2004-10-13 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_symbol_offset 0
71 #define elf_backend_got_header_size 8
72 #define elf_backend_can_gc_sections 1
73 #define elf_backend_can_refcount 1
74 #define elf_backend_rela_normal 1
75
76 #define bfd_elf64_mkobject ppc64_elf_mkobject
77 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84 #define elf_backend_object_p ppc64_elf_object_p
85 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90 #define elf_backend_check_directives ppc64_elf_check_directives
91 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92 #define elf_backend_check_relocs ppc64_elf_check_relocs
93 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
97 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99 #define elf_backend_relocate_section ppc64_elf_relocate_section
100 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104 #define elf_backend_special_sections ppc64_elf_special_sections
105
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 24
112
113 /* The initial size of the plt reserved for the dynamic linker. */
114 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116 /* TOC base pointers offset from start of TOC. */
117 #define TOC_BASE_OFF 0x8000
118
119 /* Offset of tp and dtp pointers from start of TLS block. */
120 #define TP_OFFSET 0x7000
121 #define DTP_OFFSET 0x8000
122
123 /* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126 #define PLT_CALL_STUB_SIZE (7*4)
127 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133 #define BCTR 0x4e800420 /* bctr */
134
135
136 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141 /* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143 #define GLINK_CALL_STUB_SIZE (16*4)
144 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161 /* Pad with this. */
162 #define NOP 0x60000000
163
164 /* Some other nops. */
165 #define CROR_151515 0x4def7b82
166 #define CROR_313131 0x4ffffb82
167
168 /* .glink entries for the first 32k functions are two instructions. */
169 #define LI_R0_0 0x38000000 /* li %r0,0 */
170 #define B_DOT 0x48000000 /* b . */
171
172 /* After that, we need two instructions to load the index, followed by
173 a branch. */
174 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177 /* Instructions used by the save and restore reg functions. */
178 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184 #define LI_R12_0 0x39800000 /* li %r12,0 */
185 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188 #define BLR 0x4e800020 /* blr */
189
190 /* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194 #ifndef NO_OPD_RELOCS
195 #define NO_OPD_RELOCS 0
196 #endif
197 \f
198 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200 /* Relocation HOWTO's. */
201 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203 static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864 };
1865
1866 \f
1867 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870 static void
1871 ppc_howto_init (void)
1872 {
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884 }
1885
1886 static reloc_howto_type *
1887 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889 {
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106 };
2107
2108 /* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110 static void
2111 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113 {
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124 }
2125
2126 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128 static bfd_reloc_status_type
2129 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132 {
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145 }
2146
2147 static bfd_reloc_status_type
2148 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151 {
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168 }
2169
2170 static bfd_reloc_status_type
2171 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174 {
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231 }
2232
2233 static bfd_reloc_status_type
2234 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248 }
2249
2250 static bfd_reloc_status_type
2251 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268 }
2269
2270 static bfd_reloc_status_type
2271 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291 }
2292
2293 static bfd_reloc_status_type
2294 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297 {
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317 }
2318
2319 static bfd_reloc_status_type
2320 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323 {
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341 }
2342
2343 static bfd_reloc_status_type
2344 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347 {
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363 }
2364
2365 struct ppc64_elf_obj_tdata
2366 {
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383 };
2384
2385 #define ppc64_elf_tdata(bfd) \
2386 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2387
2388 #define ppc64_tlsld_got(bfd) \
2389 (&ppc64_elf_tdata (bfd)->tlsld_got)
2390
2391 /* Override the generic function because we store some extras. */
2392
2393 static bfd_boolean
2394 ppc64_elf_mkobject (bfd *abfd)
2395 {
2396 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2397 abfd->tdata.any = bfd_zalloc (abfd, amt);
2398 if (abfd->tdata.any == NULL)
2399 return FALSE;
2400 return TRUE;
2401 }
2402
2403 /* Return 1 if target is one of ours. */
2404
2405 static bfd_boolean
2406 is_ppc64_elf_target (const struct bfd_target *targ)
2407 {
2408 extern const bfd_target bfd_elf64_powerpc_vec;
2409 extern const bfd_target bfd_elf64_powerpcle_vec;
2410
2411 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2412 }
2413
2414 /* Fix bad default arch selected for a 64 bit input bfd when the
2415 default is 32 bit. */
2416
2417 static bfd_boolean
2418 ppc64_elf_object_p (bfd *abfd)
2419 {
2420 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2421 {
2422 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2423
2424 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2425 {
2426 /* Relies on arch after 32 bit default being 64 bit default. */
2427 abfd->arch_info = abfd->arch_info->next;
2428 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2429 }
2430 }
2431 return TRUE;
2432 }
2433
2434 /* Support for core dump NOTE sections. */
2435
2436 static bfd_boolean
2437 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2438 {
2439 size_t offset, size;
2440
2441 if (note->descsz != 504)
2442 return FALSE;
2443
2444 /* pr_cursig */
2445 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2446
2447 /* pr_pid */
2448 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2449
2450 /* pr_reg */
2451 offset = 112;
2452 size = 384;
2453
2454 /* Make a ".reg/999" section. */
2455 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2456 size, note->descpos + offset);
2457 }
2458
2459 static bfd_boolean
2460 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2461 {
2462 if (note->descsz != 136)
2463 return FALSE;
2464
2465 elf_tdata (abfd)->core_program
2466 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2467 elf_tdata (abfd)->core_command
2468 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2469
2470 return TRUE;
2471 }
2472
2473 /* Merge backend specific data from an object file to the output
2474 object file when linking. */
2475
2476 static bfd_boolean
2477 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2478 {
2479 /* Check if we have the same endianess. */
2480 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2481 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2482 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2483 {
2484 const char *msg;
2485
2486 if (bfd_big_endian (ibfd))
2487 msg = _("%B: compiled for a big endian system "
2488 "and target is little endian");
2489 else
2490 msg = _("%B: compiled for a little endian system "
2491 "and target is big endian");
2492
2493 (*_bfd_error_handler) (msg, ibfd);
2494
2495 bfd_set_error (bfd_error_wrong_format);
2496 return FALSE;
2497 }
2498
2499 return TRUE;
2500 }
2501
2502 /* Add extra PPC sections. */
2503
2504 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2505 {
2506 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2507 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2508 { ".plt", 4, 0, SHT_NOBITS, 0 },
2509 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2510 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2511 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2512 { NULL, 0, 0, 0, 0 }
2513 };
2514
2515 struct _ppc64_elf_section_data
2516 {
2517 struct bfd_elf_section_data elf;
2518
2519 /* An array with one entry for each opd function descriptor. */
2520 union
2521 {
2522 /* Points to the function code section for local opd entries. */
2523 asection **func_sec;
2524 /* After editing .opd, adjust references to opd local syms. */
2525 long *adjust;
2526 } opd;
2527
2528 /* An array for toc sections, indexed by offset/8.
2529 Specifies the relocation symbol index used at a given toc offset. */
2530 unsigned *t_symndx;
2531 };
2532
2533 #define ppc64_elf_section_data(sec) \
2534 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2535
2536 static bfd_boolean
2537 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2538 {
2539 struct _ppc64_elf_section_data *sdata;
2540 bfd_size_type amt = sizeof (*sdata);
2541
2542 sdata = bfd_zalloc (abfd, amt);
2543 if (sdata == NULL)
2544 return FALSE;
2545 sec->used_by_bfd = sdata;
2546
2547 return _bfd_elf_new_section_hook (abfd, sec);
2548 }
2549
2550 static void *
2551 get_opd_info (asection * sec)
2552 {
2553 if (sec != NULL
2554 && ppc64_elf_section_data (sec) != NULL
2555 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2556 return ppc64_elf_section_data (sec)->opd.adjust;
2557 return NULL;
2558 }
2559 \f
2560 /* Parameters for the qsort hook. */
2561 static asection *synthetic_opd;
2562 static bfd_boolean synthetic_relocatable;
2563
2564 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2565
2566 static int
2567 compare_symbols (const void *ap, const void *bp)
2568 {
2569 const asymbol *a = * (const asymbol **) ap;
2570 const asymbol *b = * (const asymbol **) bp;
2571
2572 /* Section symbols first. */
2573 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2574 return -1;
2575 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2576 return 1;
2577
2578 /* then .opd symbols. */
2579 if (a->section == synthetic_opd && b->section != synthetic_opd)
2580 return -1;
2581 if (a->section != synthetic_opd && b->section == synthetic_opd)
2582 return 1;
2583
2584 /* then other code symbols. */
2585 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2586 == (SEC_CODE | SEC_ALLOC)
2587 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2588 != (SEC_CODE | SEC_ALLOC))
2589 return -1;
2590
2591 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2592 != (SEC_CODE | SEC_ALLOC)
2593 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2594 == (SEC_CODE | SEC_ALLOC))
2595 return 1;
2596
2597 if (synthetic_relocatable)
2598 {
2599 if (a->section->id < b->section->id)
2600 return -1;
2601
2602 if (a->section->id > b->section->id)
2603 return 1;
2604 }
2605
2606 if (a->value + a->section->vma < b->value + b->section->vma)
2607 return -1;
2608
2609 if (a->value + a->section->vma > b->value + b->section->vma)
2610 return 1;
2611
2612 return 0;
2613 }
2614
2615 /* Search SYMS for a symbol of the given VALUE. */
2616
2617 static asymbol *
2618 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2619 {
2620 long mid;
2621
2622 if (id == -1)
2623 {
2624 while (lo < hi)
2625 {
2626 mid = (lo + hi) >> 1;
2627 if (syms[mid]->value + syms[mid]->section->vma < value)
2628 lo = mid + 1;
2629 else if (syms[mid]->value + syms[mid]->section->vma > value)
2630 hi = mid;
2631 else
2632 return syms[mid];
2633 }
2634 }
2635 else
2636 {
2637 while (lo < hi)
2638 {
2639 mid = (lo + hi) >> 1;
2640 if (syms[mid]->section->id < id)
2641 lo = mid + 1;
2642 else if (syms[mid]->section->id > id)
2643 hi = mid;
2644 else if (syms[mid]->value < value)
2645 lo = mid + 1;
2646 else if (syms[mid]->value > value)
2647 hi = mid;
2648 else
2649 return syms[mid];
2650 }
2651 }
2652 return NULL;
2653 }
2654
2655 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2656 entry syms. */
2657
2658 static long
2659 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2660 long static_count, asymbol **static_syms,
2661 long dyn_count, asymbol **dyn_syms,
2662 asymbol **ret)
2663 {
2664 asymbol *s;
2665 long i;
2666 long count;
2667 char *names;
2668 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2669 asection *opd;
2670 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2671 asymbol **syms;
2672
2673 *ret = NULL;
2674
2675 opd = bfd_get_section_by_name (abfd, ".opd");
2676 if (opd == NULL)
2677 return 0;
2678
2679 symcount = static_count;
2680 if (!relocatable)
2681 symcount += dyn_count;
2682 if (symcount == 0)
2683 return 0;
2684
2685 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2686 if (syms == NULL)
2687 return 0;
2688
2689 if (!relocatable && static_count != 0 && dyn_count != 0)
2690 {
2691 /* Use both symbol tables. */
2692 memcpy (syms, static_syms, static_count * sizeof (*syms));
2693 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2694 }
2695 else if (!relocatable && static_count == 0)
2696 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2697 else
2698 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2699
2700 synthetic_opd = opd;
2701 synthetic_relocatable = relocatable;
2702 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2703
2704 if (!relocatable && symcount > 1)
2705 {
2706 long j;
2707 /* Trim duplicate syms, since we may have merged the normal and
2708 dynamic symbols. Actually, we only care about syms that have
2709 different values, so trim any with the same value. */
2710 for (i = 1, j = 1; i < symcount; ++i)
2711 if (syms[i - 1]->value + syms[i - 1]->section->vma
2712 != syms[i]->value + syms[i]->section->vma)
2713 syms[j++] = syms[i];
2714 symcount = j;
2715 }
2716
2717 i = 0;
2718 if (syms[i]->section == opd)
2719 ++i;
2720 codesecsym = i;
2721
2722 for (; i < symcount; ++i)
2723 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2724 != (SEC_CODE | SEC_ALLOC))
2725 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2726 break;
2727 codesecsymend = i;
2728
2729 for (; i < symcount; ++i)
2730 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2731 break;
2732 secsymend = i;
2733
2734 for (; i < symcount; ++i)
2735 if (syms[i]->section != opd)
2736 break;
2737 opdsymend = i;
2738
2739 for (; i < symcount; ++i)
2740 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2741 != (SEC_CODE | SEC_ALLOC))
2742 break;
2743 symcount = i;
2744
2745 count = 0;
2746 if (opdsymend == secsymend)
2747 goto done;
2748
2749 if (relocatable)
2750 {
2751 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2752 arelent *r;
2753 size_t size;
2754 long relcount;
2755
2756 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2757 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2758
2759 if (! relcount
2760 || ! (*slurp_relocs) (abfd, opd, static_syms, FALSE))
2761 goto done;
2762
2763 size = 0;
2764 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2765 {
2766 asymbol *sym;
2767
2768 while (r < opd->relocation + relcount
2769 && r->address < syms[i]->value + opd->vma)
2770 ++r;
2771
2772 if (r == opd->relocation + relcount)
2773 break;
2774
2775 if (r->address != syms[i]->value + opd->vma)
2776 continue;
2777
2778 if (r->howto->type != R_PPC64_ADDR64)
2779 continue;
2780
2781 sym = *r->sym_ptr_ptr;
2782 if (!sym_exists_at (syms, opdsymend, symcount,
2783 sym->section->id, sym->value + r->addend))
2784 {
2785 ++count;
2786 size += sizeof (asymbol);
2787 size += strlen (syms[i]->name) + 2;
2788 }
2789 }
2790
2791 s = *ret = bfd_malloc (size);
2792 if (s == NULL)
2793 {
2794 count = 0;
2795 goto done;
2796 }
2797
2798 names = (char *) (s + count);
2799
2800 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2801 {
2802 asymbol *sym;
2803
2804 while (r < opd->relocation + relcount
2805 && r->address < syms[i]->value + opd->vma)
2806 ++r;
2807
2808 if (r == opd->relocation + relcount)
2809 break;
2810
2811 if (r->address != syms[i]->value + opd->vma)
2812 continue;
2813
2814 if (r->howto->type != R_PPC64_ADDR64)
2815 continue;
2816
2817 sym = *r->sym_ptr_ptr;
2818 if (!sym_exists_at (syms, opdsymend, symcount,
2819 sym->section->id, sym->value + r->addend))
2820 {
2821 size_t len;
2822
2823 *s = *syms[i];
2824 s->section = sym->section;
2825 s->value = sym->value + r->addend;
2826 s->name = names;
2827 *names++ = '.';
2828 len = strlen (syms[i]->name);
2829 memcpy (names, syms[i]->name, len + 1);
2830 names += len + 1;
2831 s++;
2832 }
2833 }
2834 }
2835 else
2836 {
2837 bfd_byte *contents;
2838 size_t size;
2839
2840 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2841 {
2842 if (contents)
2843 {
2844 free_contents_and_exit:
2845 free (contents);
2846 }
2847 goto done;
2848 }
2849
2850 size = 0;
2851 for (i = secsymend; i < opdsymend; ++i)
2852 {
2853 bfd_vma ent;
2854
2855 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2856 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2857 {
2858 ++count;
2859 size += sizeof (asymbol);
2860 size += strlen (syms[i]->name) + 2;
2861 }
2862 }
2863
2864 s = *ret = bfd_malloc (size);
2865 if (s == NULL)
2866 {
2867 count = 0;
2868 goto free_contents_and_exit;
2869 }
2870
2871 names = (char *) (s + count);
2872
2873 for (i = secsymend; i < opdsymend; ++i)
2874 {
2875 bfd_vma ent;
2876
2877 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2878 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2879 {
2880 long lo, hi;
2881 size_t len;
2882 asection *sec = abfd->sections;
2883
2884 *s = *syms[i];
2885 lo = codesecsym;
2886 hi = codesecsymend;
2887 while (lo < hi)
2888 {
2889 long mid = (lo + hi) >> 1;
2890 if (syms[mid]->section->vma < ent)
2891 lo = mid + 1;
2892 else if (syms[mid]->section->vma > ent)
2893 hi = mid;
2894 else
2895 {
2896 sec = syms[mid]->section;
2897 break;
2898 }
2899 }
2900
2901 if (lo >= hi && lo > codesecsym)
2902 sec = syms[lo - 1]->section;
2903
2904 for (; sec != NULL; sec = sec->next)
2905 {
2906 if (sec->vma > ent)
2907 break;
2908 if ((sec->flags & SEC_ALLOC) == 0
2909 || (sec->flags & SEC_LOAD) == 0)
2910 break;
2911 if ((sec->flags & SEC_CODE) != 0)
2912 s->section = sec;
2913 }
2914 s->value = ent - s->section->vma;
2915 s->name = names;
2916 *names++ = '.';
2917 len = strlen (syms[i]->name);
2918 memcpy (names, syms[i]->name, len + 1);
2919 names += len + 1;
2920 s++;
2921 }
2922 }
2923 free (contents);
2924 }
2925
2926 done:
2927 free (syms);
2928 return count;
2929 }
2930 \f
2931 /* The following functions are specific to the ELF linker, while
2932 functions above are used generally. Those named ppc64_elf_* are
2933 called by the main ELF linker code. They appear in this file more
2934 or less in the order in which they are called. eg.
2935 ppc64_elf_check_relocs is called early in the link process,
2936 ppc64_elf_finish_dynamic_sections is one of the last functions
2937 called.
2938
2939 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2940 functions have both a function code symbol and a function descriptor
2941 symbol. A call to foo in a relocatable object file looks like:
2942
2943 . .text
2944 . x:
2945 . bl .foo
2946 . nop
2947
2948 The function definition in another object file might be:
2949
2950 . .section .opd
2951 . foo: .quad .foo
2952 . .quad .TOC.@tocbase
2953 . .quad 0
2954 .
2955 . .text
2956 . .foo: blr
2957
2958 When the linker resolves the call during a static link, the branch
2959 unsurprisingly just goes to .foo and the .opd information is unused.
2960 If the function definition is in a shared library, things are a little
2961 different: The call goes via a plt call stub, the opd information gets
2962 copied to the plt, and the linker patches the nop.
2963
2964 . x:
2965 . bl .foo_stub
2966 . ld 2,40(1)
2967 .
2968 .
2969 . .foo_stub:
2970 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2971 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2972 . std 2,40(1) # this is the general idea
2973 . ld 11,0(12)
2974 . ld 2,8(12)
2975 . mtctr 11
2976 . ld 11,16(12)
2977 . bctr
2978 .
2979 . .section .plt
2980 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2981
2982 The "reloc ()" notation is supposed to indicate that the linker emits
2983 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2984 copying.
2985
2986 What are the difficulties here? Well, firstly, the relocations
2987 examined by the linker in check_relocs are against the function code
2988 sym .foo, while the dynamic relocation in the plt is emitted against
2989 the function descriptor symbol, foo. Somewhere along the line, we need
2990 to carefully copy dynamic link information from one symbol to the other.
2991 Secondly, the generic part of the elf linker will make .foo a dynamic
2992 symbol as is normal for most other backends. We need foo dynamic
2993 instead, at least for an application final link. However, when
2994 creating a shared library containing foo, we need to have both symbols
2995 dynamic so that references to .foo are satisfied during the early
2996 stages of linking. Otherwise the linker might decide to pull in a
2997 definition from some other object, eg. a static library.
2998
2999 Update: As of August 2004, we support a new convention. Function
3000 calls may use the function descriptor symbol, ie. "bl foo". This
3001 behaves exactly as "bl .foo". */
3002
3003 /* The linker needs to keep track of the number of relocs that it
3004 decides to copy as dynamic relocs in check_relocs for each symbol.
3005 This is so that it can later discard them if they are found to be
3006 unnecessary. We store the information in a field extending the
3007 regular ELF linker hash table. */
3008
3009 struct ppc_dyn_relocs
3010 {
3011 struct ppc_dyn_relocs *next;
3012
3013 /* The input section of the reloc. */
3014 asection *sec;
3015
3016 /* Total number of relocs copied for the input section. */
3017 bfd_size_type count;
3018
3019 /* Number of pc-relative relocs copied for the input section. */
3020 bfd_size_type pc_count;
3021 };
3022
3023 /* Track GOT entries needed for a given symbol. We might need more
3024 than one got entry per symbol. */
3025 struct got_entry
3026 {
3027 struct got_entry *next;
3028
3029 /* The symbol addend that we'll be placing in the GOT. */
3030 bfd_vma addend;
3031
3032 /* Unlike other ELF targets, we use separate GOT entries for the same
3033 symbol referenced from different input files. This is to support
3034 automatic multiple TOC/GOT sections, where the TOC base can vary
3035 from one input file to another.
3036
3037 Point to the BFD owning this GOT entry. */
3038 bfd *owner;
3039
3040 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3041 TLS_TPREL or TLS_DTPREL for tls entries. */
3042 char tls_type;
3043
3044 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3045 union
3046 {
3047 bfd_signed_vma refcount;
3048 bfd_vma offset;
3049 } got;
3050 };
3051
3052 /* The same for PLT. */
3053 struct plt_entry
3054 {
3055 struct plt_entry *next;
3056
3057 bfd_vma addend;
3058
3059 union
3060 {
3061 bfd_signed_vma refcount;
3062 bfd_vma offset;
3063 } plt;
3064 };
3065
3066 /* Of those relocs that might be copied as dynamic relocs, this macro
3067 selects those that must be copied when linking a shared library,
3068 even when the symbol is local. */
3069
3070 #define MUST_BE_DYN_RELOC(RTYPE) \
3071 ((RTYPE) != R_PPC64_REL32 \
3072 && (RTYPE) != R_PPC64_REL64 \
3073 && (RTYPE) != R_PPC64_REL30)
3074
3075 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3076 copying dynamic variables from a shared lib into an app's dynbss
3077 section, and instead use a dynamic relocation to point into the
3078 shared lib. With code that gcc generates, it's vital that this be
3079 enabled; In the PowerPC64 ABI, the address of a function is actually
3080 the address of a function descriptor, which resides in the .opd
3081 section. gcc uses the descriptor directly rather than going via the
3082 GOT as some other ABI's do, which means that initialized function
3083 pointers must reference the descriptor. Thus, a function pointer
3084 initialized to the address of a function in a shared library will
3085 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3086 redefines the function descriptor symbol to point to the copy. This
3087 presents a problem as a plt entry for that function is also
3088 initialized from the function descriptor symbol and the copy reloc
3089 may not be initialized first. */
3090 #define ELIMINATE_COPY_RELOCS 1
3091
3092 /* Section name for stubs is the associated section name plus this
3093 string. */
3094 #define STUB_SUFFIX ".stub"
3095
3096 /* Linker stubs.
3097 ppc_stub_long_branch:
3098 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3099 destination, but a 24 bit branch in a stub section will reach.
3100 . b dest
3101
3102 ppc_stub_plt_branch:
3103 Similar to the above, but a 24 bit branch in the stub section won't
3104 reach its destination.
3105 . addis %r12,%r2,xxx@toc@ha
3106 . ld %r11,xxx@toc@l(%r12)
3107 . mtctr %r11
3108 . bctr
3109
3110 ppc_stub_plt_call:
3111 Used to call a function in a shared library. If it so happens that
3112 the plt entry referenced crosses a 64k boundary, then an extra
3113 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3114 xxx+16 as appropriate.
3115 . addis %r12,%r2,xxx@toc@ha
3116 . std %r2,40(%r1)
3117 . ld %r11,xxx+0@toc@l(%r12)
3118 . ld %r2,xxx+8@toc@l(%r12)
3119 . mtctr %r11
3120 . ld %r11,xxx+16@toc@l(%r12)
3121 . bctr
3122
3123 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3124 code to adjust the value and save r2 to support multiple toc sections.
3125 A ppc_stub_long_branch with an r2 offset looks like:
3126 . std %r2,40(%r1)
3127 . addis %r2,%r2,off@ha
3128 . addi %r2,%r2,off@l
3129 . b dest
3130
3131 A ppc_stub_plt_branch with an r2 offset looks like:
3132 . std %r2,40(%r1)
3133 . addis %r12,%r2,xxx@toc@ha
3134 . ld %r11,xxx@toc@l(%r12)
3135 . addis %r2,%r2,off@ha
3136 . addi %r2,%r2,off@l
3137 . mtctr %r11
3138 . bctr
3139 */
3140
3141 enum ppc_stub_type {
3142 ppc_stub_none,
3143 ppc_stub_long_branch,
3144 ppc_stub_long_branch_r2off,
3145 ppc_stub_plt_branch,
3146 ppc_stub_plt_branch_r2off,
3147 ppc_stub_plt_call
3148 };
3149
3150 struct ppc_stub_hash_entry {
3151
3152 /* Base hash table entry structure. */
3153 struct bfd_hash_entry root;
3154
3155 enum ppc_stub_type stub_type;
3156
3157 /* The stub section. */
3158 asection *stub_sec;
3159
3160 /* Offset within stub_sec of the beginning of this stub. */
3161 bfd_vma stub_offset;
3162
3163 /* Given the symbol's value and its section we can determine its final
3164 value when building the stubs (so the stub knows where to jump. */
3165 bfd_vma target_value;
3166 asection *target_section;
3167
3168 /* The symbol table entry, if any, that this was derived from. */
3169 struct ppc_link_hash_entry *h;
3170
3171 /* And the reloc addend that this was derived from. */
3172 bfd_vma addend;
3173
3174 /* Where this stub is being called from, or, in the case of combined
3175 stub sections, the first input section in the group. */
3176 asection *id_sec;
3177 };
3178
3179 struct ppc_branch_hash_entry {
3180
3181 /* Base hash table entry structure. */
3182 struct bfd_hash_entry root;
3183
3184 /* Offset within .branch_lt. */
3185 unsigned int offset;
3186
3187 /* Generation marker. */
3188 unsigned int iter;
3189 };
3190
3191 struct ppc_link_hash_entry
3192 {
3193 struct elf_link_hash_entry elf;
3194
3195 /* A pointer to the most recently used stub hash entry against this
3196 symbol. */
3197 struct ppc_stub_hash_entry *stub_cache;
3198
3199 /* Track dynamic relocs copied for this symbol. */
3200 struct ppc_dyn_relocs *dyn_relocs;
3201
3202 /* Link between function code and descriptor symbols. */
3203 struct ppc_link_hash_entry *oh;
3204
3205 /* Flag function code and descriptor symbols. */
3206 unsigned int is_func:1;
3207 unsigned int is_func_descriptor:1;
3208
3209 /* Whether global opd sym has been adjusted or not.
3210 After ppc64_elf_edit_opd has run, this flag should be set for all
3211 globals defined in any opd section. */
3212 unsigned int adjust_done:1;
3213
3214 /* Set if we twiddled this symbol to weak at some stage. */
3215 unsigned int was_undefined:1;
3216
3217 /* Contexts in which symbol is used in the GOT (or TOC).
3218 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3219 corresponding relocs are encountered during check_relocs.
3220 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3221 indicate the corresponding GOT entry type is not needed.
3222 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3223 a TPREL one. We use a separate flag rather than setting TPREL
3224 just for convenience in distinguishing the two cases. */
3225 #define TLS_GD 1 /* GD reloc. */
3226 #define TLS_LD 2 /* LD reloc. */
3227 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3228 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3229 #define TLS_TLS 16 /* Any TLS reloc. */
3230 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3231 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3232 char tls_mask;
3233 };
3234
3235 /* ppc64 ELF linker hash table. */
3236
3237 struct ppc_link_hash_table
3238 {
3239 struct elf_link_hash_table elf;
3240
3241 /* The stub hash table. */
3242 struct bfd_hash_table stub_hash_table;
3243
3244 /* Another hash table for plt_branch stubs. */
3245 struct bfd_hash_table branch_hash_table;
3246
3247 /* Linker stub bfd. */
3248 bfd *stub_bfd;
3249
3250 /* Linker call-backs. */
3251 asection * (*add_stub_section) (const char *, asection *);
3252 void (*layout_sections_again) (void);
3253
3254 /* Array to keep track of which stub sections have been created, and
3255 information on stub grouping. */
3256 struct map_stub {
3257 /* This is the section to which stubs in the group will be attached. */
3258 asection *link_sec;
3259 /* The stub section. */
3260 asection *stub_sec;
3261 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3262 bfd_vma toc_off;
3263 } *stub_group;
3264
3265 /* Temp used when calculating TOC pointers. */
3266 bfd_vma toc_curr;
3267
3268 /* Highest input section id. */
3269 int top_id;
3270
3271 /* Highest output section index. */
3272 int top_index;
3273
3274 /* List of input sections for each output section. */
3275 asection **input_list;
3276
3277 /* Short-cuts to get to dynamic linker sections. */
3278 asection *got;
3279 asection *plt;
3280 asection *relplt;
3281 asection *dynbss;
3282 asection *relbss;
3283 asection *glink;
3284 asection *sfpr;
3285 asection *brlt;
3286 asection *relbrlt;
3287
3288 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3289 struct ppc_link_hash_entry *tls_get_addr;
3290 struct ppc_link_hash_entry *tls_get_addr_fd;
3291
3292 /* Statistics. */
3293 unsigned long stub_count[ppc_stub_plt_call];
3294
3295 /* Number of stubs against global syms. */
3296 unsigned long stub_globals;
3297
3298 /* Set if we should emit symbols for stubs. */
3299 unsigned int emit_stub_syms:1;
3300
3301 /* Set on error. */
3302 unsigned int stub_error:1;
3303
3304 /* Flag set when small branches are detected. Used to
3305 select suitable defaults for the stub group size. */
3306 unsigned int has_14bit_branch:1;
3307
3308 /* Temp used by ppc64_elf_check_directives. */
3309 unsigned int twiddled_syms:1;
3310
3311 /* Incremented every time we size stubs. */
3312 unsigned int stub_iteration;
3313
3314 /* Small local sym to section mapping cache. */
3315 struct sym_sec_cache sym_sec;
3316 };
3317
3318 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3319
3320 #define ppc_hash_table(p) \
3321 ((struct ppc_link_hash_table *) ((p)->hash))
3322
3323 #define ppc_stub_hash_lookup(table, string, create, copy) \
3324 ((struct ppc_stub_hash_entry *) \
3325 bfd_hash_lookup ((table), (string), (create), (copy)))
3326
3327 #define ppc_branch_hash_lookup(table, string, create, copy) \
3328 ((struct ppc_branch_hash_entry *) \
3329 bfd_hash_lookup ((table), (string), (create), (copy)))
3330
3331 /* Create an entry in the stub hash table. */
3332
3333 static struct bfd_hash_entry *
3334 stub_hash_newfunc (struct bfd_hash_entry *entry,
3335 struct bfd_hash_table *table,
3336 const char *string)
3337 {
3338 /* Allocate the structure if it has not already been allocated by a
3339 subclass. */
3340 if (entry == NULL)
3341 {
3342 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3343 if (entry == NULL)
3344 return entry;
3345 }
3346
3347 /* Call the allocation method of the superclass. */
3348 entry = bfd_hash_newfunc (entry, table, string);
3349 if (entry != NULL)
3350 {
3351 struct ppc_stub_hash_entry *eh;
3352
3353 /* Initialize the local fields. */
3354 eh = (struct ppc_stub_hash_entry *) entry;
3355 eh->stub_type = ppc_stub_none;
3356 eh->stub_sec = NULL;
3357 eh->stub_offset = 0;
3358 eh->target_value = 0;
3359 eh->target_section = NULL;
3360 eh->h = NULL;
3361 eh->id_sec = NULL;
3362 }
3363
3364 return entry;
3365 }
3366
3367 /* Create an entry in the branch hash table. */
3368
3369 static struct bfd_hash_entry *
3370 branch_hash_newfunc (struct bfd_hash_entry *entry,
3371 struct bfd_hash_table *table,
3372 const char *string)
3373 {
3374 /* Allocate the structure if it has not already been allocated by a
3375 subclass. */
3376 if (entry == NULL)
3377 {
3378 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3379 if (entry == NULL)
3380 return entry;
3381 }
3382
3383 /* Call the allocation method of the superclass. */
3384 entry = bfd_hash_newfunc (entry, table, string);
3385 if (entry != NULL)
3386 {
3387 struct ppc_branch_hash_entry *eh;
3388
3389 /* Initialize the local fields. */
3390 eh = (struct ppc_branch_hash_entry *) entry;
3391 eh->offset = 0;
3392 eh->iter = 0;
3393 }
3394
3395 return entry;
3396 }
3397
3398 /* Create an entry in a ppc64 ELF linker hash table. */
3399
3400 static struct bfd_hash_entry *
3401 link_hash_newfunc (struct bfd_hash_entry *entry,
3402 struct bfd_hash_table *table,
3403 const char *string)
3404 {
3405 /* Allocate the structure if it has not already been allocated by a
3406 subclass. */
3407 if (entry == NULL)
3408 {
3409 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3410 if (entry == NULL)
3411 return entry;
3412 }
3413
3414 /* Call the allocation method of the superclass. */
3415 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3416 if (entry != NULL)
3417 {
3418 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3419
3420 eh->stub_cache = NULL;
3421 eh->dyn_relocs = NULL;
3422 eh->oh = NULL;
3423 eh->is_func = 0;
3424 eh->is_func_descriptor = 0;
3425 eh->adjust_done = 0;
3426 eh->was_undefined = 0;
3427 eh->tls_mask = 0;
3428 }
3429
3430 return entry;
3431 }
3432
3433 /* Create a ppc64 ELF linker hash table. */
3434
3435 static struct bfd_link_hash_table *
3436 ppc64_elf_link_hash_table_create (bfd *abfd)
3437 {
3438 struct ppc_link_hash_table *htab;
3439 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3440
3441 htab = bfd_zmalloc (amt);
3442 if (htab == NULL)
3443 return NULL;
3444
3445 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3446 {
3447 free (htab);
3448 return NULL;
3449 }
3450
3451 /* Init the stub hash table too. */
3452 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3453 return NULL;
3454
3455 /* And the branch hash table. */
3456 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3457 return NULL;
3458
3459 /* Initializing two fields of the union is just cosmetic. We really
3460 only care about glist, but when compiled on a 32-bit host the
3461 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3462 debugger inspection of these fields look nicer. */
3463 htab->elf.init_refcount.refcount = 0;
3464 htab->elf.init_refcount.glist = NULL;
3465 htab->elf.init_offset.offset = 0;
3466 htab->elf.init_offset.glist = NULL;
3467
3468 return &htab->elf.root;
3469 }
3470
3471 /* Free the derived linker hash table. */
3472
3473 static void
3474 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3475 {
3476 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3477
3478 bfd_hash_table_free (&ret->stub_hash_table);
3479 bfd_hash_table_free (&ret->branch_hash_table);
3480 _bfd_generic_link_hash_table_free (hash);
3481 }
3482
3483 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3484
3485 void
3486 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3487 {
3488 struct ppc_link_hash_table *htab;
3489
3490 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3491
3492 /* Always hook our dynamic sections into the first bfd, which is the
3493 linker created stub bfd. This ensures that the GOT header is at
3494 the start of the output TOC section. */
3495 htab = ppc_hash_table (info);
3496 htab->stub_bfd = abfd;
3497 htab->elf.dynobj = abfd;
3498 }
3499
3500 /* Build a name for an entry in the stub hash table. */
3501
3502 static char *
3503 ppc_stub_name (const asection *input_section,
3504 const asection *sym_sec,
3505 const struct ppc_link_hash_entry *h,
3506 const Elf_Internal_Rela *rel)
3507 {
3508 char *stub_name;
3509 bfd_size_type len;
3510
3511 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3512 offsets from a sym as a branch target? In fact, we could
3513 probably assume the addend is always zero. */
3514 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3515
3516 if (h)
3517 {
3518 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3519 stub_name = bfd_malloc (len);
3520 if (stub_name != NULL)
3521 {
3522 sprintf (stub_name, "%08x.%s+%x",
3523 input_section->id & 0xffffffff,
3524 h->elf.root.root.string,
3525 (int) rel->r_addend & 0xffffffff);
3526 }
3527 }
3528 else
3529 {
3530 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3531 stub_name = bfd_malloc (len);
3532 if (stub_name != NULL)
3533 {
3534 sprintf (stub_name, "%08x.%x:%x+%x",
3535 input_section->id & 0xffffffff,
3536 sym_sec->id & 0xffffffff,
3537 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3538 (int) rel->r_addend & 0xffffffff);
3539 }
3540 }
3541 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3542 stub_name[len - 2] = 0;
3543 return stub_name;
3544 }
3545
3546 /* Look up an entry in the stub hash. Stub entries are cached because
3547 creating the stub name takes a bit of time. */
3548
3549 static struct ppc_stub_hash_entry *
3550 ppc_get_stub_entry (const asection *input_section,
3551 const asection *sym_sec,
3552 struct ppc_link_hash_entry *h,
3553 const Elf_Internal_Rela *rel,
3554 struct ppc_link_hash_table *htab)
3555 {
3556 struct ppc_stub_hash_entry *stub_entry;
3557 const asection *id_sec;
3558
3559 /* If this input section is part of a group of sections sharing one
3560 stub section, then use the id of the first section in the group.
3561 Stub names need to include a section id, as there may well be
3562 more than one stub used to reach say, printf, and we need to
3563 distinguish between them. */
3564 id_sec = htab->stub_group[input_section->id].link_sec;
3565
3566 if (h != NULL && h->stub_cache != NULL
3567 && h->stub_cache->h == h
3568 && h->stub_cache->id_sec == id_sec)
3569 {
3570 stub_entry = h->stub_cache;
3571 }
3572 else
3573 {
3574 char *stub_name;
3575
3576 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3577 if (stub_name == NULL)
3578 return NULL;
3579
3580 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3581 stub_name, FALSE, FALSE);
3582 if (h != NULL)
3583 h->stub_cache = stub_entry;
3584
3585 free (stub_name);
3586 }
3587
3588 return stub_entry;
3589 }
3590
3591 /* Add a new stub entry to the stub hash. Not all fields of the new
3592 stub entry are initialised. */
3593
3594 static struct ppc_stub_hash_entry *
3595 ppc_add_stub (const char *stub_name,
3596 asection *section,
3597 struct ppc_link_hash_table *htab)
3598 {
3599 asection *link_sec;
3600 asection *stub_sec;
3601 struct ppc_stub_hash_entry *stub_entry;
3602
3603 link_sec = htab->stub_group[section->id].link_sec;
3604 stub_sec = htab->stub_group[section->id].stub_sec;
3605 if (stub_sec == NULL)
3606 {
3607 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3608 if (stub_sec == NULL)
3609 {
3610 size_t namelen;
3611 bfd_size_type len;
3612 char *s_name;
3613
3614 namelen = strlen (link_sec->name);
3615 len = namelen + sizeof (STUB_SUFFIX);
3616 s_name = bfd_alloc (htab->stub_bfd, len);
3617 if (s_name == NULL)
3618 return NULL;
3619
3620 memcpy (s_name, link_sec->name, namelen);
3621 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3622 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3623 if (stub_sec == NULL)
3624 return NULL;
3625 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3626 }
3627 htab->stub_group[section->id].stub_sec = stub_sec;
3628 }
3629
3630 /* Enter this entry into the linker stub hash table. */
3631 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3632 TRUE, FALSE);
3633 if (stub_entry == NULL)
3634 {
3635 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3636 section->owner, stub_name);
3637 return NULL;
3638 }
3639
3640 stub_entry->stub_sec = stub_sec;
3641 stub_entry->stub_offset = 0;
3642 stub_entry->id_sec = link_sec;
3643 return stub_entry;
3644 }
3645
3646 /* Create sections for linker generated code. */
3647
3648 static bfd_boolean
3649 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3650 {
3651 struct ppc_link_hash_table *htab;
3652 flagword flags;
3653
3654 htab = ppc_hash_table (info);
3655
3656 /* Create .sfpr for code to save and restore fp regs. */
3657 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3658 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3659 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3660 if (htab->sfpr == NULL
3661 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3662 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3663 return FALSE;
3664
3665 /* Create .glink for lazy dynamic linking support. */
3666 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3667 if (htab->glink == NULL
3668 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3669 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3670 return FALSE;
3671
3672 /* Create .branch_lt for plt_branch stubs. */
3673 flags = (SEC_ALLOC | SEC_LOAD
3674 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3675 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3676 if (htab->brlt == NULL
3677 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3678 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3679 return FALSE;
3680
3681 if (info->shared || info->emitrelocations)
3682 {
3683 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3684 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3685 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3686 if (!htab->relbrlt
3687 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3688 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3689 return FALSE;
3690 }
3691 return TRUE;
3692 }
3693
3694 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3695 not already done. */
3696
3697 static bfd_boolean
3698 create_got_section (bfd *abfd, struct bfd_link_info *info)
3699 {
3700 asection *got, *relgot;
3701 flagword flags;
3702 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3703
3704 if (!htab->got)
3705 {
3706 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3707 return FALSE;
3708
3709 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3710 if (!htab->got)
3711 abort ();
3712 }
3713
3714 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3715 | SEC_LINKER_CREATED);
3716
3717 got = bfd_make_section (abfd, ".got");
3718 if (!got
3719 || !bfd_set_section_flags (abfd, got, flags)
3720 || !bfd_set_section_alignment (abfd, got, 3))
3721 return FALSE;
3722
3723 relgot = bfd_make_section (abfd, ".rela.got");
3724 if (!relgot
3725 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3726 || ! bfd_set_section_alignment (abfd, relgot, 3))
3727 return FALSE;
3728
3729 ppc64_elf_tdata (abfd)->got = got;
3730 ppc64_elf_tdata (abfd)->relgot = relgot;
3731 return TRUE;
3732 }
3733
3734 /* Create the dynamic sections, and set up shortcuts. */
3735
3736 static bfd_boolean
3737 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3738 {
3739 struct ppc_link_hash_table *htab;
3740
3741 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3742 return FALSE;
3743
3744 htab = ppc_hash_table (info);
3745 if (!htab->got)
3746 htab->got = bfd_get_section_by_name (dynobj, ".got");
3747 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3748 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3749 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3750 if (!info->shared)
3751 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3752
3753 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3754 || (!info->shared && !htab->relbss))
3755 abort ();
3756
3757 return TRUE;
3758 }
3759
3760 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3761
3762 static void
3763 ppc64_elf_copy_indirect_symbol
3764 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3765 struct elf_link_hash_entry *dir,
3766 struct elf_link_hash_entry *ind)
3767 {
3768 struct ppc_link_hash_entry *edir, *eind;
3769
3770 edir = (struct ppc_link_hash_entry *) dir;
3771 eind = (struct ppc_link_hash_entry *) ind;
3772
3773 /* Copy over any dynamic relocs we may have on the indirect sym. */
3774 if (eind->dyn_relocs != NULL)
3775 {
3776 if (edir->dyn_relocs != NULL)
3777 {
3778 struct ppc_dyn_relocs **pp;
3779 struct ppc_dyn_relocs *p;
3780
3781 if (eind->elf.root.type == bfd_link_hash_indirect)
3782 abort ();
3783
3784 /* Add reloc counts against the weak sym to the strong sym
3785 list. Merge any entries against the same section. */
3786 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3787 {
3788 struct ppc_dyn_relocs *q;
3789
3790 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3791 if (q->sec == p->sec)
3792 {
3793 q->pc_count += p->pc_count;
3794 q->count += p->count;
3795 *pp = p->next;
3796 break;
3797 }
3798 if (q == NULL)
3799 pp = &p->next;
3800 }
3801 *pp = edir->dyn_relocs;
3802 }
3803
3804 edir->dyn_relocs = eind->dyn_relocs;
3805 eind->dyn_relocs = NULL;
3806 }
3807
3808 edir->is_func |= eind->is_func;
3809 edir->is_func_descriptor |= eind->is_func_descriptor;
3810 edir->tls_mask |= eind->tls_mask;
3811
3812 /* If called to transfer flags for a weakdef during processing
3813 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3814 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3815 if (!(ELIMINATE_COPY_RELOCS
3816 && eind->elf.root.type != bfd_link_hash_indirect
3817 && edir->elf.dynamic_adjusted))
3818 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3819
3820 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3821 edir->elf.ref_regular |= eind->elf.ref_regular;
3822 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3823 edir->elf.needs_plt |= eind->elf.needs_plt;
3824
3825 /* If we were called to copy over info for a weak sym, that's all. */
3826 if (eind->elf.root.type != bfd_link_hash_indirect)
3827 return;
3828
3829 /* Copy over got entries that we may have already seen to the
3830 symbol which just became indirect. */
3831 if (eind->elf.got.glist != NULL)
3832 {
3833 if (edir->elf.got.glist != NULL)
3834 {
3835 struct got_entry **entp;
3836 struct got_entry *ent;
3837
3838 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3839 {
3840 struct got_entry *dent;
3841
3842 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3843 if (dent->addend == ent->addend
3844 && dent->owner == ent->owner
3845 && dent->tls_type == ent->tls_type)
3846 {
3847 dent->got.refcount += ent->got.refcount;
3848 *entp = ent->next;
3849 break;
3850 }
3851 if (dent == NULL)
3852 entp = &ent->next;
3853 }
3854 *entp = edir->elf.got.glist;
3855 }
3856
3857 edir->elf.got.glist = eind->elf.got.glist;
3858 eind->elf.got.glist = NULL;
3859 }
3860
3861 /* And plt entries. */
3862 if (eind->elf.plt.plist != NULL)
3863 {
3864 if (edir->elf.plt.plist != NULL)
3865 {
3866 struct plt_entry **entp;
3867 struct plt_entry *ent;
3868
3869 for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; )
3870 {
3871 struct plt_entry *dent;
3872
3873 for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next)
3874 if (dent->addend == ent->addend)
3875 {
3876 dent->plt.refcount += ent->plt.refcount;
3877 *entp = ent->next;
3878 break;
3879 }
3880 if (dent == NULL)
3881 entp = &ent->next;
3882 }
3883 *entp = edir->elf.plt.plist;
3884 }
3885
3886 edir->elf.plt.plist = eind->elf.plt.plist;
3887 eind->elf.plt.plist = NULL;
3888 }
3889
3890 if (edir->elf.dynindx == -1)
3891 {
3892 edir->elf.dynindx = eind->elf.dynindx;
3893 edir->elf.dynstr_index = eind->elf.dynstr_index;
3894 eind->elf.dynindx = -1;
3895 eind->elf.dynstr_index = 0;
3896 }
3897 else
3898 BFD_ASSERT (eind->elf.dynindx == -1);
3899 }
3900
3901 /* Find the function descriptor hash entry from the given function code
3902 hash entry FH. Link the entries via their OH fields. */
3903
3904 static struct ppc_link_hash_entry *
3905 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3906 {
3907 struct ppc_link_hash_entry *fdh = fh->oh;
3908
3909 if (fdh == NULL)
3910 {
3911 const char *fd_name = fh->elf.root.root.string + 1;
3912
3913 fdh = (struct ppc_link_hash_entry *)
3914 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3915 if (fdh != NULL)
3916 {
3917 fdh->is_func_descriptor = 1;
3918 fdh->oh = fh;
3919 fh->is_func = 1;
3920 fh->oh = fdh;
3921 }
3922 }
3923
3924 return fdh;
3925 }
3926
3927 /* Hacks to support old ABI code.
3928 When making function calls, old ABI code references function entry
3929 points (dot symbols), while new ABI code references the function
3930 descriptor symbol. We need to make any combination of reference and
3931 definition work together, without breaking archive linking.
3932
3933 For a defined function "foo" and an undefined call to "bar":
3934 An old object defines "foo" and ".foo", references ".bar" (possibly
3935 "bar" too).
3936 A new object defines "foo" and references "bar".
3937
3938 A new object thus has no problem with its undefined symbols being
3939 satisfied by definitions in an old object. On the other hand, the
3940 old object won't have ".bar" satisfied by a new object. */
3941
3942 /* Fix function descriptor symbols defined in .opd sections to be
3943 function type. */
3944
3945 static bfd_boolean
3946 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
3947 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3948 Elf_Internal_Sym *isym,
3949 const char **name ATTRIBUTE_UNUSED,
3950 flagword *flags ATTRIBUTE_UNUSED,
3951 asection **sec,
3952 bfd_vma *value ATTRIBUTE_UNUSED)
3953 {
3954 if (*sec != NULL
3955 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
3956 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
3957 return TRUE;
3958 }
3959
3960 /* This function makes an old ABI object reference to ".bar" cause the
3961 inclusion of a new ABI object archive that defines "bar". */
3962
3963 static struct elf_link_hash_entry *
3964 ppc64_elf_archive_symbol_lookup (bfd *abfd,
3965 struct bfd_link_info *info,
3966 const char *name)
3967 {
3968 struct elf_link_hash_entry *h;
3969 char *dot_name;
3970 size_t len;
3971
3972 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
3973 if (h != NULL)
3974 return h;
3975
3976 if (name[0] == '.')
3977 return h;
3978
3979 len = strlen (name);
3980 dot_name = bfd_alloc (abfd, len + 2);
3981 if (dot_name == NULL)
3982 return (struct elf_link_hash_entry *) 0 - 1;
3983 dot_name[0] = '.';
3984 memcpy (dot_name + 1, name, len + 1);
3985 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
3986 bfd_release (abfd, dot_name);
3987 return h;
3988 }
3989
3990 /* This function satisfies all old ABI object references to ".bar" if a
3991 new ABI object defines "bar". Well, at least, undefined dot symbols
3992 are made weak. This stops later archive searches from including an
3993 object if we already have a function descriptor definition. It also
3994 prevents the linker complaining about undefined symbols.
3995 We also check and correct mismatched symbol visibility here. The
3996 most restrictive visibility of the function descriptor and the
3997 function entry symbol is used. */
3998
3999 static bfd_boolean
4000 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4001 {
4002 struct bfd_link_info *info;
4003 struct ppc_link_hash_table *htab;
4004 struct ppc_link_hash_entry *eh;
4005 struct ppc_link_hash_entry *fdh;
4006
4007 if (h->root.type == bfd_link_hash_indirect)
4008 return TRUE;
4009
4010 if (h->root.type == bfd_link_hash_warning)
4011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4012
4013 if (h->root.root.string[0] != '.')
4014 return TRUE;
4015
4016 info = inf;
4017 htab = ppc_hash_table (info);
4018 eh = (struct ppc_link_hash_entry *) h;
4019 fdh = get_fdh (eh, htab);
4020 if (fdh != NULL)
4021 {
4022 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4023 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4024 if (entry_vis < descr_vis)
4025 fdh->elf.other += entry_vis - descr_vis;
4026 else if (entry_vis > descr_vis)
4027 eh->elf.other += descr_vis - entry_vis;
4028
4029 if (eh->elf.root.type == bfd_link_hash_undefined)
4030 {
4031 eh->elf.root.type = bfd_link_hash_undefweak;
4032 eh->was_undefined = 1;
4033 htab->twiddled_syms = 1;
4034 }
4035 }
4036
4037 return TRUE;
4038 }
4039
4040 static bfd_boolean
4041 ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4042 struct bfd_link_info *info)
4043 {
4044 struct ppc_link_hash_table *htab;
4045
4046 htab = ppc_hash_table (info);
4047 if (!is_ppc64_elf_target (htab->elf.root.creator))
4048 return TRUE;
4049
4050 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, info);
4051
4052 /* We need to fix the undefs list for any syms we have twiddled to
4053 undef_weak. */
4054 if (htab->twiddled_syms)
4055 {
4056 struct bfd_link_hash_entry **pun;
4057
4058 pun = &htab->elf.root.undefs;
4059 while (*pun != NULL)
4060 {
4061 struct bfd_link_hash_entry *h = *pun;
4062
4063 if (h->type != bfd_link_hash_undefined
4064 && h->type != bfd_link_hash_common)
4065 {
4066 *pun = h->u.undef.next;
4067 h->u.undef.next = NULL;
4068 if (h == htab->elf.root.undefs_tail)
4069 {
4070 if (pun == &htab->elf.root.undefs)
4071 htab->elf.root.undefs_tail = NULL;
4072 else
4073 /* pun points at an u.undef.next field. Go back to
4074 the start of the link_hash_entry. */
4075 htab->elf.root.undefs_tail = (struct bfd_link_hash_entry *)
4076 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
4077 break;
4078 }
4079 }
4080 else
4081 pun = &h->u.undef.next;
4082 }
4083
4084 htab->twiddled_syms = 0;
4085 }
4086 return TRUE;
4087 }
4088
4089 static bfd_boolean
4090 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4091 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4092 {
4093 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4094 char *local_got_tls_masks;
4095
4096 if (local_got_ents == NULL)
4097 {
4098 bfd_size_type size = symtab_hdr->sh_info;
4099
4100 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4101 local_got_ents = bfd_zalloc (abfd, size);
4102 if (local_got_ents == NULL)
4103 return FALSE;
4104 elf_local_got_ents (abfd) = local_got_ents;
4105 }
4106
4107 if ((tls_type & TLS_EXPLICIT) == 0)
4108 {
4109 struct got_entry *ent;
4110
4111 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4112 if (ent->addend == r_addend
4113 && ent->owner == abfd
4114 && ent->tls_type == tls_type)
4115 break;
4116 if (ent == NULL)
4117 {
4118 bfd_size_type amt = sizeof (*ent);
4119 ent = bfd_alloc (abfd, amt);
4120 if (ent == NULL)
4121 return FALSE;
4122 ent->next = local_got_ents[r_symndx];
4123 ent->addend = r_addend;
4124 ent->owner = abfd;
4125 ent->tls_type = tls_type;
4126 ent->got.refcount = 0;
4127 local_got_ents[r_symndx] = ent;
4128 }
4129 ent->got.refcount += 1;
4130 }
4131
4132 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4133 local_got_tls_masks[r_symndx] |= tls_type;
4134 return TRUE;
4135 }
4136
4137 static bfd_boolean
4138 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4139 {
4140 struct plt_entry *ent;
4141
4142 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4143 if (ent->addend == addend)
4144 break;
4145 if (ent == NULL)
4146 {
4147 bfd_size_type amt = sizeof (*ent);
4148 ent = bfd_alloc (abfd, amt);
4149 if (ent == NULL)
4150 return FALSE;
4151 ent->next = eh->elf.plt.plist;
4152 ent->addend = addend;
4153 ent->plt.refcount = 0;
4154 eh->elf.plt.plist = ent;
4155 }
4156 ent->plt.refcount += 1;
4157 eh->elf.needs_plt = 1;
4158 eh->is_func = 1;
4159 return TRUE;
4160 }
4161
4162 /* Look through the relocs for a section during the first phase, and
4163 calculate needed space in the global offset table, procedure
4164 linkage table, and dynamic reloc sections. */
4165
4166 static bfd_boolean
4167 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4168 asection *sec, const Elf_Internal_Rela *relocs)
4169 {
4170 struct ppc_link_hash_table *htab;
4171 Elf_Internal_Shdr *symtab_hdr;
4172 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4173 const Elf_Internal_Rela *rel;
4174 const Elf_Internal_Rela *rel_end;
4175 asection *sreloc;
4176 asection **opd_sym_map;
4177
4178 if (info->relocatable)
4179 return TRUE;
4180
4181 /* Don't do anything special with non-loaded, non-alloced sections.
4182 In particular, any relocs in such sections should not affect GOT
4183 and PLT reference counting (ie. we don't allow them to create GOT
4184 or PLT entries), there's no possibility or desire to optimize TLS
4185 relocs, and there's not much point in propagating relocs to shared
4186 libs that the dynamic linker won't relocate. */
4187 if ((sec->flags & SEC_ALLOC) == 0)
4188 return TRUE;
4189
4190 htab = ppc_hash_table (info);
4191 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4192
4193 sym_hashes = elf_sym_hashes (abfd);
4194 sym_hashes_end = (sym_hashes
4195 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4196 - symtab_hdr->sh_info);
4197
4198 sreloc = NULL;
4199 opd_sym_map = NULL;
4200 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4201 {
4202 /* Garbage collection needs some extra help with .opd sections.
4203 We don't want to necessarily keep everything referenced by
4204 relocs in .opd, as that would keep all functions. Instead,
4205 if we reference an .opd symbol (a function descriptor), we
4206 want to keep the function code symbol's section. This is
4207 easy for global symbols, but for local syms we need to keep
4208 information about the associated function section. Later, if
4209 edit_opd deletes entries, we'll use this array to adjust
4210 local syms in .opd. */
4211 union opd_info {
4212 asection *func_section;
4213 long entry_adjust;
4214 };
4215 bfd_size_type amt;
4216
4217 amt = sec->size * sizeof (union opd_info) / 8;
4218 opd_sym_map = bfd_zalloc (abfd, amt);
4219 if (opd_sym_map == NULL)
4220 return FALSE;
4221 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4222 }
4223
4224 if (htab->sfpr == NULL
4225 && !create_linkage_sections (htab->elf.dynobj, info))
4226 return FALSE;
4227
4228 rel_end = relocs + sec->reloc_count;
4229 for (rel = relocs; rel < rel_end; rel++)
4230 {
4231 unsigned long r_symndx;
4232 struct elf_link_hash_entry *h;
4233 enum elf_ppc64_reloc_type r_type;
4234 int tls_type = 0;
4235
4236 r_symndx = ELF64_R_SYM (rel->r_info);
4237 if (r_symndx < symtab_hdr->sh_info)
4238 h = NULL;
4239 else
4240 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4241
4242 r_type = ELF64_R_TYPE (rel->r_info);
4243 switch (r_type)
4244 {
4245 case R_PPC64_GOT_TLSLD16:
4246 case R_PPC64_GOT_TLSLD16_LO:
4247 case R_PPC64_GOT_TLSLD16_HI:
4248 case R_PPC64_GOT_TLSLD16_HA:
4249 ppc64_tlsld_got (abfd)->refcount += 1;
4250 tls_type = TLS_TLS | TLS_LD;
4251 goto dogottls;
4252
4253 case R_PPC64_GOT_TLSGD16:
4254 case R_PPC64_GOT_TLSGD16_LO:
4255 case R_PPC64_GOT_TLSGD16_HI:
4256 case R_PPC64_GOT_TLSGD16_HA:
4257 tls_type = TLS_TLS | TLS_GD;
4258 goto dogottls;
4259
4260 case R_PPC64_GOT_TPREL16_DS:
4261 case R_PPC64_GOT_TPREL16_LO_DS:
4262 case R_PPC64_GOT_TPREL16_HI:
4263 case R_PPC64_GOT_TPREL16_HA:
4264 if (info->shared)
4265 info->flags |= DF_STATIC_TLS;
4266 tls_type = TLS_TLS | TLS_TPREL;
4267 goto dogottls;
4268
4269 case R_PPC64_GOT_DTPREL16_DS:
4270 case R_PPC64_GOT_DTPREL16_LO_DS:
4271 case R_PPC64_GOT_DTPREL16_HI:
4272 case R_PPC64_GOT_DTPREL16_HA:
4273 tls_type = TLS_TLS | TLS_DTPREL;
4274 dogottls:
4275 sec->has_tls_reloc = 1;
4276 /* Fall thru */
4277
4278 case R_PPC64_GOT16:
4279 case R_PPC64_GOT16_DS:
4280 case R_PPC64_GOT16_HA:
4281 case R_PPC64_GOT16_HI:
4282 case R_PPC64_GOT16_LO:
4283 case R_PPC64_GOT16_LO_DS:
4284 /* This symbol requires a global offset table entry. */
4285 sec->has_gp_reloc = 1;
4286 if (ppc64_elf_tdata (abfd)->got == NULL
4287 && !create_got_section (abfd, info))
4288 return FALSE;
4289
4290 if (h != NULL)
4291 {
4292 struct ppc_link_hash_entry *eh;
4293 struct got_entry *ent;
4294
4295 eh = (struct ppc_link_hash_entry *) h;
4296 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4297 if (ent->addend == rel->r_addend
4298 && ent->owner == abfd
4299 && ent->tls_type == tls_type)
4300 break;
4301 if (ent == NULL)
4302 {
4303 bfd_size_type amt = sizeof (*ent);
4304 ent = bfd_alloc (abfd, amt);
4305 if (ent == NULL)
4306 return FALSE;
4307 ent->next = eh->elf.got.glist;
4308 ent->addend = rel->r_addend;
4309 ent->owner = abfd;
4310 ent->tls_type = tls_type;
4311 ent->got.refcount = 0;
4312 eh->elf.got.glist = ent;
4313 }
4314 ent->got.refcount += 1;
4315 eh->tls_mask |= tls_type;
4316 }
4317 else
4318 /* This is a global offset table entry for a local symbol. */
4319 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4320 rel->r_addend, tls_type))
4321 return FALSE;
4322 break;
4323
4324 case R_PPC64_PLT16_HA:
4325 case R_PPC64_PLT16_HI:
4326 case R_PPC64_PLT16_LO:
4327 case R_PPC64_PLT32:
4328 case R_PPC64_PLT64:
4329 /* This symbol requires a procedure linkage table entry. We
4330 actually build the entry in adjust_dynamic_symbol,
4331 because this might be a case of linking PIC code without
4332 linking in any dynamic objects, in which case we don't
4333 need to generate a procedure linkage table after all. */
4334 if (h == NULL)
4335 {
4336 /* It does not make sense to have a procedure linkage
4337 table entry for a local symbol. */
4338 bfd_set_error (bfd_error_bad_value);
4339 return FALSE;
4340 }
4341 else
4342 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4343 rel->r_addend))
4344 return FALSE;
4345 break;
4346
4347 /* The following relocations don't need to propagate the
4348 relocation if linking a shared object since they are
4349 section relative. */
4350 case R_PPC64_SECTOFF:
4351 case R_PPC64_SECTOFF_LO:
4352 case R_PPC64_SECTOFF_HI:
4353 case R_PPC64_SECTOFF_HA:
4354 case R_PPC64_SECTOFF_DS:
4355 case R_PPC64_SECTOFF_LO_DS:
4356 case R_PPC64_DTPREL16:
4357 case R_PPC64_DTPREL16_LO:
4358 case R_PPC64_DTPREL16_HI:
4359 case R_PPC64_DTPREL16_HA:
4360 case R_PPC64_DTPREL16_DS:
4361 case R_PPC64_DTPREL16_LO_DS:
4362 case R_PPC64_DTPREL16_HIGHER:
4363 case R_PPC64_DTPREL16_HIGHERA:
4364 case R_PPC64_DTPREL16_HIGHEST:
4365 case R_PPC64_DTPREL16_HIGHESTA:
4366 break;
4367
4368 /* Nor do these. */
4369 case R_PPC64_TOC16:
4370 case R_PPC64_TOC16_LO:
4371 case R_PPC64_TOC16_HI:
4372 case R_PPC64_TOC16_HA:
4373 case R_PPC64_TOC16_DS:
4374 case R_PPC64_TOC16_LO_DS:
4375 sec->has_gp_reloc = 1;
4376 break;
4377
4378 /* This relocation describes the C++ object vtable hierarchy.
4379 Reconstruct it for later use during GC. */
4380 case R_PPC64_GNU_VTINHERIT:
4381 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4382 return FALSE;
4383 break;
4384
4385 /* This relocation describes which C++ vtable entries are actually
4386 used. Record for later use during GC. */
4387 case R_PPC64_GNU_VTENTRY:
4388 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4389 return FALSE;
4390 break;
4391
4392 case R_PPC64_REL14:
4393 case R_PPC64_REL14_BRTAKEN:
4394 case R_PPC64_REL14_BRNTAKEN:
4395 htab->has_14bit_branch = 1;
4396 /* Fall through. */
4397
4398 case R_PPC64_REL24:
4399 if (h != NULL)
4400 {
4401 /* We may need a .plt entry if the function this reloc
4402 refers to is in a shared lib. */
4403 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4404 rel->r_addend))
4405 return FALSE;
4406 if (h == &htab->tls_get_addr->elf
4407 || h == &htab->tls_get_addr_fd->elf)
4408 sec->has_tls_reloc = 1;
4409 else if (htab->tls_get_addr == NULL
4410 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4411 && (h->root.root.string[15] == 0
4412 || h->root.root.string[15] == '@'))
4413 {
4414 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4415 sec->has_tls_reloc = 1;
4416 }
4417 else if (htab->tls_get_addr_fd == NULL
4418 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4419 && (h->root.root.string[14] == 0
4420 || h->root.root.string[14] == '@'))
4421 {
4422 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4423 sec->has_tls_reloc = 1;
4424 }
4425 }
4426 break;
4427
4428 case R_PPC64_TPREL64:
4429 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4430 if (info->shared)
4431 info->flags |= DF_STATIC_TLS;
4432 goto dotlstoc;
4433
4434 case R_PPC64_DTPMOD64:
4435 if (rel + 1 < rel_end
4436 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4437 && rel[1].r_offset == rel->r_offset + 8)
4438 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4439 else
4440 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4441 goto dotlstoc;
4442
4443 case R_PPC64_DTPREL64:
4444 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4445 if (rel != relocs
4446 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4447 && rel[-1].r_offset == rel->r_offset - 8)
4448 /* This is the second reloc of a dtpmod, dtprel pair.
4449 Don't mark with TLS_DTPREL. */
4450 goto dodyn;
4451
4452 dotlstoc:
4453 sec->has_tls_reloc = 1;
4454 if (h != NULL)
4455 {
4456 struct ppc_link_hash_entry *eh;
4457 eh = (struct ppc_link_hash_entry *) h;
4458 eh->tls_mask |= tls_type;
4459 }
4460 else
4461 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4462 rel->r_addend, tls_type))
4463 return FALSE;
4464
4465 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4466 {
4467 /* One extra to simplify get_tls_mask. */
4468 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4469 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4470 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4471 return FALSE;
4472 }
4473 BFD_ASSERT (rel->r_offset % 8 == 0);
4474 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4475
4476 /* Mark the second slot of a GD or LD entry.
4477 -1 to indicate GD and -2 to indicate LD. */
4478 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4479 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4480 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4481 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4482 goto dodyn;
4483
4484 case R_PPC64_TPREL16:
4485 case R_PPC64_TPREL16_LO:
4486 case R_PPC64_TPREL16_HI:
4487 case R_PPC64_TPREL16_HA:
4488 case R_PPC64_TPREL16_DS:
4489 case R_PPC64_TPREL16_LO_DS:
4490 case R_PPC64_TPREL16_HIGHER:
4491 case R_PPC64_TPREL16_HIGHERA:
4492 case R_PPC64_TPREL16_HIGHEST:
4493 case R_PPC64_TPREL16_HIGHESTA:
4494 if (info->shared)
4495 {
4496 info->flags |= DF_STATIC_TLS;
4497 goto dodyn;
4498 }
4499 break;
4500
4501 case R_PPC64_ADDR64:
4502 if (opd_sym_map != NULL
4503 && rel + 1 < rel_end
4504 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4505 {
4506 if (h != NULL)
4507 {
4508 if (h->root.root.string[0] == '.'
4509 && h->root.root.string[1] != 0
4510 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4511 ;
4512 else
4513 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4514 }
4515 else
4516 {
4517 asection *s;
4518
4519 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4520 r_symndx);
4521 if (s == NULL)
4522 return FALSE;
4523 else if (s != sec)
4524 opd_sym_map[rel->r_offset / 8] = s;
4525 }
4526 }
4527 /* Fall through. */
4528
4529 case R_PPC64_REL30:
4530 case R_PPC64_REL32:
4531 case R_PPC64_REL64:
4532 case R_PPC64_ADDR14:
4533 case R_PPC64_ADDR14_BRNTAKEN:
4534 case R_PPC64_ADDR14_BRTAKEN:
4535 case R_PPC64_ADDR16:
4536 case R_PPC64_ADDR16_DS:
4537 case R_PPC64_ADDR16_HA:
4538 case R_PPC64_ADDR16_HI:
4539 case R_PPC64_ADDR16_HIGHER:
4540 case R_PPC64_ADDR16_HIGHERA:
4541 case R_PPC64_ADDR16_HIGHEST:
4542 case R_PPC64_ADDR16_HIGHESTA:
4543 case R_PPC64_ADDR16_LO:
4544 case R_PPC64_ADDR16_LO_DS:
4545 case R_PPC64_ADDR24:
4546 case R_PPC64_ADDR32:
4547 case R_PPC64_UADDR16:
4548 case R_PPC64_UADDR32:
4549 case R_PPC64_UADDR64:
4550 case R_PPC64_TOC:
4551 if (h != NULL && !info->shared)
4552 /* We may need a copy reloc. */
4553 h->non_got_ref = 1;
4554
4555 /* Don't propagate .opd relocs. */
4556 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4557 break;
4558
4559 /* If we are creating a shared library, and this is a reloc
4560 against a global symbol, or a non PC relative reloc
4561 against a local symbol, then we need to copy the reloc
4562 into the shared library. However, if we are linking with
4563 -Bsymbolic, we do not need to copy a reloc against a
4564 global symbol which is defined in an object we are
4565 including in the link (i.e., DEF_REGULAR is set). At
4566 this point we have not seen all the input files, so it is
4567 possible that DEF_REGULAR is not set now but will be set
4568 later (it is never cleared). In case of a weak definition,
4569 DEF_REGULAR may be cleared later by a strong definition in
4570 a shared library. We account for that possibility below by
4571 storing information in the dyn_relocs field of the hash
4572 table entry. A similar situation occurs when creating
4573 shared libraries and symbol visibility changes render the
4574 symbol local.
4575
4576 If on the other hand, we are creating an executable, we
4577 may need to keep relocations for symbols satisfied by a
4578 dynamic library if we manage to avoid copy relocs for the
4579 symbol. */
4580 dodyn:
4581 if ((info->shared
4582 && (MUST_BE_DYN_RELOC (r_type)
4583 || (h != NULL
4584 && (! info->symbolic
4585 || h->root.type == bfd_link_hash_defweak
4586 || !h->def_regular))))
4587 || (ELIMINATE_COPY_RELOCS
4588 && !info->shared
4589 && h != NULL
4590 && (h->root.type == bfd_link_hash_defweak
4591 || !h->def_regular)))
4592 {
4593 struct ppc_dyn_relocs *p;
4594 struct ppc_dyn_relocs **head;
4595
4596 /* We must copy these reloc types into the output file.
4597 Create a reloc section in dynobj and make room for
4598 this reloc. */
4599 if (sreloc == NULL)
4600 {
4601 const char *name;
4602 bfd *dynobj;
4603
4604 name = (bfd_elf_string_from_elf_section
4605 (abfd,
4606 elf_elfheader (abfd)->e_shstrndx,
4607 elf_section_data (sec)->rel_hdr.sh_name));
4608 if (name == NULL)
4609 return FALSE;
4610
4611 if (strncmp (name, ".rela", 5) != 0
4612 || strcmp (bfd_get_section_name (abfd, sec),
4613 name + 5) != 0)
4614 {
4615 (*_bfd_error_handler)
4616 (_("%B: bad relocation section name `%s\'"),
4617 abfd, name);
4618 bfd_set_error (bfd_error_bad_value);
4619 }
4620
4621 dynobj = htab->elf.dynobj;
4622 sreloc = bfd_get_section_by_name (dynobj, name);
4623 if (sreloc == NULL)
4624 {
4625 flagword flags;
4626
4627 sreloc = bfd_make_section (dynobj, name);
4628 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4629 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4630 if ((sec->flags & SEC_ALLOC) != 0)
4631 flags |= SEC_ALLOC | SEC_LOAD;
4632 if (sreloc == NULL
4633 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4634 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4635 return FALSE;
4636 }
4637 elf_section_data (sec)->sreloc = sreloc;
4638 }
4639
4640 /* If this is a global symbol, we count the number of
4641 relocations we need for this symbol. */
4642 if (h != NULL)
4643 {
4644 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4645 }
4646 else
4647 {
4648 /* Track dynamic relocs needed for local syms too.
4649 We really need local syms available to do this
4650 easily. Oh well. */
4651
4652 asection *s;
4653 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4654 sec, r_symndx);
4655 if (s == NULL)
4656 return FALSE;
4657
4658 head = ((struct ppc_dyn_relocs **)
4659 &elf_section_data (s)->local_dynrel);
4660 }
4661
4662 p = *head;
4663 if (p == NULL || p->sec != sec)
4664 {
4665 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4666 if (p == NULL)
4667 return FALSE;
4668 p->next = *head;
4669 *head = p;
4670 p->sec = sec;
4671 p->count = 0;
4672 p->pc_count = 0;
4673 }
4674
4675 p->count += 1;
4676 if (!MUST_BE_DYN_RELOC (r_type))
4677 p->pc_count += 1;
4678 }
4679 break;
4680
4681 default:
4682 break;
4683 }
4684 }
4685
4686 return TRUE;
4687 }
4688
4689 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4690 of the code entry point, and its section. */
4691
4692 static bfd_vma
4693 opd_entry_value (asection *opd_sec,
4694 bfd_vma offset,
4695 asection **code_sec,
4696 bfd_vma *code_off)
4697 {
4698 bfd *opd_bfd = opd_sec->owner;
4699 Elf_Internal_Rela *lo, *hi, *look;
4700
4701 /* Go find the opd reloc at the sym address. */
4702 lo = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4703 BFD_ASSERT (lo != NULL);
4704 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4705
4706 while (lo < hi)
4707 {
4708 look = lo + (hi - lo) / 2;
4709 if (look->r_offset < offset)
4710 lo = look + 1;
4711 else if (look->r_offset > offset)
4712 hi = look;
4713 else
4714 {
4715 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4716 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4717 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4718 {
4719 unsigned long symndx = ELF64_R_SYM (look->r_info);
4720 bfd_vma val;
4721 asection *sec;
4722
4723 if (symndx < symtab_hdr->sh_info)
4724 {
4725 Elf_Internal_Sym *sym;
4726
4727 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4728 if (sym == NULL)
4729 {
4730 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4731 symtab_hdr->sh_info,
4732 0, NULL, NULL, NULL);
4733 if (sym == NULL)
4734 return (bfd_vma) -1;
4735 symtab_hdr->contents = (bfd_byte *) sym;
4736 }
4737
4738 sym += symndx;
4739 val = sym->st_value;
4740 sec = NULL;
4741 if ((sym->st_shndx != SHN_UNDEF
4742 && sym->st_shndx < SHN_LORESERVE)
4743 || sym->st_shndx > SHN_HIRESERVE)
4744 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4745 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4746 }
4747 else
4748 {
4749 struct elf_link_hash_entry **sym_hashes;
4750 struct elf_link_hash_entry *rh;
4751
4752 sym_hashes = elf_sym_hashes (opd_bfd);
4753 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4754 while (rh->root.type == bfd_link_hash_indirect
4755 || rh->root.type == bfd_link_hash_warning)
4756 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4757 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4758 || rh->root.type == bfd_link_hash_defweak);
4759 val = rh->root.u.def.value;
4760 sec = rh->root.u.def.section;
4761 }
4762 val += look->r_addend;
4763 if (code_off != NULL)
4764 *code_off = val;
4765 if (code_sec != NULL)
4766 *code_sec = sec;
4767 if (sec != NULL && sec->output_section != NULL)
4768 val += sec->output_section->vma + sec->output_offset;
4769 return val;
4770 }
4771 break;
4772 }
4773 }
4774 return (bfd_vma) -1;
4775 }
4776
4777 /* Return the section that should be marked against GC for a given
4778 relocation. */
4779
4780 static asection *
4781 ppc64_elf_gc_mark_hook (asection *sec,
4782 struct bfd_link_info *info,
4783 Elf_Internal_Rela *rel,
4784 struct elf_link_hash_entry *h,
4785 Elf_Internal_Sym *sym)
4786 {
4787 asection *rsec;
4788
4789 /* First mark all our entry sym sections. */
4790 if (info->gc_sym_list != NULL)
4791 {
4792 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4793 struct bfd_sym_chain *sym = info->gc_sym_list;
4794
4795 info->gc_sym_list = NULL;
4796 do
4797 {
4798 struct ppc_link_hash_entry *eh;
4799
4800 eh = (struct ppc_link_hash_entry *)
4801 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4802 if (eh == NULL)
4803 continue;
4804 if (eh->elf.root.type != bfd_link_hash_defined
4805 && eh->elf.root.type != bfd_link_hash_defweak)
4806 continue;
4807
4808 if (eh->is_func_descriptor)
4809 rsec = eh->oh->elf.root.u.def.section;
4810 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4811 && opd_entry_value (eh->elf.root.u.def.section,
4812 eh->elf.root.u.def.value,
4813 &rsec, NULL) != (bfd_vma) -1)
4814 ;
4815 else
4816 continue;
4817
4818 if (!rsec->gc_mark)
4819 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4820
4821 rsec = eh->elf.root.u.def.section;
4822 if (!rsec->gc_mark)
4823 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4824
4825 sym = sym->next;
4826 }
4827 while (sym != NULL);
4828 }
4829
4830 /* Syms return NULL if we're marking .opd, so we avoid marking all
4831 function sections, as all functions are referenced in .opd. */
4832 rsec = NULL;
4833 if (get_opd_info (sec) != NULL)
4834 return rsec;
4835
4836 if (h != NULL)
4837 {
4838 enum elf_ppc64_reloc_type r_type;
4839 struct ppc_link_hash_entry *eh;
4840
4841 r_type = ELF64_R_TYPE (rel->r_info);
4842 switch (r_type)
4843 {
4844 case R_PPC64_GNU_VTINHERIT:
4845 case R_PPC64_GNU_VTENTRY:
4846 break;
4847
4848 default:
4849 switch (h->root.type)
4850 {
4851 case bfd_link_hash_defined:
4852 case bfd_link_hash_defweak:
4853 eh = (struct ppc_link_hash_entry *) h;
4854 if (eh->oh != NULL && eh->oh->is_func_descriptor)
4855 eh = eh->oh;
4856
4857 /* Function descriptor syms cause the associated
4858 function code sym section to be marked. */
4859 if (eh->is_func_descriptor)
4860 {
4861 /* They also mark their opd section. */
4862 if (!eh->elf.root.u.def.section->gc_mark)
4863 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4864 ppc64_elf_gc_mark_hook);
4865
4866 rsec = eh->oh->elf.root.u.def.section;
4867 }
4868 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4869 && opd_entry_value (eh->elf.root.u.def.section,
4870 eh->elf.root.u.def.value,
4871 &rsec, NULL) != (bfd_vma) -1)
4872 {
4873 if (!eh->elf.root.u.def.section->gc_mark)
4874 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4875 ppc64_elf_gc_mark_hook);
4876 }
4877 else
4878 rsec = h->root.u.def.section;
4879 break;
4880
4881 case bfd_link_hash_common:
4882 rsec = h->root.u.c.p->section;
4883 break;
4884
4885 default:
4886 break;
4887 }
4888 }
4889 }
4890 else
4891 {
4892 asection **opd_sym_section;
4893
4894 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4895 opd_sym_section = get_opd_info (rsec);
4896 if (opd_sym_section != NULL)
4897 {
4898 if (!rsec->gc_mark)
4899 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4900
4901 rsec = opd_sym_section[sym->st_value / 8];
4902 }
4903 }
4904
4905 return rsec;
4906 }
4907
4908 /* Update the .got, .plt. and dynamic reloc reference counts for the
4909 section being removed. */
4910
4911 static bfd_boolean
4912 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4913 asection *sec, const Elf_Internal_Rela *relocs)
4914 {
4915 struct ppc_link_hash_table *htab;
4916 Elf_Internal_Shdr *symtab_hdr;
4917 struct elf_link_hash_entry **sym_hashes;
4918 struct got_entry **local_got_ents;
4919 const Elf_Internal_Rela *rel, *relend;
4920
4921 if ((sec->flags & SEC_ALLOC) == 0)
4922 return TRUE;
4923
4924 elf_section_data (sec)->local_dynrel = NULL;
4925
4926 htab = ppc_hash_table (info);
4927 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4928 sym_hashes = elf_sym_hashes (abfd);
4929 local_got_ents = elf_local_got_ents (abfd);
4930
4931 relend = relocs + sec->reloc_count;
4932 for (rel = relocs; rel < relend; rel++)
4933 {
4934 unsigned long r_symndx;
4935 enum elf_ppc64_reloc_type r_type;
4936 struct elf_link_hash_entry *h = NULL;
4937 char tls_type = 0;
4938
4939 r_symndx = ELF64_R_SYM (rel->r_info);
4940 r_type = ELF64_R_TYPE (rel->r_info);
4941 if (r_symndx >= symtab_hdr->sh_info)
4942 {
4943 struct ppc_link_hash_entry *eh;
4944 struct ppc_dyn_relocs **pp;
4945 struct ppc_dyn_relocs *p;
4946
4947 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4948 eh = (struct ppc_link_hash_entry *) h;
4949
4950 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4951 if (p->sec == sec)
4952 {
4953 /* Everything must go for SEC. */
4954 *pp = p->next;
4955 break;
4956 }
4957 }
4958
4959 switch (r_type)
4960 {
4961 case R_PPC64_GOT_TLSLD16:
4962 case R_PPC64_GOT_TLSLD16_LO:
4963 case R_PPC64_GOT_TLSLD16_HI:
4964 case R_PPC64_GOT_TLSLD16_HA:
4965 ppc64_tlsld_got (abfd)->refcount -= 1;
4966 tls_type = TLS_TLS | TLS_LD;
4967 goto dogot;
4968
4969 case R_PPC64_GOT_TLSGD16:
4970 case R_PPC64_GOT_TLSGD16_LO:
4971 case R_PPC64_GOT_TLSGD16_HI:
4972 case R_PPC64_GOT_TLSGD16_HA:
4973 tls_type = TLS_TLS | TLS_GD;
4974 goto dogot;
4975
4976 case R_PPC64_GOT_TPREL16_DS:
4977 case R_PPC64_GOT_TPREL16_LO_DS:
4978 case R_PPC64_GOT_TPREL16_HI:
4979 case R_PPC64_GOT_TPREL16_HA:
4980 tls_type = TLS_TLS | TLS_TPREL;
4981 goto dogot;
4982
4983 case R_PPC64_GOT_DTPREL16_DS:
4984 case R_PPC64_GOT_DTPREL16_LO_DS:
4985 case R_PPC64_GOT_DTPREL16_HI:
4986 case R_PPC64_GOT_DTPREL16_HA:
4987 tls_type = TLS_TLS | TLS_DTPREL;
4988 goto dogot;
4989
4990 case R_PPC64_GOT16:
4991 case R_PPC64_GOT16_DS:
4992 case R_PPC64_GOT16_HA:
4993 case R_PPC64_GOT16_HI:
4994 case R_PPC64_GOT16_LO:
4995 case R_PPC64_GOT16_LO_DS:
4996 dogot:
4997 {
4998 struct got_entry *ent;
4999
5000 if (h != NULL)
5001 ent = h->got.glist;
5002 else
5003 ent = local_got_ents[r_symndx];
5004
5005 for (; ent != NULL; ent = ent->next)
5006 if (ent->addend == rel->r_addend
5007 && ent->owner == abfd
5008 && ent->tls_type == tls_type)
5009 break;
5010 if (ent == NULL)
5011 abort ();
5012 if (ent->got.refcount > 0)
5013 ent->got.refcount -= 1;
5014 }
5015 break;
5016
5017 case R_PPC64_PLT16_HA:
5018 case R_PPC64_PLT16_HI:
5019 case R_PPC64_PLT16_LO:
5020 case R_PPC64_PLT32:
5021 case R_PPC64_PLT64:
5022 case R_PPC64_REL14:
5023 case R_PPC64_REL14_BRNTAKEN:
5024 case R_PPC64_REL14_BRTAKEN:
5025 case R_PPC64_REL24:
5026 if (h != NULL)
5027 {
5028 struct plt_entry *ent;
5029
5030 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5031 if (ent->addend == rel->r_addend)
5032 break;
5033 if (ent == NULL)
5034 abort ();
5035 if (ent->plt.refcount > 0)
5036 ent->plt.refcount -= 1;
5037 }
5038 break;
5039
5040 default:
5041 break;
5042 }
5043 }
5044 return TRUE;
5045 }
5046
5047 /* The maximum size of .sfpr. */
5048 #define SFPR_MAX (218*4)
5049
5050 struct sfpr_def_parms
5051 {
5052 const char name[12];
5053 unsigned char lo, hi;
5054 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5055 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5056 };
5057
5058 /* Auto-generate _save*, _rest* functions in .sfpr. */
5059
5060 static unsigned int
5061 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5062 {
5063 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5064 unsigned int i;
5065 size_t len = strlen (parm->name);
5066 bfd_boolean writing = FALSE;
5067 char sym[16];
5068
5069 memcpy (sym, parm->name, len);
5070 sym[len + 2] = 0;
5071
5072 for (i = parm->lo; i <= parm->hi; i++)
5073 {
5074 struct elf_link_hash_entry *h;
5075
5076 sym[len + 0] = i / 10 + '0';
5077 sym[len + 1] = i % 10 + '0';
5078 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5079 if (h != NULL
5080 && !h->def_regular)
5081 {
5082 h->root.type = bfd_link_hash_defined;
5083 h->root.u.def.section = htab->sfpr;
5084 h->root.u.def.value = htab->sfpr->size;
5085 h->type = STT_FUNC;
5086 h->def_regular = 1;
5087 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5088 writing = TRUE;
5089 if (htab->sfpr->contents == NULL)
5090 {
5091 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5092 if (htab->sfpr->contents == NULL)
5093 return FALSE;
5094 }
5095 }
5096 if (writing)
5097 {
5098 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5099 if (i != parm->hi)
5100 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5101 else
5102 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5103 htab->sfpr->size = p - htab->sfpr->contents;
5104 }
5105 }
5106
5107 return TRUE;
5108 }
5109
5110 static bfd_byte *
5111 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5112 {
5113 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5114 return p + 4;
5115 }
5116
5117 static bfd_byte *
5118 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5119 {
5120 p = savegpr0 (abfd, p, r);
5121 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5122 p = p + 4;
5123 bfd_put_32 (abfd, BLR, p);
5124 return p + 4;
5125 }
5126
5127 static bfd_byte *
5128 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5129 {
5130 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5131 return p + 4;
5132 }
5133
5134 static bfd_byte *
5135 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5136 {
5137 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5138 p = p + 4;
5139 p = restgpr0 (abfd, p, r);
5140 bfd_put_32 (abfd, MTLR_R0, p);
5141 p = p + 4;
5142 if (r == 29)
5143 {
5144 p = restgpr0 (abfd, p, 30);
5145 p = restgpr0 (abfd, p, 31);
5146 }
5147 bfd_put_32 (abfd, BLR, p);
5148 return p + 4;
5149 }
5150
5151 static bfd_byte *
5152 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5153 {
5154 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5155 return p + 4;
5156 }
5157
5158 static bfd_byte *
5159 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5160 {
5161 p = savegpr1 (abfd, p, r);
5162 bfd_put_32 (abfd, BLR, p);
5163 return p + 4;
5164 }
5165
5166 static bfd_byte *
5167 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5168 {
5169 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5170 return p + 4;
5171 }
5172
5173 static bfd_byte *
5174 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5175 {
5176 p = restgpr1 (abfd, p, r);
5177 bfd_put_32 (abfd, BLR, p);
5178 return p + 4;
5179 }
5180
5181 static bfd_byte *
5182 savefpr (bfd *abfd, bfd_byte *p, int r)
5183 {
5184 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5185 return p + 4;
5186 }
5187
5188 static bfd_byte *
5189 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5190 {
5191 p = savefpr (abfd, p, r);
5192 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5193 p = p + 4;
5194 bfd_put_32 (abfd, BLR, p);
5195 return p + 4;
5196 }
5197
5198 static bfd_byte *
5199 restfpr (bfd *abfd, bfd_byte *p, int r)
5200 {
5201 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5202 return p + 4;
5203 }
5204
5205 static bfd_byte *
5206 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5207 {
5208 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5209 p = p + 4;
5210 p = restfpr (abfd, p, r);
5211 bfd_put_32 (abfd, MTLR_R0, p);
5212 p = p + 4;
5213 if (r == 29)
5214 {
5215 p = restfpr (abfd, p, 30);
5216 p = restfpr (abfd, p, 31);
5217 }
5218 bfd_put_32 (abfd, BLR, p);
5219 return p + 4;
5220 }
5221
5222 static bfd_byte *
5223 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5224 {
5225 p = savefpr (abfd, p, r);
5226 bfd_put_32 (abfd, BLR, p);
5227 return p + 4;
5228 }
5229
5230 static bfd_byte *
5231 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5232 {
5233 p = restfpr (abfd, p, r);
5234 bfd_put_32 (abfd, BLR, p);
5235 return p + 4;
5236 }
5237
5238 static bfd_byte *
5239 savevr (bfd *abfd, bfd_byte *p, int r)
5240 {
5241 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5242 p = p + 4;
5243 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5244 return p + 4;
5245 }
5246
5247 static bfd_byte *
5248 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5249 {
5250 p = savevr (abfd, p, r);
5251 bfd_put_32 (abfd, BLR, p);
5252 return p + 4;
5253 }
5254
5255 static bfd_byte *
5256 restvr (bfd *abfd, bfd_byte *p, int r)
5257 {
5258 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5259 p = p + 4;
5260 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5261 return p + 4;
5262 }
5263
5264 static bfd_byte *
5265 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5266 {
5267 p = restvr (abfd, p, r);
5268 bfd_put_32 (abfd, BLR, p);
5269 return p + 4;
5270 }
5271
5272 /* Called via elf_link_hash_traverse to transfer dynamic linking
5273 information on function code symbol entries to their corresponding
5274 function descriptor symbol entries. */
5275
5276 static bfd_boolean
5277 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5278 {
5279 struct bfd_link_info *info;
5280 struct ppc_link_hash_table *htab;
5281 struct plt_entry *ent;
5282 struct ppc_link_hash_entry *fh;
5283 struct ppc_link_hash_entry *fdh;
5284 bfd_boolean force_local;
5285
5286 fh = (struct ppc_link_hash_entry *) h;
5287 if (fh->elf.root.type == bfd_link_hash_indirect)
5288 return TRUE;
5289
5290 if (fh->elf.root.type == bfd_link_hash_warning)
5291 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5292
5293 info = inf;
5294 htab = ppc_hash_table (info);
5295
5296 /* Resolve undefined references to dot-symbols as the value
5297 in the function descriptor, if we have one in a regular object.
5298 This is to satisfy cases like ".quad .foo". Calls to functions
5299 in dynamic objects are handled elsewhere. */
5300 if (fh->elf.root.type == bfd_link_hash_undefweak
5301 && fh->was_undefined
5302 && (fh->oh->elf.root.type == bfd_link_hash_defined
5303 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5304 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5305 && opd_entry_value (fh->oh->elf.root.u.def.section,
5306 fh->oh->elf.root.u.def.value,
5307 &fh->elf.root.u.def.section,
5308 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5309 {
5310 fh->elf.root.type = fh->oh->elf.root.type;
5311 fh->elf.forced_local = 1;
5312 }
5313
5314 /* If this is a function code symbol, transfer dynamic linking
5315 information to the function descriptor symbol. */
5316 if (!fh->is_func)
5317 return TRUE;
5318
5319 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5320 if (ent->plt.refcount > 0)
5321 break;
5322 if (ent == NULL
5323 || fh->elf.root.root.string[0] != '.'
5324 || fh->elf.root.root.string[1] == '\0')
5325 return TRUE;
5326
5327 /* Find the corresponding function descriptor symbol. Create it
5328 as undefined if necessary. */
5329
5330 fdh = get_fdh (fh, htab);
5331 if (fdh != NULL)
5332 while (fdh->elf.root.type == bfd_link_hash_indirect
5333 || fdh->elf.root.type == bfd_link_hash_warning)
5334 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5335
5336 if (fdh == NULL
5337 && info->shared
5338 && (fh->elf.root.type == bfd_link_hash_undefined
5339 || fh->elf.root.type == bfd_link_hash_undefweak))
5340 {
5341 bfd *abfd;
5342 asymbol *newsym;
5343 struct bfd_link_hash_entry *bh;
5344
5345 abfd = fh->elf.root.u.undef.abfd;
5346 newsym = bfd_make_empty_symbol (abfd);
5347 newsym->name = fh->elf.root.root.string + 1;
5348 newsym->section = bfd_und_section_ptr;
5349 newsym->value = 0;
5350 newsym->flags = BSF_OBJECT;
5351 if (fh->elf.root.type == bfd_link_hash_undefweak)
5352 newsym->flags |= BSF_WEAK;
5353
5354 bh = &fdh->elf.root;
5355 if ( !(_bfd_generic_link_add_one_symbol
5356 (info, abfd, newsym->name, newsym->flags,
5357 newsym->section, newsym->value, NULL, FALSE, FALSE, &bh)))
5358 {
5359 return FALSE;
5360 }
5361 fdh = (struct ppc_link_hash_entry *) bh;
5362 fdh->elf.non_elf = 0;
5363 fdh->elf.size = 24;
5364 fdh->elf.type = STT_OBJECT;
5365 }
5366
5367 if (fdh != NULL
5368 && !fdh->elf.forced_local
5369 && (info->shared
5370 || fdh->elf.def_dynamic
5371 || fdh->elf.ref_dynamic
5372 || (fdh->elf.root.type == bfd_link_hash_undefweak
5373 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5374 {
5375 if (fdh->elf.dynindx == -1)
5376 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5377 return FALSE;
5378 fdh->elf.ref_regular |= fh->elf.ref_regular;
5379 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5380 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5381 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5382 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5383 {
5384 struct plt_entry **ep = &fdh->elf.plt.plist;
5385 while (*ep != NULL)
5386 ep = &(*ep)->next;
5387 *ep = fh->elf.plt.plist;
5388 fh->elf.plt.plist = NULL;
5389 fdh->elf.needs_plt = 1;
5390 }
5391 fdh->is_func_descriptor = 1;
5392 fdh->oh = fh;
5393 fh->oh = fdh;
5394 }
5395
5396 /* Now that the info is on the function descriptor, clear the
5397 function code sym info. Any function code syms for which we
5398 don't have a definition in a regular file, we force local.
5399 This prevents a shared library from exporting syms that have
5400 been imported from another library. Function code syms that
5401 are really in the library we must leave global to prevent the
5402 linker dragging in a definition from a static library. */
5403 force_local
5404 = (info->shared
5405 && (!fh->elf.def_regular
5406 || fdh == NULL
5407 || !fdh->elf.def_regular
5408 || fdh->elf.forced_local));
5409 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5410
5411 return TRUE;
5412 }
5413
5414 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5415 this hook to a) provide some gcc support functions, and b) transfer
5416 dynamic linking information gathered so far on function code symbol
5417 entries, to their corresponding function descriptor symbol entries. */
5418
5419 static bfd_boolean
5420 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5421 struct bfd_link_info *info)
5422 {
5423 struct ppc_link_hash_table *htab;
5424 unsigned int i;
5425 const struct sfpr_def_parms funcs[] =
5426 {
5427 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5428 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5429 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5430 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5431 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5432 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5433 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5434 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5435 { "._savef", 14, 31, savefpr, savefpr1_tail },
5436 { "._restf", 14, 31, restfpr, restfpr1_tail },
5437 { "_savevr_", 20, 31, savevr, savevr_tail },
5438 { "_restvr_", 20, 31, restvr, restvr_tail }
5439 };
5440
5441 htab = ppc_hash_table (info);
5442 if (htab->sfpr == NULL)
5443 /* We don't have any relocs. */
5444 return TRUE;
5445
5446 /* Provide any missing _save* and _rest* functions. */
5447 htab->sfpr->size = 0;
5448 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5449 if (!sfpr_define (info, &funcs[i]))
5450 return FALSE;
5451
5452 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5453
5454 if (htab->sfpr->size == 0)
5455 _bfd_strip_section_from_output (info, htab->sfpr);
5456
5457 return TRUE;
5458 }
5459
5460 /* Adjust a symbol defined by a dynamic object and referenced by a
5461 regular object. The current definition is in some section of the
5462 dynamic object, but we're not including those sections. We have to
5463 change the definition to something the rest of the link can
5464 understand. */
5465
5466 static bfd_boolean
5467 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5468 struct elf_link_hash_entry *h)
5469 {
5470 struct ppc_link_hash_table *htab;
5471 asection *s;
5472 unsigned int power_of_two;
5473
5474 htab = ppc_hash_table (info);
5475
5476 /* Deal with function syms. */
5477 if (h->type == STT_FUNC
5478 || h->needs_plt)
5479 {
5480 /* Clear procedure linkage table information for any symbol that
5481 won't need a .plt entry. */
5482 struct plt_entry *ent;
5483 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5484 if (ent->plt.refcount > 0)
5485 break;
5486 if (ent == NULL
5487 || SYMBOL_CALLS_LOCAL (info, h)
5488 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5489 && h->root.type == bfd_link_hash_undefweak))
5490 {
5491 h->plt.plist = NULL;
5492 h->needs_plt = 0;
5493 }
5494 }
5495 else
5496 h->plt.plist = NULL;
5497
5498 /* If this is a weak symbol, and there is a real definition, the
5499 processor independent code will have arranged for us to see the
5500 real definition first, and we can just use the same value. */
5501 if (h->u.weakdef != NULL)
5502 {
5503 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5504 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5505 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5506 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5507 if (ELIMINATE_COPY_RELOCS)
5508 h->non_got_ref = h->u.weakdef->non_got_ref;
5509 return TRUE;
5510 }
5511
5512 /* If we are creating a shared library, we must presume that the
5513 only references to the symbol are via the global offset table.
5514 For such cases we need not do anything here; the relocations will
5515 be handled correctly by relocate_section. */
5516 if (info->shared)
5517 return TRUE;
5518
5519 /* If there are no references to this symbol that do not use the
5520 GOT, we don't need to generate a copy reloc. */
5521 if (!h->non_got_ref)
5522 return TRUE;
5523
5524 if (ELIMINATE_COPY_RELOCS)
5525 {
5526 struct ppc_link_hash_entry * eh;
5527 struct ppc_dyn_relocs *p;
5528
5529 eh = (struct ppc_link_hash_entry *) h;
5530 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5531 {
5532 s = p->sec->output_section;
5533 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5534 break;
5535 }
5536
5537 /* If we didn't find any dynamic relocs in read-only sections, then
5538 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5539 if (p == NULL)
5540 {
5541 h->non_got_ref = 0;
5542 return TRUE;
5543 }
5544 }
5545
5546 if (h->plt.plist != NULL)
5547 {
5548 /* We should never get here, but unfortunately there are versions
5549 of gcc out there that improperly (for this ABI) put initialized
5550 function pointers, vtable refs and suchlike in read-only
5551 sections. Allow them to proceed, but warn that this might
5552 break at runtime. */
5553 (*_bfd_error_handler)
5554 (_("copy reloc against `%s' requires lazy plt linking; "
5555 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5556 h->root.root.string);
5557 }
5558
5559 /* This is a reference to a symbol defined by a dynamic object which
5560 is not a function. */
5561
5562 /* We must allocate the symbol in our .dynbss section, which will
5563 become part of the .bss section of the executable. There will be
5564 an entry for this symbol in the .dynsym section. The dynamic
5565 object will contain position independent code, so all references
5566 from the dynamic object to this symbol will go through the global
5567 offset table. The dynamic linker will use the .dynsym entry to
5568 determine the address it must put in the global offset table, so
5569 both the dynamic object and the regular object will refer to the
5570 same memory location for the variable. */
5571
5572 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5573 to copy the initial value out of the dynamic object and into the
5574 runtime process image. We need to remember the offset into the
5575 .rela.bss section we are going to use. */
5576 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5577 {
5578 htab->relbss->size += sizeof (Elf64_External_Rela);
5579 h->needs_copy = 1;
5580 }
5581
5582 /* We need to figure out the alignment required for this symbol. I
5583 have no idea how ELF linkers handle this. */
5584 power_of_two = bfd_log2 (h->size);
5585 if (power_of_two > 4)
5586 power_of_two = 4;
5587
5588 /* Apply the required alignment. */
5589 s = htab->dynbss;
5590 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5591 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5592 {
5593 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5594 return FALSE;
5595 }
5596
5597 /* Define the symbol as being at this point in the section. */
5598 h->root.u.def.section = s;
5599 h->root.u.def.value = s->size;
5600
5601 /* Increment the section size to make room for the symbol. */
5602 s->size += h->size;
5603
5604 return TRUE;
5605 }
5606
5607 /* If given a function descriptor symbol, hide both the function code
5608 sym and the descriptor. */
5609 static void
5610 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5611 struct elf_link_hash_entry *h,
5612 bfd_boolean force_local)
5613 {
5614 struct ppc_link_hash_entry *eh;
5615 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5616
5617 eh = (struct ppc_link_hash_entry *) h;
5618 if (eh->is_func_descriptor)
5619 {
5620 struct ppc_link_hash_entry *fh = eh->oh;
5621
5622 if (fh == NULL)
5623 {
5624 const char *p, *q;
5625 struct ppc_link_hash_table *htab;
5626 char save;
5627
5628 /* We aren't supposed to use alloca in BFD because on
5629 systems which do not have alloca the version in libiberty
5630 calls xmalloc, which might cause the program to crash
5631 when it runs out of memory. This function doesn't have a
5632 return status, so there's no way to gracefully return an
5633 error. So cheat. We know that string[-1] can be safely
5634 accessed; It's either a string in an ELF string table,
5635 or allocated in an objalloc structure. */
5636
5637 p = eh->elf.root.root.string - 1;
5638 save = *p;
5639 *(char *) p = '.';
5640 htab = ppc_hash_table (info);
5641 fh = (struct ppc_link_hash_entry *)
5642 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5643 *(char *) p = save;
5644
5645 /* Unfortunately, if it so happens that the string we were
5646 looking for was allocated immediately before this string,
5647 then we overwrote the string terminator. That's the only
5648 reason the lookup should fail. */
5649 if (fh == NULL)
5650 {
5651 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5652 while (q >= eh->elf.root.root.string && *q == *p)
5653 --q, --p;
5654 if (q < eh->elf.root.root.string && *p == '.')
5655 fh = (struct ppc_link_hash_entry *)
5656 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5657 }
5658 if (fh != NULL)
5659 {
5660 eh->oh = fh;
5661 fh->oh = eh;
5662 }
5663 }
5664 if (fh != NULL)
5665 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5666 }
5667 }
5668
5669 static bfd_boolean
5670 get_sym_h (struct elf_link_hash_entry **hp,
5671 Elf_Internal_Sym **symp,
5672 asection **symsecp,
5673 char **tls_maskp,
5674 Elf_Internal_Sym **locsymsp,
5675 unsigned long r_symndx,
5676 bfd *ibfd)
5677 {
5678 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5679
5680 if (r_symndx >= symtab_hdr->sh_info)
5681 {
5682 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5683 struct elf_link_hash_entry *h;
5684
5685 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5686 while (h->root.type == bfd_link_hash_indirect
5687 || h->root.type == bfd_link_hash_warning)
5688 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5689
5690 if (hp != NULL)
5691 *hp = h;
5692
5693 if (symp != NULL)
5694 *symp = NULL;
5695
5696 if (symsecp != NULL)
5697 {
5698 asection *symsec = NULL;
5699 if (h->root.type == bfd_link_hash_defined
5700 || h->root.type == bfd_link_hash_defweak)
5701 symsec = h->root.u.def.section;
5702 *symsecp = symsec;
5703 }
5704
5705 if (tls_maskp != NULL)
5706 {
5707 struct ppc_link_hash_entry *eh;
5708
5709 eh = (struct ppc_link_hash_entry *) h;
5710 *tls_maskp = &eh->tls_mask;
5711 }
5712 }
5713 else
5714 {
5715 Elf_Internal_Sym *sym;
5716 Elf_Internal_Sym *locsyms = *locsymsp;
5717
5718 if (locsyms == NULL)
5719 {
5720 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5721 if (locsyms == NULL)
5722 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5723 symtab_hdr->sh_info,
5724 0, NULL, NULL, NULL);
5725 if (locsyms == NULL)
5726 return FALSE;
5727 *locsymsp = locsyms;
5728 }
5729 sym = locsyms + r_symndx;
5730
5731 if (hp != NULL)
5732 *hp = NULL;
5733
5734 if (symp != NULL)
5735 *symp = sym;
5736
5737 if (symsecp != NULL)
5738 {
5739 asection *symsec = NULL;
5740 if ((sym->st_shndx != SHN_UNDEF
5741 && sym->st_shndx < SHN_LORESERVE)
5742 || sym->st_shndx > SHN_HIRESERVE)
5743 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5744 *symsecp = symsec;
5745 }
5746
5747 if (tls_maskp != NULL)
5748 {
5749 struct got_entry **lgot_ents;
5750 char *tls_mask;
5751
5752 tls_mask = NULL;
5753 lgot_ents = elf_local_got_ents (ibfd);
5754 if (lgot_ents != NULL)
5755 {
5756 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5757 tls_mask = &lgot_masks[r_symndx];
5758 }
5759 *tls_maskp = tls_mask;
5760 }
5761 }
5762 return TRUE;
5763 }
5764
5765 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5766 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5767 type suitable for optimization, and 1 otherwise. */
5768
5769 static int
5770 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5771 Elf_Internal_Sym **locsymsp,
5772 const Elf_Internal_Rela *rel, bfd *ibfd)
5773 {
5774 unsigned long r_symndx;
5775 int next_r;
5776 struct elf_link_hash_entry *h;
5777 Elf_Internal_Sym *sym;
5778 asection *sec;
5779 bfd_vma off;
5780
5781 r_symndx = ELF64_R_SYM (rel->r_info);
5782 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5783 return 0;
5784
5785 if ((*tls_maskp != NULL && **tls_maskp != 0)
5786 || sec == NULL
5787 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5788 return 1;
5789
5790 /* Look inside a TOC section too. */
5791 if (h != NULL)
5792 {
5793 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5794 off = h->root.u.def.value;
5795 }
5796 else
5797 off = sym->st_value;
5798 off += rel->r_addend;
5799 BFD_ASSERT (off % 8 == 0);
5800 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5801 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5802 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5803 return 0;
5804 if (toc_symndx != NULL)
5805 *toc_symndx = r_symndx;
5806 if ((h == NULL
5807 || ((h->root.type == bfd_link_hash_defined
5808 || h->root.type == bfd_link_hash_defweak)
5809 && !h->def_dynamic))
5810 && (next_r == -1 || next_r == -2))
5811 return 1 - next_r;
5812 return 1;
5813 }
5814
5815 /* Adjust all global syms defined in opd sections. In gcc generated
5816 code for the old ABI, these will already have been done. */
5817
5818 static bfd_boolean
5819 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5820 {
5821 struct ppc_link_hash_entry *eh;
5822 asection *sym_sec;
5823 long *opd_adjust;
5824
5825 if (h->root.type == bfd_link_hash_indirect)
5826 return TRUE;
5827
5828 if (h->root.type == bfd_link_hash_warning)
5829 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5830
5831 if (h->root.type != bfd_link_hash_defined
5832 && h->root.type != bfd_link_hash_defweak)
5833 return TRUE;
5834
5835 eh = (struct ppc_link_hash_entry *) h;
5836 if (eh->adjust_done)
5837 return TRUE;
5838
5839 sym_sec = eh->elf.root.u.def.section;
5840 opd_adjust = get_opd_info (sym_sec);
5841 if (opd_adjust != NULL)
5842 {
5843 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5844 if (adjust == -1)
5845 {
5846 /* This entry has been deleted. */
5847 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5848 if (dsec == NULL)
5849 {
5850 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5851 if (elf_discarded_section (dsec))
5852 {
5853 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5854 break;
5855 }
5856 }
5857 eh->elf.root.u.def.value = 0;
5858 eh->elf.root.u.def.section = dsec;
5859 }
5860 else
5861 eh->elf.root.u.def.value += adjust;
5862 eh->adjust_done = 1;
5863 }
5864 return TRUE;
5865 }
5866
5867 /* Remove unused Official Procedure Descriptor entries. Currently we
5868 only remove those associated with functions in discarded link-once
5869 sections, or weakly defined functions that have been overridden. It
5870 would be possible to remove many more entries for statically linked
5871 applications. */
5872
5873 bfd_boolean
5874 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5875 bfd_boolean non_overlapping)
5876 {
5877 bfd *ibfd;
5878 bfd_boolean some_edited = FALSE;
5879 asection *need_pad = NULL;
5880
5881 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5882 {
5883 asection *sec;
5884 Elf_Internal_Rela *relstart, *rel, *relend;
5885 Elf_Internal_Shdr *symtab_hdr;
5886 Elf_Internal_Sym *local_syms;
5887 struct elf_link_hash_entry **sym_hashes;
5888 bfd_vma offset;
5889 bfd_size_type amt;
5890 long *opd_adjust;
5891 bfd_boolean need_edit, add_aux_fields;
5892 bfd_size_type cnt_16b = 0;
5893
5894 sec = bfd_get_section_by_name (ibfd, ".opd");
5895 if (sec == NULL)
5896 continue;
5897
5898 amt = sec->size * sizeof (long) / 8;
5899 opd_adjust = get_opd_info (sec);
5900 if (opd_adjust == NULL)
5901 {
5902 /* Must be a ld -r link. ie. check_relocs hasn't been
5903 called. */
5904 opd_adjust = bfd_zalloc (obfd, amt);
5905 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5906 }
5907 memset (opd_adjust, 0, amt);
5908
5909 if (sec->output_section == bfd_abs_section_ptr)
5910 continue;
5911
5912 /* Look through the section relocs. */
5913 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
5914 continue;
5915
5916 local_syms = NULL;
5917 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5918 sym_hashes = elf_sym_hashes (ibfd);
5919
5920 /* Read the relocations. */
5921 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
5922 info->keep_memory);
5923 if (relstart == NULL)
5924 return FALSE;
5925
5926 /* First run through the relocs to check they are sane, and to
5927 determine whether we need to edit this opd section. */
5928 need_edit = FALSE;
5929 need_pad = sec;
5930 offset = 0;
5931 relend = relstart + sec->reloc_count;
5932 for (rel = relstart; rel < relend; )
5933 {
5934 enum elf_ppc64_reloc_type r_type;
5935 unsigned long r_symndx;
5936 asection *sym_sec;
5937 struct elf_link_hash_entry *h;
5938 Elf_Internal_Sym *sym;
5939
5940 /* .opd contains a regular array of 16 or 24 byte entries. We're
5941 only interested in the reloc pointing to a function entry
5942 point. */
5943 if (rel->r_offset != offset
5944 || rel + 1 >= relend
5945 || (rel + 1)->r_offset != offset + 8)
5946 {
5947 /* If someone messes with .opd alignment then after a
5948 "ld -r" we might have padding in the middle of .opd.
5949 Also, there's nothing to prevent someone putting
5950 something silly in .opd with the assembler. No .opd
5951 optimization for them! */
5952 broken_opd:
5953 (*_bfd_error_handler)
5954 (_("%B: .opd is not a regular array of opd entries"), ibfd);
5955 need_edit = FALSE;
5956 break;
5957 }
5958
5959 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
5960 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
5961 {
5962 (*_bfd_error_handler)
5963 (_("%B: unexpected reloc type %u in .opd section"),
5964 ibfd, r_type);
5965 need_edit = FALSE;
5966 break;
5967 }
5968
5969 r_symndx = ELF64_R_SYM (rel->r_info);
5970 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
5971 r_symndx, ibfd))
5972 goto error_ret;
5973
5974 if (sym_sec == NULL || sym_sec->owner == NULL)
5975 {
5976 const char *sym_name;
5977 if (h != NULL)
5978 sym_name = h->root.root.string;
5979 else
5980 sym_name = bfd_elf_local_sym_name (ibfd, sym);
5981
5982 (*_bfd_error_handler)
5983 (_("%B: undefined sym `%s' in .opd section"),
5984 ibfd, sym_name);
5985 need_edit = FALSE;
5986 break;
5987 }
5988
5989 /* opd entries are always for functions defined in the
5990 current input bfd. If the symbol isn't defined in the
5991 input bfd, then we won't be using the function in this
5992 bfd; It must be defined in a linkonce section in another
5993 bfd, or is weak. It's also possible that we are
5994 discarding the function due to a linker script /DISCARD/,
5995 which we test for via the output_section. */
5996 if (sym_sec->owner != ibfd
5997 || sym_sec->output_section == bfd_abs_section_ptr)
5998 need_edit = TRUE;
5999
6000 rel += 2;
6001 if (rel == relend
6002 || (rel + 1 == relend && rel->r_offset == offset + 16))
6003 {
6004 if (sec->size == offset + 24)
6005 {
6006 need_pad = NULL;
6007 break;
6008 }
6009 if (rel == relend && sec->size == offset + 16)
6010 {
6011 cnt_16b++;
6012 break;
6013 }
6014 goto broken_opd;
6015 }
6016
6017 if (rel->r_offset == offset + 24)
6018 offset += 24;
6019 else if (rel->r_offset != offset + 16)
6020 goto broken_opd;
6021 else if (rel + 1 < relend
6022 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6023 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6024 {
6025 offset += 16;
6026 cnt_16b++;
6027 }
6028 else if (rel + 2 < relend
6029 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6030 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6031 {
6032 offset += 24;
6033 rel += 1;
6034 }
6035 else
6036 goto broken_opd;
6037 }
6038
6039 add_aux_fields = non_overlapping && cnt_16b > 0;
6040
6041 if (need_edit || add_aux_fields)
6042 {
6043 Elf_Internal_Rela *write_rel;
6044 bfd_byte *rptr, *wptr;
6045 bfd_byte *new_contents = NULL;
6046 bfd_boolean skip;
6047 long opd_ent_size;
6048
6049 /* This seems a waste of time as input .opd sections are all
6050 zeros as generated by gcc, but I suppose there's no reason
6051 this will always be so. We might start putting something in
6052 the third word of .opd entries. */
6053 if ((sec->flags & SEC_IN_MEMORY) == 0)
6054 {
6055 bfd_byte *loc;
6056 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6057 {
6058 if (loc != NULL)
6059 free (loc);
6060 error_ret:
6061 if (local_syms != NULL
6062 && symtab_hdr->contents != (unsigned char *) local_syms)
6063 free (local_syms);
6064 if (elf_section_data (sec)->relocs != relstart)
6065 free (relstart);
6066 return FALSE;
6067 }
6068 sec->contents = loc;
6069 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6070 }
6071
6072 elf_section_data (sec)->relocs = relstart;
6073
6074 wptr = sec->contents;
6075 rptr = sec->contents;
6076 new_contents = sec->contents;
6077
6078 if (add_aux_fields)
6079 {
6080 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6081 if (new_contents == NULL)
6082 return FALSE;
6083 need_pad = FALSE;
6084 wptr = new_contents;
6085 }
6086
6087 write_rel = relstart;
6088 skip = FALSE;
6089 offset = 0;
6090 opd_ent_size = 0;
6091 for (rel = relstart; rel < relend; rel++)
6092 {
6093 unsigned long r_symndx;
6094 asection *sym_sec;
6095 struct elf_link_hash_entry *h;
6096 Elf_Internal_Sym *sym;
6097
6098 r_symndx = ELF64_R_SYM (rel->r_info);
6099 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6100 r_symndx, ibfd))
6101 goto error_ret;
6102
6103 if (rel->r_offset == offset)
6104 {
6105 struct ppc_link_hash_entry *fdh = NULL;
6106
6107 /* See if the .opd entry is full 24 byte or
6108 16 byte (with fd_aux entry overlapped with next
6109 fd_func). */
6110 opd_ent_size = 24;
6111 if ((rel + 2 == relend && sec->size == offset + 16)
6112 || (rel + 3 < relend
6113 && rel[2].r_offset == offset + 16
6114 && rel[3].r_offset == offset + 24
6115 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6116 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6117 opd_ent_size = 16;
6118
6119 if (h != NULL
6120 && h->root.root.string[0] == '.')
6121 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6122 ppc_hash_table (info));
6123
6124 skip = (sym_sec->owner != ibfd
6125 || sym_sec->output_section == bfd_abs_section_ptr);
6126 if (skip)
6127 {
6128 if (fdh != NULL && sym_sec->owner == ibfd)
6129 {
6130 /* Arrange for the function descriptor sym
6131 to be dropped. */
6132 fdh->elf.root.u.def.value = 0;
6133 fdh->elf.root.u.def.section = sym_sec;
6134 }
6135 opd_adjust[rel->r_offset / 8] = -1;
6136 }
6137 else
6138 {
6139 /* We'll be keeping this opd entry. */
6140
6141 if (fdh != NULL)
6142 {
6143 /* Redefine the function descriptor symbol to
6144 this location in the opd section. It is
6145 necessary to update the value here rather
6146 than using an array of adjustments as we do
6147 for local symbols, because various places
6148 in the generic ELF code use the value
6149 stored in u.def.value. */
6150 fdh->elf.root.u.def.value = wptr - new_contents;
6151 fdh->adjust_done = 1;
6152 }
6153
6154 /* Local syms are a bit tricky. We could
6155 tweak them as they can be cached, but
6156 we'd need to look through the local syms
6157 for the function descriptor sym which we
6158 don't have at the moment. So keep an
6159 array of adjustments. */
6160 opd_adjust[rel->r_offset / 8]
6161 = (wptr - new_contents) - (rptr - sec->contents);
6162
6163 if (wptr != rptr)
6164 memcpy (wptr, rptr, opd_ent_size);
6165 wptr += opd_ent_size;
6166 if (add_aux_fields && opd_ent_size == 16)
6167 {
6168 memset (wptr, '\0', 8);
6169 wptr += 8;
6170 }
6171 }
6172 rptr += opd_ent_size;
6173 offset += opd_ent_size;
6174 }
6175
6176 if (skip)
6177 {
6178 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6179 if (info->shared)
6180 {
6181 /* We won't be needing dynamic relocs here. */
6182 struct ppc_dyn_relocs **pp;
6183 struct ppc_dyn_relocs *p;
6184
6185 if (h != NULL)
6186 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6187 else if (sym_sec != NULL)
6188 pp = ((struct ppc_dyn_relocs **)
6189 &elf_section_data (sym_sec)->local_dynrel);
6190 else
6191 pp = ((struct ppc_dyn_relocs **)
6192 &elf_section_data (sec)->local_dynrel);
6193 while ((p = *pp) != NULL)
6194 {
6195 if (p->sec == sec)
6196 {
6197 p->count -= 1;
6198 if (p->count == 0)
6199 *pp = p->next;
6200 break;
6201 }
6202 pp = &p->next;
6203 }
6204 }
6205 }
6206 else
6207 {
6208 /* We need to adjust any reloc offsets to point to the
6209 new opd entries. While we're at it, we may as well
6210 remove redundant relocs. */
6211 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6212 if (write_rel != rel)
6213 memcpy (write_rel, rel, sizeof (*rel));
6214 ++write_rel;
6215 }
6216 }
6217
6218 sec->size = wptr - new_contents;
6219 sec->reloc_count = write_rel - relstart;
6220 if (add_aux_fields)
6221 {
6222 free (sec->contents);
6223 sec->contents = new_contents;
6224 }
6225
6226 /* Fudge the size too, as this is used later in
6227 elf_bfd_final_link if we are emitting relocs. */
6228 elf_section_data (sec)->rel_hdr.sh_size
6229 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6230 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6231 some_edited = TRUE;
6232 }
6233 else if (elf_section_data (sec)->relocs != relstart)
6234 free (relstart);
6235
6236 if (local_syms != NULL
6237 && symtab_hdr->contents != (unsigned char *) local_syms)
6238 {
6239 if (!info->keep_memory)
6240 free (local_syms);
6241 else
6242 symtab_hdr->contents = (unsigned char *) local_syms;
6243 }
6244 }
6245
6246 if (some_edited)
6247 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6248
6249 /* If we are doing a final link and the last .opd entry is just 16 byte
6250 long, add a 8 byte padding after it. */
6251 if (need_pad != NULL && !info->relocatable)
6252 {
6253 bfd_byte *p;
6254
6255 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6256 {
6257 BFD_ASSERT (need_pad->size > 0);
6258
6259 p = bfd_malloc (need_pad->size + 8);
6260 if (p == NULL)
6261 return FALSE;
6262
6263 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6264 p, 0, need_pad->size))
6265 return FALSE;
6266
6267 need_pad->contents = p;
6268 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6269 }
6270 else
6271 {
6272 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6273 if (p == NULL)
6274 return FALSE;
6275
6276 need_pad->contents = p;
6277 }
6278
6279 memset (need_pad->contents + need_pad->size, 0, 8);
6280 need_pad->size += 8;
6281 }
6282
6283 return TRUE;
6284 }
6285
6286 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6287
6288 asection *
6289 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6290 {
6291 struct ppc_link_hash_table *htab;
6292
6293 htab = ppc_hash_table (info);
6294 if (htab->tls_get_addr != NULL)
6295 {
6296 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6297
6298 while (h->elf.root.type == bfd_link_hash_indirect
6299 || h->elf.root.type == bfd_link_hash_warning)
6300 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6301
6302 htab->tls_get_addr = h;
6303
6304 if (htab->tls_get_addr_fd == NULL
6305 && h->oh != NULL
6306 && h->oh->is_func_descriptor)
6307 htab->tls_get_addr_fd = h->oh;
6308 }
6309
6310 if (htab->tls_get_addr_fd != NULL)
6311 {
6312 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6313
6314 while (h->elf.root.type == bfd_link_hash_indirect
6315 || h->elf.root.type == bfd_link_hash_warning)
6316 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6317
6318 htab->tls_get_addr_fd = h;
6319 }
6320
6321 return _bfd_elf_tls_setup (obfd, info);
6322 }
6323
6324 /* Run through all the TLS relocs looking for optimization
6325 opportunities. The linker has been hacked (see ppc64elf.em) to do
6326 a preliminary section layout so that we know the TLS segment
6327 offsets. We can't optimize earlier because some optimizations need
6328 to know the tp offset, and we need to optimize before allocating
6329 dynamic relocations. */
6330
6331 bfd_boolean
6332 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6333 {
6334 bfd *ibfd;
6335 asection *sec;
6336 struct ppc_link_hash_table *htab;
6337
6338 if (info->relocatable || info->shared)
6339 return TRUE;
6340
6341 htab = ppc_hash_table (info);
6342 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6343 {
6344 Elf_Internal_Sym *locsyms = NULL;
6345
6346 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6347 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6348 {
6349 Elf_Internal_Rela *relstart, *rel, *relend;
6350 int expecting_tls_get_addr;
6351
6352 /* Read the relocations. */
6353 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6354 info->keep_memory);
6355 if (relstart == NULL)
6356 return FALSE;
6357
6358 expecting_tls_get_addr = 0;
6359 relend = relstart + sec->reloc_count;
6360 for (rel = relstart; rel < relend; rel++)
6361 {
6362 enum elf_ppc64_reloc_type r_type;
6363 unsigned long r_symndx;
6364 struct elf_link_hash_entry *h;
6365 Elf_Internal_Sym *sym;
6366 asection *sym_sec;
6367 char *tls_mask;
6368 char tls_set, tls_clear, tls_type = 0;
6369 bfd_vma value;
6370 bfd_boolean ok_tprel, is_local;
6371
6372 r_symndx = ELF64_R_SYM (rel->r_info);
6373 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6374 r_symndx, ibfd))
6375 {
6376 err_free_rel:
6377 if (elf_section_data (sec)->relocs != relstart)
6378 free (relstart);
6379 if (locsyms != NULL
6380 && (elf_tdata (ibfd)->symtab_hdr.contents
6381 != (unsigned char *) locsyms))
6382 free (locsyms);
6383 return FALSE;
6384 }
6385
6386 if (h != NULL)
6387 {
6388 if (h->root.type != bfd_link_hash_defined
6389 && h->root.type != bfd_link_hash_defweak)
6390 continue;
6391 value = h->root.u.def.value;
6392 }
6393 else
6394 /* Symbols referenced by TLS relocs must be of type
6395 STT_TLS. So no need for .opd local sym adjust. */
6396 value = sym->st_value;
6397
6398 ok_tprel = FALSE;
6399 is_local = FALSE;
6400 if (h == NULL
6401 || !h->def_dynamic)
6402 {
6403 is_local = TRUE;
6404 value += sym_sec->output_offset;
6405 value += sym_sec->output_section->vma;
6406 value -= htab->elf.tls_sec->vma;
6407 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6408 < (bfd_vma) 1 << 32);
6409 }
6410
6411 r_type = ELF64_R_TYPE (rel->r_info);
6412 switch (r_type)
6413 {
6414 case R_PPC64_GOT_TLSLD16:
6415 case R_PPC64_GOT_TLSLD16_LO:
6416 case R_PPC64_GOT_TLSLD16_HI:
6417 case R_PPC64_GOT_TLSLD16_HA:
6418 /* These relocs should never be against a symbol
6419 defined in a shared lib. Leave them alone if
6420 that turns out to be the case. */
6421 ppc64_tlsld_got (ibfd)->refcount -= 1;
6422 if (!is_local)
6423 continue;
6424
6425 /* LD -> LE */
6426 tls_set = 0;
6427 tls_clear = TLS_LD;
6428 tls_type = TLS_TLS | TLS_LD;
6429 expecting_tls_get_addr = 1;
6430 break;
6431
6432 case R_PPC64_GOT_TLSGD16:
6433 case R_PPC64_GOT_TLSGD16_LO:
6434 case R_PPC64_GOT_TLSGD16_HI:
6435 case R_PPC64_GOT_TLSGD16_HA:
6436 if (ok_tprel)
6437 /* GD -> LE */
6438 tls_set = 0;
6439 else
6440 /* GD -> IE */
6441 tls_set = TLS_TLS | TLS_TPRELGD;
6442 tls_clear = TLS_GD;
6443 tls_type = TLS_TLS | TLS_GD;
6444 expecting_tls_get_addr = 1;
6445 break;
6446
6447 case R_PPC64_GOT_TPREL16_DS:
6448 case R_PPC64_GOT_TPREL16_LO_DS:
6449 case R_PPC64_GOT_TPREL16_HI:
6450 case R_PPC64_GOT_TPREL16_HA:
6451 expecting_tls_get_addr = 0;
6452 if (ok_tprel)
6453 {
6454 /* IE -> LE */
6455 tls_set = 0;
6456 tls_clear = TLS_TPREL;
6457 tls_type = TLS_TLS | TLS_TPREL;
6458 break;
6459 }
6460 else
6461 continue;
6462
6463 case R_PPC64_REL14:
6464 case R_PPC64_REL14_BRTAKEN:
6465 case R_PPC64_REL14_BRNTAKEN:
6466 case R_PPC64_REL24:
6467 if (h != NULL
6468 && (h == &htab->tls_get_addr->elf
6469 || h == &htab->tls_get_addr_fd->elf))
6470 {
6471 if (!expecting_tls_get_addr
6472 && rel != relstart
6473 && ((ELF64_R_TYPE (rel[-1].r_info)
6474 == R_PPC64_TOC16)
6475 || (ELF64_R_TYPE (rel[-1].r_info)
6476 == R_PPC64_TOC16_LO)))
6477 {
6478 /* Check for toc tls entries. */
6479 char *toc_tls;
6480 int retval;
6481
6482 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6483 rel - 1, ibfd);
6484 if (retval == 0)
6485 goto err_free_rel;
6486 if (toc_tls != NULL)
6487 expecting_tls_get_addr = retval > 1;
6488 }
6489
6490 if (expecting_tls_get_addr)
6491 {
6492 struct plt_entry *ent;
6493 for (ent = h->plt.plist; ent; ent = ent->next)
6494 if (ent->addend == 0)
6495 {
6496 if (ent->plt.refcount > 0)
6497 ent->plt.refcount -= 1;
6498 break;
6499 }
6500 }
6501 }
6502 expecting_tls_get_addr = 0;
6503 continue;
6504
6505 case R_PPC64_TPREL64:
6506 expecting_tls_get_addr = 0;
6507 if (ok_tprel)
6508 {
6509 /* IE -> LE */
6510 tls_set = TLS_EXPLICIT;
6511 tls_clear = TLS_TPREL;
6512 break;
6513 }
6514 else
6515 continue;
6516
6517 case R_PPC64_DTPMOD64:
6518 expecting_tls_get_addr = 0;
6519 if (rel + 1 < relend
6520 && (rel[1].r_info
6521 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6522 && rel[1].r_offset == rel->r_offset + 8)
6523 {
6524 if (ok_tprel)
6525 /* GD -> LE */
6526 tls_set = TLS_EXPLICIT | TLS_GD;
6527 else
6528 /* GD -> IE */
6529 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6530 tls_clear = TLS_GD;
6531 }
6532 else
6533 {
6534 if (!is_local)
6535 continue;
6536
6537 /* LD -> LE */
6538 tls_set = TLS_EXPLICIT;
6539 tls_clear = TLS_LD;
6540 }
6541 break;
6542
6543 default:
6544 expecting_tls_get_addr = 0;
6545 continue;
6546 }
6547
6548 if ((tls_set & TLS_EXPLICIT) == 0)
6549 {
6550 struct got_entry *ent;
6551
6552 /* Adjust got entry for this reloc. */
6553 if (h != NULL)
6554 ent = h->got.glist;
6555 else
6556 ent = elf_local_got_ents (ibfd)[r_symndx];
6557
6558 for (; ent != NULL; ent = ent->next)
6559 if (ent->addend == rel->r_addend
6560 && ent->owner == ibfd
6561 && ent->tls_type == tls_type)
6562 break;
6563 if (ent == NULL)
6564 abort ();
6565
6566 if (tls_set == 0)
6567 {
6568 /* We managed to get rid of a got entry. */
6569 if (ent->got.refcount > 0)
6570 ent->got.refcount -= 1;
6571 }
6572 }
6573 else if (h != NULL)
6574 {
6575 struct ppc_link_hash_entry * eh;
6576 struct ppc_dyn_relocs **pp;
6577 struct ppc_dyn_relocs *p;
6578
6579 /* Adjust dynamic relocs. */
6580 eh = (struct ppc_link_hash_entry *) h;
6581 for (pp = &eh->dyn_relocs;
6582 (p = *pp) != NULL;
6583 pp = &p->next)
6584 if (p->sec == sec)
6585 {
6586 /* If we got rid of a DTPMOD/DTPREL reloc
6587 pair then we'll lose one or two dyn
6588 relocs. */
6589 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6590 p->count -= 1;
6591 p->count -= 1;
6592 if (p->count == 0)
6593 *pp = p->next;
6594 break;
6595 }
6596 }
6597
6598 *tls_mask |= tls_set;
6599 *tls_mask &= ~tls_clear;
6600 }
6601
6602 if (elf_section_data (sec)->relocs != relstart)
6603 free (relstart);
6604 }
6605
6606 if (locsyms != NULL
6607 && (elf_tdata (ibfd)->symtab_hdr.contents
6608 != (unsigned char *) locsyms))
6609 {
6610 if (!info->keep_memory)
6611 free (locsyms);
6612 else
6613 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6614 }
6615 }
6616 return TRUE;
6617 }
6618
6619 /* Allocate space in .plt, .got and associated reloc sections for
6620 dynamic relocs. */
6621
6622 static bfd_boolean
6623 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6624 {
6625 struct bfd_link_info *info;
6626 struct ppc_link_hash_table *htab;
6627 asection *s;
6628 struct ppc_link_hash_entry *eh;
6629 struct ppc_dyn_relocs *p;
6630 struct got_entry *gent;
6631
6632 if (h->root.type == bfd_link_hash_indirect)
6633 return TRUE;
6634
6635 if (h->root.type == bfd_link_hash_warning)
6636 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6637
6638 info = (struct bfd_link_info *) inf;
6639 htab = ppc_hash_table (info);
6640
6641 if (htab->elf.dynamic_sections_created
6642 && h->dynindx != -1
6643 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
6644 {
6645 struct plt_entry *pent;
6646 bfd_boolean doneone = FALSE;
6647 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6648 if (pent->plt.refcount > 0)
6649 {
6650 /* If this is the first .plt entry, make room for the special
6651 first entry. */
6652 s = htab->plt;
6653 if (s->size == 0)
6654 s->size += PLT_INITIAL_ENTRY_SIZE;
6655
6656 pent->plt.offset = s->size;
6657
6658 /* Make room for this entry. */
6659 s->size += PLT_ENTRY_SIZE;
6660
6661 /* Make room for the .glink code. */
6662 s = htab->glink;
6663 if (s->size == 0)
6664 s->size += GLINK_CALL_STUB_SIZE;
6665 /* We need bigger stubs past index 32767. */
6666 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
6667 s->size += 4;
6668 s->size += 2*4;
6669
6670 /* We also need to make an entry in the .rela.plt section. */
6671 s = htab->relplt;
6672 s->size += sizeof (Elf64_External_Rela);
6673 doneone = TRUE;
6674 }
6675 else
6676 pent->plt.offset = (bfd_vma) -1;
6677 if (!doneone)
6678 {
6679 h->plt.plist = NULL;
6680 h->needs_plt = 0;
6681 }
6682 }
6683 else
6684 {
6685 h->plt.plist = NULL;
6686 h->needs_plt = 0;
6687 }
6688
6689 eh = (struct ppc_link_hash_entry *) h;
6690 /* Run through the TLS GD got entries first if we're changing them
6691 to TPREL. */
6692 if ((eh->tls_mask & TLS_TPRELGD) != 0)
6693 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6694 if (gent->got.refcount > 0
6695 && (gent->tls_type & TLS_GD) != 0)
6696 {
6697 /* This was a GD entry that has been converted to TPREL. If
6698 there happens to be a TPREL entry we can use that one. */
6699 struct got_entry *ent;
6700 for (ent = h->got.glist; ent != NULL; ent = ent->next)
6701 if (ent->got.refcount > 0
6702 && (ent->tls_type & TLS_TPREL) != 0
6703 && ent->addend == gent->addend
6704 && ent->owner == gent->owner)
6705 {
6706 gent->got.refcount = 0;
6707 break;
6708 }
6709
6710 /* If not, then we'll be using our own TPREL entry. */
6711 if (gent->got.refcount != 0)
6712 gent->tls_type = TLS_TLS | TLS_TPREL;
6713 }
6714
6715 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6716 if (gent->got.refcount > 0)
6717 {
6718 bfd_boolean dyn;
6719
6720 /* Make sure this symbol is output as a dynamic symbol.
6721 Undefined weak syms won't yet be marked as dynamic,
6722 nor will all TLS symbols. */
6723 if (h->dynindx == -1
6724 && !h->forced_local)
6725 {
6726 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6727 return FALSE;
6728 }
6729
6730 if ((gent->tls_type & TLS_LD) != 0
6731 && !h->def_dynamic)
6732 {
6733 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
6734 continue;
6735 }
6736
6737 s = ppc64_elf_tdata (gent->owner)->got;
6738 gent->got.offset = s->size;
6739 s->size
6740 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
6741 dyn = htab->elf.dynamic_sections_created;
6742 if ((info->shared
6743 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
6744 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6745 || h->root.type != bfd_link_hash_undefweak))
6746 ppc64_elf_tdata (gent->owner)->relgot->size
6747 += (gent->tls_type & eh->tls_mask & TLS_GD
6748 ? 2 * sizeof (Elf64_External_Rela)
6749 : sizeof (Elf64_External_Rela));
6750 }
6751 else
6752 gent->got.offset = (bfd_vma) -1;
6753
6754 if (eh->dyn_relocs == NULL)
6755 return TRUE;
6756
6757 /* In the shared -Bsymbolic case, discard space allocated for
6758 dynamic pc-relative relocs against symbols which turn out to be
6759 defined in regular objects. For the normal shared case, discard
6760 space for relocs that have become local due to symbol visibility
6761 changes. */
6762
6763 if (info->shared)
6764 {
6765 /* Relocs that use pc_count are those that appear on a call insn,
6766 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
6767 generated via assembly. We want calls to protected symbols to
6768 resolve directly to the function rather than going via the plt.
6769 If people want function pointer comparisons to work as expected
6770 then they should avoid writing weird assembly. */
6771 if (SYMBOL_CALLS_LOCAL (info, h))
6772 {
6773 struct ppc_dyn_relocs **pp;
6774
6775 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
6776 {
6777 p->count -= p->pc_count;
6778 p->pc_count = 0;
6779 if (p->count == 0)
6780 *pp = p->next;
6781 else
6782 pp = &p->next;
6783 }
6784 }
6785
6786 /* Also discard relocs on undefined weak syms with non-default
6787 visibility. */
6788 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6789 && h->root.type == bfd_link_hash_undefweak)
6790 eh->dyn_relocs = NULL;
6791 }
6792 else if (ELIMINATE_COPY_RELOCS)
6793 {
6794 /* For the non-shared case, discard space for relocs against
6795 symbols which turn out to need copy relocs or are not
6796 dynamic. */
6797
6798 if (!h->non_got_ref
6799 && h->def_dynamic
6800 && !h->def_regular)
6801 {
6802 /* Make sure this symbol is output as a dynamic symbol.
6803 Undefined weak syms won't yet be marked as dynamic. */
6804 if (h->dynindx == -1
6805 && !h->forced_local)
6806 {
6807 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6808 return FALSE;
6809 }
6810
6811 /* If that succeeded, we know we'll be keeping all the
6812 relocs. */
6813 if (h->dynindx != -1)
6814 goto keep;
6815 }
6816
6817 eh->dyn_relocs = NULL;
6818
6819 keep: ;
6820 }
6821
6822 /* Finally, allocate space. */
6823 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6824 {
6825 asection *sreloc = elf_section_data (p->sec)->sreloc;
6826 sreloc->size += p->count * sizeof (Elf64_External_Rela);
6827 }
6828
6829 return TRUE;
6830 }
6831
6832 /* Find any dynamic relocs that apply to read-only sections. */
6833
6834 static bfd_boolean
6835 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6836 {
6837 struct ppc_link_hash_entry *eh;
6838 struct ppc_dyn_relocs *p;
6839
6840 if (h->root.type == bfd_link_hash_warning)
6841 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6842
6843 eh = (struct ppc_link_hash_entry *) h;
6844 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6845 {
6846 asection *s = p->sec->output_section;
6847
6848 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6849 {
6850 struct bfd_link_info *info = inf;
6851
6852 info->flags |= DF_TEXTREL;
6853
6854 /* Not an error, just cut short the traversal. */
6855 return FALSE;
6856 }
6857 }
6858 return TRUE;
6859 }
6860
6861 /* Set the sizes of the dynamic sections. */
6862
6863 static bfd_boolean
6864 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6865 struct bfd_link_info *info)
6866 {
6867 struct ppc_link_hash_table *htab;
6868 bfd *dynobj;
6869 asection *s;
6870 bfd_boolean relocs;
6871 bfd *ibfd;
6872
6873 htab = ppc_hash_table (info);
6874 dynobj = htab->elf.dynobj;
6875 if (dynobj == NULL)
6876 abort ();
6877
6878 if (htab->elf.dynamic_sections_created)
6879 {
6880 /* Set the contents of the .interp section to the interpreter. */
6881 if (info->executable)
6882 {
6883 s = bfd_get_section_by_name (dynobj, ".interp");
6884 if (s == NULL)
6885 abort ();
6886 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6887 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6888 }
6889 }
6890
6891 /* Set up .got offsets for local syms, and space for local dynamic
6892 relocs. */
6893 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6894 {
6895 struct got_entry **lgot_ents;
6896 struct got_entry **end_lgot_ents;
6897 char *lgot_masks;
6898 bfd_size_type locsymcount;
6899 Elf_Internal_Shdr *symtab_hdr;
6900 asection *srel;
6901
6902 if (!is_ppc64_elf_target (ibfd->xvec))
6903 continue;
6904
6905 if (ppc64_tlsld_got (ibfd)->refcount > 0)
6906 {
6907 s = ppc64_elf_tdata (ibfd)->got;
6908 ppc64_tlsld_got (ibfd)->offset = s->size;
6909 s->size += 16;
6910 if (info->shared)
6911 {
6912 srel = ppc64_elf_tdata (ibfd)->relgot;
6913 srel->size += sizeof (Elf64_External_Rela);
6914 }
6915 }
6916 else
6917 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
6918
6919 for (s = ibfd->sections; s != NULL; s = s->next)
6920 {
6921 struct ppc_dyn_relocs *p;
6922
6923 for (p = *((struct ppc_dyn_relocs **)
6924 &elf_section_data (s)->local_dynrel);
6925 p != NULL;
6926 p = p->next)
6927 {
6928 if (!bfd_is_abs_section (p->sec)
6929 && bfd_is_abs_section (p->sec->output_section))
6930 {
6931 /* Input section has been discarded, either because
6932 it is a copy of a linkonce section or due to
6933 linker script /DISCARD/, so we'll be discarding
6934 the relocs too. */
6935 }
6936 else if (p->count != 0)
6937 {
6938 srel = elf_section_data (p->sec)->sreloc;
6939 srel->size += p->count * sizeof (Elf64_External_Rela);
6940 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6941 info->flags |= DF_TEXTREL;
6942 }
6943 }
6944 }
6945
6946 lgot_ents = elf_local_got_ents (ibfd);
6947 if (!lgot_ents)
6948 continue;
6949
6950 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6951 locsymcount = symtab_hdr->sh_info;
6952 end_lgot_ents = lgot_ents + locsymcount;
6953 lgot_masks = (char *) end_lgot_ents;
6954 s = ppc64_elf_tdata (ibfd)->got;
6955 srel = ppc64_elf_tdata (ibfd)->relgot;
6956 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
6957 {
6958 struct got_entry *ent;
6959
6960 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
6961 if (ent->got.refcount > 0)
6962 {
6963 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
6964 {
6965 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
6966 {
6967 ppc64_tlsld_got (ibfd)->offset = s->size;
6968 s->size += 16;
6969 if (info->shared)
6970 srel->size += sizeof (Elf64_External_Rela);
6971 }
6972 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
6973 }
6974 else
6975 {
6976 ent->got.offset = s->size;
6977 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
6978 {
6979 s->size += 16;
6980 if (info->shared)
6981 srel->size += 2 * sizeof (Elf64_External_Rela);
6982 }
6983 else
6984 {
6985 s->size += 8;
6986 if (info->shared)
6987 srel->size += sizeof (Elf64_External_Rela);
6988 }
6989 }
6990 }
6991 else
6992 ent->got.offset = (bfd_vma) -1;
6993 }
6994 }
6995
6996 /* Allocate global sym .plt and .got entries, and space for global
6997 sym dynamic relocs. */
6998 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
6999
7000 /* We now have determined the sizes of the various dynamic sections.
7001 Allocate memory for them. */
7002 relocs = FALSE;
7003 for (s = dynobj->sections; s != NULL; s = s->next)
7004 {
7005 if ((s->flags & SEC_LINKER_CREATED) == 0)
7006 continue;
7007
7008 if (s == htab->brlt || s == htab->relbrlt)
7009 /* These haven't been allocated yet; don't strip. */
7010 continue;
7011 else if (s == htab->got
7012 || s == htab->plt
7013 || s == htab->glink)
7014 {
7015 /* Strip this section if we don't need it; see the
7016 comment below. */
7017 }
7018 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7019 {
7020 if (s->size == 0)
7021 {
7022 /* If we don't need this section, strip it from the
7023 output file. This is mostly to handle .rela.bss and
7024 .rela.plt. We must create both sections in
7025 create_dynamic_sections, because they must be created
7026 before the linker maps input sections to output
7027 sections. The linker does that before
7028 adjust_dynamic_symbol is called, and it is that
7029 function which decides whether anything needs to go
7030 into these sections. */
7031 }
7032 else
7033 {
7034 if (s != htab->relplt)
7035 relocs = TRUE;
7036
7037 /* We use the reloc_count field as a counter if we need
7038 to copy relocs into the output file. */
7039 s->reloc_count = 0;
7040 }
7041 }
7042 else
7043 {
7044 /* It's not one of our sections, so don't allocate space. */
7045 continue;
7046 }
7047
7048 if (s->size == 0)
7049 {
7050 _bfd_strip_section_from_output (info, s);
7051 continue;
7052 }
7053
7054 /* .plt is in the bss section. We don't initialise it. */
7055 if (s == htab->plt)
7056 continue;
7057
7058 /* Allocate memory for the section contents. We use bfd_zalloc
7059 here in case unused entries are not reclaimed before the
7060 section's contents are written out. This should not happen,
7061 but this way if it does we get a R_PPC64_NONE reloc in .rela
7062 sections instead of garbage.
7063 We also rely on the section contents being zero when writing
7064 the GOT. */
7065 s->contents = bfd_zalloc (dynobj, s->size);
7066 if (s->contents == NULL)
7067 return FALSE;
7068 }
7069
7070 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7071 {
7072 if (!is_ppc64_elf_target (ibfd->xvec))
7073 continue;
7074
7075 s = ppc64_elf_tdata (ibfd)->got;
7076 if (s != NULL && s != htab->got)
7077 {
7078 if (s->size == 0)
7079 _bfd_strip_section_from_output (info, s);
7080 else
7081 {
7082 s->contents = bfd_zalloc (ibfd, s->size);
7083 if (s->contents == NULL)
7084 return FALSE;
7085 }
7086 }
7087 s = ppc64_elf_tdata (ibfd)->relgot;
7088 if (s != NULL)
7089 {
7090 if (s->size == 0)
7091 _bfd_strip_section_from_output (info, s);
7092 else
7093 {
7094 s->contents = bfd_zalloc (ibfd, s->size);
7095 if (s->contents == NULL)
7096 return FALSE;
7097 relocs = TRUE;
7098 s->reloc_count = 0;
7099 }
7100 }
7101 }
7102
7103 if (htab->elf.dynamic_sections_created)
7104 {
7105 /* Add some entries to the .dynamic section. We fill in the
7106 values later, in ppc64_elf_finish_dynamic_sections, but we
7107 must add the entries now so that we get the correct size for
7108 the .dynamic section. The DT_DEBUG entry is filled in by the
7109 dynamic linker and used by the debugger. */
7110 #define add_dynamic_entry(TAG, VAL) \
7111 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7112
7113 if (info->executable)
7114 {
7115 if (!add_dynamic_entry (DT_DEBUG, 0))
7116 return FALSE;
7117 }
7118
7119 if (htab->plt != NULL && htab->plt->size != 0)
7120 {
7121 if (!add_dynamic_entry (DT_PLTGOT, 0)
7122 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7123 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7124 || !add_dynamic_entry (DT_JMPREL, 0)
7125 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7126 return FALSE;
7127 }
7128
7129 if (NO_OPD_RELOCS)
7130 {
7131 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7132 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7133 return FALSE;
7134 }
7135
7136 if (relocs)
7137 {
7138 if (!add_dynamic_entry (DT_RELA, 0)
7139 || !add_dynamic_entry (DT_RELASZ, 0)
7140 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7141 return FALSE;
7142
7143 /* If any dynamic relocs apply to a read-only section,
7144 then we need a DT_TEXTREL entry. */
7145 if ((info->flags & DF_TEXTREL) == 0)
7146 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7147
7148 if ((info->flags & DF_TEXTREL) != 0)
7149 {
7150 if (!add_dynamic_entry (DT_TEXTREL, 0))
7151 return FALSE;
7152 }
7153 }
7154 }
7155 #undef add_dynamic_entry
7156
7157 return TRUE;
7158 }
7159
7160 /* Determine the type of stub needed, if any, for a call. */
7161
7162 static inline enum ppc_stub_type
7163 ppc_type_of_stub (asection *input_sec,
7164 const Elf_Internal_Rela *rel,
7165 struct ppc_link_hash_entry **hash,
7166 bfd_vma destination)
7167 {
7168 struct ppc_link_hash_entry *h = *hash;
7169 bfd_vma location;
7170 bfd_vma branch_offset;
7171 bfd_vma max_branch_offset;
7172 enum elf_ppc64_reloc_type r_type;
7173
7174 if (h != NULL)
7175 {
7176 if (h->oh != NULL
7177 && h->oh->is_func_descriptor)
7178 h = h->oh;
7179
7180 if (h->elf.dynindx != -1)
7181 {
7182 struct plt_entry *ent;
7183
7184 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7185 if (ent->addend == rel->r_addend
7186 && ent->plt.offset != (bfd_vma) -1)
7187 {
7188 *hash = h;
7189 return ppc_stub_plt_call;
7190 }
7191 }
7192
7193 if (!(h->elf.root.type == bfd_link_hash_defined
7194 || h->elf.root.type == bfd_link_hash_defweak)
7195 || h->elf.root.u.def.section->output_section == NULL)
7196 return ppc_stub_none;
7197 }
7198
7199 /* Determine where the call point is. */
7200 location = (input_sec->output_offset
7201 + input_sec->output_section->vma
7202 + rel->r_offset);
7203
7204 branch_offset = destination - location;
7205 r_type = ELF64_R_TYPE (rel->r_info);
7206
7207 /* Determine if a long branch stub is needed. */
7208 max_branch_offset = 1 << 25;
7209 if (r_type != R_PPC64_REL24)
7210 max_branch_offset = 1 << 15;
7211
7212 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7213 /* We need a stub. Figure out whether a long_branch or plt_branch
7214 is needed later. */
7215 return ppc_stub_long_branch;
7216
7217 return ppc_stub_none;
7218 }
7219
7220 /* Build a .plt call stub. */
7221
7222 static inline bfd_byte *
7223 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7224 {
7225 #define PPC_LO(v) ((v) & 0xffff)
7226 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7227 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7228
7229 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7230 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7231 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7232 if (PPC_HA (offset + 8) != PPC_HA (offset))
7233 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7234 offset += 8;
7235 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7236 if (PPC_HA (offset + 8) != PPC_HA (offset))
7237 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7238 offset += 8;
7239 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7240 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7241 bfd_put_32 (obfd, BCTR, p), p += 4;
7242 return p;
7243 }
7244
7245 static bfd_boolean
7246 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7247 {
7248 struct ppc_stub_hash_entry *stub_entry;
7249 struct ppc_branch_hash_entry *br_entry;
7250 struct bfd_link_info *info;
7251 struct ppc_link_hash_table *htab;
7252 bfd_byte *loc;
7253 bfd_byte *p;
7254 unsigned int indx;
7255 struct plt_entry *ent;
7256 bfd_vma dest, off;
7257 int size;
7258
7259 /* Massage our args to the form they really have. */
7260 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7261 info = in_arg;
7262
7263 htab = ppc_hash_table (info);
7264
7265 /* Make a note of the offset within the stubs for this entry. */
7266 stub_entry->stub_offset = stub_entry->stub_sec->size;
7267 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7268
7269 htab->stub_count[stub_entry->stub_type - 1] += 1;
7270 switch (stub_entry->stub_type)
7271 {
7272 case ppc_stub_long_branch:
7273 case ppc_stub_long_branch_r2off:
7274 /* Branches are relative. This is where we are going to. */
7275 off = dest = (stub_entry->target_value
7276 + stub_entry->target_section->output_offset
7277 + stub_entry->target_section->output_section->vma);
7278
7279 /* And this is where we are coming from. */
7280 off -= (stub_entry->stub_offset
7281 + stub_entry->stub_sec->output_offset
7282 + stub_entry->stub_sec->output_section->vma);
7283
7284 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7285 size = 4;
7286 else
7287 {
7288 bfd_vma r2off;
7289
7290 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7291 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7292 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7293 loc += 4;
7294 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7295 loc += 4;
7296 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7297 loc += 4;
7298 off -= 12;
7299 size = 16;
7300 }
7301 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7302
7303 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7304
7305 if (info->emitrelocations)
7306 {
7307 Elf_Internal_Rela *relocs, *r;
7308 struct bfd_elf_section_data *elfsec_data;
7309
7310 elfsec_data = elf_section_data (stub_entry->stub_sec);
7311 relocs = elfsec_data->relocs;
7312 if (relocs == NULL)
7313 {
7314 bfd_size_type relsize;
7315 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
7316 relocs = bfd_alloc (htab->stub_bfd, relsize);
7317 if (relocs == NULL)
7318 return FALSE;
7319 elfsec_data->relocs = relocs;
7320 elfsec_data->rel_hdr.sh_size = relsize;
7321 elfsec_data->rel_hdr.sh_entsize = 24;
7322 stub_entry->stub_sec->reloc_count = 0;
7323 }
7324 r = relocs + stub_entry->stub_sec->reloc_count;
7325 stub_entry->stub_sec->reloc_count += 1;
7326 r->r_offset = loc - stub_entry->stub_sec->contents;
7327 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
7328 r->r_addend = dest;
7329 if (stub_entry->h != NULL)
7330 {
7331 struct elf_link_hash_entry **hashes;
7332 unsigned long symndx;
7333 struct ppc_link_hash_entry *h;
7334
7335 hashes = elf_sym_hashes (htab->stub_bfd);
7336 if (hashes == NULL)
7337 {
7338 bfd_size_type hsize;
7339
7340 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
7341 hashes = bfd_zalloc (htab->stub_bfd, hsize);
7342 if (hashes == NULL)
7343 return FALSE;
7344 elf_sym_hashes (htab->stub_bfd) = hashes;
7345 htab->stub_globals = 1;
7346 }
7347 symndx = htab->stub_globals++;
7348 h = stub_entry->h;
7349 hashes[symndx] = &h->elf;
7350 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
7351 if (h->oh != NULL && h->oh->is_func)
7352 h = h->oh;
7353 if (h->elf.root.u.def.section != stub_entry->target_section)
7354 /* H is an opd symbol. The addend must be zero. */
7355 r->r_addend = 0;
7356 else
7357 {
7358 off = (h->elf.root.u.def.value
7359 + h->elf.root.u.def.section->output_offset
7360 + h->elf.root.u.def.section->output_section->vma);
7361 r->r_addend -= off;
7362 }
7363 }
7364 }
7365 break;
7366
7367 case ppc_stub_plt_branch:
7368 case ppc_stub_plt_branch_r2off:
7369 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7370 stub_entry->root.string + 9,
7371 FALSE, FALSE);
7372 if (br_entry == NULL)
7373 {
7374 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
7375 stub_entry->root.string + 9);
7376 htab->stub_error = TRUE;
7377 return FALSE;
7378 }
7379
7380 off = (stub_entry->target_value
7381 + stub_entry->target_section->output_offset
7382 + stub_entry->target_section->output_section->vma);
7383
7384 bfd_put_64 (htab->brlt->owner, off,
7385 htab->brlt->contents + br_entry->offset);
7386
7387 if (htab->relbrlt != NULL)
7388 {
7389 /* Create a reloc for the branch lookup table entry. */
7390 Elf_Internal_Rela rela;
7391 bfd_byte *rl;
7392
7393 rela.r_offset = (br_entry->offset
7394 + htab->brlt->output_offset
7395 + htab->brlt->output_section->vma);
7396 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
7397 rela.r_addend = off;
7398
7399 rl = htab->relbrlt->contents;
7400 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
7401 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
7402 }
7403
7404 off = (br_entry->offset
7405 + htab->brlt->output_offset
7406 + htab->brlt->output_section->vma
7407 - elf_gp (htab->brlt->output_section->owner)
7408 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7409
7410 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7411 {
7412 (*_bfd_error_handler)
7413 (_("linkage table error against `%s'"),
7414 stub_entry->root.string);
7415 bfd_set_error (bfd_error_bad_value);
7416 htab->stub_error = TRUE;
7417 return FALSE;
7418 }
7419
7420 indx = off;
7421 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
7422 {
7423 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7424 loc += 4;
7425 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7426 size = 16;
7427 }
7428 else
7429 {
7430 bfd_vma r2off;
7431
7432 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7433 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7434 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7435 loc += 4;
7436 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7437 loc += 4;
7438 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7439 loc += 4;
7440 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7441 loc += 4;
7442 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7443 size = 28;
7444 }
7445 loc += 4;
7446 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
7447 loc += 4;
7448 bfd_put_32 (htab->stub_bfd, BCTR, loc);
7449 break;
7450
7451 case ppc_stub_plt_call:
7452 /* Do the best we can for shared libraries built without
7453 exporting ".foo" for each "foo". This can happen when symbol
7454 versioning scripts strip all bar a subset of symbols. */
7455 if (stub_entry->h->oh != NULL
7456 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
7457 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
7458 {
7459 /* Point the symbol at the stub. There may be multiple stubs,
7460 we don't really care; The main thing is to make this sym
7461 defined somewhere. Maybe defining the symbol in the stub
7462 section is a silly idea. If we didn't do this, htab->top_id
7463 could disappear. */
7464 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
7465 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
7466 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
7467 }
7468
7469 /* Now build the stub. */
7470 off = (bfd_vma) -1;
7471 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7472 if (ent->addend == stub_entry->addend)
7473 {
7474 off = ent->plt.offset;
7475 break;
7476 }
7477 if (off >= (bfd_vma) -2)
7478 abort ();
7479
7480 off &= ~ (bfd_vma) 1;
7481 off += (htab->plt->output_offset
7482 + htab->plt->output_section->vma
7483 - elf_gp (htab->plt->output_section->owner)
7484 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7485
7486 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7487 {
7488 (*_bfd_error_handler)
7489 (_("linkage table error against `%s'"),
7490 stub_entry->h->elf.root.root.string);
7491 bfd_set_error (bfd_error_bad_value);
7492 htab->stub_error = TRUE;
7493 return FALSE;
7494 }
7495
7496 p = build_plt_stub (htab->stub_bfd, loc, off);
7497 size = p - loc;
7498 break;
7499
7500 default:
7501 BFD_FAIL ();
7502 return FALSE;
7503 }
7504
7505 stub_entry->stub_sec->size += size;
7506
7507 if (htab->emit_stub_syms)
7508 {
7509 struct elf_link_hash_entry *h;
7510 size_t len1, len2;
7511 char *name;
7512 const char *const stub_str[] = { "long_branch",
7513 "long_branch_r2off",
7514 "plt_branch",
7515 "plt_branch_r2off",
7516 "plt_call" };
7517
7518 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
7519 len2 = strlen (stub_entry->root.string);
7520 name = bfd_malloc (len1 + len2 + 2);
7521 if (name == NULL)
7522 return FALSE;
7523 memcpy (name, stub_entry->root.string, 9);
7524 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
7525 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
7526 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
7527 if (h == NULL)
7528 return FALSE;
7529 if (h->root.type == bfd_link_hash_new)
7530 {
7531 h->root.type = bfd_link_hash_defined;
7532 h->root.u.def.section = stub_entry->stub_sec;
7533 h->root.u.def.value = stub_entry->stub_offset;
7534 h->ref_regular = 1;
7535 h->def_regular = 1;
7536 h->ref_regular_nonweak = 1;
7537 h->forced_local = 1;
7538 h->non_elf = 0;
7539 }
7540 }
7541
7542 return TRUE;
7543 }
7544
7545 /* As above, but don't actually build the stub. Just bump offset so
7546 we know stub section sizes, and select plt_branch stubs where
7547 long_branch stubs won't do. */
7548
7549 static bfd_boolean
7550 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7551 {
7552 struct ppc_stub_hash_entry *stub_entry;
7553 struct bfd_link_info *info;
7554 struct ppc_link_hash_table *htab;
7555 bfd_vma off;
7556 int size;
7557
7558 /* Massage our args to the form they really have. */
7559 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7560 info = in_arg;
7561
7562 htab = ppc_hash_table (info);
7563
7564 if (stub_entry->stub_type == ppc_stub_plt_call)
7565 {
7566 struct plt_entry *ent;
7567 off = (bfd_vma) -1;
7568 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7569 if (ent->addend == stub_entry->addend)
7570 {
7571 off = ent->plt.offset & ~(bfd_vma) 1;
7572 break;
7573 }
7574 if (off >= (bfd_vma) -2)
7575 abort ();
7576 off += (htab->plt->output_offset
7577 + htab->plt->output_section->vma
7578 - elf_gp (htab->plt->output_section->owner)
7579 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7580
7581 size = PLT_CALL_STUB_SIZE;
7582 if (PPC_HA (off + 16) != PPC_HA (off))
7583 size += 4;
7584 }
7585 else
7586 {
7587 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
7588 variants. */
7589 off = (stub_entry->target_value
7590 + stub_entry->target_section->output_offset
7591 + stub_entry->target_section->output_section->vma);
7592 off -= (stub_entry->stub_sec->size
7593 + stub_entry->stub_sec->output_offset
7594 + stub_entry->stub_sec->output_section->vma);
7595
7596 /* Reset the stub type from the plt variant in case we now
7597 can reach with a shorter stub. */
7598 if (stub_entry->stub_type >= ppc_stub_plt_branch)
7599 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
7600
7601 size = 4;
7602 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
7603 {
7604 off -= 12;
7605 size = 16;
7606 }
7607
7608 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
7609 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
7610 {
7611 struct ppc_branch_hash_entry *br_entry;
7612
7613 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7614 stub_entry->root.string + 9,
7615 TRUE, FALSE);
7616 if (br_entry == NULL)
7617 {
7618 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
7619 stub_entry->root.string + 9);
7620 htab->stub_error = TRUE;
7621 return FALSE;
7622 }
7623
7624 if (br_entry->iter != htab->stub_iteration)
7625 {
7626 br_entry->iter = htab->stub_iteration;
7627 br_entry->offset = htab->brlt->size;
7628 htab->brlt->size += 8;
7629
7630 if (htab->relbrlt != NULL)
7631 htab->relbrlt->size += sizeof (Elf64_External_Rela);
7632 }
7633
7634 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
7635 size = 16;
7636 if (stub_entry->stub_type != ppc_stub_plt_branch)
7637 size = 28;
7638 }
7639
7640 if (info->emitrelocations
7641 && (stub_entry->stub_type == ppc_stub_long_branch
7642 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
7643 stub_entry->stub_sec->reloc_count += 1;
7644 }
7645
7646 stub_entry->stub_sec->size += size;
7647 return TRUE;
7648 }
7649
7650 /* Set up various things so that we can make a list of input sections
7651 for each output section included in the link. Returns -1 on error,
7652 0 when no stubs will be needed, and 1 on success. */
7653
7654 int
7655 ppc64_elf_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
7656 {
7657 bfd *input_bfd;
7658 int top_id, top_index, id;
7659 asection *section;
7660 asection **input_list;
7661 bfd_size_type amt;
7662 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7663
7664 if (htab->brlt == NULL)
7665 return 0;
7666
7667 /* Find the top input section id. */
7668 for (input_bfd = info->input_bfds, top_id = 3;
7669 input_bfd != NULL;
7670 input_bfd = input_bfd->link_next)
7671 {
7672 for (section = input_bfd->sections;
7673 section != NULL;
7674 section = section->next)
7675 {
7676 if (top_id < section->id)
7677 top_id = section->id;
7678 }
7679 }
7680
7681 htab->top_id = top_id;
7682 amt = sizeof (struct map_stub) * (top_id + 1);
7683 htab->stub_group = bfd_zmalloc (amt);
7684 if (htab->stub_group == NULL)
7685 return -1;
7686
7687 /* Set toc_off for com, und, abs and ind sections. */
7688 for (id = 0; id < 3; id++)
7689 htab->stub_group[id].toc_off = TOC_BASE_OFF;
7690
7691 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
7692
7693 /* We can't use output_bfd->section_count here to find the top output
7694 section index as some sections may have been removed, and
7695 _bfd_strip_section_from_output doesn't renumber the indices. */
7696 for (section = output_bfd->sections, top_index = 0;
7697 section != NULL;
7698 section = section->next)
7699 {
7700 if (top_index < section->index)
7701 top_index = section->index;
7702 }
7703
7704 htab->top_index = top_index;
7705 amt = sizeof (asection *) * (top_index + 1);
7706 input_list = bfd_zmalloc (amt);
7707 htab->input_list = input_list;
7708 if (input_list == NULL)
7709 return -1;
7710
7711 return 1;
7712 }
7713
7714 /* The linker repeatedly calls this function for each TOC input section
7715 and linker generated GOT section. Group input bfds such that the toc
7716 within a group is less than 64k in size. Will break with cute linker
7717 scripts that play games with dot in the output toc section. */
7718
7719 void
7720 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
7721 {
7722 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7723 bfd_vma addr = isec->output_offset + isec->output_section->vma;
7724 bfd_vma off = addr - htab->toc_curr;
7725
7726 if (off + isec->size > 0x10000)
7727 htab->toc_curr = addr;
7728
7729 elf_gp (isec->owner) = (htab->toc_curr
7730 - elf_gp (isec->output_section->owner)
7731 + TOC_BASE_OFF);
7732 }
7733
7734 /* Called after the last call to the above function. */
7735
7736 void
7737 ppc64_elf_reinit_toc (bfd *output_bfd ATTRIBUTE_UNUSED,
7738 struct bfd_link_info *info)
7739 {
7740 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7741
7742 /* toc_curr tracks the TOC offset used for code sections below in
7743 ppc64_elf_next_input_section. Start off at 0x8000. */
7744 htab->toc_curr = TOC_BASE_OFF;
7745 }
7746
7747 /* No toc references were found in ISEC. If the code in ISEC makes no
7748 calls, then there's no need to use toc adjusting stubs when branching
7749 into ISEC. Actually, indirect calls from ISEC are OK as they will
7750 load r2. */
7751
7752 static int
7753 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
7754 {
7755 bfd_byte *contents;
7756 bfd_size_type i;
7757 int ret;
7758 int branch_ok;
7759
7760 /* We know none of our code bearing sections will need toc stubs. */
7761 if ((isec->flags & SEC_LINKER_CREATED) != 0)
7762 return 0;
7763
7764 if (isec->size == 0)
7765 return 0;
7766
7767 /* Hack for linux kernel. .fixup contains branches, but only back to
7768 the function that hit an exception. */
7769 branch_ok = strcmp (isec->name, ".fixup") == 0;
7770
7771 contents = elf_section_data (isec)->this_hdr.contents;
7772 if (contents == NULL)
7773 {
7774 if (!bfd_malloc_and_get_section (isec->owner, isec, &contents))
7775 {
7776 if (contents != NULL)
7777 free (contents);
7778 return -1;
7779 }
7780 if (info->keep_memory)
7781 elf_section_data (isec)->this_hdr.contents = contents;
7782 }
7783
7784 /* Code scan, because we don't necessarily have relocs on calls to
7785 static functions. */
7786 ret = 0;
7787 for (i = 0; i < isec->size; i += 4)
7788 {
7789 unsigned long insn = bfd_get_32 (isec->owner, contents + i);
7790 /* Is this a branch? */
7791 if ((insn & (0x3f << 26)) == (18 << 26)
7792 /* If branch and link, it's a function call. */
7793 && ((insn & 1) != 0
7794 /* Sibling calls use a plain branch. I don't know a way
7795 of deciding whether a branch is really a sibling call. */
7796 || !branch_ok))
7797 {
7798 ret = 1;
7799 break;
7800 }
7801 }
7802
7803 if (elf_section_data (isec)->this_hdr.contents != contents)
7804 free (contents);
7805 return ret;
7806 }
7807
7808 /* The linker repeatedly calls this function for each input section,
7809 in the order that input sections are linked into output sections.
7810 Build lists of input sections to determine groupings between which
7811 we may insert linker stubs. */
7812
7813 bfd_boolean
7814 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
7815 {
7816 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7817 int ret;
7818
7819 if ((isec->output_section->flags & SEC_CODE) != 0
7820 && isec->output_section->index <= htab->top_index)
7821 {
7822 asection **list = htab->input_list + isec->output_section->index;
7823 /* Steal the link_sec pointer for our list. */
7824 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
7825 /* This happens to make the list in reverse order,
7826 which is what we want. */
7827 PREV_SEC (isec) = *list;
7828 *list = isec;
7829 }
7830
7831 /* If a code section has a function that uses the TOC then we need
7832 to use the right TOC (obviously). Also, make sure that .opd gets
7833 the correct TOC value for R_PPC64_TOC relocs that don't have or
7834 can't find their function symbol (shouldn't ever happen now). */
7835 if (isec->has_gp_reloc || (isec->flags & SEC_CODE) == 0)
7836 {
7837 if (elf_gp (isec->owner) != 0)
7838 htab->toc_curr = elf_gp (isec->owner);
7839 }
7840 else if ((ret = toc_adjusting_stub_needed (info, isec)) < 0)
7841 return FALSE;
7842 else
7843 isec->has_gp_reloc = ret;
7844
7845 /* Functions that don't use the TOC can belong in any TOC group.
7846 Use the last TOC base. This happens to make _init and _fini
7847 pasting work. */
7848 htab->stub_group[isec->id].toc_off = htab->toc_curr;
7849 return TRUE;
7850 }
7851
7852 /* See whether we can group stub sections together. Grouping stub
7853 sections may result in fewer stubs. More importantly, we need to
7854 put all .init* and .fini* stubs at the beginning of the .init or
7855 .fini output sections respectively, because glibc splits the
7856 _init and _fini functions into multiple parts. Putting a stub in
7857 the middle of a function is not a good idea. */
7858
7859 static void
7860 group_sections (struct ppc_link_hash_table *htab,
7861 bfd_size_type stub_group_size,
7862 bfd_boolean stubs_always_before_branch)
7863 {
7864 asection **list = htab->input_list + htab->top_index;
7865 do
7866 {
7867 asection *tail = *list;
7868 while (tail != NULL)
7869 {
7870 asection *curr;
7871 asection *prev;
7872 bfd_size_type total;
7873 bfd_boolean big_sec;
7874 bfd_vma curr_toc;
7875
7876 curr = tail;
7877 total = tail->size;
7878 big_sec = total >= stub_group_size;
7879 curr_toc = htab->stub_group[tail->id].toc_off;
7880
7881 while ((prev = PREV_SEC (curr)) != NULL
7882 && ((total += curr->output_offset - prev->output_offset)
7883 < stub_group_size)
7884 && htab->stub_group[prev->id].toc_off == curr_toc)
7885 curr = prev;
7886
7887 /* OK, the size from the start of CURR to the end is less
7888 than stub_group_size and thus can be handled by one stub
7889 section. (or the tail section is itself larger than
7890 stub_group_size, in which case we may be toast.) We
7891 should really be keeping track of the total size of stubs
7892 added here, as stubs contribute to the final output
7893 section size. That's a little tricky, and this way will
7894 only break if stubs added make the total size more than
7895 2^25, ie. for the default stub_group_size, if stubs total
7896 more than 2097152 bytes, or nearly 75000 plt call stubs. */
7897 do
7898 {
7899 prev = PREV_SEC (tail);
7900 /* Set up this stub group. */
7901 htab->stub_group[tail->id].link_sec = curr;
7902 }
7903 while (tail != curr && (tail = prev) != NULL);
7904
7905 /* But wait, there's more! Input sections up to stub_group_size
7906 bytes before the stub section can be handled by it too.
7907 Don't do this if we have a really large section after the
7908 stubs, as adding more stubs increases the chance that
7909 branches may not reach into the stub section. */
7910 if (!stubs_always_before_branch && !big_sec)
7911 {
7912 total = 0;
7913 while (prev != NULL
7914 && ((total += tail->output_offset - prev->output_offset)
7915 < stub_group_size)
7916 && htab->stub_group[prev->id].toc_off == curr_toc)
7917 {
7918 tail = prev;
7919 prev = PREV_SEC (tail);
7920 htab->stub_group[tail->id].link_sec = curr;
7921 }
7922 }
7923 tail = prev;
7924 }
7925 }
7926 while (list-- != htab->input_list);
7927 free (htab->input_list);
7928 #undef PREV_SEC
7929 }
7930
7931 /* Determine and set the size of the stub section for a final link.
7932
7933 The basic idea here is to examine all the relocations looking for
7934 PC-relative calls to a target that is unreachable with a "bl"
7935 instruction. */
7936
7937 bfd_boolean
7938 ppc64_elf_size_stubs (bfd *output_bfd,
7939 struct bfd_link_info *info,
7940 bfd_signed_vma group_size,
7941 asection *(*add_stub_section) (const char *, asection *),
7942 void (*layout_sections_again) (void))
7943 {
7944 bfd_size_type stub_group_size;
7945 bfd_boolean stubs_always_before_branch;
7946 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7947
7948 /* Stash our params away. */
7949 htab->add_stub_section = add_stub_section;
7950 htab->layout_sections_again = layout_sections_again;
7951 stubs_always_before_branch = group_size < 0;
7952 if (group_size < 0)
7953 stub_group_size = -group_size;
7954 else
7955 stub_group_size = group_size;
7956 if (stub_group_size == 1)
7957 {
7958 /* Default values. */
7959 if (stubs_always_before_branch)
7960 {
7961 stub_group_size = 0x1e00000;
7962 if (htab->has_14bit_branch)
7963 stub_group_size = 0x7800;
7964 }
7965 else
7966 {
7967 stub_group_size = 0x1c00000;
7968 if (htab->has_14bit_branch)
7969 stub_group_size = 0x7000;
7970 }
7971 }
7972
7973 group_sections (htab, stub_group_size, stubs_always_before_branch);
7974
7975 while (1)
7976 {
7977 bfd *input_bfd;
7978 unsigned int bfd_indx;
7979 asection *stub_sec;
7980 bfd_boolean stub_changed;
7981
7982 htab->stub_iteration += 1;
7983 stub_changed = FALSE;
7984
7985 for (input_bfd = info->input_bfds, bfd_indx = 0;
7986 input_bfd != NULL;
7987 input_bfd = input_bfd->link_next, bfd_indx++)
7988 {
7989 Elf_Internal_Shdr *symtab_hdr;
7990 asection *section;
7991 Elf_Internal_Sym *local_syms = NULL;
7992
7993 /* We'll need the symbol table in a second. */
7994 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7995 if (symtab_hdr->sh_info == 0)
7996 continue;
7997
7998 /* Walk over each section attached to the input bfd. */
7999 for (section = input_bfd->sections;
8000 section != NULL;
8001 section = section->next)
8002 {
8003 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8004
8005 /* If there aren't any relocs, then there's nothing more
8006 to do. */
8007 if ((section->flags & SEC_RELOC) == 0
8008 || section->reloc_count == 0)
8009 continue;
8010
8011 /* If this section is a link-once section that will be
8012 discarded, then don't create any stubs. */
8013 if (section->output_section == NULL
8014 || section->output_section->owner != output_bfd)
8015 continue;
8016
8017 /* Get the relocs. */
8018 internal_relocs
8019 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8020 info->keep_memory);
8021 if (internal_relocs == NULL)
8022 goto error_ret_free_local;
8023
8024 /* Now examine each relocation. */
8025 irela = internal_relocs;
8026 irelaend = irela + section->reloc_count;
8027 for (; irela < irelaend; irela++)
8028 {
8029 enum elf_ppc64_reloc_type r_type;
8030 unsigned int r_indx;
8031 enum ppc_stub_type stub_type;
8032 struct ppc_stub_hash_entry *stub_entry;
8033 asection *sym_sec, *code_sec;
8034 bfd_vma sym_value;
8035 bfd_vma destination;
8036 bfd_boolean ok_dest;
8037 struct ppc_link_hash_entry *hash;
8038 struct ppc_link_hash_entry *fdh;
8039 struct elf_link_hash_entry *h;
8040 Elf_Internal_Sym *sym;
8041 char *stub_name;
8042 const asection *id_sec;
8043 long *opd_adjust;
8044
8045 r_type = ELF64_R_TYPE (irela->r_info);
8046 r_indx = ELF64_R_SYM (irela->r_info);
8047
8048 if (r_type >= R_PPC64_max)
8049 {
8050 bfd_set_error (bfd_error_bad_value);
8051 goto error_ret_free_internal;
8052 }
8053
8054 /* Only look for stubs on branch instructions. */
8055 if (r_type != R_PPC64_REL24
8056 && r_type != R_PPC64_REL14
8057 && r_type != R_PPC64_REL14_BRTAKEN
8058 && r_type != R_PPC64_REL14_BRNTAKEN)
8059 continue;
8060
8061 /* Now determine the call target, its name, value,
8062 section. */
8063 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8064 r_indx, input_bfd))
8065 goto error_ret_free_internal;
8066 hash = (struct ppc_link_hash_entry *) h;
8067
8068 ok_dest = FALSE;
8069 fdh = NULL;
8070 if (hash == NULL)
8071 {
8072 sym_value = sym->st_value;
8073 ok_dest = TRUE;
8074 }
8075 else
8076 {
8077 sym_value = 0;
8078 /* Recognise an old ABI func code entry sym, and
8079 use the func descriptor sym instead. */
8080 if (hash->elf.root.type == bfd_link_hash_undefweak
8081 && hash->elf.root.root.string[0] == '.'
8082 && (fdh = get_fdh (hash, htab)) != NULL)
8083 {
8084 if (fdh->elf.root.type == bfd_link_hash_defined
8085 || fdh->elf.root.type == bfd_link_hash_defweak)
8086 {
8087 sym_sec = fdh->elf.root.u.def.section;
8088 sym_value = fdh->elf.root.u.def.value;
8089 if (sym_sec->output_section != NULL)
8090 ok_dest = TRUE;
8091 }
8092 else
8093 fdh = NULL;
8094 }
8095 else if (hash->elf.root.type == bfd_link_hash_defined
8096 || hash->elf.root.type == bfd_link_hash_defweak)
8097 {
8098 sym_value = hash->elf.root.u.def.value;
8099 if (sym_sec->output_section != NULL)
8100 ok_dest = TRUE;
8101 }
8102 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8103 ;
8104 else if (hash->elf.root.type == bfd_link_hash_undefined)
8105 ;
8106 else
8107 {
8108 bfd_set_error (bfd_error_bad_value);
8109 goto error_ret_free_internal;
8110 }
8111 }
8112
8113 destination = 0;
8114 if (ok_dest)
8115 {
8116 sym_value += irela->r_addend;
8117 destination = (sym_value
8118 + sym_sec->output_offset
8119 + sym_sec->output_section->vma);
8120 }
8121
8122 code_sec = sym_sec;
8123 opd_adjust = get_opd_info (sym_sec);
8124 if (opd_adjust != NULL)
8125 {
8126 bfd_vma dest;
8127
8128 if (hash == NULL)
8129 {
8130 long adjust = opd_adjust[sym_value / 8];
8131 if (adjust == -1)
8132 continue;
8133 sym_value += adjust;
8134 }
8135 dest = opd_entry_value (sym_sec, sym_value,
8136 &code_sec, &sym_value);
8137 if (dest != (bfd_vma) -1)
8138 {
8139 destination = dest;
8140 if (fdh != NULL)
8141 {
8142 /* Fixup old ABI sym to point at code
8143 entry. */
8144 hash->elf.root.type = bfd_link_hash_defweak;
8145 hash->elf.root.u.def.section = code_sec;
8146 hash->elf.root.u.def.value = sym_value;
8147 }
8148 }
8149 }
8150
8151 /* Determine what (if any) linker stub is needed. */
8152 stub_type = ppc_type_of_stub (section, irela, &hash,
8153 destination);
8154
8155 if (stub_type != ppc_stub_plt_call)
8156 {
8157 /* Check whether we need a TOC adjusting stub.
8158 Since the linker pastes together pieces from
8159 different object files when creating the
8160 _init and _fini functions, it may be that a
8161 call to what looks like a local sym is in
8162 fact a call needing a TOC adjustment. */
8163 if (code_sec != NULL
8164 && code_sec->output_section != NULL
8165 && (htab->stub_group[code_sec->id].toc_off
8166 != htab->stub_group[section->id].toc_off)
8167 && code_sec->has_gp_reloc
8168 && section->has_gp_reloc)
8169 stub_type = ppc_stub_long_branch_r2off;
8170 }
8171
8172 if (stub_type == ppc_stub_none)
8173 continue;
8174
8175 /* __tls_get_addr calls might be eliminated. */
8176 if (stub_type != ppc_stub_plt_call
8177 && hash != NULL
8178 && (hash == htab->tls_get_addr
8179 || hash == htab->tls_get_addr_fd)
8180 && section->has_tls_reloc
8181 && irela != internal_relocs)
8182 {
8183 /* Get tls info. */
8184 char *tls_mask;
8185
8186 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8187 irela - 1, input_bfd))
8188 goto error_ret_free_internal;
8189 if (*tls_mask != 0)
8190 continue;
8191 }
8192
8193 /* Support for grouping stub sections. */
8194 id_sec = htab->stub_group[section->id].link_sec;
8195
8196 /* Get the name of this stub. */
8197 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8198 if (!stub_name)
8199 goto error_ret_free_internal;
8200
8201 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
8202 stub_name, FALSE, FALSE);
8203 if (stub_entry != NULL)
8204 {
8205 /* The proper stub has already been created. */
8206 free (stub_name);
8207 continue;
8208 }
8209
8210 stub_entry = ppc_add_stub (stub_name, section, htab);
8211 if (stub_entry == NULL)
8212 {
8213 free (stub_name);
8214 error_ret_free_internal:
8215 if (elf_section_data (section)->relocs == NULL)
8216 free (internal_relocs);
8217 error_ret_free_local:
8218 if (local_syms != NULL
8219 && (symtab_hdr->contents
8220 != (unsigned char *) local_syms))
8221 free (local_syms);
8222 return FALSE;
8223 }
8224
8225 stub_entry->stub_type = stub_type;
8226 stub_entry->target_value = sym_value;
8227 stub_entry->target_section = code_sec;
8228 stub_entry->h = hash;
8229 stub_entry->addend = irela->r_addend;
8230
8231 if (stub_entry->h != NULL)
8232 htab->stub_globals += 1;
8233
8234 stub_changed = TRUE;
8235 }
8236
8237 /* We're done with the internal relocs, free them. */
8238 if (elf_section_data (section)->relocs != internal_relocs)
8239 free (internal_relocs);
8240 }
8241
8242 if (local_syms != NULL
8243 && symtab_hdr->contents != (unsigned char *) local_syms)
8244 {
8245 if (!info->keep_memory)
8246 free (local_syms);
8247 else
8248 symtab_hdr->contents = (unsigned char *) local_syms;
8249 }
8250 }
8251
8252 if (!stub_changed)
8253 break;
8254
8255 /* OK, we've added some stubs. Find out the new size of the
8256 stub sections. */
8257 for (stub_sec = htab->stub_bfd->sections;
8258 stub_sec != NULL;
8259 stub_sec = stub_sec->next)
8260 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8261 {
8262 stub_sec->size = 0;
8263 stub_sec->reloc_count = 0;
8264 }
8265
8266 htab->brlt->size = 0;
8267 if (htab->relbrlt != NULL)
8268 htab->relbrlt->size = 0;
8269
8270 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
8271
8272 /* Ask the linker to do its stuff. */
8273 (*htab->layout_sections_again) ();
8274 }
8275
8276 /* It would be nice to strip .branch_lt from the output if the
8277 section is empty, but it's too late. If we strip sections here,
8278 the dynamic symbol table is corrupted since the section symbol
8279 for the stripped section isn't written. */
8280
8281 return TRUE;
8282 }
8283
8284 /* Called after we have determined section placement. If sections
8285 move, we'll be called again. Provide a value for TOCstart. */
8286
8287 bfd_vma
8288 ppc64_elf_toc (bfd *obfd)
8289 {
8290 asection *s;
8291 bfd_vma TOCstart;
8292
8293 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
8294 order. The TOC starts where the first of these sections starts. */
8295 s = bfd_get_section_by_name (obfd, ".got");
8296 if (s == NULL)
8297 s = bfd_get_section_by_name (obfd, ".toc");
8298 if (s == NULL)
8299 s = bfd_get_section_by_name (obfd, ".tocbss");
8300 if (s == NULL)
8301 s = bfd_get_section_by_name (obfd, ".plt");
8302 if (s == NULL)
8303 {
8304 /* This may happen for
8305 o references to TOC base (SYM@toc / TOC[tc0]) without a
8306 .toc directive
8307 o bad linker script
8308 o --gc-sections and empty TOC sections
8309
8310 FIXME: Warn user? */
8311
8312 /* Look for a likely section. We probably won't even be
8313 using TOCstart. */
8314 for (s = obfd->sections; s != NULL; s = s->next)
8315 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
8316 == (SEC_ALLOC | SEC_SMALL_DATA))
8317 break;
8318 if (s == NULL)
8319 for (s = obfd->sections; s != NULL; s = s->next)
8320 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
8321 == (SEC_ALLOC | SEC_SMALL_DATA))
8322 break;
8323 if (s == NULL)
8324 for (s = obfd->sections; s != NULL; s = s->next)
8325 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
8326 break;
8327 if (s == NULL)
8328 for (s = obfd->sections; s != NULL; s = s->next)
8329 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
8330 break;
8331 }
8332
8333 TOCstart = 0;
8334 if (s != NULL)
8335 TOCstart = s->output_section->vma + s->output_offset;
8336
8337 return TOCstart;
8338 }
8339
8340 /* Build all the stubs associated with the current output file.
8341 The stubs are kept in a hash table attached to the main linker
8342 hash table. This function is called via gldelf64ppc_finish. */
8343
8344 bfd_boolean
8345 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
8346 struct bfd_link_info *info,
8347 char **stats)
8348 {
8349 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8350 asection *stub_sec;
8351 bfd_byte *p;
8352 int stub_sec_count = 0;
8353
8354 htab->emit_stub_syms = emit_stub_syms;
8355
8356 /* Allocate memory to hold the linker stubs. */
8357 for (stub_sec = htab->stub_bfd->sections;
8358 stub_sec != NULL;
8359 stub_sec = stub_sec->next)
8360 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
8361 && stub_sec->size != 0)
8362 {
8363 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
8364 if (stub_sec->contents == NULL)
8365 return FALSE;
8366 /* We want to check that built size is the same as calculated
8367 size. rawsize is a convenient location to use. */
8368 stub_sec->rawsize = stub_sec->size;
8369 stub_sec->size = 0;
8370 }
8371
8372 if (htab->plt != NULL)
8373 {
8374 unsigned int indx;
8375 bfd_vma plt0;
8376
8377 /* Build the .glink plt call stub. */
8378 plt0 = (htab->plt->output_section->vma
8379 + htab->plt->output_offset
8380 - (htab->glink->output_section->vma
8381 + htab->glink->output_offset
8382 + GLINK_CALL_STUB_SIZE));
8383 if (plt0 + 0x80008000 > 0xffffffff)
8384 {
8385 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
8386 bfd_set_error (bfd_error_bad_value);
8387 return FALSE;
8388 }
8389
8390 if (htab->emit_stub_syms)
8391 {
8392 struct elf_link_hash_entry *h;
8393 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
8394 if (h == NULL)
8395 return FALSE;
8396 if (h->root.type == bfd_link_hash_new)
8397 {
8398 h->root.type = bfd_link_hash_defined;
8399 h->root.u.def.section = htab->glink;
8400 h->root.u.def.value = 0;
8401 h->ref_regular = 1;
8402 h->def_regular = 1;
8403 h->ref_regular_nonweak = 1;
8404 h->forced_local = 1;
8405 h->non_elf = 0;
8406 }
8407 }
8408 p = htab->glink->contents;
8409 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
8410 p += 4;
8411 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
8412 p += 4;
8413 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
8414 p += 4;
8415 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8416 p += 4;
8417 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
8418 p += 4;
8419 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
8420 p += 4;
8421 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
8422 p += 4;
8423 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8424 p += 4;
8425 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
8426 p += 4;
8427 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
8428 p += 4;
8429 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
8430 p += 4;
8431 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
8432 p += 4;
8433 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
8434 p += 4;
8435 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
8436 p += 4;
8437 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
8438 p += 4;
8439 bfd_put_32 (htab->glink->owner, BCTR, p);
8440 p += 4;
8441
8442 /* Build the .glink lazy link call stubs. */
8443 indx = 0;
8444 while (p < htab->glink->contents + htab->glink->size)
8445 {
8446 if (indx < 0x8000)
8447 {
8448 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
8449 p += 4;
8450 }
8451 else
8452 {
8453 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
8454 p += 4;
8455 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
8456 p += 4;
8457 }
8458 bfd_put_32 (htab->glink->owner,
8459 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
8460 indx++;
8461 p += 4;
8462 }
8463 htab->glink->rawsize = p - htab->glink->contents;
8464 }
8465
8466 if (htab->brlt->size != 0)
8467 {
8468 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
8469 htab->brlt->size);
8470 if (htab->brlt->contents == NULL)
8471 return FALSE;
8472 }
8473 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
8474 {
8475 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
8476 htab->relbrlt->size);
8477 if (htab->relbrlt->contents == NULL)
8478 return FALSE;
8479 }
8480
8481 /* Build the stubs as directed by the stub hash table. */
8482 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
8483
8484 for (stub_sec = htab->stub_bfd->sections;
8485 stub_sec != NULL;
8486 stub_sec = stub_sec->next)
8487 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8488 {
8489 stub_sec_count += 1;
8490 if (stub_sec->rawsize != stub_sec->size)
8491 break;
8492 }
8493
8494 if (stub_sec != NULL
8495 || htab->glink->rawsize != htab->glink->size)
8496 {
8497 htab->stub_error = TRUE;
8498 (*_bfd_error_handler) (_("stubs don't match calculated size"));
8499 }
8500
8501 if (htab->stub_error)
8502 return FALSE;
8503
8504 if (stats != NULL)
8505 {
8506 *stats = bfd_malloc (500);
8507 if (*stats == NULL)
8508 return FALSE;
8509
8510 sprintf (*stats, _("linker stubs in %u group%s\n"
8511 " branch %lu\n"
8512 " toc adjust %lu\n"
8513 " long branch %lu\n"
8514 " long toc adj %lu\n"
8515 " plt call %lu"),
8516 stub_sec_count,
8517 stub_sec_count == 1 ? "" : "s",
8518 htab->stub_count[ppc_stub_long_branch - 1],
8519 htab->stub_count[ppc_stub_long_branch_r2off - 1],
8520 htab->stub_count[ppc_stub_plt_branch - 1],
8521 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
8522 htab->stub_count[ppc_stub_plt_call - 1]);
8523 }
8524 return TRUE;
8525 }
8526
8527 /* This function undoes the changes made by add_symbol_adjust. */
8528
8529 static bfd_boolean
8530 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
8531 {
8532 struct ppc_link_hash_entry *eh;
8533
8534 if (h->root.type == bfd_link_hash_indirect)
8535 return TRUE;
8536
8537 if (h->root.type == bfd_link_hash_warning)
8538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8539
8540 eh = (struct ppc_link_hash_entry *) h;
8541 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
8542 return TRUE;
8543
8544 eh->elf.root.type = bfd_link_hash_undefined;
8545 return TRUE;
8546 }
8547
8548 void
8549 ppc64_elf_restore_symbols (struct bfd_link_info *info)
8550 {
8551 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8552 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
8553 }
8554
8555 /* The RELOCATE_SECTION function is called by the ELF backend linker
8556 to handle the relocations for a section.
8557
8558 The relocs are always passed as Rela structures; if the section
8559 actually uses Rel structures, the r_addend field will always be
8560 zero.
8561
8562 This function is responsible for adjust the section contents as
8563 necessary, and (if using Rela relocs and generating a
8564 relocatable output file) adjusting the reloc addend as
8565 necessary.
8566
8567 This function does not have to worry about setting the reloc
8568 address or the reloc symbol index.
8569
8570 LOCAL_SYMS is a pointer to the swapped in local symbols.
8571
8572 LOCAL_SECTIONS is an array giving the section in the input file
8573 corresponding to the st_shndx field of each local symbol.
8574
8575 The global hash table entry for the global symbols can be found
8576 via elf_sym_hashes (input_bfd).
8577
8578 When generating relocatable output, this function must handle
8579 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
8580 going to be the section symbol corresponding to the output
8581 section, which means that the addend must be adjusted
8582 accordingly. */
8583
8584 static bfd_boolean
8585 ppc64_elf_relocate_section (bfd *output_bfd,
8586 struct bfd_link_info *info,
8587 bfd *input_bfd,
8588 asection *input_section,
8589 bfd_byte *contents,
8590 Elf_Internal_Rela *relocs,
8591 Elf_Internal_Sym *local_syms,
8592 asection **local_sections)
8593 {
8594 struct ppc_link_hash_table *htab;
8595 Elf_Internal_Shdr *symtab_hdr;
8596 struct elf_link_hash_entry **sym_hashes;
8597 Elf_Internal_Rela *rel;
8598 Elf_Internal_Rela *relend;
8599 Elf_Internal_Rela outrel;
8600 bfd_byte *loc;
8601 struct got_entry **local_got_ents;
8602 bfd_vma TOCstart;
8603 bfd_boolean ret = TRUE;
8604 bfd_boolean is_opd;
8605 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
8606 bfd_boolean is_power4 = FALSE;
8607
8608 if (info->relocatable)
8609 return TRUE;
8610
8611 /* Initialize howto table if needed. */
8612 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8613 ppc_howto_init ();
8614
8615 htab = ppc_hash_table (info);
8616
8617 /* Don't relocate stub sections. */
8618 if (input_section->owner == htab->stub_bfd)
8619 return TRUE;
8620
8621 local_got_ents = elf_local_got_ents (input_bfd);
8622 TOCstart = elf_gp (output_bfd);
8623 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8624 sym_hashes = elf_sym_hashes (input_bfd);
8625 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
8626
8627 rel = relocs;
8628 relend = relocs + input_section->reloc_count;
8629 for (; rel < relend; rel++)
8630 {
8631 enum elf_ppc64_reloc_type r_type;
8632 bfd_vma addend;
8633 bfd_reloc_status_type r;
8634 Elf_Internal_Sym *sym;
8635 asection *sec;
8636 struct elf_link_hash_entry *h_elf;
8637 struct ppc_link_hash_entry *h;
8638 struct ppc_link_hash_entry *fdh;
8639 const char *sym_name;
8640 unsigned long r_symndx, toc_symndx;
8641 char tls_mask, tls_gd, tls_type;
8642 char sym_type;
8643 bfd_vma relocation;
8644 bfd_boolean unresolved_reloc;
8645 bfd_boolean warned;
8646 unsigned long insn, mask;
8647 struct ppc_stub_hash_entry *stub_entry;
8648 bfd_vma max_br_offset;
8649 bfd_vma from;
8650
8651 r_type = ELF64_R_TYPE (rel->r_info);
8652 r_symndx = ELF64_R_SYM (rel->r_info);
8653
8654 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
8655 symbol of the previous ADDR64 reloc. The symbol gives us the
8656 proper TOC base to use. */
8657 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
8658 && rel != relocs
8659 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
8660 && is_opd)
8661 r_symndx = ELF64_R_SYM (rel[-1].r_info);
8662
8663 sym = NULL;
8664 sec = NULL;
8665 h_elf = NULL;
8666 sym_name = NULL;
8667 unresolved_reloc = FALSE;
8668 warned = FALSE;
8669
8670 if (r_symndx < symtab_hdr->sh_info)
8671 {
8672 /* It's a local symbol. */
8673 long *opd_adjust;
8674
8675 sym = local_syms + r_symndx;
8676 sec = local_sections[r_symndx];
8677 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
8678 sym_type = ELF64_ST_TYPE (sym->st_info);
8679 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8680 opd_adjust = get_opd_info (sec);
8681 if (opd_adjust != NULL)
8682 {
8683 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
8684 if (adjust == -1)
8685 relocation = 0;
8686 else
8687 relocation += adjust;
8688 }
8689 }
8690 else
8691 {
8692 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8693 r_symndx, symtab_hdr, sym_hashes,
8694 h_elf, sec, relocation,
8695 unresolved_reloc, warned);
8696 sym_name = h_elf->root.root.string;
8697 sym_type = h_elf->type;
8698 }
8699 h = (struct ppc_link_hash_entry *) h_elf;
8700
8701 /* TLS optimizations. Replace instruction sequences and relocs
8702 based on information we collected in tls_optimize. We edit
8703 RELOCS so that --emit-relocs will output something sensible
8704 for the final instruction stream. */
8705 tls_mask = 0;
8706 tls_gd = 0;
8707 toc_symndx = 0;
8708 if (IS_PPC64_TLS_RELOC (r_type))
8709 {
8710 if (h != NULL)
8711 tls_mask = h->tls_mask;
8712 else if (local_got_ents != NULL)
8713 {
8714 char *lgot_masks;
8715 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
8716 tls_mask = lgot_masks[r_symndx];
8717 }
8718 if (tls_mask == 0 && r_type == R_PPC64_TLS)
8719 {
8720 /* Check for toc tls entries. */
8721 char *toc_tls;
8722
8723 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8724 rel, input_bfd))
8725 return FALSE;
8726
8727 if (toc_tls)
8728 tls_mask = *toc_tls;
8729 }
8730 }
8731
8732 /* Check that tls relocs are used with tls syms, and non-tls
8733 relocs are used with non-tls syms. */
8734 if (r_symndx != 0
8735 && r_type != R_PPC64_NONE
8736 && (h == NULL
8737 || h->elf.root.type == bfd_link_hash_defined
8738 || h->elf.root.type == bfd_link_hash_defweak)
8739 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8740 {
8741 if (r_type == R_PPC64_TLS && tls_mask != 0)
8742 /* R_PPC64_TLS is OK against a symbol in the TOC. */
8743 ;
8744 else
8745 (*_bfd_error_handler)
8746 (sym_type == STT_TLS
8747 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8748 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
8749 input_bfd,
8750 input_section,
8751 (long) rel->r_offset,
8752 ppc64_elf_howto_table[r_type]->name,
8753 sym_name);
8754 }
8755
8756 /* Ensure reloc mapping code below stays sane. */
8757 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
8758 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
8759 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
8760 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
8761 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
8762 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
8763 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
8764 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
8765 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
8766 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
8767 abort ();
8768
8769 switch (r_type)
8770 {
8771 default:
8772 break;
8773
8774 case R_PPC64_TOC16:
8775 case R_PPC64_TOC16_LO:
8776 case R_PPC64_TOC16_DS:
8777 case R_PPC64_TOC16_LO_DS:
8778 {
8779 /* Check for toc tls entries. */
8780 char *toc_tls;
8781 int retval;
8782
8783 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8784 rel, input_bfd);
8785 if (retval == 0)
8786 return FALSE;
8787
8788 if (toc_tls)
8789 {
8790 tls_mask = *toc_tls;
8791 if (r_type == R_PPC64_TOC16_DS
8792 || r_type == R_PPC64_TOC16_LO_DS)
8793 {
8794 if (tls_mask != 0
8795 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
8796 goto toctprel;
8797 }
8798 else
8799 {
8800 /* If we found a GD reloc pair, then we might be
8801 doing a GD->IE transition. */
8802 if (retval == 2)
8803 {
8804 tls_gd = TLS_TPRELGD;
8805 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8806 goto tls_get_addr_check;
8807 }
8808 else if (retval == 3)
8809 {
8810 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8811 goto tls_get_addr_check;
8812 }
8813 }
8814 }
8815 }
8816 break;
8817
8818 case R_PPC64_GOT_TPREL16_DS:
8819 case R_PPC64_GOT_TPREL16_LO_DS:
8820 if (tls_mask != 0
8821 && (tls_mask & TLS_TPREL) == 0)
8822 {
8823 toctprel:
8824 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
8825 insn &= 31 << 21;
8826 insn |= 0x3c0d0000; /* addis 0,13,0 */
8827 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
8828 r_type = R_PPC64_TPREL16_HA;
8829 if (toc_symndx != 0)
8830 {
8831 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8832 /* We changed the symbol. Start over in order to
8833 get h, sym, sec etc. right. */
8834 rel--;
8835 continue;
8836 }
8837 else
8838 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8839 }
8840 break;
8841
8842 case R_PPC64_TLS:
8843 if (tls_mask != 0
8844 && (tls_mask & TLS_TPREL) == 0)
8845 {
8846 bfd_vma rtra;
8847 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
8848 if ((insn & ((0x3f << 26) | (31 << 11)))
8849 == ((31 << 26) | (13 << 11)))
8850 rtra = insn & ((1 << 26) - (1 << 16));
8851 else if ((insn & ((0x3f << 26) | (31 << 16)))
8852 == ((31 << 26) | (13 << 16)))
8853 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
8854 else
8855 abort ();
8856 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
8857 /* add -> addi. */
8858 insn = 14 << 26;
8859 else if ((insn & (31 << 1)) == 23 << 1
8860 && ((insn & (31 << 6)) < 14 << 6
8861 || ((insn & (31 << 6)) >= 16 << 6
8862 && (insn & (31 << 6)) < 24 << 6)))
8863 /* load and store indexed -> dform. */
8864 insn = (32 | ((insn >> 6) & 31)) << 26;
8865 else if ((insn & (31 << 1)) == 21 << 1
8866 && (insn & (0x1a << 6)) == 0)
8867 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
8868 insn = (((58 | ((insn >> 6) & 4)) << 26)
8869 | ((insn >> 6) & 1));
8870 else if ((insn & (31 << 1)) == 21 << 1
8871 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
8872 /* lwax -> lwa. */
8873 insn = (58 << 26) | 2;
8874 else
8875 abort ();
8876 insn |= rtra;
8877 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
8878 /* Was PPC64_TLS which sits on insn boundary, now
8879 PPC64_TPREL16_LO which is at insn+2. */
8880 rel->r_offset += 2;
8881 r_type = R_PPC64_TPREL16_LO;
8882 if (toc_symndx != 0)
8883 {
8884 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8885 /* We changed the symbol. Start over in order to
8886 get h, sym, sec etc. right. */
8887 rel--;
8888 continue;
8889 }
8890 else
8891 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8892 }
8893 break;
8894
8895 case R_PPC64_GOT_TLSGD16_HI:
8896 case R_PPC64_GOT_TLSGD16_HA:
8897 tls_gd = TLS_TPRELGD;
8898 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8899 goto tls_gdld_hi;
8900 break;
8901
8902 case R_PPC64_GOT_TLSLD16_HI:
8903 case R_PPC64_GOT_TLSLD16_HA:
8904 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8905 {
8906 tls_gdld_hi:
8907 if ((tls_mask & tls_gd) != 0)
8908 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8909 + R_PPC64_GOT_TPREL16_DS);
8910 else
8911 {
8912 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
8913 rel->r_offset -= 2;
8914 r_type = R_PPC64_NONE;
8915 }
8916 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8917 }
8918 break;
8919
8920 case R_PPC64_GOT_TLSGD16:
8921 case R_PPC64_GOT_TLSGD16_LO:
8922 tls_gd = TLS_TPRELGD;
8923 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8924 goto tls_get_addr_check;
8925 break;
8926
8927 case R_PPC64_GOT_TLSLD16:
8928 case R_PPC64_GOT_TLSLD16_LO:
8929 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8930 {
8931 tls_get_addr_check:
8932 if (rel + 1 < relend)
8933 {
8934 enum elf_ppc64_reloc_type r_type2;
8935 unsigned long r_symndx2;
8936 struct elf_link_hash_entry *h2;
8937 bfd_vma insn1, insn2, insn3;
8938 bfd_vma offset;
8939
8940 /* The next instruction should be a call to
8941 __tls_get_addr. Peek at the reloc to be sure. */
8942 r_type2 = ELF64_R_TYPE (rel[1].r_info);
8943 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
8944 if (r_symndx2 < symtab_hdr->sh_info
8945 || (r_type2 != R_PPC64_REL14
8946 && r_type2 != R_PPC64_REL14_BRTAKEN
8947 && r_type2 != R_PPC64_REL14_BRNTAKEN
8948 && r_type2 != R_PPC64_REL24))
8949 break;
8950
8951 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
8952 while (h2->root.type == bfd_link_hash_indirect
8953 || h2->root.type == bfd_link_hash_warning)
8954 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
8955 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
8956 && h2 != &htab->tls_get_addr_fd->elf))
8957 break;
8958
8959 /* OK, it checks out. Replace the call. */
8960 offset = rel[1].r_offset;
8961 insn1 = bfd_get_32 (output_bfd,
8962 contents + rel->r_offset - 2);
8963 insn3 = bfd_get_32 (output_bfd,
8964 contents + offset + 4);
8965 if ((tls_mask & tls_gd) != 0)
8966 {
8967 /* IE */
8968 insn1 &= (1 << 26) - (1 << 2);
8969 insn1 |= 58 << 26; /* ld */
8970 insn2 = 0x7c636a14; /* add 3,3,13 */
8971 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
8972 if ((tls_mask & TLS_EXPLICIT) == 0)
8973 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8974 + R_PPC64_GOT_TPREL16_DS);
8975 else
8976 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
8977 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8978 }
8979 else
8980 {
8981 /* LE */
8982 insn1 = 0x3c6d0000; /* addis 3,13,0 */
8983 insn2 = 0x38630000; /* addi 3,3,0 */
8984 if (tls_gd == 0)
8985 {
8986 /* Was an LD reloc. */
8987 r_symndx = 0;
8988 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8989 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8990 }
8991 else if (toc_symndx != 0)
8992 r_symndx = toc_symndx;
8993 r_type = R_PPC64_TPREL16_HA;
8994 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8995 rel[1].r_info = ELF64_R_INFO (r_symndx,
8996 R_PPC64_TPREL16_LO);
8997 rel[1].r_offset += 2;
8998 }
8999 if (insn3 == NOP
9000 || insn3 == CROR_151515 || insn3 == CROR_313131)
9001 {
9002 insn3 = insn2;
9003 insn2 = NOP;
9004 rel[1].r_offset += 4;
9005 }
9006 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9007 bfd_put_32 (output_bfd, insn2, contents + offset);
9008 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9009 if (tls_gd == 0 || toc_symndx != 0)
9010 {
9011 /* We changed the symbol. Start over in order
9012 to get h, sym, sec etc. right. */
9013 rel--;
9014 continue;
9015 }
9016 }
9017 }
9018 break;
9019
9020 case R_PPC64_DTPMOD64:
9021 if (rel + 1 < relend
9022 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9023 && rel[1].r_offset == rel->r_offset + 8)
9024 {
9025 if ((tls_mask & TLS_GD) == 0)
9026 {
9027 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9028 if ((tls_mask & TLS_TPRELGD) != 0)
9029 r_type = R_PPC64_TPREL64;
9030 else
9031 {
9032 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9033 r_type = R_PPC64_NONE;
9034 }
9035 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9036 }
9037 }
9038 else
9039 {
9040 if ((tls_mask & TLS_LD) == 0)
9041 {
9042 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9043 r_type = R_PPC64_NONE;
9044 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9045 }
9046 }
9047 break;
9048
9049 case R_PPC64_TPREL64:
9050 if ((tls_mask & TLS_TPREL) == 0)
9051 {
9052 r_type = R_PPC64_NONE;
9053 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9054 }
9055 break;
9056 }
9057
9058 /* Handle other relocations that tweak non-addend part of insn. */
9059 insn = 0;
9060 max_br_offset = 1 << 25;
9061 addend = rel->r_addend;
9062 switch (r_type)
9063 {
9064 default:
9065 break;
9066
9067 /* Branch taken prediction relocations. */
9068 case R_PPC64_ADDR14_BRTAKEN:
9069 case R_PPC64_REL14_BRTAKEN:
9070 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9071 /* Fall thru. */
9072
9073 /* Branch not taken prediction relocations. */
9074 case R_PPC64_ADDR14_BRNTAKEN:
9075 case R_PPC64_REL14_BRNTAKEN:
9076 insn |= bfd_get_32 (output_bfd,
9077 contents + rel->r_offset) & ~(0x01 << 21);
9078 /* Fall thru. */
9079
9080 case R_PPC64_REL14:
9081 max_br_offset = 1 << 15;
9082 /* Fall thru. */
9083
9084 case R_PPC64_REL24:
9085 /* Calls to functions with a different TOC, such as calls to
9086 shared objects, need to alter the TOC pointer. This is
9087 done using a linkage stub. A REL24 branching to these
9088 linkage stubs needs to be followed by a nop, as the nop
9089 will be replaced with an instruction to restore the TOC
9090 base pointer. */
9091 stub_entry = NULL;
9092 fdh = h;
9093 if (((h != NULL
9094 && (((fdh = h->oh) != NULL
9095 && fdh->elf.plt.plist != NULL)
9096 || (fdh = h)->elf.plt.plist != NULL))
9097 || (sec != NULL
9098 && sec->output_section != NULL
9099 && sec->id <= htab->top_id
9100 && (htab->stub_group[sec->id].toc_off
9101 != htab->stub_group[input_section->id].toc_off)))
9102 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9103 rel, htab)) != NULL
9104 && (stub_entry->stub_type == ppc_stub_plt_call
9105 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9106 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9107 {
9108 bfd_boolean can_plt_call = FALSE;
9109
9110 if (rel->r_offset + 8 <= input_section->size)
9111 {
9112 unsigned long nop;
9113 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9114 if (nop == NOP
9115 || nop == CROR_151515 || nop == CROR_313131)
9116 {
9117 bfd_put_32 (input_bfd, LD_R2_40R1,
9118 contents + rel->r_offset + 4);
9119 can_plt_call = TRUE;
9120 }
9121 }
9122
9123 if (!can_plt_call)
9124 {
9125 if (stub_entry->stub_type == ppc_stub_plt_call)
9126 {
9127 /* If this is a plain branch rather than a branch
9128 and link, don't require a nop. */
9129 unsigned long br;
9130 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9131 if ((br & 1) == 0)
9132 can_plt_call = TRUE;
9133 }
9134 else if (h != NULL
9135 && strcmp (h->elf.root.root.string,
9136 ".__libc_start_main") == 0)
9137 {
9138 /* Allow crt1 branch to go via a toc adjusting stub. */
9139 can_plt_call = TRUE;
9140 }
9141 else
9142 {
9143 if (strcmp (input_section->output_section->name,
9144 ".init") == 0
9145 || strcmp (input_section->output_section->name,
9146 ".fini") == 0)
9147 (*_bfd_error_handler)
9148 (_("%B(%A+0x%lx): automatic multiple TOCs "
9149 "not supported using your crt files; "
9150 "recompile with -mminimal-toc or upgrade gcc"),
9151 input_bfd,
9152 input_section,
9153 (long) rel->r_offset);
9154 else
9155 (*_bfd_error_handler)
9156 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9157 "does not allow automatic multiple TOCs; "
9158 "recompile with -mminimal-toc or "
9159 "-fno-optimize-sibling-calls, "
9160 "or make `%s' extern"),
9161 input_bfd,
9162 input_section,
9163 (long) rel->r_offset,
9164 sym_name,
9165 sym_name);
9166 bfd_set_error (bfd_error_bad_value);
9167 ret = FALSE;
9168 }
9169 }
9170
9171 if (can_plt_call
9172 && stub_entry->stub_type == ppc_stub_plt_call)
9173 unresolved_reloc = FALSE;
9174 }
9175
9176 if (stub_entry == NULL
9177 && get_opd_info (sec) != NULL)
9178 {
9179 /* The branch destination is the value of the opd entry. */
9180 bfd_vma off = (relocation - sec->output_section->vma
9181 - sec->output_offset + rel->r_addend);
9182 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9183 if (dest != (bfd_vma) -1)
9184 {
9185 relocation = dest;
9186 addend = 0;
9187 }
9188 }
9189
9190 /* If the branch is out of reach we ought to have a long
9191 branch stub. */
9192 from = (rel->r_offset
9193 + input_section->output_offset
9194 + input_section->output_section->vma);
9195
9196 if (stub_entry == NULL
9197 && (relocation + rel->r_addend - from + max_br_offset
9198 >= 2 * max_br_offset)
9199 && r_type != R_PPC64_ADDR14_BRTAKEN
9200 && r_type != R_PPC64_ADDR14_BRNTAKEN)
9201 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
9202 htab);
9203
9204 if (stub_entry != NULL)
9205 {
9206 /* Munge up the value and addend so that we call the stub
9207 rather than the procedure directly. */
9208 relocation = (stub_entry->stub_offset
9209 + stub_entry->stub_sec->output_offset
9210 + stub_entry->stub_sec->output_section->vma);
9211 addend = 0;
9212 }
9213
9214 if (insn != 0)
9215 {
9216 if (is_power4)
9217 {
9218 /* Set 'a' bit. This is 0b00010 in BO field for branch
9219 on CR(BI) insns (BO == 001at or 011at), and 0b01000
9220 for branch on CTR insns (BO == 1a00t or 1a01t). */
9221 if ((insn & (0x14 << 21)) == (0x04 << 21))
9222 insn |= 0x02 << 21;
9223 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9224 insn |= 0x08 << 21;
9225 else
9226 break;
9227 }
9228 else
9229 {
9230 /* Invert 'y' bit if not the default. */
9231 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
9232 insn ^= 0x01 << 21;
9233 }
9234
9235 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9236 }
9237
9238 /* NOP out calls to undefined weak functions.
9239 We can thus call a weak function without first
9240 checking whether the function is defined. */
9241 else if (h != NULL
9242 && h->elf.root.type == bfd_link_hash_undefweak
9243 && r_type == R_PPC64_REL24
9244 && relocation == 0
9245 && rel->r_addend == 0)
9246 {
9247 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9248 continue;
9249 }
9250 break;
9251 }
9252
9253 /* Set `addend'. */
9254 tls_type = 0;
9255 switch (r_type)
9256 {
9257 default:
9258 (*_bfd_error_handler)
9259 (_("%B: unknown relocation type %d for symbol %s"),
9260 input_bfd, (int) r_type, sym_name);
9261
9262 bfd_set_error (bfd_error_bad_value);
9263 ret = FALSE;
9264 continue;
9265
9266 case R_PPC64_NONE:
9267 case R_PPC64_TLS:
9268 case R_PPC64_GNU_VTINHERIT:
9269 case R_PPC64_GNU_VTENTRY:
9270 continue;
9271
9272 /* GOT16 relocations. Like an ADDR16 using the symbol's
9273 address in the GOT as relocation value instead of the
9274 symbol's value itself. Also, create a GOT entry for the
9275 symbol and put the symbol value there. */
9276 case R_PPC64_GOT_TLSGD16:
9277 case R_PPC64_GOT_TLSGD16_LO:
9278 case R_PPC64_GOT_TLSGD16_HI:
9279 case R_PPC64_GOT_TLSGD16_HA:
9280 tls_type = TLS_TLS | TLS_GD;
9281 goto dogot;
9282
9283 case R_PPC64_GOT_TLSLD16:
9284 case R_PPC64_GOT_TLSLD16_LO:
9285 case R_PPC64_GOT_TLSLD16_HI:
9286 case R_PPC64_GOT_TLSLD16_HA:
9287 tls_type = TLS_TLS | TLS_LD;
9288 goto dogot;
9289
9290 case R_PPC64_GOT_TPREL16_DS:
9291 case R_PPC64_GOT_TPREL16_LO_DS:
9292 case R_PPC64_GOT_TPREL16_HI:
9293 case R_PPC64_GOT_TPREL16_HA:
9294 tls_type = TLS_TLS | TLS_TPREL;
9295 goto dogot;
9296
9297 case R_PPC64_GOT_DTPREL16_DS:
9298 case R_PPC64_GOT_DTPREL16_LO_DS:
9299 case R_PPC64_GOT_DTPREL16_HI:
9300 case R_PPC64_GOT_DTPREL16_HA:
9301 tls_type = TLS_TLS | TLS_DTPREL;
9302 goto dogot;
9303
9304 case R_PPC64_GOT16:
9305 case R_PPC64_GOT16_LO:
9306 case R_PPC64_GOT16_HI:
9307 case R_PPC64_GOT16_HA:
9308 case R_PPC64_GOT16_DS:
9309 case R_PPC64_GOT16_LO_DS:
9310 dogot:
9311 {
9312 /* Relocation is to the entry for this symbol in the global
9313 offset table. */
9314 asection *got;
9315 bfd_vma *offp;
9316 bfd_vma off;
9317 unsigned long indx = 0;
9318
9319 if (tls_type == (TLS_TLS | TLS_LD)
9320 && (h == NULL
9321 || !h->elf.def_dynamic))
9322 offp = &ppc64_tlsld_got (input_bfd)->offset;
9323 else
9324 {
9325 struct got_entry *ent;
9326
9327 if (h != NULL)
9328 {
9329 bfd_boolean dyn = htab->elf.dynamic_sections_created;
9330 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
9331 &h->elf)
9332 || (info->shared
9333 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
9334 /* This is actually a static link, or it is a
9335 -Bsymbolic link and the symbol is defined
9336 locally, or the symbol was forced to be local
9337 because of a version file. */
9338 ;
9339 else
9340 {
9341 indx = h->elf.dynindx;
9342 unresolved_reloc = FALSE;
9343 }
9344 ent = h->elf.got.glist;
9345 }
9346 else
9347 {
9348 if (local_got_ents == NULL)
9349 abort ();
9350 ent = local_got_ents[r_symndx];
9351 }
9352
9353 for (; ent != NULL; ent = ent->next)
9354 if (ent->addend == rel->r_addend
9355 && ent->owner == input_bfd
9356 && ent->tls_type == tls_type)
9357 break;
9358 if (ent == NULL)
9359 abort ();
9360 offp = &ent->got.offset;
9361 }
9362
9363 got = ppc64_elf_tdata (input_bfd)->got;
9364 if (got == NULL)
9365 abort ();
9366
9367 /* The offset must always be a multiple of 8. We use the
9368 least significant bit to record whether we have already
9369 processed this entry. */
9370 off = *offp;
9371 if ((off & 1) != 0)
9372 off &= ~1;
9373 else
9374 {
9375 /* Generate relocs for the dynamic linker, except in
9376 the case of TLSLD where we'll use one entry per
9377 module. */
9378 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
9379
9380 *offp = off | 1;
9381 if ((info->shared || indx != 0)
9382 && (h == NULL
9383 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9384 || h->elf.root.type != bfd_link_hash_undefweak))
9385 {
9386 outrel.r_offset = (got->output_section->vma
9387 + got->output_offset
9388 + off);
9389 outrel.r_addend = rel->r_addend;
9390 if (tls_type & (TLS_LD | TLS_GD))
9391 {
9392 outrel.r_addend = 0;
9393 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
9394 if (tls_type == (TLS_TLS | TLS_GD))
9395 {
9396 loc = relgot->contents;
9397 loc += (relgot->reloc_count++
9398 * sizeof (Elf64_External_Rela));
9399 bfd_elf64_swap_reloca_out (output_bfd,
9400 &outrel, loc);
9401 outrel.r_offset += 8;
9402 outrel.r_addend = rel->r_addend;
9403 outrel.r_info
9404 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9405 }
9406 }
9407 else if (tls_type == (TLS_TLS | TLS_DTPREL))
9408 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9409 else if (tls_type == (TLS_TLS | TLS_TPREL))
9410 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
9411 else if (indx == 0)
9412 {
9413 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
9414
9415 /* Write the .got section contents for the sake
9416 of prelink. */
9417 loc = got->contents + off;
9418 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
9419 loc);
9420 }
9421 else
9422 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
9423
9424 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
9425 {
9426 outrel.r_addend += relocation;
9427 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
9428 outrel.r_addend -= htab->elf.tls_sec->vma;
9429 }
9430 loc = relgot->contents;
9431 loc += (relgot->reloc_count++
9432 * sizeof (Elf64_External_Rela));
9433 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9434 }
9435
9436 /* Init the .got section contents here if we're not
9437 emitting a reloc. */
9438 else
9439 {
9440 relocation += rel->r_addend;
9441 if (tls_type == (TLS_TLS | TLS_LD))
9442 relocation = 1;
9443 else if (tls_type != 0)
9444 {
9445 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
9446 if (tls_type == (TLS_TLS | TLS_TPREL))
9447 relocation += DTP_OFFSET - TP_OFFSET;
9448
9449 if (tls_type == (TLS_TLS | TLS_GD))
9450 {
9451 bfd_put_64 (output_bfd, relocation,
9452 got->contents + off + 8);
9453 relocation = 1;
9454 }
9455 }
9456
9457 bfd_put_64 (output_bfd, relocation,
9458 got->contents + off);
9459 }
9460 }
9461
9462 if (off >= (bfd_vma) -2)
9463 abort ();
9464
9465 relocation = got->output_offset + off;
9466
9467 /* TOC base (r2) is TOC start plus 0x8000. */
9468 addend = -TOC_BASE_OFF;
9469 }
9470 break;
9471
9472 case R_PPC64_PLT16_HA:
9473 case R_PPC64_PLT16_HI:
9474 case R_PPC64_PLT16_LO:
9475 case R_PPC64_PLT32:
9476 case R_PPC64_PLT64:
9477 /* Relocation is to the entry for this symbol in the
9478 procedure linkage table. */
9479
9480 /* Resolve a PLT reloc against a local symbol directly,
9481 without using the procedure linkage table. */
9482 if (h == NULL)
9483 break;
9484
9485 /* It's possible that we didn't make a PLT entry for this
9486 symbol. This happens when statically linking PIC code,
9487 or when using -Bsymbolic. Go find a match if there is a
9488 PLT entry. */
9489 if (htab->plt != NULL)
9490 {
9491 struct plt_entry *ent;
9492 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
9493 if (ent->addend == rel->r_addend
9494 && ent->plt.offset != (bfd_vma) -1)
9495 {
9496 relocation = (htab->plt->output_section->vma
9497 + htab->plt->output_offset
9498 + ent->plt.offset);
9499 unresolved_reloc = FALSE;
9500 }
9501 }
9502 break;
9503
9504 case R_PPC64_TOC:
9505 /* Relocation value is TOC base. */
9506 relocation = TOCstart;
9507 if (r_symndx == 0)
9508 relocation += htab->stub_group[input_section->id].toc_off;
9509 else if (unresolved_reloc)
9510 ;
9511 else if (sec != NULL && sec->id <= htab->top_id)
9512 relocation += htab->stub_group[sec->id].toc_off;
9513 else
9514 unresolved_reloc = TRUE;
9515 goto dodyn2;
9516
9517 /* TOC16 relocs. We want the offset relative to the TOC base,
9518 which is the address of the start of the TOC plus 0x8000.
9519 The TOC consists of sections .got, .toc, .tocbss, and .plt,
9520 in this order. */
9521 case R_PPC64_TOC16:
9522 case R_PPC64_TOC16_LO:
9523 case R_PPC64_TOC16_HI:
9524 case R_PPC64_TOC16_DS:
9525 case R_PPC64_TOC16_LO_DS:
9526 case R_PPC64_TOC16_HA:
9527 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
9528 break;
9529
9530 /* Relocate against the beginning of the section. */
9531 case R_PPC64_SECTOFF:
9532 case R_PPC64_SECTOFF_LO:
9533 case R_PPC64_SECTOFF_HI:
9534 case R_PPC64_SECTOFF_DS:
9535 case R_PPC64_SECTOFF_LO_DS:
9536 case R_PPC64_SECTOFF_HA:
9537 if (sec != NULL)
9538 addend -= sec->output_section->vma;
9539 break;
9540
9541 case R_PPC64_REL14:
9542 case R_PPC64_REL14_BRNTAKEN:
9543 case R_PPC64_REL14_BRTAKEN:
9544 case R_PPC64_REL24:
9545 break;
9546
9547 case R_PPC64_TPREL16:
9548 case R_PPC64_TPREL16_LO:
9549 case R_PPC64_TPREL16_HI:
9550 case R_PPC64_TPREL16_HA:
9551 case R_PPC64_TPREL16_DS:
9552 case R_PPC64_TPREL16_LO_DS:
9553 case R_PPC64_TPREL16_HIGHER:
9554 case R_PPC64_TPREL16_HIGHERA:
9555 case R_PPC64_TPREL16_HIGHEST:
9556 case R_PPC64_TPREL16_HIGHESTA:
9557 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9558 if (info->shared)
9559 /* The TPREL16 relocs shouldn't really be used in shared
9560 libs as they will result in DT_TEXTREL being set, but
9561 support them anyway. */
9562 goto dodyn;
9563 break;
9564
9565 case R_PPC64_DTPREL16:
9566 case R_PPC64_DTPREL16_LO:
9567 case R_PPC64_DTPREL16_HI:
9568 case R_PPC64_DTPREL16_HA:
9569 case R_PPC64_DTPREL16_DS:
9570 case R_PPC64_DTPREL16_LO_DS:
9571 case R_PPC64_DTPREL16_HIGHER:
9572 case R_PPC64_DTPREL16_HIGHERA:
9573 case R_PPC64_DTPREL16_HIGHEST:
9574 case R_PPC64_DTPREL16_HIGHESTA:
9575 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9576 break;
9577
9578 case R_PPC64_DTPMOD64:
9579 relocation = 1;
9580 addend = 0;
9581 goto dodyn;
9582
9583 case R_PPC64_TPREL64:
9584 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9585 goto dodyn;
9586
9587 case R_PPC64_DTPREL64:
9588 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9589 /* Fall thru */
9590
9591 /* Relocations that may need to be propagated if this is a
9592 dynamic object. */
9593 case R_PPC64_REL30:
9594 case R_PPC64_REL32:
9595 case R_PPC64_REL64:
9596 case R_PPC64_ADDR14:
9597 case R_PPC64_ADDR14_BRNTAKEN:
9598 case R_PPC64_ADDR14_BRTAKEN:
9599 case R_PPC64_ADDR16:
9600 case R_PPC64_ADDR16_DS:
9601 case R_PPC64_ADDR16_HA:
9602 case R_PPC64_ADDR16_HI:
9603 case R_PPC64_ADDR16_HIGHER:
9604 case R_PPC64_ADDR16_HIGHERA:
9605 case R_PPC64_ADDR16_HIGHEST:
9606 case R_PPC64_ADDR16_HIGHESTA:
9607 case R_PPC64_ADDR16_LO:
9608 case R_PPC64_ADDR16_LO_DS:
9609 case R_PPC64_ADDR24:
9610 case R_PPC64_ADDR32:
9611 case R_PPC64_ADDR64:
9612 case R_PPC64_UADDR16:
9613 case R_PPC64_UADDR32:
9614 case R_PPC64_UADDR64:
9615 /* r_symndx will be zero only for relocs against symbols
9616 from removed linkonce sections, or sections discarded by
9617 a linker script. */
9618 dodyn:
9619 if (r_symndx == 0)
9620 break;
9621 /* Fall thru. */
9622
9623 dodyn2:
9624 if ((input_section->flags & SEC_ALLOC) == 0)
9625 break;
9626
9627 if (NO_OPD_RELOCS && is_opd)
9628 break;
9629
9630 if ((info->shared
9631 && (h == NULL
9632 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9633 || h->elf.root.type != bfd_link_hash_undefweak)
9634 && (MUST_BE_DYN_RELOC (r_type)
9635 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
9636 || (ELIMINATE_COPY_RELOCS
9637 && !info->shared
9638 && h != NULL
9639 && h->elf.dynindx != -1
9640 && !h->elf.non_got_ref
9641 && h->elf.def_dynamic
9642 && !h->elf.def_regular))
9643 {
9644 Elf_Internal_Rela outrel;
9645 bfd_boolean skip, relocate;
9646 asection *sreloc;
9647 bfd_byte *loc;
9648 bfd_vma out_off;
9649
9650 /* When generating a dynamic object, these relocations
9651 are copied into the output file to be resolved at run
9652 time. */
9653
9654 skip = FALSE;
9655 relocate = FALSE;
9656
9657 out_off = _bfd_elf_section_offset (output_bfd, info,
9658 input_section, rel->r_offset);
9659 if (out_off == (bfd_vma) -1)
9660 skip = TRUE;
9661 else if (out_off == (bfd_vma) -2)
9662 skip = TRUE, relocate = TRUE;
9663 out_off += (input_section->output_section->vma
9664 + input_section->output_offset);
9665 outrel.r_offset = out_off;
9666 outrel.r_addend = rel->r_addend;
9667
9668 /* Optimize unaligned reloc use. */
9669 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
9670 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
9671 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
9672 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
9673 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
9674 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
9675 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
9676 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
9677 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
9678
9679 if (skip)
9680 memset (&outrel, 0, sizeof outrel);
9681 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
9682 && !is_opd
9683 && r_type != R_PPC64_TOC)
9684 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
9685 else
9686 {
9687 /* This symbol is local, or marked to become local,
9688 or this is an opd section reloc which must point
9689 at a local function. */
9690 outrel.r_addend += relocation;
9691 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
9692 {
9693 if (is_opd && h != NULL)
9694 {
9695 /* Lie about opd entries. This case occurs
9696 when building shared libraries and we
9697 reference a function in another shared
9698 lib. The same thing happens for a weak
9699 definition in an application that's
9700 overridden by a strong definition in a
9701 shared lib. (I believe this is a generic
9702 bug in binutils handling of weak syms.)
9703 In these cases we won't use the opd
9704 entry in this lib. */
9705 unresolved_reloc = FALSE;
9706 }
9707 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
9708
9709 /* We need to relocate .opd contents for ld.so.
9710 Prelink also wants simple and consistent rules
9711 for relocs. This make all RELATIVE relocs have
9712 *r_offset equal to r_addend. */
9713 relocate = TRUE;
9714 }
9715 else
9716 {
9717 long indx = 0;
9718
9719 if (bfd_is_abs_section (sec))
9720 ;
9721 else if (sec == NULL || sec->owner == NULL)
9722 {
9723 bfd_set_error (bfd_error_bad_value);
9724 return FALSE;
9725 }
9726 else
9727 {
9728 asection *osec;
9729
9730 osec = sec->output_section;
9731 indx = elf_section_data (osec)->dynindx;
9732
9733 /* We are turning this relocation into one
9734 against a section symbol, so subtract out
9735 the output section's address but not the
9736 offset of the input section in the output
9737 section. */
9738 outrel.r_addend -= osec->vma;
9739 }
9740
9741 outrel.r_info = ELF64_R_INFO (indx, r_type);
9742 }
9743 }
9744
9745 sreloc = elf_section_data (input_section)->sreloc;
9746 if (sreloc == NULL)
9747 abort ();
9748
9749 loc = sreloc->contents;
9750 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
9751 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9752
9753 /* If this reloc is against an external symbol, it will
9754 be computed at runtime, so there's no need to do
9755 anything now. However, for the sake of prelink ensure
9756 that the section contents are a known value. */
9757 if (! relocate)
9758 {
9759 unresolved_reloc = FALSE;
9760 /* The value chosen here is quite arbitrary as ld.so
9761 ignores section contents except for the special
9762 case of .opd where the contents might be accessed
9763 before relocation. Choose zero, as that won't
9764 cause reloc overflow. */
9765 relocation = 0;
9766 addend = 0;
9767 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
9768 to improve backward compatibility with older
9769 versions of ld. */
9770 if (r_type == R_PPC64_ADDR64)
9771 addend = outrel.r_addend;
9772 /* Adjust pc_relative relocs to have zero in *r_offset. */
9773 else if (ppc64_elf_howto_table[r_type]->pc_relative)
9774 addend = (input_section->output_section->vma
9775 + input_section->output_offset
9776 + rel->r_offset);
9777 }
9778 }
9779 break;
9780
9781 case R_PPC64_COPY:
9782 case R_PPC64_GLOB_DAT:
9783 case R_PPC64_JMP_SLOT:
9784 case R_PPC64_RELATIVE:
9785 /* We shouldn't ever see these dynamic relocs in relocatable
9786 files. */
9787 /* Fall through. */
9788
9789 case R_PPC64_PLTGOT16:
9790 case R_PPC64_PLTGOT16_DS:
9791 case R_PPC64_PLTGOT16_HA:
9792 case R_PPC64_PLTGOT16_HI:
9793 case R_PPC64_PLTGOT16_LO:
9794 case R_PPC64_PLTGOT16_LO_DS:
9795 case R_PPC64_PLTREL32:
9796 case R_PPC64_PLTREL64:
9797 /* These ones haven't been implemented yet. */
9798
9799 (*_bfd_error_handler)
9800 (_("%B: relocation %s is not supported for symbol %s."),
9801 input_bfd,
9802 ppc64_elf_howto_table[r_type]->name, sym_name);
9803
9804 bfd_set_error (bfd_error_invalid_operation);
9805 ret = FALSE;
9806 continue;
9807 }
9808
9809 /* Do any further special processing. */
9810 switch (r_type)
9811 {
9812 default:
9813 break;
9814
9815 case R_PPC64_ADDR16_HA:
9816 case R_PPC64_ADDR16_HIGHERA:
9817 case R_PPC64_ADDR16_HIGHESTA:
9818 case R_PPC64_GOT16_HA:
9819 case R_PPC64_PLTGOT16_HA:
9820 case R_PPC64_PLT16_HA:
9821 case R_PPC64_TOC16_HA:
9822 case R_PPC64_SECTOFF_HA:
9823 case R_PPC64_TPREL16_HA:
9824 case R_PPC64_DTPREL16_HA:
9825 case R_PPC64_GOT_TLSGD16_HA:
9826 case R_PPC64_GOT_TLSLD16_HA:
9827 case R_PPC64_GOT_TPREL16_HA:
9828 case R_PPC64_GOT_DTPREL16_HA:
9829 case R_PPC64_TPREL16_HIGHER:
9830 case R_PPC64_TPREL16_HIGHERA:
9831 case R_PPC64_TPREL16_HIGHEST:
9832 case R_PPC64_TPREL16_HIGHESTA:
9833 case R_PPC64_DTPREL16_HIGHER:
9834 case R_PPC64_DTPREL16_HIGHERA:
9835 case R_PPC64_DTPREL16_HIGHEST:
9836 case R_PPC64_DTPREL16_HIGHESTA:
9837 /* It's just possible that this symbol is a weak symbol
9838 that's not actually defined anywhere. In that case,
9839 'sec' would be NULL, and we should leave the symbol
9840 alone (it will be set to zero elsewhere in the link). */
9841 if (sec != NULL)
9842 /* Add 0x10000 if sign bit in 0:15 is set.
9843 Bits 0:15 are not used. */
9844 addend += 0x8000;
9845 break;
9846
9847 case R_PPC64_ADDR16_DS:
9848 case R_PPC64_ADDR16_LO_DS:
9849 case R_PPC64_GOT16_DS:
9850 case R_PPC64_GOT16_LO_DS:
9851 case R_PPC64_PLT16_LO_DS:
9852 case R_PPC64_SECTOFF_DS:
9853 case R_PPC64_SECTOFF_LO_DS:
9854 case R_PPC64_TOC16_DS:
9855 case R_PPC64_TOC16_LO_DS:
9856 case R_PPC64_PLTGOT16_DS:
9857 case R_PPC64_PLTGOT16_LO_DS:
9858 case R_PPC64_GOT_TPREL16_DS:
9859 case R_PPC64_GOT_TPREL16_LO_DS:
9860 case R_PPC64_GOT_DTPREL16_DS:
9861 case R_PPC64_GOT_DTPREL16_LO_DS:
9862 case R_PPC64_TPREL16_DS:
9863 case R_PPC64_TPREL16_LO_DS:
9864 case R_PPC64_DTPREL16_DS:
9865 case R_PPC64_DTPREL16_LO_DS:
9866 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
9867 mask = 3;
9868 /* If this reloc is against an lq insn, then the value must be
9869 a multiple of 16. This is somewhat of a hack, but the
9870 "correct" way to do this by defining _DQ forms of all the
9871 _DS relocs bloats all reloc switches in this file. It
9872 doesn't seem to make much sense to use any of these relocs
9873 in data, so testing the insn should be safe. */
9874 if ((insn & (0x3f << 26)) == (56u << 26))
9875 mask = 15;
9876 if (((relocation + addend) & mask) != 0)
9877 {
9878 (*_bfd_error_handler)
9879 (_("%B: error: relocation %s not a multiple of %d"),
9880 input_bfd,
9881 ppc64_elf_howto_table[r_type]->name,
9882 mask + 1);
9883 bfd_set_error (bfd_error_bad_value);
9884 ret = FALSE;
9885 continue;
9886 }
9887 break;
9888 }
9889
9890 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9891 because such sections are not SEC_ALLOC and thus ld.so will
9892 not process them. */
9893 if (unresolved_reloc
9894 && !((input_section->flags & SEC_DEBUGGING) != 0
9895 && h->elf.def_dynamic))
9896 {
9897 (*_bfd_error_handler)
9898 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9899 input_bfd,
9900 input_section,
9901 (long) rel->r_offset,
9902 ppc64_elf_howto_table[(int) r_type]->name,
9903 h->elf.root.root.string);
9904 ret = FALSE;
9905 }
9906
9907 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
9908 input_bfd,
9909 input_section,
9910 contents,
9911 rel->r_offset,
9912 relocation,
9913 addend);
9914
9915 if (r != bfd_reloc_ok)
9916 {
9917 if (sym_name == NULL)
9918 sym_name = "(null)";
9919 if (r == bfd_reloc_overflow)
9920 {
9921 if (warned)
9922 continue;
9923 if (h != NULL
9924 && h->elf.root.type == bfd_link_hash_undefweak
9925 && ppc64_elf_howto_table[r_type]->pc_relative)
9926 {
9927 /* Assume this is a call protected by other code that
9928 detects the symbol is undefined. If this is the case,
9929 we can safely ignore the overflow. If not, the
9930 program is hosed anyway, and a little warning isn't
9931 going to help. */
9932
9933 continue;
9934 }
9935
9936 if (!((*info->callbacks->reloc_overflow)
9937 (info, sym_name, ppc64_elf_howto_table[r_type]->name,
9938 rel->r_addend, input_bfd, input_section, rel->r_offset)))
9939 return FALSE;
9940 }
9941 else
9942 {
9943 (*_bfd_error_handler)
9944 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
9945 input_bfd,
9946 input_section,
9947 (long) rel->r_offset,
9948 ppc64_elf_howto_table[r_type]->name,
9949 sym_name,
9950 (int) r);
9951 ret = FALSE;
9952 }
9953 }
9954 }
9955
9956 return ret;
9957 }
9958
9959 /* Adjust the value of any local symbols in opd sections. */
9960
9961 static bfd_boolean
9962 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
9963 const char *name ATTRIBUTE_UNUSED,
9964 Elf_Internal_Sym *elfsym,
9965 asection *input_sec,
9966 struct elf_link_hash_entry *h)
9967 {
9968 long *opd_adjust, adjust;
9969 bfd_vma value;
9970
9971 if (h != NULL)
9972 return TRUE;
9973
9974 opd_adjust = get_opd_info (input_sec);
9975 if (opd_adjust == NULL)
9976 return TRUE;
9977
9978 value = elfsym->st_value - input_sec->output_offset;
9979 if (!info->relocatable)
9980 value -= input_sec->output_section->vma;
9981
9982 adjust = opd_adjust[value / 8];
9983 if (adjust == -1)
9984 elfsym->st_value = 0;
9985 else
9986 elfsym->st_value += adjust;
9987 return TRUE;
9988 }
9989
9990 /* Finish up dynamic symbol handling. We set the contents of various
9991 dynamic sections here. */
9992
9993 static bfd_boolean
9994 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
9995 struct bfd_link_info *info,
9996 struct elf_link_hash_entry *h,
9997 Elf_Internal_Sym *sym)
9998 {
9999 struct ppc_link_hash_table *htab;
10000 bfd *dynobj;
10001 struct plt_entry *ent;
10002 Elf_Internal_Rela rela;
10003 bfd_byte *loc;
10004
10005 htab = ppc_hash_table (info);
10006 dynobj = htab->elf.dynobj;
10007
10008 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10009 if (ent->plt.offset != (bfd_vma) -1)
10010 {
10011 /* This symbol has an entry in the procedure linkage
10012 table. Set it up. */
10013
10014 if (htab->plt == NULL
10015 || htab->relplt == NULL
10016 || htab->glink == NULL)
10017 abort ();
10018
10019 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10020 fill in the PLT entry. */
10021 rela.r_offset = (htab->plt->output_section->vma
10022 + htab->plt->output_offset
10023 + ent->plt.offset);
10024 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10025 rela.r_addend = ent->addend;
10026
10027 loc = htab->relplt->contents;
10028 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10029 * sizeof (Elf64_External_Rela));
10030 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10031 }
10032
10033 if (h->needs_copy)
10034 {
10035 Elf_Internal_Rela rela;
10036 bfd_byte *loc;
10037
10038 /* This symbol needs a copy reloc. Set it up. */
10039
10040 if (h->dynindx == -1
10041 || (h->root.type != bfd_link_hash_defined
10042 && h->root.type != bfd_link_hash_defweak)
10043 || htab->relbss == NULL)
10044 abort ();
10045
10046 rela.r_offset = (h->root.u.def.value
10047 + h->root.u.def.section->output_section->vma
10048 + h->root.u.def.section->output_offset);
10049 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10050 rela.r_addend = 0;
10051 loc = htab->relbss->contents;
10052 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10053 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10054 }
10055
10056 /* Mark some specially defined symbols as absolute. */
10057 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10058 sym->st_shndx = SHN_ABS;
10059
10060 return TRUE;
10061 }
10062
10063 /* Used to decide how to sort relocs in an optimal manner for the
10064 dynamic linker, before writing them out. */
10065
10066 static enum elf_reloc_type_class
10067 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10068 {
10069 enum elf_ppc64_reloc_type r_type;
10070
10071 r_type = ELF64_R_TYPE (rela->r_info);
10072 switch (r_type)
10073 {
10074 case R_PPC64_RELATIVE:
10075 return reloc_class_relative;
10076 case R_PPC64_JMP_SLOT:
10077 return reloc_class_plt;
10078 case R_PPC64_COPY:
10079 return reloc_class_copy;
10080 default:
10081 return reloc_class_normal;
10082 }
10083 }
10084
10085 /* Finish up the dynamic sections. */
10086
10087 static bfd_boolean
10088 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10089 struct bfd_link_info *info)
10090 {
10091 struct ppc_link_hash_table *htab;
10092 bfd *dynobj;
10093 asection *sdyn;
10094
10095 htab = ppc_hash_table (info);
10096 dynobj = htab->elf.dynobj;
10097 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10098
10099 if (htab->elf.dynamic_sections_created)
10100 {
10101 Elf64_External_Dyn *dyncon, *dynconend;
10102
10103 if (sdyn == NULL || htab->got == NULL)
10104 abort ();
10105
10106 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10107 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10108 for (; dyncon < dynconend; dyncon++)
10109 {
10110 Elf_Internal_Dyn dyn;
10111 asection *s;
10112
10113 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10114
10115 switch (dyn.d_tag)
10116 {
10117 default:
10118 continue;
10119
10120 case DT_PPC64_GLINK:
10121 s = htab->glink;
10122 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10123 /* We stupidly defined DT_PPC64_GLINK to be the start
10124 of glink rather than the first entry point, which is
10125 what ld.so needs, and now have a bigger stub to
10126 support automatic multiple TOCs. */
10127 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10128 break;
10129
10130 case DT_PPC64_OPD:
10131 s = bfd_get_section_by_name (output_bfd, ".opd");
10132 if (s == NULL)
10133 continue;
10134 dyn.d_un.d_ptr = s->vma;
10135 break;
10136
10137 case DT_PPC64_OPDSZ:
10138 s = bfd_get_section_by_name (output_bfd, ".opd");
10139 if (s == NULL)
10140 continue;
10141 dyn.d_un.d_val = s->size;
10142 break;
10143
10144 case DT_PLTGOT:
10145 s = htab->plt;
10146 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10147 break;
10148
10149 case DT_JMPREL:
10150 s = htab->relplt;
10151 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10152 break;
10153
10154 case DT_PLTRELSZ:
10155 dyn.d_un.d_val = htab->relplt->size;
10156 break;
10157
10158 case DT_RELASZ:
10159 /* Don't count procedure linkage table relocs in the
10160 overall reloc count. */
10161 s = htab->relplt;
10162 if (s == NULL)
10163 continue;
10164 dyn.d_un.d_val -= s->size;
10165 break;
10166
10167 case DT_RELA:
10168 /* We may not be using the standard ELF linker script.
10169 If .rela.plt is the first .rela section, we adjust
10170 DT_RELA to not include it. */
10171 s = htab->relplt;
10172 if (s == NULL)
10173 continue;
10174 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10175 continue;
10176 dyn.d_un.d_ptr += s->size;
10177 break;
10178 }
10179
10180 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10181 }
10182 }
10183
10184 if (htab->got != NULL && htab->got->size != 0)
10185 {
10186 /* Fill in the first entry in the global offset table.
10187 We use it to hold the link-time TOCbase. */
10188 bfd_put_64 (output_bfd,
10189 elf_gp (output_bfd) + TOC_BASE_OFF,
10190 htab->got->contents);
10191
10192 /* Set .got entry size. */
10193 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
10194 }
10195
10196 if (htab->plt != NULL && htab->plt->size != 0)
10197 {
10198 /* Set .plt entry size. */
10199 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
10200 = PLT_ENTRY_SIZE;
10201 }
10202
10203 /* We need to handle writing out multiple GOT sections ourselves,
10204 since we didn't add them to DYNOBJ. We know dynobj is the first
10205 bfd. */
10206 while ((dynobj = dynobj->link_next) != NULL)
10207 {
10208 asection *s;
10209
10210 if (!is_ppc64_elf_target (dynobj->xvec))
10211 continue;
10212
10213 s = ppc64_elf_tdata (dynobj)->got;
10214 if (s != NULL
10215 && s->size != 0
10216 && s->output_section != bfd_abs_section_ptr
10217 && !bfd_set_section_contents (output_bfd, s->output_section,
10218 s->contents, s->output_offset,
10219 s->size))
10220 return FALSE;
10221 s = ppc64_elf_tdata (dynobj)->relgot;
10222 if (s != NULL
10223 && s->size != 0
10224 && s->output_section != bfd_abs_section_ptr
10225 && !bfd_set_section_contents (output_bfd, s->output_section,
10226 s->contents, s->output_offset,
10227 s->size))
10228 return FALSE;
10229 }
10230
10231 return TRUE;
10232 }
10233
10234 #include "elf64-target.h"
This page took 0.29057 seconds and 4 git commands to generate.