294 struct ppc_link_hash_entry *eh;
7295 asection *sym_sec;
7296 struct _opd_sec_data *opd;
7297
7298 if (h->root.type == bfd_link_hash_indirect)
7299 return TRUE;
7300
7301 if (h->root.type != bfd_link_hash_defined
7302 && h->root.type != bfd_link_hash_defweak)
7303 return TRUE;
7304
7305 eh = (struct ppc_link_hash_entry *) h;
7306 if (eh->adjust_done)
7307 return TRUE;
7308
7309 sym_sec = eh->elf.root.u.def.section;
7310 opd = get_opd_info (sym_sec);
7311 if (opd != NULL && opd->adjust != NULL)
7312 {
7313 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7314 if (adjust == -1)
7315 {
7316 /* This entry has been deleted. */
7317 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7318 if (dsec == NULL)
7319 {
7320 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7321 if (discarded_section (dsec))
7322 {
7323 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7324 break;
7325 }
7326 }
7327 eh->elf.root.u.def.value = 0;
7328 eh->elf.root.u.def.section = dsec;
7329 }
7330 else
7331 eh->elf.root.u.def.value += adjust;
7332 eh->adjust_done = 1;
7333 }
7334 return TRUE;
7335 }
7336
7337 /* Handles decrementing dynamic reloc counts for the reloc specified by
7338 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7339 have already been determined. */
7340
7341 static bfd_boolean
7342 dec_dynrel_count (bfd_vma r_info,
7343 asection *sec,
7344 struct bfd_link_info *info,
7345 Elf_Internal_Sym **local_syms,
7346 struct elf_link_hash_entry *h,
7347 Elf_Internal_Sym *sym)
7348 {
7349 enum elf_ppc64_reloc_type r_type;
7350 asection *sym_sec = NULL;
7351
7352 /* Can this reloc be dynamic? This switch, and later tests here
7353 should be kept in sync with the code in check_relocs. */
7354 r_type = ELF64_R_TYPE (r_info);
7355 switch (r_type)
7356 {
7357 default:
7358 return TRUE;
7359
7360 case R_PPC64_TPREL16:
7361 case R_PPC64_TPREL16_LO:
7362 case R_PPC64_TPREL16_HI:
7363 case R_PPC64_TPREL16_HA:
7364 case R_PPC64_TPREL16_DS:
7365 case R_PPC64_TPREL16_LO_DS:
7366 case R_PPC64_TPREL16_HIGH:
7367 case R_PPC64_TPREL16_HIGHA:
7368 case R_PPC64_TPREL16_HIGHER:
7369 case R_PPC64_TPREL16_HIGHERA:
7370 case R_PPC64_TPREL16_HIGHEST:
7371 case R_PPC64_TPREL16_HIGHESTA:
7372 if (!info->shared)
7373 return TRUE;
7374
7375 case R_PPC64_TPREL64:
7376 case R_PPC64_DTPMOD64:
7377 case R_PPC64_DTPREL64:
7378 case R_PPC64_ADDR64:
7379 case R_PPC64_REL30:
7380 case R_PPC64_REL32:
7381 case R_PPC64_REL64:
7382 case R_PPC64_ADDR14:
7383 case R_PPC64_ADDR14_BRNTAKEN:
7384 case R_PPC64_ADDR14_BRTAKEN:
7385 case R_PPC64_ADDR16:
7386 case R_PPC64_ADDR16_DS:
7387 case R_PPC64_ADDR16_HA:
7388 case R_PPC64_ADDR16_HI:
7389 case R_PPC64_ADDR16_HIGH:
7390 case R_PPC64_ADDR16_HIGHA:
7391 case R_PPC64_ADDR16_HIGHER:
7392 case R_PPC64_ADDR16_HIGHERA:
7393 case R_PPC64_ADDR16_HIGHEST:
7394 case R_PPC64_ADDR16_HIGHESTA:
7395 case R_PPC64_ADDR16_LO:
7396 case R_PPC64_ADDR16_LO_DS:
7397 case R_PPC64_ADDR24:
7398 case R_PPC64_ADDR32:
7399 case R_PPC64_UADDR16:
7400 case R_PPC64_UADDR32:
7401 case R_PPC64_UADDR64:
7402 case R_PPC64_TOC:
7403 break;
7404 }
7405
7406 if (local_syms != NULL)
7407 {
7408 unsigned long r_symndx;
7409 bfd *ibfd = sec->owner;
7410
7411 r_symndx = ELF64_R_SYM (r_info);
7412 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7413 return FALSE;
7414 }
7415
7416 if ((info->shared
7417 && (must_be_dyn_reloc (info, r_type)
7418 || (h != NULL
7419 && (!SYMBOLIC_BIND (info, h)
7420 || h->root.type == bfd_link_hash_defweak
7421 || !h->def_regular))))
7422 || (ELIMINATE_COPY_RELOCS
7423 && !info->shared
7424 && h != NULL
7425 && (h->root.type == bfd_link_hash_defweak
7426 || !h->def_regular)))
7427 ;
7428 else
7429 return TRUE;
7430
7431 if (h != NULL)
7432 {
7433 struct elf_dyn_relocs *p;
7434 struct elf_dyn_relocs **pp;
7435 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7436
7437 /* elf_gc_sweep may have already removed all dyn relocs associated
7438 with local syms for a given section. Also, symbol flags are
7439 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7440 report a dynreloc miscount. */
7441 if (*pp == NULL && info->gc_sections)
7442 return TRUE;
7443
7444 while ((p = *pp) != NULL)
7445 {
7446 if (p->sec == sec)
7447 {
7448 if (!must_be_dyn_reloc (info, r_type))
7449 p->pc_count -= 1;
7450 p->count -= 1;
7451 if (p->count == 0)
7452 *pp = p->next;
7453 return TRUE;
7454 }
7455 pp = &p->next;
7456 }
7457 }
7458 else
7459 {
7460 struct ppc_dyn_relocs *p;
7461 struct ppc_dyn_relocs **pp;
7462 void *vpp;
7463 bfd_boolean is_ifunc;
7464
7465 if (local_syms == NULL)
7466 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7467 if (sym_sec == NULL)
7468 sym_sec = sec;
7469
7470 vpp = &elf_section_data (sym_sec)->local_dynrel;
7471 pp = (struct ppc_dyn_relocs **) vpp;
7472
7473 if (*pp == NULL && info->gc_sections)
7474 return TRUE;
7475
7476 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7477 while ((p = *pp) != NULL)
7478 {
7479 if (p->sec == sec && p->ifunc == is_ifunc)
7480 {
7481 p->count -= 1;
7482 if (p->count == 0)
7483 *pp = p->next;
7484 return TRUE;
7485 }
7486 pp = &p->next;
7487 }
7488 }
7489
7490 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7491 sec->owner, sec);
7492 bfd_set_error (bfd_error_bad_value);
7493 return FALSE;
7494 }
7495
7496 /* Remove unused Official Procedure Descriptor entries. Currently we
7497 only remove those associated with functions in discarded link-once
7498 sections, or weakly defined functions that have been overridden. It
7499 would be possible to remove many more entries for statically linked
7500 applications. */
7501
7502 bfd_boolean
7503 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7504 {
7505 bfd *ibfd;
7506 bfd_boolean some_edited = FALSE;
7507 asection *need_pad = NULL;
7508
7509 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7510 {
7511 asection *sec;
7512 Elf_Internal_Rela *relstart, *rel, *relend;
7513 Elf_Internal_Shdr *symtab_hdr;
7514 Elf_Internal_Sym *local_syms;
7515 bfd_vma offset;
7516 struct _opd_sec_data *opd;
7517 bfd_boolean need_edit, add_aux_fields;
7518 bfd_size_type cnt_16b = 0;
7519
7520 if (!is_ppc64_elf (ibfd))
7521 continue;
7522
7523 sec = bfd_get_section_by_name (ibfd, ".opd");
7524 if (sec == NULL || sec->size == 0)
7525 continue;
7526
7527 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7528 continue;
7529
7530 if (sec->output_section == bfd_abs_section_ptr)
7531 continue;
7532
7533 /* Look through the section relocs. */
7534 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7535 continue;
7536
7537 local_syms = NULL;
7538 symtab_hdr = &elf_symtab_hdr (ibfd);
7539
7540 /* Read the relocations. */
7541 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7542 info->keep_memory);
7543 if (relstart == NULL)
7544 return FALSE;
7545
7546 /* First run through the relocs to check they are sane, and to
7547 determine whether we need to edit this opd section. */
7548 need_edit = FALSE;
7549 need_pad = sec;
7550 offset = 0;
7551 relend = relstart + sec->reloc_count;
7552 for (rel = relstart; rel < relend; )
7553 {
7554 enum elf_ppc64_reloc_type r_type;
7555 unsigned long r_symndx;
7556 asection *sym_sec;
7557 struct elf_link_hash_entry *h;
7558 Elf_Internal_Sym *sym;
7559
7560 /* .opd contains a regular array of 16 or 24 byte entries. We're
7561 only interested in the reloc pointing to a function entry
7562 point. */
7563 if (rel->r_offset != offset
7564 || rel + 1 >= relend
7565 || (rel + 1)->r_offset != offset + 8)
7566 {
7567 /* If someone messes with .opd alignment then after a
7568 "ld -r" we might have padding in the middle of .opd.
7569 Also, there's nothing to prevent someone putting
7570 something silly in .opd with the assembler. No .opd
7571 optimization for them! */
7572 broken_opd:
7573 (*_bfd_error_handler)
7574 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7575 need_edit = FALSE;
7576 break;
7577 }
7578
7579 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7580 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7581 {
7582 (*_bfd_error_handler)
7583 (_("%B: unexpected reloc type %u in .opd section"),
7584 ibfd, r_type);
7585 need_edit = FALSE;
7586 break;
7587 }
7588
7589 r_symndx = ELF64_R_SYM (rel->r_info);
7590 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7591 r_symndx, ibfd))
7592 goto error_ret;
7593
7594 if (sym_sec == NULL || sym_sec->owner == NULL)
7595 {
7596 const char *sym_name;
7597 if (h != NULL)
7598 sym_name = h->root.root.string;
7599 else
7600 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7601 sym_sec);
7602
7603 (*_bfd_error_handler)
7604 (_("%B: undefined sym `%s' in .opd section"),
7605 ibfd, sym_name);
7606 need_edit = FALSE;
7607 break;
7608 }
7609
7610 /* opd entries are always for functions defined in the
7611 current input bfd. If the symbol isn't defined in the
7612 input bfd, then we won't be using the function in this
7613 bfd; It must be defined in a linkonce section in another
7614 bfd, or is weak. It's also possible that we are
7615 discarding the function due to a linker script /DISCARD/,
7616 which we test for via the output_section. */
7617 if (sym_sec->owner != ibfd
7618 || sym_sec->output_section == bfd_abs_section_ptr)
7619 need_edit = TRUE;
7620
7621 rel += 2;
7622 if (rel == relend
7623 || (rel + 1 == relend && rel->r_offset == offset + 16))
7624 {
7625 if (sec->size == offset + 24)
7626 {
7627 need_pad = NULL;
7628 break;
7629 }
7630 if (rel == relend && sec->size == offset + 16)
7631 {
7632 cnt_16b++;
7633 break;
7634 }
7635 goto broken_opd;
7636 }
7637
7638 if (rel->r_offset == offset + 24)
7639 offset += 24;
7640 else if (rel->r_offset != offset + 16)
7641 goto broken_opd;
7642 else if (rel + 1 < relend
7643 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7644 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7645 {
7646 offset += 16;
7647 cnt_16b++;
7648 }
7649 else if (rel + 2 < relend
7650 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7651 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7652 {
7653 offset += 24;
7654 rel += 1;
7655 }
7656 else
7657 goto broken_opd;
7658 }
7659
7660 add_aux_fields = non_overlapping && cnt_16b > 0;
7661
7662 if (need_edit || add_aux_fields)
7663 {
7664 Elf_Internal_Rela *write_rel;
7665 Elf_Internal_Shdr *rel_hdr;
7666 bfd_byte *rptr, *wptr;
7667 bfd_byte *new_contents;
7668 bfd_boolean skip;
7669 long opd_ent_size;
7670 bfd_size_type amt;
7671
7672 new_contents = NULL;
7673 amt = sec->size * sizeof (long) / 8;
7674 opd = &ppc64_elf_section_data (sec)->u.opd;
7675 opd->adjust = bfd_zalloc (sec->owner, amt);
7676 if (opd->adjust == NULL)
7677 return FALSE;
7678 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7679
7680 /* This seems a waste of time as input .opd sections are all
7681 zeros as generated by gcc, but I suppose there's no reason
7682 this will always be so. We might start putting something in
7683 the third word of .opd entries. */
7684 if ((sec->flags & SEC_IN_MEMORY) == 0)
7685 {
7686 bfd_byte *loc;
7687 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7688 {
7689 if (loc != NULL)
7690 free (loc);
7691 error_ret:
7692 if (local_syms != NULL
7693 && symtab_hdr->contents != (unsigned char *) local_syms)
7694 free (local_syms);
7695 if (elf_section_data (sec)->relocs != relstart)
7696 free (relstart);
7697 return FALSE;
7698 }
7699 sec->contents = loc;
7700 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7701 }
7702
7703 elf_section_data (sec)->relocs = relstart;
7704
7705 new_contents = sec->contents;
7706 if (add_aux_fields)
7707 {
7708 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7709 if (new_contents == NULL)
7710 return FALSE;
7711 need_pad = FALSE;
7712 }
7713 wptr = new_contents;
7714 rptr = sec->contents;
7715
7716 write_rel = relstart;
7717 skip = FALSE;
7718 offset = 0;
7719 opd_ent_size = 0;
7720 for (rel = relstart; rel < relend; rel++)
7721 {
7722 unsigned long r_symndx;
7723 asection *sym_sec;
7724 struct elf_link_hash_entry *h;
7725 Elf_Internal_Sym *sym;
7726
7727 r_symndx = ELF64_R_SYM (rel->r_info);
7728 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7729 r_symndx, ibfd))
7730 goto error_ret;
7731
7732 if (rel->r_offset == offset)
7733 {
7734 struct ppc_link_hash_entry *fdh = NULL;
7735
7736 /* See if the .opd entry is full 24 byte or
7737 16 byte (with fd_aux entry overlapped with next
7738 fd_func). */
7739 opd_ent_size = 24;
7740 if ((rel + 2 == relend && sec->size == offset + 16)
7741 || (rel + 3 < relend
7742 && rel[2].r_offset == offset + 16
7743 && rel[3].r_offset == offset + 24
7744 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7745 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7746 opd_ent_size = 16;
7747
7748 if (h != NULL
7749 && h->root.root.string[0] == '.')
7750 {
7751 struct ppc_link_hash_table *htab;
7752
7753 htab = ppc_hash_table (info);
7754 if (htab != NULL)
7755 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7756 htab);
7757 if (fdh != NULL
7758 && fdh->elf.root.type != bfd_link_hash_defined
7759 && fdh->elf.root.type != bfd_link_hash_defweak)
7760 fdh = NULL;
7761 }
7762
7763 skip = (sym_sec->owner != ibfd
7764 || sym_sec->output_section == bfd_abs_section_ptr);
7765 if (skip)
7766 {
7767 if (fdh != NULL && sym_sec->owner == ibfd)
7768 {
7769 /* Arrange for the function descriptor sym
7770 to be dropped. */
7771 fdh->elf.root.u.def.value = 0;
7772 fdh->elf.root.u.def.section = sym_sec;
7773 }
7774 opd->adjust[rel->r_offset / 8] = -1;
7775 }
7776 else
7777 {
7778 /* We'll be keeping this opd entry. */
7779
7780 if (fdh != NULL)
7781 {
7782 /* Redefine the function descriptor symbol to
7783 this location in the opd section. It is
7784 necessary to update the value here rather
7785 than using an array of adjustments as we do
7786 for local symbols, because various places
7787 in the generic ELF code use the value
7788 stored in u.def.value. */
7789 fdh->elf.root.u.def.value = wptr - new_contents;
7790 fdh->adjust_done = 1;
7791 }
7792
7793 /* Local syms are a bit tricky. We could
7794 tweak them as they can be cached, but
7795 we'd need to look through the local syms
7796 for the function descriptor sym which we
7797 don't have at the moment. So keep an
7798 array of adjustments. */
7799 opd->adjust[rel->r_offset / 8]
7800 = (wptr - new_contents) - (rptr - sec->contents);
7801
7802 if (wptr != rptr)
7803 memcpy (wptr, rptr, opd_ent_size);
7804 wptr += opd_ent_size;
7805 if (add_aux_fields && opd_ent_size == 16)
7806 {
7807 memset (wptr, '\0', 8);
7808 wptr += 8;
7809 }
7810 }
7811 rptr += opd_ent_size;
7812 offset += opd_ent_size;
7813 }
7814
7815 if (skip)
7816 {
7817 if (!NO_OPD_RELOCS
7818 && !info->relocatable
7819 && !dec_dynrel_count (rel->r_info, sec, info,
7820 NULL, h, sym))
7821 goto error_ret;
7822 }
7823 else
7824 {
7825 /* We need to adjust any reloc offsets to point to the
7826 new opd entries. While we're at it, we may as well
7827 remove redundant relocs. */
7828 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7829 if (write_rel != rel)
7830 memcpy (write_rel, rel, sizeof (*rel));
7831 ++write_rel;
7832 }
7833 }
7834
7835 sec->size = wptr - new_contents;
7836 sec->reloc_count = write_rel - relstart;
7837 if (add_aux_fields)
7838 {
7839 free (sec->contents);
7840 sec->contents = new_contents;
7841 }
7842
7843 /* Fudge the header size too, as this is used later in
7844 elf_bfd_final_link if we are emitting relocs. */
7845 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7846 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7847 some_edited = TRUE;
7848 }
7849 else if (elf_section_data (sec)->relocs != relstart)
7850 free (relstart);
7851
7852 if (local_syms != NULL
7853 && symtab_hdr->contents != (unsigned char *) local_syms)
7854 {
7855 if (!info->keep_memory)
7856 free (local_syms);
7857 else
7858 symtab_hdr->contents = (unsigned char *) local_syms;
7859 }
7860 }
7861
7862 if (some_edited)
7863 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7864
7865 /* If we are doing a final link and the last .opd entry is just 16 byte
7866 long, add a 8 byte padding after it. */
7867 if (need_pad != NULL && !info->relocatable)
7868 {
7869 bfd_byte *p;
7870
7871 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7872 {
7873 BFD_ASSERT (need_pad->size > 0);
7874
7875 p = bfd_malloc (need_pad->size + 8);
7876 if (p == NULL)
7877 return FALSE;
7878
7879 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7880 p, 0, need_pad->size))
7881 return FALSE;
7882
7883 need_pad->contents = p;
7884 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7885 }
7886 else
7887 {
7888 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7889 if (p == NULL)
7890 return FALSE;
7891
7892 need_pad->contents = p;
7893 }
7894
7895 memset (need_pad->contents + need_pad->size, 0, 8);
7896 need_pad->size += 8;
7897 }
7898
7899 return TRUE;
7900 }
7901
7902 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7903
7904 asection *
7905 ppc64_elf_tls_setup (struct bfd_link_info *info,
7906 int no_tls_get_addr_opt,
7907 int *no_multi_toc)
7908 {
7909 struct ppc_link_hash_table *htab;
7910
7911 htab = ppc_hash_table (info);
7912 if (htab == NULL)
7913 return NULL;
7914
7915 if (abiversion (info->output_bfd) == 1)
7916 htab->opd_abi = 1;
7917
7918 if (*no_multi_toc)
7919 htab->do_multi_toc = 0;
7920 else if (!htab->do_multi_toc)
7921 *no_multi_toc = 1;
7922
7923 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7924 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7925 FALSE, FALSE, TRUE));
7926 /* Move dynamic linking info to the function descriptor sym. */
7927 if (htab->tls_get_addr != NULL)
7928 func_desc_adjust (&htab->tls_get_addr->elf, info);
7929 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7930 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7931 FALSE, FALSE, TRUE));
7932 if (!no_tls_get_addr_opt)
7933 {
7934 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7935
7936 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7937 FALSE, FALSE, TRUE);
7938 if (opt != NULL)
7939 func_desc_adjust (opt, info);
7940 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7941 FALSE, FALSE, TRUE);
7942 if (opt_fd != NULL
7943 && (opt_fd->root.type == bfd_link_hash_defined
7944 || opt_fd->root.type == bfd_link_hash_defweak))
7945 {
7946 /* If glibc supports an optimized __tls_get_addr call stub,
7947 signalled by the presence of __tls_get_addr_opt, and we'll
7948 be calling __tls_get_addr via a plt call stub, then
7949 make __tls_get_addr point to __tls_get_addr_opt. */
7950 tga_fd = &htab->tls_get_addr_fd->elf;
7951 if (htab->elf.dynamic_sections_created
7952 && tga_fd != NULL
7953 && (tga_fd->type == STT_FUNC
7954 || tga_fd->needs_plt)
7955 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7956 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7957 && tga_fd->root.type == bfd_link_hash_undefweak)))
7958 {
7959 struct plt_entry *ent;
7960
7961 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7962 if (ent->plt.refcount > 0)
7963 break;
7964 if (ent != NULL)
7965 {
7966 tga_fd->root.type = bfd_link_hash_indirect;
7967 tga_fd->root.u.i.link = &opt_fd->root;
7968 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7969 if (opt_fd->dynindx != -1)
7970 {
7971 /* Use __tls_get_addr_opt in dynamic relocations. */
7972 opt_fd->dynindx = -1;
7973 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7974 opt_fd->dynstr_index);
7975 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7976 return NULL;
7977 }
7978 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7979 tga = &htab->tls_get_addr->elf;
7980 if (opt != NULL && tga != NULL)
7981 {
7982 tga->root.type = bfd_link_hash_indirect;
7983 tga->root.u.i.link = &opt->root;
7984 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7985 _bfd_elf_link_hash_hide_symbol (info, opt,
7986 tga->forced_local);
7987 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7988 }
7989 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7990 htab->tls_get_addr_fd->is_func_descriptor = 1;
7991 if (htab->tls_get_addr != NULL)
7992 {
7993 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7994 htab->tls_get_addr->is_func = 1;
7995 }
7996 }
7997 }
7998 }
7999 else
8000 no_tls_get_addr_opt = TRUE;
8001 }
8002 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
8003 return _bfd_elf_tls_setup (info->output_bfd, info);
8004 }
8005
8006 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8007 HASH1 or HASH2. */
8008
8009 static bfd_boolean
8010 branch_reloc_hash_match (const bfd *ibfd,
8011 const Elf_Internal_Rela *rel,
8012 const struct ppc_link_hash_entry *hash1,
8013 const struct ppc_link_hash_entry *hash2)
8014 {
8015 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8016 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8017 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8018
8019 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8020 {
8021 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8022 struct elf_link_hash_entry *h;
8023
8024 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8025 h = elf_follow_link (h);
8026 if (h == &hash1->elf || h == &hash2->elf)
8027 return TRUE;
8028 }
8029 return FALSE;
8030 }
8031
8032 /* Run through all the TLS relocs looking for optimization
8033 opportunities. The linker has been hacked (see ppc64elf.em) to do
8034 a preliminary section layout so that we know the TLS segment
8035 offsets. We can't optimize earlier because some optimizations need
8036 to know the tp offset, and we need to optimize before allocating
8037 dynamic relocations. */
8038
8039 bfd_boolean
8040 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8041 {
8042 bfd *ibfd;
8043 asection *sec;
8044 struct ppc_link_hash_table *htab;
8045 unsigned char *toc_ref;
8046 int pass;
8047
8048 if (info->relocatable || !info->executable)
8049 return TRUE;
8050
8051 htab = ppc_hash_table (info);
8052 if (htab == NULL)
8053 return FALSE;
8054
8055 /* Make two passes over the relocs. On the first pass, mark toc
8056 entries involved with tls relocs, and check that tls relocs
8057 involved in setting up a tls_get_addr call are indeed followed by
8058 such a call. If they are not, we can't do any tls optimization.
8059 On the second pass twiddle tls_mask flags to notify
8060 relocate_section that optimization can be done, and adjust got
8061 and plt refcounts. */
8062 toc_ref = NULL;
8063 for (pass = 0; pass < 2; ++pass)
8064 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8065 {
8066 Elf_Internal_Sym *locsyms = NULL;
8067 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8068
8069 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8070 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8071 {
8072 Elf_Internal_Rela *relstart, *rel, *relend;
8073 bfd_boolean found_tls_get_addr_arg = 0;
8074
8075 /* Read the relocations. */
8076 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8077 info->keep_memory);
8078 if (relstart == NULL)
8079 return FALSE;
8080
8081 relend = relstart + sec->reloc_count;
8082 for (rel = relstart; rel < relend; rel++)
8083 {
8084 enum elf_ppc64_reloc_type r_type;
8085 unsigned long r_symndx;
8086 struct elf_link_hash_entry *h;
8087 Elf_Internal_Sym *sym;
8088 asection *sym_sec;
8089 unsigned char *tls_mask;
8090 unsigned char tls_set, tls_clear, tls_type = 0;
8091 bfd_vma value;
8092 bfd_boolean ok_tprel, is_local;
8093 long toc_ref_index = 0;
8094 int expecting_tls_get_addr = 0;
8095 bfd_boolean ret = FALSE;
8096
8097 r_symndx = ELF64_R_SYM (rel->r_info);
8098 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8099 r_symndx, ibfd))
8100 {
8101 err_free_rel:
8102 if (elf_section_data (sec)->relocs != relstart)
8103 free (relstart);
8104 if (toc_ref != NULL)
8105 free (toc_ref);
8106 if (locsyms != NULL
8107 && (elf_symtab_hdr (ibfd).contents
8108 != (unsigned char *) locsyms))
8109 free (locsyms);
8110 return ret;
8111 }
8112
8113 if (h != NULL)
8114 {
8115 if (h->root.type == bfd_link_hash_defined
8116 || h->root.type == bfd_link_hash_defweak)
8117 value = h->root.u.def.value;
8118 else if (h->root.type == bfd_link_hash_undefweak)
8119 value = 0;
8120 else
8121 {
8122 found_tls_get_addr_arg = 0;
8123 continue;
8124 }
8125 }
8126 else
8127 /* Symbols referenced by TLS relocs must be of type
8128 STT_TLS. So no need for .opd local sym adjust. */
8129 value = sym->st_value;
8130
8131 ok_tprel = FALSE;
8132 is_local = FALSE;
8133 if (h == NULL
8134 || !h->def_dynamic)
8135 {
8136 is_local = TRUE;
8137 if (h != NULL
8138 && h->root.type == bfd_link_hash_undefweak)
8139 ok_tprel = TRUE;
8140 else
8141 {
8142 value += sym_sec->output_offset;
8143 value += sym_sec->output_section->vma;
8144 value -= htab->elf.tls_sec->vma;
8145 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8146 < (bfd_vma) 1 << 32);
8147 }
8148 }
8149
8150 r_type = ELF64_R_TYPE (rel->r_info);
8151 /* If this section has old-style __tls_get_addr calls
8152 without marker relocs, then check that each
8153 __tls_get_addr call reloc is preceded by a reloc
8154 that conceivably belongs to the __tls_get_addr arg
8155 setup insn. If we don't find matching arg setup
8156 relocs, don't do any tls optimization. */
8157 if (pass == 0
8158 && sec->has_tls_get_addr_call
8159 && h != NULL
8160 && (h == &htab->tls_get_addr->elf
8161 || h == &htab->tls_get_addr_fd->elf)
8162 && !found_tls_get_addr_arg
8163 && is_branch_reloc (r_type))
8164 {
8165 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8166 "TLS optimization disabled\n"),
8167 ibfd, sec, rel->r_offset);
8168 ret = TRUE;
8169 goto err_free_rel;
8170 }
8171
8172 found_tls_get_addr_arg = 0;
8173 switch (r_type)
8174 {
8175 case R_PPC64_GOT_TLSLD16:
8176 case R_PPC64_GOT_TLSLD16_LO:
8177 expecting_tls_get_addr = 1;
8178 found_tls_get_addr_arg = 1;
8179 /* Fall thru */
8180
8181 case R_PPC64_GOT_TLSLD16_HI:
8182 case R_PPC64_GOT_TLSLD16_HA:
8183 /* These relocs should never be against a symbol
8184 defined in a shared lib. Leave them alone if
8185 that turns out to be the case. */
8186 if (!is_local)
8187 continue;
8188
8189 /* LD -> LE */
8190 tls_set = 0;
8191 tls_clear = TLS_LD;
8192 tls_type = TLS_TLS | TLS_LD;
8193 break;
8194
8195 case R_PPC64_GOT_TLSGD16:
8196 case R_PPC64_GOT_TLSGD16_LO:
8197 expecting_tls_get_addr = 1;
8198 found_tls_get_addr_arg = 1;
8199 /* Fall thru */
8200
8201 case R_PPC64_GOT_TLSGD16_HI:
8202 case R_PPC64_GOT_TLSGD16_HA:
8203 if (ok_tprel)
8204 /* GD -> LE */
8205 tls_set = 0;
8206 else
8207 /* GD -> IE */
8208 tls_set = TLS_TLS | TLS_TPRELGD;
8209 tls_clear = TLS_GD;
8210 tls_type = TLS_TLS | TLS_GD;
8211 break;
8212
8213 case R_PPC64_GOT_TPREL16_DS:
8214 case R_PPC64_GOT_TPREL16_LO_DS:
8215 case R_PPC64_GOT_TPREL16_HI:
8216 case R_PPC64_GOT_TPREL16_HA:
8217 if (ok_tprel)
8218 {
8219 /* IE -> LE */
8220 tls_set = 0;
8221 tls_clear = TLS_TPREL;
8222 tls_type = TLS_TLS | TLS_TPREL;
8223 break;
8224 }
8225 continue;
8226
8227 case R_PPC64_TLSGD:
8228 case R_PPC64_TLSLD:
8229 found_tls_get_addr_arg = 1;
8230 /* Fall thru */
8231
8232 case R_PPC64_TLS:
8233 case R_PPC64_TOC16:
8234 case R_PPC64_TOC16_LO:
8235 if (sym_sec == NULL || sym_sec != toc)
8236 continue;
8237
8238 /* Mark this toc entry as referenced by a TLS
8239 code sequence. We can do that now in the
8240 case of R_PPC64_TLS, and after checking for
8241 tls_get_addr for the TOC16 relocs. */
8242 if (toc_ref == NULL)
8243 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8244 if (toc_ref == NULL)
8245 goto err_free_rel;
8246
8247 if (h != NULL)
8248 value = h->root.u.def.value;
8249 else
8250 value = sym->st_value;
8251 value += rel->r_addend;
8252 BFD_ASSERT (value < toc->size && value % 8 == 0);
8253 toc_ref_index = (value + toc->output_offset) / 8;
8254 if (r_type == R_PPC64_TLS
8255 || r_type == R_PPC64_TLSGD
8256 || r_type == R_PPC64_TLSLD)
8257 {
8258 toc_ref[toc_ref_index] = 1;
8259 continue;
8260 }
8261
8262 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8263 continue;
8264
8265 tls_set = 0;
8266 tls_clear = 0;
8267 expecting_tls_get_addr = 2;
8268 break;
8269
8270 case R_PPC64_TPREL64:
8271 if (pass == 0
8272 || sec != toc
8273 || toc_ref == NULL
8274 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8275 continue;
8276 if (ok_tprel)
8277 {
8278 /* IE -> LE */
8279 tls_set = TLS_EXPLICIT;
8280 tls_clear = TLS_TPREL;
8281 break;
8282 }
8283 continue;
8284
8285 case R_PPC64_DTPMOD64:
8286 if (pass == 0
8287 || sec != toc
8288 || toc_ref == NULL
8289 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8290 continue;
8291 if (rel + 1 < relend
8292 && (rel[1].r_info
8293 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8294 && rel[1].r_offset == rel->r_offset + 8)
8295 {
8296 if (ok_tprel)
8297 /* GD -> LE */
8298 tls_set = TLS_EXPLICIT | TLS_GD;
8299 else
8300 /* GD -> IE */
8301 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8302 tls_clear = TLS_GD;
8303 }
8304 else
8305 {
8306 if (!is_local)
8307 continue;
8308
8309 /* LD -> LE */
8310 tls_set = TLS_EXPLICIT;
8311 tls_clear = TLS_LD;
8312 }
8313 break;
8314
8315 default:
8316 continue;
8317 }
8318
8319 if (pass == 0)
8320 {
8321 if (!expecting_tls_get_addr
8322 || !sec->has_tls_get_addr_call)
8323 continue;
8324
8325 if (rel + 1 < relend
8326 && branch_reloc_hash_match (ibfd, rel + 1,
8327 htab->tls_get_addr,
8328 htab->tls_get_addr_fd))
8329 {
8330 if (expecting_tls_get_addr == 2)
8331 {
8332 /* Check for toc tls entries. */
8333 unsigned char *toc_tls;
8334 int retval;
8335
8336 retval = get_tls_mask (&toc_tls, NULL, NULL,
8337 &locsyms,
8338 rel, ibfd);
8339 if (retval == 0)
8340 goto err_free_rel;
8341 if (toc_tls != NULL)
8342 {
8343 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8344 found_tls_get_addr_arg = 1;
8345 if (retval > 1)
8346 toc_ref[toc_ref_index] = 1;
8347 }
8348 }
8349 continue;
8350 }
8351
8352 if (expecting_tls_get_addr != 1)
8353 continue;
8354
8355 /* Uh oh, we didn't find the expected call. We
8356 could just mark this symbol to exclude it
8357 from tls optimization but it's safer to skip
8358 the entire optimization. */
8359 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8360 "TLS optimization disabled\n"),
8361 ibfd, sec, rel->r_offset);
8362 ret = TRUE;
8363 goto err_free_rel;
8364 }
8365
8366 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8367 {
8368 struct plt_entry *ent;
8369 for (ent = htab->tls_get_addr->elf.plt.plist;
8370 ent != NULL;
8371 ent = ent->next)
8372 if (ent->addend == 0)
8373 {
8374 if (ent->plt.refcount > 0)
8375 {
8376 ent->plt.refcount -= 1;
8377 expecting_tls_get_addr = 0;
8378 }
8379 break;
8380 }
8381 }
8382
8383 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8384 {
8385 struct plt_entry *ent;
8386 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8387 ent != NULL;
8388 ent = ent->next)
8389 if (ent->addend == 0)
8390 {
8391 if (ent->plt.refcount > 0)
8392 ent->plt.refcount -= 1;
8393 break;
8394 }
8395 }
8396
8397 if (tls_clear == 0)
8398 continue;
8399
8400 if ((tls_set & TLS_EXPLICIT) == 0)
8401 {
8402 struct got_entry *ent;
8403
8404 /* Adjust got entry for this reloc. */
8405 if (h != NULL)
8406 ent = h->got.glist;
8407 else
8408 ent = elf_local_got_ents (ibfd)[r_symndx];
8409
8410 for (; ent != NULL; ent = ent->next)
8411 if (ent->addend == rel->r_addend
8412 && ent->owner == ibfd
8413 && ent->tls_type == tls_type)
8414 break;
8415 if (ent == NULL)
8416 abort ();
8417
8418 if (tls_set == 0)
8419 {
8420 /* We managed to get rid of a got entry. */
8421 if (ent->got.refcount > 0)
8422 ent->got.refcount -= 1;
8423 }
8424 }
8425 else
8426 {
8427 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8428 we'll lose one or two dyn relocs. */
8429 if (!dec_dynrel_count (rel->r_info, sec, info,
8430 NULL, h, sym))
8431 return FALSE;
8432
8433 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8434 {
8435 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8436 NULL, h, sym))
8437 return FALSE;
8438 }
8439 }
8440
8441 *tls_mask |= tls_set;
8442 *tls_mask &= ~tls_clear;
8443 }
8444
8445 if (elf_section_data (sec)->relocs != relstart)
8446 free (relstart);
8447 }
8448
8449 if (locsyms != NULL
8450 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8451 {
8452 if (!info->keep_memory)
8453 free (locsyms);
8454 else
8455 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8456 }
8457 }
8458
8459 if (toc_ref != NULL)
8460 free (toc_ref);
8461 return TRUE;
8462 }
8463
8464 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8465 the values of any global symbols in a toc section that has been
8466 edited. Globals in toc sections should be a rarity, so this function
8467 sets a flag if any are found in toc sections other than the one just
8468 edited, so that futher hash table traversals can be avoided. */
8469
8470 struct adjust_toc_info
8471 {
8472 asection *toc;
8473 unsigned long *skip;
8474 bfd_boolean global_toc_syms;
8475 };
8476
8477 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8478
8479 static bfd_boolean
8480 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8481 {
8482 struct ppc_link_hash_entry *eh;
8483 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8484 unsigned long i;
8485
8486 if (h->root.type != bfd_link_hash_defined
8487 && h->root.type != bfd_link_hash_defweak)
8488 return TRUE;
8489
8490 eh = (struct ppc_link_hash_entry *) h;
8491 if (eh->adjust_done)
8492 return TRUE;
8493
8494 if (eh->elf.root.u.def.section == toc_inf->toc)
8495 {
8496 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8497 i = toc_inf->toc->rawsize >> 3;
8498 else
8499 i = eh->elf.root.u.def.value >> 3;
8500
8501 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8502 {
8503 (*_bfd_error_handler)
8504 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8505 do
8506 ++i;
8507 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8508 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8509 }
8510
8511 eh->elf.root.u.def.value -= toc_inf->skip[i];
8512 eh->adjust_done = 1;
8513 }
8514 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8515 toc_inf->global_toc_syms = TRUE;
8516
8517 return TRUE;
8518 }
8519
8520 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8521
8522 static bfd_boolean
8523 ok_lo_toc_insn (unsigned int insn)
8524 {
8525 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8526 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8527 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8528 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8529 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8530 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8531 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8532 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8533 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8534 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8535 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8536 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8537 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8538 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8539 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8540 && (insn & 3) != 1)
8541 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8542 && ((insn & 3) == 0 || (insn & 3) == 3))
8543 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8544 }
8545
8546 /* Examine all relocs referencing .toc sections in order to remove
8547 unused .toc entries. */
8548
8549 bfd_boolean
8550 ppc64_elf_edit_toc (struct bfd_link_info *info)
8551 {
8552 bfd *ibfd;
8553 struct adjust_toc_info toc_inf;
8554 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8555
8556 htab->do_toc_opt = 1;
8557 toc_inf.global_toc_syms = TRUE;
8558 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8559 {
8560 asection *toc, *sec;
8561 Elf_Internal_Shdr *symtab_hdr;
8562 Elf_Internal_Sym *local_syms;
8563 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8564 unsigned long *skip, *drop;
8565 unsigned char *used;
8566 unsigned char *keep, last, some_unused;
8567
8568 if (!is_ppc64_elf (ibfd))
8569 continue;
8570
8571 toc = bfd_get_section_by_name (ibfd, ".toc");
8572 if (toc == NULL
8573 || toc->size == 0
8574 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8575 || discarded_section (toc))
8576 continue;
8577
8578 toc_relocs = NULL;
8579 local_syms = NULL;
8580 symtab_hdr = &elf_symtab_hdr (ibfd);
8581
8582 /* Look at sections dropped from the final link. */
8583 skip = NULL;
8584 relstart = NULL;
8585 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8586 {
8587 if (sec->reloc_count == 0
8588 || !discarded_section (sec)
8589 || get_opd_info (sec)
8590 || (sec->flags & SEC_ALLOC) == 0
8591 || (sec->flags & SEC_DEBUGGING) != 0)
8592 continue;
8593
8594 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8595 if (relstart == NULL)
8596 goto error_ret;
8597
8598 /* Run through the relocs to see which toc entries might be
8599 unused. */
8600 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8601 {
8602 enum elf_ppc64_reloc_type r_type;
8603 unsigned long r_symndx;
8604 asection *sym_sec;
8605 struct elf_link_hash_entry *h;
8606 Elf_Internal_Sym *sym;
8607 bfd_vma val;
8608
8609 r_type = ELF64_R_TYPE (rel->r_info);
8610 switch (r_type)
8611 {
8612 default:
8613 continue;
8614
8615 case R_PPC64_TOC16:
8616 case R_PPC64_TOC16_LO:
8617 case R_PPC64_TOC16_HI:
8618 case R_PPC64_TOC16_HA:
8619 case R_PPC64_TOC16_DS:
8620 case R_PPC64_TOC16_LO_DS:
8621 break;
8622 }
8623
8624 r_symndx = ELF64_R_SYM (rel->r_info);
8625 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8626 r_symndx, ibfd))
8627 goto error_ret;
8628
8629 if (sym_sec != toc)
8630 continue;
8631
8632 if (h != NULL)
8633 val = h->root.u.def.value;
8634 else
8635 val = sym->st_value;
8636 val += rel->r_addend;
8637
8638 if (val >= toc->size)
8639 continue;
8640
8641 /* Anything in the toc ought to be aligned to 8 bytes.
8642 If not, don't mark as unused. */
8643 if (val & 7)
8644 continue;
8645
8646 if (skip == NULL)
8647 {
8648 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8649 if (skip == NULL)
8650 goto error_ret;
8651 }
8652
8653 skip[val >> 3] = ref_from_discarded;
8654 }
8655
8656 if (elf_section_data (sec)->relocs != relstart)
8657 free (relstart);
8658 }
8659
8660 /* For largetoc loads of address constants, we can convert
8661 . addis rx,2,addr@got@ha
8662 . ld ry,addr@got@l(rx)
8663 to
8664 . addis rx,2,addr@toc@ha
8665 . addi ry,rx,addr@toc@l
8666 when addr is within 2G of the toc pointer. This then means
8667 that the word storing "addr" in the toc is no longer needed. */
8668
8669 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8670 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8671 && toc->reloc_count != 0)
8672 {
8673 /* Read toc relocs. */
8674 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8675 info->keep_memory);
8676 if (toc_relocs == NULL)
8677 goto error_ret;
8678
8679 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8680 {
8681 enum elf_ppc64_reloc_type r_type;
8682 unsigned long r_symndx;
8683 asection *sym_sec;
8684 struct elf_link_hash_entry *h;
8685 Elf_Internal_Sym *sym;
8686 bfd_vma val, addr;
8687
8688 r_type = ELF64_R_TYPE (rel->r_info);
8689 if (r_type != R_PPC64_ADDR64)
8690 continue;
8691
8692 r_symndx = ELF64_R_SYM (rel->r_info);
8693 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8694 r_symndx, ibfd))
8695 goto error_ret;
8696
8697 if (sym_sec == NULL
8698 || discarded_section (sym_sec))
8699 continue;
8700
8701 if (!SYMBOL_CALLS_LOCAL (info, h))
8702 continue;
8703
8704 if (h != NULL)
8705 {
8706 if (h->type == STT_GNU_IFUNC)
8707 continue;
8708 val = h->root.u.def.value;
8709 }
8710 else
8711 {
8712 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8713 continue;
8714 val = sym->st_value;
8715 }
8716 val += rel->r_addend;
8717 val += sym_sec->output_section->vma + sym_sec->output_offset;
8718
8719 /* We don't yet know the exact toc pointer value, but we
8720 know it will be somewhere in the toc section. Don't
8721 optimize if the difference from any possible toc
8722 pointer is outside [ff..f80008000, 7fff7fff]. */
8723 addr = toc->output_section->vma + TOC_BASE_OFF;
8724 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8725 continue;
8726
8727 addr = toc->output_section->vma + toc->output_section->rawsize;
8728 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8729 continue;
8730
8731 if (skip == NULL)
8732 {
8733 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8734 if (skip == NULL)
8735 goto error_ret;
8736 }
8737
8738 skip[rel->r_offset >> 3]
8739 |= can_optimize | ((rel - toc_relocs) << 2);
8740 }
8741 }
8742
8743 if (skip == NULL)
8744 continue;
8745
8746 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8747 if (used == NULL)
8748 {
8749 error_ret:
8750 if (local_syms != NULL
8751 && symtab_hdr->contents != (unsigned char *) local_syms)
8752 free (local_syms);
8753 if (sec != NULL
8754 && relstart != NULL
8755 && elf_section_data (sec)->relocs != relstart)
8756 free (relstart);
8757 if (toc_relocs != NULL
8758 && elf_section_data (toc)->relocs != toc_relocs)
8759 free (toc_relocs);
8760 if (skip != NULL)
8761 free (skip);
8762 return FALSE;
8763 }
8764
8765 /* Now check all kept sections that might reference the toc.
8766 Check the toc itself last. */
8767 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8768 : ibfd->sections);
8769 sec != NULL;
8770 sec = (sec == toc ? NULL
8771 : sec->next == NULL ? toc
8772 : sec->next == toc && toc->next ? toc->next
8773 : sec->next))
8774 {
8775 int repeat;
8776
8777 if (sec->reloc_count == 0
8778 || discarded_section (sec)
8779 || get_opd_info (sec)
8780 || (sec->flags & SEC_ALLOC) == 0
8781 || (sec->flags & SEC_DEBUGGING) != 0)
8782 continue;
8783
8784 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8785 info->keep_memory);
8786 if (relstart == NULL)
8787 goto error_ret;
8788
8789 /* Mark toc entries referenced as used. */
8790 do
8791 {
8792 repeat = 0;
8793 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8794 {
8795 enum elf_ppc64_reloc_type r_type;
8796 unsigned long r_symndx;
8797 asection *sym_sec;
8798 struct elf_link_hash_entry *h;
8799 Elf_Internal_Sym *sym;
8800 bfd_vma val;
8801 enum {no_check, check_lo, check_ha} insn_check;
8802
8803 r_type = ELF64_R_TYPE (rel->r_info);
8804 switch (r_type)
8805 {
8806 default:
8807 insn_check = no_check;
8808 break;
8809
8810 case R_PPC64_GOT_TLSLD16_HA:
8811 case R_PPC64_GOT_TLSGD16_HA:
8812 case R_PPC64_GOT_TPREL16_HA:
8813 case R_PPC64_GOT_DTPREL16_HA:
8814 case R_PPC64_GOT16_HA:
8815 case R_PPC64_TOC16_HA:
8816 insn_check = check_ha;
8817 break;
8818
8819 case R_PPC64_GOT_TLSLD16_LO:
8820 case R_PPC64_GOT_TLSGD16_LO:
8821 case R_PPC64_GOT_TPREL16_LO_DS:
8822 case R_PPC64_GOT_DTPREL16_LO_DS:
8823 case R_PPC64_GOT16_LO:
8824 case R_PPC64_GOT16_LO_DS:
8825 case R_PPC64_TOC16_LO:
8826 case R_PPC64_TOC16_LO_DS:
8827 insn_check = check_lo;
8828 break;
8829 }
8830
8831 if (insn_check != no_check)
8832 {
8833 bfd_vma off = rel->r_offset & ~3;
8834 unsigned char buf[4];
8835 unsigned int insn;
8836
8837 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8838 {
8839 free (used);
8840 goto error_ret;
8841 }
8842 insn = bfd_get_32 (ibfd, buf);
8843 if (insn_check == check_lo
8844 ? !ok_lo_toc_insn (insn)
8845 : ((insn & ((0x3f << 26) | 0x1f << 16))
8846 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8847 {
8848 char str[12];
8849
8850 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8851 sprintf (str, "%#08x", insn);
8852 info->callbacks->einfo
8853 (_("%P: %H: toc optimization is not supported for"
8854 " %s instruction.\n"),
8855 ibfd, sec, rel->r_offset & ~3, str);
8856 }
8857 }
8858
8859 switch (r_type)
8860 {
8861 case R_PPC64_TOC16:
8862 case R_PPC64_TOC16_LO:
8863 case R_PPC64_TOC16_HI:
8864 case R_PPC64_TOC16_HA:
8865 case R_PPC64_TOC16_DS:
8866 case R_PPC64_TOC16_LO_DS:
8867 /* In case we're taking addresses of toc entries. */
8868 case R_PPC64_ADDR64:
8869 break;
8870
8871 default:
8872 continue;
8873 }
8874
8875 r_symndx = ELF64_R_SYM (rel->r_info);
8876 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8877 r_symndx, ibfd))
8878 {
8879 free (used);
8880 goto error_ret;
8881 }
8882
8883 if (sym_sec != toc)
8884 continue;
8885
8886 if (h != NULL)
8887 val = h->root.u.def.value;
8888 else
8889 val = sym->st_value;
8890 val += rel->r_addend;
8891
8892 if (val >= toc->size)
8893 continue;
8894
8895 if ((skip[val >> 3] & can_optimize) != 0)
8896 {
8897 bfd_vma off;
8898 unsigned char opc;
8899
8900 switch (r_type)
8901 {
8902 case R_PPC64_TOC16_HA:
8903 break;
8904
8905 case R_PPC64_TOC16_LO_DS:
8906 off = rel->r_offset;
8907 off += (bfd_big_endian (ibfd) ? -2 : 3);
8908 if (!bfd_get_section_contents (ibfd, sec, &opc,
8909 off, 1))
8910 {
8911 free (used);
8912 goto error_ret;
8913 }
8914 if ((opc & (0x3f << 2)) == (58u << 2))
8915 break;
8916 /* Fall thru */
8917
8918 default:
8919 /* Wrong sort of reloc, or not a ld. We may
8920 as well clear ref_from_discarded too. */
8921 skip[val >> 3] = 0;
8922 }
8923 }
8924
8925 if (sec != toc)
8926 used[val >> 3] = 1;
8927 /* For the toc section, we only mark as used if this
8928 entry itself isn't unused. */
8929 else if ((used[rel->r_offset >> 3]
8930 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8931 && !used[val >> 3])
8932 {
8933 /* Do all the relocs again, to catch reference
8934 chains. */
8935 repeat = 1;
8936 used[val >> 3] = 1;
8937 }
8938 }
8939 }
8940 while (repeat);
8941
8942 if (elf_section_data (sec)->relocs != relstart)
8943 free (relstart);
8944 }
8945
8946 /* Merge the used and skip arrays. Assume that TOC
8947 doublewords not appearing as either used or unused belong
8948 to to an entry more than one doubleword in size. */
8949 for (drop = skip, keep = used, last = 0, some_unused = 0;
8950 drop < skip + (toc->size + 7) / 8;
8951 ++drop, ++keep)
8952 {
8953 if (*keep)
8954 {
8955 *drop &= ~ref_from_discarded;
8956 if ((*drop & can_optimize) != 0)
8957 some_unused = 1;
8958 last = 0;
8959 }
8960 else if ((*drop & ref_from_discarded) != 0)
8961 {
8962 some_unused = 1;
8963 last = ref_from_discarded;
8964 }
8965 else
8966 *drop = last;
8967 }
8968
8969 free (used);
8970
8971 if (some_unused)
8972 {
8973 bfd_byte *contents, *src;
8974 unsigned long off;
8975 Elf_Internal_Sym *sym;
8976 bfd_boolean local_toc_syms = FALSE;
8977
8978 /* Shuffle the toc contents, and at the same time convert the
8979 skip array from booleans into offsets. */
8980 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8981 goto error_ret;
8982
8983 elf_section_data (toc)->this_hdr.contents = contents;
8984
8985 for (src = contents, off = 0, drop = skip;
8986 src < contents + toc->size;
8987 src += 8, ++drop)
8988 {
8989 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8990 off += 8;
8991 else if (off != 0)
8992 {
8993 *drop = off;
8994 memcpy (src - off, src, 8);
8995 }
8996 }
8997 *drop = off;
8998 toc->rawsize = toc->size;
8999 toc->size = src - contents - off;
9000
9001 /* Adjust addends for relocs against the toc section sym,
9002 and optimize any accesses we can. */
9003 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9004 {
9005 if (sec->reloc_count == 0
9006 || discarded_section (sec))
9007 continue;
9008
9009 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9010 info->keep_memory);
9011 if (relstart == NULL)
9012 goto error_ret;
9013
9014 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9015 {
9016 enum elf_ppc64_reloc_type r_type;
9017 unsigned long r_symndx;
9018 asection *sym_sec;
9019 struct elf_link_hash_entry *h;
9020 bfd_vma val;
9021
9022 r_type = ELF64_R_TYPE (rel->r_info);
9023 switch (r_type)
9024 {
9025 default:
9026 continue;
9027
9028 case R_PPC64_TOC16:
9029 case R_PPC64_TOC16_LO:
9030 case R_PPC64_TOC16_HI:
9031 case R_PPC64_TOC16_HA:
9032 case R_PPC64_TOC16_DS:
9033 case R_PPC64_TOC16_LO_DS:
9034 case R_PPC64_ADDR64:
9035 break;
9036 }
9037
9038 r_symndx = ELF64_R_SYM (rel->r_info);
9039 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9040 r_symndx, ibfd))
9041 goto error_ret;
9042
9043 if (sym_sec != toc)
9044 continue;
9045
9046 if (h != NULL)
9047 val = h->root.u.def.value;
9048 else
9049 {
9050 val = sym->st_value;
9051 if (val != 0)
9052 local_toc_syms = TRUE;
9053 }
9054
9055 val += rel->r_addend;
9056
9057 if (val > toc->rawsize)
9058 val = toc->rawsize;
9059 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9060 continue;
9061 else if ((skip[val >> 3] & can_optimize) != 0)
9062 {
9063 Elf_Internal_Rela *tocrel
9064 = toc_relocs + (skip[val >> 3] >> 2);
9065 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9066
9067 switch (r_type)
9068 {
9069 case R_PPC64_TOC16_HA:
9070 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9071 break;
9072
9073 case R_PPC64_TOC16_LO_DS:
9074 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9075 break;
9076
9077 default:
9078 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9079 ppc_howto_init ();
9080 info->callbacks->einfo
9081 (_("%P: %H: %s references "
9082 "optimized away TOC entry\n"),
9083 ibfd, sec, rel->r_offset,
9084 ppc64_elf_howto_table[r_type]->name);
9085 bfd_set_error (bfd_error_bad_value);
9086 goto error_ret;
9087 }
9088 rel->r_addend = tocrel->r_addend;
9089 elf_section_data (sec)->relocs = relstart;
9090 continue;
9091 }
9092
9093 if (h != NULL || sym->st_value != 0)
9094 continue;
9095
9096 rel->r_addend -= skip[val >> 3];
9097 elf_section_data (sec)->relocs = relstart;
9098 }
9099
9100 if (elf_section_data (sec)->relocs != relstart)
9101 free (relstart);
9102 }
9103
9104 /* We shouldn't have local or global symbols defined in the TOC,
9105 but handle them anyway. */
9106 if (local_syms != NULL)
9107 for (sym = local_syms;
9108 sym < local_syms + symtab_hdr->sh_info;
9109 ++sym)
9110 if (sym->st_value != 0
9111 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9112 {
9113 unsigned long i;
9114
9115 if (sym->st_value > toc->rawsize)
9116 i = toc->rawsize >> 3;
9117 else
9118 i = sym->st_value >> 3;
9119
9120 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9121 {
9122 if (local_toc_syms)
9123 (*_bfd_error_handler)
9124 (_("%s defined on removed toc entry"),
9125 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9126 do
9127 ++i;
9128 while ((skip[i] & (ref_from_discarded | can_optimize)));
9129 sym->st_value = (bfd_vma) i << 3;
9130 }
9131
9132 sym->st_value -= skip[i];
9133 symtab_hdr->contents = (unsigned char *) local_syms;
9134 }
9135
9136 /* Adjust any global syms defined in this toc input section. */
9137 if (toc_inf.global_toc_syms)
9138 {
9139 toc_inf.toc = toc;
9140 toc_inf.skip = skip;
9141 toc_inf.global_toc_syms = FALSE;
9142 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9143 &toc_inf);
9144 }
9145
9146 if (toc->reloc_count != 0)
9147 {
9148 Elf_Internal_Shdr *rel_hdr;
9149 Elf_Internal_Rela *wrel;
9150 bfd_size_type sz;
9151
9152 /* Remove unused toc relocs, and adjust those we keep. */
9153 if (toc_relocs == NULL)
9154 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9155 info->keep_memory);
9156 if (toc_relocs == NULL)
9157 goto error_ret;
9158
9159 wrel = toc_relocs;
9160 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9161 if ((skip[rel->r_offset >> 3]
9162 & (ref_from_discarded | can_optimize)) == 0)
9163 {
9164 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9165 wrel->r_info = rel->r_info;
9166 wrel->r_addend = rel->r_addend;
9167 ++wrel;
9168 }
9169 else if (!dec_dynrel_count (rel->r_info, toc, info,
9170 &local_syms, NULL, NULL))
9171 goto error_ret;
9172
9173 elf_section_data (toc)->relocs = toc_relocs;
9174 toc->reloc_count = wrel - toc_relocs;
9175 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9176 sz = rel_hdr->sh_entsize;
9177 rel_hdr->sh_size = toc->reloc_count * sz;
9178 }
9179 }
9180 else if (toc_relocs != NULL
9181 && elf_section_data (toc)->relocs != toc_relocs)
9182 free (toc_relocs);
9183
9184 if (local_syms != NULL
9185 && symtab_hdr->contents != (unsigned char *) local_syms)
9186 {
9187 if (!info->keep_memory)
9188 free (local_syms);
9189 else
9190 symtab_hdr->contents = (unsigned char *) local_syms;
9191 }
9192 free (skip);
9193 }
9194
9195 return TRUE;
9196 }
9197
9198 /* Return true iff input section I references the TOC using
9199 instructions limited to +/-32k offsets. */
9200
9201 bfd_boolean
9202 ppc64_elf_has_small_toc_reloc (asection *i)
9203 {
9204 return (is_ppc64_elf (i->owner)
9205 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9206 }
9207
9208 /* Allocate space for one GOT entry. */
9209
9210 static void
9211 allocate_got (struct elf_link_hash_entry *h,
9212 struct bfd_link_info *info,
9213 struct got_entry *gent)
9214 {
9215 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9216 bfd_boolean dyn;
9217 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9218 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9219 ? 16 : 8);
9220 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9221 ? 2 : 1) * sizeof (Elf64_External_Rela);
9222 asection *got = ppc64_elf_tdata (gent->owner)->got;
9223
9224 gent->got.offset = got->size;
9225 got->size += entsize;
9226
9227 dyn = htab->elf.dynamic_sections_created;
9228 if (h->type == STT_GNU_IFUNC)
9229 {
9230 htab->elf.irelplt->size += rentsize;
9231 htab->got_reli_size += rentsize;
9232 }
9233 else if ((info->shared
9234 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9235 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9236 || h->root.type != bfd_link_hash_undefweak))
9237 {
9238 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9239 relgot->size += rentsize;
9240 }
9241 }
9242
9243 /* This function merges got entries in the same toc group. */
9244
9245 static void
9246 merge_got_entries (struct got_entry **pent)
9247 {
9248 struct got_entry *ent, *ent2;
9249
9250 for (ent = *pent; ent != NULL; ent = ent->next)
9251 if (!ent->is_indirect)
9252 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9253 if (!ent2->is_indirect
9254 && ent2->addend == ent->addend
9255 && ent2->tls_type == ent->tls_type
9256 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9257 {
9258 ent2->is_indirect = TRUE;
9259 ent2->got.ent = ent;
9260 }
9261 }
9262
9263 /* Allocate space in .plt, .got and associated reloc sections for
9264 dynamic relocs. */
9265
9266 static bfd_boolean
9267 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9268 {
9269 struct bfd_link_info *info;
9270 struct ppc_link_hash_table *htab;
9271 asection *s;
9272 struct ppc_link_hash_entry *eh;
9273 struct elf_dyn_relocs *p;
9274 struct got_entry **pgent, *gent;
9275
9276 if (h->root.type == bfd_link_hash_indirect)
9277 return TRUE;
9278
9279 info = (struct bfd_link_info *) inf;
9280 htab = ppc_hash_table (info);
9281 if (htab == NULL)
9282 return FALSE;
9283
9284 if ((htab->elf.dynamic_sections_created
9285 && h->dynindx != -1
9286 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9287 || h->type == STT_GNU_IFUNC)
9288 {
9289 struct plt_entry *pent;
9290 bfd_boolean doneone = FALSE;
9291 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9292 if (pent->plt.refcount > 0)
9293 {
9294 if (!htab->elf.dynamic_sections_created
9295 || h->dynindx == -1)
9296 {
9297 s = htab->elf.iplt;
9298 pent->plt.offset = s->size;
9299 s->size += PLT_ENTRY_SIZE (htab);
9300 s = htab->elf.irelplt;
9301 }
9302 else
9303 {
9304 /* If this is the first .plt entry, make room for the special
9305 first entry. */
9306 s = htab->elf.splt;
9307 if (s->size == 0)
9308 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9309
9310 pent->plt.offset = s->size;
9311
9312 /* Make room for this entry. */
9313 s->size += PLT_ENTRY_SIZE (htab);
9314
9315 /* Make room for the .glink code. */
9316 s = htab->glink;
9317 if (s->size == 0)
9318 s->size += GLINK_CALL_STUB_SIZE;
9319 if (htab->opd_abi)
9320 {
9321 /* We need bigger stubs past index 32767. */
9322 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9323 s->size += 4;
9324 s->size += 2*4;
9325 }
9326 else
9327 s->size += 4;
9328
9329 /* We also need to make an entry in the .rela.plt section. */
9330 s = htab->elf.srelplt;
9331 }
9332 s->size += sizeof (Elf64_External_Rela);
9333 doneone = TRUE;
9334 }
9335 else
9336 pent->plt.offset = (bfd_vma) -1;
9337 if (!doneone)
9338 {
9339 h->plt.plist = NULL;
9340 h->needs_plt = 0;
9341 }
9342 }
9343 else
9344 {
9345 h->plt.plist = NULL;
9346 h->needs_plt = 0;
9347 }
9348
9349 eh = (struct ppc_link_hash_entry *) h;
9350 /* Run through the TLS GD got entries first if we're changing them
9351 to TPREL. */
9352 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9353 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9354 if (gent->got.refcount > 0
9355 && (gent->tls_type & TLS_GD) != 0)
9356 {
9357 /* This was a GD entry that has been converted to TPREL. If
9358 there happens to be a TPREL entry we can use that one. */
9359 struct got_entry *ent;
9360 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9361 if (ent->got.refcount > 0
9362 && (ent->tls_type & TLS_TPREL) != 0
9363 && ent->addend == gent->addend
9364 && ent->owner == gent->owner)
9365 {
9366 gent->got.refcount = 0;
9367 break;
9368 }
9369
9370 /* If not, then we'll be using our own TPREL entry. */
9371 if (gent->got.refcount != 0)
9372 gent->tls_type = TLS_TLS | TLS_TPREL;
9373 }
9374
9375 /* Remove any list entry that won't generate a word in the GOT before
9376 we call merge_got_entries. Otherwise we risk merging to empty
9377 entries. */
9378 pgent = &h->got.glist;
9379 while ((gent = *pgent) != NULL)
9380 if (gent->got.refcount > 0)
9381 {
9382 if ((gent->tls_type & TLS_LD) != 0
9383 && !h->def_dynamic)
9384 {
9385 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9386 *pgent = gent->next;
9387 }
9388 else
9389 pgent = &gent->next;
9390 }
9391 else
9392 *pgent = gent->next;
9393
9394 if (!htab->do_multi_toc)
9395 merge_got_entries (&h->got.glist);
9396
9397 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9398 if (!gent->is_indirect)
9399 {
9400 /* Make sure this symbol is output as a dynamic symbol.
9401 Undefined weak syms won't yet be marked as dynamic,
9402 nor will all TLS symbols. */
9403 if (h->dynindx == -1
9404 && !h->forced_local
9405 && h->type != STT_GNU_IFUNC
9406 && htab->elf.dynamic_sections_created)
9407 {
9408 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9409 return FALSE;
9410 }
9411
9412 if (!is_ppc64_elf (gent->owner))
9413 abort ();
9414
9415 allocate_got (h, info, gent);
9416 }
9417
9418 if (eh->dyn_relocs == NULL
9419 || (!htab->elf.dynamic_sections_created
9420 && (h->type != STT_GNU_IFUNC
9421 || !htab->opd_abi)))
9422 return TRUE;
9423
9424 /* In the shared -Bsymbolic case, discard space allocated for
9425 dynamic pc-relative relocs against symbols which turn out to be
9426 defined in regular objects. For the normal shared case, discard
9427 space for relocs that have become local due to symbol visibility
9428 changes. */
9429
9430 if (info->shared)
9431 {
9432 /* Relocs that use pc_count are those that appear on a call insn,
9433 or certain REL relocs (see must_be_dyn_reloc) that can be
9434 generated via assembly. We want calls to protected symbols to
9435 resolve directly to the function rather than going via the plt.
9436 If people want function pointer comparisons to work as expected
9437 then they should avoid writing weird assembly. */
9438 if (SYMBOL_CALLS_LOCAL (info, h))
9439 {
9440 struct elf_dyn_relocs **pp;
9441
9442 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9443 {
9444 p->count -= p->pc_count;
9445 p->pc_count = 0;
9446 if (p->count == 0)
9447 *pp = p->next;
9448 else
9449 pp = &p->next;
9450 }
9451 }
9452
9453 /* Also discard relocs on undefined weak syms with non-default
9454 visibility. */
9455 if (eh->dyn_relocs != NULL
9456 && h->root.type == bfd_link_hash_undefweak)
9457 {
9458 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9459 eh->dyn_relocs = NULL;
9460
9461 /* Make sure this symbol is output as a dynamic symbol.
9462 Undefined weak syms won't yet be marked as dynamic. */
9463 else if (h->dynindx == -1
9464 && !h->forced_local)
9465 {
9466 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9467 return FALSE;
9468 }
9469 }
9470 }
9471 else if (h->type == STT_GNU_IFUNC)
9472 {
9473 if (!h->non_got_ref)
9474 eh->dyn_relocs = NULL;
9475 }
9476 else if (ELIMINATE_COPY_RELOCS)
9477 {
9478 /* For the non-shared case, discard space for relocs against
9479 symbols which turn out to need copy relocs or are not
9480 dynamic. */
9481
9482 if (!h->non_got_ref
9483 && !h->def_regular)
9484 {
9485 /* Make sure this symbol is output as a dynamic symbol.
9486 Undefined weak syms won't yet be marked as dynamic. */
9487 if (h->dynindx == -1
9488 && !h->forced_local)
9489 {
9490 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9491 return FALSE;
9492 }
9493
9494 /* If that succeeded, we know we'll be keeping all the
9495 relocs. */
9496 if (h->dynindx != -1)
9497 goto keep;
9498 }
9499
9500 eh->dyn_relocs = NULL;
9501
9502 keep: ;
9503 }
9504
9505 /* Finally, allocate space. */
9506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9507 {
9508 asection *sreloc = elf_section_data (p->sec)->sreloc;
9509 if (eh->elf.type == STT_GNU_IFUNC)
9510 sreloc = htab->elf.irelplt;
9511 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9512 }
9513
9514 return TRUE;
9515 }
9516
9517 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9518 to set up space for global entry stubs. These are put in glink,
9519 after the branch table. */
9520
9521 static bfd_boolean
9522 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9523 {
9524 struct bfd_link_info *info;
9525 struct ppc_link_hash_table *htab;
9526 struct plt_entry *pent;
9527 asection *s;
9528
9529 if (h->root.type == bfd_link_hash_indirect)
9530 return TRUE;
9531
9532 if (!h->pointer_equality_needed)
9533 return TRUE;
9534
9535 if (h->def_regular)
9536 return TRUE;
9537
9538 info = inf;
9539 htab = ppc_hash_table (info);
9540 if (htab == NULL)
9541 return FALSE;
9542
9543 s = htab->glink;
9544 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9545 if (pent->plt.offset != (bfd_vma) -1
9546 && pent->addend == 0)
9547 {
9548 s->size = (s->size + 15) & -16;
9549 s->size += 16;
9550 break;
9551 }
9552 return TRUE;
9553 }
9554
9555 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9556 read-only sections. */
9557
9558 static bfd_boolean
9559 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9560 {
9561 if (h->root.type == bfd_link_hash_indirect)
9562 return TRUE;
9563
9564 if (readonly_dynrelocs (h))
9565 {
9566 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9567
9568 /* Not an error, just cut short the traversal. */
9569 return FALSE;
9570 }
9571 return TRUE;
9572 }
9573
9574 /* Set the sizes of the dynamic sections. */
9575
9576 static bfd_boolean
9577 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9578 struct bfd_link_info *info)
9579 {
9580 struct ppc_link_hash_table *htab;
9581 bfd *dynobj;
9582 asection *s;
9583 bfd_boolean relocs;
9584 bfd *ibfd;
9585 struct got_entry *first_tlsld;
9586
9587 htab = ppc_hash_table (info);
9588 if (htab == NULL)
9589 return FALSE;
9590
9591 dynobj = htab->elf.dynobj;
9592 if (dynobj == NULL)
9593 abort ();
9594
9595 if (htab->elf.dynamic_sections_created)
9596 {
9597 /* Set the contents of the .interp section to the interpreter. */
9598 if (info->executable)
9599 {
9600 s = bfd_get_linker_section (dynobj, ".interp");
9601 if (s == NULL)
9602 abort ();
9603 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9604 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9605 }
9606 }
9607
9608 /* Set up .got offsets for local syms, and space for local dynamic
9609 relocs. */
9610 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9611 {
9612 struct got_entry **lgot_ents;
9613 struct got_entry **end_lgot_ents;
9614 struct plt_entry **local_plt;
9615 struct plt_entry **end_local_plt;
9616 unsigned char *lgot_masks;
9617 bfd_size_type locsymcount;
9618 Elf_Internal_Shdr *symtab_hdr;
9619
9620 if (!is_ppc64_elf (ibfd))
9621 continue;
9622
9623 for (s = ibfd->sections; s != NULL; s = s->next)
9624 {
9625 struct ppc_dyn_relocs *p;
9626
9627 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9628 {
9629 if (!bfd_is_abs_section (p->sec)
9630 && bfd_is_abs_section (p->sec->output_section))
9631 {
9632 /* Input section has been discarded, either because
9633 it is a copy of a linkonce section or due to
9634 linker script /DISCARD/, so we'll be discarding
9635 the relocs too. */
9636 }
9637 else if (p->count != 0)
9638 {
9639 asection *srel = elf_section_data (p->sec)->sreloc;
9640 if (p->ifunc)
9641 srel = htab->elf.irelplt;
9642 srel->size += p->count * sizeof (Elf64_External_Rela);
9643 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9644 info->flags |= DF_TEXTREL;
9645 }
9646 }
9647 }
9648
9649 lgot_ents = elf_local_got_ents (ibfd);
9650 if (!lgot_ents)
9651 continue;
9652
9653 symtab_hdr = &elf_symtab_hdr (ibfd);
9654 locsymcount = symtab_hdr->sh_info;
9655 end_lgot_ents = lgot_ents + locsymcount;
9656 local_plt = (struct plt_entry **) end_lgot_ents;
9657 end_local_plt = local_plt + locsymcount;
9658 lgot_masks = (unsigned char *) end_local_plt;
9659 s = ppc64_elf_tdata (ibfd)->got;
9660 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9661 {
9662 struct got_entry **pent, *ent;
9663
9664 pent = lgot_ents;
9665 while ((ent = *pent) != NULL)
9666 if (ent->got.refcount > 0)
9667 {
9668 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9669 {
9670 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9671 *pent = ent->next;
9672 }
9673 else
9674 {
9675 unsigned int ent_size = 8;
9676 unsigned int rel_size = sizeof (Elf64_External_Rela);
9677
9678 ent->got.offset = s->size;
9679 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9680 {
9681 ent_size *= 2;
9682 rel_size *= 2;
9683 }
9684 s->size += ent_size;
9685 if ((*lgot_masks & PLT_IFUNC) != 0)
9686 {
9687 htab->elf.irelplt->size += rel_size;
9688 htab->got_reli_size += rel_size;
9689 }
9690 else if (info->shared)
9691 {
9692 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9693 srel->size += rel_size;
9694 }
9695 pent = &ent->next;
9696 }
9697 }
9698 else
9699 *pent = ent->next;
9700 }
9701
9702 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9703 for (; local_plt < end_local_plt; ++local_plt)
9704 {
9705 struct plt_entry *ent;
9706
9707 for (ent = *local_plt; ent != NULL; ent = ent->next)
9708 if (ent->plt.refcount > 0)
9709 {
9710 s = htab->elf.iplt;
9711 ent->plt.offset = s->size;
9712 s->size += PLT_ENTRY_SIZE (htab);
9713
9714 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9715 }
9716 else
9717 ent->plt.offset = (bfd_vma) -1;
9718 }
9719 }
9720
9721 /* Allocate global sym .plt and .got entries, and space for global
9722 sym dynamic relocs. */
9723 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9724 /* Stash the end of glink branch table. */
9725 if (htab->glink != NULL)
9726 htab->glink->rawsize = htab->glink->size;
9727
9728 if (!htab->opd_abi && !info->shared)
9729 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9730
9731 first_tlsld = NULL;
9732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9733 {
9734 struct got_entry *ent;
9735
9736 if (!is_ppc64_elf (ibfd))
9737 continue;
9738
9739 ent = ppc64_tlsld_got (ibfd);
9740 if (ent->got.refcount > 0)
9741 {
9742 if (!htab->do_multi_toc && first_tlsld != NULL)
9743 {
9744 ent->is_indirect = TRUE;
9745 ent->got.ent = first_tlsld;
9746 }
9747 else
9748 {
9749 if (first_tlsld == NULL)
9750 first_tlsld = ent;
9751 s = ppc64_elf_tdata (ibfd)->got;
9752 ent->got.offset = s->size;
9753 ent->owner = ibfd;
9754 s->size += 16;
9755 if (info->shared)
9756 {
9757 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9758 srel->size += sizeof (Elf64_External_Rela);
9759 }
9760 }
9761 }
9762 else
9763 ent->got.offset = (bfd_vma) -1;
9764 }
9765
9766 /* We now have determined the sizes of the various dynamic sections.
9767 Allocate memory for them. */
9768 relocs = FALSE;
9769 for (s = dynobj->sections; s != NULL; s = s->next)
9770 {
9771 if ((s->flags & SEC_LINKER_CREATED) == 0)
9772 continue;
9773
9774 if (s == htab->brlt || s == htab->relbrlt)
9775 /* These haven't been allocated yet; don't strip. */
9776 continue;
9777 else if (s == htab->elf.sgot
9778 || s == htab->elf.splt
9779 || s == htab->elf.iplt
9780 || s == htab->glink
9781 || s == htab->dynbss)
9782 {
9783 /* Strip this section if we don't need it; see the
9784 comment below. */
9785 }
9786 else if (s == htab->glink_eh_frame)
9787 {
9788 if (!bfd_is_abs_section (s->output_section))
9789 /* Not sized yet. */
9790 continue;
9791 }
9792 else if (CONST_STRNEQ (s->name, ".rela"))
9793 {
9794 if (s->size != 0)
9795 {
9796 if (s != htab->elf.srelplt)
9797 relocs = TRUE;
9798
9799 /* We use the reloc_count field as a counter if we need
9800 to copy relocs into the output file. */
9801 s->reloc_count = 0;
9802 }
9803 }
9804 else
9805 {
9806 /* It's not one of our sections, so don't allocate space. */
9807 continue;
9808 }
9809
9810 if (s->size == 0)
9811 {
9812 /* If we don't need this section, strip it from the
9813 output file. This is mostly to handle .rela.bss and
9814 .rela.plt. We must create both sections in
9815 create_dynamic_sections, because they must be created
9816 before the linker maps input sections to output
9817 sections. The linker does that before
9818 adjust_dynamic_symbol is called, and it is that
9819 function which decides whether anything needs to go
9820 into these sections. */
9821 s->flags |= SEC_EXCLUDE;
9822 continue;
9823 }
9824
9825 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9826 continue;
9827
9828 /* Allocate memory for the section contents. We use bfd_zalloc
9829 here in case unused entries are not reclaimed before the
9830 section's contents are written out. This should not happen,
9831 but this way if it does we get a R_PPC64_NONE reloc in .rela
9832 sections instead of garbage.
9833 We also rely on the section contents being zero when writing
9834 the GOT. */
9835 s->contents = bfd_zalloc (dynobj, s->size);
9836 if (s->contents == NULL)
9837 return FALSE;
9838 }
9839
9840 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9841 {
9842 if (!is_ppc64_elf (ibfd))
9843 continue;
9844
9845 s = ppc64_elf_tdata (ibfd)->got;
9846 if (s != NULL && s != htab->elf.sgot)
9847 {
9848 if (s->size == 0)
9849 s->flags |= SEC_EXCLUDE;
9850 else
9851 {
9852 s->contents = bfd_zalloc (ibfd, s->size);
9853 if (s->contents == NULL)
9854 return FALSE;
9855 }
9856 }
9857 s = ppc64_elf_tdata (ibfd)->relgot;
9858 if (s != NULL)
9859 {
9860 if (s->size == 0)
9861 s->flags |= SEC_EXCLUDE;
9862 else
9863 {
9864 s->contents = bfd_zalloc (ibfd, s->size);
9865 if (s->contents == NULL)
9866 return FALSE;
9867 relocs = TRUE;
9868 s->reloc_count = 0;
9869 }
9870 }
9871 }
9872
9873 if (htab->elf.dynamic_sections_created)
9874 {
9875 bfd_boolean tls_opt;
9876
9877 /* Add some entries to the .dynamic section. We fill in the
9878 values later, in ppc64_elf_finish_dynamic_sections, but we
9879 must add the entries now so that we get the correct size for
9880 the .dynamic section. The DT_DEBUG entry is filled in by the
9881 dynamic linker and used by the debugger. */
9882 #define add_dynamic_entry(TAG, VAL) \
9883 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9884
9885 if (info->executable)
9886 {
9887 if (!add_dynamic_entry (DT_DEBUG, 0))
9888 return FALSE;
9889 }
9890
9891 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9892 {
9893 if (!add_dynamic_entry (DT_PLTGOT, 0)
9894 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9895 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9896 || !add_dynamic_entry (DT_JMPREL, 0)
9897 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9898 return FALSE;
9899 }
9900
9901 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
9902 {
9903 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9904 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9905 return FALSE;
9906 }
9907
9908 tls_opt = (!htab->no_tls_get_addr_opt
9909 && htab->tls_get_addr_fd != NULL
9910 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
9911 if (tls_opt || !htab->opd_abi)
9912 {
9913 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
9914 return FALSE;
9915 }
9916
9917 if (relocs)
9918 {
9919 if (!add_dynamic_entry (DT_RELA, 0)
9920 || !add_dynamic_entry (DT_RELASZ, 0)
9921 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9922 return FALSE;
9923
9924 /* If any dynamic relocs apply to a read-only section,
9925 then we need a DT_TEXTREL entry. */
9926 if ((info->flags & DF_TEXTREL) == 0)
9927 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
9928
9929 if ((info->flags & DF_TEXTREL) != 0)
9930 {
9931 if (!add_dynamic_entry (DT_TEXTREL, 0))
9932 return FALSE;
9933 }
9934 }
9935 }
9936 #undef add_dynamic_entry
9937
9938 return TRUE;
9939 }
9940
9941 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
9942
9943 static bfd_boolean
9944 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
9945 {
9946 if (h->plt.plist != NULL
9947 && !h->def_regular
9948 && !h->pointer_equality_needed)
9949 return FALSE;
9950
9951 return _bfd_elf_hash_symbol (h);
9952 }
9953
9954 /* Determine the type of stub needed, if any, for a call. */
9955
9956 static inline enum ppc_stub_type
9957 ppc_type_of_stub (asection *input_sec,
9958 const Elf_Internal_Rela *rel,
9959 struct ppc_link_hash_entry **hash,
9960 struct plt_entry **plt_ent,
9961 bfd_vma destination,
9962 unsigned long local_off)
9963 {
9964 struct ppc_link_hash_entry *h = *hash;
9965 bfd_vma location;
9966 bfd_vma branch_offset;
9967 bfd_vma max_branch_offset;
9968 enum elf_ppc64_reloc_type r_type;
9969
9970 if (h != NULL)
9971 {
9972 struct plt_entry *ent;
9973 struct ppc_link_hash_entry *fdh = h;
9974 if (h->oh != NULL
9975 && h->oh->is_func_descriptor)
9976 {
9977 fdh = ppc_follow_link (h->oh);
9978 *hash = fdh;
9979 }
9980
9981 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9982 if (ent->addend == rel->r_addend
9983 && ent->plt.offset != (bfd_vma) -1)
9984 {
9985 *plt_ent = ent;
9986 return ppc_stub_plt_call;
9987 }
9988
9989 /* Here, we know we don't have a plt entry. If we don't have a
9990 either a defined function descriptor or a defined entry symbol
9991 in a regular object file, then it is pointless trying to make
9992 any other type of stub. */
9993 if (!is_static_defined (&fdh->elf)
9994 && !is_static_defined (&h->elf))
9995 return ppc_stub_none;
9996 }
9997 else if (elf_local_got_ents (input_sec->owner) != NULL)
9998 {
9999 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10000 struct plt_entry **local_plt = (struct plt_entry **)
10001 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10002 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10003
10004 if (local_plt[r_symndx] != NULL)
10005 {
10006 struct plt_entry *ent;
10007
10008 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10009 if (ent->addend == rel->r_addend
10010 && ent->plt.offset != (bfd_vma) -1)
10011 {
10012 *plt_ent = ent;
10013 return ppc_stub_plt_call;
10014 }
10015 }
10016 }
10017
10018 /* Determine where the call point is. */
10019 location = (input_sec->output_offset
10020 + input_sec->output_section->vma
10021 + rel->r_offset);
10022
10023 branch_offset = destination - location;
10024 r_type = ELF64_R_TYPE (rel->r_info);
10025
10026 /* Determine if a long branch stub is needed. */
10027 max_branch_offset = 1 << 25;
10028 if (r_type != R_PPC64_REL24)
10029 max_branch_offset = 1 << 15;
10030
10031 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10032 /* We need a stub. Figure out whether a long_branch or plt_branch
10033 is needed later. */
10034 return ppc_stub_long_branch;
10035
10036 return ppc_stub_none;
10037 }
10038
10039 /* With power7 weakly ordered memory model, it is possible for ld.so
10040 to update a plt entry in one thread and have another thread see a
10041 stale zero toc entry. To avoid this we need some sort of acquire
10042 barrier in the call stub. One solution is to make the load of the
10043 toc word seem to appear to depend on the load of the function entry
10044 word. Another solution is to test for r2 being zero, and branch to
10045 the appropriate glink entry if so.
10046
10047 . fake dep barrier compare
10048 . ld 12,xxx(2) ld 12,xxx(2)
10049 . mtctr 12 mtctr 12
10050 . xor 11,12,12 ld 2,xxx+8(2)
10051 . add 2,2,11 cmpldi 2,0
10052 . ld 2,xxx+8(2) bnectr+
10053 . bctr b <glink_entry>
10054
10055 The solution involving the compare turns out to be faster, so
10056 that's what we use unless the branch won't reach. */
10057
10058 #define ALWAYS_USE_FAKE_DEP 0
10059 #define ALWAYS_EMIT_R2SAVE 0
10060
10061 #define PPC_LO(v) ((v) & 0xffff)
10062 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10063 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10064
10065 static inline unsigned int
10066 plt_stub_size (struct ppc_link_hash_table *htab,
10067 struct ppc_stub_hash_entry *stub_entry,
10068 bfd_vma off)
10069 {
10070 unsigned size = 12;
10071
10072 if (ALWAYS_EMIT_R2SAVE
10073 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10074 size += 4;
10075 if (PPC_HA (off) != 0)
10076 size += 4;
10077 if (htab->opd_abi)
10078 {
10079 size += 4;
10080 if (htab->plt_static_chain)
10081 size += 4;
10082 if (htab->plt_thread_safe)
10083 size += 8;
10084 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
10085 size += 4;
10086 }
10087 if (stub_entry->h != NULL
10088 && (stub_entry->h == htab->tls_get_addr_fd
10089 || stub_entry->h == htab->tls_get_addr)
10090 && !htab->no_tls_get_addr_opt)
10091 size += 13 * 4;
10092 return size;
10093 }
10094
10095 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10096 then return the padding needed to do so. */
10097 static inline unsigned int
10098 plt_stub_pad (struct ppc_link_hash_table *htab,
10099 struct ppc_stub_hash_entry *stub_entry,
10100 bfd_vma plt_off)
10101 {
10102 int stub_align = 1 << htab->plt_stub_align;
10103 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10104 bfd_vma stub_off = stub_entry->stub_sec->size;
10105
10106 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10107 > (stub_size & -stub_align))
10108 return stub_align - (stub_off & (stub_align - 1));
10109 return 0;
10110 }
10111
10112 /* Build a .plt call stub. */
10113
10114 static inline bfd_byte *
10115 build_plt_stub (struct ppc_link_hash_table *htab,
10116 struct ppc_stub_hash_entry *stub_entry,
10117 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10118 {
10119 bfd *obfd = htab->stub_bfd;
10120 bfd_boolean plt_load_toc = htab->opd_abi;
10121 bfd_boolean plt_static_chain = htab->plt_static_chain;
10122 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
10123 bfd_boolean use_fake_dep = plt_thread_safe;
10124 bfd_vma cmp_branch_off = 0;
10125
10126 if (!ALWAYS_USE_FAKE_DEP
10127 && plt_load_toc
10128 && plt_thread_safe
10129 && !(stub_entry->h != NULL
10130 && (stub_entry->h == htab->tls_get_addr_fd
10131 || stub_entry->h == htab->tls_get_addr)
10132 && !htab->no_tls_get_addr_opt))
10133 {
10134 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10135 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10136 / PLT_ENTRY_SIZE (htab));
10137 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10138 bfd_vma to, from;
10139
10140 if (pltindex > 32768)
10141 glinkoff += (pltindex - 32768) * 4;
10142 to = (glinkoff
10143 + htab->glink->output_offset
10144 + htab->glink->output_section->vma);
10145 from = (p - stub_entry->stub_sec->contents
10146 + 4 * (ALWAYS_EMIT_R2SAVE
10147 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10148 + 4 * (PPC_HA (offset) != 0)
10149 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10150 != PPC_HA (offset))
10151 + 4 * (plt_static_chain != 0)
10152 + 20
10153 + stub_entry->stub_sec->output_offset
10154 + stub_entry->stub_sec->output_section->vma);
10155 cmp_branch_off = to - from;
10156 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10157 }
10158
10159 if (PPC_HA (offset) != 0)
10160 {
10161 if (r != NULL)
10162 {
10163 if (ALWAYS_EMIT_R2SAVE
10164 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10165 r[0].r_offset += 4;
10166 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10167 r[1].r_offset = r[0].r_offset + 4;
10168 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10169 r[1].r_addend = r[0].r_addend;
10170 if (plt_load_toc)
10171 {
10172 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10173 {
10174 r[2].r_offset = r[1].r_offset + 4;
10175 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10176 r[2].r_addend = r[0].r_addend;
10177 }
10178 else
10179 {
10180 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10181 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10182 r[2].r_addend = r[0].r_addend + 8;
10183 if (plt_static_chain)
10184 {
10185 r[3].r_offset = r[2].r_offset + 4;
10186 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10187 r[3].r_addend = r[0].r_addend + 16;
10188 }
10189 }
10190 }
10191 }
10192 if (ALWAYS_EMIT_R2SAVE
10193 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10194 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10195 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10196 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10197 if (plt_load_toc
10198 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10199 {
10200 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10201 offset = 0;
10202 }
10203 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10204 if (plt_load_toc)
10205 {
10206 if (use_fake_dep)
10207 {
10208 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10209 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10210 }
10211 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10212 if (plt_static_chain)
10213 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10214 }
10215 }
10216 else
10217 {
10218 if (r != NULL)
10219 {
10220 if (ALWAYS_EMIT_R2SAVE
10221 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10222 r[0].r_offset += 4;
10223 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10224 if (plt_load_toc)
10225 {
10226 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10227 {
10228 r[1].r_offset = r[0].r_offset + 4;
10229 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10230 r[1].r_addend = r[0].r_addend;
10231 }
10232 else
10233 {
10234 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10235 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10236 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10237 if (plt_static_chain)
10238 {
10239 r[2].r_offset = r[1].r_offset + 4;
10240 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10241 r[2].r_addend = r[0].r_addend + 8;
10242 }
10243 }
10244 }
10245 }
10246 if (ALWAYS_EMIT_R2SAVE
10247 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10248 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10249 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10250 if (plt_load_toc
10251 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10252 {
10253 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10254 offset = 0;
10255 }
10256 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10257 if (plt_load_toc)
10258 {
10259 if (use_fake_dep)
10260 {
10261 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10262 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10263 }
10264 if (plt_static_chain)
10265 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10266 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10267 }
10268 }
10269 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10270 {
10271 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10272 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10273 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10274 }
10275 else
10276 bfd_put_32 (obfd, BCTR, p), p += 4;
10277 return p;
10278 }
10279
10280 /* Build a special .plt call stub for __tls_get_addr. */
10281
10282 #define LD_R11_0R3 0xe9630000
10283 #define LD_R12_0R3 0xe9830000
10284 #define MR_R0_R3 0x7c601b78
10285 #define CMPDI_R11_0 0x2c2b0000
10286 #define ADD_R3_R12_R13 0x7c6c6a14
10287 #define BEQLR 0x4d820020
10288 #define MR_R3_R0 0x7c030378
10289 #define STD_R11_0R1 0xf9610000
10290 #define BCTRL 0x4e800421
10291 #define LD_R11_0R1 0xe9610000
10292 #define MTLR_R11 0x7d6803a6
10293
10294 static inline bfd_byte *
10295 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10296 struct ppc_stub_hash_entry *stub_entry,
10297 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10298 {
10299 bfd *obfd = htab->stub_bfd;
10300
10301 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10302 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10303 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10304 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10305 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10306 bfd_put_32 (obfd, BEQLR, p), p += 4;
10307 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10308 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10309 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10310
10311 if (r != NULL)
10312 r[0].r_offset += 9 * 4;
10313 p = build_plt_stub (htab, stub_entry, p, offset, r);
10314 bfd_put_32 (obfd, BCTRL, p - 4);
10315
10316 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10317 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10318 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10319 bfd_put_32 (obfd, BLR, p), p += 4;
10320
10321 return p;
10322 }
10323
10324 static Elf_Internal_Rela *
10325 get_relocs (asection *sec, int count)
10326 {
10327 Elf_Internal_Rela *relocs;
10328 struct bfd_elf_section_data *elfsec_data;
10329
10330 elfsec_data = elf_section_data (sec);
10331 relocs = elfsec_data->relocs;
10332 if (relocs == NULL)
10333 {
10334 bfd_size_type relsize;
10335 relsize = sec->reloc_count * sizeof (*relocs);
10336 relocs = bfd_alloc (sec->owner, relsize);
10337 if (relocs == NULL)
10338 return NULL;
10339 elfsec_data->relocs = relocs;
10340 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10341 sizeof (Elf_Internal_Shdr));
10342 if (elfsec_data->rela.hdr == NULL)
10343 return NULL;
10344 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10345 * sizeof (Elf64_External_Rela));
10346 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10347 sec->reloc_count = 0;
10348 }
10349 relocs += sec->reloc_count;
10350 sec->reloc_count += count;
10351 return relocs;
10352 }
10353
10354 static bfd_vma
10355 get_r2off (struct bfd_link_info *info,
10356 struct ppc_stub_hash_entry *stub_entry)
10357 {
10358 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10359 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10360
10361 if (r2off == 0)
10362 {
10363 /* Support linking -R objects. Get the toc pointer from the
10364 opd entry. */
10365 char buf[8];
10366 if (!htab->opd_abi)
10367 return r2off;
10368 asection *opd = stub_entry->h->elf.root.u.def.section;
10369 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10370
10371 if (strcmp (opd->name, ".opd") != 0
10372 || opd->reloc_count != 0)
10373 {
10374 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10375 stub_entry->h->elf.root.root.string);
10376 bfd_set_error (bfd_error_bad_value);
10377 return 0;
10378 }
10379 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10380 return 0;
10381 r2off = bfd_get_64 (opd->owner, buf);
10382 r2off -= elf_gp (info->output_bfd);
10383 }
10384 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10385 return r2off;
10386 }
10387
10388 static bfd_boolean
10389 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10390 {
10391 struct ppc_stub_hash_entry *stub_entry;
10392 struct ppc_branch_hash_entry *br_entry;
10393 struct bfd_link_info *info;
10394 struct ppc_link_hash_table *htab;
10395 bfd_byte *loc;
10396 bfd_byte *p;
10397 bfd_vma dest, off;
10398 int size;
10399 Elf_Internal_Rela *r;
10400 asection *plt;
10401
10402 /* Massage our args to the form they really have. */
10403 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10404 info = in_arg;
10405
10406 htab = ppc_hash_table (info);
10407 if (htab == NULL)
10408 return FALSE;
10409
10410 /* Make a note of the offset within the stubs for this entry. */
10411 stub_entry->stub_offset = stub_entry->stub_sec->size;
10412 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10413
10414 htab->stub_count[stub_entry->stub_type - 1] += 1;
10415 switch (stub_entry->stub_type)
10416 {
10417 case ppc_stub_long_branch:
10418 case ppc_stub_long_branch_r2off:
10419 /* Branches are relative. This is where we are going to. */
10420 dest = (stub_entry->target_value
10421 + stub_entry->target_section->output_offset
10422 + stub_entry->target_section->output_section->vma);
10423 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10424 off = dest;
10425
10426 /* And this is where we are coming from. */
10427 off -= (stub_entry->stub_offset
10428 + stub_entry->stub_sec->output_offset
10429 + stub_entry->stub_sec->output_section->vma);
10430
10431 size = 4;
10432 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10433 {
10434 bfd_vma r2off = get_r2off (info, stub_entry);
10435
10436 if (r2off == 0)
10437 {
10438 htab->stub_error = TRUE;
10439 return FALSE;
10440 }
10441 bfd_put_32 (htab->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10442 loc += 4;
10443 size = 12;
10444 if (PPC_HA (r2off) != 0)
10445 {
10446 size = 16;
10447 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10448 loc += 4;
10449 }
10450 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10451 loc += 4;
10452 off -= size - 4;
10453 }
10454 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10455
10456 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10457 {
10458 info->callbacks->einfo
10459 (_("%P: long branch stub `%s' offset overflow\n"),
10460 stub_entry->root.string);
10461 htab->stub_error = TRUE;
10462 return FALSE;
10463 }
10464
10465 if (info->emitrelocations)
10466 {
10467 r = get_relocs (stub_entry->stub_sec, 1);
10468 if (r == NULL)
10469 return FALSE;
10470 r->r_offset = loc - stub_entry->stub_sec->contents;
10471 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10472 r->r_addend = dest;
10473 if (stub_entry->h != NULL)
10474 {
10475 struct elf_link_hash_entry **hashes;
10476 unsigned long symndx;
10477 struct ppc_link_hash_entry *h;
10478
10479 hashes = elf_sym_hashes (htab->stub_bfd);
10480 if (hashes == NULL)
10481 {
10482 bfd_size_type hsize;
10483
10484 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10485 hashes = bfd_zalloc (htab->stub_bfd, hsize);
10486 if (hashes == NULL)
10487 return FALSE;
10488 elf_sym_hashes (htab->stub_bfd) = hashes;
10489 htab->stub_globals = 1;
10490 }
10491 symndx = htab->stub_globals++;
10492 h = stub_entry->h;
10493 hashes[symndx] = &h->elf;
10494 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10495 if (h->oh != NULL && h->oh->is_func)
10496 h = ppc_follow_link (h->oh);
10497 if (h->elf.root.u.def.section != stub_entry->target_section)
10498 /* H is an opd symbol. The addend must be zero. */
10499 r->r_addend = 0;
10500 else
10501 {
10502 off = (h->elf.root.u.def.value
10503 + h->elf.root.u.def.section->output_offset
10504 + h->elf.root.u.def.section->output_section->vma);
10505 r->r_addend -= off;
10506 }
10507 }
10508 }
10509 break;
10510
10511 case ppc_stub_plt_branch:
10512 case ppc_stub_plt_branch_r2off:
10513 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10514 stub_entry->root.string + 9,
10515 FALSE, FALSE);
10516 if (br_entry == NULL)
10517 {
10518 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10519 stub_entry->root.string);
10520 htab->stub_error = TRUE;
10521 return FALSE;
10522 }
10523
10524 dest = (stub_entry->target_value
10525 + stub_entry->target_section->output_offset
10526 + stub_entry->target_section->output_section->vma);
10527 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10528 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10529
10530 bfd_put_64 (htab->brlt->owner, dest,
10531 htab->brlt->contents + br_entry->offset);
10532
10533 if (br_entry->iter == htab->stub_iteration)
10534 {
10535 br_entry->iter = 0;
10536
10537 if (htab->relbrlt != NULL)
10538 {
10539 /* Create a reloc for the branch lookup table entry. */
10540 Elf_Internal_Rela rela;
10541 bfd_byte *rl;
10542
10543 rela.r_offset = (br_entry->offset
10544 + htab->brlt->output_offset
10545 + htab->brlt->output_section->vma);
10546 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10547 rela.r_addend = dest;
10548
10549 rl = htab->relbrlt->contents;
10550 rl += (htab->relbrlt->reloc_count++
10551 * sizeof (Elf64_External_Rela));
10552 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10553 }
10554 else if (info->emitrelocations)
10555 {
10556 r = get_relocs (htab->brlt, 1);
10557 if (r == NULL)
10558 return FALSE;
10559 /* brlt, being SEC_LINKER_CREATED does not go through the
10560 normal reloc processing. Symbols and offsets are not
10561 translated from input file to output file form, so
10562 set up the offset per the output file. */
10563 r->r_offset = (br_entry->offset
10564 + htab->brlt->output_offset
10565 + htab->brlt->output_section->vma);
10566 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10567 r->r_addend = dest;
10568 }
10569 }
10570
10571 dest = (br_entry->offset
10572 + htab->brlt->output_offset
10573 + htab->brlt->output_section->vma);
10574
10575 off = (dest
10576 - elf_gp (htab->brlt->output_section->owner)
10577 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10578
10579 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10580 {
10581 info->callbacks->einfo
10582 (_("%P: linkage table error against `%T'\n"),
10583 stub_entry->root.string);
10584 bfd_set_error (bfd_error_bad_value);
10585 htab->stub_error = TRUE;
10586 return FALSE;
10587 }
10588
10589 if (info->emitrelocations)
10590 {
10591 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10592 if (r == NULL)
10593 return FALSE;
10594 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10595 if (bfd_big_endian (info->output_bfd))
10596 r[0].r_offset += 2;
10597 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off
10598 && htab->opd_abi)
10599 r[0].r_offset += 4;
10600 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10601 r[0].r_addend = dest;
10602 if (PPC_HA (off) != 0)
10603 {
10604 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10605 r[1].r_offset = r[0].r_offset + 4;
10606 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10607 r[1].r_addend = r[0].r_addend;
10608 }
10609 }
10610
10611 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off
10612 || !htab->opd_abi)
10613 {
10614 if (PPC_HA (off) != 0)
10615 {
10616 size = 16;
10617 bfd_put_32 (htab->stub_bfd, ADDIS_R11_R2 | PPC_HA (off), loc);
10618 loc += 4;
10619 bfd_put_32 (htab->stub_bfd, LD_R12_0R11 | PPC_LO (off), loc);
10620 }
10621 else
10622 {
10623 size = 12;
10624 bfd_put_32 (htab->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10625 }
10626 }
10627 else
10628 {
10629 bfd_vma r2off = get_r2off (info, stub_entry);
10630
10631 if (r2off == 0)
10632 {
10633 htab->stub_error = TRUE;
10634 return FALSE;
10635 }
10636
10637 bfd_put_32 (htab->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10638 loc += 4;
10639 size = 20;
10640 if (PPC_HA (off) != 0)
10641 {
10642 size += 4;
10643 bfd_put_32 (htab->stub_bfd, ADDIS_R11_R2 | PPC_HA (off), loc);
10644 loc += 4;
10645 bfd_put_32 (htab->stub_bfd, LD_R12_0R11 | PPC_LO (off), loc);
10646 loc += 4;
10647 }
10648 else
10649 {
10650 bfd_put_32 (htab->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10651 loc += 4;
10652 }
10653
10654 if (PPC_HA (r2off) != 0)
10655 {
10656 size += 4;
10657 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10658 loc += 4;
10659 }
10660 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10661 }
10662 loc += 4;
10663 bfd_put_32 (htab->stub_bfd, MTCTR_R12, loc);
10664 loc += 4;
10665 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10666 break;
10667
10668 case ppc_stub_plt_call:
10669 case ppc_stub_plt_call_r2save:
10670 if (stub_entry->h != NULL
10671 && stub_entry->h->is_func_descriptor
10672 && stub_entry->h->oh != NULL)
10673 {
10674 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10675
10676 /* If the old-ABI "dot-symbol" is undefined make it weak so
10677 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10678 FIXME: We used to define the symbol on one of the call
10679 stubs instead, which is why we test symbol section id
10680 against htab->top_id in various places. Likely all
10681 these checks could now disappear. */
10682 if (fh->elf.root.type == bfd_link_hash_undefined)
10683 fh->elf.root.type = bfd_link_hash_undefweak;
10684 /* Stop undo_symbol_twiddle changing it back to undefined. */
10685 fh->was_undefined = 0;
10686 }
10687
10688 /* Now build the stub. */
10689 dest = stub_entry->plt_ent->plt.offset & ~1;
10690 if (dest >= (bfd_vma) -2)
10691 abort ();
10692
10693 plt = htab->elf.splt;
10694 if (!htab->elf.dynamic_sections_created
10695 || stub_entry->h == NULL
10696 || stub_entry->h->elf.dynindx == -1)
10697 plt = htab->elf.iplt;
10698
10699 dest += plt->output_offset + plt->output_section->vma;
10700
10701 if (stub_entry->h == NULL
10702 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10703 {
10704 Elf_Internal_Rela rela;
10705 bfd_byte *rl;
10706
10707 rela.r_offset = dest;
10708 if (htab->opd_abi)
10709 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10710 else
10711 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10712 rela.r_addend = (stub_entry->target_value
10713 + stub_entry->target_section->output_offset
10714 + stub_entry->target_section->output_section->vma);
10715
10716 rl = (htab->elf.irelplt->contents
10717 + (htab->elf.irelplt->reloc_count++
10718 * sizeof (Elf64_External_Rela)));
10719 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10720 stub_entry->plt_ent->plt.offset |= 1;
10721 }
10722
10723 off = (dest
10724 - elf_gp (plt->output_section->owner)
10725 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10726
10727 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10728 {
10729 info->callbacks->einfo
10730 (_("%P: linkage table error against `%T'\n"),
10731 stub_entry->h != NULL
10732 ? stub_entry->h->elf.root.root.string
10733 : "<local sym>");
10734 bfd_set_error (bfd_error_bad_value);
10735 htab->stub_error = TRUE;
10736 return FALSE;
10737 }
10738
10739 if (htab->plt_stub_align != 0)
10740 {
10741 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10742
10743 stub_entry->stub_sec->size += pad;
10744 stub_entry->stub_offset = stub_entry->stub_sec->size;
10745 loc += pad;
10746 }
10747
10748 r = NULL;
10749 if (info->emitrelocations)
10750 {
10751 r = get_relocs (stub_entry->stub_sec,
10752 (2
10753 + (PPC_HA (off) != 0)
10754 + (htab->plt_static_chain
10755 && PPC_HA (off + 16) == PPC_HA (off))));
10756 if (r == NULL)
10757 return FALSE;
10758 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10759 if (bfd_big_endian (info->output_bfd))
10760 r[0].r_offset += 2;
10761 r[0].r_addend = dest;
10762 }
10763 if (stub_entry->h != NULL
10764 && (stub_entry->h == htab->tls_get_addr_fd
10765 || stub_entry->h == htab->tls_get_addr)
10766 && !htab->no_tls_get_addr_opt)
10767 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10768 else
10769 p = build_plt_stub (htab, stub_entry, loc, off, r);
10770 size = p - loc;
10771 break;
10772
10773 default:
10774 BFD_FAIL ();
10775 return FALSE;
10776 }
10777
10778 stub_entry->stub_sec->size += size;
10779
10780 if (htab->emit_stub_syms)
10781 {
10782 struct elf_link_hash_entry *h;
10783 size_t len1, len2;
10784 char *name;
10785 const char *const stub_str[] = { "long_branch",
10786 "long_branch_r2off",
10787 "plt_branch",
10788 "plt_branch_r2off",
10789 "plt_call",
10790 "plt_call" };
10791
10792 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10793 len2 = strlen (stub_entry->root.string);
10794 name = bfd_malloc (len1 + len2 + 2);
10795 if (name == NULL)
10796 return FALSE;
10797 memcpy (name, stub_entry->root.string, 9);
10798 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10799 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10800 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10801 if (h == NULL)
10802 return FALSE;
10803 if (h->root.type == bfd_link_hash_new)
10804 {
10805 h->root.type = bfd_link_hash_defined;
10806 h->root.u.def.section = stub_entry->stub_sec;
10807 h->root.u.def.value = stub_entry->stub_offset;
10808 h->ref_regular = 1;
10809 h->def_regular = 1;
10810 h->ref_regular_nonweak = 1;
10811 h->forced_local = 1;
10812 h->non_elf = 0;
10813 }
10814 }
10815
10816 return TRUE;
10817 }
10818
10819 /* As above, but don't actually build the stub. Just bump offset so
10820 we know stub section sizes, and select plt_branch stubs where
10821 long_branch stubs won't do. */
10822
10823 static bfd_boolean
10824 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10825 {
10826 struct ppc_stub_hash_entry *stub_entry;
10827 struct bfd_link_info *info;
10828 struct ppc_link_hash_table *htab;
10829 bfd_vma off;
10830 int size;
10831
10832 /* Massage our args to the form they really have. */
10833 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10834 info = in_arg;
10835
10836 htab = ppc_hash_table (info);
10837 if (htab == NULL)
10838 return FALSE;
10839
10840 if (stub_entry->stub_type == ppc_stub_plt_call
10841 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10842 {
10843 asection *plt;
10844 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10845 if (off >= (bfd_vma) -2)
10846 abort ();
10847 plt = htab->elf.splt;
10848 if (!htab->elf.dynamic_sections_created
10849 || stub_entry->h == NULL
10850 || stub_entry->h->elf.dynindx == -1)
10851 plt = htab->elf.iplt;
10852 off += (plt->output_offset
10853 + plt->output_section->vma
10854 - elf_gp (plt->output_section->owner)
10855 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10856
10857 size = plt_stub_size (htab, stub_entry, off);
10858 if (htab->plt_stub_align)
10859 size += plt_stub_pad (htab, stub_entry, off);
10860 if (info->emitrelocations)
10861 {
10862 stub_entry->stub_sec->reloc_count
10863 += ((PPC_HA (off) != 0)
10864 + (htab->opd_abi
10865 ? 2 + (htab->plt_static_chain
10866 && PPC_HA (off + 16) == PPC_HA (off))
10867 : 1));
10868 stub_entry->stub_sec->flags |= SEC_RELOC;
10869 }
10870 }
10871 else
10872 {
10873 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10874 variants. */
10875 bfd_vma r2off = 0;
10876 bfd_vma local_off = 0;
10877
10878 off = (stub_entry->target_value
10879 + stub_entry->target_section->output_offset
10880 + stub_entry->target_section->output_section->vma);
10881 off -= (stub_entry->stub_sec->size
10882 + stub_entry->stub_sec->output_offset
10883 + stub_entry->stub_sec->output_section->vma);
10884
10885 /* Reset the stub type from the plt variant in case we now
10886 can reach with a shorter stub. */
10887 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10888 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10889
10890 size = 4;
10891 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10892 {
10893 r2off = get_r2off (info, stub_entry);
10894 if (r2off == 0 && htab->opd_abi)
10895 {
10896 htab->stub_error = TRUE;
10897 return FALSE;
10898 }
10899 size = 12;
10900 if (PPC_HA (r2off) != 0)
10901 size = 16;
10902 off -= size - 4;
10903 }
10904
10905 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10906
10907 /* If the branch offset if too big, use a ppc_stub_plt_branch.
10908 Do the same for -R objects without function descriptors. */
10909 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
10910 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
10911 && r2off == 0))
10912 {
10913 struct ppc_branch_hash_entry *br_entry;
10914
10915 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10916 stub_entry->root.string + 9,
10917 TRUE, FALSE);
10918 if (br_entry == NULL)
10919 {
10920 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10921 stub_entry->root.string);
10922 htab->stub_error = TRUE;
10923 return FALSE;
10924 }
10925
10926 if (br_entry->iter != htab->stub_iteration)
10927 {
10928 br_entry->iter = htab->stub_iteration;
10929 br_entry->offset = htab->brlt->size;
10930 htab->brlt->size += 8;
10931
10932 if (htab->relbrlt != NULL)
10933 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10934 else if (info->emitrelocations)
10935 {
10936 htab->brlt->reloc_count += 1;
10937 htab->brlt->flags |= SEC_RELOC;
10938 }
10939 }
10940
10941 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10942 off = (br_entry->offset
10943 + htab->brlt->output_offset
10944 + htab->brlt->output_section->vma
10945 - elf_gp (htab->brlt->output_section->owner)
10946 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10947
10948 if (info->emitrelocations)
10949 {
10950 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10951 stub_entry->stub_sec->flags |= SEC_RELOC;
10952 }
10953
10954 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off
10955 || !htab->opd_abi)
10956 {
10957 size = 12;
10958 if (PPC_HA (off) != 0)
10959 size = 16;
10960 }
10961 else
10962 {
10963 size = 20;
10964 if (PPC_HA (off) != 0)
10965 size += 4;
10966
10967 if (PPC_HA (r2off) != 0)
10968 size += 4;
10969 }
10970 }
10971 else if (info->emitrelocations)
10972 {
10973 stub_entry->stub_sec->reloc_count += 1;
10974 stub_entry->stub_sec->flags |= SEC_RELOC;
10975 }
10976 }
10977
10978 stub_entry->stub_sec->size += size;
10979 return TRUE;
10980 }
10981
10982 /* Set up various things so that we can make a list of input sections
10983 for each output section included in the link. Returns -1 on error,
10984 0 when no stubs will be needed, and 1 on success. */
10985
10986 int
10987 ppc64_elf_setup_section_lists
10988 (struct bfd_link_info *info,
10989 asection *(*add_stub_section) (const char *, asection *),
10990 void (*layout_sections_again) (void))
10991 {
10992 bfd *input_bfd;
10993 int top_id, top_index, id;
10994 asection *section;
10995 asection **input_list;
10996 bfd_size_type amt;
10997 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10998
10999 if (htab == NULL)
11000 return -1;
11001 /* Stash our params away. */
11002 htab->add_stub_section = add_stub_section;
11003 htab->layout_sections_again = layout_sections_again;
11004
11005 /* Find the top input section id. */
11006 for (input_bfd = info->input_bfds, top_id = 3;
11007 input_bfd != NULL;
11008 input_bfd = input_bfd->link_next)
11009 {
11010 for (section = input_bfd->sections;
11011 section != NULL;
11012 section = section->next)
11013 {
11014 if (top_id < section->id)
11015 top_id = section->id;
11016 }
11017 }
11018
11019 htab->top_id = top_id;
11020 amt = sizeof (struct map_stub) * (top_id + 1);
11021 htab->stub_group = bfd_zmalloc (amt);
11022 if (htab->stub_group == NULL)
11023 return -1;
11024
11025 /* Set toc_off for com, und, abs and ind sections. */
11026 for (id = 0; id < 3; id++)
11027 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11028
11029 /* We can't use output_bfd->section_count here to find the top output
11030 section index as some sections may have been removed, and
11031 strip_excluded_output_sections doesn't renumber the indices. */
11032 for (section = info->output_bfd->sections, top_index = 0;
11033 section != NULL;
11034 section = section->next)
11035 {
11036 if (top_index < section->index)
11037 top_index = section->index;
11038 }
11039
11040 htab->top_index = top_index;
11041 amt = sizeof (asection *) * (top_index + 1);
11042 input_list = bfd_zmalloc (amt);
11043 htab->input_list = input_list;
11044 if (input_list == NULL)
11045 return -1;
11046
11047 return 1;
11048 }
11049
11050 /* Set up for first pass at multitoc partitioning. */
11051
11052 void
11053 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11054 {
11055 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11056
11057 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11058 htab->toc_bfd = NULL;
11059 htab->toc_first_sec = NULL;
11060 }
11061
11062 /* The linker repeatedly calls this function for each TOC input section
11063 and linker generated GOT section. Group input bfds such that the toc
11064 within a group is less than 64k in size. */
11065
11066 bfd_boolean
11067 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11068 {
11069 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11070 bfd_vma addr, off, limit;
11071
11072 if (htab == NULL)
11073 return FALSE;
11074
11075 if (!htab->second_toc_pass)
11076 {
11077 /* Keep track of the first .toc or .got section for this input bfd. */
11078 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11079
11080 if (new_bfd)
11081 {
11082 htab->toc_bfd = isec->owner;
11083 htab->toc_first_sec = isec;
11084 }
11085
11086 addr = isec->output_offset + isec->output_section->vma;
11087 off = addr - htab->toc_curr;
11088 limit = 0x80008000;
11089 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11090 limit = 0x10000;
11091 if (off + isec->size > limit)
11092 {
11093 addr = (htab->toc_first_sec->output_offset
11094 + htab->toc_first_sec->output_section->vma);
11095 htab->toc_curr = addr;
11096 }
11097
11098 /* toc_curr is the base address of this toc group. Set elf_gp
11099 for the input section to be the offset relative to the
11100 output toc base plus 0x8000. Making the input elf_gp an
11101 offset allows us to move the toc as a whole without
11102 recalculating input elf_gp. */
11103 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11104 off += TOC_BASE_OFF;
11105
11106 /* Die if someone uses a linker script that doesn't keep input
11107 file .toc and .got together. */
11108 if (new_bfd
11109 && elf_gp (isec->owner) != 0
11110 && elf_gp (isec->owner) != off)
11111 return FALSE;
11112
11113 elf_gp (isec->owner) = off;
11114 return TRUE;
11115 }
11116
11117 /* During the second pass toc_first_sec points to the start of
11118 a toc group, and toc_curr is used to track the old elf_gp.
11119 We use toc_bfd to ensure we only look at each bfd once. */
11120 if (htab->toc_bfd == isec->owner)
11121 return TRUE;
11122 htab->toc_bfd = isec->owner;
11123
11124 if (htab->toc_first_sec == NULL
11125 || htab->toc_curr != elf_gp (isec->owner))
11126 {
11127 htab->toc_curr = elf_gp (isec->owner);
11128 htab->toc_first_sec = isec;
11129 }
11130 addr = (htab->toc_first_sec->output_offset
11131 + htab->toc_first_sec->output_section->vma);
11132 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11133 elf_gp (isec->owner) = off;
11134
11135 return TRUE;
11136 }
11137
11138 /* Called via elf_link_hash_traverse to merge GOT entries for global
11139 symbol H. */
11140
11141 static bfd_boolean
11142 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11143 {
11144 if (h->root.type == bfd_link_hash_indirect)
11145 return TRUE;
11146
11147 merge_got_entries (&h->got.glist);
11148
11149 return TRUE;
11150 }
11151
11152 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11153 symbol H. */
11154
11155 static bfd_boolean
11156 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11157 {
11158 struct got_entry *gent;
11159
11160 if (h->root.type == bfd_link_hash_indirect)
11161 return TRUE;
11162
11163 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11164 if (!gent->is_indirect)
11165 allocate_got (h, (struct bfd_link_info *) inf, gent);
11166 return TRUE;
11167 }
11168
11169 /* Called on the first multitoc pass after the last call to
11170 ppc64_elf_next_toc_section. This function removes duplicate GOT
11171 entries. */
11172
11173 bfd_boolean
11174 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11175 {
11176 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11177 struct bfd *ibfd, *ibfd2;
11178 bfd_boolean done_something;
11179
11180 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11181
11182 if (!htab->do_multi_toc)
11183 return FALSE;
11184
11185 /* Merge global sym got entries within a toc group. */
11186 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11187
11188 /* And tlsld_got. */
11189 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11190 {
11191 struct got_entry *ent, *ent2;
11192
11193 if (!is_ppc64_elf (ibfd))
11194 continue;
11195
11196 ent = ppc64_tlsld_got (ibfd);
11197 if (!ent->is_indirect
11198 && ent->got.offset != (bfd_vma) -1)
11199 {
11200 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
11201 {
11202 if (!is_ppc64_elf (ibfd2))
11203 continue;
11204
11205 ent2 = ppc64_tlsld_got (ibfd2);
11206 if (!ent2->is_indirect
11207 && ent2->got.offset != (bfd_vma) -1
11208 && elf_gp (ibfd2) == elf_gp (ibfd))
11209 {
11210 ent2->is_indirect = TRUE;
11211 ent2->got.ent = ent;
11212 }
11213 }
11214 }
11215 }
11216
11217 /* Zap sizes of got sections. */
11218 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11219 htab->elf.irelplt->size -= htab->got_reli_size;
11220 htab->got_reli_size = 0;
11221
11222 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11223 {
11224 asection *got, *relgot;
11225
11226 if (!is_ppc64_elf (ibfd))
11227 continue;
11228
11229 got = ppc64_elf_tdata (ibfd)->got;
11230 if (got != NULL)
11231 {
11232 got->rawsize = got->size;
11233 got->size = 0;
11234 relgot = ppc64_elf_tdata (ibfd)->relgot;
11235 relgot->rawsize = relgot->size;
11236 relgot->size = 0;
11237 }
11238 }
11239
11240 /* Now reallocate the got, local syms first. We don't need to
11241 allocate section contents again since we never increase size. */
11242 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11243 {
11244 struct got_entry **lgot_ents;
11245 struct got_entry **end_lgot_ents;
11246 struct plt_entry **local_plt;
11247 struct plt_entry **end_local_plt;
11248 unsigned char *lgot_masks;
11249 bfd_size_type locsymcount;
11250 Elf_Internal_Shdr *symtab_hdr;
11251 asection *s;
11252
11253 if (!is_ppc64_elf (ibfd))
11254 continue;
11255
11256 lgot_ents = elf_local_got_ents (ibfd);
11257 if (!lgot_ents)
11258 continue;
11259
11260 symtab_hdr = &elf_symtab_hdr (ibfd);
11261 locsymcount = symtab_hdr->sh_info;
11262 end_lgot_ents = lgot_ents + locsymcount;
11263 local_plt = (struct plt_entry **) end_lgot_ents;
11264 end_local_plt = local_plt + locsymcount;
11265 lgot_masks = (unsigned char *) end_local_plt;
11266 s = ppc64_elf_tdata (ibfd)->got;
11267 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11268 {
11269 struct got_entry *ent;
11270
11271 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11272 {
11273 unsigned int ent_size = 8;
11274 unsigned int rel_size = sizeof (Elf64_External_Rela);
11275
11276 ent->got.offset = s->size;
11277 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11278 {
11279 ent_size *= 2;
11280 rel_size *= 2;
11281 }
11282 s->size += ent_size;
11283 if ((*lgot_masks & PLT_IFUNC) != 0)
11284 {
11285 htab->elf.irelplt->size += rel_size;
11286 htab->got_reli_size += rel_size;
11287 }
11288 else if (info->shared)
11289 {
11290 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11291 srel->size += rel_size;
11292 }
11293 }
11294 }
11295 }
11296
11297 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11298
11299 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11300 {
11301 struct got_entry *ent;
11302
11303 if (!is_ppc64_elf (ibfd))
11304 continue;
11305
11306 ent = ppc64_tlsld_got (ibfd);
11307 if (!ent->is_indirect
11308 && ent->got.offset != (bfd_vma) -1)
11309 {
11310 asection *s = ppc64_elf_tdata (ibfd)->got;
11311 ent->got.offset = s->size;
11312 s->size += 16;
11313 if (info->shared)
11314 {
11315 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11316 srel->size += sizeof (Elf64_External_Rela);
11317 }
11318 }
11319 }
11320
11321 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11322 if (!done_something)
11323 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11324 {
11325 asection *got;
11326
11327 if (!is_ppc64_elf (ibfd))
11328 continue;
11329
11330 got = ppc64_elf_tdata (ibfd)->got;
11331 if (got != NULL)
11332 {
11333 done_something = got->rawsize != got->size;
11334 if (done_something)
11335 break;
11336 }
11337 }
11338
11339 if (done_something)
11340 (*htab->layout_sections_again) ();
11341
11342 /* Set up for second pass over toc sections to recalculate elf_gp
11343 on input sections. */
11344 htab->toc_bfd = NULL;
11345 htab->toc_first_sec = NULL;
11346 htab->second_toc_pass = TRUE;
11347 return done_something;
11348 }
11349
11350 /* Called after second pass of multitoc partitioning. */
11351
11352 void
11353 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11354 {
11355 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11356
11357 /* After the second pass, toc_curr tracks the TOC offset used
11358 for code sections below in ppc64_elf_next_input_section. */
11359 htab->toc_curr = TOC_BASE_OFF;
11360 }
11361
11362 /* No toc references were found in ISEC. If the code in ISEC makes no
11363 calls, then there's no need to use toc adjusting stubs when branching
11364 into ISEC. Actually, indirect calls from ISEC are OK as they will
11365 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11366 needed, and 2 if a cyclical call-graph was found but no other reason
11367 for a stub was detected. If called from the top level, a return of
11368 2 means the same as a return of 0. */
11369
11370 static int
11371 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11372 {
11373 int ret;
11374
11375 /* Mark this section as checked. */
11376 isec->call_check_done = 1;
11377
11378 /* We know none of our code bearing sections will need toc stubs. */
11379 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11380 return 0;
11381
11382 if (isec->size == 0)
11383 return 0;
11384
11385 if (isec->output_section == NULL)
11386 return 0;
11387
11388 ret = 0;
11389 if (isec->reloc_count != 0)
11390 {
11391 Elf_Internal_Rela *relstart, *rel;
11392 Elf_Internal_Sym *local_syms;
11393 struct ppc_link_hash_table *htab;
11394
11395 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11396 info->keep_memory);
11397 if (relstart == NULL)
11398 return -1;
11399
11400 /* Look for branches to outside of this section. */
11401 local_syms = NULL;
11402 htab = ppc_hash_table (info);
11403 if (htab == NULL)
11404 return -1;
11405
11406 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11407 {
11408 enum elf_ppc64_reloc_type r_type;
11409 unsigned long r_symndx;
11410 struct elf_link_hash_entry *h;
11411 struct ppc_link_hash_entry *eh;
11412 Elf_Internal_Sym *sym;
11413 asection *sym_sec;
11414 struct _opd_sec_data *opd;
11415 bfd_vma sym_value;
11416 bfd_vma dest;
11417
11418 r_type = ELF64_R_TYPE (rel->r_info);
11419 if (r_type != R_PPC64_REL24
11420 && r_type != R_PPC64_REL14
11421 && r_type != R_PPC64_REL14_BRTAKEN
11422 && r_type != R_PPC64_REL14_BRNTAKEN)
11423 continue;
11424
11425 r_symndx = ELF64_R_SYM (rel->r_info);
11426 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11427 isec->owner))
11428 {
11429 ret = -1;
11430 break;
11431 }
11432
11433 /* Calls to dynamic lib functions go through a plt call stub
11434 that uses r2. */
11435 eh = (struct ppc_link_hash_entry *) h;
11436 if (eh != NULL
11437 && (eh->elf.plt.plist != NULL
11438 || (eh->oh != NULL
11439 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11440 {
11441 ret = 1;
11442 break;
11443 }
11444
11445 if (sym_sec == NULL)
11446 /* Ignore other undefined symbols. */
11447 continue;
11448
11449 /* Assume branches to other sections not included in the
11450 link need stubs too, to cover -R and absolute syms. */
11451 if (sym_sec->output_section == NULL)
11452 {
11453 ret = 1;
11454 break;
11455 }
11456
11457 if (h == NULL)
11458 sym_value = sym->st_value;
11459 else
11460 {
11461 if (h->root.type != bfd_link_hash_defined
11462 && h->root.type != bfd_link_hash_defweak)
11463 abort ();
11464 sym_value = h->root.u.def.value;
11465 }
11466 sym_value += rel->r_addend;
11467
11468 /* If this branch reloc uses an opd sym, find the code section. */
11469 opd = get_opd_info (sym_sec);
11470 if (opd != NULL)
11471 {
11472 if (h == NULL && opd->adjust != NULL)
11473 {
11474 long adjust;
11475
11476 adjust = opd->adjust[sym->st_value / 8];
11477 if (adjust == -1)
11478 /* Assume deleted functions won't ever be called. */
11479 continue;
11480 sym_value += adjust;
11481 }
11482
11483 dest = opd_entry_value (sym_sec, sym_value,
11484 &sym_sec, NULL, FALSE);
11485 if (dest == (bfd_vma) -1)
11486 continue;
11487 }
11488 else
11489 dest = (sym_value
11490 + sym_sec->output_offset
11491 + sym_sec->output_section->vma);
11492
11493 /* Ignore branch to self. */
11494 if (sym_sec == isec)
11495 continue;
11496
11497 /* If the called function uses the toc, we need a stub. */
11498 if (sym_sec->has_toc_reloc
11499 || sym_sec->makes_toc_func_call)
11500 {
11501 ret = 1;
11502 break;
11503 }
11504
11505 /* Assume any branch that needs a long branch stub might in fact
11506 need a plt_branch stub. A plt_branch stub uses r2. */
11507 else if (dest - (isec->output_offset
11508 + isec->output_section->vma
11509 + rel->r_offset) + (1 << 25)
11510 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11511 ? h->other
11512 : sym->st_other))
11513 {
11514 ret = 1;
11515 break;
11516 }
11517
11518 /* If calling back to a section in the process of being
11519 tested, we can't say for sure that no toc adjusting stubs
11520 are needed, so don't return zero. */
11521 else if (sym_sec->call_check_in_progress)
11522 ret = 2;
11523
11524 /* Branches to another section that itself doesn't have any TOC
11525 references are OK. Recursively call ourselves to check. */
11526 else if (!sym_sec->call_check_done)
11527 {
11528 int recur;
11529
11530 /* Mark current section as indeterminate, so that other
11531 sections that call back to current won't be marked as
11532 known. */
11533 isec->call_check_in_progress = 1;
11534 recur = toc_adjusting_stub_needed (info, sym_sec);
11535 isec->call_check_in_progress = 0;
11536
11537 if (recur != 0)
11538 {
11539 ret = recur;
11540 if (recur != 2)
11541 break;
11542 }
11543 }
11544 }
11545
11546 if (local_syms != NULL
11547 && (elf_symtab_hdr (isec->owner).contents
11548 != (unsigned char *) local_syms))
11549 free (local_syms);
11550 if (elf_section_data (isec)->relocs != relstart)
11551 free (relstart);
11552 }
11553
11554 if ((ret & 1) == 0
11555 && isec->map_head.s != NULL
11556 && (strcmp (isec->output_section->name, ".init") == 0
11557 || strcmp (isec->output_section->name, ".fini") == 0))
11558 {
11559 if (isec->map_head.s->has_toc_reloc
11560 || isec->map_head.s->makes_toc_func_call)
11561 ret = 1;
11562 else if (!isec->map_head.s->call_check_done)
11563 {
11564 int recur;
11565 isec->call_check_in_progress = 1;
11566 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11567 isec->call_check_in_progress = 0;
11568 if (recur != 0)
11569 ret = recur;
11570 }
11571 }
11572
11573 if (ret == 1)
11574 isec->makes_toc_func_call = 1;
11575
11576 return ret;
11577 }
11578
11579 /* The linker repeatedly calls this function for each input section,
11580 in the order that input sections are linked into output sections.
11581 Build lists of input sections to determine groupings between which
11582 we may insert linker stubs. */
11583
11584 bfd_boolean
11585 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11586 {
11587 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11588
11589 if (htab == NULL)
11590 return FALSE;
11591
11592 if ((isec->output_section->flags & SEC_CODE) != 0
11593 && isec->output_section->index <= htab->top_index)
11594 {
11595 asection **list = htab->input_list + isec->output_section->index;
11596 /* Steal the link_sec pointer for our list. */
11597 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11598 /* This happens to make the list in reverse order,
11599 which is what we want. */
11600 PREV_SEC (isec) = *list;
11601 *list = isec;
11602 }
11603
11604 if (htab->multi_toc_needed)
11605 {
11606 /* Analyse sections that aren't already flagged as needing a
11607 valid toc pointer. Exclude .fixup for the linux kernel.
11608 .fixup contains branches, but only back to the function that
11609 hit an exception. */
11610 if (!(isec->has_toc_reloc
11611 || (isec->flags & SEC_CODE) == 0
11612 || strcmp (isec->name, ".fixup") == 0
11613 || isec->call_check_done))
11614 {
11615 if (toc_adjusting_stub_needed (info, isec) < 0)
11616 return FALSE;
11617 }
11618 /* Make all sections use the TOC assigned for this object file.
11619 This will be wrong for pasted sections; We fix that in
11620 check_pasted_section(). */
11621 if (elf_gp (isec->owner) != 0)
11622 htab->toc_curr = elf_gp (isec->owner);
11623 }
11624
11625 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11626 return TRUE;
11627 }
11628
11629 /* Check that all .init and .fini sections use the same toc, if they
11630 have toc relocs. */
11631
11632 static bfd_boolean
11633 check_pasted_section (struct bfd_link_info *info, const char *name)
11634 {
11635 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11636
11637 if (o != NULL)
11638 {
11639 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11640 bfd_vma toc_off = 0;
11641 asection *i;
11642
11643 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11644 if (i->has_toc_reloc)
11645 {
11646 if (toc_off == 0)
11647 toc_off = htab->stub_group[i->id].toc_off;
11648 else if (toc_off != htab->stub_group[i->id].toc_off)
11649 return FALSE;
11650 }
11651
11652 if (toc_off == 0)
11653 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11654 if (i->makes_toc_func_call)
11655 {
11656 toc_off = htab->stub_group[i->id].toc_off;
11657 break;
11658 }
11659
11660 /* Make sure the whole pasted function uses the same toc offset. */
11661 if (toc_off != 0)
11662 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11663 htab->stub_group[i->id].toc_off = toc_off;
11664 }
11665 return TRUE;
11666 }
11667
11668 bfd_boolean
11669 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11670 {
11671 return (check_pasted_section (info, ".init")
11672 & check_pasted_section (info, ".fini"));
11673 }
11674
11675 /* See whether we can group stub sections together. Grouping stub
11676 sections may result in fewer stubs. More importantly, we need to
11677 put all .init* and .fini* stubs at the beginning of the .init or
11678 .fini output sections respectively, because glibc splits the
11679 _init and _fini functions into multiple parts. Putting a stub in
11680 the middle of a function is not a good idea. */
11681
11682 static void
11683 group_sections (struct ppc_link_hash_table *htab,
11684 bfd_size_type stub_group_size,
11685 bfd_boolean stubs_always_before_branch)
11686 {
11687 asection **list;
11688 bfd_size_type stub14_group_size;
11689 bfd_boolean suppress_size_errors;
11690
11691 suppress_size_errors = FALSE;
11692 stub14_group_size = stub_group_size;
11693 if (stub_group_size == 1)
11694 {
11695 /* Default values. */
11696 if (stubs_always_before_branch)
11697 {
11698 stub_group_size = 0x1e00000;
11699 stub14_group_size = 0x7800;
11700 }
11701 else
11702 {
11703 stub_group_size = 0x1c00000;
11704 stub14_group_size = 0x7000;
11705 }
11706 suppress_size_errors = TRUE;
11707 }
11708
11709 list = htab->input_list + htab->top_index;
11710 do
11711 {
11712 asection *tail = *list;
11713 while (tail != NULL)
11714 {
11715 asection *curr;
11716 asection *prev;
11717 bfd_size_type total;
11718 bfd_boolean big_sec;
11719 bfd_vma curr_toc;
11720
11721 curr = tail;
11722 total = tail->size;
11723 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11724 && ppc64_elf_section_data (tail)->has_14bit_branch
11725 ? stub14_group_size : stub_group_size);
11726 if (big_sec && !suppress_size_errors)
11727 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11728 tail->owner, tail);
11729 curr_toc = htab->stub_group[tail->id].toc_off;
11730
11731 while ((prev = PREV_SEC (curr)) != NULL
11732 && ((total += curr->output_offset - prev->output_offset)
11733 < (ppc64_elf_section_data (prev) != NULL
11734 && ppc64_elf_section_data (prev)->has_14bit_branch
11735 ? stub14_group_size : stub_group_size))
11736 && htab->stub_group[prev->id].toc_off == curr_toc)
11737 curr = prev;
11738
11739 /* OK, the size from the start of CURR to the end is less
11740 than stub_group_size and thus can be handled by one stub
11741 section. (or the tail section is itself larger than
11742 stub_group_size, in which case we may be toast.) We
11743 should really be keeping track of the total size of stubs
11744 added here, as stubs contribute to the final output
11745 section size. That's a little tricky, and this way will
11746 only break if stubs added make the total size more than
11747 2^25, ie. for the default stub_group_size, if stubs total
11748 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11749 do
11750 {
11751 prev = PREV_SEC (tail);
11752 /* Set up this stub group. */
11753 htab->stub_group[tail->id].link_sec = curr;
11754 }
11755 while (tail != curr && (tail = prev) != NULL);
11756
11757 /* But wait, there's more! Input sections up to stub_group_size
11758 bytes before the stub section can be handled by it too.
11759 Don't do this if we have a really large section after the
11760 stubs, as adding more stubs increases the chance that
11761 branches may not reach into the stub section. */
11762 if (!stubs_always_before_branch && !big_sec)
11763 {
11764 total = 0;
11765 while (prev != NULL
11766 && ((total += tail->output_offset - prev->output_offset)
11767 < (ppc64_elf_section_data (prev) != NULL
11768 && ppc64_elf_section_data (prev)->has_14bit_branch
11769 ? stub14_group_size : stub_group_size))
11770 && htab->stub_group[prev->id].toc_off == curr_toc)
11771 {
11772 tail = prev;
11773 prev = PREV_SEC (tail);
11774 htab->stub_group[tail->id].link_sec = curr;
11775 }
11776 }
11777 tail = prev;
11778 }
11779 }
11780 while (list-- != htab->input_list);
11781 free (htab->input_list);
11782 #undef PREV_SEC
11783 }
11784
11785 static const unsigned char glink_eh_frame_cie[] =
11786 {
11787 0, 0, 0, 16, /* length. */
11788 0, 0, 0, 0, /* id. */
11789 1, /* CIE version. */
11790 'z', 'R', 0, /* Augmentation string. */
11791 4, /* Code alignment. */
11792 0x78, /* Data alignment. */
11793 65, /* RA reg. */
11794 1, /* Augmentation size. */
11795 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11796 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11797 };
11798
11799 /* Stripping output sections is normally done before dynamic section
11800 symbols have been allocated. This function is called later, and
11801 handles cases like htab->brlt which is mapped to its own output
11802 section. */
11803
11804 static void
11805 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11806 {
11807 if (isec->size == 0
11808 && isec->output_section->size == 0
11809 && !(isec->output_section->flags & SEC_KEEP)
11810 && !bfd_section_removed_from_list (info->output_bfd,
11811 isec->output_section)
11812 && elf_section_data (isec->output_section)->dynindx == 0)
11813 {
11814 isec->output_section->flags |= SEC_EXCLUDE;
11815 bfd_section_list_remove (info->output_bfd, isec->output_section);
11816 info->output_bfd->section_count--;
11817 }
11818 }
11819
11820 /* Determine and set the size of the stub section for a final link.
11821
11822 The basic idea here is to examine all the relocations looking for
11823 PC-relative calls to a target that is unreachable with a "bl"
11824 instruction. */
11825
11826 bfd_boolean
11827 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11828 bfd_boolean plt_static_chain, int plt_thread_safe,
11829 int plt_stub_align)
11830 {
11831 bfd_size_type stub_group_size;
11832 bfd_boolean stubs_always_before_branch;
11833 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11834
11835 if (htab == NULL)
11836 return FALSE;
11837
11838 htab->plt_static_chain = plt_static_chain;
11839 htab->plt_stub_align = plt_stub_align;
11840 if (plt_thread_safe == -1 && !info->executable)
11841 plt_thread_safe = 1;
11842 if (!htab->opd_abi)
11843 plt_thread_safe = 0;
11844 else if (plt_thread_safe == -1)
11845 {
11846 static const char *const thread_starter[] =
11847 {
11848 "pthread_create",
11849 /* libstdc++ */
11850 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11851 /* librt */
11852 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11853 "mq_notify", "create_timer",
11854 /* libanl */
11855 "getaddrinfo_a",
11856 /* libgomp */
11857 "GOMP_parallel_start",
11858 "GOMP_parallel_loop_static_start",
11859 "GOMP_parallel_loop_dynamic_start",
11860 "GOMP_parallel_loop_guided_start",
11861 "GOMP_parallel_loop_runtime_start",
11862 "GOMP_parallel_sections_start",
11863 };
11864 unsigned i;
11865
11866 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11867 {
11868 struct elf_link_hash_entry *h;
11869 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11870 FALSE, FALSE, TRUE);
11871 plt_thread_safe = h != NULL && h->ref_regular;
11872 if (plt_thread_safe)
11873 break;
11874 }
11875 }
11876 htab->plt_thread_safe = plt_thread_safe;
11877 stubs_always_before_branch = group_size < 0;
11878 if (group_size < 0)
11879 stub_group_size = -group_size;
11880 else
11881 stub_group_size = group_size;
11882
11883 group_sections (htab, stub_group_size, stubs_always_before_branch);
11884
11885 while (1)
11886 {
11887 bfd *input_bfd;
11888 unsigned int bfd_indx;
11889 asection *stub_sec;
11890
11891 htab->stub_iteration += 1;
11892
11893 for (input_bfd = info->input_bfds, bfd_indx = 0;
11894 input_bfd != NULL;
11895 input_bfd = input_bfd->link_next, bfd_indx++)
11896 {
11897 Elf_Internal_Shdr *symtab_hdr;
11898 asection *section;
11899 Elf_Internal_Sym *local_syms = NULL;
11900
11901 if (!is_ppc64_elf (input_bfd))
11902 continue;
11903
11904 /* We'll need the symbol table in a second. */
11905 symtab_hdr = &elf_symtab_hdr (input_bfd);
11906 if (symtab_hdr->sh_info == 0)
11907 continue;
11908
11909 /* Walk over each section attached to the input bfd. */
11910 for (section = input_bfd->sections;
11911 section != NULL;
11912 section = section->next)
11913 {
11914 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11915
11916 /* If there aren't any relocs, then there's nothing more
11917 to do. */
11918 if ((section->flags & SEC_RELOC) == 0
11919 || (section->flags & SEC_ALLOC) == 0
11920 || (section->flags & SEC_LOAD) == 0
11921 || (section->flags & SEC_CODE) == 0
11922 || section->reloc_count == 0)
11923 continue;
11924
11925 /* If this section is a link-once section that will be
11926 discarded, then don't create any stubs. */
11927 if (section->output_section == NULL
11928 || section->output_section->owner != info->output_bfd)
11929 continue;
11930
11931 /* Get the relocs. */
11932 internal_relocs
11933 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11934 info->keep_memory);
11935 if (internal_relocs == NULL)
11936 goto error_ret_free_local;
11937
11938 /* Now examine each relocation. */
11939 irela = internal_relocs;
11940 irelaend = irela + section->reloc_count;
11941 for (; irela < irelaend; irela++)
11942 {
11943 enum elf_ppc64_reloc_type r_type;
11944 unsigned int r_indx;
11945 enum ppc_stub_type stub_type;
11946 struct ppc_stub_hash_entry *stub_entry;
11947 asection *sym_sec, *code_sec;
11948 bfd_vma sym_value, code_value;
11949 bfd_vma destination;
11950 unsigned long local_off;
11951 bfd_boolean ok_dest;
11952 struct ppc_link_hash_entry *hash;
11953 struct ppc_link_hash_entry *fdh;
11954 struct elf_link_hash_entry *h;
11955 Elf_Internal_Sym *sym;
11956 char *stub_name;
11957 const asection *id_sec;
11958 struct _opd_sec_data *opd;
11959 struct plt_entry *plt_ent;
11960
11961 r_type = ELF64_R_TYPE (irela->r_info);
11962 r_indx = ELF64_R_SYM (irela->r_info);
11963
11964 if (r_type >= R_PPC64_max)
11965 {
11966 bfd_set_error (bfd_error_bad_value);
11967 goto error_ret_free_internal;
11968 }
11969
11970 /* Only look for stubs on branch instructions. */
11971 if (r_type != R_PPC64_REL24
11972 && r_type != R_PPC64_REL14
11973 && r_type != R_PPC64_REL14_BRTAKEN
11974 && r_type != R_PPC64_REL14_BRNTAKEN)
11975 continue;
11976
11977 /* Now determine the call target, its name, value,
11978 section. */
11979 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11980 r_indx, input_bfd))
11981 goto error_ret_free_internal;
11982 hash = (struct ppc_link_hash_entry *) h;
11983
11984 ok_dest = FALSE;
11985 fdh = NULL;
11986 sym_value = 0;
11987 if (hash == NULL)
11988 {
11989 sym_value = sym->st_value;
11990 ok_dest = TRUE;
11991 }
11992 else if (hash->elf.root.type == bfd_link_hash_defined
11993 || hash->elf.root.type == bfd_link_hash_defweak)
11994 {
11995 sym_value = hash->elf.root.u.def.value;
11996 if (sym_sec->output_section != NULL)
11997 ok_dest = TRUE;
11998 }
11999 else if (hash->elf.root.type == bfd_link_hash_undefweak
12000 || hash->elf.root.type == bfd_link_hash_undefined)
12001 {
12002 /* Recognise an old ABI func code entry sym, and
12003 use the func descriptor sym instead if it is
12004 defined. */
12005 if (hash->elf.root.root.string[0] == '.'
12006 && (fdh = lookup_fdh (hash, htab)) != NULL)
12007 {
12008 if (fdh->elf.root.type == bfd_link_hash_defined
12009 || fdh->elf.root.type == bfd_link_hash_defweak)
12010 {
12011 sym_sec = fdh->elf.root.u.def.section;
12012 sym_value = fdh->elf.root.u.def.value;
12013 if (sym_sec->output_section != NULL)
12014 ok_dest = TRUE;
12015 }
12016 else
12017 fdh = NULL;
12018 }
12019 }
12020 else
12021 {
12022 bfd_set_error (bfd_error_bad_value);
12023 goto error_ret_free_internal;
12024 }
12025
12026 destination = 0;
12027 local_off = 0;
12028 if (ok_dest)
12029 {
12030 sym_value += irela->r_addend;
12031 destination = (sym_value
12032 + sym_sec->output_offset
12033 + sym_sec->output_section->vma);
12034 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12035 ? hash->elf.other
12036 : sym->st_other);
12037 }
12038
12039 code_sec = sym_sec;
12040 code_value = sym_value;
12041 opd = get_opd_info (sym_sec);
12042 if (opd != NULL)
12043 {
12044 bfd_vma dest;
12045
12046 if (hash == NULL && opd->adjust != NULL)
12047 {
12048 long adjust = opd->adjust[sym_value / 8];
12049 if (adjust == -1)
12050 continue;
12051 code_value += adjust;
12052 sym_value += adjust;
12053 }
12054 dest = opd_entry_value (sym_sec, sym_value,
12055 &code_sec, &code_value, FALSE);
12056 if (dest != (bfd_vma) -1)
12057 {
12058 destination = dest;
12059 if (fdh != NULL)
12060 {
12061 /* Fixup old ABI sym to point at code
12062 entry. */
12063 hash->elf.root.type = bfd_link_hash_defweak;
12064 hash->elf.root.u.def.section = code_sec;
12065 hash->elf.root.u.def.value = code_value;
12066 }
12067 }
12068 }
12069
12070 /* Determine what (if any) linker stub is needed. */
12071 plt_ent = NULL;
12072 stub_type = ppc_type_of_stub (section, irela, &hash,
12073 &plt_ent, destination,
12074 local_off);
12075
12076 if (stub_type != ppc_stub_plt_call)
12077 {
12078 /* Check whether we need a TOC adjusting stub.
12079 Since the linker pastes together pieces from
12080 different object files when creating the
12081 _init and _fini functions, it may be that a
12082 call to what looks like a local sym is in
12083 fact a call needing a TOC adjustment. */
12084 if (code_sec != NULL
12085 && code_sec->output_section != NULL
12086 && (htab->stub_group[code_sec->id].toc_off
12087 != htab->stub_group[section->id].toc_off)
12088 && (code_sec->has_toc_reloc
12089 || code_sec->makes_toc_func_call))
12090 stub_type = ppc_stub_long_branch_r2off;
12091 }
12092
12093 if (stub_type == ppc_stub_none)
12094 continue;
12095
12096 /* __tls_get_addr calls might be eliminated. */
12097 if (stub_type != ppc_stub_plt_call
12098 && hash != NULL
12099 && (hash == htab->tls_get_addr
12100 || hash == htab->tls_get_addr_fd)
12101 && section->has_tls_reloc
12102 && irela != internal_relocs)
12103 {
12104 /* Get tls info. */
12105 unsigned char *tls_mask;
12106
12107 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12108 irela - 1, input_bfd))
12109 goto error_ret_free_internal;
12110 if (*tls_mask != 0)
12111 continue;
12112 }
12113
12114 if (stub_type == ppc_stub_plt_call
12115 && irela + 1 < irelaend
12116 && irela[1].r_offset == irela->r_offset + 4
12117 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12118 {
12119 if (!tocsave_find (htab, INSERT,
12120 &local_syms, irela + 1, input_bfd))
12121 goto error_ret_free_internal;
12122 }
12123 else if (stub_type == ppc_stub_plt_call)
12124 stub_type = ppc_stub_plt_call_r2save;
12125
12126 /* Support for grouping stub sections. */
12127 id_sec = htab->stub_group[section->id].link_sec;
12128
12129 /* Get the name of this stub. */
12130 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12131 if (!stub_name)
12132 goto error_ret_free_internal;
12133
12134 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12135 stub_name, FALSE, FALSE);
12136 if (stub_entry != NULL)
12137 {
12138 /* The proper stub has already been created. */
12139 free (stub_name);
12140 if (stub_type == ppc_stub_plt_call_r2save)
12141 stub_entry->stub_type = stub_type;
12142 continue;
12143 }
12144
12145 stub_entry = ppc_add_stub (stub_name, section, info);
12146 if (stub_entry == NULL)
12147 {
12148 free (stub_name);
12149 error_ret_free_internal:
12150 if (elf_section_data (section)->relocs == NULL)
12151 free (internal_relocs);
12152 error_ret_free_local:
12153 if (local_syms != NULL
12154 && (symtab_hdr->contents
12155 != (unsigned char *) local_syms))
12156 free (local_syms);
12157 return FALSE;
12158 }
12159
12160 stub_entry->stub_type = stub_type;
12161 if (stub_type != ppc_stub_plt_call
12162 && stub_type != ppc_stub_plt_call_r2save)
12163 {
12164 stub_entry->target_value = code_value;
12165 stub_entry->target_section = code_sec;
12166 }
12167 else
12168 {
12169 stub_entry->target_value = sym_value;
12170 stub_entry->target_section = sym_sec;
12171 }
12172 stub_entry->h = hash;
12173 stub_entry->plt_ent = plt_ent;
12174 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12175
12176 if (stub_entry->h != NULL)
12177 htab->stub_globals += 1;
12178 }
12179
12180 /* We're done with the internal relocs, free them. */
12181 if (elf_section_data (section)->relocs != internal_relocs)
12182 free (internal_relocs);
12183 }
12184
12185 if (local_syms != NULL
12186 && symtab_hdr->contents != (unsigned char *) local_syms)
12187 {
12188 if (!info->keep_memory)
12189 free (local_syms);
12190 else
12191 symtab_hdr->contents = (unsigned char *) local_syms;
12192 }
12193 }
12194
12195 /* We may have added some stubs. Find out the new size of the
12196 stub sections. */
12197 for (stub_sec = htab->stub_bfd->sections;
12198 stub_sec != NULL;
12199 stub_sec = stub_sec->next)
12200 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12201 {
12202 stub_sec->rawsize = stub_sec->size;
12203 stub_sec->size = 0;
12204 stub_sec->reloc_count = 0;
12205 stub_sec->flags &= ~SEC_RELOC;
12206 }
12207
12208 htab->brlt->size = 0;
12209 htab->brlt->reloc_count = 0;
12210 htab->brlt->flags &= ~SEC_RELOC;
12211 if (htab->relbrlt != NULL)
12212 htab->relbrlt->size = 0;
12213
12214 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12215
12216 if (info->emitrelocations
12217 && htab->glink != NULL && htab->glink->size != 0)
12218 {
12219 htab->glink->reloc_count = 1;
12220 htab->glink->flags |= SEC_RELOC;
12221 }
12222
12223 if (htab->glink_eh_frame != NULL
12224 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12225 && htab->glink_eh_frame->output_section->size != 0)
12226 {
12227 size_t size = 0, align;
12228
12229 for (stub_sec = htab->stub_bfd->sections;
12230 stub_sec != NULL;
12231 stub_sec = stub_sec->next)
12232 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12233 size += 20;
12234 if (htab->glink != NULL && htab->glink->size != 0)
12235 size += 24;
12236 if (size != 0)
12237 size += sizeof (glink_eh_frame_cie);
12238 align = 1;
12239 align <<= htab->glink_eh_frame->output_section->alignment_power;
12240 align -= 1;
12241 size = (size + align) & ~align;
12242 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12243 htab->glink_eh_frame->size = size;
12244 }
12245
12246 if (htab->plt_stub_align != 0)
12247 for (stub_sec = htab->stub_bfd->sections;
12248 stub_sec != NULL;
12249 stub_sec = stub_sec->next)
12250 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12251 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12252 & (-1 << htab->plt_stub_align));
12253
12254 for (stub_sec = htab->stub_bfd->sections;
12255 stub_sec != NULL;
12256 stub_sec = stub_sec->next)
12257 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12258 && stub_sec->rawsize != stub_sec->size)
12259 break;
12260
12261 /* Exit from this loop when no stubs have been added, and no stubs
12262 have changed size. */
12263 if (stub_sec == NULL
12264 && (htab->glink_eh_frame == NULL
12265 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12266 break;
12267
12268 /* Ask the linker to do its stuff. */
12269 (*htab->layout_sections_again) ();
12270 }
12271
12272 maybe_strip_output (info, htab->brlt);
12273 if (htab->glink_eh_frame != NULL)
12274 maybe_strip_output (info, htab->glink_eh_frame);
12275
12276 return TRUE;
12277 }
12278
12279 /* Called after we have determined section placement. If sections
12280 move, we'll be called again. Provide a value for TOCstart. */
12281
12282 bfd_vma
12283 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12284 {
12285 asection *s;
12286 bfd_vma TOCstart;
12287
12288 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12289 order. The TOC starts where the first of these sections starts. */
12290 s = bfd_get_section_by_name (obfd, ".got");
12291 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12292 s = bfd_get_section_by_name (obfd, ".toc");
12293 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12294 s = bfd_get_section_by_name (obfd, ".tocbss");
12295 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12296 s = bfd_get_section_by_name (obfd, ".plt");
12297 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12298 {
12299 /* This may happen for
12300 o references to TOC base (SYM@toc / TOC[tc0]) without a
12301 .toc directive
12302 o bad linker script
12303 o --gc-sections and empty TOC sections
12304
12305 FIXME: Warn user? */
12306
12307 /* Look for a likely section. We probably won't even be
12308 using TOCstart. */
12309 for (s = obfd->sections; s != NULL; s = s->next)
12310 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12311 | SEC_EXCLUDE))
12312 == (SEC_ALLOC | SEC_SMALL_DATA))
12313 break;
12314 if (s == NULL)
12315 for (s = obfd->sections; s != NULL; s = s->next)
12316 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12317 == (SEC_ALLOC | SEC_SMALL_DATA))
12318 break;
12319 if (s == NULL)
12320 for (s = obfd->sections; s != NULL; s = s->next)
12321 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12322 == SEC_ALLOC)
12323 break;
12324 if (s == NULL)
12325 for (s = obfd->sections; s != NULL; s = s->next)
12326 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12327 break;
12328 }
12329
12330 TOCstart = 0;
12331 if (s != NULL)
12332 TOCstart = s->output_section->vma + s->output_offset;
12333
12334 _bfd_set_gp_value (obfd, TOCstart);
12335
12336 if (info != NULL && s != NULL && is_ppc64_elf (obfd))
12337 {
12338 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12339
12340 if (htab != NULL
12341 && htab->elf.hgot != NULL)
12342 {
12343 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12344 htab->elf.hgot->root.u.def.section = s;
12345 }
12346 }
12347 return TOCstart;
12348 }
12349
12350 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12351 write out any global entry stubs. */
12352
12353 static bfd_boolean
12354 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12355 {
12356 struct bfd_link_info *info;
12357 struct ppc_link_hash_table *htab;
12358 struct plt_entry *pent;
12359 asection *s;
12360
12361 if (h->root.type == bfd_link_hash_indirect)
12362 return TRUE;
12363
12364 if (!h->pointer_equality_needed)
12365 return TRUE;
12366
12367 if (h->def_regular)
12368 return TRUE;
12369
12370 info = inf;
12371 htab = ppc_hash_table (info);
12372 if (htab == NULL)
12373 return FALSE;
12374
12375 s = htab->glink;
12376 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12377 if (pent->plt.offset != (bfd_vma) -1
12378 && pent->addend == 0)
12379 {
12380 bfd_byte *p;
12381 asection *plt;
12382 bfd_vma off;
12383
12384 /* For ELFv2, if this symbol is not defined in a regular file
12385 and we are not generating a shared library or pie, then we
12386 need to define the symbol in the executable on a call stub.
12387 This is to avoid text relocations. */
12388 h->root.u.def.section = s;
12389 h->root.u.def.value = s->size;
12390 s->size += 16;
12391 p = s->contents + h->root.u.def.value;
12392 plt = htab->elf.splt;
12393 if (!htab->elf.dynamic_sections_created
12394 || h->dynindx == -1)
12395 plt = htab->elf.iplt;
12396 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12397 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12398
12399 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12400 {
12401 info->callbacks->einfo
12402 (_("%P: linkage table error against `%T'\n"),
12403 h->root.root.string);
12404 bfd_set_error (bfd_error_bad_value);
12405 htab->stub_error = TRUE;
12406 }
12407
12408 if (PPC_HA (off) != 0)
12409 {
12410 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12411 p += 4;
12412 }
12413 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12414 p += 4;
12415 bfd_put_32 (s->owner, MTCTR_R12, p);
12416 p += 4;
12417 bfd_put_32 (s->owner, BCTR, p);
12418 break;
12419 }
12420 return TRUE;
12421 }
12422
12423 /* Build all the stubs associated with the current output file.
12424 The stubs are kept in a hash table attached to the main linker
12425 hash table. This function is called via gldelf64ppc_finish. */
12426
12427 bfd_boolean
12428 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
12429 struct bfd_link_info *info,
12430 char **stats)
12431 {
12432 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12433 asection *stub_sec;
12434 bfd_byte *p;
12435 int stub_sec_count = 0;
12436
12437 if (htab == NULL)
12438 return FALSE;
12439
12440 htab->emit_stub_syms = emit_stub_syms;
12441
12442 /* Allocate memory to hold the linker stubs. */
12443 for (stub_sec = htab->stub_bfd->sections;
12444 stub_sec != NULL;
12445 stub_sec = stub_sec->next)
12446 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12447 && stub_sec->size != 0)
12448 {
12449 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
12450 if (stub_sec->contents == NULL)
12451 return FALSE;
12452 /* We want to check that built size is the same as calculated
12453 size. rawsize is a convenient location to use. */
12454 stub_sec->rawsize = stub_sec->size;
12455 stub_sec->size = 0;
12456 }
12457
12458 if (htab->glink != NULL && htab->glink->size != 0)
12459 {
12460 unsigned int indx;
12461 bfd_vma plt0;
12462
12463 /* Build the .glink plt call stub. */
12464 if (htab->emit_stub_syms)
12465 {
12466 struct elf_link_hash_entry *h;
12467 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12468 TRUE, FALSE, FALSE);
12469 if (h == NULL)
12470 return FALSE;
12471 if (h->root.type == bfd_link_hash_new)
12472 {
12473 h->root.type = bfd_link_hash_defined;
12474 h->root.u.def.section = htab->glink;
12475 h->root.u.def.value = 8;
12476 h->ref_regular = 1;
12477 h->def_regular = 1;
12478 h->ref_regular_nonweak = 1;
12479 h->forced_local = 1;
12480 h->non_elf = 0;
12481 }
12482 }
12483 plt0 = (htab->elf.splt->output_section->vma
12484 + htab->elf.splt->output_offset
12485 - 16);
12486 if (info->emitrelocations)
12487 {
12488 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12489 if (r == NULL)
12490 return FALSE;
12491 r->r_offset = (htab->glink->output_offset
12492 + htab->glink->output_section->vma);
12493 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12494 r->r_addend = plt0;
12495 }
12496 p = htab->glink->contents;
12497 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12498 bfd_put_64 (htab->glink->owner, plt0, p);
12499 p += 8;
12500 if (htab->opd_abi)
12501 {
12502 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12503 p += 4;
12504 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12505 p += 4;
12506 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12507 p += 4;
12508 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12509 p += 4;
12510 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12511 p += 4;
12512 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12513 p += 4;
12514 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12515 p += 4;
12516 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12517 p += 4;
12518 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12519 p += 4;
12520 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12521 p += 4;
12522 }
12523 else
12524 {
12525 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12526 p += 4;
12527 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12528 p += 4;
12529 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12530 p += 4;
12531 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12532 p += 4;
12533 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12534 p += 4;
12535 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12536 p += 4;
12537 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12538 p += 4;
12539 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12540 p += 4;
12541 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12542 p += 4;
12543 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12544 p += 4;
12545 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12546 p += 4;
12547 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12548 p += 4;
12549 }
12550 bfd_put_32 (htab->glink->owner, BCTR, p);
12551 p += 4;
12552 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12553 {
12554 bfd_put_32 (htab->glink->owner, NOP, p);
12555 p += 4;
12556 }
12557
12558 /* Build the .glink lazy link call stubs. */
12559 indx = 0;
12560 while (p < htab->glink->contents + htab->glink->rawsize)
12561 {
12562 if (htab->opd_abi)
12563 {
12564 if (indx < 0x8000)
12565 {
12566 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12567 p += 4;
12568 }
12569 else
12570 {
12571 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12572 p += 4;
12573 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12574 p);
12575 p += 4;
12576 }
12577 }
12578 bfd_put_32 (htab->glink->owner,
12579 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12580 indx++;
12581 p += 4;
12582 }
12583
12584 /* Build .glink global entry stubs. */
12585 if (htab->glink->size > htab->glink->rawsize)
12586 {
12587 htab->glink->size = (htab->glink->rawsize + 15) & -16;
12588 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12589 }
12590 }
12591
12592 if (htab->brlt->size != 0)
12593 {
12594 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12595 htab->brlt->size);
12596 if (htab->brlt->contents == NULL)
12597 return FALSE;
12598 }
12599 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12600 {
12601 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12602 htab->relbrlt->size);
12603 if (htab->relbrlt->contents == NULL)
12604 return FALSE;
12605 }
12606
12607 if (htab->glink_eh_frame != NULL
12608 && htab->glink_eh_frame->size != 0)
12609 {
12610 bfd_vma val;
12611 bfd_byte *last_fde;
12612 size_t last_fde_len, size, align, pad;
12613
12614 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12615 if (p == NULL)
12616 return FALSE;
12617 htab->glink_eh_frame->contents = p;
12618 last_fde = p;
12619
12620 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12621
12622 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12623 /* CIE length (rewrite in case little-endian). */
12624 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12625 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12626 p += sizeof (glink_eh_frame_cie);
12627
12628 for (stub_sec = htab->stub_bfd->sections;
12629 stub_sec != NULL;
12630 stub_sec = stub_sec->next)
12631 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12632 {
12633 last_fde = p;
12634 last_fde_len = 16;
12635 /* FDE length. */
12636 bfd_put_32 (htab->elf.dynobj, 16, p);
12637 p += 4;
12638 /* CIE pointer. */
12639 val = p - htab->glink_eh_frame->contents;
12640 bfd_put_32 (htab->elf.dynobj, val, p);
12641 p += 4;
12642 /* Offset to stub section. */
12643 val = (stub_sec->output_section->vma
12644 + stub_sec->output_offset);
12645 val -= (htab->glink_eh_frame->output_section->vma
12646 + htab->glink_eh_frame->output_offset);
12647 val -= p - htab->glink_eh_frame->contents;
12648 if (val + 0x80000000 > 0xffffffff)
12649 {
12650 info->callbacks->einfo
12651 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12652 stub_sec->name);
12653 return FALSE;
12654 }
12655 bfd_put_32 (htab->elf.dynobj, val, p);
12656 p += 4;
12657 /* stub section size. */
12658 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12659 p += 4;
12660 /* Augmentation. */
12661 p += 1;
12662 /* Pad. */
12663 p += 3;
12664 }
12665 if (htab->glink != NULL && htab->glink->size != 0)
12666 {
12667 last_fde = p;
12668 last_fde_len = 20;
12669 /* FDE length. */
12670 bfd_put_32 (htab->elf.dynobj, 20, p);
12671 p += 4;
12672 /* CIE pointer. */
12673 val = p - htab->glink_eh_frame->contents;
12674 bfd_put_32 (htab->elf.dynobj, val, p);
12675 p += 4;
12676 /* Offset to .glink. */
12677 val = (htab->glink->output_section->vma
12678 + htab->glink->output_offset
12679 + 8);
12680 val -= (htab->glink_eh_frame->output_section->vma
12681 + htab->glink_eh_frame->output_offset);
12682 val -= p - htab->glink_eh_frame->contents;
12683 if (val + 0x80000000 > 0xffffffff)
12684 {
12685 info->callbacks->einfo
12686 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12687 htab->glink->name);
12688 return FALSE;
12689 }
12690 bfd_put_32 (htab->elf.dynobj, val, p);
12691 p += 4;
12692 /* .glink size. */
12693 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12694 p += 4;
12695 /* Augmentation. */
12696 p += 1;
12697
12698 *p++ = DW_CFA_advance_loc + 1;
12699 *p++ = DW_CFA_register;
12700 *p++ = 65;
12701 *p++ = 12;
12702 *p++ = DW_CFA_advance_loc + 4;
12703 *p++ = DW_CFA_restore_extended;
12704 *p++ = 65;
12705 }
12706 /* Subsume any padding into the last FDE if user .eh_frame
12707 sections are aligned more than glink_eh_frame. Otherwise any
12708 zero padding will be seen as a terminator. */
12709 size = p - htab->glink_eh_frame->contents;
12710 align = 1;
12711 align <<= htab->glink_eh_frame->output_section->alignment_power;
12712 align -= 1;
12713 pad = ((size + align) & ~align) - size;
12714 htab->glink_eh_frame->size = size + pad;
12715 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12716 }
12717
12718 /* Build the stubs as directed by the stub hash table. */
12719 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12720
12721 if (htab->relbrlt != NULL)
12722 htab->relbrlt->reloc_count = 0;
12723
12724 if (htab->plt_stub_align != 0)
12725 for (stub_sec = htab->stub_bfd->sections;
12726 stub_sec != NULL;
12727 stub_sec = stub_sec->next)
12728 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12729 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12730 & (-1 << htab->plt_stub_align));
12731
12732 for (stub_sec = htab->stub_bfd->sections;
12733 stub_sec != NULL;
12734 stub_sec = stub_sec->next)
12735 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12736 {
12737 stub_sec_count += 1;
12738 if (stub_sec->rawsize != stub_sec->size)
12739 break;
12740 }
12741
12742 if (stub_sec != NULL
12743 || (htab->glink_eh_frame != NULL
12744 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12745 {
12746 htab->stub_error = TRUE;
12747 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12748 }
12749
12750 if (htab->stub_error)
12751 return FALSE;
12752
12753 if (stats != NULL)
12754 {
12755 *stats = bfd_malloc (500);
12756 if (*stats == NULL)
12757 return FALSE;
12758
12759 sprintf (*stats, _("linker stubs in %u group%s\n"
12760 " branch %lu\n"
12761 " toc adjust %lu\n"
12762 " long branch %lu\n"
12763 " long toc adj %lu\n"
12764 " plt call %lu\n"
12765 " plt call toc %lu"),
12766 stub_sec_count,
12767 stub_sec_count == 1 ? "" : "s",
12768 htab->stub_count[ppc_stub_long_branch - 1],
12769 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12770 htab->stub_count[ppc_stub_plt_branch - 1],
12771 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12772 htab->stub_count[ppc_stub_plt_call - 1],
12773 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12774 }
12775 return TRUE;
12776 }
12777
12778 /* This function undoes the changes made by add_symbol_adjust. */
12779
12780 static bfd_boolean
12781 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12782 {
12783 struct ppc_link_hash_entry *eh;
12784
12785 if (h->root.type == bfd_link_hash_indirect)
12786 return TRUE;
12787
12788 eh = (struct ppc_link_hash_entry *) h;
12789 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12790 return TRUE;
12791
12792 eh->elf.root.type = bfd_link_hash_undefined;
12793 return TRUE;
12794 }
12795
12796 void
12797 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12798 {
12799 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12800
12801 if (htab != NULL)
12802 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12803 }
12804
12805 /* What to do when ld finds relocations against symbols defined in
12806 discarded sections. */
12807
12808 static unsigned int
12809 ppc64_elf_action_discarded (asection *sec)
12810 {
12811 if (strcmp (".opd", sec->name) == 0)
12812 return 0;
12813
12814 if (strcmp (".toc", sec->name) == 0)
12815 return 0;
12816
12817 if (strcmp (".toc1", sec->name) == 0)
12818 return 0;
12819
12820 return _bfd_elf_default_action_discarded (sec);
12821 }
12822
12823 /* The RELOCATE_SECTION function is called by the ELF backend linker
12824 to handle the relocations for a section.
12825
12826 The relocs are always passed as Rela structures; if the section
12827 actually uses Rel structures, the r_addend field will always be
12828 zero.
12829
12830 This function is responsible for adjust the section contents as
12831 necessary, and (if using Rela relocs and generating a
12832 relocatable output file) adjusting the reloc addend as
12833 necessary.
12834
12835 This function does not have to worry about setting the reloc
12836 address or the reloc symbol index.
12837
12838 LOCAL_SYMS is a pointer to the swapped in local symbols.
12839
12840 LOCAL_SECTIONS is an array giving the section in the input file
12841 corresponding to the st_shndx field of each local symbol.
12842
12843 The global hash table entry for the global symbols can be found
12844 via elf_sym_hashes (input_bfd).
12845
12846 When generating relocatable output, this function must handle
12847 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12848 going to be the section symbol corresponding to the output
12849 section, which means that the addend must be adjusted
12850 accordingly. */
12851
12852 static bfd_boolean
12853 ppc64_elf_relocate_section (bfd *output_bfd,
12854 struct bfd_link_info *info,
12855 bfd *input_bfd,
12856 asection *input_section,
12857 bfd_byte *contents,
12858 Elf_Internal_Rela *relocs,
12859 Elf_Internal_Sym *local_syms,
12860 asection **local_sections)
12861 {
12862 struct ppc_link_hash_table *htab;
12863 Elf_Internal_Shdr *symtab_hdr;
12864 struct elf_link_hash_entry **sym_hashes;
12865 Elf_Internal_Rela *rel;
12866 Elf_Internal_Rela *relend;
12867 Elf_Internal_Rela outrel;
12868 bfd_byte *loc;
12869 struct got_entry **local_got_ents;
12870 bfd_vma TOCstart;
12871 bfd_boolean ret = TRUE;
12872 bfd_boolean is_opd;
12873 /* Assume 'at' branch hints. */
12874 bfd_boolean is_isa_v2 = TRUE;
12875 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12876
12877 /* Initialize howto table if needed. */
12878 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12879 ppc_howto_init ();
12880
12881 htab = ppc_hash_table (info);
12882 if (htab == NULL)
12883 return FALSE;
12884
12885 /* Don't relocate stub sections. */
12886 if (input_section->owner == htab->stub_bfd)
12887 return TRUE;
12888
12889 BFD_ASSERT (is_ppc64_elf (input_bfd));
12890
12891 local_got_ents = elf_local_got_ents (input_bfd);
12892 TOCstart = elf_gp (output_bfd);
12893 symtab_hdr = &elf_symtab_hdr (input_bfd);
12894 sym_hashes = elf_sym_hashes (input_bfd);
12895 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12896
12897 rel = relocs;
12898 relend = relocs + input_section->reloc_count;
12899 for (; rel < relend; rel++)
12900 {
12901 enum elf_ppc64_reloc_type r_type;
12902 bfd_vma addend;
12903 bfd_reloc_status_type r;
12904 Elf_Internal_Sym *sym;
12905 asection *sec;
12906 struct elf_link_hash_entry *h_elf;
12907 struct ppc_link_hash_entry *h;
12908 struct ppc_link_hash_entry *fdh;
12909 const char *sym_name;
12910 unsigned long r_symndx, toc_symndx;
12911 bfd_vma toc_addend;
12912 unsigned char tls_mask, tls_gd, tls_type;
12913 unsigned char sym_type;
12914 bfd_vma relocation;
12915 bfd_boolean unresolved_reloc;
12916 bfd_boolean warned;
12917 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12918 unsigned int insn;
12919 unsigned int mask;
12920 struct ppc_stub_hash_entry *stub_entry;
12921 bfd_vma max_br_offset;
12922 bfd_vma from;
12923 const Elf_Internal_Rela orig_rel = *rel;
12924
12925 r_type = ELF64_R_TYPE (rel->r_info);
12926 r_symndx = ELF64_R_SYM (rel->r_info);
12927
12928 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12929 symbol of the previous ADDR64 reloc. The symbol gives us the
12930 proper TOC base to use. */
12931 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12932 && rel != relocs
12933 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12934 && is_opd)
12935 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12936
12937 sym = NULL;
12938 sec = NULL;
12939 h_elf = NULL;
12940 sym_name = NULL;
12941 unresolved_reloc = FALSE;
12942 warned = FALSE;
12943
12944 if (r_symndx < symtab_hdr->sh_info)
12945 {
12946 /* It's a local symbol. */
12947 struct _opd_sec_data *opd;
12948
12949 sym = local_syms + r_symndx;
12950 sec = local_sections[r_symndx];
12951 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12952 sym_type = ELF64_ST_TYPE (sym->st_info);
12953 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12954 opd = get_opd_info (sec);
12955 if (opd != NULL && opd->adjust != NULL)
12956 {
12957 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12958 if (adjust == -1)
12959 relocation = 0;
12960 else
12961 {
12962 /* If this is a relocation against the opd section sym
12963 and we have edited .opd, adjust the reloc addend so
12964 that ld -r and ld --emit-relocs output is correct.
12965 If it is a reloc against some other .opd symbol,
12966 then the symbol value will be adjusted later. */
12967 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12968 rel->r_addend += adjust;
12969 else
12970 relocation += adjust;
12971 }
12972 }
12973 }
12974 else
12975 {
12976 bfd_boolean ignored;
12977
12978 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12979 r_symndx, symtab_hdr, sym_hashes,
12980 h_elf, sec, relocation,
12981 unresolved_reloc, warned, ignored);
12982 sym_name = h_elf->root.root.string;
12983 sym_type = h_elf->type;
12984 if (sec != NULL
12985 && sec->owner == output_bfd
12986 && strcmp (sec->name, ".opd") == 0)
12987 {
12988 /* This is a symbol defined in a linker script. All
12989 such are defined in output sections, even those
12990 defined by simple assignment from a symbol defined in
12991 an input section. Transfer the symbol to an
12992 appropriate input .opd section, so that a branch to
12993 this symbol will be mapped to the location specified
12994 by the opd entry. */
12995 struct bfd_link_order *lo;
12996 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12997 if (lo->type == bfd_indirect_link_order)
12998 {
12999 asection *isec = lo->u.indirect.section;
13000 if (h_elf->root.u.def.value >= isec->output_offset
13001 && h_elf->root.u.def.value < (isec->output_offset
13002 + isec->size))
13003 {
13004 h_elf->root.u.def.value -= isec->output_offset;
13005 h_elf->root.u.def.section = isec;
13006 sec = isec;
13007 break;
13008 }
13009 }
13010 }
13011 }
13012 h = (struct ppc_link_hash_entry *) h_elf;
13013
13014 if (sec != NULL && discarded_section (sec))
13015 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13016 rel, 1, relend,
13017 ppc64_elf_howto_table[r_type], 0,
13018 contents);
13019
13020 if (info->relocatable)
13021 continue;
13022
13023 if (h != NULL && &h->elf == htab->elf.hgot)
13024 {
13025 relocation = (TOCstart
13026 + htab->stub_group[input_section->id].toc_off);
13027 sec = bfd_abs_section_ptr;
13028 unresolved_reloc = FALSE;
13029 }
13030
13031 /* TLS optimizations. Replace instruction sequences and relocs
13032 based on information we collected in tls_optimize. We edit
13033 RELOCS so that --emit-relocs will output something sensible
13034 for the final instruction stream. */
13035 tls_mask = 0;
13036 tls_gd = 0;
13037 toc_symndx = 0;
13038 if (h != NULL)
13039 tls_mask = h->tls_mask;
13040 else if (local_got_ents != NULL)
13041 {
13042 struct plt_entry **local_plt = (struct plt_entry **)
13043 (local_got_ents + symtab_hdr->sh_info);
13044 unsigned char *lgot_masks = (unsigned char *)
13045 (local_plt + symtab_hdr->sh_info);
13046 tls_mask = lgot_masks[r_symndx];
13047 }
13048 if (tls_mask == 0
13049 && (r_type == R_PPC64_TLS
13050 || r_type == R_PPC64_TLSGD
13051 || r_type == R_PPC64_TLSLD))
13052 {
13053 /* Check for toc tls entries. */
13054 unsigned char *toc_tls;
13055
13056 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13057 &local_syms, rel, input_bfd))
13058 return FALSE;
13059
13060 if (toc_tls)
13061 tls_mask = *toc_tls;
13062 }
13063
13064 /* Check that tls relocs are used with tls syms, and non-tls
13065 relocs are used with non-tls syms. */
13066 if (r_symndx != STN_UNDEF
13067 && r_type != R_PPC64_NONE
13068 && (h == NULL
13069 || h->elf.root.type == bfd_link_hash_defined
13070 || h->elf.root.type == bfd_link_hash_defweak)
13071 && (IS_PPC64_TLS_RELOC (r_type)
13072 != (sym_type == STT_TLS
13073 || (sym_type == STT_SECTION
13074 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13075 {
13076 if (tls_mask != 0
13077 && (r_type == R_PPC64_TLS
13078 || r_type == R_PPC64_TLSGD
13079 || r_type == R_PPC64_TLSLD))
13080 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13081 ;
13082 else
13083 info->callbacks->einfo
13084 (!IS_PPC64_TLS_RELOC (r_type)
13085 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13086 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13087 input_bfd, input_section, rel->r_offset,
13088 ppc64_elf_howto_table[r_type]->name,
13089 sym_name);
13090 }
13091
13092 /* Ensure reloc mapping code below stays sane. */
13093 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13094 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13095 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13096 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13097 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13098 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13099 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13100 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13101 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13102 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13103 abort ();
13104
13105 switch (r_type)
13106 {
13107 default:
13108 break;
13109
13110 case R_PPC64_LO_DS_OPT:
13111 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13112 if ((insn & (0x3f << 26)) != 58u << 26)
13113 abort ();
13114 insn += (14u << 26) - (58u << 26);
13115 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13116 r_type = R_PPC64_TOC16_LO;
13117 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13118 break;
13119
13120 case R_PPC64_TOC16:
13121 case R_PPC64_TOC16_LO:
13122 case R_PPC64_TOC16_DS:
13123 case R_PPC64_TOC16_LO_DS:
13124 {
13125 /* Check for toc tls entries. */
13126 unsigned char *toc_tls;
13127 int retval;
13128
13129 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13130 &local_syms, rel, input_bfd);
13131 if (retval == 0)
13132 return FALSE;
13133
13134 if (toc_tls)
13135 {
13136 tls_mask = *toc_tls;
13137 if (r_type == R_PPC64_TOC16_DS
13138 || r_type == R_PPC64_TOC16_LO_DS)
13139 {
13140 if (tls_mask != 0
13141 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13142 goto toctprel;
13143 }
13144 else
13145 {
13146 /* If we found a GD reloc pair, then we might be
13147 doing a GD->IE transition. */
13148 if (retval == 2)
13149 {
13150 tls_gd = TLS_TPRELGD;
13151 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13152 goto tls_ldgd_opt;
13153 }
13154 else if (retval == 3)
13155 {
13156 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13157 goto tls_ldgd_opt;
13158 }
13159 }
13160 }
13161 }
13162 break;
13163
13164 case R_PPC64_GOT_TPREL16_HI:
13165 case R_PPC64_GOT_TPREL16_HA:
13166 if (tls_mask != 0
13167 && (tls_mask & TLS_TPREL) == 0)
13168 {
13169 rel->r_offset -= d_offset;
13170 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13171 r_type = R_PPC64_NONE;
13172 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13173 }
13174 break;
13175
13176 case R_PPC64_GOT_TPREL16_DS:
13177 case R_PPC64_GOT_TPREL16_LO_DS:
13178 if (tls_mask != 0
13179 && (tls_mask & TLS_TPREL) == 0)
13180 {
13181 toctprel:
13182 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13183 insn &= 31 << 21;
13184 insn |= 0x3c0d0000; /* addis 0,13,0 */
13185 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13186 r_type = R_PPC64_TPREL16_HA;
13187 if (toc_symndx != 0)
13188 {
13189 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13190 rel->r_addend = toc_addend;
13191 /* We changed the symbol. Start over in order to
13192 get h, sym, sec etc. right. */
13193 rel--;
13194 continue;
13195 }
13196 else
13197 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13198 }
13199 break;
13200
13201 case R_PPC64_TLS:
13202 if (tls_mask != 0
13203 && (tls_mask & TLS_TPREL) == 0)
13204 {
13205 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13206 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13207 if (insn == 0)
13208 abort ();
13209 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13210 /* Was PPC64_TLS which sits on insn boundary, now
13211 PPC64_TPREL16_LO which is at low-order half-word. */
13212 rel->r_offset += d_offset;
13213 r_type = R_PPC64_TPREL16_LO;
13214 if (toc_symndx != 0)
13215 {
13216 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13217 rel->r_addend = toc_addend;
13218 /* We changed the symbol. Start over in order to
13219 get h, sym, sec etc. right. */
13220 rel--;
13221 continue;
13222 }
13223 else
13224 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13225 }
13226 break;
13227
13228 case R_PPC64_GOT_TLSGD16_HI:
13229 case R_PPC64_GOT_TLSGD16_HA:
13230 tls_gd = TLS_TPRELGD;
13231 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13232 goto tls_gdld_hi;
13233 break;
13234
13235 case R_PPC64_GOT_TLSLD16_HI:
13236 case R_PPC64_GOT_TLSLD16_HA:
13237 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13238 {
13239 tls_gdld_hi:
13240 if ((tls_mask & tls_gd) != 0)
13241 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13242 + R_PPC64_GOT_TPREL16_DS);
13243 else
13244 {
13245 rel->r_offset -= d_offset;
13246 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13247 r_type = R_PPC64_NONE;
13248 }
13249 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13250 }
13251 break;
13252
13253 case R_PPC64_GOT_TLSGD16:
13254 case R_PPC64_GOT_TLSGD16_LO:
13255 tls_gd = TLS_TPRELGD;
13256 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13257 goto tls_ldgd_opt;
13258 break;
13259
13260 case R_PPC64_GOT_TLSLD16:
13261 case R_PPC64_GOT_TLSLD16_LO:
13262 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13263 {
13264 unsigned int insn1, insn2, insn3;
13265 bfd_vma offset;
13266
13267 tls_ldgd_opt:
13268 offset = (bfd_vma) -1;
13269 /* If not using the newer R_PPC64_TLSGD/LD to mark
13270 __tls_get_addr calls, we must trust that the call
13271 stays with its arg setup insns, ie. that the next
13272 reloc is the __tls_get_addr call associated with
13273 the current reloc. Edit both insns. */
13274 if (input_section->has_tls_get_addr_call
13275 && rel + 1 < relend
13276 && branch_reloc_hash_match (input_bfd, rel + 1,
13277 htab->tls_get_addr,
13278 htab->tls_get_addr_fd))
13279 offset = rel[1].r_offset;
13280 if ((tls_mask & tls_gd) != 0)
13281 {
13282 /* IE */
13283 insn1 = bfd_get_32 (output_bfd,
13284 contents + rel->r_offset - d_offset);
13285 insn1 &= (1 << 26) - (1 << 2);
13286 insn1 |= 58 << 26; /* ld */
13287 insn2 = 0x7c636a14; /* add 3,3,13 */
13288 if (offset != (bfd_vma) -1)
13289 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13290 if ((tls_mask & TLS_EXPLICIT) == 0)
13291 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13292 + R_PPC64_GOT_TPREL16_DS);
13293 else
13294 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13295 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13296 }
13297 else
13298 {
13299 /* LE */
13300 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13301 insn2 = 0x38630000; /* addi 3,3,0 */
13302 if (tls_gd == 0)
13303 {
13304 /* Was an LD reloc. */
13305 if (toc_symndx)
13306 sec = local_sections[toc_symndx];
13307 for (r_symndx = 0;
13308 r_symndx < symtab_hdr->sh_info;
13309 r_symndx++)
13310 if (local_sections[r_symndx] == sec)
13311 break;
13312 if (r_symndx >= symtab_hdr->sh_info)
13313 r_symndx = STN_UNDEF;
13314 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13315 if (r_symndx != STN_UNDEF)
13316 rel->r_addend -= (local_syms[r_symndx].st_value
13317 + sec->output_offset
13318 + sec->output_section->vma);
13319 }
13320 else if (toc_symndx != 0)
13321 {
13322 r_symndx = toc_symndx;
13323 rel->r_addend = toc_addend;
13324 }
13325 r_type = R_PPC64_TPREL16_HA;
13326 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13327 if (offset != (bfd_vma) -1)
13328 {
13329 rel[1].r_info = ELF64_R_INFO (r_symndx,
13330 R_PPC64_TPREL16_LO);
13331 rel[1].r_offset = offset + d_offset;
13332 rel[1].r_addend = rel->r_addend;
13333 }
13334 }
13335 bfd_put_32 (output_bfd, insn1,
13336 contents + rel->r_offset - d_offset);
13337 if (offset != (bfd_vma) -1)
13338 {
13339 insn3 = bfd_get_32 (output_bfd,
13340 contents + offset + 4);
13341 if (insn3 == NOP
13342 || insn3 == CROR_151515 || insn3 == CROR_313131)
13343 {
13344 rel[1].r_offset += 4;
13345 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13346 insn2 = NOP;
13347 }
13348 bfd_put_32 (output_bfd, insn2, contents + offset);
13349 }
13350 if ((tls_mask & tls_gd) == 0
13351 && (tls_gd == 0 || toc_symndx != 0))
13352 {
13353 /* We changed the symbol. Start over in order
13354 to get h, sym, sec etc. right. */
13355 rel--;
13356 continue;
13357 }
13358 }
13359 break;
13360
13361 case R_PPC64_TLSGD:
13362 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13363 {
13364 unsigned int insn2, insn3;
13365 bfd_vma offset = rel->r_offset;
13366
13367 if ((tls_mask & TLS_TPRELGD) != 0)
13368 {
13369 /* IE */
13370 r_type = R_PPC64_NONE;
13371 insn2 = 0x7c636a14; /* add 3,3,13 */
13372 }
13373 else
13374 {
13375 /* LE */
13376 if (toc_symndx != 0)
13377 {
13378 r_symndx = toc_symndx;
13379 rel->r_addend = toc_addend;
13380 }
13381 r_type = R_PPC64_TPREL16_LO;
13382 rel->r_offset = offset + d_offset;
13383 insn2 = 0x38630000; /* addi 3,3,0 */
13384 }
13385 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13386 /* Zap the reloc on the _tls_get_addr call too. */
13387 BFD_ASSERT (offset == rel[1].r_offset);
13388 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13389 insn3 = bfd_get_32 (output_bfd,
13390 contents + offset + 4);
13391 if (insn3 == NOP
13392 || insn3 == CROR_151515 || insn3 == CROR_313131)
13393 {
13394 rel->r_offset += 4;
13395 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13396 insn2 = NOP;
13397 }
13398 bfd_put_32 (output_bfd, insn2, contents + offset);
13399 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13400 {
13401 rel--;
13402 continue;
13403 }
13404 }
13405 break;
13406
13407 case R_PPC64_TLSLD:
13408 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13409 {
13410 unsigned int insn2, insn3;
13411 bfd_vma offset = rel->r_offset;
13412
13413 if (toc_symndx)
13414 sec = local_sections[toc_symndx];
13415 for (r_symndx = 0;
13416 r_symndx < symtab_hdr->sh_info;
13417 r_symndx++)
13418 if (local_sections[r_symndx] == sec)
13419 break;
13420 if (r_symndx >= symtab_hdr->sh_info)
13421 r_symndx = STN_UNDEF;
13422 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13423 if (r_symndx != STN_UNDEF)
13424 rel->r_addend -= (local_syms[r_symndx].st_value
13425 + sec->output_offset
13426 + sec->output_section->vma);
13427
13428 r_type = R_PPC64_TPREL16_LO;
13429 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13430 rel->r_offset = offset + d_offset;
13431 /* Zap the reloc on the _tls_get_addr call too. */
13432 BFD_ASSERT (offset == rel[1].r_offset);
13433 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13434 insn2 = 0x38630000; /* addi 3,3,0 */
13435 insn3 = bfd_get_32 (output_bfd,
13436 contents + offset + 4);
13437 if (insn3 == NOP
13438 || insn3 == CROR_151515 || insn3 == CROR_313131)
13439 {
13440 rel->r_offset += 4;
13441 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13442 insn2 = NOP;
13443 }
13444 bfd_put_32 (output_bfd, insn2, contents + offset);
13445 rel--;
13446 continue;
13447 }
13448 break;
13449
13450 case R_PPC64_DTPMOD64:
13451 if (rel + 1 < relend
13452 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13453 && rel[1].r_offset == rel->r_offset + 8)
13454 {
13455 if ((tls_mask & TLS_GD) == 0)
13456 {
13457 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13458 if ((tls_mask & TLS_TPRELGD) != 0)
13459 r_type = R_PPC64_TPREL64;
13460 else
13461 {
13462 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13463 r_type = R_PPC64_NONE;
13464 }
13465 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13466 }
13467 }
13468 else
13469 {
13470 if ((tls_mask & TLS_LD) == 0)
13471 {
13472 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13473 r_type = R_PPC64_NONE;
13474 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13475 }
13476 }
13477 break;
13478
13479 case R_PPC64_TPREL64:
13480 if ((tls_mask & TLS_TPREL) == 0)
13481 {
13482 r_type = R_PPC64_NONE;
13483 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13484 }
13485 break;
13486
13487 case R_PPC64_REL16_HA:
13488 /* If we are generating a non-PIC executable, edit
13489 . 0: addis 2,12,.TOC.-0b@ha
13490 . addi 2,2,.TOC.-0b@l
13491 used by ELFv2 global entry points to set up r2, to
13492 . lis 2,.TOC.@ha
13493 . addi 2,2,.TOC.@l
13494 if .TOC. is in range. */
13495 if (!info->shared
13496 && h != NULL && &h->elf == htab->elf.hgot
13497 && rel + 1 < relend
13498 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13499 && rel[1].r_offset == rel->r_offset + 4
13500 && rel[1].r_addend == rel->r_addend + 4
13501 && relocation + 0x80008000 <= 0xffffffff)
13502 {
13503 unsigned int insn1, insn2;
13504 bfd_vma offset = rel->r_offset - d_offset;
13505 insn1 = bfd_get_32 (output_bfd, contents + offset);
13506 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13507 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13508 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13509 {
13510 r_type = R_PPC64_ADDR16_HA;
13511 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13512 rel->r_addend -= d_offset;
13513 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13514 rel[1].r_addend -= d_offset + 4;
13515 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13516 }
13517 }
13518 break;
13519 }
13520
13521 /* Handle other relocations that tweak non-addend part of insn. */
13522 insn = 0;
13523 max_br_offset = 1 << 25;
13524 addend = rel->r_addend;
13525 reloc_dest = DEST_NORMAL;
13526 switch (r_type)
13527 {
13528 default:
13529 break;
13530
13531 case R_PPC64_TOCSAVE:
13532 if (relocation + addend == (rel->r_offset
13533 + input_section->output_offset
13534 + input_section->output_section->vma)
13535 && tocsave_find (htab, NO_INSERT,
13536 &local_syms, rel, input_bfd))
13537 {
13538 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13539 if (insn == NOP
13540 || insn == CROR_151515 || insn == CROR_313131)
13541 bfd_put_32 (input_bfd,
13542 STD_R2_0R1 + STK_TOC (htab),
13543 contents + rel->r_offset);
13544 }
13545 break;
13546
13547 /* Branch taken prediction relocations. */
13548 case R_PPC64_ADDR14_BRTAKEN:
13549 case R_PPC64_REL14_BRTAKEN:
13550 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13551 /* Fall thru. */
13552
13553 /* Branch not taken prediction relocations. */
13554 case R_PPC64_ADDR14_BRNTAKEN:
13555 case R_PPC64_REL14_BRNTAKEN:
13556 insn |= bfd_get_32 (output_bfd,
13557 contents + rel->r_offset) & ~(0x01 << 21);
13558 /* Fall thru. */
13559
13560 case R_PPC64_REL14:
13561 max_br_offset = 1 << 15;
13562 /* Fall thru. */
13563
13564 case R_PPC64_REL24:
13565 /* Calls to functions with a different TOC, such as calls to
13566 shared objects, need to alter the TOC pointer. This is
13567 done using a linkage stub. A REL24 branching to these
13568 linkage stubs needs to be followed by a nop, as the nop
13569 will be replaced with an instruction to restore the TOC
13570 base pointer. */
13571 fdh = h;
13572 if (h != NULL
13573 && h->oh != NULL
13574 && h->oh->is_func_descriptor)
13575 fdh = ppc_follow_link (h->oh);
13576 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13577 htab);
13578 if (stub_entry != NULL
13579 && (stub_entry->stub_type == ppc_stub_plt_call
13580 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13581 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13582 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13583 {
13584 bfd_boolean can_plt_call = FALSE;
13585
13586 /* All of these stubs will modify r2, so there must be a
13587 branch and link followed by a nop. The nop is
13588 replaced by an insn to restore r2. */
13589 if (rel->r_offset + 8 <= input_section->size)
13590 {
13591 unsigned long br;
13592
13593 br = bfd_get_32 (input_bfd,
13594 contents + rel->r_offset);
13595 if ((br & 1) != 0)
13596 {
13597 unsigned long nop;
13598
13599 nop = bfd_get_32 (input_bfd,
13600 contents + rel->r_offset + 4);
13601 if (nop == NOP
13602 || nop == CROR_151515 || nop == CROR_313131)
13603 {
13604 if (h != NULL
13605 && (h == htab->tls_get_addr_fd
13606 || h == htab->tls_get_addr)
13607 && !htab->no_tls_get_addr_opt)
13608 {
13609 /* Special stub used, leave nop alone. */
13610 }
13611 else
13612 bfd_put_32 (input_bfd,
13613 LD_R2_0R1 + STK_TOC (htab),
13614 contents + rel->r_offset + 4);
13615 can_plt_call = TRUE;
13616 }
13617 }
13618 }
13619
13620 if (!can_plt_call && h != NULL)
13621 {
13622 const char *name = h->elf.root.root.string;
13623
13624 if (*name == '.')
13625 ++name;
13626
13627 if (strncmp (name, "__libc_start_main", 17) == 0
13628 && (name[17] == 0 || name[17] == '@'))
13629 {
13630 /* Allow crt1 branch to go via a toc adjusting
13631 stub. Other calls that never return could do
13632 the same, if we could detect such. */
13633 can_plt_call = TRUE;
13634 }
13635 }
13636
13637 if (!can_plt_call)
13638 {
13639 /* g++ as of 20130507 emits self-calls without a
13640 following nop. This is arguably wrong since we
13641 have conflicting information. On the one hand a
13642 global symbol and on the other a local call
13643 sequence, but don't error for this special case.
13644 It isn't possible to cheaply verify we have
13645 exactly such a call. Allow all calls to the same
13646 section. */
13647 asection *code_sec = sec;
13648
13649 if (get_opd_info (sec) != NULL)
13650 {
13651 bfd_vma off = (relocation + addend
13652 - sec->output_section->vma
13653 - sec->output_offset);
13654
13655 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13656 }
13657 if (code_sec == input_section)
13658 can_plt_call = TRUE;
13659 }
13660
13661 if (!can_plt_call)
13662 {
13663 info->callbacks->einfo
13664 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13665 "recompile with -fPIC"),
13666 input_bfd, input_section, rel->r_offset, sym_name);
13667
13668 bfd_set_error (bfd_error_bad_value);
13669 ret = FALSE;
13670 }
13671
13672 if (can_plt_call
13673 && (stub_entry->stub_type == ppc_stub_plt_call
13674 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13675 unresolved_reloc = FALSE;
13676 }
13677
13678 if ((stub_entry == NULL
13679 || stub_entry->stub_type == ppc_stub_long_branch
13680 || stub_entry->stub_type == ppc_stub_plt_branch)
13681 && get_opd_info (sec) != NULL)
13682 {
13683 /* The branch destination is the value of the opd entry. */
13684 bfd_vma off = (relocation + addend
13685 - sec->output_section->vma
13686 - sec->output_offset);
13687 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13688 if (dest != (bfd_vma) -1)
13689 {
13690 relocation = dest;
13691 addend = 0;
13692 reloc_dest = DEST_OPD;
13693 }
13694 }
13695
13696 /* If the branch is out of reach we ought to have a long
13697 branch stub. */
13698 from = (rel->r_offset
13699 + input_section->output_offset
13700 + input_section->output_section->vma);
13701
13702 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13703 ? fdh->elf.other
13704 : sym->st_other);
13705
13706 if (stub_entry != NULL
13707 && (stub_entry->stub_type == ppc_stub_long_branch
13708 || stub_entry->stub_type == ppc_stub_plt_branch)
13709 && (r_type == R_PPC64_ADDR14_BRTAKEN
13710 || r_type == R_PPC64_ADDR14_BRNTAKEN
13711 || (relocation + addend - from + max_br_offset
13712 < 2 * max_br_offset)))
13713 /* Don't use the stub if this branch is in range. */
13714 stub_entry = NULL;
13715
13716 if (stub_entry != NULL)
13717 {
13718 /* Munge up the value and addend so that we call the stub
13719 rather than the procedure directly. */
13720 relocation = (stub_entry->stub_offset
13721 + stub_entry->stub_sec->output_offset
13722 + stub_entry->stub_sec->output_section->vma);
13723 addend = 0;
13724 reloc_dest = DEST_STUB;
13725
13726 if ((stub_entry->stub_type == ppc_stub_plt_call
13727 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13728 && (ALWAYS_EMIT_R2SAVE
13729 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13730 && rel + 1 < relend
13731 && rel[1].r_offset == rel->r_offset + 4
13732 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13733 relocation += 4;
13734 }
13735
13736 if (insn != 0)
13737 {
13738 if (is_isa_v2)
13739 {
13740 /* Set 'a' bit. This is 0b00010 in BO field for branch
13741 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13742 for branch on CTR insns (BO == 1a00t or 1a01t). */
13743 if ((insn & (0x14 << 21)) == (0x04 << 21))
13744 insn |= 0x02 << 21;
13745 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13746 insn |= 0x08 << 21;
13747 else
13748 break;
13749 }
13750 else
13751 {
13752 /* Invert 'y' bit if not the default. */
13753 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13754 insn ^= 0x01 << 21;
13755 }
13756
13757 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13758 }
13759
13760 /* NOP out calls to undefined weak functions.
13761 We can thus call a weak function without first
13762 checking whether the function is defined. */
13763 else if (h != NULL
13764 && h->elf.root.type == bfd_link_hash_undefweak
13765 && h->elf.dynindx == -1
13766 && r_type == R_PPC64_REL24
13767 && relocation == 0
13768 && addend == 0)
13769 {
13770 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13771 continue;
13772 }
13773 break;
13774 }
13775
13776 /* Set `addend'. */
13777 tls_type = 0;
13778 switch (r_type)
13779 {
13780 default:
13781 info->callbacks->einfo
13782 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13783 input_bfd, (int) r_type, sym_name);
13784
13785 bfd_set_error (bfd_error_bad_value);
13786 ret = FALSE;
13787 continue;
13788
13789 case R_PPC64_NONE:
13790 case R_PPC64_TLS:
13791 case R_PPC64_TLSGD:
13792 case R_PPC64_TLSLD:
13793 case R_PPC64_TOCSAVE:
13794 case R_PPC64_GNU_VTINHERIT:
13795 case R_PPC64_GNU_VTENTRY:
13796 continue;
13797
13798 /* GOT16 relocations. Like an ADDR16 using the symbol's
13799 address in the GOT as relocation value instead of the
13800 symbol's value itself. Also, create a GOT entry for the
13801 symbol and put the symbol value there. */
13802 case R_PPC64_GOT_TLSGD16:
13803 case R_PPC64_GOT_TLSGD16_LO:
13804 case R_PPC64_GOT_TLSGD16_HI:
13805 case R_PPC64_GOT_TLSGD16_HA:
13806 tls_type = TLS_TLS | TLS_GD;
13807 goto dogot;
13808
13809 case R_PPC64_GOT_TLSLD16:
13810 case R_PPC64_GOT_TLSLD16_LO:
13811 case R_PPC64_GOT_TLSLD16_HI:
13812 case R_PPC64_GOT_TLSLD16_HA:
13813 tls_type = TLS_TLS | TLS_LD;
13814 goto dogot;
13815
13816 case R_PPC64_GOT_TPREL16_DS:
13817 case R_PPC64_GOT_TPREL16_LO_DS:
13818 case R_PPC64_GOT_TPREL16_HI:
13819 case R_PPC64_GOT_TPREL16_HA:
13820 tls_type = TLS_TLS | TLS_TPREL;
13821 goto dogot;
13822
13823 case R_PPC64_GOT_DTPREL16_DS:
13824 case R_PPC64_GOT_DTPREL16_LO_DS:
13825 case R_PPC64_GOT_DTPREL16_HI:
13826 case R_PPC64_GOT_DTPREL16_HA:
13827 tls_type = TLS_TLS | TLS_DTPREL;
13828 goto dogot;
13829
13830 case R_PPC64_GOT16:
13831 case R_PPC64_GOT16_LO:
13832 case R_PPC64_GOT16_HI:
13833 case R_PPC64_GOT16_HA:
13834 case R_PPC64_GOT16_DS:
13835 case R_PPC64_GOT16_LO_DS:
13836 dogot:
13837 {
13838 /* Relocation is to the entry for this symbol in the global
13839 offset table. */
13840 asection *got;
13841 bfd_vma *offp;
13842 bfd_vma off;
13843 unsigned long indx = 0;
13844 struct got_entry *ent;
13845
13846 if (tls_type == (TLS_TLS | TLS_LD)
13847 && (h == NULL
13848 || !h->elf.def_dynamic))
13849 ent = ppc64_tlsld_got (input_bfd);
13850 else
13851 {
13852
13853 if (h != NULL)
13854 {
13855 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13856 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13857 &h->elf)
13858 || (info->shared
13859 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13860 /* This is actually a static link, or it is a
13861 -Bsymbolic link and the symbol is defined
13862 locally, or the symbol was forced to be local
13863 because of a version file. */
13864 ;
13865 else
13866 {
13867 BFD_ASSERT (h->elf.dynindx != -1);
13868 indx = h->elf.dynindx;
13869 unresolved_reloc = FALSE;
13870 }
13871 ent = h->elf.got.glist;
13872 }
13873 else
13874 {
13875 if (local_got_ents == NULL)
13876 abort ();
13877 ent = local_got_ents[r_symndx];
13878 }
13879
13880 for (; ent != NULL; ent = ent->next)
13881 if (ent->addend == orig_rel.r_addend
13882 && ent->owner == input_bfd
13883 && ent->tls_type == tls_type)
13884 break;
13885 }
13886
13887 if (ent == NULL)
13888 abort ();
13889 if (ent->is_indirect)
13890 ent = ent->got.ent;
13891 offp = &ent->got.offset;
13892 got = ppc64_elf_tdata (ent->owner)->got;
13893 if (got == NULL)
13894 abort ();
13895
13896 /* The offset must always be a multiple of 8. We use the
13897 least significant bit to record whether we have already
13898 processed this entry. */
13899 off = *offp;
13900 if ((off & 1) != 0)
13901 off &= ~1;
13902 else
13903 {
13904 /* Generate relocs for the dynamic linker, except in
13905 the case of TLSLD where we'll use one entry per
13906 module. */
13907 asection *relgot;
13908 bfd_boolean ifunc;
13909
13910 *offp = off | 1;
13911 relgot = NULL;
13912 ifunc = (h != NULL
13913 ? h->elf.type == STT_GNU_IFUNC
13914 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13915 if (ifunc)
13916 relgot = htab->elf.irelplt;
13917 else if ((info->shared || indx != 0)
13918 && (h == NULL
13919 || (tls_type == (TLS_TLS | TLS_LD)
13920 && !h->elf.def_dynamic)
13921 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13922 || h->elf.root.type != bfd_link_hash_undefweak))
13923 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13924 if (relgot != NULL)
13925 {
13926 outrel.r_offset = (got->output_section->vma
13927 + got->output_offset
13928 + off);
13929 outrel.r_addend = addend;
13930 if (tls_type & (TLS_LD | TLS_GD))
13931 {
13932 outrel.r_addend = 0;
13933 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13934 if (tls_type == (TLS_TLS | TLS_GD))
13935 {
13936 loc = relgot->contents;
13937 loc += (relgot->reloc_count++
13938 * sizeof (Elf64_External_Rela));
13939 bfd_elf64_swap_reloca_out (output_bfd,
13940 &outrel, loc);
13941 outrel.r_offset += 8;
13942 outrel.r_addend = addend;
13943 outrel.r_info
13944 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13945 }
13946 }
13947 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13948 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13949 else if (tls_type == (TLS_TLS | TLS_TPREL))
13950 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13951 else if (indx != 0)
13952 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13953 else
13954 {
13955 if (ifunc)
13956 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13957 else
13958 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13959
13960 /* Write the .got section contents for the sake
13961 of prelink. */
13962 loc = got->contents + off;
13963 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13964 loc);
13965 }
13966
13967 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13968 {
13969 outrel.r_addend += relocation;
13970 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13971 outrel.r_addend -= htab->elf.tls_sec->vma;
13972 }
13973 loc = relgot->contents;
13974 loc += (relgot->reloc_count++
13975 * sizeof (Elf64_External_Rela));
13976 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13977 }
13978
13979 /* Init the .got section contents here if we're not
13980 emitting a reloc. */
13981 else
13982 {
13983 relocation += addend;
13984 if (tls_type == (TLS_TLS | TLS_LD))
13985 relocation = 1;
13986 else if (tls_type != 0)
13987 {
13988 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13989 if (tls_type == (TLS_TLS | TLS_TPREL))
13990 relocation += DTP_OFFSET - TP_OFFSET;
13991
13992 if (tls_type == (TLS_TLS | TLS_GD))
13993 {
13994 bfd_put_64 (output_bfd, relocation,
13995 got->contents + off + 8);
13996 relocation = 1;
13997 }
13998 }
13999
14000 bfd_put_64 (output_bfd, relocation,
14001 got->contents + off);
14002 }
14003 }
14004
14005 if (off >= (bfd_vma) -2)
14006 abort ();
14007
14008 relocation = got->output_section->vma + got->output_offset + off;
14009 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14010 }
14011 break;
14012
14013 case R_PPC64_PLT16_HA:
14014 case R_PPC64_PLT16_HI:
14015 case R_PPC64_PLT16_LO:
14016 case R_PPC64_PLT32:
14017 case R_PPC64_PLT64:
14018 /* Relocation is to the entry for this symbol in the
14019 procedure linkage table. */
14020
14021 /* Resolve a PLT reloc against a local symbol directly,
14022 without using the procedure linkage table. */
14023 if (h == NULL)
14024 break;
14025
14026 /* It's possible that we didn't make a PLT entry for this
14027 symbol. This happens when statically linking PIC code,
14028 or when using -Bsymbolic. Go find a match if there is a
14029 PLT entry. */
14030 if (htab->elf.splt != NULL)
14031 {
14032 struct plt_entry *ent;
14033 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14034 if (ent->plt.offset != (bfd_vma) -1
14035 && ent->addend == orig_rel.r_addend)
14036 {
14037 relocation = (htab->elf.splt->output_section->vma
14038 + htab->elf.splt->output_offset
14039 + ent->plt.offset);
14040 unresolved_reloc = FALSE;
14041 break;
14042 }
14043 }
14044 break;
14045
14046 case R_PPC64_TOC:
14047 /* Relocation value is TOC base. */
14048 relocation = TOCstart;
14049 if (r_symndx == STN_UNDEF)
14050 relocation += htab->stub_group[input_section->id].toc_off;
14051 else if (unresolved_reloc)
14052 ;
14053 else if (sec != NULL && sec->id <= htab->top_id)
14054 relocation += htab->stub_group[sec->id].toc_off;
14055 else
14056 unresolved_reloc = TRUE;
14057 goto dodyn;
14058
14059 /* TOC16 relocs. We want the offset relative to the TOC base,
14060 which is the address of the start of the TOC plus 0x8000.
14061 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14062 in this order. */
14063 case R_PPC64_TOC16:
14064 case R_PPC64_TOC16_LO:
14065 case R_PPC64_TOC16_HI:
14066 case R_PPC64_TOC16_DS:
14067 case R_PPC64_TOC16_LO_DS:
14068 case R_PPC64_TOC16_HA:
14069 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14070 break;
14071
14072 /* Relocate against the beginning of the section. */
14073 case R_PPC64_SECTOFF:
14074 case R_PPC64_SECTOFF_LO:
14075 case R_PPC64_SECTOFF_HI:
14076 case R_PPC64_SECTOFF_DS:
14077 case R_PPC64_SECTOFF_LO_DS:
14078 case R_PPC64_SECTOFF_HA:
14079 if (sec != NULL)
14080 addend -= sec->output_section->vma;
14081 break;
14082
14083 case R_PPC64_REL16:
14084 case R_PPC64_REL16_LO:
14085 case R_PPC64_REL16_HI:
14086 case R_PPC64_REL16_HA:
14087 break;
14088
14089 case R_PPC64_REL14:
14090 case R_PPC64_REL14_BRNTAKEN:
14091 case R_PPC64_REL14_BRTAKEN:
14092 case R_PPC64_REL24:
14093 break;
14094
14095 case R_PPC64_TPREL16:
14096 case R_PPC64_TPREL16_LO:
14097 case R_PPC64_TPREL16_HI:
14098 case R_PPC64_TPREL16_HA:
14099 case R_PPC64_TPREL16_DS:
14100 case R_PPC64_TPREL16_LO_DS:
14101 case R_PPC64_TPREL16_HIGH:
14102 case R_PPC64_TPREL16_HIGHA:
14103 case R_PPC64_TPREL16_HIGHER:
14104 case R_PPC64_TPREL16_HIGHERA:
14105 case R_PPC64_TPREL16_HIGHEST:
14106 case R_PPC64_TPREL16_HIGHESTA:
14107 if (h != NULL
14108 && h->elf.root.type == bfd_link_hash_undefweak
14109 && h->elf.dynindx == -1)
14110 {
14111 /* Make this relocation against an undefined weak symbol
14112 resolve to zero. This is really just a tweak, since
14113 code using weak externs ought to check that they are
14114 defined before using them. */
14115 bfd_byte *p = contents + rel->r_offset - d_offset;
14116
14117 insn = bfd_get_32 (output_bfd, p);
14118 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14119 if (insn != 0)
14120 bfd_put_32 (output_bfd, insn, p);
14121 break;
14122 }
14123 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14124 if (info->shared)
14125 /* The TPREL16 relocs shouldn't really be used in shared
14126 libs as they will result in DT_TEXTREL being set, but
14127 support them anyway. */
14128 goto dodyn;
14129 break;
14130
14131 case R_PPC64_DTPREL16:
14132 case R_PPC64_DTPREL16_LO:
14133 case R_PPC64_DTPREL16_HI:
14134 case R_PPC64_DTPREL16_HA:
14135 case R_PPC64_DTPREL16_DS:
14136 case R_PPC64_DTPREL16_LO_DS:
14137 case R_PPC64_DTPREL16_HIGH:
14138 case R_PPC64_DTPREL16_HIGHA:
14139 case R_PPC64_DTPREL16_HIGHER:
14140 case R_PPC64_DTPREL16_HIGHERA:
14141 case R_PPC64_DTPREL16_HIGHEST:
14142 case R_PPC64_DTPREL16_HIGHESTA:
14143 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14144 break;
14145
14146 case R_PPC64_DTPMOD64:
14147 relocation = 1;
14148 addend = 0;
14149 goto dodyn;
14150
14151 case R_PPC64_TPREL64:
14152 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14153 goto dodyn;
14154
14155 case R_PPC64_DTPREL64:
14156 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14157 /* Fall thru */
14158
14159 /* Relocations that may need to be propagated if this is a
14160 dynamic object. */
14161 case R_PPC64_REL30:
14162 case R_PPC64_REL32:
14163 case R_PPC64_REL64:
14164 case R_PPC64_ADDR14:
14165 case R_PPC64_ADDR14_BRNTAKEN:
14166 case R_PPC64_ADDR14_BRTAKEN:
14167 case R_PPC64_ADDR16:
14168 case R_PPC64_ADDR16_DS:
14169 case R_PPC64_ADDR16_HA:
14170 case R_PPC64_ADDR16_HI:
14171 case R_PPC64_ADDR16_HIGH:
14172 case R_PPC64_ADDR16_HIGHA:
14173 case R_PPC64_ADDR16_HIGHER:
14174 case R_PPC64_ADDR16_HIGHERA:
14175 case R_PPC64_ADDR16_HIGHEST:
14176 case R_PPC64_ADDR16_HIGHESTA:
14177 case R_PPC64_ADDR16_LO:
14178 case R_PPC64_ADDR16_LO_DS:
14179 case R_PPC64_ADDR24:
14180 case R_PPC64_ADDR32:
14181 case R_PPC64_ADDR64:
14182 case R_PPC64_UADDR16:
14183 case R_PPC64_UADDR32:
14184 case R_PPC64_UADDR64:
14185 dodyn:
14186 if ((input_section->flags & SEC_ALLOC) == 0)
14187 break;
14188
14189 if (NO_OPD_RELOCS && is_opd)
14190 break;
14191
14192 if ((info->shared
14193 && (h == NULL
14194 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14195 || h->elf.root.type != bfd_link_hash_undefweak)
14196 && (must_be_dyn_reloc (info, r_type)
14197 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14198 || (ELIMINATE_COPY_RELOCS
14199 && !info->shared
14200 && h != NULL
14201 && h->elf.dynindx != -1
14202 && !h->elf.non_got_ref
14203 && !h->elf.def_regular)
14204 || (!info->shared
14205 && (h != NULL
14206 ? h->elf.type == STT_GNU_IFUNC
14207 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14208 {
14209 bfd_boolean skip, relocate;
14210 asection *sreloc;
14211 bfd_vma out_off;
14212
14213 /* When generating a dynamic object, these relocations
14214 are copied into the output file to be resolved at run
14215 time. */
14216
14217 skip = FALSE;
14218 relocate = FALSE;
14219
14220 out_off = _bfd_elf_section_offset (output_bfd, info,
14221 input_section, rel->r_offset);
14222 if (out_off == (bfd_vma) -1)
14223 skip = TRUE;
14224 else if (out_off == (bfd_vma) -2)
14225 skip = TRUE, relocate = TRUE;
14226 out_off += (input_section->output_section->vma
14227 + input_section->output_offset);
14228 outrel.r_offset = out_off;
14229 outrel.r_addend = rel->r_addend;
14230
14231 /* Optimize unaligned reloc use. */
14232 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14233 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14234 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14235 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14236 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14237 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14238 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14239 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14240 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14241
14242 if (skip)
14243 memset (&outrel, 0, sizeof outrel);
14244 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
14245 && !is_opd
14246 && r_type != R_PPC64_TOC)
14247 {
14248 BFD_ASSERT (h->elf.dynindx != -1);
14249 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14250 }
14251 else
14252 {
14253 /* This symbol is local, or marked to become local,
14254 or this is an opd section reloc which must point
14255 at a local function. */
14256 outrel.r_addend += relocation;
14257 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14258 {
14259 if (is_opd && h != NULL)
14260 {
14261 /* Lie about opd entries. This case occurs
14262 when building shared libraries and we
14263 reference a function in another shared
14264 lib. The same thing happens for a weak
14265 definition in an application that's
14266 overridden by a strong definition in a
14267 shared lib. (I believe this is a generic
14268 bug in binutils handling of weak syms.)
14269 In these cases we won't use the opd
14270 entry in this lib. */
14271 unresolved_reloc = FALSE;
14272 }
14273 if (!is_opd
14274 && r_type == R_PPC64_ADDR64
14275 && (h != NULL
14276 ? h->elf.type == STT_GNU_IFUNC
14277 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14278 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14279 else
14280 {
14281 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14282
14283 /* We need to relocate .opd contents for ld.so.
14284 Prelink also wants simple and consistent rules
14285 for relocs. This make all RELATIVE relocs have
14286 *r_offset equal to r_addend. */
14287 relocate = TRUE;
14288 }
14289 }
14290 else
14291 {
14292 long indx = 0;
14293
14294 if (h != NULL
14295 ? h->elf.type == STT_GNU_IFUNC
14296 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14297 {
14298 info->callbacks->einfo
14299 (_("%P: %H: %s for indirect "
14300 "function `%T' unsupported\n"),
14301 input_bfd, input_section, rel->r_offset,
14302 ppc64_elf_howto_table[r_type]->name,
14303 sym_name);
14304 ret = FALSE;
14305 }
14306 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14307 ;
14308 else if (sec == NULL || sec->owner == NULL)
14309 {
14310 bfd_set_error (bfd_error_bad_value);
14311 return FALSE;
14312 }
14313 else
14314 {
14315 asection *osec;
14316
14317 osec = sec->output_section;
14318 indx = elf_section_data (osec)->dynindx;
14319
14320 if (indx == 0)
14321 {
14322 if ((osec->flags & SEC_READONLY) == 0
14323 && htab->elf.data_index_section != NULL)
14324 osec = htab->elf.data_index_section;
14325 else
14326 osec = htab->elf.text_index_section;
14327 indx = elf_section_data (osec)->dynindx;
14328 }
14329 BFD_ASSERT (indx != 0);
14330
14331 /* We are turning this relocation into one
14332 against a section symbol, so subtract out
14333 the output section's address but not the
14334 offset of the input section in the output
14335 section. */
14336 outrel.r_addend -= osec->vma;
14337 }
14338
14339 outrel.r_info = ELF64_R_INFO (indx, r_type);
14340 }
14341 }
14342
14343 sreloc = elf_section_data (input_section)->sreloc;
14344 if (h != NULL
14345 ? h->elf.type == STT_GNU_IFUNC
14346 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14347 sreloc = htab->elf.irelplt;
14348 if (sreloc == NULL)
14349 abort ();
14350
14351 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14352 >= sreloc->size)
14353 abort ();
14354 loc = sreloc->contents;
14355 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14356 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14357
14358 /* If this reloc is against an external symbol, it will
14359 be computed at runtime, so there's no need to do
14360 anything now. However, for the sake of prelink ensure
14361 that the section contents are a known value. */
14362 if (! relocate)
14363 {
14364 unresolved_reloc = FALSE;
14365 /* The value chosen here is quite arbitrary as ld.so
14366 ignores section contents except for the special
14367 case of .opd where the contents might be accessed
14368 before relocation. Choose zero, as that won't
14369 cause reloc overflow. */
14370 relocation = 0;
14371 addend = 0;
14372 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14373 to improve backward compatibility with older
14374 versions of ld. */
14375 if (r_type == R_PPC64_ADDR64)
14376 addend = outrel.r_addend;
14377 /* Adjust pc_relative relocs to have zero in *r_offset. */
14378 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14379 addend = (input_section->output_section->vma
14380 + input_section->output_offset
14381 + rel->r_offset);
14382 }
14383 }
14384 break;
14385
14386 case R_PPC64_COPY:
14387 case R_PPC64_GLOB_DAT:
14388 case R_PPC64_JMP_SLOT:
14389 case R_PPC64_JMP_IREL:
14390 case R_PPC64_RELATIVE:
14391 /* We shouldn't ever see these dynamic relocs in relocatable
14392 files. */
14393 /* Fall through. */
14394
14395 case R_PPC64_PLTGOT16:
14396 case R_PPC64_PLTGOT16_DS:
14397 case R_PPC64_PLTGOT16_HA:
14398 case R_PPC64_PLTGOT16_HI:
14399 case R_PPC64_PLTGOT16_LO:
14400 case R_PPC64_PLTGOT16_LO_DS:
14401 case R_PPC64_PLTREL32:
14402 case R_PPC64_PLTREL64:
14403 /* These ones haven't been implemented yet. */
14404
14405 info->callbacks->einfo
14406 (_("%P: %B: %s is not supported for `%T'\n"),
14407 input_bfd,
14408 ppc64_elf_howto_table[r_type]->name, sym_name);
14409
14410 bfd_set_error (bfd_error_invalid_operation);
14411 ret = FALSE;
14412 continue;
14413 }
14414
14415 /* Multi-instruction sequences that access the TOC can be
14416 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14417 to nop; addi rb,r2,x; */
14418 switch (r_type)
14419 {
14420 default:
14421 break;
14422
14423 case R_PPC64_GOT_TLSLD16_HI:
14424 case R_PPC64_GOT_TLSGD16_HI:
14425 case R_PPC64_GOT_TPREL16_HI:
14426 case R_PPC64_GOT_DTPREL16_HI:
14427 case R_PPC64_GOT16_HI:
14428 case R_PPC64_TOC16_HI:
14429 /* These relocs would only be useful if building up an
14430 offset to later add to r2, perhaps in an indexed
14431 addressing mode instruction. Don't try to optimize.
14432 Unfortunately, the possibility of someone building up an
14433 offset like this or even with the HA relocs, means that
14434 we need to check the high insn when optimizing the low
14435 insn. */
14436 break;
14437
14438 case R_PPC64_GOT_TLSLD16_HA:
14439 case R_PPC64_GOT_TLSGD16_HA:
14440 case R_PPC64_GOT_TPREL16_HA:
14441 case R_PPC64_GOT_DTPREL16_HA:
14442 case R_PPC64_GOT16_HA:
14443 case R_PPC64_TOC16_HA:
14444 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14445 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14446 {
14447 bfd_byte *p = contents + (rel->r_offset & ~3);
14448 bfd_put_32 (input_bfd, NOP, p);
14449 }
14450 break;
14451
14452 case R_PPC64_GOT_TLSLD16_LO:
14453 case R_PPC64_GOT_TLSGD16_LO:
14454 case R_PPC64_GOT_TPREL16_LO_DS:
14455 case R_PPC64_GOT_DTPREL16_LO_DS:
14456 case R_PPC64_GOT16_LO:
14457 case R_PPC64_GOT16_LO_DS:
14458 case R_PPC64_TOC16_LO:
14459 case R_PPC64_TOC16_LO_DS:
14460 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14461 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14462 {
14463 bfd_byte *p = contents + (rel->r_offset & ~3);
14464 insn = bfd_get_32 (input_bfd, p);
14465 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14466 {
14467 /* Transform addic to addi when we change reg. */
14468 insn &= ~((0x3f << 26) | (0x1f << 16));
14469 insn |= (14u << 26) | (2 << 16);
14470 }
14471 else
14472 {
14473 insn &= ~(0x1f << 16);
14474 insn |= 2 << 16;
14475 }
14476 bfd_put_32 (input_bfd, insn, p);
14477 }
14478 break;
14479 }
14480
14481 /* Do any further special processing. */
14482 switch (r_type)
14483 {
14484 default:
14485 break;
14486
14487 case R_PPC64_REL16_HA:
14488 case R_PPC64_ADDR16_HA:
14489 case R_PPC64_ADDR16_HIGHA:
14490 case R_PPC64_ADDR16_HIGHERA:
14491 case R_PPC64_ADDR16_HIGHESTA:
14492 case R_PPC64_TOC16_HA:
14493 case R_PPC64_SECTOFF_HA:
14494 case R_PPC64_TPREL16_HA:
14495 case R_PPC64_TPREL16_HIGHA:
14496 case R_PPC64_TPREL16_HIGHERA:
14497 case R_PPC64_TPREL16_HIGHESTA:
14498 case R_PPC64_DTPREL16_HA:
14499 case R_PPC64_DTPREL16_HIGHA:
14500 case R_PPC64_DTPREL16_HIGHERA:
14501 case R_PPC64_DTPREL16_HIGHESTA:
14502 /* It's just possible that this symbol is a weak symbol
14503 that's not actually defined anywhere. In that case,
14504 'sec' would be NULL, and we should leave the symbol
14505 alone (it will be set to zero elsewhere in the link). */
14506 if (sec == NULL)
14507 break;
14508 /* Fall thru */
14509
14510 case R_PPC64_GOT16_HA:
14511 case R_PPC64_PLTGOT16_HA:
14512 case R_PPC64_PLT16_HA:
14513 case R_PPC64_GOT_TLSGD16_HA:
14514 case R_PPC64_GOT_TLSLD16_HA:
14515 case R_PPC64_GOT_TPREL16_HA:
14516 case R_PPC64_GOT_DTPREL16_HA:
14517 /* Add 0x10000 if sign bit in 0:15 is set.
14518 Bits 0:15 are not used. */
14519 addend += 0x8000;
14520 break;
14521
14522 case R_PPC64_ADDR16_DS:
14523 case R_PPC64_ADDR16_LO_DS:
14524 case R_PPC64_GOT16_DS:
14525 case R_PPC64_GOT16_LO_DS:
14526 case R_PPC64_PLT16_LO_DS:
14527 case R_PPC64_SECTOFF_DS:
14528 case R_PPC64_SECTOFF_LO_DS:
14529 case R_PPC64_TOC16_DS:
14530 case R_PPC64_TOC16_LO_DS:
14531 case R_PPC64_PLTGOT16_DS:
14532 case R_PPC64_PLTGOT16_LO_DS:
14533 case R_PPC64_GOT_TPREL16_DS:
14534 case R_PPC64_GOT_TPREL16_LO_DS:
14535 case R_PPC64_GOT_DTPREL16_DS:
14536 case R_PPC64_GOT_DTPREL16_LO_DS:
14537 case R_PPC64_TPREL16_DS:
14538 case R_PPC64_TPREL16_LO_DS:
14539 case R_PPC64_DTPREL16_DS:
14540 case R_PPC64_DTPREL16_LO_DS:
14541 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14542 mask = 3;
14543 /* If this reloc is against an lq insn, then the value must be
14544 a multiple of 16. This is somewhat of a hack, but the
14545 "correct" way to do this by defining _DQ forms of all the
14546 _DS relocs bloats all reloc switches in this file. It
14547 doesn't seem to make much sense to use any of these relocs
14548 in data, so testing the insn should be safe. */
14549 if ((insn & (0x3f << 26)) == (56u << 26))
14550 mask = 15;
14551 if (((relocation + addend) & mask) != 0)
14552 {
14553 info->callbacks->einfo
14554 (_("%P: %H: error: %s not a multiple of %u\n"),
14555 input_bfd, input_section, rel->r_offset,
14556 ppc64_elf_howto_table[r_type]->name,
14557 mask + 1);
14558 bfd_set_error (bfd_error_bad_value);
14559 ret = FALSE;
14560 continue;
14561 }
14562 break;
14563 }
14564
14565 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14566 because such sections are not SEC_ALLOC and thus ld.so will
14567 not process them. */
14568 if (unresolved_reloc
14569 && !((input_section->flags & SEC_DEBUGGING) != 0
14570 && h->elf.def_dynamic)
14571 && _bfd_elf_section_offset (output_bfd, info, input_section,
14572 rel->r_offset) != (bfd_vma) -1)
14573 {
14574 info->callbacks->einfo
14575 (_("%P: %H: unresolvable %s against `%T'\n"),
14576 input_bfd, input_section, rel->r_offset,
14577 ppc64_elf_howto_table[(int) r_type]->name,
14578 h->elf.root.root.string);
14579 ret = FALSE;
14580 }
14581
14582 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
14583 input_bfd,
14584 input_section,
14585 contents,
14586 rel->r_offset,
14587 relocation,
14588 addend);
14589
14590 if (r != bfd_reloc_ok)
14591 {
14592 char *more_info = NULL;
14593 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
14594
14595 if (reloc_dest != DEST_NORMAL)
14596 {
14597 more_info = bfd_malloc (strlen (reloc_name) + 8);
14598 if (more_info != NULL)
14599 {
14600 strcpy (more_info, reloc_name);
14601 strcat (more_info, (reloc_dest == DEST_OPD
14602 ? " (OPD)" : " (stub)"));
14603 reloc_name = more_info;
14604 }
14605 }
14606
14607 if (r == bfd_reloc_overflow)
14608 {
14609 if (warned)
14610 continue;
14611 if (h != NULL
14612 && h->elf.root.type == bfd_link_hash_undefweak
14613 && ppc64_elf_howto_table[r_type]->pc_relative)
14614 {
14615 /* Assume this is a call protected by other code that
14616 detects the symbol is undefined. If this is the case,
14617 we can safely ignore the overflow. If not, the
14618 program is hosed anyway, and a little warning isn't
14619 going to help. */
14620
14621 continue;
14622 }
14623
14624 if (!((*info->callbacks->reloc_overflow)
14625 (info, &h->elf.root, sym_name,
14626 reloc_name, orig_rel.r_addend,
14627 input_bfd, input_section, rel->r_offset)))
14628 return FALSE;
14629 }
14630 else
14631 {
14632 info->callbacks->einfo
14633 (_("%P: %H: %s against `%T': error %d\n"),
14634 input_bfd, input_section, rel->r_offset,
14635 reloc_name, sym_name, (int) r);
14636 ret = FALSE;
14637 }
14638 if (more_info != NULL)
14639 free (more_info);
14640 }
14641 }
14642
14643 /* If we're emitting relocations, then shortly after this function
14644 returns, reloc offsets and addends for this section will be
14645 adjusted. Worse, reloc symbol indices will be for the output
14646 file rather than the input. Save a copy of the relocs for
14647 opd_entry_value. */
14648 if (is_opd && (info->emitrelocations || info->relocatable))
14649 {
14650 bfd_size_type amt;
14651 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14652 rel = bfd_alloc (input_bfd, amt);
14653 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14654 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14655 if (rel == NULL)
14656 return FALSE;
14657 memcpy (rel, relocs, amt);
14658 }
14659 return ret;
14660 }
14661
14662 /* Adjust the value of any local symbols in opd sections. */
14663
14664 static int
14665 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14666 const char *name ATTRIBUTE_UNUSED,
14667 Elf_Internal_Sym *elfsym,
14668 asection *input_sec,
14669 struct elf_link_hash_entry *h)
14670 {
14671 struct _opd_sec_data *opd;
14672 long adjust;
14673 bfd_vma value;
14674
14675 if (h != NULL)
14676 return 1;
14677
14678 opd = get_opd_info (input_sec);
14679 if (opd == NULL || opd->adjust == NULL)
14680 return 1;
14681
14682 value = elfsym->st_value - input_sec->output_offset;
14683 if (!info->relocatable)
14684 value -= input_sec->output_section->vma;
14685
14686 adjust = opd->adjust[value / 8];
14687 if (adjust == -1)
14688 return 2;
14689
14690 elfsym->st_value += adjust;
14691 return 1;
14692 }
14693
14694 /* Finish up dynamic symbol handling. We set the contents of various
14695 dynamic sections here. */
14696
14697 static bfd_boolean
14698 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14699 struct bfd_link_info *info,
14700 struct elf_link_hash_entry *h,
14701 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14702 {
14703 struct ppc_link_hash_table *htab;
14704 struct plt_entry *ent;
14705 Elf_Internal_Rela rela;
14706 bfd_byte *loc;
14707
14708 htab = ppc_hash_table (info);
14709 if (htab == NULL)
14710 return FALSE;
14711
14712 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14713 if (ent->plt.offset != (bfd_vma) -1)
14714 {
14715 /* This symbol has an entry in the procedure linkage
14716 table. Set it up. */
14717 if (!htab->elf.dynamic_sections_created
14718 || h->dynindx == -1)
14719 {
14720 BFD_ASSERT (h->type == STT_GNU_IFUNC
14721 && h->def_regular
14722 && (h->root.type == bfd_link_hash_defined
14723 || h->root.type == bfd_link_hash_defweak));
14724 rela.r_offset = (htab->elf.iplt->output_section->vma
14725 + htab->elf.iplt->output_offset
14726 + ent->plt.offset);
14727 if (htab->opd_abi)
14728 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14729 else
14730 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14731 rela.r_addend = (h->root.u.def.value
14732 + h->root.u.def.section->output_offset
14733 + h->root.u.def.section->output_section->vma
14734 + ent->addend);
14735 loc = (htab->elf.irelplt->contents
14736 + (htab->elf.irelplt->reloc_count++
14737 * sizeof (Elf64_External_Rela)));
14738 }
14739 else
14740 {
14741 rela.r_offset = (htab->elf.splt->output_section->vma
14742 + htab->elf.splt->output_offset
14743 + ent->plt.offset);
14744 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14745 rela.r_addend = ent->addend;
14746 loc = (htab->elf.srelplt->contents
14747 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14748 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14749 }
14750 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14751
14752 if (!htab->opd_abi)
14753 {
14754 if (!h->def_regular)
14755 {
14756 /* Mark the symbol as undefined, rather than as
14757 defined in glink. Leave the value if there were
14758 any relocations where pointer equality matters
14759 (this is a clue for the dynamic linker, to make
14760 function pointer comparisons work between an
14761 application and shared library), otherwise set it
14762 to zero. */
14763 sym->st_shndx = SHN_UNDEF;
14764 if (!h->pointer_equality_needed)
14765 sym->st_value = 0;
14766 else if (!h->ref_regular_nonweak)
14767 {
14768 /* This breaks function pointer comparisons, but
14769 that is better than breaking tests for a NULL
14770 function pointer. */
14771 sym->st_value = 0;
14772 }
14773 }
14774 }
14775 }
14776
14777 if (h->needs_copy)
14778 {
14779 /* This symbol needs a copy reloc. Set it up. */
14780
14781 if (h->dynindx == -1
14782 || (h->root.type != bfd_link_hash_defined
14783 && h->root.type != bfd_link_hash_defweak)
14784 || htab->relbss == NULL)
14785 abort ();
14786
14787 rela.r_offset = (h->root.u.def.value
14788 + h->root.u.def.section->output_section->vma
14789 + h->root.u.def.section->output_offset);
14790 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14791 rela.r_addend = 0;
14792 loc = htab->relbss->contents;
14793 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14794 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14795 }
14796
14797 return TRUE;
14798 }
14799
14800 /* Used to decide how to sort relocs in an optimal manner for the
14801 dynamic linker, before writing them out. */
14802
14803 static enum elf_reloc_type_class
14804 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14805 const asection *rel_sec,
14806 const Elf_Internal_Rela *rela)
14807 {
14808 enum elf_ppc64_reloc_type r_type;
14809 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14810
14811 if (rel_sec == htab->elf.irelplt)
14812 return reloc_class_ifunc;
14813
14814 r_type = ELF64_R_TYPE (rela->r_info);
14815 switch (r_type)
14816 {
14817 case R_PPC64_RELATIVE:
14818 return reloc_class_relative;
14819 case R_PPC64_JMP_SLOT:
14820 return reloc_class_plt;
14821 case R_PPC64_COPY:
14822 return reloc_class_copy;
14823 default:
14824 return reloc_class_normal;
14825 }
14826 }
14827
14828 /* Finish up the dynamic sections. */
14829
14830 static bfd_boolean
14831 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14832 struct bfd_link_info *info)
14833 {
14834 struct ppc_link_hash_table *htab;
14835 bfd *dynobj;
14836 asection *sdyn;
14837
14838 htab = ppc_hash_table (info);
14839 if (htab == NULL)
14840 return FALSE;
14841
14842 dynobj = htab->elf.dynobj;
14843 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14844
14845 if (htab->elf.dynamic_sections_created)
14846 {
14847 Elf64_External_Dyn *dyncon, *dynconend;
14848
14849 if (sdyn == NULL || htab->elf.sgot == NULL)
14850 abort ();
14851
14852 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14853 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14854 for (; dyncon < dynconend; dyncon++)
14855 {
14856 Elf_Internal_Dyn dyn;
14857 asection *s;
14858
14859 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14860
14861 switch (dyn.d_tag)
14862 {
14863 default:
14864 continue;
14865
14866 case DT_PPC64_GLINK:
14867 s = htab->glink;
14868 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14869 /* We stupidly defined DT_PPC64_GLINK to be the start
14870 of glink rather than the first entry point, which is
14871 what ld.so needs, and now have a bigger stub to
14872 support automatic multiple TOCs. */
14873 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
14874 break;
14875
14876 case DT_PPC64_OPD:
14877 s = bfd_get_section_by_name (output_bfd, ".opd");
14878 if (s == NULL)
14879 continue;
14880 dyn.d_un.d_ptr = s->vma;
14881 break;
14882
14883 case DT_PPC64_OPT:
14884 if (htab->do_multi_toc && htab->multi_toc_needed)
14885 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
14886 break;
14887
14888 case DT_PPC64_OPDSZ:
14889 s = bfd_get_section_by_name (output_bfd, ".opd");
14890 if (s == NULL)
14891 continue;
14892 dyn.d_un.d_val = s->size;
14893 break;
14894
14895 case DT_PLTGOT:
14896 s = htab->elf.splt;
14897 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14898 break;
14899
14900 case DT_JMPREL:
14901 s = htab->elf.srelplt;
14902 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14903 break;
14904
14905 case DT_PLTRELSZ:
14906 dyn.d_un.d_val = htab->elf.srelplt->size;
14907 break;
14908
14909 case DT_RELASZ:
14910 /* Don't count procedure linkage table relocs in the
14911 overall reloc count. */
14912 s = htab->elf.srelplt;
14913 if (s == NULL)
14914 continue;
14915 dyn.d_un.d_val -= s->size;
14916 break;
14917
14918 case DT_RELA:
14919 /* We may not be using the standard ELF linker script.
14920 If .rela.plt is the first .rela section, we adjust
14921 DT_RELA to not include it. */
14922 s = htab->elf.srelplt;
14923 if (s == NULL)
14924 continue;
14925 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14926 continue;
14927 dyn.d_un.d_ptr += s->size;
14928 break;
14929 }
14930
14931 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14932 }
14933 }
14934
14935 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
14936 {
14937 /* Fill in the first entry in the global offset table.
14938 We use it to hold the link-time TOCbase. */
14939 bfd_put_64 (output_bfd,
14940 elf_gp (output_bfd) + TOC_BASE_OFF,
14941 htab->elf.sgot->contents);
14942
14943 /* Set .got entry size. */
14944 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
14945 }
14946
14947 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
14948 {
14949 /* Set .plt entry size. */
14950 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
14951 = PLT_ENTRY_SIZE (htab);
14952 }
14953
14954 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14955 brlt ourselves if emitrelocations. */
14956 if (htab->brlt != NULL
14957 && htab->brlt->reloc_count != 0
14958 && !_bfd_elf_link_output_relocs (output_bfd,
14959 htab->brlt,
14960 elf_section_data (htab->brlt)->rela.hdr,
14961 elf_section_data (htab->brlt)->relocs,
14962 NULL))
14963 return FALSE;
14964
14965 if (htab->glink != NULL
14966 && htab->glink->reloc_count != 0
14967 && !_bfd_elf_link_output_relocs (output_bfd,
14968 htab->glink,
14969 elf_section_data (htab->glink)->rela.hdr,
14970 elf_section_data (htab->glink)->relocs,
14971 NULL))
14972 return FALSE;
14973
14974
14975 if (htab->glink_eh_frame != NULL
14976 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14977 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14978 htab->glink_eh_frame,
14979 htab->glink_eh_frame->contents))
14980 return FALSE;
14981
14982 /* We need to handle writing out multiple GOT sections ourselves,
14983 since we didn't add them to DYNOBJ. We know dynobj is the first
14984 bfd. */
14985 while ((dynobj = dynobj->link_next) != NULL)
14986 {
14987 asection *s;
14988
14989 if (!is_ppc64_elf (dynobj))
14990 continue;
14991
14992 s = ppc64_elf_tdata (dynobj)->got;
14993 if (s != NULL
14994 && s->size != 0
14995 && s->output_section != bfd_abs_section_ptr
14996 && !bfd_set_section_contents (output_bfd, s->output_section,
14997 s->contents, s->output_offset,
14998 s->size))
14999 return FALSE;
15000 s = ppc64_elf_tdata (dynobj)->relgot;
15001 if (s != NULL
15002 && s->size != 0
15003 && s->output_section != bfd_abs_section_ptr
15004 && !bfd_set_section_contents (output_bfd, s->output_section,
15005 s->contents, s->output_offset,
15006 s->size))
15007 return FALSE;
15008 }
15009
15010 return TRUE;
15011 }
15012
15013 #include "elf64-target.h"
15014
15015 /* FreeBSD support */
15016
15017 #undef TARGET_LITTLE_SYM
15018 #undef TARGET_LITTLE_NAME
15019
15020 #undef TARGET_BIG_SYM
15021 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
15022 #undef TARGET_BIG_NAME
15023 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15024
15025 #undef ELF_OSABI
15026 #define ELF_OSABI ELFOSABI_FREEBSD
15027
15028 #undef elf64_bed
15029 #define elf64_bed elf64_powerpc_fbsd_bed
15030
15031 #include "elf64-target.h"
15032
This page took 0.529707 seconds and 4 git commands to generate.