901a88d9232d4e3a112a1bc2ef64a64d0674c806
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x1000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 2, /* size (0 = byte, 1 = short, 2 = long) */
262 32, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor. */
2958 struct _opd_sec_data
2959 {
2960 /* Points to the function code section for local opd entries. */
2961 asection **func_sec;
2962
2963 /* After editing .opd, adjust references to opd local syms. */
2964 long *adjust;
2965 } opd;
2966
2967 /* An array for toc sections, indexed by offset/8. */
2968 struct _toc_sec_data
2969 {
2970 /* Specifies the relocation symbol index used at a given toc offset. */
2971 unsigned *symndx;
2972
2973 /* And the relocation addend. */
2974 bfd_vma *add;
2975 } toc;
2976 } u;
2977
2978 enum _ppc64_sec_type sec_type:2;
2979
2980 /* Flag set when small branches are detected. Used to
2981 select suitable defaults for the stub group size. */
2982 unsigned int has_14bit_branch:1;
2983 };
2984
2985 #define ppc64_elf_section_data(sec) \
2986 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2987
2988 static bfd_boolean
2989 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2990 {
2991 if (!sec->used_by_bfd)
2992 {
2993 struct _ppc64_elf_section_data *sdata;
2994 bfd_size_type amt = sizeof (*sdata);
2995
2996 sdata = bfd_zalloc (abfd, amt);
2997 if (sdata == NULL)
2998 return FALSE;
2999 sec->used_by_bfd = sdata;
3000 }
3001
3002 return _bfd_elf_new_section_hook (abfd, sec);
3003 }
3004
3005 static struct _opd_sec_data *
3006 get_opd_info (asection * sec)
3007 {
3008 if (sec != NULL
3009 && ppc64_elf_section_data (sec) != NULL
3010 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3011 return &ppc64_elf_section_data (sec)->u.opd;
3012 return NULL;
3013 }
3014 \f
3015 /* Parameters for the qsort hook. */
3016 static bfd_boolean synthetic_relocatable;
3017
3018 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3019
3020 static int
3021 compare_symbols (const void *ap, const void *bp)
3022 {
3023 const asymbol *a = * (const asymbol **) ap;
3024 const asymbol *b = * (const asymbol **) bp;
3025
3026 /* Section symbols first. */
3027 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3028 return -1;
3029 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3030 return 1;
3031
3032 /* then .opd symbols. */
3033 if (strcmp (a->section->name, ".opd") == 0
3034 && strcmp (b->section->name, ".opd") != 0)
3035 return -1;
3036 if (strcmp (a->section->name, ".opd") != 0
3037 && strcmp (b->section->name, ".opd") == 0)
3038 return 1;
3039
3040 /* then other code symbols. */
3041 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3042 == (SEC_CODE | SEC_ALLOC)
3043 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 return -1;
3046
3047 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3048 != (SEC_CODE | SEC_ALLOC)
3049 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 == (SEC_CODE | SEC_ALLOC))
3051 return 1;
3052
3053 if (synthetic_relocatable)
3054 {
3055 if (a->section->id < b->section->id)
3056 return -1;
3057
3058 if (a->section->id > b->section->id)
3059 return 1;
3060 }
3061
3062 if (a->value + a->section->vma < b->value + b->section->vma)
3063 return -1;
3064
3065 if (a->value + a->section->vma > b->value + b->section->vma)
3066 return 1;
3067
3068 /* For syms with the same value, prefer strong dynamic global function
3069 syms over other syms. */
3070 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3071 return -1;
3072
3073 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3074 return 1;
3075
3076 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3077 return -1;
3078
3079 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3080 return 1;
3081
3082 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3083 return -1;
3084
3085 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3086 return 1;
3087
3088 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3089 return -1;
3090
3091 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3092 return 1;
3093
3094 return 0;
3095 }
3096
3097 /* Search SYMS for a symbol of the given VALUE. */
3098
3099 static asymbol *
3100 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3101 {
3102 long mid;
3103
3104 if (id == -1)
3105 {
3106 while (lo < hi)
3107 {
3108 mid = (lo + hi) >> 1;
3109 if (syms[mid]->value + syms[mid]->section->vma < value)
3110 lo = mid + 1;
3111 else if (syms[mid]->value + syms[mid]->section->vma > value)
3112 hi = mid;
3113 else
3114 return syms[mid];
3115 }
3116 }
3117 else
3118 {
3119 while (lo < hi)
3120 {
3121 mid = (lo + hi) >> 1;
3122 if (syms[mid]->section->id < id)
3123 lo = mid + 1;
3124 else if (syms[mid]->section->id > id)
3125 hi = mid;
3126 else if (syms[mid]->value < value)
3127 lo = mid + 1;
3128 else if (syms[mid]->value > value)
3129 hi = mid;
3130 else
3131 return syms[mid];
3132 }
3133 }
3134 return NULL;
3135 }
3136
3137 static bfd_boolean
3138 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3139 {
3140 bfd_vma vma = *(bfd_vma *) ptr;
3141 return ((section->flags & SEC_ALLOC) != 0
3142 && section->vma <= vma
3143 && vma < section->vma + section->size);
3144 }
3145
3146 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3147 entry syms. Also generate @plt symbols for the glink branch table. */
3148
3149 static long
3150 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3151 long static_count, asymbol **static_syms,
3152 long dyn_count, asymbol **dyn_syms,
3153 asymbol **ret)
3154 {
3155 asymbol *s;
3156 long i;
3157 long count;
3158 char *names;
3159 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3160 asection *opd = NULL;
3161 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3162 asymbol **syms;
3163 int abi = abiversion (abfd);
3164
3165 *ret = NULL;
3166
3167 if (abi < 2)
3168 {
3169 opd = bfd_get_section_by_name (abfd, ".opd");
3170 if (opd == NULL && abi == 1)
3171 return 0;
3172 }
3173
3174 symcount = static_count;
3175 if (!relocatable)
3176 symcount += dyn_count;
3177 if (symcount == 0)
3178 return 0;
3179
3180 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3181 if (syms == NULL)
3182 return -1;
3183
3184 if (!relocatable && static_count != 0 && dyn_count != 0)
3185 {
3186 /* Use both symbol tables. */
3187 memcpy (syms, static_syms, static_count * sizeof (*syms));
3188 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3189 }
3190 else if (!relocatable && static_count == 0)
3191 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3192 else
3193 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3194
3195 synthetic_relocatable = relocatable;
3196 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3197
3198 if (!relocatable && symcount > 1)
3199 {
3200 long j;
3201 /* Trim duplicate syms, since we may have merged the normal and
3202 dynamic symbols. Actually, we only care about syms that have
3203 different values, so trim any with the same value. */
3204 for (i = 1, j = 1; i < symcount; ++i)
3205 if (syms[i - 1]->value + syms[i - 1]->section->vma
3206 != syms[i]->value + syms[i]->section->vma)
3207 syms[j++] = syms[i];
3208 symcount = j;
3209 }
3210
3211 i = 0;
3212 if (strcmp (syms[i]->section->name, ".opd") == 0)
3213 ++i;
3214 codesecsym = i;
3215
3216 for (; i < symcount; ++i)
3217 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3218 != (SEC_CODE | SEC_ALLOC))
3219 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3220 break;
3221 codesecsymend = i;
3222
3223 for (; i < symcount; ++i)
3224 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3225 break;
3226 secsymend = i;
3227
3228 for (; i < symcount; ++i)
3229 if (strcmp (syms[i]->section->name, ".opd") != 0)
3230 break;
3231 opdsymend = i;
3232
3233 for (; i < symcount; ++i)
3234 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3235 != (SEC_CODE | SEC_ALLOC))
3236 break;
3237 symcount = i;
3238
3239 count = 0;
3240
3241 if (relocatable)
3242 {
3243 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3244 arelent *r;
3245 size_t size;
3246 long relcount;
3247
3248 if (opdsymend == secsymend)
3249 goto done;
3250
3251 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3252 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3253 if (relcount == 0)
3254 goto done;
3255
3256 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3257 {
3258 count = -1;
3259 goto done;
3260 }
3261
3262 size = 0;
3263 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3264 {
3265 asymbol *sym;
3266
3267 while (r < opd->relocation + relcount
3268 && r->address < syms[i]->value + opd->vma)
3269 ++r;
3270
3271 if (r == opd->relocation + relcount)
3272 break;
3273
3274 if (r->address != syms[i]->value + opd->vma)
3275 continue;
3276
3277 if (r->howto->type != R_PPC64_ADDR64)
3278 continue;
3279
3280 sym = *r->sym_ptr_ptr;
3281 if (!sym_exists_at (syms, opdsymend, symcount,
3282 sym->section->id, sym->value + r->addend))
3283 {
3284 ++count;
3285 size += sizeof (asymbol);
3286 size += strlen (syms[i]->name) + 2;
3287 }
3288 }
3289
3290 s = *ret = bfd_malloc (size);
3291 if (s == NULL)
3292 {
3293 count = -1;
3294 goto done;
3295 }
3296
3297 names = (char *) (s + count);
3298
3299 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3300 {
3301 asymbol *sym;
3302
3303 while (r < opd->relocation + relcount
3304 && r->address < syms[i]->value + opd->vma)
3305 ++r;
3306
3307 if (r == opd->relocation + relcount)
3308 break;
3309
3310 if (r->address != syms[i]->value + opd->vma)
3311 continue;
3312
3313 if (r->howto->type != R_PPC64_ADDR64)
3314 continue;
3315
3316 sym = *r->sym_ptr_ptr;
3317 if (!sym_exists_at (syms, opdsymend, symcount,
3318 sym->section->id, sym->value + r->addend))
3319 {
3320 size_t len;
3321
3322 *s = *syms[i];
3323 s->flags |= BSF_SYNTHETIC;
3324 s->section = sym->section;
3325 s->value = sym->value + r->addend;
3326 s->name = names;
3327 *names++ = '.';
3328 len = strlen (syms[i]->name);
3329 memcpy (names, syms[i]->name, len + 1);
3330 names += len + 1;
3331 /* Have udata.p point back to the original symbol this
3332 synthetic symbol was derived from. */
3333 s->udata.p = syms[i];
3334 s++;
3335 }
3336 }
3337 }
3338 else
3339 {
3340 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3341 bfd_byte *contents = NULL;
3342 size_t size;
3343 long plt_count = 0;
3344 bfd_vma glink_vma = 0, resolv_vma = 0;
3345 asection *dynamic, *glink = NULL, *relplt = NULL;
3346 arelent *p;
3347
3348 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3349 {
3350 free_contents_and_exit:
3351 if (contents)
3352 free (contents);
3353 count = -1;
3354 goto done;
3355 }
3356
3357 size = 0;
3358 for (i = secsymend; i < opdsymend; ++i)
3359 {
3360 bfd_vma ent;
3361
3362 /* Ignore bogus symbols. */
3363 if (syms[i]->value > opd->size - 8)
3364 continue;
3365
3366 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3367 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3368 {
3369 ++count;
3370 size += sizeof (asymbol);
3371 size += strlen (syms[i]->name) + 2;
3372 }
3373 }
3374
3375 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3376 if (dyn_count != 0
3377 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3378 {
3379 bfd_byte *dynbuf, *extdyn, *extdynend;
3380 size_t extdynsize;
3381 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3382
3383 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3384 goto free_contents_and_exit;
3385
3386 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3387 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3388
3389 extdyn = dynbuf;
3390 extdynend = extdyn + dynamic->size;
3391 for (; extdyn < extdynend; extdyn += extdynsize)
3392 {
3393 Elf_Internal_Dyn dyn;
3394 (*swap_dyn_in) (abfd, extdyn, &dyn);
3395
3396 if (dyn.d_tag == DT_NULL)
3397 break;
3398
3399 if (dyn.d_tag == DT_PPC64_GLINK)
3400 {
3401 /* The first glink stub starts at offset 32; see
3402 comment in ppc64_elf_finish_dynamic_sections. */
3403 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3404 /* The .glink section usually does not survive the final
3405 link; search for the section (usually .text) where the
3406 glink stubs now reside. */
3407 glink = bfd_sections_find_if (abfd, section_covers_vma,
3408 &glink_vma);
3409 break;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 if (glink != NULL)
3417 {
3418 /* Determine __glink trampoline by reading the relative branch
3419 from the first glink stub. */
3420 bfd_byte buf[4];
3421 unsigned int off = 0;
3422
3423 while (bfd_get_section_contents (abfd, glink, buf,
3424 glink_vma + off - glink->vma, 4))
3425 {
3426 unsigned int insn = bfd_get_32 (abfd, buf);
3427 insn ^= B_DOT;
3428 if ((insn & ~0x3fffffc) == 0)
3429 {
3430 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3431 break;
3432 }
3433 off += 4;
3434 if (off > 4)
3435 break;
3436 }
3437
3438 if (resolv_vma)
3439 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3440
3441 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3442 if (relplt != NULL)
3443 {
3444 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3445 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3446 goto free_contents_and_exit;
3447
3448 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3449 size += plt_count * sizeof (asymbol);
3450
3451 p = relplt->relocation;
3452 for (i = 0; i < plt_count; i++, p++)
3453 {
3454 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3455 if (p->addend != 0)
3456 size += sizeof ("+0x") - 1 + 16;
3457 }
3458 }
3459 }
3460
3461 s = *ret = bfd_malloc (size);
3462 if (s == NULL)
3463 goto free_contents_and_exit;
3464
3465 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3466
3467 for (i = secsymend; i < opdsymend; ++i)
3468 {
3469 bfd_vma ent;
3470
3471 if (syms[i]->value > opd->size - 8)
3472 continue;
3473
3474 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3475 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3476 {
3477 long lo, hi;
3478 size_t len;
3479 asection *sec = abfd->sections;
3480
3481 *s = *syms[i];
3482 lo = codesecsym;
3483 hi = codesecsymend;
3484 while (lo < hi)
3485 {
3486 long mid = (lo + hi) >> 1;
3487 if (syms[mid]->section->vma < ent)
3488 lo = mid + 1;
3489 else if (syms[mid]->section->vma > ent)
3490 hi = mid;
3491 else
3492 {
3493 sec = syms[mid]->section;
3494 break;
3495 }
3496 }
3497
3498 if (lo >= hi && lo > codesecsym)
3499 sec = syms[lo - 1]->section;
3500
3501 for (; sec != NULL; sec = sec->next)
3502 {
3503 if (sec->vma > ent)
3504 break;
3505 /* SEC_LOAD may not be set if SEC is from a separate debug
3506 info file. */
3507 if ((sec->flags & SEC_ALLOC) == 0)
3508 break;
3509 if ((sec->flags & SEC_CODE) != 0)
3510 s->section = sec;
3511 }
3512 s->flags |= BSF_SYNTHETIC;
3513 s->value = ent - s->section->vma;
3514 s->name = names;
3515 *names++ = '.';
3516 len = strlen (syms[i]->name);
3517 memcpy (names, syms[i]->name, len + 1);
3518 names += len + 1;
3519 /* Have udata.p point back to the original symbol this
3520 synthetic symbol was derived from. */
3521 s->udata.p = syms[i];
3522 s++;
3523 }
3524 }
3525 free (contents);
3526
3527 if (glink != NULL && relplt != NULL)
3528 {
3529 if (resolv_vma)
3530 {
3531 /* Add a symbol for the main glink trampoline. */
3532 memset (s, 0, sizeof *s);
3533 s->the_bfd = abfd;
3534 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3535 s->section = glink;
3536 s->value = resolv_vma - glink->vma;
3537 s->name = names;
3538 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3539 names += sizeof ("__glink_PLTresolve");
3540 s++;
3541 count++;
3542 }
3543
3544 /* FIXME: It would be very much nicer to put sym@plt on the
3545 stub rather than on the glink branch table entry. The
3546 objdump disassembler would then use a sensible symbol
3547 name on plt calls. The difficulty in doing so is
3548 a) finding the stubs, and,
3549 b) matching stubs against plt entries, and,
3550 c) there can be multiple stubs for a given plt entry.
3551
3552 Solving (a) could be done by code scanning, but older
3553 ppc64 binaries used different stubs to current code.
3554 (b) is the tricky one since you need to known the toc
3555 pointer for at least one function that uses a pic stub to
3556 be able to calculate the plt address referenced.
3557 (c) means gdb would need to set multiple breakpoints (or
3558 find the glink branch itself) when setting breakpoints
3559 for pending shared library loads. */
3560 p = relplt->relocation;
3561 for (i = 0; i < plt_count; i++, p++)
3562 {
3563 size_t len;
3564
3565 *s = **p->sym_ptr_ptr;
3566 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3567 we are defining a symbol, ensure one of them is set. */
3568 if ((s->flags & BSF_LOCAL) == 0)
3569 s->flags |= BSF_GLOBAL;
3570 s->flags |= BSF_SYNTHETIC;
3571 s->section = glink;
3572 s->value = glink_vma - glink->vma;
3573 s->name = names;
3574 s->udata.p = NULL;
3575 len = strlen ((*p->sym_ptr_ptr)->name);
3576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3577 names += len;
3578 if (p->addend != 0)
3579 {
3580 memcpy (names, "+0x", sizeof ("+0x") - 1);
3581 names += sizeof ("+0x") - 1;
3582 bfd_sprintf_vma (abfd, names, p->addend);
3583 names += strlen (names);
3584 }
3585 memcpy (names, "@plt", sizeof ("@plt"));
3586 names += sizeof ("@plt");
3587 s++;
3588 if (abi < 2)
3589 {
3590 glink_vma += 8;
3591 if (i >= 0x8000)
3592 glink_vma += 4;
3593 }
3594 else
3595 glink_vma += 4;
3596 }
3597 count += plt_count;
3598 }
3599 }
3600
3601 done:
3602 free (syms);
3603 return count;
3604 }
3605 \f
3606 /* The following functions are specific to the ELF linker, while
3607 functions above are used generally. Those named ppc64_elf_* are
3608 called by the main ELF linker code. They appear in this file more
3609 or less in the order in which they are called. eg.
3610 ppc64_elf_check_relocs is called early in the link process,
3611 ppc64_elf_finish_dynamic_sections is one of the last functions
3612 called.
3613
3614 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3615 functions have both a function code symbol and a function descriptor
3616 symbol. A call to foo in a relocatable object file looks like:
3617
3618 . .text
3619 . x:
3620 . bl .foo
3621 . nop
3622
3623 The function definition in another object file might be:
3624
3625 . .section .opd
3626 . foo: .quad .foo
3627 . .quad .TOC.@tocbase
3628 . .quad 0
3629 .
3630 . .text
3631 . .foo: blr
3632
3633 When the linker resolves the call during a static link, the branch
3634 unsurprisingly just goes to .foo and the .opd information is unused.
3635 If the function definition is in a shared library, things are a little
3636 different: The call goes via a plt call stub, the opd information gets
3637 copied to the plt, and the linker patches the nop.
3638
3639 . x:
3640 . bl .foo_stub
3641 . ld 2,40(1)
3642 .
3643 .
3644 . .foo_stub:
3645 . std 2,40(1) # in practice, the call stub
3646 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3647 . addi 11,11,Lfoo@toc@l # this is the general idea
3648 . ld 12,0(11)
3649 . ld 2,8(11)
3650 . mtctr 12
3651 . ld 11,16(11)
3652 . bctr
3653 .
3654 . .section .plt
3655 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3656
3657 The "reloc ()" notation is supposed to indicate that the linker emits
3658 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3659 copying.
3660
3661 What are the difficulties here? Well, firstly, the relocations
3662 examined by the linker in check_relocs are against the function code
3663 sym .foo, while the dynamic relocation in the plt is emitted against
3664 the function descriptor symbol, foo. Somewhere along the line, we need
3665 to carefully copy dynamic link information from one symbol to the other.
3666 Secondly, the generic part of the elf linker will make .foo a dynamic
3667 symbol as is normal for most other backends. We need foo dynamic
3668 instead, at least for an application final link. However, when
3669 creating a shared library containing foo, we need to have both symbols
3670 dynamic so that references to .foo are satisfied during the early
3671 stages of linking. Otherwise the linker might decide to pull in a
3672 definition from some other object, eg. a static library.
3673
3674 Update: As of August 2004, we support a new convention. Function
3675 calls may use the function descriptor symbol, ie. "bl foo". This
3676 behaves exactly as "bl .foo". */
3677
3678 /* Of those relocs that might be copied as dynamic relocs, this function
3679 selects those that must be copied when linking a shared library,
3680 even when the symbol is local. */
3681
3682 static int
3683 must_be_dyn_reloc (struct bfd_link_info *info,
3684 enum elf_ppc64_reloc_type r_type)
3685 {
3686 switch (r_type)
3687 {
3688 default:
3689 return 1;
3690
3691 case R_PPC64_REL32:
3692 case R_PPC64_REL64:
3693 case R_PPC64_REL30:
3694 return 0;
3695
3696 case R_PPC64_TPREL16:
3697 case R_PPC64_TPREL16_LO:
3698 case R_PPC64_TPREL16_HI:
3699 case R_PPC64_TPREL16_HA:
3700 case R_PPC64_TPREL16_DS:
3701 case R_PPC64_TPREL16_LO_DS:
3702 case R_PPC64_TPREL16_HIGH:
3703 case R_PPC64_TPREL16_HIGHA:
3704 case R_PPC64_TPREL16_HIGHER:
3705 case R_PPC64_TPREL16_HIGHERA:
3706 case R_PPC64_TPREL16_HIGHEST:
3707 case R_PPC64_TPREL16_HIGHESTA:
3708 case R_PPC64_TPREL64:
3709 return !info->executable;
3710 }
3711 }
3712
3713 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3714 copying dynamic variables from a shared lib into an app's dynbss
3715 section, and instead use a dynamic relocation to point into the
3716 shared lib. With code that gcc generates, it's vital that this be
3717 enabled; In the PowerPC64 ABI, the address of a function is actually
3718 the address of a function descriptor, which resides in the .opd
3719 section. gcc uses the descriptor directly rather than going via the
3720 GOT as some other ABI's do, which means that initialized function
3721 pointers must reference the descriptor. Thus, a function pointer
3722 initialized to the address of a function in a shared library will
3723 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3724 redefines the function descriptor symbol to point to the copy. This
3725 presents a problem as a plt entry for that function is also
3726 initialized from the function descriptor symbol and the copy reloc
3727 may not be initialized first. */
3728 #define ELIMINATE_COPY_RELOCS 1
3729
3730 /* Section name for stubs is the associated section name plus this
3731 string. */
3732 #define STUB_SUFFIX ".stub"
3733
3734 /* Linker stubs.
3735 ppc_stub_long_branch:
3736 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3737 destination, but a 24 bit branch in a stub section will reach.
3738 . b dest
3739
3740 ppc_stub_plt_branch:
3741 Similar to the above, but a 24 bit branch in the stub section won't
3742 reach its destination.
3743 . addis %r11,%r2,xxx@toc@ha
3744 . ld %r12,xxx@toc@l(%r11)
3745 . mtctr %r12
3746 . bctr
3747
3748 ppc_stub_plt_call:
3749 Used to call a function in a shared library. If it so happens that
3750 the plt entry referenced crosses a 64k boundary, then an extra
3751 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3752 . std %r2,40(%r1)
3753 . addis %r11,%r2,xxx@toc@ha
3754 . ld %r12,xxx+0@toc@l(%r11)
3755 . mtctr %r12
3756 . ld %r2,xxx+8@toc@l(%r11)
3757 . ld %r11,xxx+16@toc@l(%r11)
3758 . bctr
3759
3760 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3761 code to adjust the value and save r2 to support multiple toc sections.
3762 A ppc_stub_long_branch with an r2 offset looks like:
3763 . std %r2,40(%r1)
3764 . addis %r2,%r2,off@ha
3765 . addi %r2,%r2,off@l
3766 . b dest
3767
3768 A ppc_stub_plt_branch with an r2 offset looks like:
3769 . std %r2,40(%r1)
3770 . addis %r11,%r2,xxx@toc@ha
3771 . ld %r12,xxx@toc@l(%r11)
3772 . addis %r2,%r2,off@ha
3773 . addi %r2,%r2,off@l
3774 . mtctr %r12
3775 . bctr
3776
3777 In cases where the "addis" instruction would add zero, the "addis" is
3778 omitted and following instructions modified slightly in some cases.
3779 */
3780
3781 enum ppc_stub_type {
3782 ppc_stub_none,
3783 ppc_stub_long_branch,
3784 ppc_stub_long_branch_r2off,
3785 ppc_stub_plt_branch,
3786 ppc_stub_plt_branch_r2off,
3787 ppc_stub_plt_call,
3788 ppc_stub_plt_call_r2save,
3789 ppc_stub_global_entry
3790 };
3791
3792 struct ppc_stub_hash_entry {
3793
3794 /* Base hash table entry structure. */
3795 struct bfd_hash_entry root;
3796
3797 enum ppc_stub_type stub_type;
3798
3799 /* The stub section. */
3800 asection *stub_sec;
3801
3802 /* Offset within stub_sec of the beginning of this stub. */
3803 bfd_vma stub_offset;
3804
3805 /* Given the symbol's value and its section we can determine its final
3806 value when building the stubs (so the stub knows where to jump. */
3807 bfd_vma target_value;
3808 asection *target_section;
3809
3810 /* The symbol table entry, if any, that this was derived from. */
3811 struct ppc_link_hash_entry *h;
3812 struct plt_entry *plt_ent;
3813
3814 /* Where this stub is being called from, or, in the case of combined
3815 stub sections, the first input section in the group. */
3816 asection *id_sec;
3817
3818 /* Symbol st_other. */
3819 unsigned char other;
3820 };
3821
3822 struct ppc_branch_hash_entry {
3823
3824 /* Base hash table entry structure. */
3825 struct bfd_hash_entry root;
3826
3827 /* Offset within branch lookup table. */
3828 unsigned int offset;
3829
3830 /* Generation marker. */
3831 unsigned int iter;
3832 };
3833
3834 /* Used to track dynamic relocations for local symbols. */
3835 struct ppc_dyn_relocs
3836 {
3837 struct ppc_dyn_relocs *next;
3838
3839 /* The input section of the reloc. */
3840 asection *sec;
3841
3842 /* Total number of relocs copied for the input section. */
3843 unsigned int count : 31;
3844
3845 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3846 unsigned int ifunc : 1;
3847 };
3848
3849 struct ppc_link_hash_entry
3850 {
3851 struct elf_link_hash_entry elf;
3852
3853 union {
3854 /* A pointer to the most recently used stub hash entry against this
3855 symbol. */
3856 struct ppc_stub_hash_entry *stub_cache;
3857
3858 /* A pointer to the next symbol starting with a '.' */
3859 struct ppc_link_hash_entry *next_dot_sym;
3860 } u;
3861
3862 /* Track dynamic relocs copied for this symbol. */
3863 struct elf_dyn_relocs *dyn_relocs;
3864
3865 /* Link between function code and descriptor symbols. */
3866 struct ppc_link_hash_entry *oh;
3867
3868 /* Flag function code and descriptor symbols. */
3869 unsigned int is_func:1;
3870 unsigned int is_func_descriptor:1;
3871 unsigned int fake:1;
3872
3873 /* Whether global opd/toc sym has been adjusted or not.
3874 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3875 should be set for all globals defined in any opd/toc section. */
3876 unsigned int adjust_done:1;
3877
3878 /* Set if we twiddled this symbol to weak at some stage. */
3879 unsigned int was_undefined:1;
3880
3881 /* Contexts in which symbol is used in the GOT (or TOC).
3882 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3883 corresponding relocs are encountered during check_relocs.
3884 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3885 indicate the corresponding GOT entry type is not needed.
3886 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3887 a TPREL one. We use a separate flag rather than setting TPREL
3888 just for convenience in distinguishing the two cases. */
3889 #define TLS_GD 1 /* GD reloc. */
3890 #define TLS_LD 2 /* LD reloc. */
3891 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3892 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3893 #define TLS_TLS 16 /* Any TLS reloc. */
3894 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3895 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3896 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3897 unsigned char tls_mask;
3898 };
3899
3900 /* ppc64 ELF linker hash table. */
3901
3902 struct ppc_link_hash_table
3903 {
3904 struct elf_link_hash_table elf;
3905
3906 /* The stub hash table. */
3907 struct bfd_hash_table stub_hash_table;
3908
3909 /* Another hash table for plt_branch stubs. */
3910 struct bfd_hash_table branch_hash_table;
3911
3912 /* Hash table for function prologue tocsave. */
3913 htab_t tocsave_htab;
3914
3915 /* Various options and other info passed from the linker. */
3916 struct ppc64_elf_params *params;
3917
3918 /* Array to keep track of which stub sections have been created, and
3919 information on stub grouping. */
3920 struct map_stub {
3921 /* This is the section to which stubs in the group will be attached. */
3922 asection *link_sec;
3923 /* The stub section. */
3924 asection *stub_sec;
3925 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3926 bfd_vma toc_off;
3927 } *stub_group;
3928
3929 /* Temp used when calculating TOC pointers. */
3930 bfd_vma toc_curr;
3931 bfd *toc_bfd;
3932 asection *toc_first_sec;
3933
3934 /* Highest input section id. */
3935 int top_id;
3936
3937 /* Highest output section index. */
3938 int top_index;
3939
3940 /* Used when adding symbols. */
3941 struct ppc_link_hash_entry *dot_syms;
3942
3943 /* List of input sections for each output section. */
3944 asection **input_list;
3945
3946 /* Shortcuts to get to dynamic linker sections. */
3947 asection *dynbss;
3948 asection *relbss;
3949 asection *glink;
3950 asection *sfpr;
3951 asection *brlt;
3952 asection *relbrlt;
3953 asection *glink_eh_frame;
3954
3955 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3956 struct ppc_link_hash_entry *tls_get_addr;
3957 struct ppc_link_hash_entry *tls_get_addr_fd;
3958
3959 /* The size of reliplt used by got entry relocs. */
3960 bfd_size_type got_reli_size;
3961
3962 /* Statistics. */
3963 unsigned long stub_count[ppc_stub_global_entry];
3964
3965 /* Number of stubs against global syms. */
3966 unsigned long stub_globals;
3967
3968 /* Set if we're linking code with function descriptors. */
3969 unsigned int opd_abi:1;
3970
3971 /* Support for multiple toc sections. */
3972 unsigned int do_multi_toc:1;
3973 unsigned int multi_toc_needed:1;
3974 unsigned int second_toc_pass:1;
3975 unsigned int do_toc_opt:1;
3976
3977 /* Set on error. */
3978 unsigned int stub_error:1;
3979
3980 /* Temp used by ppc64_elf_before_check_relocs. */
3981 unsigned int twiddled_syms:1;
3982
3983 /* Incremented every time we size stubs. */
3984 unsigned int stub_iteration;
3985
3986 /* Small local sym cache. */
3987 struct sym_cache sym_cache;
3988 };
3989
3990 /* Rename some of the generic section flags to better document how they
3991 are used here. */
3992
3993 /* Nonzero if this section has TLS related relocations. */
3994 #define has_tls_reloc sec_flg0
3995
3996 /* Nonzero if this section has a call to __tls_get_addr. */
3997 #define has_tls_get_addr_call sec_flg1
3998
3999 /* Nonzero if this section has any toc or got relocs. */
4000 #define has_toc_reloc sec_flg2
4001
4002 /* Nonzero if this section has a call to another section that uses
4003 the toc or got. */
4004 #define makes_toc_func_call sec_flg3
4005
4006 /* Recursion protection when determining above flag. */
4007 #define call_check_in_progress sec_flg4
4008 #define call_check_done sec_flg5
4009
4010 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4011
4012 #define ppc_hash_table(p) \
4013 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4014 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4015
4016 #define ppc_stub_hash_lookup(table, string, create, copy) \
4017 ((struct ppc_stub_hash_entry *) \
4018 bfd_hash_lookup ((table), (string), (create), (copy)))
4019
4020 #define ppc_branch_hash_lookup(table, string, create, copy) \
4021 ((struct ppc_branch_hash_entry *) \
4022 bfd_hash_lookup ((table), (string), (create), (copy)))
4023
4024 /* Create an entry in the stub hash table. */
4025
4026 static struct bfd_hash_entry *
4027 stub_hash_newfunc (struct bfd_hash_entry *entry,
4028 struct bfd_hash_table *table,
4029 const char *string)
4030 {
4031 /* Allocate the structure if it has not already been allocated by a
4032 subclass. */
4033 if (entry == NULL)
4034 {
4035 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4036 if (entry == NULL)
4037 return entry;
4038 }
4039
4040 /* Call the allocation method of the superclass. */
4041 entry = bfd_hash_newfunc (entry, table, string);
4042 if (entry != NULL)
4043 {
4044 struct ppc_stub_hash_entry *eh;
4045
4046 /* Initialize the local fields. */
4047 eh = (struct ppc_stub_hash_entry *) entry;
4048 eh->stub_type = ppc_stub_none;
4049 eh->stub_sec = NULL;
4050 eh->stub_offset = 0;
4051 eh->target_value = 0;
4052 eh->target_section = NULL;
4053 eh->h = NULL;
4054 eh->plt_ent = NULL;
4055 eh->id_sec = NULL;
4056 eh->other = 0;
4057 }
4058
4059 return entry;
4060 }
4061
4062 /* Create an entry in the branch hash table. */
4063
4064 static struct bfd_hash_entry *
4065 branch_hash_newfunc (struct bfd_hash_entry *entry,
4066 struct bfd_hash_table *table,
4067 const char *string)
4068 {
4069 /* Allocate the structure if it has not already been allocated by a
4070 subclass. */
4071 if (entry == NULL)
4072 {
4073 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4074 if (entry == NULL)
4075 return entry;
4076 }
4077
4078 /* Call the allocation method of the superclass. */
4079 entry = bfd_hash_newfunc (entry, table, string);
4080 if (entry != NULL)
4081 {
4082 struct ppc_branch_hash_entry *eh;
4083
4084 /* Initialize the local fields. */
4085 eh = (struct ppc_branch_hash_entry *) entry;
4086 eh->offset = 0;
4087 eh->iter = 0;
4088 }
4089
4090 return entry;
4091 }
4092
4093 /* Create an entry in a ppc64 ELF linker hash table. */
4094
4095 static struct bfd_hash_entry *
4096 link_hash_newfunc (struct bfd_hash_entry *entry,
4097 struct bfd_hash_table *table,
4098 const char *string)
4099 {
4100 /* Allocate the structure if it has not already been allocated by a
4101 subclass. */
4102 if (entry == NULL)
4103 {
4104 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4105 if (entry == NULL)
4106 return entry;
4107 }
4108
4109 /* Call the allocation method of the superclass. */
4110 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4111 if (entry != NULL)
4112 {
4113 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4114
4115 memset (&eh->u.stub_cache, 0,
4116 (sizeof (struct ppc_link_hash_entry)
4117 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4118
4119 /* When making function calls, old ABI code references function entry
4120 points (dot symbols), while new ABI code references the function
4121 descriptor symbol. We need to make any combination of reference and
4122 definition work together, without breaking archive linking.
4123
4124 For a defined function "foo" and an undefined call to "bar":
4125 An old object defines "foo" and ".foo", references ".bar" (possibly
4126 "bar" too).
4127 A new object defines "foo" and references "bar".
4128
4129 A new object thus has no problem with its undefined symbols being
4130 satisfied by definitions in an old object. On the other hand, the
4131 old object won't have ".bar" satisfied by a new object.
4132
4133 Keep a list of newly added dot-symbols. */
4134
4135 if (string[0] == '.')
4136 {
4137 struct ppc_link_hash_table *htab;
4138
4139 htab = (struct ppc_link_hash_table *) table;
4140 eh->u.next_dot_sym = htab->dot_syms;
4141 htab->dot_syms = eh;
4142 }
4143 }
4144
4145 return entry;
4146 }
4147
4148 struct tocsave_entry {
4149 asection *sec;
4150 bfd_vma offset;
4151 };
4152
4153 static hashval_t
4154 tocsave_htab_hash (const void *p)
4155 {
4156 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4157 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4158 }
4159
4160 static int
4161 tocsave_htab_eq (const void *p1, const void *p2)
4162 {
4163 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4164 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4165 return e1->sec == e2->sec && e1->offset == e2->offset;
4166 }
4167
4168 /* Destroy a ppc64 ELF linker hash table. */
4169
4170 static void
4171 ppc64_elf_link_hash_table_free (bfd *obfd)
4172 {
4173 struct ppc_link_hash_table *htab;
4174
4175 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4176 if (htab->tocsave_htab)
4177 htab_delete (htab->tocsave_htab);
4178 bfd_hash_table_free (&htab->branch_hash_table);
4179 bfd_hash_table_free (&htab->stub_hash_table);
4180 _bfd_elf_link_hash_table_free (obfd);
4181 }
4182
4183 /* Create a ppc64 ELF linker hash table. */
4184
4185 static struct bfd_link_hash_table *
4186 ppc64_elf_link_hash_table_create (bfd *abfd)
4187 {
4188 struct ppc_link_hash_table *htab;
4189 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4190
4191 htab = bfd_zmalloc (amt);
4192 if (htab == NULL)
4193 return NULL;
4194
4195 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4196 sizeof (struct ppc_link_hash_entry),
4197 PPC64_ELF_DATA))
4198 {
4199 free (htab);
4200 return NULL;
4201 }
4202
4203 /* Init the stub hash table too. */
4204 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4205 sizeof (struct ppc_stub_hash_entry)))
4206 {
4207 _bfd_elf_link_hash_table_free (abfd);
4208 return NULL;
4209 }
4210
4211 /* And the branch hash table. */
4212 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4213 sizeof (struct ppc_branch_hash_entry)))
4214 {
4215 bfd_hash_table_free (&htab->stub_hash_table);
4216 _bfd_elf_link_hash_table_free (abfd);
4217 return NULL;
4218 }
4219
4220 htab->tocsave_htab = htab_try_create (1024,
4221 tocsave_htab_hash,
4222 tocsave_htab_eq,
4223 NULL);
4224 if (htab->tocsave_htab == NULL)
4225 {
4226 ppc64_elf_link_hash_table_free (abfd);
4227 return NULL;
4228 }
4229 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4230
4231 /* Initializing two fields of the union is just cosmetic. We really
4232 only care about glist, but when compiled on a 32-bit host the
4233 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4234 debugger inspection of these fields look nicer. */
4235 htab->elf.init_got_refcount.refcount = 0;
4236 htab->elf.init_got_refcount.glist = NULL;
4237 htab->elf.init_plt_refcount.refcount = 0;
4238 htab->elf.init_plt_refcount.glist = NULL;
4239 htab->elf.init_got_offset.offset = 0;
4240 htab->elf.init_got_offset.glist = NULL;
4241 htab->elf.init_plt_offset.offset = 0;
4242 htab->elf.init_plt_offset.glist = NULL;
4243
4244 return &htab->elf.root;
4245 }
4246
4247 /* Create sections for linker generated code. */
4248
4249 static bfd_boolean
4250 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4251 {
4252 struct ppc_link_hash_table *htab;
4253 flagword flags;
4254
4255 htab = ppc_hash_table (info);
4256
4257 /* Create .sfpr for code to save and restore fp regs. */
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4261 flags);
4262 if (htab->sfpr == NULL
4263 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4264 return FALSE;
4265
4266 /* Create .glink for lazy dynamic linking support. */
4267 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4268 flags);
4269 if (htab->glink == NULL
4270 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4271 return FALSE;
4272
4273 if (!info->no_ld_generated_unwind_info)
4274 {
4275 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4276 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4277 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4278 ".eh_frame",
4279 flags);
4280 if (htab->glink_eh_frame == NULL
4281 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4282 return FALSE;
4283 }
4284
4285 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4286 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4287 if (htab->elf.iplt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4289 return FALSE;
4290
4291 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4292 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4293 htab->elf.irelplt
4294 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4295 if (htab->elf.irelplt == NULL
4296 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4297 return FALSE;
4298
4299 /* Create branch lookup table for plt_branch stubs. */
4300 flags = (SEC_ALLOC | SEC_LOAD
4301 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4302 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4303 flags);
4304 if (htab->brlt == NULL
4305 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4306 return FALSE;
4307
4308 if (!info->shared)
4309 return TRUE;
4310
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4312 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4313 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4314 ".rela.branch_lt",
4315 flags);
4316 if (htab->relbrlt == NULL
4317 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4318 return FALSE;
4319
4320 return TRUE;
4321 }
4322
4323 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4324
4325 bfd_boolean
4326 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4327 struct ppc64_elf_params *params)
4328 {
4329 struct ppc_link_hash_table *htab;
4330
4331 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4332
4333 /* Always hook our dynamic sections into the first bfd, which is the
4334 linker created stub bfd. This ensures that the GOT header is at
4335 the start of the output TOC section. */
4336 htab = ppc_hash_table (info);
4337 if (htab == NULL)
4338 return FALSE;
4339 htab->elf.dynobj = params->stub_bfd;
4340 htab->params = params;
4341
4342 if (info->relocatable)
4343 return TRUE;
4344
4345 return create_linkage_sections (htab->elf.dynobj, info);
4346 }
4347
4348 /* Build a name for an entry in the stub hash table. */
4349
4350 static char *
4351 ppc_stub_name (const asection *input_section,
4352 const asection *sym_sec,
4353 const struct ppc_link_hash_entry *h,
4354 const Elf_Internal_Rela *rel)
4355 {
4356 char *stub_name;
4357 ssize_t len;
4358
4359 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4360 offsets from a sym as a branch target? In fact, we could
4361 probably assume the addend is always zero. */
4362 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4363
4364 if (h)
4365 {
4366 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4367 stub_name = bfd_malloc (len);
4368 if (stub_name == NULL)
4369 return stub_name;
4370
4371 len = sprintf (stub_name, "%08x.%s+%x",
4372 input_section->id & 0xffffffff,
4373 h->elf.root.root.string,
4374 (int) rel->r_addend & 0xffffffff);
4375 }
4376 else
4377 {
4378 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4379 stub_name = bfd_malloc (len);
4380 if (stub_name == NULL)
4381 return stub_name;
4382
4383 len = sprintf (stub_name, "%08x.%x:%x+%x",
4384 input_section->id & 0xffffffff,
4385 sym_sec->id & 0xffffffff,
4386 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4387 (int) rel->r_addend & 0xffffffff);
4388 }
4389 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4390 stub_name[len - 2] = 0;
4391 return stub_name;
4392 }
4393
4394 /* Look up an entry in the stub hash. Stub entries are cached because
4395 creating the stub name takes a bit of time. */
4396
4397 static struct ppc_stub_hash_entry *
4398 ppc_get_stub_entry (const asection *input_section,
4399 const asection *sym_sec,
4400 struct ppc_link_hash_entry *h,
4401 const Elf_Internal_Rela *rel,
4402 struct ppc_link_hash_table *htab)
4403 {
4404 struct ppc_stub_hash_entry *stub_entry;
4405 const asection *id_sec;
4406
4407 /* If this input section is part of a group of sections sharing one
4408 stub section, then use the id of the first section in the group.
4409 Stub names need to include a section id, as there may well be
4410 more than one stub used to reach say, printf, and we need to
4411 distinguish between them. */
4412 id_sec = htab->stub_group[input_section->id].link_sec;
4413
4414 if (h != NULL && h->u.stub_cache != NULL
4415 && h->u.stub_cache->h == h
4416 && h->u.stub_cache->id_sec == id_sec)
4417 {
4418 stub_entry = h->u.stub_cache;
4419 }
4420 else
4421 {
4422 char *stub_name;
4423
4424 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4425 if (stub_name == NULL)
4426 return NULL;
4427
4428 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4429 stub_name, FALSE, FALSE);
4430 if (h != NULL)
4431 h->u.stub_cache = stub_entry;
4432
4433 free (stub_name);
4434 }
4435
4436 return stub_entry;
4437 }
4438
4439 /* Add a new stub entry to the stub hash. Not all fields of the new
4440 stub entry are initialised. */
4441
4442 static struct ppc_stub_hash_entry *
4443 ppc_add_stub (const char *stub_name,
4444 asection *section,
4445 struct bfd_link_info *info)
4446 {
4447 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4448 asection *link_sec;
4449 asection *stub_sec;
4450 struct ppc_stub_hash_entry *stub_entry;
4451
4452 link_sec = htab->stub_group[section->id].link_sec;
4453 stub_sec = htab->stub_group[section->id].stub_sec;
4454 if (stub_sec == NULL)
4455 {
4456 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4457 if (stub_sec == NULL)
4458 {
4459 size_t namelen;
4460 bfd_size_type len;
4461 char *s_name;
4462
4463 namelen = strlen (link_sec->name);
4464 len = namelen + sizeof (STUB_SUFFIX);
4465 s_name = bfd_alloc (htab->params->stub_bfd, len);
4466 if (s_name == NULL)
4467 return NULL;
4468
4469 memcpy (s_name, link_sec->name, namelen);
4470 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4471 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4472 if (stub_sec == NULL)
4473 return NULL;
4474 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4475 }
4476 htab->stub_group[section->id].stub_sec = stub_sec;
4477 }
4478
4479 /* Enter this entry into the linker stub hash table. */
4480 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4481 TRUE, FALSE);
4482 if (stub_entry == NULL)
4483 {
4484 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4485 section->owner, stub_name);
4486 return NULL;
4487 }
4488
4489 stub_entry->stub_sec = stub_sec;
4490 stub_entry->stub_offset = 0;
4491 stub_entry->id_sec = link_sec;
4492 return stub_entry;
4493 }
4494
4495 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4496 not already done. */
4497
4498 static bfd_boolean
4499 create_got_section (bfd *abfd, struct bfd_link_info *info)
4500 {
4501 asection *got, *relgot;
4502 flagword flags;
4503 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4504
4505 if (!is_ppc64_elf (abfd))
4506 return FALSE;
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 if (!htab->elf.sgot
4511 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4512 return FALSE;
4513
4514 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4515 | SEC_LINKER_CREATED);
4516
4517 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4518 if (!got
4519 || !bfd_set_section_alignment (abfd, got, 3))
4520 return FALSE;
4521
4522 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4523 flags | SEC_READONLY);
4524 if (!relgot
4525 || ! bfd_set_section_alignment (abfd, relgot, 3))
4526 return FALSE;
4527
4528 ppc64_elf_tdata (abfd)->got = got;
4529 ppc64_elf_tdata (abfd)->relgot = relgot;
4530 return TRUE;
4531 }
4532
4533 /* Create the dynamic sections, and set up shortcuts. */
4534
4535 static bfd_boolean
4536 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4537 {
4538 struct ppc_link_hash_table *htab;
4539
4540 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4541 return FALSE;
4542
4543 htab = ppc_hash_table (info);
4544 if (htab == NULL)
4545 return FALSE;
4546
4547 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4548 if (!info->shared)
4549 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4550
4551 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4552 || (!info->shared && !htab->relbss))
4553 abort ();
4554
4555 return TRUE;
4556 }
4557
4558 /* Follow indirect and warning symbol links. */
4559
4560 static inline struct bfd_link_hash_entry *
4561 follow_link (struct bfd_link_hash_entry *h)
4562 {
4563 while (h->type == bfd_link_hash_indirect
4564 || h->type == bfd_link_hash_warning)
4565 h = h->u.i.link;
4566 return h;
4567 }
4568
4569 static inline struct elf_link_hash_entry *
4570 elf_follow_link (struct elf_link_hash_entry *h)
4571 {
4572 return (struct elf_link_hash_entry *) follow_link (&h->root);
4573 }
4574
4575 static inline struct ppc_link_hash_entry *
4576 ppc_follow_link (struct ppc_link_hash_entry *h)
4577 {
4578 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4579 }
4580
4581 /* Merge PLT info on FROM with that on TO. */
4582
4583 static void
4584 move_plt_plist (struct ppc_link_hash_entry *from,
4585 struct ppc_link_hash_entry *to)
4586 {
4587 if (from->elf.plt.plist != NULL)
4588 {
4589 if (to->elf.plt.plist != NULL)
4590 {
4591 struct plt_entry **entp;
4592 struct plt_entry *ent;
4593
4594 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4595 {
4596 struct plt_entry *dent;
4597
4598 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4599 if (dent->addend == ent->addend)
4600 {
4601 dent->plt.refcount += ent->plt.refcount;
4602 *entp = ent->next;
4603 break;
4604 }
4605 if (dent == NULL)
4606 entp = &ent->next;
4607 }
4608 *entp = to->elf.plt.plist;
4609 }
4610
4611 to->elf.plt.plist = from->elf.plt.plist;
4612 from->elf.plt.plist = NULL;
4613 }
4614 }
4615
4616 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4617
4618 static void
4619 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4620 struct elf_link_hash_entry *dir,
4621 struct elf_link_hash_entry *ind)
4622 {
4623 struct ppc_link_hash_entry *edir, *eind;
4624
4625 edir = (struct ppc_link_hash_entry *) dir;
4626 eind = (struct ppc_link_hash_entry *) ind;
4627
4628 edir->is_func |= eind->is_func;
4629 edir->is_func_descriptor |= eind->is_func_descriptor;
4630 edir->tls_mask |= eind->tls_mask;
4631 if (eind->oh != NULL)
4632 edir->oh = ppc_follow_link (eind->oh);
4633
4634 /* If called to transfer flags for a weakdef during processing
4635 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4636 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4637 if (!(ELIMINATE_COPY_RELOCS
4638 && eind->elf.root.type != bfd_link_hash_indirect
4639 && edir->elf.dynamic_adjusted))
4640 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4641
4642 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4643 edir->elf.ref_regular |= eind->elf.ref_regular;
4644 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4645 edir->elf.needs_plt |= eind->elf.needs_plt;
4646 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4647
4648 /* Copy over any dynamic relocs we may have on the indirect sym. */
4649 if (eind->dyn_relocs != NULL)
4650 {
4651 if (edir->dyn_relocs != NULL)
4652 {
4653 struct elf_dyn_relocs **pp;
4654 struct elf_dyn_relocs *p;
4655
4656 /* Add reloc counts against the indirect sym to the direct sym
4657 list. Merge any entries against the same section. */
4658 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4659 {
4660 struct elf_dyn_relocs *q;
4661
4662 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4663 if (q->sec == p->sec)
4664 {
4665 q->pc_count += p->pc_count;
4666 q->count += p->count;
4667 *pp = p->next;
4668 break;
4669 }
4670 if (q == NULL)
4671 pp = &p->next;
4672 }
4673 *pp = edir->dyn_relocs;
4674 }
4675
4676 edir->dyn_relocs = eind->dyn_relocs;
4677 eind->dyn_relocs = NULL;
4678 }
4679
4680 /* If we were called to copy over info for a weak sym, that's all.
4681 You might think dyn_relocs need not be copied over; After all,
4682 both syms will be dynamic or both non-dynamic so we're just
4683 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4684 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4685 dyn_relocs in read-only sections, and it does so on what is the
4686 DIR sym here. */
4687 if (eind->elf.root.type != bfd_link_hash_indirect)
4688 return;
4689
4690 /* Copy over got entries that we may have already seen to the
4691 symbol which just became indirect. */
4692 if (eind->elf.got.glist != NULL)
4693 {
4694 if (edir->elf.got.glist != NULL)
4695 {
4696 struct got_entry **entp;
4697 struct got_entry *ent;
4698
4699 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4700 {
4701 struct got_entry *dent;
4702
4703 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4704 if (dent->addend == ent->addend
4705 && dent->owner == ent->owner
4706 && dent->tls_type == ent->tls_type)
4707 {
4708 dent->got.refcount += ent->got.refcount;
4709 *entp = ent->next;
4710 break;
4711 }
4712 if (dent == NULL)
4713 entp = &ent->next;
4714 }
4715 *entp = edir->elf.got.glist;
4716 }
4717
4718 edir->elf.got.glist = eind->elf.got.glist;
4719 eind->elf.got.glist = NULL;
4720 }
4721
4722 /* And plt entries. */
4723 move_plt_plist (eind, edir);
4724
4725 if (eind->elf.dynindx != -1)
4726 {
4727 if (edir->elf.dynindx != -1)
4728 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4729 edir->elf.dynstr_index);
4730 edir->elf.dynindx = eind->elf.dynindx;
4731 edir->elf.dynstr_index = eind->elf.dynstr_index;
4732 eind->elf.dynindx = -1;
4733 eind->elf.dynstr_index = 0;
4734 }
4735 }
4736
4737 /* Find the function descriptor hash entry from the given function code
4738 hash entry FH. Link the entries via their OH fields. */
4739
4740 static struct ppc_link_hash_entry *
4741 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4742 {
4743 struct ppc_link_hash_entry *fdh = fh->oh;
4744
4745 if (fdh == NULL)
4746 {
4747 const char *fd_name = fh->elf.root.root.string + 1;
4748
4749 fdh = (struct ppc_link_hash_entry *)
4750 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4751 if (fdh == NULL)
4752 return fdh;
4753
4754 fdh->is_func_descriptor = 1;
4755 fdh->oh = fh;
4756 fh->is_func = 1;
4757 fh->oh = fdh;
4758 }
4759
4760 return ppc_follow_link (fdh);
4761 }
4762
4763 /* Make a fake function descriptor sym for the code sym FH. */
4764
4765 static struct ppc_link_hash_entry *
4766 make_fdh (struct bfd_link_info *info,
4767 struct ppc_link_hash_entry *fh)
4768 {
4769 bfd *abfd;
4770 asymbol *newsym;
4771 struct bfd_link_hash_entry *bh;
4772 struct ppc_link_hash_entry *fdh;
4773
4774 abfd = fh->elf.root.u.undef.abfd;
4775 newsym = bfd_make_empty_symbol (abfd);
4776 newsym->name = fh->elf.root.root.string + 1;
4777 newsym->section = bfd_und_section_ptr;
4778 newsym->value = 0;
4779 newsym->flags = BSF_WEAK;
4780
4781 bh = NULL;
4782 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4783 newsym->flags, newsym->section,
4784 newsym->value, NULL, FALSE, FALSE,
4785 &bh))
4786 return NULL;
4787
4788 fdh = (struct ppc_link_hash_entry *) bh;
4789 fdh->elf.non_elf = 0;
4790 fdh->fake = 1;
4791 fdh->is_func_descriptor = 1;
4792 fdh->oh = fh;
4793 fh->is_func = 1;
4794 fh->oh = fdh;
4795 return fdh;
4796 }
4797
4798 /* Fix function descriptor symbols defined in .opd sections to be
4799 function type. */
4800
4801 static bfd_boolean
4802 ppc64_elf_add_symbol_hook (bfd *ibfd,
4803 struct bfd_link_info *info,
4804 Elf_Internal_Sym *isym,
4805 const char **name,
4806 flagword *flags ATTRIBUTE_UNUSED,
4807 asection **sec,
4808 bfd_vma *value)
4809 {
4810 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4811 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4812 && (ibfd->flags & DYNAMIC) == 0
4813 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4814 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4815
4816 if (*sec != NULL
4817 && strcmp ((*sec)->name, ".opd") == 0)
4818 {
4819 asection *code_sec;
4820
4821 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4822 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4823 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4824
4825 /* If the symbol is a function defined in .opd, and the function
4826 code is in a discarded group, let it appear to be undefined. */
4827 if (!info->relocatable
4828 && (*sec)->reloc_count != 0
4829 && opd_entry_value (*sec, *value, &code_sec, NULL,
4830 FALSE) != (bfd_vma) -1
4831 && discarded_section (code_sec))
4832 {
4833 *sec = bfd_und_section_ptr;
4834 isym->st_shndx = SHN_UNDEF;
4835 }
4836 }
4837
4838 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4839 {
4840 if (abiversion (ibfd) == 0)
4841 set_abiversion (ibfd, 2);
4842 else if (abiversion (ibfd) == 1)
4843 {
4844 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4845 " for ABI version 1\n"), name);
4846 bfd_set_error (bfd_error_bad_value);
4847 return FALSE;
4848 }
4849 }
4850
4851 return TRUE;
4852 }
4853
4854 /* Merge non-visibility st_other attributes: local entry point. */
4855
4856 static void
4857 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4858 const Elf_Internal_Sym *isym,
4859 bfd_boolean definition,
4860 bfd_boolean dynamic)
4861 {
4862 if (definition && !dynamic)
4863 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4864 | ELF_ST_VISIBILITY (h->other));
4865 }
4866
4867 /* This function makes an old ABI object reference to ".bar" cause the
4868 inclusion of a new ABI object archive that defines "bar".
4869 NAME is a symbol defined in an archive. Return a symbol in the hash
4870 table that might be satisfied by the archive symbols. */
4871
4872 static struct elf_link_hash_entry *
4873 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4874 struct bfd_link_info *info,
4875 const char *name)
4876 {
4877 struct elf_link_hash_entry *h;
4878 char *dot_name;
4879 size_t len;
4880
4881 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4882 if (h != NULL
4883 /* Don't return this sym if it is a fake function descriptor
4884 created by add_symbol_adjust. */
4885 && !(h->root.type == bfd_link_hash_undefweak
4886 && ((struct ppc_link_hash_entry *) h)->fake))
4887 return h;
4888
4889 if (name[0] == '.')
4890 return h;
4891
4892 len = strlen (name);
4893 dot_name = bfd_alloc (abfd, len + 2);
4894 if (dot_name == NULL)
4895 return (struct elf_link_hash_entry *) 0 - 1;
4896 dot_name[0] = '.';
4897 memcpy (dot_name + 1, name, len + 1);
4898 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4899 bfd_release (abfd, dot_name);
4900 return h;
4901 }
4902
4903 /* This function satisfies all old ABI object references to ".bar" if a
4904 new ABI object defines "bar". Well, at least, undefined dot symbols
4905 are made weak. This stops later archive searches from including an
4906 object if we already have a function descriptor definition. It also
4907 prevents the linker complaining about undefined symbols.
4908 We also check and correct mismatched symbol visibility here. The
4909 most restrictive visibility of the function descriptor and the
4910 function entry symbol is used. */
4911
4912 static bfd_boolean
4913 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4914 {
4915 struct ppc_link_hash_table *htab;
4916 struct ppc_link_hash_entry *fdh;
4917
4918 if (eh->elf.root.type == bfd_link_hash_indirect)
4919 return TRUE;
4920
4921 if (eh->elf.root.type == bfd_link_hash_warning)
4922 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4923
4924 if (eh->elf.root.root.string[0] != '.')
4925 abort ();
4926
4927 htab = ppc_hash_table (info);
4928 if (htab == NULL)
4929 return FALSE;
4930
4931 fdh = lookup_fdh (eh, htab);
4932 if (fdh == NULL)
4933 {
4934 if (!info->relocatable
4935 && (eh->elf.root.type == bfd_link_hash_undefined
4936 || eh->elf.root.type == bfd_link_hash_undefweak)
4937 && eh->elf.ref_regular)
4938 {
4939 /* Make an undefweak function descriptor sym, which is enough to
4940 pull in an --as-needed shared lib, but won't cause link
4941 errors. Archives are handled elsewhere. */
4942 fdh = make_fdh (info, eh);
4943 if (fdh == NULL)
4944 return FALSE;
4945 fdh->elf.ref_regular = 1;
4946 }
4947 }
4948 else
4949 {
4950 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4951 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4952 if (entry_vis < descr_vis)
4953 fdh->elf.other += entry_vis - descr_vis;
4954 else if (entry_vis > descr_vis)
4955 eh->elf.other += descr_vis - entry_vis;
4956
4957 if ((fdh->elf.root.type == bfd_link_hash_defined
4958 || fdh->elf.root.type == bfd_link_hash_defweak)
4959 && eh->elf.root.type == bfd_link_hash_undefined)
4960 {
4961 eh->elf.root.type = bfd_link_hash_undefweak;
4962 eh->was_undefined = 1;
4963 htab->twiddled_syms = 1;
4964 }
4965 }
4966
4967 return TRUE;
4968 }
4969
4970 /* Set up opd section info and abiversion for IBFD, and process list
4971 of dot-symbols we made in link_hash_newfunc. */
4972
4973 static bfd_boolean
4974 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4975 {
4976 struct ppc_link_hash_table *htab;
4977 struct ppc_link_hash_entry **p, *eh;
4978 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4979
4980 if (opd != NULL && opd->size != 0)
4981 {
4982 if (abiversion (ibfd) == 0)
4983 set_abiversion (ibfd, 1);
4984 else if (abiversion (ibfd) == 2)
4985 {
4986 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4987 " version %d\n"),
4988 ibfd, abiversion (ibfd));
4989 bfd_set_error (bfd_error_bad_value);
4990 return FALSE;
4991 }
4992
4993 if ((ibfd->flags & DYNAMIC) == 0
4994 && (opd->flags & SEC_RELOC) != 0
4995 && opd->reloc_count != 0
4996 && !bfd_is_abs_section (opd->output_section))
4997 {
4998 /* Garbage collection needs some extra help with .opd sections.
4999 We don't want to necessarily keep everything referenced by
5000 relocs in .opd, as that would keep all functions. Instead,
5001 if we reference an .opd symbol (a function descriptor), we
5002 want to keep the function code symbol's section. This is
5003 easy for global symbols, but for local syms we need to keep
5004 information about the associated function section. */
5005 bfd_size_type amt;
5006 asection **opd_sym_map;
5007
5008 amt = opd->size * sizeof (*opd_sym_map) / 8;
5009 opd_sym_map = bfd_zalloc (ibfd, amt);
5010 if (opd_sym_map == NULL)
5011 return FALSE;
5012 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5013 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5014 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5015 }
5016 }
5017
5018 if (!is_ppc64_elf (info->output_bfd))
5019 return TRUE;
5020 htab = ppc_hash_table (info);
5021 if (htab == NULL)
5022 return FALSE;
5023
5024 /* For input files without an explicit abiversion in e_flags
5025 we should have flagged any with symbol st_other bits set
5026 as ELFv1 and above flagged those with .opd as ELFv2.
5027 Set the output abiversion if not yet set, and for any input
5028 still ambiguous, take its abiversion from the output.
5029 Differences in ABI are reported later. */
5030 if (abiversion (info->output_bfd) == 0)
5031 set_abiversion (info->output_bfd, abiversion (ibfd));
5032 else if (abiversion (ibfd) == 0)
5033 set_abiversion (ibfd, abiversion (info->output_bfd));
5034
5035 p = &htab->dot_syms;
5036 while ((eh = *p) != NULL)
5037 {
5038 *p = NULL;
5039 if (&eh->elf == htab->elf.hgot)
5040 ;
5041 else if (htab->elf.hgot == NULL
5042 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5043 htab->elf.hgot = &eh->elf;
5044 else if (!add_symbol_adjust (eh, info))
5045 return FALSE;
5046 p = &eh->u.next_dot_sym;
5047 }
5048
5049 /* Clear the list for non-ppc64 input files. */
5050 p = &htab->dot_syms;
5051 while ((eh = *p) != NULL)
5052 {
5053 *p = NULL;
5054 p = &eh->u.next_dot_sym;
5055 }
5056
5057 /* We need to fix the undefs list for any syms we have twiddled to
5058 undef_weak. */
5059 if (htab->twiddled_syms)
5060 {
5061 bfd_link_repair_undef_list (&htab->elf.root);
5062 htab->twiddled_syms = 0;
5063 }
5064 return TRUE;
5065 }
5066
5067 /* Undo hash table changes when an --as-needed input file is determined
5068 not to be needed. */
5069
5070 static bfd_boolean
5071 ppc64_elf_notice_as_needed (bfd *ibfd,
5072 struct bfd_link_info *info,
5073 enum notice_asneeded_action act)
5074 {
5075 if (act == notice_not_needed)
5076 {
5077 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5078
5079 if (htab == NULL)
5080 return FALSE;
5081
5082 htab->dot_syms = NULL;
5083 }
5084 return _bfd_elf_notice_as_needed (ibfd, info, act);
5085 }
5086
5087 /* If --just-symbols against a final linked binary, then assume we need
5088 toc adjusting stubs when calling functions defined there. */
5089
5090 static void
5091 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5092 {
5093 if ((sec->flags & SEC_CODE) != 0
5094 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5095 && is_ppc64_elf (sec->owner))
5096 {
5097 if (abiversion (sec->owner) >= 2
5098 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5099 sec->has_toc_reloc = 1;
5100 }
5101 _bfd_elf_link_just_syms (sec, info);
5102 }
5103
5104 static struct plt_entry **
5105 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5106 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5107 {
5108 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5109 struct plt_entry **local_plt;
5110 unsigned char *local_got_tls_masks;
5111
5112 if (local_got_ents == NULL)
5113 {
5114 bfd_size_type size = symtab_hdr->sh_info;
5115
5116 size *= (sizeof (*local_got_ents)
5117 + sizeof (*local_plt)
5118 + sizeof (*local_got_tls_masks));
5119 local_got_ents = bfd_zalloc (abfd, size);
5120 if (local_got_ents == NULL)
5121 return NULL;
5122 elf_local_got_ents (abfd) = local_got_ents;
5123 }
5124
5125 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5126 {
5127 struct got_entry *ent;
5128
5129 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5130 if (ent->addend == r_addend
5131 && ent->owner == abfd
5132 && ent->tls_type == tls_type)
5133 break;
5134 if (ent == NULL)
5135 {
5136 bfd_size_type amt = sizeof (*ent);
5137 ent = bfd_alloc (abfd, amt);
5138 if (ent == NULL)
5139 return FALSE;
5140 ent->next = local_got_ents[r_symndx];
5141 ent->addend = r_addend;
5142 ent->owner = abfd;
5143 ent->tls_type = tls_type;
5144 ent->is_indirect = FALSE;
5145 ent->got.refcount = 0;
5146 local_got_ents[r_symndx] = ent;
5147 }
5148 ent->got.refcount += 1;
5149 }
5150
5151 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5152 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5153 local_got_tls_masks[r_symndx] |= tls_type;
5154
5155 return local_plt + r_symndx;
5156 }
5157
5158 static bfd_boolean
5159 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5160 {
5161 struct plt_entry *ent;
5162
5163 for (ent = *plist; ent != NULL; ent = ent->next)
5164 if (ent->addend == addend)
5165 break;
5166 if (ent == NULL)
5167 {
5168 bfd_size_type amt = sizeof (*ent);
5169 ent = bfd_alloc (abfd, amt);
5170 if (ent == NULL)
5171 return FALSE;
5172 ent->next = *plist;
5173 ent->addend = addend;
5174 ent->plt.refcount = 0;
5175 *plist = ent;
5176 }
5177 ent->plt.refcount += 1;
5178 return TRUE;
5179 }
5180
5181 static bfd_boolean
5182 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5183 {
5184 return (r_type == R_PPC64_REL24
5185 || r_type == R_PPC64_REL14
5186 || r_type == R_PPC64_REL14_BRTAKEN
5187 || r_type == R_PPC64_REL14_BRNTAKEN
5188 || r_type == R_PPC64_ADDR24
5189 || r_type == R_PPC64_ADDR14
5190 || r_type == R_PPC64_ADDR14_BRTAKEN
5191 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5192 }
5193
5194 /* Look through the relocs for a section during the first phase, and
5195 calculate needed space in the global offset table, procedure
5196 linkage table, and dynamic reloc sections. */
5197
5198 static bfd_boolean
5199 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5200 asection *sec, const Elf_Internal_Rela *relocs)
5201 {
5202 struct ppc_link_hash_table *htab;
5203 Elf_Internal_Shdr *symtab_hdr;
5204 struct elf_link_hash_entry **sym_hashes;
5205 const Elf_Internal_Rela *rel;
5206 const Elf_Internal_Rela *rel_end;
5207 asection *sreloc;
5208 asection **opd_sym_map;
5209 struct elf_link_hash_entry *tga, *dottga;
5210
5211 if (info->relocatable)
5212 return TRUE;
5213
5214 /* Don't do anything special with non-loaded, non-alloced sections.
5215 In particular, any relocs in such sections should not affect GOT
5216 and PLT reference counting (ie. we don't allow them to create GOT
5217 or PLT entries), there's no possibility or desire to optimize TLS
5218 relocs, and there's not much point in propagating relocs to shared
5219 libs that the dynamic linker won't relocate. */
5220 if ((sec->flags & SEC_ALLOC) == 0)
5221 return TRUE;
5222
5223 BFD_ASSERT (is_ppc64_elf (abfd));
5224
5225 htab = ppc_hash_table (info);
5226 if (htab == NULL)
5227 return FALSE;
5228
5229 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5230 FALSE, FALSE, TRUE);
5231 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5232 FALSE, FALSE, TRUE);
5233 symtab_hdr = &elf_symtab_hdr (abfd);
5234 sym_hashes = elf_sym_hashes (abfd);
5235 sreloc = NULL;
5236 opd_sym_map = NULL;
5237 if (ppc64_elf_section_data (sec) != NULL
5238 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5239 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5240
5241 rel_end = relocs + sec->reloc_count;
5242 for (rel = relocs; rel < rel_end; rel++)
5243 {
5244 unsigned long r_symndx;
5245 struct elf_link_hash_entry *h;
5246 enum elf_ppc64_reloc_type r_type;
5247 int tls_type;
5248 struct _ppc64_elf_section_data *ppc64_sec;
5249 struct plt_entry **ifunc;
5250
5251 r_symndx = ELF64_R_SYM (rel->r_info);
5252 if (r_symndx < symtab_hdr->sh_info)
5253 h = NULL;
5254 else
5255 {
5256 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5257 h = elf_follow_link (h);
5258
5259 /* PR15323, ref flags aren't set for references in the same
5260 object. */
5261 h->root.non_ir_ref = 1;
5262
5263 if (h == htab->elf.hgot)
5264 sec->has_toc_reloc = 1;
5265 }
5266
5267 tls_type = 0;
5268 ifunc = NULL;
5269 if (h != NULL)
5270 {
5271 if (h->type == STT_GNU_IFUNC)
5272 {
5273 h->needs_plt = 1;
5274 ifunc = &h->plt.plist;
5275 }
5276 }
5277 else
5278 {
5279 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5280 abfd, r_symndx);
5281 if (isym == NULL)
5282 return FALSE;
5283
5284 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5285 {
5286 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5287 rel->r_addend, PLT_IFUNC);
5288 if (ifunc == NULL)
5289 return FALSE;
5290 }
5291 }
5292 r_type = ELF64_R_TYPE (rel->r_info);
5293 if (is_branch_reloc (r_type))
5294 {
5295 if (h != NULL && (h == tga || h == dottga))
5296 {
5297 if (rel != relocs
5298 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5299 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5300 /* We have a new-style __tls_get_addr call with a marker
5301 reloc. */
5302 ;
5303 else
5304 /* Mark this section as having an old-style call. */
5305 sec->has_tls_get_addr_call = 1;
5306 }
5307
5308 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5309 if (ifunc != NULL
5310 && !update_plt_info (abfd, ifunc, rel->r_addend))
5311 return FALSE;
5312 }
5313
5314 switch (r_type)
5315 {
5316 case R_PPC64_TLSGD:
5317 case R_PPC64_TLSLD:
5318 /* These special tls relocs tie a call to __tls_get_addr with
5319 its parameter symbol. */
5320 break;
5321
5322 case R_PPC64_GOT_TLSLD16:
5323 case R_PPC64_GOT_TLSLD16_LO:
5324 case R_PPC64_GOT_TLSLD16_HI:
5325 case R_PPC64_GOT_TLSLD16_HA:
5326 tls_type = TLS_TLS | TLS_LD;
5327 goto dogottls;
5328
5329 case R_PPC64_GOT_TLSGD16:
5330 case R_PPC64_GOT_TLSGD16_LO:
5331 case R_PPC64_GOT_TLSGD16_HI:
5332 case R_PPC64_GOT_TLSGD16_HA:
5333 tls_type = TLS_TLS | TLS_GD;
5334 goto dogottls;
5335
5336 case R_PPC64_GOT_TPREL16_DS:
5337 case R_PPC64_GOT_TPREL16_LO_DS:
5338 case R_PPC64_GOT_TPREL16_HI:
5339 case R_PPC64_GOT_TPREL16_HA:
5340 if (info->shared)
5341 info->flags |= DF_STATIC_TLS;
5342 tls_type = TLS_TLS | TLS_TPREL;
5343 goto dogottls;
5344
5345 case R_PPC64_GOT_DTPREL16_DS:
5346 case R_PPC64_GOT_DTPREL16_LO_DS:
5347 case R_PPC64_GOT_DTPREL16_HI:
5348 case R_PPC64_GOT_DTPREL16_HA:
5349 tls_type = TLS_TLS | TLS_DTPREL;
5350 dogottls:
5351 sec->has_tls_reloc = 1;
5352 /* Fall thru */
5353
5354 case R_PPC64_GOT16:
5355 case R_PPC64_GOT16_DS:
5356 case R_PPC64_GOT16_HA:
5357 case R_PPC64_GOT16_HI:
5358 case R_PPC64_GOT16_LO:
5359 case R_PPC64_GOT16_LO_DS:
5360 /* This symbol requires a global offset table entry. */
5361 sec->has_toc_reloc = 1;
5362 if (r_type == R_PPC64_GOT_TLSLD16
5363 || r_type == R_PPC64_GOT_TLSGD16
5364 || r_type == R_PPC64_GOT_TPREL16_DS
5365 || r_type == R_PPC64_GOT_DTPREL16_DS
5366 || r_type == R_PPC64_GOT16
5367 || r_type == R_PPC64_GOT16_DS)
5368 {
5369 htab->do_multi_toc = 1;
5370 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5371 }
5372
5373 if (ppc64_elf_tdata (abfd)->got == NULL
5374 && !create_got_section (abfd, info))
5375 return FALSE;
5376
5377 if (h != NULL)
5378 {
5379 struct ppc_link_hash_entry *eh;
5380 struct got_entry *ent;
5381
5382 eh = (struct ppc_link_hash_entry *) h;
5383 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5384 if (ent->addend == rel->r_addend
5385 && ent->owner == abfd
5386 && ent->tls_type == tls_type)
5387 break;
5388 if (ent == NULL)
5389 {
5390 bfd_size_type amt = sizeof (*ent);
5391 ent = bfd_alloc (abfd, amt);
5392 if (ent == NULL)
5393 return FALSE;
5394 ent->next = eh->elf.got.glist;
5395 ent->addend = rel->r_addend;
5396 ent->owner = abfd;
5397 ent->tls_type = tls_type;
5398 ent->is_indirect = FALSE;
5399 ent->got.refcount = 0;
5400 eh->elf.got.glist = ent;
5401 }
5402 ent->got.refcount += 1;
5403 eh->tls_mask |= tls_type;
5404 }
5405 else
5406 /* This is a global offset table entry for a local symbol. */
5407 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5408 rel->r_addend, tls_type))
5409 return FALSE;
5410
5411 /* We may also need a plt entry if the symbol turns out to be
5412 an ifunc. */
5413 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5414 {
5415 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5416 return FALSE;
5417 }
5418 break;
5419
5420 case R_PPC64_PLT16_HA:
5421 case R_PPC64_PLT16_HI:
5422 case R_PPC64_PLT16_LO:
5423 case R_PPC64_PLT32:
5424 case R_PPC64_PLT64:
5425 /* This symbol requires a procedure linkage table entry. We
5426 actually build the entry in adjust_dynamic_symbol,
5427 because this might be a case of linking PIC code without
5428 linking in any dynamic objects, in which case we don't
5429 need to generate a procedure linkage table after all. */
5430 if (h == NULL)
5431 {
5432 /* It does not make sense to have a procedure linkage
5433 table entry for a local symbol. */
5434 bfd_set_error (bfd_error_bad_value);
5435 return FALSE;
5436 }
5437 else
5438 {
5439 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5440 return FALSE;
5441 h->needs_plt = 1;
5442 if (h->root.root.string[0] == '.'
5443 && h->root.root.string[1] != '\0')
5444 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5445 }
5446 break;
5447
5448 /* The following relocations don't need to propagate the
5449 relocation if linking a shared object since they are
5450 section relative. */
5451 case R_PPC64_SECTOFF:
5452 case R_PPC64_SECTOFF_LO:
5453 case R_PPC64_SECTOFF_HI:
5454 case R_PPC64_SECTOFF_HA:
5455 case R_PPC64_SECTOFF_DS:
5456 case R_PPC64_SECTOFF_LO_DS:
5457 case R_PPC64_DTPREL16:
5458 case R_PPC64_DTPREL16_LO:
5459 case R_PPC64_DTPREL16_HI:
5460 case R_PPC64_DTPREL16_HA:
5461 case R_PPC64_DTPREL16_DS:
5462 case R_PPC64_DTPREL16_LO_DS:
5463 case R_PPC64_DTPREL16_HIGH:
5464 case R_PPC64_DTPREL16_HIGHA:
5465 case R_PPC64_DTPREL16_HIGHER:
5466 case R_PPC64_DTPREL16_HIGHERA:
5467 case R_PPC64_DTPREL16_HIGHEST:
5468 case R_PPC64_DTPREL16_HIGHESTA:
5469 break;
5470
5471 /* Nor do these. */
5472 case R_PPC64_REL16:
5473 case R_PPC64_REL16_LO:
5474 case R_PPC64_REL16_HI:
5475 case R_PPC64_REL16_HA:
5476 break;
5477
5478 /* Not supported as a dynamic relocation. */
5479 case R_PPC64_ADDR64_LOCAL:
5480 if (info->shared)
5481 {
5482 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5483 ppc_howto_init ();
5484 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5485 "in shared libraries and PIEs.\n"),
5486 abfd, sec, rel->r_offset,
5487 ppc64_elf_howto_table[r_type]->name);
5488 bfd_set_error (bfd_error_bad_value);
5489 return FALSE;
5490 }
5491 break;
5492
5493 case R_PPC64_TOC16:
5494 case R_PPC64_TOC16_DS:
5495 htab->do_multi_toc = 1;
5496 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5497 case R_PPC64_TOC16_LO:
5498 case R_PPC64_TOC16_HI:
5499 case R_PPC64_TOC16_HA:
5500 case R_PPC64_TOC16_LO_DS:
5501 sec->has_toc_reloc = 1;
5502 break;
5503
5504 /* This relocation describes the C++ object vtable hierarchy.
5505 Reconstruct it for later use during GC. */
5506 case R_PPC64_GNU_VTINHERIT:
5507 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5508 return FALSE;
5509 break;
5510
5511 /* This relocation describes which C++ vtable entries are actually
5512 used. Record for later use during GC. */
5513 case R_PPC64_GNU_VTENTRY:
5514 BFD_ASSERT (h != NULL);
5515 if (h != NULL
5516 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5517 return FALSE;
5518 break;
5519
5520 case R_PPC64_REL14:
5521 case R_PPC64_REL14_BRTAKEN:
5522 case R_PPC64_REL14_BRNTAKEN:
5523 {
5524 asection *dest = NULL;
5525
5526 /* Heuristic: If jumping outside our section, chances are
5527 we are going to need a stub. */
5528 if (h != NULL)
5529 {
5530 /* If the sym is weak it may be overridden later, so
5531 don't assume we know where a weak sym lives. */
5532 if (h->root.type == bfd_link_hash_defined)
5533 dest = h->root.u.def.section;
5534 }
5535 else
5536 {
5537 Elf_Internal_Sym *isym;
5538
5539 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5540 abfd, r_symndx);
5541 if (isym == NULL)
5542 return FALSE;
5543
5544 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5545 }
5546
5547 if (dest != sec)
5548 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5549 }
5550 /* Fall through. */
5551
5552 case R_PPC64_REL24:
5553 if (h != NULL && ifunc == NULL)
5554 {
5555 /* We may need a .plt entry if the function this reloc
5556 refers to is in a shared lib. */
5557 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5558 return FALSE;
5559 h->needs_plt = 1;
5560 if (h->root.root.string[0] == '.'
5561 && h->root.root.string[1] != '\0')
5562 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5563 if (h == tga || h == dottga)
5564 sec->has_tls_reloc = 1;
5565 }
5566 break;
5567
5568 case R_PPC64_TPREL64:
5569 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5570 if (info->shared)
5571 info->flags |= DF_STATIC_TLS;
5572 goto dotlstoc;
5573
5574 case R_PPC64_DTPMOD64:
5575 if (rel + 1 < rel_end
5576 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5577 && rel[1].r_offset == rel->r_offset + 8)
5578 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5579 else
5580 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5581 goto dotlstoc;
5582
5583 case R_PPC64_DTPREL64:
5584 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5585 if (rel != relocs
5586 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5587 && rel[-1].r_offset == rel->r_offset - 8)
5588 /* This is the second reloc of a dtpmod, dtprel pair.
5589 Don't mark with TLS_DTPREL. */
5590 goto dodyn;
5591
5592 dotlstoc:
5593 sec->has_tls_reloc = 1;
5594 if (h != NULL)
5595 {
5596 struct ppc_link_hash_entry *eh;
5597 eh = (struct ppc_link_hash_entry *) h;
5598 eh->tls_mask |= tls_type;
5599 }
5600 else
5601 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5602 rel->r_addend, tls_type))
5603 return FALSE;
5604
5605 ppc64_sec = ppc64_elf_section_data (sec);
5606 if (ppc64_sec->sec_type != sec_toc)
5607 {
5608 bfd_size_type amt;
5609
5610 /* One extra to simplify get_tls_mask. */
5611 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5612 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5613 if (ppc64_sec->u.toc.symndx == NULL)
5614 return FALSE;
5615 amt = sec->size * sizeof (bfd_vma) / 8;
5616 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5617 if (ppc64_sec->u.toc.add == NULL)
5618 return FALSE;
5619 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5620 ppc64_sec->sec_type = sec_toc;
5621 }
5622 BFD_ASSERT (rel->r_offset % 8 == 0);
5623 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5624 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5625
5626 /* Mark the second slot of a GD or LD entry.
5627 -1 to indicate GD and -2 to indicate LD. */
5628 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5629 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5630 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5631 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5632 goto dodyn;
5633
5634 case R_PPC64_TPREL16:
5635 case R_PPC64_TPREL16_LO:
5636 case R_PPC64_TPREL16_HI:
5637 case R_PPC64_TPREL16_HA:
5638 case R_PPC64_TPREL16_DS:
5639 case R_PPC64_TPREL16_LO_DS:
5640 case R_PPC64_TPREL16_HIGH:
5641 case R_PPC64_TPREL16_HIGHA:
5642 case R_PPC64_TPREL16_HIGHER:
5643 case R_PPC64_TPREL16_HIGHERA:
5644 case R_PPC64_TPREL16_HIGHEST:
5645 case R_PPC64_TPREL16_HIGHESTA:
5646 if (info->shared)
5647 {
5648 info->flags |= DF_STATIC_TLS;
5649 goto dodyn;
5650 }
5651 break;
5652
5653 case R_PPC64_ADDR64:
5654 if (opd_sym_map != NULL
5655 && rel + 1 < rel_end
5656 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5657 {
5658 if (h != NULL)
5659 {
5660 if (h->root.root.string[0] == '.'
5661 && h->root.root.string[1] != 0
5662 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5663 ;
5664 else
5665 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5666 }
5667 else
5668 {
5669 asection *s;
5670 Elf_Internal_Sym *isym;
5671
5672 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5673 abfd, r_symndx);
5674 if (isym == NULL)
5675 return FALSE;
5676
5677 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5678 if (s != NULL && s != sec)
5679 opd_sym_map[rel->r_offset / 8] = s;
5680 }
5681 }
5682 /* Fall through. */
5683
5684 case R_PPC64_ADDR16:
5685 case R_PPC64_ADDR16_DS:
5686 case R_PPC64_ADDR16_HA:
5687 case R_PPC64_ADDR16_HI:
5688 case R_PPC64_ADDR16_HIGH:
5689 case R_PPC64_ADDR16_HIGHA:
5690 case R_PPC64_ADDR16_HIGHER:
5691 case R_PPC64_ADDR16_HIGHERA:
5692 case R_PPC64_ADDR16_HIGHEST:
5693 case R_PPC64_ADDR16_HIGHESTA:
5694 case R_PPC64_ADDR16_LO:
5695 case R_PPC64_ADDR16_LO_DS:
5696 if (h != NULL && !info->shared && abiversion (abfd) != 1
5697 && rel->r_addend == 0)
5698 {
5699 /* We may need a .plt entry if this reloc refers to a
5700 function in a shared lib. */
5701 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5702 return FALSE;
5703 h->pointer_equality_needed = 1;
5704 }
5705 /* Fall through. */
5706
5707 case R_PPC64_REL30:
5708 case R_PPC64_REL32:
5709 case R_PPC64_REL64:
5710 case R_PPC64_ADDR14:
5711 case R_PPC64_ADDR14_BRNTAKEN:
5712 case R_PPC64_ADDR14_BRTAKEN:
5713 case R_PPC64_ADDR24:
5714 case R_PPC64_ADDR32:
5715 case R_PPC64_UADDR16:
5716 case R_PPC64_UADDR32:
5717 case R_PPC64_UADDR64:
5718 case R_PPC64_TOC:
5719 if (h != NULL && !info->shared)
5720 /* We may need a copy reloc. */
5721 h->non_got_ref = 1;
5722
5723 /* Don't propagate .opd relocs. */
5724 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5725 break;
5726
5727 /* If we are creating a shared library, and this is a reloc
5728 against a global symbol, or a non PC relative reloc
5729 against a local symbol, then we need to copy the reloc
5730 into the shared library. However, if we are linking with
5731 -Bsymbolic, we do not need to copy a reloc against a
5732 global symbol which is defined in an object we are
5733 including in the link (i.e., DEF_REGULAR is set). At
5734 this point we have not seen all the input files, so it is
5735 possible that DEF_REGULAR is not set now but will be set
5736 later (it is never cleared). In case of a weak definition,
5737 DEF_REGULAR may be cleared later by a strong definition in
5738 a shared library. We account for that possibility below by
5739 storing information in the dyn_relocs field of the hash
5740 table entry. A similar situation occurs when creating
5741 shared libraries and symbol visibility changes render the
5742 symbol local.
5743
5744 If on the other hand, we are creating an executable, we
5745 may need to keep relocations for symbols satisfied by a
5746 dynamic library if we manage to avoid copy relocs for the
5747 symbol. */
5748 dodyn:
5749 if ((info->shared
5750 && (must_be_dyn_reloc (info, r_type)
5751 || (h != NULL
5752 && (!SYMBOLIC_BIND (info, h)
5753 || h->root.type == bfd_link_hash_defweak
5754 || !h->def_regular))))
5755 || (ELIMINATE_COPY_RELOCS
5756 && !info->shared
5757 && h != NULL
5758 && (h->root.type == bfd_link_hash_defweak
5759 || !h->def_regular))
5760 || (!info->shared
5761 && ifunc != NULL))
5762 {
5763 /* We must copy these reloc types into the output file.
5764 Create a reloc section in dynobj and make room for
5765 this reloc. */
5766 if (sreloc == NULL)
5767 {
5768 sreloc = _bfd_elf_make_dynamic_reloc_section
5769 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5770
5771 if (sreloc == NULL)
5772 return FALSE;
5773 }
5774
5775 /* If this is a global symbol, we count the number of
5776 relocations we need for this symbol. */
5777 if (h != NULL)
5778 {
5779 struct elf_dyn_relocs *p;
5780 struct elf_dyn_relocs **head;
5781
5782 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5783 p = *head;
5784 if (p == NULL || p->sec != sec)
5785 {
5786 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5787 if (p == NULL)
5788 return FALSE;
5789 p->next = *head;
5790 *head = p;
5791 p->sec = sec;
5792 p->count = 0;
5793 p->pc_count = 0;
5794 }
5795 p->count += 1;
5796 if (!must_be_dyn_reloc (info, r_type))
5797 p->pc_count += 1;
5798 }
5799 else
5800 {
5801 /* Track dynamic relocs needed for local syms too.
5802 We really need local syms available to do this
5803 easily. Oh well. */
5804 struct ppc_dyn_relocs *p;
5805 struct ppc_dyn_relocs **head;
5806 bfd_boolean is_ifunc;
5807 asection *s;
5808 void *vpp;
5809 Elf_Internal_Sym *isym;
5810
5811 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5812 abfd, r_symndx);
5813 if (isym == NULL)
5814 return FALSE;
5815
5816 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5817 if (s == NULL)
5818 s = sec;
5819
5820 vpp = &elf_section_data (s)->local_dynrel;
5821 head = (struct ppc_dyn_relocs **) vpp;
5822 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5823 p = *head;
5824 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5825 p = p->next;
5826 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5827 {
5828 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5829 if (p == NULL)
5830 return FALSE;
5831 p->next = *head;
5832 *head = p;
5833 p->sec = sec;
5834 p->ifunc = is_ifunc;
5835 p->count = 0;
5836 }
5837 p->count += 1;
5838 }
5839 }
5840 break;
5841
5842 default:
5843 break;
5844 }
5845 }
5846
5847 return TRUE;
5848 }
5849
5850 /* Merge backend specific data from an object file to the output
5851 object file when linking. */
5852
5853 static bfd_boolean
5854 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5855 {
5856 unsigned long iflags, oflags;
5857
5858 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5859 return TRUE;
5860
5861 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5862 return TRUE;
5863
5864 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5865 return FALSE;
5866
5867 iflags = elf_elfheader (ibfd)->e_flags;
5868 oflags = elf_elfheader (obfd)->e_flags;
5869
5870 if (iflags & ~EF_PPC64_ABI)
5871 {
5872 (*_bfd_error_handler)
5873 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5874 bfd_set_error (bfd_error_bad_value);
5875 return FALSE;
5876 }
5877 else if (iflags != oflags && iflags != 0)
5878 {
5879 (*_bfd_error_handler)
5880 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5881 ibfd, iflags, oflags);
5882 bfd_set_error (bfd_error_bad_value);
5883 return FALSE;
5884 }
5885
5886 /* Merge Tag_compatibility attributes and any common GNU ones. */
5887 _bfd_elf_merge_object_attributes (ibfd, obfd);
5888
5889 return TRUE;
5890 }
5891
5892 static bfd_boolean
5893 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5894 {
5895 /* Print normal ELF private data. */
5896 _bfd_elf_print_private_bfd_data (abfd, ptr);
5897
5898 if (elf_elfheader (abfd)->e_flags != 0)
5899 {
5900 FILE *file = ptr;
5901
5902 /* xgettext:c-format */
5903 fprintf (file, _("private flags = 0x%lx:"),
5904 elf_elfheader (abfd)->e_flags);
5905
5906 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5907 fprintf (file, _(" [abiv%ld]"),
5908 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5909 fputc ('\n', file);
5910 }
5911
5912 return TRUE;
5913 }
5914
5915 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5916 of the code entry point, and its section, which must be in the same
5917 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5918
5919 static bfd_vma
5920 opd_entry_value (asection *opd_sec,
5921 bfd_vma offset,
5922 asection **code_sec,
5923 bfd_vma *code_off,
5924 bfd_boolean in_code_sec)
5925 {
5926 bfd *opd_bfd = opd_sec->owner;
5927 Elf_Internal_Rela *relocs;
5928 Elf_Internal_Rela *lo, *hi, *look;
5929 bfd_vma val;
5930
5931 /* No relocs implies we are linking a --just-symbols object, or looking
5932 at a final linked executable with addr2line or somesuch. */
5933 if (opd_sec->reloc_count == 0)
5934 {
5935 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5936
5937 if (contents == NULL)
5938 {
5939 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5940 return (bfd_vma) -1;
5941 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5942 }
5943
5944 val = bfd_get_64 (opd_bfd, contents + offset);
5945 if (code_sec != NULL)
5946 {
5947 asection *sec, *likely = NULL;
5948
5949 if (in_code_sec)
5950 {
5951 sec = *code_sec;
5952 if (sec->vma <= val
5953 && val < sec->vma + sec->size)
5954 likely = sec;
5955 else
5956 val = -1;
5957 }
5958 else
5959 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5960 if (sec->vma <= val
5961 && (sec->flags & SEC_LOAD) != 0
5962 && (sec->flags & SEC_ALLOC) != 0)
5963 likely = sec;
5964 if (likely != NULL)
5965 {
5966 *code_sec = likely;
5967 if (code_off != NULL)
5968 *code_off = val - likely->vma;
5969 }
5970 }
5971 return val;
5972 }
5973
5974 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5975
5976 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5977 if (relocs == NULL)
5978 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5979
5980 /* Go find the opd reloc at the sym address. */
5981 lo = relocs;
5982 BFD_ASSERT (lo != NULL);
5983 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5984 val = (bfd_vma) -1;
5985 while (lo < hi)
5986 {
5987 look = lo + (hi - lo) / 2;
5988 if (look->r_offset < offset)
5989 lo = look + 1;
5990 else if (look->r_offset > offset)
5991 hi = look;
5992 else
5993 {
5994 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5995
5996 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5997 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5998 {
5999 unsigned long symndx = ELF64_R_SYM (look->r_info);
6000 asection *sec = NULL;
6001
6002 if (symndx >= symtab_hdr->sh_info
6003 && elf_sym_hashes (opd_bfd) != NULL)
6004 {
6005 struct elf_link_hash_entry **sym_hashes;
6006 struct elf_link_hash_entry *rh;
6007
6008 sym_hashes = elf_sym_hashes (opd_bfd);
6009 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6010 if (rh != NULL)
6011 {
6012 rh = elf_follow_link (rh);
6013 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6014 || rh->root.type == bfd_link_hash_defweak);
6015 val = rh->root.u.def.value;
6016 sec = rh->root.u.def.section;
6017 if (sec->owner != opd_bfd)
6018 {
6019 sec = NULL;
6020 val = (bfd_vma) -1;
6021 }
6022 }
6023 }
6024
6025 if (sec == NULL)
6026 {
6027 Elf_Internal_Sym *sym;
6028
6029 if (symndx < symtab_hdr->sh_info)
6030 {
6031 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6032 if (sym == NULL)
6033 {
6034 size_t symcnt = symtab_hdr->sh_info;
6035 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6036 symcnt, 0,
6037 NULL, NULL, NULL);
6038 if (sym == NULL)
6039 break;
6040 symtab_hdr->contents = (bfd_byte *) sym;
6041 }
6042 sym += symndx;
6043 }
6044 else
6045 {
6046 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6047 1, symndx,
6048 NULL, NULL, NULL);
6049 if (sym == NULL)
6050 break;
6051 }
6052 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6053 if (sec == NULL)
6054 break;
6055 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6056 val = sym->st_value;
6057 }
6058
6059 val += look->r_addend;
6060 if (code_off != NULL)
6061 *code_off = val;
6062 if (code_sec != NULL)
6063 {
6064 if (in_code_sec && *code_sec != sec)
6065 return -1;
6066 else
6067 *code_sec = sec;
6068 }
6069 if (sec->output_section != NULL)
6070 val += sec->output_section->vma + sec->output_offset;
6071 }
6072 break;
6073 }
6074 }
6075
6076 return val;
6077 }
6078
6079 /* If the ELF symbol SYM might be a function in SEC, return the
6080 function size and set *CODE_OFF to the function's entry point,
6081 otherwise return zero. */
6082
6083 static bfd_size_type
6084 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6085 bfd_vma *code_off)
6086 {
6087 bfd_size_type size;
6088
6089 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6090 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6091 return 0;
6092
6093 size = 0;
6094 if (!(sym->flags & BSF_SYNTHETIC))
6095 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6096
6097 if (strcmp (sym->section->name, ".opd") == 0)
6098 {
6099 if (opd_entry_value (sym->section, sym->value,
6100 &sec, code_off, TRUE) == (bfd_vma) -1)
6101 return 0;
6102 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6103 symbol. This size has nothing to do with the code size of the
6104 function, which is what we're supposed to return, but the
6105 code size isn't available without looking up the dot-sym.
6106 However, doing that would be a waste of time particularly
6107 since elf_find_function will look at the dot-sym anyway.
6108 Now, elf_find_function will keep the largest size of any
6109 function sym found at the code address of interest, so return
6110 1 here to avoid it incorrectly caching a larger function size
6111 for a small function. This does mean we return the wrong
6112 size for a new-ABI function of size 24, but all that does is
6113 disable caching for such functions. */
6114 if (size == 24)
6115 size = 1;
6116 }
6117 else
6118 {
6119 if (sym->section != sec)
6120 return 0;
6121 *code_off = sym->value;
6122 }
6123 if (size == 0)
6124 size = 1;
6125 return size;
6126 }
6127
6128 /* Return true if symbol is defined in a regular object file. */
6129
6130 static bfd_boolean
6131 is_static_defined (struct elf_link_hash_entry *h)
6132 {
6133 return ((h->root.type == bfd_link_hash_defined
6134 || h->root.type == bfd_link_hash_defweak)
6135 && h->root.u.def.section != NULL
6136 && h->root.u.def.section->output_section != NULL);
6137 }
6138
6139 /* If FDH is a function descriptor symbol, return the associated code
6140 entry symbol if it is defined. Return NULL otherwise. */
6141
6142 static struct ppc_link_hash_entry *
6143 defined_code_entry (struct ppc_link_hash_entry *fdh)
6144 {
6145 if (fdh->is_func_descriptor)
6146 {
6147 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6148 if (fh->elf.root.type == bfd_link_hash_defined
6149 || fh->elf.root.type == bfd_link_hash_defweak)
6150 return fh;
6151 }
6152 return NULL;
6153 }
6154
6155 /* If FH is a function code entry symbol, return the associated
6156 function descriptor symbol if it is defined. Return NULL otherwise. */
6157
6158 static struct ppc_link_hash_entry *
6159 defined_func_desc (struct ppc_link_hash_entry *fh)
6160 {
6161 if (fh->oh != NULL
6162 && fh->oh->is_func_descriptor)
6163 {
6164 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6165 if (fdh->elf.root.type == bfd_link_hash_defined
6166 || fdh->elf.root.type == bfd_link_hash_defweak)
6167 return fdh;
6168 }
6169 return NULL;
6170 }
6171
6172 /* Mark all our entry sym sections, both opd and code section. */
6173
6174 static void
6175 ppc64_elf_gc_keep (struct bfd_link_info *info)
6176 {
6177 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6178 struct bfd_sym_chain *sym;
6179
6180 if (htab == NULL)
6181 return;
6182
6183 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6184 {
6185 struct ppc_link_hash_entry *eh, *fh;
6186 asection *sec;
6187
6188 eh = (struct ppc_link_hash_entry *)
6189 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6190 if (eh == NULL)
6191 continue;
6192 if (eh->elf.root.type != bfd_link_hash_defined
6193 && eh->elf.root.type != bfd_link_hash_defweak)
6194 continue;
6195
6196 fh = defined_code_entry (eh);
6197 if (fh != NULL)
6198 {
6199 sec = fh->elf.root.u.def.section;
6200 sec->flags |= SEC_KEEP;
6201 }
6202 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6203 && opd_entry_value (eh->elf.root.u.def.section,
6204 eh->elf.root.u.def.value,
6205 &sec, NULL, FALSE) != (bfd_vma) -1)
6206 sec->flags |= SEC_KEEP;
6207
6208 sec = eh->elf.root.u.def.section;
6209 sec->flags |= SEC_KEEP;
6210 }
6211 }
6212
6213 /* Mark sections containing dynamically referenced symbols. When
6214 building shared libraries, we must assume that any visible symbol is
6215 referenced. */
6216
6217 static bfd_boolean
6218 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6219 {
6220 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6221 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6222 struct ppc_link_hash_entry *fdh;
6223 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6224
6225 /* Dynamic linking info is on the func descriptor sym. */
6226 fdh = defined_func_desc (eh);
6227 if (fdh != NULL)
6228 eh = fdh;
6229
6230 if ((eh->elf.root.type == bfd_link_hash_defined
6231 || eh->elf.root.type == bfd_link_hash_defweak)
6232 && (eh->elf.ref_dynamic
6233 || (eh->elf.def_regular
6234 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6235 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6236 && (!info->executable
6237 || info->export_dynamic
6238 || (eh->elf.dynamic
6239 && d != NULL
6240 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6241 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6242 || !bfd_hide_sym_by_version (info->version_info,
6243 eh->elf.root.root.string)))))
6244 {
6245 asection *code_sec;
6246 struct ppc_link_hash_entry *fh;
6247
6248 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6249
6250 /* Function descriptor syms cause the associated
6251 function code sym section to be marked. */
6252 fh = defined_code_entry (eh);
6253 if (fh != NULL)
6254 {
6255 code_sec = fh->elf.root.u.def.section;
6256 code_sec->flags |= SEC_KEEP;
6257 }
6258 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6259 && opd_entry_value (eh->elf.root.u.def.section,
6260 eh->elf.root.u.def.value,
6261 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6262 code_sec->flags |= SEC_KEEP;
6263 }
6264
6265 return TRUE;
6266 }
6267
6268 /* Return the section that should be marked against GC for a given
6269 relocation. */
6270
6271 static asection *
6272 ppc64_elf_gc_mark_hook (asection *sec,
6273 struct bfd_link_info *info,
6274 Elf_Internal_Rela *rel,
6275 struct elf_link_hash_entry *h,
6276 Elf_Internal_Sym *sym)
6277 {
6278 asection *rsec;
6279
6280 /* Syms return NULL if we're marking .opd, so we avoid marking all
6281 function sections, as all functions are referenced in .opd. */
6282 rsec = NULL;
6283 if (get_opd_info (sec) != NULL)
6284 return rsec;
6285
6286 if (h != NULL)
6287 {
6288 enum elf_ppc64_reloc_type r_type;
6289 struct ppc_link_hash_entry *eh, *fh, *fdh;
6290
6291 r_type = ELF64_R_TYPE (rel->r_info);
6292 switch (r_type)
6293 {
6294 case R_PPC64_GNU_VTINHERIT:
6295 case R_PPC64_GNU_VTENTRY:
6296 break;
6297
6298 default:
6299 switch (h->root.type)
6300 {
6301 case bfd_link_hash_defined:
6302 case bfd_link_hash_defweak:
6303 eh = (struct ppc_link_hash_entry *) h;
6304 fdh = defined_func_desc (eh);
6305 if (fdh != NULL)
6306 eh = fdh;
6307
6308 /* Function descriptor syms cause the associated
6309 function code sym section to be marked. */
6310 fh = defined_code_entry (eh);
6311 if (fh != NULL)
6312 {
6313 /* They also mark their opd section. */
6314 eh->elf.root.u.def.section->gc_mark = 1;
6315
6316 rsec = fh->elf.root.u.def.section;
6317 }
6318 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6319 && opd_entry_value (eh->elf.root.u.def.section,
6320 eh->elf.root.u.def.value,
6321 &rsec, NULL, FALSE) != (bfd_vma) -1)
6322 eh->elf.root.u.def.section->gc_mark = 1;
6323 else
6324 rsec = h->root.u.def.section;
6325 break;
6326
6327 case bfd_link_hash_common:
6328 rsec = h->root.u.c.p->section;
6329 break;
6330
6331 default:
6332 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6333 }
6334 }
6335 }
6336 else
6337 {
6338 struct _opd_sec_data *opd;
6339
6340 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6341 opd = get_opd_info (rsec);
6342 if (opd != NULL && opd->func_sec != NULL)
6343 {
6344 rsec->gc_mark = 1;
6345
6346 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6347 }
6348 }
6349
6350 return rsec;
6351 }
6352
6353 /* Update the .got, .plt. and dynamic reloc reference counts for the
6354 section being removed. */
6355
6356 static bfd_boolean
6357 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6358 asection *sec, const Elf_Internal_Rela *relocs)
6359 {
6360 struct ppc_link_hash_table *htab;
6361 Elf_Internal_Shdr *symtab_hdr;
6362 struct elf_link_hash_entry **sym_hashes;
6363 struct got_entry **local_got_ents;
6364 const Elf_Internal_Rela *rel, *relend;
6365
6366 if (info->relocatable)
6367 return TRUE;
6368
6369 if ((sec->flags & SEC_ALLOC) == 0)
6370 return TRUE;
6371
6372 elf_section_data (sec)->local_dynrel = NULL;
6373
6374 htab = ppc_hash_table (info);
6375 if (htab == NULL)
6376 return FALSE;
6377
6378 symtab_hdr = &elf_symtab_hdr (abfd);
6379 sym_hashes = elf_sym_hashes (abfd);
6380 local_got_ents = elf_local_got_ents (abfd);
6381
6382 relend = relocs + sec->reloc_count;
6383 for (rel = relocs; rel < relend; rel++)
6384 {
6385 unsigned long r_symndx;
6386 enum elf_ppc64_reloc_type r_type;
6387 struct elf_link_hash_entry *h = NULL;
6388 unsigned char tls_type = 0;
6389
6390 r_symndx = ELF64_R_SYM (rel->r_info);
6391 r_type = ELF64_R_TYPE (rel->r_info);
6392 if (r_symndx >= symtab_hdr->sh_info)
6393 {
6394 struct ppc_link_hash_entry *eh;
6395 struct elf_dyn_relocs **pp;
6396 struct elf_dyn_relocs *p;
6397
6398 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6399 h = elf_follow_link (h);
6400 eh = (struct ppc_link_hash_entry *) h;
6401
6402 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6403 if (p->sec == sec)
6404 {
6405 /* Everything must go for SEC. */
6406 *pp = p->next;
6407 break;
6408 }
6409 }
6410
6411 if (is_branch_reloc (r_type))
6412 {
6413 struct plt_entry **ifunc = NULL;
6414 if (h != NULL)
6415 {
6416 if (h->type == STT_GNU_IFUNC)
6417 ifunc = &h->plt.plist;
6418 }
6419 else if (local_got_ents != NULL)
6420 {
6421 struct plt_entry **local_plt = (struct plt_entry **)
6422 (local_got_ents + symtab_hdr->sh_info);
6423 unsigned char *local_got_tls_masks = (unsigned char *)
6424 (local_plt + symtab_hdr->sh_info);
6425 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6426 ifunc = local_plt + r_symndx;
6427 }
6428 if (ifunc != NULL)
6429 {
6430 struct plt_entry *ent;
6431
6432 for (ent = *ifunc; ent != NULL; ent = ent->next)
6433 if (ent->addend == rel->r_addend)
6434 break;
6435 if (ent == NULL)
6436 abort ();
6437 if (ent->plt.refcount > 0)
6438 ent->plt.refcount -= 1;
6439 continue;
6440 }
6441 }
6442
6443 switch (r_type)
6444 {
6445 case R_PPC64_GOT_TLSLD16:
6446 case R_PPC64_GOT_TLSLD16_LO:
6447 case R_PPC64_GOT_TLSLD16_HI:
6448 case R_PPC64_GOT_TLSLD16_HA:
6449 tls_type = TLS_TLS | TLS_LD;
6450 goto dogot;
6451
6452 case R_PPC64_GOT_TLSGD16:
6453 case R_PPC64_GOT_TLSGD16_LO:
6454 case R_PPC64_GOT_TLSGD16_HI:
6455 case R_PPC64_GOT_TLSGD16_HA:
6456 tls_type = TLS_TLS | TLS_GD;
6457 goto dogot;
6458
6459 case R_PPC64_GOT_TPREL16_DS:
6460 case R_PPC64_GOT_TPREL16_LO_DS:
6461 case R_PPC64_GOT_TPREL16_HI:
6462 case R_PPC64_GOT_TPREL16_HA:
6463 tls_type = TLS_TLS | TLS_TPREL;
6464 goto dogot;
6465
6466 case R_PPC64_GOT_DTPREL16_DS:
6467 case R_PPC64_GOT_DTPREL16_LO_DS:
6468 case R_PPC64_GOT_DTPREL16_HI:
6469 case R_PPC64_GOT_DTPREL16_HA:
6470 tls_type = TLS_TLS | TLS_DTPREL;
6471 goto dogot;
6472
6473 case R_PPC64_GOT16:
6474 case R_PPC64_GOT16_DS:
6475 case R_PPC64_GOT16_HA:
6476 case R_PPC64_GOT16_HI:
6477 case R_PPC64_GOT16_LO:
6478 case R_PPC64_GOT16_LO_DS:
6479 dogot:
6480 {
6481 struct got_entry *ent;
6482
6483 if (h != NULL)
6484 ent = h->got.glist;
6485 else
6486 ent = local_got_ents[r_symndx];
6487
6488 for (; ent != NULL; ent = ent->next)
6489 if (ent->addend == rel->r_addend
6490 && ent->owner == abfd
6491 && ent->tls_type == tls_type)
6492 break;
6493 if (ent == NULL)
6494 abort ();
6495 if (ent->got.refcount > 0)
6496 ent->got.refcount -= 1;
6497 }
6498 break;
6499
6500 case R_PPC64_PLT16_HA:
6501 case R_PPC64_PLT16_HI:
6502 case R_PPC64_PLT16_LO:
6503 case R_PPC64_PLT32:
6504 case R_PPC64_PLT64:
6505 case R_PPC64_REL14:
6506 case R_PPC64_REL14_BRNTAKEN:
6507 case R_PPC64_REL14_BRTAKEN:
6508 case R_PPC64_REL24:
6509 if (h != NULL)
6510 {
6511 struct plt_entry *ent;
6512
6513 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6514 if (ent->addend == rel->r_addend)
6515 break;
6516 if (ent != NULL && ent->plt.refcount > 0)
6517 ent->plt.refcount -= 1;
6518 }
6519 break;
6520
6521 default:
6522 break;
6523 }
6524 }
6525 return TRUE;
6526 }
6527
6528 /* The maximum size of .sfpr. */
6529 #define SFPR_MAX (218*4)
6530
6531 struct sfpr_def_parms
6532 {
6533 const char name[12];
6534 unsigned char lo, hi;
6535 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6536 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6537 };
6538
6539 /* Auto-generate _save*, _rest* functions in .sfpr. */
6540
6541 static bfd_boolean
6542 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6543 {
6544 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6545 unsigned int i;
6546 size_t len = strlen (parm->name);
6547 bfd_boolean writing = FALSE;
6548 char sym[16];
6549
6550 if (htab == NULL)
6551 return FALSE;
6552
6553 memcpy (sym, parm->name, len);
6554 sym[len + 2] = 0;
6555
6556 for (i = parm->lo; i <= parm->hi; i++)
6557 {
6558 struct elf_link_hash_entry *h;
6559
6560 sym[len + 0] = i / 10 + '0';
6561 sym[len + 1] = i % 10 + '0';
6562 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6563 if (h != NULL
6564 && !h->def_regular)
6565 {
6566 h->root.type = bfd_link_hash_defined;
6567 h->root.u.def.section = htab->sfpr;
6568 h->root.u.def.value = htab->sfpr->size;
6569 h->type = STT_FUNC;
6570 h->def_regular = 1;
6571 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6572 writing = TRUE;
6573 if (htab->sfpr->contents == NULL)
6574 {
6575 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6576 if (htab->sfpr->contents == NULL)
6577 return FALSE;
6578 }
6579 }
6580 if (writing)
6581 {
6582 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6583 if (i != parm->hi)
6584 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6585 else
6586 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6587 htab->sfpr->size = p - htab->sfpr->contents;
6588 }
6589 }
6590
6591 return TRUE;
6592 }
6593
6594 static bfd_byte *
6595 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6596 {
6597 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6598 return p + 4;
6599 }
6600
6601 static bfd_byte *
6602 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6603 {
6604 p = savegpr0 (abfd, p, r);
6605 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6606 p = p + 4;
6607 bfd_put_32 (abfd, BLR, p);
6608 return p + 4;
6609 }
6610
6611 static bfd_byte *
6612 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6613 {
6614 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6615 return p + 4;
6616 }
6617
6618 static bfd_byte *
6619 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6620 {
6621 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6622 p = p + 4;
6623 p = restgpr0 (abfd, p, r);
6624 bfd_put_32 (abfd, MTLR_R0, p);
6625 p = p + 4;
6626 if (r == 29)
6627 {
6628 p = restgpr0 (abfd, p, 30);
6629 p = restgpr0 (abfd, p, 31);
6630 }
6631 bfd_put_32 (abfd, BLR, p);
6632 return p + 4;
6633 }
6634
6635 static bfd_byte *
6636 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6637 {
6638 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6639 return p + 4;
6640 }
6641
6642 static bfd_byte *
6643 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6644 {
6645 p = savegpr1 (abfd, p, r);
6646 bfd_put_32 (abfd, BLR, p);
6647 return p + 4;
6648 }
6649
6650 static bfd_byte *
6651 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6652 {
6653 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6654 return p + 4;
6655 }
6656
6657 static bfd_byte *
6658 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6659 {
6660 p = restgpr1 (abfd, p, r);
6661 bfd_put_32 (abfd, BLR, p);
6662 return p + 4;
6663 }
6664
6665 static bfd_byte *
6666 savefpr (bfd *abfd, bfd_byte *p, int r)
6667 {
6668 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6669 return p + 4;
6670 }
6671
6672 static bfd_byte *
6673 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6674 {
6675 p = savefpr (abfd, p, r);
6676 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6677 p = p + 4;
6678 bfd_put_32 (abfd, BLR, p);
6679 return p + 4;
6680 }
6681
6682 static bfd_byte *
6683 restfpr (bfd *abfd, bfd_byte *p, int r)
6684 {
6685 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6686 return p + 4;
6687 }
6688
6689 static bfd_byte *
6690 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6691 {
6692 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6693 p = p + 4;
6694 p = restfpr (abfd, p, r);
6695 bfd_put_32 (abfd, MTLR_R0, p);
6696 p = p + 4;
6697 if (r == 29)
6698 {
6699 p = restfpr (abfd, p, 30);
6700 p = restfpr (abfd, p, 31);
6701 }
6702 bfd_put_32 (abfd, BLR, p);
6703 return p + 4;
6704 }
6705
6706 static bfd_byte *
6707 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6708 {
6709 p = savefpr (abfd, p, r);
6710 bfd_put_32 (abfd, BLR, p);
6711 return p + 4;
6712 }
6713
6714 static bfd_byte *
6715 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6716 {
6717 p = restfpr (abfd, p, r);
6718 bfd_put_32 (abfd, BLR, p);
6719 return p + 4;
6720 }
6721
6722 static bfd_byte *
6723 savevr (bfd *abfd, bfd_byte *p, int r)
6724 {
6725 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6726 p = p + 4;
6727 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6728 return p + 4;
6729 }
6730
6731 static bfd_byte *
6732 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6733 {
6734 p = savevr (abfd, p, r);
6735 bfd_put_32 (abfd, BLR, p);
6736 return p + 4;
6737 }
6738
6739 static bfd_byte *
6740 restvr (bfd *abfd, bfd_byte *p, int r)
6741 {
6742 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6743 p = p + 4;
6744 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6745 return p + 4;
6746 }
6747
6748 static bfd_byte *
6749 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6750 {
6751 p = restvr (abfd, p, r);
6752 bfd_put_32 (abfd, BLR, p);
6753 return p + 4;
6754 }
6755
6756 /* Called via elf_link_hash_traverse to transfer dynamic linking
6757 information on function code symbol entries to their corresponding
6758 function descriptor symbol entries. */
6759
6760 static bfd_boolean
6761 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6762 {
6763 struct bfd_link_info *info;
6764 struct ppc_link_hash_table *htab;
6765 struct plt_entry *ent;
6766 struct ppc_link_hash_entry *fh;
6767 struct ppc_link_hash_entry *fdh;
6768 bfd_boolean force_local;
6769
6770 fh = (struct ppc_link_hash_entry *) h;
6771 if (fh->elf.root.type == bfd_link_hash_indirect)
6772 return TRUE;
6773
6774 info = inf;
6775 htab = ppc_hash_table (info);
6776 if (htab == NULL)
6777 return FALSE;
6778
6779 /* Resolve undefined references to dot-symbols as the value
6780 in the function descriptor, if we have one in a regular object.
6781 This is to satisfy cases like ".quad .foo". Calls to functions
6782 in dynamic objects are handled elsewhere. */
6783 if (fh->elf.root.type == bfd_link_hash_undefweak
6784 && fh->was_undefined
6785 && (fdh = defined_func_desc (fh)) != NULL
6786 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6787 && opd_entry_value (fdh->elf.root.u.def.section,
6788 fdh->elf.root.u.def.value,
6789 &fh->elf.root.u.def.section,
6790 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6791 {
6792 fh->elf.root.type = fdh->elf.root.type;
6793 fh->elf.forced_local = 1;
6794 fh->elf.def_regular = fdh->elf.def_regular;
6795 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6796 }
6797
6798 /* If this is a function code symbol, transfer dynamic linking
6799 information to the function descriptor symbol. */
6800 if (!fh->is_func)
6801 return TRUE;
6802
6803 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6804 if (ent->plt.refcount > 0)
6805 break;
6806 if (ent == NULL
6807 || fh->elf.root.root.string[0] != '.'
6808 || fh->elf.root.root.string[1] == '\0')
6809 return TRUE;
6810
6811 /* Find the corresponding function descriptor symbol. Create it
6812 as undefined if necessary. */
6813
6814 fdh = lookup_fdh (fh, htab);
6815 if (fdh == NULL
6816 && !info->executable
6817 && (fh->elf.root.type == bfd_link_hash_undefined
6818 || fh->elf.root.type == bfd_link_hash_undefweak))
6819 {
6820 fdh = make_fdh (info, fh);
6821 if (fdh == NULL)
6822 return FALSE;
6823 }
6824
6825 /* Fake function descriptors are made undefweak. If the function
6826 code symbol is strong undefined, make the fake sym the same.
6827 If the function code symbol is defined, then force the fake
6828 descriptor local; We can't support overriding of symbols in a
6829 shared library on a fake descriptor. */
6830
6831 if (fdh != NULL
6832 && fdh->fake
6833 && fdh->elf.root.type == bfd_link_hash_undefweak)
6834 {
6835 if (fh->elf.root.type == bfd_link_hash_undefined)
6836 {
6837 fdh->elf.root.type = bfd_link_hash_undefined;
6838 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6839 }
6840 else if (fh->elf.root.type == bfd_link_hash_defined
6841 || fh->elf.root.type == bfd_link_hash_defweak)
6842 {
6843 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6844 }
6845 }
6846
6847 if (fdh != NULL
6848 && !fdh->elf.forced_local
6849 && (!info->executable
6850 || fdh->elf.def_dynamic
6851 || fdh->elf.ref_dynamic
6852 || (fdh->elf.root.type == bfd_link_hash_undefweak
6853 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6854 {
6855 if (fdh->elf.dynindx == -1)
6856 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6857 return FALSE;
6858 fdh->elf.ref_regular |= fh->elf.ref_regular;
6859 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6860 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6861 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6862 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6863 {
6864 move_plt_plist (fh, fdh);
6865 fdh->elf.needs_plt = 1;
6866 }
6867 fdh->is_func_descriptor = 1;
6868 fdh->oh = fh;
6869 fh->oh = fdh;
6870 }
6871
6872 /* Now that the info is on the function descriptor, clear the
6873 function code sym info. Any function code syms for which we
6874 don't have a definition in a regular file, we force local.
6875 This prevents a shared library from exporting syms that have
6876 been imported from another library. Function code syms that
6877 are really in the library we must leave global to prevent the
6878 linker dragging in a definition from a static library. */
6879 force_local = (!fh->elf.def_regular
6880 || fdh == NULL
6881 || !fdh->elf.def_regular
6882 || fdh->elf.forced_local);
6883 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6884
6885 return TRUE;
6886 }
6887
6888 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6889 this hook to a) provide some gcc support functions, and b) transfer
6890 dynamic linking information gathered so far on function code symbol
6891 entries, to their corresponding function descriptor symbol entries. */
6892
6893 static bfd_boolean
6894 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6895 struct bfd_link_info *info)
6896 {
6897 struct ppc_link_hash_table *htab;
6898 unsigned int i;
6899 static const struct sfpr_def_parms funcs[] =
6900 {
6901 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6902 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6903 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6904 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6905 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6906 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6907 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6908 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6909 { "._savef", 14, 31, savefpr, savefpr1_tail },
6910 { "._restf", 14, 31, restfpr, restfpr1_tail },
6911 { "_savevr_", 20, 31, savevr, savevr_tail },
6912 { "_restvr_", 20, 31, restvr, restvr_tail }
6913 };
6914
6915 htab = ppc_hash_table (info);
6916 if (htab == NULL)
6917 return FALSE;
6918
6919 if (!info->relocatable
6920 && htab->elf.hgot != NULL)
6921 {
6922 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6923 /* Make .TOC. defined so as to prevent it being made dynamic.
6924 The wrong value here is fixed later in ppc64_elf_set_toc. */
6925 htab->elf.hgot->type = STT_OBJECT;
6926 htab->elf.hgot->root.type = bfd_link_hash_defined;
6927 htab->elf.hgot->root.u.def.value = 0;
6928 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6929 htab->elf.hgot->def_regular = 1;
6930 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6931 | STV_HIDDEN);
6932 }
6933
6934 if (htab->sfpr == NULL)
6935 /* We don't have any relocs. */
6936 return TRUE;
6937
6938 /* Provide any missing _save* and _rest* functions. */
6939 htab->sfpr->size = 0;
6940 if (htab->params->save_restore_funcs)
6941 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6942 if (!sfpr_define (info, &funcs[i]))
6943 return FALSE;
6944
6945 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6946
6947 if (htab->sfpr->size == 0)
6948 htab->sfpr->flags |= SEC_EXCLUDE;
6949
6950 return TRUE;
6951 }
6952
6953 /* Return true if we have dynamic relocs that apply to read-only sections. */
6954
6955 static bfd_boolean
6956 readonly_dynrelocs (struct elf_link_hash_entry *h)
6957 {
6958 struct ppc_link_hash_entry *eh;
6959 struct elf_dyn_relocs *p;
6960
6961 eh = (struct ppc_link_hash_entry *) h;
6962 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6963 {
6964 asection *s = p->sec->output_section;
6965
6966 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6967 return TRUE;
6968 }
6969 return FALSE;
6970 }
6971
6972 /* Adjust a symbol defined by a dynamic object and referenced by a
6973 regular object. The current definition is in some section of the
6974 dynamic object, but we're not including those sections. We have to
6975 change the definition to something the rest of the link can
6976 understand. */
6977
6978 static bfd_boolean
6979 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6980 struct elf_link_hash_entry *h)
6981 {
6982 struct ppc_link_hash_table *htab;
6983 asection *s;
6984
6985 htab = ppc_hash_table (info);
6986 if (htab == NULL)
6987 return FALSE;
6988
6989 /* Deal with function syms. */
6990 if (h->type == STT_FUNC
6991 || h->type == STT_GNU_IFUNC
6992 || h->needs_plt)
6993 {
6994 /* Clear procedure linkage table information for any symbol that
6995 won't need a .plt entry. */
6996 struct plt_entry *ent;
6997 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6998 if (ent->plt.refcount > 0)
6999 break;
7000 if (ent == NULL
7001 || (h->type != STT_GNU_IFUNC
7002 && (SYMBOL_CALLS_LOCAL (info, h)
7003 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7004 && h->root.type == bfd_link_hash_undefweak))))
7005 {
7006 h->plt.plist = NULL;
7007 h->needs_plt = 0;
7008 h->pointer_equality_needed = 0;
7009 }
7010 else if (abiversion (info->output_bfd) == 2)
7011 {
7012 /* Taking a function's address in a read/write section
7013 doesn't require us to define the function symbol in the
7014 executable on a global entry stub. A dynamic reloc can
7015 be used instead. */
7016 if (h->pointer_equality_needed
7017 && h->type != STT_GNU_IFUNC
7018 && !readonly_dynrelocs (h))
7019 {
7020 h->pointer_equality_needed = 0;
7021 h->non_got_ref = 0;
7022 }
7023
7024 /* After adjust_dynamic_symbol, non_got_ref set in the
7025 non-shared case means that we have allocated space in
7026 .dynbss for the symbol and thus dyn_relocs for this
7027 symbol should be discarded.
7028 If we get here we know we are making a PLT entry for this
7029 symbol, and in an executable we'd normally resolve
7030 relocations against this symbol to the PLT entry. Allow
7031 dynamic relocs if the reference is weak, and the dynamic
7032 relocs will not cause text relocation. */
7033 else if (!h->ref_regular_nonweak
7034 && h->non_got_ref
7035 && h->type != STT_GNU_IFUNC
7036 && !readonly_dynrelocs (h))
7037 h->non_got_ref = 0;
7038
7039 /* If making a plt entry, then we don't need copy relocs. */
7040 return TRUE;
7041 }
7042 }
7043 else
7044 h->plt.plist = NULL;
7045
7046 /* If this is a weak symbol, and there is a real definition, the
7047 processor independent code will have arranged for us to see the
7048 real definition first, and we can just use the same value. */
7049 if (h->u.weakdef != NULL)
7050 {
7051 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7052 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7053 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7054 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7055 if (ELIMINATE_COPY_RELOCS)
7056 h->non_got_ref = h->u.weakdef->non_got_ref;
7057 return TRUE;
7058 }
7059
7060 /* If we are creating a shared library, we must presume that the
7061 only references to the symbol are via the global offset table.
7062 For such cases we need not do anything here; the relocations will
7063 be handled correctly by relocate_section. */
7064 if (info->shared)
7065 return TRUE;
7066
7067 /* If there are no references to this symbol that do not use the
7068 GOT, we don't need to generate a copy reloc. */
7069 if (!h->non_got_ref)
7070 return TRUE;
7071
7072 /* Don't generate a copy reloc for symbols defined in the executable. */
7073 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7074 return TRUE;
7075
7076 /* If we didn't find any dynamic relocs in read-only sections, then
7077 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7078 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7079 {
7080 h->non_got_ref = 0;
7081 return TRUE;
7082 }
7083
7084 if (h->plt.plist != NULL)
7085 {
7086 /* We should never get here, but unfortunately there are versions
7087 of gcc out there that improperly (for this ABI) put initialized
7088 function pointers, vtable refs and suchlike in read-only
7089 sections. Allow them to proceed, but warn that this might
7090 break at runtime. */
7091 info->callbacks->einfo
7092 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7093 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7094 h->root.root.string);
7095 }
7096
7097 /* This is a reference to a symbol defined by a dynamic object which
7098 is not a function. */
7099
7100 /* We must allocate the symbol in our .dynbss section, which will
7101 become part of the .bss section of the executable. There will be
7102 an entry for this symbol in the .dynsym section. The dynamic
7103 object will contain position independent code, so all references
7104 from the dynamic object to this symbol will go through the global
7105 offset table. The dynamic linker will use the .dynsym entry to
7106 determine the address it must put in the global offset table, so
7107 both the dynamic object and the regular object will refer to the
7108 same memory location for the variable. */
7109
7110 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7111 to copy the initial value out of the dynamic object and into the
7112 runtime process image. We need to remember the offset into the
7113 .rela.bss section we are going to use. */
7114 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7115 {
7116 htab->relbss->size += sizeof (Elf64_External_Rela);
7117 h->needs_copy = 1;
7118 }
7119
7120 s = htab->dynbss;
7121
7122 return _bfd_elf_adjust_dynamic_copy (h, s);
7123 }
7124
7125 /* If given a function descriptor symbol, hide both the function code
7126 sym and the descriptor. */
7127 static void
7128 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7129 struct elf_link_hash_entry *h,
7130 bfd_boolean force_local)
7131 {
7132 struct ppc_link_hash_entry *eh;
7133 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7134
7135 eh = (struct ppc_link_hash_entry *) h;
7136 if (eh->is_func_descriptor)
7137 {
7138 struct ppc_link_hash_entry *fh = eh->oh;
7139
7140 if (fh == NULL)
7141 {
7142 const char *p, *q;
7143 struct ppc_link_hash_table *htab;
7144 char save;
7145
7146 /* We aren't supposed to use alloca in BFD because on
7147 systems which do not have alloca the version in libiberty
7148 calls xmalloc, which might cause the program to crash
7149 when it runs out of memory. This function doesn't have a
7150 return status, so there's no way to gracefully return an
7151 error. So cheat. We know that string[-1] can be safely
7152 accessed; It's either a string in an ELF string table,
7153 or allocated in an objalloc structure. */
7154
7155 p = eh->elf.root.root.string - 1;
7156 save = *p;
7157 *(char *) p = '.';
7158 htab = ppc_hash_table (info);
7159 if (htab == NULL)
7160 return;
7161
7162 fh = (struct ppc_link_hash_entry *)
7163 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7164 *(char *) p = save;
7165
7166 /* Unfortunately, if it so happens that the string we were
7167 looking for was allocated immediately before this string,
7168 then we overwrote the string terminator. That's the only
7169 reason the lookup should fail. */
7170 if (fh == NULL)
7171 {
7172 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7173 while (q >= eh->elf.root.root.string && *q == *p)
7174 --q, --p;
7175 if (q < eh->elf.root.root.string && *p == '.')
7176 fh = (struct ppc_link_hash_entry *)
7177 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7178 }
7179 if (fh != NULL)
7180 {
7181 eh->oh = fh;
7182 fh->oh = eh;
7183 }
7184 }
7185 if (fh != NULL)
7186 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7187 }
7188 }
7189
7190 static bfd_boolean
7191 get_sym_h (struct elf_link_hash_entry **hp,
7192 Elf_Internal_Sym **symp,
7193 asection **symsecp,
7194 unsigned char **tls_maskp,
7195 Elf_Internal_Sym **locsymsp,
7196 unsigned long r_symndx,
7197 bfd *ibfd)
7198 {
7199 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7200
7201 if (r_symndx >= symtab_hdr->sh_info)
7202 {
7203 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7204 struct elf_link_hash_entry *h;
7205
7206 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7207 h = elf_follow_link (h);
7208
7209 if (hp != NULL)
7210 *hp = h;
7211
7212 if (symp != NULL)
7213 *symp = NULL;
7214
7215 if (symsecp != NULL)
7216 {
7217 asection *symsec = NULL;
7218 if (h->root.type == bfd_link_hash_defined
7219 || h->root.type == bfd_link_hash_defweak)
7220 symsec = h->root.u.def.section;
7221 *symsecp = symsec;
7222 }
7223
7224 if (tls_maskp != NULL)
7225 {
7226 struct ppc_link_hash_entry *eh;
7227
7228 eh = (struct ppc_link_hash_entry *) h;
7229 *tls_maskp = &eh->tls_mask;
7230 }
7231 }
7232 else
7233 {
7234 Elf_Internal_Sym *sym;
7235 Elf_Internal_Sym *locsyms = *locsymsp;
7236
7237 if (locsyms == NULL)
7238 {
7239 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7240 if (locsyms == NULL)
7241 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7242 symtab_hdr->sh_info,
7243 0, NULL, NULL, NULL);
7244 if (locsyms == NULL)
7245 return FALSE;
7246 *locsymsp = locsyms;
7247 }
7248 sym = locsyms + r_symndx;
7249
7250 if (hp != NULL)
7251 *hp = NULL;
7252
7253 if (symp != NULL)
7254 *symp = sym;
7255
7256 if (symsecp != NULL)
7257 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7258
7259 if (tls_maskp != NULL)
7260 {
7261 struct got_entry **lgot_ents;
7262 unsigned char *tls_mask;
7263
7264 tls_mask = NULL;
7265 lgot_ents = elf_local_got_ents (ibfd);
7266 if (lgot_ents != NULL)
7267 {
7268 struct plt_entry **local_plt = (struct plt_entry **)
7269 (lgot_ents + symtab_hdr->sh_info);
7270 unsigned char *lgot_masks = (unsigned char *)
7271 (local_plt + symtab_hdr->sh_info);
7272 tls_mask = &lgot_masks[r_symndx];
7273 }
7274 *tls_maskp = tls_mask;
7275 }
7276 }
7277 return TRUE;
7278 }
7279
7280 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7281 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7282 type suitable for optimization, and 1 otherwise. */
7283
7284 static int
7285 get_tls_mask (unsigned char **tls_maskp,
7286 unsigned long *toc_symndx,
7287 bfd_vma *toc_addend,
7288 Elf_Internal_Sym **locsymsp,
7289 const Elf_Internal_Rela *rel,
7290 bfd *ibfd)
7291 {
7292 unsigned long r_symndx;
7293 int next_r;
7294 struct elf_link_hash_entry *h;
7295 Elf_Internal_Sym *sym;
7296 asection *sec;
7297 bfd_vma off;
7298
7299 r_symndx = ELF64_R_SYM (rel->r_info);
7300 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7301 return 0;
7302
7303 if ((*tls_maskp != NULL && **tls_maskp != 0)
7304 || sec == NULL
7305 || ppc64_elf_section_data (sec) == NULL
7306 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7307 return 1;
7308
7309 /* Look inside a TOC section too. */
7310 if (h != NULL)
7311 {
7312 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7313 off = h->root.u.def.value;
7314 }
7315 else
7316 off = sym->st_value;
7317 off += rel->r_addend;
7318 BFD_ASSERT (off % 8 == 0);
7319 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7320 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7321 if (toc_symndx != NULL)
7322 *toc_symndx = r_symndx;
7323 if (toc_addend != NULL)
7324 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7325 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7326 return 0;
7327 if ((h == NULL || is_static_defined (h))
7328 && (next_r == -1 || next_r == -2))
7329 return 1 - next_r;
7330 return 1;
7331 }
7332
7333 /* Find (or create) an entry in the tocsave hash table. */
7334
7335 static struct tocsave_entry *
7336 tocsave_find (struct ppc_link_hash_table *htab,
7337 enum insert_option insert,
7338 Elf_Internal_Sym **local_syms,
7339 const Elf_Internal_Rela *irela,
7340 bfd *ibfd)
7341 {
7342 unsigned long r_indx;
7343 struct elf_link_hash_entry *h;
7344 Elf_Internal_Sym *sym;
7345 struct tocsave_entry ent, *p;
7346 hashval_t hash;
7347 struct tocsave_entry **slot;
7348
7349 r_indx = ELF64_R_SYM (irela->r_info);
7350 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7351 return NULL;
7352 if (ent.sec == NULL || ent.sec->output_section == NULL)
7353 {
7354 (*_bfd_error_handler)
7355 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7356 return NULL;
7357 }
7358
7359 if (h != NULL)
7360 ent.offset = h->root.u.def.value;
7361 else
7362 ent.offset = sym->st_value;
7363 ent.offset += irela->r_addend;
7364
7365 hash = tocsave_htab_hash (&ent);
7366 slot = ((struct tocsave_entry **)
7367 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7368 if (slot == NULL)
7369 return NULL;
7370
7371 if (*slot == NULL)
7372 {
7373 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7374 if (p == NULL)
7375 return NULL;
7376 *p = ent;
7377 *slot = p;
7378 }
7379 return *slot;
7380 }
7381
7382 /* Adjust all global syms defined in opd sections. In gcc generated
7383 code for the old ABI, these will already have been done. */
7384
7385 static bfd_boolean
7386 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7387 {
7388 struct ppc_link_hash_entry *eh;
7389 asection *sym_sec;
7390 struct _opd_sec_data *opd;
7391
7392 if (h->root.type == bfd_link_hash_indirect)
7393 return TRUE;
7394
7395 if (h->root.type != bfd_link_hash_defined
7396 && h->root.type != bfd_link_hash_defweak)
7397 return TRUE;
7398
7399 eh = (struct ppc_link_hash_entry *) h;
7400 if (eh->adjust_done)
7401 return TRUE;
7402
7403 sym_sec = eh->elf.root.u.def.section;
7404 opd = get_opd_info (sym_sec);
7405 if (opd != NULL && opd->adjust != NULL)
7406 {
7407 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7408 if (adjust == -1)
7409 {
7410 /* This entry has been deleted. */
7411 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7412 if (dsec == NULL)
7413 {
7414 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7415 if (discarded_section (dsec))
7416 {
7417 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7418 break;
7419 }
7420 }
7421 eh->elf.root.u.def.value = 0;
7422 eh->elf.root.u.def.section = dsec;
7423 }
7424 else
7425 eh->elf.root.u.def.value += adjust;
7426 eh->adjust_done = 1;
7427 }
7428 return TRUE;
7429 }
7430
7431 /* Handles decrementing dynamic reloc counts for the reloc specified by
7432 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7433 have already been determined. */
7434
7435 static bfd_boolean
7436 dec_dynrel_count (bfd_vma r_info,
7437 asection *sec,
7438 struct bfd_link_info *info,
7439 Elf_Internal_Sym **local_syms,
7440 struct elf_link_hash_entry *h,
7441 Elf_Internal_Sym *sym)
7442 {
7443 enum elf_ppc64_reloc_type r_type;
7444 asection *sym_sec = NULL;
7445
7446 /* Can this reloc be dynamic? This switch, and later tests here
7447 should be kept in sync with the code in check_relocs. */
7448 r_type = ELF64_R_TYPE (r_info);
7449 switch (r_type)
7450 {
7451 default:
7452 return TRUE;
7453
7454 case R_PPC64_TPREL16:
7455 case R_PPC64_TPREL16_LO:
7456 case R_PPC64_TPREL16_HI:
7457 case R_PPC64_TPREL16_HA:
7458 case R_PPC64_TPREL16_DS:
7459 case R_PPC64_TPREL16_LO_DS:
7460 case R_PPC64_TPREL16_HIGH:
7461 case R_PPC64_TPREL16_HIGHA:
7462 case R_PPC64_TPREL16_HIGHER:
7463 case R_PPC64_TPREL16_HIGHERA:
7464 case R_PPC64_TPREL16_HIGHEST:
7465 case R_PPC64_TPREL16_HIGHESTA:
7466 if (!info->shared)
7467 return TRUE;
7468
7469 case R_PPC64_TPREL64:
7470 case R_PPC64_DTPMOD64:
7471 case R_PPC64_DTPREL64:
7472 case R_PPC64_ADDR64:
7473 case R_PPC64_REL30:
7474 case R_PPC64_REL32:
7475 case R_PPC64_REL64:
7476 case R_PPC64_ADDR14:
7477 case R_PPC64_ADDR14_BRNTAKEN:
7478 case R_PPC64_ADDR14_BRTAKEN:
7479 case R_PPC64_ADDR16:
7480 case R_PPC64_ADDR16_DS:
7481 case R_PPC64_ADDR16_HA:
7482 case R_PPC64_ADDR16_HI:
7483 case R_PPC64_ADDR16_HIGH:
7484 case R_PPC64_ADDR16_HIGHA:
7485 case R_PPC64_ADDR16_HIGHER:
7486 case R_PPC64_ADDR16_HIGHERA:
7487 case R_PPC64_ADDR16_HIGHEST:
7488 case R_PPC64_ADDR16_HIGHESTA:
7489 case R_PPC64_ADDR16_LO:
7490 case R_PPC64_ADDR16_LO_DS:
7491 case R_PPC64_ADDR24:
7492 case R_PPC64_ADDR32:
7493 case R_PPC64_UADDR16:
7494 case R_PPC64_UADDR32:
7495 case R_PPC64_UADDR64:
7496 case R_PPC64_TOC:
7497 break;
7498 }
7499
7500 if (local_syms != NULL)
7501 {
7502 unsigned long r_symndx;
7503 bfd *ibfd = sec->owner;
7504
7505 r_symndx = ELF64_R_SYM (r_info);
7506 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7507 return FALSE;
7508 }
7509
7510 if ((info->shared
7511 && (must_be_dyn_reloc (info, r_type)
7512 || (h != NULL
7513 && (!SYMBOLIC_BIND (info, h)
7514 || h->root.type == bfd_link_hash_defweak
7515 || !h->def_regular))))
7516 || (ELIMINATE_COPY_RELOCS
7517 && !info->shared
7518 && h != NULL
7519 && (h->root.type == bfd_link_hash_defweak
7520 || !h->def_regular)))
7521 ;
7522 else
7523 return TRUE;
7524
7525 if (h != NULL)
7526 {
7527 struct elf_dyn_relocs *p;
7528 struct elf_dyn_relocs **pp;
7529 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7530
7531 /* elf_gc_sweep may have already removed all dyn relocs associated
7532 with local syms for a given section. Also, symbol flags are
7533 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7534 report a dynreloc miscount. */
7535 if (*pp == NULL && info->gc_sections)
7536 return TRUE;
7537
7538 while ((p = *pp) != NULL)
7539 {
7540 if (p->sec == sec)
7541 {
7542 if (!must_be_dyn_reloc (info, r_type))
7543 p->pc_count -= 1;
7544 p->count -= 1;
7545 if (p->count == 0)
7546 *pp = p->next;
7547 return TRUE;
7548 }
7549 pp = &p->next;
7550 }
7551 }
7552 else
7553 {
7554 struct ppc_dyn_relocs *p;
7555 struct ppc_dyn_relocs **pp;
7556 void *vpp;
7557 bfd_boolean is_ifunc;
7558
7559 if (local_syms == NULL)
7560 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7561 if (sym_sec == NULL)
7562 sym_sec = sec;
7563
7564 vpp = &elf_section_data (sym_sec)->local_dynrel;
7565 pp = (struct ppc_dyn_relocs **) vpp;
7566
7567 if (*pp == NULL && info->gc_sections)
7568 return TRUE;
7569
7570 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7571 while ((p = *pp) != NULL)
7572 {
7573 if (p->sec == sec && p->ifunc == is_ifunc)
7574 {
7575 p->count -= 1;
7576 if (p->count == 0)
7577 *pp = p->next;
7578 return TRUE;
7579 }
7580 pp = &p->next;
7581 }
7582 }
7583
7584 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7585 sec->owner, sec);
7586 bfd_set_error (bfd_error_bad_value);
7587 return FALSE;
7588 }
7589
7590 /* Remove unused Official Procedure Descriptor entries. Currently we
7591 only remove those associated with functions in discarded link-once
7592 sections, or weakly defined functions that have been overridden. It
7593 would be possible to remove many more entries for statically linked
7594 applications. */
7595
7596 bfd_boolean
7597 ppc64_elf_edit_opd (struct bfd_link_info *info)
7598 {
7599 bfd *ibfd;
7600 bfd_boolean some_edited = FALSE;
7601 asection *need_pad = NULL;
7602 struct ppc_link_hash_table *htab;
7603
7604 htab = ppc_hash_table (info);
7605 if (htab == NULL)
7606 return FALSE;
7607
7608 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7609 {
7610 asection *sec;
7611 Elf_Internal_Rela *relstart, *rel, *relend;
7612 Elf_Internal_Shdr *symtab_hdr;
7613 Elf_Internal_Sym *local_syms;
7614 bfd_vma offset;
7615 struct _opd_sec_data *opd;
7616 bfd_boolean need_edit, add_aux_fields;
7617 bfd_size_type cnt_16b = 0;
7618
7619 if (!is_ppc64_elf (ibfd))
7620 continue;
7621
7622 sec = bfd_get_section_by_name (ibfd, ".opd");
7623 if (sec == NULL || sec->size == 0)
7624 continue;
7625
7626 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7627 continue;
7628
7629 if (sec->output_section == bfd_abs_section_ptr)
7630 continue;
7631
7632 /* Look through the section relocs. */
7633 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7634 continue;
7635
7636 local_syms = NULL;
7637 symtab_hdr = &elf_symtab_hdr (ibfd);
7638
7639 /* Read the relocations. */
7640 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7641 info->keep_memory);
7642 if (relstart == NULL)
7643 return FALSE;
7644
7645 /* First run through the relocs to check they are sane, and to
7646 determine whether we need to edit this opd section. */
7647 need_edit = FALSE;
7648 need_pad = sec;
7649 offset = 0;
7650 relend = relstart + sec->reloc_count;
7651 for (rel = relstart; rel < relend; )
7652 {
7653 enum elf_ppc64_reloc_type r_type;
7654 unsigned long r_symndx;
7655 asection *sym_sec;
7656 struct elf_link_hash_entry *h;
7657 Elf_Internal_Sym *sym;
7658
7659 /* .opd contains a regular array of 16 or 24 byte entries. We're
7660 only interested in the reloc pointing to a function entry
7661 point. */
7662 if (rel->r_offset != offset
7663 || rel + 1 >= relend
7664 || (rel + 1)->r_offset != offset + 8)
7665 {
7666 /* If someone messes with .opd alignment then after a
7667 "ld -r" we might have padding in the middle of .opd.
7668 Also, there's nothing to prevent someone putting
7669 something silly in .opd with the assembler. No .opd
7670 optimization for them! */
7671 broken_opd:
7672 (*_bfd_error_handler)
7673 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7674 need_edit = FALSE;
7675 break;
7676 }
7677
7678 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7679 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7680 {
7681 (*_bfd_error_handler)
7682 (_("%B: unexpected reloc type %u in .opd section"),
7683 ibfd, r_type);
7684 need_edit = FALSE;
7685 break;
7686 }
7687
7688 r_symndx = ELF64_R_SYM (rel->r_info);
7689 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7690 r_symndx, ibfd))
7691 goto error_ret;
7692
7693 if (sym_sec == NULL || sym_sec->owner == NULL)
7694 {
7695 const char *sym_name;
7696 if (h != NULL)
7697 sym_name = h->root.root.string;
7698 else
7699 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7700 sym_sec);
7701
7702 (*_bfd_error_handler)
7703 (_("%B: undefined sym `%s' in .opd section"),
7704 ibfd, sym_name);
7705 need_edit = FALSE;
7706 break;
7707 }
7708
7709 /* opd entries are always for functions defined in the
7710 current input bfd. If the symbol isn't defined in the
7711 input bfd, then we won't be using the function in this
7712 bfd; It must be defined in a linkonce section in another
7713 bfd, or is weak. It's also possible that we are
7714 discarding the function due to a linker script /DISCARD/,
7715 which we test for via the output_section. */
7716 if (sym_sec->owner != ibfd
7717 || sym_sec->output_section == bfd_abs_section_ptr)
7718 need_edit = TRUE;
7719
7720 rel += 2;
7721 if (rel == relend
7722 || (rel + 1 == relend && rel->r_offset == offset + 16))
7723 {
7724 if (sec->size == offset + 24)
7725 {
7726 need_pad = NULL;
7727 break;
7728 }
7729 if (rel == relend && sec->size == offset + 16)
7730 {
7731 cnt_16b++;
7732 break;
7733 }
7734 goto broken_opd;
7735 }
7736
7737 if (rel->r_offset == offset + 24)
7738 offset += 24;
7739 else if (rel->r_offset != offset + 16)
7740 goto broken_opd;
7741 else if (rel + 1 < relend
7742 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7743 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7744 {
7745 offset += 16;
7746 cnt_16b++;
7747 }
7748 else if (rel + 2 < relend
7749 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7750 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7751 {
7752 offset += 24;
7753 rel += 1;
7754 }
7755 else
7756 goto broken_opd;
7757 }
7758
7759 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7760
7761 if (need_edit || add_aux_fields)
7762 {
7763 Elf_Internal_Rela *write_rel;
7764 Elf_Internal_Shdr *rel_hdr;
7765 bfd_byte *rptr, *wptr;
7766 bfd_byte *new_contents;
7767 bfd_boolean skip;
7768 long opd_ent_size;
7769 bfd_size_type amt;
7770
7771 new_contents = NULL;
7772 amt = sec->size * sizeof (long) / 8;
7773 opd = &ppc64_elf_section_data (sec)->u.opd;
7774 opd->adjust = bfd_zalloc (sec->owner, amt);
7775 if (opd->adjust == NULL)
7776 return FALSE;
7777 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7778
7779 /* This seems a waste of time as input .opd sections are all
7780 zeros as generated by gcc, but I suppose there's no reason
7781 this will always be so. We might start putting something in
7782 the third word of .opd entries. */
7783 if ((sec->flags & SEC_IN_MEMORY) == 0)
7784 {
7785 bfd_byte *loc;
7786 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7787 {
7788 if (loc != NULL)
7789 free (loc);
7790 error_ret:
7791 if (local_syms != NULL
7792 && symtab_hdr->contents != (unsigned char *) local_syms)
7793 free (local_syms);
7794 if (elf_section_data (sec)->relocs != relstart)
7795 free (relstart);
7796 return FALSE;
7797 }
7798 sec->contents = loc;
7799 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7800 }
7801
7802 elf_section_data (sec)->relocs = relstart;
7803
7804 new_contents = sec->contents;
7805 if (add_aux_fields)
7806 {
7807 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7808 if (new_contents == NULL)
7809 return FALSE;
7810 need_pad = FALSE;
7811 }
7812 wptr = new_contents;
7813 rptr = sec->contents;
7814
7815 write_rel = relstart;
7816 skip = FALSE;
7817 offset = 0;
7818 opd_ent_size = 0;
7819 for (rel = relstart; rel < relend; rel++)
7820 {
7821 unsigned long r_symndx;
7822 asection *sym_sec;
7823 struct elf_link_hash_entry *h;
7824 Elf_Internal_Sym *sym;
7825
7826 r_symndx = ELF64_R_SYM (rel->r_info);
7827 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7828 r_symndx, ibfd))
7829 goto error_ret;
7830
7831 if (rel->r_offset == offset)
7832 {
7833 struct ppc_link_hash_entry *fdh = NULL;
7834
7835 /* See if the .opd entry is full 24 byte or
7836 16 byte (with fd_aux entry overlapped with next
7837 fd_func). */
7838 opd_ent_size = 24;
7839 if ((rel + 2 == relend && sec->size == offset + 16)
7840 || (rel + 3 < relend
7841 && rel[2].r_offset == offset + 16
7842 && rel[3].r_offset == offset + 24
7843 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7844 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7845 opd_ent_size = 16;
7846
7847 if (h != NULL
7848 && h->root.root.string[0] == '.')
7849 {
7850 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7851 if (fdh != NULL
7852 && fdh->elf.root.type != bfd_link_hash_defined
7853 && fdh->elf.root.type != bfd_link_hash_defweak)
7854 fdh = NULL;
7855 }
7856
7857 skip = (sym_sec->owner != ibfd
7858 || sym_sec->output_section == bfd_abs_section_ptr);
7859 if (skip)
7860 {
7861 if (fdh != NULL && sym_sec->owner == ibfd)
7862 {
7863 /* Arrange for the function descriptor sym
7864 to be dropped. */
7865 fdh->elf.root.u.def.value = 0;
7866 fdh->elf.root.u.def.section = sym_sec;
7867 }
7868 opd->adjust[rel->r_offset / 8] = -1;
7869 }
7870 else
7871 {
7872 /* We'll be keeping this opd entry. */
7873
7874 if (fdh != NULL)
7875 {
7876 /* Redefine the function descriptor symbol to
7877 this location in the opd section. It is
7878 necessary to update the value here rather
7879 than using an array of adjustments as we do
7880 for local symbols, because various places
7881 in the generic ELF code use the value
7882 stored in u.def.value. */
7883 fdh->elf.root.u.def.value = wptr - new_contents;
7884 fdh->adjust_done = 1;
7885 }
7886
7887 /* Local syms are a bit tricky. We could
7888 tweak them as they can be cached, but
7889 we'd need to look through the local syms
7890 for the function descriptor sym which we
7891 don't have at the moment. So keep an
7892 array of adjustments. */
7893 opd->adjust[rel->r_offset / 8]
7894 = (wptr - new_contents) - (rptr - sec->contents);
7895
7896 if (wptr != rptr)
7897 memcpy (wptr, rptr, opd_ent_size);
7898 wptr += opd_ent_size;
7899 if (add_aux_fields && opd_ent_size == 16)
7900 {
7901 memset (wptr, '\0', 8);
7902 wptr += 8;
7903 }
7904 }
7905 rptr += opd_ent_size;
7906 offset += opd_ent_size;
7907 }
7908
7909 if (skip)
7910 {
7911 if (!NO_OPD_RELOCS
7912 && !info->relocatable
7913 && !dec_dynrel_count (rel->r_info, sec, info,
7914 NULL, h, sym))
7915 goto error_ret;
7916 }
7917 else
7918 {
7919 /* We need to adjust any reloc offsets to point to the
7920 new opd entries. While we're at it, we may as well
7921 remove redundant relocs. */
7922 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7923 if (write_rel != rel)
7924 memcpy (write_rel, rel, sizeof (*rel));
7925 ++write_rel;
7926 }
7927 }
7928
7929 sec->size = wptr - new_contents;
7930 sec->reloc_count = write_rel - relstart;
7931 if (add_aux_fields)
7932 {
7933 free (sec->contents);
7934 sec->contents = new_contents;
7935 }
7936
7937 /* Fudge the header size too, as this is used later in
7938 elf_bfd_final_link if we are emitting relocs. */
7939 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7940 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7941 some_edited = TRUE;
7942 }
7943 else if (elf_section_data (sec)->relocs != relstart)
7944 free (relstart);
7945
7946 if (local_syms != NULL
7947 && symtab_hdr->contents != (unsigned char *) local_syms)
7948 {
7949 if (!info->keep_memory)
7950 free (local_syms);
7951 else
7952 symtab_hdr->contents = (unsigned char *) local_syms;
7953 }
7954 }
7955
7956 if (some_edited)
7957 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7958
7959 /* If we are doing a final link and the last .opd entry is just 16 byte
7960 long, add a 8 byte padding after it. */
7961 if (need_pad != NULL && !info->relocatable)
7962 {
7963 bfd_byte *p;
7964
7965 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7966 {
7967 BFD_ASSERT (need_pad->size > 0);
7968
7969 p = bfd_malloc (need_pad->size + 8);
7970 if (p == NULL)
7971 return FALSE;
7972
7973 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7974 p, 0, need_pad->size))
7975 return FALSE;
7976
7977 need_pad->contents = p;
7978 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7979 }
7980 else
7981 {
7982 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7983 if (p == NULL)
7984 return FALSE;
7985
7986 need_pad->contents = p;
7987 }
7988
7989 memset (need_pad->contents + need_pad->size, 0, 8);
7990 need_pad->size += 8;
7991 }
7992
7993 return TRUE;
7994 }
7995
7996 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7997
7998 asection *
7999 ppc64_elf_tls_setup (struct bfd_link_info *info)
8000 {
8001 struct ppc_link_hash_table *htab;
8002
8003 htab = ppc_hash_table (info);
8004 if (htab == NULL)
8005 return NULL;
8006
8007 if (abiversion (info->output_bfd) == 1)
8008 htab->opd_abi = 1;
8009
8010 if (htab->params->no_multi_toc)
8011 htab->do_multi_toc = 0;
8012 else if (!htab->do_multi_toc)
8013 htab->params->no_multi_toc = 1;
8014
8015 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8016 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8017 FALSE, FALSE, TRUE));
8018 /* Move dynamic linking info to the function descriptor sym. */
8019 if (htab->tls_get_addr != NULL)
8020 func_desc_adjust (&htab->tls_get_addr->elf, info);
8021 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8022 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8023 FALSE, FALSE, TRUE));
8024 if (!htab->params->no_tls_get_addr_opt)
8025 {
8026 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8027
8028 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8029 FALSE, FALSE, TRUE);
8030 if (opt != NULL)
8031 func_desc_adjust (opt, info);
8032 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8033 FALSE, FALSE, TRUE);
8034 if (opt_fd != NULL
8035 && (opt_fd->root.type == bfd_link_hash_defined
8036 || opt_fd->root.type == bfd_link_hash_defweak))
8037 {
8038 /* If glibc supports an optimized __tls_get_addr call stub,
8039 signalled by the presence of __tls_get_addr_opt, and we'll
8040 be calling __tls_get_addr via a plt call stub, then
8041 make __tls_get_addr point to __tls_get_addr_opt. */
8042 tga_fd = &htab->tls_get_addr_fd->elf;
8043 if (htab->elf.dynamic_sections_created
8044 && tga_fd != NULL
8045 && (tga_fd->type == STT_FUNC
8046 || tga_fd->needs_plt)
8047 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8048 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8049 && tga_fd->root.type == bfd_link_hash_undefweak)))
8050 {
8051 struct plt_entry *ent;
8052
8053 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8054 if (ent->plt.refcount > 0)
8055 break;
8056 if (ent != NULL)
8057 {
8058 tga_fd->root.type = bfd_link_hash_indirect;
8059 tga_fd->root.u.i.link = &opt_fd->root;
8060 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8061 if (opt_fd->dynindx != -1)
8062 {
8063 /* Use __tls_get_addr_opt in dynamic relocations. */
8064 opt_fd->dynindx = -1;
8065 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8066 opt_fd->dynstr_index);
8067 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8068 return NULL;
8069 }
8070 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8071 tga = &htab->tls_get_addr->elf;
8072 if (opt != NULL && tga != NULL)
8073 {
8074 tga->root.type = bfd_link_hash_indirect;
8075 tga->root.u.i.link = &opt->root;
8076 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8077 _bfd_elf_link_hash_hide_symbol (info, opt,
8078 tga->forced_local);
8079 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8080 }
8081 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8082 htab->tls_get_addr_fd->is_func_descriptor = 1;
8083 if (htab->tls_get_addr != NULL)
8084 {
8085 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8086 htab->tls_get_addr->is_func = 1;
8087 }
8088 }
8089 }
8090 }
8091 else
8092 htab->params->no_tls_get_addr_opt = TRUE;
8093 }
8094 return _bfd_elf_tls_setup (info->output_bfd, info);
8095 }
8096
8097 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8098 HASH1 or HASH2. */
8099
8100 static bfd_boolean
8101 branch_reloc_hash_match (const bfd *ibfd,
8102 const Elf_Internal_Rela *rel,
8103 const struct ppc_link_hash_entry *hash1,
8104 const struct ppc_link_hash_entry *hash2)
8105 {
8106 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8107 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8108 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8109
8110 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8111 {
8112 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8113 struct elf_link_hash_entry *h;
8114
8115 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8116 h = elf_follow_link (h);
8117 if (h == &hash1->elf || h == &hash2->elf)
8118 return TRUE;
8119 }
8120 return FALSE;
8121 }
8122
8123 /* Run through all the TLS relocs looking for optimization
8124 opportunities. The linker has been hacked (see ppc64elf.em) to do
8125 a preliminary section layout so that we know the TLS segment
8126 offsets. We can't optimize earlier because some optimizations need
8127 to know the tp offset, and we need to optimize before allocating
8128 dynamic relocations. */
8129
8130 bfd_boolean
8131 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8132 {
8133 bfd *ibfd;
8134 asection *sec;
8135 struct ppc_link_hash_table *htab;
8136 unsigned char *toc_ref;
8137 int pass;
8138
8139 if (info->relocatable || !info->executable)
8140 return TRUE;
8141
8142 htab = ppc_hash_table (info);
8143 if (htab == NULL)
8144 return FALSE;
8145
8146 /* Make two passes over the relocs. On the first pass, mark toc
8147 entries involved with tls relocs, and check that tls relocs
8148 involved in setting up a tls_get_addr call are indeed followed by
8149 such a call. If they are not, we can't do any tls optimization.
8150 On the second pass twiddle tls_mask flags to notify
8151 relocate_section that optimization can be done, and adjust got
8152 and plt refcounts. */
8153 toc_ref = NULL;
8154 for (pass = 0; pass < 2; ++pass)
8155 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8156 {
8157 Elf_Internal_Sym *locsyms = NULL;
8158 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8159
8160 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8161 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8162 {
8163 Elf_Internal_Rela *relstart, *rel, *relend;
8164 bfd_boolean found_tls_get_addr_arg = 0;
8165
8166 /* Read the relocations. */
8167 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8168 info->keep_memory);
8169 if (relstart == NULL)
8170 {
8171 free (toc_ref);
8172 return FALSE;
8173 }
8174
8175 relend = relstart + sec->reloc_count;
8176 for (rel = relstart; rel < relend; rel++)
8177 {
8178 enum elf_ppc64_reloc_type r_type;
8179 unsigned long r_symndx;
8180 struct elf_link_hash_entry *h;
8181 Elf_Internal_Sym *sym;
8182 asection *sym_sec;
8183 unsigned char *tls_mask;
8184 unsigned char tls_set, tls_clear, tls_type = 0;
8185 bfd_vma value;
8186 bfd_boolean ok_tprel, is_local;
8187 long toc_ref_index = 0;
8188 int expecting_tls_get_addr = 0;
8189 bfd_boolean ret = FALSE;
8190
8191 r_symndx = ELF64_R_SYM (rel->r_info);
8192 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8193 r_symndx, ibfd))
8194 {
8195 err_free_rel:
8196 if (elf_section_data (sec)->relocs != relstart)
8197 free (relstart);
8198 if (toc_ref != NULL)
8199 free (toc_ref);
8200 if (locsyms != NULL
8201 && (elf_symtab_hdr (ibfd).contents
8202 != (unsigned char *) locsyms))
8203 free (locsyms);
8204 return ret;
8205 }
8206
8207 if (h != NULL)
8208 {
8209 if (h->root.type == bfd_link_hash_defined
8210 || h->root.type == bfd_link_hash_defweak)
8211 value = h->root.u.def.value;
8212 else if (h->root.type == bfd_link_hash_undefweak)
8213 value = 0;
8214 else
8215 {
8216 found_tls_get_addr_arg = 0;
8217 continue;
8218 }
8219 }
8220 else
8221 /* Symbols referenced by TLS relocs must be of type
8222 STT_TLS. So no need for .opd local sym adjust. */
8223 value = sym->st_value;
8224
8225 ok_tprel = FALSE;
8226 is_local = FALSE;
8227 if (h == NULL
8228 || !h->def_dynamic)
8229 {
8230 is_local = TRUE;
8231 if (h != NULL
8232 && h->root.type == bfd_link_hash_undefweak)
8233 ok_tprel = TRUE;
8234 else
8235 {
8236 value += sym_sec->output_offset;
8237 value += sym_sec->output_section->vma;
8238 value -= htab->elf.tls_sec->vma;
8239 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8240 < (bfd_vma) 1 << 32);
8241 }
8242 }
8243
8244 r_type = ELF64_R_TYPE (rel->r_info);
8245 /* If this section has old-style __tls_get_addr calls
8246 without marker relocs, then check that each
8247 __tls_get_addr call reloc is preceded by a reloc
8248 that conceivably belongs to the __tls_get_addr arg
8249 setup insn. If we don't find matching arg setup
8250 relocs, don't do any tls optimization. */
8251 if (pass == 0
8252 && sec->has_tls_get_addr_call
8253 && h != NULL
8254 && (h == &htab->tls_get_addr->elf
8255 || h == &htab->tls_get_addr_fd->elf)
8256 && !found_tls_get_addr_arg
8257 && is_branch_reloc (r_type))
8258 {
8259 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8260 "TLS optimization disabled\n"),
8261 ibfd, sec, rel->r_offset);
8262 ret = TRUE;
8263 goto err_free_rel;
8264 }
8265
8266 found_tls_get_addr_arg = 0;
8267 switch (r_type)
8268 {
8269 case R_PPC64_GOT_TLSLD16:
8270 case R_PPC64_GOT_TLSLD16_LO:
8271 expecting_tls_get_addr = 1;
8272 found_tls_get_addr_arg = 1;
8273 /* Fall thru */
8274
8275 case R_PPC64_GOT_TLSLD16_HI:
8276 case R_PPC64_GOT_TLSLD16_HA:
8277 /* These relocs should never be against a symbol
8278 defined in a shared lib. Leave them alone if
8279 that turns out to be the case. */
8280 if (!is_local)
8281 continue;
8282
8283 /* LD -> LE */
8284 tls_set = 0;
8285 tls_clear = TLS_LD;
8286 tls_type = TLS_TLS | TLS_LD;
8287 break;
8288
8289 case R_PPC64_GOT_TLSGD16:
8290 case R_PPC64_GOT_TLSGD16_LO:
8291 expecting_tls_get_addr = 1;
8292 found_tls_get_addr_arg = 1;
8293 /* Fall thru */
8294
8295 case R_PPC64_GOT_TLSGD16_HI:
8296 case R_PPC64_GOT_TLSGD16_HA:
8297 if (ok_tprel)
8298 /* GD -> LE */
8299 tls_set = 0;
8300 else
8301 /* GD -> IE */
8302 tls_set = TLS_TLS | TLS_TPRELGD;
8303 tls_clear = TLS_GD;
8304 tls_type = TLS_TLS | TLS_GD;
8305 break;
8306
8307 case R_PPC64_GOT_TPREL16_DS:
8308 case R_PPC64_GOT_TPREL16_LO_DS:
8309 case R_PPC64_GOT_TPREL16_HI:
8310 case R_PPC64_GOT_TPREL16_HA:
8311 if (ok_tprel)
8312 {
8313 /* IE -> LE */
8314 tls_set = 0;
8315 tls_clear = TLS_TPREL;
8316 tls_type = TLS_TLS | TLS_TPREL;
8317 break;
8318 }
8319 continue;
8320
8321 case R_PPC64_TLSGD:
8322 case R_PPC64_TLSLD:
8323 found_tls_get_addr_arg = 1;
8324 /* Fall thru */
8325
8326 case R_PPC64_TLS:
8327 case R_PPC64_TOC16:
8328 case R_PPC64_TOC16_LO:
8329 if (sym_sec == NULL || sym_sec != toc)
8330 continue;
8331
8332 /* Mark this toc entry as referenced by a TLS
8333 code sequence. We can do that now in the
8334 case of R_PPC64_TLS, and after checking for
8335 tls_get_addr for the TOC16 relocs. */
8336 if (toc_ref == NULL)
8337 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8338 if (toc_ref == NULL)
8339 goto err_free_rel;
8340
8341 if (h != NULL)
8342 value = h->root.u.def.value;
8343 else
8344 value = sym->st_value;
8345 value += rel->r_addend;
8346 if (value % 8 != 0)
8347 continue;
8348 BFD_ASSERT (value < toc->size
8349 && toc->output_offset % 8 == 0);
8350 toc_ref_index = (value + toc->output_offset) / 8;
8351 if (r_type == R_PPC64_TLS
8352 || r_type == R_PPC64_TLSGD
8353 || r_type == R_PPC64_TLSLD)
8354 {
8355 toc_ref[toc_ref_index] = 1;
8356 continue;
8357 }
8358
8359 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8360 continue;
8361
8362 tls_set = 0;
8363 tls_clear = 0;
8364 expecting_tls_get_addr = 2;
8365 break;
8366
8367 case R_PPC64_TPREL64:
8368 if (pass == 0
8369 || sec != toc
8370 || toc_ref == NULL
8371 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8372 continue;
8373 if (ok_tprel)
8374 {
8375 /* IE -> LE */
8376 tls_set = TLS_EXPLICIT;
8377 tls_clear = TLS_TPREL;
8378 break;
8379 }
8380 continue;
8381
8382 case R_PPC64_DTPMOD64:
8383 if (pass == 0
8384 || sec != toc
8385 || toc_ref == NULL
8386 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8387 continue;
8388 if (rel + 1 < relend
8389 && (rel[1].r_info
8390 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8391 && rel[1].r_offset == rel->r_offset + 8)
8392 {
8393 if (ok_tprel)
8394 /* GD -> LE */
8395 tls_set = TLS_EXPLICIT | TLS_GD;
8396 else
8397 /* GD -> IE */
8398 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8399 tls_clear = TLS_GD;
8400 }
8401 else
8402 {
8403 if (!is_local)
8404 continue;
8405
8406 /* LD -> LE */
8407 tls_set = TLS_EXPLICIT;
8408 tls_clear = TLS_LD;
8409 }
8410 break;
8411
8412 default:
8413 continue;
8414 }
8415
8416 if (pass == 0)
8417 {
8418 if (!expecting_tls_get_addr
8419 || !sec->has_tls_get_addr_call)
8420 continue;
8421
8422 if (rel + 1 < relend
8423 && branch_reloc_hash_match (ibfd, rel + 1,
8424 htab->tls_get_addr,
8425 htab->tls_get_addr_fd))
8426 {
8427 if (expecting_tls_get_addr == 2)
8428 {
8429 /* Check for toc tls entries. */
8430 unsigned char *toc_tls;
8431 int retval;
8432
8433 retval = get_tls_mask (&toc_tls, NULL, NULL,
8434 &locsyms,
8435 rel, ibfd);
8436 if (retval == 0)
8437 goto err_free_rel;
8438 if (toc_tls != NULL)
8439 {
8440 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8441 found_tls_get_addr_arg = 1;
8442 if (retval > 1)
8443 toc_ref[toc_ref_index] = 1;
8444 }
8445 }
8446 continue;
8447 }
8448
8449 if (expecting_tls_get_addr != 1)
8450 continue;
8451
8452 /* Uh oh, we didn't find the expected call. We
8453 could just mark this symbol to exclude it
8454 from tls optimization but it's safer to skip
8455 the entire optimization. */
8456 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8457 "TLS optimization disabled\n"),
8458 ibfd, sec, rel->r_offset);
8459 ret = TRUE;
8460 goto err_free_rel;
8461 }
8462
8463 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8464 {
8465 struct plt_entry *ent;
8466 for (ent = htab->tls_get_addr->elf.plt.plist;
8467 ent != NULL;
8468 ent = ent->next)
8469 if (ent->addend == 0)
8470 {
8471 if (ent->plt.refcount > 0)
8472 {
8473 ent->plt.refcount -= 1;
8474 expecting_tls_get_addr = 0;
8475 }
8476 break;
8477 }
8478 }
8479
8480 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8481 {
8482 struct plt_entry *ent;
8483 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8484 ent != NULL;
8485 ent = ent->next)
8486 if (ent->addend == 0)
8487 {
8488 if (ent->plt.refcount > 0)
8489 ent->plt.refcount -= 1;
8490 break;
8491 }
8492 }
8493
8494 if (tls_clear == 0)
8495 continue;
8496
8497 if ((tls_set & TLS_EXPLICIT) == 0)
8498 {
8499 struct got_entry *ent;
8500
8501 /* Adjust got entry for this reloc. */
8502 if (h != NULL)
8503 ent = h->got.glist;
8504 else
8505 ent = elf_local_got_ents (ibfd)[r_symndx];
8506
8507 for (; ent != NULL; ent = ent->next)
8508 if (ent->addend == rel->r_addend
8509 && ent->owner == ibfd
8510 && ent->tls_type == tls_type)
8511 break;
8512 if (ent == NULL)
8513 abort ();
8514
8515 if (tls_set == 0)
8516 {
8517 /* We managed to get rid of a got entry. */
8518 if (ent->got.refcount > 0)
8519 ent->got.refcount -= 1;
8520 }
8521 }
8522 else
8523 {
8524 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8525 we'll lose one or two dyn relocs. */
8526 if (!dec_dynrel_count (rel->r_info, sec, info,
8527 NULL, h, sym))
8528 return FALSE;
8529
8530 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8531 {
8532 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8533 NULL, h, sym))
8534 return FALSE;
8535 }
8536 }
8537
8538 *tls_mask |= tls_set;
8539 *tls_mask &= ~tls_clear;
8540 }
8541
8542 if (elf_section_data (sec)->relocs != relstart)
8543 free (relstart);
8544 }
8545
8546 if (locsyms != NULL
8547 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8548 {
8549 if (!info->keep_memory)
8550 free (locsyms);
8551 else
8552 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8553 }
8554 }
8555
8556 if (toc_ref != NULL)
8557 free (toc_ref);
8558 return TRUE;
8559 }
8560
8561 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8562 the values of any global symbols in a toc section that has been
8563 edited. Globals in toc sections should be a rarity, so this function
8564 sets a flag if any are found in toc sections other than the one just
8565 edited, so that futher hash table traversals can be avoided. */
8566
8567 struct adjust_toc_info
8568 {
8569 asection *toc;
8570 unsigned long *skip;
8571 bfd_boolean global_toc_syms;
8572 };
8573
8574 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8575
8576 static bfd_boolean
8577 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8578 {
8579 struct ppc_link_hash_entry *eh;
8580 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8581 unsigned long i;
8582
8583 if (h->root.type != bfd_link_hash_defined
8584 && h->root.type != bfd_link_hash_defweak)
8585 return TRUE;
8586
8587 eh = (struct ppc_link_hash_entry *) h;
8588 if (eh->adjust_done)
8589 return TRUE;
8590
8591 if (eh->elf.root.u.def.section == toc_inf->toc)
8592 {
8593 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8594 i = toc_inf->toc->rawsize >> 3;
8595 else
8596 i = eh->elf.root.u.def.value >> 3;
8597
8598 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8599 {
8600 (*_bfd_error_handler)
8601 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8602 do
8603 ++i;
8604 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8605 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8606 }
8607
8608 eh->elf.root.u.def.value -= toc_inf->skip[i];
8609 eh->adjust_done = 1;
8610 }
8611 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8612 toc_inf->global_toc_syms = TRUE;
8613
8614 return TRUE;
8615 }
8616
8617 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8618
8619 static bfd_boolean
8620 ok_lo_toc_insn (unsigned int insn)
8621 {
8622 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8623 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8624 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8625 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8626 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8627 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8628 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8629 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8630 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8631 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8632 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8633 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8634 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8635 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8636 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8637 && (insn & 3) != 1)
8638 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8639 && ((insn & 3) == 0 || (insn & 3) == 3))
8640 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8641 }
8642
8643 /* Examine all relocs referencing .toc sections in order to remove
8644 unused .toc entries. */
8645
8646 bfd_boolean
8647 ppc64_elf_edit_toc (struct bfd_link_info *info)
8648 {
8649 bfd *ibfd;
8650 struct adjust_toc_info toc_inf;
8651 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8652
8653 htab->do_toc_opt = 1;
8654 toc_inf.global_toc_syms = TRUE;
8655 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8656 {
8657 asection *toc, *sec;
8658 Elf_Internal_Shdr *symtab_hdr;
8659 Elf_Internal_Sym *local_syms;
8660 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8661 unsigned long *skip, *drop;
8662 unsigned char *used;
8663 unsigned char *keep, last, some_unused;
8664
8665 if (!is_ppc64_elf (ibfd))
8666 continue;
8667
8668 toc = bfd_get_section_by_name (ibfd, ".toc");
8669 if (toc == NULL
8670 || toc->size == 0
8671 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8672 || discarded_section (toc))
8673 continue;
8674
8675 toc_relocs = NULL;
8676 local_syms = NULL;
8677 symtab_hdr = &elf_symtab_hdr (ibfd);
8678
8679 /* Look at sections dropped from the final link. */
8680 skip = NULL;
8681 relstart = NULL;
8682 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8683 {
8684 if (sec->reloc_count == 0
8685 || !discarded_section (sec)
8686 || get_opd_info (sec)
8687 || (sec->flags & SEC_ALLOC) == 0
8688 || (sec->flags & SEC_DEBUGGING) != 0)
8689 continue;
8690
8691 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8692 if (relstart == NULL)
8693 goto error_ret;
8694
8695 /* Run through the relocs to see which toc entries might be
8696 unused. */
8697 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8698 {
8699 enum elf_ppc64_reloc_type r_type;
8700 unsigned long r_symndx;
8701 asection *sym_sec;
8702 struct elf_link_hash_entry *h;
8703 Elf_Internal_Sym *sym;
8704 bfd_vma val;
8705
8706 r_type = ELF64_R_TYPE (rel->r_info);
8707 switch (r_type)
8708 {
8709 default:
8710 continue;
8711
8712 case R_PPC64_TOC16:
8713 case R_PPC64_TOC16_LO:
8714 case R_PPC64_TOC16_HI:
8715 case R_PPC64_TOC16_HA:
8716 case R_PPC64_TOC16_DS:
8717 case R_PPC64_TOC16_LO_DS:
8718 break;
8719 }
8720
8721 r_symndx = ELF64_R_SYM (rel->r_info);
8722 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8723 r_symndx, ibfd))
8724 goto error_ret;
8725
8726 if (sym_sec != toc)
8727 continue;
8728
8729 if (h != NULL)
8730 val = h->root.u.def.value;
8731 else
8732 val = sym->st_value;
8733 val += rel->r_addend;
8734
8735 if (val >= toc->size)
8736 continue;
8737
8738 /* Anything in the toc ought to be aligned to 8 bytes.
8739 If not, don't mark as unused. */
8740 if (val & 7)
8741 continue;
8742
8743 if (skip == NULL)
8744 {
8745 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8746 if (skip == NULL)
8747 goto error_ret;
8748 }
8749
8750 skip[val >> 3] = ref_from_discarded;
8751 }
8752
8753 if (elf_section_data (sec)->relocs != relstart)
8754 free (relstart);
8755 }
8756
8757 /* For largetoc loads of address constants, we can convert
8758 . addis rx,2,addr@got@ha
8759 . ld ry,addr@got@l(rx)
8760 to
8761 . addis rx,2,addr@toc@ha
8762 . addi ry,rx,addr@toc@l
8763 when addr is within 2G of the toc pointer. This then means
8764 that the word storing "addr" in the toc is no longer needed. */
8765
8766 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8767 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8768 && toc->reloc_count != 0)
8769 {
8770 /* Read toc relocs. */
8771 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8772 info->keep_memory);
8773 if (toc_relocs == NULL)
8774 goto error_ret;
8775
8776 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8777 {
8778 enum elf_ppc64_reloc_type r_type;
8779 unsigned long r_symndx;
8780 asection *sym_sec;
8781 struct elf_link_hash_entry *h;
8782 Elf_Internal_Sym *sym;
8783 bfd_vma val, addr;
8784
8785 r_type = ELF64_R_TYPE (rel->r_info);
8786 if (r_type != R_PPC64_ADDR64)
8787 continue;
8788
8789 r_symndx = ELF64_R_SYM (rel->r_info);
8790 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8791 r_symndx, ibfd))
8792 goto error_ret;
8793
8794 if (sym_sec == NULL
8795 || discarded_section (sym_sec))
8796 continue;
8797
8798 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8799 continue;
8800
8801 if (h != NULL)
8802 {
8803 if (h->type == STT_GNU_IFUNC)
8804 continue;
8805 val = h->root.u.def.value;
8806 }
8807 else
8808 {
8809 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8810 continue;
8811 val = sym->st_value;
8812 }
8813 val += rel->r_addend;
8814 val += sym_sec->output_section->vma + sym_sec->output_offset;
8815
8816 /* We don't yet know the exact toc pointer value, but we
8817 know it will be somewhere in the toc section. Don't
8818 optimize if the difference from any possible toc
8819 pointer is outside [ff..f80008000, 7fff7fff]. */
8820 addr = toc->output_section->vma + TOC_BASE_OFF;
8821 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8822 continue;
8823
8824 addr = toc->output_section->vma + toc->output_section->rawsize;
8825 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8826 continue;
8827
8828 if (skip == NULL)
8829 {
8830 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8831 if (skip == NULL)
8832 goto error_ret;
8833 }
8834
8835 skip[rel->r_offset >> 3]
8836 |= can_optimize | ((rel - toc_relocs) << 2);
8837 }
8838 }
8839
8840 if (skip == NULL)
8841 continue;
8842
8843 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8844 if (used == NULL)
8845 {
8846 error_ret:
8847 if (local_syms != NULL
8848 && symtab_hdr->contents != (unsigned char *) local_syms)
8849 free (local_syms);
8850 if (sec != NULL
8851 && relstart != NULL
8852 && elf_section_data (sec)->relocs != relstart)
8853 free (relstart);
8854 if (toc_relocs != NULL
8855 && elf_section_data (toc)->relocs != toc_relocs)
8856 free (toc_relocs);
8857 if (skip != NULL)
8858 free (skip);
8859 return FALSE;
8860 }
8861
8862 /* Now check all kept sections that might reference the toc.
8863 Check the toc itself last. */
8864 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8865 : ibfd->sections);
8866 sec != NULL;
8867 sec = (sec == toc ? NULL
8868 : sec->next == NULL ? toc
8869 : sec->next == toc && toc->next ? toc->next
8870 : sec->next))
8871 {
8872 int repeat;
8873
8874 if (sec->reloc_count == 0
8875 || discarded_section (sec)
8876 || get_opd_info (sec)
8877 || (sec->flags & SEC_ALLOC) == 0
8878 || (sec->flags & SEC_DEBUGGING) != 0)
8879 continue;
8880
8881 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8882 info->keep_memory);
8883 if (relstart == NULL)
8884 {
8885 free (used);
8886 goto error_ret;
8887 }
8888
8889 /* Mark toc entries referenced as used. */
8890 do
8891 {
8892 repeat = 0;
8893 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8894 {
8895 enum elf_ppc64_reloc_type r_type;
8896 unsigned long r_symndx;
8897 asection *sym_sec;
8898 struct elf_link_hash_entry *h;
8899 Elf_Internal_Sym *sym;
8900 bfd_vma val;
8901 enum {no_check, check_lo, check_ha} insn_check;
8902
8903 r_type = ELF64_R_TYPE (rel->r_info);
8904 switch (r_type)
8905 {
8906 default:
8907 insn_check = no_check;
8908 break;
8909
8910 case R_PPC64_GOT_TLSLD16_HA:
8911 case R_PPC64_GOT_TLSGD16_HA:
8912 case R_PPC64_GOT_TPREL16_HA:
8913 case R_PPC64_GOT_DTPREL16_HA:
8914 case R_PPC64_GOT16_HA:
8915 case R_PPC64_TOC16_HA:
8916 insn_check = check_ha;
8917 break;
8918
8919 case R_PPC64_GOT_TLSLD16_LO:
8920 case R_PPC64_GOT_TLSGD16_LO:
8921 case R_PPC64_GOT_TPREL16_LO_DS:
8922 case R_PPC64_GOT_DTPREL16_LO_DS:
8923 case R_PPC64_GOT16_LO:
8924 case R_PPC64_GOT16_LO_DS:
8925 case R_PPC64_TOC16_LO:
8926 case R_PPC64_TOC16_LO_DS:
8927 insn_check = check_lo;
8928 break;
8929 }
8930
8931 if (insn_check != no_check)
8932 {
8933 bfd_vma off = rel->r_offset & ~3;
8934 unsigned char buf[4];
8935 unsigned int insn;
8936
8937 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8938 {
8939 free (used);
8940 goto error_ret;
8941 }
8942 insn = bfd_get_32 (ibfd, buf);
8943 if (insn_check == check_lo
8944 ? !ok_lo_toc_insn (insn)
8945 : ((insn & ((0x3f << 26) | 0x1f << 16))
8946 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8947 {
8948 char str[12];
8949
8950 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8951 sprintf (str, "%#08x", insn);
8952 info->callbacks->einfo
8953 (_("%P: %H: toc optimization is not supported for"
8954 " %s instruction.\n"),
8955 ibfd, sec, rel->r_offset & ~3, str);
8956 }
8957 }
8958
8959 switch (r_type)
8960 {
8961 case R_PPC64_TOC16:
8962 case R_PPC64_TOC16_LO:
8963 case R_PPC64_TOC16_HI:
8964 case R_PPC64_TOC16_HA:
8965 case R_PPC64_TOC16_DS:
8966 case R_PPC64_TOC16_LO_DS:
8967 /* In case we're taking addresses of toc entries. */
8968 case R_PPC64_ADDR64:
8969 break;
8970
8971 default:
8972 continue;
8973 }
8974
8975 r_symndx = ELF64_R_SYM (rel->r_info);
8976 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8977 r_symndx, ibfd))
8978 {
8979 free (used);
8980 goto error_ret;
8981 }
8982
8983 if (sym_sec != toc)
8984 continue;
8985
8986 if (h != NULL)
8987 val = h->root.u.def.value;
8988 else
8989 val = sym->st_value;
8990 val += rel->r_addend;
8991
8992 if (val >= toc->size)
8993 continue;
8994
8995 if ((skip[val >> 3] & can_optimize) != 0)
8996 {
8997 bfd_vma off;
8998 unsigned char opc;
8999
9000 switch (r_type)
9001 {
9002 case R_PPC64_TOC16_HA:
9003 break;
9004
9005 case R_PPC64_TOC16_LO_DS:
9006 off = rel->r_offset;
9007 off += (bfd_big_endian (ibfd) ? -2 : 3);
9008 if (!bfd_get_section_contents (ibfd, sec, &opc,
9009 off, 1))
9010 {
9011 free (used);
9012 goto error_ret;
9013 }
9014 if ((opc & (0x3f << 2)) == (58u << 2))
9015 break;
9016 /* Fall thru */
9017
9018 default:
9019 /* Wrong sort of reloc, or not a ld. We may
9020 as well clear ref_from_discarded too. */
9021 skip[val >> 3] = 0;
9022 }
9023 }
9024
9025 if (sec != toc)
9026 used[val >> 3] = 1;
9027 /* For the toc section, we only mark as used if this
9028 entry itself isn't unused. */
9029 else if ((used[rel->r_offset >> 3]
9030 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9031 && !used[val >> 3])
9032 {
9033 /* Do all the relocs again, to catch reference
9034 chains. */
9035 repeat = 1;
9036 used[val >> 3] = 1;
9037 }
9038 }
9039 }
9040 while (repeat);
9041
9042 if (elf_section_data (sec)->relocs != relstart)
9043 free (relstart);
9044 }
9045
9046 /* Merge the used and skip arrays. Assume that TOC
9047 doublewords not appearing as either used or unused belong
9048 to to an entry more than one doubleword in size. */
9049 for (drop = skip, keep = used, last = 0, some_unused = 0;
9050 drop < skip + (toc->size + 7) / 8;
9051 ++drop, ++keep)
9052 {
9053 if (*keep)
9054 {
9055 *drop &= ~ref_from_discarded;
9056 if ((*drop & can_optimize) != 0)
9057 some_unused = 1;
9058 last = 0;
9059 }
9060 else if ((*drop & ref_from_discarded) != 0)
9061 {
9062 some_unused = 1;
9063 last = ref_from_discarded;
9064 }
9065 else
9066 *drop = last;
9067 }
9068
9069 free (used);
9070
9071 if (some_unused)
9072 {
9073 bfd_byte *contents, *src;
9074 unsigned long off;
9075 Elf_Internal_Sym *sym;
9076 bfd_boolean local_toc_syms = FALSE;
9077
9078 /* Shuffle the toc contents, and at the same time convert the
9079 skip array from booleans into offsets. */
9080 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9081 goto error_ret;
9082
9083 elf_section_data (toc)->this_hdr.contents = contents;
9084
9085 for (src = contents, off = 0, drop = skip;
9086 src < contents + toc->size;
9087 src += 8, ++drop)
9088 {
9089 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9090 off += 8;
9091 else if (off != 0)
9092 {
9093 *drop = off;
9094 memcpy (src - off, src, 8);
9095 }
9096 }
9097 *drop = off;
9098 toc->rawsize = toc->size;
9099 toc->size = src - contents - off;
9100
9101 /* Adjust addends for relocs against the toc section sym,
9102 and optimize any accesses we can. */
9103 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9104 {
9105 if (sec->reloc_count == 0
9106 || discarded_section (sec))
9107 continue;
9108
9109 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9110 info->keep_memory);
9111 if (relstart == NULL)
9112 goto error_ret;
9113
9114 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9115 {
9116 enum elf_ppc64_reloc_type r_type;
9117 unsigned long r_symndx;
9118 asection *sym_sec;
9119 struct elf_link_hash_entry *h;
9120 bfd_vma val;
9121
9122 r_type = ELF64_R_TYPE (rel->r_info);
9123 switch (r_type)
9124 {
9125 default:
9126 continue;
9127
9128 case R_PPC64_TOC16:
9129 case R_PPC64_TOC16_LO:
9130 case R_PPC64_TOC16_HI:
9131 case R_PPC64_TOC16_HA:
9132 case R_PPC64_TOC16_DS:
9133 case R_PPC64_TOC16_LO_DS:
9134 case R_PPC64_ADDR64:
9135 break;
9136 }
9137
9138 r_symndx = ELF64_R_SYM (rel->r_info);
9139 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9140 r_symndx, ibfd))
9141 goto error_ret;
9142
9143 if (sym_sec != toc)
9144 continue;
9145
9146 if (h != NULL)
9147 val = h->root.u.def.value;
9148 else
9149 {
9150 val = sym->st_value;
9151 if (val != 0)
9152 local_toc_syms = TRUE;
9153 }
9154
9155 val += rel->r_addend;
9156
9157 if (val > toc->rawsize)
9158 val = toc->rawsize;
9159 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9160 continue;
9161 else if ((skip[val >> 3] & can_optimize) != 0)
9162 {
9163 Elf_Internal_Rela *tocrel
9164 = toc_relocs + (skip[val >> 3] >> 2);
9165 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9166
9167 switch (r_type)
9168 {
9169 case R_PPC64_TOC16_HA:
9170 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9171 break;
9172
9173 case R_PPC64_TOC16_LO_DS:
9174 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9175 break;
9176
9177 default:
9178 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9179 ppc_howto_init ();
9180 info->callbacks->einfo
9181 (_("%P: %H: %s references "
9182 "optimized away TOC entry\n"),
9183 ibfd, sec, rel->r_offset,
9184 ppc64_elf_howto_table[r_type]->name);
9185 bfd_set_error (bfd_error_bad_value);
9186 goto error_ret;
9187 }
9188 rel->r_addend = tocrel->r_addend;
9189 elf_section_data (sec)->relocs = relstart;
9190 continue;
9191 }
9192
9193 if (h != NULL || sym->st_value != 0)
9194 continue;
9195
9196 rel->r_addend -= skip[val >> 3];
9197 elf_section_data (sec)->relocs = relstart;
9198 }
9199
9200 if (elf_section_data (sec)->relocs != relstart)
9201 free (relstart);
9202 }
9203
9204 /* We shouldn't have local or global symbols defined in the TOC,
9205 but handle them anyway. */
9206 if (local_syms != NULL)
9207 for (sym = local_syms;
9208 sym < local_syms + symtab_hdr->sh_info;
9209 ++sym)
9210 if (sym->st_value != 0
9211 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9212 {
9213 unsigned long i;
9214
9215 if (sym->st_value > toc->rawsize)
9216 i = toc->rawsize >> 3;
9217 else
9218 i = sym->st_value >> 3;
9219
9220 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9221 {
9222 if (local_toc_syms)
9223 (*_bfd_error_handler)
9224 (_("%s defined on removed toc entry"),
9225 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9226 do
9227 ++i;
9228 while ((skip[i] & (ref_from_discarded | can_optimize)));
9229 sym->st_value = (bfd_vma) i << 3;
9230 }
9231
9232 sym->st_value -= skip[i];
9233 symtab_hdr->contents = (unsigned char *) local_syms;
9234 }
9235
9236 /* Adjust any global syms defined in this toc input section. */
9237 if (toc_inf.global_toc_syms)
9238 {
9239 toc_inf.toc = toc;
9240 toc_inf.skip = skip;
9241 toc_inf.global_toc_syms = FALSE;
9242 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9243 &toc_inf);
9244 }
9245
9246 if (toc->reloc_count != 0)
9247 {
9248 Elf_Internal_Shdr *rel_hdr;
9249 Elf_Internal_Rela *wrel;
9250 bfd_size_type sz;
9251
9252 /* Remove unused toc relocs, and adjust those we keep. */
9253 if (toc_relocs == NULL)
9254 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9255 info->keep_memory);
9256 if (toc_relocs == NULL)
9257 goto error_ret;
9258
9259 wrel = toc_relocs;
9260 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9261 if ((skip[rel->r_offset >> 3]
9262 & (ref_from_discarded | can_optimize)) == 0)
9263 {
9264 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9265 wrel->r_info = rel->r_info;
9266 wrel->r_addend = rel->r_addend;
9267 ++wrel;
9268 }
9269 else if (!dec_dynrel_count (rel->r_info, toc, info,
9270 &local_syms, NULL, NULL))
9271 goto error_ret;
9272
9273 elf_section_data (toc)->relocs = toc_relocs;
9274 toc->reloc_count = wrel - toc_relocs;
9275 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9276 sz = rel_hdr->sh_entsize;
9277 rel_hdr->sh_size = toc->reloc_count * sz;
9278 }
9279 }
9280 else if (toc_relocs != NULL
9281 && elf_section_data (toc)->relocs != toc_relocs)
9282 free (toc_relocs);
9283
9284 if (local_syms != NULL
9285 && symtab_hdr->contents != (unsigned char *) local_syms)
9286 {
9287 if (!info->keep_memory)
9288 free (local_syms);
9289 else
9290 symtab_hdr->contents = (unsigned char *) local_syms;
9291 }
9292 free (skip);
9293 }
9294
9295 return TRUE;
9296 }
9297
9298 /* Return true iff input section I references the TOC using
9299 instructions limited to +/-32k offsets. */
9300
9301 bfd_boolean
9302 ppc64_elf_has_small_toc_reloc (asection *i)
9303 {
9304 return (is_ppc64_elf (i->owner)
9305 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9306 }
9307
9308 /* Allocate space for one GOT entry. */
9309
9310 static void
9311 allocate_got (struct elf_link_hash_entry *h,
9312 struct bfd_link_info *info,
9313 struct got_entry *gent)
9314 {
9315 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9316 bfd_boolean dyn;
9317 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9318 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9319 ? 16 : 8);
9320 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9321 ? 2 : 1) * sizeof (Elf64_External_Rela);
9322 asection *got = ppc64_elf_tdata (gent->owner)->got;
9323
9324 gent->got.offset = got->size;
9325 got->size += entsize;
9326
9327 dyn = htab->elf.dynamic_sections_created;
9328 if (h->type == STT_GNU_IFUNC)
9329 {
9330 htab->elf.irelplt->size += rentsize;
9331 htab->got_reli_size += rentsize;
9332 }
9333 else if ((info->shared
9334 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9335 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9336 || h->root.type != bfd_link_hash_undefweak))
9337 {
9338 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9339 relgot->size += rentsize;
9340 }
9341 }
9342
9343 /* This function merges got entries in the same toc group. */
9344
9345 static void
9346 merge_got_entries (struct got_entry **pent)
9347 {
9348 struct got_entry *ent, *ent2;
9349
9350 for (ent = *pent; ent != NULL; ent = ent->next)
9351 if (!ent->is_indirect)
9352 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9353 if (!ent2->is_indirect
9354 && ent2->addend == ent->addend
9355 && ent2->tls_type == ent->tls_type
9356 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9357 {
9358 ent2->is_indirect = TRUE;
9359 ent2->got.ent = ent;
9360 }
9361 }
9362
9363 /* Allocate space in .plt, .got and associated reloc sections for
9364 dynamic relocs. */
9365
9366 static bfd_boolean
9367 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9368 {
9369 struct bfd_link_info *info;
9370 struct ppc_link_hash_table *htab;
9371 asection *s;
9372 struct ppc_link_hash_entry *eh;
9373 struct elf_dyn_relocs *p;
9374 struct got_entry **pgent, *gent;
9375
9376 if (h->root.type == bfd_link_hash_indirect)
9377 return TRUE;
9378
9379 info = (struct bfd_link_info *) inf;
9380 htab = ppc_hash_table (info);
9381 if (htab == NULL)
9382 return FALSE;
9383
9384 if ((htab->elf.dynamic_sections_created
9385 && h->dynindx != -1
9386 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9387 || h->type == STT_GNU_IFUNC)
9388 {
9389 struct plt_entry *pent;
9390 bfd_boolean doneone = FALSE;
9391 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9392 if (pent->plt.refcount > 0)
9393 {
9394 if (!htab->elf.dynamic_sections_created
9395 || h->dynindx == -1)
9396 {
9397 s = htab->elf.iplt;
9398 pent->plt.offset = s->size;
9399 s->size += PLT_ENTRY_SIZE (htab);
9400 s = htab->elf.irelplt;
9401 }
9402 else
9403 {
9404 /* If this is the first .plt entry, make room for the special
9405 first entry. */
9406 s = htab->elf.splt;
9407 if (s->size == 0)
9408 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9409
9410 pent->plt.offset = s->size;
9411
9412 /* Make room for this entry. */
9413 s->size += PLT_ENTRY_SIZE (htab);
9414
9415 /* Make room for the .glink code. */
9416 s = htab->glink;
9417 if (s->size == 0)
9418 s->size += GLINK_CALL_STUB_SIZE;
9419 if (htab->opd_abi)
9420 {
9421 /* We need bigger stubs past index 32767. */
9422 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9423 s->size += 4;
9424 s->size += 2*4;
9425 }
9426 else
9427 s->size += 4;
9428
9429 /* We also need to make an entry in the .rela.plt section. */
9430 s = htab->elf.srelplt;
9431 }
9432 s->size += sizeof (Elf64_External_Rela);
9433 doneone = TRUE;
9434 }
9435 else
9436 pent->plt.offset = (bfd_vma) -1;
9437 if (!doneone)
9438 {
9439 h->plt.plist = NULL;
9440 h->needs_plt = 0;
9441 }
9442 }
9443 else
9444 {
9445 h->plt.plist = NULL;
9446 h->needs_plt = 0;
9447 }
9448
9449 eh = (struct ppc_link_hash_entry *) h;
9450 /* Run through the TLS GD got entries first if we're changing them
9451 to TPREL. */
9452 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9453 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9454 if (gent->got.refcount > 0
9455 && (gent->tls_type & TLS_GD) != 0)
9456 {
9457 /* This was a GD entry that has been converted to TPREL. If
9458 there happens to be a TPREL entry we can use that one. */
9459 struct got_entry *ent;
9460 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9461 if (ent->got.refcount > 0
9462 && (ent->tls_type & TLS_TPREL) != 0
9463 && ent->addend == gent->addend
9464 && ent->owner == gent->owner)
9465 {
9466 gent->got.refcount = 0;
9467 break;
9468 }
9469
9470 /* If not, then we'll be using our own TPREL entry. */
9471 if (gent->got.refcount != 0)
9472 gent->tls_type = TLS_TLS | TLS_TPREL;
9473 }
9474
9475 /* Remove any list entry that won't generate a word in the GOT before
9476 we call merge_got_entries. Otherwise we risk merging to empty
9477 entries. */
9478 pgent = &h->got.glist;
9479 while ((gent = *pgent) != NULL)
9480 if (gent->got.refcount > 0)
9481 {
9482 if ((gent->tls_type & TLS_LD) != 0
9483 && !h->def_dynamic)
9484 {
9485 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9486 *pgent = gent->next;
9487 }
9488 else
9489 pgent = &gent->next;
9490 }
9491 else
9492 *pgent = gent->next;
9493
9494 if (!htab->do_multi_toc)
9495 merge_got_entries (&h->got.glist);
9496
9497 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9498 if (!gent->is_indirect)
9499 {
9500 /* Make sure this symbol is output as a dynamic symbol.
9501 Undefined weak syms won't yet be marked as dynamic,
9502 nor will all TLS symbols. */
9503 if (h->dynindx == -1
9504 && !h->forced_local
9505 && h->type != STT_GNU_IFUNC
9506 && htab->elf.dynamic_sections_created)
9507 {
9508 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9509 return FALSE;
9510 }
9511
9512 if (!is_ppc64_elf (gent->owner))
9513 abort ();
9514
9515 allocate_got (h, info, gent);
9516 }
9517
9518 if (eh->dyn_relocs == NULL
9519 || (!htab->elf.dynamic_sections_created
9520 && h->type != STT_GNU_IFUNC))
9521 return TRUE;
9522
9523 /* In the shared -Bsymbolic case, discard space allocated for
9524 dynamic pc-relative relocs against symbols which turn out to be
9525 defined in regular objects. For the normal shared case, discard
9526 space for relocs that have become local due to symbol visibility
9527 changes. */
9528
9529 if (info->shared)
9530 {
9531 /* Relocs that use pc_count are those that appear on a call insn,
9532 or certain REL relocs (see must_be_dyn_reloc) that can be
9533 generated via assembly. We want calls to protected symbols to
9534 resolve directly to the function rather than going via the plt.
9535 If people want function pointer comparisons to work as expected
9536 then they should avoid writing weird assembly. */
9537 if (SYMBOL_CALLS_LOCAL (info, h))
9538 {
9539 struct elf_dyn_relocs **pp;
9540
9541 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9542 {
9543 p->count -= p->pc_count;
9544 p->pc_count = 0;
9545 if (p->count == 0)
9546 *pp = p->next;
9547 else
9548 pp = &p->next;
9549 }
9550 }
9551
9552 /* Also discard relocs on undefined weak syms with non-default
9553 visibility. */
9554 if (eh->dyn_relocs != NULL
9555 && h->root.type == bfd_link_hash_undefweak)
9556 {
9557 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9558 eh->dyn_relocs = NULL;
9559
9560 /* Make sure this symbol is output as a dynamic symbol.
9561 Undefined weak syms won't yet be marked as dynamic. */
9562 else if (h->dynindx == -1
9563 && !h->forced_local)
9564 {
9565 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9566 return FALSE;
9567 }
9568 }
9569 }
9570 else if (h->type == STT_GNU_IFUNC)
9571 {
9572 if (!h->non_got_ref)
9573 eh->dyn_relocs = NULL;
9574 }
9575 else if (ELIMINATE_COPY_RELOCS)
9576 {
9577 /* For the non-shared case, discard space for relocs against
9578 symbols which turn out to need copy relocs or are not
9579 dynamic. */
9580
9581 if (!h->non_got_ref
9582 && !h->def_regular)
9583 {
9584 /* Make sure this symbol is output as a dynamic symbol.
9585 Undefined weak syms won't yet be marked as dynamic. */
9586 if (h->dynindx == -1
9587 && !h->forced_local)
9588 {
9589 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9590 return FALSE;
9591 }
9592
9593 /* If that succeeded, we know we'll be keeping all the
9594 relocs. */
9595 if (h->dynindx != -1)
9596 goto keep;
9597 }
9598
9599 eh->dyn_relocs = NULL;
9600
9601 keep: ;
9602 }
9603
9604 /* Finally, allocate space. */
9605 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9606 {
9607 asection *sreloc = elf_section_data (p->sec)->sreloc;
9608 if (eh->elf.type == STT_GNU_IFUNC)
9609 sreloc = htab->elf.irelplt;
9610 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9611 }
9612
9613 return TRUE;
9614 }
9615
9616 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9617 to set up space for global entry stubs. These are put in glink,
9618 after the branch table. */
9619
9620 static bfd_boolean
9621 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9622 {
9623 struct bfd_link_info *info;
9624 struct ppc_link_hash_table *htab;
9625 struct plt_entry *pent;
9626 asection *s;
9627
9628 if (h->root.type == bfd_link_hash_indirect)
9629 return TRUE;
9630
9631 if (!h->pointer_equality_needed)
9632 return TRUE;
9633
9634 if (h->def_regular)
9635 return TRUE;
9636
9637 info = inf;
9638 htab = ppc_hash_table (info);
9639 if (htab == NULL)
9640 return FALSE;
9641
9642 s = htab->glink;
9643 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9644 if (pent->plt.offset != (bfd_vma) -1
9645 && pent->addend == 0)
9646 {
9647 /* For ELFv2, if this symbol is not defined in a regular file
9648 and we are not generating a shared library or pie, then we
9649 need to define the symbol in the executable on a call stub.
9650 This is to avoid text relocations. */
9651 s->size = (s->size + 15) & -16;
9652 h->root.u.def.section = s;
9653 h->root.u.def.value = s->size;
9654 s->size += 16;
9655 break;
9656 }
9657 return TRUE;
9658 }
9659
9660 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9661 read-only sections. */
9662
9663 static bfd_boolean
9664 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9665 {
9666 if (h->root.type == bfd_link_hash_indirect)
9667 return TRUE;
9668
9669 if (readonly_dynrelocs (h))
9670 {
9671 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9672
9673 /* Not an error, just cut short the traversal. */
9674 return FALSE;
9675 }
9676 return TRUE;
9677 }
9678
9679 /* Set the sizes of the dynamic sections. */
9680
9681 static bfd_boolean
9682 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9683 struct bfd_link_info *info)
9684 {
9685 struct ppc_link_hash_table *htab;
9686 bfd *dynobj;
9687 asection *s;
9688 bfd_boolean relocs;
9689 bfd *ibfd;
9690 struct got_entry *first_tlsld;
9691
9692 htab = ppc_hash_table (info);
9693 if (htab == NULL)
9694 return FALSE;
9695
9696 dynobj = htab->elf.dynobj;
9697 if (dynobj == NULL)
9698 abort ();
9699
9700 if (htab->elf.dynamic_sections_created)
9701 {
9702 /* Set the contents of the .interp section to the interpreter. */
9703 if (info->executable)
9704 {
9705 s = bfd_get_linker_section (dynobj, ".interp");
9706 if (s == NULL)
9707 abort ();
9708 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9709 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9710 }
9711 }
9712
9713 /* Set up .got offsets for local syms, and space for local dynamic
9714 relocs. */
9715 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9716 {
9717 struct got_entry **lgot_ents;
9718 struct got_entry **end_lgot_ents;
9719 struct plt_entry **local_plt;
9720 struct plt_entry **end_local_plt;
9721 unsigned char *lgot_masks;
9722 bfd_size_type locsymcount;
9723 Elf_Internal_Shdr *symtab_hdr;
9724
9725 if (!is_ppc64_elf (ibfd))
9726 continue;
9727
9728 for (s = ibfd->sections; s != NULL; s = s->next)
9729 {
9730 struct ppc_dyn_relocs *p;
9731
9732 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9733 {
9734 if (!bfd_is_abs_section (p->sec)
9735 && bfd_is_abs_section (p->sec->output_section))
9736 {
9737 /* Input section has been discarded, either because
9738 it is a copy of a linkonce section or due to
9739 linker script /DISCARD/, so we'll be discarding
9740 the relocs too. */
9741 }
9742 else if (p->count != 0)
9743 {
9744 asection *srel = elf_section_data (p->sec)->sreloc;
9745 if (p->ifunc)
9746 srel = htab->elf.irelplt;
9747 srel->size += p->count * sizeof (Elf64_External_Rela);
9748 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9749 info->flags |= DF_TEXTREL;
9750 }
9751 }
9752 }
9753
9754 lgot_ents = elf_local_got_ents (ibfd);
9755 if (!lgot_ents)
9756 continue;
9757
9758 symtab_hdr = &elf_symtab_hdr (ibfd);
9759 locsymcount = symtab_hdr->sh_info;
9760 end_lgot_ents = lgot_ents + locsymcount;
9761 local_plt = (struct plt_entry **) end_lgot_ents;
9762 end_local_plt = local_plt + locsymcount;
9763 lgot_masks = (unsigned char *) end_local_plt;
9764 s = ppc64_elf_tdata (ibfd)->got;
9765 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9766 {
9767 struct got_entry **pent, *ent;
9768
9769 pent = lgot_ents;
9770 while ((ent = *pent) != NULL)
9771 if (ent->got.refcount > 0)
9772 {
9773 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9774 {
9775 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9776 *pent = ent->next;
9777 }
9778 else
9779 {
9780 unsigned int ent_size = 8;
9781 unsigned int rel_size = sizeof (Elf64_External_Rela);
9782
9783 ent->got.offset = s->size;
9784 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9785 {
9786 ent_size *= 2;
9787 rel_size *= 2;
9788 }
9789 s->size += ent_size;
9790 if ((*lgot_masks & PLT_IFUNC) != 0)
9791 {
9792 htab->elf.irelplt->size += rel_size;
9793 htab->got_reli_size += rel_size;
9794 }
9795 else if (info->shared)
9796 {
9797 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9798 srel->size += rel_size;
9799 }
9800 pent = &ent->next;
9801 }
9802 }
9803 else
9804 *pent = ent->next;
9805 }
9806
9807 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9808 for (; local_plt < end_local_plt; ++local_plt)
9809 {
9810 struct plt_entry *ent;
9811
9812 for (ent = *local_plt; ent != NULL; ent = ent->next)
9813 if (ent->plt.refcount > 0)
9814 {
9815 s = htab->elf.iplt;
9816 ent->plt.offset = s->size;
9817 s->size += PLT_ENTRY_SIZE (htab);
9818
9819 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9820 }
9821 else
9822 ent->plt.offset = (bfd_vma) -1;
9823 }
9824 }
9825
9826 /* Allocate global sym .plt and .got entries, and space for global
9827 sym dynamic relocs. */
9828 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9829 /* Stash the end of glink branch table. */
9830 if (htab->glink != NULL)
9831 htab->glink->rawsize = htab->glink->size;
9832
9833 if (!htab->opd_abi && !info->shared)
9834 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9835
9836 first_tlsld = NULL;
9837 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9838 {
9839 struct got_entry *ent;
9840
9841 if (!is_ppc64_elf (ibfd))
9842 continue;
9843
9844 ent = ppc64_tlsld_got (ibfd);
9845 if (ent->got.refcount > 0)
9846 {
9847 if (!htab->do_multi_toc && first_tlsld != NULL)
9848 {
9849 ent->is_indirect = TRUE;
9850 ent->got.ent = first_tlsld;
9851 }
9852 else
9853 {
9854 if (first_tlsld == NULL)
9855 first_tlsld = ent;
9856 s = ppc64_elf_tdata (ibfd)->got;
9857 ent->got.offset = s->size;
9858 ent->owner = ibfd;
9859 s->size += 16;
9860 if (info->shared)
9861 {
9862 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9863 srel->size += sizeof (Elf64_External_Rela);
9864 }
9865 }
9866 }
9867 else
9868 ent->got.offset = (bfd_vma) -1;
9869 }
9870
9871 /* We now have determined the sizes of the various dynamic sections.
9872 Allocate memory for them. */
9873 relocs = FALSE;
9874 for (s = dynobj->sections; s != NULL; s = s->next)
9875 {
9876 if ((s->flags & SEC_LINKER_CREATED) == 0)
9877 continue;
9878
9879 if (s == htab->brlt || s == htab->relbrlt)
9880 /* These haven't been allocated yet; don't strip. */
9881 continue;
9882 else if (s == htab->elf.sgot
9883 || s == htab->elf.splt
9884 || s == htab->elf.iplt
9885 || s == htab->glink
9886 || s == htab->dynbss)
9887 {
9888 /* Strip this section if we don't need it; see the
9889 comment below. */
9890 }
9891 else if (s == htab->glink_eh_frame)
9892 {
9893 if (!bfd_is_abs_section (s->output_section))
9894 /* Not sized yet. */
9895 continue;
9896 }
9897 else if (CONST_STRNEQ (s->name, ".rela"))
9898 {
9899 if (s->size != 0)
9900 {
9901 if (s != htab->elf.srelplt)
9902 relocs = TRUE;
9903
9904 /* We use the reloc_count field as a counter if we need
9905 to copy relocs into the output file. */
9906 s->reloc_count = 0;
9907 }
9908 }
9909 else
9910 {
9911 /* It's not one of our sections, so don't allocate space. */
9912 continue;
9913 }
9914
9915 if (s->size == 0)
9916 {
9917 /* If we don't need this section, strip it from the
9918 output file. This is mostly to handle .rela.bss and
9919 .rela.plt. We must create both sections in
9920 create_dynamic_sections, because they must be created
9921 before the linker maps input sections to output
9922 sections. The linker does that before
9923 adjust_dynamic_symbol is called, and it is that
9924 function which decides whether anything needs to go
9925 into these sections. */
9926 s->flags |= SEC_EXCLUDE;
9927 continue;
9928 }
9929
9930 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9931 continue;
9932
9933 /* Allocate memory for the section contents. We use bfd_zalloc
9934 here in case unused entries are not reclaimed before the
9935 section's contents are written out. This should not happen,
9936 but this way if it does we get a R_PPC64_NONE reloc in .rela
9937 sections instead of garbage.
9938 We also rely on the section contents being zero when writing
9939 the GOT. */
9940 s->contents = bfd_zalloc (dynobj, s->size);
9941 if (s->contents == NULL)
9942 return FALSE;
9943 }
9944
9945 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9946 {
9947 if (!is_ppc64_elf (ibfd))
9948 continue;
9949
9950 s = ppc64_elf_tdata (ibfd)->got;
9951 if (s != NULL && s != htab->elf.sgot)
9952 {
9953 if (s->size == 0)
9954 s->flags |= SEC_EXCLUDE;
9955 else
9956 {
9957 s->contents = bfd_zalloc (ibfd, s->size);
9958 if (s->contents == NULL)
9959 return FALSE;
9960 }
9961 }
9962 s = ppc64_elf_tdata (ibfd)->relgot;
9963 if (s != NULL)
9964 {
9965 if (s->size == 0)
9966 s->flags |= SEC_EXCLUDE;
9967 else
9968 {
9969 s->contents = bfd_zalloc (ibfd, s->size);
9970 if (s->contents == NULL)
9971 return FALSE;
9972 relocs = TRUE;
9973 s->reloc_count = 0;
9974 }
9975 }
9976 }
9977
9978 if (htab->elf.dynamic_sections_created)
9979 {
9980 bfd_boolean tls_opt;
9981
9982 /* Add some entries to the .dynamic section. We fill in the
9983 values later, in ppc64_elf_finish_dynamic_sections, but we
9984 must add the entries now so that we get the correct size for
9985 the .dynamic section. The DT_DEBUG entry is filled in by the
9986 dynamic linker and used by the debugger. */
9987 #define add_dynamic_entry(TAG, VAL) \
9988 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9989
9990 if (info->executable)
9991 {
9992 if (!add_dynamic_entry (DT_DEBUG, 0))
9993 return FALSE;
9994 }
9995
9996 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9997 {
9998 if (!add_dynamic_entry (DT_PLTGOT, 0)
9999 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10000 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10001 || !add_dynamic_entry (DT_JMPREL, 0)
10002 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10003 return FALSE;
10004 }
10005
10006 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10007 {
10008 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10009 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10010 return FALSE;
10011 }
10012
10013 tls_opt = (!htab->params->no_tls_get_addr_opt
10014 && htab->tls_get_addr_fd != NULL
10015 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10016 if (tls_opt || !htab->opd_abi)
10017 {
10018 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10019 return FALSE;
10020 }
10021
10022 if (relocs)
10023 {
10024 if (!add_dynamic_entry (DT_RELA, 0)
10025 || !add_dynamic_entry (DT_RELASZ, 0)
10026 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10027 return FALSE;
10028
10029 /* If any dynamic relocs apply to a read-only section,
10030 then we need a DT_TEXTREL entry. */
10031 if ((info->flags & DF_TEXTREL) == 0)
10032 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10033
10034 if ((info->flags & DF_TEXTREL) != 0)
10035 {
10036 if (!add_dynamic_entry (DT_TEXTREL, 0))
10037 return FALSE;
10038 }
10039 }
10040 }
10041 #undef add_dynamic_entry
10042
10043 return TRUE;
10044 }
10045
10046 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10047
10048 static bfd_boolean
10049 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10050 {
10051 if (h->plt.plist != NULL
10052 && !h->def_regular
10053 && !h->pointer_equality_needed)
10054 return FALSE;
10055
10056 return _bfd_elf_hash_symbol (h);
10057 }
10058
10059 /* Determine the type of stub needed, if any, for a call. */
10060
10061 static inline enum ppc_stub_type
10062 ppc_type_of_stub (asection *input_sec,
10063 const Elf_Internal_Rela *rel,
10064 struct ppc_link_hash_entry **hash,
10065 struct plt_entry **plt_ent,
10066 bfd_vma destination,
10067 unsigned long local_off)
10068 {
10069 struct ppc_link_hash_entry *h = *hash;
10070 bfd_vma location;
10071 bfd_vma branch_offset;
10072 bfd_vma max_branch_offset;
10073 enum elf_ppc64_reloc_type r_type;
10074
10075 if (h != NULL)
10076 {
10077 struct plt_entry *ent;
10078 struct ppc_link_hash_entry *fdh = h;
10079 if (h->oh != NULL
10080 && h->oh->is_func_descriptor)
10081 {
10082 fdh = ppc_follow_link (h->oh);
10083 *hash = fdh;
10084 }
10085
10086 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10087 if (ent->addend == rel->r_addend
10088 && ent->plt.offset != (bfd_vma) -1)
10089 {
10090 *plt_ent = ent;
10091 return ppc_stub_plt_call;
10092 }
10093
10094 /* Here, we know we don't have a plt entry. If we don't have a
10095 either a defined function descriptor or a defined entry symbol
10096 in a regular object file, then it is pointless trying to make
10097 any other type of stub. */
10098 if (!is_static_defined (&fdh->elf)
10099 && !is_static_defined (&h->elf))
10100 return ppc_stub_none;
10101 }
10102 else if (elf_local_got_ents (input_sec->owner) != NULL)
10103 {
10104 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10105 struct plt_entry **local_plt = (struct plt_entry **)
10106 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10107 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10108
10109 if (local_plt[r_symndx] != NULL)
10110 {
10111 struct plt_entry *ent;
10112
10113 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10114 if (ent->addend == rel->r_addend
10115 && ent->plt.offset != (bfd_vma) -1)
10116 {
10117 *plt_ent = ent;
10118 return ppc_stub_plt_call;
10119 }
10120 }
10121 }
10122
10123 /* Determine where the call point is. */
10124 location = (input_sec->output_offset
10125 + input_sec->output_section->vma
10126 + rel->r_offset);
10127
10128 branch_offset = destination - location;
10129 r_type = ELF64_R_TYPE (rel->r_info);
10130
10131 /* Determine if a long branch stub is needed. */
10132 max_branch_offset = 1 << 25;
10133 if (r_type != R_PPC64_REL24)
10134 max_branch_offset = 1 << 15;
10135
10136 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10137 /* We need a stub. Figure out whether a long_branch or plt_branch
10138 is needed later. */
10139 return ppc_stub_long_branch;
10140
10141 return ppc_stub_none;
10142 }
10143
10144 /* With power7 weakly ordered memory model, it is possible for ld.so
10145 to update a plt entry in one thread and have another thread see a
10146 stale zero toc entry. To avoid this we need some sort of acquire
10147 barrier in the call stub. One solution is to make the load of the
10148 toc word seem to appear to depend on the load of the function entry
10149 word. Another solution is to test for r2 being zero, and branch to
10150 the appropriate glink entry if so.
10151
10152 . fake dep barrier compare
10153 . ld 12,xxx(2) ld 12,xxx(2)
10154 . mtctr 12 mtctr 12
10155 . xor 11,12,12 ld 2,xxx+8(2)
10156 . add 2,2,11 cmpldi 2,0
10157 . ld 2,xxx+8(2) bnectr+
10158 . bctr b <glink_entry>
10159
10160 The solution involving the compare turns out to be faster, so
10161 that's what we use unless the branch won't reach. */
10162
10163 #define ALWAYS_USE_FAKE_DEP 0
10164 #define ALWAYS_EMIT_R2SAVE 0
10165
10166 #define PPC_LO(v) ((v) & 0xffff)
10167 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10168 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10169
10170 static inline unsigned int
10171 plt_stub_size (struct ppc_link_hash_table *htab,
10172 struct ppc_stub_hash_entry *stub_entry,
10173 bfd_vma off)
10174 {
10175 unsigned size = 12;
10176
10177 if (ALWAYS_EMIT_R2SAVE
10178 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10179 size += 4;
10180 if (PPC_HA (off) != 0)
10181 size += 4;
10182 if (htab->opd_abi)
10183 {
10184 size += 4;
10185 if (htab->params->plt_static_chain)
10186 size += 4;
10187 if (htab->params->plt_thread_safe)
10188 size += 8;
10189 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10190 size += 4;
10191 }
10192 if (stub_entry->h != NULL
10193 && (stub_entry->h == htab->tls_get_addr_fd
10194 || stub_entry->h == htab->tls_get_addr)
10195 && !htab->params->no_tls_get_addr_opt)
10196 size += 13 * 4;
10197 return size;
10198 }
10199
10200 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10201 then return the padding needed to do so. */
10202 static inline unsigned int
10203 plt_stub_pad (struct ppc_link_hash_table *htab,
10204 struct ppc_stub_hash_entry *stub_entry,
10205 bfd_vma plt_off)
10206 {
10207 int stub_align = 1 << htab->params->plt_stub_align;
10208 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10209 bfd_vma stub_off = stub_entry->stub_sec->size;
10210
10211 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10212 > (stub_size & -stub_align))
10213 return stub_align - (stub_off & (stub_align - 1));
10214 return 0;
10215 }
10216
10217 /* Build a .plt call stub. */
10218
10219 static inline bfd_byte *
10220 build_plt_stub (struct ppc_link_hash_table *htab,
10221 struct ppc_stub_hash_entry *stub_entry,
10222 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10223 {
10224 bfd *obfd = htab->params->stub_bfd;
10225 bfd_boolean plt_load_toc = htab->opd_abi;
10226 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10227 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10228 bfd_boolean use_fake_dep = plt_thread_safe;
10229 bfd_vma cmp_branch_off = 0;
10230
10231 if (!ALWAYS_USE_FAKE_DEP
10232 && plt_load_toc
10233 && plt_thread_safe
10234 && !(stub_entry->h != NULL
10235 && (stub_entry->h == htab->tls_get_addr_fd
10236 || stub_entry->h == htab->tls_get_addr)
10237 && !htab->params->no_tls_get_addr_opt))
10238 {
10239 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10240 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10241 / PLT_ENTRY_SIZE (htab));
10242 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10243 bfd_vma to, from;
10244
10245 if (pltindex > 32768)
10246 glinkoff += (pltindex - 32768) * 4;
10247 to = (glinkoff
10248 + htab->glink->output_offset
10249 + htab->glink->output_section->vma);
10250 from = (p - stub_entry->stub_sec->contents
10251 + 4 * (ALWAYS_EMIT_R2SAVE
10252 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10253 + 4 * (PPC_HA (offset) != 0)
10254 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10255 != PPC_HA (offset))
10256 + 4 * (plt_static_chain != 0)
10257 + 20
10258 + stub_entry->stub_sec->output_offset
10259 + stub_entry->stub_sec->output_section->vma);
10260 cmp_branch_off = to - from;
10261 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10262 }
10263
10264 if (PPC_HA (offset) != 0)
10265 {
10266 if (r != NULL)
10267 {
10268 if (ALWAYS_EMIT_R2SAVE
10269 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10270 r[0].r_offset += 4;
10271 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10272 r[1].r_offset = r[0].r_offset + 4;
10273 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10274 r[1].r_addend = r[0].r_addend;
10275 if (plt_load_toc)
10276 {
10277 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10278 {
10279 r[2].r_offset = r[1].r_offset + 4;
10280 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10281 r[2].r_addend = r[0].r_addend;
10282 }
10283 else
10284 {
10285 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10286 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10287 r[2].r_addend = r[0].r_addend + 8;
10288 if (plt_static_chain)
10289 {
10290 r[3].r_offset = r[2].r_offset + 4;
10291 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10292 r[3].r_addend = r[0].r_addend + 16;
10293 }
10294 }
10295 }
10296 }
10297 if (ALWAYS_EMIT_R2SAVE
10298 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10299 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10300 if (plt_load_toc)
10301 {
10302 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10303 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10304 }
10305 else
10306 {
10307 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10308 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10309 }
10310 if (plt_load_toc
10311 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10312 {
10313 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10314 offset = 0;
10315 }
10316 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10317 if (plt_load_toc)
10318 {
10319 if (use_fake_dep)
10320 {
10321 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10322 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10323 }
10324 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10325 if (plt_static_chain)
10326 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10327 }
10328 }
10329 else
10330 {
10331 if (r != NULL)
10332 {
10333 if (ALWAYS_EMIT_R2SAVE
10334 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10335 r[0].r_offset += 4;
10336 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10337 if (plt_load_toc)
10338 {
10339 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10340 {
10341 r[1].r_offset = r[0].r_offset + 4;
10342 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10343 r[1].r_addend = r[0].r_addend;
10344 }
10345 else
10346 {
10347 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10348 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10349 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10350 if (plt_static_chain)
10351 {
10352 r[2].r_offset = r[1].r_offset + 4;
10353 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10354 r[2].r_addend = r[0].r_addend + 8;
10355 }
10356 }
10357 }
10358 }
10359 if (ALWAYS_EMIT_R2SAVE
10360 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10361 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10362 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10363 if (plt_load_toc
10364 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10365 {
10366 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10367 offset = 0;
10368 }
10369 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10370 if (plt_load_toc)
10371 {
10372 if (use_fake_dep)
10373 {
10374 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10375 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10376 }
10377 if (plt_static_chain)
10378 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10379 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10380 }
10381 }
10382 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10383 {
10384 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10385 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10386 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10387 }
10388 else
10389 bfd_put_32 (obfd, BCTR, p), p += 4;
10390 return p;
10391 }
10392
10393 /* Build a special .plt call stub for __tls_get_addr. */
10394
10395 #define LD_R11_0R3 0xe9630000
10396 #define LD_R12_0R3 0xe9830000
10397 #define MR_R0_R3 0x7c601b78
10398 #define CMPDI_R11_0 0x2c2b0000
10399 #define ADD_R3_R12_R13 0x7c6c6a14
10400 #define BEQLR 0x4d820020
10401 #define MR_R3_R0 0x7c030378
10402 #define STD_R11_0R1 0xf9610000
10403 #define BCTRL 0x4e800421
10404 #define LD_R11_0R1 0xe9610000
10405 #define MTLR_R11 0x7d6803a6
10406
10407 static inline bfd_byte *
10408 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10409 struct ppc_stub_hash_entry *stub_entry,
10410 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10411 {
10412 bfd *obfd = htab->params->stub_bfd;
10413
10414 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10415 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10416 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10417 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10418 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10419 bfd_put_32 (obfd, BEQLR, p), p += 4;
10420 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10421 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10422 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10423
10424 if (r != NULL)
10425 r[0].r_offset += 9 * 4;
10426 p = build_plt_stub (htab, stub_entry, p, offset, r);
10427 bfd_put_32 (obfd, BCTRL, p - 4);
10428
10429 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10430 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10431 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10432 bfd_put_32 (obfd, BLR, p), p += 4;
10433
10434 return p;
10435 }
10436
10437 static Elf_Internal_Rela *
10438 get_relocs (asection *sec, int count)
10439 {
10440 Elf_Internal_Rela *relocs;
10441 struct bfd_elf_section_data *elfsec_data;
10442
10443 elfsec_data = elf_section_data (sec);
10444 relocs = elfsec_data->relocs;
10445 if (relocs == NULL)
10446 {
10447 bfd_size_type relsize;
10448 relsize = sec->reloc_count * sizeof (*relocs);
10449 relocs = bfd_alloc (sec->owner, relsize);
10450 if (relocs == NULL)
10451 return NULL;
10452 elfsec_data->relocs = relocs;
10453 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10454 sizeof (Elf_Internal_Shdr));
10455 if (elfsec_data->rela.hdr == NULL)
10456 return NULL;
10457 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10458 * sizeof (Elf64_External_Rela));
10459 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10460 sec->reloc_count = 0;
10461 }
10462 relocs += sec->reloc_count;
10463 sec->reloc_count += count;
10464 return relocs;
10465 }
10466
10467 static bfd_vma
10468 get_r2off (struct bfd_link_info *info,
10469 struct ppc_stub_hash_entry *stub_entry)
10470 {
10471 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10472 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10473
10474 if (r2off == 0)
10475 {
10476 /* Support linking -R objects. Get the toc pointer from the
10477 opd entry. */
10478 char buf[8];
10479 if (!htab->opd_abi)
10480 return r2off;
10481 asection *opd = stub_entry->h->elf.root.u.def.section;
10482 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10483
10484 if (strcmp (opd->name, ".opd") != 0
10485 || opd->reloc_count != 0)
10486 {
10487 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10488 stub_entry->h->elf.root.root.string);
10489 bfd_set_error (bfd_error_bad_value);
10490 return 0;
10491 }
10492 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10493 return 0;
10494 r2off = bfd_get_64 (opd->owner, buf);
10495 r2off -= elf_gp (info->output_bfd);
10496 }
10497 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10498 return r2off;
10499 }
10500
10501 static bfd_boolean
10502 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10503 {
10504 struct ppc_stub_hash_entry *stub_entry;
10505 struct ppc_branch_hash_entry *br_entry;
10506 struct bfd_link_info *info;
10507 struct ppc_link_hash_table *htab;
10508 bfd_byte *loc;
10509 bfd_byte *p;
10510 bfd_vma dest, off;
10511 int size;
10512 Elf_Internal_Rela *r;
10513 asection *plt;
10514
10515 /* Massage our args to the form they really have. */
10516 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10517 info = in_arg;
10518
10519 htab = ppc_hash_table (info);
10520 if (htab == NULL)
10521 return FALSE;
10522
10523 /* Make a note of the offset within the stubs for this entry. */
10524 stub_entry->stub_offset = stub_entry->stub_sec->size;
10525 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10526
10527 htab->stub_count[stub_entry->stub_type - 1] += 1;
10528 switch (stub_entry->stub_type)
10529 {
10530 case ppc_stub_long_branch:
10531 case ppc_stub_long_branch_r2off:
10532 /* Branches are relative. This is where we are going to. */
10533 dest = (stub_entry->target_value
10534 + stub_entry->target_section->output_offset
10535 + stub_entry->target_section->output_section->vma);
10536 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10537 off = dest;
10538
10539 /* And this is where we are coming from. */
10540 off -= (stub_entry->stub_offset
10541 + stub_entry->stub_sec->output_offset
10542 + stub_entry->stub_sec->output_section->vma);
10543
10544 size = 4;
10545 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10546 {
10547 bfd_vma r2off = get_r2off (info, stub_entry);
10548
10549 if (r2off == 0)
10550 {
10551 htab->stub_error = TRUE;
10552 return FALSE;
10553 }
10554 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10555 loc += 4;
10556 size = 12;
10557 if (PPC_HA (r2off) != 0)
10558 {
10559 size = 16;
10560 bfd_put_32 (htab->params->stub_bfd,
10561 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10562 loc += 4;
10563 }
10564 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10565 loc += 4;
10566 off -= size - 4;
10567 }
10568 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10569
10570 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10571 {
10572 info->callbacks->einfo
10573 (_("%P: long branch stub `%s' offset overflow\n"),
10574 stub_entry->root.string);
10575 htab->stub_error = TRUE;
10576 return FALSE;
10577 }
10578
10579 if (info->emitrelocations)
10580 {
10581 r = get_relocs (stub_entry->stub_sec, 1);
10582 if (r == NULL)
10583 return FALSE;
10584 r->r_offset = loc - stub_entry->stub_sec->contents;
10585 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10586 r->r_addend = dest;
10587 if (stub_entry->h != NULL)
10588 {
10589 struct elf_link_hash_entry **hashes;
10590 unsigned long symndx;
10591 struct ppc_link_hash_entry *h;
10592
10593 hashes = elf_sym_hashes (htab->params->stub_bfd);
10594 if (hashes == NULL)
10595 {
10596 bfd_size_type hsize;
10597
10598 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10599 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10600 if (hashes == NULL)
10601 return FALSE;
10602 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10603 htab->stub_globals = 1;
10604 }
10605 symndx = htab->stub_globals++;
10606 h = stub_entry->h;
10607 hashes[symndx] = &h->elf;
10608 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10609 if (h->oh != NULL && h->oh->is_func)
10610 h = ppc_follow_link (h->oh);
10611 if (h->elf.root.u.def.section != stub_entry->target_section)
10612 /* H is an opd symbol. The addend must be zero. */
10613 r->r_addend = 0;
10614 else
10615 {
10616 off = (h->elf.root.u.def.value
10617 + h->elf.root.u.def.section->output_offset
10618 + h->elf.root.u.def.section->output_section->vma);
10619 r->r_addend -= off;
10620 }
10621 }
10622 }
10623 break;
10624
10625 case ppc_stub_plt_branch:
10626 case ppc_stub_plt_branch_r2off:
10627 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10628 stub_entry->root.string + 9,
10629 FALSE, FALSE);
10630 if (br_entry == NULL)
10631 {
10632 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10633 stub_entry->root.string);
10634 htab->stub_error = TRUE;
10635 return FALSE;
10636 }
10637
10638 dest = (stub_entry->target_value
10639 + stub_entry->target_section->output_offset
10640 + stub_entry->target_section->output_section->vma);
10641 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10642 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10643
10644 bfd_put_64 (htab->brlt->owner, dest,
10645 htab->brlt->contents + br_entry->offset);
10646
10647 if (br_entry->iter == htab->stub_iteration)
10648 {
10649 br_entry->iter = 0;
10650
10651 if (htab->relbrlt != NULL)
10652 {
10653 /* Create a reloc for the branch lookup table entry. */
10654 Elf_Internal_Rela rela;
10655 bfd_byte *rl;
10656
10657 rela.r_offset = (br_entry->offset
10658 + htab->brlt->output_offset
10659 + htab->brlt->output_section->vma);
10660 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10661 rela.r_addend = dest;
10662
10663 rl = htab->relbrlt->contents;
10664 rl += (htab->relbrlt->reloc_count++
10665 * sizeof (Elf64_External_Rela));
10666 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10667 }
10668 else if (info->emitrelocations)
10669 {
10670 r = get_relocs (htab->brlt, 1);
10671 if (r == NULL)
10672 return FALSE;
10673 /* brlt, being SEC_LINKER_CREATED does not go through the
10674 normal reloc processing. Symbols and offsets are not
10675 translated from input file to output file form, so
10676 set up the offset per the output file. */
10677 r->r_offset = (br_entry->offset
10678 + htab->brlt->output_offset
10679 + htab->brlt->output_section->vma);
10680 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10681 r->r_addend = dest;
10682 }
10683 }
10684
10685 dest = (br_entry->offset
10686 + htab->brlt->output_offset
10687 + htab->brlt->output_section->vma);
10688
10689 off = (dest
10690 - elf_gp (htab->brlt->output_section->owner)
10691 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10692
10693 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10694 {
10695 info->callbacks->einfo
10696 (_("%P: linkage table error against `%T'\n"),
10697 stub_entry->root.string);
10698 bfd_set_error (bfd_error_bad_value);
10699 htab->stub_error = TRUE;
10700 return FALSE;
10701 }
10702
10703 if (info->emitrelocations)
10704 {
10705 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10706 if (r == NULL)
10707 return FALSE;
10708 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10709 if (bfd_big_endian (info->output_bfd))
10710 r[0].r_offset += 2;
10711 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10712 r[0].r_offset += 4;
10713 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10714 r[0].r_addend = dest;
10715 if (PPC_HA (off) != 0)
10716 {
10717 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10718 r[1].r_offset = r[0].r_offset + 4;
10719 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10720 r[1].r_addend = r[0].r_addend;
10721 }
10722 }
10723
10724 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10725 {
10726 if (PPC_HA (off) != 0)
10727 {
10728 size = 16;
10729 bfd_put_32 (htab->params->stub_bfd,
10730 ADDIS_R12_R2 | PPC_HA (off), loc);
10731 loc += 4;
10732 bfd_put_32 (htab->params->stub_bfd,
10733 LD_R12_0R12 | PPC_LO (off), loc);
10734 }
10735 else
10736 {
10737 size = 12;
10738 bfd_put_32 (htab->params->stub_bfd,
10739 LD_R12_0R2 | PPC_LO (off), loc);
10740 }
10741 }
10742 else
10743 {
10744 bfd_vma r2off = get_r2off (info, stub_entry);
10745
10746 if (r2off == 0 && htab->opd_abi)
10747 {
10748 htab->stub_error = TRUE;
10749 return FALSE;
10750 }
10751
10752 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10753 loc += 4;
10754 size = 16;
10755 if (PPC_HA (off) != 0)
10756 {
10757 size += 4;
10758 bfd_put_32 (htab->params->stub_bfd,
10759 ADDIS_R12_R2 | PPC_HA (off), loc);
10760 loc += 4;
10761 bfd_put_32 (htab->params->stub_bfd,
10762 LD_R12_0R12 | PPC_LO (off), loc);
10763 }
10764 else
10765 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10766
10767 if (PPC_HA (r2off) != 0)
10768 {
10769 size += 4;
10770 loc += 4;
10771 bfd_put_32 (htab->params->stub_bfd,
10772 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10773 }
10774 if (PPC_LO (r2off) != 0)
10775 {
10776 size += 4;
10777 loc += 4;
10778 bfd_put_32 (htab->params->stub_bfd,
10779 ADDI_R2_R2 | PPC_LO (r2off), loc);
10780 }
10781 }
10782 loc += 4;
10783 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10784 loc += 4;
10785 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10786 break;
10787
10788 case ppc_stub_plt_call:
10789 case ppc_stub_plt_call_r2save:
10790 if (stub_entry->h != NULL
10791 && stub_entry->h->is_func_descriptor
10792 && stub_entry->h->oh != NULL)
10793 {
10794 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10795
10796 /* If the old-ABI "dot-symbol" is undefined make it weak so
10797 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10798 FIXME: We used to define the symbol on one of the call
10799 stubs instead, which is why we test symbol section id
10800 against htab->top_id in various places. Likely all
10801 these checks could now disappear. */
10802 if (fh->elf.root.type == bfd_link_hash_undefined)
10803 fh->elf.root.type = bfd_link_hash_undefweak;
10804 /* Stop undo_symbol_twiddle changing it back to undefined. */
10805 fh->was_undefined = 0;
10806 }
10807
10808 /* Now build the stub. */
10809 dest = stub_entry->plt_ent->plt.offset & ~1;
10810 if (dest >= (bfd_vma) -2)
10811 abort ();
10812
10813 plt = htab->elf.splt;
10814 if (!htab->elf.dynamic_sections_created
10815 || stub_entry->h == NULL
10816 || stub_entry->h->elf.dynindx == -1)
10817 plt = htab->elf.iplt;
10818
10819 dest += plt->output_offset + plt->output_section->vma;
10820
10821 if (stub_entry->h == NULL
10822 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10823 {
10824 Elf_Internal_Rela rela;
10825 bfd_byte *rl;
10826
10827 rela.r_offset = dest;
10828 if (htab->opd_abi)
10829 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10830 else
10831 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10832 rela.r_addend = (stub_entry->target_value
10833 + stub_entry->target_section->output_offset
10834 + stub_entry->target_section->output_section->vma);
10835
10836 rl = (htab->elf.irelplt->contents
10837 + (htab->elf.irelplt->reloc_count++
10838 * sizeof (Elf64_External_Rela)));
10839 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10840 stub_entry->plt_ent->plt.offset |= 1;
10841 }
10842
10843 off = (dest
10844 - elf_gp (plt->output_section->owner)
10845 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10846
10847 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10848 {
10849 info->callbacks->einfo
10850 (_("%P: linkage table error against `%T'\n"),
10851 stub_entry->h != NULL
10852 ? stub_entry->h->elf.root.root.string
10853 : "<local sym>");
10854 bfd_set_error (bfd_error_bad_value);
10855 htab->stub_error = TRUE;
10856 return FALSE;
10857 }
10858
10859 if (htab->params->plt_stub_align != 0)
10860 {
10861 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10862
10863 stub_entry->stub_sec->size += pad;
10864 stub_entry->stub_offset = stub_entry->stub_sec->size;
10865 loc += pad;
10866 }
10867
10868 r = NULL;
10869 if (info->emitrelocations)
10870 {
10871 r = get_relocs (stub_entry->stub_sec,
10872 ((PPC_HA (off) != 0)
10873 + (htab->opd_abi
10874 ? 2 + (htab->params->plt_static_chain
10875 && PPC_HA (off + 16) == PPC_HA (off))
10876 : 1)));
10877 if (r == NULL)
10878 return FALSE;
10879 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10880 if (bfd_big_endian (info->output_bfd))
10881 r[0].r_offset += 2;
10882 r[0].r_addend = dest;
10883 }
10884 if (stub_entry->h != NULL
10885 && (stub_entry->h == htab->tls_get_addr_fd
10886 || stub_entry->h == htab->tls_get_addr)
10887 && !htab->params->no_tls_get_addr_opt)
10888 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10889 else
10890 p = build_plt_stub (htab, stub_entry, loc, off, r);
10891 size = p - loc;
10892 break;
10893
10894 default:
10895 BFD_FAIL ();
10896 return FALSE;
10897 }
10898
10899 stub_entry->stub_sec->size += size;
10900
10901 if (htab->params->emit_stub_syms)
10902 {
10903 struct elf_link_hash_entry *h;
10904 size_t len1, len2;
10905 char *name;
10906 const char *const stub_str[] = { "long_branch",
10907 "long_branch_r2off",
10908 "plt_branch",
10909 "plt_branch_r2off",
10910 "plt_call",
10911 "plt_call" };
10912
10913 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10914 len2 = strlen (stub_entry->root.string);
10915 name = bfd_malloc (len1 + len2 + 2);
10916 if (name == NULL)
10917 return FALSE;
10918 memcpy (name, stub_entry->root.string, 9);
10919 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10920 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10921 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10922 if (h == NULL)
10923 return FALSE;
10924 if (h->root.type == bfd_link_hash_new)
10925 {
10926 h->root.type = bfd_link_hash_defined;
10927 h->root.u.def.section = stub_entry->stub_sec;
10928 h->root.u.def.value = stub_entry->stub_offset;
10929 h->ref_regular = 1;
10930 h->def_regular = 1;
10931 h->ref_regular_nonweak = 1;
10932 h->forced_local = 1;
10933 h->non_elf = 0;
10934 }
10935 }
10936
10937 return TRUE;
10938 }
10939
10940 /* As above, but don't actually build the stub. Just bump offset so
10941 we know stub section sizes, and select plt_branch stubs where
10942 long_branch stubs won't do. */
10943
10944 static bfd_boolean
10945 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10946 {
10947 struct ppc_stub_hash_entry *stub_entry;
10948 struct bfd_link_info *info;
10949 struct ppc_link_hash_table *htab;
10950 bfd_vma off;
10951 int size;
10952
10953 /* Massage our args to the form they really have. */
10954 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10955 info = in_arg;
10956
10957 htab = ppc_hash_table (info);
10958 if (htab == NULL)
10959 return FALSE;
10960
10961 if (stub_entry->stub_type == ppc_stub_plt_call
10962 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10963 {
10964 asection *plt;
10965 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10966 if (off >= (bfd_vma) -2)
10967 abort ();
10968 plt = htab->elf.splt;
10969 if (!htab->elf.dynamic_sections_created
10970 || stub_entry->h == NULL
10971 || stub_entry->h->elf.dynindx == -1)
10972 plt = htab->elf.iplt;
10973 off += (plt->output_offset
10974 + plt->output_section->vma
10975 - elf_gp (plt->output_section->owner)
10976 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10977
10978 size = plt_stub_size (htab, stub_entry, off);
10979 if (htab->params->plt_stub_align)
10980 size += plt_stub_pad (htab, stub_entry, off);
10981 if (info->emitrelocations)
10982 {
10983 stub_entry->stub_sec->reloc_count
10984 += ((PPC_HA (off) != 0)
10985 + (htab->opd_abi
10986 ? 2 + (htab->params->plt_static_chain
10987 && PPC_HA (off + 16) == PPC_HA (off))
10988 : 1));
10989 stub_entry->stub_sec->flags |= SEC_RELOC;
10990 }
10991 }
10992 else
10993 {
10994 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10995 variants. */
10996 bfd_vma r2off = 0;
10997 bfd_vma local_off = 0;
10998
10999 off = (stub_entry->target_value
11000 + stub_entry->target_section->output_offset
11001 + stub_entry->target_section->output_section->vma);
11002 off -= (stub_entry->stub_sec->size
11003 + stub_entry->stub_sec->output_offset
11004 + stub_entry->stub_sec->output_section->vma);
11005
11006 /* Reset the stub type from the plt variant in case we now
11007 can reach with a shorter stub. */
11008 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11009 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11010
11011 size = 4;
11012 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11013 {
11014 r2off = get_r2off (info, stub_entry);
11015 if (r2off == 0 && htab->opd_abi)
11016 {
11017 htab->stub_error = TRUE;
11018 return FALSE;
11019 }
11020 size = 12;
11021 if (PPC_HA (r2off) != 0)
11022 size = 16;
11023 off -= size - 4;
11024 }
11025
11026 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11027
11028 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11029 Do the same for -R objects without function descriptors. */
11030 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11031 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11032 && r2off == 0))
11033 {
11034 struct ppc_branch_hash_entry *br_entry;
11035
11036 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11037 stub_entry->root.string + 9,
11038 TRUE, FALSE);
11039 if (br_entry == NULL)
11040 {
11041 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11042 stub_entry->root.string);
11043 htab->stub_error = TRUE;
11044 return FALSE;
11045 }
11046
11047 if (br_entry->iter != htab->stub_iteration)
11048 {
11049 br_entry->iter = htab->stub_iteration;
11050 br_entry->offset = htab->brlt->size;
11051 htab->brlt->size += 8;
11052
11053 if (htab->relbrlt != NULL)
11054 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11055 else if (info->emitrelocations)
11056 {
11057 htab->brlt->reloc_count += 1;
11058 htab->brlt->flags |= SEC_RELOC;
11059 }
11060 }
11061
11062 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11063 off = (br_entry->offset
11064 + htab->brlt->output_offset
11065 + htab->brlt->output_section->vma
11066 - elf_gp (htab->brlt->output_section->owner)
11067 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11068
11069 if (info->emitrelocations)
11070 {
11071 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11072 stub_entry->stub_sec->flags |= SEC_RELOC;
11073 }
11074
11075 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11076 {
11077 size = 12;
11078 if (PPC_HA (off) != 0)
11079 size = 16;
11080 }
11081 else
11082 {
11083 size = 16;
11084 if (PPC_HA (off) != 0)
11085 size += 4;
11086
11087 if (PPC_HA (r2off) != 0)
11088 size += 4;
11089 if (PPC_LO (r2off) != 0)
11090 size += 4;
11091 }
11092 }
11093 else if (info->emitrelocations)
11094 {
11095 stub_entry->stub_sec->reloc_count += 1;
11096 stub_entry->stub_sec->flags |= SEC_RELOC;
11097 }
11098 }
11099
11100 stub_entry->stub_sec->size += size;
11101 return TRUE;
11102 }
11103
11104 /* Set up various things so that we can make a list of input sections
11105 for each output section included in the link. Returns -1 on error,
11106 0 when no stubs will be needed, and 1 on success. */
11107
11108 int
11109 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11110 {
11111 bfd *input_bfd;
11112 int top_id, top_index, id;
11113 asection *section;
11114 asection **input_list;
11115 bfd_size_type amt;
11116 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11117
11118 if (htab == NULL)
11119 return -1;
11120
11121 /* Find the top input section id. */
11122 for (input_bfd = info->input_bfds, top_id = 3;
11123 input_bfd != NULL;
11124 input_bfd = input_bfd->link.next)
11125 {
11126 for (section = input_bfd->sections;
11127 section != NULL;
11128 section = section->next)
11129 {
11130 if (top_id < section->id)
11131 top_id = section->id;
11132 }
11133 }
11134
11135 htab->top_id = top_id;
11136 amt = sizeof (struct map_stub) * (top_id + 1);
11137 htab->stub_group = bfd_zmalloc (amt);
11138 if (htab->stub_group == NULL)
11139 return -1;
11140
11141 /* Set toc_off for com, und, abs and ind sections. */
11142 for (id = 0; id < 3; id++)
11143 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11144
11145 /* We can't use output_bfd->section_count here to find the top output
11146 section index as some sections may have been removed, and
11147 strip_excluded_output_sections doesn't renumber the indices. */
11148 for (section = info->output_bfd->sections, top_index = 0;
11149 section != NULL;
11150 section = section->next)
11151 {
11152 if (top_index < section->index)
11153 top_index = section->index;
11154 }
11155
11156 htab->top_index = top_index;
11157 amt = sizeof (asection *) * (top_index + 1);
11158 input_list = bfd_zmalloc (amt);
11159 htab->input_list = input_list;
11160 if (input_list == NULL)
11161 return -1;
11162
11163 return 1;
11164 }
11165
11166 /* Set up for first pass at multitoc partitioning. */
11167
11168 void
11169 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11170 {
11171 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11172
11173 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11174 htab->toc_bfd = NULL;
11175 htab->toc_first_sec = NULL;
11176 }
11177
11178 /* The linker repeatedly calls this function for each TOC input section
11179 and linker generated GOT section. Group input bfds such that the toc
11180 within a group is less than 64k in size. */
11181
11182 bfd_boolean
11183 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11184 {
11185 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11186 bfd_vma addr, off, limit;
11187
11188 if (htab == NULL)
11189 return FALSE;
11190
11191 if (!htab->second_toc_pass)
11192 {
11193 /* Keep track of the first .toc or .got section for this input bfd. */
11194 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11195
11196 if (new_bfd)
11197 {
11198 htab->toc_bfd = isec->owner;
11199 htab->toc_first_sec = isec;
11200 }
11201
11202 addr = isec->output_offset + isec->output_section->vma;
11203 off = addr - htab->toc_curr;
11204 limit = 0x80008000;
11205 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11206 limit = 0x10000;
11207 if (off + isec->size > limit)
11208 {
11209 addr = (htab->toc_first_sec->output_offset
11210 + htab->toc_first_sec->output_section->vma);
11211 htab->toc_curr = addr;
11212 }
11213
11214 /* toc_curr is the base address of this toc group. Set elf_gp
11215 for the input section to be the offset relative to the
11216 output toc base plus 0x8000. Making the input elf_gp an
11217 offset allows us to move the toc as a whole without
11218 recalculating input elf_gp. */
11219 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11220 off += TOC_BASE_OFF;
11221
11222 /* Die if someone uses a linker script that doesn't keep input
11223 file .toc and .got together. */
11224 if (new_bfd
11225 && elf_gp (isec->owner) != 0
11226 && elf_gp (isec->owner) != off)
11227 return FALSE;
11228
11229 elf_gp (isec->owner) = off;
11230 return TRUE;
11231 }
11232
11233 /* During the second pass toc_first_sec points to the start of
11234 a toc group, and toc_curr is used to track the old elf_gp.
11235 We use toc_bfd to ensure we only look at each bfd once. */
11236 if (htab->toc_bfd == isec->owner)
11237 return TRUE;
11238 htab->toc_bfd = isec->owner;
11239
11240 if (htab->toc_first_sec == NULL
11241 || htab->toc_curr != elf_gp (isec->owner))
11242 {
11243 htab->toc_curr = elf_gp (isec->owner);
11244 htab->toc_first_sec = isec;
11245 }
11246 addr = (htab->toc_first_sec->output_offset
11247 + htab->toc_first_sec->output_section->vma);
11248 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11249 elf_gp (isec->owner) = off;
11250
11251 return TRUE;
11252 }
11253
11254 /* Called via elf_link_hash_traverse to merge GOT entries for global
11255 symbol H. */
11256
11257 static bfd_boolean
11258 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11259 {
11260 if (h->root.type == bfd_link_hash_indirect)
11261 return TRUE;
11262
11263 merge_got_entries (&h->got.glist);
11264
11265 return TRUE;
11266 }
11267
11268 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11269 symbol H. */
11270
11271 static bfd_boolean
11272 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11273 {
11274 struct got_entry *gent;
11275
11276 if (h->root.type == bfd_link_hash_indirect)
11277 return TRUE;
11278
11279 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11280 if (!gent->is_indirect)
11281 allocate_got (h, (struct bfd_link_info *) inf, gent);
11282 return TRUE;
11283 }
11284
11285 /* Called on the first multitoc pass after the last call to
11286 ppc64_elf_next_toc_section. This function removes duplicate GOT
11287 entries. */
11288
11289 bfd_boolean
11290 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11291 {
11292 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11293 struct bfd *ibfd, *ibfd2;
11294 bfd_boolean done_something;
11295
11296 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11297
11298 if (!htab->do_multi_toc)
11299 return FALSE;
11300
11301 /* Merge global sym got entries within a toc group. */
11302 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11303
11304 /* And tlsld_got. */
11305 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11306 {
11307 struct got_entry *ent, *ent2;
11308
11309 if (!is_ppc64_elf (ibfd))
11310 continue;
11311
11312 ent = ppc64_tlsld_got (ibfd);
11313 if (!ent->is_indirect
11314 && ent->got.offset != (bfd_vma) -1)
11315 {
11316 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11317 {
11318 if (!is_ppc64_elf (ibfd2))
11319 continue;
11320
11321 ent2 = ppc64_tlsld_got (ibfd2);
11322 if (!ent2->is_indirect
11323 && ent2->got.offset != (bfd_vma) -1
11324 && elf_gp (ibfd2) == elf_gp (ibfd))
11325 {
11326 ent2->is_indirect = TRUE;
11327 ent2->got.ent = ent;
11328 }
11329 }
11330 }
11331 }
11332
11333 /* Zap sizes of got sections. */
11334 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11335 htab->elf.irelplt->size -= htab->got_reli_size;
11336 htab->got_reli_size = 0;
11337
11338 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11339 {
11340 asection *got, *relgot;
11341
11342 if (!is_ppc64_elf (ibfd))
11343 continue;
11344
11345 got = ppc64_elf_tdata (ibfd)->got;
11346 if (got != NULL)
11347 {
11348 got->rawsize = got->size;
11349 got->size = 0;
11350 relgot = ppc64_elf_tdata (ibfd)->relgot;
11351 relgot->rawsize = relgot->size;
11352 relgot->size = 0;
11353 }
11354 }
11355
11356 /* Now reallocate the got, local syms first. We don't need to
11357 allocate section contents again since we never increase size. */
11358 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11359 {
11360 struct got_entry **lgot_ents;
11361 struct got_entry **end_lgot_ents;
11362 struct plt_entry **local_plt;
11363 struct plt_entry **end_local_plt;
11364 unsigned char *lgot_masks;
11365 bfd_size_type locsymcount;
11366 Elf_Internal_Shdr *symtab_hdr;
11367 asection *s;
11368
11369 if (!is_ppc64_elf (ibfd))
11370 continue;
11371
11372 lgot_ents = elf_local_got_ents (ibfd);
11373 if (!lgot_ents)
11374 continue;
11375
11376 symtab_hdr = &elf_symtab_hdr (ibfd);
11377 locsymcount = symtab_hdr->sh_info;
11378 end_lgot_ents = lgot_ents + locsymcount;
11379 local_plt = (struct plt_entry **) end_lgot_ents;
11380 end_local_plt = local_plt + locsymcount;
11381 lgot_masks = (unsigned char *) end_local_plt;
11382 s = ppc64_elf_tdata (ibfd)->got;
11383 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11384 {
11385 struct got_entry *ent;
11386
11387 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11388 {
11389 unsigned int ent_size = 8;
11390 unsigned int rel_size = sizeof (Elf64_External_Rela);
11391
11392 ent->got.offset = s->size;
11393 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11394 {
11395 ent_size *= 2;
11396 rel_size *= 2;
11397 }
11398 s->size += ent_size;
11399 if ((*lgot_masks & PLT_IFUNC) != 0)
11400 {
11401 htab->elf.irelplt->size += rel_size;
11402 htab->got_reli_size += rel_size;
11403 }
11404 else if (info->shared)
11405 {
11406 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11407 srel->size += rel_size;
11408 }
11409 }
11410 }
11411 }
11412
11413 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11414
11415 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11416 {
11417 struct got_entry *ent;
11418
11419 if (!is_ppc64_elf (ibfd))
11420 continue;
11421
11422 ent = ppc64_tlsld_got (ibfd);
11423 if (!ent->is_indirect
11424 && ent->got.offset != (bfd_vma) -1)
11425 {
11426 asection *s = ppc64_elf_tdata (ibfd)->got;
11427 ent->got.offset = s->size;
11428 s->size += 16;
11429 if (info->shared)
11430 {
11431 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11432 srel->size += sizeof (Elf64_External_Rela);
11433 }
11434 }
11435 }
11436
11437 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11438 if (!done_something)
11439 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11440 {
11441 asection *got;
11442
11443 if (!is_ppc64_elf (ibfd))
11444 continue;
11445
11446 got = ppc64_elf_tdata (ibfd)->got;
11447 if (got != NULL)
11448 {
11449 done_something = got->rawsize != got->size;
11450 if (done_something)
11451 break;
11452 }
11453 }
11454
11455 if (done_something)
11456 (*htab->params->layout_sections_again) ();
11457
11458 /* Set up for second pass over toc sections to recalculate elf_gp
11459 on input sections. */
11460 htab->toc_bfd = NULL;
11461 htab->toc_first_sec = NULL;
11462 htab->second_toc_pass = TRUE;
11463 return done_something;
11464 }
11465
11466 /* Called after second pass of multitoc partitioning. */
11467
11468 void
11469 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11470 {
11471 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11472
11473 /* After the second pass, toc_curr tracks the TOC offset used
11474 for code sections below in ppc64_elf_next_input_section. */
11475 htab->toc_curr = TOC_BASE_OFF;
11476 }
11477
11478 /* No toc references were found in ISEC. If the code in ISEC makes no
11479 calls, then there's no need to use toc adjusting stubs when branching
11480 into ISEC. Actually, indirect calls from ISEC are OK as they will
11481 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11482 needed, and 2 if a cyclical call-graph was found but no other reason
11483 for a stub was detected. If called from the top level, a return of
11484 2 means the same as a return of 0. */
11485
11486 static int
11487 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11488 {
11489 int ret;
11490
11491 /* Mark this section as checked. */
11492 isec->call_check_done = 1;
11493
11494 /* We know none of our code bearing sections will need toc stubs. */
11495 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11496 return 0;
11497
11498 if (isec->size == 0)
11499 return 0;
11500
11501 if (isec->output_section == NULL)
11502 return 0;
11503
11504 ret = 0;
11505 if (isec->reloc_count != 0)
11506 {
11507 Elf_Internal_Rela *relstart, *rel;
11508 Elf_Internal_Sym *local_syms;
11509 struct ppc_link_hash_table *htab;
11510
11511 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11512 info->keep_memory);
11513 if (relstart == NULL)
11514 return -1;
11515
11516 /* Look for branches to outside of this section. */
11517 local_syms = NULL;
11518 htab = ppc_hash_table (info);
11519 if (htab == NULL)
11520 return -1;
11521
11522 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11523 {
11524 enum elf_ppc64_reloc_type r_type;
11525 unsigned long r_symndx;
11526 struct elf_link_hash_entry *h;
11527 struct ppc_link_hash_entry *eh;
11528 Elf_Internal_Sym *sym;
11529 asection *sym_sec;
11530 struct _opd_sec_data *opd;
11531 bfd_vma sym_value;
11532 bfd_vma dest;
11533
11534 r_type = ELF64_R_TYPE (rel->r_info);
11535 if (r_type != R_PPC64_REL24
11536 && r_type != R_PPC64_REL14
11537 && r_type != R_PPC64_REL14_BRTAKEN
11538 && r_type != R_PPC64_REL14_BRNTAKEN)
11539 continue;
11540
11541 r_symndx = ELF64_R_SYM (rel->r_info);
11542 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11543 isec->owner))
11544 {
11545 ret = -1;
11546 break;
11547 }
11548
11549 /* Calls to dynamic lib functions go through a plt call stub
11550 that uses r2. */
11551 eh = (struct ppc_link_hash_entry *) h;
11552 if (eh != NULL
11553 && (eh->elf.plt.plist != NULL
11554 || (eh->oh != NULL
11555 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11556 {
11557 ret = 1;
11558 break;
11559 }
11560
11561 if (sym_sec == NULL)
11562 /* Ignore other undefined symbols. */
11563 continue;
11564
11565 /* Assume branches to other sections not included in the
11566 link need stubs too, to cover -R and absolute syms. */
11567 if (sym_sec->output_section == NULL)
11568 {
11569 ret = 1;
11570 break;
11571 }
11572
11573 if (h == NULL)
11574 sym_value = sym->st_value;
11575 else
11576 {
11577 if (h->root.type != bfd_link_hash_defined
11578 && h->root.type != bfd_link_hash_defweak)
11579 abort ();
11580 sym_value = h->root.u.def.value;
11581 }
11582 sym_value += rel->r_addend;
11583
11584 /* If this branch reloc uses an opd sym, find the code section. */
11585 opd = get_opd_info (sym_sec);
11586 if (opd != NULL)
11587 {
11588 if (h == NULL && opd->adjust != NULL)
11589 {
11590 long adjust;
11591
11592 adjust = opd->adjust[sym->st_value / 8];
11593 if (adjust == -1)
11594 /* Assume deleted functions won't ever be called. */
11595 continue;
11596 sym_value += adjust;
11597 }
11598
11599 dest = opd_entry_value (sym_sec, sym_value,
11600 &sym_sec, NULL, FALSE);
11601 if (dest == (bfd_vma) -1)
11602 continue;
11603 }
11604 else
11605 dest = (sym_value
11606 + sym_sec->output_offset
11607 + sym_sec->output_section->vma);
11608
11609 /* Ignore branch to self. */
11610 if (sym_sec == isec)
11611 continue;
11612
11613 /* If the called function uses the toc, we need a stub. */
11614 if (sym_sec->has_toc_reloc
11615 || sym_sec->makes_toc_func_call)
11616 {
11617 ret = 1;
11618 break;
11619 }
11620
11621 /* Assume any branch that needs a long branch stub might in fact
11622 need a plt_branch stub. A plt_branch stub uses r2. */
11623 else if (dest - (isec->output_offset
11624 + isec->output_section->vma
11625 + rel->r_offset) + (1 << 25)
11626 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11627 ? h->other
11628 : sym->st_other))
11629 {
11630 ret = 1;
11631 break;
11632 }
11633
11634 /* If calling back to a section in the process of being
11635 tested, we can't say for sure that no toc adjusting stubs
11636 are needed, so don't return zero. */
11637 else if (sym_sec->call_check_in_progress)
11638 ret = 2;
11639
11640 /* Branches to another section that itself doesn't have any TOC
11641 references are OK. Recursively call ourselves to check. */
11642 else if (!sym_sec->call_check_done)
11643 {
11644 int recur;
11645
11646 /* Mark current section as indeterminate, so that other
11647 sections that call back to current won't be marked as
11648 known. */
11649 isec->call_check_in_progress = 1;
11650 recur = toc_adjusting_stub_needed (info, sym_sec);
11651 isec->call_check_in_progress = 0;
11652
11653 if (recur != 0)
11654 {
11655 ret = recur;
11656 if (recur != 2)
11657 break;
11658 }
11659 }
11660 }
11661
11662 if (local_syms != NULL
11663 && (elf_symtab_hdr (isec->owner).contents
11664 != (unsigned char *) local_syms))
11665 free (local_syms);
11666 if (elf_section_data (isec)->relocs != relstart)
11667 free (relstart);
11668 }
11669
11670 if ((ret & 1) == 0
11671 && isec->map_head.s != NULL
11672 && (strcmp (isec->output_section->name, ".init") == 0
11673 || strcmp (isec->output_section->name, ".fini") == 0))
11674 {
11675 if (isec->map_head.s->has_toc_reloc
11676 || isec->map_head.s->makes_toc_func_call)
11677 ret = 1;
11678 else if (!isec->map_head.s->call_check_done)
11679 {
11680 int recur;
11681 isec->call_check_in_progress = 1;
11682 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11683 isec->call_check_in_progress = 0;
11684 if (recur != 0)
11685 ret = recur;
11686 }
11687 }
11688
11689 if (ret == 1)
11690 isec->makes_toc_func_call = 1;
11691
11692 return ret;
11693 }
11694
11695 /* The linker repeatedly calls this function for each input section,
11696 in the order that input sections are linked into output sections.
11697 Build lists of input sections to determine groupings between which
11698 we may insert linker stubs. */
11699
11700 bfd_boolean
11701 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11702 {
11703 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11704
11705 if (htab == NULL)
11706 return FALSE;
11707
11708 if ((isec->output_section->flags & SEC_CODE) != 0
11709 && isec->output_section->index <= htab->top_index)
11710 {
11711 asection **list = htab->input_list + isec->output_section->index;
11712 /* Steal the link_sec pointer for our list. */
11713 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11714 /* This happens to make the list in reverse order,
11715 which is what we want. */
11716 PREV_SEC (isec) = *list;
11717 *list = isec;
11718 }
11719
11720 if (htab->multi_toc_needed)
11721 {
11722 /* Analyse sections that aren't already flagged as needing a
11723 valid toc pointer. Exclude .fixup for the linux kernel.
11724 .fixup contains branches, but only back to the function that
11725 hit an exception. */
11726 if (!(isec->has_toc_reloc
11727 || (isec->flags & SEC_CODE) == 0
11728 || strcmp (isec->name, ".fixup") == 0
11729 || isec->call_check_done))
11730 {
11731 if (toc_adjusting_stub_needed (info, isec) < 0)
11732 return FALSE;
11733 }
11734 /* Make all sections use the TOC assigned for this object file.
11735 This will be wrong for pasted sections; We fix that in
11736 check_pasted_section(). */
11737 if (elf_gp (isec->owner) != 0)
11738 htab->toc_curr = elf_gp (isec->owner);
11739 }
11740
11741 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11742 return TRUE;
11743 }
11744
11745 /* Check that all .init and .fini sections use the same toc, if they
11746 have toc relocs. */
11747
11748 static bfd_boolean
11749 check_pasted_section (struct bfd_link_info *info, const char *name)
11750 {
11751 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11752
11753 if (o != NULL)
11754 {
11755 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11756 bfd_vma toc_off = 0;
11757 asection *i;
11758
11759 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11760 if (i->has_toc_reloc)
11761 {
11762 if (toc_off == 0)
11763 toc_off = htab->stub_group[i->id].toc_off;
11764 else if (toc_off != htab->stub_group[i->id].toc_off)
11765 return FALSE;
11766 }
11767
11768 if (toc_off == 0)
11769 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11770 if (i->makes_toc_func_call)
11771 {
11772 toc_off = htab->stub_group[i->id].toc_off;
11773 break;
11774 }
11775
11776 /* Make sure the whole pasted function uses the same toc offset. */
11777 if (toc_off != 0)
11778 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11779 htab->stub_group[i->id].toc_off = toc_off;
11780 }
11781 return TRUE;
11782 }
11783
11784 bfd_boolean
11785 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11786 {
11787 return (check_pasted_section (info, ".init")
11788 & check_pasted_section (info, ".fini"));
11789 }
11790
11791 /* See whether we can group stub sections together. Grouping stub
11792 sections may result in fewer stubs. More importantly, we need to
11793 put all .init* and .fini* stubs at the beginning of the .init or
11794 .fini output sections respectively, because glibc splits the
11795 _init and _fini functions into multiple parts. Putting a stub in
11796 the middle of a function is not a good idea. */
11797
11798 static void
11799 group_sections (struct ppc_link_hash_table *htab,
11800 bfd_size_type stub_group_size,
11801 bfd_boolean stubs_always_before_branch)
11802 {
11803 asection **list;
11804 bfd_size_type stub14_group_size;
11805 bfd_boolean suppress_size_errors;
11806
11807 suppress_size_errors = FALSE;
11808 stub14_group_size = stub_group_size;
11809 if (stub_group_size == 1)
11810 {
11811 /* Default values. */
11812 if (stubs_always_before_branch)
11813 {
11814 stub_group_size = 0x1e00000;
11815 stub14_group_size = 0x7800;
11816 }
11817 else
11818 {
11819 stub_group_size = 0x1c00000;
11820 stub14_group_size = 0x7000;
11821 }
11822 suppress_size_errors = TRUE;
11823 }
11824
11825 list = htab->input_list + htab->top_index;
11826 do
11827 {
11828 asection *tail = *list;
11829 while (tail != NULL)
11830 {
11831 asection *curr;
11832 asection *prev;
11833 bfd_size_type total;
11834 bfd_boolean big_sec;
11835 bfd_vma curr_toc;
11836
11837 curr = tail;
11838 total = tail->size;
11839 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11840 && ppc64_elf_section_data (tail)->has_14bit_branch
11841 ? stub14_group_size : stub_group_size);
11842 if (big_sec && !suppress_size_errors)
11843 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11844 tail->owner, tail);
11845 curr_toc = htab->stub_group[tail->id].toc_off;
11846
11847 while ((prev = PREV_SEC (curr)) != NULL
11848 && ((total += curr->output_offset - prev->output_offset)
11849 < (ppc64_elf_section_data (prev) != NULL
11850 && ppc64_elf_section_data (prev)->has_14bit_branch
11851 ? stub14_group_size : stub_group_size))
11852 && htab->stub_group[prev->id].toc_off == curr_toc)
11853 curr = prev;
11854
11855 /* OK, the size from the start of CURR to the end is less
11856 than stub_group_size and thus can be handled by one stub
11857 section. (or the tail section is itself larger than
11858 stub_group_size, in which case we may be toast.) We
11859 should really be keeping track of the total size of stubs
11860 added here, as stubs contribute to the final output
11861 section size. That's a little tricky, and this way will
11862 only break if stubs added make the total size more than
11863 2^25, ie. for the default stub_group_size, if stubs total
11864 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11865 do
11866 {
11867 prev = PREV_SEC (tail);
11868 /* Set up this stub group. */
11869 htab->stub_group[tail->id].link_sec = curr;
11870 }
11871 while (tail != curr && (tail = prev) != NULL);
11872
11873 /* But wait, there's more! Input sections up to stub_group_size
11874 bytes before the stub section can be handled by it too.
11875 Don't do this if we have a really large section after the
11876 stubs, as adding more stubs increases the chance that
11877 branches may not reach into the stub section. */
11878 if (!stubs_always_before_branch && !big_sec)
11879 {
11880 total = 0;
11881 while (prev != NULL
11882 && ((total += tail->output_offset - prev->output_offset)
11883 < (ppc64_elf_section_data (prev) != NULL
11884 && ppc64_elf_section_data (prev)->has_14bit_branch
11885 ? stub14_group_size : stub_group_size))
11886 && htab->stub_group[prev->id].toc_off == curr_toc)
11887 {
11888 tail = prev;
11889 prev = PREV_SEC (tail);
11890 htab->stub_group[tail->id].link_sec = curr;
11891 }
11892 }
11893 tail = prev;
11894 }
11895 }
11896 while (list-- != htab->input_list);
11897 free (htab->input_list);
11898 #undef PREV_SEC
11899 }
11900
11901 static const unsigned char glink_eh_frame_cie[] =
11902 {
11903 0, 0, 0, 16, /* length. */
11904 0, 0, 0, 0, /* id. */
11905 1, /* CIE version. */
11906 'z', 'R', 0, /* Augmentation string. */
11907 4, /* Code alignment. */
11908 0x78, /* Data alignment. */
11909 65, /* RA reg. */
11910 1, /* Augmentation size. */
11911 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11912 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11913 0, 0, 0, 0
11914 };
11915
11916 /* Stripping output sections is normally done before dynamic section
11917 symbols have been allocated. This function is called later, and
11918 handles cases like htab->brlt which is mapped to its own output
11919 section. */
11920
11921 static void
11922 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11923 {
11924 if (isec->size == 0
11925 && isec->output_section->size == 0
11926 && !(isec->output_section->flags & SEC_KEEP)
11927 && !bfd_section_removed_from_list (info->output_bfd,
11928 isec->output_section)
11929 && elf_section_data (isec->output_section)->dynindx == 0)
11930 {
11931 isec->output_section->flags |= SEC_EXCLUDE;
11932 bfd_section_list_remove (info->output_bfd, isec->output_section);
11933 info->output_bfd->section_count--;
11934 }
11935 }
11936
11937 /* Determine and set the size of the stub section for a final link.
11938
11939 The basic idea here is to examine all the relocations looking for
11940 PC-relative calls to a target that is unreachable with a "bl"
11941 instruction. */
11942
11943 bfd_boolean
11944 ppc64_elf_size_stubs (struct bfd_link_info *info)
11945 {
11946 bfd_size_type stub_group_size;
11947 bfd_boolean stubs_always_before_branch;
11948 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11949
11950 if (htab == NULL)
11951 return FALSE;
11952
11953 if (htab->params->plt_thread_safe == -1 && !info->executable)
11954 htab->params->plt_thread_safe = 1;
11955 if (!htab->opd_abi)
11956 htab->params->plt_thread_safe = 0;
11957 else if (htab->params->plt_thread_safe == -1)
11958 {
11959 static const char *const thread_starter[] =
11960 {
11961 "pthread_create",
11962 /* libstdc++ */
11963 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11964 /* librt */
11965 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11966 "mq_notify", "create_timer",
11967 /* libanl */
11968 "getaddrinfo_a",
11969 /* libgomp */
11970 "GOMP_parallel",
11971 "GOMP_parallel_start",
11972 "GOMP_parallel_loop_static",
11973 "GOMP_parallel_loop_static_start",
11974 "GOMP_parallel_loop_dynamic",
11975 "GOMP_parallel_loop_dynamic_start",
11976 "GOMP_parallel_loop_guided",
11977 "GOMP_parallel_loop_guided_start",
11978 "GOMP_parallel_loop_runtime",
11979 "GOMP_parallel_loop_runtime_start",
11980 "GOMP_parallel_sections",
11981 "GOMP_parallel_sections_start",
11982 /* libgo */
11983 "__go_go",
11984 };
11985 unsigned i;
11986
11987 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11988 {
11989 struct elf_link_hash_entry *h;
11990 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11991 FALSE, FALSE, TRUE);
11992 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
11993 if (htab->params->plt_thread_safe)
11994 break;
11995 }
11996 }
11997 stubs_always_before_branch = htab->params->group_size < 0;
11998 if (htab->params->group_size < 0)
11999 stub_group_size = -htab->params->group_size;
12000 else
12001 stub_group_size = htab->params->group_size;
12002
12003 group_sections (htab, stub_group_size, stubs_always_before_branch);
12004
12005 while (1)
12006 {
12007 bfd *input_bfd;
12008 unsigned int bfd_indx;
12009 asection *stub_sec;
12010
12011 htab->stub_iteration += 1;
12012
12013 for (input_bfd = info->input_bfds, bfd_indx = 0;
12014 input_bfd != NULL;
12015 input_bfd = input_bfd->link.next, bfd_indx++)
12016 {
12017 Elf_Internal_Shdr *symtab_hdr;
12018 asection *section;
12019 Elf_Internal_Sym *local_syms = NULL;
12020
12021 if (!is_ppc64_elf (input_bfd))
12022 continue;
12023
12024 /* We'll need the symbol table in a second. */
12025 symtab_hdr = &elf_symtab_hdr (input_bfd);
12026 if (symtab_hdr->sh_info == 0)
12027 continue;
12028
12029 /* Walk over each section attached to the input bfd. */
12030 for (section = input_bfd->sections;
12031 section != NULL;
12032 section = section->next)
12033 {
12034 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12035
12036 /* If there aren't any relocs, then there's nothing more
12037 to do. */
12038 if ((section->flags & SEC_RELOC) == 0
12039 || (section->flags & SEC_ALLOC) == 0
12040 || (section->flags & SEC_LOAD) == 0
12041 || (section->flags & SEC_CODE) == 0
12042 || section->reloc_count == 0)
12043 continue;
12044
12045 /* If this section is a link-once section that will be
12046 discarded, then don't create any stubs. */
12047 if (section->output_section == NULL
12048 || section->output_section->owner != info->output_bfd)
12049 continue;
12050
12051 /* Get the relocs. */
12052 internal_relocs
12053 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12054 info->keep_memory);
12055 if (internal_relocs == NULL)
12056 goto error_ret_free_local;
12057
12058 /* Now examine each relocation. */
12059 irela = internal_relocs;
12060 irelaend = irela + section->reloc_count;
12061 for (; irela < irelaend; irela++)
12062 {
12063 enum elf_ppc64_reloc_type r_type;
12064 unsigned int r_indx;
12065 enum ppc_stub_type stub_type;
12066 struct ppc_stub_hash_entry *stub_entry;
12067 asection *sym_sec, *code_sec;
12068 bfd_vma sym_value, code_value;
12069 bfd_vma destination;
12070 unsigned long local_off;
12071 bfd_boolean ok_dest;
12072 struct ppc_link_hash_entry *hash;
12073 struct ppc_link_hash_entry *fdh;
12074 struct elf_link_hash_entry *h;
12075 Elf_Internal_Sym *sym;
12076 char *stub_name;
12077 const asection *id_sec;
12078 struct _opd_sec_data *opd;
12079 struct plt_entry *plt_ent;
12080
12081 r_type = ELF64_R_TYPE (irela->r_info);
12082 r_indx = ELF64_R_SYM (irela->r_info);
12083
12084 if (r_type >= R_PPC64_max)
12085 {
12086 bfd_set_error (bfd_error_bad_value);
12087 goto error_ret_free_internal;
12088 }
12089
12090 /* Only look for stubs on branch instructions. */
12091 if (r_type != R_PPC64_REL24
12092 && r_type != R_PPC64_REL14
12093 && r_type != R_PPC64_REL14_BRTAKEN
12094 && r_type != R_PPC64_REL14_BRNTAKEN)
12095 continue;
12096
12097 /* Now determine the call target, its name, value,
12098 section. */
12099 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12100 r_indx, input_bfd))
12101 goto error_ret_free_internal;
12102 hash = (struct ppc_link_hash_entry *) h;
12103
12104 ok_dest = FALSE;
12105 fdh = NULL;
12106 sym_value = 0;
12107 if (hash == NULL)
12108 {
12109 sym_value = sym->st_value;
12110 ok_dest = TRUE;
12111 }
12112 else if (hash->elf.root.type == bfd_link_hash_defined
12113 || hash->elf.root.type == bfd_link_hash_defweak)
12114 {
12115 sym_value = hash->elf.root.u.def.value;
12116 if (sym_sec->output_section != NULL)
12117 ok_dest = TRUE;
12118 }
12119 else if (hash->elf.root.type == bfd_link_hash_undefweak
12120 || hash->elf.root.type == bfd_link_hash_undefined)
12121 {
12122 /* Recognise an old ABI func code entry sym, and
12123 use the func descriptor sym instead if it is
12124 defined. */
12125 if (hash->elf.root.root.string[0] == '.'
12126 && (fdh = lookup_fdh (hash, htab)) != NULL)
12127 {
12128 if (fdh->elf.root.type == bfd_link_hash_defined
12129 || fdh->elf.root.type == bfd_link_hash_defweak)
12130 {
12131 sym_sec = fdh->elf.root.u.def.section;
12132 sym_value = fdh->elf.root.u.def.value;
12133 if (sym_sec->output_section != NULL)
12134 ok_dest = TRUE;
12135 }
12136 else
12137 fdh = NULL;
12138 }
12139 }
12140 else
12141 {
12142 bfd_set_error (bfd_error_bad_value);
12143 goto error_ret_free_internal;
12144 }
12145
12146 destination = 0;
12147 local_off = 0;
12148 if (ok_dest)
12149 {
12150 sym_value += irela->r_addend;
12151 destination = (sym_value
12152 + sym_sec->output_offset
12153 + sym_sec->output_section->vma);
12154 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12155 ? hash->elf.other
12156 : sym->st_other);
12157 }
12158
12159 code_sec = sym_sec;
12160 code_value = sym_value;
12161 opd = get_opd_info (sym_sec);
12162 if (opd != NULL)
12163 {
12164 bfd_vma dest;
12165
12166 if (hash == NULL && opd->adjust != NULL)
12167 {
12168 long adjust = opd->adjust[sym_value / 8];
12169 if (adjust == -1)
12170 continue;
12171 code_value += adjust;
12172 sym_value += adjust;
12173 }
12174 dest = opd_entry_value (sym_sec, sym_value,
12175 &code_sec, &code_value, FALSE);
12176 if (dest != (bfd_vma) -1)
12177 {
12178 destination = dest;
12179 if (fdh != NULL)
12180 {
12181 /* Fixup old ABI sym to point at code
12182 entry. */
12183 hash->elf.root.type = bfd_link_hash_defweak;
12184 hash->elf.root.u.def.section = code_sec;
12185 hash->elf.root.u.def.value = code_value;
12186 }
12187 }
12188 }
12189
12190 /* Determine what (if any) linker stub is needed. */
12191 plt_ent = NULL;
12192 stub_type = ppc_type_of_stub (section, irela, &hash,
12193 &plt_ent, destination,
12194 local_off);
12195
12196 if (stub_type != ppc_stub_plt_call)
12197 {
12198 /* Check whether we need a TOC adjusting stub.
12199 Since the linker pastes together pieces from
12200 different object files when creating the
12201 _init and _fini functions, it may be that a
12202 call to what looks like a local sym is in
12203 fact a call needing a TOC adjustment. */
12204 if (code_sec != NULL
12205 && code_sec->output_section != NULL
12206 && (htab->stub_group[code_sec->id].toc_off
12207 != htab->stub_group[section->id].toc_off)
12208 && (code_sec->has_toc_reloc
12209 || code_sec->makes_toc_func_call))
12210 stub_type = ppc_stub_long_branch_r2off;
12211 }
12212
12213 if (stub_type == ppc_stub_none)
12214 continue;
12215
12216 /* __tls_get_addr calls might be eliminated. */
12217 if (stub_type != ppc_stub_plt_call
12218 && hash != NULL
12219 && (hash == htab->tls_get_addr
12220 || hash == htab->tls_get_addr_fd)
12221 && section->has_tls_reloc
12222 && irela != internal_relocs)
12223 {
12224 /* Get tls info. */
12225 unsigned char *tls_mask;
12226
12227 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12228 irela - 1, input_bfd))
12229 goto error_ret_free_internal;
12230 if (*tls_mask != 0)
12231 continue;
12232 }
12233
12234 if (stub_type == ppc_stub_plt_call
12235 && irela + 1 < irelaend
12236 && irela[1].r_offset == irela->r_offset + 4
12237 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12238 {
12239 if (!tocsave_find (htab, INSERT,
12240 &local_syms, irela + 1, input_bfd))
12241 goto error_ret_free_internal;
12242 }
12243 else if (stub_type == ppc_stub_plt_call)
12244 stub_type = ppc_stub_plt_call_r2save;
12245
12246 /* Support for grouping stub sections. */
12247 id_sec = htab->stub_group[section->id].link_sec;
12248
12249 /* Get the name of this stub. */
12250 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12251 if (!stub_name)
12252 goto error_ret_free_internal;
12253
12254 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12255 stub_name, FALSE, FALSE);
12256 if (stub_entry != NULL)
12257 {
12258 /* The proper stub has already been created. */
12259 free (stub_name);
12260 if (stub_type == ppc_stub_plt_call_r2save)
12261 stub_entry->stub_type = stub_type;
12262 continue;
12263 }
12264
12265 stub_entry = ppc_add_stub (stub_name, section, info);
12266 if (stub_entry == NULL)
12267 {
12268 free (stub_name);
12269 error_ret_free_internal:
12270 if (elf_section_data (section)->relocs == NULL)
12271 free (internal_relocs);
12272 error_ret_free_local:
12273 if (local_syms != NULL
12274 && (symtab_hdr->contents
12275 != (unsigned char *) local_syms))
12276 free (local_syms);
12277 return FALSE;
12278 }
12279
12280 stub_entry->stub_type = stub_type;
12281 if (stub_type != ppc_stub_plt_call
12282 && stub_type != ppc_stub_plt_call_r2save)
12283 {
12284 stub_entry->target_value = code_value;
12285 stub_entry->target_section = code_sec;
12286 }
12287 else
12288 {
12289 stub_entry->target_value = sym_value;
12290 stub_entry->target_section = sym_sec;
12291 }
12292 stub_entry->h = hash;
12293 stub_entry->plt_ent = plt_ent;
12294 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12295
12296 if (stub_entry->h != NULL)
12297 htab->stub_globals += 1;
12298 }
12299
12300 /* We're done with the internal relocs, free them. */
12301 if (elf_section_data (section)->relocs != internal_relocs)
12302 free (internal_relocs);
12303 }
12304
12305 if (local_syms != NULL
12306 && symtab_hdr->contents != (unsigned char *) local_syms)
12307 {
12308 if (!info->keep_memory)
12309 free (local_syms);
12310 else
12311 symtab_hdr->contents = (unsigned char *) local_syms;
12312 }
12313 }
12314
12315 /* We may have added some stubs. Find out the new size of the
12316 stub sections. */
12317 for (stub_sec = htab->params->stub_bfd->sections;
12318 stub_sec != NULL;
12319 stub_sec = stub_sec->next)
12320 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12321 {
12322 stub_sec->rawsize = stub_sec->size;
12323 stub_sec->size = 0;
12324 stub_sec->reloc_count = 0;
12325 stub_sec->flags &= ~SEC_RELOC;
12326 }
12327
12328 htab->brlt->size = 0;
12329 htab->brlt->reloc_count = 0;
12330 htab->brlt->flags &= ~SEC_RELOC;
12331 if (htab->relbrlt != NULL)
12332 htab->relbrlt->size = 0;
12333
12334 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12335
12336 if (info->emitrelocations
12337 && htab->glink != NULL && htab->glink->size != 0)
12338 {
12339 htab->glink->reloc_count = 1;
12340 htab->glink->flags |= SEC_RELOC;
12341 }
12342
12343 if (htab->glink_eh_frame != NULL
12344 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12345 && htab->glink_eh_frame->output_section->size != 0)
12346 {
12347 size_t size = 0, align;
12348
12349 for (stub_sec = htab->params->stub_bfd->sections;
12350 stub_sec != NULL;
12351 stub_sec = stub_sec->next)
12352 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12353 size += 24;
12354 if (htab->glink != NULL && htab->glink->size != 0)
12355 size += 24;
12356 if (size != 0)
12357 size += sizeof (glink_eh_frame_cie);
12358 align = 1;
12359 align <<= htab->glink_eh_frame->output_section->alignment_power;
12360 align -= 1;
12361 size = (size + align) & ~align;
12362 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12363 htab->glink_eh_frame->size = size;
12364 }
12365
12366 if (htab->params->plt_stub_align != 0)
12367 for (stub_sec = htab->params->stub_bfd->sections;
12368 stub_sec != NULL;
12369 stub_sec = stub_sec->next)
12370 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12371 stub_sec->size = ((stub_sec->size
12372 + (1 << htab->params->plt_stub_align) - 1)
12373 & (-1 << htab->params->plt_stub_align));
12374
12375 for (stub_sec = htab->params->stub_bfd->sections;
12376 stub_sec != NULL;
12377 stub_sec = stub_sec->next)
12378 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12379 && stub_sec->rawsize != stub_sec->size)
12380 break;
12381
12382 /* Exit from this loop when no stubs have been added, and no stubs
12383 have changed size. */
12384 if (stub_sec == NULL
12385 && (htab->glink_eh_frame == NULL
12386 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12387 break;
12388
12389 /* Ask the linker to do its stuff. */
12390 (*htab->params->layout_sections_again) ();
12391 }
12392
12393 if (htab->glink_eh_frame != NULL
12394 && htab->glink_eh_frame->size != 0)
12395 {
12396 bfd_vma val;
12397 bfd_byte *p, *last_fde;
12398 size_t last_fde_len, size, align, pad;
12399 asection *stub_sec;
12400
12401 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12402 if (p == NULL)
12403 return FALSE;
12404 htab->glink_eh_frame->contents = p;
12405 last_fde = p;
12406
12407 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12408 /* CIE length (rewrite in case little-endian). */
12409 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12410 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12411 p += sizeof (glink_eh_frame_cie);
12412
12413 for (stub_sec = htab->params->stub_bfd->sections;
12414 stub_sec != NULL;
12415 stub_sec = stub_sec->next)
12416 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12417 {
12418 last_fde = p;
12419 last_fde_len = 20;
12420 /* FDE length. */
12421 bfd_put_32 (htab->elf.dynobj, 20, p);
12422 p += 4;
12423 /* CIE pointer. */
12424 val = p - htab->glink_eh_frame->contents;
12425 bfd_put_32 (htab->elf.dynobj, val, p);
12426 p += 4;
12427 /* Offset to stub section, written later. */
12428 p += 4;
12429 /* stub section size. */
12430 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12431 p += 4;
12432 /* Augmentation. */
12433 p += 1;
12434 /* Pad. */
12435 p += 7;
12436 }
12437 if (htab->glink != NULL && htab->glink->size != 0)
12438 {
12439 last_fde = p;
12440 last_fde_len = 20;
12441 /* FDE length. */
12442 bfd_put_32 (htab->elf.dynobj, 20, p);
12443 p += 4;
12444 /* CIE pointer. */
12445 val = p - htab->glink_eh_frame->contents;
12446 bfd_put_32 (htab->elf.dynobj, val, p);
12447 p += 4;
12448 /* Offset to .glink, written later. */
12449 p += 4;
12450 /* .glink size. */
12451 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12452 p += 4;
12453 /* Augmentation. */
12454 p += 1;
12455
12456 *p++ = DW_CFA_advance_loc + 1;
12457 *p++ = DW_CFA_register;
12458 *p++ = 65;
12459 *p++ = 12;
12460 *p++ = DW_CFA_advance_loc + 4;
12461 *p++ = DW_CFA_restore_extended;
12462 *p++ = 65;
12463 }
12464 /* Subsume any padding into the last FDE if user .eh_frame
12465 sections are aligned more than glink_eh_frame. Otherwise any
12466 zero padding will be seen as a terminator. */
12467 size = p - htab->glink_eh_frame->contents;
12468 align = 1;
12469 align <<= htab->glink_eh_frame->output_section->alignment_power;
12470 align -= 1;
12471 pad = ((size + align) & ~align) - size;
12472 htab->glink_eh_frame->size = size + pad;
12473 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12474 }
12475
12476 maybe_strip_output (info, htab->brlt);
12477 if (htab->glink_eh_frame != NULL)
12478 maybe_strip_output (info, htab->glink_eh_frame);
12479
12480 return TRUE;
12481 }
12482
12483 /* Called after we have determined section placement. If sections
12484 move, we'll be called again. Provide a value for TOCstart. */
12485
12486 bfd_vma
12487 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12488 {
12489 asection *s;
12490 bfd_vma TOCstart;
12491
12492 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12493 order. The TOC starts where the first of these sections starts. */
12494 s = bfd_get_section_by_name (obfd, ".got");
12495 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12496 s = bfd_get_section_by_name (obfd, ".toc");
12497 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12498 s = bfd_get_section_by_name (obfd, ".tocbss");
12499 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12500 s = bfd_get_section_by_name (obfd, ".plt");
12501 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12502 {
12503 /* This may happen for
12504 o references to TOC base (SYM@toc / TOC[tc0]) without a
12505 .toc directive
12506 o bad linker script
12507 o --gc-sections and empty TOC sections
12508
12509 FIXME: Warn user? */
12510
12511 /* Look for a likely section. We probably won't even be
12512 using TOCstart. */
12513 for (s = obfd->sections; s != NULL; s = s->next)
12514 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12515 | SEC_EXCLUDE))
12516 == (SEC_ALLOC | SEC_SMALL_DATA))
12517 break;
12518 if (s == NULL)
12519 for (s = obfd->sections; s != NULL; s = s->next)
12520 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12521 == (SEC_ALLOC | SEC_SMALL_DATA))
12522 break;
12523 if (s == NULL)
12524 for (s = obfd->sections; s != NULL; s = s->next)
12525 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12526 == SEC_ALLOC)
12527 break;
12528 if (s == NULL)
12529 for (s = obfd->sections; s != NULL; s = s->next)
12530 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12531 break;
12532 }
12533
12534 TOCstart = 0;
12535 if (s != NULL)
12536 TOCstart = s->output_section->vma + s->output_offset;
12537
12538 _bfd_set_gp_value (obfd, TOCstart);
12539
12540 if (info != NULL && s != NULL)
12541 {
12542 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12543
12544 if (htab != NULL)
12545 {
12546 if (htab->elf.hgot != NULL)
12547 {
12548 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12549 htab->elf.hgot->root.u.def.section = s;
12550 }
12551 }
12552 else
12553 {
12554 struct bfd_link_hash_entry *bh = NULL;
12555 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12556 s, TOC_BASE_OFF, NULL, FALSE,
12557 FALSE, &bh);
12558 }
12559 }
12560 return TOCstart;
12561 }
12562
12563 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12564 write out any global entry stubs. */
12565
12566 static bfd_boolean
12567 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12568 {
12569 struct bfd_link_info *info;
12570 struct ppc_link_hash_table *htab;
12571 struct plt_entry *pent;
12572 asection *s;
12573
12574 if (h->root.type == bfd_link_hash_indirect)
12575 return TRUE;
12576
12577 if (!h->pointer_equality_needed)
12578 return TRUE;
12579
12580 if (h->def_regular)
12581 return TRUE;
12582
12583 info = inf;
12584 htab = ppc_hash_table (info);
12585 if (htab == NULL)
12586 return FALSE;
12587
12588 s = htab->glink;
12589 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12590 if (pent->plt.offset != (bfd_vma) -1
12591 && pent->addend == 0)
12592 {
12593 bfd_byte *p;
12594 asection *plt;
12595 bfd_vma off;
12596
12597 p = s->contents + h->root.u.def.value;
12598 plt = htab->elf.splt;
12599 if (!htab->elf.dynamic_sections_created
12600 || h->dynindx == -1)
12601 plt = htab->elf.iplt;
12602 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12603 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12604
12605 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12606 {
12607 info->callbacks->einfo
12608 (_("%P: linkage table error against `%T'\n"),
12609 h->root.root.string);
12610 bfd_set_error (bfd_error_bad_value);
12611 htab->stub_error = TRUE;
12612 }
12613
12614 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12615 if (htab->params->emit_stub_syms)
12616 {
12617 size_t len = strlen (h->root.root.string);
12618 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12619
12620 if (name == NULL)
12621 return FALSE;
12622
12623 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12624 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12625 if (h == NULL)
12626 return FALSE;
12627 if (h->root.type == bfd_link_hash_new)
12628 {
12629 h->root.type = bfd_link_hash_defined;
12630 h->root.u.def.section = s;
12631 h->root.u.def.value = p - s->contents;
12632 h->ref_regular = 1;
12633 h->def_regular = 1;
12634 h->ref_regular_nonweak = 1;
12635 h->forced_local = 1;
12636 h->non_elf = 0;
12637 }
12638 }
12639
12640 if (PPC_HA (off) != 0)
12641 {
12642 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12643 p += 4;
12644 }
12645 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12646 p += 4;
12647 bfd_put_32 (s->owner, MTCTR_R12, p);
12648 p += 4;
12649 bfd_put_32 (s->owner, BCTR, p);
12650 break;
12651 }
12652 return TRUE;
12653 }
12654
12655 /* Build all the stubs associated with the current output file.
12656 The stubs are kept in a hash table attached to the main linker
12657 hash table. This function is called via gldelf64ppc_finish. */
12658
12659 bfd_boolean
12660 ppc64_elf_build_stubs (struct bfd_link_info *info,
12661 char **stats)
12662 {
12663 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12664 asection *stub_sec;
12665 bfd_byte *p;
12666 int stub_sec_count = 0;
12667
12668 if (htab == NULL)
12669 return FALSE;
12670
12671 /* Allocate memory to hold the linker stubs. */
12672 for (stub_sec = htab->params->stub_bfd->sections;
12673 stub_sec != NULL;
12674 stub_sec = stub_sec->next)
12675 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12676 && stub_sec->size != 0)
12677 {
12678 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12679 if (stub_sec->contents == NULL)
12680 return FALSE;
12681 /* We want to check that built size is the same as calculated
12682 size. rawsize is a convenient location to use. */
12683 stub_sec->rawsize = stub_sec->size;
12684 stub_sec->size = 0;
12685 }
12686
12687 if (htab->glink != NULL && htab->glink->size != 0)
12688 {
12689 unsigned int indx;
12690 bfd_vma plt0;
12691
12692 /* Build the .glink plt call stub. */
12693 if (htab->params->emit_stub_syms)
12694 {
12695 struct elf_link_hash_entry *h;
12696 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12697 TRUE, FALSE, FALSE);
12698 if (h == NULL)
12699 return FALSE;
12700 if (h->root.type == bfd_link_hash_new)
12701 {
12702 h->root.type = bfd_link_hash_defined;
12703 h->root.u.def.section = htab->glink;
12704 h->root.u.def.value = 8;
12705 h->ref_regular = 1;
12706 h->def_regular = 1;
12707 h->ref_regular_nonweak = 1;
12708 h->forced_local = 1;
12709 h->non_elf = 0;
12710 }
12711 }
12712 plt0 = (htab->elf.splt->output_section->vma
12713 + htab->elf.splt->output_offset
12714 - 16);
12715 if (info->emitrelocations)
12716 {
12717 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12718 if (r == NULL)
12719 return FALSE;
12720 r->r_offset = (htab->glink->output_offset
12721 + htab->glink->output_section->vma);
12722 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12723 r->r_addend = plt0;
12724 }
12725 p = htab->glink->contents;
12726 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12727 bfd_put_64 (htab->glink->owner, plt0, p);
12728 p += 8;
12729 if (htab->opd_abi)
12730 {
12731 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12732 p += 4;
12733 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12734 p += 4;
12735 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12736 p += 4;
12737 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12738 p += 4;
12739 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12740 p += 4;
12741 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12742 p += 4;
12743 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12744 p += 4;
12745 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12746 p += 4;
12747 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12748 p += 4;
12749 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12750 p += 4;
12751 }
12752 else
12753 {
12754 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12755 p += 4;
12756 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12757 p += 4;
12758 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12759 p += 4;
12760 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12761 p += 4;
12762 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12763 p += 4;
12764 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12765 p += 4;
12766 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12767 p += 4;
12768 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12769 p += 4;
12770 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12771 p += 4;
12772 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12773 p += 4;
12774 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12775 p += 4;
12776 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12777 p += 4;
12778 }
12779 bfd_put_32 (htab->glink->owner, BCTR, p);
12780 p += 4;
12781 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12782 {
12783 bfd_put_32 (htab->glink->owner, NOP, p);
12784 p += 4;
12785 }
12786
12787 /* Build the .glink lazy link call stubs. */
12788 indx = 0;
12789 while (p < htab->glink->contents + htab->glink->rawsize)
12790 {
12791 if (htab->opd_abi)
12792 {
12793 if (indx < 0x8000)
12794 {
12795 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12796 p += 4;
12797 }
12798 else
12799 {
12800 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12801 p += 4;
12802 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12803 p);
12804 p += 4;
12805 }
12806 }
12807 bfd_put_32 (htab->glink->owner,
12808 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12809 indx++;
12810 p += 4;
12811 }
12812
12813 /* Build .glink global entry stubs. */
12814 if (htab->glink->size > htab->glink->rawsize)
12815 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12816 }
12817
12818 if (htab->brlt != NULL && htab->brlt->size != 0)
12819 {
12820 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12821 htab->brlt->size);
12822 if (htab->brlt->contents == NULL)
12823 return FALSE;
12824 }
12825 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12826 {
12827 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12828 htab->relbrlt->size);
12829 if (htab->relbrlt->contents == NULL)
12830 return FALSE;
12831 }
12832
12833 /* Build the stubs as directed by the stub hash table. */
12834 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12835
12836 if (htab->relbrlt != NULL)
12837 htab->relbrlt->reloc_count = 0;
12838
12839 if (htab->params->plt_stub_align != 0)
12840 for (stub_sec = htab->params->stub_bfd->sections;
12841 stub_sec != NULL;
12842 stub_sec = stub_sec->next)
12843 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12844 stub_sec->size = ((stub_sec->size
12845 + (1 << htab->params->plt_stub_align) - 1)
12846 & (-1 << htab->params->plt_stub_align));
12847
12848 for (stub_sec = htab->params->stub_bfd->sections;
12849 stub_sec != NULL;
12850 stub_sec = stub_sec->next)
12851 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12852 {
12853 stub_sec_count += 1;
12854 if (stub_sec->rawsize != stub_sec->size)
12855 break;
12856 }
12857
12858 /* Note that the glink_eh_frame check here is not only testing that
12859 the generated size matched the calculated size but also that
12860 bfd_elf_discard_info didn't make any changes to the section. */
12861 if (stub_sec != NULL
12862 || (htab->glink_eh_frame != NULL
12863 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12864 {
12865 htab->stub_error = TRUE;
12866 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12867 }
12868
12869 if (htab->stub_error)
12870 return FALSE;
12871
12872 if (stats != NULL)
12873 {
12874 *stats = bfd_malloc (500);
12875 if (*stats == NULL)
12876 return FALSE;
12877
12878 sprintf (*stats, _("linker stubs in %u group%s\n"
12879 " branch %lu\n"
12880 " toc adjust %lu\n"
12881 " long branch %lu\n"
12882 " long toc adj %lu\n"
12883 " plt call %lu\n"
12884 " plt call toc %lu\n"
12885 " global entry %lu"),
12886 stub_sec_count,
12887 stub_sec_count == 1 ? "" : "s",
12888 htab->stub_count[ppc_stub_long_branch - 1],
12889 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12890 htab->stub_count[ppc_stub_plt_branch - 1],
12891 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12892 htab->stub_count[ppc_stub_plt_call - 1],
12893 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12894 htab->stub_count[ppc_stub_global_entry - 1]);
12895 }
12896 return TRUE;
12897 }
12898
12899 /* This function undoes the changes made by add_symbol_adjust. */
12900
12901 static bfd_boolean
12902 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12903 {
12904 struct ppc_link_hash_entry *eh;
12905
12906 if (h->root.type == bfd_link_hash_indirect)
12907 return TRUE;
12908
12909 eh = (struct ppc_link_hash_entry *) h;
12910 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12911 return TRUE;
12912
12913 eh->elf.root.type = bfd_link_hash_undefined;
12914 return TRUE;
12915 }
12916
12917 void
12918 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12919 {
12920 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12921
12922 if (htab != NULL)
12923 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12924 }
12925
12926 /* What to do when ld finds relocations against symbols defined in
12927 discarded sections. */
12928
12929 static unsigned int
12930 ppc64_elf_action_discarded (asection *sec)
12931 {
12932 if (strcmp (".opd", sec->name) == 0)
12933 return 0;
12934
12935 if (strcmp (".toc", sec->name) == 0)
12936 return 0;
12937
12938 if (strcmp (".toc1", sec->name) == 0)
12939 return 0;
12940
12941 return _bfd_elf_default_action_discarded (sec);
12942 }
12943
12944 /* The RELOCATE_SECTION function is called by the ELF backend linker
12945 to handle the relocations for a section.
12946
12947 The relocs are always passed as Rela structures; if the section
12948 actually uses Rel structures, the r_addend field will always be
12949 zero.
12950
12951 This function is responsible for adjust the section contents as
12952 necessary, and (if using Rela relocs and generating a
12953 relocatable output file) adjusting the reloc addend as
12954 necessary.
12955
12956 This function does not have to worry about setting the reloc
12957 address or the reloc symbol index.
12958
12959 LOCAL_SYMS is a pointer to the swapped in local symbols.
12960
12961 LOCAL_SECTIONS is an array giving the section in the input file
12962 corresponding to the st_shndx field of each local symbol.
12963
12964 The global hash table entry for the global symbols can be found
12965 via elf_sym_hashes (input_bfd).
12966
12967 When generating relocatable output, this function must handle
12968 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12969 going to be the section symbol corresponding to the output
12970 section, which means that the addend must be adjusted
12971 accordingly. */
12972
12973 static bfd_boolean
12974 ppc64_elf_relocate_section (bfd *output_bfd,
12975 struct bfd_link_info *info,
12976 bfd *input_bfd,
12977 asection *input_section,
12978 bfd_byte *contents,
12979 Elf_Internal_Rela *relocs,
12980 Elf_Internal_Sym *local_syms,
12981 asection **local_sections)
12982 {
12983 struct ppc_link_hash_table *htab;
12984 Elf_Internal_Shdr *symtab_hdr;
12985 struct elf_link_hash_entry **sym_hashes;
12986 Elf_Internal_Rela *rel;
12987 Elf_Internal_Rela *relend;
12988 Elf_Internal_Rela outrel;
12989 bfd_byte *loc;
12990 struct got_entry **local_got_ents;
12991 bfd_vma TOCstart;
12992 bfd_boolean ret = TRUE;
12993 bfd_boolean is_opd;
12994 /* Assume 'at' branch hints. */
12995 bfd_boolean is_isa_v2 = TRUE;
12996 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12997
12998 /* Initialize howto table if needed. */
12999 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13000 ppc_howto_init ();
13001
13002 htab = ppc_hash_table (info);
13003 if (htab == NULL)
13004 return FALSE;
13005
13006 /* Don't relocate stub sections. */
13007 if (input_section->owner == htab->params->stub_bfd)
13008 return TRUE;
13009
13010 BFD_ASSERT (is_ppc64_elf (input_bfd));
13011
13012 local_got_ents = elf_local_got_ents (input_bfd);
13013 TOCstart = elf_gp (output_bfd);
13014 symtab_hdr = &elf_symtab_hdr (input_bfd);
13015 sym_hashes = elf_sym_hashes (input_bfd);
13016 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13017
13018 rel = relocs;
13019 relend = relocs + input_section->reloc_count;
13020 for (; rel < relend; rel++)
13021 {
13022 enum elf_ppc64_reloc_type r_type;
13023 bfd_vma addend;
13024 bfd_reloc_status_type r;
13025 Elf_Internal_Sym *sym;
13026 asection *sec;
13027 struct elf_link_hash_entry *h_elf;
13028 struct ppc_link_hash_entry *h;
13029 struct ppc_link_hash_entry *fdh;
13030 const char *sym_name;
13031 unsigned long r_symndx, toc_symndx;
13032 bfd_vma toc_addend;
13033 unsigned char tls_mask, tls_gd, tls_type;
13034 unsigned char sym_type;
13035 bfd_vma relocation;
13036 bfd_boolean unresolved_reloc;
13037 bfd_boolean warned;
13038 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13039 unsigned int insn;
13040 unsigned int mask;
13041 struct ppc_stub_hash_entry *stub_entry;
13042 bfd_vma max_br_offset;
13043 bfd_vma from;
13044 const Elf_Internal_Rela orig_rel = *rel;
13045 reloc_howto_type *howto;
13046 struct reloc_howto_struct alt_howto;
13047
13048 r_type = ELF64_R_TYPE (rel->r_info);
13049 r_symndx = ELF64_R_SYM (rel->r_info);
13050
13051 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13052 symbol of the previous ADDR64 reloc. The symbol gives us the
13053 proper TOC base to use. */
13054 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13055 && rel != relocs
13056 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13057 && is_opd)
13058 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13059
13060 sym = NULL;
13061 sec = NULL;
13062 h_elf = NULL;
13063 sym_name = NULL;
13064 unresolved_reloc = FALSE;
13065 warned = FALSE;
13066
13067 if (r_symndx < symtab_hdr->sh_info)
13068 {
13069 /* It's a local symbol. */
13070 struct _opd_sec_data *opd;
13071
13072 sym = local_syms + r_symndx;
13073 sec = local_sections[r_symndx];
13074 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13075 sym_type = ELF64_ST_TYPE (sym->st_info);
13076 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13077 opd = get_opd_info (sec);
13078 if (opd != NULL && opd->adjust != NULL)
13079 {
13080 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
13081 if (adjust == -1)
13082 relocation = 0;
13083 else
13084 {
13085 /* If this is a relocation against the opd section sym
13086 and we have edited .opd, adjust the reloc addend so
13087 that ld -r and ld --emit-relocs output is correct.
13088 If it is a reloc against some other .opd symbol,
13089 then the symbol value will be adjusted later. */
13090 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13091 rel->r_addend += adjust;
13092 else
13093 relocation += adjust;
13094 }
13095 }
13096 }
13097 else
13098 {
13099 bfd_boolean ignored;
13100
13101 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13102 r_symndx, symtab_hdr, sym_hashes,
13103 h_elf, sec, relocation,
13104 unresolved_reloc, warned, ignored);
13105 sym_name = h_elf->root.root.string;
13106 sym_type = h_elf->type;
13107 if (sec != NULL
13108 && sec->owner == output_bfd
13109 && strcmp (sec->name, ".opd") == 0)
13110 {
13111 /* This is a symbol defined in a linker script. All
13112 such are defined in output sections, even those
13113 defined by simple assignment from a symbol defined in
13114 an input section. Transfer the symbol to an
13115 appropriate input .opd section, so that a branch to
13116 this symbol will be mapped to the location specified
13117 by the opd entry. */
13118 struct bfd_link_order *lo;
13119 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13120 if (lo->type == bfd_indirect_link_order)
13121 {
13122 asection *isec = lo->u.indirect.section;
13123 if (h_elf->root.u.def.value >= isec->output_offset
13124 && h_elf->root.u.def.value < (isec->output_offset
13125 + isec->size))
13126 {
13127 h_elf->root.u.def.value -= isec->output_offset;
13128 h_elf->root.u.def.section = isec;
13129 sec = isec;
13130 break;
13131 }
13132 }
13133 }
13134 }
13135 h = (struct ppc_link_hash_entry *) h_elf;
13136
13137 if (sec != NULL && discarded_section (sec))
13138 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13139 rel, 1, relend,
13140 ppc64_elf_howto_table[r_type], 0,
13141 contents);
13142
13143 if (info->relocatable)
13144 continue;
13145
13146 if (h != NULL && &h->elf == htab->elf.hgot)
13147 {
13148 relocation = (TOCstart
13149 + htab->stub_group[input_section->id].toc_off);
13150 sec = bfd_abs_section_ptr;
13151 unresolved_reloc = FALSE;
13152 }
13153
13154 /* TLS optimizations. Replace instruction sequences and relocs
13155 based on information we collected in tls_optimize. We edit
13156 RELOCS so that --emit-relocs will output something sensible
13157 for the final instruction stream. */
13158 tls_mask = 0;
13159 tls_gd = 0;
13160 toc_symndx = 0;
13161 if (h != NULL)
13162 tls_mask = h->tls_mask;
13163 else if (local_got_ents != NULL)
13164 {
13165 struct plt_entry **local_plt = (struct plt_entry **)
13166 (local_got_ents + symtab_hdr->sh_info);
13167 unsigned char *lgot_masks = (unsigned char *)
13168 (local_plt + symtab_hdr->sh_info);
13169 tls_mask = lgot_masks[r_symndx];
13170 }
13171 if (tls_mask == 0
13172 && (r_type == R_PPC64_TLS
13173 || r_type == R_PPC64_TLSGD
13174 || r_type == R_PPC64_TLSLD))
13175 {
13176 /* Check for toc tls entries. */
13177 unsigned char *toc_tls;
13178
13179 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13180 &local_syms, rel, input_bfd))
13181 return FALSE;
13182
13183 if (toc_tls)
13184 tls_mask = *toc_tls;
13185 }
13186
13187 /* Check that tls relocs are used with tls syms, and non-tls
13188 relocs are used with non-tls syms. */
13189 if (r_symndx != STN_UNDEF
13190 && r_type != R_PPC64_NONE
13191 && (h == NULL
13192 || h->elf.root.type == bfd_link_hash_defined
13193 || h->elf.root.type == bfd_link_hash_defweak)
13194 && (IS_PPC64_TLS_RELOC (r_type)
13195 != (sym_type == STT_TLS
13196 || (sym_type == STT_SECTION
13197 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13198 {
13199 if (tls_mask != 0
13200 && (r_type == R_PPC64_TLS
13201 || r_type == R_PPC64_TLSGD
13202 || r_type == R_PPC64_TLSLD))
13203 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13204 ;
13205 else
13206 info->callbacks->einfo
13207 (!IS_PPC64_TLS_RELOC (r_type)
13208 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13209 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13210 input_bfd, input_section, rel->r_offset,
13211 ppc64_elf_howto_table[r_type]->name,
13212 sym_name);
13213 }
13214
13215 /* Ensure reloc mapping code below stays sane. */
13216 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13217 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13218 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13219 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13220 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13221 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13222 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13223 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13224 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13225 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13226 abort ();
13227
13228 switch (r_type)
13229 {
13230 default:
13231 break;
13232
13233 case R_PPC64_LO_DS_OPT:
13234 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13235 if ((insn & (0x3f << 26)) != 58u << 26)
13236 abort ();
13237 insn += (14u << 26) - (58u << 26);
13238 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13239 r_type = R_PPC64_TOC16_LO;
13240 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13241 break;
13242
13243 case R_PPC64_TOC16:
13244 case R_PPC64_TOC16_LO:
13245 case R_PPC64_TOC16_DS:
13246 case R_PPC64_TOC16_LO_DS:
13247 {
13248 /* Check for toc tls entries. */
13249 unsigned char *toc_tls;
13250 int retval;
13251
13252 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13253 &local_syms, rel, input_bfd);
13254 if (retval == 0)
13255 return FALSE;
13256
13257 if (toc_tls)
13258 {
13259 tls_mask = *toc_tls;
13260 if (r_type == R_PPC64_TOC16_DS
13261 || r_type == R_PPC64_TOC16_LO_DS)
13262 {
13263 if (tls_mask != 0
13264 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13265 goto toctprel;
13266 }
13267 else
13268 {
13269 /* If we found a GD reloc pair, then we might be
13270 doing a GD->IE transition. */
13271 if (retval == 2)
13272 {
13273 tls_gd = TLS_TPRELGD;
13274 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13275 goto tls_ldgd_opt;
13276 }
13277 else if (retval == 3)
13278 {
13279 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13280 goto tls_ldgd_opt;
13281 }
13282 }
13283 }
13284 }
13285 break;
13286
13287 case R_PPC64_GOT_TPREL16_HI:
13288 case R_PPC64_GOT_TPREL16_HA:
13289 if (tls_mask != 0
13290 && (tls_mask & TLS_TPREL) == 0)
13291 {
13292 rel->r_offset -= d_offset;
13293 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13294 r_type = R_PPC64_NONE;
13295 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13296 }
13297 break;
13298
13299 case R_PPC64_GOT_TPREL16_DS:
13300 case R_PPC64_GOT_TPREL16_LO_DS:
13301 if (tls_mask != 0
13302 && (tls_mask & TLS_TPREL) == 0)
13303 {
13304 toctprel:
13305 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13306 insn &= 31 << 21;
13307 insn |= 0x3c0d0000; /* addis 0,13,0 */
13308 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13309 r_type = R_PPC64_TPREL16_HA;
13310 if (toc_symndx != 0)
13311 {
13312 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13313 rel->r_addend = toc_addend;
13314 /* We changed the symbol. Start over in order to
13315 get h, sym, sec etc. right. */
13316 rel--;
13317 continue;
13318 }
13319 else
13320 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13321 }
13322 break;
13323
13324 case R_PPC64_TLS:
13325 if (tls_mask != 0
13326 && (tls_mask & TLS_TPREL) == 0)
13327 {
13328 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13329 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13330 if (insn == 0)
13331 abort ();
13332 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13333 /* Was PPC64_TLS which sits on insn boundary, now
13334 PPC64_TPREL16_LO which is at low-order half-word. */
13335 rel->r_offset += d_offset;
13336 r_type = R_PPC64_TPREL16_LO;
13337 if (toc_symndx != 0)
13338 {
13339 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13340 rel->r_addend = toc_addend;
13341 /* We changed the symbol. Start over in order to
13342 get h, sym, sec etc. right. */
13343 rel--;
13344 continue;
13345 }
13346 else
13347 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13348 }
13349 break;
13350
13351 case R_PPC64_GOT_TLSGD16_HI:
13352 case R_PPC64_GOT_TLSGD16_HA:
13353 tls_gd = TLS_TPRELGD;
13354 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13355 goto tls_gdld_hi;
13356 break;
13357
13358 case R_PPC64_GOT_TLSLD16_HI:
13359 case R_PPC64_GOT_TLSLD16_HA:
13360 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13361 {
13362 tls_gdld_hi:
13363 if ((tls_mask & tls_gd) != 0)
13364 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13365 + R_PPC64_GOT_TPREL16_DS);
13366 else
13367 {
13368 rel->r_offset -= d_offset;
13369 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13370 r_type = R_PPC64_NONE;
13371 }
13372 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13373 }
13374 break;
13375
13376 case R_PPC64_GOT_TLSGD16:
13377 case R_PPC64_GOT_TLSGD16_LO:
13378 tls_gd = TLS_TPRELGD;
13379 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13380 goto tls_ldgd_opt;
13381 break;
13382
13383 case R_PPC64_GOT_TLSLD16:
13384 case R_PPC64_GOT_TLSLD16_LO:
13385 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13386 {
13387 unsigned int insn1, insn2, insn3;
13388 bfd_vma offset;
13389
13390 tls_ldgd_opt:
13391 offset = (bfd_vma) -1;
13392 /* If not using the newer R_PPC64_TLSGD/LD to mark
13393 __tls_get_addr calls, we must trust that the call
13394 stays with its arg setup insns, ie. that the next
13395 reloc is the __tls_get_addr call associated with
13396 the current reloc. Edit both insns. */
13397 if (input_section->has_tls_get_addr_call
13398 && rel + 1 < relend
13399 && branch_reloc_hash_match (input_bfd, rel + 1,
13400 htab->tls_get_addr,
13401 htab->tls_get_addr_fd))
13402 offset = rel[1].r_offset;
13403 if ((tls_mask & tls_gd) != 0)
13404 {
13405 /* IE */
13406 insn1 = bfd_get_32 (output_bfd,
13407 contents + rel->r_offset - d_offset);
13408 insn1 &= (1 << 26) - (1 << 2);
13409 insn1 |= 58 << 26; /* ld */
13410 insn2 = 0x7c636a14; /* add 3,3,13 */
13411 if (offset != (bfd_vma) -1)
13412 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13413 if ((tls_mask & TLS_EXPLICIT) == 0)
13414 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13415 + R_PPC64_GOT_TPREL16_DS);
13416 else
13417 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13418 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13419 }
13420 else
13421 {
13422 /* LE */
13423 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13424 insn2 = 0x38630000; /* addi 3,3,0 */
13425 if (tls_gd == 0)
13426 {
13427 /* Was an LD reloc. */
13428 if (toc_symndx)
13429 sec = local_sections[toc_symndx];
13430 for (r_symndx = 0;
13431 r_symndx < symtab_hdr->sh_info;
13432 r_symndx++)
13433 if (local_sections[r_symndx] == sec)
13434 break;
13435 if (r_symndx >= symtab_hdr->sh_info)
13436 r_symndx = STN_UNDEF;
13437 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13438 if (r_symndx != STN_UNDEF)
13439 rel->r_addend -= (local_syms[r_symndx].st_value
13440 + sec->output_offset
13441 + sec->output_section->vma);
13442 }
13443 else if (toc_symndx != 0)
13444 {
13445 r_symndx = toc_symndx;
13446 rel->r_addend = toc_addend;
13447 }
13448 r_type = R_PPC64_TPREL16_HA;
13449 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13450 if (offset != (bfd_vma) -1)
13451 {
13452 rel[1].r_info = ELF64_R_INFO (r_symndx,
13453 R_PPC64_TPREL16_LO);
13454 rel[1].r_offset = offset + d_offset;
13455 rel[1].r_addend = rel->r_addend;
13456 }
13457 }
13458 bfd_put_32 (output_bfd, insn1,
13459 contents + rel->r_offset - d_offset);
13460 if (offset != (bfd_vma) -1)
13461 {
13462 insn3 = bfd_get_32 (output_bfd,
13463 contents + offset + 4);
13464 if (insn3 == NOP
13465 || insn3 == CROR_151515 || insn3 == CROR_313131)
13466 {
13467 rel[1].r_offset += 4;
13468 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13469 insn2 = NOP;
13470 }
13471 bfd_put_32 (output_bfd, insn2, contents + offset);
13472 }
13473 if ((tls_mask & tls_gd) == 0
13474 && (tls_gd == 0 || toc_symndx != 0))
13475 {
13476 /* We changed the symbol. Start over in order
13477 to get h, sym, sec etc. right. */
13478 rel--;
13479 continue;
13480 }
13481 }
13482 break;
13483
13484 case R_PPC64_TLSGD:
13485 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13486 {
13487 unsigned int insn2, insn3;
13488 bfd_vma offset = rel->r_offset;
13489
13490 if ((tls_mask & TLS_TPRELGD) != 0)
13491 {
13492 /* IE */
13493 r_type = R_PPC64_NONE;
13494 insn2 = 0x7c636a14; /* add 3,3,13 */
13495 }
13496 else
13497 {
13498 /* LE */
13499 if (toc_symndx != 0)
13500 {
13501 r_symndx = toc_symndx;
13502 rel->r_addend = toc_addend;
13503 }
13504 r_type = R_PPC64_TPREL16_LO;
13505 rel->r_offset = offset + d_offset;
13506 insn2 = 0x38630000; /* addi 3,3,0 */
13507 }
13508 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13509 /* Zap the reloc on the _tls_get_addr call too. */
13510 BFD_ASSERT (offset == rel[1].r_offset);
13511 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13512 insn3 = bfd_get_32 (output_bfd,
13513 contents + offset + 4);
13514 if (insn3 == NOP
13515 || insn3 == CROR_151515 || insn3 == CROR_313131)
13516 {
13517 rel->r_offset += 4;
13518 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13519 insn2 = NOP;
13520 }
13521 bfd_put_32 (output_bfd, insn2, contents + offset);
13522 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13523 {
13524 rel--;
13525 continue;
13526 }
13527 }
13528 break;
13529
13530 case R_PPC64_TLSLD:
13531 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13532 {
13533 unsigned int insn2, insn3;
13534 bfd_vma offset = rel->r_offset;
13535
13536 if (toc_symndx)
13537 sec = local_sections[toc_symndx];
13538 for (r_symndx = 0;
13539 r_symndx < symtab_hdr->sh_info;
13540 r_symndx++)
13541 if (local_sections[r_symndx] == sec)
13542 break;
13543 if (r_symndx >= symtab_hdr->sh_info)
13544 r_symndx = STN_UNDEF;
13545 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13546 if (r_symndx != STN_UNDEF)
13547 rel->r_addend -= (local_syms[r_symndx].st_value
13548 + sec->output_offset
13549 + sec->output_section->vma);
13550
13551 r_type = R_PPC64_TPREL16_LO;
13552 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13553 rel->r_offset = offset + d_offset;
13554 /* Zap the reloc on the _tls_get_addr call too. */
13555 BFD_ASSERT (offset == rel[1].r_offset);
13556 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13557 insn2 = 0x38630000; /* addi 3,3,0 */
13558 insn3 = bfd_get_32 (output_bfd,
13559 contents + offset + 4);
13560 if (insn3 == NOP
13561 || insn3 == CROR_151515 || insn3 == CROR_313131)
13562 {
13563 rel->r_offset += 4;
13564 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13565 insn2 = NOP;
13566 }
13567 bfd_put_32 (output_bfd, insn2, contents + offset);
13568 rel--;
13569 continue;
13570 }
13571 break;
13572
13573 case R_PPC64_DTPMOD64:
13574 if (rel + 1 < relend
13575 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13576 && rel[1].r_offset == rel->r_offset + 8)
13577 {
13578 if ((tls_mask & TLS_GD) == 0)
13579 {
13580 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13581 if ((tls_mask & TLS_TPRELGD) != 0)
13582 r_type = R_PPC64_TPREL64;
13583 else
13584 {
13585 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13586 r_type = R_PPC64_NONE;
13587 }
13588 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13589 }
13590 }
13591 else
13592 {
13593 if ((tls_mask & TLS_LD) == 0)
13594 {
13595 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13596 r_type = R_PPC64_NONE;
13597 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13598 }
13599 }
13600 break;
13601
13602 case R_PPC64_TPREL64:
13603 if ((tls_mask & TLS_TPREL) == 0)
13604 {
13605 r_type = R_PPC64_NONE;
13606 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13607 }
13608 break;
13609
13610 case R_PPC64_REL16_HA:
13611 /* If we are generating a non-PIC executable, edit
13612 . 0: addis 2,12,.TOC.-0b@ha
13613 . addi 2,2,.TOC.-0b@l
13614 used by ELFv2 global entry points to set up r2, to
13615 . lis 2,.TOC.@ha
13616 . addi 2,2,.TOC.@l
13617 if .TOC. is in range. */
13618 if (!info->shared
13619 && !info->traditional_format
13620 && h != NULL && &h->elf == htab->elf.hgot
13621 && rel + 1 < relend
13622 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13623 && rel[1].r_offset == rel->r_offset + 4
13624 && rel[1].r_addend == rel->r_addend + 4
13625 && relocation + 0x80008000 <= 0xffffffff)
13626 {
13627 unsigned int insn1, insn2;
13628 bfd_vma offset = rel->r_offset - d_offset;
13629 insn1 = bfd_get_32 (output_bfd, contents + offset);
13630 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13631 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13632 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13633 {
13634 r_type = R_PPC64_ADDR16_HA;
13635 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13636 rel->r_addend -= d_offset;
13637 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13638 rel[1].r_addend -= d_offset + 4;
13639 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13640 }
13641 }
13642 break;
13643 }
13644
13645 /* Handle other relocations that tweak non-addend part of insn. */
13646 insn = 0;
13647 max_br_offset = 1 << 25;
13648 addend = rel->r_addend;
13649 reloc_dest = DEST_NORMAL;
13650 switch (r_type)
13651 {
13652 default:
13653 break;
13654
13655 case R_PPC64_TOCSAVE:
13656 if (relocation + addend == (rel->r_offset
13657 + input_section->output_offset
13658 + input_section->output_section->vma)
13659 && tocsave_find (htab, NO_INSERT,
13660 &local_syms, rel, input_bfd))
13661 {
13662 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13663 if (insn == NOP
13664 || insn == CROR_151515 || insn == CROR_313131)
13665 bfd_put_32 (input_bfd,
13666 STD_R2_0R1 + STK_TOC (htab),
13667 contents + rel->r_offset);
13668 }
13669 break;
13670
13671 /* Branch taken prediction relocations. */
13672 case R_PPC64_ADDR14_BRTAKEN:
13673 case R_PPC64_REL14_BRTAKEN:
13674 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13675 /* Fall thru. */
13676
13677 /* Branch not taken prediction relocations. */
13678 case R_PPC64_ADDR14_BRNTAKEN:
13679 case R_PPC64_REL14_BRNTAKEN:
13680 insn |= bfd_get_32 (output_bfd,
13681 contents + rel->r_offset) & ~(0x01 << 21);
13682 /* Fall thru. */
13683
13684 case R_PPC64_REL14:
13685 max_br_offset = 1 << 15;
13686 /* Fall thru. */
13687
13688 case R_PPC64_REL24:
13689 /* Calls to functions with a different TOC, such as calls to
13690 shared objects, need to alter the TOC pointer. This is
13691 done using a linkage stub. A REL24 branching to these
13692 linkage stubs needs to be followed by a nop, as the nop
13693 will be replaced with an instruction to restore the TOC
13694 base pointer. */
13695 fdh = h;
13696 if (h != NULL
13697 && h->oh != NULL
13698 && h->oh->is_func_descriptor)
13699 fdh = ppc_follow_link (h->oh);
13700 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13701 htab);
13702 if (stub_entry != NULL
13703 && (stub_entry->stub_type == ppc_stub_plt_call
13704 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13705 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13706 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13707 {
13708 bfd_boolean can_plt_call = FALSE;
13709
13710 /* All of these stubs will modify r2, so there must be a
13711 branch and link followed by a nop. The nop is
13712 replaced by an insn to restore r2. */
13713 if (rel->r_offset + 8 <= input_section->size)
13714 {
13715 unsigned long br;
13716
13717 br = bfd_get_32 (input_bfd,
13718 contents + rel->r_offset);
13719 if ((br & 1) != 0)
13720 {
13721 unsigned long nop;
13722
13723 nop = bfd_get_32 (input_bfd,
13724 contents + rel->r_offset + 4);
13725 if (nop == NOP
13726 || nop == CROR_151515 || nop == CROR_313131)
13727 {
13728 if (h != NULL
13729 && (h == htab->tls_get_addr_fd
13730 || h == htab->tls_get_addr)
13731 && !htab->params->no_tls_get_addr_opt)
13732 {
13733 /* Special stub used, leave nop alone. */
13734 }
13735 else
13736 bfd_put_32 (input_bfd,
13737 LD_R2_0R1 + STK_TOC (htab),
13738 contents + rel->r_offset + 4);
13739 can_plt_call = TRUE;
13740 }
13741 }
13742 }
13743
13744 if (!can_plt_call && h != NULL)
13745 {
13746 const char *name = h->elf.root.root.string;
13747
13748 if (*name == '.')
13749 ++name;
13750
13751 if (strncmp (name, "__libc_start_main", 17) == 0
13752 && (name[17] == 0 || name[17] == '@'))
13753 {
13754 /* Allow crt1 branch to go via a toc adjusting
13755 stub. Other calls that never return could do
13756 the same, if we could detect such. */
13757 can_plt_call = TRUE;
13758 }
13759 }
13760
13761 if (!can_plt_call)
13762 {
13763 /* g++ as of 20130507 emits self-calls without a
13764 following nop. This is arguably wrong since we
13765 have conflicting information. On the one hand a
13766 global symbol and on the other a local call
13767 sequence, but don't error for this special case.
13768 It isn't possible to cheaply verify we have
13769 exactly such a call. Allow all calls to the same
13770 section. */
13771 asection *code_sec = sec;
13772
13773 if (get_opd_info (sec) != NULL)
13774 {
13775 bfd_vma off = (relocation + addend
13776 - sec->output_section->vma
13777 - sec->output_offset);
13778
13779 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13780 }
13781 if (code_sec == input_section)
13782 can_plt_call = TRUE;
13783 }
13784
13785 if (!can_plt_call)
13786 {
13787 if (stub_entry->stub_type == ppc_stub_plt_call
13788 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13789 info->callbacks->einfo
13790 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13791 "recompile with -fPIC\n"),
13792 input_bfd, input_section, rel->r_offset, sym_name);
13793 else
13794 info->callbacks->einfo
13795 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13796 "(-mcmodel=small toc adjust stub)\n"),
13797 input_bfd, input_section, rel->r_offset, sym_name);
13798
13799 bfd_set_error (bfd_error_bad_value);
13800 ret = FALSE;
13801 }
13802
13803 if (can_plt_call
13804 && (stub_entry->stub_type == ppc_stub_plt_call
13805 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13806 unresolved_reloc = FALSE;
13807 }
13808
13809 if ((stub_entry == NULL
13810 || stub_entry->stub_type == ppc_stub_long_branch
13811 || stub_entry->stub_type == ppc_stub_plt_branch)
13812 && get_opd_info (sec) != NULL)
13813 {
13814 /* The branch destination is the value of the opd entry. */
13815 bfd_vma off = (relocation + addend
13816 - sec->output_section->vma
13817 - sec->output_offset);
13818 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13819 if (dest != (bfd_vma) -1)
13820 {
13821 relocation = dest;
13822 addend = 0;
13823 reloc_dest = DEST_OPD;
13824 }
13825 }
13826
13827 /* If the branch is out of reach we ought to have a long
13828 branch stub. */
13829 from = (rel->r_offset
13830 + input_section->output_offset
13831 + input_section->output_section->vma);
13832
13833 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13834 ? fdh->elf.other
13835 : sym->st_other);
13836
13837 if (stub_entry != NULL
13838 && (stub_entry->stub_type == ppc_stub_long_branch
13839 || stub_entry->stub_type == ppc_stub_plt_branch)
13840 && (r_type == R_PPC64_ADDR14_BRTAKEN
13841 || r_type == R_PPC64_ADDR14_BRNTAKEN
13842 || (relocation + addend - from + max_br_offset
13843 < 2 * max_br_offset)))
13844 /* Don't use the stub if this branch is in range. */
13845 stub_entry = NULL;
13846
13847 if (stub_entry != NULL)
13848 {
13849 /* Munge up the value and addend so that we call the stub
13850 rather than the procedure directly. */
13851 relocation = (stub_entry->stub_offset
13852 + stub_entry->stub_sec->output_offset
13853 + stub_entry->stub_sec->output_section->vma);
13854 addend = 0;
13855 reloc_dest = DEST_STUB;
13856
13857 if ((stub_entry->stub_type == ppc_stub_plt_call
13858 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13859 && (ALWAYS_EMIT_R2SAVE
13860 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13861 && rel + 1 < relend
13862 && rel[1].r_offset == rel->r_offset + 4
13863 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13864 relocation += 4;
13865 }
13866
13867 if (insn != 0)
13868 {
13869 if (is_isa_v2)
13870 {
13871 /* Set 'a' bit. This is 0b00010 in BO field for branch
13872 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13873 for branch on CTR insns (BO == 1a00t or 1a01t). */
13874 if ((insn & (0x14 << 21)) == (0x04 << 21))
13875 insn |= 0x02 << 21;
13876 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13877 insn |= 0x08 << 21;
13878 else
13879 break;
13880 }
13881 else
13882 {
13883 /* Invert 'y' bit if not the default. */
13884 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13885 insn ^= 0x01 << 21;
13886 }
13887
13888 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13889 }
13890
13891 /* NOP out calls to undefined weak functions.
13892 We can thus call a weak function without first
13893 checking whether the function is defined. */
13894 else if (h != NULL
13895 && h->elf.root.type == bfd_link_hash_undefweak
13896 && h->elf.dynindx == -1
13897 && r_type == R_PPC64_REL24
13898 && relocation == 0
13899 && addend == 0)
13900 {
13901 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13902 continue;
13903 }
13904 break;
13905 }
13906
13907 /* Set `addend'. */
13908 tls_type = 0;
13909 switch (r_type)
13910 {
13911 default:
13912 info->callbacks->einfo
13913 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13914 input_bfd, (int) r_type, sym_name);
13915
13916 bfd_set_error (bfd_error_bad_value);
13917 ret = FALSE;
13918 continue;
13919
13920 case R_PPC64_NONE:
13921 case R_PPC64_TLS:
13922 case R_PPC64_TLSGD:
13923 case R_PPC64_TLSLD:
13924 case R_PPC64_TOCSAVE:
13925 case R_PPC64_GNU_VTINHERIT:
13926 case R_PPC64_GNU_VTENTRY:
13927 continue;
13928
13929 /* GOT16 relocations. Like an ADDR16 using the symbol's
13930 address in the GOT as relocation value instead of the
13931 symbol's value itself. Also, create a GOT entry for the
13932 symbol and put the symbol value there. */
13933 case R_PPC64_GOT_TLSGD16:
13934 case R_PPC64_GOT_TLSGD16_LO:
13935 case R_PPC64_GOT_TLSGD16_HI:
13936 case R_PPC64_GOT_TLSGD16_HA:
13937 tls_type = TLS_TLS | TLS_GD;
13938 goto dogot;
13939
13940 case R_PPC64_GOT_TLSLD16:
13941 case R_PPC64_GOT_TLSLD16_LO:
13942 case R_PPC64_GOT_TLSLD16_HI:
13943 case R_PPC64_GOT_TLSLD16_HA:
13944 tls_type = TLS_TLS | TLS_LD;
13945 goto dogot;
13946
13947 case R_PPC64_GOT_TPREL16_DS:
13948 case R_PPC64_GOT_TPREL16_LO_DS:
13949 case R_PPC64_GOT_TPREL16_HI:
13950 case R_PPC64_GOT_TPREL16_HA:
13951 tls_type = TLS_TLS | TLS_TPREL;
13952 goto dogot;
13953
13954 case R_PPC64_GOT_DTPREL16_DS:
13955 case R_PPC64_GOT_DTPREL16_LO_DS:
13956 case R_PPC64_GOT_DTPREL16_HI:
13957 case R_PPC64_GOT_DTPREL16_HA:
13958 tls_type = TLS_TLS | TLS_DTPREL;
13959 goto dogot;
13960
13961 case R_PPC64_GOT16:
13962 case R_PPC64_GOT16_LO:
13963 case R_PPC64_GOT16_HI:
13964 case R_PPC64_GOT16_HA:
13965 case R_PPC64_GOT16_DS:
13966 case R_PPC64_GOT16_LO_DS:
13967 dogot:
13968 {
13969 /* Relocation is to the entry for this symbol in the global
13970 offset table. */
13971 asection *got;
13972 bfd_vma *offp;
13973 bfd_vma off;
13974 unsigned long indx = 0;
13975 struct got_entry *ent;
13976
13977 if (tls_type == (TLS_TLS | TLS_LD)
13978 && (h == NULL
13979 || !h->elf.def_dynamic))
13980 ent = ppc64_tlsld_got (input_bfd);
13981 else
13982 {
13983
13984 if (h != NULL)
13985 {
13986 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13987 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13988 &h->elf)
13989 || (info->shared
13990 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13991 /* This is actually a static link, or it is a
13992 -Bsymbolic link and the symbol is defined
13993 locally, or the symbol was forced to be local
13994 because of a version file. */
13995 ;
13996 else
13997 {
13998 BFD_ASSERT (h->elf.dynindx != -1);
13999 indx = h->elf.dynindx;
14000 unresolved_reloc = FALSE;
14001 }
14002 ent = h->elf.got.glist;
14003 }
14004 else
14005 {
14006 if (local_got_ents == NULL)
14007 abort ();
14008 ent = local_got_ents[r_symndx];
14009 }
14010
14011 for (; ent != NULL; ent = ent->next)
14012 if (ent->addend == orig_rel.r_addend
14013 && ent->owner == input_bfd
14014 && ent->tls_type == tls_type)
14015 break;
14016 }
14017
14018 if (ent == NULL)
14019 abort ();
14020 if (ent->is_indirect)
14021 ent = ent->got.ent;
14022 offp = &ent->got.offset;
14023 got = ppc64_elf_tdata (ent->owner)->got;
14024 if (got == NULL)
14025 abort ();
14026
14027 /* The offset must always be a multiple of 8. We use the
14028 least significant bit to record whether we have already
14029 processed this entry. */
14030 off = *offp;
14031 if ((off & 1) != 0)
14032 off &= ~1;
14033 else
14034 {
14035 /* Generate relocs for the dynamic linker, except in
14036 the case of TLSLD where we'll use one entry per
14037 module. */
14038 asection *relgot;
14039 bfd_boolean ifunc;
14040
14041 *offp = off | 1;
14042 relgot = NULL;
14043 ifunc = (h != NULL
14044 ? h->elf.type == STT_GNU_IFUNC
14045 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14046 if (ifunc)
14047 relgot = htab->elf.irelplt;
14048 else if ((info->shared || indx != 0)
14049 && (h == NULL
14050 || (tls_type == (TLS_TLS | TLS_LD)
14051 && !h->elf.def_dynamic)
14052 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14053 || h->elf.root.type != bfd_link_hash_undefweak))
14054 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14055 if (relgot != NULL)
14056 {
14057 outrel.r_offset = (got->output_section->vma
14058 + got->output_offset
14059 + off);
14060 outrel.r_addend = addend;
14061 if (tls_type & (TLS_LD | TLS_GD))
14062 {
14063 outrel.r_addend = 0;
14064 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14065 if (tls_type == (TLS_TLS | TLS_GD))
14066 {
14067 loc = relgot->contents;
14068 loc += (relgot->reloc_count++
14069 * sizeof (Elf64_External_Rela));
14070 bfd_elf64_swap_reloca_out (output_bfd,
14071 &outrel, loc);
14072 outrel.r_offset += 8;
14073 outrel.r_addend = addend;
14074 outrel.r_info
14075 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14076 }
14077 }
14078 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14079 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14080 else if (tls_type == (TLS_TLS | TLS_TPREL))
14081 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14082 else if (indx != 0)
14083 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14084 else
14085 {
14086 if (ifunc)
14087 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14088 else
14089 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14090
14091 /* Write the .got section contents for the sake
14092 of prelink. */
14093 loc = got->contents + off;
14094 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14095 loc);
14096 }
14097
14098 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14099 {
14100 outrel.r_addend += relocation;
14101 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14102 outrel.r_addend -= htab->elf.tls_sec->vma;
14103 }
14104 loc = relgot->contents;
14105 loc += (relgot->reloc_count++
14106 * sizeof (Elf64_External_Rela));
14107 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14108 }
14109
14110 /* Init the .got section contents here if we're not
14111 emitting a reloc. */
14112 else
14113 {
14114 relocation += addend;
14115 if (tls_type == (TLS_TLS | TLS_LD))
14116 relocation = 1;
14117 else if (tls_type != 0)
14118 {
14119 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14120 if (tls_type == (TLS_TLS | TLS_TPREL))
14121 relocation += DTP_OFFSET - TP_OFFSET;
14122
14123 if (tls_type == (TLS_TLS | TLS_GD))
14124 {
14125 bfd_put_64 (output_bfd, relocation,
14126 got->contents + off + 8);
14127 relocation = 1;
14128 }
14129 }
14130
14131 bfd_put_64 (output_bfd, relocation,
14132 got->contents + off);
14133 }
14134 }
14135
14136 if (off >= (bfd_vma) -2)
14137 abort ();
14138
14139 relocation = got->output_section->vma + got->output_offset + off;
14140 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14141 }
14142 break;
14143
14144 case R_PPC64_PLT16_HA:
14145 case R_PPC64_PLT16_HI:
14146 case R_PPC64_PLT16_LO:
14147 case R_PPC64_PLT32:
14148 case R_PPC64_PLT64:
14149 /* Relocation is to the entry for this symbol in the
14150 procedure linkage table. */
14151
14152 /* Resolve a PLT reloc against a local symbol directly,
14153 without using the procedure linkage table. */
14154 if (h == NULL)
14155 break;
14156
14157 /* It's possible that we didn't make a PLT entry for this
14158 symbol. This happens when statically linking PIC code,
14159 or when using -Bsymbolic. Go find a match if there is a
14160 PLT entry. */
14161 if (htab->elf.splt != NULL)
14162 {
14163 struct plt_entry *ent;
14164 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14165 if (ent->plt.offset != (bfd_vma) -1
14166 && ent->addend == orig_rel.r_addend)
14167 {
14168 relocation = (htab->elf.splt->output_section->vma
14169 + htab->elf.splt->output_offset
14170 + ent->plt.offset);
14171 unresolved_reloc = FALSE;
14172 break;
14173 }
14174 }
14175 break;
14176
14177 case R_PPC64_TOC:
14178 /* Relocation value is TOC base. */
14179 relocation = TOCstart;
14180 if (r_symndx == STN_UNDEF)
14181 relocation += htab->stub_group[input_section->id].toc_off;
14182 else if (unresolved_reloc)
14183 ;
14184 else if (sec != NULL && sec->id <= htab->top_id)
14185 relocation += htab->stub_group[sec->id].toc_off;
14186 else
14187 unresolved_reloc = TRUE;
14188 goto dodyn;
14189
14190 /* TOC16 relocs. We want the offset relative to the TOC base,
14191 which is the address of the start of the TOC plus 0x8000.
14192 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14193 in this order. */
14194 case R_PPC64_TOC16:
14195 case R_PPC64_TOC16_LO:
14196 case R_PPC64_TOC16_HI:
14197 case R_PPC64_TOC16_DS:
14198 case R_PPC64_TOC16_LO_DS:
14199 case R_PPC64_TOC16_HA:
14200 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14201 break;
14202
14203 /* Relocate against the beginning of the section. */
14204 case R_PPC64_SECTOFF:
14205 case R_PPC64_SECTOFF_LO:
14206 case R_PPC64_SECTOFF_HI:
14207 case R_PPC64_SECTOFF_DS:
14208 case R_PPC64_SECTOFF_LO_DS:
14209 case R_PPC64_SECTOFF_HA:
14210 if (sec != NULL)
14211 addend -= sec->output_section->vma;
14212 break;
14213
14214 case R_PPC64_REL16:
14215 case R_PPC64_REL16_LO:
14216 case R_PPC64_REL16_HI:
14217 case R_PPC64_REL16_HA:
14218 break;
14219
14220 case R_PPC64_REL14:
14221 case R_PPC64_REL14_BRNTAKEN:
14222 case R_PPC64_REL14_BRTAKEN:
14223 case R_PPC64_REL24:
14224 break;
14225
14226 case R_PPC64_TPREL16:
14227 case R_PPC64_TPREL16_LO:
14228 case R_PPC64_TPREL16_HI:
14229 case R_PPC64_TPREL16_HA:
14230 case R_PPC64_TPREL16_DS:
14231 case R_PPC64_TPREL16_LO_DS:
14232 case R_PPC64_TPREL16_HIGH:
14233 case R_PPC64_TPREL16_HIGHA:
14234 case R_PPC64_TPREL16_HIGHER:
14235 case R_PPC64_TPREL16_HIGHERA:
14236 case R_PPC64_TPREL16_HIGHEST:
14237 case R_PPC64_TPREL16_HIGHESTA:
14238 if (h != NULL
14239 && h->elf.root.type == bfd_link_hash_undefweak
14240 && h->elf.dynindx == -1)
14241 {
14242 /* Make this relocation against an undefined weak symbol
14243 resolve to zero. This is really just a tweak, since
14244 code using weak externs ought to check that they are
14245 defined before using them. */
14246 bfd_byte *p = contents + rel->r_offset - d_offset;
14247
14248 insn = bfd_get_32 (output_bfd, p);
14249 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14250 if (insn != 0)
14251 bfd_put_32 (output_bfd, insn, p);
14252 break;
14253 }
14254 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14255 if (info->shared)
14256 /* The TPREL16 relocs shouldn't really be used in shared
14257 libs as they will result in DT_TEXTREL being set, but
14258 support them anyway. */
14259 goto dodyn;
14260 break;
14261
14262 case R_PPC64_DTPREL16:
14263 case R_PPC64_DTPREL16_LO:
14264 case R_PPC64_DTPREL16_HI:
14265 case R_PPC64_DTPREL16_HA:
14266 case R_PPC64_DTPREL16_DS:
14267 case R_PPC64_DTPREL16_LO_DS:
14268 case R_PPC64_DTPREL16_HIGH:
14269 case R_PPC64_DTPREL16_HIGHA:
14270 case R_PPC64_DTPREL16_HIGHER:
14271 case R_PPC64_DTPREL16_HIGHERA:
14272 case R_PPC64_DTPREL16_HIGHEST:
14273 case R_PPC64_DTPREL16_HIGHESTA:
14274 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14275 break;
14276
14277 case R_PPC64_ADDR64_LOCAL:
14278 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14279 ? h->elf.other
14280 : sym->st_other);
14281 break;
14282
14283 case R_PPC64_DTPMOD64:
14284 relocation = 1;
14285 addend = 0;
14286 goto dodyn;
14287
14288 case R_PPC64_TPREL64:
14289 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14290 goto dodyn;
14291
14292 case R_PPC64_DTPREL64:
14293 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14294 /* Fall thru */
14295
14296 /* Relocations that may need to be propagated if this is a
14297 dynamic object. */
14298 case R_PPC64_REL30:
14299 case R_PPC64_REL32:
14300 case R_PPC64_REL64:
14301 case R_PPC64_ADDR14:
14302 case R_PPC64_ADDR14_BRNTAKEN:
14303 case R_PPC64_ADDR14_BRTAKEN:
14304 case R_PPC64_ADDR16:
14305 case R_PPC64_ADDR16_DS:
14306 case R_PPC64_ADDR16_HA:
14307 case R_PPC64_ADDR16_HI:
14308 case R_PPC64_ADDR16_HIGH:
14309 case R_PPC64_ADDR16_HIGHA:
14310 case R_PPC64_ADDR16_HIGHER:
14311 case R_PPC64_ADDR16_HIGHERA:
14312 case R_PPC64_ADDR16_HIGHEST:
14313 case R_PPC64_ADDR16_HIGHESTA:
14314 case R_PPC64_ADDR16_LO:
14315 case R_PPC64_ADDR16_LO_DS:
14316 case R_PPC64_ADDR24:
14317 case R_PPC64_ADDR32:
14318 case R_PPC64_ADDR64:
14319 case R_PPC64_UADDR16:
14320 case R_PPC64_UADDR32:
14321 case R_PPC64_UADDR64:
14322 dodyn:
14323 if ((input_section->flags & SEC_ALLOC) == 0)
14324 break;
14325
14326 if (NO_OPD_RELOCS && is_opd)
14327 break;
14328
14329 if ((info->shared
14330 && (h == NULL
14331 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14332 || h->elf.root.type != bfd_link_hash_undefweak)
14333 && (must_be_dyn_reloc (info, r_type)
14334 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14335 || (ELIMINATE_COPY_RELOCS
14336 && !info->shared
14337 && h != NULL
14338 && h->elf.dynindx != -1
14339 && !h->elf.non_got_ref
14340 && !h->elf.def_regular)
14341 || (!info->shared
14342 && (h != NULL
14343 ? h->elf.type == STT_GNU_IFUNC
14344 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14345 {
14346 bfd_boolean skip, relocate;
14347 asection *sreloc;
14348 bfd_vma out_off;
14349
14350 /* When generating a dynamic object, these relocations
14351 are copied into the output file to be resolved at run
14352 time. */
14353
14354 skip = FALSE;
14355 relocate = FALSE;
14356
14357 out_off = _bfd_elf_section_offset (output_bfd, info,
14358 input_section, rel->r_offset);
14359 if (out_off == (bfd_vma) -1)
14360 skip = TRUE;
14361 else if (out_off == (bfd_vma) -2)
14362 skip = TRUE, relocate = TRUE;
14363 out_off += (input_section->output_section->vma
14364 + input_section->output_offset);
14365 outrel.r_offset = out_off;
14366 outrel.r_addend = rel->r_addend;
14367
14368 /* Optimize unaligned reloc use. */
14369 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14370 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14371 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14372 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14373 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14374 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14375 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14376 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14377 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14378
14379 if (skip)
14380 memset (&outrel, 0, sizeof outrel);
14381 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14382 && !is_opd
14383 && r_type != R_PPC64_TOC)
14384 {
14385 BFD_ASSERT (h->elf.dynindx != -1);
14386 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14387 }
14388 else
14389 {
14390 /* This symbol is local, or marked to become local,
14391 or this is an opd section reloc which must point
14392 at a local function. */
14393 outrel.r_addend += relocation;
14394 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14395 {
14396 if (is_opd && h != NULL)
14397 {
14398 /* Lie about opd entries. This case occurs
14399 when building shared libraries and we
14400 reference a function in another shared
14401 lib. The same thing happens for a weak
14402 definition in an application that's
14403 overridden by a strong definition in a
14404 shared lib. (I believe this is a generic
14405 bug in binutils handling of weak syms.)
14406 In these cases we won't use the opd
14407 entry in this lib. */
14408 unresolved_reloc = FALSE;
14409 }
14410 if (!is_opd
14411 && r_type == R_PPC64_ADDR64
14412 && (h != NULL
14413 ? h->elf.type == STT_GNU_IFUNC
14414 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14415 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14416 else
14417 {
14418 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14419
14420 /* We need to relocate .opd contents for ld.so.
14421 Prelink also wants simple and consistent rules
14422 for relocs. This make all RELATIVE relocs have
14423 *r_offset equal to r_addend. */
14424 relocate = TRUE;
14425 }
14426 }
14427 else
14428 {
14429 long indx = 0;
14430
14431 if (h != NULL
14432 ? h->elf.type == STT_GNU_IFUNC
14433 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14434 {
14435 info->callbacks->einfo
14436 (_("%P: %H: %s for indirect "
14437 "function `%T' unsupported\n"),
14438 input_bfd, input_section, rel->r_offset,
14439 ppc64_elf_howto_table[r_type]->name,
14440 sym_name);
14441 ret = FALSE;
14442 }
14443 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14444 ;
14445 else if (sec == NULL || sec->owner == NULL)
14446 {
14447 bfd_set_error (bfd_error_bad_value);
14448 return FALSE;
14449 }
14450 else
14451 {
14452 asection *osec;
14453
14454 osec = sec->output_section;
14455 indx = elf_section_data (osec)->dynindx;
14456
14457 if (indx == 0)
14458 {
14459 if ((osec->flags & SEC_READONLY) == 0
14460 && htab->elf.data_index_section != NULL)
14461 osec = htab->elf.data_index_section;
14462 else
14463 osec = htab->elf.text_index_section;
14464 indx = elf_section_data (osec)->dynindx;
14465 }
14466 BFD_ASSERT (indx != 0);
14467
14468 /* We are turning this relocation into one
14469 against a section symbol, so subtract out
14470 the output section's address but not the
14471 offset of the input section in the output
14472 section. */
14473 outrel.r_addend -= osec->vma;
14474 }
14475
14476 outrel.r_info = ELF64_R_INFO (indx, r_type);
14477 }
14478 }
14479
14480 sreloc = elf_section_data (input_section)->sreloc;
14481 if (h != NULL
14482 ? h->elf.type == STT_GNU_IFUNC
14483 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14484 sreloc = htab->elf.irelplt;
14485 if (sreloc == NULL)
14486 abort ();
14487
14488 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14489 >= sreloc->size)
14490 abort ();
14491 loc = sreloc->contents;
14492 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14493 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14494
14495 /* If this reloc is against an external symbol, it will
14496 be computed at runtime, so there's no need to do
14497 anything now. However, for the sake of prelink ensure
14498 that the section contents are a known value. */
14499 if (! relocate)
14500 {
14501 unresolved_reloc = FALSE;
14502 /* The value chosen here is quite arbitrary as ld.so
14503 ignores section contents except for the special
14504 case of .opd where the contents might be accessed
14505 before relocation. Choose zero, as that won't
14506 cause reloc overflow. */
14507 relocation = 0;
14508 addend = 0;
14509 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14510 to improve backward compatibility with older
14511 versions of ld. */
14512 if (r_type == R_PPC64_ADDR64)
14513 addend = outrel.r_addend;
14514 /* Adjust pc_relative relocs to have zero in *r_offset. */
14515 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14516 addend = (input_section->output_section->vma
14517 + input_section->output_offset
14518 + rel->r_offset);
14519 }
14520 }
14521 break;
14522
14523 case R_PPC64_COPY:
14524 case R_PPC64_GLOB_DAT:
14525 case R_PPC64_JMP_SLOT:
14526 case R_PPC64_JMP_IREL:
14527 case R_PPC64_RELATIVE:
14528 /* We shouldn't ever see these dynamic relocs in relocatable
14529 files. */
14530 /* Fall through. */
14531
14532 case R_PPC64_PLTGOT16:
14533 case R_PPC64_PLTGOT16_DS:
14534 case R_PPC64_PLTGOT16_HA:
14535 case R_PPC64_PLTGOT16_HI:
14536 case R_PPC64_PLTGOT16_LO:
14537 case R_PPC64_PLTGOT16_LO_DS:
14538 case R_PPC64_PLTREL32:
14539 case R_PPC64_PLTREL64:
14540 /* These ones haven't been implemented yet. */
14541
14542 info->callbacks->einfo
14543 (_("%P: %B: %s is not supported for `%T'\n"),
14544 input_bfd,
14545 ppc64_elf_howto_table[r_type]->name, sym_name);
14546
14547 bfd_set_error (bfd_error_invalid_operation);
14548 ret = FALSE;
14549 continue;
14550 }
14551
14552 /* Multi-instruction sequences that access the TOC can be
14553 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14554 to nop; addi rb,r2,x; */
14555 switch (r_type)
14556 {
14557 default:
14558 break;
14559
14560 case R_PPC64_GOT_TLSLD16_HI:
14561 case R_PPC64_GOT_TLSGD16_HI:
14562 case R_PPC64_GOT_TPREL16_HI:
14563 case R_PPC64_GOT_DTPREL16_HI:
14564 case R_PPC64_GOT16_HI:
14565 case R_PPC64_TOC16_HI:
14566 /* These relocs would only be useful if building up an
14567 offset to later add to r2, perhaps in an indexed
14568 addressing mode instruction. Don't try to optimize.
14569 Unfortunately, the possibility of someone building up an
14570 offset like this or even with the HA relocs, means that
14571 we need to check the high insn when optimizing the low
14572 insn. */
14573 break;
14574
14575 case R_PPC64_GOT_TLSLD16_HA:
14576 case R_PPC64_GOT_TLSGD16_HA:
14577 case R_PPC64_GOT_TPREL16_HA:
14578 case R_PPC64_GOT_DTPREL16_HA:
14579 case R_PPC64_GOT16_HA:
14580 case R_PPC64_TOC16_HA:
14581 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14582 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14583 {
14584 bfd_byte *p = contents + (rel->r_offset & ~3);
14585 bfd_put_32 (input_bfd, NOP, p);
14586 }
14587 break;
14588
14589 case R_PPC64_GOT_TLSLD16_LO:
14590 case R_PPC64_GOT_TLSGD16_LO:
14591 case R_PPC64_GOT_TPREL16_LO_DS:
14592 case R_PPC64_GOT_DTPREL16_LO_DS:
14593 case R_PPC64_GOT16_LO:
14594 case R_PPC64_GOT16_LO_DS:
14595 case R_PPC64_TOC16_LO:
14596 case R_PPC64_TOC16_LO_DS:
14597 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14598 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14599 {
14600 bfd_byte *p = contents + (rel->r_offset & ~3);
14601 insn = bfd_get_32 (input_bfd, p);
14602 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14603 {
14604 /* Transform addic to addi when we change reg. */
14605 insn &= ~((0x3f << 26) | (0x1f << 16));
14606 insn |= (14u << 26) | (2 << 16);
14607 }
14608 else
14609 {
14610 insn &= ~(0x1f << 16);
14611 insn |= 2 << 16;
14612 }
14613 bfd_put_32 (input_bfd, insn, p);
14614 }
14615 break;
14616 }
14617
14618 /* Do any further special processing. */
14619 howto = ppc64_elf_howto_table[(int) r_type];
14620 switch (r_type)
14621 {
14622 default:
14623 break;
14624
14625 case R_PPC64_REL16_HA:
14626 case R_PPC64_ADDR16_HA:
14627 case R_PPC64_ADDR16_HIGHA:
14628 case R_PPC64_ADDR16_HIGHERA:
14629 case R_PPC64_ADDR16_HIGHESTA:
14630 case R_PPC64_TOC16_HA:
14631 case R_PPC64_SECTOFF_HA:
14632 case R_PPC64_TPREL16_HA:
14633 case R_PPC64_TPREL16_HIGHA:
14634 case R_PPC64_TPREL16_HIGHERA:
14635 case R_PPC64_TPREL16_HIGHESTA:
14636 case R_PPC64_DTPREL16_HA:
14637 case R_PPC64_DTPREL16_HIGHA:
14638 case R_PPC64_DTPREL16_HIGHERA:
14639 case R_PPC64_DTPREL16_HIGHESTA:
14640 /* It's just possible that this symbol is a weak symbol
14641 that's not actually defined anywhere. In that case,
14642 'sec' would be NULL, and we should leave the symbol
14643 alone (it will be set to zero elsewhere in the link). */
14644 if (sec == NULL)
14645 break;
14646 /* Fall thru */
14647
14648 case R_PPC64_GOT16_HA:
14649 case R_PPC64_PLTGOT16_HA:
14650 case R_PPC64_PLT16_HA:
14651 case R_PPC64_GOT_TLSGD16_HA:
14652 case R_PPC64_GOT_TLSLD16_HA:
14653 case R_PPC64_GOT_TPREL16_HA:
14654 case R_PPC64_GOT_DTPREL16_HA:
14655 /* Add 0x10000 if sign bit in 0:15 is set.
14656 Bits 0:15 are not used. */
14657 addend += 0x8000;
14658 break;
14659
14660 case R_PPC64_ADDR16_DS:
14661 case R_PPC64_ADDR16_LO_DS:
14662 case R_PPC64_GOT16_DS:
14663 case R_PPC64_GOT16_LO_DS:
14664 case R_PPC64_PLT16_LO_DS:
14665 case R_PPC64_SECTOFF_DS:
14666 case R_PPC64_SECTOFF_LO_DS:
14667 case R_PPC64_TOC16_DS:
14668 case R_PPC64_TOC16_LO_DS:
14669 case R_PPC64_PLTGOT16_DS:
14670 case R_PPC64_PLTGOT16_LO_DS:
14671 case R_PPC64_GOT_TPREL16_DS:
14672 case R_PPC64_GOT_TPREL16_LO_DS:
14673 case R_PPC64_GOT_DTPREL16_DS:
14674 case R_PPC64_GOT_DTPREL16_LO_DS:
14675 case R_PPC64_TPREL16_DS:
14676 case R_PPC64_TPREL16_LO_DS:
14677 case R_PPC64_DTPREL16_DS:
14678 case R_PPC64_DTPREL16_LO_DS:
14679 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14680 mask = 3;
14681 /* If this reloc is against an lq insn, then the value must be
14682 a multiple of 16. This is somewhat of a hack, but the
14683 "correct" way to do this by defining _DQ forms of all the
14684 _DS relocs bloats all reloc switches in this file. It
14685 doesn't seem to make much sense to use any of these relocs
14686 in data, so testing the insn should be safe. */
14687 if ((insn & (0x3f << 26)) == (56u << 26))
14688 mask = 15;
14689 if (((relocation + addend) & mask) != 0)
14690 {
14691 info->callbacks->einfo
14692 (_("%P: %H: error: %s not a multiple of %u\n"),
14693 input_bfd, input_section, rel->r_offset,
14694 howto->name,
14695 mask + 1);
14696 bfd_set_error (bfd_error_bad_value);
14697 ret = FALSE;
14698 continue;
14699 }
14700 break;
14701 }
14702
14703 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14704 because such sections are not SEC_ALLOC and thus ld.so will
14705 not process them. */
14706 if (unresolved_reloc
14707 && !((input_section->flags & SEC_DEBUGGING) != 0
14708 && h->elf.def_dynamic)
14709 && _bfd_elf_section_offset (output_bfd, info, input_section,
14710 rel->r_offset) != (bfd_vma) -1)
14711 {
14712 info->callbacks->einfo
14713 (_("%P: %H: unresolvable %s against `%T'\n"),
14714 input_bfd, input_section, rel->r_offset,
14715 howto->name,
14716 h->elf.root.root.string);
14717 ret = FALSE;
14718 }
14719
14720 /* 16-bit fields in insns mostly have signed values, but a
14721 few insns have 16-bit unsigned values. Really, we should
14722 have different reloc types. */
14723 if (howto->complain_on_overflow != complain_overflow_dont
14724 && howto->dst_mask == 0xffff
14725 && (input_section->flags & SEC_CODE) != 0)
14726 {
14727 enum complain_overflow complain = complain_overflow_signed;
14728
14729 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14730 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14731 complain = complain_overflow_bitfield;
14732 else if (howto->rightshift == 0
14733 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14734 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14735 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14736 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14737 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14738 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14739 complain = complain_overflow_unsigned;
14740 if (howto->complain_on_overflow != complain)
14741 {
14742 alt_howto = *howto;
14743 alt_howto.complain_on_overflow = complain;
14744 howto = &alt_howto;
14745 }
14746 }
14747
14748 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14749 rel->r_offset, relocation, addend);
14750
14751 if (r != bfd_reloc_ok)
14752 {
14753 char *more_info = NULL;
14754 const char *reloc_name = howto->name;
14755
14756 if (reloc_dest != DEST_NORMAL)
14757 {
14758 more_info = bfd_malloc (strlen (reloc_name) + 8);
14759 if (more_info != NULL)
14760 {
14761 strcpy (more_info, reloc_name);
14762 strcat (more_info, (reloc_dest == DEST_OPD
14763 ? " (OPD)" : " (stub)"));
14764 reloc_name = more_info;
14765 }
14766 }
14767
14768 if (r == bfd_reloc_overflow)
14769 {
14770 if (warned)
14771 continue;
14772 if (h != NULL
14773 && h->elf.root.type == bfd_link_hash_undefweak
14774 && howto->pc_relative)
14775 {
14776 /* Assume this is a call protected by other code that
14777 detects the symbol is undefined. If this is the case,
14778 we can safely ignore the overflow. If not, the
14779 program is hosed anyway, and a little warning isn't
14780 going to help. */
14781
14782 continue;
14783 }
14784
14785 if (!((*info->callbacks->reloc_overflow)
14786 (info, &h->elf.root, sym_name,
14787 reloc_name, orig_rel.r_addend,
14788 input_bfd, input_section, rel->r_offset)))
14789 return FALSE;
14790 }
14791 else
14792 {
14793 info->callbacks->einfo
14794 (_("%P: %H: %s against `%T': error %d\n"),
14795 input_bfd, input_section, rel->r_offset,
14796 reloc_name, sym_name, (int) r);
14797 ret = FALSE;
14798 }
14799 if (more_info != NULL)
14800 free (more_info);
14801 }
14802 }
14803
14804 /* If we're emitting relocations, then shortly after this function
14805 returns, reloc offsets and addends for this section will be
14806 adjusted. Worse, reloc symbol indices will be for the output
14807 file rather than the input. Save a copy of the relocs for
14808 opd_entry_value. */
14809 if (is_opd && (info->emitrelocations || info->relocatable))
14810 {
14811 bfd_size_type amt;
14812 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14813 rel = bfd_alloc (input_bfd, amt);
14814 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14815 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14816 if (rel == NULL)
14817 return FALSE;
14818 memcpy (rel, relocs, amt);
14819 }
14820 return ret;
14821 }
14822
14823 /* Adjust the value of any local symbols in opd sections. */
14824
14825 static int
14826 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14827 const char *name ATTRIBUTE_UNUSED,
14828 Elf_Internal_Sym *elfsym,
14829 asection *input_sec,
14830 struct elf_link_hash_entry *h)
14831 {
14832 struct _opd_sec_data *opd;
14833 long adjust;
14834 bfd_vma value;
14835
14836 if (h != NULL)
14837 return 1;
14838
14839 opd = get_opd_info (input_sec);
14840 if (opd == NULL || opd->adjust == NULL)
14841 return 1;
14842
14843 value = elfsym->st_value - input_sec->output_offset;
14844 if (!info->relocatable)
14845 value -= input_sec->output_section->vma;
14846
14847 adjust = opd->adjust[value / 8];
14848 if (adjust == -1)
14849 return 2;
14850
14851 elfsym->st_value += adjust;
14852 return 1;
14853 }
14854
14855 /* Finish up dynamic symbol handling. We set the contents of various
14856 dynamic sections here. */
14857
14858 static bfd_boolean
14859 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14860 struct bfd_link_info *info,
14861 struct elf_link_hash_entry *h,
14862 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14863 {
14864 struct ppc_link_hash_table *htab;
14865 struct plt_entry *ent;
14866 Elf_Internal_Rela rela;
14867 bfd_byte *loc;
14868
14869 htab = ppc_hash_table (info);
14870 if (htab == NULL)
14871 return FALSE;
14872
14873 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14874 if (ent->plt.offset != (bfd_vma) -1)
14875 {
14876 /* This symbol has an entry in the procedure linkage
14877 table. Set it up. */
14878 if (!htab->elf.dynamic_sections_created
14879 || h->dynindx == -1)
14880 {
14881 BFD_ASSERT (h->type == STT_GNU_IFUNC
14882 && h->def_regular
14883 && (h->root.type == bfd_link_hash_defined
14884 || h->root.type == bfd_link_hash_defweak));
14885 rela.r_offset = (htab->elf.iplt->output_section->vma
14886 + htab->elf.iplt->output_offset
14887 + ent->plt.offset);
14888 if (htab->opd_abi)
14889 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14890 else
14891 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14892 rela.r_addend = (h->root.u.def.value
14893 + h->root.u.def.section->output_offset
14894 + h->root.u.def.section->output_section->vma
14895 + ent->addend);
14896 loc = (htab->elf.irelplt->contents
14897 + (htab->elf.irelplt->reloc_count++
14898 * sizeof (Elf64_External_Rela)));
14899 }
14900 else
14901 {
14902 rela.r_offset = (htab->elf.splt->output_section->vma
14903 + htab->elf.splt->output_offset
14904 + ent->plt.offset);
14905 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14906 rela.r_addend = ent->addend;
14907 loc = (htab->elf.srelplt->contents
14908 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14909 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14910 }
14911 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14912
14913 if (!htab->opd_abi)
14914 {
14915 if (!h->def_regular)
14916 {
14917 /* Mark the symbol as undefined, rather than as
14918 defined in glink. Leave the value if there were
14919 any relocations where pointer equality matters
14920 (this is a clue for the dynamic linker, to make
14921 function pointer comparisons work between an
14922 application and shared library), otherwise set it
14923 to zero. */
14924 sym->st_shndx = SHN_UNDEF;
14925 if (!h->pointer_equality_needed)
14926 sym->st_value = 0;
14927 else if (!h->ref_regular_nonweak)
14928 {
14929 /* This breaks function pointer comparisons, but
14930 that is better than breaking tests for a NULL
14931 function pointer. */
14932 sym->st_value = 0;
14933 }
14934 }
14935 }
14936 }
14937
14938 if (h->needs_copy)
14939 {
14940 /* This symbol needs a copy reloc. Set it up. */
14941
14942 if (h->dynindx == -1
14943 || (h->root.type != bfd_link_hash_defined
14944 && h->root.type != bfd_link_hash_defweak)
14945 || htab->relbss == NULL)
14946 abort ();
14947
14948 rela.r_offset = (h->root.u.def.value
14949 + h->root.u.def.section->output_section->vma
14950 + h->root.u.def.section->output_offset);
14951 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14952 rela.r_addend = 0;
14953 loc = htab->relbss->contents;
14954 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14955 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14956 }
14957
14958 return TRUE;
14959 }
14960
14961 /* Used to decide how to sort relocs in an optimal manner for the
14962 dynamic linker, before writing them out. */
14963
14964 static enum elf_reloc_type_class
14965 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14966 const asection *rel_sec,
14967 const Elf_Internal_Rela *rela)
14968 {
14969 enum elf_ppc64_reloc_type r_type;
14970 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14971
14972 if (rel_sec == htab->elf.irelplt)
14973 return reloc_class_ifunc;
14974
14975 r_type = ELF64_R_TYPE (rela->r_info);
14976 switch (r_type)
14977 {
14978 case R_PPC64_RELATIVE:
14979 return reloc_class_relative;
14980 case R_PPC64_JMP_SLOT:
14981 return reloc_class_plt;
14982 case R_PPC64_COPY:
14983 return reloc_class_copy;
14984 default:
14985 return reloc_class_normal;
14986 }
14987 }
14988
14989 /* Finish up the dynamic sections. */
14990
14991 static bfd_boolean
14992 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14993 struct bfd_link_info *info)
14994 {
14995 struct ppc_link_hash_table *htab;
14996 bfd *dynobj;
14997 asection *sdyn;
14998
14999 htab = ppc_hash_table (info);
15000 if (htab == NULL)
15001 return FALSE;
15002
15003 dynobj = htab->elf.dynobj;
15004 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15005
15006 if (htab->elf.dynamic_sections_created)
15007 {
15008 Elf64_External_Dyn *dyncon, *dynconend;
15009
15010 if (sdyn == NULL || htab->elf.sgot == NULL)
15011 abort ();
15012
15013 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15014 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15015 for (; dyncon < dynconend; dyncon++)
15016 {
15017 Elf_Internal_Dyn dyn;
15018 asection *s;
15019
15020 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15021
15022 switch (dyn.d_tag)
15023 {
15024 default:
15025 continue;
15026
15027 case DT_PPC64_GLINK:
15028 s = htab->glink;
15029 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15030 /* We stupidly defined DT_PPC64_GLINK to be the start
15031 of glink rather than the first entry point, which is
15032 what ld.so needs, and now have a bigger stub to
15033 support automatic multiple TOCs. */
15034 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15035 break;
15036
15037 case DT_PPC64_OPD:
15038 s = bfd_get_section_by_name (output_bfd, ".opd");
15039 if (s == NULL)
15040 continue;
15041 dyn.d_un.d_ptr = s->vma;
15042 break;
15043
15044 case DT_PPC64_OPT:
15045 if (htab->do_multi_toc && htab->multi_toc_needed)
15046 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15047 break;
15048
15049 case DT_PPC64_OPDSZ:
15050 s = bfd_get_section_by_name (output_bfd, ".opd");
15051 if (s == NULL)
15052 continue;
15053 dyn.d_un.d_val = s->size;
15054 break;
15055
15056 case DT_PLTGOT:
15057 s = htab->elf.splt;
15058 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15059 break;
15060
15061 case DT_JMPREL:
15062 s = htab->elf.srelplt;
15063 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15064 break;
15065
15066 case DT_PLTRELSZ:
15067 dyn.d_un.d_val = htab->elf.srelplt->size;
15068 break;
15069
15070 case DT_RELASZ:
15071 /* Don't count procedure linkage table relocs in the
15072 overall reloc count. */
15073 s = htab->elf.srelplt;
15074 if (s == NULL)
15075 continue;
15076 dyn.d_un.d_val -= s->size;
15077 break;
15078
15079 case DT_RELA:
15080 /* We may not be using the standard ELF linker script.
15081 If .rela.plt is the first .rela section, we adjust
15082 DT_RELA to not include it. */
15083 s = htab->elf.srelplt;
15084 if (s == NULL)
15085 continue;
15086 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15087 continue;
15088 dyn.d_un.d_ptr += s->size;
15089 break;
15090 }
15091
15092 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15093 }
15094 }
15095
15096 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15097 {
15098 /* Fill in the first entry in the global offset table.
15099 We use it to hold the link-time TOCbase. */
15100 bfd_put_64 (output_bfd,
15101 elf_gp (output_bfd) + TOC_BASE_OFF,
15102 htab->elf.sgot->contents);
15103
15104 /* Set .got entry size. */
15105 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15106 }
15107
15108 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15109 {
15110 /* Set .plt entry size. */
15111 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15112 = PLT_ENTRY_SIZE (htab);
15113 }
15114
15115 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15116 brlt ourselves if emitrelocations. */
15117 if (htab->brlt != NULL
15118 && htab->brlt->reloc_count != 0
15119 && !_bfd_elf_link_output_relocs (output_bfd,
15120 htab->brlt,
15121 elf_section_data (htab->brlt)->rela.hdr,
15122 elf_section_data (htab->brlt)->relocs,
15123 NULL))
15124 return FALSE;
15125
15126 if (htab->glink != NULL
15127 && htab->glink->reloc_count != 0
15128 && !_bfd_elf_link_output_relocs (output_bfd,
15129 htab->glink,
15130 elf_section_data (htab->glink)->rela.hdr,
15131 elf_section_data (htab->glink)->relocs,
15132 NULL))
15133 return FALSE;
15134
15135 if (htab->glink_eh_frame != NULL
15136 && htab->glink_eh_frame->size != 0)
15137 {
15138 bfd_vma val;
15139 bfd_byte *p;
15140 asection *stub_sec;
15141
15142 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15143 for (stub_sec = htab->params->stub_bfd->sections;
15144 stub_sec != NULL;
15145 stub_sec = stub_sec->next)
15146 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15147 {
15148 /* FDE length. */
15149 p += 4;
15150 /* CIE pointer. */
15151 p += 4;
15152 /* Offset to stub section. */
15153 val = (stub_sec->output_section->vma
15154 + stub_sec->output_offset);
15155 val -= (htab->glink_eh_frame->output_section->vma
15156 + htab->glink_eh_frame->output_offset
15157 + (p - htab->glink_eh_frame->contents));
15158 if (val + 0x80000000 > 0xffffffff)
15159 {
15160 info->callbacks->einfo
15161 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15162 stub_sec->name);
15163 return FALSE;
15164 }
15165 bfd_put_32 (dynobj, val, p);
15166 p += 4;
15167 /* stub section size. */
15168 p += 4;
15169 /* Augmentation. */
15170 p += 1;
15171 /* Pad. */
15172 p += 7;
15173 }
15174 if (htab->glink != NULL && htab->glink->size != 0)
15175 {
15176 /* FDE length. */
15177 p += 4;
15178 /* CIE pointer. */
15179 p += 4;
15180 /* Offset to .glink. */
15181 val = (htab->glink->output_section->vma
15182 + htab->glink->output_offset
15183 + 8);
15184 val -= (htab->glink_eh_frame->output_section->vma
15185 + htab->glink_eh_frame->output_offset
15186 + (p - htab->glink_eh_frame->contents));
15187 if (val + 0x80000000 > 0xffffffff)
15188 {
15189 info->callbacks->einfo
15190 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15191 htab->glink->name);
15192 return FALSE;
15193 }
15194 bfd_put_32 (dynobj, val, p);
15195 p += 4;
15196 /* .glink size. */
15197 p += 4;
15198 /* Augmentation. */
15199 p += 1;
15200 /* Ops. */
15201 p += 7;
15202 }
15203
15204 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15205 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15206 htab->glink_eh_frame,
15207 htab->glink_eh_frame->contents))
15208 return FALSE;
15209 }
15210
15211 /* We need to handle writing out multiple GOT sections ourselves,
15212 since we didn't add them to DYNOBJ. We know dynobj is the first
15213 bfd. */
15214 while ((dynobj = dynobj->link.next) != NULL)
15215 {
15216 asection *s;
15217
15218 if (!is_ppc64_elf (dynobj))
15219 continue;
15220
15221 s = ppc64_elf_tdata (dynobj)->got;
15222 if (s != NULL
15223 && s->size != 0
15224 && s->output_section != bfd_abs_section_ptr
15225 && !bfd_set_section_contents (output_bfd, s->output_section,
15226 s->contents, s->output_offset,
15227 s->size))
15228 return FALSE;
15229 s = ppc64_elf_tdata (dynobj)->relgot;
15230 if (s != NULL
15231 && s->size != 0
15232 && s->output_section != bfd_abs_section_ptr
15233 && !bfd_set_section_contents (output_bfd, s->output_section,
15234 s->contents, s->output_offset,
15235 s->size))
15236 return FALSE;
15237 }
15238
15239 return TRUE;
15240 }
15241
15242 #include "elf64-target.h"
15243
15244 /* FreeBSD support */
15245
15246 #undef TARGET_LITTLE_SYM
15247 #undef TARGET_LITTLE_NAME
15248
15249 #undef TARGET_BIG_SYM
15250 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15251 #undef TARGET_BIG_NAME
15252 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15253
15254 #undef ELF_OSABI
15255 #define ELF_OSABI ELFOSABI_FREEBSD
15256
15257 #undef elf64_bed
15258 #define elf64_bed elf64_powerpc_fbsd_bed
15259
15260 #include "elf64-target.h"
15261
This page took 0.348694 seconds and 4 git commands to generate.