6bdc701d067aea426476e927fb89320b397d6fe2
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL, FALSE);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 /* A copy of relocs before they are modified for --emit-relocs. */
2619 Elf_Internal_Rela *opd_relocs;
2620
2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2622 the reloc to be in the range -32768 to 32767. */
2623 unsigned int has_small_toc_reloc : 1;
2624
2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2626 instruction not one we handle. */
2627 unsigned int unexpected_toc_insn : 1;
2628 };
2629
2630 #define ppc64_elf_tdata(bfd) \
2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2632
2633 #define ppc64_tlsld_got(bfd) \
2634 (&ppc64_elf_tdata (bfd)->tlsld_got)
2635
2636 #define is_ppc64_elf(bfd) \
2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2638 && elf_object_id (bfd) == PPC64_ELF_DATA)
2639
2640 /* Override the generic function because we store some extras. */
2641
2642 static bfd_boolean
2643 ppc64_elf_mkobject (bfd *abfd)
2644 {
2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2646 PPC64_ELF_DATA);
2647 }
2648
2649 /* Fix bad default arch selected for a 64 bit input bfd when the
2650 default is 32 bit. */
2651
2652 static bfd_boolean
2653 ppc64_elf_object_p (bfd *abfd)
2654 {
2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2656 {
2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2658
2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2660 {
2661 /* Relies on arch after 32 bit default being 64 bit default. */
2662 abfd->arch_info = abfd->arch_info->next;
2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2664 }
2665 }
2666 return TRUE;
2667 }
2668
2669 /* Support for core dump NOTE sections. */
2670
2671 static bfd_boolean
2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2673 {
2674 size_t offset, size;
2675
2676 if (note->descsz != 504)
2677 return FALSE;
2678
2679 /* pr_cursig */
2680 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2681
2682 /* pr_pid */
2683 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2684
2685 /* pr_reg */
2686 offset = 112;
2687 size = 384;
2688
2689 /* Make a ".reg/999" section. */
2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2691 size, note->descpos + offset);
2692 }
2693
2694 static bfd_boolean
2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2696 {
2697 if (note->descsz != 136)
2698 return FALSE;
2699
2700 elf_tdata (abfd)->core_pid
2701 = bfd_get_32 (abfd, note->descdata + 24);
2702 elf_tdata (abfd)->core_program
2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2704 elf_tdata (abfd)->core_command
2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2706
2707 return TRUE;
2708 }
2709
2710 static char *
2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2712 ...)
2713 {
2714 switch (note_type)
2715 {
2716 default:
2717 return NULL;
2718
2719 case NT_PRPSINFO:
2720 {
2721 char data[136];
2722 va_list ap;
2723
2724 va_start (ap, note_type);
2725 memset (data, 0, sizeof (data));
2726 strncpy (data + 40, va_arg (ap, const char *), 16);
2727 strncpy (data + 56, va_arg (ap, const char *), 80);
2728 va_end (ap);
2729 return elfcore_write_note (abfd, buf, bufsiz,
2730 "CORE", note_type, data, sizeof (data));
2731 }
2732
2733 case NT_PRSTATUS:
2734 {
2735 char data[504];
2736 va_list ap;
2737 long pid;
2738 int cursig;
2739 const void *greg;
2740
2741 va_start (ap, note_type);
2742 memset (data, 0, 112);
2743 pid = va_arg (ap, long);
2744 bfd_put_32 (abfd, pid, data + 32);
2745 cursig = va_arg (ap, int);
2746 bfd_put_16 (abfd, cursig, data + 12);
2747 greg = va_arg (ap, const void *);
2748 memcpy (data + 112, greg, 384);
2749 memset (data + 496, 0, 8);
2750 va_end (ap);
2751 return elfcore_write_note (abfd, buf, bufsiz,
2752 "CORE", note_type, data, sizeof (data));
2753 }
2754 }
2755 }
2756
2757 /* Add extra PPC sections. */
2758
2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2760 {
2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2767 { NULL, 0, 0, 0, 0 }
2768 };
2769
2770 enum _ppc64_sec_type {
2771 sec_normal = 0,
2772 sec_opd = 1,
2773 sec_toc = 2
2774 };
2775
2776 struct _ppc64_elf_section_data
2777 {
2778 struct bfd_elf_section_data elf;
2779
2780 union
2781 {
2782 /* An array with one entry for each opd function descriptor. */
2783 struct _opd_sec_data
2784 {
2785 /* Points to the function code section for local opd entries. */
2786 asection **func_sec;
2787
2788 /* After editing .opd, adjust references to opd local syms. */
2789 long *adjust;
2790 } opd;
2791
2792 /* An array for toc sections, indexed by offset/8. */
2793 struct _toc_sec_data
2794 {
2795 /* Specifies the relocation symbol index used at a given toc offset. */
2796 unsigned *symndx;
2797
2798 /* And the relocation addend. */
2799 bfd_vma *add;
2800 } toc;
2801 } u;
2802
2803 enum _ppc64_sec_type sec_type:2;
2804
2805 /* Flag set when small branches are detected. Used to
2806 select suitable defaults for the stub group size. */
2807 unsigned int has_14bit_branch:1;
2808 };
2809
2810 #define ppc64_elf_section_data(sec) \
2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2812
2813 static bfd_boolean
2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2815 {
2816 if (!sec->used_by_bfd)
2817 {
2818 struct _ppc64_elf_section_data *sdata;
2819 bfd_size_type amt = sizeof (*sdata);
2820
2821 sdata = bfd_zalloc (abfd, amt);
2822 if (sdata == NULL)
2823 return FALSE;
2824 sec->used_by_bfd = sdata;
2825 }
2826
2827 return _bfd_elf_new_section_hook (abfd, sec);
2828 }
2829
2830 static struct _opd_sec_data *
2831 get_opd_info (asection * sec)
2832 {
2833 if (sec != NULL
2834 && ppc64_elf_section_data (sec) != NULL
2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2836 return &ppc64_elf_section_data (sec)->u.opd;
2837 return NULL;
2838 }
2839 \f
2840 /* Parameters for the qsort hook. */
2841 static bfd_boolean synthetic_relocatable;
2842
2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2844
2845 static int
2846 compare_symbols (const void *ap, const void *bp)
2847 {
2848 const asymbol *a = * (const asymbol **) ap;
2849 const asymbol *b = * (const asymbol **) bp;
2850
2851 /* Section symbols first. */
2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2853 return -1;
2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2855 return 1;
2856
2857 /* then .opd symbols. */
2858 if (strcmp (a->section->name, ".opd") == 0
2859 && strcmp (b->section->name, ".opd") != 0)
2860 return -1;
2861 if (strcmp (a->section->name, ".opd") != 0
2862 && strcmp (b->section->name, ".opd") == 0)
2863 return 1;
2864
2865 /* then other code symbols. */
2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2867 == (SEC_CODE | SEC_ALLOC)
2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 return -1;
2871
2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2873 != (SEC_CODE | SEC_ALLOC)
2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2875 == (SEC_CODE | SEC_ALLOC))
2876 return 1;
2877
2878 if (synthetic_relocatable)
2879 {
2880 if (a->section->id < b->section->id)
2881 return -1;
2882
2883 if (a->section->id > b->section->id)
2884 return 1;
2885 }
2886
2887 if (a->value + a->section->vma < b->value + b->section->vma)
2888 return -1;
2889
2890 if (a->value + a->section->vma > b->value + b->section->vma)
2891 return 1;
2892
2893 /* For syms with the same value, prefer strong dynamic global function
2894 syms over other syms. */
2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2896 return -1;
2897
2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2899 return 1;
2900
2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2902 return -1;
2903
2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2905 return 1;
2906
2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2908 return -1;
2909
2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2911 return 1;
2912
2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2914 return -1;
2915
2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Search SYMS for a symbol of the given VALUE. */
2923
2924 static asymbol *
2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2926 {
2927 long mid;
2928
2929 if (id == -1)
2930 {
2931 while (lo < hi)
2932 {
2933 mid = (lo + hi) >> 1;
2934 if (syms[mid]->value + syms[mid]->section->vma < value)
2935 lo = mid + 1;
2936 else if (syms[mid]->value + syms[mid]->section->vma > value)
2937 hi = mid;
2938 else
2939 return syms[mid];
2940 }
2941 }
2942 else
2943 {
2944 while (lo < hi)
2945 {
2946 mid = (lo + hi) >> 1;
2947 if (syms[mid]->section->id < id)
2948 lo = mid + 1;
2949 else if (syms[mid]->section->id > id)
2950 hi = mid;
2951 else if (syms[mid]->value < value)
2952 lo = mid + 1;
2953 else if (syms[mid]->value > value)
2954 hi = mid;
2955 else
2956 return syms[mid];
2957 }
2958 }
2959 return NULL;
2960 }
2961
2962 static bfd_boolean
2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2964 {
2965 bfd_vma vma = *(bfd_vma *) ptr;
2966 return ((section->flags & SEC_ALLOC) != 0
2967 && section->vma <= vma
2968 && vma < section->vma + section->size);
2969 }
2970
2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2972 entry syms. Also generate @plt symbols for the glink branch table. */
2973
2974 static long
2975 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2976 long static_count, asymbol **static_syms,
2977 long dyn_count, asymbol **dyn_syms,
2978 asymbol **ret)
2979 {
2980 asymbol *s;
2981 long i;
2982 long count;
2983 char *names;
2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2985 asection *opd;
2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2987 asymbol **syms;
2988
2989 *ret = NULL;
2990
2991 opd = bfd_get_section_by_name (abfd, ".opd");
2992 if (opd == NULL)
2993 return 0;
2994
2995 symcount = static_count;
2996 if (!relocatable)
2997 symcount += dyn_count;
2998 if (symcount == 0)
2999 return 0;
3000
3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3002 if (syms == NULL)
3003 return -1;
3004
3005 if (!relocatable && static_count != 0 && dyn_count != 0)
3006 {
3007 /* Use both symbol tables. */
3008 memcpy (syms, static_syms, static_count * sizeof (*syms));
3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3010 }
3011 else if (!relocatable && static_count == 0)
3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3013 else
3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3015
3016 synthetic_relocatable = relocatable;
3017 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3018
3019 if (!relocatable && symcount > 1)
3020 {
3021 long j;
3022 /* Trim duplicate syms, since we may have merged the normal and
3023 dynamic symbols. Actually, we only care about syms that have
3024 different values, so trim any with the same value. */
3025 for (i = 1, j = 1; i < symcount; ++i)
3026 if (syms[i - 1]->value + syms[i - 1]->section->vma
3027 != syms[i]->value + syms[i]->section->vma)
3028 syms[j++] = syms[i];
3029 symcount = j;
3030 }
3031
3032 i = 0;
3033 if (strcmp (syms[i]->section->name, ".opd") == 0)
3034 ++i;
3035 codesecsym = i;
3036
3037 for (; i < symcount; ++i)
3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3039 != (SEC_CODE | SEC_ALLOC))
3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3041 break;
3042 codesecsymend = i;
3043
3044 for (; i < symcount; ++i)
3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 secsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if (strcmp (syms[i]->section->name, ".opd") != 0)
3051 break;
3052 opdsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3056 != (SEC_CODE | SEC_ALLOC))
3057 break;
3058 symcount = i;
3059
3060 count = 0;
3061
3062 if (relocatable)
3063 {
3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3065 arelent *r;
3066 size_t size;
3067 long relcount;
3068
3069 if (opdsymend == secsymend)
3070 goto done;
3071
3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3074 if (relcount == 0)
3075 goto done;
3076
3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3078 {
3079 count = -1;
3080 goto done;
3081 }
3082
3083 size = 0;
3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3085 {
3086 asymbol *sym;
3087
3088 while (r < opd->relocation + relcount
3089 && r->address < syms[i]->value + opd->vma)
3090 ++r;
3091
3092 if (r == opd->relocation + relcount)
3093 break;
3094
3095 if (r->address != syms[i]->value + opd->vma)
3096 continue;
3097
3098 if (r->howto->type != R_PPC64_ADDR64)
3099 continue;
3100
3101 sym = *r->sym_ptr_ptr;
3102 if (!sym_exists_at (syms, opdsymend, symcount,
3103 sym->section->id, sym->value + r->addend))
3104 {
3105 ++count;
3106 size += sizeof (asymbol);
3107 size += strlen (syms[i]->name) + 2;
3108 }
3109 }
3110
3111 s = *ret = bfd_malloc (size);
3112 if (s == NULL)
3113 {
3114 count = -1;
3115 goto done;
3116 }
3117
3118 names = (char *) (s + count);
3119
3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3121 {
3122 asymbol *sym;
3123
3124 while (r < opd->relocation + relcount
3125 && r->address < syms[i]->value + opd->vma)
3126 ++r;
3127
3128 if (r == opd->relocation + relcount)
3129 break;
3130
3131 if (r->address != syms[i]->value + opd->vma)
3132 continue;
3133
3134 if (r->howto->type != R_PPC64_ADDR64)
3135 continue;
3136
3137 sym = *r->sym_ptr_ptr;
3138 if (!sym_exists_at (syms, opdsymend, symcount,
3139 sym->section->id, sym->value + r->addend))
3140 {
3141 size_t len;
3142
3143 *s = *syms[i];
3144 s->flags |= BSF_SYNTHETIC;
3145 s->section = sym->section;
3146 s->value = sym->value + r->addend;
3147 s->name = names;
3148 *names++ = '.';
3149 len = strlen (syms[i]->name);
3150 memcpy (names, syms[i]->name, len + 1);
3151 names += len + 1;
3152 /* Have udata.p point back to the original symbol this
3153 synthetic symbol was derived from. */
3154 s->udata.p = syms[i];
3155 s++;
3156 }
3157 }
3158 }
3159 else
3160 {
3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3162 bfd_byte *contents;
3163 size_t size;
3164 long plt_count = 0;
3165 bfd_vma glink_vma = 0, resolv_vma = 0;
3166 asection *dynamic, *glink = NULL, *relplt = NULL;
3167 arelent *p;
3168
3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3170 {
3171 if (contents)
3172 {
3173 free_contents_and_exit:
3174 free (contents);
3175 }
3176 count = -1;
3177 goto done;
3178 }
3179
3180 size = 0;
3181 for (i = secsymend; i < opdsymend; ++i)
3182 {
3183 bfd_vma ent;
3184
3185 /* Ignore bogus symbols. */
3186 if (syms[i]->value > opd->size - 8)
3187 continue;
3188
3189 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3191 {
3192 ++count;
3193 size += sizeof (asymbol);
3194 size += strlen (syms[i]->name) + 2;
3195 }
3196 }
3197
3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3199 if (dyn_count != 0
3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3201 {
3202 bfd_byte *dynbuf, *extdyn, *extdynend;
3203 size_t extdynsize;
3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3205
3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3207 goto free_contents_and_exit;
3208
3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3211
3212 extdyn = dynbuf;
3213 extdynend = extdyn + dynamic->size;
3214 for (; extdyn < extdynend; extdyn += extdynsize)
3215 {
3216 Elf_Internal_Dyn dyn;
3217 (*swap_dyn_in) (abfd, extdyn, &dyn);
3218
3219 if (dyn.d_tag == DT_NULL)
3220 break;
3221
3222 if (dyn.d_tag == DT_PPC64_GLINK)
3223 {
3224 /* The first glink stub starts at offset 32; see comment in
3225 ppc64_elf_finish_dynamic_sections. */
3226 glink_vma = dyn.d_un.d_val + 32;
3227 /* The .glink section usually does not survive the final
3228 link; search for the section (usually .text) where the
3229 glink stubs now reside. */
3230 glink = bfd_sections_find_if (abfd, section_covers_vma,
3231 &glink_vma);
3232 break;
3233 }
3234 }
3235
3236 free (dynbuf);
3237 }
3238
3239 if (glink != NULL)
3240 {
3241 /* Determine __glink trampoline by reading the relative branch
3242 from the first glink stub. */
3243 bfd_byte buf[4];
3244 if (bfd_get_section_contents (abfd, glink, buf,
3245 glink_vma + 4 - glink->vma, 4))
3246 {
3247 unsigned int insn = bfd_get_32 (abfd, buf);
3248 insn ^= B_DOT;
3249 if ((insn & ~0x3fffffc) == 0)
3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3251 }
3252
3253 if (resolv_vma)
3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3255
3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3257 if (relplt != NULL)
3258 {
3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3261 goto free_contents_and_exit;
3262
3263 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3264 size += plt_count * sizeof (asymbol);
3265
3266 p = relplt->relocation;
3267 for (i = 0; i < plt_count; i++, p++)
3268 {
3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3270 if (p->addend != 0)
3271 size += sizeof ("+0x") - 1 + 16;
3272 }
3273 }
3274 }
3275
3276 s = *ret = bfd_malloc (size);
3277 if (s == NULL)
3278 goto free_contents_and_exit;
3279
3280 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3281
3282 for (i = secsymend; i < opdsymend; ++i)
3283 {
3284 bfd_vma ent;
3285
3286 if (syms[i]->value > opd->size - 8)
3287 continue;
3288
3289 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3291 {
3292 long lo, hi;
3293 size_t len;
3294 asection *sec = abfd->sections;
3295
3296 *s = *syms[i];
3297 lo = codesecsym;
3298 hi = codesecsymend;
3299 while (lo < hi)
3300 {
3301 long mid = (lo + hi) >> 1;
3302 if (syms[mid]->section->vma < ent)
3303 lo = mid + 1;
3304 else if (syms[mid]->section->vma > ent)
3305 hi = mid;
3306 else
3307 {
3308 sec = syms[mid]->section;
3309 break;
3310 }
3311 }
3312
3313 if (lo >= hi && lo > codesecsym)
3314 sec = syms[lo - 1]->section;
3315
3316 for (; sec != NULL; sec = sec->next)
3317 {
3318 if (sec->vma > ent)
3319 break;
3320 /* SEC_LOAD may not be set if SEC is from a separate debug
3321 info file. */
3322 if ((sec->flags & SEC_ALLOC) == 0)
3323 break;
3324 if ((sec->flags & SEC_CODE) != 0)
3325 s->section = sec;
3326 }
3327 s->flags |= BSF_SYNTHETIC;
3328 s->value = ent - s->section->vma;
3329 s->name = names;
3330 *names++ = '.';
3331 len = strlen (syms[i]->name);
3332 memcpy (names, syms[i]->name, len + 1);
3333 names += len + 1;
3334 /* Have udata.p point back to the original symbol this
3335 synthetic symbol was derived from. */
3336 s->udata.p = syms[i];
3337 s++;
3338 }
3339 }
3340 free (contents);
3341
3342 if (glink != NULL && relplt != NULL)
3343 {
3344 if (resolv_vma)
3345 {
3346 /* Add a symbol for the main glink trampoline. */
3347 memset (s, 0, sizeof *s);
3348 s->the_bfd = abfd;
3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3350 s->section = glink;
3351 s->value = resolv_vma - glink->vma;
3352 s->name = names;
3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3354 names += sizeof ("__glink_PLTresolve");
3355 s++;
3356 count++;
3357 }
3358
3359 /* FIXME: It would be very much nicer to put sym@plt on the
3360 stub rather than on the glink branch table entry. The
3361 objdump disassembler would then use a sensible symbol
3362 name on plt calls. The difficulty in doing so is
3363 a) finding the stubs, and,
3364 b) matching stubs against plt entries, and,
3365 c) there can be multiple stubs for a given plt entry.
3366
3367 Solving (a) could be done by code scanning, but older
3368 ppc64 binaries used different stubs to current code.
3369 (b) is the tricky one since you need to known the toc
3370 pointer for at least one function that uses a pic stub to
3371 be able to calculate the plt address referenced.
3372 (c) means gdb would need to set multiple breakpoints (or
3373 find the glink branch itself) when setting breakpoints
3374 for pending shared library loads. */
3375 p = relplt->relocation;
3376 for (i = 0; i < plt_count; i++, p++)
3377 {
3378 size_t len;
3379
3380 *s = **p->sym_ptr_ptr;
3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3382 we are defining a symbol, ensure one of them is set. */
3383 if ((s->flags & BSF_LOCAL) == 0)
3384 s->flags |= BSF_GLOBAL;
3385 s->flags |= BSF_SYNTHETIC;
3386 s->section = glink;
3387 s->value = glink_vma - glink->vma;
3388 s->name = names;
3389 s->udata.p = NULL;
3390 len = strlen ((*p->sym_ptr_ptr)->name);
3391 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3392 names += len;
3393 if (p->addend != 0)
3394 {
3395 memcpy (names, "+0x", sizeof ("+0x") - 1);
3396 names += sizeof ("+0x") - 1;
3397 bfd_sprintf_vma (abfd, names, p->addend);
3398 names += strlen (names);
3399 }
3400 memcpy (names, "@plt", sizeof ("@plt"));
3401 names += sizeof ("@plt");
3402 s++;
3403 glink_vma += 8;
3404 if (i >= 0x8000)
3405 glink_vma += 4;
3406 }
3407 count += plt_count;
3408 }
3409 }
3410
3411 done:
3412 free (syms);
3413 return count;
3414 }
3415 \f
3416 /* The following functions are specific to the ELF linker, while
3417 functions above are used generally. Those named ppc64_elf_* are
3418 called by the main ELF linker code. They appear in this file more
3419 or less in the order in which they are called. eg.
3420 ppc64_elf_check_relocs is called early in the link process,
3421 ppc64_elf_finish_dynamic_sections is one of the last functions
3422 called.
3423
3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3425 functions have both a function code symbol and a function descriptor
3426 symbol. A call to foo in a relocatable object file looks like:
3427
3428 . .text
3429 . x:
3430 . bl .foo
3431 . nop
3432
3433 The function definition in another object file might be:
3434
3435 . .section .opd
3436 . foo: .quad .foo
3437 . .quad .TOC.@tocbase
3438 . .quad 0
3439 .
3440 . .text
3441 . .foo: blr
3442
3443 When the linker resolves the call during a static link, the branch
3444 unsurprisingly just goes to .foo and the .opd information is unused.
3445 If the function definition is in a shared library, things are a little
3446 different: The call goes via a plt call stub, the opd information gets
3447 copied to the plt, and the linker patches the nop.
3448
3449 . x:
3450 . bl .foo_stub
3451 . ld 2,40(1)
3452 .
3453 .
3454 . .foo_stub:
3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3457 . std 2,40(1) # this is the general idea
3458 . ld 11,0(12)
3459 . ld 2,8(12)
3460 . mtctr 11
3461 . ld 11,16(12)
3462 . bctr
3463 .
3464 . .section .plt
3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3466
3467 The "reloc ()" notation is supposed to indicate that the linker emits
3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3469 copying.
3470
3471 What are the difficulties here? Well, firstly, the relocations
3472 examined by the linker in check_relocs are against the function code
3473 sym .foo, while the dynamic relocation in the plt is emitted against
3474 the function descriptor symbol, foo. Somewhere along the line, we need
3475 to carefully copy dynamic link information from one symbol to the other.
3476 Secondly, the generic part of the elf linker will make .foo a dynamic
3477 symbol as is normal for most other backends. We need foo dynamic
3478 instead, at least for an application final link. However, when
3479 creating a shared library containing foo, we need to have both symbols
3480 dynamic so that references to .foo are satisfied during the early
3481 stages of linking. Otherwise the linker might decide to pull in a
3482 definition from some other object, eg. a static library.
3483
3484 Update: As of August 2004, we support a new convention. Function
3485 calls may use the function descriptor symbol, ie. "bl foo". This
3486 behaves exactly as "bl .foo". */
3487
3488 /* Of those relocs that might be copied as dynamic relocs, this function
3489 selects those that must be copied when linking a shared library,
3490 even when the symbol is local. */
3491
3492 static int
3493 must_be_dyn_reloc (struct bfd_link_info *info,
3494 enum elf_ppc64_reloc_type r_type)
3495 {
3496 switch (r_type)
3497 {
3498 default:
3499 return 1;
3500
3501 case R_PPC64_REL32:
3502 case R_PPC64_REL64:
3503 case R_PPC64_REL30:
3504 return 0;
3505
3506 case R_PPC64_TPREL16:
3507 case R_PPC64_TPREL16_LO:
3508 case R_PPC64_TPREL16_HI:
3509 case R_PPC64_TPREL16_HA:
3510 case R_PPC64_TPREL16_DS:
3511 case R_PPC64_TPREL16_LO_DS:
3512 case R_PPC64_TPREL16_HIGHER:
3513 case R_PPC64_TPREL16_HIGHERA:
3514 case R_PPC64_TPREL16_HIGHEST:
3515 case R_PPC64_TPREL16_HIGHESTA:
3516 case R_PPC64_TPREL64:
3517 return !info->executable;
3518 }
3519 }
3520
3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3522 copying dynamic variables from a shared lib into an app's dynbss
3523 section, and instead use a dynamic relocation to point into the
3524 shared lib. With code that gcc generates, it's vital that this be
3525 enabled; In the PowerPC64 ABI, the address of a function is actually
3526 the address of a function descriptor, which resides in the .opd
3527 section. gcc uses the descriptor directly rather than going via the
3528 GOT as some other ABI's do, which means that initialized function
3529 pointers must reference the descriptor. Thus, a function pointer
3530 initialized to the address of a function in a shared library will
3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3532 redefines the function descriptor symbol to point to the copy. This
3533 presents a problem as a plt entry for that function is also
3534 initialized from the function descriptor symbol and the copy reloc
3535 may not be initialized first. */
3536 #define ELIMINATE_COPY_RELOCS 1
3537
3538 /* Section name for stubs is the associated section name plus this
3539 string. */
3540 #define STUB_SUFFIX ".stub"
3541
3542 /* Linker stubs.
3543 ppc_stub_long_branch:
3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3545 destination, but a 24 bit branch in a stub section will reach.
3546 . b dest
3547
3548 ppc_stub_plt_branch:
3549 Similar to the above, but a 24 bit branch in the stub section won't
3550 reach its destination.
3551 . addis %r12,%r2,xxx@toc@ha
3552 . ld %r11,xxx@toc@l(%r12)
3553 . mtctr %r11
3554 . bctr
3555
3556 ppc_stub_plt_call:
3557 Used to call a function in a shared library. If it so happens that
3558 the plt entry referenced crosses a 64k boundary, then an extra
3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3560 . addis %r12,%r2,xxx@toc@ha
3561 . std %r2,40(%r1)
3562 . ld %r11,xxx+0@toc@l(%r12)
3563 . mtctr %r11
3564 . ld %r2,xxx+8@toc@l(%r12)
3565 . ld %r11,xxx+16@toc@l(%r12)
3566 . bctr
3567
3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3569 code to adjust the value and save r2 to support multiple toc sections.
3570 A ppc_stub_long_branch with an r2 offset looks like:
3571 . std %r2,40(%r1)
3572 . addis %r2,%r2,off@ha
3573 . addi %r2,%r2,off@l
3574 . b dest
3575
3576 A ppc_stub_plt_branch with an r2 offset looks like:
3577 . std %r2,40(%r1)
3578 . addis %r12,%r2,xxx@toc@ha
3579 . ld %r11,xxx@toc@l(%r12)
3580 . addis %r2,%r2,off@ha
3581 . addi %r2,%r2,off@l
3582 . mtctr %r11
3583 . bctr
3584
3585 In cases where the "addis" instruction would add zero, the "addis" is
3586 omitted and following instructions modified slightly in some cases.
3587 */
3588
3589 enum ppc_stub_type {
3590 ppc_stub_none,
3591 ppc_stub_long_branch,
3592 ppc_stub_long_branch_r2off,
3593 ppc_stub_plt_branch,
3594 ppc_stub_plt_branch_r2off,
3595 ppc_stub_plt_call,
3596 ppc_stub_plt_call_r2save
3597 };
3598
3599 struct ppc_stub_hash_entry {
3600
3601 /* Base hash table entry structure. */
3602 struct bfd_hash_entry root;
3603
3604 enum ppc_stub_type stub_type;
3605
3606 /* The stub section. */
3607 asection *stub_sec;
3608
3609 /* Offset within stub_sec of the beginning of this stub. */
3610 bfd_vma stub_offset;
3611
3612 /* Given the symbol's value and its section we can determine its final
3613 value when building the stubs (so the stub knows where to jump. */
3614 bfd_vma target_value;
3615 asection *target_section;
3616
3617 /* The symbol table entry, if any, that this was derived from. */
3618 struct ppc_link_hash_entry *h;
3619 struct plt_entry *plt_ent;
3620
3621 /* And the reloc addend that this was derived from. */
3622 bfd_vma addend;
3623
3624 /* Where this stub is being called from, or, in the case of combined
3625 stub sections, the first input section in the group. */
3626 asection *id_sec;
3627 };
3628
3629 struct ppc_branch_hash_entry {
3630
3631 /* Base hash table entry structure. */
3632 struct bfd_hash_entry root;
3633
3634 /* Offset within branch lookup table. */
3635 unsigned int offset;
3636
3637 /* Generation marker. */
3638 unsigned int iter;
3639 };
3640
3641 struct ppc_link_hash_entry
3642 {
3643 struct elf_link_hash_entry elf;
3644
3645 union {
3646 /* A pointer to the most recently used stub hash entry against this
3647 symbol. */
3648 struct ppc_stub_hash_entry *stub_cache;
3649
3650 /* A pointer to the next symbol starting with a '.' */
3651 struct ppc_link_hash_entry *next_dot_sym;
3652 } u;
3653
3654 /* Track dynamic relocs copied for this symbol. */
3655 struct elf_dyn_relocs *dyn_relocs;
3656
3657 /* Link between function code and descriptor symbols. */
3658 struct ppc_link_hash_entry *oh;
3659
3660 /* Flag function code and descriptor symbols. */
3661 unsigned int is_func:1;
3662 unsigned int is_func_descriptor:1;
3663 unsigned int fake:1;
3664
3665 /* Whether global opd/toc sym has been adjusted or not.
3666 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3667 should be set for all globals defined in any opd/toc section. */
3668 unsigned int adjust_done:1;
3669
3670 /* Set if we twiddled this symbol to weak at some stage. */
3671 unsigned int was_undefined:1;
3672
3673 /* Contexts in which symbol is used in the GOT (or TOC).
3674 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3675 corresponding relocs are encountered during check_relocs.
3676 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3677 indicate the corresponding GOT entry type is not needed.
3678 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3679 a TPREL one. We use a separate flag rather than setting TPREL
3680 just for convenience in distinguishing the two cases. */
3681 #define TLS_GD 1 /* GD reloc. */
3682 #define TLS_LD 2 /* LD reloc. */
3683 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3684 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3685 #define TLS_TLS 16 /* Any TLS reloc. */
3686 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3687 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3688 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3689 unsigned char tls_mask;
3690 };
3691
3692 /* ppc64 ELF linker hash table. */
3693
3694 struct ppc_link_hash_table
3695 {
3696 struct elf_link_hash_table elf;
3697
3698 /* The stub hash table. */
3699 struct bfd_hash_table stub_hash_table;
3700
3701 /* Another hash table for plt_branch stubs. */
3702 struct bfd_hash_table branch_hash_table;
3703
3704 /* Hash table for function prologue tocsave. */
3705 htab_t tocsave_htab;
3706
3707 /* Linker stub bfd. */
3708 bfd *stub_bfd;
3709
3710 /* Linker call-backs. */
3711 asection * (*add_stub_section) (const char *, asection *);
3712 void (*layout_sections_again) (void);
3713
3714 /* Array to keep track of which stub sections have been created, and
3715 information on stub grouping. */
3716 struct map_stub {
3717 /* This is the section to which stubs in the group will be attached. */
3718 asection *link_sec;
3719 /* The stub section. */
3720 asection *stub_sec;
3721 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3722 bfd_vma toc_off;
3723 } *stub_group;
3724
3725 /* Temp used when calculating TOC pointers. */
3726 bfd_vma toc_curr;
3727 bfd *toc_bfd;
3728 asection *toc_first_sec;
3729
3730 /* Highest input section id. */
3731 int top_id;
3732
3733 /* Highest output section index. */
3734 int top_index;
3735
3736 /* Used when adding symbols. */
3737 struct ppc_link_hash_entry *dot_syms;
3738
3739 /* List of input sections for each output section. */
3740 asection **input_list;
3741
3742 /* Short-cuts to get to dynamic linker sections. */
3743 asection *got;
3744 asection *plt;
3745 asection *relplt;
3746 asection *iplt;
3747 asection *reliplt;
3748 asection *dynbss;
3749 asection *relbss;
3750 asection *glink;
3751 asection *sfpr;
3752 asection *brlt;
3753 asection *relbrlt;
3754 asection *glink_eh_frame;
3755
3756 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3757 struct ppc_link_hash_entry *tls_get_addr;
3758 struct ppc_link_hash_entry *tls_get_addr_fd;
3759
3760 /* The size of reliplt used by got entry relocs. */
3761 bfd_size_type got_reli_size;
3762
3763 /* Statistics. */
3764 unsigned long stub_count[ppc_stub_plt_call_r2save];
3765
3766 /* Number of stubs against global syms. */
3767 unsigned long stub_globals;
3768
3769 /* Alignment of PLT call stubs. */
3770 unsigned int plt_stub_align:4;
3771
3772 /* Set if PLT call stubs should load r11. */
3773 unsigned int plt_static_chain:1;
3774
3775 /* Set if PLT call stubs need a read-read barrier. */
3776 unsigned int plt_thread_safe:1;
3777
3778 /* Set if we should emit symbols for stubs. */
3779 unsigned int emit_stub_syms:1;
3780
3781 /* Set if __tls_get_addr optimization should not be done. */
3782 unsigned int no_tls_get_addr_opt:1;
3783
3784 /* Support for multiple toc sections. */
3785 unsigned int do_multi_toc:1;
3786 unsigned int multi_toc_needed:1;
3787 unsigned int second_toc_pass:1;
3788 unsigned int do_toc_opt:1;
3789
3790 /* Set on error. */
3791 unsigned int stub_error:1;
3792
3793 /* Temp used by ppc64_elf_process_dot_syms. */
3794 unsigned int twiddled_syms:1;
3795
3796 /* Incremented every time we size stubs. */
3797 unsigned int stub_iteration;
3798
3799 /* Small local sym cache. */
3800 struct sym_cache sym_cache;
3801 };
3802
3803 /* Rename some of the generic section flags to better document how they
3804 are used here. */
3805
3806 /* Nonzero if this section has TLS related relocations. */
3807 #define has_tls_reloc sec_flg0
3808
3809 /* Nonzero if this section has a call to __tls_get_addr. */
3810 #define has_tls_get_addr_call sec_flg1
3811
3812 /* Nonzero if this section has any toc or got relocs. */
3813 #define has_toc_reloc sec_flg2
3814
3815 /* Nonzero if this section has a call to another section that uses
3816 the toc or got. */
3817 #define makes_toc_func_call sec_flg3
3818
3819 /* Recursion protection when determining above flag. */
3820 #define call_check_in_progress sec_flg4
3821 #define call_check_done sec_flg5
3822
3823 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3824
3825 #define ppc_hash_table(p) \
3826 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3827 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3828
3829 #define ppc_stub_hash_lookup(table, string, create, copy) \
3830 ((struct ppc_stub_hash_entry *) \
3831 bfd_hash_lookup ((table), (string), (create), (copy)))
3832
3833 #define ppc_branch_hash_lookup(table, string, create, copy) \
3834 ((struct ppc_branch_hash_entry *) \
3835 bfd_hash_lookup ((table), (string), (create), (copy)))
3836
3837 /* Create an entry in the stub hash table. */
3838
3839 static struct bfd_hash_entry *
3840 stub_hash_newfunc (struct bfd_hash_entry *entry,
3841 struct bfd_hash_table *table,
3842 const char *string)
3843 {
3844 /* Allocate the structure if it has not already been allocated by a
3845 subclass. */
3846 if (entry == NULL)
3847 {
3848 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3849 if (entry == NULL)
3850 return entry;
3851 }
3852
3853 /* Call the allocation method of the superclass. */
3854 entry = bfd_hash_newfunc (entry, table, string);
3855 if (entry != NULL)
3856 {
3857 struct ppc_stub_hash_entry *eh;
3858
3859 /* Initialize the local fields. */
3860 eh = (struct ppc_stub_hash_entry *) entry;
3861 eh->stub_type = ppc_stub_none;
3862 eh->stub_sec = NULL;
3863 eh->stub_offset = 0;
3864 eh->target_value = 0;
3865 eh->target_section = NULL;
3866 eh->h = NULL;
3867 eh->id_sec = NULL;
3868 }
3869
3870 return entry;
3871 }
3872
3873 /* Create an entry in the branch hash table. */
3874
3875 static struct bfd_hash_entry *
3876 branch_hash_newfunc (struct bfd_hash_entry *entry,
3877 struct bfd_hash_table *table,
3878 const char *string)
3879 {
3880 /* Allocate the structure if it has not already been allocated by a
3881 subclass. */
3882 if (entry == NULL)
3883 {
3884 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3885 if (entry == NULL)
3886 return entry;
3887 }
3888
3889 /* Call the allocation method of the superclass. */
3890 entry = bfd_hash_newfunc (entry, table, string);
3891 if (entry != NULL)
3892 {
3893 struct ppc_branch_hash_entry *eh;
3894
3895 /* Initialize the local fields. */
3896 eh = (struct ppc_branch_hash_entry *) entry;
3897 eh->offset = 0;
3898 eh->iter = 0;
3899 }
3900
3901 return entry;
3902 }
3903
3904 /* Create an entry in a ppc64 ELF linker hash table. */
3905
3906 static struct bfd_hash_entry *
3907 link_hash_newfunc (struct bfd_hash_entry *entry,
3908 struct bfd_hash_table *table,
3909 const char *string)
3910 {
3911 /* Allocate the structure if it has not already been allocated by a
3912 subclass. */
3913 if (entry == NULL)
3914 {
3915 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3916 if (entry == NULL)
3917 return entry;
3918 }
3919
3920 /* Call the allocation method of the superclass. */
3921 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3922 if (entry != NULL)
3923 {
3924 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3925
3926 memset (&eh->u.stub_cache, 0,
3927 (sizeof (struct ppc_link_hash_entry)
3928 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3929
3930 /* When making function calls, old ABI code references function entry
3931 points (dot symbols), while new ABI code references the function
3932 descriptor symbol. We need to make any combination of reference and
3933 definition work together, without breaking archive linking.
3934
3935 For a defined function "foo" and an undefined call to "bar":
3936 An old object defines "foo" and ".foo", references ".bar" (possibly
3937 "bar" too).
3938 A new object defines "foo" and references "bar".
3939
3940 A new object thus has no problem with its undefined symbols being
3941 satisfied by definitions in an old object. On the other hand, the
3942 old object won't have ".bar" satisfied by a new object.
3943
3944 Keep a list of newly added dot-symbols. */
3945
3946 if (string[0] == '.')
3947 {
3948 struct ppc_link_hash_table *htab;
3949
3950 htab = (struct ppc_link_hash_table *) table;
3951 eh->u.next_dot_sym = htab->dot_syms;
3952 htab->dot_syms = eh;
3953 }
3954 }
3955
3956 return entry;
3957 }
3958
3959 struct tocsave_entry {
3960 asection *sec;
3961 bfd_vma offset;
3962 };
3963
3964 static hashval_t
3965 tocsave_htab_hash (const void *p)
3966 {
3967 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3968 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3969 }
3970
3971 static int
3972 tocsave_htab_eq (const void *p1, const void *p2)
3973 {
3974 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3975 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3976 return e1->sec == e2->sec && e1->offset == e2->offset;
3977 }
3978
3979 /* Create a ppc64 ELF linker hash table. */
3980
3981 static struct bfd_link_hash_table *
3982 ppc64_elf_link_hash_table_create (bfd *abfd)
3983 {
3984 struct ppc_link_hash_table *htab;
3985 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3986
3987 htab = bfd_zmalloc (amt);
3988 if (htab == NULL)
3989 return NULL;
3990
3991 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3992 sizeof (struct ppc_link_hash_entry),
3993 PPC64_ELF_DATA))
3994 {
3995 free (htab);
3996 return NULL;
3997 }
3998
3999 /* Init the stub hash table too. */
4000 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4001 sizeof (struct ppc_stub_hash_entry)))
4002 return NULL;
4003
4004 /* And the branch hash table. */
4005 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4006 sizeof (struct ppc_branch_hash_entry)))
4007 return NULL;
4008
4009 htab->tocsave_htab = htab_try_create (1024,
4010 tocsave_htab_hash,
4011 tocsave_htab_eq,
4012 NULL);
4013 if (htab->tocsave_htab == NULL)
4014 return NULL;
4015
4016 /* Initializing two fields of the union is just cosmetic. We really
4017 only care about glist, but when compiled on a 32-bit host the
4018 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4019 debugger inspection of these fields look nicer. */
4020 htab->elf.init_got_refcount.refcount = 0;
4021 htab->elf.init_got_refcount.glist = NULL;
4022 htab->elf.init_plt_refcount.refcount = 0;
4023 htab->elf.init_plt_refcount.glist = NULL;
4024 htab->elf.init_got_offset.offset = 0;
4025 htab->elf.init_got_offset.glist = NULL;
4026 htab->elf.init_plt_offset.offset = 0;
4027 htab->elf.init_plt_offset.glist = NULL;
4028
4029 return &htab->elf.root;
4030 }
4031
4032 /* Free the derived linker hash table. */
4033
4034 static void
4035 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4036 {
4037 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4038
4039 bfd_hash_table_free (&htab->stub_hash_table);
4040 bfd_hash_table_free (&htab->branch_hash_table);
4041 if (htab->tocsave_htab)
4042 htab_delete (htab->tocsave_htab);
4043 _bfd_generic_link_hash_table_free (hash);
4044 }
4045
4046 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4047
4048 void
4049 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4050 {
4051 struct ppc_link_hash_table *htab;
4052
4053 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4054
4055 /* Always hook our dynamic sections into the first bfd, which is the
4056 linker created stub bfd. This ensures that the GOT header is at
4057 the start of the output TOC section. */
4058 htab = ppc_hash_table (info);
4059 if (htab == NULL)
4060 return;
4061 htab->stub_bfd = abfd;
4062 htab->elf.dynobj = abfd;
4063 }
4064
4065 /* Build a name for an entry in the stub hash table. */
4066
4067 static char *
4068 ppc_stub_name (const asection *input_section,
4069 const asection *sym_sec,
4070 const struct ppc_link_hash_entry *h,
4071 const Elf_Internal_Rela *rel)
4072 {
4073 char *stub_name;
4074 bfd_size_type len;
4075
4076 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4077 offsets from a sym as a branch target? In fact, we could
4078 probably assume the addend is always zero. */
4079 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4080
4081 if (h)
4082 {
4083 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4084 stub_name = bfd_malloc (len);
4085 if (stub_name == NULL)
4086 return stub_name;
4087
4088 sprintf (stub_name, "%08x.%s+%x",
4089 input_section->id & 0xffffffff,
4090 h->elf.root.root.string,
4091 (int) rel->r_addend & 0xffffffff);
4092 }
4093 else
4094 {
4095 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4096 stub_name = bfd_malloc (len);
4097 if (stub_name == NULL)
4098 return stub_name;
4099
4100 sprintf (stub_name, "%08x.%x:%x+%x",
4101 input_section->id & 0xffffffff,
4102 sym_sec->id & 0xffffffff,
4103 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4104 (int) rel->r_addend & 0xffffffff);
4105 }
4106 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4107 stub_name[len - 2] = 0;
4108 return stub_name;
4109 }
4110
4111 /* Look up an entry in the stub hash. Stub entries are cached because
4112 creating the stub name takes a bit of time. */
4113
4114 static struct ppc_stub_hash_entry *
4115 ppc_get_stub_entry (const asection *input_section,
4116 const asection *sym_sec,
4117 struct ppc_link_hash_entry *h,
4118 const Elf_Internal_Rela *rel,
4119 struct ppc_link_hash_table *htab)
4120 {
4121 struct ppc_stub_hash_entry *stub_entry;
4122 const asection *id_sec;
4123
4124 /* If this input section is part of a group of sections sharing one
4125 stub section, then use the id of the first section in the group.
4126 Stub names need to include a section id, as there may well be
4127 more than one stub used to reach say, printf, and we need to
4128 distinguish between them. */
4129 id_sec = htab->stub_group[input_section->id].link_sec;
4130
4131 if (h != NULL && h->u.stub_cache != NULL
4132 && h->u.stub_cache->h == h
4133 && h->u.stub_cache->id_sec == id_sec)
4134 {
4135 stub_entry = h->u.stub_cache;
4136 }
4137 else
4138 {
4139 char *stub_name;
4140
4141 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4142 if (stub_name == NULL)
4143 return NULL;
4144
4145 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4146 stub_name, FALSE, FALSE);
4147 if (h != NULL)
4148 h->u.stub_cache = stub_entry;
4149
4150 free (stub_name);
4151 }
4152
4153 return stub_entry;
4154 }
4155
4156 /* Add a new stub entry to the stub hash. Not all fields of the new
4157 stub entry are initialised. */
4158
4159 static struct ppc_stub_hash_entry *
4160 ppc_add_stub (const char *stub_name,
4161 asection *section,
4162 struct bfd_link_info *info)
4163 {
4164 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4165 asection *link_sec;
4166 asection *stub_sec;
4167 struct ppc_stub_hash_entry *stub_entry;
4168
4169 link_sec = htab->stub_group[section->id].link_sec;
4170 stub_sec = htab->stub_group[section->id].stub_sec;
4171 if (stub_sec == NULL)
4172 {
4173 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4174 if (stub_sec == NULL)
4175 {
4176 size_t namelen;
4177 bfd_size_type len;
4178 char *s_name;
4179
4180 namelen = strlen (link_sec->name);
4181 len = namelen + sizeof (STUB_SUFFIX);
4182 s_name = bfd_alloc (htab->stub_bfd, len);
4183 if (s_name == NULL)
4184 return NULL;
4185
4186 memcpy (s_name, link_sec->name, namelen);
4187 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4188 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4189 if (stub_sec == NULL)
4190 return NULL;
4191 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4192 }
4193 htab->stub_group[section->id].stub_sec = stub_sec;
4194 }
4195
4196 /* Enter this entry into the linker stub hash table. */
4197 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4198 TRUE, FALSE);
4199 if (stub_entry == NULL)
4200 {
4201 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4202 section->owner, stub_name);
4203 return NULL;
4204 }
4205
4206 stub_entry->stub_sec = stub_sec;
4207 stub_entry->stub_offset = 0;
4208 stub_entry->id_sec = link_sec;
4209 return stub_entry;
4210 }
4211
4212 /* Create sections for linker generated code. */
4213
4214 static bfd_boolean
4215 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4216 {
4217 struct ppc_link_hash_table *htab;
4218 flagword flags;
4219
4220 htab = ppc_hash_table (info);
4221 if (htab == NULL)
4222 return FALSE;
4223
4224 /* Create .sfpr for code to save and restore fp regs. */
4225 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4226 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4227 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4228 flags);
4229 if (htab->sfpr == NULL
4230 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4231 return FALSE;
4232
4233 /* Create .glink for lazy dynamic linking support. */
4234 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4235 flags);
4236 if (htab->glink == NULL
4237 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4238 return FALSE;
4239
4240 if (!info->no_ld_generated_unwind_info)
4241 {
4242 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4243 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4244 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4245 ".eh_frame",
4246 flags);
4247 if (htab->glink_eh_frame == NULL
4248 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4249 return FALSE;
4250 }
4251
4252 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4253 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4254 if (htab->iplt == NULL
4255 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4256 return FALSE;
4257
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4261 ".rela.iplt",
4262 flags);
4263 if (htab->reliplt == NULL
4264 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4265 return FALSE;
4266
4267 /* Create branch lookup table for plt_branch stubs. */
4268 flags = (SEC_ALLOC | SEC_LOAD
4269 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4270 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4271 flags);
4272 if (htab->brlt == NULL
4273 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4274 return FALSE;
4275
4276 if (!info->shared)
4277 return TRUE;
4278
4279 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4280 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4281 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4282 ".rela.branch_lt",
4283 flags);
4284 if (htab->relbrlt == NULL
4285 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4286 return FALSE;
4287
4288 return TRUE;
4289 }
4290
4291 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4292 not already done. */
4293
4294 static bfd_boolean
4295 create_got_section (bfd *abfd, struct bfd_link_info *info)
4296 {
4297 asection *got, *relgot;
4298 flagword flags;
4299 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4300
4301 if (!is_ppc64_elf (abfd))
4302 return FALSE;
4303 if (htab == NULL)
4304 return FALSE;
4305
4306 if (!htab->got)
4307 {
4308 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4309 return FALSE;
4310
4311 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got");
4312 if (!htab->got)
4313 abort ();
4314 }
4315
4316 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4317 | SEC_LINKER_CREATED);
4318
4319 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4320 if (!got
4321 || !bfd_set_section_alignment (abfd, got, 3))
4322 return FALSE;
4323
4324 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4325 flags | SEC_READONLY);
4326 if (!relgot
4327 || ! bfd_set_section_alignment (abfd, relgot, 3))
4328 return FALSE;
4329
4330 ppc64_elf_tdata (abfd)->got = got;
4331 ppc64_elf_tdata (abfd)->relgot = relgot;
4332 return TRUE;
4333 }
4334
4335 /* Create the dynamic sections, and set up shortcuts. */
4336
4337 static bfd_boolean
4338 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4339 {
4340 struct ppc_link_hash_table *htab;
4341
4342 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4343 return FALSE;
4344
4345 htab = ppc_hash_table (info);
4346 if (htab == NULL)
4347 return FALSE;
4348
4349 if (!htab->got)
4350 htab->got = bfd_get_linker_section (dynobj, ".got");
4351 htab->plt = bfd_get_linker_section (dynobj, ".plt");
4352 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt");
4353 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4354 if (!info->shared)
4355 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4356
4357 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4358 || (!info->shared && !htab->relbss))
4359 abort ();
4360
4361 return TRUE;
4362 }
4363
4364 /* Follow indirect and warning symbol links. */
4365
4366 static inline struct bfd_link_hash_entry *
4367 follow_link (struct bfd_link_hash_entry *h)
4368 {
4369 while (h->type == bfd_link_hash_indirect
4370 || h->type == bfd_link_hash_warning)
4371 h = h->u.i.link;
4372 return h;
4373 }
4374
4375 static inline struct elf_link_hash_entry *
4376 elf_follow_link (struct elf_link_hash_entry *h)
4377 {
4378 return (struct elf_link_hash_entry *) follow_link (&h->root);
4379 }
4380
4381 static inline struct ppc_link_hash_entry *
4382 ppc_follow_link (struct ppc_link_hash_entry *h)
4383 {
4384 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4385 }
4386
4387 /* Merge PLT info on FROM with that on TO. */
4388
4389 static void
4390 move_plt_plist (struct ppc_link_hash_entry *from,
4391 struct ppc_link_hash_entry *to)
4392 {
4393 if (from->elf.plt.plist != NULL)
4394 {
4395 if (to->elf.plt.plist != NULL)
4396 {
4397 struct plt_entry **entp;
4398 struct plt_entry *ent;
4399
4400 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4401 {
4402 struct plt_entry *dent;
4403
4404 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4405 if (dent->addend == ent->addend)
4406 {
4407 dent->plt.refcount += ent->plt.refcount;
4408 *entp = ent->next;
4409 break;
4410 }
4411 if (dent == NULL)
4412 entp = &ent->next;
4413 }
4414 *entp = to->elf.plt.plist;
4415 }
4416
4417 to->elf.plt.plist = from->elf.plt.plist;
4418 from->elf.plt.plist = NULL;
4419 }
4420 }
4421
4422 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4423
4424 static void
4425 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4426 struct elf_link_hash_entry *dir,
4427 struct elf_link_hash_entry *ind)
4428 {
4429 struct ppc_link_hash_entry *edir, *eind;
4430
4431 edir = (struct ppc_link_hash_entry *) dir;
4432 eind = (struct ppc_link_hash_entry *) ind;
4433
4434 edir->is_func |= eind->is_func;
4435 edir->is_func_descriptor |= eind->is_func_descriptor;
4436 edir->tls_mask |= eind->tls_mask;
4437 if (eind->oh != NULL)
4438 edir->oh = ppc_follow_link (eind->oh);
4439
4440 /* If called to transfer flags for a weakdef during processing
4441 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4442 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4443 if (!(ELIMINATE_COPY_RELOCS
4444 && eind->elf.root.type != bfd_link_hash_indirect
4445 && edir->elf.dynamic_adjusted))
4446 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4447
4448 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4449 edir->elf.ref_regular |= eind->elf.ref_regular;
4450 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4451 edir->elf.needs_plt |= eind->elf.needs_plt;
4452
4453 /* Copy over any dynamic relocs we may have on the indirect sym. */
4454 if (eind->dyn_relocs != NULL)
4455 {
4456 if (edir->dyn_relocs != NULL)
4457 {
4458 struct elf_dyn_relocs **pp;
4459 struct elf_dyn_relocs *p;
4460
4461 /* Add reloc counts against the indirect sym to the direct sym
4462 list. Merge any entries against the same section. */
4463 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4464 {
4465 struct elf_dyn_relocs *q;
4466
4467 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4468 if (q->sec == p->sec)
4469 {
4470 q->pc_count += p->pc_count;
4471 q->count += p->count;
4472 *pp = p->next;
4473 break;
4474 }
4475 if (q == NULL)
4476 pp = &p->next;
4477 }
4478 *pp = edir->dyn_relocs;
4479 }
4480
4481 edir->dyn_relocs = eind->dyn_relocs;
4482 eind->dyn_relocs = NULL;
4483 }
4484
4485 /* If we were called to copy over info for a weak sym, that's all.
4486 You might think dyn_relocs need not be copied over; After all,
4487 both syms will be dynamic or both non-dynamic so we're just
4488 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4489 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4490 dyn_relocs in read-only sections, and it does so on what is the
4491 DIR sym here. */
4492 if (eind->elf.root.type != bfd_link_hash_indirect)
4493 return;
4494
4495 /* Copy over got entries that we may have already seen to the
4496 symbol which just became indirect. */
4497 if (eind->elf.got.glist != NULL)
4498 {
4499 if (edir->elf.got.glist != NULL)
4500 {
4501 struct got_entry **entp;
4502 struct got_entry *ent;
4503
4504 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4505 {
4506 struct got_entry *dent;
4507
4508 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4509 if (dent->addend == ent->addend
4510 && dent->owner == ent->owner
4511 && dent->tls_type == ent->tls_type)
4512 {
4513 dent->got.refcount += ent->got.refcount;
4514 *entp = ent->next;
4515 break;
4516 }
4517 if (dent == NULL)
4518 entp = &ent->next;
4519 }
4520 *entp = edir->elf.got.glist;
4521 }
4522
4523 edir->elf.got.glist = eind->elf.got.glist;
4524 eind->elf.got.glist = NULL;
4525 }
4526
4527 /* And plt entries. */
4528 move_plt_plist (eind, edir);
4529
4530 if (eind->elf.dynindx != -1)
4531 {
4532 if (edir->elf.dynindx != -1)
4533 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4534 edir->elf.dynstr_index);
4535 edir->elf.dynindx = eind->elf.dynindx;
4536 edir->elf.dynstr_index = eind->elf.dynstr_index;
4537 eind->elf.dynindx = -1;
4538 eind->elf.dynstr_index = 0;
4539 }
4540 }
4541
4542 /* Find the function descriptor hash entry from the given function code
4543 hash entry FH. Link the entries via their OH fields. */
4544
4545 static struct ppc_link_hash_entry *
4546 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4547 {
4548 struct ppc_link_hash_entry *fdh = fh->oh;
4549
4550 if (fdh == NULL)
4551 {
4552 const char *fd_name = fh->elf.root.root.string + 1;
4553
4554 fdh = (struct ppc_link_hash_entry *)
4555 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4556 if (fdh == NULL)
4557 return fdh;
4558
4559 fdh->is_func_descriptor = 1;
4560 fdh->oh = fh;
4561 fh->is_func = 1;
4562 fh->oh = fdh;
4563 }
4564
4565 return ppc_follow_link (fdh);
4566 }
4567
4568 /* Make a fake function descriptor sym for the code sym FH. */
4569
4570 static struct ppc_link_hash_entry *
4571 make_fdh (struct bfd_link_info *info,
4572 struct ppc_link_hash_entry *fh)
4573 {
4574 bfd *abfd;
4575 asymbol *newsym;
4576 struct bfd_link_hash_entry *bh;
4577 struct ppc_link_hash_entry *fdh;
4578
4579 abfd = fh->elf.root.u.undef.abfd;
4580 newsym = bfd_make_empty_symbol (abfd);
4581 newsym->name = fh->elf.root.root.string + 1;
4582 newsym->section = bfd_und_section_ptr;
4583 newsym->value = 0;
4584 newsym->flags = BSF_WEAK;
4585
4586 bh = NULL;
4587 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4588 newsym->flags, newsym->section,
4589 newsym->value, NULL, FALSE, FALSE,
4590 &bh))
4591 return NULL;
4592
4593 fdh = (struct ppc_link_hash_entry *) bh;
4594 fdh->elf.non_elf = 0;
4595 fdh->fake = 1;
4596 fdh->is_func_descriptor = 1;
4597 fdh->oh = fh;
4598 fh->is_func = 1;
4599 fh->oh = fdh;
4600 return fdh;
4601 }
4602
4603 /* Fix function descriptor symbols defined in .opd sections to be
4604 function type. */
4605
4606 static bfd_boolean
4607 ppc64_elf_add_symbol_hook (bfd *ibfd,
4608 struct bfd_link_info *info,
4609 Elf_Internal_Sym *isym,
4610 const char **name ATTRIBUTE_UNUSED,
4611 flagword *flags ATTRIBUTE_UNUSED,
4612 asection **sec,
4613 bfd_vma *value ATTRIBUTE_UNUSED)
4614 {
4615 if ((ibfd->flags & DYNAMIC) == 0
4616 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4617 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4618
4619 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4620 {
4621 if ((ibfd->flags & DYNAMIC) == 0)
4622 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4623 }
4624 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4625 ;
4626 else if (*sec != NULL
4627 && strcmp ((*sec)->name, ".opd") == 0)
4628 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4629
4630 return TRUE;
4631 }
4632
4633 /* This function makes an old ABI object reference to ".bar" cause the
4634 inclusion of a new ABI object archive that defines "bar".
4635 NAME is a symbol defined in an archive. Return a symbol in the hash
4636 table that might be satisfied by the archive symbols. */
4637
4638 static struct elf_link_hash_entry *
4639 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4640 struct bfd_link_info *info,
4641 const char *name)
4642 {
4643 struct elf_link_hash_entry *h;
4644 char *dot_name;
4645 size_t len;
4646
4647 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4648 if (h != NULL
4649 /* Don't return this sym if it is a fake function descriptor
4650 created by add_symbol_adjust. */
4651 && !(h->root.type == bfd_link_hash_undefweak
4652 && ((struct ppc_link_hash_entry *) h)->fake))
4653 return h;
4654
4655 if (name[0] == '.')
4656 return h;
4657
4658 len = strlen (name);
4659 dot_name = bfd_alloc (abfd, len + 2);
4660 if (dot_name == NULL)
4661 return (struct elf_link_hash_entry *) 0 - 1;
4662 dot_name[0] = '.';
4663 memcpy (dot_name + 1, name, len + 1);
4664 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4665 bfd_release (abfd, dot_name);
4666 return h;
4667 }
4668
4669 /* This function satisfies all old ABI object references to ".bar" if a
4670 new ABI object defines "bar". Well, at least, undefined dot symbols
4671 are made weak. This stops later archive searches from including an
4672 object if we already have a function descriptor definition. It also
4673 prevents the linker complaining about undefined symbols.
4674 We also check and correct mismatched symbol visibility here. The
4675 most restrictive visibility of the function descriptor and the
4676 function entry symbol is used. */
4677
4678 static bfd_boolean
4679 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4680 {
4681 struct ppc_link_hash_table *htab;
4682 struct ppc_link_hash_entry *fdh;
4683
4684 if (eh->elf.root.type == bfd_link_hash_indirect)
4685 return TRUE;
4686
4687 if (eh->elf.root.type == bfd_link_hash_warning)
4688 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4689
4690 if (eh->elf.root.root.string[0] != '.')
4691 abort ();
4692
4693 htab = ppc_hash_table (info);
4694 if (htab == NULL)
4695 return FALSE;
4696
4697 fdh = lookup_fdh (eh, htab);
4698 if (fdh == NULL)
4699 {
4700 if (!info->relocatable
4701 && (eh->elf.root.type == bfd_link_hash_undefined
4702 || eh->elf.root.type == bfd_link_hash_undefweak)
4703 && eh->elf.ref_regular)
4704 {
4705 /* Make an undefweak function descriptor sym, which is enough to
4706 pull in an --as-needed shared lib, but won't cause link
4707 errors. Archives are handled elsewhere. */
4708 fdh = make_fdh (info, eh);
4709 if (fdh == NULL)
4710 return FALSE;
4711 fdh->elf.ref_regular = 1;
4712 }
4713 }
4714 else
4715 {
4716 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4717 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4718 if (entry_vis < descr_vis)
4719 fdh->elf.other += entry_vis - descr_vis;
4720 else if (entry_vis > descr_vis)
4721 eh->elf.other += descr_vis - entry_vis;
4722
4723 if ((fdh->elf.root.type == bfd_link_hash_defined
4724 || fdh->elf.root.type == bfd_link_hash_defweak)
4725 && eh->elf.root.type == bfd_link_hash_undefined)
4726 {
4727 eh->elf.root.type = bfd_link_hash_undefweak;
4728 eh->was_undefined = 1;
4729 htab->twiddled_syms = 1;
4730 }
4731 }
4732
4733 return TRUE;
4734 }
4735
4736 /* Process list of dot-symbols we made in link_hash_newfunc. */
4737
4738 static bfd_boolean
4739 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4740 {
4741 struct ppc_link_hash_table *htab;
4742 struct ppc_link_hash_entry **p, *eh;
4743
4744 if (!is_ppc64_elf (info->output_bfd))
4745 return TRUE;
4746 htab = ppc_hash_table (info);
4747 if (htab == NULL)
4748 return FALSE;
4749
4750 if (is_ppc64_elf (ibfd))
4751 {
4752 p = &htab->dot_syms;
4753 while ((eh = *p) != NULL)
4754 {
4755 *p = NULL;
4756 if (!add_symbol_adjust (eh, info))
4757 return FALSE;
4758 p = &eh->u.next_dot_sym;
4759 }
4760 }
4761
4762 /* Clear the list for non-ppc64 input files. */
4763 p = &htab->dot_syms;
4764 while ((eh = *p) != NULL)
4765 {
4766 *p = NULL;
4767 p = &eh->u.next_dot_sym;
4768 }
4769
4770 /* We need to fix the undefs list for any syms we have twiddled to
4771 undef_weak. */
4772 if (htab->twiddled_syms)
4773 {
4774 bfd_link_repair_undef_list (&htab->elf.root);
4775 htab->twiddled_syms = 0;
4776 }
4777 return TRUE;
4778 }
4779
4780 /* Undo hash table changes when an --as-needed input file is determined
4781 not to be needed. */
4782
4783 static bfd_boolean
4784 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4785 struct bfd_link_info *info)
4786 {
4787 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4788
4789 if (htab == NULL)
4790 return FALSE;
4791
4792 htab->dot_syms = NULL;
4793 return TRUE;
4794 }
4795
4796 /* If --just-symbols against a final linked binary, then assume we need
4797 toc adjusting stubs when calling functions defined there. */
4798
4799 static void
4800 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4801 {
4802 if ((sec->flags & SEC_CODE) != 0
4803 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4804 && is_ppc64_elf (sec->owner))
4805 {
4806 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4807 if (got != NULL
4808 && got->size >= elf_backend_got_header_size
4809 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4810 sec->has_toc_reloc = 1;
4811 }
4812 _bfd_elf_link_just_syms (sec, info);
4813 }
4814
4815 static struct plt_entry **
4816 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4817 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4818 {
4819 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4820 struct plt_entry **local_plt;
4821 unsigned char *local_got_tls_masks;
4822
4823 if (local_got_ents == NULL)
4824 {
4825 bfd_size_type size = symtab_hdr->sh_info;
4826
4827 size *= (sizeof (*local_got_ents)
4828 + sizeof (*local_plt)
4829 + sizeof (*local_got_tls_masks));
4830 local_got_ents = bfd_zalloc (abfd, size);
4831 if (local_got_ents == NULL)
4832 return NULL;
4833 elf_local_got_ents (abfd) = local_got_ents;
4834 }
4835
4836 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4837 {
4838 struct got_entry *ent;
4839
4840 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4841 if (ent->addend == r_addend
4842 && ent->owner == abfd
4843 && ent->tls_type == tls_type)
4844 break;
4845 if (ent == NULL)
4846 {
4847 bfd_size_type amt = sizeof (*ent);
4848 ent = bfd_alloc (abfd, amt);
4849 if (ent == NULL)
4850 return FALSE;
4851 ent->next = local_got_ents[r_symndx];
4852 ent->addend = r_addend;
4853 ent->owner = abfd;
4854 ent->tls_type = tls_type;
4855 ent->is_indirect = FALSE;
4856 ent->got.refcount = 0;
4857 local_got_ents[r_symndx] = ent;
4858 }
4859 ent->got.refcount += 1;
4860 }
4861
4862 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4863 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4864 local_got_tls_masks[r_symndx] |= tls_type;
4865
4866 return local_plt + r_symndx;
4867 }
4868
4869 static bfd_boolean
4870 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4871 {
4872 struct plt_entry *ent;
4873
4874 for (ent = *plist; ent != NULL; ent = ent->next)
4875 if (ent->addend == addend)
4876 break;
4877 if (ent == NULL)
4878 {
4879 bfd_size_type amt = sizeof (*ent);
4880 ent = bfd_alloc (abfd, amt);
4881 if (ent == NULL)
4882 return FALSE;
4883 ent->next = *plist;
4884 ent->addend = addend;
4885 ent->plt.refcount = 0;
4886 *plist = ent;
4887 }
4888 ent->plt.refcount += 1;
4889 return TRUE;
4890 }
4891
4892 static bfd_boolean
4893 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4894 {
4895 return (r_type == R_PPC64_REL24
4896 || r_type == R_PPC64_REL14
4897 || r_type == R_PPC64_REL14_BRTAKEN
4898 || r_type == R_PPC64_REL14_BRNTAKEN
4899 || r_type == R_PPC64_ADDR24
4900 || r_type == R_PPC64_ADDR14
4901 || r_type == R_PPC64_ADDR14_BRTAKEN
4902 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4903 }
4904
4905 /* Look through the relocs for a section during the first phase, and
4906 calculate needed space in the global offset table, procedure
4907 linkage table, and dynamic reloc sections. */
4908
4909 static bfd_boolean
4910 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4911 asection *sec, const Elf_Internal_Rela *relocs)
4912 {
4913 struct ppc_link_hash_table *htab;
4914 Elf_Internal_Shdr *symtab_hdr;
4915 struct elf_link_hash_entry **sym_hashes;
4916 const Elf_Internal_Rela *rel;
4917 const Elf_Internal_Rela *rel_end;
4918 asection *sreloc;
4919 asection **opd_sym_map;
4920 struct elf_link_hash_entry *tga, *dottga;
4921
4922 if (info->relocatable)
4923 return TRUE;
4924
4925 /* Don't do anything special with non-loaded, non-alloced sections.
4926 In particular, any relocs in such sections should not affect GOT
4927 and PLT reference counting (ie. we don't allow them to create GOT
4928 or PLT entries), there's no possibility or desire to optimize TLS
4929 relocs, and there's not much point in propagating relocs to shared
4930 libs that the dynamic linker won't relocate. */
4931 if ((sec->flags & SEC_ALLOC) == 0)
4932 return TRUE;
4933
4934 BFD_ASSERT (is_ppc64_elf (abfd));
4935
4936 htab = ppc_hash_table (info);
4937 if (htab == NULL)
4938 return FALSE;
4939
4940 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4941 FALSE, FALSE, TRUE);
4942 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4943 FALSE, FALSE, TRUE);
4944 symtab_hdr = &elf_symtab_hdr (abfd);
4945 sym_hashes = elf_sym_hashes (abfd);
4946 sreloc = NULL;
4947 opd_sym_map = NULL;
4948 if (strcmp (sec->name, ".opd") == 0)
4949 {
4950 /* Garbage collection needs some extra help with .opd sections.
4951 We don't want to necessarily keep everything referenced by
4952 relocs in .opd, as that would keep all functions. Instead,
4953 if we reference an .opd symbol (a function descriptor), we
4954 want to keep the function code symbol's section. This is
4955 easy for global symbols, but for local syms we need to keep
4956 information about the associated function section. */
4957 bfd_size_type amt;
4958
4959 amt = sec->size * sizeof (*opd_sym_map) / 8;
4960 opd_sym_map = bfd_zalloc (abfd, amt);
4961 if (opd_sym_map == NULL)
4962 return FALSE;
4963 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4964 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4965 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4966 }
4967
4968 if (htab->sfpr == NULL
4969 && !create_linkage_sections (htab->elf.dynobj, info))
4970 return FALSE;
4971
4972 rel_end = relocs + sec->reloc_count;
4973 for (rel = relocs; rel < rel_end; rel++)
4974 {
4975 unsigned long r_symndx;
4976 struct elf_link_hash_entry *h;
4977 enum elf_ppc64_reloc_type r_type;
4978 int tls_type;
4979 struct _ppc64_elf_section_data *ppc64_sec;
4980 struct plt_entry **ifunc;
4981
4982 r_symndx = ELF64_R_SYM (rel->r_info);
4983 if (r_symndx < symtab_hdr->sh_info)
4984 h = NULL;
4985 else
4986 {
4987 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4988 h = elf_follow_link (h);
4989 }
4990
4991 tls_type = 0;
4992 ifunc = NULL;
4993 if (h != NULL)
4994 {
4995 if (h->type == STT_GNU_IFUNC)
4996 {
4997 h->needs_plt = 1;
4998 ifunc = &h->plt.plist;
4999 }
5000 }
5001 else
5002 {
5003 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5004 abfd, r_symndx);
5005 if (isym == NULL)
5006 return FALSE;
5007
5008 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5009 {
5010 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5011 rel->r_addend, PLT_IFUNC);
5012 if (ifunc == NULL)
5013 return FALSE;
5014 }
5015 }
5016 r_type = ELF64_R_TYPE (rel->r_info);
5017 if (is_branch_reloc (r_type))
5018 {
5019 if (h != NULL && (h == tga || h == dottga))
5020 {
5021 if (rel != relocs
5022 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5023 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5024 /* We have a new-style __tls_get_addr call with a marker
5025 reloc. */
5026 ;
5027 else
5028 /* Mark this section as having an old-style call. */
5029 sec->has_tls_get_addr_call = 1;
5030 }
5031
5032 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5033 if (ifunc != NULL
5034 && !update_plt_info (abfd, ifunc, rel->r_addend))
5035 return FALSE;
5036 }
5037
5038 switch (r_type)
5039 {
5040 case R_PPC64_TLSGD:
5041 case R_PPC64_TLSLD:
5042 /* These special tls relocs tie a call to __tls_get_addr with
5043 its parameter symbol. */
5044 break;
5045
5046 case R_PPC64_GOT_TLSLD16:
5047 case R_PPC64_GOT_TLSLD16_LO:
5048 case R_PPC64_GOT_TLSLD16_HI:
5049 case R_PPC64_GOT_TLSLD16_HA:
5050 tls_type = TLS_TLS | TLS_LD;
5051 goto dogottls;
5052
5053 case R_PPC64_GOT_TLSGD16:
5054 case R_PPC64_GOT_TLSGD16_LO:
5055 case R_PPC64_GOT_TLSGD16_HI:
5056 case R_PPC64_GOT_TLSGD16_HA:
5057 tls_type = TLS_TLS | TLS_GD;
5058 goto dogottls;
5059
5060 case R_PPC64_GOT_TPREL16_DS:
5061 case R_PPC64_GOT_TPREL16_LO_DS:
5062 case R_PPC64_GOT_TPREL16_HI:
5063 case R_PPC64_GOT_TPREL16_HA:
5064 if (!info->executable)
5065 info->flags |= DF_STATIC_TLS;
5066 tls_type = TLS_TLS | TLS_TPREL;
5067 goto dogottls;
5068
5069 case R_PPC64_GOT_DTPREL16_DS:
5070 case R_PPC64_GOT_DTPREL16_LO_DS:
5071 case R_PPC64_GOT_DTPREL16_HI:
5072 case R_PPC64_GOT_DTPREL16_HA:
5073 tls_type = TLS_TLS | TLS_DTPREL;
5074 dogottls:
5075 sec->has_tls_reloc = 1;
5076 /* Fall thru */
5077
5078 case R_PPC64_GOT16:
5079 case R_PPC64_GOT16_DS:
5080 case R_PPC64_GOT16_HA:
5081 case R_PPC64_GOT16_HI:
5082 case R_PPC64_GOT16_LO:
5083 case R_PPC64_GOT16_LO_DS:
5084 /* This symbol requires a global offset table entry. */
5085 sec->has_toc_reloc = 1;
5086 if (r_type == R_PPC64_GOT_TLSLD16
5087 || r_type == R_PPC64_GOT_TLSGD16
5088 || r_type == R_PPC64_GOT_TPREL16_DS
5089 || r_type == R_PPC64_GOT_DTPREL16_DS
5090 || r_type == R_PPC64_GOT16
5091 || r_type == R_PPC64_GOT16_DS)
5092 {
5093 htab->do_multi_toc = 1;
5094 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5095 }
5096
5097 if (ppc64_elf_tdata (abfd)->got == NULL
5098 && !create_got_section (abfd, info))
5099 return FALSE;
5100
5101 if (h != NULL)
5102 {
5103 struct ppc_link_hash_entry *eh;
5104 struct got_entry *ent;
5105
5106 eh = (struct ppc_link_hash_entry *) h;
5107 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5108 if (ent->addend == rel->r_addend
5109 && ent->owner == abfd
5110 && ent->tls_type == tls_type)
5111 break;
5112 if (ent == NULL)
5113 {
5114 bfd_size_type amt = sizeof (*ent);
5115 ent = bfd_alloc (abfd, amt);
5116 if (ent == NULL)
5117 return FALSE;
5118 ent->next = eh->elf.got.glist;
5119 ent->addend = rel->r_addend;
5120 ent->owner = abfd;
5121 ent->tls_type = tls_type;
5122 ent->is_indirect = FALSE;
5123 ent->got.refcount = 0;
5124 eh->elf.got.glist = ent;
5125 }
5126 ent->got.refcount += 1;
5127 eh->tls_mask |= tls_type;
5128 }
5129 else
5130 /* This is a global offset table entry for a local symbol. */
5131 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5132 rel->r_addend, tls_type))
5133 return FALSE;
5134 break;
5135
5136 case R_PPC64_PLT16_HA:
5137 case R_PPC64_PLT16_HI:
5138 case R_PPC64_PLT16_LO:
5139 case R_PPC64_PLT32:
5140 case R_PPC64_PLT64:
5141 /* This symbol requires a procedure linkage table entry. We
5142 actually build the entry in adjust_dynamic_symbol,
5143 because this might be a case of linking PIC code without
5144 linking in any dynamic objects, in which case we don't
5145 need to generate a procedure linkage table after all. */
5146 if (h == NULL)
5147 {
5148 /* It does not make sense to have a procedure linkage
5149 table entry for a local symbol. */
5150 bfd_set_error (bfd_error_bad_value);
5151 return FALSE;
5152 }
5153 else
5154 {
5155 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5156 return FALSE;
5157 h->needs_plt = 1;
5158 if (h->root.root.string[0] == '.'
5159 && h->root.root.string[1] != '\0')
5160 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5161 }
5162 break;
5163
5164 /* The following relocations don't need to propagate the
5165 relocation if linking a shared object since they are
5166 section relative. */
5167 case R_PPC64_SECTOFF:
5168 case R_PPC64_SECTOFF_LO:
5169 case R_PPC64_SECTOFF_HI:
5170 case R_PPC64_SECTOFF_HA:
5171 case R_PPC64_SECTOFF_DS:
5172 case R_PPC64_SECTOFF_LO_DS:
5173 case R_PPC64_DTPREL16:
5174 case R_PPC64_DTPREL16_LO:
5175 case R_PPC64_DTPREL16_HI:
5176 case R_PPC64_DTPREL16_HA:
5177 case R_PPC64_DTPREL16_DS:
5178 case R_PPC64_DTPREL16_LO_DS:
5179 case R_PPC64_DTPREL16_HIGHER:
5180 case R_PPC64_DTPREL16_HIGHERA:
5181 case R_PPC64_DTPREL16_HIGHEST:
5182 case R_PPC64_DTPREL16_HIGHESTA:
5183 break;
5184
5185 /* Nor do these. */
5186 case R_PPC64_REL16:
5187 case R_PPC64_REL16_LO:
5188 case R_PPC64_REL16_HI:
5189 case R_PPC64_REL16_HA:
5190 break;
5191
5192 case R_PPC64_TOC16:
5193 case R_PPC64_TOC16_DS:
5194 htab->do_multi_toc = 1;
5195 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5196 case R_PPC64_TOC16_LO:
5197 case R_PPC64_TOC16_HI:
5198 case R_PPC64_TOC16_HA:
5199 case R_PPC64_TOC16_LO_DS:
5200 sec->has_toc_reloc = 1;
5201 break;
5202
5203 /* This relocation describes the C++ object vtable hierarchy.
5204 Reconstruct it for later use during GC. */
5205 case R_PPC64_GNU_VTINHERIT:
5206 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5207 return FALSE;
5208 break;
5209
5210 /* This relocation describes which C++ vtable entries are actually
5211 used. Record for later use during GC. */
5212 case R_PPC64_GNU_VTENTRY:
5213 BFD_ASSERT (h != NULL);
5214 if (h != NULL
5215 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5216 return FALSE;
5217 break;
5218
5219 case R_PPC64_REL14:
5220 case R_PPC64_REL14_BRTAKEN:
5221 case R_PPC64_REL14_BRNTAKEN:
5222 {
5223 asection *dest = NULL;
5224
5225 /* Heuristic: If jumping outside our section, chances are
5226 we are going to need a stub. */
5227 if (h != NULL)
5228 {
5229 /* If the sym is weak it may be overridden later, so
5230 don't assume we know where a weak sym lives. */
5231 if (h->root.type == bfd_link_hash_defined)
5232 dest = h->root.u.def.section;
5233 }
5234 else
5235 {
5236 Elf_Internal_Sym *isym;
5237
5238 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5239 abfd, r_symndx);
5240 if (isym == NULL)
5241 return FALSE;
5242
5243 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5244 }
5245
5246 if (dest != sec)
5247 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5248 }
5249 /* Fall through. */
5250
5251 case R_PPC64_REL24:
5252 if (h != NULL && ifunc == NULL)
5253 {
5254 /* We may need a .plt entry if the function this reloc
5255 refers to is in a shared lib. */
5256 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5257 return FALSE;
5258 h->needs_plt = 1;
5259 if (h->root.root.string[0] == '.'
5260 && h->root.root.string[1] != '\0')
5261 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5262 if (h == tga || h == dottga)
5263 sec->has_tls_reloc = 1;
5264 }
5265 break;
5266
5267 case R_PPC64_TPREL64:
5268 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5269 if (!info->executable)
5270 info->flags |= DF_STATIC_TLS;
5271 goto dotlstoc;
5272
5273 case R_PPC64_DTPMOD64:
5274 if (rel + 1 < rel_end
5275 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5276 && rel[1].r_offset == rel->r_offset + 8)
5277 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5278 else
5279 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5280 goto dotlstoc;
5281
5282 case R_PPC64_DTPREL64:
5283 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5284 if (rel != relocs
5285 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5286 && rel[-1].r_offset == rel->r_offset - 8)
5287 /* This is the second reloc of a dtpmod, dtprel pair.
5288 Don't mark with TLS_DTPREL. */
5289 goto dodyn;
5290
5291 dotlstoc:
5292 sec->has_tls_reloc = 1;
5293 if (h != NULL)
5294 {
5295 struct ppc_link_hash_entry *eh;
5296 eh = (struct ppc_link_hash_entry *) h;
5297 eh->tls_mask |= tls_type;
5298 }
5299 else
5300 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5301 rel->r_addend, tls_type))
5302 return FALSE;
5303
5304 ppc64_sec = ppc64_elf_section_data (sec);
5305 if (ppc64_sec->sec_type != sec_toc)
5306 {
5307 bfd_size_type amt;
5308
5309 /* One extra to simplify get_tls_mask. */
5310 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5311 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5312 if (ppc64_sec->u.toc.symndx == NULL)
5313 return FALSE;
5314 amt = sec->size * sizeof (bfd_vma) / 8;
5315 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5316 if (ppc64_sec->u.toc.add == NULL)
5317 return FALSE;
5318 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5319 ppc64_sec->sec_type = sec_toc;
5320 }
5321 BFD_ASSERT (rel->r_offset % 8 == 0);
5322 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5323 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5324
5325 /* Mark the second slot of a GD or LD entry.
5326 -1 to indicate GD and -2 to indicate LD. */
5327 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5328 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5329 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5330 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5331 goto dodyn;
5332
5333 case R_PPC64_TPREL16:
5334 case R_PPC64_TPREL16_LO:
5335 case R_PPC64_TPREL16_HI:
5336 case R_PPC64_TPREL16_HA:
5337 case R_PPC64_TPREL16_DS:
5338 case R_PPC64_TPREL16_LO_DS:
5339 case R_PPC64_TPREL16_HIGHER:
5340 case R_PPC64_TPREL16_HIGHERA:
5341 case R_PPC64_TPREL16_HIGHEST:
5342 case R_PPC64_TPREL16_HIGHESTA:
5343 if (info->shared)
5344 {
5345 if (!info->executable)
5346 info->flags |= DF_STATIC_TLS;
5347 goto dodyn;
5348 }
5349 break;
5350
5351 case R_PPC64_ADDR64:
5352 if (opd_sym_map != NULL
5353 && rel + 1 < rel_end
5354 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5355 {
5356 if (h != NULL)
5357 {
5358 if (h->root.root.string[0] == '.'
5359 && h->root.root.string[1] != 0
5360 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5361 ;
5362 else
5363 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5364 }
5365 else
5366 {
5367 asection *s;
5368 Elf_Internal_Sym *isym;
5369
5370 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5371 abfd, r_symndx);
5372 if (isym == NULL)
5373 return FALSE;
5374
5375 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5376 if (s != NULL && s != sec)
5377 opd_sym_map[rel->r_offset / 8] = s;
5378 }
5379 }
5380 /* Fall through. */
5381
5382 case R_PPC64_REL30:
5383 case R_PPC64_REL32:
5384 case R_PPC64_REL64:
5385 case R_PPC64_ADDR14:
5386 case R_PPC64_ADDR14_BRNTAKEN:
5387 case R_PPC64_ADDR14_BRTAKEN:
5388 case R_PPC64_ADDR16:
5389 case R_PPC64_ADDR16_DS:
5390 case R_PPC64_ADDR16_HA:
5391 case R_PPC64_ADDR16_HI:
5392 case R_PPC64_ADDR16_HIGHER:
5393 case R_PPC64_ADDR16_HIGHERA:
5394 case R_PPC64_ADDR16_HIGHEST:
5395 case R_PPC64_ADDR16_HIGHESTA:
5396 case R_PPC64_ADDR16_LO:
5397 case R_PPC64_ADDR16_LO_DS:
5398 case R_PPC64_ADDR24:
5399 case R_PPC64_ADDR32:
5400 case R_PPC64_UADDR16:
5401 case R_PPC64_UADDR32:
5402 case R_PPC64_UADDR64:
5403 case R_PPC64_TOC:
5404 if (h != NULL && !info->shared)
5405 /* We may need a copy reloc. */
5406 h->non_got_ref = 1;
5407
5408 /* Don't propagate .opd relocs. */
5409 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5410 break;
5411
5412 /* If we are creating a shared library, and this is a reloc
5413 against a global symbol, or a non PC relative reloc
5414 against a local symbol, then we need to copy the reloc
5415 into the shared library. However, if we are linking with
5416 -Bsymbolic, we do not need to copy a reloc against a
5417 global symbol which is defined in an object we are
5418 including in the link (i.e., DEF_REGULAR is set). At
5419 this point we have not seen all the input files, so it is
5420 possible that DEF_REGULAR is not set now but will be set
5421 later (it is never cleared). In case of a weak definition,
5422 DEF_REGULAR may be cleared later by a strong definition in
5423 a shared library. We account for that possibility below by
5424 storing information in the dyn_relocs field of the hash
5425 table entry. A similar situation occurs when creating
5426 shared libraries and symbol visibility changes render the
5427 symbol local.
5428
5429 If on the other hand, we are creating an executable, we
5430 may need to keep relocations for symbols satisfied by a
5431 dynamic library if we manage to avoid copy relocs for the
5432 symbol. */
5433 dodyn:
5434 if ((info->shared
5435 && (must_be_dyn_reloc (info, r_type)
5436 || (h != NULL
5437 && (! info->symbolic
5438 || h->root.type == bfd_link_hash_defweak
5439 || !h->def_regular))))
5440 || (ELIMINATE_COPY_RELOCS
5441 && !info->shared
5442 && h != NULL
5443 && (h->root.type == bfd_link_hash_defweak
5444 || !h->def_regular))
5445 || (!info->shared
5446 && ifunc != NULL))
5447 {
5448 struct elf_dyn_relocs *p;
5449 struct elf_dyn_relocs **head;
5450
5451 /* We must copy these reloc types into the output file.
5452 Create a reloc section in dynobj and make room for
5453 this reloc. */
5454 if (sreloc == NULL)
5455 {
5456 sreloc = _bfd_elf_make_dynamic_reloc_section
5457 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5458
5459 if (sreloc == NULL)
5460 return FALSE;
5461 }
5462
5463 /* If this is a global symbol, we count the number of
5464 relocations we need for this symbol. */
5465 if (h != NULL)
5466 {
5467 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5468 }
5469 else
5470 {
5471 /* Track dynamic relocs needed for local syms too.
5472 We really need local syms available to do this
5473 easily. Oh well. */
5474 asection *s;
5475 void *vpp;
5476 Elf_Internal_Sym *isym;
5477
5478 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5479 abfd, r_symndx);
5480 if (isym == NULL)
5481 return FALSE;
5482
5483 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5484 if (s == NULL)
5485 s = sec;
5486
5487 vpp = &elf_section_data (s)->local_dynrel;
5488 head = (struct elf_dyn_relocs **) vpp;
5489 }
5490
5491 p = *head;
5492 if (p == NULL || p->sec != sec)
5493 {
5494 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5495 if (p == NULL)
5496 return FALSE;
5497 p->next = *head;
5498 *head = p;
5499 p->sec = sec;
5500 p->count = 0;
5501 p->pc_count = 0;
5502 }
5503
5504 p->count += 1;
5505 if (!must_be_dyn_reloc (info, r_type))
5506 p->pc_count += 1;
5507 }
5508 break;
5509
5510 default:
5511 break;
5512 }
5513 }
5514
5515 return TRUE;
5516 }
5517
5518 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5519 of the code entry point, and its section. */
5520
5521 static bfd_vma
5522 opd_entry_value (asection *opd_sec,
5523 bfd_vma offset,
5524 asection **code_sec,
5525 bfd_vma *code_off,
5526 bfd_boolean in_code_sec)
5527 {
5528 bfd *opd_bfd = opd_sec->owner;
5529 Elf_Internal_Rela *relocs;
5530 Elf_Internal_Rela *lo, *hi, *look;
5531 bfd_vma val;
5532
5533 /* No relocs implies we are linking a --just-symbols object, or looking
5534 at a final linked executable with addr2line or somesuch. */
5535 if (opd_sec->reloc_count == 0)
5536 {
5537 char buf[8];
5538
5539 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8))
5540 return (bfd_vma) -1;
5541
5542 val = bfd_get_64 (opd_bfd, buf);
5543 if (code_sec != NULL)
5544 {
5545 asection *sec, *likely = NULL;
5546
5547 if (in_code_sec)
5548 {
5549 sec = *code_sec;
5550 if (sec->vma <= val
5551 && val < sec->vma + sec->size)
5552 likely = sec;
5553 else
5554 val = -1;
5555 }
5556 else
5557 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5558 if (sec->vma <= val
5559 && (sec->flags & SEC_LOAD) != 0
5560 && (sec->flags & SEC_ALLOC) != 0)
5561 likely = sec;
5562 if (likely != NULL)
5563 {
5564 *code_sec = likely;
5565 if (code_off != NULL)
5566 *code_off = val - likely->vma;
5567 }
5568 }
5569 return val;
5570 }
5571
5572 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5573
5574 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5575 if (relocs == NULL)
5576 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5577
5578 /* Go find the opd reloc at the sym address. */
5579 lo = relocs;
5580 BFD_ASSERT (lo != NULL);
5581 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5582 val = (bfd_vma) -1;
5583 while (lo < hi)
5584 {
5585 look = lo + (hi - lo) / 2;
5586 if (look->r_offset < offset)
5587 lo = look + 1;
5588 else if (look->r_offset > offset)
5589 hi = look;
5590 else
5591 {
5592 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5593
5594 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5595 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5596 {
5597 unsigned long symndx = ELF64_R_SYM (look->r_info);
5598 asection *sec;
5599
5600 if (symndx < symtab_hdr->sh_info
5601 || elf_sym_hashes (opd_bfd) == NULL)
5602 {
5603 Elf_Internal_Sym *sym;
5604
5605 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5606 if (sym == NULL)
5607 {
5608 size_t symcnt = symtab_hdr->sh_info;
5609 if (elf_sym_hashes (opd_bfd) == NULL)
5610 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5611 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5612 0, NULL, NULL, NULL);
5613 if (sym == NULL)
5614 break;
5615 symtab_hdr->contents = (bfd_byte *) sym;
5616 }
5617
5618 sym += symndx;
5619 val = sym->st_value;
5620 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5621 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5622 }
5623 else
5624 {
5625 struct elf_link_hash_entry **sym_hashes;
5626 struct elf_link_hash_entry *rh;
5627
5628 sym_hashes = elf_sym_hashes (opd_bfd);
5629 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5630 rh = elf_follow_link (rh);
5631 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5632 || rh->root.type == bfd_link_hash_defweak);
5633 val = rh->root.u.def.value;
5634 sec = rh->root.u.def.section;
5635 }
5636 val += look->r_addend;
5637 if (code_off != NULL)
5638 *code_off = val;
5639 if (code_sec != NULL)
5640 {
5641 if (in_code_sec && *code_sec != sec)
5642 return -1;
5643 else
5644 *code_sec = sec;
5645 }
5646 if (sec != NULL && sec->output_section != NULL)
5647 val += sec->output_section->vma + sec->output_offset;
5648 }
5649 break;
5650 }
5651 }
5652
5653 return val;
5654 }
5655
5656 /* If the ELF symbol SYM might be a function in SEC, return the
5657 function size and set *CODE_OFF to the function's entry point,
5658 otherwise return zero. */
5659
5660 static bfd_size_type
5661 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5662 bfd_vma *code_off)
5663 {
5664 bfd_size_type size;
5665
5666 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5667 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5668 return 0;
5669
5670 size = 0;
5671 if (!(sym->flags & BSF_SYNTHETIC))
5672 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5673
5674 if (strcmp (sym->section->name, ".opd") == 0)
5675 {
5676 if (opd_entry_value (sym->section, sym->value,
5677 &sec, code_off, TRUE) == (bfd_vma) -1)
5678 return 0;
5679 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5680 symbol. This size has nothing to do with the code size of the
5681 function, which is what we're supposed to return, but the
5682 code size isn't available without looking up the dot-sym.
5683 However, doing that would be a waste of time particularly
5684 since elf_find_function will look at the dot-sym anyway.
5685 Now, elf_find_function will keep the largest size of any
5686 function sym found at the code address of interest, so return
5687 1 here to avoid it incorrectly caching a larger function size
5688 for a small function. This does mean we return the wrong
5689 size for a new-ABI function of size 24, but all that does is
5690 disable caching for such functions. */
5691 if (size == 24)
5692 size = 1;
5693 }
5694 else
5695 {
5696 if (sym->section != sec)
5697 return 0;
5698 *code_off = sym->value;
5699 }
5700 if (size == 0)
5701 size = 1;
5702 return size;
5703 }
5704
5705 /* Return true if symbol is defined in a regular object file. */
5706
5707 static bfd_boolean
5708 is_static_defined (struct elf_link_hash_entry *h)
5709 {
5710 return ((h->root.type == bfd_link_hash_defined
5711 || h->root.type == bfd_link_hash_defweak)
5712 && h->root.u.def.section != NULL
5713 && h->root.u.def.section->output_section != NULL);
5714 }
5715
5716 /* If FDH is a function descriptor symbol, return the associated code
5717 entry symbol if it is defined. Return NULL otherwise. */
5718
5719 static struct ppc_link_hash_entry *
5720 defined_code_entry (struct ppc_link_hash_entry *fdh)
5721 {
5722 if (fdh->is_func_descriptor)
5723 {
5724 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5725 if (fh->elf.root.type == bfd_link_hash_defined
5726 || fh->elf.root.type == bfd_link_hash_defweak)
5727 return fh;
5728 }
5729 return NULL;
5730 }
5731
5732 /* If FH is a function code entry symbol, return the associated
5733 function descriptor symbol if it is defined. Return NULL otherwise. */
5734
5735 static struct ppc_link_hash_entry *
5736 defined_func_desc (struct ppc_link_hash_entry *fh)
5737 {
5738 if (fh->oh != NULL
5739 && fh->oh->is_func_descriptor)
5740 {
5741 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5742 if (fdh->elf.root.type == bfd_link_hash_defined
5743 || fdh->elf.root.type == bfd_link_hash_defweak)
5744 return fdh;
5745 }
5746 return NULL;
5747 }
5748
5749 /* Mark all our entry sym sections, both opd and code section. */
5750
5751 static void
5752 ppc64_elf_gc_keep (struct bfd_link_info *info)
5753 {
5754 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5755 struct bfd_sym_chain *sym;
5756
5757 if (htab == NULL)
5758 return;
5759
5760 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5761 {
5762 struct ppc_link_hash_entry *eh, *fh;
5763 asection *sec;
5764
5765 eh = (struct ppc_link_hash_entry *)
5766 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5767 if (eh == NULL)
5768 continue;
5769 if (eh->elf.root.type != bfd_link_hash_defined
5770 && eh->elf.root.type != bfd_link_hash_defweak)
5771 continue;
5772
5773 fh = defined_code_entry (eh);
5774 if (fh != NULL)
5775 {
5776 sec = fh->elf.root.u.def.section;
5777 sec->flags |= SEC_KEEP;
5778 }
5779 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5780 && opd_entry_value (eh->elf.root.u.def.section,
5781 eh->elf.root.u.def.value,
5782 &sec, NULL, FALSE) != (bfd_vma) -1)
5783 sec->flags |= SEC_KEEP;
5784
5785 sec = eh->elf.root.u.def.section;
5786 sec->flags |= SEC_KEEP;
5787 }
5788 }
5789
5790 /* Mark sections containing dynamically referenced symbols. When
5791 building shared libraries, we must assume that any visible symbol is
5792 referenced. */
5793
5794 static bfd_boolean
5795 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5796 {
5797 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5798 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5799 struct ppc_link_hash_entry *fdh;
5800
5801 /* Dynamic linking info is on the func descriptor sym. */
5802 fdh = defined_func_desc (eh);
5803 if (fdh != NULL)
5804 eh = fdh;
5805
5806 if ((eh->elf.root.type == bfd_link_hash_defined
5807 || eh->elf.root.type == bfd_link_hash_defweak)
5808 && (eh->elf.ref_dynamic
5809 || (!info->executable
5810 && eh->elf.def_regular
5811 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5812 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5813 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5814 || !bfd_hide_sym_by_version (info->version_info,
5815 eh->elf.root.root.string)))))
5816 {
5817 asection *code_sec;
5818 struct ppc_link_hash_entry *fh;
5819
5820 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5821
5822 /* Function descriptor syms cause the associated
5823 function code sym section to be marked. */
5824 fh = defined_code_entry (eh);
5825 if (fh != NULL)
5826 {
5827 code_sec = fh->elf.root.u.def.section;
5828 code_sec->flags |= SEC_KEEP;
5829 }
5830 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5831 && opd_entry_value (eh->elf.root.u.def.section,
5832 eh->elf.root.u.def.value,
5833 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5834 code_sec->flags |= SEC_KEEP;
5835 }
5836
5837 return TRUE;
5838 }
5839
5840 /* Return the section that should be marked against GC for a given
5841 relocation. */
5842
5843 static asection *
5844 ppc64_elf_gc_mark_hook (asection *sec,
5845 struct bfd_link_info *info,
5846 Elf_Internal_Rela *rel,
5847 struct elf_link_hash_entry *h,
5848 Elf_Internal_Sym *sym)
5849 {
5850 asection *rsec;
5851
5852 /* Syms return NULL if we're marking .opd, so we avoid marking all
5853 function sections, as all functions are referenced in .opd. */
5854 rsec = NULL;
5855 if (get_opd_info (sec) != NULL)
5856 return rsec;
5857
5858 if (h != NULL)
5859 {
5860 enum elf_ppc64_reloc_type r_type;
5861 struct ppc_link_hash_entry *eh, *fh, *fdh;
5862
5863 r_type = ELF64_R_TYPE (rel->r_info);
5864 switch (r_type)
5865 {
5866 case R_PPC64_GNU_VTINHERIT:
5867 case R_PPC64_GNU_VTENTRY:
5868 break;
5869
5870 default:
5871 switch (h->root.type)
5872 {
5873 case bfd_link_hash_defined:
5874 case bfd_link_hash_defweak:
5875 eh = (struct ppc_link_hash_entry *) h;
5876 fdh = defined_func_desc (eh);
5877 if (fdh != NULL)
5878 eh = fdh;
5879
5880 /* Function descriptor syms cause the associated
5881 function code sym section to be marked. */
5882 fh = defined_code_entry (eh);
5883 if (fh != NULL)
5884 {
5885 /* They also mark their opd section. */
5886 eh->elf.root.u.def.section->gc_mark = 1;
5887
5888 rsec = fh->elf.root.u.def.section;
5889 }
5890 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5891 && opd_entry_value (eh->elf.root.u.def.section,
5892 eh->elf.root.u.def.value,
5893 &rsec, NULL, FALSE) != (bfd_vma) -1)
5894 eh->elf.root.u.def.section->gc_mark = 1;
5895 else
5896 rsec = h->root.u.def.section;
5897 break;
5898
5899 case bfd_link_hash_common:
5900 rsec = h->root.u.c.p->section;
5901 break;
5902
5903 default:
5904 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5905 }
5906 }
5907 }
5908 else
5909 {
5910 struct _opd_sec_data *opd;
5911
5912 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5913 opd = get_opd_info (rsec);
5914 if (opd != NULL && opd->func_sec != NULL)
5915 {
5916 rsec->gc_mark = 1;
5917
5918 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5919 }
5920 }
5921
5922 return rsec;
5923 }
5924
5925 /* Update the .got, .plt. and dynamic reloc reference counts for the
5926 section being removed. */
5927
5928 static bfd_boolean
5929 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5930 asection *sec, const Elf_Internal_Rela *relocs)
5931 {
5932 struct ppc_link_hash_table *htab;
5933 Elf_Internal_Shdr *symtab_hdr;
5934 struct elf_link_hash_entry **sym_hashes;
5935 struct got_entry **local_got_ents;
5936 const Elf_Internal_Rela *rel, *relend;
5937
5938 if (info->relocatable)
5939 return TRUE;
5940
5941 if ((sec->flags & SEC_ALLOC) == 0)
5942 return TRUE;
5943
5944 elf_section_data (sec)->local_dynrel = NULL;
5945
5946 htab = ppc_hash_table (info);
5947 if (htab == NULL)
5948 return FALSE;
5949
5950 symtab_hdr = &elf_symtab_hdr (abfd);
5951 sym_hashes = elf_sym_hashes (abfd);
5952 local_got_ents = elf_local_got_ents (abfd);
5953
5954 relend = relocs + sec->reloc_count;
5955 for (rel = relocs; rel < relend; rel++)
5956 {
5957 unsigned long r_symndx;
5958 enum elf_ppc64_reloc_type r_type;
5959 struct elf_link_hash_entry *h = NULL;
5960 unsigned char tls_type = 0;
5961
5962 r_symndx = ELF64_R_SYM (rel->r_info);
5963 r_type = ELF64_R_TYPE (rel->r_info);
5964 if (r_symndx >= symtab_hdr->sh_info)
5965 {
5966 struct ppc_link_hash_entry *eh;
5967 struct elf_dyn_relocs **pp;
5968 struct elf_dyn_relocs *p;
5969
5970 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5971 h = elf_follow_link (h);
5972 eh = (struct ppc_link_hash_entry *) h;
5973
5974 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5975 if (p->sec == sec)
5976 {
5977 /* Everything must go for SEC. */
5978 *pp = p->next;
5979 break;
5980 }
5981 }
5982
5983 if (is_branch_reloc (r_type))
5984 {
5985 struct plt_entry **ifunc = NULL;
5986 if (h != NULL)
5987 {
5988 if (h->type == STT_GNU_IFUNC)
5989 ifunc = &h->plt.plist;
5990 }
5991 else if (local_got_ents != NULL)
5992 {
5993 struct plt_entry **local_plt = (struct plt_entry **)
5994 (local_got_ents + symtab_hdr->sh_info);
5995 unsigned char *local_got_tls_masks = (unsigned char *)
5996 (local_plt + symtab_hdr->sh_info);
5997 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
5998 ifunc = local_plt + r_symndx;
5999 }
6000 if (ifunc != NULL)
6001 {
6002 struct plt_entry *ent;
6003
6004 for (ent = *ifunc; ent != NULL; ent = ent->next)
6005 if (ent->addend == rel->r_addend)
6006 break;
6007 if (ent == NULL)
6008 abort ();
6009 if (ent->plt.refcount > 0)
6010 ent->plt.refcount -= 1;
6011 continue;
6012 }
6013 }
6014
6015 switch (r_type)
6016 {
6017 case R_PPC64_GOT_TLSLD16:
6018 case R_PPC64_GOT_TLSLD16_LO:
6019 case R_PPC64_GOT_TLSLD16_HI:
6020 case R_PPC64_GOT_TLSLD16_HA:
6021 tls_type = TLS_TLS | TLS_LD;
6022 goto dogot;
6023
6024 case R_PPC64_GOT_TLSGD16:
6025 case R_PPC64_GOT_TLSGD16_LO:
6026 case R_PPC64_GOT_TLSGD16_HI:
6027 case R_PPC64_GOT_TLSGD16_HA:
6028 tls_type = TLS_TLS | TLS_GD;
6029 goto dogot;
6030
6031 case R_PPC64_GOT_TPREL16_DS:
6032 case R_PPC64_GOT_TPREL16_LO_DS:
6033 case R_PPC64_GOT_TPREL16_HI:
6034 case R_PPC64_GOT_TPREL16_HA:
6035 tls_type = TLS_TLS | TLS_TPREL;
6036 goto dogot;
6037
6038 case R_PPC64_GOT_DTPREL16_DS:
6039 case R_PPC64_GOT_DTPREL16_LO_DS:
6040 case R_PPC64_GOT_DTPREL16_HI:
6041 case R_PPC64_GOT_DTPREL16_HA:
6042 tls_type = TLS_TLS | TLS_DTPREL;
6043 goto dogot;
6044
6045 case R_PPC64_GOT16:
6046 case R_PPC64_GOT16_DS:
6047 case R_PPC64_GOT16_HA:
6048 case R_PPC64_GOT16_HI:
6049 case R_PPC64_GOT16_LO:
6050 case R_PPC64_GOT16_LO_DS:
6051 dogot:
6052 {
6053 struct got_entry *ent;
6054
6055 if (h != NULL)
6056 ent = h->got.glist;
6057 else
6058 ent = local_got_ents[r_symndx];
6059
6060 for (; ent != NULL; ent = ent->next)
6061 if (ent->addend == rel->r_addend
6062 && ent->owner == abfd
6063 && ent->tls_type == tls_type)
6064 break;
6065 if (ent == NULL)
6066 abort ();
6067 if (ent->got.refcount > 0)
6068 ent->got.refcount -= 1;
6069 }
6070 break;
6071
6072 case R_PPC64_PLT16_HA:
6073 case R_PPC64_PLT16_HI:
6074 case R_PPC64_PLT16_LO:
6075 case R_PPC64_PLT32:
6076 case R_PPC64_PLT64:
6077 case R_PPC64_REL14:
6078 case R_PPC64_REL14_BRNTAKEN:
6079 case R_PPC64_REL14_BRTAKEN:
6080 case R_PPC64_REL24:
6081 if (h != NULL)
6082 {
6083 struct plt_entry *ent;
6084
6085 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6086 if (ent->addend == rel->r_addend)
6087 break;
6088 if (ent != NULL && ent->plt.refcount > 0)
6089 ent->plt.refcount -= 1;
6090 }
6091 break;
6092
6093 default:
6094 break;
6095 }
6096 }
6097 return TRUE;
6098 }
6099
6100 /* The maximum size of .sfpr. */
6101 #define SFPR_MAX (218*4)
6102
6103 struct sfpr_def_parms
6104 {
6105 const char name[12];
6106 unsigned char lo, hi;
6107 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6108 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6109 };
6110
6111 /* Auto-generate _save*, _rest* functions in .sfpr. */
6112
6113 static bfd_boolean
6114 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6115 {
6116 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6117 unsigned int i;
6118 size_t len = strlen (parm->name);
6119 bfd_boolean writing = FALSE;
6120 char sym[16];
6121
6122 if (htab == NULL)
6123 return FALSE;
6124
6125 memcpy (sym, parm->name, len);
6126 sym[len + 2] = 0;
6127
6128 for (i = parm->lo; i <= parm->hi; i++)
6129 {
6130 struct elf_link_hash_entry *h;
6131
6132 sym[len + 0] = i / 10 + '0';
6133 sym[len + 1] = i % 10 + '0';
6134 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6135 if (h != NULL
6136 && !h->def_regular)
6137 {
6138 h->root.type = bfd_link_hash_defined;
6139 h->root.u.def.section = htab->sfpr;
6140 h->root.u.def.value = htab->sfpr->size;
6141 h->type = STT_FUNC;
6142 h->def_regular = 1;
6143 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6144 writing = TRUE;
6145 if (htab->sfpr->contents == NULL)
6146 {
6147 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6148 if (htab->sfpr->contents == NULL)
6149 return FALSE;
6150 }
6151 }
6152 if (writing)
6153 {
6154 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6155 if (i != parm->hi)
6156 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6157 else
6158 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6159 htab->sfpr->size = p - htab->sfpr->contents;
6160 }
6161 }
6162
6163 return TRUE;
6164 }
6165
6166 static bfd_byte *
6167 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6168 {
6169 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6170 return p + 4;
6171 }
6172
6173 static bfd_byte *
6174 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6175 {
6176 p = savegpr0 (abfd, p, r);
6177 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6178 p = p + 4;
6179 bfd_put_32 (abfd, BLR, p);
6180 return p + 4;
6181 }
6182
6183 static bfd_byte *
6184 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6185 {
6186 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6187 return p + 4;
6188 }
6189
6190 static bfd_byte *
6191 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6192 {
6193 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6194 p = p + 4;
6195 p = restgpr0 (abfd, p, r);
6196 bfd_put_32 (abfd, MTLR_R0, p);
6197 p = p + 4;
6198 if (r == 29)
6199 {
6200 p = restgpr0 (abfd, p, 30);
6201 p = restgpr0 (abfd, p, 31);
6202 }
6203 bfd_put_32 (abfd, BLR, p);
6204 return p + 4;
6205 }
6206
6207 static bfd_byte *
6208 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6209 {
6210 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6211 return p + 4;
6212 }
6213
6214 static bfd_byte *
6215 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6216 {
6217 p = savegpr1 (abfd, p, r);
6218 bfd_put_32 (abfd, BLR, p);
6219 return p + 4;
6220 }
6221
6222 static bfd_byte *
6223 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6224 {
6225 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6226 return p + 4;
6227 }
6228
6229 static bfd_byte *
6230 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6231 {
6232 p = restgpr1 (abfd, p, r);
6233 bfd_put_32 (abfd, BLR, p);
6234 return p + 4;
6235 }
6236
6237 static bfd_byte *
6238 savefpr (bfd *abfd, bfd_byte *p, int r)
6239 {
6240 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6241 return p + 4;
6242 }
6243
6244 static bfd_byte *
6245 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6246 {
6247 p = savefpr (abfd, p, r);
6248 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6249 p = p + 4;
6250 bfd_put_32 (abfd, BLR, p);
6251 return p + 4;
6252 }
6253
6254 static bfd_byte *
6255 restfpr (bfd *abfd, bfd_byte *p, int r)
6256 {
6257 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6258 return p + 4;
6259 }
6260
6261 static bfd_byte *
6262 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6263 {
6264 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6265 p = p + 4;
6266 p = restfpr (abfd, p, r);
6267 bfd_put_32 (abfd, MTLR_R0, p);
6268 p = p + 4;
6269 if (r == 29)
6270 {
6271 p = restfpr (abfd, p, 30);
6272 p = restfpr (abfd, p, 31);
6273 }
6274 bfd_put_32 (abfd, BLR, p);
6275 return p + 4;
6276 }
6277
6278 static bfd_byte *
6279 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6280 {
6281 p = savefpr (abfd, p, r);
6282 bfd_put_32 (abfd, BLR, p);
6283 return p + 4;
6284 }
6285
6286 static bfd_byte *
6287 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6288 {
6289 p = restfpr (abfd, p, r);
6290 bfd_put_32 (abfd, BLR, p);
6291 return p + 4;
6292 }
6293
6294 static bfd_byte *
6295 savevr (bfd *abfd, bfd_byte *p, int r)
6296 {
6297 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6298 p = p + 4;
6299 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6300 return p + 4;
6301 }
6302
6303 static bfd_byte *
6304 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6305 {
6306 p = savevr (abfd, p, r);
6307 bfd_put_32 (abfd, BLR, p);
6308 return p + 4;
6309 }
6310
6311 static bfd_byte *
6312 restvr (bfd *abfd, bfd_byte *p, int r)
6313 {
6314 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6315 p = p + 4;
6316 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6317 return p + 4;
6318 }
6319
6320 static bfd_byte *
6321 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6322 {
6323 p = restvr (abfd, p, r);
6324 bfd_put_32 (abfd, BLR, p);
6325 return p + 4;
6326 }
6327
6328 /* Called via elf_link_hash_traverse to transfer dynamic linking
6329 information on function code symbol entries to their corresponding
6330 function descriptor symbol entries. */
6331
6332 static bfd_boolean
6333 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6334 {
6335 struct bfd_link_info *info;
6336 struct ppc_link_hash_table *htab;
6337 struct plt_entry *ent;
6338 struct ppc_link_hash_entry *fh;
6339 struct ppc_link_hash_entry *fdh;
6340 bfd_boolean force_local;
6341
6342 fh = (struct ppc_link_hash_entry *) h;
6343 if (fh->elf.root.type == bfd_link_hash_indirect)
6344 return TRUE;
6345
6346 info = inf;
6347 htab = ppc_hash_table (info);
6348 if (htab == NULL)
6349 return FALSE;
6350
6351 /* Resolve undefined references to dot-symbols as the value
6352 in the function descriptor, if we have one in a regular object.
6353 This is to satisfy cases like ".quad .foo". Calls to functions
6354 in dynamic objects are handled elsewhere. */
6355 if (fh->elf.root.type == bfd_link_hash_undefweak
6356 && fh->was_undefined
6357 && (fdh = defined_func_desc (fh)) != NULL
6358 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6359 && opd_entry_value (fdh->elf.root.u.def.section,
6360 fdh->elf.root.u.def.value,
6361 &fh->elf.root.u.def.section,
6362 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6363 {
6364 fh->elf.root.type = fdh->elf.root.type;
6365 fh->elf.forced_local = 1;
6366 fh->elf.def_regular = fdh->elf.def_regular;
6367 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6368 }
6369
6370 /* If this is a function code symbol, transfer dynamic linking
6371 information to the function descriptor symbol. */
6372 if (!fh->is_func)
6373 return TRUE;
6374
6375 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6376 if (ent->plt.refcount > 0)
6377 break;
6378 if (ent == NULL
6379 || fh->elf.root.root.string[0] != '.'
6380 || fh->elf.root.root.string[1] == '\0')
6381 return TRUE;
6382
6383 /* Find the corresponding function descriptor symbol. Create it
6384 as undefined if necessary. */
6385
6386 fdh = lookup_fdh (fh, htab);
6387 if (fdh == NULL
6388 && !info->executable
6389 && (fh->elf.root.type == bfd_link_hash_undefined
6390 || fh->elf.root.type == bfd_link_hash_undefweak))
6391 {
6392 fdh = make_fdh (info, fh);
6393 if (fdh == NULL)
6394 return FALSE;
6395 }
6396
6397 /* Fake function descriptors are made undefweak. If the function
6398 code symbol is strong undefined, make the fake sym the same.
6399 If the function code symbol is defined, then force the fake
6400 descriptor local; We can't support overriding of symbols in a
6401 shared library on a fake descriptor. */
6402
6403 if (fdh != NULL
6404 && fdh->fake
6405 && fdh->elf.root.type == bfd_link_hash_undefweak)
6406 {
6407 if (fh->elf.root.type == bfd_link_hash_undefined)
6408 {
6409 fdh->elf.root.type = bfd_link_hash_undefined;
6410 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6411 }
6412 else if (fh->elf.root.type == bfd_link_hash_defined
6413 || fh->elf.root.type == bfd_link_hash_defweak)
6414 {
6415 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6416 }
6417 }
6418
6419 if (fdh != NULL
6420 && !fdh->elf.forced_local
6421 && (!info->executable
6422 || fdh->elf.def_dynamic
6423 || fdh->elf.ref_dynamic
6424 || (fdh->elf.root.type == bfd_link_hash_undefweak
6425 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6426 {
6427 if (fdh->elf.dynindx == -1)
6428 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6429 return FALSE;
6430 fdh->elf.ref_regular |= fh->elf.ref_regular;
6431 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6432 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6433 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6434 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6435 {
6436 move_plt_plist (fh, fdh);
6437 fdh->elf.needs_plt = 1;
6438 }
6439 fdh->is_func_descriptor = 1;
6440 fdh->oh = fh;
6441 fh->oh = fdh;
6442 }
6443
6444 /* Now that the info is on the function descriptor, clear the
6445 function code sym info. Any function code syms for which we
6446 don't have a definition in a regular file, we force local.
6447 This prevents a shared library from exporting syms that have
6448 been imported from another library. Function code syms that
6449 are really in the library we must leave global to prevent the
6450 linker dragging in a definition from a static library. */
6451 force_local = (!fh->elf.def_regular
6452 || fdh == NULL
6453 || !fdh->elf.def_regular
6454 || fdh->elf.forced_local);
6455 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6456
6457 return TRUE;
6458 }
6459
6460 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6461 this hook to a) provide some gcc support functions, and b) transfer
6462 dynamic linking information gathered so far on function code symbol
6463 entries, to their corresponding function descriptor symbol entries. */
6464
6465 static bfd_boolean
6466 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6467 struct bfd_link_info *info)
6468 {
6469 struct ppc_link_hash_table *htab;
6470 unsigned int i;
6471 static const struct sfpr_def_parms funcs[] =
6472 {
6473 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6474 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6475 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6476 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6477 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6478 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6479 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6480 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6481 { "._savef", 14, 31, savefpr, savefpr1_tail },
6482 { "._restf", 14, 31, restfpr, restfpr1_tail },
6483 { "_savevr_", 20, 31, savevr, savevr_tail },
6484 { "_restvr_", 20, 31, restvr, restvr_tail }
6485 };
6486
6487 htab = ppc_hash_table (info);
6488 if (htab == NULL)
6489 return FALSE;
6490
6491 if (htab->sfpr == NULL)
6492 /* We don't have any relocs. */
6493 return TRUE;
6494
6495 /* Provide any missing _save* and _rest* functions. */
6496 htab->sfpr->size = 0;
6497 if (!info->relocatable)
6498 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6499 if (!sfpr_define (info, &funcs[i]))
6500 return FALSE;
6501
6502 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6503
6504 if (htab->sfpr->size == 0)
6505 htab->sfpr->flags |= SEC_EXCLUDE;
6506
6507 return TRUE;
6508 }
6509
6510 /* Adjust a symbol defined by a dynamic object and referenced by a
6511 regular object. The current definition is in some section of the
6512 dynamic object, but we're not including those sections. We have to
6513 change the definition to something the rest of the link can
6514 understand. */
6515
6516 static bfd_boolean
6517 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6518 struct elf_link_hash_entry *h)
6519 {
6520 struct ppc_link_hash_table *htab;
6521 asection *s;
6522
6523 htab = ppc_hash_table (info);
6524 if (htab == NULL)
6525 return FALSE;
6526
6527 /* Deal with function syms. */
6528 if (h->type == STT_FUNC
6529 || h->type == STT_GNU_IFUNC
6530 || h->needs_plt)
6531 {
6532 /* Clear procedure linkage table information for any symbol that
6533 won't need a .plt entry. */
6534 struct plt_entry *ent;
6535 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6536 if (ent->plt.refcount > 0)
6537 break;
6538 if (ent == NULL
6539 || (h->type != STT_GNU_IFUNC
6540 && (SYMBOL_CALLS_LOCAL (info, h)
6541 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6542 && h->root.type == bfd_link_hash_undefweak))))
6543 {
6544 h->plt.plist = NULL;
6545 h->needs_plt = 0;
6546 }
6547 }
6548 else
6549 h->plt.plist = NULL;
6550
6551 /* If this is a weak symbol, and there is a real definition, the
6552 processor independent code will have arranged for us to see the
6553 real definition first, and we can just use the same value. */
6554 if (h->u.weakdef != NULL)
6555 {
6556 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6557 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6558 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6559 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6560 if (ELIMINATE_COPY_RELOCS)
6561 h->non_got_ref = h->u.weakdef->non_got_ref;
6562 return TRUE;
6563 }
6564
6565 /* If we are creating a shared library, we must presume that the
6566 only references to the symbol are via the global offset table.
6567 For such cases we need not do anything here; the relocations will
6568 be handled correctly by relocate_section. */
6569 if (info->shared)
6570 return TRUE;
6571
6572 /* If there are no references to this symbol that do not use the
6573 GOT, we don't need to generate a copy reloc. */
6574 if (!h->non_got_ref)
6575 return TRUE;
6576
6577 /* Don't generate a copy reloc for symbols defined in the executable. */
6578 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6579 return TRUE;
6580
6581 if (ELIMINATE_COPY_RELOCS)
6582 {
6583 struct ppc_link_hash_entry * eh;
6584 struct elf_dyn_relocs *p;
6585
6586 eh = (struct ppc_link_hash_entry *) h;
6587 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6588 {
6589 s = p->sec->output_section;
6590 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6591 break;
6592 }
6593
6594 /* If we didn't find any dynamic relocs in read-only sections, then
6595 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6596 if (p == NULL)
6597 {
6598 h->non_got_ref = 0;
6599 return TRUE;
6600 }
6601 }
6602
6603 if (h->plt.plist != NULL)
6604 {
6605 /* We should never get here, but unfortunately there are versions
6606 of gcc out there that improperly (for this ABI) put initialized
6607 function pointers, vtable refs and suchlike in read-only
6608 sections. Allow them to proceed, but warn that this might
6609 break at runtime. */
6610 info->callbacks->einfo
6611 (_("%P: copy reloc against `%s' requires lazy plt linking; "
6612 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6613 h->root.root.string);
6614 }
6615
6616 /* This is a reference to a symbol defined by a dynamic object which
6617 is not a function. */
6618
6619 /* We must allocate the symbol in our .dynbss section, which will
6620 become part of the .bss section of the executable. There will be
6621 an entry for this symbol in the .dynsym section. The dynamic
6622 object will contain position independent code, so all references
6623 from the dynamic object to this symbol will go through the global
6624 offset table. The dynamic linker will use the .dynsym entry to
6625 determine the address it must put in the global offset table, so
6626 both the dynamic object and the regular object will refer to the
6627 same memory location for the variable. */
6628
6629 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6630 to copy the initial value out of the dynamic object and into the
6631 runtime process image. We need to remember the offset into the
6632 .rela.bss section we are going to use. */
6633 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6634 {
6635 htab->relbss->size += sizeof (Elf64_External_Rela);
6636 h->needs_copy = 1;
6637 }
6638
6639 s = htab->dynbss;
6640
6641 return _bfd_elf_adjust_dynamic_copy (h, s);
6642 }
6643
6644 /* If given a function descriptor symbol, hide both the function code
6645 sym and the descriptor. */
6646 static void
6647 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6648 struct elf_link_hash_entry *h,
6649 bfd_boolean force_local)
6650 {
6651 struct ppc_link_hash_entry *eh;
6652 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6653
6654 eh = (struct ppc_link_hash_entry *) h;
6655 if (eh->is_func_descriptor)
6656 {
6657 struct ppc_link_hash_entry *fh = eh->oh;
6658
6659 if (fh == NULL)
6660 {
6661 const char *p, *q;
6662 struct ppc_link_hash_table *htab;
6663 char save;
6664
6665 /* We aren't supposed to use alloca in BFD because on
6666 systems which do not have alloca the version in libiberty
6667 calls xmalloc, which might cause the program to crash
6668 when it runs out of memory. This function doesn't have a
6669 return status, so there's no way to gracefully return an
6670 error. So cheat. We know that string[-1] can be safely
6671 accessed; It's either a string in an ELF string table,
6672 or allocated in an objalloc structure. */
6673
6674 p = eh->elf.root.root.string - 1;
6675 save = *p;
6676 *(char *) p = '.';
6677 htab = ppc_hash_table (info);
6678 if (htab == NULL)
6679 return;
6680
6681 fh = (struct ppc_link_hash_entry *)
6682 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6683 *(char *) p = save;
6684
6685 /* Unfortunately, if it so happens that the string we were
6686 looking for was allocated immediately before this string,
6687 then we overwrote the string terminator. That's the only
6688 reason the lookup should fail. */
6689 if (fh == NULL)
6690 {
6691 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6692 while (q >= eh->elf.root.root.string && *q == *p)
6693 --q, --p;
6694 if (q < eh->elf.root.root.string && *p == '.')
6695 fh = (struct ppc_link_hash_entry *)
6696 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6697 }
6698 if (fh != NULL)
6699 {
6700 eh->oh = fh;
6701 fh->oh = eh;
6702 }
6703 }
6704 if (fh != NULL)
6705 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6706 }
6707 }
6708
6709 static bfd_boolean
6710 get_sym_h (struct elf_link_hash_entry **hp,
6711 Elf_Internal_Sym **symp,
6712 asection **symsecp,
6713 unsigned char **tls_maskp,
6714 Elf_Internal_Sym **locsymsp,
6715 unsigned long r_symndx,
6716 bfd *ibfd)
6717 {
6718 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6719
6720 if (r_symndx >= symtab_hdr->sh_info)
6721 {
6722 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6723 struct elf_link_hash_entry *h;
6724
6725 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6726 h = elf_follow_link (h);
6727
6728 if (hp != NULL)
6729 *hp = h;
6730
6731 if (symp != NULL)
6732 *symp = NULL;
6733
6734 if (symsecp != NULL)
6735 {
6736 asection *symsec = NULL;
6737 if (h->root.type == bfd_link_hash_defined
6738 || h->root.type == bfd_link_hash_defweak)
6739 symsec = h->root.u.def.section;
6740 *symsecp = symsec;
6741 }
6742
6743 if (tls_maskp != NULL)
6744 {
6745 struct ppc_link_hash_entry *eh;
6746
6747 eh = (struct ppc_link_hash_entry *) h;
6748 *tls_maskp = &eh->tls_mask;
6749 }
6750 }
6751 else
6752 {
6753 Elf_Internal_Sym *sym;
6754 Elf_Internal_Sym *locsyms = *locsymsp;
6755
6756 if (locsyms == NULL)
6757 {
6758 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6759 if (locsyms == NULL)
6760 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6761 symtab_hdr->sh_info,
6762 0, NULL, NULL, NULL);
6763 if (locsyms == NULL)
6764 return FALSE;
6765 *locsymsp = locsyms;
6766 }
6767 sym = locsyms + r_symndx;
6768
6769 if (hp != NULL)
6770 *hp = NULL;
6771
6772 if (symp != NULL)
6773 *symp = sym;
6774
6775 if (symsecp != NULL)
6776 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6777
6778 if (tls_maskp != NULL)
6779 {
6780 struct got_entry **lgot_ents;
6781 unsigned char *tls_mask;
6782
6783 tls_mask = NULL;
6784 lgot_ents = elf_local_got_ents (ibfd);
6785 if (lgot_ents != NULL)
6786 {
6787 struct plt_entry **local_plt = (struct plt_entry **)
6788 (lgot_ents + symtab_hdr->sh_info);
6789 unsigned char *lgot_masks = (unsigned char *)
6790 (local_plt + symtab_hdr->sh_info);
6791 tls_mask = &lgot_masks[r_symndx];
6792 }
6793 *tls_maskp = tls_mask;
6794 }
6795 }
6796 return TRUE;
6797 }
6798
6799 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6800 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6801 type suitable for optimization, and 1 otherwise. */
6802
6803 static int
6804 get_tls_mask (unsigned char **tls_maskp,
6805 unsigned long *toc_symndx,
6806 bfd_vma *toc_addend,
6807 Elf_Internal_Sym **locsymsp,
6808 const Elf_Internal_Rela *rel,
6809 bfd *ibfd)
6810 {
6811 unsigned long r_symndx;
6812 int next_r;
6813 struct elf_link_hash_entry *h;
6814 Elf_Internal_Sym *sym;
6815 asection *sec;
6816 bfd_vma off;
6817
6818 r_symndx = ELF64_R_SYM (rel->r_info);
6819 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6820 return 0;
6821
6822 if ((*tls_maskp != NULL && **tls_maskp != 0)
6823 || sec == NULL
6824 || ppc64_elf_section_data (sec) == NULL
6825 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6826 return 1;
6827
6828 /* Look inside a TOC section too. */
6829 if (h != NULL)
6830 {
6831 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6832 off = h->root.u.def.value;
6833 }
6834 else
6835 off = sym->st_value;
6836 off += rel->r_addend;
6837 BFD_ASSERT (off % 8 == 0);
6838 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6839 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6840 if (toc_symndx != NULL)
6841 *toc_symndx = r_symndx;
6842 if (toc_addend != NULL)
6843 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6844 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6845 return 0;
6846 if ((h == NULL || is_static_defined (h))
6847 && (next_r == -1 || next_r == -2))
6848 return 1 - next_r;
6849 return 1;
6850 }
6851
6852 /* Find (or create) an entry in the tocsave hash table. */
6853
6854 static struct tocsave_entry *
6855 tocsave_find (struct ppc_link_hash_table *htab,
6856 enum insert_option insert,
6857 Elf_Internal_Sym **local_syms,
6858 const Elf_Internal_Rela *irela,
6859 bfd *ibfd)
6860 {
6861 unsigned long r_indx;
6862 struct elf_link_hash_entry *h;
6863 Elf_Internal_Sym *sym;
6864 struct tocsave_entry ent, *p;
6865 hashval_t hash;
6866 struct tocsave_entry **slot;
6867
6868 r_indx = ELF64_R_SYM (irela->r_info);
6869 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6870 return NULL;
6871 if (ent.sec == NULL || ent.sec->output_section == NULL)
6872 {
6873 (*_bfd_error_handler)
6874 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6875 return NULL;
6876 }
6877
6878 if (h != NULL)
6879 ent.offset = h->root.u.def.value;
6880 else
6881 ent.offset = sym->st_value;
6882 ent.offset += irela->r_addend;
6883
6884 hash = tocsave_htab_hash (&ent);
6885 slot = ((struct tocsave_entry **)
6886 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6887 if (slot == NULL)
6888 return NULL;
6889
6890 if (*slot == NULL)
6891 {
6892 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6893 if (p == NULL)
6894 return NULL;
6895 *p = ent;
6896 *slot = p;
6897 }
6898 return *slot;
6899 }
6900
6901 /* Adjust all global syms defined in opd sections. In gcc generated
6902 code for the old ABI, these will already have been done. */
6903
6904 static bfd_boolean
6905 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6906 {
6907 struct ppc_link_hash_entry *eh;
6908 asection *sym_sec;
6909 struct _opd_sec_data *opd;
6910
6911 if (h->root.type == bfd_link_hash_indirect)
6912 return TRUE;
6913
6914 if (h->root.type != bfd_link_hash_defined
6915 && h->root.type != bfd_link_hash_defweak)
6916 return TRUE;
6917
6918 eh = (struct ppc_link_hash_entry *) h;
6919 if (eh->adjust_done)
6920 return TRUE;
6921
6922 sym_sec = eh->elf.root.u.def.section;
6923 opd = get_opd_info (sym_sec);
6924 if (opd != NULL && opd->adjust != NULL)
6925 {
6926 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6927 if (adjust == -1)
6928 {
6929 /* This entry has been deleted. */
6930 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6931 if (dsec == NULL)
6932 {
6933 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6934 if (discarded_section (dsec))
6935 {
6936 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6937 break;
6938 }
6939 }
6940 eh->elf.root.u.def.value = 0;
6941 eh->elf.root.u.def.section = dsec;
6942 }
6943 else
6944 eh->elf.root.u.def.value += adjust;
6945 eh->adjust_done = 1;
6946 }
6947 return TRUE;
6948 }
6949
6950 /* Handles decrementing dynamic reloc counts for the reloc specified by
6951 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6952 have already been determined. */
6953
6954 static bfd_boolean
6955 dec_dynrel_count (bfd_vma r_info,
6956 asection *sec,
6957 struct bfd_link_info *info,
6958 Elf_Internal_Sym **local_syms,
6959 struct elf_link_hash_entry *h,
6960 asection *sym_sec)
6961 {
6962 enum elf_ppc64_reloc_type r_type;
6963 struct elf_dyn_relocs *p;
6964 struct elf_dyn_relocs **pp;
6965
6966 /* Can this reloc be dynamic? This switch, and later tests here
6967 should be kept in sync with the code in check_relocs. */
6968 r_type = ELF64_R_TYPE (r_info);
6969 switch (r_type)
6970 {
6971 default:
6972 return TRUE;
6973
6974 case R_PPC64_TPREL16:
6975 case R_PPC64_TPREL16_LO:
6976 case R_PPC64_TPREL16_HI:
6977 case R_PPC64_TPREL16_HA:
6978 case R_PPC64_TPREL16_DS:
6979 case R_PPC64_TPREL16_LO_DS:
6980 case R_PPC64_TPREL16_HIGHER:
6981 case R_PPC64_TPREL16_HIGHERA:
6982 case R_PPC64_TPREL16_HIGHEST:
6983 case R_PPC64_TPREL16_HIGHESTA:
6984 if (!info->shared)
6985 return TRUE;
6986
6987 case R_PPC64_TPREL64:
6988 case R_PPC64_DTPMOD64:
6989 case R_PPC64_DTPREL64:
6990 case R_PPC64_ADDR64:
6991 case R_PPC64_REL30:
6992 case R_PPC64_REL32:
6993 case R_PPC64_REL64:
6994 case R_PPC64_ADDR14:
6995 case R_PPC64_ADDR14_BRNTAKEN:
6996 case R_PPC64_ADDR14_BRTAKEN:
6997 case R_PPC64_ADDR16:
6998 case R_PPC64_ADDR16_DS:
6999 case R_PPC64_ADDR16_HA:
7000 case R_PPC64_ADDR16_HI:
7001 case R_PPC64_ADDR16_HIGHER:
7002 case R_PPC64_ADDR16_HIGHERA:
7003 case R_PPC64_ADDR16_HIGHEST:
7004 case R_PPC64_ADDR16_HIGHESTA:
7005 case R_PPC64_ADDR16_LO:
7006 case R_PPC64_ADDR16_LO_DS:
7007 case R_PPC64_ADDR24:
7008 case R_PPC64_ADDR32:
7009 case R_PPC64_UADDR16:
7010 case R_PPC64_UADDR32:
7011 case R_PPC64_UADDR64:
7012 case R_PPC64_TOC:
7013 break;
7014 }
7015
7016 if (local_syms != NULL)
7017 {
7018 unsigned long r_symndx;
7019 Elf_Internal_Sym *sym;
7020 bfd *ibfd = sec->owner;
7021
7022 r_symndx = ELF64_R_SYM (r_info);
7023 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7024 return FALSE;
7025 }
7026
7027 if ((info->shared
7028 && (must_be_dyn_reloc (info, r_type)
7029 || (h != NULL
7030 && (!info->symbolic
7031 || h->root.type == bfd_link_hash_defweak
7032 || !h->def_regular))))
7033 || (ELIMINATE_COPY_RELOCS
7034 && !info->shared
7035 && h != NULL
7036 && (h->root.type == bfd_link_hash_defweak
7037 || !h->def_regular)))
7038 ;
7039 else
7040 return TRUE;
7041
7042 if (h != NULL)
7043 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7044 else
7045 {
7046 if (sym_sec != NULL)
7047 {
7048 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
7049 pp = (struct elf_dyn_relocs **) vpp;
7050 }
7051 else
7052 {
7053 void *vpp = &elf_section_data (sec)->local_dynrel;
7054 pp = (struct elf_dyn_relocs **) vpp;
7055 }
7056
7057 /* elf_gc_sweep may have already removed all dyn relocs associated
7058 with local syms for a given section. Don't report a dynreloc
7059 miscount. */
7060 if (*pp == NULL)
7061 return TRUE;
7062 }
7063
7064 while ((p = *pp) != NULL)
7065 {
7066 if (p->sec == sec)
7067 {
7068 if (!must_be_dyn_reloc (info, r_type))
7069 p->pc_count -= 1;
7070 p->count -= 1;
7071 if (p->count == 0)
7072 *pp = p->next;
7073 return TRUE;
7074 }
7075 pp = &p->next;
7076 }
7077
7078 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7079 sec->owner, sec);
7080 bfd_set_error (bfd_error_bad_value);
7081 return FALSE;
7082 }
7083
7084 /* Remove unused Official Procedure Descriptor entries. Currently we
7085 only remove those associated with functions in discarded link-once
7086 sections, or weakly defined functions that have been overridden. It
7087 would be possible to remove many more entries for statically linked
7088 applications. */
7089
7090 bfd_boolean
7091 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7092 {
7093 bfd *ibfd;
7094 bfd_boolean some_edited = FALSE;
7095 asection *need_pad = NULL;
7096
7097 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7098 {
7099 asection *sec;
7100 Elf_Internal_Rela *relstart, *rel, *relend;
7101 Elf_Internal_Shdr *symtab_hdr;
7102 Elf_Internal_Sym *local_syms;
7103 bfd_vma offset;
7104 struct _opd_sec_data *opd;
7105 bfd_boolean need_edit, add_aux_fields;
7106 bfd_size_type cnt_16b = 0;
7107
7108 if (!is_ppc64_elf (ibfd))
7109 continue;
7110
7111 sec = bfd_get_section_by_name (ibfd, ".opd");
7112 if (sec == NULL || sec->size == 0)
7113 continue;
7114
7115 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7116 continue;
7117
7118 if (sec->output_section == bfd_abs_section_ptr)
7119 continue;
7120
7121 /* Look through the section relocs. */
7122 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7123 continue;
7124
7125 local_syms = NULL;
7126 symtab_hdr = &elf_symtab_hdr (ibfd);
7127
7128 /* Read the relocations. */
7129 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7130 info->keep_memory);
7131 if (relstart == NULL)
7132 return FALSE;
7133
7134 /* First run through the relocs to check they are sane, and to
7135 determine whether we need to edit this opd section. */
7136 need_edit = FALSE;
7137 need_pad = sec;
7138 offset = 0;
7139 relend = relstart + sec->reloc_count;
7140 for (rel = relstart; rel < relend; )
7141 {
7142 enum elf_ppc64_reloc_type r_type;
7143 unsigned long r_symndx;
7144 asection *sym_sec;
7145 struct elf_link_hash_entry *h;
7146 Elf_Internal_Sym *sym;
7147
7148 /* .opd contains a regular array of 16 or 24 byte entries. We're
7149 only interested in the reloc pointing to a function entry
7150 point. */
7151 if (rel->r_offset != offset
7152 || rel + 1 >= relend
7153 || (rel + 1)->r_offset != offset + 8)
7154 {
7155 /* If someone messes with .opd alignment then after a
7156 "ld -r" we might have padding in the middle of .opd.
7157 Also, there's nothing to prevent someone putting
7158 something silly in .opd with the assembler. No .opd
7159 optimization for them! */
7160 broken_opd:
7161 (*_bfd_error_handler)
7162 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7163 need_edit = FALSE;
7164 break;
7165 }
7166
7167 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7168 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7169 {
7170 (*_bfd_error_handler)
7171 (_("%B: unexpected reloc type %u in .opd section"),
7172 ibfd, r_type);
7173 need_edit = FALSE;
7174 break;
7175 }
7176
7177 r_symndx = ELF64_R_SYM (rel->r_info);
7178 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7179 r_symndx, ibfd))
7180 goto error_ret;
7181
7182 if (sym_sec == NULL || sym_sec->owner == NULL)
7183 {
7184 const char *sym_name;
7185 if (h != NULL)
7186 sym_name = h->root.root.string;
7187 else
7188 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7189 sym_sec);
7190
7191 (*_bfd_error_handler)
7192 (_("%B: undefined sym `%s' in .opd section"),
7193 ibfd, sym_name);
7194 need_edit = FALSE;
7195 break;
7196 }
7197
7198 /* opd entries are always for functions defined in the
7199 current input bfd. If the symbol isn't defined in the
7200 input bfd, then we won't be using the function in this
7201 bfd; It must be defined in a linkonce section in another
7202 bfd, or is weak. It's also possible that we are
7203 discarding the function due to a linker script /DISCARD/,
7204 which we test for via the output_section. */
7205 if (sym_sec->owner != ibfd
7206 || sym_sec->output_section == bfd_abs_section_ptr)
7207 need_edit = TRUE;
7208
7209 rel += 2;
7210 if (rel == relend
7211 || (rel + 1 == relend && rel->r_offset == offset + 16))
7212 {
7213 if (sec->size == offset + 24)
7214 {
7215 need_pad = NULL;
7216 break;
7217 }
7218 if (rel == relend && sec->size == offset + 16)
7219 {
7220 cnt_16b++;
7221 break;
7222 }
7223 goto broken_opd;
7224 }
7225
7226 if (rel->r_offset == offset + 24)
7227 offset += 24;
7228 else if (rel->r_offset != offset + 16)
7229 goto broken_opd;
7230 else if (rel + 1 < relend
7231 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7232 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7233 {
7234 offset += 16;
7235 cnt_16b++;
7236 }
7237 else if (rel + 2 < relend
7238 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7239 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7240 {
7241 offset += 24;
7242 rel += 1;
7243 }
7244 else
7245 goto broken_opd;
7246 }
7247
7248 add_aux_fields = non_overlapping && cnt_16b > 0;
7249
7250 if (need_edit || add_aux_fields)
7251 {
7252 Elf_Internal_Rela *write_rel;
7253 Elf_Internal_Shdr *rel_hdr;
7254 bfd_byte *rptr, *wptr;
7255 bfd_byte *new_contents;
7256 bfd_boolean skip;
7257 long opd_ent_size;
7258 bfd_size_type amt;
7259
7260 new_contents = NULL;
7261 amt = sec->size * sizeof (long) / 8;
7262 opd = &ppc64_elf_section_data (sec)->u.opd;
7263 opd->adjust = bfd_zalloc (sec->owner, amt);
7264 if (opd->adjust == NULL)
7265 return FALSE;
7266 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7267
7268 /* This seems a waste of time as input .opd sections are all
7269 zeros as generated by gcc, but I suppose there's no reason
7270 this will always be so. We might start putting something in
7271 the third word of .opd entries. */
7272 if ((sec->flags & SEC_IN_MEMORY) == 0)
7273 {
7274 bfd_byte *loc;
7275 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7276 {
7277 if (loc != NULL)
7278 free (loc);
7279 error_ret:
7280 if (local_syms != NULL
7281 && symtab_hdr->contents != (unsigned char *) local_syms)
7282 free (local_syms);
7283 if (elf_section_data (sec)->relocs != relstart)
7284 free (relstart);
7285 return FALSE;
7286 }
7287 sec->contents = loc;
7288 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7289 }
7290
7291 elf_section_data (sec)->relocs = relstart;
7292
7293 new_contents = sec->contents;
7294 if (add_aux_fields)
7295 {
7296 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7297 if (new_contents == NULL)
7298 return FALSE;
7299 need_pad = FALSE;
7300 }
7301 wptr = new_contents;
7302 rptr = sec->contents;
7303
7304 write_rel = relstart;
7305 skip = FALSE;
7306 offset = 0;
7307 opd_ent_size = 0;
7308 for (rel = relstart; rel < relend; rel++)
7309 {
7310 unsigned long r_symndx;
7311 asection *sym_sec;
7312 struct elf_link_hash_entry *h;
7313 Elf_Internal_Sym *sym;
7314
7315 r_symndx = ELF64_R_SYM (rel->r_info);
7316 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7317 r_symndx, ibfd))
7318 goto error_ret;
7319
7320 if (rel->r_offset == offset)
7321 {
7322 struct ppc_link_hash_entry *fdh = NULL;
7323
7324 /* See if the .opd entry is full 24 byte or
7325 16 byte (with fd_aux entry overlapped with next
7326 fd_func). */
7327 opd_ent_size = 24;
7328 if ((rel + 2 == relend && sec->size == offset + 16)
7329 || (rel + 3 < relend
7330 && rel[2].r_offset == offset + 16
7331 && rel[3].r_offset == offset + 24
7332 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7333 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7334 opd_ent_size = 16;
7335
7336 if (h != NULL
7337 && h->root.root.string[0] == '.')
7338 {
7339 struct ppc_link_hash_table *htab;
7340
7341 htab = ppc_hash_table (info);
7342 if (htab != NULL)
7343 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7344 htab);
7345 if (fdh != NULL
7346 && fdh->elf.root.type != bfd_link_hash_defined
7347 && fdh->elf.root.type != bfd_link_hash_defweak)
7348 fdh = NULL;
7349 }
7350
7351 skip = (sym_sec->owner != ibfd
7352 || sym_sec->output_section == bfd_abs_section_ptr);
7353 if (skip)
7354 {
7355 if (fdh != NULL && sym_sec->owner == ibfd)
7356 {
7357 /* Arrange for the function descriptor sym
7358 to be dropped. */
7359 fdh->elf.root.u.def.value = 0;
7360 fdh->elf.root.u.def.section = sym_sec;
7361 }
7362 opd->adjust[rel->r_offset / 8] = -1;
7363 }
7364 else
7365 {
7366 /* We'll be keeping this opd entry. */
7367
7368 if (fdh != NULL)
7369 {
7370 /* Redefine the function descriptor symbol to
7371 this location in the opd section. It is
7372 necessary to update the value here rather
7373 than using an array of adjustments as we do
7374 for local symbols, because various places
7375 in the generic ELF code use the value
7376 stored in u.def.value. */
7377 fdh->elf.root.u.def.value = wptr - new_contents;
7378 fdh->adjust_done = 1;
7379 }
7380
7381 /* Local syms are a bit tricky. We could
7382 tweak them as they can be cached, but
7383 we'd need to look through the local syms
7384 for the function descriptor sym which we
7385 don't have at the moment. So keep an
7386 array of adjustments. */
7387 opd->adjust[rel->r_offset / 8]
7388 = (wptr - new_contents) - (rptr - sec->contents);
7389
7390 if (wptr != rptr)
7391 memcpy (wptr, rptr, opd_ent_size);
7392 wptr += opd_ent_size;
7393 if (add_aux_fields && opd_ent_size == 16)
7394 {
7395 memset (wptr, '\0', 8);
7396 wptr += 8;
7397 }
7398 }
7399 rptr += opd_ent_size;
7400 offset += opd_ent_size;
7401 }
7402
7403 if (skip)
7404 {
7405 if (!NO_OPD_RELOCS
7406 && !info->relocatable
7407 && !dec_dynrel_count (rel->r_info, sec, info,
7408 NULL, h, sym_sec))
7409 goto error_ret;
7410 }
7411 else
7412 {
7413 /* We need to adjust any reloc offsets to point to the
7414 new opd entries. While we're at it, we may as well
7415 remove redundant relocs. */
7416 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7417 if (write_rel != rel)
7418 memcpy (write_rel, rel, sizeof (*rel));
7419 ++write_rel;
7420 }
7421 }
7422
7423 sec->size = wptr - new_contents;
7424 sec->reloc_count = write_rel - relstart;
7425 if (add_aux_fields)
7426 {
7427 free (sec->contents);
7428 sec->contents = new_contents;
7429 }
7430
7431 /* Fudge the header size too, as this is used later in
7432 elf_bfd_final_link if we are emitting relocs. */
7433 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7434 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7435 some_edited = TRUE;
7436 }
7437 else if (elf_section_data (sec)->relocs != relstart)
7438 free (relstart);
7439
7440 if (local_syms != NULL
7441 && symtab_hdr->contents != (unsigned char *) local_syms)
7442 {
7443 if (!info->keep_memory)
7444 free (local_syms);
7445 else
7446 symtab_hdr->contents = (unsigned char *) local_syms;
7447 }
7448 }
7449
7450 if (some_edited)
7451 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7452
7453 /* If we are doing a final link and the last .opd entry is just 16 byte
7454 long, add a 8 byte padding after it. */
7455 if (need_pad != NULL && !info->relocatable)
7456 {
7457 bfd_byte *p;
7458
7459 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7460 {
7461 BFD_ASSERT (need_pad->size > 0);
7462
7463 p = bfd_malloc (need_pad->size + 8);
7464 if (p == NULL)
7465 return FALSE;
7466
7467 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7468 p, 0, need_pad->size))
7469 return FALSE;
7470
7471 need_pad->contents = p;
7472 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7473 }
7474 else
7475 {
7476 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7477 if (p == NULL)
7478 return FALSE;
7479
7480 need_pad->contents = p;
7481 }
7482
7483 memset (need_pad->contents + need_pad->size, 0, 8);
7484 need_pad->size += 8;
7485 }
7486
7487 return TRUE;
7488 }
7489
7490 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7491
7492 asection *
7493 ppc64_elf_tls_setup (struct bfd_link_info *info,
7494 int no_tls_get_addr_opt,
7495 int *no_multi_toc)
7496 {
7497 struct ppc_link_hash_table *htab;
7498
7499 htab = ppc_hash_table (info);
7500 if (htab == NULL)
7501 return NULL;
7502
7503 if (*no_multi_toc)
7504 htab->do_multi_toc = 0;
7505 else if (!htab->do_multi_toc)
7506 *no_multi_toc = 1;
7507
7508 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7509 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7510 FALSE, FALSE, TRUE));
7511 /* Move dynamic linking info to the function descriptor sym. */
7512 if (htab->tls_get_addr != NULL)
7513 func_desc_adjust (&htab->tls_get_addr->elf, info);
7514 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7515 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7516 FALSE, FALSE, TRUE));
7517 if (!no_tls_get_addr_opt)
7518 {
7519 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7520
7521 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7522 FALSE, FALSE, TRUE);
7523 if (opt != NULL)
7524 func_desc_adjust (opt, info);
7525 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7526 FALSE, FALSE, TRUE);
7527 if (opt_fd != NULL
7528 && (opt_fd->root.type == bfd_link_hash_defined
7529 || opt_fd->root.type == bfd_link_hash_defweak))
7530 {
7531 /* If glibc supports an optimized __tls_get_addr call stub,
7532 signalled by the presence of __tls_get_addr_opt, and we'll
7533 be calling __tls_get_addr via a plt call stub, then
7534 make __tls_get_addr point to __tls_get_addr_opt. */
7535 tga_fd = &htab->tls_get_addr_fd->elf;
7536 if (htab->elf.dynamic_sections_created
7537 && tga_fd != NULL
7538 && (tga_fd->type == STT_FUNC
7539 || tga_fd->needs_plt)
7540 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7541 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7542 && tga_fd->root.type == bfd_link_hash_undefweak)))
7543 {
7544 struct plt_entry *ent;
7545
7546 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7547 if (ent->plt.refcount > 0)
7548 break;
7549 if (ent != NULL)
7550 {
7551 tga_fd->root.type = bfd_link_hash_indirect;
7552 tga_fd->root.u.i.link = &opt_fd->root;
7553 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7554 if (opt_fd->dynindx != -1)
7555 {
7556 /* Use __tls_get_addr_opt in dynamic relocations. */
7557 opt_fd->dynindx = -1;
7558 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7559 opt_fd->dynstr_index);
7560 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7561 return NULL;
7562 }
7563 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7564 tga = &htab->tls_get_addr->elf;
7565 if (opt != NULL && tga != NULL)
7566 {
7567 tga->root.type = bfd_link_hash_indirect;
7568 tga->root.u.i.link = &opt->root;
7569 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7570 _bfd_elf_link_hash_hide_symbol (info, opt,
7571 tga->forced_local);
7572 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7573 }
7574 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7575 htab->tls_get_addr_fd->is_func_descriptor = 1;
7576 if (htab->tls_get_addr != NULL)
7577 {
7578 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7579 htab->tls_get_addr->is_func = 1;
7580 }
7581 }
7582 }
7583 }
7584 else
7585 no_tls_get_addr_opt = TRUE;
7586 }
7587 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7588 return _bfd_elf_tls_setup (info->output_bfd, info);
7589 }
7590
7591 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7592 HASH1 or HASH2. */
7593
7594 static bfd_boolean
7595 branch_reloc_hash_match (const bfd *ibfd,
7596 const Elf_Internal_Rela *rel,
7597 const struct ppc_link_hash_entry *hash1,
7598 const struct ppc_link_hash_entry *hash2)
7599 {
7600 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7601 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7602 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7603
7604 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7605 {
7606 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7607 struct elf_link_hash_entry *h;
7608
7609 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7610 h = elf_follow_link (h);
7611 if (h == &hash1->elf || h == &hash2->elf)
7612 return TRUE;
7613 }
7614 return FALSE;
7615 }
7616
7617 /* Run through all the TLS relocs looking for optimization
7618 opportunities. The linker has been hacked (see ppc64elf.em) to do
7619 a preliminary section layout so that we know the TLS segment
7620 offsets. We can't optimize earlier because some optimizations need
7621 to know the tp offset, and we need to optimize before allocating
7622 dynamic relocations. */
7623
7624 bfd_boolean
7625 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7626 {
7627 bfd *ibfd;
7628 asection *sec;
7629 struct ppc_link_hash_table *htab;
7630 unsigned char *toc_ref;
7631 int pass;
7632
7633 if (info->relocatable || !info->executable)
7634 return TRUE;
7635
7636 htab = ppc_hash_table (info);
7637 if (htab == NULL)
7638 return FALSE;
7639
7640 /* Make two passes over the relocs. On the first pass, mark toc
7641 entries involved with tls relocs, and check that tls relocs
7642 involved in setting up a tls_get_addr call are indeed followed by
7643 such a call. If they are not, we can't do any tls optimization.
7644 On the second pass twiddle tls_mask flags to notify
7645 relocate_section that optimization can be done, and adjust got
7646 and plt refcounts. */
7647 toc_ref = NULL;
7648 for (pass = 0; pass < 2; ++pass)
7649 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7650 {
7651 Elf_Internal_Sym *locsyms = NULL;
7652 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7653
7654 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7655 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7656 {
7657 Elf_Internal_Rela *relstart, *rel, *relend;
7658 bfd_boolean found_tls_get_addr_arg = 0;
7659
7660 /* Read the relocations. */
7661 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7662 info->keep_memory);
7663 if (relstart == NULL)
7664 return FALSE;
7665
7666 relend = relstart + sec->reloc_count;
7667 for (rel = relstart; rel < relend; rel++)
7668 {
7669 enum elf_ppc64_reloc_type r_type;
7670 unsigned long r_symndx;
7671 struct elf_link_hash_entry *h;
7672 Elf_Internal_Sym *sym;
7673 asection *sym_sec;
7674 unsigned char *tls_mask;
7675 unsigned char tls_set, tls_clear, tls_type = 0;
7676 bfd_vma value;
7677 bfd_boolean ok_tprel, is_local;
7678 long toc_ref_index = 0;
7679 int expecting_tls_get_addr = 0;
7680 bfd_boolean ret = FALSE;
7681
7682 r_symndx = ELF64_R_SYM (rel->r_info);
7683 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7684 r_symndx, ibfd))
7685 {
7686 err_free_rel:
7687 if (elf_section_data (sec)->relocs != relstart)
7688 free (relstart);
7689 if (toc_ref != NULL)
7690 free (toc_ref);
7691 if (locsyms != NULL
7692 && (elf_symtab_hdr (ibfd).contents
7693 != (unsigned char *) locsyms))
7694 free (locsyms);
7695 return ret;
7696 }
7697
7698 if (h != NULL)
7699 {
7700 if (h->root.type == bfd_link_hash_defined
7701 || h->root.type == bfd_link_hash_defweak)
7702 value = h->root.u.def.value;
7703 else if (h->root.type == bfd_link_hash_undefweak)
7704 value = 0;
7705 else
7706 {
7707 found_tls_get_addr_arg = 0;
7708 continue;
7709 }
7710 }
7711 else
7712 /* Symbols referenced by TLS relocs must be of type
7713 STT_TLS. So no need for .opd local sym adjust. */
7714 value = sym->st_value;
7715
7716 ok_tprel = FALSE;
7717 is_local = FALSE;
7718 if (h == NULL
7719 || !h->def_dynamic)
7720 {
7721 is_local = TRUE;
7722 if (h != NULL
7723 && h->root.type == bfd_link_hash_undefweak)
7724 ok_tprel = TRUE;
7725 else
7726 {
7727 value += sym_sec->output_offset;
7728 value += sym_sec->output_section->vma;
7729 value -= htab->elf.tls_sec->vma;
7730 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7731 < (bfd_vma) 1 << 32);
7732 }
7733 }
7734
7735 r_type = ELF64_R_TYPE (rel->r_info);
7736 /* If this section has old-style __tls_get_addr calls
7737 without marker relocs, then check that each
7738 __tls_get_addr call reloc is preceded by a reloc
7739 that conceivably belongs to the __tls_get_addr arg
7740 setup insn. If we don't find matching arg setup
7741 relocs, don't do any tls optimization. */
7742 if (pass == 0
7743 && sec->has_tls_get_addr_call
7744 && h != NULL
7745 && (h == &htab->tls_get_addr->elf
7746 || h == &htab->tls_get_addr_fd->elf)
7747 && !found_tls_get_addr_arg
7748 && is_branch_reloc (r_type))
7749 {
7750 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7751 "TLS optimization disabled\n"),
7752 ibfd, sec, rel->r_offset);
7753 ret = TRUE;
7754 goto err_free_rel;
7755 }
7756
7757 found_tls_get_addr_arg = 0;
7758 switch (r_type)
7759 {
7760 case R_PPC64_GOT_TLSLD16:
7761 case R_PPC64_GOT_TLSLD16_LO:
7762 expecting_tls_get_addr = 1;
7763 found_tls_get_addr_arg = 1;
7764 /* Fall thru */
7765
7766 case R_PPC64_GOT_TLSLD16_HI:
7767 case R_PPC64_GOT_TLSLD16_HA:
7768 /* These relocs should never be against a symbol
7769 defined in a shared lib. Leave them alone if
7770 that turns out to be the case. */
7771 if (!is_local)
7772 continue;
7773
7774 /* LD -> LE */
7775 tls_set = 0;
7776 tls_clear = TLS_LD;
7777 tls_type = TLS_TLS | TLS_LD;
7778 break;
7779
7780 case R_PPC64_GOT_TLSGD16:
7781 case R_PPC64_GOT_TLSGD16_LO:
7782 expecting_tls_get_addr = 1;
7783 found_tls_get_addr_arg = 1;
7784 /* Fall thru */
7785
7786 case R_PPC64_GOT_TLSGD16_HI:
7787 case R_PPC64_GOT_TLSGD16_HA:
7788 if (ok_tprel)
7789 /* GD -> LE */
7790 tls_set = 0;
7791 else
7792 /* GD -> IE */
7793 tls_set = TLS_TLS | TLS_TPRELGD;
7794 tls_clear = TLS_GD;
7795 tls_type = TLS_TLS | TLS_GD;
7796 break;
7797
7798 case R_PPC64_GOT_TPREL16_DS:
7799 case R_PPC64_GOT_TPREL16_LO_DS:
7800 case R_PPC64_GOT_TPREL16_HI:
7801 case R_PPC64_GOT_TPREL16_HA:
7802 if (ok_tprel)
7803 {
7804 /* IE -> LE */
7805 tls_set = 0;
7806 tls_clear = TLS_TPREL;
7807 tls_type = TLS_TLS | TLS_TPREL;
7808 break;
7809 }
7810 continue;
7811
7812 case R_PPC64_TLSGD:
7813 case R_PPC64_TLSLD:
7814 found_tls_get_addr_arg = 1;
7815 /* Fall thru */
7816
7817 case R_PPC64_TLS:
7818 case R_PPC64_TOC16:
7819 case R_PPC64_TOC16_LO:
7820 if (sym_sec == NULL || sym_sec != toc)
7821 continue;
7822
7823 /* Mark this toc entry as referenced by a TLS
7824 code sequence. We can do that now in the
7825 case of R_PPC64_TLS, and after checking for
7826 tls_get_addr for the TOC16 relocs. */
7827 if (toc_ref == NULL)
7828 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7829 if (toc_ref == NULL)
7830 goto err_free_rel;
7831
7832 if (h != NULL)
7833 value = h->root.u.def.value;
7834 else
7835 value = sym->st_value;
7836 value += rel->r_addend;
7837 BFD_ASSERT (value < toc->size && value % 8 == 0);
7838 toc_ref_index = (value + toc->output_offset) / 8;
7839 if (r_type == R_PPC64_TLS
7840 || r_type == R_PPC64_TLSGD
7841 || r_type == R_PPC64_TLSLD)
7842 {
7843 toc_ref[toc_ref_index] = 1;
7844 continue;
7845 }
7846
7847 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7848 continue;
7849
7850 tls_set = 0;
7851 tls_clear = 0;
7852 expecting_tls_get_addr = 2;
7853 break;
7854
7855 case R_PPC64_TPREL64:
7856 if (pass == 0
7857 || sec != toc
7858 || toc_ref == NULL
7859 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7860 continue;
7861 if (ok_tprel)
7862 {
7863 /* IE -> LE */
7864 tls_set = TLS_EXPLICIT;
7865 tls_clear = TLS_TPREL;
7866 break;
7867 }
7868 continue;
7869
7870 case R_PPC64_DTPMOD64:
7871 if (pass == 0
7872 || sec != toc
7873 || toc_ref == NULL
7874 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7875 continue;
7876 if (rel + 1 < relend
7877 && (rel[1].r_info
7878 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7879 && rel[1].r_offset == rel->r_offset + 8)
7880 {
7881 if (ok_tprel)
7882 /* GD -> LE */
7883 tls_set = TLS_EXPLICIT | TLS_GD;
7884 else
7885 /* GD -> IE */
7886 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7887 tls_clear = TLS_GD;
7888 }
7889 else
7890 {
7891 if (!is_local)
7892 continue;
7893
7894 /* LD -> LE */
7895 tls_set = TLS_EXPLICIT;
7896 tls_clear = TLS_LD;
7897 }
7898 break;
7899
7900 default:
7901 continue;
7902 }
7903
7904 if (pass == 0)
7905 {
7906 if (!expecting_tls_get_addr
7907 || !sec->has_tls_get_addr_call)
7908 continue;
7909
7910 if (rel + 1 < relend
7911 && branch_reloc_hash_match (ibfd, rel + 1,
7912 htab->tls_get_addr,
7913 htab->tls_get_addr_fd))
7914 {
7915 if (expecting_tls_get_addr == 2)
7916 {
7917 /* Check for toc tls entries. */
7918 unsigned char *toc_tls;
7919 int retval;
7920
7921 retval = get_tls_mask (&toc_tls, NULL, NULL,
7922 &locsyms,
7923 rel, ibfd);
7924 if (retval == 0)
7925 goto err_free_rel;
7926 if (toc_tls != NULL)
7927 {
7928 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
7929 found_tls_get_addr_arg = 1;
7930 if (retval > 1)
7931 toc_ref[toc_ref_index] = 1;
7932 }
7933 }
7934 continue;
7935 }
7936
7937 if (expecting_tls_get_addr != 1)
7938 continue;
7939
7940 /* Uh oh, we didn't find the expected call. We
7941 could just mark this symbol to exclude it
7942 from tls optimization but it's safer to skip
7943 the entire optimization. */
7944 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
7945 "TLS optimization disabled\n"),
7946 ibfd, sec, rel->r_offset);
7947 ret = TRUE;
7948 goto err_free_rel;
7949 }
7950
7951 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7952 {
7953 struct plt_entry *ent;
7954 for (ent = htab->tls_get_addr->elf.plt.plist;
7955 ent != NULL;
7956 ent = ent->next)
7957 if (ent->addend == 0)
7958 {
7959 if (ent->plt.refcount > 0)
7960 {
7961 ent->plt.refcount -= 1;
7962 expecting_tls_get_addr = 0;
7963 }
7964 break;
7965 }
7966 }
7967
7968 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7969 {
7970 struct plt_entry *ent;
7971 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7972 ent != NULL;
7973 ent = ent->next)
7974 if (ent->addend == 0)
7975 {
7976 if (ent->plt.refcount > 0)
7977 ent->plt.refcount -= 1;
7978 break;
7979 }
7980 }
7981
7982 if (tls_clear == 0)
7983 continue;
7984
7985 if ((tls_set & TLS_EXPLICIT) == 0)
7986 {
7987 struct got_entry *ent;
7988
7989 /* Adjust got entry for this reloc. */
7990 if (h != NULL)
7991 ent = h->got.glist;
7992 else
7993 ent = elf_local_got_ents (ibfd)[r_symndx];
7994
7995 for (; ent != NULL; ent = ent->next)
7996 if (ent->addend == rel->r_addend
7997 && ent->owner == ibfd
7998 && ent->tls_type == tls_type)
7999 break;
8000 if (ent == NULL)
8001 abort ();
8002
8003 if (tls_set == 0)
8004 {
8005 /* We managed to get rid of a got entry. */
8006 if (ent->got.refcount > 0)
8007 ent->got.refcount -= 1;
8008 }
8009 }
8010 else
8011 {
8012 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8013 we'll lose one or two dyn relocs. */
8014 if (!dec_dynrel_count (rel->r_info, sec, info,
8015 NULL, h, sym_sec))
8016 return FALSE;
8017
8018 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8019 {
8020 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8021 NULL, h, sym_sec))
8022 return FALSE;
8023 }
8024 }
8025
8026 *tls_mask |= tls_set;
8027 *tls_mask &= ~tls_clear;
8028 }
8029
8030 if (elf_section_data (sec)->relocs != relstart)
8031 free (relstart);
8032 }
8033
8034 if (locsyms != NULL
8035 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8036 {
8037 if (!info->keep_memory)
8038 free (locsyms);
8039 else
8040 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8041 }
8042 }
8043
8044 if (toc_ref != NULL)
8045 free (toc_ref);
8046 return TRUE;
8047 }
8048
8049 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8050 the values of any global symbols in a toc section that has been
8051 edited. Globals in toc sections should be a rarity, so this function
8052 sets a flag if any are found in toc sections other than the one just
8053 edited, so that futher hash table traversals can be avoided. */
8054
8055 struct adjust_toc_info
8056 {
8057 asection *toc;
8058 unsigned long *skip;
8059 bfd_boolean global_toc_syms;
8060 };
8061
8062 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8063
8064 static bfd_boolean
8065 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8066 {
8067 struct ppc_link_hash_entry *eh;
8068 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8069 unsigned long i;
8070
8071 if (h->root.type != bfd_link_hash_defined
8072 && h->root.type != bfd_link_hash_defweak)
8073 return TRUE;
8074
8075 eh = (struct ppc_link_hash_entry *) h;
8076 if (eh->adjust_done)
8077 return TRUE;
8078
8079 if (eh->elf.root.u.def.section == toc_inf->toc)
8080 {
8081 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8082 i = toc_inf->toc->rawsize >> 3;
8083 else
8084 i = eh->elf.root.u.def.value >> 3;
8085
8086 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8087 {
8088 (*_bfd_error_handler)
8089 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8090 do
8091 ++i;
8092 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8093 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8094 }
8095
8096 eh->elf.root.u.def.value -= toc_inf->skip[i];
8097 eh->adjust_done = 1;
8098 }
8099 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8100 toc_inf->global_toc_syms = TRUE;
8101
8102 return TRUE;
8103 }
8104
8105 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8106
8107 static bfd_boolean
8108 ok_lo_toc_insn (unsigned int insn)
8109 {
8110 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8111 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8112 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8113 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8114 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8115 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8116 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8117 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8118 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8119 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8120 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8121 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8122 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8123 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8124 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8125 && (insn & 3) != 1)
8126 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8127 && ((insn & 3) == 0 || (insn & 3) == 3))
8128 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8129 }
8130
8131 /* Examine all relocs referencing .toc sections in order to remove
8132 unused .toc entries. */
8133
8134 bfd_boolean
8135 ppc64_elf_edit_toc (struct bfd_link_info *info)
8136 {
8137 bfd *ibfd;
8138 struct adjust_toc_info toc_inf;
8139 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8140
8141 htab->do_toc_opt = 1;
8142 toc_inf.global_toc_syms = TRUE;
8143 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8144 {
8145 asection *toc, *sec;
8146 Elf_Internal_Shdr *symtab_hdr;
8147 Elf_Internal_Sym *local_syms;
8148 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8149 unsigned long *skip, *drop;
8150 unsigned char *used;
8151 unsigned char *keep, last, some_unused;
8152
8153 if (!is_ppc64_elf (ibfd))
8154 continue;
8155
8156 toc = bfd_get_section_by_name (ibfd, ".toc");
8157 if (toc == NULL
8158 || toc->size == 0
8159 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8160 || discarded_section (toc))
8161 continue;
8162
8163 toc_relocs = NULL;
8164 local_syms = NULL;
8165 symtab_hdr = &elf_symtab_hdr (ibfd);
8166
8167 /* Look at sections dropped from the final link. */
8168 skip = NULL;
8169 relstart = NULL;
8170 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8171 {
8172 if (sec->reloc_count == 0
8173 || !discarded_section (sec)
8174 || get_opd_info (sec)
8175 || (sec->flags & SEC_ALLOC) == 0
8176 || (sec->flags & SEC_DEBUGGING) != 0)
8177 continue;
8178
8179 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8180 if (relstart == NULL)
8181 goto error_ret;
8182
8183 /* Run through the relocs to see which toc entries might be
8184 unused. */
8185 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8186 {
8187 enum elf_ppc64_reloc_type r_type;
8188 unsigned long r_symndx;
8189 asection *sym_sec;
8190 struct elf_link_hash_entry *h;
8191 Elf_Internal_Sym *sym;
8192 bfd_vma val;
8193
8194 r_type = ELF64_R_TYPE (rel->r_info);
8195 switch (r_type)
8196 {
8197 default:
8198 continue;
8199
8200 case R_PPC64_TOC16:
8201 case R_PPC64_TOC16_LO:
8202 case R_PPC64_TOC16_HI:
8203 case R_PPC64_TOC16_HA:
8204 case R_PPC64_TOC16_DS:
8205 case R_PPC64_TOC16_LO_DS:
8206 break;
8207 }
8208
8209 r_symndx = ELF64_R_SYM (rel->r_info);
8210 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8211 r_symndx, ibfd))
8212 goto error_ret;
8213
8214 if (sym_sec != toc)
8215 continue;
8216
8217 if (h != NULL)
8218 val = h->root.u.def.value;
8219 else
8220 val = sym->st_value;
8221 val += rel->r_addend;
8222
8223 if (val >= toc->size)
8224 continue;
8225
8226 /* Anything in the toc ought to be aligned to 8 bytes.
8227 If not, don't mark as unused. */
8228 if (val & 7)
8229 continue;
8230
8231 if (skip == NULL)
8232 {
8233 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8234 if (skip == NULL)
8235 goto error_ret;
8236 }
8237
8238 skip[val >> 3] = ref_from_discarded;
8239 }
8240
8241 if (elf_section_data (sec)->relocs != relstart)
8242 free (relstart);
8243 }
8244
8245 /* For largetoc loads of address constants, we can convert
8246 . addis rx,2,addr@got@ha
8247 . ld ry,addr@got@l(rx)
8248 to
8249 . addis rx,2,addr@toc@ha
8250 . addi ry,rx,addr@toc@l
8251 when addr is within 2G of the toc pointer. This then means
8252 that the word storing "addr" in the toc is no longer needed. */
8253
8254 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8255 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8256 && toc->reloc_count != 0)
8257 {
8258 /* Read toc relocs. */
8259 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8260 info->keep_memory);
8261 if (toc_relocs == NULL)
8262 goto error_ret;
8263
8264 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8265 {
8266 enum elf_ppc64_reloc_type r_type;
8267 unsigned long r_symndx;
8268 asection *sym_sec;
8269 struct elf_link_hash_entry *h;
8270 Elf_Internal_Sym *sym;
8271 bfd_vma val, addr;
8272
8273 r_type = ELF64_R_TYPE (rel->r_info);
8274 if (r_type != R_PPC64_ADDR64)
8275 continue;
8276
8277 r_symndx = ELF64_R_SYM (rel->r_info);
8278 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8279 r_symndx, ibfd))
8280 goto error_ret;
8281
8282 if (sym_sec == NULL
8283 || discarded_section (sym_sec))
8284 continue;
8285
8286 if (!SYMBOL_CALLS_LOCAL (info, h))
8287 continue;
8288
8289 if (h != NULL)
8290 {
8291 if (h->type == STT_GNU_IFUNC)
8292 continue;
8293 val = h->root.u.def.value;
8294 }
8295 else
8296 {
8297 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8298 continue;
8299 val = sym->st_value;
8300 }
8301 val += rel->r_addend;
8302 val += sym_sec->output_section->vma + sym_sec->output_offset;
8303
8304 /* We don't yet know the exact toc pointer value, but we
8305 know it will be somewhere in the toc section. Don't
8306 optimize if the difference from any possible toc
8307 pointer is outside [ff..f80008000, 7fff7fff]. */
8308 addr = toc->output_section->vma + TOC_BASE_OFF;
8309 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8310 continue;
8311
8312 addr = toc->output_section->vma + toc->output_section->rawsize;
8313 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8314 continue;
8315
8316 if (skip == NULL)
8317 {
8318 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8319 if (skip == NULL)
8320 goto error_ret;
8321 }
8322
8323 skip[rel->r_offset >> 3]
8324 |= can_optimize | ((rel - toc_relocs) << 2);
8325 }
8326 }
8327
8328 if (skip == NULL)
8329 continue;
8330
8331 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8332 if (used == NULL)
8333 {
8334 error_ret:
8335 if (local_syms != NULL
8336 && symtab_hdr->contents != (unsigned char *) local_syms)
8337 free (local_syms);
8338 if (sec != NULL
8339 && relstart != NULL
8340 && elf_section_data (sec)->relocs != relstart)
8341 free (relstart);
8342 if (toc_relocs != NULL
8343 && elf_section_data (toc)->relocs != toc_relocs)
8344 free (toc_relocs);
8345 if (skip != NULL)
8346 free (skip);
8347 return FALSE;
8348 }
8349
8350 /* Now check all kept sections that might reference the toc.
8351 Check the toc itself last. */
8352 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8353 : ibfd->sections);
8354 sec != NULL;
8355 sec = (sec == toc ? NULL
8356 : sec->next == NULL ? toc
8357 : sec->next == toc && toc->next ? toc->next
8358 : sec->next))
8359 {
8360 int repeat;
8361
8362 if (sec->reloc_count == 0
8363 || discarded_section (sec)
8364 || get_opd_info (sec)
8365 || (sec->flags & SEC_ALLOC) == 0
8366 || (sec->flags & SEC_DEBUGGING) != 0)
8367 continue;
8368
8369 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8370 info->keep_memory);
8371 if (relstart == NULL)
8372 goto error_ret;
8373
8374 /* Mark toc entries referenced as used. */
8375 do
8376 {
8377 repeat = 0;
8378 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8379 {
8380 enum elf_ppc64_reloc_type r_type;
8381 unsigned long r_symndx;
8382 asection *sym_sec;
8383 struct elf_link_hash_entry *h;
8384 Elf_Internal_Sym *sym;
8385 bfd_vma val;
8386 enum {no_check, check_lo, check_ha} insn_check;
8387
8388 r_type = ELF64_R_TYPE (rel->r_info);
8389 switch (r_type)
8390 {
8391 default:
8392 insn_check = no_check;
8393 break;
8394
8395 case R_PPC64_GOT_TLSLD16_HA:
8396 case R_PPC64_GOT_TLSGD16_HA:
8397 case R_PPC64_GOT_TPREL16_HA:
8398 case R_PPC64_GOT_DTPREL16_HA:
8399 case R_PPC64_GOT16_HA:
8400 case R_PPC64_TOC16_HA:
8401 insn_check = check_ha;
8402 break;
8403
8404 case R_PPC64_GOT_TLSLD16_LO:
8405 case R_PPC64_GOT_TLSGD16_LO:
8406 case R_PPC64_GOT_TPREL16_LO_DS:
8407 case R_PPC64_GOT_DTPREL16_LO_DS:
8408 case R_PPC64_GOT16_LO:
8409 case R_PPC64_GOT16_LO_DS:
8410 case R_PPC64_TOC16_LO:
8411 case R_PPC64_TOC16_LO_DS:
8412 insn_check = check_lo;
8413 break;
8414 }
8415
8416 if (insn_check != no_check)
8417 {
8418 bfd_vma off = rel->r_offset & ~3;
8419 unsigned char buf[4];
8420 unsigned int insn;
8421
8422 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8423 {
8424 free (used);
8425 goto error_ret;
8426 }
8427 insn = bfd_get_32 (ibfd, buf);
8428 if (insn_check == check_lo
8429 ? !ok_lo_toc_insn (insn)
8430 : ((insn & ((0x3f << 26) | 0x1f << 16))
8431 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8432 {
8433 char str[12];
8434
8435 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8436 sprintf (str, "%#08x", insn);
8437 info->callbacks->einfo
8438 (_("%P: %H: toc optimization is not supported for"
8439 " %s instruction.\n"),
8440 ibfd, sec, rel->r_offset & ~3, str);
8441 }
8442 }
8443
8444 switch (r_type)
8445 {
8446 case R_PPC64_TOC16:
8447 case R_PPC64_TOC16_LO:
8448 case R_PPC64_TOC16_HI:
8449 case R_PPC64_TOC16_HA:
8450 case R_PPC64_TOC16_DS:
8451 case R_PPC64_TOC16_LO_DS:
8452 /* In case we're taking addresses of toc entries. */
8453 case R_PPC64_ADDR64:
8454 break;
8455
8456 default:
8457 continue;
8458 }
8459
8460 r_symndx = ELF64_R_SYM (rel->r_info);
8461 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8462 r_symndx, ibfd))
8463 {
8464 free (used);
8465 goto error_ret;
8466 }
8467
8468 if (sym_sec != toc)
8469 continue;
8470
8471 if (h != NULL)
8472 val = h->root.u.def.value;
8473 else
8474 val = sym->st_value;
8475 val += rel->r_addend;
8476
8477 if (val >= toc->size)
8478 continue;
8479
8480 if ((skip[val >> 3] & can_optimize) != 0)
8481 {
8482 bfd_vma off;
8483 unsigned char opc;
8484
8485 switch (r_type)
8486 {
8487 case R_PPC64_TOC16_HA:
8488 break;
8489
8490 case R_PPC64_TOC16_LO_DS:
8491 off = rel->r_offset;
8492 off += (bfd_big_endian (ibfd) ? -2 : 3);
8493 if (!bfd_get_section_contents (ibfd, sec, &opc,
8494 off, 1))
8495 {
8496 free (used);
8497 goto error_ret;
8498 }
8499 if ((opc & (0x3f << 2)) == (58u << 2))
8500 break;
8501 /* Fall thru */
8502
8503 default:
8504 /* Wrong sort of reloc, or not a ld. We may
8505 as well clear ref_from_discarded too. */
8506 skip[val >> 3] = 0;
8507 }
8508 }
8509
8510 if (sec != toc)
8511 used[val >> 3] = 1;
8512 /* For the toc section, we only mark as used if this
8513 entry itself isn't unused. */
8514 else if ((used[rel->r_offset >> 3]
8515 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8516 && !used[val >> 3])
8517 {
8518 /* Do all the relocs again, to catch reference
8519 chains. */
8520 repeat = 1;
8521 used[val >> 3] = 1;
8522 }
8523 }
8524 }
8525 while (repeat);
8526
8527 if (elf_section_data (sec)->relocs != relstart)
8528 free (relstart);
8529 }
8530
8531 /* Merge the used and skip arrays. Assume that TOC
8532 doublewords not appearing as either used or unused belong
8533 to to an entry more than one doubleword in size. */
8534 for (drop = skip, keep = used, last = 0, some_unused = 0;
8535 drop < skip + (toc->size + 7) / 8;
8536 ++drop, ++keep)
8537 {
8538 if (*keep)
8539 {
8540 *drop &= ~ref_from_discarded;
8541 if ((*drop & can_optimize) != 0)
8542 some_unused = 1;
8543 last = 0;
8544 }
8545 else if ((*drop & ref_from_discarded) != 0)
8546 {
8547 some_unused = 1;
8548 last = ref_from_discarded;
8549 }
8550 else
8551 *drop = last;
8552 }
8553
8554 free (used);
8555
8556 if (some_unused)
8557 {
8558 bfd_byte *contents, *src;
8559 unsigned long off;
8560 Elf_Internal_Sym *sym;
8561 bfd_boolean local_toc_syms = FALSE;
8562
8563 /* Shuffle the toc contents, and at the same time convert the
8564 skip array from booleans into offsets. */
8565 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8566 goto error_ret;
8567
8568 elf_section_data (toc)->this_hdr.contents = contents;
8569
8570 for (src = contents, off = 0, drop = skip;
8571 src < contents + toc->size;
8572 src += 8, ++drop)
8573 {
8574 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8575 off += 8;
8576 else if (off != 0)
8577 {
8578 *drop = off;
8579 memcpy (src - off, src, 8);
8580 }
8581 }
8582 *drop = off;
8583 toc->rawsize = toc->size;
8584 toc->size = src - contents - off;
8585
8586 /* Adjust addends for relocs against the toc section sym,
8587 and optimize any accesses we can. */
8588 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8589 {
8590 if (sec->reloc_count == 0
8591 || discarded_section (sec))
8592 continue;
8593
8594 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8595 info->keep_memory);
8596 if (relstart == NULL)
8597 goto error_ret;
8598
8599 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8600 {
8601 enum elf_ppc64_reloc_type r_type;
8602 unsigned long r_symndx;
8603 asection *sym_sec;
8604 struct elf_link_hash_entry *h;
8605 bfd_vma val;
8606
8607 r_type = ELF64_R_TYPE (rel->r_info);
8608 switch (r_type)
8609 {
8610 default:
8611 continue;
8612
8613 case R_PPC64_TOC16:
8614 case R_PPC64_TOC16_LO:
8615 case R_PPC64_TOC16_HI:
8616 case R_PPC64_TOC16_HA:
8617 case R_PPC64_TOC16_DS:
8618 case R_PPC64_TOC16_LO_DS:
8619 case R_PPC64_ADDR64:
8620 break;
8621 }
8622
8623 r_symndx = ELF64_R_SYM (rel->r_info);
8624 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8625 r_symndx, ibfd))
8626 goto error_ret;
8627
8628 if (sym_sec != toc)
8629 continue;
8630
8631 if (h != NULL)
8632 val = h->root.u.def.value;
8633 else
8634 {
8635 val = sym->st_value;
8636 if (val != 0)
8637 local_toc_syms = TRUE;
8638 }
8639
8640 val += rel->r_addend;
8641
8642 if (val > toc->rawsize)
8643 val = toc->rawsize;
8644 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8645 continue;
8646 else if ((skip[val >> 3] & can_optimize) != 0)
8647 {
8648 Elf_Internal_Rela *tocrel
8649 = toc_relocs + (skip[val >> 3] >> 2);
8650 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8651
8652 switch (r_type)
8653 {
8654 case R_PPC64_TOC16_HA:
8655 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8656 break;
8657
8658 case R_PPC64_TOC16_LO_DS:
8659 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8660 break;
8661
8662 default:
8663 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8664 ppc_howto_init ();
8665 info->callbacks->einfo
8666 (_("%P: %H: %s relocation references "
8667 "optimized away TOC entry\n"),
8668 ibfd, sec, rel->r_offset,
8669 ppc64_elf_howto_table[r_type]->name);
8670 bfd_set_error (bfd_error_bad_value);
8671 goto error_ret;
8672 }
8673 rel->r_addend = tocrel->r_addend;
8674 elf_section_data (sec)->relocs = relstart;
8675 continue;
8676 }
8677
8678 if (h != NULL || sym->st_value != 0)
8679 continue;
8680
8681 rel->r_addend -= skip[val >> 3];
8682 elf_section_data (sec)->relocs = relstart;
8683 }
8684
8685 if (elf_section_data (sec)->relocs != relstart)
8686 free (relstart);
8687 }
8688
8689 /* We shouldn't have local or global symbols defined in the TOC,
8690 but handle them anyway. */
8691 if (local_syms != NULL)
8692 for (sym = local_syms;
8693 sym < local_syms + symtab_hdr->sh_info;
8694 ++sym)
8695 if (sym->st_value != 0
8696 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8697 {
8698 unsigned long i;
8699
8700 if (sym->st_value > toc->rawsize)
8701 i = toc->rawsize >> 3;
8702 else
8703 i = sym->st_value >> 3;
8704
8705 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8706 {
8707 if (local_toc_syms)
8708 (*_bfd_error_handler)
8709 (_("%s defined on removed toc entry"),
8710 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8711 do
8712 ++i;
8713 while ((skip[i] & (ref_from_discarded | can_optimize)));
8714 sym->st_value = (bfd_vma) i << 3;
8715 }
8716
8717 sym->st_value -= skip[i];
8718 symtab_hdr->contents = (unsigned char *) local_syms;
8719 }
8720
8721 /* Adjust any global syms defined in this toc input section. */
8722 if (toc_inf.global_toc_syms)
8723 {
8724 toc_inf.toc = toc;
8725 toc_inf.skip = skip;
8726 toc_inf.global_toc_syms = FALSE;
8727 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8728 &toc_inf);
8729 }
8730
8731 if (toc->reloc_count != 0)
8732 {
8733 Elf_Internal_Shdr *rel_hdr;
8734 Elf_Internal_Rela *wrel;
8735 bfd_size_type sz;
8736
8737 /* Remove unused toc relocs, and adjust those we keep. */
8738 if (toc_relocs == NULL)
8739 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8740 info->keep_memory);
8741 if (toc_relocs == NULL)
8742 goto error_ret;
8743
8744 wrel = toc_relocs;
8745 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8746 if ((skip[rel->r_offset >> 3]
8747 & (ref_from_discarded | can_optimize)) == 0)
8748 {
8749 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8750 wrel->r_info = rel->r_info;
8751 wrel->r_addend = rel->r_addend;
8752 ++wrel;
8753 }
8754 else if (!dec_dynrel_count (rel->r_info, toc, info,
8755 &local_syms, NULL, NULL))
8756 goto error_ret;
8757
8758 elf_section_data (toc)->relocs = toc_relocs;
8759 toc->reloc_count = wrel - toc_relocs;
8760 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8761 sz = rel_hdr->sh_entsize;
8762 rel_hdr->sh_size = toc->reloc_count * sz;
8763 }
8764 }
8765 else if (toc_relocs != NULL
8766 && elf_section_data (toc)->relocs != toc_relocs)
8767 free (toc_relocs);
8768
8769 if (local_syms != NULL
8770 && symtab_hdr->contents != (unsigned char *) local_syms)
8771 {
8772 if (!info->keep_memory)
8773 free (local_syms);
8774 else
8775 symtab_hdr->contents = (unsigned char *) local_syms;
8776 }
8777 free (skip);
8778 }
8779
8780 return TRUE;
8781 }
8782
8783 /* Return true iff input section I references the TOC using
8784 instructions limited to +/-32k offsets. */
8785
8786 bfd_boolean
8787 ppc64_elf_has_small_toc_reloc (asection *i)
8788 {
8789 return (is_ppc64_elf (i->owner)
8790 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8791 }
8792
8793 /* Allocate space for one GOT entry. */
8794
8795 static void
8796 allocate_got (struct elf_link_hash_entry *h,
8797 struct bfd_link_info *info,
8798 struct got_entry *gent)
8799 {
8800 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8801 bfd_boolean dyn;
8802 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8803 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8804 ? 16 : 8);
8805 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8806 ? 2 : 1) * sizeof (Elf64_External_Rela);
8807 asection *got = ppc64_elf_tdata (gent->owner)->got;
8808
8809 gent->got.offset = got->size;
8810 got->size += entsize;
8811
8812 dyn = htab->elf.dynamic_sections_created;
8813 if ((info->shared
8814 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8815 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8816 || h->root.type != bfd_link_hash_undefweak))
8817 {
8818 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8819 relgot->size += rentsize;
8820 }
8821 else if (h->type == STT_GNU_IFUNC)
8822 {
8823 asection *relgot = htab->reliplt;
8824 relgot->size += rentsize;
8825 htab->got_reli_size += rentsize;
8826 }
8827 }
8828
8829 /* This function merges got entries in the same toc group. */
8830
8831 static void
8832 merge_got_entries (struct got_entry **pent)
8833 {
8834 struct got_entry *ent, *ent2;
8835
8836 for (ent = *pent; ent != NULL; ent = ent->next)
8837 if (!ent->is_indirect)
8838 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8839 if (!ent2->is_indirect
8840 && ent2->addend == ent->addend
8841 && ent2->tls_type == ent->tls_type
8842 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8843 {
8844 ent2->is_indirect = TRUE;
8845 ent2->got.ent = ent;
8846 }
8847 }
8848
8849 /* Allocate space in .plt, .got and associated reloc sections for
8850 dynamic relocs. */
8851
8852 static bfd_boolean
8853 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8854 {
8855 struct bfd_link_info *info;
8856 struct ppc_link_hash_table *htab;
8857 asection *s;
8858 struct ppc_link_hash_entry *eh;
8859 struct elf_dyn_relocs *p;
8860 struct got_entry **pgent, *gent;
8861
8862 if (h->root.type == bfd_link_hash_indirect)
8863 return TRUE;
8864
8865 info = (struct bfd_link_info *) inf;
8866 htab = ppc_hash_table (info);
8867 if (htab == NULL)
8868 return FALSE;
8869
8870 if ((htab->elf.dynamic_sections_created
8871 && h->dynindx != -1
8872 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8873 || h->type == STT_GNU_IFUNC)
8874 {
8875 struct plt_entry *pent;
8876 bfd_boolean doneone = FALSE;
8877 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8878 if (pent->plt.refcount > 0)
8879 {
8880 if (!htab->elf.dynamic_sections_created
8881 || h->dynindx == -1)
8882 {
8883 s = htab->iplt;
8884 pent->plt.offset = s->size;
8885 s->size += PLT_ENTRY_SIZE;
8886 s = htab->reliplt;
8887 }
8888 else
8889 {
8890 /* If this is the first .plt entry, make room for the special
8891 first entry. */
8892 s = htab->plt;
8893 if (s->size == 0)
8894 s->size += PLT_INITIAL_ENTRY_SIZE;
8895
8896 pent->plt.offset = s->size;
8897
8898 /* Make room for this entry. */
8899 s->size += PLT_ENTRY_SIZE;
8900
8901 /* Make room for the .glink code. */
8902 s = htab->glink;
8903 if (s->size == 0)
8904 s->size += GLINK_CALL_STUB_SIZE;
8905 /* We need bigger stubs past index 32767. */
8906 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8907 s->size += 4;
8908 s->size += 2*4;
8909
8910 /* We also need to make an entry in the .rela.plt section. */
8911 s = htab->relplt;
8912 }
8913 s->size += sizeof (Elf64_External_Rela);
8914 doneone = TRUE;
8915 }
8916 else
8917 pent->plt.offset = (bfd_vma) -1;
8918 if (!doneone)
8919 {
8920 h->plt.plist = NULL;
8921 h->needs_plt = 0;
8922 }
8923 }
8924 else
8925 {
8926 h->plt.plist = NULL;
8927 h->needs_plt = 0;
8928 }
8929
8930 eh = (struct ppc_link_hash_entry *) h;
8931 /* Run through the TLS GD got entries first if we're changing them
8932 to TPREL. */
8933 if ((eh->tls_mask & TLS_TPRELGD) != 0)
8934 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8935 if (gent->got.refcount > 0
8936 && (gent->tls_type & TLS_GD) != 0)
8937 {
8938 /* This was a GD entry that has been converted to TPREL. If
8939 there happens to be a TPREL entry we can use that one. */
8940 struct got_entry *ent;
8941 for (ent = h->got.glist; ent != NULL; ent = ent->next)
8942 if (ent->got.refcount > 0
8943 && (ent->tls_type & TLS_TPREL) != 0
8944 && ent->addend == gent->addend
8945 && ent->owner == gent->owner)
8946 {
8947 gent->got.refcount = 0;
8948 break;
8949 }
8950
8951 /* If not, then we'll be using our own TPREL entry. */
8952 if (gent->got.refcount != 0)
8953 gent->tls_type = TLS_TLS | TLS_TPREL;
8954 }
8955
8956 /* Remove any list entry that won't generate a word in the GOT before
8957 we call merge_got_entries. Otherwise we risk merging to empty
8958 entries. */
8959 pgent = &h->got.glist;
8960 while ((gent = *pgent) != NULL)
8961 if (gent->got.refcount > 0)
8962 {
8963 if ((gent->tls_type & TLS_LD) != 0
8964 && !h->def_dynamic)
8965 {
8966 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
8967 *pgent = gent->next;
8968 }
8969 else
8970 pgent = &gent->next;
8971 }
8972 else
8973 *pgent = gent->next;
8974
8975 if (!htab->do_multi_toc)
8976 merge_got_entries (&h->got.glist);
8977
8978 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8979 if (!gent->is_indirect)
8980 {
8981 /* Make sure this symbol is output as a dynamic symbol.
8982 Undefined weak syms won't yet be marked as dynamic,
8983 nor will all TLS symbols. */
8984 if (h->dynindx == -1
8985 && !h->forced_local
8986 && h->type != STT_GNU_IFUNC
8987 && htab->elf.dynamic_sections_created)
8988 {
8989 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8990 return FALSE;
8991 }
8992
8993 if (!is_ppc64_elf (gent->owner))
8994 abort ();
8995
8996 allocate_got (h, info, gent);
8997 }
8998
8999 if (eh->dyn_relocs == NULL
9000 || (!htab->elf.dynamic_sections_created
9001 && h->type != STT_GNU_IFUNC))
9002 return TRUE;
9003
9004 /* In the shared -Bsymbolic case, discard space allocated for
9005 dynamic pc-relative relocs against symbols which turn out to be
9006 defined in regular objects. For the normal shared case, discard
9007 space for relocs that have become local due to symbol visibility
9008 changes. */
9009
9010 if (info->shared)
9011 {
9012 /* Relocs that use pc_count are those that appear on a call insn,
9013 or certain REL relocs (see must_be_dyn_reloc) that can be
9014 generated via assembly. We want calls to protected symbols to
9015 resolve directly to the function rather than going via the plt.
9016 If people want function pointer comparisons to work as expected
9017 then they should avoid writing weird assembly. */
9018 if (SYMBOL_CALLS_LOCAL (info, h))
9019 {
9020 struct elf_dyn_relocs **pp;
9021
9022 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9023 {
9024 p->count -= p->pc_count;
9025 p->pc_count = 0;
9026 if (p->count == 0)
9027 *pp = p->next;
9028 else
9029 pp = &p->next;
9030 }
9031 }
9032
9033 /* Also discard relocs on undefined weak syms with non-default
9034 visibility. */
9035 if (eh->dyn_relocs != NULL
9036 && h->root.type == bfd_link_hash_undefweak)
9037 {
9038 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9039 eh->dyn_relocs = NULL;
9040
9041 /* Make sure this symbol is output as a dynamic symbol.
9042 Undefined weak syms won't yet be marked as dynamic. */
9043 else if (h->dynindx == -1
9044 && !h->forced_local)
9045 {
9046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9047 return FALSE;
9048 }
9049 }
9050 }
9051 else if (h->type == STT_GNU_IFUNC)
9052 {
9053 if (!h->non_got_ref)
9054 eh->dyn_relocs = NULL;
9055 }
9056 else if (ELIMINATE_COPY_RELOCS)
9057 {
9058 /* For the non-shared case, discard space for relocs against
9059 symbols which turn out to need copy relocs or are not
9060 dynamic. */
9061
9062 if (!h->non_got_ref
9063 && !h->def_regular)
9064 {
9065 /* Make sure this symbol is output as a dynamic symbol.
9066 Undefined weak syms won't yet be marked as dynamic. */
9067 if (h->dynindx == -1
9068 && !h->forced_local)
9069 {
9070 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9071 return FALSE;
9072 }
9073
9074 /* If that succeeded, we know we'll be keeping all the
9075 relocs. */
9076 if (h->dynindx != -1)
9077 goto keep;
9078 }
9079
9080 eh->dyn_relocs = NULL;
9081
9082 keep: ;
9083 }
9084
9085 /* Finally, allocate space. */
9086 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9087 {
9088 asection *sreloc = elf_section_data (p->sec)->sreloc;
9089 if (!htab->elf.dynamic_sections_created)
9090 sreloc = htab->reliplt;
9091 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9092 }
9093
9094 return TRUE;
9095 }
9096
9097 /* Find any dynamic relocs that apply to read-only sections. */
9098
9099 static bfd_boolean
9100 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9101 {
9102 struct ppc_link_hash_entry *eh;
9103 struct elf_dyn_relocs *p;
9104
9105 eh = (struct ppc_link_hash_entry *) h;
9106 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9107 {
9108 asection *s = p->sec->output_section;
9109
9110 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9111 {
9112 struct bfd_link_info *info = inf;
9113
9114 info->flags |= DF_TEXTREL;
9115
9116 /* Not an error, just cut short the traversal. */
9117 return FALSE;
9118 }
9119 }
9120 return TRUE;
9121 }
9122
9123 /* Set the sizes of the dynamic sections. */
9124
9125 static bfd_boolean
9126 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9127 struct bfd_link_info *info)
9128 {
9129 struct ppc_link_hash_table *htab;
9130 bfd *dynobj;
9131 asection *s;
9132 bfd_boolean relocs;
9133 bfd *ibfd;
9134 struct got_entry *first_tlsld;
9135
9136 htab = ppc_hash_table (info);
9137 if (htab == NULL)
9138 return FALSE;
9139
9140 dynobj = htab->elf.dynobj;
9141 if (dynobj == NULL)
9142 abort ();
9143
9144 if (htab->elf.dynamic_sections_created)
9145 {
9146 /* Set the contents of the .interp section to the interpreter. */
9147 if (info->executable)
9148 {
9149 s = bfd_get_linker_section (dynobj, ".interp");
9150 if (s == NULL)
9151 abort ();
9152 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9153 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9154 }
9155 }
9156
9157 /* Set up .got offsets for local syms, and space for local dynamic
9158 relocs. */
9159 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9160 {
9161 struct got_entry **lgot_ents;
9162 struct got_entry **end_lgot_ents;
9163 struct plt_entry **local_plt;
9164 struct plt_entry **end_local_plt;
9165 unsigned char *lgot_masks;
9166 bfd_size_type locsymcount;
9167 Elf_Internal_Shdr *symtab_hdr;
9168 asection *srel;
9169
9170 if (!is_ppc64_elf (ibfd))
9171 continue;
9172
9173 for (s = ibfd->sections; s != NULL; s = s->next)
9174 {
9175 struct elf_dyn_relocs *p;
9176
9177 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9178 {
9179 if (!bfd_is_abs_section (p->sec)
9180 && bfd_is_abs_section (p->sec->output_section))
9181 {
9182 /* Input section has been discarded, either because
9183 it is a copy of a linkonce section or due to
9184 linker script /DISCARD/, so we'll be discarding
9185 the relocs too. */
9186 }
9187 else if (p->count != 0)
9188 {
9189 srel = elf_section_data (p->sec)->sreloc;
9190 if (!htab->elf.dynamic_sections_created)
9191 srel = htab->reliplt;
9192 srel->size += p->count * sizeof (Elf64_External_Rela);
9193 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9194 info->flags |= DF_TEXTREL;
9195 }
9196 }
9197 }
9198
9199 lgot_ents = elf_local_got_ents (ibfd);
9200 if (!lgot_ents)
9201 continue;
9202
9203 symtab_hdr = &elf_symtab_hdr (ibfd);
9204 locsymcount = symtab_hdr->sh_info;
9205 end_lgot_ents = lgot_ents + locsymcount;
9206 local_plt = (struct plt_entry **) end_lgot_ents;
9207 end_local_plt = local_plt + locsymcount;
9208 lgot_masks = (unsigned char *) end_local_plt;
9209 s = ppc64_elf_tdata (ibfd)->got;
9210 srel = ppc64_elf_tdata (ibfd)->relgot;
9211 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9212 {
9213 struct got_entry **pent, *ent;
9214
9215 pent = lgot_ents;
9216 while ((ent = *pent) != NULL)
9217 if (ent->got.refcount > 0)
9218 {
9219 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9220 {
9221 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9222 *pent = ent->next;
9223 }
9224 else
9225 {
9226 unsigned int num = 1;
9227 ent->got.offset = s->size;
9228 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9229 num = 2;
9230 s->size += num * 8;
9231 if (info->shared)
9232 srel->size += num * sizeof (Elf64_External_Rela);
9233 else if ((*lgot_masks & PLT_IFUNC) != 0)
9234 {
9235 htab->reliplt->size
9236 += num * sizeof (Elf64_External_Rela);
9237 htab->got_reli_size
9238 += num * sizeof (Elf64_External_Rela);
9239 }
9240 pent = &ent->next;
9241 }
9242 }
9243 else
9244 *pent = ent->next;
9245 }
9246
9247 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9248 for (; local_plt < end_local_plt; ++local_plt)
9249 {
9250 struct plt_entry *ent;
9251
9252 for (ent = *local_plt; ent != NULL; ent = ent->next)
9253 if (ent->plt.refcount > 0)
9254 {
9255 s = htab->iplt;
9256 ent->plt.offset = s->size;
9257 s->size += PLT_ENTRY_SIZE;
9258
9259 htab->reliplt->size += sizeof (Elf64_External_Rela);
9260 }
9261 else
9262 ent->plt.offset = (bfd_vma) -1;
9263 }
9264 }
9265
9266 /* Allocate global sym .plt and .got entries, and space for global
9267 sym dynamic relocs. */
9268 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9269
9270 first_tlsld = NULL;
9271 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9272 {
9273 struct got_entry *ent;
9274
9275 if (!is_ppc64_elf (ibfd))
9276 continue;
9277
9278 ent = ppc64_tlsld_got (ibfd);
9279 if (ent->got.refcount > 0)
9280 {
9281 if (!htab->do_multi_toc && first_tlsld != NULL)
9282 {
9283 ent->is_indirect = TRUE;
9284 ent->got.ent = first_tlsld;
9285 }
9286 else
9287 {
9288 if (first_tlsld == NULL)
9289 first_tlsld = ent;
9290 s = ppc64_elf_tdata (ibfd)->got;
9291 ent->got.offset = s->size;
9292 ent->owner = ibfd;
9293 s->size += 16;
9294 if (info->shared)
9295 {
9296 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9297 srel->size += sizeof (Elf64_External_Rela);
9298 }
9299 }
9300 }
9301 else
9302 ent->got.offset = (bfd_vma) -1;
9303 }
9304
9305 /* We now have determined the sizes of the various dynamic sections.
9306 Allocate memory for them. */
9307 relocs = FALSE;
9308 for (s = dynobj->sections; s != NULL; s = s->next)
9309 {
9310 if ((s->flags & SEC_LINKER_CREATED) == 0)
9311 continue;
9312
9313 if (s == htab->brlt || s == htab->relbrlt)
9314 /* These haven't been allocated yet; don't strip. */
9315 continue;
9316 else if (s == htab->got
9317 || s == htab->plt
9318 || s == htab->iplt
9319 || s == htab->glink
9320 || s == htab->dynbss)
9321 {
9322 /* Strip this section if we don't need it; see the
9323 comment below. */
9324 }
9325 else if (s == htab->glink_eh_frame)
9326 {
9327 if (!bfd_is_abs_section (s->output_section))
9328 /* Not sized yet. */
9329 continue;
9330 }
9331 else if (CONST_STRNEQ (s->name, ".rela"))
9332 {
9333 if (s->size != 0)
9334 {
9335 if (s != htab->relplt)
9336 relocs = TRUE;
9337
9338 /* We use the reloc_count field as a counter if we need
9339 to copy relocs into the output file. */
9340 s->reloc_count = 0;
9341 }
9342 }
9343 else
9344 {
9345 /* It's not one of our sections, so don't allocate space. */
9346 continue;
9347 }
9348
9349 if (s->size == 0)
9350 {
9351 /* If we don't need this section, strip it from the
9352 output file. This is mostly to handle .rela.bss and
9353 .rela.plt. We must create both sections in
9354 create_dynamic_sections, because they must be created
9355 before the linker maps input sections to output
9356 sections. The linker does that before
9357 adjust_dynamic_symbol is called, and it is that
9358 function which decides whether anything needs to go
9359 into these sections. */
9360 s->flags |= SEC_EXCLUDE;
9361 continue;
9362 }
9363
9364 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9365 continue;
9366
9367 /* Allocate memory for the section contents. We use bfd_zalloc
9368 here in case unused entries are not reclaimed before the
9369 section's contents are written out. This should not happen,
9370 but this way if it does we get a R_PPC64_NONE reloc in .rela
9371 sections instead of garbage.
9372 We also rely on the section contents being zero when writing
9373 the GOT. */
9374 s->contents = bfd_zalloc (dynobj, s->size);
9375 if (s->contents == NULL)
9376 return FALSE;
9377 }
9378
9379 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9380 {
9381 if (!is_ppc64_elf (ibfd))
9382 continue;
9383
9384 s = ppc64_elf_tdata (ibfd)->got;
9385 if (s != NULL && s != htab->got)
9386 {
9387 if (s->size == 0)
9388 s->flags |= SEC_EXCLUDE;
9389 else
9390 {
9391 s->contents = bfd_zalloc (ibfd, s->size);
9392 if (s->contents == NULL)
9393 return FALSE;
9394 }
9395 }
9396 s = ppc64_elf_tdata (ibfd)->relgot;
9397 if (s != NULL)
9398 {
9399 if (s->size == 0)
9400 s->flags |= SEC_EXCLUDE;
9401 else
9402 {
9403 s->contents = bfd_zalloc (ibfd, s->size);
9404 if (s->contents == NULL)
9405 return FALSE;
9406 relocs = TRUE;
9407 s->reloc_count = 0;
9408 }
9409 }
9410 }
9411
9412 if (htab->elf.dynamic_sections_created)
9413 {
9414 /* Add some entries to the .dynamic section. We fill in the
9415 values later, in ppc64_elf_finish_dynamic_sections, but we
9416 must add the entries now so that we get the correct size for
9417 the .dynamic section. The DT_DEBUG entry is filled in by the
9418 dynamic linker and used by the debugger. */
9419 #define add_dynamic_entry(TAG, VAL) \
9420 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9421
9422 if (info->executable)
9423 {
9424 if (!add_dynamic_entry (DT_DEBUG, 0))
9425 return FALSE;
9426 }
9427
9428 if (htab->plt != NULL && htab->plt->size != 0)
9429 {
9430 if (!add_dynamic_entry (DT_PLTGOT, 0)
9431 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9432 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9433 || !add_dynamic_entry (DT_JMPREL, 0)
9434 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9435 return FALSE;
9436 }
9437
9438 if (NO_OPD_RELOCS)
9439 {
9440 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9441 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9442 return FALSE;
9443 }
9444
9445 if (!htab->no_tls_get_addr_opt
9446 && htab->tls_get_addr_fd != NULL
9447 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9448 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9449 return FALSE;
9450
9451 if (relocs)
9452 {
9453 if (!add_dynamic_entry (DT_RELA, 0)
9454 || !add_dynamic_entry (DT_RELASZ, 0)
9455 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9456 return FALSE;
9457
9458 /* If any dynamic relocs apply to a read-only section,
9459 then we need a DT_TEXTREL entry. */
9460 if ((info->flags & DF_TEXTREL) == 0)
9461 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9462
9463 if ((info->flags & DF_TEXTREL) != 0)
9464 {
9465 if (!add_dynamic_entry (DT_TEXTREL, 0))
9466 return FALSE;
9467 }
9468 }
9469 }
9470 #undef add_dynamic_entry
9471
9472 return TRUE;
9473 }
9474
9475 /* Determine the type of stub needed, if any, for a call. */
9476
9477 static inline enum ppc_stub_type
9478 ppc_type_of_stub (asection *input_sec,
9479 const Elf_Internal_Rela *rel,
9480 struct ppc_link_hash_entry **hash,
9481 struct plt_entry **plt_ent,
9482 bfd_vma destination)
9483 {
9484 struct ppc_link_hash_entry *h = *hash;
9485 bfd_vma location;
9486 bfd_vma branch_offset;
9487 bfd_vma max_branch_offset;
9488 enum elf_ppc64_reloc_type r_type;
9489
9490 if (h != NULL)
9491 {
9492 struct plt_entry *ent;
9493 struct ppc_link_hash_entry *fdh = h;
9494 if (h->oh != NULL
9495 && h->oh->is_func_descriptor)
9496 {
9497 fdh = ppc_follow_link (h->oh);
9498 *hash = fdh;
9499 }
9500
9501 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9502 if (ent->addend == rel->r_addend
9503 && ent->plt.offset != (bfd_vma) -1)
9504 {
9505 *plt_ent = ent;
9506 return ppc_stub_plt_call;
9507 }
9508
9509 /* Here, we know we don't have a plt entry. If we don't have a
9510 either a defined function descriptor or a defined entry symbol
9511 in a regular object file, then it is pointless trying to make
9512 any other type of stub. */
9513 if (!is_static_defined (&fdh->elf)
9514 && !is_static_defined (&h->elf))
9515 return ppc_stub_none;
9516 }
9517 else if (elf_local_got_ents (input_sec->owner) != NULL)
9518 {
9519 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9520 struct plt_entry **local_plt = (struct plt_entry **)
9521 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9522 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9523
9524 if (local_plt[r_symndx] != NULL)
9525 {
9526 struct plt_entry *ent;
9527
9528 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9529 if (ent->addend == rel->r_addend
9530 && ent->plt.offset != (bfd_vma) -1)
9531 {
9532 *plt_ent = ent;
9533 return ppc_stub_plt_call;
9534 }
9535 }
9536 }
9537
9538 /* Determine where the call point is. */
9539 location = (input_sec->output_offset
9540 + input_sec->output_section->vma
9541 + rel->r_offset);
9542
9543 branch_offset = destination - location;
9544 r_type = ELF64_R_TYPE (rel->r_info);
9545
9546 /* Determine if a long branch stub is needed. */
9547 max_branch_offset = 1 << 25;
9548 if (r_type != R_PPC64_REL24)
9549 max_branch_offset = 1 << 15;
9550
9551 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9552 /* We need a stub. Figure out whether a long_branch or plt_branch
9553 is needed later. */
9554 return ppc_stub_long_branch;
9555
9556 return ppc_stub_none;
9557 }
9558
9559 /* With power7 weakly ordered memory model, it is possible for ld.so
9560 to update a plt entry in one thread and have another thread see a
9561 stale zero toc entry. To avoid this we need some sort of acquire
9562 barrier in the call stub. One solution is to make the load of the
9563 toc word seem to appear to depend on the load of the function entry
9564 word. Another solution is to test for r2 being zero, and branch to
9565 the appropriate glink entry if so.
9566
9567 . fake dep barrier compare
9568 . ld 11,xxx(2) ld 11,xxx(2)
9569 . mtctr 11 mtctr 11
9570 . xor 11,11,11 ld 2,xxx+8(2)
9571 . add 2,2,11 cmpldi 2,0
9572 . ld 2,xxx+8(2) bnectr+
9573 . bctr b <glink_entry>
9574
9575 The solution involving the compare turns out to be faster, so
9576 that's what we use unless the branch won't reach. */
9577
9578 #define ALWAYS_USE_FAKE_DEP 0
9579 #define ALWAYS_EMIT_R2SAVE 0
9580
9581 #define PPC_LO(v) ((v) & 0xffff)
9582 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9583 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9584
9585 static inline unsigned int
9586 plt_stub_size (struct ppc_link_hash_table *htab,
9587 struct ppc_stub_hash_entry *stub_entry,
9588 bfd_vma off)
9589 {
9590 unsigned size = PLT_CALL_STUB_SIZE;
9591
9592 if (!(ALWAYS_EMIT_R2SAVE
9593 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9594 size -= 4;
9595 if (!htab->plt_static_chain)
9596 size -= 4;
9597 if (htab->plt_thread_safe)
9598 size += 8;
9599 if (PPC_HA (off) == 0)
9600 size -= 4;
9601 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9602 size += 4;
9603 if (stub_entry->h != NULL
9604 && (stub_entry->h == htab->tls_get_addr_fd
9605 || stub_entry->h == htab->tls_get_addr)
9606 && !htab->no_tls_get_addr_opt)
9607 size += 13 * 4;
9608 return size;
9609 }
9610
9611 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9612 then return the padding needed to do so. */
9613 static inline unsigned int
9614 plt_stub_pad (struct ppc_link_hash_table *htab,
9615 struct ppc_stub_hash_entry *stub_entry,
9616 bfd_vma plt_off)
9617 {
9618 int stub_align = 1 << htab->plt_stub_align;
9619 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9620 bfd_vma stub_off = stub_entry->stub_sec->size;
9621
9622 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9623 > (stub_size & -stub_align))
9624 return stub_align - (stub_off & (stub_align - 1));
9625 return 0;
9626 }
9627
9628 /* Build a .plt call stub. */
9629
9630 static inline bfd_byte *
9631 build_plt_stub (struct ppc_link_hash_table *htab,
9632 struct ppc_stub_hash_entry *stub_entry,
9633 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9634 {
9635 bfd *obfd = htab->stub_bfd;
9636 bfd_boolean plt_static_chain = htab->plt_static_chain;
9637 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9638 bfd_boolean use_fake_dep = plt_thread_safe;
9639 bfd_vma cmp_branch_off = 0;
9640
9641 if (!ALWAYS_USE_FAKE_DEP
9642 && plt_thread_safe
9643 && !(stub_entry->h != NULL
9644 && (stub_entry->h == htab->tls_get_addr_fd
9645 || stub_entry->h == htab->tls_get_addr)
9646 && !htab->no_tls_get_addr_opt))
9647 {
9648 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9649 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9650 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9651 bfd_vma to, from;
9652
9653 if (pltindex > 32767)
9654 glinkoff += (pltindex - 32767) * 4;
9655 to = (glinkoff
9656 + htab->glink->output_offset
9657 + htab->glink->output_section->vma);
9658 from = (p - stub_entry->stub_sec->contents
9659 + 4 * (ALWAYS_EMIT_R2SAVE
9660 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9661 + 4 * (PPC_HA (offset) != 0)
9662 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9663 != PPC_HA (offset))
9664 + 4 * (plt_static_chain != 0)
9665 + 20
9666 + stub_entry->stub_sec->output_offset
9667 + stub_entry->stub_sec->output_section->vma);
9668 cmp_branch_off = to - from;
9669 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9670 }
9671
9672 if (PPC_HA (offset) != 0)
9673 {
9674 if (r != NULL)
9675 {
9676 if (ALWAYS_EMIT_R2SAVE
9677 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9678 r[0].r_offset += 4;
9679 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9680 r[1].r_offset = r[0].r_offset + 4;
9681 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9682 r[1].r_addend = r[0].r_addend;
9683 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9684 {
9685 r[2].r_offset = r[1].r_offset + 4;
9686 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9687 r[2].r_addend = r[0].r_addend;
9688 }
9689 else
9690 {
9691 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9692 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9693 r[2].r_addend = r[0].r_addend + 8;
9694 if (plt_static_chain)
9695 {
9696 r[3].r_offset = r[2].r_offset + 4;
9697 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9698 r[3].r_addend = r[0].r_addend + 16;
9699 }
9700 }
9701 }
9702 if (ALWAYS_EMIT_R2SAVE
9703 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9704 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9705 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9706 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9707 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9708 {
9709 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9710 offset = 0;
9711 }
9712 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9713 if (use_fake_dep)
9714 {
9715 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9716 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9717 }
9718 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9719 if (plt_static_chain)
9720 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9721 }
9722 else
9723 {
9724 if (r != NULL)
9725 {
9726 if (ALWAYS_EMIT_R2SAVE
9727 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9728 r[0].r_offset += 4;
9729 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9730 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9731 {
9732 r[1].r_offset = r[0].r_offset + 4;
9733 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9734 r[1].r_addend = r[0].r_addend;
9735 }
9736 else
9737 {
9738 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9739 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9740 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9741 if (plt_static_chain)
9742 {
9743 r[2].r_offset = r[1].r_offset + 4;
9744 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9745 r[2].r_addend = r[0].r_addend + 8;
9746 }
9747 }
9748 }
9749 if (ALWAYS_EMIT_R2SAVE
9750 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9751 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9752 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9753 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9754 {
9755 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9756 offset = 0;
9757 }
9758 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9759 if (use_fake_dep)
9760 {
9761 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9762 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9763 }
9764 if (plt_static_chain)
9765 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9766 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9767 }
9768 if (plt_thread_safe && !use_fake_dep)
9769 {
9770 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9771 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9772 bfd_put_32 (obfd, B_DOT + cmp_branch_off, p), p += 4;
9773 }
9774 else
9775 bfd_put_32 (obfd, BCTR, p), p += 4;
9776 return p;
9777 }
9778
9779 /* Build a special .plt call stub for __tls_get_addr. */
9780
9781 #define LD_R11_0R3 0xe9630000
9782 #define LD_R12_0R3 0xe9830000
9783 #define MR_R0_R3 0x7c601b78
9784 #define CMPDI_R11_0 0x2c2b0000
9785 #define ADD_R3_R12_R13 0x7c6c6a14
9786 #define BEQLR 0x4d820020
9787 #define MR_R3_R0 0x7c030378
9788 #define MFLR_R11 0x7d6802a6
9789 #define STD_R11_0R1 0xf9610000
9790 #define BCTRL 0x4e800421
9791 #define LD_R11_0R1 0xe9610000
9792 #define LD_R2_0R1 0xe8410000
9793 #define MTLR_R11 0x7d6803a6
9794
9795 static inline bfd_byte *
9796 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9797 struct ppc_stub_hash_entry *stub_entry,
9798 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9799 {
9800 bfd *obfd = htab->stub_bfd;
9801
9802 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9803 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9804 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9805 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9806 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9807 bfd_put_32 (obfd, BEQLR, p), p += 4;
9808 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9809 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9810 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9811
9812 if (r != NULL)
9813 r[0].r_offset += 9 * 4;
9814 p = build_plt_stub (htab, stub_entry, p, offset, r);
9815 bfd_put_32 (obfd, BCTRL, p - 4);
9816
9817 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9818 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9819 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9820 bfd_put_32 (obfd, BLR, p), p += 4;
9821
9822 return p;
9823 }
9824
9825 static Elf_Internal_Rela *
9826 get_relocs (asection *sec, int count)
9827 {
9828 Elf_Internal_Rela *relocs;
9829 struct bfd_elf_section_data *elfsec_data;
9830
9831 elfsec_data = elf_section_data (sec);
9832 relocs = elfsec_data->relocs;
9833 if (relocs == NULL)
9834 {
9835 bfd_size_type relsize;
9836 relsize = sec->reloc_count * sizeof (*relocs);
9837 relocs = bfd_alloc (sec->owner, relsize);
9838 if (relocs == NULL)
9839 return NULL;
9840 elfsec_data->relocs = relocs;
9841 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9842 sizeof (Elf_Internal_Shdr));
9843 if (elfsec_data->rela.hdr == NULL)
9844 return NULL;
9845 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9846 * sizeof (Elf64_External_Rela));
9847 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9848 sec->reloc_count = 0;
9849 }
9850 relocs += sec->reloc_count;
9851 sec->reloc_count += count;
9852 return relocs;
9853 }
9854
9855 static bfd_vma
9856 get_r2off (struct bfd_link_info *info,
9857 struct ppc_stub_hash_entry *stub_entry)
9858 {
9859 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9860 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9861
9862 if (r2off == 0)
9863 {
9864 /* Support linking -R objects. Get the toc pointer from the
9865 opd entry. */
9866 char buf[8];
9867 asection *opd = stub_entry->h->elf.root.u.def.section;
9868 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9869
9870 if (strcmp (opd->name, ".opd") != 0
9871 || opd->reloc_count != 0)
9872 {
9873 info->callbacks->einfo (_("%P: cannot find opd entry toc for %s\n"),
9874 stub_entry->h->elf.root.root.string);
9875 bfd_set_error (bfd_error_bad_value);
9876 return 0;
9877 }
9878 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9879 return 0;
9880 r2off = bfd_get_64 (opd->owner, buf);
9881 r2off -= elf_gp (info->output_bfd);
9882 }
9883 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9884 return r2off;
9885 }
9886
9887 static bfd_boolean
9888 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9889 {
9890 struct ppc_stub_hash_entry *stub_entry;
9891 struct ppc_branch_hash_entry *br_entry;
9892 struct bfd_link_info *info;
9893 struct ppc_link_hash_table *htab;
9894 bfd_byte *loc;
9895 bfd_byte *p;
9896 bfd_vma dest, off;
9897 int size;
9898 Elf_Internal_Rela *r;
9899 asection *plt;
9900
9901 /* Massage our args to the form they really have. */
9902 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9903 info = in_arg;
9904
9905 htab = ppc_hash_table (info);
9906 if (htab == NULL)
9907 return FALSE;
9908
9909 /* Make a note of the offset within the stubs for this entry. */
9910 stub_entry->stub_offset = stub_entry->stub_sec->size;
9911 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
9912
9913 htab->stub_count[stub_entry->stub_type - 1] += 1;
9914 switch (stub_entry->stub_type)
9915 {
9916 case ppc_stub_long_branch:
9917 case ppc_stub_long_branch_r2off:
9918 /* Branches are relative. This is where we are going to. */
9919 off = dest = (stub_entry->target_value
9920 + stub_entry->target_section->output_offset
9921 + stub_entry->target_section->output_section->vma);
9922
9923 /* And this is where we are coming from. */
9924 off -= (stub_entry->stub_offset
9925 + stub_entry->stub_sec->output_offset
9926 + stub_entry->stub_sec->output_section->vma);
9927
9928 size = 4;
9929 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9930 {
9931 bfd_vma r2off = get_r2off (info, stub_entry);
9932
9933 if (r2off == 0)
9934 {
9935 htab->stub_error = TRUE;
9936 return FALSE;
9937 }
9938 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
9939 loc += 4;
9940 size = 12;
9941 if (PPC_HA (r2off) != 0)
9942 {
9943 size = 16;
9944 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
9945 loc += 4;
9946 }
9947 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
9948 loc += 4;
9949 off -= size - 4;
9950 }
9951 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
9952
9953 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
9954 {
9955 info->callbacks->einfo (_("%P: long branch stub `%s' offset overflow\n"),
9956 stub_entry->root.string);
9957 htab->stub_error = TRUE;
9958 return FALSE;
9959 }
9960
9961 if (info->emitrelocations)
9962 {
9963 r = get_relocs (stub_entry->stub_sec, 1);
9964 if (r == NULL)
9965 return FALSE;
9966 r->r_offset = loc - stub_entry->stub_sec->contents;
9967 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
9968 r->r_addend = dest;
9969 if (stub_entry->h != NULL)
9970 {
9971 struct elf_link_hash_entry **hashes;
9972 unsigned long symndx;
9973 struct ppc_link_hash_entry *h;
9974
9975 hashes = elf_sym_hashes (htab->stub_bfd);
9976 if (hashes == NULL)
9977 {
9978 bfd_size_type hsize;
9979
9980 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
9981 hashes = bfd_zalloc (htab->stub_bfd, hsize);
9982 if (hashes == NULL)
9983 return FALSE;
9984 elf_sym_hashes (htab->stub_bfd) = hashes;
9985 htab->stub_globals = 1;
9986 }
9987 symndx = htab->stub_globals++;
9988 h = stub_entry->h;
9989 hashes[symndx] = &h->elf;
9990 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
9991 if (h->oh != NULL && h->oh->is_func)
9992 h = ppc_follow_link (h->oh);
9993 if (h->elf.root.u.def.section != stub_entry->target_section)
9994 /* H is an opd symbol. The addend must be zero. */
9995 r->r_addend = 0;
9996 else
9997 {
9998 off = (h->elf.root.u.def.value
9999 + h->elf.root.u.def.section->output_offset
10000 + h->elf.root.u.def.section->output_section->vma);
10001 r->r_addend -= off;
10002 }
10003 }
10004 }
10005 break;
10006
10007 case ppc_stub_plt_branch:
10008 case ppc_stub_plt_branch_r2off:
10009 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10010 stub_entry->root.string + 9,
10011 FALSE, FALSE);
10012 if (br_entry == NULL)
10013 {
10014 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10015 stub_entry->root.string);
10016 htab->stub_error = TRUE;
10017 return FALSE;
10018 }
10019
10020 dest = (stub_entry->target_value
10021 + stub_entry->target_section->output_offset
10022 + stub_entry->target_section->output_section->vma);
10023
10024 bfd_put_64 (htab->brlt->owner, dest,
10025 htab->brlt->contents + br_entry->offset);
10026
10027 if (br_entry->iter == htab->stub_iteration)
10028 {
10029 br_entry->iter = 0;
10030
10031 if (htab->relbrlt != NULL)
10032 {
10033 /* Create a reloc for the branch lookup table entry. */
10034 Elf_Internal_Rela rela;
10035 bfd_byte *rl;
10036
10037 rela.r_offset = (br_entry->offset
10038 + htab->brlt->output_offset
10039 + htab->brlt->output_section->vma);
10040 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10041 rela.r_addend = dest;
10042
10043 rl = htab->relbrlt->contents;
10044 rl += (htab->relbrlt->reloc_count++
10045 * sizeof (Elf64_External_Rela));
10046 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10047 }
10048 else if (info->emitrelocations)
10049 {
10050 r = get_relocs (htab->brlt, 1);
10051 if (r == NULL)
10052 return FALSE;
10053 /* brlt, being SEC_LINKER_CREATED does not go through the
10054 normal reloc processing. Symbols and offsets are not
10055 translated from input file to output file form, so
10056 set up the offset per the output file. */
10057 r->r_offset = (br_entry->offset
10058 + htab->brlt->output_offset
10059 + htab->brlt->output_section->vma);
10060 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10061 r->r_addend = dest;
10062 }
10063 }
10064
10065 dest = (br_entry->offset
10066 + htab->brlt->output_offset
10067 + htab->brlt->output_section->vma);
10068
10069 off = (dest
10070 - elf_gp (htab->brlt->output_section->owner)
10071 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10072
10073 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10074 {
10075 info->callbacks->einfo
10076 (_("%P: linkage table error against `%s'\n"),
10077 stub_entry->root.string);
10078 bfd_set_error (bfd_error_bad_value);
10079 htab->stub_error = TRUE;
10080 return FALSE;
10081 }
10082
10083 if (info->emitrelocations)
10084 {
10085 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10086 if (r == NULL)
10087 return FALSE;
10088 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10089 if (bfd_big_endian (info->output_bfd))
10090 r[0].r_offset += 2;
10091 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10092 r[0].r_offset += 4;
10093 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10094 r[0].r_addend = dest;
10095 if (PPC_HA (off) != 0)
10096 {
10097 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10098 r[1].r_offset = r[0].r_offset + 4;
10099 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10100 r[1].r_addend = r[0].r_addend;
10101 }
10102 }
10103
10104 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10105 {
10106 if (PPC_HA (off) != 0)
10107 {
10108 size = 16;
10109 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10110 loc += 4;
10111 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10112 }
10113 else
10114 {
10115 size = 12;
10116 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10117 }
10118 }
10119 else
10120 {
10121 bfd_vma r2off = get_r2off (info, stub_entry);
10122
10123 if (r2off == 0)
10124 {
10125 htab->stub_error = TRUE;
10126 return FALSE;
10127 }
10128
10129 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10130 loc += 4;
10131 size = 20;
10132 if (PPC_HA (off) != 0)
10133 {
10134 size += 4;
10135 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10136 loc += 4;
10137 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10138 loc += 4;
10139 }
10140 else
10141 {
10142 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10143 loc += 4;
10144 }
10145
10146 if (PPC_HA (r2off) != 0)
10147 {
10148 size += 4;
10149 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10150 loc += 4;
10151 }
10152 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10153 }
10154 loc += 4;
10155 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10156 loc += 4;
10157 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10158 break;
10159
10160 case ppc_stub_plt_call:
10161 case ppc_stub_plt_call_r2save:
10162 if (stub_entry->h != NULL
10163 && stub_entry->h->is_func_descriptor
10164 && stub_entry->h->oh != NULL)
10165 {
10166 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10167
10168 /* If the old-ABI "dot-symbol" is undefined make it weak so
10169 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10170 FIXME: We used to define the symbol on one of the call
10171 stubs instead, which is why we test symbol section id
10172 against htab->top_id in various places. Likely all
10173 these checks could now disappear. */
10174 if (fh->elf.root.type == bfd_link_hash_undefined)
10175 fh->elf.root.type = bfd_link_hash_undefweak;
10176 /* Stop undo_symbol_twiddle changing it back to undefined. */
10177 fh->was_undefined = 0;
10178 }
10179
10180 /* Now build the stub. */
10181 dest = stub_entry->plt_ent->plt.offset & ~1;
10182 if (dest >= (bfd_vma) -2)
10183 abort ();
10184
10185 plt = htab->plt;
10186 if (!htab->elf.dynamic_sections_created
10187 || stub_entry->h == NULL
10188 || stub_entry->h->elf.dynindx == -1)
10189 plt = htab->iplt;
10190
10191 dest += plt->output_offset + plt->output_section->vma;
10192
10193 if (stub_entry->h == NULL
10194 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10195 {
10196 Elf_Internal_Rela rela;
10197 bfd_byte *rl;
10198
10199 rela.r_offset = dest;
10200 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10201 rela.r_addend = (stub_entry->target_value
10202 + stub_entry->target_section->output_offset
10203 + stub_entry->target_section->output_section->vma);
10204
10205 rl = (htab->reliplt->contents
10206 + (htab->reliplt->reloc_count++
10207 * sizeof (Elf64_External_Rela)));
10208 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10209 stub_entry->plt_ent->plt.offset |= 1;
10210 }
10211
10212 off = (dest
10213 - elf_gp (plt->output_section->owner)
10214 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10215
10216 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10217 {
10218 info->callbacks->einfo
10219 (_("%P: linkage table error against `%s'\n"),
10220 stub_entry->h != NULL
10221 ? stub_entry->h->elf.root.root.string
10222 : "<local sym>");
10223 bfd_set_error (bfd_error_bad_value);
10224 htab->stub_error = TRUE;
10225 return FALSE;
10226 }
10227
10228 if (htab->plt_stub_align != 0)
10229 {
10230 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10231
10232 stub_entry->stub_sec->size += pad;
10233 stub_entry->stub_offset = stub_entry->stub_sec->size;
10234 loc += pad;
10235 }
10236
10237 r = NULL;
10238 if (info->emitrelocations)
10239 {
10240 r = get_relocs (stub_entry->stub_sec,
10241 (2
10242 + (PPC_HA (off) != 0)
10243 + (htab->plt_static_chain
10244 && PPC_HA (off + 16) == PPC_HA (off))));
10245 if (r == NULL)
10246 return FALSE;
10247 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10248 if (bfd_big_endian (info->output_bfd))
10249 r[0].r_offset += 2;
10250 r[0].r_addend = dest;
10251 }
10252 if (stub_entry->h != NULL
10253 && (stub_entry->h == htab->tls_get_addr_fd
10254 || stub_entry->h == htab->tls_get_addr)
10255 && !htab->no_tls_get_addr_opt)
10256 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10257 else
10258 p = build_plt_stub (htab, stub_entry, loc, off, r);
10259 size = p - loc;
10260 break;
10261
10262 default:
10263 BFD_FAIL ();
10264 return FALSE;
10265 }
10266
10267 stub_entry->stub_sec->size += size;
10268
10269 if (htab->emit_stub_syms)
10270 {
10271 struct elf_link_hash_entry *h;
10272 size_t len1, len2;
10273 char *name;
10274 const char *const stub_str[] = { "long_branch",
10275 "long_branch_r2off",
10276 "plt_branch",
10277 "plt_branch_r2off",
10278 "plt_call",
10279 "plt_call" };
10280
10281 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10282 len2 = strlen (stub_entry->root.string);
10283 name = bfd_malloc (len1 + len2 + 2);
10284 if (name == NULL)
10285 return FALSE;
10286 memcpy (name, stub_entry->root.string, 9);
10287 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10288 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10289 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10290 if (h == NULL)
10291 return FALSE;
10292 if (h->root.type == bfd_link_hash_new)
10293 {
10294 h->root.type = bfd_link_hash_defined;
10295 h->root.u.def.section = stub_entry->stub_sec;
10296 h->root.u.def.value = stub_entry->stub_offset;
10297 h->ref_regular = 1;
10298 h->def_regular = 1;
10299 h->ref_regular_nonweak = 1;
10300 h->forced_local = 1;
10301 h->non_elf = 0;
10302 }
10303 }
10304
10305 return TRUE;
10306 }
10307
10308 /* As above, but don't actually build the stub. Just bump offset so
10309 we know stub section sizes, and select plt_branch stubs where
10310 long_branch stubs won't do. */
10311
10312 static bfd_boolean
10313 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10314 {
10315 struct ppc_stub_hash_entry *stub_entry;
10316 struct bfd_link_info *info;
10317 struct ppc_link_hash_table *htab;
10318 bfd_vma off;
10319 int size;
10320
10321 /* Massage our args to the form they really have. */
10322 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10323 info = in_arg;
10324
10325 htab = ppc_hash_table (info);
10326 if (htab == NULL)
10327 return FALSE;
10328
10329 if (stub_entry->stub_type == ppc_stub_plt_call
10330 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10331 {
10332 asection *plt;
10333 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10334 if (off >= (bfd_vma) -2)
10335 abort ();
10336 plt = htab->plt;
10337 if (!htab->elf.dynamic_sections_created
10338 || stub_entry->h == NULL
10339 || stub_entry->h->elf.dynindx == -1)
10340 plt = htab->iplt;
10341 off += (plt->output_offset
10342 + plt->output_section->vma
10343 - elf_gp (plt->output_section->owner)
10344 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10345
10346 size = plt_stub_size (htab, stub_entry, off);
10347 if (htab->plt_stub_align)
10348 size += plt_stub_pad (htab, stub_entry, off);
10349 if (info->emitrelocations)
10350 {
10351 stub_entry->stub_sec->reloc_count
10352 += (2
10353 + (PPC_HA (off) != 0)
10354 + (htab->plt_static_chain
10355 && PPC_HA (off + 16) == PPC_HA (off)));
10356 stub_entry->stub_sec->flags |= SEC_RELOC;
10357 }
10358 }
10359 else
10360 {
10361 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10362 variants. */
10363 bfd_vma r2off = 0;
10364
10365 off = (stub_entry->target_value
10366 + stub_entry->target_section->output_offset
10367 + stub_entry->target_section->output_section->vma);
10368 off -= (stub_entry->stub_sec->size
10369 + stub_entry->stub_sec->output_offset
10370 + stub_entry->stub_sec->output_section->vma);
10371
10372 /* Reset the stub type from the plt variant in case we now
10373 can reach with a shorter stub. */
10374 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10375 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10376
10377 size = 4;
10378 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10379 {
10380 r2off = get_r2off (info, stub_entry);
10381 if (r2off == 0)
10382 {
10383 htab->stub_error = TRUE;
10384 return FALSE;
10385 }
10386 size = 12;
10387 if (PPC_HA (r2off) != 0)
10388 size = 16;
10389 off -= size - 4;
10390 }
10391
10392 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10393 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10394 {
10395 struct ppc_branch_hash_entry *br_entry;
10396
10397 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10398 stub_entry->root.string + 9,
10399 TRUE, FALSE);
10400 if (br_entry == NULL)
10401 {
10402 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10403 stub_entry->root.string);
10404 htab->stub_error = TRUE;
10405 return FALSE;
10406 }
10407
10408 if (br_entry->iter != htab->stub_iteration)
10409 {
10410 br_entry->iter = htab->stub_iteration;
10411 br_entry->offset = htab->brlt->size;
10412 htab->brlt->size += 8;
10413
10414 if (htab->relbrlt != NULL)
10415 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10416 else if (info->emitrelocations)
10417 {
10418 htab->brlt->reloc_count += 1;
10419 htab->brlt->flags |= SEC_RELOC;
10420 }
10421 }
10422
10423 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10424 off = (br_entry->offset
10425 + htab->brlt->output_offset
10426 + htab->brlt->output_section->vma
10427 - elf_gp (htab->brlt->output_section->owner)
10428 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10429
10430 if (info->emitrelocations)
10431 {
10432 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10433 stub_entry->stub_sec->flags |= SEC_RELOC;
10434 }
10435
10436 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10437 {
10438 size = 12;
10439 if (PPC_HA (off) != 0)
10440 size = 16;
10441 }
10442 else
10443 {
10444 size = 20;
10445 if (PPC_HA (off) != 0)
10446 size += 4;
10447
10448 if (PPC_HA (r2off) != 0)
10449 size += 4;
10450 }
10451 }
10452 else if (info->emitrelocations)
10453 {
10454 stub_entry->stub_sec->reloc_count += 1;
10455 stub_entry->stub_sec->flags |= SEC_RELOC;
10456 }
10457 }
10458
10459 stub_entry->stub_sec->size += size;
10460 return TRUE;
10461 }
10462
10463 /* Set up various things so that we can make a list of input sections
10464 for each output section included in the link. Returns -1 on error,
10465 0 when no stubs will be needed, and 1 on success. */
10466
10467 int
10468 ppc64_elf_setup_section_lists
10469 (struct bfd_link_info *info,
10470 asection *(*add_stub_section) (const char *, asection *),
10471 void (*layout_sections_again) (void))
10472 {
10473 bfd *input_bfd;
10474 int top_id, top_index, id;
10475 asection *section;
10476 asection **input_list;
10477 bfd_size_type amt;
10478 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10479
10480 if (htab == NULL)
10481 return -1;
10482 /* Stash our params away. */
10483 htab->add_stub_section = add_stub_section;
10484 htab->layout_sections_again = layout_sections_again;
10485
10486 if (htab->brlt == NULL)
10487 return 0;
10488
10489 /* Find the top input section id. */
10490 for (input_bfd = info->input_bfds, top_id = 3;
10491 input_bfd != NULL;
10492 input_bfd = input_bfd->link_next)
10493 {
10494 for (section = input_bfd->sections;
10495 section != NULL;
10496 section = section->next)
10497 {
10498 if (top_id < section->id)
10499 top_id = section->id;
10500 }
10501 }
10502
10503 htab->top_id = top_id;
10504 amt = sizeof (struct map_stub) * (top_id + 1);
10505 htab->stub_group = bfd_zmalloc (amt);
10506 if (htab->stub_group == NULL)
10507 return -1;
10508
10509 /* Set toc_off for com, und, abs and ind sections. */
10510 for (id = 0; id < 3; id++)
10511 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10512
10513 /* We can't use output_bfd->section_count here to find the top output
10514 section index as some sections may have been removed, and
10515 strip_excluded_output_sections doesn't renumber the indices. */
10516 for (section = info->output_bfd->sections, top_index = 0;
10517 section != NULL;
10518 section = section->next)
10519 {
10520 if (top_index < section->index)
10521 top_index = section->index;
10522 }
10523
10524 htab->top_index = top_index;
10525 amt = sizeof (asection *) * (top_index + 1);
10526 input_list = bfd_zmalloc (amt);
10527 htab->input_list = input_list;
10528 if (input_list == NULL)
10529 return -1;
10530
10531 return 1;
10532 }
10533
10534 /* Set up for first pass at multitoc partitioning. */
10535
10536 void
10537 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10538 {
10539 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10540
10541 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd);
10542 htab->toc_curr = elf_gp (info->output_bfd);
10543 htab->toc_bfd = NULL;
10544 htab->toc_first_sec = NULL;
10545 }
10546
10547 /* The linker repeatedly calls this function for each TOC input section
10548 and linker generated GOT section. Group input bfds such that the toc
10549 within a group is less than 64k in size. */
10550
10551 bfd_boolean
10552 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10553 {
10554 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10555 bfd_vma addr, off, limit;
10556
10557 if (htab == NULL)
10558 return FALSE;
10559
10560 if (!htab->second_toc_pass)
10561 {
10562 /* Keep track of the first .toc or .got section for this input bfd. */
10563 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
10564
10565 if (new_bfd)
10566 {
10567 htab->toc_bfd = isec->owner;
10568 htab->toc_first_sec = isec;
10569 }
10570
10571 addr = isec->output_offset + isec->output_section->vma;
10572 off = addr - htab->toc_curr;
10573 limit = 0x80008000;
10574 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10575 limit = 0x10000;
10576 if (off + isec->size > limit)
10577 {
10578 addr = (htab->toc_first_sec->output_offset
10579 + htab->toc_first_sec->output_section->vma);
10580 htab->toc_curr = addr;
10581 }
10582
10583 /* toc_curr is the base address of this toc group. Set elf_gp
10584 for the input section to be the offset relative to the
10585 output toc base plus 0x8000. Making the input elf_gp an
10586 offset allows us to move the toc as a whole without
10587 recalculating input elf_gp. */
10588 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10589 off += TOC_BASE_OFF;
10590
10591 /* Die if someone uses a linker script that doesn't keep input
10592 file .toc and .got together. */
10593 if (new_bfd
10594 && elf_gp (isec->owner) != 0
10595 && elf_gp (isec->owner) != off)
10596 return FALSE;
10597
10598 elf_gp (isec->owner) = off;
10599 return TRUE;
10600 }
10601
10602 /* During the second pass toc_first_sec points to the start of
10603 a toc group, and toc_curr is used to track the old elf_gp.
10604 We use toc_bfd to ensure we only look at each bfd once. */
10605 if (htab->toc_bfd == isec->owner)
10606 return TRUE;
10607 htab->toc_bfd = isec->owner;
10608
10609 if (htab->toc_first_sec == NULL
10610 || htab->toc_curr != elf_gp (isec->owner))
10611 {
10612 htab->toc_curr = elf_gp (isec->owner);
10613 htab->toc_first_sec = isec;
10614 }
10615 addr = (htab->toc_first_sec->output_offset
10616 + htab->toc_first_sec->output_section->vma);
10617 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10618 elf_gp (isec->owner) = off;
10619
10620 return TRUE;
10621 }
10622
10623 /* Called via elf_link_hash_traverse to merge GOT entries for global
10624 symbol H. */
10625
10626 static bfd_boolean
10627 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10628 {
10629 if (h->root.type == bfd_link_hash_indirect)
10630 return TRUE;
10631
10632 merge_got_entries (&h->got.glist);
10633
10634 return TRUE;
10635 }
10636
10637 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10638 symbol H. */
10639
10640 static bfd_boolean
10641 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10642 {
10643 struct got_entry *gent;
10644
10645 if (h->root.type == bfd_link_hash_indirect)
10646 return TRUE;
10647
10648 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10649 if (!gent->is_indirect)
10650 allocate_got (h, (struct bfd_link_info *) inf, gent);
10651 return TRUE;
10652 }
10653
10654 /* Called on the first multitoc pass after the last call to
10655 ppc64_elf_next_toc_section. This function removes duplicate GOT
10656 entries. */
10657
10658 bfd_boolean
10659 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10660 {
10661 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10662 struct bfd *ibfd, *ibfd2;
10663 bfd_boolean done_something;
10664
10665 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10666
10667 if (!htab->do_multi_toc)
10668 return FALSE;
10669
10670 /* Merge global sym got entries within a toc group. */
10671 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10672
10673 /* And tlsld_got. */
10674 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10675 {
10676 struct got_entry *ent, *ent2;
10677
10678 if (!is_ppc64_elf (ibfd))
10679 continue;
10680
10681 ent = ppc64_tlsld_got (ibfd);
10682 if (!ent->is_indirect
10683 && ent->got.offset != (bfd_vma) -1)
10684 {
10685 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10686 {
10687 if (!is_ppc64_elf (ibfd2))
10688 continue;
10689
10690 ent2 = ppc64_tlsld_got (ibfd2);
10691 if (!ent2->is_indirect
10692 && ent2->got.offset != (bfd_vma) -1
10693 && elf_gp (ibfd2) == elf_gp (ibfd))
10694 {
10695 ent2->is_indirect = TRUE;
10696 ent2->got.ent = ent;
10697 }
10698 }
10699 }
10700 }
10701
10702 /* Zap sizes of got sections. */
10703 htab->reliplt->rawsize = htab->reliplt->size;
10704 htab->reliplt->size -= htab->got_reli_size;
10705 htab->got_reli_size = 0;
10706
10707 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10708 {
10709 asection *got, *relgot;
10710
10711 if (!is_ppc64_elf (ibfd))
10712 continue;
10713
10714 got = ppc64_elf_tdata (ibfd)->got;
10715 if (got != NULL)
10716 {
10717 got->rawsize = got->size;
10718 got->size = 0;
10719 relgot = ppc64_elf_tdata (ibfd)->relgot;
10720 relgot->rawsize = relgot->size;
10721 relgot->size = 0;
10722 }
10723 }
10724
10725 /* Now reallocate the got, local syms first. We don't need to
10726 allocate section contents again since we never increase size. */
10727 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10728 {
10729 struct got_entry **lgot_ents;
10730 struct got_entry **end_lgot_ents;
10731 struct plt_entry **local_plt;
10732 struct plt_entry **end_local_plt;
10733 unsigned char *lgot_masks;
10734 bfd_size_type locsymcount;
10735 Elf_Internal_Shdr *symtab_hdr;
10736 asection *s, *srel;
10737
10738 if (!is_ppc64_elf (ibfd))
10739 continue;
10740
10741 lgot_ents = elf_local_got_ents (ibfd);
10742 if (!lgot_ents)
10743 continue;
10744
10745 symtab_hdr = &elf_symtab_hdr (ibfd);
10746 locsymcount = symtab_hdr->sh_info;
10747 end_lgot_ents = lgot_ents + locsymcount;
10748 local_plt = (struct plt_entry **) end_lgot_ents;
10749 end_local_plt = local_plt + locsymcount;
10750 lgot_masks = (unsigned char *) end_local_plt;
10751 s = ppc64_elf_tdata (ibfd)->got;
10752 srel = ppc64_elf_tdata (ibfd)->relgot;
10753 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10754 {
10755 struct got_entry *ent;
10756
10757 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10758 {
10759 unsigned int num = 1;
10760 ent->got.offset = s->size;
10761 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10762 num = 2;
10763 s->size += num * 8;
10764 if (info->shared)
10765 srel->size += num * sizeof (Elf64_External_Rela);
10766 else if ((*lgot_masks & PLT_IFUNC) != 0)
10767 {
10768 htab->reliplt->size
10769 += num * sizeof (Elf64_External_Rela);
10770 htab->got_reli_size
10771 += num * sizeof (Elf64_External_Rela);
10772 }
10773 }
10774 }
10775 }
10776
10777 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10778
10779 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10780 {
10781 struct got_entry *ent;
10782
10783 if (!is_ppc64_elf (ibfd))
10784 continue;
10785
10786 ent = ppc64_tlsld_got (ibfd);
10787 if (!ent->is_indirect
10788 && ent->got.offset != (bfd_vma) -1)
10789 {
10790 asection *s = ppc64_elf_tdata (ibfd)->got;
10791 ent->got.offset = s->size;
10792 s->size += 16;
10793 if (info->shared)
10794 {
10795 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10796 srel->size += sizeof (Elf64_External_Rela);
10797 }
10798 }
10799 }
10800
10801 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10802 if (!done_something)
10803 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10804 {
10805 asection *got;
10806
10807 if (!is_ppc64_elf (ibfd))
10808 continue;
10809
10810 got = ppc64_elf_tdata (ibfd)->got;
10811 if (got != NULL)
10812 {
10813 done_something = got->rawsize != got->size;
10814 if (done_something)
10815 break;
10816 }
10817 }
10818
10819 if (done_something)
10820 (*htab->layout_sections_again) ();
10821
10822 /* Set up for second pass over toc sections to recalculate elf_gp
10823 on input sections. */
10824 htab->toc_bfd = NULL;
10825 htab->toc_first_sec = NULL;
10826 htab->second_toc_pass = TRUE;
10827 return done_something;
10828 }
10829
10830 /* Called after second pass of multitoc partitioning. */
10831
10832 void
10833 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10834 {
10835 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10836
10837 /* After the second pass, toc_curr tracks the TOC offset used
10838 for code sections below in ppc64_elf_next_input_section. */
10839 htab->toc_curr = TOC_BASE_OFF;
10840 }
10841
10842 /* No toc references were found in ISEC. If the code in ISEC makes no
10843 calls, then there's no need to use toc adjusting stubs when branching
10844 into ISEC. Actually, indirect calls from ISEC are OK as they will
10845 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10846 needed, and 2 if a cyclical call-graph was found but no other reason
10847 for a stub was detected. If called from the top level, a return of
10848 2 means the same as a return of 0. */
10849
10850 static int
10851 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10852 {
10853 int ret;
10854
10855 /* Mark this section as checked. */
10856 isec->call_check_done = 1;
10857
10858 /* We know none of our code bearing sections will need toc stubs. */
10859 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10860 return 0;
10861
10862 if (isec->size == 0)
10863 return 0;
10864
10865 if (isec->output_section == NULL)
10866 return 0;
10867
10868 ret = 0;
10869 if (isec->reloc_count != 0)
10870 {
10871 Elf_Internal_Rela *relstart, *rel;
10872 Elf_Internal_Sym *local_syms;
10873 struct ppc_link_hash_table *htab;
10874
10875 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10876 info->keep_memory);
10877 if (relstart == NULL)
10878 return -1;
10879
10880 /* Look for branches to outside of this section. */
10881 local_syms = NULL;
10882 htab = ppc_hash_table (info);
10883 if (htab == NULL)
10884 return -1;
10885
10886 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10887 {
10888 enum elf_ppc64_reloc_type r_type;
10889 unsigned long r_symndx;
10890 struct elf_link_hash_entry *h;
10891 struct ppc_link_hash_entry *eh;
10892 Elf_Internal_Sym *sym;
10893 asection *sym_sec;
10894 struct _opd_sec_data *opd;
10895 bfd_vma sym_value;
10896 bfd_vma dest;
10897
10898 r_type = ELF64_R_TYPE (rel->r_info);
10899 if (r_type != R_PPC64_REL24
10900 && r_type != R_PPC64_REL14
10901 && r_type != R_PPC64_REL14_BRTAKEN
10902 && r_type != R_PPC64_REL14_BRNTAKEN)
10903 continue;
10904
10905 r_symndx = ELF64_R_SYM (rel->r_info);
10906 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
10907 isec->owner))
10908 {
10909 ret = -1;
10910 break;
10911 }
10912
10913 /* Calls to dynamic lib functions go through a plt call stub
10914 that uses r2. */
10915 eh = (struct ppc_link_hash_entry *) h;
10916 if (eh != NULL
10917 && (eh->elf.plt.plist != NULL
10918 || (eh->oh != NULL
10919 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
10920 {
10921 ret = 1;
10922 break;
10923 }
10924
10925 if (sym_sec == NULL)
10926 /* Ignore other undefined symbols. */
10927 continue;
10928
10929 /* Assume branches to other sections not included in the
10930 link need stubs too, to cover -R and absolute syms. */
10931 if (sym_sec->output_section == NULL)
10932 {
10933 ret = 1;
10934 break;
10935 }
10936
10937 if (h == NULL)
10938 sym_value = sym->st_value;
10939 else
10940 {
10941 if (h->root.type != bfd_link_hash_defined
10942 && h->root.type != bfd_link_hash_defweak)
10943 abort ();
10944 sym_value = h->root.u.def.value;
10945 }
10946 sym_value += rel->r_addend;
10947
10948 /* If this branch reloc uses an opd sym, find the code section. */
10949 opd = get_opd_info (sym_sec);
10950 if (opd != NULL)
10951 {
10952 if (h == NULL && opd->adjust != NULL)
10953 {
10954 long adjust;
10955
10956 adjust = opd->adjust[sym->st_value / 8];
10957 if (adjust == -1)
10958 /* Assume deleted functions won't ever be called. */
10959 continue;
10960 sym_value += adjust;
10961 }
10962
10963 dest = opd_entry_value (sym_sec, sym_value,
10964 &sym_sec, NULL, FALSE);
10965 if (dest == (bfd_vma) -1)
10966 continue;
10967 }
10968 else
10969 dest = (sym_value
10970 + sym_sec->output_offset
10971 + sym_sec->output_section->vma);
10972
10973 /* Ignore branch to self. */
10974 if (sym_sec == isec)
10975 continue;
10976
10977 /* If the called function uses the toc, we need a stub. */
10978 if (sym_sec->has_toc_reloc
10979 || sym_sec->makes_toc_func_call)
10980 {
10981 ret = 1;
10982 break;
10983 }
10984
10985 /* Assume any branch that needs a long branch stub might in fact
10986 need a plt_branch stub. A plt_branch stub uses r2. */
10987 else if (dest - (isec->output_offset
10988 + isec->output_section->vma
10989 + rel->r_offset) + (1 << 25) >= (2 << 25))
10990 {
10991 ret = 1;
10992 break;
10993 }
10994
10995 /* If calling back to a section in the process of being
10996 tested, we can't say for sure that no toc adjusting stubs
10997 are needed, so don't return zero. */
10998 else if (sym_sec->call_check_in_progress)
10999 ret = 2;
11000
11001 /* Branches to another section that itself doesn't have any TOC
11002 references are OK. Recursively call ourselves to check. */
11003 else if (!sym_sec->call_check_done)
11004 {
11005 int recur;
11006
11007 /* Mark current section as indeterminate, so that other
11008 sections that call back to current won't be marked as
11009 known. */
11010 isec->call_check_in_progress = 1;
11011 recur = toc_adjusting_stub_needed (info, sym_sec);
11012 isec->call_check_in_progress = 0;
11013
11014 if (recur != 0)
11015 {
11016 ret = recur;
11017 if (recur != 2)
11018 break;
11019 }
11020 }
11021 }
11022
11023 if (local_syms != NULL
11024 && (elf_symtab_hdr (isec->owner).contents
11025 != (unsigned char *) local_syms))
11026 free (local_syms);
11027 if (elf_section_data (isec)->relocs != relstart)
11028 free (relstart);
11029 }
11030
11031 if ((ret & 1) == 0
11032 && isec->map_head.s != NULL
11033 && (strcmp (isec->output_section->name, ".init") == 0
11034 || strcmp (isec->output_section->name, ".fini") == 0))
11035 {
11036 if (isec->map_head.s->has_toc_reloc
11037 || isec->map_head.s->makes_toc_func_call)
11038 ret = 1;
11039 else if (!isec->map_head.s->call_check_done)
11040 {
11041 int recur;
11042 isec->call_check_in_progress = 1;
11043 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11044 isec->call_check_in_progress = 0;
11045 if (recur != 0)
11046 ret = recur;
11047 }
11048 }
11049
11050 if (ret == 1)
11051 isec->makes_toc_func_call = 1;
11052
11053 return ret;
11054 }
11055
11056 /* The linker repeatedly calls this function for each input section,
11057 in the order that input sections are linked into output sections.
11058 Build lists of input sections to determine groupings between which
11059 we may insert linker stubs. */
11060
11061 bfd_boolean
11062 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11063 {
11064 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11065
11066 if (htab == NULL)
11067 return FALSE;
11068
11069 if ((isec->output_section->flags & SEC_CODE) != 0
11070 && isec->output_section->index <= htab->top_index)
11071 {
11072 asection **list = htab->input_list + isec->output_section->index;
11073 /* Steal the link_sec pointer for our list. */
11074 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11075 /* This happens to make the list in reverse order,
11076 which is what we want. */
11077 PREV_SEC (isec) = *list;
11078 *list = isec;
11079 }
11080
11081 if (htab->multi_toc_needed)
11082 {
11083 /* If a code section has a function that uses the TOC then we need
11084 to use the right TOC (obviously). Also, make sure that .opd gets
11085 the correct TOC value for R_PPC64_TOC relocs that don't have or
11086 can't find their function symbol (shouldn't ever happen now).
11087 Also specially treat .fixup for the linux kernel. .fixup
11088 contains branches, but only back to the function that hit an
11089 exception. */
11090 if (isec->has_toc_reloc
11091 || (isec->flags & SEC_CODE) == 0
11092 || strcmp (isec->name, ".fixup") == 0)
11093 {
11094 if (elf_gp (isec->owner) != 0)
11095 htab->toc_curr = elf_gp (isec->owner);
11096 }
11097 else
11098 {
11099 if (!isec->call_check_done
11100 && toc_adjusting_stub_needed (info, isec) < 0)
11101 return FALSE;
11102 /* If we make a local call from this section, ie. a branch
11103 without a following nop, then we have no place to put a
11104 toc restoring insn. We must use the same toc group as
11105 the callee.
11106 Testing makes_toc_func_call actually tests for *any*
11107 calls to functions that need a good toc pointer. A more
11108 precise test would be better, as this one will set
11109 incorrect values for pasted .init/.fini fragments.
11110 (Fixed later in check_pasted_section.) */
11111 if (isec->makes_toc_func_call
11112 && elf_gp (isec->owner) != 0)
11113 htab->toc_curr = elf_gp (isec->owner);
11114 }
11115 }
11116
11117 /* Functions that don't use the TOC can belong in any TOC group.
11118 Use the last TOC base. */
11119 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11120 return TRUE;
11121 }
11122
11123 /* Check that all .init and .fini sections use the same toc, if they
11124 have toc relocs. */
11125
11126 static bfd_boolean
11127 check_pasted_section (struct bfd_link_info *info, const char *name)
11128 {
11129 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11130
11131 if (o != NULL)
11132 {
11133 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11134 bfd_vma toc_off = 0;
11135 asection *i;
11136
11137 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11138 if (i->has_toc_reloc)
11139 {
11140 if (toc_off == 0)
11141 toc_off = htab->stub_group[i->id].toc_off;
11142 else if (toc_off != htab->stub_group[i->id].toc_off)
11143 return FALSE;
11144 }
11145
11146 if (toc_off == 0)
11147 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11148 if (i->makes_toc_func_call)
11149 {
11150 toc_off = htab->stub_group[i->id].toc_off;
11151 break;
11152 }
11153
11154 /* Make sure the whole pasted function uses the same toc offset. */
11155 if (toc_off != 0)
11156 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11157 htab->stub_group[i->id].toc_off = toc_off;
11158 }
11159 return TRUE;
11160 }
11161
11162 bfd_boolean
11163 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11164 {
11165 return (check_pasted_section (info, ".init")
11166 & check_pasted_section (info, ".fini"));
11167 }
11168
11169 /* See whether we can group stub sections together. Grouping stub
11170 sections may result in fewer stubs. More importantly, we need to
11171 put all .init* and .fini* stubs at the beginning of the .init or
11172 .fini output sections respectively, because glibc splits the
11173 _init and _fini functions into multiple parts. Putting a stub in
11174 the middle of a function is not a good idea. */
11175
11176 static void
11177 group_sections (struct ppc_link_hash_table *htab,
11178 bfd_size_type stub_group_size,
11179 bfd_boolean stubs_always_before_branch)
11180 {
11181 asection **list;
11182 bfd_size_type stub14_group_size;
11183 bfd_boolean suppress_size_errors;
11184
11185 suppress_size_errors = FALSE;
11186 stub14_group_size = stub_group_size;
11187 if (stub_group_size == 1)
11188 {
11189 /* Default values. */
11190 if (stubs_always_before_branch)
11191 {
11192 stub_group_size = 0x1e00000;
11193 stub14_group_size = 0x7800;
11194 }
11195 else
11196 {
11197 stub_group_size = 0x1c00000;
11198 stub14_group_size = 0x7000;
11199 }
11200 suppress_size_errors = TRUE;
11201 }
11202
11203 list = htab->input_list + htab->top_index;
11204 do
11205 {
11206 asection *tail = *list;
11207 while (tail != NULL)
11208 {
11209 asection *curr;
11210 asection *prev;
11211 bfd_size_type total;
11212 bfd_boolean big_sec;
11213 bfd_vma curr_toc;
11214
11215 curr = tail;
11216 total = tail->size;
11217 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11218 && ppc64_elf_section_data (tail)->has_14bit_branch
11219 ? stub14_group_size : stub_group_size);
11220 if (big_sec && !suppress_size_errors)
11221 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11222 tail->owner, tail);
11223 curr_toc = htab->stub_group[tail->id].toc_off;
11224
11225 while ((prev = PREV_SEC (curr)) != NULL
11226 && ((total += curr->output_offset - prev->output_offset)
11227 < (ppc64_elf_section_data (prev) != NULL
11228 && ppc64_elf_section_data (prev)->has_14bit_branch
11229 ? stub14_group_size : stub_group_size))
11230 && htab->stub_group[prev->id].toc_off == curr_toc)
11231 curr = prev;
11232
11233 /* OK, the size from the start of CURR to the end is less
11234 than stub_group_size and thus can be handled by one stub
11235 section. (or the tail section is itself larger than
11236 stub_group_size, in which case we may be toast.) We
11237 should really be keeping track of the total size of stubs
11238 added here, as stubs contribute to the final output
11239 section size. That's a little tricky, and this way will
11240 only break if stubs added make the total size more than
11241 2^25, ie. for the default stub_group_size, if stubs total
11242 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11243 do
11244 {
11245 prev = PREV_SEC (tail);
11246 /* Set up this stub group. */
11247 htab->stub_group[tail->id].link_sec = curr;
11248 }
11249 while (tail != curr && (tail = prev) != NULL);
11250
11251 /* But wait, there's more! Input sections up to stub_group_size
11252 bytes before the stub section can be handled by it too.
11253 Don't do this if we have a really large section after the
11254 stubs, as adding more stubs increases the chance that
11255 branches may not reach into the stub section. */
11256 if (!stubs_always_before_branch && !big_sec)
11257 {
11258 total = 0;
11259 while (prev != NULL
11260 && ((total += tail->output_offset - prev->output_offset)
11261 < (ppc64_elf_section_data (prev) != NULL
11262 && ppc64_elf_section_data (prev)->has_14bit_branch
11263 ? stub14_group_size : stub_group_size))
11264 && htab->stub_group[prev->id].toc_off == curr_toc)
11265 {
11266 tail = prev;
11267 prev = PREV_SEC (tail);
11268 htab->stub_group[tail->id].link_sec = curr;
11269 }
11270 }
11271 tail = prev;
11272 }
11273 }
11274 while (list-- != htab->input_list);
11275 free (htab->input_list);
11276 #undef PREV_SEC
11277 }
11278
11279 static const unsigned char glink_eh_frame_cie[] =
11280 {
11281 0, 0, 0, 16, /* length. */
11282 0, 0, 0, 0, /* id. */
11283 1, /* CIE version. */
11284 'z', 'R', 0, /* Augmentation string. */
11285 4, /* Code alignment. */
11286 0x78, /* Data alignment. */
11287 65, /* RA reg. */
11288 1, /* Augmentation size. */
11289 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11290 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11291 };
11292
11293 /* Stripping output sections is normally done before dynamic section
11294 symbols have been allocated. This function is called later, and
11295 handles cases like htab->brlt which is mapped to its own output
11296 section. */
11297
11298 static void
11299 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11300 {
11301 if (isec->size == 0
11302 && isec->output_section->size == 0
11303 && !(isec->output_section->flags & SEC_KEEP)
11304 && !bfd_section_removed_from_list (info->output_bfd,
11305 isec->output_section)
11306 && elf_section_data (isec->output_section)->dynindx == 0)
11307 {
11308 isec->output_section->flags |= SEC_EXCLUDE;
11309 bfd_section_list_remove (info->output_bfd, isec->output_section);
11310 info->output_bfd->section_count--;
11311 }
11312 }
11313
11314 /* Determine and set the size of the stub section for a final link.
11315
11316 The basic idea here is to examine all the relocations looking for
11317 PC-relative calls to a target that is unreachable with a "bl"
11318 instruction. */
11319
11320 bfd_boolean
11321 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11322 bfd_boolean plt_static_chain, int plt_thread_safe,
11323 int plt_stub_align)
11324 {
11325 bfd_size_type stub_group_size;
11326 bfd_boolean stubs_always_before_branch;
11327 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11328
11329 if (htab == NULL)
11330 return FALSE;
11331
11332 htab->plt_static_chain = plt_static_chain;
11333 htab->plt_stub_align = plt_stub_align;
11334 if (plt_thread_safe == -1)
11335 {
11336 const char *const thread_starter[] =
11337 {
11338 "pthread_create",
11339 /* libstdc++ */
11340 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11341 /* librt */
11342 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11343 "mq_notify", "create_timer",
11344 /* libanl */
11345 "getaddrinfo_a",
11346 /* libgomp */
11347 "GOMP_parallel_start",
11348 "GOMP_parallel_loop_static_start",
11349 "GOMP_parallel_loop_dynamic_start",
11350 "GOMP_parallel_loop_guided_start",
11351 "GOMP_parallel_loop_runtime_start",
11352 "GOMP_parallel_sections_start",
11353 };
11354 unsigned i;
11355
11356 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11357 {
11358 struct elf_link_hash_entry *h;
11359 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11360 FALSE, FALSE, TRUE);
11361 plt_thread_safe = h != NULL && h->ref_regular;
11362 if (plt_thread_safe)
11363 break;
11364 }
11365 }
11366 htab->plt_thread_safe = plt_thread_safe;
11367 stubs_always_before_branch = group_size < 0;
11368 if (group_size < 0)
11369 stub_group_size = -group_size;
11370 else
11371 stub_group_size = group_size;
11372
11373 group_sections (htab, stub_group_size, stubs_always_before_branch);
11374
11375 while (1)
11376 {
11377 bfd *input_bfd;
11378 unsigned int bfd_indx;
11379 asection *stub_sec;
11380
11381 htab->stub_iteration += 1;
11382
11383 for (input_bfd = info->input_bfds, bfd_indx = 0;
11384 input_bfd != NULL;
11385 input_bfd = input_bfd->link_next, bfd_indx++)
11386 {
11387 Elf_Internal_Shdr *symtab_hdr;
11388 asection *section;
11389 Elf_Internal_Sym *local_syms = NULL;
11390
11391 if (!is_ppc64_elf (input_bfd))
11392 continue;
11393
11394 /* We'll need the symbol table in a second. */
11395 symtab_hdr = &elf_symtab_hdr (input_bfd);
11396 if (symtab_hdr->sh_info == 0)
11397 continue;
11398
11399 /* Walk over each section attached to the input bfd. */
11400 for (section = input_bfd->sections;
11401 section != NULL;
11402 section = section->next)
11403 {
11404 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11405
11406 /* If there aren't any relocs, then there's nothing more
11407 to do. */
11408 if ((section->flags & SEC_RELOC) == 0
11409 || (section->flags & SEC_ALLOC) == 0
11410 || (section->flags & SEC_LOAD) == 0
11411 || (section->flags & SEC_CODE) == 0
11412 || section->reloc_count == 0)
11413 continue;
11414
11415 /* If this section is a link-once section that will be
11416 discarded, then don't create any stubs. */
11417 if (section->output_section == NULL
11418 || section->output_section->owner != info->output_bfd)
11419 continue;
11420
11421 /* Get the relocs. */
11422 internal_relocs
11423 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11424 info->keep_memory);
11425 if (internal_relocs == NULL)
11426 goto error_ret_free_local;
11427
11428 /* Now examine each relocation. */
11429 irela = internal_relocs;
11430 irelaend = irela + section->reloc_count;
11431 for (; irela < irelaend; irela++)
11432 {
11433 enum elf_ppc64_reloc_type r_type;
11434 unsigned int r_indx;
11435 enum ppc_stub_type stub_type;
11436 struct ppc_stub_hash_entry *stub_entry;
11437 asection *sym_sec, *code_sec;
11438 bfd_vma sym_value, code_value;
11439 bfd_vma destination;
11440 bfd_boolean ok_dest;
11441 struct ppc_link_hash_entry *hash;
11442 struct ppc_link_hash_entry *fdh;
11443 struct elf_link_hash_entry *h;
11444 Elf_Internal_Sym *sym;
11445 char *stub_name;
11446 const asection *id_sec;
11447 struct _opd_sec_data *opd;
11448 struct plt_entry *plt_ent;
11449
11450 r_type = ELF64_R_TYPE (irela->r_info);
11451 r_indx = ELF64_R_SYM (irela->r_info);
11452
11453 if (r_type >= R_PPC64_max)
11454 {
11455 bfd_set_error (bfd_error_bad_value);
11456 goto error_ret_free_internal;
11457 }
11458
11459 /* Only look for stubs on branch instructions. */
11460 if (r_type != R_PPC64_REL24
11461 && r_type != R_PPC64_REL14
11462 && r_type != R_PPC64_REL14_BRTAKEN
11463 && r_type != R_PPC64_REL14_BRNTAKEN)
11464 continue;
11465
11466 /* Now determine the call target, its name, value,
11467 section. */
11468 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11469 r_indx, input_bfd))
11470 goto error_ret_free_internal;
11471 hash = (struct ppc_link_hash_entry *) h;
11472
11473 ok_dest = FALSE;
11474 fdh = NULL;
11475 sym_value = 0;
11476 if (hash == NULL)
11477 {
11478 sym_value = sym->st_value;
11479 ok_dest = TRUE;
11480 }
11481 else if (hash->elf.root.type == bfd_link_hash_defined
11482 || hash->elf.root.type == bfd_link_hash_defweak)
11483 {
11484 sym_value = hash->elf.root.u.def.value;
11485 if (sym_sec->output_section != NULL)
11486 ok_dest = TRUE;
11487 }
11488 else if (hash->elf.root.type == bfd_link_hash_undefweak
11489 || hash->elf.root.type == bfd_link_hash_undefined)
11490 {
11491 /* Recognise an old ABI func code entry sym, and
11492 use the func descriptor sym instead if it is
11493 defined. */
11494 if (hash->elf.root.root.string[0] == '.'
11495 && (fdh = lookup_fdh (hash, htab)) != NULL)
11496 {
11497 if (fdh->elf.root.type == bfd_link_hash_defined
11498 || fdh->elf.root.type == bfd_link_hash_defweak)
11499 {
11500 sym_sec = fdh->elf.root.u.def.section;
11501 sym_value = fdh->elf.root.u.def.value;
11502 if (sym_sec->output_section != NULL)
11503 ok_dest = TRUE;
11504 }
11505 else
11506 fdh = NULL;
11507 }
11508 }
11509 else
11510 {
11511 bfd_set_error (bfd_error_bad_value);
11512 goto error_ret_free_internal;
11513 }
11514
11515 destination = 0;
11516 if (ok_dest)
11517 {
11518 sym_value += irela->r_addend;
11519 destination = (sym_value
11520 + sym_sec->output_offset
11521 + sym_sec->output_section->vma);
11522 }
11523
11524 code_sec = sym_sec;
11525 code_value = sym_value;
11526 opd = get_opd_info (sym_sec);
11527 if (opd != NULL)
11528 {
11529 bfd_vma dest;
11530
11531 if (hash == NULL && opd->adjust != NULL)
11532 {
11533 long adjust = opd->adjust[sym_value / 8];
11534 if (adjust == -1)
11535 continue;
11536 code_value += adjust;
11537 sym_value += adjust;
11538 }
11539 dest = opd_entry_value (sym_sec, sym_value,
11540 &code_sec, &code_value, FALSE);
11541 if (dest != (bfd_vma) -1)
11542 {
11543 destination = dest;
11544 if (fdh != NULL)
11545 {
11546 /* Fixup old ABI sym to point at code
11547 entry. */
11548 hash->elf.root.type = bfd_link_hash_defweak;
11549 hash->elf.root.u.def.section = code_sec;
11550 hash->elf.root.u.def.value = code_value;
11551 }
11552 }
11553 }
11554
11555 /* Determine what (if any) linker stub is needed. */
11556 plt_ent = NULL;
11557 stub_type = ppc_type_of_stub (section, irela, &hash,
11558 &plt_ent, destination);
11559
11560 if (stub_type != ppc_stub_plt_call)
11561 {
11562 /* Check whether we need a TOC adjusting stub.
11563 Since the linker pastes together pieces from
11564 different object files when creating the
11565 _init and _fini functions, it may be that a
11566 call to what looks like a local sym is in
11567 fact a call needing a TOC adjustment. */
11568 if (code_sec != NULL
11569 && code_sec->output_section != NULL
11570 && (htab->stub_group[code_sec->id].toc_off
11571 != htab->stub_group[section->id].toc_off)
11572 && (code_sec->has_toc_reloc
11573 || code_sec->makes_toc_func_call))
11574 stub_type = ppc_stub_long_branch_r2off;
11575 }
11576
11577 if (stub_type == ppc_stub_none)
11578 continue;
11579
11580 /* __tls_get_addr calls might be eliminated. */
11581 if (stub_type != ppc_stub_plt_call
11582 && hash != NULL
11583 && (hash == htab->tls_get_addr
11584 || hash == htab->tls_get_addr_fd)
11585 && section->has_tls_reloc
11586 && irela != internal_relocs)
11587 {
11588 /* Get tls info. */
11589 unsigned char *tls_mask;
11590
11591 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11592 irela - 1, input_bfd))
11593 goto error_ret_free_internal;
11594 if (*tls_mask != 0)
11595 continue;
11596 }
11597
11598 if (stub_type == ppc_stub_plt_call
11599 && irela + 1 < irelaend
11600 && irela[1].r_offset == irela->r_offset + 4
11601 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11602 {
11603 if (!tocsave_find (htab, INSERT,
11604 &local_syms, irela + 1, input_bfd))
11605 goto error_ret_free_internal;
11606 }
11607 else if (stub_type == ppc_stub_plt_call)
11608 stub_type = ppc_stub_plt_call_r2save;
11609
11610 /* Support for grouping stub sections. */
11611 id_sec = htab->stub_group[section->id].link_sec;
11612
11613 /* Get the name of this stub. */
11614 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11615 if (!stub_name)
11616 goto error_ret_free_internal;
11617
11618 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11619 stub_name, FALSE, FALSE);
11620 if (stub_entry != NULL)
11621 {
11622 /* The proper stub has already been created. */
11623 free (stub_name);
11624 if (stub_type == ppc_stub_plt_call_r2save)
11625 stub_entry->stub_type = stub_type;
11626 continue;
11627 }
11628
11629 stub_entry = ppc_add_stub (stub_name, section, info);
11630 if (stub_entry == NULL)
11631 {
11632 free (stub_name);
11633 error_ret_free_internal:
11634 if (elf_section_data (section)->relocs == NULL)
11635 free (internal_relocs);
11636 error_ret_free_local:
11637 if (local_syms != NULL
11638 && (symtab_hdr->contents
11639 != (unsigned char *) local_syms))
11640 free (local_syms);
11641 return FALSE;
11642 }
11643
11644 stub_entry->stub_type = stub_type;
11645 if (stub_type != ppc_stub_plt_call
11646 && stub_type != ppc_stub_plt_call_r2save)
11647 {
11648 stub_entry->target_value = code_value;
11649 stub_entry->target_section = code_sec;
11650 }
11651 else
11652 {
11653 stub_entry->target_value = sym_value;
11654 stub_entry->target_section = sym_sec;
11655 }
11656 stub_entry->h = hash;
11657 stub_entry->plt_ent = plt_ent;
11658 stub_entry->addend = irela->r_addend;
11659
11660 if (stub_entry->h != NULL)
11661 htab->stub_globals += 1;
11662 }
11663
11664 /* We're done with the internal relocs, free them. */
11665 if (elf_section_data (section)->relocs != internal_relocs)
11666 free (internal_relocs);
11667 }
11668
11669 if (local_syms != NULL
11670 && symtab_hdr->contents != (unsigned char *) local_syms)
11671 {
11672 if (!info->keep_memory)
11673 free (local_syms);
11674 else
11675 symtab_hdr->contents = (unsigned char *) local_syms;
11676 }
11677 }
11678
11679 /* We may have added some stubs. Find out the new size of the
11680 stub sections. */
11681 for (stub_sec = htab->stub_bfd->sections;
11682 stub_sec != NULL;
11683 stub_sec = stub_sec->next)
11684 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11685 {
11686 stub_sec->rawsize = stub_sec->size;
11687 stub_sec->size = 0;
11688 stub_sec->reloc_count = 0;
11689 stub_sec->flags &= ~SEC_RELOC;
11690 }
11691
11692 htab->brlt->size = 0;
11693 htab->brlt->reloc_count = 0;
11694 htab->brlt->flags &= ~SEC_RELOC;
11695 if (htab->relbrlt != NULL)
11696 htab->relbrlt->size = 0;
11697
11698 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11699
11700 if (info->emitrelocations
11701 && htab->glink != NULL && htab->glink->size != 0)
11702 {
11703 htab->glink->reloc_count = 1;
11704 htab->glink->flags |= SEC_RELOC;
11705 }
11706
11707 if (htab->glink_eh_frame != NULL
11708 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11709 && htab->glink_eh_frame->output_section->size != 0)
11710 {
11711 size_t size = 0, align;
11712
11713 for (stub_sec = htab->stub_bfd->sections;
11714 stub_sec != NULL;
11715 stub_sec = stub_sec->next)
11716 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11717 size += 20;
11718 if (htab->glink != NULL && htab->glink->size != 0)
11719 size += 24;
11720 if (size != 0)
11721 size += sizeof (glink_eh_frame_cie);
11722 align = 1;
11723 align <<= htab->glink_eh_frame->output_section->alignment_power;
11724 align -= 1;
11725 size = (size + align) & ~align;
11726 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11727 htab->glink_eh_frame->size = size;
11728 }
11729
11730 if (htab->plt_stub_align != 0)
11731 for (stub_sec = htab->stub_bfd->sections;
11732 stub_sec != NULL;
11733 stub_sec = stub_sec->next)
11734 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11735 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11736 & (-1 << htab->plt_stub_align));
11737
11738 for (stub_sec = htab->stub_bfd->sections;
11739 stub_sec != NULL;
11740 stub_sec = stub_sec->next)
11741 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11742 && stub_sec->rawsize != stub_sec->size)
11743 break;
11744
11745 /* Exit from this loop when no stubs have been added, and no stubs
11746 have changed size. */
11747 if (stub_sec == NULL
11748 && (htab->glink_eh_frame == NULL
11749 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11750 break;
11751
11752 /* Ask the linker to do its stuff. */
11753 (*htab->layout_sections_again) ();
11754 }
11755
11756 maybe_strip_output (info, htab->brlt);
11757 if (htab->glink_eh_frame != NULL)
11758 maybe_strip_output (info, htab->glink_eh_frame);
11759
11760 return TRUE;
11761 }
11762
11763 /* Called after we have determined section placement. If sections
11764 move, we'll be called again. Provide a value for TOCstart. */
11765
11766 bfd_vma
11767 ppc64_elf_toc (bfd *obfd)
11768 {
11769 asection *s;
11770 bfd_vma TOCstart;
11771
11772 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11773 order. The TOC starts where the first of these sections starts. */
11774 s = bfd_get_section_by_name (obfd, ".got");
11775 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11776 s = bfd_get_section_by_name (obfd, ".toc");
11777 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11778 s = bfd_get_section_by_name (obfd, ".tocbss");
11779 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11780 s = bfd_get_section_by_name (obfd, ".plt");
11781 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11782 {
11783 /* This may happen for
11784 o references to TOC base (SYM@toc / TOC[tc0]) without a
11785 .toc directive
11786 o bad linker script
11787 o --gc-sections and empty TOC sections
11788
11789 FIXME: Warn user? */
11790
11791 /* Look for a likely section. We probably won't even be
11792 using TOCstart. */
11793 for (s = obfd->sections; s != NULL; s = s->next)
11794 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11795 | SEC_EXCLUDE))
11796 == (SEC_ALLOC | SEC_SMALL_DATA))
11797 break;
11798 if (s == NULL)
11799 for (s = obfd->sections; s != NULL; s = s->next)
11800 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11801 == (SEC_ALLOC | SEC_SMALL_DATA))
11802 break;
11803 if (s == NULL)
11804 for (s = obfd->sections; s != NULL; s = s->next)
11805 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11806 == SEC_ALLOC)
11807 break;
11808 if (s == NULL)
11809 for (s = obfd->sections; s != NULL; s = s->next)
11810 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11811 break;
11812 }
11813
11814 TOCstart = 0;
11815 if (s != NULL)
11816 TOCstart = s->output_section->vma + s->output_offset;
11817
11818 return TOCstart;
11819 }
11820
11821 /* Build all the stubs associated with the current output file.
11822 The stubs are kept in a hash table attached to the main linker
11823 hash table. This function is called via gldelf64ppc_finish. */
11824
11825 bfd_boolean
11826 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11827 struct bfd_link_info *info,
11828 char **stats)
11829 {
11830 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11831 asection *stub_sec;
11832 bfd_byte *p;
11833 int stub_sec_count = 0;
11834
11835 if (htab == NULL)
11836 return FALSE;
11837
11838 htab->emit_stub_syms = emit_stub_syms;
11839
11840 /* Allocate memory to hold the linker stubs. */
11841 for (stub_sec = htab->stub_bfd->sections;
11842 stub_sec != NULL;
11843 stub_sec = stub_sec->next)
11844 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11845 && stub_sec->size != 0)
11846 {
11847 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11848 if (stub_sec->contents == NULL)
11849 return FALSE;
11850 /* We want to check that built size is the same as calculated
11851 size. rawsize is a convenient location to use. */
11852 stub_sec->rawsize = stub_sec->size;
11853 stub_sec->size = 0;
11854 }
11855
11856 if (htab->glink != NULL && htab->glink->size != 0)
11857 {
11858 unsigned int indx;
11859 bfd_vma plt0;
11860
11861 /* Build the .glink plt call stub. */
11862 if (htab->emit_stub_syms)
11863 {
11864 struct elf_link_hash_entry *h;
11865 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11866 TRUE, FALSE, FALSE);
11867 if (h == NULL)
11868 return FALSE;
11869 if (h->root.type == bfd_link_hash_new)
11870 {
11871 h->root.type = bfd_link_hash_defined;
11872 h->root.u.def.section = htab->glink;
11873 h->root.u.def.value = 8;
11874 h->ref_regular = 1;
11875 h->def_regular = 1;
11876 h->ref_regular_nonweak = 1;
11877 h->forced_local = 1;
11878 h->non_elf = 0;
11879 }
11880 }
11881 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11882 if (info->emitrelocations)
11883 {
11884 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11885 if (r == NULL)
11886 return FALSE;
11887 r->r_offset = (htab->glink->output_offset
11888 + htab->glink->output_section->vma);
11889 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
11890 r->r_addend = plt0;
11891 }
11892 p = htab->glink->contents;
11893 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
11894 bfd_put_64 (htab->glink->owner, plt0, p);
11895 p += 8;
11896 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
11897 p += 4;
11898 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
11899 p += 4;
11900 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
11901 p += 4;
11902 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
11903 p += 4;
11904 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
11905 p += 4;
11906 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
11907 p += 4;
11908 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
11909 p += 4;
11910 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
11911 p += 4;
11912 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
11913 p += 4;
11914 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
11915 p += 4;
11916 bfd_put_32 (htab->glink->owner, BCTR, p);
11917 p += 4;
11918 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
11919 {
11920 bfd_put_32 (htab->glink->owner, NOP, p);
11921 p += 4;
11922 }
11923
11924 /* Build the .glink lazy link call stubs. */
11925 indx = 0;
11926 while (p < htab->glink->contents + htab->glink->size)
11927 {
11928 if (indx < 0x8000)
11929 {
11930 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
11931 p += 4;
11932 }
11933 else
11934 {
11935 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
11936 p += 4;
11937 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
11938 p += 4;
11939 }
11940 bfd_put_32 (htab->glink->owner,
11941 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
11942 indx++;
11943 p += 4;
11944 }
11945 htab->glink->rawsize = p - htab->glink->contents;
11946 }
11947
11948 if (htab->brlt->size != 0)
11949 {
11950 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
11951 htab->brlt->size);
11952 if (htab->brlt->contents == NULL)
11953 return FALSE;
11954 }
11955 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
11956 {
11957 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
11958 htab->relbrlt->size);
11959 if (htab->relbrlt->contents == NULL)
11960 return FALSE;
11961 }
11962
11963 if (htab->glink_eh_frame != NULL
11964 && htab->glink_eh_frame->size != 0)
11965 {
11966 bfd_vma val;
11967 bfd_byte *last_fde;
11968 size_t last_fde_len, size, align, pad;
11969
11970 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
11971 if (p == NULL)
11972 return FALSE;
11973 htab->glink_eh_frame->contents = p;
11974 last_fde = p;
11975
11976 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11977
11978 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
11979 /* CIE length (rewrite in case little-endian). */
11980 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
11981 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
11982 p += sizeof (glink_eh_frame_cie);
11983
11984 for (stub_sec = htab->stub_bfd->sections;
11985 stub_sec != NULL;
11986 stub_sec = stub_sec->next)
11987 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11988 {
11989 last_fde = p;
11990 last_fde_len = 16;
11991 /* FDE length. */
11992 bfd_put_32 (htab->elf.dynobj, 16, p);
11993 p += 4;
11994 /* CIE pointer. */
11995 val = p - htab->glink_eh_frame->contents;
11996 bfd_put_32 (htab->elf.dynobj, val, p);
11997 p += 4;
11998 /* Offset to stub section. */
11999 val = (stub_sec->output_section->vma
12000 + stub_sec->output_offset);
12001 val -= (htab->glink_eh_frame->output_section->vma
12002 + htab->glink_eh_frame->output_offset);
12003 val -= p - htab->glink_eh_frame->contents;
12004 if (val + 0x80000000 > 0xffffffff)
12005 {
12006 info->callbacks->einfo
12007 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12008 stub_sec->name);
12009 return FALSE;
12010 }
12011 bfd_put_32 (htab->elf.dynobj, val, p);
12012 p += 4;
12013 /* stub section size. */
12014 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12015 p += 4;
12016 /* Augmentation. */
12017 p += 1;
12018 /* Pad. */
12019 p += 3;
12020 }
12021 if (htab->glink != NULL && htab->glink->size != 0)
12022 {
12023 last_fde = p;
12024 last_fde_len = 20;
12025 /* FDE length. */
12026 bfd_put_32 (htab->elf.dynobj, 20, p);
12027 p += 4;
12028 /* CIE pointer. */
12029 val = p - htab->glink_eh_frame->contents;
12030 bfd_put_32 (htab->elf.dynobj, val, p);
12031 p += 4;
12032 /* Offset to .glink. */
12033 val = (htab->glink->output_section->vma
12034 + htab->glink->output_offset
12035 + 8);
12036 val -= (htab->glink_eh_frame->output_section->vma
12037 + htab->glink_eh_frame->output_offset);
12038 val -= p - htab->glink_eh_frame->contents;
12039 if (val + 0x80000000 > 0xffffffff)
12040 {
12041 info->callbacks->einfo
12042 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12043 htab->glink->name);
12044 return FALSE;
12045 }
12046 bfd_put_32 (htab->elf.dynobj, val, p);
12047 p += 4;
12048 /* .glink size. */
12049 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
12050 p += 4;
12051 /* Augmentation. */
12052 p += 1;
12053
12054 *p++ = DW_CFA_advance_loc + 1;
12055 *p++ = DW_CFA_register;
12056 *p++ = 65;
12057 *p++ = 12;
12058 *p++ = DW_CFA_advance_loc + 4;
12059 *p++ = DW_CFA_restore_extended;
12060 *p++ = 65;
12061 }
12062 /* Subsume any padding into the last FDE if user .eh_frame
12063 sections are aligned more than glink_eh_frame. Otherwise any
12064 zero padding will be seen as a terminator. */
12065 size = p - htab->glink_eh_frame->contents;
12066 align = 1;
12067 align <<= htab->glink_eh_frame->output_section->alignment_power;
12068 align -= 1;
12069 pad = ((size + align) & ~align) - size;
12070 htab->glink_eh_frame->size = size + pad;
12071 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12072 }
12073
12074 /* Build the stubs as directed by the stub hash table. */
12075 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12076
12077 if (htab->relbrlt != NULL)
12078 htab->relbrlt->reloc_count = 0;
12079
12080 if (htab->plt_stub_align != 0)
12081 for (stub_sec = htab->stub_bfd->sections;
12082 stub_sec != NULL;
12083 stub_sec = stub_sec->next)
12084 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12085 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12086 & (-1 << htab->plt_stub_align));
12087
12088 for (stub_sec = htab->stub_bfd->sections;
12089 stub_sec != NULL;
12090 stub_sec = stub_sec->next)
12091 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12092 {
12093 stub_sec_count += 1;
12094 if (stub_sec->rawsize != stub_sec->size)
12095 break;
12096 }
12097
12098 if (stub_sec != NULL
12099 || htab->glink->rawsize != htab->glink->size
12100 || (htab->glink_eh_frame != NULL
12101 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12102 {
12103 htab->stub_error = TRUE;
12104 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12105 }
12106
12107 if (htab->stub_error)
12108 return FALSE;
12109
12110 if (stats != NULL)
12111 {
12112 *stats = bfd_malloc (500);
12113 if (*stats == NULL)
12114 return FALSE;
12115
12116 sprintf (*stats, _("linker stubs in %u group%s\n"
12117 " branch %lu\n"
12118 " toc adjust %lu\n"
12119 " long branch %lu\n"
12120 " long toc adj %lu\n"
12121 " plt call %lu\n"
12122 " plt call toc %lu"),
12123 stub_sec_count,
12124 stub_sec_count == 1 ? "" : "s",
12125 htab->stub_count[ppc_stub_long_branch - 1],
12126 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12127 htab->stub_count[ppc_stub_plt_branch - 1],
12128 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12129 htab->stub_count[ppc_stub_plt_call - 1],
12130 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12131 }
12132 return TRUE;
12133 }
12134
12135 /* This function undoes the changes made by add_symbol_adjust. */
12136
12137 static bfd_boolean
12138 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12139 {
12140 struct ppc_link_hash_entry *eh;
12141
12142 if (h->root.type == bfd_link_hash_indirect)
12143 return TRUE;
12144
12145 eh = (struct ppc_link_hash_entry *) h;
12146 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12147 return TRUE;
12148
12149 eh->elf.root.type = bfd_link_hash_undefined;
12150 return TRUE;
12151 }
12152
12153 void
12154 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12155 {
12156 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12157
12158 if (htab != NULL)
12159 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12160 }
12161
12162 /* What to do when ld finds relocations against symbols defined in
12163 discarded sections. */
12164
12165 static unsigned int
12166 ppc64_elf_action_discarded (asection *sec)
12167 {
12168 if (strcmp (".opd", sec->name) == 0)
12169 return 0;
12170
12171 if (strcmp (".toc", sec->name) == 0)
12172 return 0;
12173
12174 if (strcmp (".toc1", sec->name) == 0)
12175 return 0;
12176
12177 return _bfd_elf_default_action_discarded (sec);
12178 }
12179
12180 /* The RELOCATE_SECTION function is called by the ELF backend linker
12181 to handle the relocations for a section.
12182
12183 The relocs are always passed as Rela structures; if the section
12184 actually uses Rel structures, the r_addend field will always be
12185 zero.
12186
12187 This function is responsible for adjust the section contents as
12188 necessary, and (if using Rela relocs and generating a
12189 relocatable output file) adjusting the reloc addend as
12190 necessary.
12191
12192 This function does not have to worry about setting the reloc
12193 address or the reloc symbol index.
12194
12195 LOCAL_SYMS is a pointer to the swapped in local symbols.
12196
12197 LOCAL_SECTIONS is an array giving the section in the input file
12198 corresponding to the st_shndx field of each local symbol.
12199
12200 The global hash table entry for the global symbols can be found
12201 via elf_sym_hashes (input_bfd).
12202
12203 When generating relocatable output, this function must handle
12204 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12205 going to be the section symbol corresponding to the output
12206 section, which means that the addend must be adjusted
12207 accordingly. */
12208
12209 static bfd_boolean
12210 ppc64_elf_relocate_section (bfd *output_bfd,
12211 struct bfd_link_info *info,
12212 bfd *input_bfd,
12213 asection *input_section,
12214 bfd_byte *contents,
12215 Elf_Internal_Rela *relocs,
12216 Elf_Internal_Sym *local_syms,
12217 asection **local_sections)
12218 {
12219 struct ppc_link_hash_table *htab;
12220 Elf_Internal_Shdr *symtab_hdr;
12221 struct elf_link_hash_entry **sym_hashes;
12222 Elf_Internal_Rela *rel;
12223 Elf_Internal_Rela *relend;
12224 Elf_Internal_Rela outrel;
12225 bfd_byte *loc;
12226 struct got_entry **local_got_ents;
12227 bfd_vma TOCstart;
12228 bfd_boolean ret = TRUE;
12229 bfd_boolean is_opd;
12230 /* Assume 'at' branch hints. */
12231 bfd_boolean is_isa_v2 = TRUE;
12232 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12233
12234 /* Initialize howto table if needed. */
12235 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12236 ppc_howto_init ();
12237
12238 htab = ppc_hash_table (info);
12239 if (htab == NULL)
12240 return FALSE;
12241
12242 /* Don't relocate stub sections. */
12243 if (input_section->owner == htab->stub_bfd)
12244 return TRUE;
12245
12246 BFD_ASSERT (is_ppc64_elf (input_bfd));
12247
12248 local_got_ents = elf_local_got_ents (input_bfd);
12249 TOCstart = elf_gp (output_bfd);
12250 symtab_hdr = &elf_symtab_hdr (input_bfd);
12251 sym_hashes = elf_sym_hashes (input_bfd);
12252 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12253
12254 rel = relocs;
12255 relend = relocs + input_section->reloc_count;
12256 for (; rel < relend; rel++)
12257 {
12258 enum elf_ppc64_reloc_type r_type;
12259 bfd_vma addend;
12260 bfd_reloc_status_type r;
12261 Elf_Internal_Sym *sym;
12262 asection *sec;
12263 struct elf_link_hash_entry *h_elf;
12264 struct ppc_link_hash_entry *h;
12265 struct ppc_link_hash_entry *fdh;
12266 const char *sym_name;
12267 unsigned long r_symndx, toc_symndx;
12268 bfd_vma toc_addend;
12269 unsigned char tls_mask, tls_gd, tls_type;
12270 unsigned char sym_type;
12271 bfd_vma relocation;
12272 bfd_boolean unresolved_reloc;
12273 bfd_boolean warned;
12274 unsigned int insn;
12275 unsigned int mask;
12276 struct ppc_stub_hash_entry *stub_entry;
12277 bfd_vma max_br_offset;
12278 bfd_vma from;
12279 const Elf_Internal_Rela orig_rel = *rel;
12280
12281 r_type = ELF64_R_TYPE (rel->r_info);
12282 r_symndx = ELF64_R_SYM (rel->r_info);
12283
12284 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12285 symbol of the previous ADDR64 reloc. The symbol gives us the
12286 proper TOC base to use. */
12287 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12288 && rel != relocs
12289 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12290 && is_opd)
12291 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12292
12293 sym = NULL;
12294 sec = NULL;
12295 h_elf = NULL;
12296 sym_name = NULL;
12297 unresolved_reloc = FALSE;
12298 warned = FALSE;
12299
12300 if (r_symndx < symtab_hdr->sh_info)
12301 {
12302 /* It's a local symbol. */
12303 struct _opd_sec_data *opd;
12304
12305 sym = local_syms + r_symndx;
12306 sec = local_sections[r_symndx];
12307 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12308 sym_type = ELF64_ST_TYPE (sym->st_info);
12309 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12310 opd = get_opd_info (sec);
12311 if (opd != NULL && opd->adjust != NULL)
12312 {
12313 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12314 if (adjust == -1)
12315 relocation = 0;
12316 else
12317 {
12318 /* If this is a relocation against the opd section sym
12319 and we have edited .opd, adjust the reloc addend so
12320 that ld -r and ld --emit-relocs output is correct.
12321 If it is a reloc against some other .opd symbol,
12322 then the symbol value will be adjusted later. */
12323 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12324 rel->r_addend += adjust;
12325 else
12326 relocation += adjust;
12327 }
12328 }
12329 }
12330 else
12331 {
12332 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12333 r_symndx, symtab_hdr, sym_hashes,
12334 h_elf, sec, relocation,
12335 unresolved_reloc, warned);
12336 sym_name = h_elf->root.root.string;
12337 sym_type = h_elf->type;
12338 if (sec != NULL
12339 && sec->owner == output_bfd
12340 && strcmp (sec->name, ".opd") == 0)
12341 {
12342 /* This is a symbol defined in a linker script. All
12343 such are defined in output sections, even those
12344 defined by simple assignment from a symbol defined in
12345 an input section. Transfer the symbol to an
12346 appropriate input .opd section, so that a branch to
12347 this symbol will be mapped to the location specified
12348 by the opd entry. */
12349 struct bfd_link_order *lo;
12350 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12351 if (lo->type == bfd_indirect_link_order)
12352 {
12353 asection *isec = lo->u.indirect.section;
12354 if (h_elf->root.u.def.value >= isec->output_offset
12355 && h_elf->root.u.def.value < (isec->output_offset
12356 + isec->size))
12357 {
12358 h_elf->root.u.def.value -= isec->output_offset;
12359 h_elf->root.u.def.section = isec;
12360 sec = isec;
12361 break;
12362 }
12363 }
12364 }
12365 }
12366 h = (struct ppc_link_hash_entry *) h_elf;
12367
12368 if (sec != NULL && discarded_section (sec))
12369 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12370 rel, 1, relend,
12371 ppc64_elf_howto_table[r_type], 0,
12372 contents);
12373
12374 if (info->relocatable)
12375 continue;
12376
12377 /* TLS optimizations. Replace instruction sequences and relocs
12378 based on information we collected in tls_optimize. We edit
12379 RELOCS so that --emit-relocs will output something sensible
12380 for the final instruction stream. */
12381 tls_mask = 0;
12382 tls_gd = 0;
12383 toc_symndx = 0;
12384 if (h != NULL)
12385 tls_mask = h->tls_mask;
12386 else if (local_got_ents != NULL)
12387 {
12388 struct plt_entry **local_plt = (struct plt_entry **)
12389 (local_got_ents + symtab_hdr->sh_info);
12390 unsigned char *lgot_masks = (unsigned char *)
12391 (local_plt + symtab_hdr->sh_info);
12392 tls_mask = lgot_masks[r_symndx];
12393 }
12394 if (tls_mask == 0
12395 && (r_type == R_PPC64_TLS
12396 || r_type == R_PPC64_TLSGD
12397 || r_type == R_PPC64_TLSLD))
12398 {
12399 /* Check for toc tls entries. */
12400 unsigned char *toc_tls;
12401
12402 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12403 &local_syms, rel, input_bfd))
12404 return FALSE;
12405
12406 if (toc_tls)
12407 tls_mask = *toc_tls;
12408 }
12409
12410 /* Check that tls relocs are used with tls syms, and non-tls
12411 relocs are used with non-tls syms. */
12412 if (r_symndx != STN_UNDEF
12413 && r_type != R_PPC64_NONE
12414 && (h == NULL
12415 || h->elf.root.type == bfd_link_hash_defined
12416 || h->elf.root.type == bfd_link_hash_defweak)
12417 && (IS_PPC64_TLS_RELOC (r_type)
12418 != (sym_type == STT_TLS
12419 || (sym_type == STT_SECTION
12420 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12421 {
12422 if (tls_mask != 0
12423 && (r_type == R_PPC64_TLS
12424 || r_type == R_PPC64_TLSGD
12425 || r_type == R_PPC64_TLSLD))
12426 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12427 ;
12428 else
12429 info->callbacks->einfo
12430 (!IS_PPC64_TLS_RELOC (r_type)
12431 ? _("%P: %H: %s used with TLS symbol %s\n")
12432 : _("%P: %H: %s used with non-TLS symbol %s\n"),
12433 input_bfd, input_section, rel->r_offset,
12434 ppc64_elf_howto_table[r_type]->name,
12435 sym_name);
12436 }
12437
12438 /* Ensure reloc mapping code below stays sane. */
12439 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12440 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12441 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12442 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12443 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12444 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12445 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12446 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12447 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12448 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12449 abort ();
12450
12451 switch (r_type)
12452 {
12453 default:
12454 break;
12455
12456 case R_PPC64_LO_DS_OPT:
12457 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12458 if ((insn & (0x3f << 26)) != 58u << 26)
12459 abort ();
12460 insn += (14u << 26) - (58u << 26);
12461 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12462 r_type = R_PPC64_TOC16_LO;
12463 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12464 break;
12465
12466 case R_PPC64_TOC16:
12467 case R_PPC64_TOC16_LO:
12468 case R_PPC64_TOC16_DS:
12469 case R_PPC64_TOC16_LO_DS:
12470 {
12471 /* Check for toc tls entries. */
12472 unsigned char *toc_tls;
12473 int retval;
12474
12475 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12476 &local_syms, rel, input_bfd);
12477 if (retval == 0)
12478 return FALSE;
12479
12480 if (toc_tls)
12481 {
12482 tls_mask = *toc_tls;
12483 if (r_type == R_PPC64_TOC16_DS
12484 || r_type == R_PPC64_TOC16_LO_DS)
12485 {
12486 if (tls_mask != 0
12487 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12488 goto toctprel;
12489 }
12490 else
12491 {
12492 /* If we found a GD reloc pair, then we might be
12493 doing a GD->IE transition. */
12494 if (retval == 2)
12495 {
12496 tls_gd = TLS_TPRELGD;
12497 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12498 goto tls_ldgd_opt;
12499 }
12500 else if (retval == 3)
12501 {
12502 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12503 goto tls_ldgd_opt;
12504 }
12505 }
12506 }
12507 }
12508 break;
12509
12510 case R_PPC64_GOT_TPREL16_HI:
12511 case R_PPC64_GOT_TPREL16_HA:
12512 if (tls_mask != 0
12513 && (tls_mask & TLS_TPREL) == 0)
12514 {
12515 rel->r_offset -= d_offset;
12516 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12517 r_type = R_PPC64_NONE;
12518 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12519 }
12520 break;
12521
12522 case R_PPC64_GOT_TPREL16_DS:
12523 case R_PPC64_GOT_TPREL16_LO_DS:
12524 if (tls_mask != 0
12525 && (tls_mask & TLS_TPREL) == 0)
12526 {
12527 toctprel:
12528 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12529 insn &= 31 << 21;
12530 insn |= 0x3c0d0000; /* addis 0,13,0 */
12531 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12532 r_type = R_PPC64_TPREL16_HA;
12533 if (toc_symndx != 0)
12534 {
12535 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12536 rel->r_addend = toc_addend;
12537 /* We changed the symbol. Start over in order to
12538 get h, sym, sec etc. right. */
12539 rel--;
12540 continue;
12541 }
12542 else
12543 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12544 }
12545 break;
12546
12547 case R_PPC64_TLS:
12548 if (tls_mask != 0
12549 && (tls_mask & TLS_TPREL) == 0)
12550 {
12551 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12552 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12553 if (insn == 0)
12554 abort ();
12555 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12556 /* Was PPC64_TLS which sits on insn boundary, now
12557 PPC64_TPREL16_LO which is at low-order half-word. */
12558 rel->r_offset += d_offset;
12559 r_type = R_PPC64_TPREL16_LO;
12560 if (toc_symndx != 0)
12561 {
12562 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12563 rel->r_addend = toc_addend;
12564 /* We changed the symbol. Start over in order to
12565 get h, sym, sec etc. right. */
12566 rel--;
12567 continue;
12568 }
12569 else
12570 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12571 }
12572 break;
12573
12574 case R_PPC64_GOT_TLSGD16_HI:
12575 case R_PPC64_GOT_TLSGD16_HA:
12576 tls_gd = TLS_TPRELGD;
12577 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12578 goto tls_gdld_hi;
12579 break;
12580
12581 case R_PPC64_GOT_TLSLD16_HI:
12582 case R_PPC64_GOT_TLSLD16_HA:
12583 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12584 {
12585 tls_gdld_hi:
12586 if ((tls_mask & tls_gd) != 0)
12587 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12588 + R_PPC64_GOT_TPREL16_DS);
12589 else
12590 {
12591 rel->r_offset -= d_offset;
12592 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12593 r_type = R_PPC64_NONE;
12594 }
12595 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12596 }
12597 break;
12598
12599 case R_PPC64_GOT_TLSGD16:
12600 case R_PPC64_GOT_TLSGD16_LO:
12601 tls_gd = TLS_TPRELGD;
12602 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12603 goto tls_ldgd_opt;
12604 break;
12605
12606 case R_PPC64_GOT_TLSLD16:
12607 case R_PPC64_GOT_TLSLD16_LO:
12608 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12609 {
12610 unsigned int insn1, insn2, insn3;
12611 bfd_vma offset;
12612
12613 tls_ldgd_opt:
12614 offset = (bfd_vma) -1;
12615 /* If not using the newer R_PPC64_TLSGD/LD to mark
12616 __tls_get_addr calls, we must trust that the call
12617 stays with its arg setup insns, ie. that the next
12618 reloc is the __tls_get_addr call associated with
12619 the current reloc. Edit both insns. */
12620 if (input_section->has_tls_get_addr_call
12621 && rel + 1 < relend
12622 && branch_reloc_hash_match (input_bfd, rel + 1,
12623 htab->tls_get_addr,
12624 htab->tls_get_addr_fd))
12625 offset = rel[1].r_offset;
12626 if ((tls_mask & tls_gd) != 0)
12627 {
12628 /* IE */
12629 insn1 = bfd_get_32 (output_bfd,
12630 contents + rel->r_offset - d_offset);
12631 insn1 &= (1 << 26) - (1 << 2);
12632 insn1 |= 58 << 26; /* ld */
12633 insn2 = 0x7c636a14; /* add 3,3,13 */
12634 if (offset != (bfd_vma) -1)
12635 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12636 if ((tls_mask & TLS_EXPLICIT) == 0)
12637 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12638 + R_PPC64_GOT_TPREL16_DS);
12639 else
12640 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12641 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12642 }
12643 else
12644 {
12645 /* LE */
12646 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12647 insn2 = 0x38630000; /* addi 3,3,0 */
12648 if (tls_gd == 0)
12649 {
12650 /* Was an LD reloc. */
12651 if (toc_symndx)
12652 sec = local_sections[toc_symndx];
12653 for (r_symndx = 0;
12654 r_symndx < symtab_hdr->sh_info;
12655 r_symndx++)
12656 if (local_sections[r_symndx] == sec)
12657 break;
12658 if (r_symndx >= symtab_hdr->sh_info)
12659 r_symndx = STN_UNDEF;
12660 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12661 if (r_symndx != STN_UNDEF)
12662 rel->r_addend -= (local_syms[r_symndx].st_value
12663 + sec->output_offset
12664 + sec->output_section->vma);
12665 }
12666 else if (toc_symndx != 0)
12667 {
12668 r_symndx = toc_symndx;
12669 rel->r_addend = toc_addend;
12670 }
12671 r_type = R_PPC64_TPREL16_HA;
12672 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12673 if (offset != (bfd_vma) -1)
12674 {
12675 rel[1].r_info = ELF64_R_INFO (r_symndx,
12676 R_PPC64_TPREL16_LO);
12677 rel[1].r_offset = offset + d_offset;
12678 rel[1].r_addend = rel->r_addend;
12679 }
12680 }
12681 bfd_put_32 (output_bfd, insn1,
12682 contents + rel->r_offset - d_offset);
12683 if (offset != (bfd_vma) -1)
12684 {
12685 insn3 = bfd_get_32 (output_bfd,
12686 contents + offset + 4);
12687 if (insn3 == NOP
12688 || insn3 == CROR_151515 || insn3 == CROR_313131)
12689 {
12690 rel[1].r_offset += 4;
12691 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12692 insn2 = NOP;
12693 }
12694 bfd_put_32 (output_bfd, insn2, contents + offset);
12695 }
12696 if ((tls_mask & tls_gd) == 0
12697 && (tls_gd == 0 || toc_symndx != 0))
12698 {
12699 /* We changed the symbol. Start over in order
12700 to get h, sym, sec etc. right. */
12701 rel--;
12702 continue;
12703 }
12704 }
12705 break;
12706
12707 case R_PPC64_TLSGD:
12708 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12709 {
12710 unsigned int insn2, insn3;
12711 bfd_vma offset = rel->r_offset;
12712
12713 if ((tls_mask & TLS_TPRELGD) != 0)
12714 {
12715 /* IE */
12716 r_type = R_PPC64_NONE;
12717 insn2 = 0x7c636a14; /* add 3,3,13 */
12718 }
12719 else
12720 {
12721 /* LE */
12722 if (toc_symndx != 0)
12723 {
12724 r_symndx = toc_symndx;
12725 rel->r_addend = toc_addend;
12726 }
12727 r_type = R_PPC64_TPREL16_LO;
12728 rel->r_offset = offset + d_offset;
12729 insn2 = 0x38630000; /* addi 3,3,0 */
12730 }
12731 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12732 /* Zap the reloc on the _tls_get_addr call too. */
12733 BFD_ASSERT (offset == rel[1].r_offset);
12734 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12735 insn3 = bfd_get_32 (output_bfd,
12736 contents + offset + 4);
12737 if (insn3 == NOP
12738 || insn3 == CROR_151515 || insn3 == CROR_313131)
12739 {
12740 rel->r_offset += 4;
12741 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12742 insn2 = NOP;
12743 }
12744 bfd_put_32 (output_bfd, insn2, contents + offset);
12745 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12746 {
12747 rel--;
12748 continue;
12749 }
12750 }
12751 break;
12752
12753 case R_PPC64_TLSLD:
12754 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12755 {
12756 unsigned int insn2, insn3;
12757 bfd_vma offset = rel->r_offset;
12758
12759 if (toc_symndx)
12760 sec = local_sections[toc_symndx];
12761 for (r_symndx = 0;
12762 r_symndx < symtab_hdr->sh_info;
12763 r_symndx++)
12764 if (local_sections[r_symndx] == sec)
12765 break;
12766 if (r_symndx >= symtab_hdr->sh_info)
12767 r_symndx = STN_UNDEF;
12768 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12769 if (r_symndx != STN_UNDEF)
12770 rel->r_addend -= (local_syms[r_symndx].st_value
12771 + sec->output_offset
12772 + sec->output_section->vma);
12773
12774 r_type = R_PPC64_TPREL16_LO;
12775 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12776 rel->r_offset = offset + d_offset;
12777 /* Zap the reloc on the _tls_get_addr call too. */
12778 BFD_ASSERT (offset == rel[1].r_offset);
12779 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12780 insn2 = 0x38630000; /* addi 3,3,0 */
12781 insn3 = bfd_get_32 (output_bfd,
12782 contents + offset + 4);
12783 if (insn3 == NOP
12784 || insn3 == CROR_151515 || insn3 == CROR_313131)
12785 {
12786 rel->r_offset += 4;
12787 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12788 insn2 = NOP;
12789 }
12790 bfd_put_32 (output_bfd, insn2, contents + offset);
12791 rel--;
12792 continue;
12793 }
12794 break;
12795
12796 case R_PPC64_DTPMOD64:
12797 if (rel + 1 < relend
12798 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12799 && rel[1].r_offset == rel->r_offset + 8)
12800 {
12801 if ((tls_mask & TLS_GD) == 0)
12802 {
12803 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12804 if ((tls_mask & TLS_TPRELGD) != 0)
12805 r_type = R_PPC64_TPREL64;
12806 else
12807 {
12808 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12809 r_type = R_PPC64_NONE;
12810 }
12811 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12812 }
12813 }
12814 else
12815 {
12816 if ((tls_mask & TLS_LD) == 0)
12817 {
12818 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12819 r_type = R_PPC64_NONE;
12820 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12821 }
12822 }
12823 break;
12824
12825 case R_PPC64_TPREL64:
12826 if ((tls_mask & TLS_TPREL) == 0)
12827 {
12828 r_type = R_PPC64_NONE;
12829 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12830 }
12831 break;
12832 }
12833
12834 /* Handle other relocations that tweak non-addend part of insn. */
12835 insn = 0;
12836 max_br_offset = 1 << 25;
12837 addend = rel->r_addend;
12838 switch (r_type)
12839 {
12840 default:
12841 break;
12842
12843 case R_PPC64_TOCSAVE:
12844 if (relocation + addend == (rel->r_offset
12845 + input_section->output_offset
12846 + input_section->output_section->vma)
12847 && tocsave_find (htab, NO_INSERT,
12848 &local_syms, rel, input_bfd))
12849 {
12850 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12851 if (insn == NOP
12852 || insn == CROR_151515 || insn == CROR_313131)
12853 bfd_put_32 (input_bfd, STD_R2_40R1,
12854 contents + rel->r_offset);
12855 }
12856 break;
12857
12858 /* Branch taken prediction relocations. */
12859 case R_PPC64_ADDR14_BRTAKEN:
12860 case R_PPC64_REL14_BRTAKEN:
12861 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12862 /* Fall thru. */
12863
12864 /* Branch not taken prediction relocations. */
12865 case R_PPC64_ADDR14_BRNTAKEN:
12866 case R_PPC64_REL14_BRNTAKEN:
12867 insn |= bfd_get_32 (output_bfd,
12868 contents + rel->r_offset) & ~(0x01 << 21);
12869 /* Fall thru. */
12870
12871 case R_PPC64_REL14:
12872 max_br_offset = 1 << 15;
12873 /* Fall thru. */
12874
12875 case R_PPC64_REL24:
12876 /* Calls to functions with a different TOC, such as calls to
12877 shared objects, need to alter the TOC pointer. This is
12878 done using a linkage stub. A REL24 branching to these
12879 linkage stubs needs to be followed by a nop, as the nop
12880 will be replaced with an instruction to restore the TOC
12881 base pointer. */
12882 fdh = h;
12883 if (h != NULL
12884 && h->oh != NULL
12885 && h->oh->is_func_descriptor)
12886 fdh = ppc_follow_link (h->oh);
12887 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
12888 htab);
12889 if (stub_entry != NULL
12890 && (stub_entry->stub_type == ppc_stub_plt_call
12891 || stub_entry->stub_type == ppc_stub_plt_call_r2save
12892 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
12893 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
12894 {
12895 bfd_boolean can_plt_call = FALSE;
12896
12897 if (rel->r_offset + 8 <= input_section->size)
12898 {
12899 unsigned long nop;
12900 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
12901 if (nop == NOP
12902 || nop == CROR_151515 || nop == CROR_313131)
12903 {
12904 if (h != NULL
12905 && (h == htab->tls_get_addr_fd
12906 || h == htab->tls_get_addr)
12907 && !htab->no_tls_get_addr_opt)
12908 {
12909 /* Special stub used, leave nop alone. */
12910 }
12911 else
12912 bfd_put_32 (input_bfd, LD_R2_40R1,
12913 contents + rel->r_offset + 4);
12914 can_plt_call = TRUE;
12915 }
12916 }
12917
12918 if (!can_plt_call)
12919 {
12920 if (stub_entry->stub_type == ppc_stub_plt_call
12921 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12922 {
12923 /* If this is a plain branch rather than a branch
12924 and link, don't require a nop. However, don't
12925 allow tail calls in a shared library as they
12926 will result in r2 being corrupted. */
12927 unsigned long br;
12928 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
12929 if (info->executable && (br & 1) == 0)
12930 can_plt_call = TRUE;
12931 else
12932 stub_entry = NULL;
12933 }
12934 else if (h != NULL
12935 && strcmp (h->elf.root.root.string,
12936 ".__libc_start_main") == 0)
12937 {
12938 /* Allow crt1 branch to go via a toc adjusting stub. */
12939 can_plt_call = TRUE;
12940 }
12941 else
12942 {
12943 if (strcmp (input_section->output_section->name,
12944 ".init") == 0
12945 || strcmp (input_section->output_section->name,
12946 ".fini") == 0)
12947 info->callbacks->einfo
12948 (_("%P: %H: automatic multiple TOCs "
12949 "not supported using your crt files; "
12950 "recompile with -mminimal-toc or upgrade gcc\n"),
12951 input_bfd, input_section, rel->r_offset);
12952 else
12953 info->callbacks->einfo
12954 (_("%P: %H: sibling call optimization to `%s' "
12955 "does not allow automatic multiple TOCs; "
12956 "recompile with -mminimal-toc or "
12957 "-fno-optimize-sibling-calls, "
12958 "or make `%s' extern\n"),
12959 input_bfd, input_section, rel->r_offset,
12960 sym_name,
12961 sym_name);
12962 bfd_set_error (bfd_error_bad_value);
12963 ret = FALSE;
12964 }
12965 }
12966
12967 if (can_plt_call
12968 && (stub_entry->stub_type == ppc_stub_plt_call
12969 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
12970 unresolved_reloc = FALSE;
12971 }
12972
12973 if ((stub_entry == NULL
12974 || stub_entry->stub_type == ppc_stub_long_branch
12975 || stub_entry->stub_type == ppc_stub_plt_branch)
12976 && get_opd_info (sec) != NULL)
12977 {
12978 /* The branch destination is the value of the opd entry. */
12979 bfd_vma off = (relocation + addend
12980 - sec->output_section->vma
12981 - sec->output_offset);
12982 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
12983 if (dest != (bfd_vma) -1)
12984 {
12985 relocation = dest;
12986 addend = 0;
12987 }
12988 }
12989
12990 /* If the branch is out of reach we ought to have a long
12991 branch stub. */
12992 from = (rel->r_offset
12993 + input_section->output_offset
12994 + input_section->output_section->vma);
12995
12996 if (stub_entry != NULL
12997 && (stub_entry->stub_type == ppc_stub_long_branch
12998 || stub_entry->stub_type == ppc_stub_plt_branch)
12999 && (r_type == R_PPC64_ADDR14_BRTAKEN
13000 || r_type == R_PPC64_ADDR14_BRNTAKEN
13001 || (relocation + addend - from + max_br_offset
13002 < 2 * max_br_offset)))
13003 /* Don't use the stub if this branch is in range. */
13004 stub_entry = NULL;
13005
13006 if (stub_entry != NULL)
13007 {
13008 /* Munge up the value and addend so that we call the stub
13009 rather than the procedure directly. */
13010 relocation = (stub_entry->stub_offset
13011 + stub_entry->stub_sec->output_offset
13012 + stub_entry->stub_sec->output_section->vma);
13013 addend = 0;
13014
13015 if ((stub_entry->stub_type == ppc_stub_plt_call
13016 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13017 && (ALWAYS_EMIT_R2SAVE
13018 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13019 && rel + 1 < relend
13020 && rel[1].r_offset == rel->r_offset + 4
13021 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13022 relocation += 4;
13023 }
13024
13025 if (insn != 0)
13026 {
13027 if (is_isa_v2)
13028 {
13029 /* Set 'a' bit. This is 0b00010 in BO field for branch
13030 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13031 for branch on CTR insns (BO == 1a00t or 1a01t). */
13032 if ((insn & (0x14 << 21)) == (0x04 << 21))
13033 insn |= 0x02 << 21;
13034 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13035 insn |= 0x08 << 21;
13036 else
13037 break;
13038 }
13039 else
13040 {
13041 /* Invert 'y' bit if not the default. */
13042 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13043 insn ^= 0x01 << 21;
13044 }
13045
13046 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13047 }
13048
13049 /* NOP out calls to undefined weak functions.
13050 We can thus call a weak function without first
13051 checking whether the function is defined. */
13052 else if (h != NULL
13053 && h->elf.root.type == bfd_link_hash_undefweak
13054 && h->elf.dynindx == -1
13055 && r_type == R_PPC64_REL24
13056 && relocation == 0
13057 && addend == 0)
13058 {
13059 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13060 continue;
13061 }
13062 break;
13063 }
13064
13065 /* Set `addend'. */
13066 tls_type = 0;
13067 switch (r_type)
13068 {
13069 default:
13070 info->callbacks->einfo
13071 (_("%P: %B: unknown relocation type %d for symbol %s\n"),
13072 input_bfd, (int) r_type, sym_name);
13073
13074 bfd_set_error (bfd_error_bad_value);
13075 ret = FALSE;
13076 continue;
13077
13078 case R_PPC64_NONE:
13079 case R_PPC64_TLS:
13080 case R_PPC64_TLSGD:
13081 case R_PPC64_TLSLD:
13082 case R_PPC64_TOCSAVE:
13083 case R_PPC64_GNU_VTINHERIT:
13084 case R_PPC64_GNU_VTENTRY:
13085 continue;
13086
13087 /* GOT16 relocations. Like an ADDR16 using the symbol's
13088 address in the GOT as relocation value instead of the
13089 symbol's value itself. Also, create a GOT entry for the
13090 symbol and put the symbol value there. */
13091 case R_PPC64_GOT_TLSGD16:
13092 case R_PPC64_GOT_TLSGD16_LO:
13093 case R_PPC64_GOT_TLSGD16_HI:
13094 case R_PPC64_GOT_TLSGD16_HA:
13095 tls_type = TLS_TLS | TLS_GD;
13096 goto dogot;
13097
13098 case R_PPC64_GOT_TLSLD16:
13099 case R_PPC64_GOT_TLSLD16_LO:
13100 case R_PPC64_GOT_TLSLD16_HI:
13101 case R_PPC64_GOT_TLSLD16_HA:
13102 tls_type = TLS_TLS | TLS_LD;
13103 goto dogot;
13104
13105 case R_PPC64_GOT_TPREL16_DS:
13106 case R_PPC64_GOT_TPREL16_LO_DS:
13107 case R_PPC64_GOT_TPREL16_HI:
13108 case R_PPC64_GOT_TPREL16_HA:
13109 tls_type = TLS_TLS | TLS_TPREL;
13110 goto dogot;
13111
13112 case R_PPC64_GOT_DTPREL16_DS:
13113 case R_PPC64_GOT_DTPREL16_LO_DS:
13114 case R_PPC64_GOT_DTPREL16_HI:
13115 case R_PPC64_GOT_DTPREL16_HA:
13116 tls_type = TLS_TLS | TLS_DTPREL;
13117 goto dogot;
13118
13119 case R_PPC64_GOT16:
13120 case R_PPC64_GOT16_LO:
13121 case R_PPC64_GOT16_HI:
13122 case R_PPC64_GOT16_HA:
13123 case R_PPC64_GOT16_DS:
13124 case R_PPC64_GOT16_LO_DS:
13125 dogot:
13126 {
13127 /* Relocation is to the entry for this symbol in the global
13128 offset table. */
13129 asection *got;
13130 bfd_vma *offp;
13131 bfd_vma off;
13132 unsigned long indx = 0;
13133 struct got_entry *ent;
13134
13135 if (tls_type == (TLS_TLS | TLS_LD)
13136 && (h == NULL
13137 || !h->elf.def_dynamic))
13138 ent = ppc64_tlsld_got (input_bfd);
13139 else
13140 {
13141
13142 if (h != NULL)
13143 {
13144 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13145 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13146 &h->elf)
13147 || (info->shared
13148 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13149 /* This is actually a static link, or it is a
13150 -Bsymbolic link and the symbol is defined
13151 locally, or the symbol was forced to be local
13152 because of a version file. */
13153 ;
13154 else
13155 {
13156 BFD_ASSERT (h->elf.dynindx != -1);
13157 indx = h->elf.dynindx;
13158 unresolved_reloc = FALSE;
13159 }
13160 ent = h->elf.got.glist;
13161 }
13162 else
13163 {
13164 if (local_got_ents == NULL)
13165 abort ();
13166 ent = local_got_ents[r_symndx];
13167 }
13168
13169 for (; ent != NULL; ent = ent->next)
13170 if (ent->addend == orig_rel.r_addend
13171 && ent->owner == input_bfd
13172 && ent->tls_type == tls_type)
13173 break;
13174 }
13175
13176 if (ent == NULL)
13177 abort ();
13178 if (ent->is_indirect)
13179 ent = ent->got.ent;
13180 offp = &ent->got.offset;
13181 got = ppc64_elf_tdata (ent->owner)->got;
13182 if (got == NULL)
13183 abort ();
13184
13185 /* The offset must always be a multiple of 8. We use the
13186 least significant bit to record whether we have already
13187 processed this entry. */
13188 off = *offp;
13189 if ((off & 1) != 0)
13190 off &= ~1;
13191 else
13192 {
13193 /* Generate relocs for the dynamic linker, except in
13194 the case of TLSLD where we'll use one entry per
13195 module. */
13196 asection *relgot;
13197 bfd_boolean ifunc;
13198
13199 *offp = off | 1;
13200 relgot = NULL;
13201 ifunc = (h != NULL
13202 ? h->elf.type == STT_GNU_IFUNC
13203 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13204 if ((info->shared || indx != 0)
13205 && (h == NULL
13206 || (tls_type == (TLS_TLS | TLS_LD)
13207 && !h->elf.def_dynamic)
13208 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13209 || h->elf.root.type != bfd_link_hash_undefweak))
13210 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13211 else if (ifunc)
13212 relgot = htab->reliplt;
13213 if (relgot != NULL)
13214 {
13215 outrel.r_offset = (got->output_section->vma
13216 + got->output_offset
13217 + off);
13218 outrel.r_addend = addend;
13219 if (tls_type & (TLS_LD | TLS_GD))
13220 {
13221 outrel.r_addend = 0;
13222 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13223 if (tls_type == (TLS_TLS | TLS_GD))
13224 {
13225 loc = relgot->contents;
13226 loc += (relgot->reloc_count++
13227 * sizeof (Elf64_External_Rela));
13228 bfd_elf64_swap_reloca_out (output_bfd,
13229 &outrel, loc);
13230 outrel.r_offset += 8;
13231 outrel.r_addend = addend;
13232 outrel.r_info
13233 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13234 }
13235 }
13236 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13237 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13238 else if (tls_type == (TLS_TLS | TLS_TPREL))
13239 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13240 else if (indx != 0)
13241 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13242 else
13243 {
13244 if (ifunc)
13245 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13246 else
13247 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13248
13249 /* Write the .got section contents for the sake
13250 of prelink. */
13251 loc = got->contents + off;
13252 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13253 loc);
13254 }
13255
13256 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13257 {
13258 outrel.r_addend += relocation;
13259 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13260 outrel.r_addend -= htab->elf.tls_sec->vma;
13261 }
13262 loc = relgot->contents;
13263 loc += (relgot->reloc_count++
13264 * sizeof (Elf64_External_Rela));
13265 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13266 }
13267
13268 /* Init the .got section contents here if we're not
13269 emitting a reloc. */
13270 else
13271 {
13272 relocation += addend;
13273 if (tls_type == (TLS_TLS | TLS_LD))
13274 relocation = 1;
13275 else if (tls_type != 0)
13276 {
13277 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13278 if (tls_type == (TLS_TLS | TLS_TPREL))
13279 relocation += DTP_OFFSET - TP_OFFSET;
13280
13281 if (tls_type == (TLS_TLS | TLS_GD))
13282 {
13283 bfd_put_64 (output_bfd, relocation,
13284 got->contents + off + 8);
13285 relocation = 1;
13286 }
13287 }
13288
13289 bfd_put_64 (output_bfd, relocation,
13290 got->contents + off);
13291 }
13292 }
13293
13294 if (off >= (bfd_vma) -2)
13295 abort ();
13296
13297 relocation = got->output_section->vma + got->output_offset + off;
13298 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13299 }
13300 break;
13301
13302 case R_PPC64_PLT16_HA:
13303 case R_PPC64_PLT16_HI:
13304 case R_PPC64_PLT16_LO:
13305 case R_PPC64_PLT32:
13306 case R_PPC64_PLT64:
13307 /* Relocation is to the entry for this symbol in the
13308 procedure linkage table. */
13309
13310 /* Resolve a PLT reloc against a local symbol directly,
13311 without using the procedure linkage table. */
13312 if (h == NULL)
13313 break;
13314
13315 /* It's possible that we didn't make a PLT entry for this
13316 symbol. This happens when statically linking PIC code,
13317 or when using -Bsymbolic. Go find a match if there is a
13318 PLT entry. */
13319 if (htab->plt != NULL)
13320 {
13321 struct plt_entry *ent;
13322 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13323 if (ent->addend == orig_rel.r_addend
13324 && ent->plt.offset != (bfd_vma) -1)
13325 {
13326 relocation = (htab->plt->output_section->vma
13327 + htab->plt->output_offset
13328 + ent->plt.offset);
13329 unresolved_reloc = FALSE;
13330 }
13331 }
13332 break;
13333
13334 case R_PPC64_TOC:
13335 /* Relocation value is TOC base. */
13336 relocation = TOCstart;
13337 if (r_symndx == STN_UNDEF)
13338 relocation += htab->stub_group[input_section->id].toc_off;
13339 else if (unresolved_reloc)
13340 ;
13341 else if (sec != NULL && sec->id <= htab->top_id)
13342 relocation += htab->stub_group[sec->id].toc_off;
13343 else
13344 unresolved_reloc = TRUE;
13345 goto dodyn;
13346
13347 /* TOC16 relocs. We want the offset relative to the TOC base,
13348 which is the address of the start of the TOC plus 0x8000.
13349 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13350 in this order. */
13351 case R_PPC64_TOC16:
13352 case R_PPC64_TOC16_LO:
13353 case R_PPC64_TOC16_HI:
13354 case R_PPC64_TOC16_DS:
13355 case R_PPC64_TOC16_LO_DS:
13356 case R_PPC64_TOC16_HA:
13357 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13358 break;
13359
13360 /* Relocate against the beginning of the section. */
13361 case R_PPC64_SECTOFF:
13362 case R_PPC64_SECTOFF_LO:
13363 case R_PPC64_SECTOFF_HI:
13364 case R_PPC64_SECTOFF_DS:
13365 case R_PPC64_SECTOFF_LO_DS:
13366 case R_PPC64_SECTOFF_HA:
13367 if (sec != NULL)
13368 addend -= sec->output_section->vma;
13369 break;
13370
13371 case R_PPC64_REL16:
13372 case R_PPC64_REL16_LO:
13373 case R_PPC64_REL16_HI:
13374 case R_PPC64_REL16_HA:
13375 break;
13376
13377 case R_PPC64_REL14:
13378 case R_PPC64_REL14_BRNTAKEN:
13379 case R_PPC64_REL14_BRTAKEN:
13380 case R_PPC64_REL24:
13381 break;
13382
13383 case R_PPC64_TPREL16:
13384 case R_PPC64_TPREL16_LO:
13385 case R_PPC64_TPREL16_HI:
13386 case R_PPC64_TPREL16_HA:
13387 case R_PPC64_TPREL16_DS:
13388 case R_PPC64_TPREL16_LO_DS:
13389 case R_PPC64_TPREL16_HIGHER:
13390 case R_PPC64_TPREL16_HIGHERA:
13391 case R_PPC64_TPREL16_HIGHEST:
13392 case R_PPC64_TPREL16_HIGHESTA:
13393 if (h != NULL
13394 && h->elf.root.type == bfd_link_hash_undefweak
13395 && h->elf.dynindx == -1)
13396 {
13397 /* Make this relocation against an undefined weak symbol
13398 resolve to zero. This is really just a tweak, since
13399 code using weak externs ought to check that they are
13400 defined before using them. */
13401 bfd_byte *p = contents + rel->r_offset - d_offset;
13402
13403 insn = bfd_get_32 (output_bfd, p);
13404 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13405 if (insn != 0)
13406 bfd_put_32 (output_bfd, insn, p);
13407 break;
13408 }
13409 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13410 if (info->shared)
13411 /* The TPREL16 relocs shouldn't really be used in shared
13412 libs as they will result in DT_TEXTREL being set, but
13413 support them anyway. */
13414 goto dodyn;
13415 break;
13416
13417 case R_PPC64_DTPREL16:
13418 case R_PPC64_DTPREL16_LO:
13419 case R_PPC64_DTPREL16_HI:
13420 case R_PPC64_DTPREL16_HA:
13421 case R_PPC64_DTPREL16_DS:
13422 case R_PPC64_DTPREL16_LO_DS:
13423 case R_PPC64_DTPREL16_HIGHER:
13424 case R_PPC64_DTPREL16_HIGHERA:
13425 case R_PPC64_DTPREL16_HIGHEST:
13426 case R_PPC64_DTPREL16_HIGHESTA:
13427 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13428 break;
13429
13430 case R_PPC64_DTPMOD64:
13431 relocation = 1;
13432 addend = 0;
13433 goto dodyn;
13434
13435 case R_PPC64_TPREL64:
13436 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13437 goto dodyn;
13438
13439 case R_PPC64_DTPREL64:
13440 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13441 /* Fall thru */
13442
13443 /* Relocations that may need to be propagated if this is a
13444 dynamic object. */
13445 case R_PPC64_REL30:
13446 case R_PPC64_REL32:
13447 case R_PPC64_REL64:
13448 case R_PPC64_ADDR14:
13449 case R_PPC64_ADDR14_BRNTAKEN:
13450 case R_PPC64_ADDR14_BRTAKEN:
13451 case R_PPC64_ADDR16:
13452 case R_PPC64_ADDR16_DS:
13453 case R_PPC64_ADDR16_HA:
13454 case R_PPC64_ADDR16_HI:
13455 case R_PPC64_ADDR16_HIGHER:
13456 case R_PPC64_ADDR16_HIGHERA:
13457 case R_PPC64_ADDR16_HIGHEST:
13458 case R_PPC64_ADDR16_HIGHESTA:
13459 case R_PPC64_ADDR16_LO:
13460 case R_PPC64_ADDR16_LO_DS:
13461 case R_PPC64_ADDR24:
13462 case R_PPC64_ADDR32:
13463 case R_PPC64_ADDR64:
13464 case R_PPC64_UADDR16:
13465 case R_PPC64_UADDR32:
13466 case R_PPC64_UADDR64:
13467 dodyn:
13468 if ((input_section->flags & SEC_ALLOC) == 0)
13469 break;
13470
13471 if (NO_OPD_RELOCS && is_opd)
13472 break;
13473
13474 if ((info->shared
13475 && (h == NULL
13476 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13477 || h->elf.root.type != bfd_link_hash_undefweak)
13478 && (must_be_dyn_reloc (info, r_type)
13479 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13480 || (ELIMINATE_COPY_RELOCS
13481 && !info->shared
13482 && h != NULL
13483 && h->elf.dynindx != -1
13484 && !h->elf.non_got_ref
13485 && !h->elf.def_regular)
13486 || (!info->shared
13487 && (h != NULL
13488 ? h->elf.type == STT_GNU_IFUNC
13489 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13490 {
13491 bfd_boolean skip, relocate;
13492 asection *sreloc;
13493 bfd_vma out_off;
13494
13495 /* When generating a dynamic object, these relocations
13496 are copied into the output file to be resolved at run
13497 time. */
13498
13499 skip = FALSE;
13500 relocate = FALSE;
13501
13502 out_off = _bfd_elf_section_offset (output_bfd, info,
13503 input_section, rel->r_offset);
13504 if (out_off == (bfd_vma) -1)
13505 skip = TRUE;
13506 else if (out_off == (bfd_vma) -2)
13507 skip = TRUE, relocate = TRUE;
13508 out_off += (input_section->output_section->vma
13509 + input_section->output_offset);
13510 outrel.r_offset = out_off;
13511 outrel.r_addend = rel->r_addend;
13512
13513 /* Optimize unaligned reloc use. */
13514 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13515 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13516 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13517 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13518 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13519 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13520 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13521 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13522 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13523
13524 if (skip)
13525 memset (&outrel, 0, sizeof outrel);
13526 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13527 && !is_opd
13528 && r_type != R_PPC64_TOC)
13529 {
13530 BFD_ASSERT (h->elf.dynindx != -1);
13531 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13532 }
13533 else
13534 {
13535 /* This symbol is local, or marked to become local,
13536 or this is an opd section reloc which must point
13537 at a local function. */
13538 outrel.r_addend += relocation;
13539 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13540 {
13541 if (is_opd && h != NULL)
13542 {
13543 /* Lie about opd entries. This case occurs
13544 when building shared libraries and we
13545 reference a function in another shared
13546 lib. The same thing happens for a weak
13547 definition in an application that's
13548 overridden by a strong definition in a
13549 shared lib. (I believe this is a generic
13550 bug in binutils handling of weak syms.)
13551 In these cases we won't use the opd
13552 entry in this lib. */
13553 unresolved_reloc = FALSE;
13554 }
13555 if (!is_opd
13556 && r_type == R_PPC64_ADDR64
13557 && (h != NULL
13558 ? h->elf.type == STT_GNU_IFUNC
13559 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13560 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13561 else
13562 {
13563 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13564
13565 /* We need to relocate .opd contents for ld.so.
13566 Prelink also wants simple and consistent rules
13567 for relocs. This make all RELATIVE relocs have
13568 *r_offset equal to r_addend. */
13569 relocate = TRUE;
13570 }
13571 }
13572 else
13573 {
13574 long indx = 0;
13575
13576 if (h != NULL
13577 ? h->elf.type == STT_GNU_IFUNC
13578 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13579 {
13580 info->callbacks->einfo
13581 (_("%P: %H: relocation %s for indirect "
13582 "function %s unsupported\n"),
13583 input_bfd, input_section, rel->r_offset,
13584 ppc64_elf_howto_table[r_type]->name,
13585 sym_name);
13586 ret = FALSE;
13587 }
13588 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13589 ;
13590 else if (sec == NULL || sec->owner == NULL)
13591 {
13592 bfd_set_error (bfd_error_bad_value);
13593 return FALSE;
13594 }
13595 else
13596 {
13597 asection *osec;
13598
13599 osec = sec->output_section;
13600 indx = elf_section_data (osec)->dynindx;
13601
13602 if (indx == 0)
13603 {
13604 if ((osec->flags & SEC_READONLY) == 0
13605 && htab->elf.data_index_section != NULL)
13606 osec = htab->elf.data_index_section;
13607 else
13608 osec = htab->elf.text_index_section;
13609 indx = elf_section_data (osec)->dynindx;
13610 }
13611 BFD_ASSERT (indx != 0);
13612
13613 /* We are turning this relocation into one
13614 against a section symbol, so subtract out
13615 the output section's address but not the
13616 offset of the input section in the output
13617 section. */
13618 outrel.r_addend -= osec->vma;
13619 }
13620
13621 outrel.r_info = ELF64_R_INFO (indx, r_type);
13622 }
13623 }
13624
13625 sreloc = elf_section_data (input_section)->sreloc;
13626 if (!htab->elf.dynamic_sections_created)
13627 sreloc = htab->reliplt;
13628 if (sreloc == NULL)
13629 abort ();
13630
13631 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13632 >= sreloc->size)
13633 abort ();
13634 loc = sreloc->contents;
13635 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13636 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13637
13638 /* If this reloc is against an external symbol, it will
13639 be computed at runtime, so there's no need to do
13640 anything now. However, for the sake of prelink ensure
13641 that the section contents are a known value. */
13642 if (! relocate)
13643 {
13644 unresolved_reloc = FALSE;
13645 /* The value chosen here is quite arbitrary as ld.so
13646 ignores section contents except for the special
13647 case of .opd where the contents might be accessed
13648 before relocation. Choose zero, as that won't
13649 cause reloc overflow. */
13650 relocation = 0;
13651 addend = 0;
13652 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13653 to improve backward compatibility with older
13654 versions of ld. */
13655 if (r_type == R_PPC64_ADDR64)
13656 addend = outrel.r_addend;
13657 /* Adjust pc_relative relocs to have zero in *r_offset. */
13658 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13659 addend = (input_section->output_section->vma
13660 + input_section->output_offset
13661 + rel->r_offset);
13662 }
13663 }
13664 break;
13665
13666 case R_PPC64_COPY:
13667 case R_PPC64_GLOB_DAT:
13668 case R_PPC64_JMP_SLOT:
13669 case R_PPC64_JMP_IREL:
13670 case R_PPC64_RELATIVE:
13671 /* We shouldn't ever see these dynamic relocs in relocatable
13672 files. */
13673 /* Fall through. */
13674
13675 case R_PPC64_PLTGOT16:
13676 case R_PPC64_PLTGOT16_DS:
13677 case R_PPC64_PLTGOT16_HA:
13678 case R_PPC64_PLTGOT16_HI:
13679 case R_PPC64_PLTGOT16_LO:
13680 case R_PPC64_PLTGOT16_LO_DS:
13681 case R_PPC64_PLTREL32:
13682 case R_PPC64_PLTREL64:
13683 /* These ones haven't been implemented yet. */
13684
13685 info->callbacks->einfo
13686 (_("%P: %B: relocation %s is not supported for symbol %s\n"),
13687 input_bfd,
13688 ppc64_elf_howto_table[r_type]->name, sym_name);
13689
13690 bfd_set_error (bfd_error_invalid_operation);
13691 ret = FALSE;
13692 continue;
13693 }
13694
13695 /* Multi-instruction sequences that access the TOC can be
13696 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13697 to nop; addi rb,r2,x; */
13698 switch (r_type)
13699 {
13700 default:
13701 break;
13702
13703 case R_PPC64_GOT_TLSLD16_HI:
13704 case R_PPC64_GOT_TLSGD16_HI:
13705 case R_PPC64_GOT_TPREL16_HI:
13706 case R_PPC64_GOT_DTPREL16_HI:
13707 case R_PPC64_GOT16_HI:
13708 case R_PPC64_TOC16_HI:
13709 /* These relocs would only be useful if building up an
13710 offset to later add to r2, perhaps in an indexed
13711 addressing mode instruction. Don't try to optimize.
13712 Unfortunately, the possibility of someone building up an
13713 offset like this or even with the HA relocs, means that
13714 we need to check the high insn when optimizing the low
13715 insn. */
13716 break;
13717
13718 case R_PPC64_GOT_TLSLD16_HA:
13719 case R_PPC64_GOT_TLSGD16_HA:
13720 case R_PPC64_GOT_TPREL16_HA:
13721 case R_PPC64_GOT_DTPREL16_HA:
13722 case R_PPC64_GOT16_HA:
13723 case R_PPC64_TOC16_HA:
13724 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13725 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13726 {
13727 bfd_byte *p = contents + (rel->r_offset & ~3);
13728 bfd_put_32 (input_bfd, NOP, p);
13729 }
13730 break;
13731
13732 case R_PPC64_GOT_TLSLD16_LO:
13733 case R_PPC64_GOT_TLSGD16_LO:
13734 case R_PPC64_GOT_TPREL16_LO_DS:
13735 case R_PPC64_GOT_DTPREL16_LO_DS:
13736 case R_PPC64_GOT16_LO:
13737 case R_PPC64_GOT16_LO_DS:
13738 case R_PPC64_TOC16_LO:
13739 case R_PPC64_TOC16_LO_DS:
13740 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13741 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13742 {
13743 bfd_byte *p = contents + (rel->r_offset & ~3);
13744 insn = bfd_get_32 (input_bfd, p);
13745 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13746 {
13747 /* Transform addic to addi when we change reg. */
13748 insn &= ~((0x3f << 26) | (0x1f << 16));
13749 insn |= (14u << 26) | (2 << 16);
13750 }
13751 else
13752 {
13753 insn &= ~(0x1f << 16);
13754 insn |= 2 << 16;
13755 }
13756 bfd_put_32 (input_bfd, insn, p);
13757 }
13758 break;
13759 }
13760
13761 /* Do any further special processing. */
13762 switch (r_type)
13763 {
13764 default:
13765 break;
13766
13767 case R_PPC64_ADDR16_HA:
13768 case R_PPC64_REL16_HA:
13769 case R_PPC64_ADDR16_HIGHERA:
13770 case R_PPC64_ADDR16_HIGHESTA:
13771 case R_PPC64_TOC16_HA:
13772 case R_PPC64_SECTOFF_HA:
13773 case R_PPC64_TPREL16_HA:
13774 case R_PPC64_DTPREL16_HA:
13775 case R_PPC64_TPREL16_HIGHER:
13776 case R_PPC64_TPREL16_HIGHERA:
13777 case R_PPC64_TPREL16_HIGHEST:
13778 case R_PPC64_TPREL16_HIGHESTA:
13779 case R_PPC64_DTPREL16_HIGHER:
13780 case R_PPC64_DTPREL16_HIGHERA:
13781 case R_PPC64_DTPREL16_HIGHEST:
13782 case R_PPC64_DTPREL16_HIGHESTA:
13783 /* It's just possible that this symbol is a weak symbol
13784 that's not actually defined anywhere. In that case,
13785 'sec' would be NULL, and we should leave the symbol
13786 alone (it will be set to zero elsewhere in the link). */
13787 if (sec == NULL)
13788 break;
13789 /* Fall thru */
13790
13791 case R_PPC64_GOT16_HA:
13792 case R_PPC64_PLTGOT16_HA:
13793 case R_PPC64_PLT16_HA:
13794 case R_PPC64_GOT_TLSGD16_HA:
13795 case R_PPC64_GOT_TLSLD16_HA:
13796 case R_PPC64_GOT_TPREL16_HA:
13797 case R_PPC64_GOT_DTPREL16_HA:
13798 /* Add 0x10000 if sign bit in 0:15 is set.
13799 Bits 0:15 are not used. */
13800 addend += 0x8000;
13801 break;
13802
13803 case R_PPC64_ADDR16_DS:
13804 case R_PPC64_ADDR16_LO_DS:
13805 case R_PPC64_GOT16_DS:
13806 case R_PPC64_GOT16_LO_DS:
13807 case R_PPC64_PLT16_LO_DS:
13808 case R_PPC64_SECTOFF_DS:
13809 case R_PPC64_SECTOFF_LO_DS:
13810 case R_PPC64_TOC16_DS:
13811 case R_PPC64_TOC16_LO_DS:
13812 case R_PPC64_PLTGOT16_DS:
13813 case R_PPC64_PLTGOT16_LO_DS:
13814 case R_PPC64_GOT_TPREL16_DS:
13815 case R_PPC64_GOT_TPREL16_LO_DS:
13816 case R_PPC64_GOT_DTPREL16_DS:
13817 case R_PPC64_GOT_DTPREL16_LO_DS:
13818 case R_PPC64_TPREL16_DS:
13819 case R_PPC64_TPREL16_LO_DS:
13820 case R_PPC64_DTPREL16_DS:
13821 case R_PPC64_DTPREL16_LO_DS:
13822 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13823 mask = 3;
13824 /* If this reloc is against an lq insn, then the value must be
13825 a multiple of 16. This is somewhat of a hack, but the
13826 "correct" way to do this by defining _DQ forms of all the
13827 _DS relocs bloats all reloc switches in this file. It
13828 doesn't seem to make much sense to use any of these relocs
13829 in data, so testing the insn should be safe. */
13830 if ((insn & (0x3f << 26)) == (56u << 26))
13831 mask = 15;
13832 if (((relocation + addend) & mask) != 0)
13833 {
13834 info->callbacks->einfo
13835 (_("%P: %H: error: %s not a multiple of %u\n"),
13836 input_bfd, input_section, rel->r_offset,
13837 ppc64_elf_howto_table[r_type]->name,
13838 mask + 1);
13839 bfd_set_error (bfd_error_bad_value);
13840 ret = FALSE;
13841 continue;
13842 }
13843 break;
13844 }
13845
13846 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13847 because such sections are not SEC_ALLOC and thus ld.so will
13848 not process them. */
13849 if (unresolved_reloc
13850 && !((input_section->flags & SEC_DEBUGGING) != 0
13851 && h->elf.def_dynamic)
13852 && _bfd_elf_section_offset (output_bfd, info, input_section,
13853 rel->r_offset) != (bfd_vma) -1)
13854 {
13855 info->callbacks->einfo
13856 (_("%P: %H: unresolvable %s relocation against symbol `%s'\n"),
13857 input_bfd, input_section, rel->r_offset,
13858 ppc64_elf_howto_table[(int) r_type]->name,
13859 h->elf.root.root.string);
13860 ret = FALSE;
13861 }
13862
13863 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
13864 input_bfd,
13865 input_section,
13866 contents,
13867 rel->r_offset,
13868 relocation,
13869 addend);
13870
13871 if (r != bfd_reloc_ok)
13872 {
13873 if (sym_name == NULL)
13874 sym_name = "(null)";
13875 if (r == bfd_reloc_overflow)
13876 {
13877 if (warned)
13878 continue;
13879 if (h != NULL
13880 && h->elf.root.type == bfd_link_hash_undefweak
13881 && ppc64_elf_howto_table[r_type]->pc_relative)
13882 {
13883 /* Assume this is a call protected by other code that
13884 detects the symbol is undefined. If this is the case,
13885 we can safely ignore the overflow. If not, the
13886 program is hosed anyway, and a little warning isn't
13887 going to help. */
13888
13889 continue;
13890 }
13891
13892 if (!((*info->callbacks->reloc_overflow)
13893 (info, (h ? &h->elf.root : NULL), sym_name,
13894 ppc64_elf_howto_table[r_type]->name,
13895 orig_rel.r_addend, input_bfd, input_section,
13896 rel->r_offset)))
13897 return FALSE;
13898 }
13899 else
13900 {
13901 info->callbacks->einfo
13902 (_("%P: %H: %s reloc against `%s': error %d\n"),
13903 input_bfd, input_section, rel->r_offset,
13904 ppc64_elf_howto_table[r_type]->name,
13905 sym_name,
13906 (int) r);
13907 ret = FALSE;
13908 }
13909 }
13910 }
13911
13912 /* If we're emitting relocations, then shortly after this function
13913 returns, reloc offsets and addends for this section will be
13914 adjusted. Worse, reloc symbol indices will be for the output
13915 file rather than the input. Save a copy of the relocs for
13916 opd_entry_value. */
13917 if (is_opd && (info->emitrelocations || info->relocatable))
13918 {
13919 bfd_size_type amt;
13920 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
13921 rel = bfd_alloc (input_bfd, amt);
13922 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
13923 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
13924 if (rel == NULL)
13925 return FALSE;
13926 memcpy (rel, relocs, amt);
13927 }
13928 return ret;
13929 }
13930
13931 /* Adjust the value of any local symbols in opd sections. */
13932
13933 static int
13934 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
13935 const char *name ATTRIBUTE_UNUSED,
13936 Elf_Internal_Sym *elfsym,
13937 asection *input_sec,
13938 struct elf_link_hash_entry *h)
13939 {
13940 struct _opd_sec_data *opd;
13941 long adjust;
13942 bfd_vma value;
13943
13944 if (h != NULL)
13945 return 1;
13946
13947 opd = get_opd_info (input_sec);
13948 if (opd == NULL || opd->adjust == NULL)
13949 return 1;
13950
13951 value = elfsym->st_value - input_sec->output_offset;
13952 if (!info->relocatable)
13953 value -= input_sec->output_section->vma;
13954
13955 adjust = opd->adjust[value / 8];
13956 if (adjust == -1)
13957 return 2;
13958
13959 elfsym->st_value += adjust;
13960 return 1;
13961 }
13962
13963 /* Finish up dynamic symbol handling. We set the contents of various
13964 dynamic sections here. */
13965
13966 static bfd_boolean
13967 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
13968 struct bfd_link_info *info,
13969 struct elf_link_hash_entry *h,
13970 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
13971 {
13972 struct ppc_link_hash_table *htab;
13973 struct plt_entry *ent;
13974 Elf_Internal_Rela rela;
13975 bfd_byte *loc;
13976
13977 htab = ppc_hash_table (info);
13978 if (htab == NULL)
13979 return FALSE;
13980
13981 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13982 if (ent->plt.offset != (bfd_vma) -1)
13983 {
13984 /* This symbol has an entry in the procedure linkage
13985 table. Set it up. */
13986 if (!htab->elf.dynamic_sections_created
13987 || h->dynindx == -1)
13988 {
13989 BFD_ASSERT (h->type == STT_GNU_IFUNC
13990 && h->def_regular
13991 && (h->root.type == bfd_link_hash_defined
13992 || h->root.type == bfd_link_hash_defweak));
13993 rela.r_offset = (htab->iplt->output_section->vma
13994 + htab->iplt->output_offset
13995 + ent->plt.offset);
13996 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13997 rela.r_addend = (h->root.u.def.value
13998 + h->root.u.def.section->output_offset
13999 + h->root.u.def.section->output_section->vma
14000 + ent->addend);
14001 loc = (htab->reliplt->contents
14002 + (htab->reliplt->reloc_count++
14003 * sizeof (Elf64_External_Rela)));
14004 }
14005 else
14006 {
14007 rela.r_offset = (htab->plt->output_section->vma
14008 + htab->plt->output_offset
14009 + ent->plt.offset);
14010 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14011 rela.r_addend = ent->addend;
14012 loc = (htab->relplt->contents
14013 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
14014 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
14015 }
14016 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14017 }
14018
14019 if (h->needs_copy)
14020 {
14021 /* This symbol needs a copy reloc. Set it up. */
14022
14023 if (h->dynindx == -1
14024 || (h->root.type != bfd_link_hash_defined
14025 && h->root.type != bfd_link_hash_defweak)
14026 || htab->relbss == NULL)
14027 abort ();
14028
14029 rela.r_offset = (h->root.u.def.value
14030 + h->root.u.def.section->output_section->vma
14031 + h->root.u.def.section->output_offset);
14032 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14033 rela.r_addend = 0;
14034 loc = htab->relbss->contents;
14035 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14036 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14037 }
14038
14039 return TRUE;
14040 }
14041
14042 /* Used to decide how to sort relocs in an optimal manner for the
14043 dynamic linker, before writing them out. */
14044
14045 static enum elf_reloc_type_class
14046 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
14047 {
14048 enum elf_ppc64_reloc_type r_type;
14049
14050 r_type = ELF64_R_TYPE (rela->r_info);
14051 switch (r_type)
14052 {
14053 case R_PPC64_RELATIVE:
14054 return reloc_class_relative;
14055 case R_PPC64_JMP_SLOT:
14056 return reloc_class_plt;
14057 case R_PPC64_COPY:
14058 return reloc_class_copy;
14059 default:
14060 return reloc_class_normal;
14061 }
14062 }
14063
14064 /* Finish up the dynamic sections. */
14065
14066 static bfd_boolean
14067 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14068 struct bfd_link_info *info)
14069 {
14070 struct ppc_link_hash_table *htab;
14071 bfd *dynobj;
14072 asection *sdyn;
14073
14074 htab = ppc_hash_table (info);
14075 if (htab == NULL)
14076 return FALSE;
14077
14078 dynobj = htab->elf.dynobj;
14079 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14080
14081 if (htab->elf.dynamic_sections_created)
14082 {
14083 Elf64_External_Dyn *dyncon, *dynconend;
14084
14085 if (sdyn == NULL || htab->got == NULL)
14086 abort ();
14087
14088 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14089 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14090 for (; dyncon < dynconend; dyncon++)
14091 {
14092 Elf_Internal_Dyn dyn;
14093 asection *s;
14094
14095 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14096
14097 switch (dyn.d_tag)
14098 {
14099 default:
14100 continue;
14101
14102 case DT_PPC64_GLINK:
14103 s = htab->glink;
14104 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14105 /* We stupidly defined DT_PPC64_GLINK to be the start
14106 of glink rather than the first entry point, which is
14107 what ld.so needs, and now have a bigger stub to
14108 support automatic multiple TOCs. */
14109 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14110 break;
14111
14112 case DT_PPC64_OPD:
14113 s = bfd_get_section_by_name (output_bfd, ".opd");
14114 if (s == NULL)
14115 continue;
14116 dyn.d_un.d_ptr = s->vma;
14117 break;
14118
14119 case DT_PPC64_OPDSZ:
14120 s = bfd_get_section_by_name (output_bfd, ".opd");
14121 if (s == NULL)
14122 continue;
14123 dyn.d_un.d_val = s->size;
14124 break;
14125
14126 case DT_PLTGOT:
14127 s = htab->plt;
14128 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14129 break;
14130
14131 case DT_JMPREL:
14132 s = htab->relplt;
14133 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14134 break;
14135
14136 case DT_PLTRELSZ:
14137 dyn.d_un.d_val = htab->relplt->size;
14138 break;
14139
14140 case DT_RELASZ:
14141 /* Don't count procedure linkage table relocs in the
14142 overall reloc count. */
14143 s = htab->relplt;
14144 if (s == NULL)
14145 continue;
14146 dyn.d_un.d_val -= s->size;
14147 break;
14148
14149 case DT_RELA:
14150 /* We may not be using the standard ELF linker script.
14151 If .rela.plt is the first .rela section, we adjust
14152 DT_RELA to not include it. */
14153 s = htab->relplt;
14154 if (s == NULL)
14155 continue;
14156 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14157 continue;
14158 dyn.d_un.d_ptr += s->size;
14159 break;
14160 }
14161
14162 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14163 }
14164 }
14165
14166 if (htab->got != NULL && htab->got->size != 0)
14167 {
14168 /* Fill in the first entry in the global offset table.
14169 We use it to hold the link-time TOCbase. */
14170 bfd_put_64 (output_bfd,
14171 elf_gp (output_bfd) + TOC_BASE_OFF,
14172 htab->got->contents);
14173
14174 /* Set .got entry size. */
14175 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14176 }
14177
14178 if (htab->plt != NULL && htab->plt->size != 0)
14179 {
14180 /* Set .plt entry size. */
14181 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14182 = PLT_ENTRY_SIZE;
14183 }
14184
14185 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14186 brlt ourselves if emitrelocations. */
14187 if (htab->brlt != NULL
14188 && htab->brlt->reloc_count != 0
14189 && !_bfd_elf_link_output_relocs (output_bfd,
14190 htab->brlt,
14191 elf_section_data (htab->brlt)->rela.hdr,
14192 elf_section_data (htab->brlt)->relocs,
14193 NULL))
14194 return FALSE;
14195
14196 if (htab->glink != NULL
14197 && htab->glink->reloc_count != 0
14198 && !_bfd_elf_link_output_relocs (output_bfd,
14199 htab->glink,
14200 elf_section_data (htab->glink)->rela.hdr,
14201 elf_section_data (htab->glink)->relocs,
14202 NULL))
14203 return FALSE;
14204
14205
14206 if (htab->glink_eh_frame != NULL
14207 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14208 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14209 htab->glink_eh_frame,
14210 htab->glink_eh_frame->contents))
14211 return FALSE;
14212
14213 /* We need to handle writing out multiple GOT sections ourselves,
14214 since we didn't add them to DYNOBJ. We know dynobj is the first
14215 bfd. */
14216 while ((dynobj = dynobj->link_next) != NULL)
14217 {
14218 asection *s;
14219
14220 if (!is_ppc64_elf (dynobj))
14221 continue;
14222
14223 s = ppc64_elf_tdata (dynobj)->got;
14224 if (s != NULL
14225 && s->size != 0
14226 && s->output_section != bfd_abs_section_ptr
14227 && !bfd_set_section_contents (output_bfd, s->output_section,
14228 s->contents, s->output_offset,
14229 s->size))
14230 return FALSE;
14231 s = ppc64_elf_tdata (dynobj)->relgot;
14232 if (s != NULL
14233 && s->size != 0
14234 && s->output_section != bfd_abs_section_ptr
14235 && !bfd_set_section_contents (output_bfd, s->output_section,
14236 s->contents, s->output_offset,
14237 s->size))
14238 return FALSE;
14239 }
14240
14241 return TRUE;
14242 }
14243
14244 #include "elf64-target.h"
14245
14246 /* FreeBSD support */
14247
14248 #undef TARGET_LITTLE_SYM
14249 #undef TARGET_LITTLE_NAME
14250
14251 #undef TARGET_BIG_SYM
14252 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14253 #undef TARGET_BIG_NAME
14254 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14255
14256 #undef ELF_OSABI
14257 #define ELF_OSABI ELFOSABI_FREEBSD
14258
14259 #undef elf64_bed
14260 #define elf64_bed elf64_powerpc_fbsd_bed
14261
14262 #include "elf64-target.h"
14263
This page took 0.43838 seconds and 4 git commands to generate.