8c7c3b77adac4f98f0f91d30f4c2ab1b9985c284
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x10000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 3, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor,
2958 and some spares since opd entries may be either 16 or 24 bytes. */
2959 #define OPD_NDX(OFF) ((OFF) >> 4)
2960 struct _opd_sec_data
2961 {
2962 /* Points to the function code section for local opd entries. */
2963 asection **func_sec;
2964
2965 /* After editing .opd, adjust references to opd local syms. */
2966 long *adjust;
2967 } opd;
2968
2969 /* An array for toc sections, indexed by offset/8. */
2970 struct _toc_sec_data
2971 {
2972 /* Specifies the relocation symbol index used at a given toc offset. */
2973 unsigned *symndx;
2974
2975 /* And the relocation addend. */
2976 bfd_vma *add;
2977 } toc;
2978 } u;
2979
2980 enum _ppc64_sec_type sec_type:2;
2981
2982 /* Flag set when small branches are detected. Used to
2983 select suitable defaults for the stub group size. */
2984 unsigned int has_14bit_branch:1;
2985 };
2986
2987 #define ppc64_elf_section_data(sec) \
2988 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2989
2990 static bfd_boolean
2991 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2992 {
2993 if (!sec->used_by_bfd)
2994 {
2995 struct _ppc64_elf_section_data *sdata;
2996 bfd_size_type amt = sizeof (*sdata);
2997
2998 sdata = bfd_zalloc (abfd, amt);
2999 if (sdata == NULL)
3000 return FALSE;
3001 sec->used_by_bfd = sdata;
3002 }
3003
3004 return _bfd_elf_new_section_hook (abfd, sec);
3005 }
3006
3007 static struct _opd_sec_data *
3008 get_opd_info (asection * sec)
3009 {
3010 if (sec != NULL
3011 && ppc64_elf_section_data (sec) != NULL
3012 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3013 return &ppc64_elf_section_data (sec)->u.opd;
3014 return NULL;
3015 }
3016 \f
3017 /* Parameters for the qsort hook. */
3018 static bfd_boolean synthetic_relocatable;
3019
3020 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3021
3022 static int
3023 compare_symbols (const void *ap, const void *bp)
3024 {
3025 const asymbol *a = * (const asymbol **) ap;
3026 const asymbol *b = * (const asymbol **) bp;
3027
3028 /* Section symbols first. */
3029 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3030 return -1;
3031 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3032 return 1;
3033
3034 /* then .opd symbols. */
3035 if (strcmp (a->section->name, ".opd") == 0
3036 && strcmp (b->section->name, ".opd") != 0)
3037 return -1;
3038 if (strcmp (a->section->name, ".opd") != 0
3039 && strcmp (b->section->name, ".opd") == 0)
3040 return 1;
3041
3042 /* then other code symbols. */
3043 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 == (SEC_CODE | SEC_ALLOC)
3045 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 != (SEC_CODE | SEC_ALLOC))
3047 return -1;
3048
3049 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 != (SEC_CODE | SEC_ALLOC)
3051 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 == (SEC_CODE | SEC_ALLOC))
3053 return 1;
3054
3055 if (synthetic_relocatable)
3056 {
3057 if (a->section->id < b->section->id)
3058 return -1;
3059
3060 if (a->section->id > b->section->id)
3061 return 1;
3062 }
3063
3064 if (a->value + a->section->vma < b->value + b->section->vma)
3065 return -1;
3066
3067 if (a->value + a->section->vma > b->value + b->section->vma)
3068 return 1;
3069
3070 /* For syms with the same value, prefer strong dynamic global function
3071 syms over other syms. */
3072 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3073 return -1;
3074
3075 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3076 return 1;
3077
3078 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3079 return -1;
3080
3081 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3082 return 1;
3083
3084 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3085 return -1;
3086
3087 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3088 return 1;
3089
3090 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3091 return -1;
3092
3093 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 /* Search SYMS for a symbol of the given VALUE. */
3100
3101 static asymbol *
3102 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3103 {
3104 long mid;
3105
3106 if (id == -1)
3107 {
3108 while (lo < hi)
3109 {
3110 mid = (lo + hi) >> 1;
3111 if (syms[mid]->value + syms[mid]->section->vma < value)
3112 lo = mid + 1;
3113 else if (syms[mid]->value + syms[mid]->section->vma > value)
3114 hi = mid;
3115 else
3116 return syms[mid];
3117 }
3118 }
3119 else
3120 {
3121 while (lo < hi)
3122 {
3123 mid = (lo + hi) >> 1;
3124 if (syms[mid]->section->id < id)
3125 lo = mid + 1;
3126 else if (syms[mid]->section->id > id)
3127 hi = mid;
3128 else if (syms[mid]->value < value)
3129 lo = mid + 1;
3130 else if (syms[mid]->value > value)
3131 hi = mid;
3132 else
3133 return syms[mid];
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static bfd_boolean
3140 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3141 {
3142 bfd_vma vma = *(bfd_vma *) ptr;
3143 return ((section->flags & SEC_ALLOC) != 0
3144 && section->vma <= vma
3145 && vma < section->vma + section->size);
3146 }
3147
3148 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3149 entry syms. Also generate @plt symbols for the glink branch table. */
3150
3151 static long
3152 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3153 long static_count, asymbol **static_syms,
3154 long dyn_count, asymbol **dyn_syms,
3155 asymbol **ret)
3156 {
3157 asymbol *s;
3158 long i;
3159 long count;
3160 char *names;
3161 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3162 asection *opd = NULL;
3163 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3164 asymbol **syms;
3165 int abi = abiversion (abfd);
3166
3167 *ret = NULL;
3168
3169 if (abi < 2)
3170 {
3171 opd = bfd_get_section_by_name (abfd, ".opd");
3172 if (opd == NULL && abi == 1)
3173 return 0;
3174 }
3175
3176 symcount = static_count;
3177 if (!relocatable)
3178 symcount += dyn_count;
3179 if (symcount == 0)
3180 return 0;
3181
3182 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3183 if (syms == NULL)
3184 return -1;
3185
3186 if (!relocatable && static_count != 0 && dyn_count != 0)
3187 {
3188 /* Use both symbol tables. */
3189 memcpy (syms, static_syms, static_count * sizeof (*syms));
3190 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3191 }
3192 else if (!relocatable && static_count == 0)
3193 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3194 else
3195 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3196
3197 synthetic_relocatable = relocatable;
3198 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3199
3200 if (!relocatable && symcount > 1)
3201 {
3202 long j;
3203 /* Trim duplicate syms, since we may have merged the normal and
3204 dynamic symbols. Actually, we only care about syms that have
3205 different values, so trim any with the same value. */
3206 for (i = 1, j = 1; i < symcount; ++i)
3207 if (syms[i - 1]->value + syms[i - 1]->section->vma
3208 != syms[i]->value + syms[i]->section->vma)
3209 syms[j++] = syms[i];
3210 symcount = j;
3211 }
3212
3213 i = 0;
3214 if (strcmp (syms[i]->section->name, ".opd") == 0)
3215 ++i;
3216 codesecsym = i;
3217
3218 for (; i < symcount; ++i)
3219 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3220 != (SEC_CODE | SEC_ALLOC))
3221 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3222 break;
3223 codesecsymend = i;
3224
3225 for (; i < symcount; ++i)
3226 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3227 break;
3228 secsymend = i;
3229
3230 for (; i < symcount; ++i)
3231 if (strcmp (syms[i]->section->name, ".opd") != 0)
3232 break;
3233 opdsymend = i;
3234
3235 for (; i < symcount; ++i)
3236 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3237 != (SEC_CODE | SEC_ALLOC))
3238 break;
3239 symcount = i;
3240
3241 count = 0;
3242
3243 if (relocatable)
3244 {
3245 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3246 arelent *r;
3247 size_t size;
3248 long relcount;
3249
3250 if (opdsymend == secsymend)
3251 goto done;
3252
3253 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3254 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3255 if (relcount == 0)
3256 goto done;
3257
3258 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3259 {
3260 count = -1;
3261 goto done;
3262 }
3263
3264 size = 0;
3265 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3266 {
3267 asymbol *sym;
3268
3269 while (r < opd->relocation + relcount
3270 && r->address < syms[i]->value + opd->vma)
3271 ++r;
3272
3273 if (r == opd->relocation + relcount)
3274 break;
3275
3276 if (r->address != syms[i]->value + opd->vma)
3277 continue;
3278
3279 if (r->howto->type != R_PPC64_ADDR64)
3280 continue;
3281
3282 sym = *r->sym_ptr_ptr;
3283 if (!sym_exists_at (syms, opdsymend, symcount,
3284 sym->section->id, sym->value + r->addend))
3285 {
3286 ++count;
3287 size += sizeof (asymbol);
3288 size += strlen (syms[i]->name) + 2;
3289 }
3290 }
3291
3292 s = *ret = bfd_malloc (size);
3293 if (s == NULL)
3294 {
3295 count = -1;
3296 goto done;
3297 }
3298
3299 names = (char *) (s + count);
3300
3301 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3302 {
3303 asymbol *sym;
3304
3305 while (r < opd->relocation + relcount
3306 && r->address < syms[i]->value + opd->vma)
3307 ++r;
3308
3309 if (r == opd->relocation + relcount)
3310 break;
3311
3312 if (r->address != syms[i]->value + opd->vma)
3313 continue;
3314
3315 if (r->howto->type != R_PPC64_ADDR64)
3316 continue;
3317
3318 sym = *r->sym_ptr_ptr;
3319 if (!sym_exists_at (syms, opdsymend, symcount,
3320 sym->section->id, sym->value + r->addend))
3321 {
3322 size_t len;
3323
3324 *s = *syms[i];
3325 s->flags |= BSF_SYNTHETIC;
3326 s->section = sym->section;
3327 s->value = sym->value + r->addend;
3328 s->name = names;
3329 *names++ = '.';
3330 len = strlen (syms[i]->name);
3331 memcpy (names, syms[i]->name, len + 1);
3332 names += len + 1;
3333 /* Have udata.p point back to the original symbol this
3334 synthetic symbol was derived from. */
3335 s->udata.p = syms[i];
3336 s++;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3343 bfd_byte *contents = NULL;
3344 size_t size;
3345 long plt_count = 0;
3346 bfd_vma glink_vma = 0, resolv_vma = 0;
3347 asection *dynamic, *glink = NULL, *relplt = NULL;
3348 arelent *p;
3349
3350 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3351 {
3352 free_contents_and_exit:
3353 if (contents)
3354 free (contents);
3355 count = -1;
3356 goto done;
3357 }
3358
3359 size = 0;
3360 for (i = secsymend; i < opdsymend; ++i)
3361 {
3362 bfd_vma ent;
3363
3364 /* Ignore bogus symbols. */
3365 if (syms[i]->value > opd->size - 8)
3366 continue;
3367
3368 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3369 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3370 {
3371 ++count;
3372 size += sizeof (asymbol);
3373 size += strlen (syms[i]->name) + 2;
3374 }
3375 }
3376
3377 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3378 if (dyn_count != 0
3379 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3380 {
3381 bfd_byte *dynbuf, *extdyn, *extdynend;
3382 size_t extdynsize;
3383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3384
3385 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3386 goto free_contents_and_exit;
3387
3388 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3389 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3390
3391 extdyn = dynbuf;
3392 extdynend = extdyn + dynamic->size;
3393 for (; extdyn < extdynend; extdyn += extdynsize)
3394 {
3395 Elf_Internal_Dyn dyn;
3396 (*swap_dyn_in) (abfd, extdyn, &dyn);
3397
3398 if (dyn.d_tag == DT_NULL)
3399 break;
3400
3401 if (dyn.d_tag == DT_PPC64_GLINK)
3402 {
3403 /* The first glink stub starts at offset 32; see
3404 comment in ppc64_elf_finish_dynamic_sections. */
3405 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3406 /* The .glink section usually does not survive the final
3407 link; search for the section (usually .text) where the
3408 glink stubs now reside. */
3409 glink = bfd_sections_find_if (abfd, section_covers_vma,
3410 &glink_vma);
3411 break;
3412 }
3413 }
3414
3415 free (dynbuf);
3416 }
3417
3418 if (glink != NULL)
3419 {
3420 /* Determine __glink trampoline by reading the relative branch
3421 from the first glink stub. */
3422 bfd_byte buf[4];
3423 unsigned int off = 0;
3424
3425 while (bfd_get_section_contents (abfd, glink, buf,
3426 glink_vma + off - glink->vma, 4))
3427 {
3428 unsigned int insn = bfd_get_32 (abfd, buf);
3429 insn ^= B_DOT;
3430 if ((insn & ~0x3fffffc) == 0)
3431 {
3432 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3433 break;
3434 }
3435 off += 4;
3436 if (off > 4)
3437 break;
3438 }
3439
3440 if (resolv_vma)
3441 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3442
3443 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3444 if (relplt != NULL)
3445 {
3446 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3447 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3448 goto free_contents_and_exit;
3449
3450 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3451 size += plt_count * sizeof (asymbol);
3452
3453 p = relplt->relocation;
3454 for (i = 0; i < plt_count; i++, p++)
3455 {
3456 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3457 if (p->addend != 0)
3458 size += sizeof ("+0x") - 1 + 16;
3459 }
3460 }
3461 }
3462
3463 s = *ret = bfd_malloc (size);
3464 if (s == NULL)
3465 goto free_contents_and_exit;
3466
3467 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3468
3469 for (i = secsymend; i < opdsymend; ++i)
3470 {
3471 bfd_vma ent;
3472
3473 if (syms[i]->value > opd->size - 8)
3474 continue;
3475
3476 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3477 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3478 {
3479 long lo, hi;
3480 size_t len;
3481 asection *sec = abfd->sections;
3482
3483 *s = *syms[i];
3484 lo = codesecsym;
3485 hi = codesecsymend;
3486 while (lo < hi)
3487 {
3488 long mid = (lo + hi) >> 1;
3489 if (syms[mid]->section->vma < ent)
3490 lo = mid + 1;
3491 else if (syms[mid]->section->vma > ent)
3492 hi = mid;
3493 else
3494 {
3495 sec = syms[mid]->section;
3496 break;
3497 }
3498 }
3499
3500 if (lo >= hi && lo > codesecsym)
3501 sec = syms[lo - 1]->section;
3502
3503 for (; sec != NULL; sec = sec->next)
3504 {
3505 if (sec->vma > ent)
3506 break;
3507 /* SEC_LOAD may not be set if SEC is from a separate debug
3508 info file. */
3509 if ((sec->flags & SEC_ALLOC) == 0)
3510 break;
3511 if ((sec->flags & SEC_CODE) != 0)
3512 s->section = sec;
3513 }
3514 s->flags |= BSF_SYNTHETIC;
3515 s->value = ent - s->section->vma;
3516 s->name = names;
3517 *names++ = '.';
3518 len = strlen (syms[i]->name);
3519 memcpy (names, syms[i]->name, len + 1);
3520 names += len + 1;
3521 /* Have udata.p point back to the original symbol this
3522 synthetic symbol was derived from. */
3523 s->udata.p = syms[i];
3524 s++;
3525 }
3526 }
3527 free (contents);
3528
3529 if (glink != NULL && relplt != NULL)
3530 {
3531 if (resolv_vma)
3532 {
3533 /* Add a symbol for the main glink trampoline. */
3534 memset (s, 0, sizeof *s);
3535 s->the_bfd = abfd;
3536 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3537 s->section = glink;
3538 s->value = resolv_vma - glink->vma;
3539 s->name = names;
3540 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3541 names += sizeof ("__glink_PLTresolve");
3542 s++;
3543 count++;
3544 }
3545
3546 /* FIXME: It would be very much nicer to put sym@plt on the
3547 stub rather than on the glink branch table entry. The
3548 objdump disassembler would then use a sensible symbol
3549 name on plt calls. The difficulty in doing so is
3550 a) finding the stubs, and,
3551 b) matching stubs against plt entries, and,
3552 c) there can be multiple stubs for a given plt entry.
3553
3554 Solving (a) could be done by code scanning, but older
3555 ppc64 binaries used different stubs to current code.
3556 (b) is the tricky one since you need to known the toc
3557 pointer for at least one function that uses a pic stub to
3558 be able to calculate the plt address referenced.
3559 (c) means gdb would need to set multiple breakpoints (or
3560 find the glink branch itself) when setting breakpoints
3561 for pending shared library loads. */
3562 p = relplt->relocation;
3563 for (i = 0; i < plt_count; i++, p++)
3564 {
3565 size_t len;
3566
3567 *s = **p->sym_ptr_ptr;
3568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3569 we are defining a symbol, ensure one of them is set. */
3570 if ((s->flags & BSF_LOCAL) == 0)
3571 s->flags |= BSF_GLOBAL;
3572 s->flags |= BSF_SYNTHETIC;
3573 s->section = glink;
3574 s->value = glink_vma - glink->vma;
3575 s->name = names;
3576 s->udata.p = NULL;
3577 len = strlen ((*p->sym_ptr_ptr)->name);
3578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3579 names += len;
3580 if (p->addend != 0)
3581 {
3582 memcpy (names, "+0x", sizeof ("+0x") - 1);
3583 names += sizeof ("+0x") - 1;
3584 bfd_sprintf_vma (abfd, names, p->addend);
3585 names += strlen (names);
3586 }
3587 memcpy (names, "@plt", sizeof ("@plt"));
3588 names += sizeof ("@plt");
3589 s++;
3590 if (abi < 2)
3591 {
3592 glink_vma += 8;
3593 if (i >= 0x8000)
3594 glink_vma += 4;
3595 }
3596 else
3597 glink_vma += 4;
3598 }
3599 count += plt_count;
3600 }
3601 }
3602
3603 done:
3604 free (syms);
3605 return count;
3606 }
3607 \f
3608 /* The following functions are specific to the ELF linker, while
3609 functions above are used generally. Those named ppc64_elf_* are
3610 called by the main ELF linker code. They appear in this file more
3611 or less in the order in which they are called. eg.
3612 ppc64_elf_check_relocs is called early in the link process,
3613 ppc64_elf_finish_dynamic_sections is one of the last functions
3614 called.
3615
3616 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3617 functions have both a function code symbol and a function descriptor
3618 symbol. A call to foo in a relocatable object file looks like:
3619
3620 . .text
3621 . x:
3622 . bl .foo
3623 . nop
3624
3625 The function definition in another object file might be:
3626
3627 . .section .opd
3628 . foo: .quad .foo
3629 . .quad .TOC.@tocbase
3630 . .quad 0
3631 .
3632 . .text
3633 . .foo: blr
3634
3635 When the linker resolves the call during a static link, the branch
3636 unsurprisingly just goes to .foo and the .opd information is unused.
3637 If the function definition is in a shared library, things are a little
3638 different: The call goes via a plt call stub, the opd information gets
3639 copied to the plt, and the linker patches the nop.
3640
3641 . x:
3642 . bl .foo_stub
3643 . ld 2,40(1)
3644 .
3645 .
3646 . .foo_stub:
3647 . std 2,40(1) # in practice, the call stub
3648 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3649 . addi 11,11,Lfoo@toc@l # this is the general idea
3650 . ld 12,0(11)
3651 . ld 2,8(11)
3652 . mtctr 12
3653 . ld 11,16(11)
3654 . bctr
3655 .
3656 . .section .plt
3657 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3658
3659 The "reloc ()" notation is supposed to indicate that the linker emits
3660 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3661 copying.
3662
3663 What are the difficulties here? Well, firstly, the relocations
3664 examined by the linker in check_relocs are against the function code
3665 sym .foo, while the dynamic relocation in the plt is emitted against
3666 the function descriptor symbol, foo. Somewhere along the line, we need
3667 to carefully copy dynamic link information from one symbol to the other.
3668 Secondly, the generic part of the elf linker will make .foo a dynamic
3669 symbol as is normal for most other backends. We need foo dynamic
3670 instead, at least for an application final link. However, when
3671 creating a shared library containing foo, we need to have both symbols
3672 dynamic so that references to .foo are satisfied during the early
3673 stages of linking. Otherwise the linker might decide to pull in a
3674 definition from some other object, eg. a static library.
3675
3676 Update: As of August 2004, we support a new convention. Function
3677 calls may use the function descriptor symbol, ie. "bl foo". This
3678 behaves exactly as "bl .foo". */
3679
3680 /* Of those relocs that might be copied as dynamic relocs, this function
3681 selects those that must be copied when linking a shared library,
3682 even when the symbol is local. */
3683
3684 static int
3685 must_be_dyn_reloc (struct bfd_link_info *info,
3686 enum elf_ppc64_reloc_type r_type)
3687 {
3688 switch (r_type)
3689 {
3690 default:
3691 return 1;
3692
3693 case R_PPC64_REL32:
3694 case R_PPC64_REL64:
3695 case R_PPC64_REL30:
3696 return 0;
3697
3698 case R_PPC64_TPREL16:
3699 case R_PPC64_TPREL16_LO:
3700 case R_PPC64_TPREL16_HI:
3701 case R_PPC64_TPREL16_HA:
3702 case R_PPC64_TPREL16_DS:
3703 case R_PPC64_TPREL16_LO_DS:
3704 case R_PPC64_TPREL16_HIGH:
3705 case R_PPC64_TPREL16_HIGHA:
3706 case R_PPC64_TPREL16_HIGHER:
3707 case R_PPC64_TPREL16_HIGHERA:
3708 case R_PPC64_TPREL16_HIGHEST:
3709 case R_PPC64_TPREL16_HIGHESTA:
3710 case R_PPC64_TPREL64:
3711 return !info->executable;
3712 }
3713 }
3714
3715 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3716 copying dynamic variables from a shared lib into an app's dynbss
3717 section, and instead use a dynamic relocation to point into the
3718 shared lib. With code that gcc generates, it's vital that this be
3719 enabled; In the PowerPC64 ABI, the address of a function is actually
3720 the address of a function descriptor, which resides in the .opd
3721 section. gcc uses the descriptor directly rather than going via the
3722 GOT as some other ABI's do, which means that initialized function
3723 pointers must reference the descriptor. Thus, a function pointer
3724 initialized to the address of a function in a shared library will
3725 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3726 redefines the function descriptor symbol to point to the copy. This
3727 presents a problem as a plt entry for that function is also
3728 initialized from the function descriptor symbol and the copy reloc
3729 may not be initialized first. */
3730 #define ELIMINATE_COPY_RELOCS 1
3731
3732 /* Section name for stubs is the associated section name plus this
3733 string. */
3734 #define STUB_SUFFIX ".stub"
3735
3736 /* Linker stubs.
3737 ppc_stub_long_branch:
3738 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3739 destination, but a 24 bit branch in a stub section will reach.
3740 . b dest
3741
3742 ppc_stub_plt_branch:
3743 Similar to the above, but a 24 bit branch in the stub section won't
3744 reach its destination.
3745 . addis %r11,%r2,xxx@toc@ha
3746 . ld %r12,xxx@toc@l(%r11)
3747 . mtctr %r12
3748 . bctr
3749
3750 ppc_stub_plt_call:
3751 Used to call a function in a shared library. If it so happens that
3752 the plt entry referenced crosses a 64k boundary, then an extra
3753 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3754 . std %r2,40(%r1)
3755 . addis %r11,%r2,xxx@toc@ha
3756 . ld %r12,xxx+0@toc@l(%r11)
3757 . mtctr %r12
3758 . ld %r2,xxx+8@toc@l(%r11)
3759 . ld %r11,xxx+16@toc@l(%r11)
3760 . bctr
3761
3762 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3763 code to adjust the value and save r2 to support multiple toc sections.
3764 A ppc_stub_long_branch with an r2 offset looks like:
3765 . std %r2,40(%r1)
3766 . addis %r2,%r2,off@ha
3767 . addi %r2,%r2,off@l
3768 . b dest
3769
3770 A ppc_stub_plt_branch with an r2 offset looks like:
3771 . std %r2,40(%r1)
3772 . addis %r11,%r2,xxx@toc@ha
3773 . ld %r12,xxx@toc@l(%r11)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . mtctr %r12
3777 . bctr
3778
3779 In cases where the "addis" instruction would add zero, the "addis" is
3780 omitted and following instructions modified slightly in some cases.
3781 */
3782
3783 enum ppc_stub_type {
3784 ppc_stub_none,
3785 ppc_stub_long_branch,
3786 ppc_stub_long_branch_r2off,
3787 ppc_stub_plt_branch,
3788 ppc_stub_plt_branch_r2off,
3789 ppc_stub_plt_call,
3790 ppc_stub_plt_call_r2save,
3791 ppc_stub_global_entry
3792 };
3793
3794 struct ppc_stub_hash_entry {
3795
3796 /* Base hash table entry structure. */
3797 struct bfd_hash_entry root;
3798
3799 enum ppc_stub_type stub_type;
3800
3801 /* The stub section. */
3802 asection *stub_sec;
3803
3804 /* Offset within stub_sec of the beginning of this stub. */
3805 bfd_vma stub_offset;
3806
3807 /* Given the symbol's value and its section we can determine its final
3808 value when building the stubs (so the stub knows where to jump. */
3809 bfd_vma target_value;
3810 asection *target_section;
3811
3812 /* The symbol table entry, if any, that this was derived from. */
3813 struct ppc_link_hash_entry *h;
3814 struct plt_entry *plt_ent;
3815
3816 /* Where this stub is being called from, or, in the case of combined
3817 stub sections, the first input section in the group. */
3818 asection *id_sec;
3819
3820 /* Symbol st_other. */
3821 unsigned char other;
3822 };
3823
3824 struct ppc_branch_hash_entry {
3825
3826 /* Base hash table entry structure. */
3827 struct bfd_hash_entry root;
3828
3829 /* Offset within branch lookup table. */
3830 unsigned int offset;
3831
3832 /* Generation marker. */
3833 unsigned int iter;
3834 };
3835
3836 /* Used to track dynamic relocations for local symbols. */
3837 struct ppc_dyn_relocs
3838 {
3839 struct ppc_dyn_relocs *next;
3840
3841 /* The input section of the reloc. */
3842 asection *sec;
3843
3844 /* Total number of relocs copied for the input section. */
3845 unsigned int count : 31;
3846
3847 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3848 unsigned int ifunc : 1;
3849 };
3850
3851 struct ppc_link_hash_entry
3852 {
3853 struct elf_link_hash_entry elf;
3854
3855 union {
3856 /* A pointer to the most recently used stub hash entry against this
3857 symbol. */
3858 struct ppc_stub_hash_entry *stub_cache;
3859
3860 /* A pointer to the next symbol starting with a '.' */
3861 struct ppc_link_hash_entry *next_dot_sym;
3862 } u;
3863
3864 /* Track dynamic relocs copied for this symbol. */
3865 struct elf_dyn_relocs *dyn_relocs;
3866
3867 /* Link between function code and descriptor symbols. */
3868 struct ppc_link_hash_entry *oh;
3869
3870 /* Flag function code and descriptor symbols. */
3871 unsigned int is_func:1;
3872 unsigned int is_func_descriptor:1;
3873 unsigned int fake:1;
3874
3875 /* Whether global opd/toc sym has been adjusted or not.
3876 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3877 should be set for all globals defined in any opd/toc section. */
3878 unsigned int adjust_done:1;
3879
3880 /* Set if we twiddled this symbol to weak at some stage. */
3881 unsigned int was_undefined:1;
3882
3883 /* Contexts in which symbol is used in the GOT (or TOC).
3884 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3885 corresponding relocs are encountered during check_relocs.
3886 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3887 indicate the corresponding GOT entry type is not needed.
3888 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3889 a TPREL one. We use a separate flag rather than setting TPREL
3890 just for convenience in distinguishing the two cases. */
3891 #define TLS_GD 1 /* GD reloc. */
3892 #define TLS_LD 2 /* LD reloc. */
3893 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3894 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3895 #define TLS_TLS 16 /* Any TLS reloc. */
3896 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3897 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3898 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3899 unsigned char tls_mask;
3900 };
3901
3902 /* ppc64 ELF linker hash table. */
3903
3904 struct ppc_link_hash_table
3905 {
3906 struct elf_link_hash_table elf;
3907
3908 /* The stub hash table. */
3909 struct bfd_hash_table stub_hash_table;
3910
3911 /* Another hash table for plt_branch stubs. */
3912 struct bfd_hash_table branch_hash_table;
3913
3914 /* Hash table for function prologue tocsave. */
3915 htab_t tocsave_htab;
3916
3917 /* Various options and other info passed from the linker. */
3918 struct ppc64_elf_params *params;
3919
3920 /* Array to keep track of which stub sections have been created, and
3921 information on stub grouping. */
3922 struct map_stub {
3923 /* This is the section to which stubs in the group will be attached. */
3924 asection *link_sec;
3925 /* The stub section. */
3926 asection *stub_sec;
3927 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3928 bfd_vma toc_off;
3929 } *stub_group;
3930
3931 /* Temp used when calculating TOC pointers. */
3932 bfd_vma toc_curr;
3933 bfd *toc_bfd;
3934 asection *toc_first_sec;
3935
3936 /* Highest input section id. */
3937 int top_id;
3938
3939 /* Highest output section index. */
3940 int top_index;
3941
3942 /* Used when adding symbols. */
3943 struct ppc_link_hash_entry *dot_syms;
3944
3945 /* List of input sections for each output section. */
3946 asection **input_list;
3947
3948 /* Shortcuts to get to dynamic linker sections. */
3949 asection *dynbss;
3950 asection *relbss;
3951 asection *glink;
3952 asection *sfpr;
3953 asection *brlt;
3954 asection *relbrlt;
3955 asection *glink_eh_frame;
3956
3957 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3958 struct ppc_link_hash_entry *tls_get_addr;
3959 struct ppc_link_hash_entry *tls_get_addr_fd;
3960
3961 /* The size of reliplt used by got entry relocs. */
3962 bfd_size_type got_reli_size;
3963
3964 /* Statistics. */
3965 unsigned long stub_count[ppc_stub_global_entry];
3966
3967 /* Number of stubs against global syms. */
3968 unsigned long stub_globals;
3969
3970 /* Set if we're linking code with function descriptors. */
3971 unsigned int opd_abi:1;
3972
3973 /* Support for multiple toc sections. */
3974 unsigned int do_multi_toc:1;
3975 unsigned int multi_toc_needed:1;
3976 unsigned int second_toc_pass:1;
3977 unsigned int do_toc_opt:1;
3978
3979 /* Set on error. */
3980 unsigned int stub_error:1;
3981
3982 /* Temp used by ppc64_elf_before_check_relocs. */
3983 unsigned int twiddled_syms:1;
3984
3985 /* Incremented every time we size stubs. */
3986 unsigned int stub_iteration;
3987
3988 /* Small local sym cache. */
3989 struct sym_cache sym_cache;
3990 };
3991
3992 /* Rename some of the generic section flags to better document how they
3993 are used here. */
3994
3995 /* Nonzero if this section has TLS related relocations. */
3996 #define has_tls_reloc sec_flg0
3997
3998 /* Nonzero if this section has a call to __tls_get_addr. */
3999 #define has_tls_get_addr_call sec_flg1
4000
4001 /* Nonzero if this section has any toc or got relocs. */
4002 #define has_toc_reloc sec_flg2
4003
4004 /* Nonzero if this section has a call to another section that uses
4005 the toc or got. */
4006 #define makes_toc_func_call sec_flg3
4007
4008 /* Recursion protection when determining above flag. */
4009 #define call_check_in_progress sec_flg4
4010 #define call_check_done sec_flg5
4011
4012 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4013
4014 #define ppc_hash_table(p) \
4015 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4016 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4017
4018 #define ppc_stub_hash_lookup(table, string, create, copy) \
4019 ((struct ppc_stub_hash_entry *) \
4020 bfd_hash_lookup ((table), (string), (create), (copy)))
4021
4022 #define ppc_branch_hash_lookup(table, string, create, copy) \
4023 ((struct ppc_branch_hash_entry *) \
4024 bfd_hash_lookup ((table), (string), (create), (copy)))
4025
4026 /* Create an entry in the stub hash table. */
4027
4028 static struct bfd_hash_entry *
4029 stub_hash_newfunc (struct bfd_hash_entry *entry,
4030 struct bfd_hash_table *table,
4031 const char *string)
4032 {
4033 /* Allocate the structure if it has not already been allocated by a
4034 subclass. */
4035 if (entry == NULL)
4036 {
4037 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4038 if (entry == NULL)
4039 return entry;
4040 }
4041
4042 /* Call the allocation method of the superclass. */
4043 entry = bfd_hash_newfunc (entry, table, string);
4044 if (entry != NULL)
4045 {
4046 struct ppc_stub_hash_entry *eh;
4047
4048 /* Initialize the local fields. */
4049 eh = (struct ppc_stub_hash_entry *) entry;
4050 eh->stub_type = ppc_stub_none;
4051 eh->stub_sec = NULL;
4052 eh->stub_offset = 0;
4053 eh->target_value = 0;
4054 eh->target_section = NULL;
4055 eh->h = NULL;
4056 eh->plt_ent = NULL;
4057 eh->id_sec = NULL;
4058 eh->other = 0;
4059 }
4060
4061 return entry;
4062 }
4063
4064 /* Create an entry in the branch hash table. */
4065
4066 static struct bfd_hash_entry *
4067 branch_hash_newfunc (struct bfd_hash_entry *entry,
4068 struct bfd_hash_table *table,
4069 const char *string)
4070 {
4071 /* Allocate the structure if it has not already been allocated by a
4072 subclass. */
4073 if (entry == NULL)
4074 {
4075 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4076 if (entry == NULL)
4077 return entry;
4078 }
4079
4080 /* Call the allocation method of the superclass. */
4081 entry = bfd_hash_newfunc (entry, table, string);
4082 if (entry != NULL)
4083 {
4084 struct ppc_branch_hash_entry *eh;
4085
4086 /* Initialize the local fields. */
4087 eh = (struct ppc_branch_hash_entry *) entry;
4088 eh->offset = 0;
4089 eh->iter = 0;
4090 }
4091
4092 return entry;
4093 }
4094
4095 /* Create an entry in a ppc64 ELF linker hash table. */
4096
4097 static struct bfd_hash_entry *
4098 link_hash_newfunc (struct bfd_hash_entry *entry,
4099 struct bfd_hash_table *table,
4100 const char *string)
4101 {
4102 /* Allocate the structure if it has not already been allocated by a
4103 subclass. */
4104 if (entry == NULL)
4105 {
4106 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4107 if (entry == NULL)
4108 return entry;
4109 }
4110
4111 /* Call the allocation method of the superclass. */
4112 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4113 if (entry != NULL)
4114 {
4115 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4116
4117 memset (&eh->u.stub_cache, 0,
4118 (sizeof (struct ppc_link_hash_entry)
4119 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4120
4121 /* When making function calls, old ABI code references function entry
4122 points (dot symbols), while new ABI code references the function
4123 descriptor symbol. We need to make any combination of reference and
4124 definition work together, without breaking archive linking.
4125
4126 For a defined function "foo" and an undefined call to "bar":
4127 An old object defines "foo" and ".foo", references ".bar" (possibly
4128 "bar" too).
4129 A new object defines "foo" and references "bar".
4130
4131 A new object thus has no problem with its undefined symbols being
4132 satisfied by definitions in an old object. On the other hand, the
4133 old object won't have ".bar" satisfied by a new object.
4134
4135 Keep a list of newly added dot-symbols. */
4136
4137 if (string[0] == '.')
4138 {
4139 struct ppc_link_hash_table *htab;
4140
4141 htab = (struct ppc_link_hash_table *) table;
4142 eh->u.next_dot_sym = htab->dot_syms;
4143 htab->dot_syms = eh;
4144 }
4145 }
4146
4147 return entry;
4148 }
4149
4150 struct tocsave_entry {
4151 asection *sec;
4152 bfd_vma offset;
4153 };
4154
4155 static hashval_t
4156 tocsave_htab_hash (const void *p)
4157 {
4158 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4159 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4160 }
4161
4162 static int
4163 tocsave_htab_eq (const void *p1, const void *p2)
4164 {
4165 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4166 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4167 return e1->sec == e2->sec && e1->offset == e2->offset;
4168 }
4169
4170 /* Destroy a ppc64 ELF linker hash table. */
4171
4172 static void
4173 ppc64_elf_link_hash_table_free (bfd *obfd)
4174 {
4175 struct ppc_link_hash_table *htab;
4176
4177 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4178 if (htab->tocsave_htab)
4179 htab_delete (htab->tocsave_htab);
4180 bfd_hash_table_free (&htab->branch_hash_table);
4181 bfd_hash_table_free (&htab->stub_hash_table);
4182 _bfd_elf_link_hash_table_free (obfd);
4183 }
4184
4185 /* Create a ppc64 ELF linker hash table. */
4186
4187 static struct bfd_link_hash_table *
4188 ppc64_elf_link_hash_table_create (bfd *abfd)
4189 {
4190 struct ppc_link_hash_table *htab;
4191 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4192
4193 htab = bfd_zmalloc (amt);
4194 if (htab == NULL)
4195 return NULL;
4196
4197 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4198 sizeof (struct ppc_link_hash_entry),
4199 PPC64_ELF_DATA))
4200 {
4201 free (htab);
4202 return NULL;
4203 }
4204
4205 /* Init the stub hash table too. */
4206 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4207 sizeof (struct ppc_stub_hash_entry)))
4208 {
4209 _bfd_elf_link_hash_table_free (abfd);
4210 return NULL;
4211 }
4212
4213 /* And the branch hash table. */
4214 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4215 sizeof (struct ppc_branch_hash_entry)))
4216 {
4217 bfd_hash_table_free (&htab->stub_hash_table);
4218 _bfd_elf_link_hash_table_free (abfd);
4219 return NULL;
4220 }
4221
4222 htab->tocsave_htab = htab_try_create (1024,
4223 tocsave_htab_hash,
4224 tocsave_htab_eq,
4225 NULL);
4226 if (htab->tocsave_htab == NULL)
4227 {
4228 ppc64_elf_link_hash_table_free (abfd);
4229 return NULL;
4230 }
4231 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4232
4233 /* Initializing two fields of the union is just cosmetic. We really
4234 only care about glist, but when compiled on a 32-bit host the
4235 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4236 debugger inspection of these fields look nicer. */
4237 htab->elf.init_got_refcount.refcount = 0;
4238 htab->elf.init_got_refcount.glist = NULL;
4239 htab->elf.init_plt_refcount.refcount = 0;
4240 htab->elf.init_plt_refcount.glist = NULL;
4241 htab->elf.init_got_offset.offset = 0;
4242 htab->elf.init_got_offset.glist = NULL;
4243 htab->elf.init_plt_offset.offset = 0;
4244 htab->elf.init_plt_offset.glist = NULL;
4245
4246 return &htab->elf.root;
4247 }
4248
4249 /* Create sections for linker generated code. */
4250
4251 static bfd_boolean
4252 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4253 {
4254 struct ppc_link_hash_table *htab;
4255 flagword flags;
4256
4257 htab = ppc_hash_table (info);
4258
4259 /* Create .sfpr for code to save and restore fp regs. */
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4263 flags);
4264 if (htab->sfpr == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4266 return FALSE;
4267
4268 /* Create .glink for lazy dynamic linking support. */
4269 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4270 flags);
4271 if (htab->glink == NULL
4272 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4273 return FALSE;
4274
4275 if (!info->no_ld_generated_unwind_info)
4276 {
4277 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4278 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4279 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4280 ".eh_frame",
4281 flags);
4282 if (htab->glink_eh_frame == NULL
4283 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4284 return FALSE;
4285 }
4286
4287 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4288 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4289 if (htab->elf.iplt == NULL
4290 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4291 return FALSE;
4292
4293 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4294 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 htab->elf.irelplt
4296 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4297 if (htab->elf.irelplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4299 return FALSE;
4300
4301 /* Create branch lookup table for plt_branch stubs. */
4302 flags = (SEC_ALLOC | SEC_LOAD
4303 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4304 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4305 flags);
4306 if (htab->brlt == NULL
4307 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4308 return FALSE;
4309
4310 if (!info->shared)
4311 return TRUE;
4312
4313 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4314 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4315 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4316 ".rela.branch_lt",
4317 flags);
4318 if (htab->relbrlt == NULL
4319 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4320 return FALSE;
4321
4322 return TRUE;
4323 }
4324
4325 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4326
4327 bfd_boolean
4328 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4329 struct ppc64_elf_params *params)
4330 {
4331 struct ppc_link_hash_table *htab;
4332
4333 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4334
4335 /* Always hook our dynamic sections into the first bfd, which is the
4336 linker created stub bfd. This ensures that the GOT header is at
4337 the start of the output TOC section. */
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return FALSE;
4341 htab->elf.dynobj = params->stub_bfd;
4342 htab->params = params;
4343
4344 if (info->relocatable)
4345 return TRUE;
4346
4347 return create_linkage_sections (htab->elf.dynobj, info);
4348 }
4349
4350 /* Build a name for an entry in the stub hash table. */
4351
4352 static char *
4353 ppc_stub_name (const asection *input_section,
4354 const asection *sym_sec,
4355 const struct ppc_link_hash_entry *h,
4356 const Elf_Internal_Rela *rel)
4357 {
4358 char *stub_name;
4359 ssize_t len;
4360
4361 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4362 offsets from a sym as a branch target? In fact, we could
4363 probably assume the addend is always zero. */
4364 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4365
4366 if (h)
4367 {
4368 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4369 stub_name = bfd_malloc (len);
4370 if (stub_name == NULL)
4371 return stub_name;
4372
4373 len = sprintf (stub_name, "%08x.%s+%x",
4374 input_section->id & 0xffffffff,
4375 h->elf.root.root.string,
4376 (int) rel->r_addend & 0xffffffff);
4377 }
4378 else
4379 {
4380 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4381 stub_name = bfd_malloc (len);
4382 if (stub_name == NULL)
4383 return stub_name;
4384
4385 len = sprintf (stub_name, "%08x.%x:%x+%x",
4386 input_section->id & 0xffffffff,
4387 sym_sec->id & 0xffffffff,
4388 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4389 (int) rel->r_addend & 0xffffffff);
4390 }
4391 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4392 stub_name[len - 2] = 0;
4393 return stub_name;
4394 }
4395
4396 /* Look up an entry in the stub hash. Stub entries are cached because
4397 creating the stub name takes a bit of time. */
4398
4399 static struct ppc_stub_hash_entry *
4400 ppc_get_stub_entry (const asection *input_section,
4401 const asection *sym_sec,
4402 struct ppc_link_hash_entry *h,
4403 const Elf_Internal_Rela *rel,
4404 struct ppc_link_hash_table *htab)
4405 {
4406 struct ppc_stub_hash_entry *stub_entry;
4407 const asection *id_sec;
4408
4409 /* If this input section is part of a group of sections sharing one
4410 stub section, then use the id of the first section in the group.
4411 Stub names need to include a section id, as there may well be
4412 more than one stub used to reach say, printf, and we need to
4413 distinguish between them. */
4414 id_sec = htab->stub_group[input_section->id].link_sec;
4415
4416 if (h != NULL && h->u.stub_cache != NULL
4417 && h->u.stub_cache->h == h
4418 && h->u.stub_cache->id_sec == id_sec)
4419 {
4420 stub_entry = h->u.stub_cache;
4421 }
4422 else
4423 {
4424 char *stub_name;
4425
4426 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4427 if (stub_name == NULL)
4428 return NULL;
4429
4430 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4431 stub_name, FALSE, FALSE);
4432 if (h != NULL)
4433 h->u.stub_cache = stub_entry;
4434
4435 free (stub_name);
4436 }
4437
4438 return stub_entry;
4439 }
4440
4441 /* Add a new stub entry to the stub hash. Not all fields of the new
4442 stub entry are initialised. */
4443
4444 static struct ppc_stub_hash_entry *
4445 ppc_add_stub (const char *stub_name,
4446 asection *section,
4447 struct bfd_link_info *info)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450 asection *link_sec;
4451 asection *stub_sec;
4452 struct ppc_stub_hash_entry *stub_entry;
4453
4454 link_sec = htab->stub_group[section->id].link_sec;
4455 stub_sec = htab->stub_group[section->id].stub_sec;
4456 if (stub_sec == NULL)
4457 {
4458 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4459 if (stub_sec == NULL)
4460 {
4461 size_t namelen;
4462 bfd_size_type len;
4463 char *s_name;
4464
4465 namelen = strlen (link_sec->name);
4466 len = namelen + sizeof (STUB_SUFFIX);
4467 s_name = bfd_alloc (htab->params->stub_bfd, len);
4468 if (s_name == NULL)
4469 return NULL;
4470
4471 memcpy (s_name, link_sec->name, namelen);
4472 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4473 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4474 if (stub_sec == NULL)
4475 return NULL;
4476 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4477 }
4478 htab->stub_group[section->id].stub_sec = stub_sec;
4479 }
4480
4481 /* Enter this entry into the linker stub hash table. */
4482 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4483 TRUE, FALSE);
4484 if (stub_entry == NULL)
4485 {
4486 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4487 section->owner, stub_name);
4488 return NULL;
4489 }
4490
4491 stub_entry->stub_sec = stub_sec;
4492 stub_entry->stub_offset = 0;
4493 stub_entry->id_sec = link_sec;
4494 return stub_entry;
4495 }
4496
4497 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4498 not already done. */
4499
4500 static bfd_boolean
4501 create_got_section (bfd *abfd, struct bfd_link_info *info)
4502 {
4503 asection *got, *relgot;
4504 flagword flags;
4505 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4506
4507 if (!is_ppc64_elf (abfd))
4508 return FALSE;
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (!htab->elf.sgot
4513 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4514 return FALSE;
4515
4516 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4517 | SEC_LINKER_CREATED);
4518
4519 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4520 if (!got
4521 || !bfd_set_section_alignment (abfd, got, 3))
4522 return FALSE;
4523
4524 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4525 flags | SEC_READONLY);
4526 if (!relgot
4527 || ! bfd_set_section_alignment (abfd, relgot, 3))
4528 return FALSE;
4529
4530 ppc64_elf_tdata (abfd)->got = got;
4531 ppc64_elf_tdata (abfd)->relgot = relgot;
4532 return TRUE;
4533 }
4534
4535 /* Create the dynamic sections, and set up shortcuts. */
4536
4537 static bfd_boolean
4538 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4539 {
4540 struct ppc_link_hash_table *htab;
4541
4542 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4543 return FALSE;
4544
4545 htab = ppc_hash_table (info);
4546 if (htab == NULL)
4547 return FALSE;
4548
4549 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4550 if (!info->shared)
4551 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4552
4553 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4554 || (!info->shared && !htab->relbss))
4555 abort ();
4556
4557 return TRUE;
4558 }
4559
4560 /* Follow indirect and warning symbol links. */
4561
4562 static inline struct bfd_link_hash_entry *
4563 follow_link (struct bfd_link_hash_entry *h)
4564 {
4565 while (h->type == bfd_link_hash_indirect
4566 || h->type == bfd_link_hash_warning)
4567 h = h->u.i.link;
4568 return h;
4569 }
4570
4571 static inline struct elf_link_hash_entry *
4572 elf_follow_link (struct elf_link_hash_entry *h)
4573 {
4574 return (struct elf_link_hash_entry *) follow_link (&h->root);
4575 }
4576
4577 static inline struct ppc_link_hash_entry *
4578 ppc_follow_link (struct ppc_link_hash_entry *h)
4579 {
4580 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4581 }
4582
4583 /* Merge PLT info on FROM with that on TO. */
4584
4585 static void
4586 move_plt_plist (struct ppc_link_hash_entry *from,
4587 struct ppc_link_hash_entry *to)
4588 {
4589 if (from->elf.plt.plist != NULL)
4590 {
4591 if (to->elf.plt.plist != NULL)
4592 {
4593 struct plt_entry **entp;
4594 struct plt_entry *ent;
4595
4596 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4597 {
4598 struct plt_entry *dent;
4599
4600 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4601 if (dent->addend == ent->addend)
4602 {
4603 dent->plt.refcount += ent->plt.refcount;
4604 *entp = ent->next;
4605 break;
4606 }
4607 if (dent == NULL)
4608 entp = &ent->next;
4609 }
4610 *entp = to->elf.plt.plist;
4611 }
4612
4613 to->elf.plt.plist = from->elf.plt.plist;
4614 from->elf.plt.plist = NULL;
4615 }
4616 }
4617
4618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4619
4620 static void
4621 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4622 struct elf_link_hash_entry *dir,
4623 struct elf_link_hash_entry *ind)
4624 {
4625 struct ppc_link_hash_entry *edir, *eind;
4626
4627 edir = (struct ppc_link_hash_entry *) dir;
4628 eind = (struct ppc_link_hash_entry *) ind;
4629
4630 edir->is_func |= eind->is_func;
4631 edir->is_func_descriptor |= eind->is_func_descriptor;
4632 edir->tls_mask |= eind->tls_mask;
4633 if (eind->oh != NULL)
4634 edir->oh = ppc_follow_link (eind->oh);
4635
4636 /* If called to transfer flags for a weakdef during processing
4637 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4638 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4639 if (!(ELIMINATE_COPY_RELOCS
4640 && eind->elf.root.type != bfd_link_hash_indirect
4641 && edir->elf.dynamic_adjusted))
4642 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4643
4644 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4645 edir->elf.ref_regular |= eind->elf.ref_regular;
4646 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4647 edir->elf.needs_plt |= eind->elf.needs_plt;
4648 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4649
4650 /* Copy over any dynamic relocs we may have on the indirect sym. */
4651 if (eind->dyn_relocs != NULL)
4652 {
4653 if (edir->dyn_relocs != NULL)
4654 {
4655 struct elf_dyn_relocs **pp;
4656 struct elf_dyn_relocs *p;
4657
4658 /* Add reloc counts against the indirect sym to the direct sym
4659 list. Merge any entries against the same section. */
4660 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4661 {
4662 struct elf_dyn_relocs *q;
4663
4664 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4665 if (q->sec == p->sec)
4666 {
4667 q->pc_count += p->pc_count;
4668 q->count += p->count;
4669 *pp = p->next;
4670 break;
4671 }
4672 if (q == NULL)
4673 pp = &p->next;
4674 }
4675 *pp = edir->dyn_relocs;
4676 }
4677
4678 edir->dyn_relocs = eind->dyn_relocs;
4679 eind->dyn_relocs = NULL;
4680 }
4681
4682 /* If we were called to copy over info for a weak sym, that's all.
4683 You might think dyn_relocs need not be copied over; After all,
4684 both syms will be dynamic or both non-dynamic so we're just
4685 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4686 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4687 dyn_relocs in read-only sections, and it does so on what is the
4688 DIR sym here. */
4689 if (eind->elf.root.type != bfd_link_hash_indirect)
4690 return;
4691
4692 /* Copy over got entries that we may have already seen to the
4693 symbol which just became indirect. */
4694 if (eind->elf.got.glist != NULL)
4695 {
4696 if (edir->elf.got.glist != NULL)
4697 {
4698 struct got_entry **entp;
4699 struct got_entry *ent;
4700
4701 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4702 {
4703 struct got_entry *dent;
4704
4705 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4706 if (dent->addend == ent->addend
4707 && dent->owner == ent->owner
4708 && dent->tls_type == ent->tls_type)
4709 {
4710 dent->got.refcount += ent->got.refcount;
4711 *entp = ent->next;
4712 break;
4713 }
4714 if (dent == NULL)
4715 entp = &ent->next;
4716 }
4717 *entp = edir->elf.got.glist;
4718 }
4719
4720 edir->elf.got.glist = eind->elf.got.glist;
4721 eind->elf.got.glist = NULL;
4722 }
4723
4724 /* And plt entries. */
4725 move_plt_plist (eind, edir);
4726
4727 if (eind->elf.dynindx != -1)
4728 {
4729 if (edir->elf.dynindx != -1)
4730 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4731 edir->elf.dynstr_index);
4732 edir->elf.dynindx = eind->elf.dynindx;
4733 edir->elf.dynstr_index = eind->elf.dynstr_index;
4734 eind->elf.dynindx = -1;
4735 eind->elf.dynstr_index = 0;
4736 }
4737 }
4738
4739 /* Find the function descriptor hash entry from the given function code
4740 hash entry FH. Link the entries via their OH fields. */
4741
4742 static struct ppc_link_hash_entry *
4743 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4744 {
4745 struct ppc_link_hash_entry *fdh = fh->oh;
4746
4747 if (fdh == NULL)
4748 {
4749 const char *fd_name = fh->elf.root.root.string + 1;
4750
4751 fdh = (struct ppc_link_hash_entry *)
4752 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4753 if (fdh == NULL)
4754 return fdh;
4755
4756 fdh->is_func_descriptor = 1;
4757 fdh->oh = fh;
4758 fh->is_func = 1;
4759 fh->oh = fdh;
4760 }
4761
4762 return ppc_follow_link (fdh);
4763 }
4764
4765 /* Make a fake function descriptor sym for the code sym FH. */
4766
4767 static struct ppc_link_hash_entry *
4768 make_fdh (struct bfd_link_info *info,
4769 struct ppc_link_hash_entry *fh)
4770 {
4771 bfd *abfd;
4772 asymbol *newsym;
4773 struct bfd_link_hash_entry *bh;
4774 struct ppc_link_hash_entry *fdh;
4775
4776 abfd = fh->elf.root.u.undef.abfd;
4777 newsym = bfd_make_empty_symbol (abfd);
4778 newsym->name = fh->elf.root.root.string + 1;
4779 newsym->section = bfd_und_section_ptr;
4780 newsym->value = 0;
4781 newsym->flags = BSF_WEAK;
4782
4783 bh = NULL;
4784 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4785 newsym->flags, newsym->section,
4786 newsym->value, NULL, FALSE, FALSE,
4787 &bh))
4788 return NULL;
4789
4790 fdh = (struct ppc_link_hash_entry *) bh;
4791 fdh->elf.non_elf = 0;
4792 fdh->fake = 1;
4793 fdh->is_func_descriptor = 1;
4794 fdh->oh = fh;
4795 fh->is_func = 1;
4796 fh->oh = fdh;
4797 return fdh;
4798 }
4799
4800 /* Fix function descriptor symbols defined in .opd sections to be
4801 function type. */
4802
4803 static bfd_boolean
4804 ppc64_elf_add_symbol_hook (bfd *ibfd,
4805 struct bfd_link_info *info,
4806 Elf_Internal_Sym *isym,
4807 const char **name,
4808 flagword *flags ATTRIBUTE_UNUSED,
4809 asection **sec,
4810 bfd_vma *value)
4811 {
4812 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4813 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4814 && (ibfd->flags & DYNAMIC) == 0
4815 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4816 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4817
4818 if (*sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 {
4821 asection *code_sec;
4822
4823 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4824 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4825 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4826
4827 /* If the symbol is a function defined in .opd, and the function
4828 code is in a discarded group, let it appear to be undefined. */
4829 if (!info->relocatable
4830 && (*sec)->reloc_count != 0
4831 && opd_entry_value (*sec, *value, &code_sec, NULL,
4832 FALSE) != (bfd_vma) -1
4833 && discarded_section (code_sec))
4834 {
4835 *sec = bfd_und_section_ptr;
4836 isym->st_shndx = SHN_UNDEF;
4837 }
4838 }
4839
4840 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4841 {
4842 if (abiversion (ibfd) == 0)
4843 set_abiversion (ibfd, 2);
4844 else if (abiversion (ibfd) == 1)
4845 {
4846 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4847 " for ABI version 1\n"), name);
4848 bfd_set_error (bfd_error_bad_value);
4849 return FALSE;
4850 }
4851 }
4852
4853 return TRUE;
4854 }
4855
4856 /* Merge non-visibility st_other attributes: local entry point. */
4857
4858 static void
4859 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4860 const Elf_Internal_Sym *isym,
4861 bfd_boolean definition,
4862 bfd_boolean dynamic)
4863 {
4864 if (definition && !dynamic)
4865 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4866 | ELF_ST_VISIBILITY (h->other));
4867 }
4868
4869 /* This function makes an old ABI object reference to ".bar" cause the
4870 inclusion of a new ABI object archive that defines "bar".
4871 NAME is a symbol defined in an archive. Return a symbol in the hash
4872 table that might be satisfied by the archive symbols. */
4873
4874 static struct elf_link_hash_entry *
4875 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4876 struct bfd_link_info *info,
4877 const char *name)
4878 {
4879 struct elf_link_hash_entry *h;
4880 char *dot_name;
4881 size_t len;
4882
4883 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4884 if (h != NULL
4885 /* Don't return this sym if it is a fake function descriptor
4886 created by add_symbol_adjust. */
4887 && !(h->root.type == bfd_link_hash_undefweak
4888 && ((struct ppc_link_hash_entry *) h)->fake))
4889 return h;
4890
4891 if (name[0] == '.')
4892 return h;
4893
4894 len = strlen (name);
4895 dot_name = bfd_alloc (abfd, len + 2);
4896 if (dot_name == NULL)
4897 return (struct elf_link_hash_entry *) 0 - 1;
4898 dot_name[0] = '.';
4899 memcpy (dot_name + 1, name, len + 1);
4900 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4901 bfd_release (abfd, dot_name);
4902 return h;
4903 }
4904
4905 /* This function satisfies all old ABI object references to ".bar" if a
4906 new ABI object defines "bar". Well, at least, undefined dot symbols
4907 are made weak. This stops later archive searches from including an
4908 object if we already have a function descriptor definition. It also
4909 prevents the linker complaining about undefined symbols.
4910 We also check and correct mismatched symbol visibility here. The
4911 most restrictive visibility of the function descriptor and the
4912 function entry symbol is used. */
4913
4914 static bfd_boolean
4915 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4916 {
4917 struct ppc_link_hash_table *htab;
4918 struct ppc_link_hash_entry *fdh;
4919
4920 if (eh->elf.root.type == bfd_link_hash_indirect)
4921 return TRUE;
4922
4923 if (eh->elf.root.type == bfd_link_hash_warning)
4924 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4925
4926 if (eh->elf.root.root.string[0] != '.')
4927 abort ();
4928
4929 htab = ppc_hash_table (info);
4930 if (htab == NULL)
4931 return FALSE;
4932
4933 fdh = lookup_fdh (eh, htab);
4934 if (fdh == NULL)
4935 {
4936 if (!info->relocatable
4937 && (eh->elf.root.type == bfd_link_hash_undefined
4938 || eh->elf.root.type == bfd_link_hash_undefweak)
4939 && eh->elf.ref_regular)
4940 {
4941 /* Make an undefweak function descriptor sym, which is enough to
4942 pull in an --as-needed shared lib, but won't cause link
4943 errors. Archives are handled elsewhere. */
4944 fdh = make_fdh (info, eh);
4945 if (fdh == NULL)
4946 return FALSE;
4947 fdh->elf.ref_regular = 1;
4948 }
4949 }
4950 else
4951 {
4952 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4953 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4954 if (entry_vis < descr_vis)
4955 fdh->elf.other += entry_vis - descr_vis;
4956 else if (entry_vis > descr_vis)
4957 eh->elf.other += descr_vis - entry_vis;
4958
4959 if ((fdh->elf.root.type == bfd_link_hash_defined
4960 || fdh->elf.root.type == bfd_link_hash_defweak)
4961 && eh->elf.root.type == bfd_link_hash_undefined)
4962 {
4963 eh->elf.root.type = bfd_link_hash_undefweak;
4964 eh->was_undefined = 1;
4965 htab->twiddled_syms = 1;
4966 }
4967 }
4968
4969 return TRUE;
4970 }
4971
4972 /* Set up opd section info and abiversion for IBFD, and process list
4973 of dot-symbols we made in link_hash_newfunc. */
4974
4975 static bfd_boolean
4976 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4977 {
4978 struct ppc_link_hash_table *htab;
4979 struct ppc_link_hash_entry **p, *eh;
4980 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4981
4982 if (opd != NULL && opd->size != 0)
4983 {
4984 if (abiversion (ibfd) == 0)
4985 set_abiversion (ibfd, 1);
4986 else if (abiversion (ibfd) == 2)
4987 {
4988 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4989 " version %d\n"),
4990 ibfd, abiversion (ibfd));
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993 }
4994
4995 if ((ibfd->flags & DYNAMIC) == 0
4996 && (opd->flags & SEC_RELOC) != 0
4997 && opd->reloc_count != 0
4998 && !bfd_is_abs_section (opd->output_section))
4999 {
5000 /* Garbage collection needs some extra help with .opd sections.
5001 We don't want to necessarily keep everything referenced by
5002 relocs in .opd, as that would keep all functions. Instead,
5003 if we reference an .opd symbol (a function descriptor), we
5004 want to keep the function code symbol's section. This is
5005 easy for global symbols, but for local syms we need to keep
5006 information about the associated function section. */
5007 bfd_size_type amt;
5008 asection **opd_sym_map;
5009
5010 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5011 opd_sym_map = bfd_zalloc (ibfd, amt);
5012 if (opd_sym_map == NULL)
5013 return FALSE;
5014 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5015 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5016 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5017 }
5018 }
5019
5020 if (!is_ppc64_elf (info->output_bfd))
5021 return TRUE;
5022 htab = ppc_hash_table (info);
5023 if (htab == NULL)
5024 return FALSE;
5025
5026 /* For input files without an explicit abiversion in e_flags
5027 we should have flagged any with symbol st_other bits set
5028 as ELFv1 and above flagged those with .opd as ELFv2.
5029 Set the output abiversion if not yet set, and for any input
5030 still ambiguous, take its abiversion from the output.
5031 Differences in ABI are reported later. */
5032 if (abiversion (info->output_bfd) == 0)
5033 set_abiversion (info->output_bfd, abiversion (ibfd));
5034 else if (abiversion (ibfd) == 0)
5035 set_abiversion (ibfd, abiversion (info->output_bfd));
5036
5037 p = &htab->dot_syms;
5038 while ((eh = *p) != NULL)
5039 {
5040 *p = NULL;
5041 if (&eh->elf == htab->elf.hgot)
5042 ;
5043 else if (htab->elf.hgot == NULL
5044 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5045 htab->elf.hgot = &eh->elf;
5046 else if (!add_symbol_adjust (eh, info))
5047 return FALSE;
5048 p = &eh->u.next_dot_sym;
5049 }
5050
5051 /* Clear the list for non-ppc64 input files. */
5052 p = &htab->dot_syms;
5053 while ((eh = *p) != NULL)
5054 {
5055 *p = NULL;
5056 p = &eh->u.next_dot_sym;
5057 }
5058
5059 /* We need to fix the undefs list for any syms we have twiddled to
5060 undef_weak. */
5061 if (htab->twiddled_syms)
5062 {
5063 bfd_link_repair_undef_list (&htab->elf.root);
5064 htab->twiddled_syms = 0;
5065 }
5066 return TRUE;
5067 }
5068
5069 /* Undo hash table changes when an --as-needed input file is determined
5070 not to be needed. */
5071
5072 static bfd_boolean
5073 ppc64_elf_notice_as_needed (bfd *ibfd,
5074 struct bfd_link_info *info,
5075 enum notice_asneeded_action act)
5076 {
5077 if (act == notice_not_needed)
5078 {
5079 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5080
5081 if (htab == NULL)
5082 return FALSE;
5083
5084 htab->dot_syms = NULL;
5085 }
5086 return _bfd_elf_notice_as_needed (ibfd, info, act);
5087 }
5088
5089 /* If --just-symbols against a final linked binary, then assume we need
5090 toc adjusting stubs when calling functions defined there. */
5091
5092 static void
5093 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5094 {
5095 if ((sec->flags & SEC_CODE) != 0
5096 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5097 && is_ppc64_elf (sec->owner))
5098 {
5099 if (abiversion (sec->owner) >= 2
5100 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5101 sec->has_toc_reloc = 1;
5102 }
5103 _bfd_elf_link_just_syms (sec, info);
5104 }
5105
5106 static struct plt_entry **
5107 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5108 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5109 {
5110 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5111 struct plt_entry **local_plt;
5112 unsigned char *local_got_tls_masks;
5113
5114 if (local_got_ents == NULL)
5115 {
5116 bfd_size_type size = symtab_hdr->sh_info;
5117
5118 size *= (sizeof (*local_got_ents)
5119 + sizeof (*local_plt)
5120 + sizeof (*local_got_tls_masks));
5121 local_got_ents = bfd_zalloc (abfd, size);
5122 if (local_got_ents == NULL)
5123 return NULL;
5124 elf_local_got_ents (abfd) = local_got_ents;
5125 }
5126
5127 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5128 {
5129 struct got_entry *ent;
5130
5131 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5132 if (ent->addend == r_addend
5133 && ent->owner == abfd
5134 && ent->tls_type == tls_type)
5135 break;
5136 if (ent == NULL)
5137 {
5138 bfd_size_type amt = sizeof (*ent);
5139 ent = bfd_alloc (abfd, amt);
5140 if (ent == NULL)
5141 return FALSE;
5142 ent->next = local_got_ents[r_symndx];
5143 ent->addend = r_addend;
5144 ent->owner = abfd;
5145 ent->tls_type = tls_type;
5146 ent->is_indirect = FALSE;
5147 ent->got.refcount = 0;
5148 local_got_ents[r_symndx] = ent;
5149 }
5150 ent->got.refcount += 1;
5151 }
5152
5153 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5154 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5155 local_got_tls_masks[r_symndx] |= tls_type;
5156
5157 return local_plt + r_symndx;
5158 }
5159
5160 static bfd_boolean
5161 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5162 {
5163 struct plt_entry *ent;
5164
5165 for (ent = *plist; ent != NULL; ent = ent->next)
5166 if (ent->addend == addend)
5167 break;
5168 if (ent == NULL)
5169 {
5170 bfd_size_type amt = sizeof (*ent);
5171 ent = bfd_alloc (abfd, amt);
5172 if (ent == NULL)
5173 return FALSE;
5174 ent->next = *plist;
5175 ent->addend = addend;
5176 ent->plt.refcount = 0;
5177 *plist = ent;
5178 }
5179 ent->plt.refcount += 1;
5180 return TRUE;
5181 }
5182
5183 static bfd_boolean
5184 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5185 {
5186 return (r_type == R_PPC64_REL24
5187 || r_type == R_PPC64_REL14
5188 || r_type == R_PPC64_REL14_BRTAKEN
5189 || r_type == R_PPC64_REL14_BRNTAKEN
5190 || r_type == R_PPC64_ADDR24
5191 || r_type == R_PPC64_ADDR14
5192 || r_type == R_PPC64_ADDR14_BRTAKEN
5193 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5194 }
5195
5196 /* Look through the relocs for a section during the first phase, and
5197 calculate needed space in the global offset table, procedure
5198 linkage table, and dynamic reloc sections. */
5199
5200 static bfd_boolean
5201 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5202 asection *sec, const Elf_Internal_Rela *relocs)
5203 {
5204 struct ppc_link_hash_table *htab;
5205 Elf_Internal_Shdr *symtab_hdr;
5206 struct elf_link_hash_entry **sym_hashes;
5207 const Elf_Internal_Rela *rel;
5208 const Elf_Internal_Rela *rel_end;
5209 asection *sreloc;
5210 asection **opd_sym_map;
5211 struct elf_link_hash_entry *tga, *dottga;
5212
5213 if (info->relocatable)
5214 return TRUE;
5215
5216 /* Don't do anything special with non-loaded, non-alloced sections.
5217 In particular, any relocs in such sections should not affect GOT
5218 and PLT reference counting (ie. we don't allow them to create GOT
5219 or PLT entries), there's no possibility or desire to optimize TLS
5220 relocs, and there's not much point in propagating relocs to shared
5221 libs that the dynamic linker won't relocate. */
5222 if ((sec->flags & SEC_ALLOC) == 0)
5223 return TRUE;
5224
5225 BFD_ASSERT (is_ppc64_elf (abfd));
5226
5227 htab = ppc_hash_table (info);
5228 if (htab == NULL)
5229 return FALSE;
5230
5231 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5232 FALSE, FALSE, TRUE);
5233 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5234 FALSE, FALSE, TRUE);
5235 symtab_hdr = &elf_symtab_hdr (abfd);
5236 sym_hashes = elf_sym_hashes (abfd);
5237 sreloc = NULL;
5238 opd_sym_map = NULL;
5239 if (ppc64_elf_section_data (sec) != NULL
5240 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5241 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5242
5243 rel_end = relocs + sec->reloc_count;
5244 for (rel = relocs; rel < rel_end; rel++)
5245 {
5246 unsigned long r_symndx;
5247 struct elf_link_hash_entry *h;
5248 enum elf_ppc64_reloc_type r_type;
5249 int tls_type;
5250 struct _ppc64_elf_section_data *ppc64_sec;
5251 struct plt_entry **ifunc;
5252
5253 r_symndx = ELF64_R_SYM (rel->r_info);
5254 if (r_symndx < symtab_hdr->sh_info)
5255 h = NULL;
5256 else
5257 {
5258 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5259 h = elf_follow_link (h);
5260
5261 /* PR15323, ref flags aren't set for references in the same
5262 object. */
5263 h->root.non_ir_ref = 1;
5264
5265 if (h == htab->elf.hgot)
5266 sec->has_toc_reloc = 1;
5267 }
5268
5269 tls_type = 0;
5270 ifunc = NULL;
5271 if (h != NULL)
5272 {
5273 if (h->type == STT_GNU_IFUNC)
5274 {
5275 h->needs_plt = 1;
5276 ifunc = &h->plt.plist;
5277 }
5278 }
5279 else
5280 {
5281 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5282 abfd, r_symndx);
5283 if (isym == NULL)
5284 return FALSE;
5285
5286 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5287 {
5288 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5289 rel->r_addend, PLT_IFUNC);
5290 if (ifunc == NULL)
5291 return FALSE;
5292 }
5293 }
5294 r_type = ELF64_R_TYPE (rel->r_info);
5295 if (is_branch_reloc (r_type))
5296 {
5297 if (h != NULL && (h == tga || h == dottga))
5298 {
5299 if (rel != relocs
5300 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5301 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5302 /* We have a new-style __tls_get_addr call with a marker
5303 reloc. */
5304 ;
5305 else
5306 /* Mark this section as having an old-style call. */
5307 sec->has_tls_get_addr_call = 1;
5308 }
5309
5310 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5311 if (ifunc != NULL
5312 && !update_plt_info (abfd, ifunc, rel->r_addend))
5313 return FALSE;
5314 }
5315
5316 switch (r_type)
5317 {
5318 case R_PPC64_TLSGD:
5319 case R_PPC64_TLSLD:
5320 /* These special tls relocs tie a call to __tls_get_addr with
5321 its parameter symbol. */
5322 break;
5323
5324 case R_PPC64_GOT_TLSLD16:
5325 case R_PPC64_GOT_TLSLD16_LO:
5326 case R_PPC64_GOT_TLSLD16_HI:
5327 case R_PPC64_GOT_TLSLD16_HA:
5328 tls_type = TLS_TLS | TLS_LD;
5329 goto dogottls;
5330
5331 case R_PPC64_GOT_TLSGD16:
5332 case R_PPC64_GOT_TLSGD16_LO:
5333 case R_PPC64_GOT_TLSGD16_HI:
5334 case R_PPC64_GOT_TLSGD16_HA:
5335 tls_type = TLS_TLS | TLS_GD;
5336 goto dogottls;
5337
5338 case R_PPC64_GOT_TPREL16_DS:
5339 case R_PPC64_GOT_TPREL16_LO_DS:
5340 case R_PPC64_GOT_TPREL16_HI:
5341 case R_PPC64_GOT_TPREL16_HA:
5342 if (info->shared)
5343 info->flags |= DF_STATIC_TLS;
5344 tls_type = TLS_TLS | TLS_TPREL;
5345 goto dogottls;
5346
5347 case R_PPC64_GOT_DTPREL16_DS:
5348 case R_PPC64_GOT_DTPREL16_LO_DS:
5349 case R_PPC64_GOT_DTPREL16_HI:
5350 case R_PPC64_GOT_DTPREL16_HA:
5351 tls_type = TLS_TLS | TLS_DTPREL;
5352 dogottls:
5353 sec->has_tls_reloc = 1;
5354 /* Fall thru */
5355
5356 case R_PPC64_GOT16:
5357 case R_PPC64_GOT16_DS:
5358 case R_PPC64_GOT16_HA:
5359 case R_PPC64_GOT16_HI:
5360 case R_PPC64_GOT16_LO:
5361 case R_PPC64_GOT16_LO_DS:
5362 /* This symbol requires a global offset table entry. */
5363 sec->has_toc_reloc = 1;
5364 if (r_type == R_PPC64_GOT_TLSLD16
5365 || r_type == R_PPC64_GOT_TLSGD16
5366 || r_type == R_PPC64_GOT_TPREL16_DS
5367 || r_type == R_PPC64_GOT_DTPREL16_DS
5368 || r_type == R_PPC64_GOT16
5369 || r_type == R_PPC64_GOT16_DS)
5370 {
5371 htab->do_multi_toc = 1;
5372 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5373 }
5374
5375 if (ppc64_elf_tdata (abfd)->got == NULL
5376 && !create_got_section (abfd, info))
5377 return FALSE;
5378
5379 if (h != NULL)
5380 {
5381 struct ppc_link_hash_entry *eh;
5382 struct got_entry *ent;
5383
5384 eh = (struct ppc_link_hash_entry *) h;
5385 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5386 if (ent->addend == rel->r_addend
5387 && ent->owner == abfd
5388 && ent->tls_type == tls_type)
5389 break;
5390 if (ent == NULL)
5391 {
5392 bfd_size_type amt = sizeof (*ent);
5393 ent = bfd_alloc (abfd, amt);
5394 if (ent == NULL)
5395 return FALSE;
5396 ent->next = eh->elf.got.glist;
5397 ent->addend = rel->r_addend;
5398 ent->owner = abfd;
5399 ent->tls_type = tls_type;
5400 ent->is_indirect = FALSE;
5401 ent->got.refcount = 0;
5402 eh->elf.got.glist = ent;
5403 }
5404 ent->got.refcount += 1;
5405 eh->tls_mask |= tls_type;
5406 }
5407 else
5408 /* This is a global offset table entry for a local symbol. */
5409 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5410 rel->r_addend, tls_type))
5411 return FALSE;
5412
5413 /* We may also need a plt entry if the symbol turns out to be
5414 an ifunc. */
5415 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5416 {
5417 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5418 return FALSE;
5419 }
5420 break;
5421
5422 case R_PPC64_PLT16_HA:
5423 case R_PPC64_PLT16_HI:
5424 case R_PPC64_PLT16_LO:
5425 case R_PPC64_PLT32:
5426 case R_PPC64_PLT64:
5427 /* This symbol requires a procedure linkage table entry. We
5428 actually build the entry in adjust_dynamic_symbol,
5429 because this might be a case of linking PIC code without
5430 linking in any dynamic objects, in which case we don't
5431 need to generate a procedure linkage table after all. */
5432 if (h == NULL)
5433 {
5434 /* It does not make sense to have a procedure linkage
5435 table entry for a local symbol. */
5436 bfd_set_error (bfd_error_bad_value);
5437 return FALSE;
5438 }
5439 else
5440 {
5441 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5442 return FALSE;
5443 h->needs_plt = 1;
5444 if (h->root.root.string[0] == '.'
5445 && h->root.root.string[1] != '\0')
5446 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5447 }
5448 break;
5449
5450 /* The following relocations don't need to propagate the
5451 relocation if linking a shared object since they are
5452 section relative. */
5453 case R_PPC64_SECTOFF:
5454 case R_PPC64_SECTOFF_LO:
5455 case R_PPC64_SECTOFF_HI:
5456 case R_PPC64_SECTOFF_HA:
5457 case R_PPC64_SECTOFF_DS:
5458 case R_PPC64_SECTOFF_LO_DS:
5459 case R_PPC64_DTPREL16:
5460 case R_PPC64_DTPREL16_LO:
5461 case R_PPC64_DTPREL16_HI:
5462 case R_PPC64_DTPREL16_HA:
5463 case R_PPC64_DTPREL16_DS:
5464 case R_PPC64_DTPREL16_LO_DS:
5465 case R_PPC64_DTPREL16_HIGH:
5466 case R_PPC64_DTPREL16_HIGHA:
5467 case R_PPC64_DTPREL16_HIGHER:
5468 case R_PPC64_DTPREL16_HIGHERA:
5469 case R_PPC64_DTPREL16_HIGHEST:
5470 case R_PPC64_DTPREL16_HIGHESTA:
5471 break;
5472
5473 /* Nor do these. */
5474 case R_PPC64_REL16:
5475 case R_PPC64_REL16_LO:
5476 case R_PPC64_REL16_HI:
5477 case R_PPC64_REL16_HA:
5478 break;
5479
5480 /* Not supported as a dynamic relocation. */
5481 case R_PPC64_ADDR64_LOCAL:
5482 if (info->shared)
5483 {
5484 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5485 ppc_howto_init ();
5486 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5487 "in shared libraries and PIEs.\n"),
5488 abfd, sec, rel->r_offset,
5489 ppc64_elf_howto_table[r_type]->name);
5490 bfd_set_error (bfd_error_bad_value);
5491 return FALSE;
5492 }
5493 break;
5494
5495 case R_PPC64_TOC16:
5496 case R_PPC64_TOC16_DS:
5497 htab->do_multi_toc = 1;
5498 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5499 case R_PPC64_TOC16_LO:
5500 case R_PPC64_TOC16_HI:
5501 case R_PPC64_TOC16_HA:
5502 case R_PPC64_TOC16_LO_DS:
5503 sec->has_toc_reloc = 1;
5504 break;
5505
5506 /* This relocation describes the C++ object vtable hierarchy.
5507 Reconstruct it for later use during GC. */
5508 case R_PPC64_GNU_VTINHERIT:
5509 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5510 return FALSE;
5511 break;
5512
5513 /* This relocation describes which C++ vtable entries are actually
5514 used. Record for later use during GC. */
5515 case R_PPC64_GNU_VTENTRY:
5516 BFD_ASSERT (h != NULL);
5517 if (h != NULL
5518 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5519 return FALSE;
5520 break;
5521
5522 case R_PPC64_REL14:
5523 case R_PPC64_REL14_BRTAKEN:
5524 case R_PPC64_REL14_BRNTAKEN:
5525 {
5526 asection *dest = NULL;
5527
5528 /* Heuristic: If jumping outside our section, chances are
5529 we are going to need a stub. */
5530 if (h != NULL)
5531 {
5532 /* If the sym is weak it may be overridden later, so
5533 don't assume we know where a weak sym lives. */
5534 if (h->root.type == bfd_link_hash_defined)
5535 dest = h->root.u.def.section;
5536 }
5537 else
5538 {
5539 Elf_Internal_Sym *isym;
5540
5541 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5542 abfd, r_symndx);
5543 if (isym == NULL)
5544 return FALSE;
5545
5546 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5547 }
5548
5549 if (dest != sec)
5550 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5551 }
5552 /* Fall through. */
5553
5554 case R_PPC64_REL24:
5555 if (h != NULL && ifunc == NULL)
5556 {
5557 /* We may need a .plt entry if the function this reloc
5558 refers to is in a shared lib. */
5559 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5560 return FALSE;
5561 h->needs_plt = 1;
5562 if (h->root.root.string[0] == '.'
5563 && h->root.root.string[1] != '\0')
5564 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5565 if (h == tga || h == dottga)
5566 sec->has_tls_reloc = 1;
5567 }
5568 break;
5569
5570 case R_PPC64_TPREL64:
5571 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5572 if (info->shared)
5573 info->flags |= DF_STATIC_TLS;
5574 goto dotlstoc;
5575
5576 case R_PPC64_DTPMOD64:
5577 if (rel + 1 < rel_end
5578 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5579 && rel[1].r_offset == rel->r_offset + 8)
5580 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5581 else
5582 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5583 goto dotlstoc;
5584
5585 case R_PPC64_DTPREL64:
5586 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5587 if (rel != relocs
5588 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5589 && rel[-1].r_offset == rel->r_offset - 8)
5590 /* This is the second reloc of a dtpmod, dtprel pair.
5591 Don't mark with TLS_DTPREL. */
5592 goto dodyn;
5593
5594 dotlstoc:
5595 sec->has_tls_reloc = 1;
5596 if (h != NULL)
5597 {
5598 struct ppc_link_hash_entry *eh;
5599 eh = (struct ppc_link_hash_entry *) h;
5600 eh->tls_mask |= tls_type;
5601 }
5602 else
5603 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5604 rel->r_addend, tls_type))
5605 return FALSE;
5606
5607 ppc64_sec = ppc64_elf_section_data (sec);
5608 if (ppc64_sec->sec_type != sec_toc)
5609 {
5610 bfd_size_type amt;
5611
5612 /* One extra to simplify get_tls_mask. */
5613 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5614 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5615 if (ppc64_sec->u.toc.symndx == NULL)
5616 return FALSE;
5617 amt = sec->size * sizeof (bfd_vma) / 8;
5618 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5619 if (ppc64_sec->u.toc.add == NULL)
5620 return FALSE;
5621 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5622 ppc64_sec->sec_type = sec_toc;
5623 }
5624 BFD_ASSERT (rel->r_offset % 8 == 0);
5625 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5626 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5627
5628 /* Mark the second slot of a GD or LD entry.
5629 -1 to indicate GD and -2 to indicate LD. */
5630 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5631 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5632 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5633 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5634 goto dodyn;
5635
5636 case R_PPC64_TPREL16:
5637 case R_PPC64_TPREL16_LO:
5638 case R_PPC64_TPREL16_HI:
5639 case R_PPC64_TPREL16_HA:
5640 case R_PPC64_TPREL16_DS:
5641 case R_PPC64_TPREL16_LO_DS:
5642 case R_PPC64_TPREL16_HIGH:
5643 case R_PPC64_TPREL16_HIGHA:
5644 case R_PPC64_TPREL16_HIGHER:
5645 case R_PPC64_TPREL16_HIGHERA:
5646 case R_PPC64_TPREL16_HIGHEST:
5647 case R_PPC64_TPREL16_HIGHESTA:
5648 if (info->shared)
5649 {
5650 info->flags |= DF_STATIC_TLS;
5651 goto dodyn;
5652 }
5653 break;
5654
5655 case R_PPC64_ADDR64:
5656 if (opd_sym_map != NULL
5657 && rel + 1 < rel_end
5658 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5659 {
5660 if (h != NULL)
5661 {
5662 if (h->root.root.string[0] == '.'
5663 && h->root.root.string[1] != 0
5664 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5665 ;
5666 else
5667 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5668 }
5669 else
5670 {
5671 asection *s;
5672 Elf_Internal_Sym *isym;
5673
5674 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5675 abfd, r_symndx);
5676 if (isym == NULL)
5677 return FALSE;
5678
5679 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5680 if (s != NULL && s != sec)
5681 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5682 }
5683 }
5684 /* Fall through. */
5685
5686 case R_PPC64_ADDR16:
5687 case R_PPC64_ADDR16_DS:
5688 case R_PPC64_ADDR16_HA:
5689 case R_PPC64_ADDR16_HI:
5690 case R_PPC64_ADDR16_HIGH:
5691 case R_PPC64_ADDR16_HIGHA:
5692 case R_PPC64_ADDR16_HIGHER:
5693 case R_PPC64_ADDR16_HIGHERA:
5694 case R_PPC64_ADDR16_HIGHEST:
5695 case R_PPC64_ADDR16_HIGHESTA:
5696 case R_PPC64_ADDR16_LO:
5697 case R_PPC64_ADDR16_LO_DS:
5698 if (h != NULL && !info->shared && abiversion (abfd) != 1
5699 && rel->r_addend == 0)
5700 {
5701 /* We may need a .plt entry if this reloc refers to a
5702 function in a shared lib. */
5703 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5704 return FALSE;
5705 h->pointer_equality_needed = 1;
5706 }
5707 /* Fall through. */
5708
5709 case R_PPC64_REL30:
5710 case R_PPC64_REL32:
5711 case R_PPC64_REL64:
5712 case R_PPC64_ADDR14:
5713 case R_PPC64_ADDR14_BRNTAKEN:
5714 case R_PPC64_ADDR14_BRTAKEN:
5715 case R_PPC64_ADDR24:
5716 case R_PPC64_ADDR32:
5717 case R_PPC64_UADDR16:
5718 case R_PPC64_UADDR32:
5719 case R_PPC64_UADDR64:
5720 case R_PPC64_TOC:
5721 if (h != NULL && !info->shared)
5722 /* We may need a copy reloc. */
5723 h->non_got_ref = 1;
5724
5725 /* Don't propagate .opd relocs. */
5726 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5727 break;
5728
5729 /* If we are creating a shared library, and this is a reloc
5730 against a global symbol, or a non PC relative reloc
5731 against a local symbol, then we need to copy the reloc
5732 into the shared library. However, if we are linking with
5733 -Bsymbolic, we do not need to copy a reloc against a
5734 global symbol which is defined in an object we are
5735 including in the link (i.e., DEF_REGULAR is set). At
5736 this point we have not seen all the input files, so it is
5737 possible that DEF_REGULAR is not set now but will be set
5738 later (it is never cleared). In case of a weak definition,
5739 DEF_REGULAR may be cleared later by a strong definition in
5740 a shared library. We account for that possibility below by
5741 storing information in the dyn_relocs field of the hash
5742 table entry. A similar situation occurs when creating
5743 shared libraries and symbol visibility changes render the
5744 symbol local.
5745
5746 If on the other hand, we are creating an executable, we
5747 may need to keep relocations for symbols satisfied by a
5748 dynamic library if we manage to avoid copy relocs for the
5749 symbol. */
5750 dodyn:
5751 if ((info->shared
5752 && (must_be_dyn_reloc (info, r_type)
5753 || (h != NULL
5754 && (!SYMBOLIC_BIND (info, h)
5755 || h->root.type == bfd_link_hash_defweak
5756 || !h->def_regular))))
5757 || (ELIMINATE_COPY_RELOCS
5758 && !info->shared
5759 && h != NULL
5760 && (h->root.type == bfd_link_hash_defweak
5761 || !h->def_regular))
5762 || (!info->shared
5763 && ifunc != NULL))
5764 {
5765 /* We must copy these reloc types into the output file.
5766 Create a reloc section in dynobj and make room for
5767 this reloc. */
5768 if (sreloc == NULL)
5769 {
5770 sreloc = _bfd_elf_make_dynamic_reloc_section
5771 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5772
5773 if (sreloc == NULL)
5774 return FALSE;
5775 }
5776
5777 /* If this is a global symbol, we count the number of
5778 relocations we need for this symbol. */
5779 if (h != NULL)
5780 {
5781 struct elf_dyn_relocs *p;
5782 struct elf_dyn_relocs **head;
5783
5784 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5785 p = *head;
5786 if (p == NULL || p->sec != sec)
5787 {
5788 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5789 if (p == NULL)
5790 return FALSE;
5791 p->next = *head;
5792 *head = p;
5793 p->sec = sec;
5794 p->count = 0;
5795 p->pc_count = 0;
5796 }
5797 p->count += 1;
5798 if (!must_be_dyn_reloc (info, r_type))
5799 p->pc_count += 1;
5800 }
5801 else
5802 {
5803 /* Track dynamic relocs needed for local syms too.
5804 We really need local syms available to do this
5805 easily. Oh well. */
5806 struct ppc_dyn_relocs *p;
5807 struct ppc_dyn_relocs **head;
5808 bfd_boolean is_ifunc;
5809 asection *s;
5810 void *vpp;
5811 Elf_Internal_Sym *isym;
5812
5813 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5814 abfd, r_symndx);
5815 if (isym == NULL)
5816 return FALSE;
5817
5818 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5819 if (s == NULL)
5820 s = sec;
5821
5822 vpp = &elf_section_data (s)->local_dynrel;
5823 head = (struct ppc_dyn_relocs **) vpp;
5824 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5825 p = *head;
5826 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5827 p = p->next;
5828 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5829 {
5830 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5831 if (p == NULL)
5832 return FALSE;
5833 p->next = *head;
5834 *head = p;
5835 p->sec = sec;
5836 p->ifunc = is_ifunc;
5837 p->count = 0;
5838 }
5839 p->count += 1;
5840 }
5841 }
5842 break;
5843
5844 default:
5845 break;
5846 }
5847 }
5848
5849 return TRUE;
5850 }
5851
5852 /* Merge backend specific data from an object file to the output
5853 object file when linking. */
5854
5855 static bfd_boolean
5856 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5857 {
5858 unsigned long iflags, oflags;
5859
5860 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5861 return TRUE;
5862
5863 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5864 return TRUE;
5865
5866 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5867 return FALSE;
5868
5869 iflags = elf_elfheader (ibfd)->e_flags;
5870 oflags = elf_elfheader (obfd)->e_flags;
5871
5872 if (iflags & ~EF_PPC64_ABI)
5873 {
5874 (*_bfd_error_handler)
5875 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5876 bfd_set_error (bfd_error_bad_value);
5877 return FALSE;
5878 }
5879 else if (iflags != oflags && iflags != 0)
5880 {
5881 (*_bfd_error_handler)
5882 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5883 ibfd, iflags, oflags);
5884 bfd_set_error (bfd_error_bad_value);
5885 return FALSE;
5886 }
5887
5888 /* Merge Tag_compatibility attributes and any common GNU ones. */
5889 _bfd_elf_merge_object_attributes (ibfd, obfd);
5890
5891 return TRUE;
5892 }
5893
5894 static bfd_boolean
5895 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5896 {
5897 /* Print normal ELF private data. */
5898 _bfd_elf_print_private_bfd_data (abfd, ptr);
5899
5900 if (elf_elfheader (abfd)->e_flags != 0)
5901 {
5902 FILE *file = ptr;
5903
5904 /* xgettext:c-format */
5905 fprintf (file, _("private flags = 0x%lx:"),
5906 elf_elfheader (abfd)->e_flags);
5907
5908 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5909 fprintf (file, _(" [abiv%ld]"),
5910 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5911 fputc ('\n', file);
5912 }
5913
5914 return TRUE;
5915 }
5916
5917 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5918 of the code entry point, and its section, which must be in the same
5919 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5920
5921 static bfd_vma
5922 opd_entry_value (asection *opd_sec,
5923 bfd_vma offset,
5924 asection **code_sec,
5925 bfd_vma *code_off,
5926 bfd_boolean in_code_sec)
5927 {
5928 bfd *opd_bfd = opd_sec->owner;
5929 Elf_Internal_Rela *relocs;
5930 Elf_Internal_Rela *lo, *hi, *look;
5931 bfd_vma val;
5932
5933 /* No relocs implies we are linking a --just-symbols object, or looking
5934 at a final linked executable with addr2line or somesuch. */
5935 if (opd_sec->reloc_count == 0)
5936 {
5937 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5938
5939 if (contents == NULL)
5940 {
5941 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5942 return (bfd_vma) -1;
5943 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5944 }
5945
5946 val = bfd_get_64 (opd_bfd, contents + offset);
5947 if (code_sec != NULL)
5948 {
5949 asection *sec, *likely = NULL;
5950
5951 if (in_code_sec)
5952 {
5953 sec = *code_sec;
5954 if (sec->vma <= val
5955 && val < sec->vma + sec->size)
5956 likely = sec;
5957 else
5958 val = -1;
5959 }
5960 else
5961 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5962 if (sec->vma <= val
5963 && (sec->flags & SEC_LOAD) != 0
5964 && (sec->flags & SEC_ALLOC) != 0)
5965 likely = sec;
5966 if (likely != NULL)
5967 {
5968 *code_sec = likely;
5969 if (code_off != NULL)
5970 *code_off = val - likely->vma;
5971 }
5972 }
5973 return val;
5974 }
5975
5976 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5977
5978 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5979 if (relocs == NULL)
5980 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5981 /* PR 17512: file: df8e1fd6. */
5982 if (relocs == NULL)
5983 return (bfd_vma) -1;
5984
5985 /* Go find the opd reloc at the sym address. */
5986 lo = relocs;
5987 BFD_ASSERT (lo != NULL);
5988 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5989 val = (bfd_vma) -1;
5990 while (lo < hi)
5991 {
5992 look = lo + (hi - lo) / 2;
5993 if (look->r_offset < offset)
5994 lo = look + 1;
5995 else if (look->r_offset > offset)
5996 hi = look;
5997 else
5998 {
5999 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
6000
6001 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
6002 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6003 {
6004 unsigned long symndx = ELF64_R_SYM (look->r_info);
6005 asection *sec = NULL;
6006
6007 if (symndx >= symtab_hdr->sh_info
6008 && elf_sym_hashes (opd_bfd) != NULL)
6009 {
6010 struct elf_link_hash_entry **sym_hashes;
6011 struct elf_link_hash_entry *rh;
6012
6013 sym_hashes = elf_sym_hashes (opd_bfd);
6014 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6015 if (rh != NULL)
6016 {
6017 rh = elf_follow_link (rh);
6018 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6019 || rh->root.type == bfd_link_hash_defweak);
6020 val = rh->root.u.def.value;
6021 sec = rh->root.u.def.section;
6022 if (sec->owner != opd_bfd)
6023 {
6024 sec = NULL;
6025 val = (bfd_vma) -1;
6026 }
6027 }
6028 }
6029
6030 if (sec == NULL)
6031 {
6032 Elf_Internal_Sym *sym;
6033
6034 if (symndx < symtab_hdr->sh_info)
6035 {
6036 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6037 if (sym == NULL)
6038 {
6039 size_t symcnt = symtab_hdr->sh_info;
6040 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6041 symcnt, 0,
6042 NULL, NULL, NULL);
6043 if (sym == NULL)
6044 break;
6045 symtab_hdr->contents = (bfd_byte *) sym;
6046 }
6047 sym += symndx;
6048 }
6049 else
6050 {
6051 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6052 1, symndx,
6053 NULL, NULL, NULL);
6054 if (sym == NULL)
6055 break;
6056 }
6057 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6058 if (sec == NULL)
6059 break;
6060 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6061 val = sym->st_value;
6062 }
6063
6064 val += look->r_addend;
6065 if (code_off != NULL)
6066 *code_off = val;
6067 if (code_sec != NULL)
6068 {
6069 if (in_code_sec && *code_sec != sec)
6070 return -1;
6071 else
6072 *code_sec = sec;
6073 }
6074 if (sec->output_section != NULL)
6075 val += sec->output_section->vma + sec->output_offset;
6076 }
6077 break;
6078 }
6079 }
6080
6081 return val;
6082 }
6083
6084 /* If the ELF symbol SYM might be a function in SEC, return the
6085 function size and set *CODE_OFF to the function's entry point,
6086 otherwise return zero. */
6087
6088 static bfd_size_type
6089 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6090 bfd_vma *code_off)
6091 {
6092 bfd_size_type size;
6093
6094 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6095 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6096 return 0;
6097
6098 size = 0;
6099 if (!(sym->flags & BSF_SYNTHETIC))
6100 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6101
6102 if (strcmp (sym->section->name, ".opd") == 0)
6103 {
6104 if (opd_entry_value (sym->section, sym->value,
6105 &sec, code_off, TRUE) == (bfd_vma) -1)
6106 return 0;
6107 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6108 symbol. This size has nothing to do with the code size of the
6109 function, which is what we're supposed to return, but the
6110 code size isn't available without looking up the dot-sym.
6111 However, doing that would be a waste of time particularly
6112 since elf_find_function will look at the dot-sym anyway.
6113 Now, elf_find_function will keep the largest size of any
6114 function sym found at the code address of interest, so return
6115 1 here to avoid it incorrectly caching a larger function size
6116 for a small function. This does mean we return the wrong
6117 size for a new-ABI function of size 24, but all that does is
6118 disable caching for such functions. */
6119 if (size == 24)
6120 size = 1;
6121 }
6122 else
6123 {
6124 if (sym->section != sec)
6125 return 0;
6126 *code_off = sym->value;
6127 }
6128 if (size == 0)
6129 size = 1;
6130 return size;
6131 }
6132
6133 /* Return true if symbol is defined in a regular object file. */
6134
6135 static bfd_boolean
6136 is_static_defined (struct elf_link_hash_entry *h)
6137 {
6138 return ((h->root.type == bfd_link_hash_defined
6139 || h->root.type == bfd_link_hash_defweak)
6140 && h->root.u.def.section != NULL
6141 && h->root.u.def.section->output_section != NULL);
6142 }
6143
6144 /* If FDH is a function descriptor symbol, return the associated code
6145 entry symbol if it is defined. Return NULL otherwise. */
6146
6147 static struct ppc_link_hash_entry *
6148 defined_code_entry (struct ppc_link_hash_entry *fdh)
6149 {
6150 if (fdh->is_func_descriptor)
6151 {
6152 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6153 if (fh->elf.root.type == bfd_link_hash_defined
6154 || fh->elf.root.type == bfd_link_hash_defweak)
6155 return fh;
6156 }
6157 return NULL;
6158 }
6159
6160 /* If FH is a function code entry symbol, return the associated
6161 function descriptor symbol if it is defined. Return NULL otherwise. */
6162
6163 static struct ppc_link_hash_entry *
6164 defined_func_desc (struct ppc_link_hash_entry *fh)
6165 {
6166 if (fh->oh != NULL
6167 && fh->oh->is_func_descriptor)
6168 {
6169 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6170 if (fdh->elf.root.type == bfd_link_hash_defined
6171 || fdh->elf.root.type == bfd_link_hash_defweak)
6172 return fdh;
6173 }
6174 return NULL;
6175 }
6176
6177 /* Mark all our entry sym sections, both opd and code section. */
6178
6179 static void
6180 ppc64_elf_gc_keep (struct bfd_link_info *info)
6181 {
6182 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6183 struct bfd_sym_chain *sym;
6184
6185 if (htab == NULL)
6186 return;
6187
6188 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6189 {
6190 struct ppc_link_hash_entry *eh, *fh;
6191 asection *sec;
6192
6193 eh = (struct ppc_link_hash_entry *)
6194 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6195 if (eh == NULL)
6196 continue;
6197 if (eh->elf.root.type != bfd_link_hash_defined
6198 && eh->elf.root.type != bfd_link_hash_defweak)
6199 continue;
6200
6201 fh = defined_code_entry (eh);
6202 if (fh != NULL)
6203 {
6204 sec = fh->elf.root.u.def.section;
6205 sec->flags |= SEC_KEEP;
6206 }
6207 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6208 && opd_entry_value (eh->elf.root.u.def.section,
6209 eh->elf.root.u.def.value,
6210 &sec, NULL, FALSE) != (bfd_vma) -1)
6211 sec->flags |= SEC_KEEP;
6212
6213 sec = eh->elf.root.u.def.section;
6214 sec->flags |= SEC_KEEP;
6215 }
6216 }
6217
6218 /* Mark sections containing dynamically referenced symbols. When
6219 building shared libraries, we must assume that any visible symbol is
6220 referenced. */
6221
6222 static bfd_boolean
6223 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6224 {
6225 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6226 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6227 struct ppc_link_hash_entry *fdh;
6228 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6229
6230 /* Dynamic linking info is on the func descriptor sym. */
6231 fdh = defined_func_desc (eh);
6232 if (fdh != NULL)
6233 eh = fdh;
6234
6235 if ((eh->elf.root.type == bfd_link_hash_defined
6236 || eh->elf.root.type == bfd_link_hash_defweak)
6237 && (eh->elf.ref_dynamic
6238 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
6239 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6240 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6241 && (!info->executable
6242 || info->export_dynamic
6243 || (eh->elf.dynamic
6244 && d != NULL
6245 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6246 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6247 || !bfd_hide_sym_by_version (info->version_info,
6248 eh->elf.root.root.string)))))
6249 {
6250 asection *code_sec;
6251 struct ppc_link_hash_entry *fh;
6252
6253 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6254
6255 /* Function descriptor syms cause the associated
6256 function code sym section to be marked. */
6257 fh = defined_code_entry (eh);
6258 if (fh != NULL)
6259 {
6260 code_sec = fh->elf.root.u.def.section;
6261 code_sec->flags |= SEC_KEEP;
6262 }
6263 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6264 && opd_entry_value (eh->elf.root.u.def.section,
6265 eh->elf.root.u.def.value,
6266 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6267 code_sec->flags |= SEC_KEEP;
6268 }
6269
6270 return TRUE;
6271 }
6272
6273 /* Return the section that should be marked against GC for a given
6274 relocation. */
6275
6276 static asection *
6277 ppc64_elf_gc_mark_hook (asection *sec,
6278 struct bfd_link_info *info,
6279 Elf_Internal_Rela *rel,
6280 struct elf_link_hash_entry *h,
6281 Elf_Internal_Sym *sym)
6282 {
6283 asection *rsec;
6284
6285 /* Syms return NULL if we're marking .opd, so we avoid marking all
6286 function sections, as all functions are referenced in .opd. */
6287 rsec = NULL;
6288 if (get_opd_info (sec) != NULL)
6289 return rsec;
6290
6291 if (h != NULL)
6292 {
6293 enum elf_ppc64_reloc_type r_type;
6294 struct ppc_link_hash_entry *eh, *fh, *fdh;
6295
6296 r_type = ELF64_R_TYPE (rel->r_info);
6297 switch (r_type)
6298 {
6299 case R_PPC64_GNU_VTINHERIT:
6300 case R_PPC64_GNU_VTENTRY:
6301 break;
6302
6303 default:
6304 switch (h->root.type)
6305 {
6306 case bfd_link_hash_defined:
6307 case bfd_link_hash_defweak:
6308 eh = (struct ppc_link_hash_entry *) h;
6309 fdh = defined_func_desc (eh);
6310 if (fdh != NULL)
6311 eh = fdh;
6312
6313 /* Function descriptor syms cause the associated
6314 function code sym section to be marked. */
6315 fh = defined_code_entry (eh);
6316 if (fh != NULL)
6317 {
6318 /* They also mark their opd section. */
6319 eh->elf.root.u.def.section->gc_mark = 1;
6320
6321 rsec = fh->elf.root.u.def.section;
6322 }
6323 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6324 && opd_entry_value (eh->elf.root.u.def.section,
6325 eh->elf.root.u.def.value,
6326 &rsec, NULL, FALSE) != (bfd_vma) -1)
6327 eh->elf.root.u.def.section->gc_mark = 1;
6328 else
6329 rsec = h->root.u.def.section;
6330 break;
6331
6332 case bfd_link_hash_common:
6333 rsec = h->root.u.c.p->section;
6334 break;
6335
6336 default:
6337 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6338 }
6339 }
6340 }
6341 else
6342 {
6343 struct _opd_sec_data *opd;
6344
6345 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6346 opd = get_opd_info (rsec);
6347 if (opd != NULL && opd->func_sec != NULL)
6348 {
6349 rsec->gc_mark = 1;
6350
6351 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6352 }
6353 }
6354
6355 return rsec;
6356 }
6357
6358 /* Update the .got, .plt. and dynamic reloc reference counts for the
6359 section being removed. */
6360
6361 static bfd_boolean
6362 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6363 asection *sec, const Elf_Internal_Rela *relocs)
6364 {
6365 struct ppc_link_hash_table *htab;
6366 Elf_Internal_Shdr *symtab_hdr;
6367 struct elf_link_hash_entry **sym_hashes;
6368 struct got_entry **local_got_ents;
6369 const Elf_Internal_Rela *rel, *relend;
6370
6371 if (info->relocatable)
6372 return TRUE;
6373
6374 if ((sec->flags & SEC_ALLOC) == 0)
6375 return TRUE;
6376
6377 elf_section_data (sec)->local_dynrel = NULL;
6378
6379 htab = ppc_hash_table (info);
6380 if (htab == NULL)
6381 return FALSE;
6382
6383 symtab_hdr = &elf_symtab_hdr (abfd);
6384 sym_hashes = elf_sym_hashes (abfd);
6385 local_got_ents = elf_local_got_ents (abfd);
6386
6387 relend = relocs + sec->reloc_count;
6388 for (rel = relocs; rel < relend; rel++)
6389 {
6390 unsigned long r_symndx;
6391 enum elf_ppc64_reloc_type r_type;
6392 struct elf_link_hash_entry *h = NULL;
6393 unsigned char tls_type = 0;
6394
6395 r_symndx = ELF64_R_SYM (rel->r_info);
6396 r_type = ELF64_R_TYPE (rel->r_info);
6397 if (r_symndx >= symtab_hdr->sh_info)
6398 {
6399 struct ppc_link_hash_entry *eh;
6400 struct elf_dyn_relocs **pp;
6401 struct elf_dyn_relocs *p;
6402
6403 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6404 h = elf_follow_link (h);
6405 eh = (struct ppc_link_hash_entry *) h;
6406
6407 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6408 if (p->sec == sec)
6409 {
6410 /* Everything must go for SEC. */
6411 *pp = p->next;
6412 break;
6413 }
6414 }
6415
6416 if (is_branch_reloc (r_type))
6417 {
6418 struct plt_entry **ifunc = NULL;
6419 if (h != NULL)
6420 {
6421 if (h->type == STT_GNU_IFUNC)
6422 ifunc = &h->plt.plist;
6423 }
6424 else if (local_got_ents != NULL)
6425 {
6426 struct plt_entry **local_plt = (struct plt_entry **)
6427 (local_got_ents + symtab_hdr->sh_info);
6428 unsigned char *local_got_tls_masks = (unsigned char *)
6429 (local_plt + symtab_hdr->sh_info);
6430 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6431 ifunc = local_plt + r_symndx;
6432 }
6433 if (ifunc != NULL)
6434 {
6435 struct plt_entry *ent;
6436
6437 for (ent = *ifunc; ent != NULL; ent = ent->next)
6438 if (ent->addend == rel->r_addend)
6439 break;
6440 if (ent == NULL)
6441 abort ();
6442 if (ent->plt.refcount > 0)
6443 ent->plt.refcount -= 1;
6444 continue;
6445 }
6446 }
6447
6448 switch (r_type)
6449 {
6450 case R_PPC64_GOT_TLSLD16:
6451 case R_PPC64_GOT_TLSLD16_LO:
6452 case R_PPC64_GOT_TLSLD16_HI:
6453 case R_PPC64_GOT_TLSLD16_HA:
6454 tls_type = TLS_TLS | TLS_LD;
6455 goto dogot;
6456
6457 case R_PPC64_GOT_TLSGD16:
6458 case R_PPC64_GOT_TLSGD16_LO:
6459 case R_PPC64_GOT_TLSGD16_HI:
6460 case R_PPC64_GOT_TLSGD16_HA:
6461 tls_type = TLS_TLS | TLS_GD;
6462 goto dogot;
6463
6464 case R_PPC64_GOT_TPREL16_DS:
6465 case R_PPC64_GOT_TPREL16_LO_DS:
6466 case R_PPC64_GOT_TPREL16_HI:
6467 case R_PPC64_GOT_TPREL16_HA:
6468 tls_type = TLS_TLS | TLS_TPREL;
6469 goto dogot;
6470
6471 case R_PPC64_GOT_DTPREL16_DS:
6472 case R_PPC64_GOT_DTPREL16_LO_DS:
6473 case R_PPC64_GOT_DTPREL16_HI:
6474 case R_PPC64_GOT_DTPREL16_HA:
6475 tls_type = TLS_TLS | TLS_DTPREL;
6476 goto dogot;
6477
6478 case R_PPC64_GOT16:
6479 case R_PPC64_GOT16_DS:
6480 case R_PPC64_GOT16_HA:
6481 case R_PPC64_GOT16_HI:
6482 case R_PPC64_GOT16_LO:
6483 case R_PPC64_GOT16_LO_DS:
6484 dogot:
6485 {
6486 struct got_entry *ent;
6487
6488 if (h != NULL)
6489 ent = h->got.glist;
6490 else
6491 ent = local_got_ents[r_symndx];
6492
6493 for (; ent != NULL; ent = ent->next)
6494 if (ent->addend == rel->r_addend
6495 && ent->owner == abfd
6496 && ent->tls_type == tls_type)
6497 break;
6498 if (ent == NULL)
6499 abort ();
6500 if (ent->got.refcount > 0)
6501 ent->got.refcount -= 1;
6502 }
6503 break;
6504
6505 case R_PPC64_PLT16_HA:
6506 case R_PPC64_PLT16_HI:
6507 case R_PPC64_PLT16_LO:
6508 case R_PPC64_PLT32:
6509 case R_PPC64_PLT64:
6510 case R_PPC64_REL14:
6511 case R_PPC64_REL14_BRNTAKEN:
6512 case R_PPC64_REL14_BRTAKEN:
6513 case R_PPC64_REL24:
6514 if (h != NULL)
6515 {
6516 struct plt_entry *ent;
6517
6518 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6519 if (ent->addend == rel->r_addend)
6520 break;
6521 if (ent != NULL && ent->plt.refcount > 0)
6522 ent->plt.refcount -= 1;
6523 }
6524 break;
6525
6526 default:
6527 break;
6528 }
6529 }
6530 return TRUE;
6531 }
6532
6533 /* The maximum size of .sfpr. */
6534 #define SFPR_MAX (218*4)
6535
6536 struct sfpr_def_parms
6537 {
6538 const char name[12];
6539 unsigned char lo, hi;
6540 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6541 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6542 };
6543
6544 /* Auto-generate _save*, _rest* functions in .sfpr. */
6545
6546 static bfd_boolean
6547 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6548 {
6549 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6550 unsigned int i;
6551 size_t len = strlen (parm->name);
6552 bfd_boolean writing = FALSE;
6553 char sym[16];
6554
6555 if (htab == NULL)
6556 return FALSE;
6557
6558 memcpy (sym, parm->name, len);
6559 sym[len + 2] = 0;
6560
6561 for (i = parm->lo; i <= parm->hi; i++)
6562 {
6563 struct elf_link_hash_entry *h;
6564
6565 sym[len + 0] = i / 10 + '0';
6566 sym[len + 1] = i % 10 + '0';
6567 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6568 if (h != NULL
6569 && !h->def_regular)
6570 {
6571 h->root.type = bfd_link_hash_defined;
6572 h->root.u.def.section = htab->sfpr;
6573 h->root.u.def.value = htab->sfpr->size;
6574 h->type = STT_FUNC;
6575 h->def_regular = 1;
6576 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6577 writing = TRUE;
6578 if (htab->sfpr->contents == NULL)
6579 {
6580 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6581 if (htab->sfpr->contents == NULL)
6582 return FALSE;
6583 }
6584 }
6585 if (writing)
6586 {
6587 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6588 if (i != parm->hi)
6589 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6590 else
6591 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6592 htab->sfpr->size = p - htab->sfpr->contents;
6593 }
6594 }
6595
6596 return TRUE;
6597 }
6598
6599 static bfd_byte *
6600 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6601 {
6602 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6603 return p + 4;
6604 }
6605
6606 static bfd_byte *
6607 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6608 {
6609 p = savegpr0 (abfd, p, r);
6610 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6611 p = p + 4;
6612 bfd_put_32 (abfd, BLR, p);
6613 return p + 4;
6614 }
6615
6616 static bfd_byte *
6617 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6618 {
6619 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6620 return p + 4;
6621 }
6622
6623 static bfd_byte *
6624 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6625 {
6626 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6627 p = p + 4;
6628 p = restgpr0 (abfd, p, r);
6629 bfd_put_32 (abfd, MTLR_R0, p);
6630 p = p + 4;
6631 if (r == 29)
6632 {
6633 p = restgpr0 (abfd, p, 30);
6634 p = restgpr0 (abfd, p, 31);
6635 }
6636 bfd_put_32 (abfd, BLR, p);
6637 return p + 4;
6638 }
6639
6640 static bfd_byte *
6641 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6642 {
6643 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6644 return p + 4;
6645 }
6646
6647 static bfd_byte *
6648 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6649 {
6650 p = savegpr1 (abfd, p, r);
6651 bfd_put_32 (abfd, BLR, p);
6652 return p + 4;
6653 }
6654
6655 static bfd_byte *
6656 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6657 {
6658 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6659 return p + 4;
6660 }
6661
6662 static bfd_byte *
6663 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6664 {
6665 p = restgpr1 (abfd, p, r);
6666 bfd_put_32 (abfd, BLR, p);
6667 return p + 4;
6668 }
6669
6670 static bfd_byte *
6671 savefpr (bfd *abfd, bfd_byte *p, int r)
6672 {
6673 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6674 return p + 4;
6675 }
6676
6677 static bfd_byte *
6678 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6679 {
6680 p = savefpr (abfd, p, r);
6681 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6682 p = p + 4;
6683 bfd_put_32 (abfd, BLR, p);
6684 return p + 4;
6685 }
6686
6687 static bfd_byte *
6688 restfpr (bfd *abfd, bfd_byte *p, int r)
6689 {
6690 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6691 return p + 4;
6692 }
6693
6694 static bfd_byte *
6695 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6696 {
6697 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6698 p = p + 4;
6699 p = restfpr (abfd, p, r);
6700 bfd_put_32 (abfd, MTLR_R0, p);
6701 p = p + 4;
6702 if (r == 29)
6703 {
6704 p = restfpr (abfd, p, 30);
6705 p = restfpr (abfd, p, 31);
6706 }
6707 bfd_put_32 (abfd, BLR, p);
6708 return p + 4;
6709 }
6710
6711 static bfd_byte *
6712 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6713 {
6714 p = savefpr (abfd, p, r);
6715 bfd_put_32 (abfd, BLR, p);
6716 return p + 4;
6717 }
6718
6719 static bfd_byte *
6720 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6721 {
6722 p = restfpr (abfd, p, r);
6723 bfd_put_32 (abfd, BLR, p);
6724 return p + 4;
6725 }
6726
6727 static bfd_byte *
6728 savevr (bfd *abfd, bfd_byte *p, int r)
6729 {
6730 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6731 p = p + 4;
6732 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6733 return p + 4;
6734 }
6735
6736 static bfd_byte *
6737 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6738 {
6739 p = savevr (abfd, p, r);
6740 bfd_put_32 (abfd, BLR, p);
6741 return p + 4;
6742 }
6743
6744 static bfd_byte *
6745 restvr (bfd *abfd, bfd_byte *p, int r)
6746 {
6747 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6748 p = p + 4;
6749 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6750 return p + 4;
6751 }
6752
6753 static bfd_byte *
6754 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6755 {
6756 p = restvr (abfd, p, r);
6757 bfd_put_32 (abfd, BLR, p);
6758 return p + 4;
6759 }
6760
6761 /* Called via elf_link_hash_traverse to transfer dynamic linking
6762 information on function code symbol entries to their corresponding
6763 function descriptor symbol entries. */
6764
6765 static bfd_boolean
6766 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6767 {
6768 struct bfd_link_info *info;
6769 struct ppc_link_hash_table *htab;
6770 struct plt_entry *ent;
6771 struct ppc_link_hash_entry *fh;
6772 struct ppc_link_hash_entry *fdh;
6773 bfd_boolean force_local;
6774
6775 fh = (struct ppc_link_hash_entry *) h;
6776 if (fh->elf.root.type == bfd_link_hash_indirect)
6777 return TRUE;
6778
6779 info = inf;
6780 htab = ppc_hash_table (info);
6781 if (htab == NULL)
6782 return FALSE;
6783
6784 /* Resolve undefined references to dot-symbols as the value
6785 in the function descriptor, if we have one in a regular object.
6786 This is to satisfy cases like ".quad .foo". Calls to functions
6787 in dynamic objects are handled elsewhere. */
6788 if (fh->elf.root.type == bfd_link_hash_undefweak
6789 && fh->was_undefined
6790 && (fdh = defined_func_desc (fh)) != NULL
6791 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6792 && opd_entry_value (fdh->elf.root.u.def.section,
6793 fdh->elf.root.u.def.value,
6794 &fh->elf.root.u.def.section,
6795 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6796 {
6797 fh->elf.root.type = fdh->elf.root.type;
6798 fh->elf.forced_local = 1;
6799 fh->elf.def_regular = fdh->elf.def_regular;
6800 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6801 }
6802
6803 /* If this is a function code symbol, transfer dynamic linking
6804 information to the function descriptor symbol. */
6805 if (!fh->is_func)
6806 return TRUE;
6807
6808 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6809 if (ent->plt.refcount > 0)
6810 break;
6811 if (ent == NULL
6812 || fh->elf.root.root.string[0] != '.'
6813 || fh->elf.root.root.string[1] == '\0')
6814 return TRUE;
6815
6816 /* Find the corresponding function descriptor symbol. Create it
6817 as undefined if necessary. */
6818
6819 fdh = lookup_fdh (fh, htab);
6820 if (fdh == NULL
6821 && !info->executable
6822 && (fh->elf.root.type == bfd_link_hash_undefined
6823 || fh->elf.root.type == bfd_link_hash_undefweak))
6824 {
6825 fdh = make_fdh (info, fh);
6826 if (fdh == NULL)
6827 return FALSE;
6828 }
6829
6830 /* Fake function descriptors are made undefweak. If the function
6831 code symbol is strong undefined, make the fake sym the same.
6832 If the function code symbol is defined, then force the fake
6833 descriptor local; We can't support overriding of symbols in a
6834 shared library on a fake descriptor. */
6835
6836 if (fdh != NULL
6837 && fdh->fake
6838 && fdh->elf.root.type == bfd_link_hash_undefweak)
6839 {
6840 if (fh->elf.root.type == bfd_link_hash_undefined)
6841 {
6842 fdh->elf.root.type = bfd_link_hash_undefined;
6843 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6844 }
6845 else if (fh->elf.root.type == bfd_link_hash_defined
6846 || fh->elf.root.type == bfd_link_hash_defweak)
6847 {
6848 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6849 }
6850 }
6851
6852 if (fdh != NULL
6853 && !fdh->elf.forced_local
6854 && (!info->executable
6855 || fdh->elf.def_dynamic
6856 || fdh->elf.ref_dynamic
6857 || (fdh->elf.root.type == bfd_link_hash_undefweak
6858 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6859 {
6860 if (fdh->elf.dynindx == -1)
6861 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6862 return FALSE;
6863 fdh->elf.ref_regular |= fh->elf.ref_regular;
6864 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6865 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6866 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6867 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6868 {
6869 move_plt_plist (fh, fdh);
6870 fdh->elf.needs_plt = 1;
6871 }
6872 fdh->is_func_descriptor = 1;
6873 fdh->oh = fh;
6874 fh->oh = fdh;
6875 }
6876
6877 /* Now that the info is on the function descriptor, clear the
6878 function code sym info. Any function code syms for which we
6879 don't have a definition in a regular file, we force local.
6880 This prevents a shared library from exporting syms that have
6881 been imported from another library. Function code syms that
6882 are really in the library we must leave global to prevent the
6883 linker dragging in a definition from a static library. */
6884 force_local = (!fh->elf.def_regular
6885 || fdh == NULL
6886 || !fdh->elf.def_regular
6887 || fdh->elf.forced_local);
6888 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6889
6890 return TRUE;
6891 }
6892
6893 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6894 this hook to a) provide some gcc support functions, and b) transfer
6895 dynamic linking information gathered so far on function code symbol
6896 entries, to their corresponding function descriptor symbol entries. */
6897
6898 static bfd_boolean
6899 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6900 struct bfd_link_info *info)
6901 {
6902 struct ppc_link_hash_table *htab;
6903 unsigned int i;
6904 static const struct sfpr_def_parms funcs[] =
6905 {
6906 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6907 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6908 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6909 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6910 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6911 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6912 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6913 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6914 { "._savef", 14, 31, savefpr, savefpr1_tail },
6915 { "._restf", 14, 31, restfpr, restfpr1_tail },
6916 { "_savevr_", 20, 31, savevr, savevr_tail },
6917 { "_restvr_", 20, 31, restvr, restvr_tail }
6918 };
6919
6920 htab = ppc_hash_table (info);
6921 if (htab == NULL)
6922 return FALSE;
6923
6924 if (!info->relocatable
6925 && htab->elf.hgot != NULL)
6926 {
6927 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6928 /* Make .TOC. defined so as to prevent it being made dynamic.
6929 The wrong value here is fixed later in ppc64_elf_set_toc. */
6930 htab->elf.hgot->type = STT_OBJECT;
6931 htab->elf.hgot->root.type = bfd_link_hash_defined;
6932 htab->elf.hgot->root.u.def.value = 0;
6933 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6934 htab->elf.hgot->def_regular = 1;
6935 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6936 | STV_HIDDEN);
6937 }
6938
6939 if (htab->sfpr == NULL)
6940 /* We don't have any relocs. */
6941 return TRUE;
6942
6943 /* Provide any missing _save* and _rest* functions. */
6944 htab->sfpr->size = 0;
6945 if (htab->params->save_restore_funcs)
6946 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6947 if (!sfpr_define (info, &funcs[i]))
6948 return FALSE;
6949
6950 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6951
6952 if (htab->sfpr->size == 0)
6953 htab->sfpr->flags |= SEC_EXCLUDE;
6954
6955 return TRUE;
6956 }
6957
6958 /* Return true if we have dynamic relocs that apply to read-only sections. */
6959
6960 static bfd_boolean
6961 readonly_dynrelocs (struct elf_link_hash_entry *h)
6962 {
6963 struct ppc_link_hash_entry *eh;
6964 struct elf_dyn_relocs *p;
6965
6966 eh = (struct ppc_link_hash_entry *) h;
6967 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6968 {
6969 asection *s = p->sec->output_section;
6970
6971 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6972 return TRUE;
6973 }
6974 return FALSE;
6975 }
6976
6977 /* Adjust a symbol defined by a dynamic object and referenced by a
6978 regular object. The current definition is in some section of the
6979 dynamic object, but we're not including those sections. We have to
6980 change the definition to something the rest of the link can
6981 understand. */
6982
6983 static bfd_boolean
6984 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6985 struct elf_link_hash_entry *h)
6986 {
6987 struct ppc_link_hash_table *htab;
6988 asection *s;
6989
6990 htab = ppc_hash_table (info);
6991 if (htab == NULL)
6992 return FALSE;
6993
6994 /* Deal with function syms. */
6995 if (h->type == STT_FUNC
6996 || h->type == STT_GNU_IFUNC
6997 || h->needs_plt)
6998 {
6999 /* Clear procedure linkage table information for any symbol that
7000 won't need a .plt entry. */
7001 struct plt_entry *ent;
7002 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7003 if (ent->plt.refcount > 0)
7004 break;
7005 if (ent == NULL
7006 || (h->type != STT_GNU_IFUNC
7007 && (SYMBOL_CALLS_LOCAL (info, h)
7008 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7009 && h->root.type == bfd_link_hash_undefweak))))
7010 {
7011 h->plt.plist = NULL;
7012 h->needs_plt = 0;
7013 h->pointer_equality_needed = 0;
7014 }
7015 else if (abiversion (info->output_bfd) == 2)
7016 {
7017 /* Taking a function's address in a read/write section
7018 doesn't require us to define the function symbol in the
7019 executable on a global entry stub. A dynamic reloc can
7020 be used instead. */
7021 if (h->pointer_equality_needed
7022 && h->type != STT_GNU_IFUNC
7023 && !readonly_dynrelocs (h))
7024 {
7025 h->pointer_equality_needed = 0;
7026 h->non_got_ref = 0;
7027 }
7028
7029 /* After adjust_dynamic_symbol, non_got_ref set in the
7030 non-shared case means that we have allocated space in
7031 .dynbss for the symbol and thus dyn_relocs for this
7032 symbol should be discarded.
7033 If we get here we know we are making a PLT entry for this
7034 symbol, and in an executable we'd normally resolve
7035 relocations against this symbol to the PLT entry. Allow
7036 dynamic relocs if the reference is weak, and the dynamic
7037 relocs will not cause text relocation. */
7038 else if (!h->ref_regular_nonweak
7039 && h->non_got_ref
7040 && h->type != STT_GNU_IFUNC
7041 && !readonly_dynrelocs (h))
7042 h->non_got_ref = 0;
7043
7044 /* If making a plt entry, then we don't need copy relocs. */
7045 return TRUE;
7046 }
7047 }
7048 else
7049 h->plt.plist = NULL;
7050
7051 /* If this is a weak symbol, and there is a real definition, the
7052 processor independent code will have arranged for us to see the
7053 real definition first, and we can just use the same value. */
7054 if (h->u.weakdef != NULL)
7055 {
7056 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7057 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7058 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7059 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7060 if (ELIMINATE_COPY_RELOCS)
7061 h->non_got_ref = h->u.weakdef->non_got_ref;
7062 return TRUE;
7063 }
7064
7065 /* If we are creating a shared library, we must presume that the
7066 only references to the symbol are via the global offset table.
7067 For such cases we need not do anything here; the relocations will
7068 be handled correctly by relocate_section. */
7069 if (info->shared)
7070 return TRUE;
7071
7072 /* If there are no references to this symbol that do not use the
7073 GOT, we don't need to generate a copy reloc. */
7074 if (!h->non_got_ref)
7075 return TRUE;
7076
7077 /* Don't generate a copy reloc for symbols defined in the executable. */
7078 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7079 return TRUE;
7080
7081 /* If we didn't find any dynamic relocs in read-only sections, then
7082 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7083 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7084 {
7085 h->non_got_ref = 0;
7086 return TRUE;
7087 }
7088
7089 if (h->plt.plist != NULL)
7090 {
7091 /* We should never get here, but unfortunately there are versions
7092 of gcc out there that improperly (for this ABI) put initialized
7093 function pointers, vtable refs and suchlike in read-only
7094 sections. Allow them to proceed, but warn that this might
7095 break at runtime. */
7096 info->callbacks->einfo
7097 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7098 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7099 h->root.root.string);
7100 }
7101
7102 /* This is a reference to a symbol defined by a dynamic object which
7103 is not a function. */
7104
7105 /* We must allocate the symbol in our .dynbss section, which will
7106 become part of the .bss section of the executable. There will be
7107 an entry for this symbol in the .dynsym section. The dynamic
7108 object will contain position independent code, so all references
7109 from the dynamic object to this symbol will go through the global
7110 offset table. The dynamic linker will use the .dynsym entry to
7111 determine the address it must put in the global offset table, so
7112 both the dynamic object and the regular object will refer to the
7113 same memory location for the variable. */
7114
7115 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7116 to copy the initial value out of the dynamic object and into the
7117 runtime process image. We need to remember the offset into the
7118 .rela.bss section we are going to use. */
7119 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7120 {
7121 htab->relbss->size += sizeof (Elf64_External_Rela);
7122 h->needs_copy = 1;
7123 }
7124
7125 s = htab->dynbss;
7126
7127 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7128 }
7129
7130 /* If given a function descriptor symbol, hide both the function code
7131 sym and the descriptor. */
7132 static void
7133 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7134 struct elf_link_hash_entry *h,
7135 bfd_boolean force_local)
7136 {
7137 struct ppc_link_hash_entry *eh;
7138 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7139
7140 eh = (struct ppc_link_hash_entry *) h;
7141 if (eh->is_func_descriptor)
7142 {
7143 struct ppc_link_hash_entry *fh = eh->oh;
7144
7145 if (fh == NULL)
7146 {
7147 const char *p, *q;
7148 struct ppc_link_hash_table *htab;
7149 char save;
7150
7151 /* We aren't supposed to use alloca in BFD because on
7152 systems which do not have alloca the version in libiberty
7153 calls xmalloc, which might cause the program to crash
7154 when it runs out of memory. This function doesn't have a
7155 return status, so there's no way to gracefully return an
7156 error. So cheat. We know that string[-1] can be safely
7157 accessed; It's either a string in an ELF string table,
7158 or allocated in an objalloc structure. */
7159
7160 p = eh->elf.root.root.string - 1;
7161 save = *p;
7162 *(char *) p = '.';
7163 htab = ppc_hash_table (info);
7164 if (htab == NULL)
7165 return;
7166
7167 fh = (struct ppc_link_hash_entry *)
7168 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7169 *(char *) p = save;
7170
7171 /* Unfortunately, if it so happens that the string we were
7172 looking for was allocated immediately before this string,
7173 then we overwrote the string terminator. That's the only
7174 reason the lookup should fail. */
7175 if (fh == NULL)
7176 {
7177 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7178 while (q >= eh->elf.root.root.string && *q == *p)
7179 --q, --p;
7180 if (q < eh->elf.root.root.string && *p == '.')
7181 fh = (struct ppc_link_hash_entry *)
7182 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7183 }
7184 if (fh != NULL)
7185 {
7186 eh->oh = fh;
7187 fh->oh = eh;
7188 }
7189 }
7190 if (fh != NULL)
7191 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7192 }
7193 }
7194
7195 static bfd_boolean
7196 get_sym_h (struct elf_link_hash_entry **hp,
7197 Elf_Internal_Sym **symp,
7198 asection **symsecp,
7199 unsigned char **tls_maskp,
7200 Elf_Internal_Sym **locsymsp,
7201 unsigned long r_symndx,
7202 bfd *ibfd)
7203 {
7204 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7205
7206 if (r_symndx >= symtab_hdr->sh_info)
7207 {
7208 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7209 struct elf_link_hash_entry *h;
7210
7211 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7212 h = elf_follow_link (h);
7213
7214 if (hp != NULL)
7215 *hp = h;
7216
7217 if (symp != NULL)
7218 *symp = NULL;
7219
7220 if (symsecp != NULL)
7221 {
7222 asection *symsec = NULL;
7223 if (h->root.type == bfd_link_hash_defined
7224 || h->root.type == bfd_link_hash_defweak)
7225 symsec = h->root.u.def.section;
7226 *symsecp = symsec;
7227 }
7228
7229 if (tls_maskp != NULL)
7230 {
7231 struct ppc_link_hash_entry *eh;
7232
7233 eh = (struct ppc_link_hash_entry *) h;
7234 *tls_maskp = &eh->tls_mask;
7235 }
7236 }
7237 else
7238 {
7239 Elf_Internal_Sym *sym;
7240 Elf_Internal_Sym *locsyms = *locsymsp;
7241
7242 if (locsyms == NULL)
7243 {
7244 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7245 if (locsyms == NULL)
7246 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7247 symtab_hdr->sh_info,
7248 0, NULL, NULL, NULL);
7249 if (locsyms == NULL)
7250 return FALSE;
7251 *locsymsp = locsyms;
7252 }
7253 sym = locsyms + r_symndx;
7254
7255 if (hp != NULL)
7256 *hp = NULL;
7257
7258 if (symp != NULL)
7259 *symp = sym;
7260
7261 if (symsecp != NULL)
7262 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7263
7264 if (tls_maskp != NULL)
7265 {
7266 struct got_entry **lgot_ents;
7267 unsigned char *tls_mask;
7268
7269 tls_mask = NULL;
7270 lgot_ents = elf_local_got_ents (ibfd);
7271 if (lgot_ents != NULL)
7272 {
7273 struct plt_entry **local_plt = (struct plt_entry **)
7274 (lgot_ents + symtab_hdr->sh_info);
7275 unsigned char *lgot_masks = (unsigned char *)
7276 (local_plt + symtab_hdr->sh_info);
7277 tls_mask = &lgot_masks[r_symndx];
7278 }
7279 *tls_maskp = tls_mask;
7280 }
7281 }
7282 return TRUE;
7283 }
7284
7285 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7286 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7287 type suitable for optimization, and 1 otherwise. */
7288
7289 static int
7290 get_tls_mask (unsigned char **tls_maskp,
7291 unsigned long *toc_symndx,
7292 bfd_vma *toc_addend,
7293 Elf_Internal_Sym **locsymsp,
7294 const Elf_Internal_Rela *rel,
7295 bfd *ibfd)
7296 {
7297 unsigned long r_symndx;
7298 int next_r;
7299 struct elf_link_hash_entry *h;
7300 Elf_Internal_Sym *sym;
7301 asection *sec;
7302 bfd_vma off;
7303
7304 r_symndx = ELF64_R_SYM (rel->r_info);
7305 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7306 return 0;
7307
7308 if ((*tls_maskp != NULL && **tls_maskp != 0)
7309 || sec == NULL
7310 || ppc64_elf_section_data (sec) == NULL
7311 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7312 return 1;
7313
7314 /* Look inside a TOC section too. */
7315 if (h != NULL)
7316 {
7317 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7318 off = h->root.u.def.value;
7319 }
7320 else
7321 off = sym->st_value;
7322 off += rel->r_addend;
7323 BFD_ASSERT (off % 8 == 0);
7324 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7325 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7326 if (toc_symndx != NULL)
7327 *toc_symndx = r_symndx;
7328 if (toc_addend != NULL)
7329 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7330 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7331 return 0;
7332 if ((h == NULL || is_static_defined (h))
7333 && (next_r == -1 || next_r == -2))
7334 return 1 - next_r;
7335 return 1;
7336 }
7337
7338 /* Find (or create) an entry in the tocsave hash table. */
7339
7340 static struct tocsave_entry *
7341 tocsave_find (struct ppc_link_hash_table *htab,
7342 enum insert_option insert,
7343 Elf_Internal_Sym **local_syms,
7344 const Elf_Internal_Rela *irela,
7345 bfd *ibfd)
7346 {
7347 unsigned long r_indx;
7348 struct elf_link_hash_entry *h;
7349 Elf_Internal_Sym *sym;
7350 struct tocsave_entry ent, *p;
7351 hashval_t hash;
7352 struct tocsave_entry **slot;
7353
7354 r_indx = ELF64_R_SYM (irela->r_info);
7355 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7356 return NULL;
7357 if (ent.sec == NULL || ent.sec->output_section == NULL)
7358 {
7359 (*_bfd_error_handler)
7360 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7361 return NULL;
7362 }
7363
7364 if (h != NULL)
7365 ent.offset = h->root.u.def.value;
7366 else
7367 ent.offset = sym->st_value;
7368 ent.offset += irela->r_addend;
7369
7370 hash = tocsave_htab_hash (&ent);
7371 slot = ((struct tocsave_entry **)
7372 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7373 if (slot == NULL)
7374 return NULL;
7375
7376 if (*slot == NULL)
7377 {
7378 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7379 if (p == NULL)
7380 return NULL;
7381 *p = ent;
7382 *slot = p;
7383 }
7384 return *slot;
7385 }
7386
7387 /* Adjust all global syms defined in opd sections. In gcc generated
7388 code for the old ABI, these will already have been done. */
7389
7390 static bfd_boolean
7391 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7392 {
7393 struct ppc_link_hash_entry *eh;
7394 asection *sym_sec;
7395 struct _opd_sec_data *opd;
7396
7397 if (h->root.type == bfd_link_hash_indirect)
7398 return TRUE;
7399
7400 if (h->root.type != bfd_link_hash_defined
7401 && h->root.type != bfd_link_hash_defweak)
7402 return TRUE;
7403
7404 eh = (struct ppc_link_hash_entry *) h;
7405 if (eh->adjust_done)
7406 return TRUE;
7407
7408 sym_sec = eh->elf.root.u.def.section;
7409 opd = get_opd_info (sym_sec);
7410 if (opd != NULL && opd->adjust != NULL)
7411 {
7412 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7413 if (adjust == -1)
7414 {
7415 /* This entry has been deleted. */
7416 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7417 if (dsec == NULL)
7418 {
7419 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7420 if (discarded_section (dsec))
7421 {
7422 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7423 break;
7424 }
7425 }
7426 eh->elf.root.u.def.value = 0;
7427 eh->elf.root.u.def.section = dsec;
7428 }
7429 else
7430 eh->elf.root.u.def.value += adjust;
7431 eh->adjust_done = 1;
7432 }
7433 return TRUE;
7434 }
7435
7436 /* Handles decrementing dynamic reloc counts for the reloc specified by
7437 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7438 have already been determined. */
7439
7440 static bfd_boolean
7441 dec_dynrel_count (bfd_vma r_info,
7442 asection *sec,
7443 struct bfd_link_info *info,
7444 Elf_Internal_Sym **local_syms,
7445 struct elf_link_hash_entry *h,
7446 Elf_Internal_Sym *sym)
7447 {
7448 enum elf_ppc64_reloc_type r_type;
7449 asection *sym_sec = NULL;
7450
7451 /* Can this reloc be dynamic? This switch, and later tests here
7452 should be kept in sync with the code in check_relocs. */
7453 r_type = ELF64_R_TYPE (r_info);
7454 switch (r_type)
7455 {
7456 default:
7457 return TRUE;
7458
7459 case R_PPC64_TPREL16:
7460 case R_PPC64_TPREL16_LO:
7461 case R_PPC64_TPREL16_HI:
7462 case R_PPC64_TPREL16_HA:
7463 case R_PPC64_TPREL16_DS:
7464 case R_PPC64_TPREL16_LO_DS:
7465 case R_PPC64_TPREL16_HIGH:
7466 case R_PPC64_TPREL16_HIGHA:
7467 case R_PPC64_TPREL16_HIGHER:
7468 case R_PPC64_TPREL16_HIGHERA:
7469 case R_PPC64_TPREL16_HIGHEST:
7470 case R_PPC64_TPREL16_HIGHESTA:
7471 if (!info->shared)
7472 return TRUE;
7473
7474 case R_PPC64_TPREL64:
7475 case R_PPC64_DTPMOD64:
7476 case R_PPC64_DTPREL64:
7477 case R_PPC64_ADDR64:
7478 case R_PPC64_REL30:
7479 case R_PPC64_REL32:
7480 case R_PPC64_REL64:
7481 case R_PPC64_ADDR14:
7482 case R_PPC64_ADDR14_BRNTAKEN:
7483 case R_PPC64_ADDR14_BRTAKEN:
7484 case R_PPC64_ADDR16:
7485 case R_PPC64_ADDR16_DS:
7486 case R_PPC64_ADDR16_HA:
7487 case R_PPC64_ADDR16_HI:
7488 case R_PPC64_ADDR16_HIGH:
7489 case R_PPC64_ADDR16_HIGHA:
7490 case R_PPC64_ADDR16_HIGHER:
7491 case R_PPC64_ADDR16_HIGHERA:
7492 case R_PPC64_ADDR16_HIGHEST:
7493 case R_PPC64_ADDR16_HIGHESTA:
7494 case R_PPC64_ADDR16_LO:
7495 case R_PPC64_ADDR16_LO_DS:
7496 case R_PPC64_ADDR24:
7497 case R_PPC64_ADDR32:
7498 case R_PPC64_UADDR16:
7499 case R_PPC64_UADDR32:
7500 case R_PPC64_UADDR64:
7501 case R_PPC64_TOC:
7502 break;
7503 }
7504
7505 if (local_syms != NULL)
7506 {
7507 unsigned long r_symndx;
7508 bfd *ibfd = sec->owner;
7509
7510 r_symndx = ELF64_R_SYM (r_info);
7511 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7512 return FALSE;
7513 }
7514
7515 if ((info->shared
7516 && (must_be_dyn_reloc (info, r_type)
7517 || (h != NULL
7518 && (!SYMBOLIC_BIND (info, h)
7519 || h->root.type == bfd_link_hash_defweak
7520 || !h->def_regular))))
7521 || (ELIMINATE_COPY_RELOCS
7522 && !info->shared
7523 && h != NULL
7524 && (h->root.type == bfd_link_hash_defweak
7525 || !h->def_regular)))
7526 ;
7527 else
7528 return TRUE;
7529
7530 if (h != NULL)
7531 {
7532 struct elf_dyn_relocs *p;
7533 struct elf_dyn_relocs **pp;
7534 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7535
7536 /* elf_gc_sweep may have already removed all dyn relocs associated
7537 with local syms for a given section. Also, symbol flags are
7538 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7539 report a dynreloc miscount. */
7540 if (*pp == NULL && info->gc_sections)
7541 return TRUE;
7542
7543 while ((p = *pp) != NULL)
7544 {
7545 if (p->sec == sec)
7546 {
7547 if (!must_be_dyn_reloc (info, r_type))
7548 p->pc_count -= 1;
7549 p->count -= 1;
7550 if (p->count == 0)
7551 *pp = p->next;
7552 return TRUE;
7553 }
7554 pp = &p->next;
7555 }
7556 }
7557 else
7558 {
7559 struct ppc_dyn_relocs *p;
7560 struct ppc_dyn_relocs **pp;
7561 void *vpp;
7562 bfd_boolean is_ifunc;
7563
7564 if (local_syms == NULL)
7565 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7566 if (sym_sec == NULL)
7567 sym_sec = sec;
7568
7569 vpp = &elf_section_data (sym_sec)->local_dynrel;
7570 pp = (struct ppc_dyn_relocs **) vpp;
7571
7572 if (*pp == NULL && info->gc_sections)
7573 return TRUE;
7574
7575 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7576 while ((p = *pp) != NULL)
7577 {
7578 if (p->sec == sec && p->ifunc == is_ifunc)
7579 {
7580 p->count -= 1;
7581 if (p->count == 0)
7582 *pp = p->next;
7583 return TRUE;
7584 }
7585 pp = &p->next;
7586 }
7587 }
7588
7589 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7590 sec->owner, sec);
7591 bfd_set_error (bfd_error_bad_value);
7592 return FALSE;
7593 }
7594
7595 /* Remove unused Official Procedure Descriptor entries. Currently we
7596 only remove those associated with functions in discarded link-once
7597 sections, or weakly defined functions that have been overridden. It
7598 would be possible to remove many more entries for statically linked
7599 applications. */
7600
7601 bfd_boolean
7602 ppc64_elf_edit_opd (struct bfd_link_info *info)
7603 {
7604 bfd *ibfd;
7605 bfd_boolean some_edited = FALSE;
7606 asection *need_pad = NULL;
7607 struct ppc_link_hash_table *htab;
7608
7609 htab = ppc_hash_table (info);
7610 if (htab == NULL)
7611 return FALSE;
7612
7613 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7614 {
7615 asection *sec;
7616 Elf_Internal_Rela *relstart, *rel, *relend;
7617 Elf_Internal_Shdr *symtab_hdr;
7618 Elf_Internal_Sym *local_syms;
7619 struct _opd_sec_data *opd;
7620 bfd_boolean need_edit, add_aux_fields, broken;
7621 bfd_size_type cnt_16b = 0;
7622
7623 if (!is_ppc64_elf (ibfd))
7624 continue;
7625
7626 sec = bfd_get_section_by_name (ibfd, ".opd");
7627 if (sec == NULL || sec->size == 0)
7628 continue;
7629
7630 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7631 continue;
7632
7633 if (sec->output_section == bfd_abs_section_ptr)
7634 continue;
7635
7636 /* Look through the section relocs. */
7637 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7638 continue;
7639
7640 local_syms = NULL;
7641 symtab_hdr = &elf_symtab_hdr (ibfd);
7642
7643 /* Read the relocations. */
7644 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7645 info->keep_memory);
7646 if (relstart == NULL)
7647 return FALSE;
7648
7649 /* First run through the relocs to check they are sane, and to
7650 determine whether we need to edit this opd section. */
7651 need_edit = FALSE;
7652 broken = FALSE;
7653 need_pad = sec;
7654 relend = relstart + sec->reloc_count;
7655 for (rel = relstart; rel < relend; )
7656 {
7657 enum elf_ppc64_reloc_type r_type;
7658 unsigned long r_symndx;
7659 asection *sym_sec;
7660 struct elf_link_hash_entry *h;
7661 Elf_Internal_Sym *sym;
7662 bfd_vma offset;
7663
7664 /* .opd contains an array of 16 or 24 byte entries. We're
7665 only interested in the reloc pointing to a function entry
7666 point. */
7667 offset = rel->r_offset;
7668 if (rel + 1 == relend
7669 || rel[1].r_offset != offset + 8)
7670 {
7671 /* If someone messes with .opd alignment then after a
7672 "ld -r" we might have padding in the middle of .opd.
7673 Also, there's nothing to prevent someone putting
7674 something silly in .opd with the assembler. No .opd
7675 optimization for them! */
7676 broken_opd:
7677 (*_bfd_error_handler)
7678 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7679 broken = TRUE;
7680 break;
7681 }
7682
7683 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7684 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7685 {
7686 (*_bfd_error_handler)
7687 (_("%B: unexpected reloc type %u in .opd section"),
7688 ibfd, r_type);
7689 broken = TRUE;
7690 break;
7691 }
7692
7693 r_symndx = ELF64_R_SYM (rel->r_info);
7694 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7695 r_symndx, ibfd))
7696 goto error_ret;
7697
7698 if (sym_sec == NULL || sym_sec->owner == NULL)
7699 {
7700 const char *sym_name;
7701 if (h != NULL)
7702 sym_name = h->root.root.string;
7703 else
7704 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7705 sym_sec);
7706
7707 (*_bfd_error_handler)
7708 (_("%B: undefined sym `%s' in .opd section"),
7709 ibfd, sym_name);
7710 broken = TRUE;
7711 break;
7712 }
7713
7714 /* opd entries are always for functions defined in the
7715 current input bfd. If the symbol isn't defined in the
7716 input bfd, then we won't be using the function in this
7717 bfd; It must be defined in a linkonce section in another
7718 bfd, or is weak. It's also possible that we are
7719 discarding the function due to a linker script /DISCARD/,
7720 which we test for via the output_section. */
7721 if (sym_sec->owner != ibfd
7722 || sym_sec->output_section == bfd_abs_section_ptr)
7723 need_edit = TRUE;
7724
7725 rel += 2;
7726 if (rel + 1 == relend
7727 || (rel + 2 < relend
7728 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7729 ++rel;
7730
7731 if (rel == relend)
7732 {
7733 if (sec->size == offset + 24)
7734 {
7735 need_pad = NULL;
7736 break;
7737 }
7738 if (sec->size == offset + 16)
7739 {
7740 cnt_16b++;
7741 break;
7742 }
7743 goto broken_opd;
7744 }
7745 else if (rel + 1 < relend
7746 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7747 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7748 {
7749 if (rel[0].r_offset == offset + 16)
7750 cnt_16b++;
7751 else if (rel[0].r_offset != offset + 24)
7752 goto broken_opd;
7753 }
7754 else
7755 goto broken_opd;
7756 }
7757
7758 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7759
7760 if (!broken && (need_edit || add_aux_fields))
7761 {
7762 Elf_Internal_Rela *write_rel;
7763 Elf_Internal_Shdr *rel_hdr;
7764 bfd_byte *rptr, *wptr;
7765 bfd_byte *new_contents;
7766 bfd_size_type amt;
7767
7768 new_contents = NULL;
7769 amt = OPD_NDX (sec->size) * sizeof (long);
7770 opd = &ppc64_elf_section_data (sec)->u.opd;
7771 opd->adjust = bfd_zalloc (sec->owner, amt);
7772 if (opd->adjust == NULL)
7773 return FALSE;
7774 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7775
7776 /* This seems a waste of time as input .opd sections are all
7777 zeros as generated by gcc, but I suppose there's no reason
7778 this will always be so. We might start putting something in
7779 the third word of .opd entries. */
7780 if ((sec->flags & SEC_IN_MEMORY) == 0)
7781 {
7782 bfd_byte *loc;
7783 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7784 {
7785 if (loc != NULL)
7786 free (loc);
7787 error_ret:
7788 if (local_syms != NULL
7789 && symtab_hdr->contents != (unsigned char *) local_syms)
7790 free (local_syms);
7791 if (elf_section_data (sec)->relocs != relstart)
7792 free (relstart);
7793 return FALSE;
7794 }
7795 sec->contents = loc;
7796 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7797 }
7798
7799 elf_section_data (sec)->relocs = relstart;
7800
7801 new_contents = sec->contents;
7802 if (add_aux_fields)
7803 {
7804 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7805 if (new_contents == NULL)
7806 return FALSE;
7807 need_pad = NULL;
7808 }
7809 wptr = new_contents;
7810 rptr = sec->contents;
7811 write_rel = relstart;
7812 for (rel = relstart; rel < relend; )
7813 {
7814 unsigned long r_symndx;
7815 asection *sym_sec;
7816 struct elf_link_hash_entry *h;
7817 struct ppc_link_hash_entry *fdh = NULL;
7818 Elf_Internal_Sym *sym;
7819 long opd_ent_size;
7820 Elf_Internal_Rela *next_rel;
7821 bfd_boolean skip;
7822
7823 r_symndx = ELF64_R_SYM (rel->r_info);
7824 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7825 r_symndx, ibfd))
7826 goto error_ret;
7827
7828 next_rel = rel + 2;
7829 if (next_rel + 1 == relend
7830 || (next_rel + 2 < relend
7831 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7832 ++next_rel;
7833
7834 /* See if the .opd entry is full 24 byte or
7835 16 byte (with fd_aux entry overlapped with next
7836 fd_func). */
7837 opd_ent_size = 24;
7838 if (next_rel == relend)
7839 {
7840 if (sec->size == rel->r_offset + 16)
7841 opd_ent_size = 16;
7842 }
7843 else if (next_rel->r_offset == rel->r_offset + 16)
7844 opd_ent_size = 16;
7845
7846 if (h != NULL
7847 && h->root.root.string[0] == '.')
7848 {
7849 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7850 if (fdh != NULL
7851 && fdh->elf.root.type != bfd_link_hash_defined
7852 && fdh->elf.root.type != bfd_link_hash_defweak)
7853 fdh = NULL;
7854 }
7855
7856 skip = (sym_sec->owner != ibfd
7857 || sym_sec->output_section == bfd_abs_section_ptr);
7858 if (skip)
7859 {
7860 if (fdh != NULL && sym_sec->owner == ibfd)
7861 {
7862 /* Arrange for the function descriptor sym
7863 to be dropped. */
7864 fdh->elf.root.u.def.value = 0;
7865 fdh->elf.root.u.def.section = sym_sec;
7866 }
7867 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7868
7869 if (NO_OPD_RELOCS || info->relocatable)
7870 rel = next_rel;
7871 else
7872 while (1)
7873 {
7874 if (!dec_dynrel_count (rel->r_info, sec, info,
7875 NULL, h, sym))
7876 goto error_ret;
7877
7878 if (++rel == next_rel)
7879 break;
7880
7881 r_symndx = ELF64_R_SYM (rel->r_info);
7882 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7883 r_symndx, ibfd))
7884 goto error_ret;
7885 }
7886 }
7887 else
7888 {
7889 /* We'll be keeping this opd entry. */
7890 long adjust;
7891
7892 if (fdh != NULL)
7893 {
7894 /* Redefine the function descriptor symbol to
7895 this location in the opd section. It is
7896 necessary to update the value here rather
7897 than using an array of adjustments as we do
7898 for local symbols, because various places
7899 in the generic ELF code use the value
7900 stored in u.def.value. */
7901 fdh->elf.root.u.def.value = wptr - new_contents;
7902 fdh->adjust_done = 1;
7903 }
7904
7905 /* Local syms are a bit tricky. We could
7906 tweak them as they can be cached, but
7907 we'd need to look through the local syms
7908 for the function descriptor sym which we
7909 don't have at the moment. So keep an
7910 array of adjustments. */
7911 adjust = (wptr - new_contents) - (rptr - sec->contents);
7912 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7913
7914 if (wptr != rptr)
7915 memcpy (wptr, rptr, opd_ent_size);
7916 wptr += opd_ent_size;
7917 if (add_aux_fields && opd_ent_size == 16)
7918 {
7919 memset (wptr, '\0', 8);
7920 wptr += 8;
7921 }
7922
7923 /* We need to adjust any reloc offsets to point to the
7924 new opd entries. */
7925 for ( ; rel != next_rel; ++rel)
7926 {
7927 rel->r_offset += adjust;
7928 if (write_rel != rel)
7929 memcpy (write_rel, rel, sizeof (*rel));
7930 ++write_rel;
7931 }
7932 }
7933
7934 rptr += opd_ent_size;
7935 }
7936
7937 sec->size = wptr - new_contents;
7938 sec->reloc_count = write_rel - relstart;
7939 if (add_aux_fields)
7940 {
7941 free (sec->contents);
7942 sec->contents = new_contents;
7943 }
7944
7945 /* Fudge the header size too, as this is used later in
7946 elf_bfd_final_link if we are emitting relocs. */
7947 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7948 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7949 some_edited = TRUE;
7950 }
7951 else if (elf_section_data (sec)->relocs != relstart)
7952 free (relstart);
7953
7954 if (local_syms != NULL
7955 && symtab_hdr->contents != (unsigned char *) local_syms)
7956 {
7957 if (!info->keep_memory)
7958 free (local_syms);
7959 else
7960 symtab_hdr->contents = (unsigned char *) local_syms;
7961 }
7962 }
7963
7964 if (some_edited)
7965 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7966
7967 /* If we are doing a final link and the last .opd entry is just 16 byte
7968 long, add a 8 byte padding after it. */
7969 if (need_pad != NULL && !info->relocatable)
7970 {
7971 bfd_byte *p;
7972
7973 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7974 {
7975 BFD_ASSERT (need_pad->size > 0);
7976
7977 p = bfd_malloc (need_pad->size + 8);
7978 if (p == NULL)
7979 return FALSE;
7980
7981 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7982 p, 0, need_pad->size))
7983 return FALSE;
7984
7985 need_pad->contents = p;
7986 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7987 }
7988 else
7989 {
7990 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7991 if (p == NULL)
7992 return FALSE;
7993
7994 need_pad->contents = p;
7995 }
7996
7997 memset (need_pad->contents + need_pad->size, 0, 8);
7998 need_pad->size += 8;
7999 }
8000
8001 return TRUE;
8002 }
8003
8004 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8005
8006 asection *
8007 ppc64_elf_tls_setup (struct bfd_link_info *info)
8008 {
8009 struct ppc_link_hash_table *htab;
8010
8011 htab = ppc_hash_table (info);
8012 if (htab == NULL)
8013 return NULL;
8014
8015 if (abiversion (info->output_bfd) == 1)
8016 htab->opd_abi = 1;
8017
8018 if (htab->params->no_multi_toc)
8019 htab->do_multi_toc = 0;
8020 else if (!htab->do_multi_toc)
8021 htab->params->no_multi_toc = 1;
8022
8023 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8024 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8025 FALSE, FALSE, TRUE));
8026 /* Move dynamic linking info to the function descriptor sym. */
8027 if (htab->tls_get_addr != NULL)
8028 func_desc_adjust (&htab->tls_get_addr->elf, info);
8029 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8030 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8031 FALSE, FALSE, TRUE));
8032 if (!htab->params->no_tls_get_addr_opt)
8033 {
8034 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8035
8036 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8037 FALSE, FALSE, TRUE);
8038 if (opt != NULL)
8039 func_desc_adjust (opt, info);
8040 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8041 FALSE, FALSE, TRUE);
8042 if (opt_fd != NULL
8043 && (opt_fd->root.type == bfd_link_hash_defined
8044 || opt_fd->root.type == bfd_link_hash_defweak))
8045 {
8046 /* If glibc supports an optimized __tls_get_addr call stub,
8047 signalled by the presence of __tls_get_addr_opt, and we'll
8048 be calling __tls_get_addr via a plt call stub, then
8049 make __tls_get_addr point to __tls_get_addr_opt. */
8050 tga_fd = &htab->tls_get_addr_fd->elf;
8051 if (htab->elf.dynamic_sections_created
8052 && tga_fd != NULL
8053 && (tga_fd->type == STT_FUNC
8054 || tga_fd->needs_plt)
8055 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8056 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8057 && tga_fd->root.type == bfd_link_hash_undefweak)))
8058 {
8059 struct plt_entry *ent;
8060
8061 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8062 if (ent->plt.refcount > 0)
8063 break;
8064 if (ent != NULL)
8065 {
8066 tga_fd->root.type = bfd_link_hash_indirect;
8067 tga_fd->root.u.i.link = &opt_fd->root;
8068 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8069 if (opt_fd->dynindx != -1)
8070 {
8071 /* Use __tls_get_addr_opt in dynamic relocations. */
8072 opt_fd->dynindx = -1;
8073 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8074 opt_fd->dynstr_index);
8075 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8076 return NULL;
8077 }
8078 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8079 tga = &htab->tls_get_addr->elf;
8080 if (opt != NULL && tga != NULL)
8081 {
8082 tga->root.type = bfd_link_hash_indirect;
8083 tga->root.u.i.link = &opt->root;
8084 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8085 _bfd_elf_link_hash_hide_symbol (info, opt,
8086 tga->forced_local);
8087 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8088 }
8089 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8090 htab->tls_get_addr_fd->is_func_descriptor = 1;
8091 if (htab->tls_get_addr != NULL)
8092 {
8093 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8094 htab->tls_get_addr->is_func = 1;
8095 }
8096 }
8097 }
8098 }
8099 else
8100 htab->params->no_tls_get_addr_opt = TRUE;
8101 }
8102 return _bfd_elf_tls_setup (info->output_bfd, info);
8103 }
8104
8105 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8106 HASH1 or HASH2. */
8107
8108 static bfd_boolean
8109 branch_reloc_hash_match (const bfd *ibfd,
8110 const Elf_Internal_Rela *rel,
8111 const struct ppc_link_hash_entry *hash1,
8112 const struct ppc_link_hash_entry *hash2)
8113 {
8114 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8115 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8116 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8117
8118 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8119 {
8120 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8121 struct elf_link_hash_entry *h;
8122
8123 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8124 h = elf_follow_link (h);
8125 if (h == &hash1->elf || h == &hash2->elf)
8126 return TRUE;
8127 }
8128 return FALSE;
8129 }
8130
8131 /* Run through all the TLS relocs looking for optimization
8132 opportunities. The linker has been hacked (see ppc64elf.em) to do
8133 a preliminary section layout so that we know the TLS segment
8134 offsets. We can't optimize earlier because some optimizations need
8135 to know the tp offset, and we need to optimize before allocating
8136 dynamic relocations. */
8137
8138 bfd_boolean
8139 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8140 {
8141 bfd *ibfd;
8142 asection *sec;
8143 struct ppc_link_hash_table *htab;
8144 unsigned char *toc_ref;
8145 int pass;
8146
8147 if (info->relocatable || !info->executable)
8148 return TRUE;
8149
8150 htab = ppc_hash_table (info);
8151 if (htab == NULL)
8152 return FALSE;
8153
8154 /* Make two passes over the relocs. On the first pass, mark toc
8155 entries involved with tls relocs, and check that tls relocs
8156 involved in setting up a tls_get_addr call are indeed followed by
8157 such a call. If they are not, we can't do any tls optimization.
8158 On the second pass twiddle tls_mask flags to notify
8159 relocate_section that optimization can be done, and adjust got
8160 and plt refcounts. */
8161 toc_ref = NULL;
8162 for (pass = 0; pass < 2; ++pass)
8163 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8164 {
8165 Elf_Internal_Sym *locsyms = NULL;
8166 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8167
8168 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8169 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8170 {
8171 Elf_Internal_Rela *relstart, *rel, *relend;
8172 bfd_boolean found_tls_get_addr_arg = 0;
8173
8174 /* Read the relocations. */
8175 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8176 info->keep_memory);
8177 if (relstart == NULL)
8178 {
8179 free (toc_ref);
8180 return FALSE;
8181 }
8182
8183 relend = relstart + sec->reloc_count;
8184 for (rel = relstart; rel < relend; rel++)
8185 {
8186 enum elf_ppc64_reloc_type r_type;
8187 unsigned long r_symndx;
8188 struct elf_link_hash_entry *h;
8189 Elf_Internal_Sym *sym;
8190 asection *sym_sec;
8191 unsigned char *tls_mask;
8192 unsigned char tls_set, tls_clear, tls_type = 0;
8193 bfd_vma value;
8194 bfd_boolean ok_tprel, is_local;
8195 long toc_ref_index = 0;
8196 int expecting_tls_get_addr = 0;
8197 bfd_boolean ret = FALSE;
8198
8199 r_symndx = ELF64_R_SYM (rel->r_info);
8200 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8201 r_symndx, ibfd))
8202 {
8203 err_free_rel:
8204 if (elf_section_data (sec)->relocs != relstart)
8205 free (relstart);
8206 if (toc_ref != NULL)
8207 free (toc_ref);
8208 if (locsyms != NULL
8209 && (elf_symtab_hdr (ibfd).contents
8210 != (unsigned char *) locsyms))
8211 free (locsyms);
8212 return ret;
8213 }
8214
8215 if (h != NULL)
8216 {
8217 if (h->root.type == bfd_link_hash_defined
8218 || h->root.type == bfd_link_hash_defweak)
8219 value = h->root.u.def.value;
8220 else if (h->root.type == bfd_link_hash_undefweak)
8221 value = 0;
8222 else
8223 {
8224 found_tls_get_addr_arg = 0;
8225 continue;
8226 }
8227 }
8228 else
8229 /* Symbols referenced by TLS relocs must be of type
8230 STT_TLS. So no need for .opd local sym adjust. */
8231 value = sym->st_value;
8232
8233 ok_tprel = FALSE;
8234 is_local = FALSE;
8235 if (h == NULL
8236 || !h->def_dynamic)
8237 {
8238 is_local = TRUE;
8239 if (h != NULL
8240 && h->root.type == bfd_link_hash_undefweak)
8241 ok_tprel = TRUE;
8242 else
8243 {
8244 value += sym_sec->output_offset;
8245 value += sym_sec->output_section->vma;
8246 value -= htab->elf.tls_sec->vma;
8247 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8248 < (bfd_vma) 1 << 32);
8249 }
8250 }
8251
8252 r_type = ELF64_R_TYPE (rel->r_info);
8253 /* If this section has old-style __tls_get_addr calls
8254 without marker relocs, then check that each
8255 __tls_get_addr call reloc is preceded by a reloc
8256 that conceivably belongs to the __tls_get_addr arg
8257 setup insn. If we don't find matching arg setup
8258 relocs, don't do any tls optimization. */
8259 if (pass == 0
8260 && sec->has_tls_get_addr_call
8261 && h != NULL
8262 && (h == &htab->tls_get_addr->elf
8263 || h == &htab->tls_get_addr_fd->elf)
8264 && !found_tls_get_addr_arg
8265 && is_branch_reloc (r_type))
8266 {
8267 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8268 "TLS optimization disabled\n"),
8269 ibfd, sec, rel->r_offset);
8270 ret = TRUE;
8271 goto err_free_rel;
8272 }
8273
8274 found_tls_get_addr_arg = 0;
8275 switch (r_type)
8276 {
8277 case R_PPC64_GOT_TLSLD16:
8278 case R_PPC64_GOT_TLSLD16_LO:
8279 expecting_tls_get_addr = 1;
8280 found_tls_get_addr_arg = 1;
8281 /* Fall thru */
8282
8283 case R_PPC64_GOT_TLSLD16_HI:
8284 case R_PPC64_GOT_TLSLD16_HA:
8285 /* These relocs should never be against a symbol
8286 defined in a shared lib. Leave them alone if
8287 that turns out to be the case. */
8288 if (!is_local)
8289 continue;
8290
8291 /* LD -> LE */
8292 tls_set = 0;
8293 tls_clear = TLS_LD;
8294 tls_type = TLS_TLS | TLS_LD;
8295 break;
8296
8297 case R_PPC64_GOT_TLSGD16:
8298 case R_PPC64_GOT_TLSGD16_LO:
8299 expecting_tls_get_addr = 1;
8300 found_tls_get_addr_arg = 1;
8301 /* Fall thru */
8302
8303 case R_PPC64_GOT_TLSGD16_HI:
8304 case R_PPC64_GOT_TLSGD16_HA:
8305 if (ok_tprel)
8306 /* GD -> LE */
8307 tls_set = 0;
8308 else
8309 /* GD -> IE */
8310 tls_set = TLS_TLS | TLS_TPRELGD;
8311 tls_clear = TLS_GD;
8312 tls_type = TLS_TLS | TLS_GD;
8313 break;
8314
8315 case R_PPC64_GOT_TPREL16_DS:
8316 case R_PPC64_GOT_TPREL16_LO_DS:
8317 case R_PPC64_GOT_TPREL16_HI:
8318 case R_PPC64_GOT_TPREL16_HA:
8319 if (ok_tprel)
8320 {
8321 /* IE -> LE */
8322 tls_set = 0;
8323 tls_clear = TLS_TPREL;
8324 tls_type = TLS_TLS | TLS_TPREL;
8325 break;
8326 }
8327 continue;
8328
8329 case R_PPC64_TLSGD:
8330 case R_PPC64_TLSLD:
8331 found_tls_get_addr_arg = 1;
8332 /* Fall thru */
8333
8334 case R_PPC64_TLS:
8335 case R_PPC64_TOC16:
8336 case R_PPC64_TOC16_LO:
8337 if (sym_sec == NULL || sym_sec != toc)
8338 continue;
8339
8340 /* Mark this toc entry as referenced by a TLS
8341 code sequence. We can do that now in the
8342 case of R_PPC64_TLS, and after checking for
8343 tls_get_addr for the TOC16 relocs. */
8344 if (toc_ref == NULL)
8345 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8346 if (toc_ref == NULL)
8347 goto err_free_rel;
8348
8349 if (h != NULL)
8350 value = h->root.u.def.value;
8351 else
8352 value = sym->st_value;
8353 value += rel->r_addend;
8354 if (value % 8 != 0)
8355 continue;
8356 BFD_ASSERT (value < toc->size
8357 && toc->output_offset % 8 == 0);
8358 toc_ref_index = (value + toc->output_offset) / 8;
8359 if (r_type == R_PPC64_TLS
8360 || r_type == R_PPC64_TLSGD
8361 || r_type == R_PPC64_TLSLD)
8362 {
8363 toc_ref[toc_ref_index] = 1;
8364 continue;
8365 }
8366
8367 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8368 continue;
8369
8370 tls_set = 0;
8371 tls_clear = 0;
8372 expecting_tls_get_addr = 2;
8373 break;
8374
8375 case R_PPC64_TPREL64:
8376 if (pass == 0
8377 || sec != toc
8378 || toc_ref == NULL
8379 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8380 continue;
8381 if (ok_tprel)
8382 {
8383 /* IE -> LE */
8384 tls_set = TLS_EXPLICIT;
8385 tls_clear = TLS_TPREL;
8386 break;
8387 }
8388 continue;
8389
8390 case R_PPC64_DTPMOD64:
8391 if (pass == 0
8392 || sec != toc
8393 || toc_ref == NULL
8394 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8395 continue;
8396 if (rel + 1 < relend
8397 && (rel[1].r_info
8398 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8399 && rel[1].r_offset == rel->r_offset + 8)
8400 {
8401 if (ok_tprel)
8402 /* GD -> LE */
8403 tls_set = TLS_EXPLICIT | TLS_GD;
8404 else
8405 /* GD -> IE */
8406 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8407 tls_clear = TLS_GD;
8408 }
8409 else
8410 {
8411 if (!is_local)
8412 continue;
8413
8414 /* LD -> LE */
8415 tls_set = TLS_EXPLICIT;
8416 tls_clear = TLS_LD;
8417 }
8418 break;
8419
8420 default:
8421 continue;
8422 }
8423
8424 if (pass == 0)
8425 {
8426 if (!expecting_tls_get_addr
8427 || !sec->has_tls_get_addr_call)
8428 continue;
8429
8430 if (rel + 1 < relend
8431 && branch_reloc_hash_match (ibfd, rel + 1,
8432 htab->tls_get_addr,
8433 htab->tls_get_addr_fd))
8434 {
8435 if (expecting_tls_get_addr == 2)
8436 {
8437 /* Check for toc tls entries. */
8438 unsigned char *toc_tls;
8439 int retval;
8440
8441 retval = get_tls_mask (&toc_tls, NULL, NULL,
8442 &locsyms,
8443 rel, ibfd);
8444 if (retval == 0)
8445 goto err_free_rel;
8446 if (toc_tls != NULL)
8447 {
8448 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8449 found_tls_get_addr_arg = 1;
8450 if (retval > 1)
8451 toc_ref[toc_ref_index] = 1;
8452 }
8453 }
8454 continue;
8455 }
8456
8457 if (expecting_tls_get_addr != 1)
8458 continue;
8459
8460 /* Uh oh, we didn't find the expected call. We
8461 could just mark this symbol to exclude it
8462 from tls optimization but it's safer to skip
8463 the entire optimization. */
8464 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8465 "TLS optimization disabled\n"),
8466 ibfd, sec, rel->r_offset);
8467 ret = TRUE;
8468 goto err_free_rel;
8469 }
8470
8471 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8472 {
8473 struct plt_entry *ent;
8474 for (ent = htab->tls_get_addr->elf.plt.plist;
8475 ent != NULL;
8476 ent = ent->next)
8477 if (ent->addend == 0)
8478 {
8479 if (ent->plt.refcount > 0)
8480 {
8481 ent->plt.refcount -= 1;
8482 expecting_tls_get_addr = 0;
8483 }
8484 break;
8485 }
8486 }
8487
8488 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8489 {
8490 struct plt_entry *ent;
8491 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8492 ent != NULL;
8493 ent = ent->next)
8494 if (ent->addend == 0)
8495 {
8496 if (ent->plt.refcount > 0)
8497 ent->plt.refcount -= 1;
8498 break;
8499 }
8500 }
8501
8502 if (tls_clear == 0)
8503 continue;
8504
8505 if ((tls_set & TLS_EXPLICIT) == 0)
8506 {
8507 struct got_entry *ent;
8508
8509 /* Adjust got entry for this reloc. */
8510 if (h != NULL)
8511 ent = h->got.glist;
8512 else
8513 ent = elf_local_got_ents (ibfd)[r_symndx];
8514
8515 for (; ent != NULL; ent = ent->next)
8516 if (ent->addend == rel->r_addend
8517 && ent->owner == ibfd
8518 && ent->tls_type == tls_type)
8519 break;
8520 if (ent == NULL)
8521 abort ();
8522
8523 if (tls_set == 0)
8524 {
8525 /* We managed to get rid of a got entry. */
8526 if (ent->got.refcount > 0)
8527 ent->got.refcount -= 1;
8528 }
8529 }
8530 else
8531 {
8532 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8533 we'll lose one or two dyn relocs. */
8534 if (!dec_dynrel_count (rel->r_info, sec, info,
8535 NULL, h, sym))
8536 return FALSE;
8537
8538 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8539 {
8540 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8541 NULL, h, sym))
8542 return FALSE;
8543 }
8544 }
8545
8546 *tls_mask |= tls_set;
8547 *tls_mask &= ~tls_clear;
8548 }
8549
8550 if (elf_section_data (sec)->relocs != relstart)
8551 free (relstart);
8552 }
8553
8554 if (locsyms != NULL
8555 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8556 {
8557 if (!info->keep_memory)
8558 free (locsyms);
8559 else
8560 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8561 }
8562 }
8563
8564 if (toc_ref != NULL)
8565 free (toc_ref);
8566 return TRUE;
8567 }
8568
8569 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8570 the values of any global symbols in a toc section that has been
8571 edited. Globals in toc sections should be a rarity, so this function
8572 sets a flag if any are found in toc sections other than the one just
8573 edited, so that futher hash table traversals can be avoided. */
8574
8575 struct adjust_toc_info
8576 {
8577 asection *toc;
8578 unsigned long *skip;
8579 bfd_boolean global_toc_syms;
8580 };
8581
8582 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8583
8584 static bfd_boolean
8585 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8586 {
8587 struct ppc_link_hash_entry *eh;
8588 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8589 unsigned long i;
8590
8591 if (h->root.type != bfd_link_hash_defined
8592 && h->root.type != bfd_link_hash_defweak)
8593 return TRUE;
8594
8595 eh = (struct ppc_link_hash_entry *) h;
8596 if (eh->adjust_done)
8597 return TRUE;
8598
8599 if (eh->elf.root.u.def.section == toc_inf->toc)
8600 {
8601 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8602 i = toc_inf->toc->rawsize >> 3;
8603 else
8604 i = eh->elf.root.u.def.value >> 3;
8605
8606 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8607 {
8608 (*_bfd_error_handler)
8609 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8610 do
8611 ++i;
8612 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8613 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8614 }
8615
8616 eh->elf.root.u.def.value -= toc_inf->skip[i];
8617 eh->adjust_done = 1;
8618 }
8619 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8620 toc_inf->global_toc_syms = TRUE;
8621
8622 return TRUE;
8623 }
8624
8625 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8626
8627 static bfd_boolean
8628 ok_lo_toc_insn (unsigned int insn)
8629 {
8630 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8631 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8632 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8633 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8634 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8635 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8636 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8637 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8638 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8639 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8640 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8641 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8642 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8643 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8644 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8645 && (insn & 3) != 1)
8646 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8647 && ((insn & 3) == 0 || (insn & 3) == 3))
8648 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8649 }
8650
8651 /* Examine all relocs referencing .toc sections in order to remove
8652 unused .toc entries. */
8653
8654 bfd_boolean
8655 ppc64_elf_edit_toc (struct bfd_link_info *info)
8656 {
8657 bfd *ibfd;
8658 struct adjust_toc_info toc_inf;
8659 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8660
8661 htab->do_toc_opt = 1;
8662 toc_inf.global_toc_syms = TRUE;
8663 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8664 {
8665 asection *toc, *sec;
8666 Elf_Internal_Shdr *symtab_hdr;
8667 Elf_Internal_Sym *local_syms;
8668 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8669 unsigned long *skip, *drop;
8670 unsigned char *used;
8671 unsigned char *keep, last, some_unused;
8672
8673 if (!is_ppc64_elf (ibfd))
8674 continue;
8675
8676 toc = bfd_get_section_by_name (ibfd, ".toc");
8677 if (toc == NULL
8678 || toc->size == 0
8679 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8680 || discarded_section (toc))
8681 continue;
8682
8683 toc_relocs = NULL;
8684 local_syms = NULL;
8685 symtab_hdr = &elf_symtab_hdr (ibfd);
8686
8687 /* Look at sections dropped from the final link. */
8688 skip = NULL;
8689 relstart = NULL;
8690 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8691 {
8692 if (sec->reloc_count == 0
8693 || !discarded_section (sec)
8694 || get_opd_info (sec)
8695 || (sec->flags & SEC_ALLOC) == 0
8696 || (sec->flags & SEC_DEBUGGING) != 0)
8697 continue;
8698
8699 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8700 if (relstart == NULL)
8701 goto error_ret;
8702
8703 /* Run through the relocs to see which toc entries might be
8704 unused. */
8705 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8706 {
8707 enum elf_ppc64_reloc_type r_type;
8708 unsigned long r_symndx;
8709 asection *sym_sec;
8710 struct elf_link_hash_entry *h;
8711 Elf_Internal_Sym *sym;
8712 bfd_vma val;
8713
8714 r_type = ELF64_R_TYPE (rel->r_info);
8715 switch (r_type)
8716 {
8717 default:
8718 continue;
8719
8720 case R_PPC64_TOC16:
8721 case R_PPC64_TOC16_LO:
8722 case R_PPC64_TOC16_HI:
8723 case R_PPC64_TOC16_HA:
8724 case R_PPC64_TOC16_DS:
8725 case R_PPC64_TOC16_LO_DS:
8726 break;
8727 }
8728
8729 r_symndx = ELF64_R_SYM (rel->r_info);
8730 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8731 r_symndx, ibfd))
8732 goto error_ret;
8733
8734 if (sym_sec != toc)
8735 continue;
8736
8737 if (h != NULL)
8738 val = h->root.u.def.value;
8739 else
8740 val = sym->st_value;
8741 val += rel->r_addend;
8742
8743 if (val >= toc->size)
8744 continue;
8745
8746 /* Anything in the toc ought to be aligned to 8 bytes.
8747 If not, don't mark as unused. */
8748 if (val & 7)
8749 continue;
8750
8751 if (skip == NULL)
8752 {
8753 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8754 if (skip == NULL)
8755 goto error_ret;
8756 }
8757
8758 skip[val >> 3] = ref_from_discarded;
8759 }
8760
8761 if (elf_section_data (sec)->relocs != relstart)
8762 free (relstart);
8763 }
8764
8765 /* For largetoc loads of address constants, we can convert
8766 . addis rx,2,addr@got@ha
8767 . ld ry,addr@got@l(rx)
8768 to
8769 . addis rx,2,addr@toc@ha
8770 . addi ry,rx,addr@toc@l
8771 when addr is within 2G of the toc pointer. This then means
8772 that the word storing "addr" in the toc is no longer needed. */
8773
8774 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8775 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8776 && toc->reloc_count != 0)
8777 {
8778 /* Read toc relocs. */
8779 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8780 info->keep_memory);
8781 if (toc_relocs == NULL)
8782 goto error_ret;
8783
8784 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8785 {
8786 enum elf_ppc64_reloc_type r_type;
8787 unsigned long r_symndx;
8788 asection *sym_sec;
8789 struct elf_link_hash_entry *h;
8790 Elf_Internal_Sym *sym;
8791 bfd_vma val, addr;
8792
8793 r_type = ELF64_R_TYPE (rel->r_info);
8794 if (r_type != R_PPC64_ADDR64)
8795 continue;
8796
8797 r_symndx = ELF64_R_SYM (rel->r_info);
8798 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8799 r_symndx, ibfd))
8800 goto error_ret;
8801
8802 if (sym_sec == NULL
8803 || discarded_section (sym_sec))
8804 continue;
8805
8806 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8807 continue;
8808
8809 if (h != NULL)
8810 {
8811 if (h->type == STT_GNU_IFUNC)
8812 continue;
8813 val = h->root.u.def.value;
8814 }
8815 else
8816 {
8817 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8818 continue;
8819 val = sym->st_value;
8820 }
8821 val += rel->r_addend;
8822 val += sym_sec->output_section->vma + sym_sec->output_offset;
8823
8824 /* We don't yet know the exact toc pointer value, but we
8825 know it will be somewhere in the toc section. Don't
8826 optimize if the difference from any possible toc
8827 pointer is outside [ff..f80008000, 7fff7fff]. */
8828 addr = toc->output_section->vma + TOC_BASE_OFF;
8829 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8830 continue;
8831
8832 addr = toc->output_section->vma + toc->output_section->rawsize;
8833 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8834 continue;
8835
8836 if (skip == NULL)
8837 {
8838 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8839 if (skip == NULL)
8840 goto error_ret;
8841 }
8842
8843 skip[rel->r_offset >> 3]
8844 |= can_optimize | ((rel - toc_relocs) << 2);
8845 }
8846 }
8847
8848 if (skip == NULL)
8849 continue;
8850
8851 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8852 if (used == NULL)
8853 {
8854 error_ret:
8855 if (local_syms != NULL
8856 && symtab_hdr->contents != (unsigned char *) local_syms)
8857 free (local_syms);
8858 if (sec != NULL
8859 && relstart != NULL
8860 && elf_section_data (sec)->relocs != relstart)
8861 free (relstart);
8862 if (toc_relocs != NULL
8863 && elf_section_data (toc)->relocs != toc_relocs)
8864 free (toc_relocs);
8865 if (skip != NULL)
8866 free (skip);
8867 return FALSE;
8868 }
8869
8870 /* Now check all kept sections that might reference the toc.
8871 Check the toc itself last. */
8872 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8873 : ibfd->sections);
8874 sec != NULL;
8875 sec = (sec == toc ? NULL
8876 : sec->next == NULL ? toc
8877 : sec->next == toc && toc->next ? toc->next
8878 : sec->next))
8879 {
8880 int repeat;
8881
8882 if (sec->reloc_count == 0
8883 || discarded_section (sec)
8884 || get_opd_info (sec)
8885 || (sec->flags & SEC_ALLOC) == 0
8886 || (sec->flags & SEC_DEBUGGING) != 0)
8887 continue;
8888
8889 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8890 info->keep_memory);
8891 if (relstart == NULL)
8892 {
8893 free (used);
8894 goto error_ret;
8895 }
8896
8897 /* Mark toc entries referenced as used. */
8898 do
8899 {
8900 repeat = 0;
8901 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8902 {
8903 enum elf_ppc64_reloc_type r_type;
8904 unsigned long r_symndx;
8905 asection *sym_sec;
8906 struct elf_link_hash_entry *h;
8907 Elf_Internal_Sym *sym;
8908 bfd_vma val;
8909 enum {no_check, check_lo, check_ha} insn_check;
8910
8911 r_type = ELF64_R_TYPE (rel->r_info);
8912 switch (r_type)
8913 {
8914 default:
8915 insn_check = no_check;
8916 break;
8917
8918 case R_PPC64_GOT_TLSLD16_HA:
8919 case R_PPC64_GOT_TLSGD16_HA:
8920 case R_PPC64_GOT_TPREL16_HA:
8921 case R_PPC64_GOT_DTPREL16_HA:
8922 case R_PPC64_GOT16_HA:
8923 case R_PPC64_TOC16_HA:
8924 insn_check = check_ha;
8925 break;
8926
8927 case R_PPC64_GOT_TLSLD16_LO:
8928 case R_PPC64_GOT_TLSGD16_LO:
8929 case R_PPC64_GOT_TPREL16_LO_DS:
8930 case R_PPC64_GOT_DTPREL16_LO_DS:
8931 case R_PPC64_GOT16_LO:
8932 case R_PPC64_GOT16_LO_DS:
8933 case R_PPC64_TOC16_LO:
8934 case R_PPC64_TOC16_LO_DS:
8935 insn_check = check_lo;
8936 break;
8937 }
8938
8939 if (insn_check != no_check)
8940 {
8941 bfd_vma off = rel->r_offset & ~3;
8942 unsigned char buf[4];
8943 unsigned int insn;
8944
8945 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8946 {
8947 free (used);
8948 goto error_ret;
8949 }
8950 insn = bfd_get_32 (ibfd, buf);
8951 if (insn_check == check_lo
8952 ? !ok_lo_toc_insn (insn)
8953 : ((insn & ((0x3f << 26) | 0x1f << 16))
8954 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8955 {
8956 char str[12];
8957
8958 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8959 sprintf (str, "%#08x", insn);
8960 info->callbacks->einfo
8961 (_("%P: %H: toc optimization is not supported for"
8962 " %s instruction.\n"),
8963 ibfd, sec, rel->r_offset & ~3, str);
8964 }
8965 }
8966
8967 switch (r_type)
8968 {
8969 case R_PPC64_TOC16:
8970 case R_PPC64_TOC16_LO:
8971 case R_PPC64_TOC16_HI:
8972 case R_PPC64_TOC16_HA:
8973 case R_PPC64_TOC16_DS:
8974 case R_PPC64_TOC16_LO_DS:
8975 /* In case we're taking addresses of toc entries. */
8976 case R_PPC64_ADDR64:
8977 break;
8978
8979 default:
8980 continue;
8981 }
8982
8983 r_symndx = ELF64_R_SYM (rel->r_info);
8984 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8985 r_symndx, ibfd))
8986 {
8987 free (used);
8988 goto error_ret;
8989 }
8990
8991 if (sym_sec != toc)
8992 continue;
8993
8994 if (h != NULL)
8995 val = h->root.u.def.value;
8996 else
8997 val = sym->st_value;
8998 val += rel->r_addend;
8999
9000 if (val >= toc->size)
9001 continue;
9002
9003 if ((skip[val >> 3] & can_optimize) != 0)
9004 {
9005 bfd_vma off;
9006 unsigned char opc;
9007
9008 switch (r_type)
9009 {
9010 case R_PPC64_TOC16_HA:
9011 break;
9012
9013 case R_PPC64_TOC16_LO_DS:
9014 off = rel->r_offset;
9015 off += (bfd_big_endian (ibfd) ? -2 : 3);
9016 if (!bfd_get_section_contents (ibfd, sec, &opc,
9017 off, 1))
9018 {
9019 free (used);
9020 goto error_ret;
9021 }
9022 if ((opc & (0x3f << 2)) == (58u << 2))
9023 break;
9024 /* Fall thru */
9025
9026 default:
9027 /* Wrong sort of reloc, or not a ld. We may
9028 as well clear ref_from_discarded too. */
9029 skip[val >> 3] = 0;
9030 }
9031 }
9032
9033 if (sec != toc)
9034 used[val >> 3] = 1;
9035 /* For the toc section, we only mark as used if this
9036 entry itself isn't unused. */
9037 else if ((used[rel->r_offset >> 3]
9038 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9039 && !used[val >> 3])
9040 {
9041 /* Do all the relocs again, to catch reference
9042 chains. */
9043 repeat = 1;
9044 used[val >> 3] = 1;
9045 }
9046 }
9047 }
9048 while (repeat);
9049
9050 if (elf_section_data (sec)->relocs != relstart)
9051 free (relstart);
9052 }
9053
9054 /* Merge the used and skip arrays. Assume that TOC
9055 doublewords not appearing as either used or unused belong
9056 to to an entry more than one doubleword in size. */
9057 for (drop = skip, keep = used, last = 0, some_unused = 0;
9058 drop < skip + (toc->size + 7) / 8;
9059 ++drop, ++keep)
9060 {
9061 if (*keep)
9062 {
9063 *drop &= ~ref_from_discarded;
9064 if ((*drop & can_optimize) != 0)
9065 some_unused = 1;
9066 last = 0;
9067 }
9068 else if ((*drop & ref_from_discarded) != 0)
9069 {
9070 some_unused = 1;
9071 last = ref_from_discarded;
9072 }
9073 else
9074 *drop = last;
9075 }
9076
9077 free (used);
9078
9079 if (some_unused)
9080 {
9081 bfd_byte *contents, *src;
9082 unsigned long off;
9083 Elf_Internal_Sym *sym;
9084 bfd_boolean local_toc_syms = FALSE;
9085
9086 /* Shuffle the toc contents, and at the same time convert the
9087 skip array from booleans into offsets. */
9088 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9089 goto error_ret;
9090
9091 elf_section_data (toc)->this_hdr.contents = contents;
9092
9093 for (src = contents, off = 0, drop = skip;
9094 src < contents + toc->size;
9095 src += 8, ++drop)
9096 {
9097 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9098 off += 8;
9099 else if (off != 0)
9100 {
9101 *drop = off;
9102 memcpy (src - off, src, 8);
9103 }
9104 }
9105 *drop = off;
9106 toc->rawsize = toc->size;
9107 toc->size = src - contents - off;
9108
9109 /* Adjust addends for relocs against the toc section sym,
9110 and optimize any accesses we can. */
9111 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9112 {
9113 if (sec->reloc_count == 0
9114 || discarded_section (sec))
9115 continue;
9116
9117 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9118 info->keep_memory);
9119 if (relstart == NULL)
9120 goto error_ret;
9121
9122 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9123 {
9124 enum elf_ppc64_reloc_type r_type;
9125 unsigned long r_symndx;
9126 asection *sym_sec;
9127 struct elf_link_hash_entry *h;
9128 bfd_vma val;
9129
9130 r_type = ELF64_R_TYPE (rel->r_info);
9131 switch (r_type)
9132 {
9133 default:
9134 continue;
9135
9136 case R_PPC64_TOC16:
9137 case R_PPC64_TOC16_LO:
9138 case R_PPC64_TOC16_HI:
9139 case R_PPC64_TOC16_HA:
9140 case R_PPC64_TOC16_DS:
9141 case R_PPC64_TOC16_LO_DS:
9142 case R_PPC64_ADDR64:
9143 break;
9144 }
9145
9146 r_symndx = ELF64_R_SYM (rel->r_info);
9147 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9148 r_symndx, ibfd))
9149 goto error_ret;
9150
9151 if (sym_sec != toc)
9152 continue;
9153
9154 if (h != NULL)
9155 val = h->root.u.def.value;
9156 else
9157 {
9158 val = sym->st_value;
9159 if (val != 0)
9160 local_toc_syms = TRUE;
9161 }
9162
9163 val += rel->r_addend;
9164
9165 if (val > toc->rawsize)
9166 val = toc->rawsize;
9167 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9168 continue;
9169 else if ((skip[val >> 3] & can_optimize) != 0)
9170 {
9171 Elf_Internal_Rela *tocrel
9172 = toc_relocs + (skip[val >> 3] >> 2);
9173 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9174
9175 switch (r_type)
9176 {
9177 case R_PPC64_TOC16_HA:
9178 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9179 break;
9180
9181 case R_PPC64_TOC16_LO_DS:
9182 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9183 break;
9184
9185 default:
9186 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9187 ppc_howto_init ();
9188 info->callbacks->einfo
9189 (_("%P: %H: %s references "
9190 "optimized away TOC entry\n"),
9191 ibfd, sec, rel->r_offset,
9192 ppc64_elf_howto_table[r_type]->name);
9193 bfd_set_error (bfd_error_bad_value);
9194 goto error_ret;
9195 }
9196 rel->r_addend = tocrel->r_addend;
9197 elf_section_data (sec)->relocs = relstart;
9198 continue;
9199 }
9200
9201 if (h != NULL || sym->st_value != 0)
9202 continue;
9203
9204 rel->r_addend -= skip[val >> 3];
9205 elf_section_data (sec)->relocs = relstart;
9206 }
9207
9208 if (elf_section_data (sec)->relocs != relstart)
9209 free (relstart);
9210 }
9211
9212 /* We shouldn't have local or global symbols defined in the TOC,
9213 but handle them anyway. */
9214 if (local_syms != NULL)
9215 for (sym = local_syms;
9216 sym < local_syms + symtab_hdr->sh_info;
9217 ++sym)
9218 if (sym->st_value != 0
9219 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9220 {
9221 unsigned long i;
9222
9223 if (sym->st_value > toc->rawsize)
9224 i = toc->rawsize >> 3;
9225 else
9226 i = sym->st_value >> 3;
9227
9228 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9229 {
9230 if (local_toc_syms)
9231 (*_bfd_error_handler)
9232 (_("%s defined on removed toc entry"),
9233 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9234 do
9235 ++i;
9236 while ((skip[i] & (ref_from_discarded | can_optimize)));
9237 sym->st_value = (bfd_vma) i << 3;
9238 }
9239
9240 sym->st_value -= skip[i];
9241 symtab_hdr->contents = (unsigned char *) local_syms;
9242 }
9243
9244 /* Adjust any global syms defined in this toc input section. */
9245 if (toc_inf.global_toc_syms)
9246 {
9247 toc_inf.toc = toc;
9248 toc_inf.skip = skip;
9249 toc_inf.global_toc_syms = FALSE;
9250 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9251 &toc_inf);
9252 }
9253
9254 if (toc->reloc_count != 0)
9255 {
9256 Elf_Internal_Shdr *rel_hdr;
9257 Elf_Internal_Rela *wrel;
9258 bfd_size_type sz;
9259
9260 /* Remove unused toc relocs, and adjust those we keep. */
9261 if (toc_relocs == NULL)
9262 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9263 info->keep_memory);
9264 if (toc_relocs == NULL)
9265 goto error_ret;
9266
9267 wrel = toc_relocs;
9268 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9269 if ((skip[rel->r_offset >> 3]
9270 & (ref_from_discarded | can_optimize)) == 0)
9271 {
9272 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9273 wrel->r_info = rel->r_info;
9274 wrel->r_addend = rel->r_addend;
9275 ++wrel;
9276 }
9277 else if (!dec_dynrel_count (rel->r_info, toc, info,
9278 &local_syms, NULL, NULL))
9279 goto error_ret;
9280
9281 elf_section_data (toc)->relocs = toc_relocs;
9282 toc->reloc_count = wrel - toc_relocs;
9283 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9284 sz = rel_hdr->sh_entsize;
9285 rel_hdr->sh_size = toc->reloc_count * sz;
9286 }
9287 }
9288 else if (toc_relocs != NULL
9289 && elf_section_data (toc)->relocs != toc_relocs)
9290 free (toc_relocs);
9291
9292 if (local_syms != NULL
9293 && symtab_hdr->contents != (unsigned char *) local_syms)
9294 {
9295 if (!info->keep_memory)
9296 free (local_syms);
9297 else
9298 symtab_hdr->contents = (unsigned char *) local_syms;
9299 }
9300 free (skip);
9301 }
9302
9303 return TRUE;
9304 }
9305
9306 /* Return true iff input section I references the TOC using
9307 instructions limited to +/-32k offsets. */
9308
9309 bfd_boolean
9310 ppc64_elf_has_small_toc_reloc (asection *i)
9311 {
9312 return (is_ppc64_elf (i->owner)
9313 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9314 }
9315
9316 /* Allocate space for one GOT entry. */
9317
9318 static void
9319 allocate_got (struct elf_link_hash_entry *h,
9320 struct bfd_link_info *info,
9321 struct got_entry *gent)
9322 {
9323 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9324 bfd_boolean dyn;
9325 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9326 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9327 ? 16 : 8);
9328 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9329 ? 2 : 1) * sizeof (Elf64_External_Rela);
9330 asection *got = ppc64_elf_tdata (gent->owner)->got;
9331
9332 gent->got.offset = got->size;
9333 got->size += entsize;
9334
9335 dyn = htab->elf.dynamic_sections_created;
9336 if (h->type == STT_GNU_IFUNC)
9337 {
9338 htab->elf.irelplt->size += rentsize;
9339 htab->got_reli_size += rentsize;
9340 }
9341 else if ((info->shared
9342 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9343 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9344 || h->root.type != bfd_link_hash_undefweak))
9345 {
9346 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9347 relgot->size += rentsize;
9348 }
9349 }
9350
9351 /* This function merges got entries in the same toc group. */
9352
9353 static void
9354 merge_got_entries (struct got_entry **pent)
9355 {
9356 struct got_entry *ent, *ent2;
9357
9358 for (ent = *pent; ent != NULL; ent = ent->next)
9359 if (!ent->is_indirect)
9360 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9361 if (!ent2->is_indirect
9362 && ent2->addend == ent->addend
9363 && ent2->tls_type == ent->tls_type
9364 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9365 {
9366 ent2->is_indirect = TRUE;
9367 ent2->got.ent = ent;
9368 }
9369 }
9370
9371 /* Allocate space in .plt, .got and associated reloc sections for
9372 dynamic relocs. */
9373
9374 static bfd_boolean
9375 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9376 {
9377 struct bfd_link_info *info;
9378 struct ppc_link_hash_table *htab;
9379 asection *s;
9380 struct ppc_link_hash_entry *eh;
9381 struct elf_dyn_relocs *p;
9382 struct got_entry **pgent, *gent;
9383
9384 if (h->root.type == bfd_link_hash_indirect)
9385 return TRUE;
9386
9387 info = (struct bfd_link_info *) inf;
9388 htab = ppc_hash_table (info);
9389 if (htab == NULL)
9390 return FALSE;
9391
9392 if ((htab->elf.dynamic_sections_created
9393 && h->dynindx != -1
9394 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9395 || h->type == STT_GNU_IFUNC)
9396 {
9397 struct plt_entry *pent;
9398 bfd_boolean doneone = FALSE;
9399 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9400 if (pent->plt.refcount > 0)
9401 {
9402 if (!htab->elf.dynamic_sections_created
9403 || h->dynindx == -1)
9404 {
9405 s = htab->elf.iplt;
9406 pent->plt.offset = s->size;
9407 s->size += PLT_ENTRY_SIZE (htab);
9408 s = htab->elf.irelplt;
9409 }
9410 else
9411 {
9412 /* If this is the first .plt entry, make room for the special
9413 first entry. */
9414 s = htab->elf.splt;
9415 if (s->size == 0)
9416 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9417
9418 pent->plt.offset = s->size;
9419
9420 /* Make room for this entry. */
9421 s->size += PLT_ENTRY_SIZE (htab);
9422
9423 /* Make room for the .glink code. */
9424 s = htab->glink;
9425 if (s->size == 0)
9426 s->size += GLINK_CALL_STUB_SIZE;
9427 if (htab->opd_abi)
9428 {
9429 /* We need bigger stubs past index 32767. */
9430 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9431 s->size += 4;
9432 s->size += 2*4;
9433 }
9434 else
9435 s->size += 4;
9436
9437 /* We also need to make an entry in the .rela.plt section. */
9438 s = htab->elf.srelplt;
9439 }
9440 s->size += sizeof (Elf64_External_Rela);
9441 doneone = TRUE;
9442 }
9443 else
9444 pent->plt.offset = (bfd_vma) -1;
9445 if (!doneone)
9446 {
9447 h->plt.plist = NULL;
9448 h->needs_plt = 0;
9449 }
9450 }
9451 else
9452 {
9453 h->plt.plist = NULL;
9454 h->needs_plt = 0;
9455 }
9456
9457 eh = (struct ppc_link_hash_entry *) h;
9458 /* Run through the TLS GD got entries first if we're changing them
9459 to TPREL. */
9460 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9461 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9462 if (gent->got.refcount > 0
9463 && (gent->tls_type & TLS_GD) != 0)
9464 {
9465 /* This was a GD entry that has been converted to TPREL. If
9466 there happens to be a TPREL entry we can use that one. */
9467 struct got_entry *ent;
9468 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9469 if (ent->got.refcount > 0
9470 && (ent->tls_type & TLS_TPREL) != 0
9471 && ent->addend == gent->addend
9472 && ent->owner == gent->owner)
9473 {
9474 gent->got.refcount = 0;
9475 break;
9476 }
9477
9478 /* If not, then we'll be using our own TPREL entry. */
9479 if (gent->got.refcount != 0)
9480 gent->tls_type = TLS_TLS | TLS_TPREL;
9481 }
9482
9483 /* Remove any list entry that won't generate a word in the GOT before
9484 we call merge_got_entries. Otherwise we risk merging to empty
9485 entries. */
9486 pgent = &h->got.glist;
9487 while ((gent = *pgent) != NULL)
9488 if (gent->got.refcount > 0)
9489 {
9490 if ((gent->tls_type & TLS_LD) != 0
9491 && !h->def_dynamic)
9492 {
9493 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9494 *pgent = gent->next;
9495 }
9496 else
9497 pgent = &gent->next;
9498 }
9499 else
9500 *pgent = gent->next;
9501
9502 if (!htab->do_multi_toc)
9503 merge_got_entries (&h->got.glist);
9504
9505 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9506 if (!gent->is_indirect)
9507 {
9508 /* Make sure this symbol is output as a dynamic symbol.
9509 Undefined weak syms won't yet be marked as dynamic,
9510 nor will all TLS symbols. */
9511 if (h->dynindx == -1
9512 && !h->forced_local
9513 && h->type != STT_GNU_IFUNC
9514 && htab->elf.dynamic_sections_created)
9515 {
9516 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9517 return FALSE;
9518 }
9519
9520 if (!is_ppc64_elf (gent->owner))
9521 abort ();
9522
9523 allocate_got (h, info, gent);
9524 }
9525
9526 if (eh->dyn_relocs == NULL
9527 || (!htab->elf.dynamic_sections_created
9528 && h->type != STT_GNU_IFUNC))
9529 return TRUE;
9530
9531 /* In the shared -Bsymbolic case, discard space allocated for
9532 dynamic pc-relative relocs against symbols which turn out to be
9533 defined in regular objects. For the normal shared case, discard
9534 space for relocs that have become local due to symbol visibility
9535 changes. */
9536
9537 if (info->shared)
9538 {
9539 /* Relocs that use pc_count are those that appear on a call insn,
9540 or certain REL relocs (see must_be_dyn_reloc) that can be
9541 generated via assembly. We want calls to protected symbols to
9542 resolve directly to the function rather than going via the plt.
9543 If people want function pointer comparisons to work as expected
9544 then they should avoid writing weird assembly. */
9545 if (SYMBOL_CALLS_LOCAL (info, h))
9546 {
9547 struct elf_dyn_relocs **pp;
9548
9549 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9550 {
9551 p->count -= p->pc_count;
9552 p->pc_count = 0;
9553 if (p->count == 0)
9554 *pp = p->next;
9555 else
9556 pp = &p->next;
9557 }
9558 }
9559
9560 /* Also discard relocs on undefined weak syms with non-default
9561 visibility. */
9562 if (eh->dyn_relocs != NULL
9563 && h->root.type == bfd_link_hash_undefweak)
9564 {
9565 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9566 eh->dyn_relocs = NULL;
9567
9568 /* Make sure this symbol is output as a dynamic symbol.
9569 Undefined weak syms won't yet be marked as dynamic. */
9570 else if (h->dynindx == -1
9571 && !h->forced_local)
9572 {
9573 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9574 return FALSE;
9575 }
9576 }
9577 }
9578 else if (h->type == STT_GNU_IFUNC)
9579 {
9580 if (!h->non_got_ref)
9581 eh->dyn_relocs = NULL;
9582 }
9583 else if (ELIMINATE_COPY_RELOCS)
9584 {
9585 /* For the non-shared case, discard space for relocs against
9586 symbols which turn out to need copy relocs or are not
9587 dynamic. */
9588
9589 if (!h->non_got_ref
9590 && !h->def_regular)
9591 {
9592 /* Make sure this symbol is output as a dynamic symbol.
9593 Undefined weak syms won't yet be marked as dynamic. */
9594 if (h->dynindx == -1
9595 && !h->forced_local)
9596 {
9597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9598 return FALSE;
9599 }
9600
9601 /* If that succeeded, we know we'll be keeping all the
9602 relocs. */
9603 if (h->dynindx != -1)
9604 goto keep;
9605 }
9606
9607 eh->dyn_relocs = NULL;
9608
9609 keep: ;
9610 }
9611
9612 /* Finally, allocate space. */
9613 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9614 {
9615 asection *sreloc = elf_section_data (p->sec)->sreloc;
9616 if (eh->elf.type == STT_GNU_IFUNC)
9617 sreloc = htab->elf.irelplt;
9618 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9619 }
9620
9621 return TRUE;
9622 }
9623
9624 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9625 to set up space for global entry stubs. These are put in glink,
9626 after the branch table. */
9627
9628 static bfd_boolean
9629 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9630 {
9631 struct bfd_link_info *info;
9632 struct ppc_link_hash_table *htab;
9633 struct plt_entry *pent;
9634 asection *s;
9635
9636 if (h->root.type == bfd_link_hash_indirect)
9637 return TRUE;
9638
9639 if (!h->pointer_equality_needed)
9640 return TRUE;
9641
9642 if (h->def_regular)
9643 return TRUE;
9644
9645 info = inf;
9646 htab = ppc_hash_table (info);
9647 if (htab == NULL)
9648 return FALSE;
9649
9650 s = htab->glink;
9651 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9652 if (pent->plt.offset != (bfd_vma) -1
9653 && pent->addend == 0)
9654 {
9655 /* For ELFv2, if this symbol is not defined in a regular file
9656 and we are not generating a shared library or pie, then we
9657 need to define the symbol in the executable on a call stub.
9658 This is to avoid text relocations. */
9659 s->size = (s->size + 15) & -16;
9660 h->root.u.def.section = s;
9661 h->root.u.def.value = s->size;
9662 s->size += 16;
9663 break;
9664 }
9665 return TRUE;
9666 }
9667
9668 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9669 read-only sections. */
9670
9671 static bfd_boolean
9672 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9673 {
9674 if (h->root.type == bfd_link_hash_indirect)
9675 return TRUE;
9676
9677 if (readonly_dynrelocs (h))
9678 {
9679 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9680
9681 /* Not an error, just cut short the traversal. */
9682 return FALSE;
9683 }
9684 return TRUE;
9685 }
9686
9687 /* Set the sizes of the dynamic sections. */
9688
9689 static bfd_boolean
9690 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9691 struct bfd_link_info *info)
9692 {
9693 struct ppc_link_hash_table *htab;
9694 bfd *dynobj;
9695 asection *s;
9696 bfd_boolean relocs;
9697 bfd *ibfd;
9698 struct got_entry *first_tlsld;
9699
9700 htab = ppc_hash_table (info);
9701 if (htab == NULL)
9702 return FALSE;
9703
9704 dynobj = htab->elf.dynobj;
9705 if (dynobj == NULL)
9706 abort ();
9707
9708 if (htab->elf.dynamic_sections_created)
9709 {
9710 /* Set the contents of the .interp section to the interpreter. */
9711 if (info->executable)
9712 {
9713 s = bfd_get_linker_section (dynobj, ".interp");
9714 if (s == NULL)
9715 abort ();
9716 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9717 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9718 }
9719 }
9720
9721 /* Set up .got offsets for local syms, and space for local dynamic
9722 relocs. */
9723 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9724 {
9725 struct got_entry **lgot_ents;
9726 struct got_entry **end_lgot_ents;
9727 struct plt_entry **local_plt;
9728 struct plt_entry **end_local_plt;
9729 unsigned char *lgot_masks;
9730 bfd_size_type locsymcount;
9731 Elf_Internal_Shdr *symtab_hdr;
9732
9733 if (!is_ppc64_elf (ibfd))
9734 continue;
9735
9736 for (s = ibfd->sections; s != NULL; s = s->next)
9737 {
9738 struct ppc_dyn_relocs *p;
9739
9740 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9741 {
9742 if (!bfd_is_abs_section (p->sec)
9743 && bfd_is_abs_section (p->sec->output_section))
9744 {
9745 /* Input section has been discarded, either because
9746 it is a copy of a linkonce section or due to
9747 linker script /DISCARD/, so we'll be discarding
9748 the relocs too. */
9749 }
9750 else if (p->count != 0)
9751 {
9752 asection *srel = elf_section_data (p->sec)->sreloc;
9753 if (p->ifunc)
9754 srel = htab->elf.irelplt;
9755 srel->size += p->count * sizeof (Elf64_External_Rela);
9756 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9757 info->flags |= DF_TEXTREL;
9758 }
9759 }
9760 }
9761
9762 lgot_ents = elf_local_got_ents (ibfd);
9763 if (!lgot_ents)
9764 continue;
9765
9766 symtab_hdr = &elf_symtab_hdr (ibfd);
9767 locsymcount = symtab_hdr->sh_info;
9768 end_lgot_ents = lgot_ents + locsymcount;
9769 local_plt = (struct plt_entry **) end_lgot_ents;
9770 end_local_plt = local_plt + locsymcount;
9771 lgot_masks = (unsigned char *) end_local_plt;
9772 s = ppc64_elf_tdata (ibfd)->got;
9773 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9774 {
9775 struct got_entry **pent, *ent;
9776
9777 pent = lgot_ents;
9778 while ((ent = *pent) != NULL)
9779 if (ent->got.refcount > 0)
9780 {
9781 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9782 {
9783 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9784 *pent = ent->next;
9785 }
9786 else
9787 {
9788 unsigned int ent_size = 8;
9789 unsigned int rel_size = sizeof (Elf64_External_Rela);
9790
9791 ent->got.offset = s->size;
9792 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9793 {
9794 ent_size *= 2;
9795 rel_size *= 2;
9796 }
9797 s->size += ent_size;
9798 if ((*lgot_masks & PLT_IFUNC) != 0)
9799 {
9800 htab->elf.irelplt->size += rel_size;
9801 htab->got_reli_size += rel_size;
9802 }
9803 else if (info->shared)
9804 {
9805 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9806 srel->size += rel_size;
9807 }
9808 pent = &ent->next;
9809 }
9810 }
9811 else
9812 *pent = ent->next;
9813 }
9814
9815 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9816 for (; local_plt < end_local_plt; ++local_plt)
9817 {
9818 struct plt_entry *ent;
9819
9820 for (ent = *local_plt; ent != NULL; ent = ent->next)
9821 if (ent->plt.refcount > 0)
9822 {
9823 s = htab->elf.iplt;
9824 ent->plt.offset = s->size;
9825 s->size += PLT_ENTRY_SIZE (htab);
9826
9827 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9828 }
9829 else
9830 ent->plt.offset = (bfd_vma) -1;
9831 }
9832 }
9833
9834 /* Allocate global sym .plt and .got entries, and space for global
9835 sym dynamic relocs. */
9836 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9837 /* Stash the end of glink branch table. */
9838 if (htab->glink != NULL)
9839 htab->glink->rawsize = htab->glink->size;
9840
9841 if (!htab->opd_abi && !info->shared)
9842 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9843
9844 first_tlsld = NULL;
9845 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9846 {
9847 struct got_entry *ent;
9848
9849 if (!is_ppc64_elf (ibfd))
9850 continue;
9851
9852 ent = ppc64_tlsld_got (ibfd);
9853 if (ent->got.refcount > 0)
9854 {
9855 if (!htab->do_multi_toc && first_tlsld != NULL)
9856 {
9857 ent->is_indirect = TRUE;
9858 ent->got.ent = first_tlsld;
9859 }
9860 else
9861 {
9862 if (first_tlsld == NULL)
9863 first_tlsld = ent;
9864 s = ppc64_elf_tdata (ibfd)->got;
9865 ent->got.offset = s->size;
9866 ent->owner = ibfd;
9867 s->size += 16;
9868 if (info->shared)
9869 {
9870 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9871 srel->size += sizeof (Elf64_External_Rela);
9872 }
9873 }
9874 }
9875 else
9876 ent->got.offset = (bfd_vma) -1;
9877 }
9878
9879 /* We now have determined the sizes of the various dynamic sections.
9880 Allocate memory for them. */
9881 relocs = FALSE;
9882 for (s = dynobj->sections; s != NULL; s = s->next)
9883 {
9884 if ((s->flags & SEC_LINKER_CREATED) == 0)
9885 continue;
9886
9887 if (s == htab->brlt || s == htab->relbrlt)
9888 /* These haven't been allocated yet; don't strip. */
9889 continue;
9890 else if (s == htab->elf.sgot
9891 || s == htab->elf.splt
9892 || s == htab->elf.iplt
9893 || s == htab->glink
9894 || s == htab->dynbss)
9895 {
9896 /* Strip this section if we don't need it; see the
9897 comment below. */
9898 }
9899 else if (s == htab->glink_eh_frame)
9900 {
9901 if (!bfd_is_abs_section (s->output_section))
9902 /* Not sized yet. */
9903 continue;
9904 }
9905 else if (CONST_STRNEQ (s->name, ".rela"))
9906 {
9907 if (s->size != 0)
9908 {
9909 if (s != htab->elf.srelplt)
9910 relocs = TRUE;
9911
9912 /* We use the reloc_count field as a counter if we need
9913 to copy relocs into the output file. */
9914 s->reloc_count = 0;
9915 }
9916 }
9917 else
9918 {
9919 /* It's not one of our sections, so don't allocate space. */
9920 continue;
9921 }
9922
9923 if (s->size == 0)
9924 {
9925 /* If we don't need this section, strip it from the
9926 output file. This is mostly to handle .rela.bss and
9927 .rela.plt. We must create both sections in
9928 create_dynamic_sections, because they must be created
9929 before the linker maps input sections to output
9930 sections. The linker does that before
9931 adjust_dynamic_symbol is called, and it is that
9932 function which decides whether anything needs to go
9933 into these sections. */
9934 s->flags |= SEC_EXCLUDE;
9935 continue;
9936 }
9937
9938 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9939 continue;
9940
9941 /* Allocate memory for the section contents. We use bfd_zalloc
9942 here in case unused entries are not reclaimed before the
9943 section's contents are written out. This should not happen,
9944 but this way if it does we get a R_PPC64_NONE reloc in .rela
9945 sections instead of garbage.
9946 We also rely on the section contents being zero when writing
9947 the GOT. */
9948 s->contents = bfd_zalloc (dynobj, s->size);
9949 if (s->contents == NULL)
9950 return FALSE;
9951 }
9952
9953 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9954 {
9955 if (!is_ppc64_elf (ibfd))
9956 continue;
9957
9958 s = ppc64_elf_tdata (ibfd)->got;
9959 if (s != NULL && s != htab->elf.sgot)
9960 {
9961 if (s->size == 0)
9962 s->flags |= SEC_EXCLUDE;
9963 else
9964 {
9965 s->contents = bfd_zalloc (ibfd, s->size);
9966 if (s->contents == NULL)
9967 return FALSE;
9968 }
9969 }
9970 s = ppc64_elf_tdata (ibfd)->relgot;
9971 if (s != NULL)
9972 {
9973 if (s->size == 0)
9974 s->flags |= SEC_EXCLUDE;
9975 else
9976 {
9977 s->contents = bfd_zalloc (ibfd, s->size);
9978 if (s->contents == NULL)
9979 return FALSE;
9980 relocs = TRUE;
9981 s->reloc_count = 0;
9982 }
9983 }
9984 }
9985
9986 if (htab->elf.dynamic_sections_created)
9987 {
9988 bfd_boolean tls_opt;
9989
9990 /* Add some entries to the .dynamic section. We fill in the
9991 values later, in ppc64_elf_finish_dynamic_sections, but we
9992 must add the entries now so that we get the correct size for
9993 the .dynamic section. The DT_DEBUG entry is filled in by the
9994 dynamic linker and used by the debugger. */
9995 #define add_dynamic_entry(TAG, VAL) \
9996 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9997
9998 if (info->executable)
9999 {
10000 if (!add_dynamic_entry (DT_DEBUG, 0))
10001 return FALSE;
10002 }
10003
10004 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10005 {
10006 if (!add_dynamic_entry (DT_PLTGOT, 0)
10007 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10008 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10009 || !add_dynamic_entry (DT_JMPREL, 0)
10010 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10011 return FALSE;
10012 }
10013
10014 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10015 {
10016 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10017 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10018 return FALSE;
10019 }
10020
10021 tls_opt = (!htab->params->no_tls_get_addr_opt
10022 && htab->tls_get_addr_fd != NULL
10023 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10024 if (tls_opt || !htab->opd_abi)
10025 {
10026 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10027 return FALSE;
10028 }
10029
10030 if (relocs)
10031 {
10032 if (!add_dynamic_entry (DT_RELA, 0)
10033 || !add_dynamic_entry (DT_RELASZ, 0)
10034 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10035 return FALSE;
10036
10037 /* If any dynamic relocs apply to a read-only section,
10038 then we need a DT_TEXTREL entry. */
10039 if ((info->flags & DF_TEXTREL) == 0)
10040 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10041
10042 if ((info->flags & DF_TEXTREL) != 0)
10043 {
10044 if (!add_dynamic_entry (DT_TEXTREL, 0))
10045 return FALSE;
10046 }
10047 }
10048 }
10049 #undef add_dynamic_entry
10050
10051 return TRUE;
10052 }
10053
10054 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10055
10056 static bfd_boolean
10057 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10058 {
10059 if (h->plt.plist != NULL
10060 && !h->def_regular
10061 && !h->pointer_equality_needed)
10062 return FALSE;
10063
10064 return _bfd_elf_hash_symbol (h);
10065 }
10066
10067 /* Determine the type of stub needed, if any, for a call. */
10068
10069 static inline enum ppc_stub_type
10070 ppc_type_of_stub (asection *input_sec,
10071 const Elf_Internal_Rela *rel,
10072 struct ppc_link_hash_entry **hash,
10073 struct plt_entry **plt_ent,
10074 bfd_vma destination,
10075 unsigned long local_off)
10076 {
10077 struct ppc_link_hash_entry *h = *hash;
10078 bfd_vma location;
10079 bfd_vma branch_offset;
10080 bfd_vma max_branch_offset;
10081 enum elf_ppc64_reloc_type r_type;
10082
10083 if (h != NULL)
10084 {
10085 struct plt_entry *ent;
10086 struct ppc_link_hash_entry *fdh = h;
10087 if (h->oh != NULL
10088 && h->oh->is_func_descriptor)
10089 {
10090 fdh = ppc_follow_link (h->oh);
10091 *hash = fdh;
10092 }
10093
10094 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10095 if (ent->addend == rel->r_addend
10096 && ent->plt.offset != (bfd_vma) -1)
10097 {
10098 *plt_ent = ent;
10099 return ppc_stub_plt_call;
10100 }
10101
10102 /* Here, we know we don't have a plt entry. If we don't have a
10103 either a defined function descriptor or a defined entry symbol
10104 in a regular object file, then it is pointless trying to make
10105 any other type of stub. */
10106 if (!is_static_defined (&fdh->elf)
10107 && !is_static_defined (&h->elf))
10108 return ppc_stub_none;
10109 }
10110 else if (elf_local_got_ents (input_sec->owner) != NULL)
10111 {
10112 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10113 struct plt_entry **local_plt = (struct plt_entry **)
10114 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10115 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10116
10117 if (local_plt[r_symndx] != NULL)
10118 {
10119 struct plt_entry *ent;
10120
10121 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10122 if (ent->addend == rel->r_addend
10123 && ent->plt.offset != (bfd_vma) -1)
10124 {
10125 *plt_ent = ent;
10126 return ppc_stub_plt_call;
10127 }
10128 }
10129 }
10130
10131 /* Determine where the call point is. */
10132 location = (input_sec->output_offset
10133 + input_sec->output_section->vma
10134 + rel->r_offset);
10135
10136 branch_offset = destination - location;
10137 r_type = ELF64_R_TYPE (rel->r_info);
10138
10139 /* Determine if a long branch stub is needed. */
10140 max_branch_offset = 1 << 25;
10141 if (r_type != R_PPC64_REL24)
10142 max_branch_offset = 1 << 15;
10143
10144 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10145 /* We need a stub. Figure out whether a long_branch or plt_branch
10146 is needed later. */
10147 return ppc_stub_long_branch;
10148
10149 return ppc_stub_none;
10150 }
10151
10152 /* With power7 weakly ordered memory model, it is possible for ld.so
10153 to update a plt entry in one thread and have another thread see a
10154 stale zero toc entry. To avoid this we need some sort of acquire
10155 barrier in the call stub. One solution is to make the load of the
10156 toc word seem to appear to depend on the load of the function entry
10157 word. Another solution is to test for r2 being zero, and branch to
10158 the appropriate glink entry if so.
10159
10160 . fake dep barrier compare
10161 . ld 12,xxx(2) ld 12,xxx(2)
10162 . mtctr 12 mtctr 12
10163 . xor 11,12,12 ld 2,xxx+8(2)
10164 . add 2,2,11 cmpldi 2,0
10165 . ld 2,xxx+8(2) bnectr+
10166 . bctr b <glink_entry>
10167
10168 The solution involving the compare turns out to be faster, so
10169 that's what we use unless the branch won't reach. */
10170
10171 #define ALWAYS_USE_FAKE_DEP 0
10172 #define ALWAYS_EMIT_R2SAVE 0
10173
10174 #define PPC_LO(v) ((v) & 0xffff)
10175 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10176 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10177
10178 static inline unsigned int
10179 plt_stub_size (struct ppc_link_hash_table *htab,
10180 struct ppc_stub_hash_entry *stub_entry,
10181 bfd_vma off)
10182 {
10183 unsigned size = 12;
10184
10185 if (ALWAYS_EMIT_R2SAVE
10186 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10187 size += 4;
10188 if (PPC_HA (off) != 0)
10189 size += 4;
10190 if (htab->opd_abi)
10191 {
10192 size += 4;
10193 if (htab->params->plt_static_chain)
10194 size += 4;
10195 if (htab->params->plt_thread_safe)
10196 size += 8;
10197 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10198 size += 4;
10199 }
10200 if (stub_entry->h != NULL
10201 && (stub_entry->h == htab->tls_get_addr_fd
10202 || stub_entry->h == htab->tls_get_addr)
10203 && !htab->params->no_tls_get_addr_opt)
10204 size += 13 * 4;
10205 return size;
10206 }
10207
10208 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10209 then return the padding needed to do so. */
10210 static inline unsigned int
10211 plt_stub_pad (struct ppc_link_hash_table *htab,
10212 struct ppc_stub_hash_entry *stub_entry,
10213 bfd_vma plt_off)
10214 {
10215 int stub_align = 1 << htab->params->plt_stub_align;
10216 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10217 bfd_vma stub_off = stub_entry->stub_sec->size;
10218
10219 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10220 > ((stub_size - 1) & -stub_align))
10221 return stub_align - (stub_off & (stub_align - 1));
10222 return 0;
10223 }
10224
10225 /* Build a .plt call stub. */
10226
10227 static inline bfd_byte *
10228 build_plt_stub (struct ppc_link_hash_table *htab,
10229 struct ppc_stub_hash_entry *stub_entry,
10230 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10231 {
10232 bfd *obfd = htab->params->stub_bfd;
10233 bfd_boolean plt_load_toc = htab->opd_abi;
10234 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10235 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10236 bfd_boolean use_fake_dep = plt_thread_safe;
10237 bfd_vma cmp_branch_off = 0;
10238
10239 if (!ALWAYS_USE_FAKE_DEP
10240 && plt_load_toc
10241 && plt_thread_safe
10242 && !(stub_entry->h != NULL
10243 && (stub_entry->h == htab->tls_get_addr_fd
10244 || stub_entry->h == htab->tls_get_addr)
10245 && !htab->params->no_tls_get_addr_opt))
10246 {
10247 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10248 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10249 / PLT_ENTRY_SIZE (htab));
10250 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10251 bfd_vma to, from;
10252
10253 if (pltindex > 32768)
10254 glinkoff += (pltindex - 32768) * 4;
10255 to = (glinkoff
10256 + htab->glink->output_offset
10257 + htab->glink->output_section->vma);
10258 from = (p - stub_entry->stub_sec->contents
10259 + 4 * (ALWAYS_EMIT_R2SAVE
10260 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10261 + 4 * (PPC_HA (offset) != 0)
10262 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10263 != PPC_HA (offset))
10264 + 4 * (plt_static_chain != 0)
10265 + 20
10266 + stub_entry->stub_sec->output_offset
10267 + stub_entry->stub_sec->output_section->vma);
10268 cmp_branch_off = to - from;
10269 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10270 }
10271
10272 if (PPC_HA (offset) != 0)
10273 {
10274 if (r != NULL)
10275 {
10276 if (ALWAYS_EMIT_R2SAVE
10277 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10278 r[0].r_offset += 4;
10279 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10280 r[1].r_offset = r[0].r_offset + 4;
10281 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10282 r[1].r_addend = r[0].r_addend;
10283 if (plt_load_toc)
10284 {
10285 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10286 {
10287 r[2].r_offset = r[1].r_offset + 4;
10288 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10289 r[2].r_addend = r[0].r_addend;
10290 }
10291 else
10292 {
10293 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10294 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10295 r[2].r_addend = r[0].r_addend + 8;
10296 if (plt_static_chain)
10297 {
10298 r[3].r_offset = r[2].r_offset + 4;
10299 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10300 r[3].r_addend = r[0].r_addend + 16;
10301 }
10302 }
10303 }
10304 }
10305 if (ALWAYS_EMIT_R2SAVE
10306 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10307 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10308 if (plt_load_toc)
10309 {
10310 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10311 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10312 }
10313 else
10314 {
10315 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10316 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10317 }
10318 if (plt_load_toc
10319 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10320 {
10321 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10322 offset = 0;
10323 }
10324 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10325 if (plt_load_toc)
10326 {
10327 if (use_fake_dep)
10328 {
10329 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10330 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10331 }
10332 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10333 if (plt_static_chain)
10334 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10335 }
10336 }
10337 else
10338 {
10339 if (r != NULL)
10340 {
10341 if (ALWAYS_EMIT_R2SAVE
10342 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10343 r[0].r_offset += 4;
10344 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10345 if (plt_load_toc)
10346 {
10347 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10348 {
10349 r[1].r_offset = r[0].r_offset + 4;
10350 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10351 r[1].r_addend = r[0].r_addend;
10352 }
10353 else
10354 {
10355 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10356 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10357 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10358 if (plt_static_chain)
10359 {
10360 r[2].r_offset = r[1].r_offset + 4;
10361 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10362 r[2].r_addend = r[0].r_addend + 8;
10363 }
10364 }
10365 }
10366 }
10367 if (ALWAYS_EMIT_R2SAVE
10368 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10369 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10370 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10371 if (plt_load_toc
10372 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10373 {
10374 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10375 offset = 0;
10376 }
10377 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10378 if (plt_load_toc)
10379 {
10380 if (use_fake_dep)
10381 {
10382 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10383 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10384 }
10385 if (plt_static_chain)
10386 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10387 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10388 }
10389 }
10390 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10391 {
10392 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10393 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10394 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10395 }
10396 else
10397 bfd_put_32 (obfd, BCTR, p), p += 4;
10398 return p;
10399 }
10400
10401 /* Build a special .plt call stub for __tls_get_addr. */
10402
10403 #define LD_R11_0R3 0xe9630000
10404 #define LD_R12_0R3 0xe9830000
10405 #define MR_R0_R3 0x7c601b78
10406 #define CMPDI_R11_0 0x2c2b0000
10407 #define ADD_R3_R12_R13 0x7c6c6a14
10408 #define BEQLR 0x4d820020
10409 #define MR_R3_R0 0x7c030378
10410 #define STD_R11_0R1 0xf9610000
10411 #define BCTRL 0x4e800421
10412 #define LD_R11_0R1 0xe9610000
10413 #define MTLR_R11 0x7d6803a6
10414
10415 static inline bfd_byte *
10416 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10417 struct ppc_stub_hash_entry *stub_entry,
10418 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10419 {
10420 bfd *obfd = htab->params->stub_bfd;
10421
10422 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10423 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10424 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10425 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10426 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10427 bfd_put_32 (obfd, BEQLR, p), p += 4;
10428 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10429 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10430 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10431
10432 if (r != NULL)
10433 r[0].r_offset += 9 * 4;
10434 p = build_plt_stub (htab, stub_entry, p, offset, r);
10435 bfd_put_32 (obfd, BCTRL, p - 4);
10436
10437 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10438 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10439 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10440 bfd_put_32 (obfd, BLR, p), p += 4;
10441
10442 return p;
10443 }
10444
10445 static Elf_Internal_Rela *
10446 get_relocs (asection *sec, int count)
10447 {
10448 Elf_Internal_Rela *relocs;
10449 struct bfd_elf_section_data *elfsec_data;
10450
10451 elfsec_data = elf_section_data (sec);
10452 relocs = elfsec_data->relocs;
10453 if (relocs == NULL)
10454 {
10455 bfd_size_type relsize;
10456 relsize = sec->reloc_count * sizeof (*relocs);
10457 relocs = bfd_alloc (sec->owner, relsize);
10458 if (relocs == NULL)
10459 return NULL;
10460 elfsec_data->relocs = relocs;
10461 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10462 sizeof (Elf_Internal_Shdr));
10463 if (elfsec_data->rela.hdr == NULL)
10464 return NULL;
10465 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10466 * sizeof (Elf64_External_Rela));
10467 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10468 sec->reloc_count = 0;
10469 }
10470 relocs += sec->reloc_count;
10471 sec->reloc_count += count;
10472 return relocs;
10473 }
10474
10475 static bfd_vma
10476 get_r2off (struct bfd_link_info *info,
10477 struct ppc_stub_hash_entry *stub_entry)
10478 {
10479 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10480 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10481
10482 if (r2off == 0)
10483 {
10484 /* Support linking -R objects. Get the toc pointer from the
10485 opd entry. */
10486 char buf[8];
10487 if (!htab->opd_abi)
10488 return r2off;
10489 asection *opd = stub_entry->h->elf.root.u.def.section;
10490 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10491
10492 if (strcmp (opd->name, ".opd") != 0
10493 || opd->reloc_count != 0)
10494 {
10495 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10496 stub_entry->h->elf.root.root.string);
10497 bfd_set_error (bfd_error_bad_value);
10498 return 0;
10499 }
10500 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10501 return 0;
10502 r2off = bfd_get_64 (opd->owner, buf);
10503 r2off -= elf_gp (info->output_bfd);
10504 }
10505 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10506 return r2off;
10507 }
10508
10509 static bfd_boolean
10510 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10511 {
10512 struct ppc_stub_hash_entry *stub_entry;
10513 struct ppc_branch_hash_entry *br_entry;
10514 struct bfd_link_info *info;
10515 struct ppc_link_hash_table *htab;
10516 bfd_byte *loc;
10517 bfd_byte *p;
10518 bfd_vma dest, off;
10519 int size;
10520 Elf_Internal_Rela *r;
10521 asection *plt;
10522
10523 /* Massage our args to the form they really have. */
10524 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10525 info = in_arg;
10526
10527 htab = ppc_hash_table (info);
10528 if (htab == NULL)
10529 return FALSE;
10530
10531 /* Make a note of the offset within the stubs for this entry. */
10532 stub_entry->stub_offset = stub_entry->stub_sec->size;
10533 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10534
10535 htab->stub_count[stub_entry->stub_type - 1] += 1;
10536 switch (stub_entry->stub_type)
10537 {
10538 case ppc_stub_long_branch:
10539 case ppc_stub_long_branch_r2off:
10540 /* Branches are relative. This is where we are going to. */
10541 dest = (stub_entry->target_value
10542 + stub_entry->target_section->output_offset
10543 + stub_entry->target_section->output_section->vma);
10544 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10545 off = dest;
10546
10547 /* And this is where we are coming from. */
10548 off -= (stub_entry->stub_offset
10549 + stub_entry->stub_sec->output_offset
10550 + stub_entry->stub_sec->output_section->vma);
10551
10552 size = 4;
10553 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10554 {
10555 bfd_vma r2off = get_r2off (info, stub_entry);
10556
10557 if (r2off == 0)
10558 {
10559 htab->stub_error = TRUE;
10560 return FALSE;
10561 }
10562 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10563 loc += 4;
10564 size = 12;
10565 if (PPC_HA (r2off) != 0)
10566 {
10567 size = 16;
10568 bfd_put_32 (htab->params->stub_bfd,
10569 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10570 loc += 4;
10571 }
10572 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10573 loc += 4;
10574 off -= size - 4;
10575 }
10576 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10577
10578 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10579 {
10580 info->callbacks->einfo
10581 (_("%P: long branch stub `%s' offset overflow\n"),
10582 stub_entry->root.string);
10583 htab->stub_error = TRUE;
10584 return FALSE;
10585 }
10586
10587 if (info->emitrelocations)
10588 {
10589 r = get_relocs (stub_entry->stub_sec, 1);
10590 if (r == NULL)
10591 return FALSE;
10592 r->r_offset = loc - stub_entry->stub_sec->contents;
10593 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10594 r->r_addend = dest;
10595 if (stub_entry->h != NULL)
10596 {
10597 struct elf_link_hash_entry **hashes;
10598 unsigned long symndx;
10599 struct ppc_link_hash_entry *h;
10600
10601 hashes = elf_sym_hashes (htab->params->stub_bfd);
10602 if (hashes == NULL)
10603 {
10604 bfd_size_type hsize;
10605
10606 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10607 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10608 if (hashes == NULL)
10609 return FALSE;
10610 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10611 htab->stub_globals = 1;
10612 }
10613 symndx = htab->stub_globals++;
10614 h = stub_entry->h;
10615 hashes[symndx] = &h->elf;
10616 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10617 if (h->oh != NULL && h->oh->is_func)
10618 h = ppc_follow_link (h->oh);
10619 if (h->elf.root.u.def.section != stub_entry->target_section)
10620 /* H is an opd symbol. The addend must be zero. */
10621 r->r_addend = 0;
10622 else
10623 {
10624 off = (h->elf.root.u.def.value
10625 + h->elf.root.u.def.section->output_offset
10626 + h->elf.root.u.def.section->output_section->vma);
10627 r->r_addend -= off;
10628 }
10629 }
10630 }
10631 break;
10632
10633 case ppc_stub_plt_branch:
10634 case ppc_stub_plt_branch_r2off:
10635 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10636 stub_entry->root.string + 9,
10637 FALSE, FALSE);
10638 if (br_entry == NULL)
10639 {
10640 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10641 stub_entry->root.string);
10642 htab->stub_error = TRUE;
10643 return FALSE;
10644 }
10645
10646 dest = (stub_entry->target_value
10647 + stub_entry->target_section->output_offset
10648 + stub_entry->target_section->output_section->vma);
10649 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10650 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10651
10652 bfd_put_64 (htab->brlt->owner, dest,
10653 htab->brlt->contents + br_entry->offset);
10654
10655 if (br_entry->iter == htab->stub_iteration)
10656 {
10657 br_entry->iter = 0;
10658
10659 if (htab->relbrlt != NULL)
10660 {
10661 /* Create a reloc for the branch lookup table entry. */
10662 Elf_Internal_Rela rela;
10663 bfd_byte *rl;
10664
10665 rela.r_offset = (br_entry->offset
10666 + htab->brlt->output_offset
10667 + htab->brlt->output_section->vma);
10668 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10669 rela.r_addend = dest;
10670
10671 rl = htab->relbrlt->contents;
10672 rl += (htab->relbrlt->reloc_count++
10673 * sizeof (Elf64_External_Rela));
10674 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10675 }
10676 else if (info->emitrelocations)
10677 {
10678 r = get_relocs (htab->brlt, 1);
10679 if (r == NULL)
10680 return FALSE;
10681 /* brlt, being SEC_LINKER_CREATED does not go through the
10682 normal reloc processing. Symbols and offsets are not
10683 translated from input file to output file form, so
10684 set up the offset per the output file. */
10685 r->r_offset = (br_entry->offset
10686 + htab->brlt->output_offset
10687 + htab->brlt->output_section->vma);
10688 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10689 r->r_addend = dest;
10690 }
10691 }
10692
10693 dest = (br_entry->offset
10694 + htab->brlt->output_offset
10695 + htab->brlt->output_section->vma);
10696
10697 off = (dest
10698 - elf_gp (htab->brlt->output_section->owner)
10699 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10700
10701 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10702 {
10703 info->callbacks->einfo
10704 (_("%P: linkage table error against `%T'\n"),
10705 stub_entry->root.string);
10706 bfd_set_error (bfd_error_bad_value);
10707 htab->stub_error = TRUE;
10708 return FALSE;
10709 }
10710
10711 if (info->emitrelocations)
10712 {
10713 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10714 if (r == NULL)
10715 return FALSE;
10716 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10717 if (bfd_big_endian (info->output_bfd))
10718 r[0].r_offset += 2;
10719 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10720 r[0].r_offset += 4;
10721 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10722 r[0].r_addend = dest;
10723 if (PPC_HA (off) != 0)
10724 {
10725 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10726 r[1].r_offset = r[0].r_offset + 4;
10727 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10728 r[1].r_addend = r[0].r_addend;
10729 }
10730 }
10731
10732 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10733 {
10734 if (PPC_HA (off) != 0)
10735 {
10736 size = 16;
10737 bfd_put_32 (htab->params->stub_bfd,
10738 ADDIS_R12_R2 | PPC_HA (off), loc);
10739 loc += 4;
10740 bfd_put_32 (htab->params->stub_bfd,
10741 LD_R12_0R12 | PPC_LO (off), loc);
10742 }
10743 else
10744 {
10745 size = 12;
10746 bfd_put_32 (htab->params->stub_bfd,
10747 LD_R12_0R2 | PPC_LO (off), loc);
10748 }
10749 }
10750 else
10751 {
10752 bfd_vma r2off = get_r2off (info, stub_entry);
10753
10754 if (r2off == 0 && htab->opd_abi)
10755 {
10756 htab->stub_error = TRUE;
10757 return FALSE;
10758 }
10759
10760 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10761 loc += 4;
10762 size = 16;
10763 if (PPC_HA (off) != 0)
10764 {
10765 size += 4;
10766 bfd_put_32 (htab->params->stub_bfd,
10767 ADDIS_R12_R2 | PPC_HA (off), loc);
10768 loc += 4;
10769 bfd_put_32 (htab->params->stub_bfd,
10770 LD_R12_0R12 | PPC_LO (off), loc);
10771 }
10772 else
10773 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10774
10775 if (PPC_HA (r2off) != 0)
10776 {
10777 size += 4;
10778 loc += 4;
10779 bfd_put_32 (htab->params->stub_bfd,
10780 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10781 }
10782 if (PPC_LO (r2off) != 0)
10783 {
10784 size += 4;
10785 loc += 4;
10786 bfd_put_32 (htab->params->stub_bfd,
10787 ADDI_R2_R2 | PPC_LO (r2off), loc);
10788 }
10789 }
10790 loc += 4;
10791 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10792 loc += 4;
10793 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10794 break;
10795
10796 case ppc_stub_plt_call:
10797 case ppc_stub_plt_call_r2save:
10798 if (stub_entry->h != NULL
10799 && stub_entry->h->is_func_descriptor
10800 && stub_entry->h->oh != NULL)
10801 {
10802 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10803
10804 /* If the old-ABI "dot-symbol" is undefined make it weak so
10805 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10806 FIXME: We used to define the symbol on one of the call
10807 stubs instead, which is why we test symbol section id
10808 against htab->top_id in various places. Likely all
10809 these checks could now disappear. */
10810 if (fh->elf.root.type == bfd_link_hash_undefined)
10811 fh->elf.root.type = bfd_link_hash_undefweak;
10812 /* Stop undo_symbol_twiddle changing it back to undefined. */
10813 fh->was_undefined = 0;
10814 }
10815
10816 /* Now build the stub. */
10817 dest = stub_entry->plt_ent->plt.offset & ~1;
10818 if (dest >= (bfd_vma) -2)
10819 abort ();
10820
10821 plt = htab->elf.splt;
10822 if (!htab->elf.dynamic_sections_created
10823 || stub_entry->h == NULL
10824 || stub_entry->h->elf.dynindx == -1)
10825 plt = htab->elf.iplt;
10826
10827 dest += plt->output_offset + plt->output_section->vma;
10828
10829 if (stub_entry->h == NULL
10830 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10831 {
10832 Elf_Internal_Rela rela;
10833 bfd_byte *rl;
10834
10835 rela.r_offset = dest;
10836 if (htab->opd_abi)
10837 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10838 else
10839 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10840 rela.r_addend = (stub_entry->target_value
10841 + stub_entry->target_section->output_offset
10842 + stub_entry->target_section->output_section->vma);
10843
10844 rl = (htab->elf.irelplt->contents
10845 + (htab->elf.irelplt->reloc_count++
10846 * sizeof (Elf64_External_Rela)));
10847 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10848 stub_entry->plt_ent->plt.offset |= 1;
10849 }
10850
10851 off = (dest
10852 - elf_gp (plt->output_section->owner)
10853 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10854
10855 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10856 {
10857 info->callbacks->einfo
10858 (_("%P: linkage table error against `%T'\n"),
10859 stub_entry->h != NULL
10860 ? stub_entry->h->elf.root.root.string
10861 : "<local sym>");
10862 bfd_set_error (bfd_error_bad_value);
10863 htab->stub_error = TRUE;
10864 return FALSE;
10865 }
10866
10867 if (htab->params->plt_stub_align != 0)
10868 {
10869 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10870
10871 stub_entry->stub_sec->size += pad;
10872 stub_entry->stub_offset = stub_entry->stub_sec->size;
10873 loc += pad;
10874 }
10875
10876 r = NULL;
10877 if (info->emitrelocations)
10878 {
10879 r = get_relocs (stub_entry->stub_sec,
10880 ((PPC_HA (off) != 0)
10881 + (htab->opd_abi
10882 ? 2 + (htab->params->plt_static_chain
10883 && PPC_HA (off + 16) == PPC_HA (off))
10884 : 1)));
10885 if (r == NULL)
10886 return FALSE;
10887 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10888 if (bfd_big_endian (info->output_bfd))
10889 r[0].r_offset += 2;
10890 r[0].r_addend = dest;
10891 }
10892 if (stub_entry->h != NULL
10893 && (stub_entry->h == htab->tls_get_addr_fd
10894 || stub_entry->h == htab->tls_get_addr)
10895 && !htab->params->no_tls_get_addr_opt)
10896 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10897 else
10898 p = build_plt_stub (htab, stub_entry, loc, off, r);
10899 size = p - loc;
10900 break;
10901
10902 default:
10903 BFD_FAIL ();
10904 return FALSE;
10905 }
10906
10907 stub_entry->stub_sec->size += size;
10908
10909 if (htab->params->emit_stub_syms)
10910 {
10911 struct elf_link_hash_entry *h;
10912 size_t len1, len2;
10913 char *name;
10914 const char *const stub_str[] = { "long_branch",
10915 "long_branch_r2off",
10916 "plt_branch",
10917 "plt_branch_r2off",
10918 "plt_call",
10919 "plt_call" };
10920
10921 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10922 len2 = strlen (stub_entry->root.string);
10923 name = bfd_malloc (len1 + len2 + 2);
10924 if (name == NULL)
10925 return FALSE;
10926 memcpy (name, stub_entry->root.string, 9);
10927 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10928 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10929 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10930 if (h == NULL)
10931 return FALSE;
10932 if (h->root.type == bfd_link_hash_new)
10933 {
10934 h->root.type = bfd_link_hash_defined;
10935 h->root.u.def.section = stub_entry->stub_sec;
10936 h->root.u.def.value = stub_entry->stub_offset;
10937 h->ref_regular = 1;
10938 h->def_regular = 1;
10939 h->ref_regular_nonweak = 1;
10940 h->forced_local = 1;
10941 h->non_elf = 0;
10942 }
10943 }
10944
10945 return TRUE;
10946 }
10947
10948 /* As above, but don't actually build the stub. Just bump offset so
10949 we know stub section sizes, and select plt_branch stubs where
10950 long_branch stubs won't do. */
10951
10952 static bfd_boolean
10953 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10954 {
10955 struct ppc_stub_hash_entry *stub_entry;
10956 struct bfd_link_info *info;
10957 struct ppc_link_hash_table *htab;
10958 bfd_vma off;
10959 int size;
10960
10961 /* Massage our args to the form they really have. */
10962 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10963 info = in_arg;
10964
10965 htab = ppc_hash_table (info);
10966 if (htab == NULL)
10967 return FALSE;
10968
10969 if (stub_entry->stub_type == ppc_stub_plt_call
10970 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10971 {
10972 asection *plt;
10973 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10974 if (off >= (bfd_vma) -2)
10975 abort ();
10976 plt = htab->elf.splt;
10977 if (!htab->elf.dynamic_sections_created
10978 || stub_entry->h == NULL
10979 || stub_entry->h->elf.dynindx == -1)
10980 plt = htab->elf.iplt;
10981 off += (plt->output_offset
10982 + plt->output_section->vma
10983 - elf_gp (plt->output_section->owner)
10984 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10985
10986 size = plt_stub_size (htab, stub_entry, off);
10987 if (htab->params->plt_stub_align)
10988 size += plt_stub_pad (htab, stub_entry, off);
10989 if (info->emitrelocations)
10990 {
10991 stub_entry->stub_sec->reloc_count
10992 += ((PPC_HA (off) != 0)
10993 + (htab->opd_abi
10994 ? 2 + (htab->params->plt_static_chain
10995 && PPC_HA (off + 16) == PPC_HA (off))
10996 : 1));
10997 stub_entry->stub_sec->flags |= SEC_RELOC;
10998 }
10999 }
11000 else
11001 {
11002 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11003 variants. */
11004 bfd_vma r2off = 0;
11005 bfd_vma local_off = 0;
11006
11007 off = (stub_entry->target_value
11008 + stub_entry->target_section->output_offset
11009 + stub_entry->target_section->output_section->vma);
11010 off -= (stub_entry->stub_sec->size
11011 + stub_entry->stub_sec->output_offset
11012 + stub_entry->stub_sec->output_section->vma);
11013
11014 /* Reset the stub type from the plt variant in case we now
11015 can reach with a shorter stub. */
11016 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11017 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11018
11019 size = 4;
11020 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11021 {
11022 r2off = get_r2off (info, stub_entry);
11023 if (r2off == 0 && htab->opd_abi)
11024 {
11025 htab->stub_error = TRUE;
11026 return FALSE;
11027 }
11028 size = 12;
11029 if (PPC_HA (r2off) != 0)
11030 size = 16;
11031 off -= size - 4;
11032 }
11033
11034 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11035
11036 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11037 Do the same for -R objects without function descriptors. */
11038 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11039 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11040 && r2off == 0))
11041 {
11042 struct ppc_branch_hash_entry *br_entry;
11043
11044 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11045 stub_entry->root.string + 9,
11046 TRUE, FALSE);
11047 if (br_entry == NULL)
11048 {
11049 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11050 stub_entry->root.string);
11051 htab->stub_error = TRUE;
11052 return FALSE;
11053 }
11054
11055 if (br_entry->iter != htab->stub_iteration)
11056 {
11057 br_entry->iter = htab->stub_iteration;
11058 br_entry->offset = htab->brlt->size;
11059 htab->brlt->size += 8;
11060
11061 if (htab->relbrlt != NULL)
11062 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11063 else if (info->emitrelocations)
11064 {
11065 htab->brlt->reloc_count += 1;
11066 htab->brlt->flags |= SEC_RELOC;
11067 }
11068 }
11069
11070 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11071 off = (br_entry->offset
11072 + htab->brlt->output_offset
11073 + htab->brlt->output_section->vma
11074 - elf_gp (htab->brlt->output_section->owner)
11075 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11076
11077 if (info->emitrelocations)
11078 {
11079 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11080 stub_entry->stub_sec->flags |= SEC_RELOC;
11081 }
11082
11083 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11084 {
11085 size = 12;
11086 if (PPC_HA (off) != 0)
11087 size = 16;
11088 }
11089 else
11090 {
11091 size = 16;
11092 if (PPC_HA (off) != 0)
11093 size += 4;
11094
11095 if (PPC_HA (r2off) != 0)
11096 size += 4;
11097 if (PPC_LO (r2off) != 0)
11098 size += 4;
11099 }
11100 }
11101 else if (info->emitrelocations)
11102 {
11103 stub_entry->stub_sec->reloc_count += 1;
11104 stub_entry->stub_sec->flags |= SEC_RELOC;
11105 }
11106 }
11107
11108 stub_entry->stub_sec->size += size;
11109 return TRUE;
11110 }
11111
11112 /* Set up various things so that we can make a list of input sections
11113 for each output section included in the link. Returns -1 on error,
11114 0 when no stubs will be needed, and 1 on success. */
11115
11116 int
11117 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11118 {
11119 bfd *input_bfd;
11120 int top_id, top_index, id;
11121 asection *section;
11122 asection **input_list;
11123 bfd_size_type amt;
11124 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11125
11126 if (htab == NULL)
11127 return -1;
11128
11129 /* Find the top input section id. */
11130 for (input_bfd = info->input_bfds, top_id = 3;
11131 input_bfd != NULL;
11132 input_bfd = input_bfd->link.next)
11133 {
11134 for (section = input_bfd->sections;
11135 section != NULL;
11136 section = section->next)
11137 {
11138 if (top_id < section->id)
11139 top_id = section->id;
11140 }
11141 }
11142
11143 htab->top_id = top_id;
11144 amt = sizeof (struct map_stub) * (top_id + 1);
11145 htab->stub_group = bfd_zmalloc (amt);
11146 if (htab->stub_group == NULL)
11147 return -1;
11148
11149 /* Set toc_off for com, und, abs and ind sections. */
11150 for (id = 0; id < 3; id++)
11151 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11152
11153 /* We can't use output_bfd->section_count here to find the top output
11154 section index as some sections may have been removed, and
11155 strip_excluded_output_sections doesn't renumber the indices. */
11156 for (section = info->output_bfd->sections, top_index = 0;
11157 section != NULL;
11158 section = section->next)
11159 {
11160 if (top_index < section->index)
11161 top_index = section->index;
11162 }
11163
11164 htab->top_index = top_index;
11165 amt = sizeof (asection *) * (top_index + 1);
11166 input_list = bfd_zmalloc (amt);
11167 htab->input_list = input_list;
11168 if (input_list == NULL)
11169 return -1;
11170
11171 return 1;
11172 }
11173
11174 /* Set up for first pass at multitoc partitioning. */
11175
11176 void
11177 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11178 {
11179 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11180
11181 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11182 htab->toc_bfd = NULL;
11183 htab->toc_first_sec = NULL;
11184 }
11185
11186 /* The linker repeatedly calls this function for each TOC input section
11187 and linker generated GOT section. Group input bfds such that the toc
11188 within a group is less than 64k in size. */
11189
11190 bfd_boolean
11191 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11192 {
11193 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11194 bfd_vma addr, off, limit;
11195
11196 if (htab == NULL)
11197 return FALSE;
11198
11199 if (!htab->second_toc_pass)
11200 {
11201 /* Keep track of the first .toc or .got section for this input bfd. */
11202 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11203
11204 if (new_bfd)
11205 {
11206 htab->toc_bfd = isec->owner;
11207 htab->toc_first_sec = isec;
11208 }
11209
11210 addr = isec->output_offset + isec->output_section->vma;
11211 off = addr - htab->toc_curr;
11212 limit = 0x80008000;
11213 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11214 limit = 0x10000;
11215 if (off + isec->size > limit)
11216 {
11217 addr = (htab->toc_first_sec->output_offset
11218 + htab->toc_first_sec->output_section->vma);
11219 htab->toc_curr = addr;
11220 }
11221
11222 /* toc_curr is the base address of this toc group. Set elf_gp
11223 for the input section to be the offset relative to the
11224 output toc base plus 0x8000. Making the input elf_gp an
11225 offset allows us to move the toc as a whole without
11226 recalculating input elf_gp. */
11227 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11228 off += TOC_BASE_OFF;
11229
11230 /* Die if someone uses a linker script that doesn't keep input
11231 file .toc and .got together. */
11232 if (new_bfd
11233 && elf_gp (isec->owner) != 0
11234 && elf_gp (isec->owner) != off)
11235 return FALSE;
11236
11237 elf_gp (isec->owner) = off;
11238 return TRUE;
11239 }
11240
11241 /* During the second pass toc_first_sec points to the start of
11242 a toc group, and toc_curr is used to track the old elf_gp.
11243 We use toc_bfd to ensure we only look at each bfd once. */
11244 if (htab->toc_bfd == isec->owner)
11245 return TRUE;
11246 htab->toc_bfd = isec->owner;
11247
11248 if (htab->toc_first_sec == NULL
11249 || htab->toc_curr != elf_gp (isec->owner))
11250 {
11251 htab->toc_curr = elf_gp (isec->owner);
11252 htab->toc_first_sec = isec;
11253 }
11254 addr = (htab->toc_first_sec->output_offset
11255 + htab->toc_first_sec->output_section->vma);
11256 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11257 elf_gp (isec->owner) = off;
11258
11259 return TRUE;
11260 }
11261
11262 /* Called via elf_link_hash_traverse to merge GOT entries for global
11263 symbol H. */
11264
11265 static bfd_boolean
11266 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11267 {
11268 if (h->root.type == bfd_link_hash_indirect)
11269 return TRUE;
11270
11271 merge_got_entries (&h->got.glist);
11272
11273 return TRUE;
11274 }
11275
11276 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11277 symbol H. */
11278
11279 static bfd_boolean
11280 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11281 {
11282 struct got_entry *gent;
11283
11284 if (h->root.type == bfd_link_hash_indirect)
11285 return TRUE;
11286
11287 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11288 if (!gent->is_indirect)
11289 allocate_got (h, (struct bfd_link_info *) inf, gent);
11290 return TRUE;
11291 }
11292
11293 /* Called on the first multitoc pass after the last call to
11294 ppc64_elf_next_toc_section. This function removes duplicate GOT
11295 entries. */
11296
11297 bfd_boolean
11298 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11299 {
11300 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11301 struct bfd *ibfd, *ibfd2;
11302 bfd_boolean done_something;
11303
11304 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11305
11306 if (!htab->do_multi_toc)
11307 return FALSE;
11308
11309 /* Merge global sym got entries within a toc group. */
11310 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11311
11312 /* And tlsld_got. */
11313 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11314 {
11315 struct got_entry *ent, *ent2;
11316
11317 if (!is_ppc64_elf (ibfd))
11318 continue;
11319
11320 ent = ppc64_tlsld_got (ibfd);
11321 if (!ent->is_indirect
11322 && ent->got.offset != (bfd_vma) -1)
11323 {
11324 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11325 {
11326 if (!is_ppc64_elf (ibfd2))
11327 continue;
11328
11329 ent2 = ppc64_tlsld_got (ibfd2);
11330 if (!ent2->is_indirect
11331 && ent2->got.offset != (bfd_vma) -1
11332 && elf_gp (ibfd2) == elf_gp (ibfd))
11333 {
11334 ent2->is_indirect = TRUE;
11335 ent2->got.ent = ent;
11336 }
11337 }
11338 }
11339 }
11340
11341 /* Zap sizes of got sections. */
11342 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11343 htab->elf.irelplt->size -= htab->got_reli_size;
11344 htab->got_reli_size = 0;
11345
11346 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11347 {
11348 asection *got, *relgot;
11349
11350 if (!is_ppc64_elf (ibfd))
11351 continue;
11352
11353 got = ppc64_elf_tdata (ibfd)->got;
11354 if (got != NULL)
11355 {
11356 got->rawsize = got->size;
11357 got->size = 0;
11358 relgot = ppc64_elf_tdata (ibfd)->relgot;
11359 relgot->rawsize = relgot->size;
11360 relgot->size = 0;
11361 }
11362 }
11363
11364 /* Now reallocate the got, local syms first. We don't need to
11365 allocate section contents again since we never increase size. */
11366 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11367 {
11368 struct got_entry **lgot_ents;
11369 struct got_entry **end_lgot_ents;
11370 struct plt_entry **local_plt;
11371 struct plt_entry **end_local_plt;
11372 unsigned char *lgot_masks;
11373 bfd_size_type locsymcount;
11374 Elf_Internal_Shdr *symtab_hdr;
11375 asection *s;
11376
11377 if (!is_ppc64_elf (ibfd))
11378 continue;
11379
11380 lgot_ents = elf_local_got_ents (ibfd);
11381 if (!lgot_ents)
11382 continue;
11383
11384 symtab_hdr = &elf_symtab_hdr (ibfd);
11385 locsymcount = symtab_hdr->sh_info;
11386 end_lgot_ents = lgot_ents + locsymcount;
11387 local_plt = (struct plt_entry **) end_lgot_ents;
11388 end_local_plt = local_plt + locsymcount;
11389 lgot_masks = (unsigned char *) end_local_plt;
11390 s = ppc64_elf_tdata (ibfd)->got;
11391 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11392 {
11393 struct got_entry *ent;
11394
11395 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11396 {
11397 unsigned int ent_size = 8;
11398 unsigned int rel_size = sizeof (Elf64_External_Rela);
11399
11400 ent->got.offset = s->size;
11401 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11402 {
11403 ent_size *= 2;
11404 rel_size *= 2;
11405 }
11406 s->size += ent_size;
11407 if ((*lgot_masks & PLT_IFUNC) != 0)
11408 {
11409 htab->elf.irelplt->size += rel_size;
11410 htab->got_reli_size += rel_size;
11411 }
11412 else if (info->shared)
11413 {
11414 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11415 srel->size += rel_size;
11416 }
11417 }
11418 }
11419 }
11420
11421 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11422
11423 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11424 {
11425 struct got_entry *ent;
11426
11427 if (!is_ppc64_elf (ibfd))
11428 continue;
11429
11430 ent = ppc64_tlsld_got (ibfd);
11431 if (!ent->is_indirect
11432 && ent->got.offset != (bfd_vma) -1)
11433 {
11434 asection *s = ppc64_elf_tdata (ibfd)->got;
11435 ent->got.offset = s->size;
11436 s->size += 16;
11437 if (info->shared)
11438 {
11439 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11440 srel->size += sizeof (Elf64_External_Rela);
11441 }
11442 }
11443 }
11444
11445 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11446 if (!done_something)
11447 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11448 {
11449 asection *got;
11450
11451 if (!is_ppc64_elf (ibfd))
11452 continue;
11453
11454 got = ppc64_elf_tdata (ibfd)->got;
11455 if (got != NULL)
11456 {
11457 done_something = got->rawsize != got->size;
11458 if (done_something)
11459 break;
11460 }
11461 }
11462
11463 if (done_something)
11464 (*htab->params->layout_sections_again) ();
11465
11466 /* Set up for second pass over toc sections to recalculate elf_gp
11467 on input sections. */
11468 htab->toc_bfd = NULL;
11469 htab->toc_first_sec = NULL;
11470 htab->second_toc_pass = TRUE;
11471 return done_something;
11472 }
11473
11474 /* Called after second pass of multitoc partitioning. */
11475
11476 void
11477 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11478 {
11479 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11480
11481 /* After the second pass, toc_curr tracks the TOC offset used
11482 for code sections below in ppc64_elf_next_input_section. */
11483 htab->toc_curr = TOC_BASE_OFF;
11484 }
11485
11486 /* No toc references were found in ISEC. If the code in ISEC makes no
11487 calls, then there's no need to use toc adjusting stubs when branching
11488 into ISEC. Actually, indirect calls from ISEC are OK as they will
11489 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11490 needed, and 2 if a cyclical call-graph was found but no other reason
11491 for a stub was detected. If called from the top level, a return of
11492 2 means the same as a return of 0. */
11493
11494 static int
11495 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11496 {
11497 int ret;
11498
11499 /* Mark this section as checked. */
11500 isec->call_check_done = 1;
11501
11502 /* We know none of our code bearing sections will need toc stubs. */
11503 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11504 return 0;
11505
11506 if (isec->size == 0)
11507 return 0;
11508
11509 if (isec->output_section == NULL)
11510 return 0;
11511
11512 ret = 0;
11513 if (isec->reloc_count != 0)
11514 {
11515 Elf_Internal_Rela *relstart, *rel;
11516 Elf_Internal_Sym *local_syms;
11517 struct ppc_link_hash_table *htab;
11518
11519 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11520 info->keep_memory);
11521 if (relstart == NULL)
11522 return -1;
11523
11524 /* Look for branches to outside of this section. */
11525 local_syms = NULL;
11526 htab = ppc_hash_table (info);
11527 if (htab == NULL)
11528 return -1;
11529
11530 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11531 {
11532 enum elf_ppc64_reloc_type r_type;
11533 unsigned long r_symndx;
11534 struct elf_link_hash_entry *h;
11535 struct ppc_link_hash_entry *eh;
11536 Elf_Internal_Sym *sym;
11537 asection *sym_sec;
11538 struct _opd_sec_data *opd;
11539 bfd_vma sym_value;
11540 bfd_vma dest;
11541
11542 r_type = ELF64_R_TYPE (rel->r_info);
11543 if (r_type != R_PPC64_REL24
11544 && r_type != R_PPC64_REL14
11545 && r_type != R_PPC64_REL14_BRTAKEN
11546 && r_type != R_PPC64_REL14_BRNTAKEN)
11547 continue;
11548
11549 r_symndx = ELF64_R_SYM (rel->r_info);
11550 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11551 isec->owner))
11552 {
11553 ret = -1;
11554 break;
11555 }
11556
11557 /* Calls to dynamic lib functions go through a plt call stub
11558 that uses r2. */
11559 eh = (struct ppc_link_hash_entry *) h;
11560 if (eh != NULL
11561 && (eh->elf.plt.plist != NULL
11562 || (eh->oh != NULL
11563 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11564 {
11565 ret = 1;
11566 break;
11567 }
11568
11569 if (sym_sec == NULL)
11570 /* Ignore other undefined symbols. */
11571 continue;
11572
11573 /* Assume branches to other sections not included in the
11574 link need stubs too, to cover -R and absolute syms. */
11575 if (sym_sec->output_section == NULL)
11576 {
11577 ret = 1;
11578 break;
11579 }
11580
11581 if (h == NULL)
11582 sym_value = sym->st_value;
11583 else
11584 {
11585 if (h->root.type != bfd_link_hash_defined
11586 && h->root.type != bfd_link_hash_defweak)
11587 abort ();
11588 sym_value = h->root.u.def.value;
11589 }
11590 sym_value += rel->r_addend;
11591
11592 /* If this branch reloc uses an opd sym, find the code section. */
11593 opd = get_opd_info (sym_sec);
11594 if (opd != NULL)
11595 {
11596 if (h == NULL && opd->adjust != NULL)
11597 {
11598 long adjust;
11599
11600 adjust = opd->adjust[OPD_NDX (sym->st_value)];
11601 if (adjust == -1)
11602 /* Assume deleted functions won't ever be called. */
11603 continue;
11604 sym_value += adjust;
11605 }
11606
11607 dest = opd_entry_value (sym_sec, sym_value,
11608 &sym_sec, NULL, FALSE);
11609 if (dest == (bfd_vma) -1)
11610 continue;
11611 }
11612 else
11613 dest = (sym_value
11614 + sym_sec->output_offset
11615 + sym_sec->output_section->vma);
11616
11617 /* Ignore branch to self. */
11618 if (sym_sec == isec)
11619 continue;
11620
11621 /* If the called function uses the toc, we need a stub. */
11622 if (sym_sec->has_toc_reloc
11623 || sym_sec->makes_toc_func_call)
11624 {
11625 ret = 1;
11626 break;
11627 }
11628
11629 /* Assume any branch that needs a long branch stub might in fact
11630 need a plt_branch stub. A plt_branch stub uses r2. */
11631 else if (dest - (isec->output_offset
11632 + isec->output_section->vma
11633 + rel->r_offset) + (1 << 25)
11634 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11635 ? h->other
11636 : sym->st_other))
11637 {
11638 ret = 1;
11639 break;
11640 }
11641
11642 /* If calling back to a section in the process of being
11643 tested, we can't say for sure that no toc adjusting stubs
11644 are needed, so don't return zero. */
11645 else if (sym_sec->call_check_in_progress)
11646 ret = 2;
11647
11648 /* Branches to another section that itself doesn't have any TOC
11649 references are OK. Recursively call ourselves to check. */
11650 else if (!sym_sec->call_check_done)
11651 {
11652 int recur;
11653
11654 /* Mark current section as indeterminate, so that other
11655 sections that call back to current won't be marked as
11656 known. */
11657 isec->call_check_in_progress = 1;
11658 recur = toc_adjusting_stub_needed (info, sym_sec);
11659 isec->call_check_in_progress = 0;
11660
11661 if (recur != 0)
11662 {
11663 ret = recur;
11664 if (recur != 2)
11665 break;
11666 }
11667 }
11668 }
11669
11670 if (local_syms != NULL
11671 && (elf_symtab_hdr (isec->owner).contents
11672 != (unsigned char *) local_syms))
11673 free (local_syms);
11674 if (elf_section_data (isec)->relocs != relstart)
11675 free (relstart);
11676 }
11677
11678 if ((ret & 1) == 0
11679 && isec->map_head.s != NULL
11680 && (strcmp (isec->output_section->name, ".init") == 0
11681 || strcmp (isec->output_section->name, ".fini") == 0))
11682 {
11683 if (isec->map_head.s->has_toc_reloc
11684 || isec->map_head.s->makes_toc_func_call)
11685 ret = 1;
11686 else if (!isec->map_head.s->call_check_done)
11687 {
11688 int recur;
11689 isec->call_check_in_progress = 1;
11690 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11691 isec->call_check_in_progress = 0;
11692 if (recur != 0)
11693 ret = recur;
11694 }
11695 }
11696
11697 if (ret == 1)
11698 isec->makes_toc_func_call = 1;
11699
11700 return ret;
11701 }
11702
11703 /* The linker repeatedly calls this function for each input section,
11704 in the order that input sections are linked into output sections.
11705 Build lists of input sections to determine groupings between which
11706 we may insert linker stubs. */
11707
11708 bfd_boolean
11709 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11710 {
11711 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11712
11713 if (htab == NULL)
11714 return FALSE;
11715
11716 if ((isec->output_section->flags & SEC_CODE) != 0
11717 && isec->output_section->index <= htab->top_index)
11718 {
11719 asection **list = htab->input_list + isec->output_section->index;
11720 /* Steal the link_sec pointer for our list. */
11721 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11722 /* This happens to make the list in reverse order,
11723 which is what we want. */
11724 PREV_SEC (isec) = *list;
11725 *list = isec;
11726 }
11727
11728 if (htab->multi_toc_needed)
11729 {
11730 /* Analyse sections that aren't already flagged as needing a
11731 valid toc pointer. Exclude .fixup for the linux kernel.
11732 .fixup contains branches, but only back to the function that
11733 hit an exception. */
11734 if (!(isec->has_toc_reloc
11735 || (isec->flags & SEC_CODE) == 0
11736 || strcmp (isec->name, ".fixup") == 0
11737 || isec->call_check_done))
11738 {
11739 if (toc_adjusting_stub_needed (info, isec) < 0)
11740 return FALSE;
11741 }
11742 /* Make all sections use the TOC assigned for this object file.
11743 This will be wrong for pasted sections; We fix that in
11744 check_pasted_section(). */
11745 if (elf_gp (isec->owner) != 0)
11746 htab->toc_curr = elf_gp (isec->owner);
11747 }
11748
11749 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11750 return TRUE;
11751 }
11752
11753 /* Check that all .init and .fini sections use the same toc, if they
11754 have toc relocs. */
11755
11756 static bfd_boolean
11757 check_pasted_section (struct bfd_link_info *info, const char *name)
11758 {
11759 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11760
11761 if (o != NULL)
11762 {
11763 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11764 bfd_vma toc_off = 0;
11765 asection *i;
11766
11767 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11768 if (i->has_toc_reloc)
11769 {
11770 if (toc_off == 0)
11771 toc_off = htab->stub_group[i->id].toc_off;
11772 else if (toc_off != htab->stub_group[i->id].toc_off)
11773 return FALSE;
11774 }
11775
11776 if (toc_off == 0)
11777 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11778 if (i->makes_toc_func_call)
11779 {
11780 toc_off = htab->stub_group[i->id].toc_off;
11781 break;
11782 }
11783
11784 /* Make sure the whole pasted function uses the same toc offset. */
11785 if (toc_off != 0)
11786 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11787 htab->stub_group[i->id].toc_off = toc_off;
11788 }
11789 return TRUE;
11790 }
11791
11792 bfd_boolean
11793 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11794 {
11795 return (check_pasted_section (info, ".init")
11796 & check_pasted_section (info, ".fini"));
11797 }
11798
11799 /* See whether we can group stub sections together. Grouping stub
11800 sections may result in fewer stubs. More importantly, we need to
11801 put all .init* and .fini* stubs at the beginning of the .init or
11802 .fini output sections respectively, because glibc splits the
11803 _init and _fini functions into multiple parts. Putting a stub in
11804 the middle of a function is not a good idea. */
11805
11806 static void
11807 group_sections (struct ppc_link_hash_table *htab,
11808 bfd_size_type stub_group_size,
11809 bfd_boolean stubs_always_before_branch)
11810 {
11811 asection **list;
11812 bfd_size_type stub14_group_size;
11813 bfd_boolean suppress_size_errors;
11814
11815 suppress_size_errors = FALSE;
11816 stub14_group_size = stub_group_size >> 10;
11817 if (stub_group_size == 1)
11818 {
11819 /* Default values. */
11820 if (stubs_always_before_branch)
11821 {
11822 stub_group_size = 0x1e00000;
11823 stub14_group_size = 0x7800;
11824 }
11825 else
11826 {
11827 stub_group_size = 0x1c00000;
11828 stub14_group_size = 0x7000;
11829 }
11830 suppress_size_errors = TRUE;
11831 }
11832
11833 list = htab->input_list + htab->top_index;
11834 do
11835 {
11836 asection *tail = *list;
11837 while (tail != NULL)
11838 {
11839 asection *curr;
11840 asection *prev;
11841 bfd_size_type total;
11842 bfd_boolean big_sec;
11843 bfd_vma curr_toc;
11844
11845 curr = tail;
11846 total = tail->size;
11847 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11848 && ppc64_elf_section_data (tail)->has_14bit_branch
11849 ? stub14_group_size : stub_group_size);
11850 if (big_sec && !suppress_size_errors)
11851 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11852 tail->owner, tail);
11853 curr_toc = htab->stub_group[tail->id].toc_off;
11854
11855 while ((prev = PREV_SEC (curr)) != NULL
11856 && ((total += curr->output_offset - prev->output_offset)
11857 < (ppc64_elf_section_data (prev) != NULL
11858 && ppc64_elf_section_data (prev)->has_14bit_branch
11859 ? stub14_group_size : stub_group_size))
11860 && htab->stub_group[prev->id].toc_off == curr_toc)
11861 curr = prev;
11862
11863 /* OK, the size from the start of CURR to the end is less
11864 than stub_group_size and thus can be handled by one stub
11865 section. (or the tail section is itself larger than
11866 stub_group_size, in which case we may be toast.) We
11867 should really be keeping track of the total size of stubs
11868 added here, as stubs contribute to the final output
11869 section size. That's a little tricky, and this way will
11870 only break if stubs added make the total size more than
11871 2^25, ie. for the default stub_group_size, if stubs total
11872 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11873 do
11874 {
11875 prev = PREV_SEC (tail);
11876 /* Set up this stub group. */
11877 htab->stub_group[tail->id].link_sec = curr;
11878 }
11879 while (tail != curr && (tail = prev) != NULL);
11880
11881 /* But wait, there's more! Input sections up to stub_group_size
11882 bytes before the stub section can be handled by it too.
11883 Don't do this if we have a really large section after the
11884 stubs, as adding more stubs increases the chance that
11885 branches may not reach into the stub section. */
11886 if (!stubs_always_before_branch && !big_sec)
11887 {
11888 total = 0;
11889 while (prev != NULL
11890 && ((total += tail->output_offset - prev->output_offset)
11891 < (ppc64_elf_section_data (prev) != NULL
11892 && ppc64_elf_section_data (prev)->has_14bit_branch
11893 ? stub14_group_size : stub_group_size))
11894 && htab->stub_group[prev->id].toc_off == curr_toc)
11895 {
11896 tail = prev;
11897 prev = PREV_SEC (tail);
11898 htab->stub_group[tail->id].link_sec = curr;
11899 }
11900 }
11901 tail = prev;
11902 }
11903 }
11904 while (list-- != htab->input_list);
11905 free (htab->input_list);
11906 #undef PREV_SEC
11907 }
11908
11909 static const unsigned char glink_eh_frame_cie[] =
11910 {
11911 0, 0, 0, 16, /* length. */
11912 0, 0, 0, 0, /* id. */
11913 1, /* CIE version. */
11914 'z', 'R', 0, /* Augmentation string. */
11915 4, /* Code alignment. */
11916 0x78, /* Data alignment. */
11917 65, /* RA reg. */
11918 1, /* Augmentation size. */
11919 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11920 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11921 0, 0, 0, 0
11922 };
11923
11924 /* Stripping output sections is normally done before dynamic section
11925 symbols have been allocated. This function is called later, and
11926 handles cases like htab->brlt which is mapped to its own output
11927 section. */
11928
11929 static void
11930 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11931 {
11932 if (isec->size == 0
11933 && isec->output_section->size == 0
11934 && !(isec->output_section->flags & SEC_KEEP)
11935 && !bfd_section_removed_from_list (info->output_bfd,
11936 isec->output_section)
11937 && elf_section_data (isec->output_section)->dynindx == 0)
11938 {
11939 isec->output_section->flags |= SEC_EXCLUDE;
11940 bfd_section_list_remove (info->output_bfd, isec->output_section);
11941 info->output_bfd->section_count--;
11942 }
11943 }
11944
11945 /* Determine and set the size of the stub section for a final link.
11946
11947 The basic idea here is to examine all the relocations looking for
11948 PC-relative calls to a target that is unreachable with a "bl"
11949 instruction. */
11950
11951 bfd_boolean
11952 ppc64_elf_size_stubs (struct bfd_link_info *info)
11953 {
11954 bfd_size_type stub_group_size;
11955 bfd_boolean stubs_always_before_branch;
11956 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11957
11958 if (htab == NULL)
11959 return FALSE;
11960
11961 if (htab->params->plt_thread_safe == -1 && !info->executable)
11962 htab->params->plt_thread_safe = 1;
11963 if (!htab->opd_abi)
11964 htab->params->plt_thread_safe = 0;
11965 else if (htab->params->plt_thread_safe == -1)
11966 {
11967 static const char *const thread_starter[] =
11968 {
11969 "pthread_create",
11970 /* libstdc++ */
11971 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11972 /* librt */
11973 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11974 "mq_notify", "create_timer",
11975 /* libanl */
11976 "getaddrinfo_a",
11977 /* libgomp */
11978 "GOMP_parallel",
11979 "GOMP_parallel_start",
11980 "GOMP_parallel_loop_static",
11981 "GOMP_parallel_loop_static_start",
11982 "GOMP_parallel_loop_dynamic",
11983 "GOMP_parallel_loop_dynamic_start",
11984 "GOMP_parallel_loop_guided",
11985 "GOMP_parallel_loop_guided_start",
11986 "GOMP_parallel_loop_runtime",
11987 "GOMP_parallel_loop_runtime_start",
11988 "GOMP_parallel_sections",
11989 "GOMP_parallel_sections_start",
11990 /* libgo */
11991 "__go_go",
11992 };
11993 unsigned i;
11994
11995 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11996 {
11997 struct elf_link_hash_entry *h;
11998 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11999 FALSE, FALSE, TRUE);
12000 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12001 if (htab->params->plt_thread_safe)
12002 break;
12003 }
12004 }
12005 stubs_always_before_branch = htab->params->group_size < 0;
12006 if (htab->params->group_size < 0)
12007 stub_group_size = -htab->params->group_size;
12008 else
12009 stub_group_size = htab->params->group_size;
12010
12011 group_sections (htab, stub_group_size, stubs_always_before_branch);
12012
12013 while (1)
12014 {
12015 bfd *input_bfd;
12016 unsigned int bfd_indx;
12017 asection *stub_sec;
12018
12019 htab->stub_iteration += 1;
12020
12021 for (input_bfd = info->input_bfds, bfd_indx = 0;
12022 input_bfd != NULL;
12023 input_bfd = input_bfd->link.next, bfd_indx++)
12024 {
12025 Elf_Internal_Shdr *symtab_hdr;
12026 asection *section;
12027 Elf_Internal_Sym *local_syms = NULL;
12028
12029 if (!is_ppc64_elf (input_bfd))
12030 continue;
12031
12032 /* We'll need the symbol table in a second. */
12033 symtab_hdr = &elf_symtab_hdr (input_bfd);
12034 if (symtab_hdr->sh_info == 0)
12035 continue;
12036
12037 /* Walk over each section attached to the input bfd. */
12038 for (section = input_bfd->sections;
12039 section != NULL;
12040 section = section->next)
12041 {
12042 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12043
12044 /* If there aren't any relocs, then there's nothing more
12045 to do. */
12046 if ((section->flags & SEC_RELOC) == 0
12047 || (section->flags & SEC_ALLOC) == 0
12048 || (section->flags & SEC_LOAD) == 0
12049 || (section->flags & SEC_CODE) == 0
12050 || section->reloc_count == 0)
12051 continue;
12052
12053 /* If this section is a link-once section that will be
12054 discarded, then don't create any stubs. */
12055 if (section->output_section == NULL
12056 || section->output_section->owner != info->output_bfd)
12057 continue;
12058
12059 /* Get the relocs. */
12060 internal_relocs
12061 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12062 info->keep_memory);
12063 if (internal_relocs == NULL)
12064 goto error_ret_free_local;
12065
12066 /* Now examine each relocation. */
12067 irela = internal_relocs;
12068 irelaend = irela + section->reloc_count;
12069 for (; irela < irelaend; irela++)
12070 {
12071 enum elf_ppc64_reloc_type r_type;
12072 unsigned int r_indx;
12073 enum ppc_stub_type stub_type;
12074 struct ppc_stub_hash_entry *stub_entry;
12075 asection *sym_sec, *code_sec;
12076 bfd_vma sym_value, code_value;
12077 bfd_vma destination;
12078 unsigned long local_off;
12079 bfd_boolean ok_dest;
12080 struct ppc_link_hash_entry *hash;
12081 struct ppc_link_hash_entry *fdh;
12082 struct elf_link_hash_entry *h;
12083 Elf_Internal_Sym *sym;
12084 char *stub_name;
12085 const asection *id_sec;
12086 struct _opd_sec_data *opd;
12087 struct plt_entry *plt_ent;
12088
12089 r_type = ELF64_R_TYPE (irela->r_info);
12090 r_indx = ELF64_R_SYM (irela->r_info);
12091
12092 if (r_type >= R_PPC64_max)
12093 {
12094 bfd_set_error (bfd_error_bad_value);
12095 goto error_ret_free_internal;
12096 }
12097
12098 /* Only look for stubs on branch instructions. */
12099 if (r_type != R_PPC64_REL24
12100 && r_type != R_PPC64_REL14
12101 && r_type != R_PPC64_REL14_BRTAKEN
12102 && r_type != R_PPC64_REL14_BRNTAKEN)
12103 continue;
12104
12105 /* Now determine the call target, its name, value,
12106 section. */
12107 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12108 r_indx, input_bfd))
12109 goto error_ret_free_internal;
12110 hash = (struct ppc_link_hash_entry *) h;
12111
12112 ok_dest = FALSE;
12113 fdh = NULL;
12114 sym_value = 0;
12115 if (hash == NULL)
12116 {
12117 sym_value = sym->st_value;
12118 ok_dest = TRUE;
12119 }
12120 else if (hash->elf.root.type == bfd_link_hash_defined
12121 || hash->elf.root.type == bfd_link_hash_defweak)
12122 {
12123 sym_value = hash->elf.root.u.def.value;
12124 if (sym_sec->output_section != NULL)
12125 ok_dest = TRUE;
12126 }
12127 else if (hash->elf.root.type == bfd_link_hash_undefweak
12128 || hash->elf.root.type == bfd_link_hash_undefined)
12129 {
12130 /* Recognise an old ABI func code entry sym, and
12131 use the func descriptor sym instead if it is
12132 defined. */
12133 if (hash->elf.root.root.string[0] == '.'
12134 && (fdh = lookup_fdh (hash, htab)) != NULL)
12135 {
12136 if (fdh->elf.root.type == bfd_link_hash_defined
12137 || fdh->elf.root.type == bfd_link_hash_defweak)
12138 {
12139 sym_sec = fdh->elf.root.u.def.section;
12140 sym_value = fdh->elf.root.u.def.value;
12141 if (sym_sec->output_section != NULL)
12142 ok_dest = TRUE;
12143 }
12144 else
12145 fdh = NULL;
12146 }
12147 }
12148 else
12149 {
12150 bfd_set_error (bfd_error_bad_value);
12151 goto error_ret_free_internal;
12152 }
12153
12154 destination = 0;
12155 local_off = 0;
12156 if (ok_dest)
12157 {
12158 sym_value += irela->r_addend;
12159 destination = (sym_value
12160 + sym_sec->output_offset
12161 + sym_sec->output_section->vma);
12162 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12163 ? hash->elf.other
12164 : sym->st_other);
12165 }
12166
12167 code_sec = sym_sec;
12168 code_value = sym_value;
12169 opd = get_opd_info (sym_sec);
12170 if (opd != NULL)
12171 {
12172 bfd_vma dest;
12173
12174 if (hash == NULL && opd->adjust != NULL)
12175 {
12176 long adjust = opd->adjust[OPD_NDX (sym_value)];
12177 if (adjust == -1)
12178 continue;
12179 code_value += adjust;
12180 sym_value += adjust;
12181 }
12182 dest = opd_entry_value (sym_sec, sym_value,
12183 &code_sec, &code_value, FALSE);
12184 if (dest != (bfd_vma) -1)
12185 {
12186 destination = dest;
12187 if (fdh != NULL)
12188 {
12189 /* Fixup old ABI sym to point at code
12190 entry. */
12191 hash->elf.root.type = bfd_link_hash_defweak;
12192 hash->elf.root.u.def.section = code_sec;
12193 hash->elf.root.u.def.value = code_value;
12194 }
12195 }
12196 }
12197
12198 /* Determine what (if any) linker stub is needed. */
12199 plt_ent = NULL;
12200 stub_type = ppc_type_of_stub (section, irela, &hash,
12201 &plt_ent, destination,
12202 local_off);
12203
12204 if (stub_type != ppc_stub_plt_call)
12205 {
12206 /* Check whether we need a TOC adjusting stub.
12207 Since the linker pastes together pieces from
12208 different object files when creating the
12209 _init and _fini functions, it may be that a
12210 call to what looks like a local sym is in
12211 fact a call needing a TOC adjustment. */
12212 if (code_sec != NULL
12213 && code_sec->output_section != NULL
12214 && (htab->stub_group[code_sec->id].toc_off
12215 != htab->stub_group[section->id].toc_off)
12216 && (code_sec->has_toc_reloc
12217 || code_sec->makes_toc_func_call))
12218 stub_type = ppc_stub_long_branch_r2off;
12219 }
12220
12221 if (stub_type == ppc_stub_none)
12222 continue;
12223
12224 /* __tls_get_addr calls might be eliminated. */
12225 if (stub_type != ppc_stub_plt_call
12226 && hash != NULL
12227 && (hash == htab->tls_get_addr
12228 || hash == htab->tls_get_addr_fd)
12229 && section->has_tls_reloc
12230 && irela != internal_relocs)
12231 {
12232 /* Get tls info. */
12233 unsigned char *tls_mask;
12234
12235 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12236 irela - 1, input_bfd))
12237 goto error_ret_free_internal;
12238 if (*tls_mask != 0)
12239 continue;
12240 }
12241
12242 if (stub_type == ppc_stub_plt_call
12243 && irela + 1 < irelaend
12244 && irela[1].r_offset == irela->r_offset + 4
12245 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12246 {
12247 if (!tocsave_find (htab, INSERT,
12248 &local_syms, irela + 1, input_bfd))
12249 goto error_ret_free_internal;
12250 }
12251 else if (stub_type == ppc_stub_plt_call)
12252 stub_type = ppc_stub_plt_call_r2save;
12253
12254 /* Support for grouping stub sections. */
12255 id_sec = htab->stub_group[section->id].link_sec;
12256
12257 /* Get the name of this stub. */
12258 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12259 if (!stub_name)
12260 goto error_ret_free_internal;
12261
12262 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12263 stub_name, FALSE, FALSE);
12264 if (stub_entry != NULL)
12265 {
12266 /* The proper stub has already been created. */
12267 free (stub_name);
12268 if (stub_type == ppc_stub_plt_call_r2save)
12269 stub_entry->stub_type = stub_type;
12270 continue;
12271 }
12272
12273 stub_entry = ppc_add_stub (stub_name, section, info);
12274 if (stub_entry == NULL)
12275 {
12276 free (stub_name);
12277 error_ret_free_internal:
12278 if (elf_section_data (section)->relocs == NULL)
12279 free (internal_relocs);
12280 error_ret_free_local:
12281 if (local_syms != NULL
12282 && (symtab_hdr->contents
12283 != (unsigned char *) local_syms))
12284 free (local_syms);
12285 return FALSE;
12286 }
12287
12288 stub_entry->stub_type = stub_type;
12289 if (stub_type != ppc_stub_plt_call
12290 && stub_type != ppc_stub_plt_call_r2save)
12291 {
12292 stub_entry->target_value = code_value;
12293 stub_entry->target_section = code_sec;
12294 }
12295 else
12296 {
12297 stub_entry->target_value = sym_value;
12298 stub_entry->target_section = sym_sec;
12299 }
12300 stub_entry->h = hash;
12301 stub_entry->plt_ent = plt_ent;
12302 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12303
12304 if (stub_entry->h != NULL)
12305 htab->stub_globals += 1;
12306 }
12307
12308 /* We're done with the internal relocs, free them. */
12309 if (elf_section_data (section)->relocs != internal_relocs)
12310 free (internal_relocs);
12311 }
12312
12313 if (local_syms != NULL
12314 && symtab_hdr->contents != (unsigned char *) local_syms)
12315 {
12316 if (!info->keep_memory)
12317 free (local_syms);
12318 else
12319 symtab_hdr->contents = (unsigned char *) local_syms;
12320 }
12321 }
12322
12323 /* We may have added some stubs. Find out the new size of the
12324 stub sections. */
12325 for (stub_sec = htab->params->stub_bfd->sections;
12326 stub_sec != NULL;
12327 stub_sec = stub_sec->next)
12328 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12329 {
12330 stub_sec->rawsize = stub_sec->size;
12331 stub_sec->size = 0;
12332 stub_sec->reloc_count = 0;
12333 stub_sec->flags &= ~SEC_RELOC;
12334 }
12335
12336 htab->brlt->size = 0;
12337 htab->brlt->reloc_count = 0;
12338 htab->brlt->flags &= ~SEC_RELOC;
12339 if (htab->relbrlt != NULL)
12340 htab->relbrlt->size = 0;
12341
12342 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12343
12344 if (info->emitrelocations
12345 && htab->glink != NULL && htab->glink->size != 0)
12346 {
12347 htab->glink->reloc_count = 1;
12348 htab->glink->flags |= SEC_RELOC;
12349 }
12350
12351 if (htab->glink_eh_frame != NULL
12352 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12353 && htab->glink_eh_frame->output_section->size != 0)
12354 {
12355 size_t size = 0, align;
12356
12357 for (stub_sec = htab->params->stub_bfd->sections;
12358 stub_sec != NULL;
12359 stub_sec = stub_sec->next)
12360 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12361 size += 24;
12362 if (htab->glink != NULL && htab->glink->size != 0)
12363 size += 24;
12364 if (size != 0)
12365 size += sizeof (glink_eh_frame_cie);
12366 align = 1;
12367 align <<= htab->glink_eh_frame->output_section->alignment_power;
12368 align -= 1;
12369 size = (size + align) & ~align;
12370 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12371 htab->glink_eh_frame->size = size;
12372 }
12373
12374 if (htab->params->plt_stub_align != 0)
12375 for (stub_sec = htab->params->stub_bfd->sections;
12376 stub_sec != NULL;
12377 stub_sec = stub_sec->next)
12378 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12379 stub_sec->size = ((stub_sec->size
12380 + (1 << htab->params->plt_stub_align) - 1)
12381 & (-1 << htab->params->plt_stub_align));
12382
12383 for (stub_sec = htab->params->stub_bfd->sections;
12384 stub_sec != NULL;
12385 stub_sec = stub_sec->next)
12386 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12387 && stub_sec->rawsize != stub_sec->size)
12388 break;
12389
12390 /* Exit from this loop when no stubs have been added, and no stubs
12391 have changed size. */
12392 if (stub_sec == NULL
12393 && (htab->glink_eh_frame == NULL
12394 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12395 break;
12396
12397 /* Ask the linker to do its stuff. */
12398 (*htab->params->layout_sections_again) ();
12399 }
12400
12401 if (htab->glink_eh_frame != NULL
12402 && htab->glink_eh_frame->size != 0)
12403 {
12404 bfd_vma val;
12405 bfd_byte *p, *last_fde;
12406 size_t last_fde_len, size, align, pad;
12407 asection *stub_sec;
12408
12409 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12410 if (p == NULL)
12411 return FALSE;
12412 htab->glink_eh_frame->contents = p;
12413 last_fde = p;
12414
12415 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12416 /* CIE length (rewrite in case little-endian). */
12417 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12418 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12419 p += sizeof (glink_eh_frame_cie);
12420
12421 for (stub_sec = htab->params->stub_bfd->sections;
12422 stub_sec != NULL;
12423 stub_sec = stub_sec->next)
12424 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12425 {
12426 last_fde = p;
12427 last_fde_len = 20;
12428 /* FDE length. */
12429 bfd_put_32 (htab->elf.dynobj, 20, p);
12430 p += 4;
12431 /* CIE pointer. */
12432 val = p - htab->glink_eh_frame->contents;
12433 bfd_put_32 (htab->elf.dynobj, val, p);
12434 p += 4;
12435 /* Offset to stub section, written later. */
12436 p += 4;
12437 /* stub section size. */
12438 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12439 p += 4;
12440 /* Augmentation. */
12441 p += 1;
12442 /* Pad. */
12443 p += 7;
12444 }
12445 if (htab->glink != NULL && htab->glink->size != 0)
12446 {
12447 last_fde = p;
12448 last_fde_len = 20;
12449 /* FDE length. */
12450 bfd_put_32 (htab->elf.dynobj, 20, p);
12451 p += 4;
12452 /* CIE pointer. */
12453 val = p - htab->glink_eh_frame->contents;
12454 bfd_put_32 (htab->elf.dynobj, val, p);
12455 p += 4;
12456 /* Offset to .glink, written later. */
12457 p += 4;
12458 /* .glink size. */
12459 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12460 p += 4;
12461 /* Augmentation. */
12462 p += 1;
12463
12464 *p++ = DW_CFA_advance_loc + 1;
12465 *p++ = DW_CFA_register;
12466 *p++ = 65;
12467 *p++ = 12;
12468 *p++ = DW_CFA_advance_loc + 4;
12469 *p++ = DW_CFA_restore_extended;
12470 *p++ = 65;
12471 }
12472 /* Subsume any padding into the last FDE if user .eh_frame
12473 sections are aligned more than glink_eh_frame. Otherwise any
12474 zero padding will be seen as a terminator. */
12475 size = p - htab->glink_eh_frame->contents;
12476 align = 1;
12477 align <<= htab->glink_eh_frame->output_section->alignment_power;
12478 align -= 1;
12479 pad = ((size + align) & ~align) - size;
12480 htab->glink_eh_frame->size = size + pad;
12481 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12482 }
12483
12484 maybe_strip_output (info, htab->brlt);
12485 if (htab->glink_eh_frame != NULL)
12486 maybe_strip_output (info, htab->glink_eh_frame);
12487
12488 return TRUE;
12489 }
12490
12491 /* Called after we have determined section placement. If sections
12492 move, we'll be called again. Provide a value for TOCstart. */
12493
12494 bfd_vma
12495 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12496 {
12497 asection *s;
12498 bfd_vma TOCstart;
12499
12500 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12501 order. The TOC starts where the first of these sections starts. */
12502 s = bfd_get_section_by_name (obfd, ".got");
12503 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12504 s = bfd_get_section_by_name (obfd, ".toc");
12505 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12506 s = bfd_get_section_by_name (obfd, ".tocbss");
12507 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12508 s = bfd_get_section_by_name (obfd, ".plt");
12509 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12510 {
12511 /* This may happen for
12512 o references to TOC base (SYM@toc / TOC[tc0]) without a
12513 .toc directive
12514 o bad linker script
12515 o --gc-sections and empty TOC sections
12516
12517 FIXME: Warn user? */
12518
12519 /* Look for a likely section. We probably won't even be
12520 using TOCstart. */
12521 for (s = obfd->sections; s != NULL; s = s->next)
12522 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12523 | SEC_EXCLUDE))
12524 == (SEC_ALLOC | SEC_SMALL_DATA))
12525 break;
12526 if (s == NULL)
12527 for (s = obfd->sections; s != NULL; s = s->next)
12528 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12529 == (SEC_ALLOC | SEC_SMALL_DATA))
12530 break;
12531 if (s == NULL)
12532 for (s = obfd->sections; s != NULL; s = s->next)
12533 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12534 == SEC_ALLOC)
12535 break;
12536 if (s == NULL)
12537 for (s = obfd->sections; s != NULL; s = s->next)
12538 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12539 break;
12540 }
12541
12542 TOCstart = 0;
12543 if (s != NULL)
12544 TOCstart = s->output_section->vma + s->output_offset;
12545
12546 _bfd_set_gp_value (obfd, TOCstart);
12547
12548 if (info != NULL && s != NULL)
12549 {
12550 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12551
12552 if (htab != NULL)
12553 {
12554 if (htab->elf.hgot != NULL)
12555 {
12556 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12557 htab->elf.hgot->root.u.def.section = s;
12558 }
12559 }
12560 else
12561 {
12562 struct bfd_link_hash_entry *bh = NULL;
12563 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12564 s, TOC_BASE_OFF, NULL, FALSE,
12565 FALSE, &bh);
12566 }
12567 }
12568 return TOCstart;
12569 }
12570
12571 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12572 write out any global entry stubs. */
12573
12574 static bfd_boolean
12575 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12576 {
12577 struct bfd_link_info *info;
12578 struct ppc_link_hash_table *htab;
12579 struct plt_entry *pent;
12580 asection *s;
12581
12582 if (h->root.type == bfd_link_hash_indirect)
12583 return TRUE;
12584
12585 if (!h->pointer_equality_needed)
12586 return TRUE;
12587
12588 if (h->def_regular)
12589 return TRUE;
12590
12591 info = inf;
12592 htab = ppc_hash_table (info);
12593 if (htab == NULL)
12594 return FALSE;
12595
12596 s = htab->glink;
12597 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12598 if (pent->plt.offset != (bfd_vma) -1
12599 && pent->addend == 0)
12600 {
12601 bfd_byte *p;
12602 asection *plt;
12603 bfd_vma off;
12604
12605 p = s->contents + h->root.u.def.value;
12606 plt = htab->elf.splt;
12607 if (!htab->elf.dynamic_sections_created
12608 || h->dynindx == -1)
12609 plt = htab->elf.iplt;
12610 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12611 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12612
12613 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12614 {
12615 info->callbacks->einfo
12616 (_("%P: linkage table error against `%T'\n"),
12617 h->root.root.string);
12618 bfd_set_error (bfd_error_bad_value);
12619 htab->stub_error = TRUE;
12620 }
12621
12622 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12623 if (htab->params->emit_stub_syms)
12624 {
12625 size_t len = strlen (h->root.root.string);
12626 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12627
12628 if (name == NULL)
12629 return FALSE;
12630
12631 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12632 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12633 if (h == NULL)
12634 return FALSE;
12635 if (h->root.type == bfd_link_hash_new)
12636 {
12637 h->root.type = bfd_link_hash_defined;
12638 h->root.u.def.section = s;
12639 h->root.u.def.value = p - s->contents;
12640 h->ref_regular = 1;
12641 h->def_regular = 1;
12642 h->ref_regular_nonweak = 1;
12643 h->forced_local = 1;
12644 h->non_elf = 0;
12645 }
12646 }
12647
12648 if (PPC_HA (off) != 0)
12649 {
12650 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12651 p += 4;
12652 }
12653 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12654 p += 4;
12655 bfd_put_32 (s->owner, MTCTR_R12, p);
12656 p += 4;
12657 bfd_put_32 (s->owner, BCTR, p);
12658 break;
12659 }
12660 return TRUE;
12661 }
12662
12663 /* Build all the stubs associated with the current output file.
12664 The stubs are kept in a hash table attached to the main linker
12665 hash table. This function is called via gldelf64ppc_finish. */
12666
12667 bfd_boolean
12668 ppc64_elf_build_stubs (struct bfd_link_info *info,
12669 char **stats)
12670 {
12671 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12672 asection *stub_sec;
12673 bfd_byte *p;
12674 int stub_sec_count = 0;
12675
12676 if (htab == NULL)
12677 return FALSE;
12678
12679 /* Allocate memory to hold the linker stubs. */
12680 for (stub_sec = htab->params->stub_bfd->sections;
12681 stub_sec != NULL;
12682 stub_sec = stub_sec->next)
12683 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12684 && stub_sec->size != 0)
12685 {
12686 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12687 if (stub_sec->contents == NULL)
12688 return FALSE;
12689 /* We want to check that built size is the same as calculated
12690 size. rawsize is a convenient location to use. */
12691 stub_sec->rawsize = stub_sec->size;
12692 stub_sec->size = 0;
12693 }
12694
12695 if (htab->glink != NULL && htab->glink->size != 0)
12696 {
12697 unsigned int indx;
12698 bfd_vma plt0;
12699
12700 /* Build the .glink plt call stub. */
12701 if (htab->params->emit_stub_syms)
12702 {
12703 struct elf_link_hash_entry *h;
12704 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12705 TRUE, FALSE, FALSE);
12706 if (h == NULL)
12707 return FALSE;
12708 if (h->root.type == bfd_link_hash_new)
12709 {
12710 h->root.type = bfd_link_hash_defined;
12711 h->root.u.def.section = htab->glink;
12712 h->root.u.def.value = 8;
12713 h->ref_regular = 1;
12714 h->def_regular = 1;
12715 h->ref_regular_nonweak = 1;
12716 h->forced_local = 1;
12717 h->non_elf = 0;
12718 }
12719 }
12720 plt0 = (htab->elf.splt->output_section->vma
12721 + htab->elf.splt->output_offset
12722 - 16);
12723 if (info->emitrelocations)
12724 {
12725 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12726 if (r == NULL)
12727 return FALSE;
12728 r->r_offset = (htab->glink->output_offset
12729 + htab->glink->output_section->vma);
12730 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12731 r->r_addend = plt0;
12732 }
12733 p = htab->glink->contents;
12734 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12735 bfd_put_64 (htab->glink->owner, plt0, p);
12736 p += 8;
12737 if (htab->opd_abi)
12738 {
12739 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12740 p += 4;
12741 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12742 p += 4;
12743 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12744 p += 4;
12745 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12746 p += 4;
12747 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12748 p += 4;
12749 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12750 p += 4;
12751 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12752 p += 4;
12753 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12754 p += 4;
12755 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12756 p += 4;
12757 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12758 p += 4;
12759 }
12760 else
12761 {
12762 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12763 p += 4;
12764 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12765 p += 4;
12766 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12767 p += 4;
12768 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12769 p += 4;
12770 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12771 p += 4;
12772 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12773 p += 4;
12774 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12775 p += 4;
12776 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12777 p += 4;
12778 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12779 p += 4;
12780 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12781 p += 4;
12782 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12783 p += 4;
12784 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12785 p += 4;
12786 }
12787 bfd_put_32 (htab->glink->owner, BCTR, p);
12788 p += 4;
12789 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12790 {
12791 bfd_put_32 (htab->glink->owner, NOP, p);
12792 p += 4;
12793 }
12794
12795 /* Build the .glink lazy link call stubs. */
12796 indx = 0;
12797 while (p < htab->glink->contents + htab->glink->rawsize)
12798 {
12799 if (htab->opd_abi)
12800 {
12801 if (indx < 0x8000)
12802 {
12803 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12804 p += 4;
12805 }
12806 else
12807 {
12808 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12809 p += 4;
12810 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12811 p);
12812 p += 4;
12813 }
12814 }
12815 bfd_put_32 (htab->glink->owner,
12816 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12817 indx++;
12818 p += 4;
12819 }
12820
12821 /* Build .glink global entry stubs. */
12822 if (htab->glink->size > htab->glink->rawsize)
12823 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12824 }
12825
12826 if (htab->brlt != NULL && htab->brlt->size != 0)
12827 {
12828 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12829 htab->brlt->size);
12830 if (htab->brlt->contents == NULL)
12831 return FALSE;
12832 }
12833 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12834 {
12835 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12836 htab->relbrlt->size);
12837 if (htab->relbrlt->contents == NULL)
12838 return FALSE;
12839 }
12840
12841 /* Build the stubs as directed by the stub hash table. */
12842 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12843
12844 if (htab->relbrlt != NULL)
12845 htab->relbrlt->reloc_count = 0;
12846
12847 if (htab->params->plt_stub_align != 0)
12848 for (stub_sec = htab->params->stub_bfd->sections;
12849 stub_sec != NULL;
12850 stub_sec = stub_sec->next)
12851 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12852 stub_sec->size = ((stub_sec->size
12853 + (1 << htab->params->plt_stub_align) - 1)
12854 & (-1 << htab->params->plt_stub_align));
12855
12856 for (stub_sec = htab->params->stub_bfd->sections;
12857 stub_sec != NULL;
12858 stub_sec = stub_sec->next)
12859 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12860 {
12861 stub_sec_count += 1;
12862 if (stub_sec->rawsize != stub_sec->size)
12863 break;
12864 }
12865
12866 /* Note that the glink_eh_frame check here is not only testing that
12867 the generated size matched the calculated size but also that
12868 bfd_elf_discard_info didn't make any changes to the section. */
12869 if (stub_sec != NULL
12870 || (htab->glink_eh_frame != NULL
12871 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12872 {
12873 htab->stub_error = TRUE;
12874 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12875 }
12876
12877 if (htab->stub_error)
12878 return FALSE;
12879
12880 if (stats != NULL)
12881 {
12882 *stats = bfd_malloc (500);
12883 if (*stats == NULL)
12884 return FALSE;
12885
12886 sprintf (*stats, _("linker stubs in %u group%s\n"
12887 " branch %lu\n"
12888 " toc adjust %lu\n"
12889 " long branch %lu\n"
12890 " long toc adj %lu\n"
12891 " plt call %lu\n"
12892 " plt call toc %lu\n"
12893 " global entry %lu"),
12894 stub_sec_count,
12895 stub_sec_count == 1 ? "" : "s",
12896 htab->stub_count[ppc_stub_long_branch - 1],
12897 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12898 htab->stub_count[ppc_stub_plt_branch - 1],
12899 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12900 htab->stub_count[ppc_stub_plt_call - 1],
12901 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12902 htab->stub_count[ppc_stub_global_entry - 1]);
12903 }
12904 return TRUE;
12905 }
12906
12907 /* This function undoes the changes made by add_symbol_adjust. */
12908
12909 static bfd_boolean
12910 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12911 {
12912 struct ppc_link_hash_entry *eh;
12913
12914 if (h->root.type == bfd_link_hash_indirect)
12915 return TRUE;
12916
12917 eh = (struct ppc_link_hash_entry *) h;
12918 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12919 return TRUE;
12920
12921 eh->elf.root.type = bfd_link_hash_undefined;
12922 return TRUE;
12923 }
12924
12925 void
12926 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12927 {
12928 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12929
12930 if (htab != NULL)
12931 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12932 }
12933
12934 /* What to do when ld finds relocations against symbols defined in
12935 discarded sections. */
12936
12937 static unsigned int
12938 ppc64_elf_action_discarded (asection *sec)
12939 {
12940 if (strcmp (".opd", sec->name) == 0)
12941 return 0;
12942
12943 if (strcmp (".toc", sec->name) == 0)
12944 return 0;
12945
12946 if (strcmp (".toc1", sec->name) == 0)
12947 return 0;
12948
12949 return _bfd_elf_default_action_discarded (sec);
12950 }
12951
12952 /* The RELOCATE_SECTION function is called by the ELF backend linker
12953 to handle the relocations for a section.
12954
12955 The relocs are always passed as Rela structures; if the section
12956 actually uses Rel structures, the r_addend field will always be
12957 zero.
12958
12959 This function is responsible for adjust the section contents as
12960 necessary, and (if using Rela relocs and generating a
12961 relocatable output file) adjusting the reloc addend as
12962 necessary.
12963
12964 This function does not have to worry about setting the reloc
12965 address or the reloc symbol index.
12966
12967 LOCAL_SYMS is a pointer to the swapped in local symbols.
12968
12969 LOCAL_SECTIONS is an array giving the section in the input file
12970 corresponding to the st_shndx field of each local symbol.
12971
12972 The global hash table entry for the global symbols can be found
12973 via elf_sym_hashes (input_bfd).
12974
12975 When generating relocatable output, this function must handle
12976 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12977 going to be the section symbol corresponding to the output
12978 section, which means that the addend must be adjusted
12979 accordingly. */
12980
12981 static bfd_boolean
12982 ppc64_elf_relocate_section (bfd *output_bfd,
12983 struct bfd_link_info *info,
12984 bfd *input_bfd,
12985 asection *input_section,
12986 bfd_byte *contents,
12987 Elf_Internal_Rela *relocs,
12988 Elf_Internal_Sym *local_syms,
12989 asection **local_sections)
12990 {
12991 struct ppc_link_hash_table *htab;
12992 Elf_Internal_Shdr *symtab_hdr;
12993 struct elf_link_hash_entry **sym_hashes;
12994 Elf_Internal_Rela *rel;
12995 Elf_Internal_Rela *relend;
12996 Elf_Internal_Rela outrel;
12997 bfd_byte *loc;
12998 struct got_entry **local_got_ents;
12999 bfd_vma TOCstart;
13000 bfd_boolean ret = TRUE;
13001 bfd_boolean is_opd;
13002 /* Assume 'at' branch hints. */
13003 bfd_boolean is_isa_v2 = TRUE;
13004 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13005
13006 /* Initialize howto table if needed. */
13007 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13008 ppc_howto_init ();
13009
13010 htab = ppc_hash_table (info);
13011 if (htab == NULL)
13012 return FALSE;
13013
13014 /* Don't relocate stub sections. */
13015 if (input_section->owner == htab->params->stub_bfd)
13016 return TRUE;
13017
13018 BFD_ASSERT (is_ppc64_elf (input_bfd));
13019
13020 local_got_ents = elf_local_got_ents (input_bfd);
13021 TOCstart = elf_gp (output_bfd);
13022 symtab_hdr = &elf_symtab_hdr (input_bfd);
13023 sym_hashes = elf_sym_hashes (input_bfd);
13024 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13025
13026 rel = relocs;
13027 relend = relocs + input_section->reloc_count;
13028 for (; rel < relend; rel++)
13029 {
13030 enum elf_ppc64_reloc_type r_type;
13031 bfd_vma addend;
13032 bfd_reloc_status_type r;
13033 Elf_Internal_Sym *sym;
13034 asection *sec;
13035 struct elf_link_hash_entry *h_elf;
13036 struct ppc_link_hash_entry *h;
13037 struct ppc_link_hash_entry *fdh;
13038 const char *sym_name;
13039 unsigned long r_symndx, toc_symndx;
13040 bfd_vma toc_addend;
13041 unsigned char tls_mask, tls_gd, tls_type;
13042 unsigned char sym_type;
13043 bfd_vma relocation;
13044 bfd_boolean unresolved_reloc;
13045 bfd_boolean warned;
13046 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13047 unsigned int insn;
13048 unsigned int mask;
13049 struct ppc_stub_hash_entry *stub_entry;
13050 bfd_vma max_br_offset;
13051 bfd_vma from;
13052 const Elf_Internal_Rela orig_rel = *rel;
13053 reloc_howto_type *howto;
13054 struct reloc_howto_struct alt_howto;
13055
13056 r_type = ELF64_R_TYPE (rel->r_info);
13057 r_symndx = ELF64_R_SYM (rel->r_info);
13058
13059 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13060 symbol of the previous ADDR64 reloc. The symbol gives us the
13061 proper TOC base to use. */
13062 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13063 && rel != relocs
13064 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13065 && is_opd)
13066 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13067
13068 sym = NULL;
13069 sec = NULL;
13070 h_elf = NULL;
13071 sym_name = NULL;
13072 unresolved_reloc = FALSE;
13073 warned = FALSE;
13074
13075 if (r_symndx < symtab_hdr->sh_info)
13076 {
13077 /* It's a local symbol. */
13078 struct _opd_sec_data *opd;
13079
13080 sym = local_syms + r_symndx;
13081 sec = local_sections[r_symndx];
13082 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13083 sym_type = ELF64_ST_TYPE (sym->st_info);
13084 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13085 opd = get_opd_info (sec);
13086 if (opd != NULL && opd->adjust != NULL)
13087 {
13088 long adjust = opd->adjust[OPD_NDX (sym->st_value
13089 + rel->r_addend)];
13090 if (adjust == -1)
13091 relocation = 0;
13092 else
13093 {
13094 /* If this is a relocation against the opd section sym
13095 and we have edited .opd, adjust the reloc addend so
13096 that ld -r and ld --emit-relocs output is correct.
13097 If it is a reloc against some other .opd symbol,
13098 then the symbol value will be adjusted later. */
13099 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13100 rel->r_addend += adjust;
13101 else
13102 relocation += adjust;
13103 }
13104 }
13105 }
13106 else
13107 {
13108 bfd_boolean ignored;
13109
13110 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13111 r_symndx, symtab_hdr, sym_hashes,
13112 h_elf, sec, relocation,
13113 unresolved_reloc, warned, ignored);
13114 sym_name = h_elf->root.root.string;
13115 sym_type = h_elf->type;
13116 if (sec != NULL
13117 && sec->owner == output_bfd
13118 && strcmp (sec->name, ".opd") == 0)
13119 {
13120 /* This is a symbol defined in a linker script. All
13121 such are defined in output sections, even those
13122 defined by simple assignment from a symbol defined in
13123 an input section. Transfer the symbol to an
13124 appropriate input .opd section, so that a branch to
13125 this symbol will be mapped to the location specified
13126 by the opd entry. */
13127 struct bfd_link_order *lo;
13128 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13129 if (lo->type == bfd_indirect_link_order)
13130 {
13131 asection *isec = lo->u.indirect.section;
13132 if (h_elf->root.u.def.value >= isec->output_offset
13133 && h_elf->root.u.def.value < (isec->output_offset
13134 + isec->size))
13135 {
13136 h_elf->root.u.def.value -= isec->output_offset;
13137 h_elf->root.u.def.section = isec;
13138 sec = isec;
13139 break;
13140 }
13141 }
13142 }
13143 }
13144 h = (struct ppc_link_hash_entry *) h_elf;
13145
13146 if (sec != NULL && discarded_section (sec))
13147 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13148 rel, 1, relend,
13149 ppc64_elf_howto_table[r_type], 0,
13150 contents);
13151
13152 if (info->relocatable)
13153 continue;
13154
13155 if (h != NULL && &h->elf == htab->elf.hgot)
13156 {
13157 relocation = (TOCstart
13158 + htab->stub_group[input_section->id].toc_off);
13159 sec = bfd_abs_section_ptr;
13160 unresolved_reloc = FALSE;
13161 }
13162
13163 /* TLS optimizations. Replace instruction sequences and relocs
13164 based on information we collected in tls_optimize. We edit
13165 RELOCS so that --emit-relocs will output something sensible
13166 for the final instruction stream. */
13167 tls_mask = 0;
13168 tls_gd = 0;
13169 toc_symndx = 0;
13170 if (h != NULL)
13171 tls_mask = h->tls_mask;
13172 else if (local_got_ents != NULL)
13173 {
13174 struct plt_entry **local_plt = (struct plt_entry **)
13175 (local_got_ents + symtab_hdr->sh_info);
13176 unsigned char *lgot_masks = (unsigned char *)
13177 (local_plt + symtab_hdr->sh_info);
13178 tls_mask = lgot_masks[r_symndx];
13179 }
13180 if (tls_mask == 0
13181 && (r_type == R_PPC64_TLS
13182 || r_type == R_PPC64_TLSGD
13183 || r_type == R_PPC64_TLSLD))
13184 {
13185 /* Check for toc tls entries. */
13186 unsigned char *toc_tls;
13187
13188 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13189 &local_syms, rel, input_bfd))
13190 return FALSE;
13191
13192 if (toc_tls)
13193 tls_mask = *toc_tls;
13194 }
13195
13196 /* Check that tls relocs are used with tls syms, and non-tls
13197 relocs are used with non-tls syms. */
13198 if (r_symndx != STN_UNDEF
13199 && r_type != R_PPC64_NONE
13200 && (h == NULL
13201 || h->elf.root.type == bfd_link_hash_defined
13202 || h->elf.root.type == bfd_link_hash_defweak)
13203 && (IS_PPC64_TLS_RELOC (r_type)
13204 != (sym_type == STT_TLS
13205 || (sym_type == STT_SECTION
13206 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13207 {
13208 if (tls_mask != 0
13209 && (r_type == R_PPC64_TLS
13210 || r_type == R_PPC64_TLSGD
13211 || r_type == R_PPC64_TLSLD))
13212 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13213 ;
13214 else
13215 info->callbacks->einfo
13216 (!IS_PPC64_TLS_RELOC (r_type)
13217 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13218 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13219 input_bfd, input_section, rel->r_offset,
13220 ppc64_elf_howto_table[r_type]->name,
13221 sym_name);
13222 }
13223
13224 /* Ensure reloc mapping code below stays sane. */
13225 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13226 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13227 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13228 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13229 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13230 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13231 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13232 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13233 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13234 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13235 abort ();
13236
13237 switch (r_type)
13238 {
13239 default:
13240 break;
13241
13242 case R_PPC64_LO_DS_OPT:
13243 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13244 if ((insn & (0x3f << 26)) != 58u << 26)
13245 abort ();
13246 insn += (14u << 26) - (58u << 26);
13247 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13248 r_type = R_PPC64_TOC16_LO;
13249 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13250 break;
13251
13252 case R_PPC64_TOC16:
13253 case R_PPC64_TOC16_LO:
13254 case R_PPC64_TOC16_DS:
13255 case R_PPC64_TOC16_LO_DS:
13256 {
13257 /* Check for toc tls entries. */
13258 unsigned char *toc_tls;
13259 int retval;
13260
13261 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13262 &local_syms, rel, input_bfd);
13263 if (retval == 0)
13264 return FALSE;
13265
13266 if (toc_tls)
13267 {
13268 tls_mask = *toc_tls;
13269 if (r_type == R_PPC64_TOC16_DS
13270 || r_type == R_PPC64_TOC16_LO_DS)
13271 {
13272 if (tls_mask != 0
13273 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13274 goto toctprel;
13275 }
13276 else
13277 {
13278 /* If we found a GD reloc pair, then we might be
13279 doing a GD->IE transition. */
13280 if (retval == 2)
13281 {
13282 tls_gd = TLS_TPRELGD;
13283 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13284 goto tls_ldgd_opt;
13285 }
13286 else if (retval == 3)
13287 {
13288 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13289 goto tls_ldgd_opt;
13290 }
13291 }
13292 }
13293 }
13294 break;
13295
13296 case R_PPC64_GOT_TPREL16_HI:
13297 case R_PPC64_GOT_TPREL16_HA:
13298 if (tls_mask != 0
13299 && (tls_mask & TLS_TPREL) == 0)
13300 {
13301 rel->r_offset -= d_offset;
13302 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13303 r_type = R_PPC64_NONE;
13304 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13305 }
13306 break;
13307
13308 case R_PPC64_GOT_TPREL16_DS:
13309 case R_PPC64_GOT_TPREL16_LO_DS:
13310 if (tls_mask != 0
13311 && (tls_mask & TLS_TPREL) == 0)
13312 {
13313 toctprel:
13314 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13315 insn &= 31 << 21;
13316 insn |= 0x3c0d0000; /* addis 0,13,0 */
13317 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13318 r_type = R_PPC64_TPREL16_HA;
13319 if (toc_symndx != 0)
13320 {
13321 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13322 rel->r_addend = toc_addend;
13323 /* We changed the symbol. Start over in order to
13324 get h, sym, sec etc. right. */
13325 rel--;
13326 continue;
13327 }
13328 else
13329 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13330 }
13331 break;
13332
13333 case R_PPC64_TLS:
13334 if (tls_mask != 0
13335 && (tls_mask & TLS_TPREL) == 0)
13336 {
13337 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13338 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13339 if (insn == 0)
13340 abort ();
13341 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13342 /* Was PPC64_TLS which sits on insn boundary, now
13343 PPC64_TPREL16_LO which is at low-order half-word. */
13344 rel->r_offset += d_offset;
13345 r_type = R_PPC64_TPREL16_LO;
13346 if (toc_symndx != 0)
13347 {
13348 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13349 rel->r_addend = toc_addend;
13350 /* We changed the symbol. Start over in order to
13351 get h, sym, sec etc. right. */
13352 rel--;
13353 continue;
13354 }
13355 else
13356 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13357 }
13358 break;
13359
13360 case R_PPC64_GOT_TLSGD16_HI:
13361 case R_PPC64_GOT_TLSGD16_HA:
13362 tls_gd = TLS_TPRELGD;
13363 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13364 goto tls_gdld_hi;
13365 break;
13366
13367 case R_PPC64_GOT_TLSLD16_HI:
13368 case R_PPC64_GOT_TLSLD16_HA:
13369 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13370 {
13371 tls_gdld_hi:
13372 if ((tls_mask & tls_gd) != 0)
13373 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13374 + R_PPC64_GOT_TPREL16_DS);
13375 else
13376 {
13377 rel->r_offset -= d_offset;
13378 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13379 r_type = R_PPC64_NONE;
13380 }
13381 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13382 }
13383 break;
13384
13385 case R_PPC64_GOT_TLSGD16:
13386 case R_PPC64_GOT_TLSGD16_LO:
13387 tls_gd = TLS_TPRELGD;
13388 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13389 goto tls_ldgd_opt;
13390 break;
13391
13392 case R_PPC64_GOT_TLSLD16:
13393 case R_PPC64_GOT_TLSLD16_LO:
13394 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13395 {
13396 unsigned int insn1, insn2, insn3;
13397 bfd_vma offset;
13398
13399 tls_ldgd_opt:
13400 offset = (bfd_vma) -1;
13401 /* If not using the newer R_PPC64_TLSGD/LD to mark
13402 __tls_get_addr calls, we must trust that the call
13403 stays with its arg setup insns, ie. that the next
13404 reloc is the __tls_get_addr call associated with
13405 the current reloc. Edit both insns. */
13406 if (input_section->has_tls_get_addr_call
13407 && rel + 1 < relend
13408 && branch_reloc_hash_match (input_bfd, rel + 1,
13409 htab->tls_get_addr,
13410 htab->tls_get_addr_fd))
13411 offset = rel[1].r_offset;
13412 if ((tls_mask & tls_gd) != 0)
13413 {
13414 /* IE */
13415 insn1 = bfd_get_32 (output_bfd,
13416 contents + rel->r_offset - d_offset);
13417 insn1 &= (1 << 26) - (1 << 2);
13418 insn1 |= 58 << 26; /* ld */
13419 insn2 = 0x7c636a14; /* add 3,3,13 */
13420 if (offset != (bfd_vma) -1)
13421 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13422 if ((tls_mask & TLS_EXPLICIT) == 0)
13423 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13424 + R_PPC64_GOT_TPREL16_DS);
13425 else
13426 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13427 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13428 }
13429 else
13430 {
13431 /* LE */
13432 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13433 insn2 = 0x38630000; /* addi 3,3,0 */
13434 if (tls_gd == 0)
13435 {
13436 /* Was an LD reloc. */
13437 if (toc_symndx)
13438 sec = local_sections[toc_symndx];
13439 for (r_symndx = 0;
13440 r_symndx < symtab_hdr->sh_info;
13441 r_symndx++)
13442 if (local_sections[r_symndx] == sec)
13443 break;
13444 if (r_symndx >= symtab_hdr->sh_info)
13445 r_symndx = STN_UNDEF;
13446 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13447 if (r_symndx != STN_UNDEF)
13448 rel->r_addend -= (local_syms[r_symndx].st_value
13449 + sec->output_offset
13450 + sec->output_section->vma);
13451 }
13452 else if (toc_symndx != 0)
13453 {
13454 r_symndx = toc_symndx;
13455 rel->r_addend = toc_addend;
13456 }
13457 r_type = R_PPC64_TPREL16_HA;
13458 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13459 if (offset != (bfd_vma) -1)
13460 {
13461 rel[1].r_info = ELF64_R_INFO (r_symndx,
13462 R_PPC64_TPREL16_LO);
13463 rel[1].r_offset = offset + d_offset;
13464 rel[1].r_addend = rel->r_addend;
13465 }
13466 }
13467 bfd_put_32 (output_bfd, insn1,
13468 contents + rel->r_offset - d_offset);
13469 if (offset != (bfd_vma) -1)
13470 {
13471 insn3 = bfd_get_32 (output_bfd,
13472 contents + offset + 4);
13473 if (insn3 == NOP
13474 || insn3 == CROR_151515 || insn3 == CROR_313131)
13475 {
13476 rel[1].r_offset += 4;
13477 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13478 insn2 = NOP;
13479 }
13480 bfd_put_32 (output_bfd, insn2, contents + offset);
13481 }
13482 if ((tls_mask & tls_gd) == 0
13483 && (tls_gd == 0 || toc_symndx != 0))
13484 {
13485 /* We changed the symbol. Start over in order
13486 to get h, sym, sec etc. right. */
13487 rel--;
13488 continue;
13489 }
13490 }
13491 break;
13492
13493 case R_PPC64_TLSGD:
13494 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13495 {
13496 unsigned int insn2, insn3;
13497 bfd_vma offset = rel->r_offset;
13498
13499 if ((tls_mask & TLS_TPRELGD) != 0)
13500 {
13501 /* IE */
13502 r_type = R_PPC64_NONE;
13503 insn2 = 0x7c636a14; /* add 3,3,13 */
13504 }
13505 else
13506 {
13507 /* LE */
13508 if (toc_symndx != 0)
13509 {
13510 r_symndx = toc_symndx;
13511 rel->r_addend = toc_addend;
13512 }
13513 r_type = R_PPC64_TPREL16_LO;
13514 rel->r_offset = offset + d_offset;
13515 insn2 = 0x38630000; /* addi 3,3,0 */
13516 }
13517 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13518 /* Zap the reloc on the _tls_get_addr call too. */
13519 BFD_ASSERT (offset == rel[1].r_offset);
13520 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13521 insn3 = bfd_get_32 (output_bfd,
13522 contents + offset + 4);
13523 if (insn3 == NOP
13524 || insn3 == CROR_151515 || insn3 == CROR_313131)
13525 {
13526 rel->r_offset += 4;
13527 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13528 insn2 = NOP;
13529 }
13530 bfd_put_32 (output_bfd, insn2, contents + offset);
13531 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13532 {
13533 rel--;
13534 continue;
13535 }
13536 }
13537 break;
13538
13539 case R_PPC64_TLSLD:
13540 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13541 {
13542 unsigned int insn2, insn3;
13543 bfd_vma offset = rel->r_offset;
13544
13545 if (toc_symndx)
13546 sec = local_sections[toc_symndx];
13547 for (r_symndx = 0;
13548 r_symndx < symtab_hdr->sh_info;
13549 r_symndx++)
13550 if (local_sections[r_symndx] == sec)
13551 break;
13552 if (r_symndx >= symtab_hdr->sh_info)
13553 r_symndx = STN_UNDEF;
13554 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13555 if (r_symndx != STN_UNDEF)
13556 rel->r_addend -= (local_syms[r_symndx].st_value
13557 + sec->output_offset
13558 + sec->output_section->vma);
13559
13560 r_type = R_PPC64_TPREL16_LO;
13561 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13562 rel->r_offset = offset + d_offset;
13563 /* Zap the reloc on the _tls_get_addr call too. */
13564 BFD_ASSERT (offset == rel[1].r_offset);
13565 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13566 insn2 = 0x38630000; /* addi 3,3,0 */
13567 insn3 = bfd_get_32 (output_bfd,
13568 contents + offset + 4);
13569 if (insn3 == NOP
13570 || insn3 == CROR_151515 || insn3 == CROR_313131)
13571 {
13572 rel->r_offset += 4;
13573 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13574 insn2 = NOP;
13575 }
13576 bfd_put_32 (output_bfd, insn2, contents + offset);
13577 rel--;
13578 continue;
13579 }
13580 break;
13581
13582 case R_PPC64_DTPMOD64:
13583 if (rel + 1 < relend
13584 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13585 && rel[1].r_offset == rel->r_offset + 8)
13586 {
13587 if ((tls_mask & TLS_GD) == 0)
13588 {
13589 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13590 if ((tls_mask & TLS_TPRELGD) != 0)
13591 r_type = R_PPC64_TPREL64;
13592 else
13593 {
13594 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13595 r_type = R_PPC64_NONE;
13596 }
13597 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13598 }
13599 }
13600 else
13601 {
13602 if ((tls_mask & TLS_LD) == 0)
13603 {
13604 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13605 r_type = R_PPC64_NONE;
13606 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13607 }
13608 }
13609 break;
13610
13611 case R_PPC64_TPREL64:
13612 if ((tls_mask & TLS_TPREL) == 0)
13613 {
13614 r_type = R_PPC64_NONE;
13615 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13616 }
13617 break;
13618
13619 case R_PPC64_REL16_HA:
13620 /* If we are generating a non-PIC executable, edit
13621 . 0: addis 2,12,.TOC.-0b@ha
13622 . addi 2,2,.TOC.-0b@l
13623 used by ELFv2 global entry points to set up r2, to
13624 . lis 2,.TOC.@ha
13625 . addi 2,2,.TOC.@l
13626 if .TOC. is in range. */
13627 if (!info->shared
13628 && !info->traditional_format
13629 && h != NULL && &h->elf == htab->elf.hgot
13630 && rel + 1 < relend
13631 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13632 && rel[1].r_offset == rel->r_offset + 4
13633 && rel[1].r_addend == rel->r_addend + 4
13634 && relocation + 0x80008000 <= 0xffffffff)
13635 {
13636 unsigned int insn1, insn2;
13637 bfd_vma offset = rel->r_offset - d_offset;
13638 insn1 = bfd_get_32 (output_bfd, contents + offset);
13639 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13640 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13641 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13642 {
13643 r_type = R_PPC64_ADDR16_HA;
13644 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13645 rel->r_addend -= d_offset;
13646 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13647 rel[1].r_addend -= d_offset + 4;
13648 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13649 }
13650 }
13651 break;
13652 }
13653
13654 /* Handle other relocations that tweak non-addend part of insn. */
13655 insn = 0;
13656 max_br_offset = 1 << 25;
13657 addend = rel->r_addend;
13658 reloc_dest = DEST_NORMAL;
13659 switch (r_type)
13660 {
13661 default:
13662 break;
13663
13664 case R_PPC64_TOCSAVE:
13665 if (relocation + addend == (rel->r_offset
13666 + input_section->output_offset
13667 + input_section->output_section->vma)
13668 && tocsave_find (htab, NO_INSERT,
13669 &local_syms, rel, input_bfd))
13670 {
13671 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13672 if (insn == NOP
13673 || insn == CROR_151515 || insn == CROR_313131)
13674 bfd_put_32 (input_bfd,
13675 STD_R2_0R1 + STK_TOC (htab),
13676 contents + rel->r_offset);
13677 }
13678 break;
13679
13680 /* Branch taken prediction relocations. */
13681 case R_PPC64_ADDR14_BRTAKEN:
13682 case R_PPC64_REL14_BRTAKEN:
13683 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13684 /* Fall thru. */
13685
13686 /* Branch not taken prediction relocations. */
13687 case R_PPC64_ADDR14_BRNTAKEN:
13688 case R_PPC64_REL14_BRNTAKEN:
13689 insn |= bfd_get_32 (output_bfd,
13690 contents + rel->r_offset) & ~(0x01 << 21);
13691 /* Fall thru. */
13692
13693 case R_PPC64_REL14:
13694 max_br_offset = 1 << 15;
13695 /* Fall thru. */
13696
13697 case R_PPC64_REL24:
13698 /* Calls to functions with a different TOC, such as calls to
13699 shared objects, need to alter the TOC pointer. This is
13700 done using a linkage stub. A REL24 branching to these
13701 linkage stubs needs to be followed by a nop, as the nop
13702 will be replaced with an instruction to restore the TOC
13703 base pointer. */
13704 fdh = h;
13705 if (h != NULL
13706 && h->oh != NULL
13707 && h->oh->is_func_descriptor)
13708 fdh = ppc_follow_link (h->oh);
13709 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13710 htab);
13711 if (stub_entry != NULL
13712 && (stub_entry->stub_type == ppc_stub_plt_call
13713 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13714 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13715 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13716 {
13717 bfd_boolean can_plt_call = FALSE;
13718
13719 /* All of these stubs will modify r2, so there must be a
13720 branch and link followed by a nop. The nop is
13721 replaced by an insn to restore r2. */
13722 if (rel->r_offset + 8 <= input_section->size)
13723 {
13724 unsigned long br;
13725
13726 br = bfd_get_32 (input_bfd,
13727 contents + rel->r_offset);
13728 if ((br & 1) != 0)
13729 {
13730 unsigned long nop;
13731
13732 nop = bfd_get_32 (input_bfd,
13733 contents + rel->r_offset + 4);
13734 if (nop == NOP
13735 || nop == CROR_151515 || nop == CROR_313131)
13736 {
13737 if (h != NULL
13738 && (h == htab->tls_get_addr_fd
13739 || h == htab->tls_get_addr)
13740 && !htab->params->no_tls_get_addr_opt)
13741 {
13742 /* Special stub used, leave nop alone. */
13743 }
13744 else
13745 bfd_put_32 (input_bfd,
13746 LD_R2_0R1 + STK_TOC (htab),
13747 contents + rel->r_offset + 4);
13748 can_plt_call = TRUE;
13749 }
13750 }
13751 }
13752
13753 if (!can_plt_call && h != NULL)
13754 {
13755 const char *name = h->elf.root.root.string;
13756
13757 if (*name == '.')
13758 ++name;
13759
13760 if (strncmp (name, "__libc_start_main", 17) == 0
13761 && (name[17] == 0 || name[17] == '@'))
13762 {
13763 /* Allow crt1 branch to go via a toc adjusting
13764 stub. Other calls that never return could do
13765 the same, if we could detect such. */
13766 can_plt_call = TRUE;
13767 }
13768 }
13769
13770 if (!can_plt_call)
13771 {
13772 /* g++ as of 20130507 emits self-calls without a
13773 following nop. This is arguably wrong since we
13774 have conflicting information. On the one hand a
13775 global symbol and on the other a local call
13776 sequence, but don't error for this special case.
13777 It isn't possible to cheaply verify we have
13778 exactly such a call. Allow all calls to the same
13779 section. */
13780 asection *code_sec = sec;
13781
13782 if (get_opd_info (sec) != NULL)
13783 {
13784 bfd_vma off = (relocation + addend
13785 - sec->output_section->vma
13786 - sec->output_offset);
13787
13788 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13789 }
13790 if (code_sec == input_section)
13791 can_plt_call = TRUE;
13792 }
13793
13794 if (!can_plt_call)
13795 {
13796 if (stub_entry->stub_type == ppc_stub_plt_call
13797 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13798 info->callbacks->einfo
13799 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13800 "recompile with -fPIC\n"),
13801 input_bfd, input_section, rel->r_offset, sym_name);
13802 else
13803 info->callbacks->einfo
13804 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13805 "(-mcmodel=small toc adjust stub)\n"),
13806 input_bfd, input_section, rel->r_offset, sym_name);
13807
13808 bfd_set_error (bfd_error_bad_value);
13809 ret = FALSE;
13810 }
13811
13812 if (can_plt_call
13813 && (stub_entry->stub_type == ppc_stub_plt_call
13814 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13815 unresolved_reloc = FALSE;
13816 }
13817
13818 if ((stub_entry == NULL
13819 || stub_entry->stub_type == ppc_stub_long_branch
13820 || stub_entry->stub_type == ppc_stub_plt_branch)
13821 && get_opd_info (sec) != NULL)
13822 {
13823 /* The branch destination is the value of the opd entry. */
13824 bfd_vma off = (relocation + addend
13825 - sec->output_section->vma
13826 - sec->output_offset);
13827 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13828 if (dest != (bfd_vma) -1)
13829 {
13830 relocation = dest;
13831 addend = 0;
13832 reloc_dest = DEST_OPD;
13833 }
13834 }
13835
13836 /* If the branch is out of reach we ought to have a long
13837 branch stub. */
13838 from = (rel->r_offset
13839 + input_section->output_offset
13840 + input_section->output_section->vma);
13841
13842 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13843 ? fdh->elf.other
13844 : sym->st_other);
13845
13846 if (stub_entry != NULL
13847 && (stub_entry->stub_type == ppc_stub_long_branch
13848 || stub_entry->stub_type == ppc_stub_plt_branch)
13849 && (r_type == R_PPC64_ADDR14_BRTAKEN
13850 || r_type == R_PPC64_ADDR14_BRNTAKEN
13851 || (relocation + addend - from + max_br_offset
13852 < 2 * max_br_offset)))
13853 /* Don't use the stub if this branch is in range. */
13854 stub_entry = NULL;
13855
13856 if (stub_entry != NULL)
13857 {
13858 /* Munge up the value and addend so that we call the stub
13859 rather than the procedure directly. */
13860 relocation = (stub_entry->stub_offset
13861 + stub_entry->stub_sec->output_offset
13862 + stub_entry->stub_sec->output_section->vma);
13863 addend = 0;
13864 reloc_dest = DEST_STUB;
13865
13866 if ((stub_entry->stub_type == ppc_stub_plt_call
13867 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13868 && (ALWAYS_EMIT_R2SAVE
13869 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13870 && rel + 1 < relend
13871 && rel[1].r_offset == rel->r_offset + 4
13872 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13873 relocation += 4;
13874 }
13875
13876 if (insn != 0)
13877 {
13878 if (is_isa_v2)
13879 {
13880 /* Set 'a' bit. This is 0b00010 in BO field for branch
13881 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13882 for branch on CTR insns (BO == 1a00t or 1a01t). */
13883 if ((insn & (0x14 << 21)) == (0x04 << 21))
13884 insn |= 0x02 << 21;
13885 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13886 insn |= 0x08 << 21;
13887 else
13888 break;
13889 }
13890 else
13891 {
13892 /* Invert 'y' bit if not the default. */
13893 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13894 insn ^= 0x01 << 21;
13895 }
13896
13897 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13898 }
13899
13900 /* NOP out calls to undefined weak functions.
13901 We can thus call a weak function without first
13902 checking whether the function is defined. */
13903 else if (h != NULL
13904 && h->elf.root.type == bfd_link_hash_undefweak
13905 && h->elf.dynindx == -1
13906 && r_type == R_PPC64_REL24
13907 && relocation == 0
13908 && addend == 0)
13909 {
13910 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13911 continue;
13912 }
13913 break;
13914 }
13915
13916 /* Set `addend'. */
13917 tls_type = 0;
13918 switch (r_type)
13919 {
13920 default:
13921 info->callbacks->einfo
13922 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13923 input_bfd, (int) r_type, sym_name);
13924
13925 bfd_set_error (bfd_error_bad_value);
13926 ret = FALSE;
13927 continue;
13928
13929 case R_PPC64_NONE:
13930 case R_PPC64_TLS:
13931 case R_PPC64_TLSGD:
13932 case R_PPC64_TLSLD:
13933 case R_PPC64_TOCSAVE:
13934 case R_PPC64_GNU_VTINHERIT:
13935 case R_PPC64_GNU_VTENTRY:
13936 continue;
13937
13938 /* GOT16 relocations. Like an ADDR16 using the symbol's
13939 address in the GOT as relocation value instead of the
13940 symbol's value itself. Also, create a GOT entry for the
13941 symbol and put the symbol value there. */
13942 case R_PPC64_GOT_TLSGD16:
13943 case R_PPC64_GOT_TLSGD16_LO:
13944 case R_PPC64_GOT_TLSGD16_HI:
13945 case R_PPC64_GOT_TLSGD16_HA:
13946 tls_type = TLS_TLS | TLS_GD;
13947 goto dogot;
13948
13949 case R_PPC64_GOT_TLSLD16:
13950 case R_PPC64_GOT_TLSLD16_LO:
13951 case R_PPC64_GOT_TLSLD16_HI:
13952 case R_PPC64_GOT_TLSLD16_HA:
13953 tls_type = TLS_TLS | TLS_LD;
13954 goto dogot;
13955
13956 case R_PPC64_GOT_TPREL16_DS:
13957 case R_PPC64_GOT_TPREL16_LO_DS:
13958 case R_PPC64_GOT_TPREL16_HI:
13959 case R_PPC64_GOT_TPREL16_HA:
13960 tls_type = TLS_TLS | TLS_TPREL;
13961 goto dogot;
13962
13963 case R_PPC64_GOT_DTPREL16_DS:
13964 case R_PPC64_GOT_DTPREL16_LO_DS:
13965 case R_PPC64_GOT_DTPREL16_HI:
13966 case R_PPC64_GOT_DTPREL16_HA:
13967 tls_type = TLS_TLS | TLS_DTPREL;
13968 goto dogot;
13969
13970 case R_PPC64_GOT16:
13971 case R_PPC64_GOT16_LO:
13972 case R_PPC64_GOT16_HI:
13973 case R_PPC64_GOT16_HA:
13974 case R_PPC64_GOT16_DS:
13975 case R_PPC64_GOT16_LO_DS:
13976 dogot:
13977 {
13978 /* Relocation is to the entry for this symbol in the global
13979 offset table. */
13980 asection *got;
13981 bfd_vma *offp;
13982 bfd_vma off;
13983 unsigned long indx = 0;
13984 struct got_entry *ent;
13985
13986 if (tls_type == (TLS_TLS | TLS_LD)
13987 && (h == NULL
13988 || !h->elf.def_dynamic))
13989 ent = ppc64_tlsld_got (input_bfd);
13990 else
13991 {
13992
13993 if (h != NULL)
13994 {
13995 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13996 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13997 &h->elf)
13998 || (info->shared
13999 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
14000 /* This is actually a static link, or it is a
14001 -Bsymbolic link and the symbol is defined
14002 locally, or the symbol was forced to be local
14003 because of a version file. */
14004 ;
14005 else
14006 {
14007 BFD_ASSERT (h->elf.dynindx != -1);
14008 indx = h->elf.dynindx;
14009 unresolved_reloc = FALSE;
14010 }
14011 ent = h->elf.got.glist;
14012 }
14013 else
14014 {
14015 if (local_got_ents == NULL)
14016 abort ();
14017 ent = local_got_ents[r_symndx];
14018 }
14019
14020 for (; ent != NULL; ent = ent->next)
14021 if (ent->addend == orig_rel.r_addend
14022 && ent->owner == input_bfd
14023 && ent->tls_type == tls_type)
14024 break;
14025 }
14026
14027 if (ent == NULL)
14028 abort ();
14029 if (ent->is_indirect)
14030 ent = ent->got.ent;
14031 offp = &ent->got.offset;
14032 got = ppc64_elf_tdata (ent->owner)->got;
14033 if (got == NULL)
14034 abort ();
14035
14036 /* The offset must always be a multiple of 8. We use the
14037 least significant bit to record whether we have already
14038 processed this entry. */
14039 off = *offp;
14040 if ((off & 1) != 0)
14041 off &= ~1;
14042 else
14043 {
14044 /* Generate relocs for the dynamic linker, except in
14045 the case of TLSLD where we'll use one entry per
14046 module. */
14047 asection *relgot;
14048 bfd_boolean ifunc;
14049
14050 *offp = off | 1;
14051 relgot = NULL;
14052 ifunc = (h != NULL
14053 ? h->elf.type == STT_GNU_IFUNC
14054 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14055 if (ifunc)
14056 relgot = htab->elf.irelplt;
14057 else if ((info->shared || indx != 0)
14058 && (h == NULL
14059 || (tls_type == (TLS_TLS | TLS_LD)
14060 && !h->elf.def_dynamic)
14061 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14062 || h->elf.root.type != bfd_link_hash_undefweak))
14063 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14064 if (relgot != NULL)
14065 {
14066 outrel.r_offset = (got->output_section->vma
14067 + got->output_offset
14068 + off);
14069 outrel.r_addend = addend;
14070 if (tls_type & (TLS_LD | TLS_GD))
14071 {
14072 outrel.r_addend = 0;
14073 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14074 if (tls_type == (TLS_TLS | TLS_GD))
14075 {
14076 loc = relgot->contents;
14077 loc += (relgot->reloc_count++
14078 * sizeof (Elf64_External_Rela));
14079 bfd_elf64_swap_reloca_out (output_bfd,
14080 &outrel, loc);
14081 outrel.r_offset += 8;
14082 outrel.r_addend = addend;
14083 outrel.r_info
14084 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14085 }
14086 }
14087 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14088 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14089 else if (tls_type == (TLS_TLS | TLS_TPREL))
14090 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14091 else if (indx != 0)
14092 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14093 else
14094 {
14095 if (ifunc)
14096 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14097 else
14098 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14099
14100 /* Write the .got section contents for the sake
14101 of prelink. */
14102 loc = got->contents + off;
14103 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14104 loc);
14105 }
14106
14107 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14108 {
14109 outrel.r_addend += relocation;
14110 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14111 outrel.r_addend -= htab->elf.tls_sec->vma;
14112 }
14113 loc = relgot->contents;
14114 loc += (relgot->reloc_count++
14115 * sizeof (Elf64_External_Rela));
14116 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14117 }
14118
14119 /* Init the .got section contents here if we're not
14120 emitting a reloc. */
14121 else
14122 {
14123 relocation += addend;
14124 if (tls_type == (TLS_TLS | TLS_LD))
14125 relocation = 1;
14126 else if (tls_type != 0)
14127 {
14128 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14129 if (tls_type == (TLS_TLS | TLS_TPREL))
14130 relocation += DTP_OFFSET - TP_OFFSET;
14131
14132 if (tls_type == (TLS_TLS | TLS_GD))
14133 {
14134 bfd_put_64 (output_bfd, relocation,
14135 got->contents + off + 8);
14136 relocation = 1;
14137 }
14138 }
14139
14140 bfd_put_64 (output_bfd, relocation,
14141 got->contents + off);
14142 }
14143 }
14144
14145 if (off >= (bfd_vma) -2)
14146 abort ();
14147
14148 relocation = got->output_section->vma + got->output_offset + off;
14149 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14150 }
14151 break;
14152
14153 case R_PPC64_PLT16_HA:
14154 case R_PPC64_PLT16_HI:
14155 case R_PPC64_PLT16_LO:
14156 case R_PPC64_PLT32:
14157 case R_PPC64_PLT64:
14158 /* Relocation is to the entry for this symbol in the
14159 procedure linkage table. */
14160
14161 /* Resolve a PLT reloc against a local symbol directly,
14162 without using the procedure linkage table. */
14163 if (h == NULL)
14164 break;
14165
14166 /* It's possible that we didn't make a PLT entry for this
14167 symbol. This happens when statically linking PIC code,
14168 or when using -Bsymbolic. Go find a match if there is a
14169 PLT entry. */
14170 if (htab->elf.splt != NULL)
14171 {
14172 struct plt_entry *ent;
14173 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14174 if (ent->plt.offset != (bfd_vma) -1
14175 && ent->addend == orig_rel.r_addend)
14176 {
14177 relocation = (htab->elf.splt->output_section->vma
14178 + htab->elf.splt->output_offset
14179 + ent->plt.offset);
14180 unresolved_reloc = FALSE;
14181 break;
14182 }
14183 }
14184 break;
14185
14186 case R_PPC64_TOC:
14187 /* Relocation value is TOC base. */
14188 relocation = TOCstart;
14189 if (r_symndx == STN_UNDEF)
14190 relocation += htab->stub_group[input_section->id].toc_off;
14191 else if (unresolved_reloc)
14192 ;
14193 else if (sec != NULL && sec->id <= htab->top_id)
14194 relocation += htab->stub_group[sec->id].toc_off;
14195 else
14196 unresolved_reloc = TRUE;
14197 goto dodyn;
14198
14199 /* TOC16 relocs. We want the offset relative to the TOC base,
14200 which is the address of the start of the TOC plus 0x8000.
14201 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14202 in this order. */
14203 case R_PPC64_TOC16:
14204 case R_PPC64_TOC16_LO:
14205 case R_PPC64_TOC16_HI:
14206 case R_PPC64_TOC16_DS:
14207 case R_PPC64_TOC16_LO_DS:
14208 case R_PPC64_TOC16_HA:
14209 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14210 break;
14211
14212 /* Relocate against the beginning of the section. */
14213 case R_PPC64_SECTOFF:
14214 case R_PPC64_SECTOFF_LO:
14215 case R_PPC64_SECTOFF_HI:
14216 case R_PPC64_SECTOFF_DS:
14217 case R_PPC64_SECTOFF_LO_DS:
14218 case R_PPC64_SECTOFF_HA:
14219 if (sec != NULL)
14220 addend -= sec->output_section->vma;
14221 break;
14222
14223 case R_PPC64_REL16:
14224 case R_PPC64_REL16_LO:
14225 case R_PPC64_REL16_HI:
14226 case R_PPC64_REL16_HA:
14227 break;
14228
14229 case R_PPC64_REL14:
14230 case R_PPC64_REL14_BRNTAKEN:
14231 case R_PPC64_REL14_BRTAKEN:
14232 case R_PPC64_REL24:
14233 break;
14234
14235 case R_PPC64_TPREL16:
14236 case R_PPC64_TPREL16_LO:
14237 case R_PPC64_TPREL16_HI:
14238 case R_PPC64_TPREL16_HA:
14239 case R_PPC64_TPREL16_DS:
14240 case R_PPC64_TPREL16_LO_DS:
14241 case R_PPC64_TPREL16_HIGH:
14242 case R_PPC64_TPREL16_HIGHA:
14243 case R_PPC64_TPREL16_HIGHER:
14244 case R_PPC64_TPREL16_HIGHERA:
14245 case R_PPC64_TPREL16_HIGHEST:
14246 case R_PPC64_TPREL16_HIGHESTA:
14247 if (h != NULL
14248 && h->elf.root.type == bfd_link_hash_undefweak
14249 && h->elf.dynindx == -1)
14250 {
14251 /* Make this relocation against an undefined weak symbol
14252 resolve to zero. This is really just a tweak, since
14253 code using weak externs ought to check that they are
14254 defined before using them. */
14255 bfd_byte *p = contents + rel->r_offset - d_offset;
14256
14257 insn = bfd_get_32 (output_bfd, p);
14258 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14259 if (insn != 0)
14260 bfd_put_32 (output_bfd, insn, p);
14261 break;
14262 }
14263 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14264 if (info->shared)
14265 /* The TPREL16 relocs shouldn't really be used in shared
14266 libs as they will result in DT_TEXTREL being set, but
14267 support them anyway. */
14268 goto dodyn;
14269 break;
14270
14271 case R_PPC64_DTPREL16:
14272 case R_PPC64_DTPREL16_LO:
14273 case R_PPC64_DTPREL16_HI:
14274 case R_PPC64_DTPREL16_HA:
14275 case R_PPC64_DTPREL16_DS:
14276 case R_PPC64_DTPREL16_LO_DS:
14277 case R_PPC64_DTPREL16_HIGH:
14278 case R_PPC64_DTPREL16_HIGHA:
14279 case R_PPC64_DTPREL16_HIGHER:
14280 case R_PPC64_DTPREL16_HIGHERA:
14281 case R_PPC64_DTPREL16_HIGHEST:
14282 case R_PPC64_DTPREL16_HIGHESTA:
14283 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14284 break;
14285
14286 case R_PPC64_ADDR64_LOCAL:
14287 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14288 ? h->elf.other
14289 : sym->st_other);
14290 break;
14291
14292 case R_PPC64_DTPMOD64:
14293 relocation = 1;
14294 addend = 0;
14295 goto dodyn;
14296
14297 case R_PPC64_TPREL64:
14298 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14299 goto dodyn;
14300
14301 case R_PPC64_DTPREL64:
14302 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14303 /* Fall thru */
14304
14305 /* Relocations that may need to be propagated if this is a
14306 dynamic object. */
14307 case R_PPC64_REL30:
14308 case R_PPC64_REL32:
14309 case R_PPC64_REL64:
14310 case R_PPC64_ADDR14:
14311 case R_PPC64_ADDR14_BRNTAKEN:
14312 case R_PPC64_ADDR14_BRTAKEN:
14313 case R_PPC64_ADDR16:
14314 case R_PPC64_ADDR16_DS:
14315 case R_PPC64_ADDR16_HA:
14316 case R_PPC64_ADDR16_HI:
14317 case R_PPC64_ADDR16_HIGH:
14318 case R_PPC64_ADDR16_HIGHA:
14319 case R_PPC64_ADDR16_HIGHER:
14320 case R_PPC64_ADDR16_HIGHERA:
14321 case R_PPC64_ADDR16_HIGHEST:
14322 case R_PPC64_ADDR16_HIGHESTA:
14323 case R_PPC64_ADDR16_LO:
14324 case R_PPC64_ADDR16_LO_DS:
14325 case R_PPC64_ADDR24:
14326 case R_PPC64_ADDR32:
14327 case R_PPC64_ADDR64:
14328 case R_PPC64_UADDR16:
14329 case R_PPC64_UADDR32:
14330 case R_PPC64_UADDR64:
14331 dodyn:
14332 if ((input_section->flags & SEC_ALLOC) == 0)
14333 break;
14334
14335 if (NO_OPD_RELOCS && is_opd)
14336 break;
14337
14338 if ((info->shared
14339 && (h == NULL
14340 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14341 || h->elf.root.type != bfd_link_hash_undefweak)
14342 && (must_be_dyn_reloc (info, r_type)
14343 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14344 || (ELIMINATE_COPY_RELOCS
14345 && !info->shared
14346 && h != NULL
14347 && h->elf.dynindx != -1
14348 && !h->elf.non_got_ref
14349 && !h->elf.def_regular)
14350 || (!info->shared
14351 && (h != NULL
14352 ? h->elf.type == STT_GNU_IFUNC
14353 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14354 {
14355 bfd_boolean skip, relocate;
14356 asection *sreloc;
14357 bfd_vma out_off;
14358
14359 /* When generating a dynamic object, these relocations
14360 are copied into the output file to be resolved at run
14361 time. */
14362
14363 skip = FALSE;
14364 relocate = FALSE;
14365
14366 out_off = _bfd_elf_section_offset (output_bfd, info,
14367 input_section, rel->r_offset);
14368 if (out_off == (bfd_vma) -1)
14369 skip = TRUE;
14370 else if (out_off == (bfd_vma) -2)
14371 skip = TRUE, relocate = TRUE;
14372 out_off += (input_section->output_section->vma
14373 + input_section->output_offset);
14374 outrel.r_offset = out_off;
14375 outrel.r_addend = rel->r_addend;
14376
14377 /* Optimize unaligned reloc use. */
14378 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14379 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14380 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14381 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14382 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14383 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14384 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14385 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14386 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14387
14388 if (skip)
14389 memset (&outrel, 0, sizeof outrel);
14390 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14391 && !is_opd
14392 && r_type != R_PPC64_TOC)
14393 {
14394 BFD_ASSERT (h->elf.dynindx != -1);
14395 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14396 }
14397 else
14398 {
14399 /* This symbol is local, or marked to become local,
14400 or this is an opd section reloc which must point
14401 at a local function. */
14402 outrel.r_addend += relocation;
14403 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14404 {
14405 if (is_opd && h != NULL)
14406 {
14407 /* Lie about opd entries. This case occurs
14408 when building shared libraries and we
14409 reference a function in another shared
14410 lib. The same thing happens for a weak
14411 definition in an application that's
14412 overridden by a strong definition in a
14413 shared lib. (I believe this is a generic
14414 bug in binutils handling of weak syms.)
14415 In these cases we won't use the opd
14416 entry in this lib. */
14417 unresolved_reloc = FALSE;
14418 }
14419 if (!is_opd
14420 && r_type == R_PPC64_ADDR64
14421 && (h != NULL
14422 ? h->elf.type == STT_GNU_IFUNC
14423 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14424 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14425 else
14426 {
14427 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14428
14429 /* We need to relocate .opd contents for ld.so.
14430 Prelink also wants simple and consistent rules
14431 for relocs. This make all RELATIVE relocs have
14432 *r_offset equal to r_addend. */
14433 relocate = TRUE;
14434 }
14435 }
14436 else
14437 {
14438 long indx = 0;
14439
14440 if (h != NULL
14441 ? h->elf.type == STT_GNU_IFUNC
14442 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14443 {
14444 info->callbacks->einfo
14445 (_("%P: %H: %s for indirect "
14446 "function `%T' unsupported\n"),
14447 input_bfd, input_section, rel->r_offset,
14448 ppc64_elf_howto_table[r_type]->name,
14449 sym_name);
14450 ret = FALSE;
14451 }
14452 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14453 ;
14454 else if (sec == NULL || sec->owner == NULL)
14455 {
14456 bfd_set_error (bfd_error_bad_value);
14457 return FALSE;
14458 }
14459 else
14460 {
14461 asection *osec;
14462
14463 osec = sec->output_section;
14464 indx = elf_section_data (osec)->dynindx;
14465
14466 if (indx == 0)
14467 {
14468 if ((osec->flags & SEC_READONLY) == 0
14469 && htab->elf.data_index_section != NULL)
14470 osec = htab->elf.data_index_section;
14471 else
14472 osec = htab->elf.text_index_section;
14473 indx = elf_section_data (osec)->dynindx;
14474 }
14475 BFD_ASSERT (indx != 0);
14476
14477 /* We are turning this relocation into one
14478 against a section symbol, so subtract out
14479 the output section's address but not the
14480 offset of the input section in the output
14481 section. */
14482 outrel.r_addend -= osec->vma;
14483 }
14484
14485 outrel.r_info = ELF64_R_INFO (indx, r_type);
14486 }
14487 }
14488
14489 sreloc = elf_section_data (input_section)->sreloc;
14490 if (h != NULL
14491 ? h->elf.type == STT_GNU_IFUNC
14492 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14493 sreloc = htab->elf.irelplt;
14494 if (sreloc == NULL)
14495 abort ();
14496
14497 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14498 >= sreloc->size)
14499 abort ();
14500 loc = sreloc->contents;
14501 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14502 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14503
14504 /* If this reloc is against an external symbol, it will
14505 be computed at runtime, so there's no need to do
14506 anything now. However, for the sake of prelink ensure
14507 that the section contents are a known value. */
14508 if (! relocate)
14509 {
14510 unresolved_reloc = FALSE;
14511 /* The value chosen here is quite arbitrary as ld.so
14512 ignores section contents except for the special
14513 case of .opd where the contents might be accessed
14514 before relocation. Choose zero, as that won't
14515 cause reloc overflow. */
14516 relocation = 0;
14517 addend = 0;
14518 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14519 to improve backward compatibility with older
14520 versions of ld. */
14521 if (r_type == R_PPC64_ADDR64)
14522 addend = outrel.r_addend;
14523 /* Adjust pc_relative relocs to have zero in *r_offset. */
14524 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14525 addend = (input_section->output_section->vma
14526 + input_section->output_offset
14527 + rel->r_offset);
14528 }
14529 }
14530 break;
14531
14532 case R_PPC64_COPY:
14533 case R_PPC64_GLOB_DAT:
14534 case R_PPC64_JMP_SLOT:
14535 case R_PPC64_JMP_IREL:
14536 case R_PPC64_RELATIVE:
14537 /* We shouldn't ever see these dynamic relocs in relocatable
14538 files. */
14539 /* Fall through. */
14540
14541 case R_PPC64_PLTGOT16:
14542 case R_PPC64_PLTGOT16_DS:
14543 case R_PPC64_PLTGOT16_HA:
14544 case R_PPC64_PLTGOT16_HI:
14545 case R_PPC64_PLTGOT16_LO:
14546 case R_PPC64_PLTGOT16_LO_DS:
14547 case R_PPC64_PLTREL32:
14548 case R_PPC64_PLTREL64:
14549 /* These ones haven't been implemented yet. */
14550
14551 info->callbacks->einfo
14552 (_("%P: %B: %s is not supported for `%T'\n"),
14553 input_bfd,
14554 ppc64_elf_howto_table[r_type]->name, sym_name);
14555
14556 bfd_set_error (bfd_error_invalid_operation);
14557 ret = FALSE;
14558 continue;
14559 }
14560
14561 /* Multi-instruction sequences that access the TOC can be
14562 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14563 to nop; addi rb,r2,x; */
14564 switch (r_type)
14565 {
14566 default:
14567 break;
14568
14569 case R_PPC64_GOT_TLSLD16_HI:
14570 case R_PPC64_GOT_TLSGD16_HI:
14571 case R_PPC64_GOT_TPREL16_HI:
14572 case R_PPC64_GOT_DTPREL16_HI:
14573 case R_PPC64_GOT16_HI:
14574 case R_PPC64_TOC16_HI:
14575 /* These relocs would only be useful if building up an
14576 offset to later add to r2, perhaps in an indexed
14577 addressing mode instruction. Don't try to optimize.
14578 Unfortunately, the possibility of someone building up an
14579 offset like this or even with the HA relocs, means that
14580 we need to check the high insn when optimizing the low
14581 insn. */
14582 break;
14583
14584 case R_PPC64_GOT_TLSLD16_HA:
14585 case R_PPC64_GOT_TLSGD16_HA:
14586 case R_PPC64_GOT_TPREL16_HA:
14587 case R_PPC64_GOT_DTPREL16_HA:
14588 case R_PPC64_GOT16_HA:
14589 case R_PPC64_TOC16_HA:
14590 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14591 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14592 {
14593 bfd_byte *p = contents + (rel->r_offset & ~3);
14594 bfd_put_32 (input_bfd, NOP, p);
14595 }
14596 break;
14597
14598 case R_PPC64_GOT_TLSLD16_LO:
14599 case R_PPC64_GOT_TLSGD16_LO:
14600 case R_PPC64_GOT_TPREL16_LO_DS:
14601 case R_PPC64_GOT_DTPREL16_LO_DS:
14602 case R_PPC64_GOT16_LO:
14603 case R_PPC64_GOT16_LO_DS:
14604 case R_PPC64_TOC16_LO:
14605 case R_PPC64_TOC16_LO_DS:
14606 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14607 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14608 {
14609 bfd_byte *p = contents + (rel->r_offset & ~3);
14610 insn = bfd_get_32 (input_bfd, p);
14611 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14612 {
14613 /* Transform addic to addi when we change reg. */
14614 insn &= ~((0x3f << 26) | (0x1f << 16));
14615 insn |= (14u << 26) | (2 << 16);
14616 }
14617 else
14618 {
14619 insn &= ~(0x1f << 16);
14620 insn |= 2 << 16;
14621 }
14622 bfd_put_32 (input_bfd, insn, p);
14623 }
14624 break;
14625 }
14626
14627 /* Do any further special processing. */
14628 howto = ppc64_elf_howto_table[(int) r_type];
14629 switch (r_type)
14630 {
14631 default:
14632 break;
14633
14634 case R_PPC64_REL16_HA:
14635 case R_PPC64_ADDR16_HA:
14636 case R_PPC64_ADDR16_HIGHA:
14637 case R_PPC64_ADDR16_HIGHERA:
14638 case R_PPC64_ADDR16_HIGHESTA:
14639 case R_PPC64_TOC16_HA:
14640 case R_PPC64_SECTOFF_HA:
14641 case R_PPC64_TPREL16_HA:
14642 case R_PPC64_TPREL16_HIGHA:
14643 case R_PPC64_TPREL16_HIGHERA:
14644 case R_PPC64_TPREL16_HIGHESTA:
14645 case R_PPC64_DTPREL16_HA:
14646 case R_PPC64_DTPREL16_HIGHA:
14647 case R_PPC64_DTPREL16_HIGHERA:
14648 case R_PPC64_DTPREL16_HIGHESTA:
14649 /* It's just possible that this symbol is a weak symbol
14650 that's not actually defined anywhere. In that case,
14651 'sec' would be NULL, and we should leave the symbol
14652 alone (it will be set to zero elsewhere in the link). */
14653 if (sec == NULL)
14654 break;
14655 /* Fall thru */
14656
14657 case R_PPC64_GOT16_HA:
14658 case R_PPC64_PLTGOT16_HA:
14659 case R_PPC64_PLT16_HA:
14660 case R_PPC64_GOT_TLSGD16_HA:
14661 case R_PPC64_GOT_TLSLD16_HA:
14662 case R_PPC64_GOT_TPREL16_HA:
14663 case R_PPC64_GOT_DTPREL16_HA:
14664 /* Add 0x10000 if sign bit in 0:15 is set.
14665 Bits 0:15 are not used. */
14666 addend += 0x8000;
14667 break;
14668
14669 case R_PPC64_ADDR16_DS:
14670 case R_PPC64_ADDR16_LO_DS:
14671 case R_PPC64_GOT16_DS:
14672 case R_PPC64_GOT16_LO_DS:
14673 case R_PPC64_PLT16_LO_DS:
14674 case R_PPC64_SECTOFF_DS:
14675 case R_PPC64_SECTOFF_LO_DS:
14676 case R_PPC64_TOC16_DS:
14677 case R_PPC64_TOC16_LO_DS:
14678 case R_PPC64_PLTGOT16_DS:
14679 case R_PPC64_PLTGOT16_LO_DS:
14680 case R_PPC64_GOT_TPREL16_DS:
14681 case R_PPC64_GOT_TPREL16_LO_DS:
14682 case R_PPC64_GOT_DTPREL16_DS:
14683 case R_PPC64_GOT_DTPREL16_LO_DS:
14684 case R_PPC64_TPREL16_DS:
14685 case R_PPC64_TPREL16_LO_DS:
14686 case R_PPC64_DTPREL16_DS:
14687 case R_PPC64_DTPREL16_LO_DS:
14688 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14689 mask = 3;
14690 /* If this reloc is against an lq insn, then the value must be
14691 a multiple of 16. This is somewhat of a hack, but the
14692 "correct" way to do this by defining _DQ forms of all the
14693 _DS relocs bloats all reloc switches in this file. It
14694 doesn't seem to make much sense to use any of these relocs
14695 in data, so testing the insn should be safe. */
14696 if ((insn & (0x3f << 26)) == (56u << 26))
14697 mask = 15;
14698 if (((relocation + addend) & mask) != 0)
14699 {
14700 info->callbacks->einfo
14701 (_("%P: %H: error: %s not a multiple of %u\n"),
14702 input_bfd, input_section, rel->r_offset,
14703 howto->name,
14704 mask + 1);
14705 bfd_set_error (bfd_error_bad_value);
14706 ret = FALSE;
14707 continue;
14708 }
14709 break;
14710 }
14711
14712 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14713 because such sections are not SEC_ALLOC and thus ld.so will
14714 not process them. */
14715 if (unresolved_reloc
14716 && !((input_section->flags & SEC_DEBUGGING) != 0
14717 && h->elf.def_dynamic)
14718 && _bfd_elf_section_offset (output_bfd, info, input_section,
14719 rel->r_offset) != (bfd_vma) -1)
14720 {
14721 info->callbacks->einfo
14722 (_("%P: %H: unresolvable %s against `%T'\n"),
14723 input_bfd, input_section, rel->r_offset,
14724 howto->name,
14725 h->elf.root.root.string);
14726 ret = FALSE;
14727 }
14728
14729 /* 16-bit fields in insns mostly have signed values, but a
14730 few insns have 16-bit unsigned values. Really, we should
14731 have different reloc types. */
14732 if (howto->complain_on_overflow != complain_overflow_dont
14733 && howto->dst_mask == 0xffff
14734 && (input_section->flags & SEC_CODE) != 0)
14735 {
14736 enum complain_overflow complain = complain_overflow_signed;
14737
14738 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14739 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14740 complain = complain_overflow_bitfield;
14741 else if (howto->rightshift == 0
14742 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14743 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14744 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14745 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14746 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14747 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14748 complain = complain_overflow_unsigned;
14749 if (howto->complain_on_overflow != complain)
14750 {
14751 alt_howto = *howto;
14752 alt_howto.complain_on_overflow = complain;
14753 howto = &alt_howto;
14754 }
14755 }
14756
14757 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14758 rel->r_offset, relocation, addend);
14759
14760 if (r != bfd_reloc_ok)
14761 {
14762 char *more_info = NULL;
14763 const char *reloc_name = howto->name;
14764
14765 if (reloc_dest != DEST_NORMAL)
14766 {
14767 more_info = bfd_malloc (strlen (reloc_name) + 8);
14768 if (more_info != NULL)
14769 {
14770 strcpy (more_info, reloc_name);
14771 strcat (more_info, (reloc_dest == DEST_OPD
14772 ? " (OPD)" : " (stub)"));
14773 reloc_name = more_info;
14774 }
14775 }
14776
14777 if (r == bfd_reloc_overflow)
14778 {
14779 if (warned)
14780 continue;
14781 if (h != NULL
14782 && h->elf.root.type == bfd_link_hash_undefweak
14783 && howto->pc_relative)
14784 {
14785 /* Assume this is a call protected by other code that
14786 detects the symbol is undefined. If this is the case,
14787 we can safely ignore the overflow. If not, the
14788 program is hosed anyway, and a little warning isn't
14789 going to help. */
14790
14791 continue;
14792 }
14793
14794 if (!((*info->callbacks->reloc_overflow)
14795 (info, &h->elf.root, sym_name,
14796 reloc_name, orig_rel.r_addend,
14797 input_bfd, input_section, rel->r_offset)))
14798 return FALSE;
14799 }
14800 else
14801 {
14802 info->callbacks->einfo
14803 (_("%P: %H: %s against `%T': error %d\n"),
14804 input_bfd, input_section, rel->r_offset,
14805 reloc_name, sym_name, (int) r);
14806 ret = FALSE;
14807 }
14808 if (more_info != NULL)
14809 free (more_info);
14810 }
14811 }
14812
14813 /* If we're emitting relocations, then shortly after this function
14814 returns, reloc offsets and addends for this section will be
14815 adjusted. Worse, reloc symbol indices will be for the output
14816 file rather than the input. Save a copy of the relocs for
14817 opd_entry_value. */
14818 if (is_opd && (info->emitrelocations || info->relocatable))
14819 {
14820 bfd_size_type amt;
14821 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14822 rel = bfd_alloc (input_bfd, amt);
14823 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14824 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14825 if (rel == NULL)
14826 return FALSE;
14827 memcpy (rel, relocs, amt);
14828 }
14829 return ret;
14830 }
14831
14832 /* Adjust the value of any local symbols in opd sections. */
14833
14834 static int
14835 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14836 const char *name ATTRIBUTE_UNUSED,
14837 Elf_Internal_Sym *elfsym,
14838 asection *input_sec,
14839 struct elf_link_hash_entry *h)
14840 {
14841 struct _opd_sec_data *opd;
14842 long adjust;
14843 bfd_vma value;
14844
14845 if (h != NULL)
14846 return 1;
14847
14848 opd = get_opd_info (input_sec);
14849 if (opd == NULL || opd->adjust == NULL)
14850 return 1;
14851
14852 value = elfsym->st_value - input_sec->output_offset;
14853 if (!info->relocatable)
14854 value -= input_sec->output_section->vma;
14855
14856 adjust = opd->adjust[OPD_NDX (value)];
14857 if (adjust == -1)
14858 return 2;
14859
14860 elfsym->st_value += adjust;
14861 return 1;
14862 }
14863
14864 /* Finish up dynamic symbol handling. We set the contents of various
14865 dynamic sections here. */
14866
14867 static bfd_boolean
14868 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14869 struct bfd_link_info *info,
14870 struct elf_link_hash_entry *h,
14871 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14872 {
14873 struct ppc_link_hash_table *htab;
14874 struct plt_entry *ent;
14875 Elf_Internal_Rela rela;
14876 bfd_byte *loc;
14877
14878 htab = ppc_hash_table (info);
14879 if (htab == NULL)
14880 return FALSE;
14881
14882 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14883 if (ent->plt.offset != (bfd_vma) -1)
14884 {
14885 /* This symbol has an entry in the procedure linkage
14886 table. Set it up. */
14887 if (!htab->elf.dynamic_sections_created
14888 || h->dynindx == -1)
14889 {
14890 BFD_ASSERT (h->type == STT_GNU_IFUNC
14891 && h->def_regular
14892 && (h->root.type == bfd_link_hash_defined
14893 || h->root.type == bfd_link_hash_defweak));
14894 rela.r_offset = (htab->elf.iplt->output_section->vma
14895 + htab->elf.iplt->output_offset
14896 + ent->plt.offset);
14897 if (htab->opd_abi)
14898 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14899 else
14900 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14901 rela.r_addend = (h->root.u.def.value
14902 + h->root.u.def.section->output_offset
14903 + h->root.u.def.section->output_section->vma
14904 + ent->addend);
14905 loc = (htab->elf.irelplt->contents
14906 + (htab->elf.irelplt->reloc_count++
14907 * sizeof (Elf64_External_Rela)));
14908 }
14909 else
14910 {
14911 rela.r_offset = (htab->elf.splt->output_section->vma
14912 + htab->elf.splt->output_offset
14913 + ent->plt.offset);
14914 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14915 rela.r_addend = ent->addend;
14916 loc = (htab->elf.srelplt->contents
14917 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14918 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14919 }
14920 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14921
14922 if (!htab->opd_abi)
14923 {
14924 if (!h->def_regular)
14925 {
14926 /* Mark the symbol as undefined, rather than as
14927 defined in glink. Leave the value if there were
14928 any relocations where pointer equality matters
14929 (this is a clue for the dynamic linker, to make
14930 function pointer comparisons work between an
14931 application and shared library), otherwise set it
14932 to zero. */
14933 sym->st_shndx = SHN_UNDEF;
14934 if (!h->pointer_equality_needed)
14935 sym->st_value = 0;
14936 else if (!h->ref_regular_nonweak)
14937 {
14938 /* This breaks function pointer comparisons, but
14939 that is better than breaking tests for a NULL
14940 function pointer. */
14941 sym->st_value = 0;
14942 }
14943 }
14944 }
14945 }
14946
14947 if (h->needs_copy)
14948 {
14949 /* This symbol needs a copy reloc. Set it up. */
14950
14951 if (h->dynindx == -1
14952 || (h->root.type != bfd_link_hash_defined
14953 && h->root.type != bfd_link_hash_defweak)
14954 || htab->relbss == NULL)
14955 abort ();
14956
14957 rela.r_offset = (h->root.u.def.value
14958 + h->root.u.def.section->output_section->vma
14959 + h->root.u.def.section->output_offset);
14960 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14961 rela.r_addend = 0;
14962 loc = htab->relbss->contents;
14963 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14964 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14965 }
14966
14967 return TRUE;
14968 }
14969
14970 /* Used to decide how to sort relocs in an optimal manner for the
14971 dynamic linker, before writing them out. */
14972
14973 static enum elf_reloc_type_class
14974 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14975 const asection *rel_sec,
14976 const Elf_Internal_Rela *rela)
14977 {
14978 enum elf_ppc64_reloc_type r_type;
14979 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14980
14981 if (rel_sec == htab->elf.irelplt)
14982 return reloc_class_ifunc;
14983
14984 r_type = ELF64_R_TYPE (rela->r_info);
14985 switch (r_type)
14986 {
14987 case R_PPC64_RELATIVE:
14988 return reloc_class_relative;
14989 case R_PPC64_JMP_SLOT:
14990 return reloc_class_plt;
14991 case R_PPC64_COPY:
14992 return reloc_class_copy;
14993 default:
14994 return reloc_class_normal;
14995 }
14996 }
14997
14998 /* Finish up the dynamic sections. */
14999
15000 static bfd_boolean
15001 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
15002 struct bfd_link_info *info)
15003 {
15004 struct ppc_link_hash_table *htab;
15005 bfd *dynobj;
15006 asection *sdyn;
15007
15008 htab = ppc_hash_table (info);
15009 if (htab == NULL)
15010 return FALSE;
15011
15012 dynobj = htab->elf.dynobj;
15013 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15014
15015 if (htab->elf.dynamic_sections_created)
15016 {
15017 Elf64_External_Dyn *dyncon, *dynconend;
15018
15019 if (sdyn == NULL || htab->elf.sgot == NULL)
15020 abort ();
15021
15022 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15023 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15024 for (; dyncon < dynconend; dyncon++)
15025 {
15026 Elf_Internal_Dyn dyn;
15027 asection *s;
15028
15029 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15030
15031 switch (dyn.d_tag)
15032 {
15033 default:
15034 continue;
15035
15036 case DT_PPC64_GLINK:
15037 s = htab->glink;
15038 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15039 /* We stupidly defined DT_PPC64_GLINK to be the start
15040 of glink rather than the first entry point, which is
15041 what ld.so needs, and now have a bigger stub to
15042 support automatic multiple TOCs. */
15043 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15044 break;
15045
15046 case DT_PPC64_OPD:
15047 s = bfd_get_section_by_name (output_bfd, ".opd");
15048 if (s == NULL)
15049 continue;
15050 dyn.d_un.d_ptr = s->vma;
15051 break;
15052
15053 case DT_PPC64_OPT:
15054 if (htab->do_multi_toc && htab->multi_toc_needed)
15055 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15056 break;
15057
15058 case DT_PPC64_OPDSZ:
15059 s = bfd_get_section_by_name (output_bfd, ".opd");
15060 if (s == NULL)
15061 continue;
15062 dyn.d_un.d_val = s->size;
15063 break;
15064
15065 case DT_PLTGOT:
15066 s = htab->elf.splt;
15067 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15068 break;
15069
15070 case DT_JMPREL:
15071 s = htab->elf.srelplt;
15072 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15073 break;
15074
15075 case DT_PLTRELSZ:
15076 dyn.d_un.d_val = htab->elf.srelplt->size;
15077 break;
15078
15079 case DT_RELASZ:
15080 /* Don't count procedure linkage table relocs in the
15081 overall reloc count. */
15082 s = htab->elf.srelplt;
15083 if (s == NULL)
15084 continue;
15085 dyn.d_un.d_val -= s->size;
15086 break;
15087
15088 case DT_RELA:
15089 /* We may not be using the standard ELF linker script.
15090 If .rela.plt is the first .rela section, we adjust
15091 DT_RELA to not include it. */
15092 s = htab->elf.srelplt;
15093 if (s == NULL)
15094 continue;
15095 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15096 continue;
15097 dyn.d_un.d_ptr += s->size;
15098 break;
15099 }
15100
15101 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15102 }
15103 }
15104
15105 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15106 {
15107 /* Fill in the first entry in the global offset table.
15108 We use it to hold the link-time TOCbase. */
15109 bfd_put_64 (output_bfd,
15110 elf_gp (output_bfd) + TOC_BASE_OFF,
15111 htab->elf.sgot->contents);
15112
15113 /* Set .got entry size. */
15114 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15115 }
15116
15117 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15118 {
15119 /* Set .plt entry size. */
15120 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15121 = PLT_ENTRY_SIZE (htab);
15122 }
15123
15124 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15125 brlt ourselves if emitrelocations. */
15126 if (htab->brlt != NULL
15127 && htab->brlt->reloc_count != 0
15128 && !_bfd_elf_link_output_relocs (output_bfd,
15129 htab->brlt,
15130 elf_section_data (htab->brlt)->rela.hdr,
15131 elf_section_data (htab->brlt)->relocs,
15132 NULL))
15133 return FALSE;
15134
15135 if (htab->glink != NULL
15136 && htab->glink->reloc_count != 0
15137 && !_bfd_elf_link_output_relocs (output_bfd,
15138 htab->glink,
15139 elf_section_data (htab->glink)->rela.hdr,
15140 elf_section_data (htab->glink)->relocs,
15141 NULL))
15142 return FALSE;
15143
15144 if (htab->glink_eh_frame != NULL
15145 && htab->glink_eh_frame->size != 0)
15146 {
15147 bfd_vma val;
15148 bfd_byte *p;
15149 asection *stub_sec;
15150
15151 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15152 for (stub_sec = htab->params->stub_bfd->sections;
15153 stub_sec != NULL;
15154 stub_sec = stub_sec->next)
15155 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15156 {
15157 /* FDE length. */
15158 p += 4;
15159 /* CIE pointer. */
15160 p += 4;
15161 /* Offset to stub section. */
15162 val = (stub_sec->output_section->vma
15163 + stub_sec->output_offset);
15164 val -= (htab->glink_eh_frame->output_section->vma
15165 + htab->glink_eh_frame->output_offset
15166 + (p - htab->glink_eh_frame->contents));
15167 if (val + 0x80000000 > 0xffffffff)
15168 {
15169 info->callbacks->einfo
15170 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15171 stub_sec->name);
15172 return FALSE;
15173 }
15174 bfd_put_32 (dynobj, val, p);
15175 p += 4;
15176 /* stub section size. */
15177 p += 4;
15178 /* Augmentation. */
15179 p += 1;
15180 /* Pad. */
15181 p += 7;
15182 }
15183 if (htab->glink != NULL && htab->glink->size != 0)
15184 {
15185 /* FDE length. */
15186 p += 4;
15187 /* CIE pointer. */
15188 p += 4;
15189 /* Offset to .glink. */
15190 val = (htab->glink->output_section->vma
15191 + htab->glink->output_offset
15192 + 8);
15193 val -= (htab->glink_eh_frame->output_section->vma
15194 + htab->glink_eh_frame->output_offset
15195 + (p - htab->glink_eh_frame->contents));
15196 if (val + 0x80000000 > 0xffffffff)
15197 {
15198 info->callbacks->einfo
15199 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15200 htab->glink->name);
15201 return FALSE;
15202 }
15203 bfd_put_32 (dynobj, val, p);
15204 p += 4;
15205 /* .glink size. */
15206 p += 4;
15207 /* Augmentation. */
15208 p += 1;
15209 /* Ops. */
15210 p += 7;
15211 }
15212
15213 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15214 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15215 htab->glink_eh_frame,
15216 htab->glink_eh_frame->contents))
15217 return FALSE;
15218 }
15219
15220 /* We need to handle writing out multiple GOT sections ourselves,
15221 since we didn't add them to DYNOBJ. We know dynobj is the first
15222 bfd. */
15223 while ((dynobj = dynobj->link.next) != NULL)
15224 {
15225 asection *s;
15226
15227 if (!is_ppc64_elf (dynobj))
15228 continue;
15229
15230 s = ppc64_elf_tdata (dynobj)->got;
15231 if (s != NULL
15232 && s->size != 0
15233 && s->output_section != bfd_abs_section_ptr
15234 && !bfd_set_section_contents (output_bfd, s->output_section,
15235 s->contents, s->output_offset,
15236 s->size))
15237 return FALSE;
15238 s = ppc64_elf_tdata (dynobj)->relgot;
15239 if (s != NULL
15240 && s->size != 0
15241 && s->output_section != bfd_abs_section_ptr
15242 && !bfd_set_section_contents (output_bfd, s->output_section,
15243 s->contents, s->output_offset,
15244 s->size))
15245 return FALSE;
15246 }
15247
15248 return TRUE;
15249 }
15250
15251 #include "elf64-target.h"
15252
15253 /* FreeBSD support */
15254
15255 #undef TARGET_LITTLE_SYM
15256 #undef TARGET_LITTLE_NAME
15257
15258 #undef TARGET_BIG_SYM
15259 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15260 #undef TARGET_BIG_NAME
15261 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15262
15263 #undef ELF_OSABI
15264 #define ELF_OSABI ELFOSABI_FREEBSD
15265
15266 #undef elf64_bed
15267 #define elf64_bed elf64_powerpc_fbsd_bed
15268
15269 #include "elf64-target.h"
15270
This page took 0.380254 seconds and 3 git commands to generate.