Correct elf64-ppc.c handling of protected symbols
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
85 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
86 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
87 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
88 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
89 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
90 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
91
92 #define elf_backend_object_p ppc64_elf_object_p
93 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
94 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
95 #define elf_backend_write_core_note ppc64_elf_write_core_note
96 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
97 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
98 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
99 #define elf_backend_check_directives ppc64_elf_process_dot_syms
100 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
101 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
102 #define elf_backend_check_relocs ppc64_elf_check_relocs
103 #define elf_backend_gc_keep ppc64_elf_gc_keep
104 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
105 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
106 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
107 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
108 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
109 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
110 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
111 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
112 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
113 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
114 #define elf_backend_action_discarded ppc64_elf_action_discarded
115 #define elf_backend_relocate_section ppc64_elf_relocate_section
116 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
117 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
118 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
119 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
120 #define elf_backend_special_sections ppc64_elf_special_sections
121 #define elf_backend_post_process_headers _bfd_elf_set_osabi
122 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
123
124 /* The name of the dynamic interpreter. This is put in the .interp
125 section. */
126 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
127
128 /* The size in bytes of an entry in the procedure linkage table. */
129 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
130
131 /* The initial size of the plt reserved for the dynamic linker. */
132 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
133
134 /* Offsets to some stack save slots. */
135 #define STK_LR 16
136 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
137 /* This one is dodgy. ABIv2 does not have a linker word, so use the
138 CR save slot. Used only by optimised __tls_get_addr call stub,
139 relying on __tls_get_addr_opt not saving CR.. */
140 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
141
142 /* TOC base pointers offset from start of TOC. */
143 #define TOC_BASE_OFF 0x8000
144
145 /* Offset of tp and dtp pointers from start of TLS block. */
146 #define TP_OFFSET 0x7000
147 #define DTP_OFFSET 0x8000
148
149 /* .plt call stub instructions. The normal stub is like this, but
150 sometimes the .plt entry crosses a 64k boundary and we need to
151 insert an addi to adjust r11. */
152 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
153 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
154 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
155 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
156 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
157 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
158 #define BCTR 0x4e800420 /* bctr */
159
160 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
161 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
162 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
163
164 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
165 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
166 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
167 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
168 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
169 #define BNECTR 0x4ca20420 /* bnectr+ */
170 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
171
172 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
173 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
174 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
175
176 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
177
178 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
179 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
180
181 /* glink call stub instructions. We enter with the index in R0. */
182 #define GLINK_CALL_STUB_SIZE (16*4)
183 /* 0: */
184 /* .quad plt0-1f */
185 /* __glink: */
186 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
187 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
188 /* 1: */
189 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
190 /* ld %2,(0b-1b)(%11) */
191 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
192 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
193 /* ld %12,0(%11) */
194 /* ld %2,8(%11) */
195 /* mtctr %12 */
196 /* ld %11,16(%11) */
197 /* bctr */
198 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
199 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
200 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
201 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
202 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
203
204 /* Pad with this. */
205 #define NOP 0x60000000
206
207 /* Some other nops. */
208 #define CROR_151515 0x4def7b82
209 #define CROR_313131 0x4ffffb82
210
211 /* .glink entries for the first 32k functions are two instructions. */
212 #define LI_R0_0 0x38000000 /* li %r0,0 */
213 #define B_DOT 0x48000000 /* b . */
214
215 /* After that, we need two instructions to load the index, followed by
216 a branch. */
217 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
218 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
219
220 /* Instructions used by the save and restore reg functions. */
221 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
222 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
223 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
224 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
225 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
226 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
227 #define LI_R12_0 0x39800000 /* li %r12,0 */
228 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
229 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
230 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
231 #define BLR 0x4e800020 /* blr */
232
233 /* Since .opd is an array of descriptors and each entry will end up
234 with identical R_PPC64_RELATIVE relocs, there is really no need to
235 propagate .opd relocs; The dynamic linker should be taught to
236 relocate .opd without reloc entries. */
237 #ifndef NO_OPD_RELOCS
238 #define NO_OPD_RELOCS 0
239 #endif
240 \f
241 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
242
243 /* Relocation HOWTO's. */
244 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
245
246 static reloc_howto_type ppc64_elf_howto_raw[] = {
247 /* This reloc does nothing. */
248 HOWTO (R_PPC64_NONE, /* type */
249 0, /* rightshift */
250 2, /* size (0 = byte, 1 = short, 2 = long) */
251 32, /* bitsize */
252 FALSE, /* pc_relative */
253 0, /* bitpos */
254 complain_overflow_dont, /* complain_on_overflow */
255 bfd_elf_generic_reloc, /* special_function */
256 "R_PPC64_NONE", /* name */
257 FALSE, /* partial_inplace */
258 0, /* src_mask */
259 0, /* dst_mask */
260 FALSE), /* pcrel_offset */
261
262 /* A standard 32 bit relocation. */
263 HOWTO (R_PPC64_ADDR32, /* type */
264 0, /* rightshift */
265 2, /* size (0 = byte, 1 = short, 2 = long) */
266 32, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_bitfield, /* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_PPC64_ADDR32", /* name */
272 FALSE, /* partial_inplace */
273 0, /* src_mask */
274 0xffffffff, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 /* An absolute 26 bit branch; the lower two bits must be zero.
278 FIXME: we don't check that, we just clear them. */
279 HOWTO (R_PPC64_ADDR24, /* type */
280 0, /* rightshift */
281 2, /* size (0 = byte, 1 = short, 2 = long) */
282 26, /* bitsize */
283 FALSE, /* pc_relative */
284 0, /* bitpos */
285 complain_overflow_bitfield, /* complain_on_overflow */
286 bfd_elf_generic_reloc, /* special_function */
287 "R_PPC64_ADDR24", /* name */
288 FALSE, /* partial_inplace */
289 0, /* src_mask */
290 0x03fffffc, /* dst_mask */
291 FALSE), /* pcrel_offset */
292
293 /* A standard 16 bit relocation. */
294 HOWTO (R_PPC64_ADDR16, /* type */
295 0, /* rightshift */
296 1, /* size (0 = byte, 1 = short, 2 = long) */
297 16, /* bitsize */
298 FALSE, /* pc_relative */
299 0, /* bitpos */
300 complain_overflow_bitfield, /* complain_on_overflow */
301 bfd_elf_generic_reloc, /* special_function */
302 "R_PPC64_ADDR16", /* name */
303 FALSE, /* partial_inplace */
304 0, /* src_mask */
305 0xffff, /* dst_mask */
306 FALSE), /* pcrel_offset */
307
308 /* A 16 bit relocation without overflow. */
309 HOWTO (R_PPC64_ADDR16_LO, /* type */
310 0, /* rightshift */
311 1, /* size (0 = byte, 1 = short, 2 = long) */
312 16, /* bitsize */
313 FALSE, /* pc_relative */
314 0, /* bitpos */
315 complain_overflow_dont,/* complain_on_overflow */
316 bfd_elf_generic_reloc, /* special_function */
317 "R_PPC64_ADDR16_LO", /* name */
318 FALSE, /* partial_inplace */
319 0, /* src_mask */
320 0xffff, /* dst_mask */
321 FALSE), /* pcrel_offset */
322
323 /* Bits 16-31 of an address. */
324 HOWTO (R_PPC64_ADDR16_HI, /* type */
325 16, /* rightshift */
326 1, /* size (0 = byte, 1 = short, 2 = long) */
327 16, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_signed, /* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_PPC64_ADDR16_HI", /* name */
333 FALSE, /* partial_inplace */
334 0, /* src_mask */
335 0xffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
339 bits, treated as a signed number, is negative. */
340 HOWTO (R_PPC64_ADDR16_HA, /* type */
341 16, /* rightshift */
342 1, /* size (0 = byte, 1 = short, 2 = long) */
343 16, /* bitsize */
344 FALSE, /* pc_relative */
345 0, /* bitpos */
346 complain_overflow_signed, /* complain_on_overflow */
347 ppc64_elf_ha_reloc, /* special_function */
348 "R_PPC64_ADDR16_HA", /* name */
349 FALSE, /* partial_inplace */
350 0, /* src_mask */
351 0xffff, /* dst_mask */
352 FALSE), /* pcrel_offset */
353
354 /* An absolute 16 bit branch; the lower two bits must be zero.
355 FIXME: we don't check that, we just clear them. */
356 HOWTO (R_PPC64_ADDR14, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 16, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield, /* complain_on_overflow */
363 ppc64_elf_branch_reloc, /* special_function */
364 "R_PPC64_ADDR14", /* name */
365 FALSE, /* partial_inplace */
366 0, /* src_mask */
367 0x0000fffc, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* An absolute 16 bit branch, for which bit 10 should be set to
371 indicate that the branch is expected to be taken. The lower two
372 bits must be zero. */
373 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 16, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield, /* complain_on_overflow */
380 ppc64_elf_brtaken_reloc, /* special_function */
381 "R_PPC64_ADDR14_BRTAKEN",/* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0x0000fffc, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* An absolute 16 bit branch, for which bit 10 should be set to
388 indicate that the branch is not expected to be taken. The lower
389 two bits must be zero. */
390 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
391 0, /* rightshift */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
393 16, /* bitsize */
394 FALSE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_bitfield, /* complain_on_overflow */
397 ppc64_elf_brtaken_reloc, /* special_function */
398 "R_PPC64_ADDR14_BRNTAKEN",/* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0x0000fffc, /* dst_mask */
402 FALSE), /* pcrel_offset */
403
404 /* A relative 26 bit branch; the lower two bits must be zero. */
405 HOWTO (R_PPC64_REL24, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 26, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 ppc64_elf_branch_reloc, /* special_function */
413 "R_PPC64_REL24", /* name */
414 FALSE, /* partial_inplace */
415 0, /* src_mask */
416 0x03fffffc, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 /* A relative 16 bit branch; the lower two bits must be zero. */
420 HOWTO (R_PPC64_REL14, /* type */
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 TRUE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_signed, /* complain_on_overflow */
427 ppc64_elf_branch_reloc, /* special_function */
428 "R_PPC64_REL14", /* name */
429 FALSE, /* partial_inplace */
430 0, /* src_mask */
431 0x0000fffc, /* dst_mask */
432 TRUE), /* pcrel_offset */
433
434 /* A relative 16 bit branch. Bit 10 should be set to indicate that
435 the branch is expected to be taken. The lower two bits must be
436 zero. */
437 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
438 0, /* rightshift */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
440 16, /* bitsize */
441 TRUE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_signed, /* complain_on_overflow */
444 ppc64_elf_brtaken_reloc, /* special_function */
445 "R_PPC64_REL14_BRTAKEN", /* name */
446 FALSE, /* partial_inplace */
447 0, /* src_mask */
448 0x0000fffc, /* dst_mask */
449 TRUE), /* pcrel_offset */
450
451 /* A relative 16 bit branch. Bit 10 should be set to indicate that
452 the branch is not expected to be taken. The lower two bits must
453 be zero. */
454 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
455 0, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 16, /* bitsize */
458 TRUE, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_signed, /* complain_on_overflow */
461 ppc64_elf_brtaken_reloc, /* special_function */
462 "R_PPC64_REL14_BRNTAKEN",/* name */
463 FALSE, /* partial_inplace */
464 0, /* src_mask */
465 0x0000fffc, /* dst_mask */
466 TRUE), /* pcrel_offset */
467
468 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
469 symbol. */
470 HOWTO (R_PPC64_GOT16, /* type */
471 0, /* rightshift */
472 1, /* size (0 = byte, 1 = short, 2 = long) */
473 16, /* bitsize */
474 FALSE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_signed, /* complain_on_overflow */
477 ppc64_elf_unhandled_reloc, /* special_function */
478 "R_PPC64_GOT16", /* name */
479 FALSE, /* partial_inplace */
480 0, /* src_mask */
481 0xffff, /* dst_mask */
482 FALSE), /* pcrel_offset */
483
484 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
485 the symbol. */
486 HOWTO (R_PPC64_GOT16_LO, /* type */
487 0, /* rightshift */
488 1, /* size (0 = byte, 1 = short, 2 = long) */
489 16, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_dont, /* complain_on_overflow */
493 ppc64_elf_unhandled_reloc, /* special_function */
494 "R_PPC64_GOT16_LO", /* name */
495 FALSE, /* partial_inplace */
496 0, /* src_mask */
497 0xffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
501 the symbol. */
502 HOWTO (R_PPC64_GOT16_HI, /* type */
503 16, /* rightshift */
504 1, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_signed,/* complain_on_overflow */
509 ppc64_elf_unhandled_reloc, /* special_function */
510 "R_PPC64_GOT16_HI", /* name */
511 FALSE, /* partial_inplace */
512 0, /* src_mask */
513 0xffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
517 the symbol. */
518 HOWTO (R_PPC64_GOT16_HA, /* type */
519 16, /* rightshift */
520 1, /* size (0 = byte, 1 = short, 2 = long) */
521 16, /* bitsize */
522 FALSE, /* pc_relative */
523 0, /* bitpos */
524 complain_overflow_signed,/* complain_on_overflow */
525 ppc64_elf_unhandled_reloc, /* special_function */
526 "R_PPC64_GOT16_HA", /* name */
527 FALSE, /* partial_inplace */
528 0, /* src_mask */
529 0xffff, /* dst_mask */
530 FALSE), /* pcrel_offset */
531
532 /* This is used only by the dynamic linker. The symbol should exist
533 both in the object being run and in some shared library. The
534 dynamic linker copies the data addressed by the symbol from the
535 shared library into the object, because the object being
536 run has to have the data at some particular address. */
537 HOWTO (R_PPC64_COPY, /* type */
538 0, /* rightshift */
539 0, /* this one is variable size */
540 0, /* bitsize */
541 FALSE, /* pc_relative */
542 0, /* bitpos */
543 complain_overflow_dont, /* complain_on_overflow */
544 ppc64_elf_unhandled_reloc, /* special_function */
545 "R_PPC64_COPY", /* name */
546 FALSE, /* partial_inplace */
547 0, /* src_mask */
548 0, /* dst_mask */
549 FALSE), /* pcrel_offset */
550
551 /* Like R_PPC64_ADDR64, but used when setting global offset table
552 entries. */
553 HOWTO (R_PPC64_GLOB_DAT, /* type */
554 0, /* rightshift */
555 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
556 64, /* bitsize */
557 FALSE, /* pc_relative */
558 0, /* bitpos */
559 complain_overflow_dont, /* complain_on_overflow */
560 ppc64_elf_unhandled_reloc, /* special_function */
561 "R_PPC64_GLOB_DAT", /* name */
562 FALSE, /* partial_inplace */
563 0, /* src_mask */
564 ONES (64), /* dst_mask */
565 FALSE), /* pcrel_offset */
566
567 /* Created by the link editor. Marks a procedure linkage table
568 entry for a symbol. */
569 HOWTO (R_PPC64_JMP_SLOT, /* type */
570 0, /* rightshift */
571 0, /* size (0 = byte, 1 = short, 2 = long) */
572 0, /* bitsize */
573 FALSE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_dont, /* complain_on_overflow */
576 ppc64_elf_unhandled_reloc, /* special_function */
577 "R_PPC64_JMP_SLOT", /* name */
578 FALSE, /* partial_inplace */
579 0, /* src_mask */
580 0, /* dst_mask */
581 FALSE), /* pcrel_offset */
582
583 /* Used only by the dynamic linker. When the object is run, this
584 doubleword64 is set to the load address of the object, plus the
585 addend. */
586 HOWTO (R_PPC64_RELATIVE, /* type */
587 0, /* rightshift */
588 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
589 64, /* bitsize */
590 FALSE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_dont, /* complain_on_overflow */
593 bfd_elf_generic_reloc, /* special_function */
594 "R_PPC64_RELATIVE", /* name */
595 FALSE, /* partial_inplace */
596 0, /* src_mask */
597 ONES (64), /* dst_mask */
598 FALSE), /* pcrel_offset */
599
600 /* Like R_PPC64_ADDR32, but may be unaligned. */
601 HOWTO (R_PPC64_UADDR32, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 32, /* bitsize */
605 FALSE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_bitfield, /* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_PPC64_UADDR32", /* name */
610 FALSE, /* partial_inplace */
611 0, /* src_mask */
612 0xffffffff, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 /* Like R_PPC64_ADDR16, but may be unaligned. */
616 HOWTO (R_PPC64_UADDR16, /* type */
617 0, /* rightshift */
618 1, /* size (0 = byte, 1 = short, 2 = long) */
619 16, /* bitsize */
620 FALSE, /* pc_relative */
621 0, /* bitpos */
622 complain_overflow_bitfield, /* complain_on_overflow */
623 bfd_elf_generic_reloc, /* special_function */
624 "R_PPC64_UADDR16", /* name */
625 FALSE, /* partial_inplace */
626 0, /* src_mask */
627 0xffff, /* dst_mask */
628 FALSE), /* pcrel_offset */
629
630 /* 32-bit PC relative. */
631 HOWTO (R_PPC64_REL32, /* type */
632 0, /* rightshift */
633 2, /* size (0 = byte, 1 = short, 2 = long) */
634 32, /* bitsize */
635 TRUE, /* pc_relative */
636 0, /* bitpos */
637 /* FIXME: Verify. Was complain_overflow_bitfield. */
638 complain_overflow_signed, /* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_PPC64_REL32", /* name */
641 FALSE, /* partial_inplace */
642 0, /* src_mask */
643 0xffffffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 /* 32-bit relocation to the symbol's procedure linkage table. */
647 HOWTO (R_PPC64_PLT32, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 FALSE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 ppc64_elf_unhandled_reloc, /* special_function */
655 "R_PPC64_PLT32", /* name */
656 FALSE, /* partial_inplace */
657 0, /* src_mask */
658 0xffffffff, /* dst_mask */
659 FALSE), /* pcrel_offset */
660
661 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
662 FIXME: R_PPC64_PLTREL32 not supported. */
663 HOWTO (R_PPC64_PLTREL32, /* type */
664 0, /* rightshift */
665 2, /* size (0 = byte, 1 = short, 2 = long) */
666 32, /* bitsize */
667 TRUE, /* pc_relative */
668 0, /* bitpos */
669 complain_overflow_signed, /* complain_on_overflow */
670 bfd_elf_generic_reloc, /* special_function */
671 "R_PPC64_PLTREL32", /* name */
672 FALSE, /* partial_inplace */
673 0, /* src_mask */
674 0xffffffff, /* dst_mask */
675 TRUE), /* pcrel_offset */
676
677 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
678 the symbol. */
679 HOWTO (R_PPC64_PLT16_LO, /* type */
680 0, /* rightshift */
681 1, /* size (0 = byte, 1 = short, 2 = long) */
682 16, /* bitsize */
683 FALSE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_dont, /* complain_on_overflow */
686 ppc64_elf_unhandled_reloc, /* special_function */
687 "R_PPC64_PLT16_LO", /* name */
688 FALSE, /* partial_inplace */
689 0, /* src_mask */
690 0xffff, /* dst_mask */
691 FALSE), /* pcrel_offset */
692
693 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
694 the symbol. */
695 HOWTO (R_PPC64_PLT16_HI, /* type */
696 16, /* rightshift */
697 1, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_signed, /* complain_on_overflow */
702 ppc64_elf_unhandled_reloc, /* special_function */
703 "R_PPC64_PLT16_HI", /* name */
704 FALSE, /* partial_inplace */
705 0, /* src_mask */
706 0xffff, /* dst_mask */
707 FALSE), /* pcrel_offset */
708
709 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
710 the symbol. */
711 HOWTO (R_PPC64_PLT16_HA, /* type */
712 16, /* rightshift */
713 1, /* size (0 = byte, 1 = short, 2 = long) */
714 16, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_signed, /* complain_on_overflow */
718 ppc64_elf_unhandled_reloc, /* special_function */
719 "R_PPC64_PLT16_HA", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* 16-bit section relative relocation. */
726 HOWTO (R_PPC64_SECTOFF, /* type */
727 0, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 16, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_bitfield, /* complain_on_overflow */
733 ppc64_elf_sectoff_reloc, /* special_function */
734 "R_PPC64_SECTOFF", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xffff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* Like R_PPC64_SECTOFF, but no overflow warning. */
741 HOWTO (R_PPC64_SECTOFF_LO, /* type */
742 0, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont, /* complain_on_overflow */
748 ppc64_elf_sectoff_reloc, /* special_function */
749 "R_PPC64_SECTOFF_LO", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xffff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* 16-bit upper half section relative relocation. */
756 HOWTO (R_PPC64_SECTOFF_HI, /* type */
757 16, /* rightshift */
758 1, /* size (0 = byte, 1 = short, 2 = long) */
759 16, /* bitsize */
760 FALSE, /* pc_relative */
761 0, /* bitpos */
762 complain_overflow_signed, /* complain_on_overflow */
763 ppc64_elf_sectoff_reloc, /* special_function */
764 "R_PPC64_SECTOFF_HI", /* name */
765 FALSE, /* partial_inplace */
766 0, /* src_mask */
767 0xffff, /* dst_mask */
768 FALSE), /* pcrel_offset */
769
770 /* 16-bit upper half adjusted section relative relocation. */
771 HOWTO (R_PPC64_SECTOFF_HA, /* type */
772 16, /* rightshift */
773 1, /* size (0 = byte, 1 = short, 2 = long) */
774 16, /* bitsize */
775 FALSE, /* pc_relative */
776 0, /* bitpos */
777 complain_overflow_signed, /* complain_on_overflow */
778 ppc64_elf_sectoff_ha_reloc, /* special_function */
779 "R_PPC64_SECTOFF_HA", /* name */
780 FALSE, /* partial_inplace */
781 0, /* src_mask */
782 0xffff, /* dst_mask */
783 FALSE), /* pcrel_offset */
784
785 /* Like R_PPC64_REL24 without touching the two least significant bits. */
786 HOWTO (R_PPC64_REL30, /* type */
787 2, /* rightshift */
788 2, /* size (0 = byte, 1 = short, 2 = long) */
789 30, /* bitsize */
790 TRUE, /* pc_relative */
791 0, /* bitpos */
792 complain_overflow_dont, /* complain_on_overflow */
793 bfd_elf_generic_reloc, /* special_function */
794 "R_PPC64_REL30", /* name */
795 FALSE, /* partial_inplace */
796 0, /* src_mask */
797 0xfffffffc, /* dst_mask */
798 TRUE), /* pcrel_offset */
799
800 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
801
802 /* A standard 64-bit relocation. */
803 HOWTO (R_PPC64_ADDR64, /* type */
804 0, /* rightshift */
805 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
806 64, /* bitsize */
807 FALSE, /* pc_relative */
808 0, /* bitpos */
809 complain_overflow_dont, /* complain_on_overflow */
810 bfd_elf_generic_reloc, /* special_function */
811 "R_PPC64_ADDR64", /* name */
812 FALSE, /* partial_inplace */
813 0, /* src_mask */
814 ONES (64), /* dst_mask */
815 FALSE), /* pcrel_offset */
816
817 /* The bits 32-47 of an address. */
818 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
819 32, /* rightshift */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
821 16, /* bitsize */
822 FALSE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_dont, /* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 "R_PPC64_ADDR16_HIGHER", /* name */
827 FALSE, /* partial_inplace */
828 0, /* src_mask */
829 0xffff, /* dst_mask */
830 FALSE), /* pcrel_offset */
831
832 /* The bits 32-47 of an address, plus 1 if the contents of the low
833 16 bits, treated as a signed number, is negative. */
834 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
835 32, /* rightshift */
836 1, /* size (0 = byte, 1 = short, 2 = long) */
837 16, /* bitsize */
838 FALSE, /* pc_relative */
839 0, /* bitpos */
840 complain_overflow_dont, /* complain_on_overflow */
841 ppc64_elf_ha_reloc, /* special_function */
842 "R_PPC64_ADDR16_HIGHERA", /* name */
843 FALSE, /* partial_inplace */
844 0, /* src_mask */
845 0xffff, /* dst_mask */
846 FALSE), /* pcrel_offset */
847
848 /* The bits 48-63 of an address. */
849 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
850 48, /* rightshift */
851 1, /* size (0 = byte, 1 = short, 2 = long) */
852 16, /* bitsize */
853 FALSE, /* pc_relative */
854 0, /* bitpos */
855 complain_overflow_dont, /* complain_on_overflow */
856 bfd_elf_generic_reloc, /* special_function */
857 "R_PPC64_ADDR16_HIGHEST", /* name */
858 FALSE, /* partial_inplace */
859 0, /* src_mask */
860 0xffff, /* dst_mask */
861 FALSE), /* pcrel_offset */
862
863 /* The bits 48-63 of an address, plus 1 if the contents of the low
864 16 bits, treated as a signed number, is negative. */
865 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
866 48, /* rightshift */
867 1, /* size (0 = byte, 1 = short, 2 = long) */
868 16, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 ppc64_elf_ha_reloc, /* special_function */
873 "R_PPC64_ADDR16_HIGHESTA", /* name */
874 FALSE, /* partial_inplace */
875 0, /* src_mask */
876 0xffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 /* Like ADDR64, but may be unaligned. */
880 HOWTO (R_PPC64_UADDR64, /* type */
881 0, /* rightshift */
882 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
883 64, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_PPC64_UADDR64", /* name */
889 FALSE, /* partial_inplace */
890 0, /* src_mask */
891 ONES (64), /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* 64-bit relative relocation. */
895 HOWTO (R_PPC64_REL64, /* type */
896 0, /* rightshift */
897 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
898 64, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_PPC64_REL64", /* name */
904 FALSE, /* partial_inplace */
905 0, /* src_mask */
906 ONES (64), /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 /* 64-bit relocation to the symbol's procedure linkage table. */
910 HOWTO (R_PPC64_PLT64, /* type */
911 0, /* rightshift */
912 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
913 64, /* bitsize */
914 FALSE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 ppc64_elf_unhandled_reloc, /* special_function */
918 "R_PPC64_PLT64", /* name */
919 FALSE, /* partial_inplace */
920 0, /* src_mask */
921 ONES (64), /* dst_mask */
922 FALSE), /* pcrel_offset */
923
924 /* 64-bit PC relative relocation to the symbol's procedure linkage
925 table. */
926 /* FIXME: R_PPC64_PLTREL64 not supported. */
927 HOWTO (R_PPC64_PLTREL64, /* type */
928 0, /* rightshift */
929 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
930 64, /* bitsize */
931 TRUE, /* pc_relative */
932 0, /* bitpos */
933 complain_overflow_dont, /* complain_on_overflow */
934 ppc64_elf_unhandled_reloc, /* special_function */
935 "R_PPC64_PLTREL64", /* name */
936 FALSE, /* partial_inplace */
937 0, /* src_mask */
938 ONES (64), /* dst_mask */
939 TRUE), /* pcrel_offset */
940
941 /* 16 bit TOC-relative relocation. */
942
943 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
944 HOWTO (R_PPC64_TOC16, /* type */
945 0, /* rightshift */
946 1, /* size (0 = byte, 1 = short, 2 = long) */
947 16, /* bitsize */
948 FALSE, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_signed, /* complain_on_overflow */
951 ppc64_elf_toc_reloc, /* special_function */
952 "R_PPC64_TOC16", /* name */
953 FALSE, /* partial_inplace */
954 0, /* src_mask */
955 0xffff, /* dst_mask */
956 FALSE), /* pcrel_offset */
957
958 /* 16 bit TOC-relative relocation without overflow. */
959
960 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
961 HOWTO (R_PPC64_TOC16_LO, /* type */
962 0, /* rightshift */
963 1, /* size (0 = byte, 1 = short, 2 = long) */
964 16, /* bitsize */
965 FALSE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont, /* complain_on_overflow */
968 ppc64_elf_toc_reloc, /* special_function */
969 "R_PPC64_TOC16_LO", /* name */
970 FALSE, /* partial_inplace */
971 0, /* src_mask */
972 0xffff, /* dst_mask */
973 FALSE), /* pcrel_offset */
974
975 /* 16 bit TOC-relative relocation, high 16 bits. */
976
977 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
978 HOWTO (R_PPC64_TOC16_HI, /* type */
979 16, /* rightshift */
980 1, /* size (0 = byte, 1 = short, 2 = long) */
981 16, /* bitsize */
982 FALSE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_signed, /* complain_on_overflow */
985 ppc64_elf_toc_reloc, /* special_function */
986 "R_PPC64_TOC16_HI", /* name */
987 FALSE, /* partial_inplace */
988 0, /* src_mask */
989 0xffff, /* dst_mask */
990 FALSE), /* pcrel_offset */
991
992 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
993 contents of the low 16 bits, treated as a signed number, is
994 negative. */
995
996 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
997 HOWTO (R_PPC64_TOC16_HA, /* type */
998 16, /* rightshift */
999 1, /* size (0 = byte, 1 = short, 2 = long) */
1000 16, /* bitsize */
1001 FALSE, /* pc_relative */
1002 0, /* bitpos */
1003 complain_overflow_signed, /* complain_on_overflow */
1004 ppc64_elf_toc_ha_reloc, /* special_function */
1005 "R_PPC64_TOC16_HA", /* name */
1006 FALSE, /* partial_inplace */
1007 0, /* src_mask */
1008 0xffff, /* dst_mask */
1009 FALSE), /* pcrel_offset */
1010
1011 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1012
1013 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1014 HOWTO (R_PPC64_TOC, /* type */
1015 0, /* rightshift */
1016 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1017 64, /* bitsize */
1018 FALSE, /* pc_relative */
1019 0, /* bitpos */
1020 complain_overflow_bitfield, /* complain_on_overflow */
1021 ppc64_elf_toc64_reloc, /* special_function */
1022 "R_PPC64_TOC", /* name */
1023 FALSE, /* partial_inplace */
1024 0, /* src_mask */
1025 ONES (64), /* dst_mask */
1026 FALSE), /* pcrel_offset */
1027
1028 /* Like R_PPC64_GOT16, but also informs the link editor that the
1029 value to relocate may (!) refer to a PLT entry which the link
1030 editor (a) may replace with the symbol value. If the link editor
1031 is unable to fully resolve the symbol, it may (b) create a PLT
1032 entry and store the address to the new PLT entry in the GOT.
1033 This permits lazy resolution of function symbols at run time.
1034 The link editor may also skip all of this and just (c) emit a
1035 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1036 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1037 HOWTO (R_PPC64_PLTGOT16, /* type */
1038 0, /* rightshift */
1039 1, /* size (0 = byte, 1 = short, 2 = long) */
1040 16, /* bitsize */
1041 FALSE, /* pc_relative */
1042 0, /* bitpos */
1043 complain_overflow_signed, /* complain_on_overflow */
1044 ppc64_elf_unhandled_reloc, /* special_function */
1045 "R_PPC64_PLTGOT16", /* name */
1046 FALSE, /* partial_inplace */
1047 0, /* src_mask */
1048 0xffff, /* dst_mask */
1049 FALSE), /* pcrel_offset */
1050
1051 /* Like R_PPC64_PLTGOT16, but without overflow. */
1052 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1053 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1054 0, /* rightshift */
1055 1, /* size (0 = byte, 1 = short, 2 = long) */
1056 16, /* bitsize */
1057 FALSE, /* pc_relative */
1058 0, /* bitpos */
1059 complain_overflow_dont, /* complain_on_overflow */
1060 ppc64_elf_unhandled_reloc, /* special_function */
1061 "R_PPC64_PLTGOT16_LO", /* name */
1062 FALSE, /* partial_inplace */
1063 0, /* src_mask */
1064 0xffff, /* dst_mask */
1065 FALSE), /* pcrel_offset */
1066
1067 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1068 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_signed, /* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HI", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1084 1 if the contents of the low 16 bits, treated as a signed number,
1085 is negative. */
1086 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1087 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1088 16, /* rightshift */
1089 1, /* size (0 = byte, 1 = short, 2 = long) */
1090 16, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_signed, /* complain_on_overflow */
1094 ppc64_elf_unhandled_reloc, /* special_function */
1095 "R_PPC64_PLTGOT16_HA", /* name */
1096 FALSE, /* partial_inplace */
1097 0, /* src_mask */
1098 0xffff, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1102 HOWTO (R_PPC64_ADDR16_DS, /* type */
1103 0, /* rightshift */
1104 1, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_bitfield, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 "R_PPC64_ADDR16_DS", /* name */
1111 FALSE, /* partial_inplace */
1112 0, /* src_mask */
1113 0xfffc, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1117 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1118 0, /* rightshift */
1119 1, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont,/* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 "R_PPC64_ADDR16_LO_DS",/* name */
1126 FALSE, /* partial_inplace */
1127 0, /* src_mask */
1128 0xfffc, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1132 HOWTO (R_PPC64_GOT16_DS, /* type */
1133 0, /* rightshift */
1134 1, /* size (0 = byte, 1 = short, 2 = long) */
1135 16, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_signed, /* complain_on_overflow */
1139 ppc64_elf_unhandled_reloc, /* special_function */
1140 "R_PPC64_GOT16_DS", /* name */
1141 FALSE, /* partial_inplace */
1142 0, /* src_mask */
1143 0xfffc, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1147 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1148 0, /* rightshift */
1149 1, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont, /* complain_on_overflow */
1154 ppc64_elf_unhandled_reloc, /* special_function */
1155 "R_PPC64_GOT16_LO_DS", /* name */
1156 FALSE, /* partial_inplace */
1157 0, /* src_mask */
1158 0xfffc, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1162 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1163 0, /* rightshift */
1164 1, /* size (0 = byte, 1 = short, 2 = long) */
1165 16, /* bitsize */
1166 FALSE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont, /* complain_on_overflow */
1169 ppc64_elf_unhandled_reloc, /* special_function */
1170 "R_PPC64_PLT16_LO_DS", /* name */
1171 FALSE, /* partial_inplace */
1172 0, /* src_mask */
1173 0xfffc, /* dst_mask */
1174 FALSE), /* pcrel_offset */
1175
1176 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1177 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1178 0, /* rightshift */
1179 1, /* size (0 = byte, 1 = short, 2 = long) */
1180 16, /* bitsize */
1181 FALSE, /* pc_relative */
1182 0, /* bitpos */
1183 complain_overflow_bitfield, /* complain_on_overflow */
1184 ppc64_elf_sectoff_reloc, /* special_function */
1185 "R_PPC64_SECTOFF_DS", /* name */
1186 FALSE, /* partial_inplace */
1187 0, /* src_mask */
1188 0xfffc, /* dst_mask */
1189 FALSE), /* pcrel_offset */
1190
1191 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1192 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1193 0, /* rightshift */
1194 1, /* size (0 = byte, 1 = short, 2 = long) */
1195 16, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 ppc64_elf_sectoff_reloc, /* special_function */
1200 "R_PPC64_SECTOFF_LO_DS",/* name */
1201 FALSE, /* partial_inplace */
1202 0, /* src_mask */
1203 0xfffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1207 HOWTO (R_PPC64_TOC16_DS, /* type */
1208 0, /* rightshift */
1209 1, /* size (0 = byte, 1 = short, 2 = long) */
1210 16, /* bitsize */
1211 FALSE, /* pc_relative */
1212 0, /* bitpos */
1213 complain_overflow_signed, /* complain_on_overflow */
1214 ppc64_elf_toc_reloc, /* special_function */
1215 "R_PPC64_TOC16_DS", /* name */
1216 FALSE, /* partial_inplace */
1217 0, /* src_mask */
1218 0xfffc, /* dst_mask */
1219 FALSE), /* pcrel_offset */
1220
1221 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1222 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1223 0, /* rightshift */
1224 1, /* size (0 = byte, 1 = short, 2 = long) */
1225 16, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 ppc64_elf_toc_reloc, /* special_function */
1230 "R_PPC64_TOC16_LO_DS", /* name */
1231 FALSE, /* partial_inplace */
1232 0, /* src_mask */
1233 0xfffc, /* dst_mask */
1234 FALSE), /* pcrel_offset */
1235
1236 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1237 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1238 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1239 0, /* rightshift */
1240 1, /* size (0 = byte, 1 = short, 2 = long) */
1241 16, /* bitsize */
1242 FALSE, /* pc_relative */
1243 0, /* bitpos */
1244 complain_overflow_signed, /* complain_on_overflow */
1245 ppc64_elf_unhandled_reloc, /* special_function */
1246 "R_PPC64_PLTGOT16_DS", /* name */
1247 FALSE, /* partial_inplace */
1248 0, /* src_mask */
1249 0xfffc, /* dst_mask */
1250 FALSE), /* pcrel_offset */
1251
1252 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1253 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1254 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1255 0, /* rightshift */
1256 1, /* size (0 = byte, 1 = short, 2 = long) */
1257 16, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 ppc64_elf_unhandled_reloc, /* special_function */
1262 "R_PPC64_PLTGOT16_LO_DS",/* name */
1263 FALSE, /* partial_inplace */
1264 0, /* src_mask */
1265 0xfffc, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 /* Marker relocs for TLS. */
1269 HOWTO (R_PPC64_TLS,
1270 0, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 32, /* bitsize */
1273 FALSE, /* pc_relative */
1274 0, /* bitpos */
1275 complain_overflow_dont, /* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 "R_PPC64_TLS", /* name */
1278 FALSE, /* partial_inplace */
1279 0, /* src_mask */
1280 0, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 HOWTO (R_PPC64_TLSGD,
1284 0, /* rightshift */
1285 2, /* size (0 = byte, 1 = short, 2 = long) */
1286 32, /* bitsize */
1287 FALSE, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_PPC64_TLSGD", /* name */
1292 FALSE, /* partial_inplace */
1293 0, /* src_mask */
1294 0, /* dst_mask */
1295 FALSE), /* pcrel_offset */
1296
1297 HOWTO (R_PPC64_TLSLD,
1298 0, /* rightshift */
1299 2, /* size (0 = byte, 1 = short, 2 = long) */
1300 32, /* bitsize */
1301 FALSE, /* pc_relative */
1302 0, /* bitpos */
1303 complain_overflow_dont, /* complain_on_overflow */
1304 bfd_elf_generic_reloc, /* special_function */
1305 "R_PPC64_TLSLD", /* name */
1306 FALSE, /* partial_inplace */
1307 0, /* src_mask */
1308 0, /* dst_mask */
1309 FALSE), /* pcrel_offset */
1310
1311 HOWTO (R_PPC64_TOCSAVE,
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 32, /* bitsize */
1315 FALSE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_dont, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 "R_PPC64_TOCSAVE", /* name */
1320 FALSE, /* partial_inplace */
1321 0, /* src_mask */
1322 0, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 /* Computes the load module index of the load module that contains the
1326 definition of its TLS sym. */
1327 HOWTO (R_PPC64_DTPMOD64,
1328 0, /* rightshift */
1329 4, /* size (0 = byte, 1 = short, 2 = long) */
1330 64, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_dont, /* complain_on_overflow */
1334 ppc64_elf_unhandled_reloc, /* special_function */
1335 "R_PPC64_DTPMOD64", /* name */
1336 FALSE, /* partial_inplace */
1337 0, /* src_mask */
1338 ONES (64), /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 /* Computes a dtv-relative displacement, the difference between the value
1342 of sym+add and the base address of the thread-local storage block that
1343 contains the definition of sym, minus 0x8000. */
1344 HOWTO (R_PPC64_DTPREL64,
1345 0, /* rightshift */
1346 4, /* size (0 = byte, 1 = short, 2 = long) */
1347 64, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont, /* complain_on_overflow */
1351 ppc64_elf_unhandled_reloc, /* special_function */
1352 "R_PPC64_DTPREL64", /* name */
1353 FALSE, /* partial_inplace */
1354 0, /* src_mask */
1355 ONES (64), /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 /* A 16 bit dtprel reloc. */
1359 HOWTO (R_PPC64_DTPREL16,
1360 0, /* rightshift */
1361 1, /* size (0 = byte, 1 = short, 2 = long) */
1362 16, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_signed, /* complain_on_overflow */
1366 ppc64_elf_unhandled_reloc, /* special_function */
1367 "R_PPC64_DTPREL16", /* name */
1368 FALSE, /* partial_inplace */
1369 0, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 /* Like DTPREL16, but no overflow. */
1374 HOWTO (R_PPC64_DTPREL16_LO,
1375 0, /* rightshift */
1376 1, /* size (0 = byte, 1 = short, 2 = long) */
1377 16, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont, /* complain_on_overflow */
1381 ppc64_elf_unhandled_reloc, /* special_function */
1382 "R_PPC64_DTPREL16_LO", /* name */
1383 FALSE, /* partial_inplace */
1384 0, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1389 HOWTO (R_PPC64_DTPREL16_HI,
1390 16, /* rightshift */
1391 1, /* size (0 = byte, 1 = short, 2 = long) */
1392 16, /* bitsize */
1393 FALSE, /* pc_relative */
1394 0, /* bitpos */
1395 complain_overflow_signed, /* complain_on_overflow */
1396 ppc64_elf_unhandled_reloc, /* special_function */
1397 "R_PPC64_DTPREL16_HI", /* name */
1398 FALSE, /* partial_inplace */
1399 0, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE), /* pcrel_offset */
1402
1403 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1404 HOWTO (R_PPC64_DTPREL16_HA,
1405 16, /* rightshift */
1406 1, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_signed, /* complain_on_overflow */
1411 ppc64_elf_unhandled_reloc, /* special_function */
1412 "R_PPC64_DTPREL16_HA", /* name */
1413 FALSE, /* partial_inplace */
1414 0, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1419 HOWTO (R_PPC64_DTPREL16_HIGHER,
1420 32, /* rightshift */
1421 1, /* size (0 = byte, 1 = short, 2 = long) */
1422 16, /* bitsize */
1423 FALSE, /* pc_relative */
1424 0, /* bitpos */
1425 complain_overflow_dont, /* complain_on_overflow */
1426 ppc64_elf_unhandled_reloc, /* special_function */
1427 "R_PPC64_DTPREL16_HIGHER", /* name */
1428 FALSE, /* partial_inplace */
1429 0, /* src_mask */
1430 0xffff, /* dst_mask */
1431 FALSE), /* pcrel_offset */
1432
1433 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1434 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1435 32, /* rightshift */
1436 1, /* size (0 = byte, 1 = short, 2 = long) */
1437 16, /* bitsize */
1438 FALSE, /* pc_relative */
1439 0, /* bitpos */
1440 complain_overflow_dont, /* complain_on_overflow */
1441 ppc64_elf_unhandled_reloc, /* special_function */
1442 "R_PPC64_DTPREL16_HIGHERA", /* name */
1443 FALSE, /* partial_inplace */
1444 0, /* src_mask */
1445 0xffff, /* dst_mask */
1446 FALSE), /* pcrel_offset */
1447
1448 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1449 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1450 48, /* rightshift */
1451 1, /* size (0 = byte, 1 = short, 2 = long) */
1452 16, /* bitsize */
1453 FALSE, /* pc_relative */
1454 0, /* bitpos */
1455 complain_overflow_dont, /* complain_on_overflow */
1456 ppc64_elf_unhandled_reloc, /* special_function */
1457 "R_PPC64_DTPREL16_HIGHEST", /* name */
1458 FALSE, /* partial_inplace */
1459 0, /* src_mask */
1460 0xffff, /* dst_mask */
1461 FALSE), /* pcrel_offset */
1462
1463 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1464 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1465 48, /* rightshift */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1467 16, /* bitsize */
1468 FALSE, /* pc_relative */
1469 0, /* bitpos */
1470 complain_overflow_dont, /* complain_on_overflow */
1471 ppc64_elf_unhandled_reloc, /* special_function */
1472 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1473 FALSE, /* partial_inplace */
1474 0, /* src_mask */
1475 0xffff, /* dst_mask */
1476 FALSE), /* pcrel_offset */
1477
1478 /* Like DTPREL16, but for insns with a DS field. */
1479 HOWTO (R_PPC64_DTPREL16_DS,
1480 0, /* rightshift */
1481 1, /* size (0 = byte, 1 = short, 2 = long) */
1482 16, /* bitsize */
1483 FALSE, /* pc_relative */
1484 0, /* bitpos */
1485 complain_overflow_signed, /* complain_on_overflow */
1486 ppc64_elf_unhandled_reloc, /* special_function */
1487 "R_PPC64_DTPREL16_DS", /* name */
1488 FALSE, /* partial_inplace */
1489 0, /* src_mask */
1490 0xfffc, /* dst_mask */
1491 FALSE), /* pcrel_offset */
1492
1493 /* Like DTPREL16_DS, but no overflow. */
1494 HOWTO (R_PPC64_DTPREL16_LO_DS,
1495 0, /* rightshift */
1496 1, /* size (0 = byte, 1 = short, 2 = long) */
1497 16, /* bitsize */
1498 FALSE, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_dont, /* complain_on_overflow */
1501 ppc64_elf_unhandled_reloc, /* special_function */
1502 "R_PPC64_DTPREL16_LO_DS", /* name */
1503 FALSE, /* partial_inplace */
1504 0, /* src_mask */
1505 0xfffc, /* dst_mask */
1506 FALSE), /* pcrel_offset */
1507
1508 /* Computes a tp-relative displacement, the difference between the value of
1509 sym+add and the value of the thread pointer (r13). */
1510 HOWTO (R_PPC64_TPREL64,
1511 0, /* rightshift */
1512 4, /* size (0 = byte, 1 = short, 2 = long) */
1513 64, /* bitsize */
1514 FALSE, /* pc_relative */
1515 0, /* bitpos */
1516 complain_overflow_dont, /* complain_on_overflow */
1517 ppc64_elf_unhandled_reloc, /* special_function */
1518 "R_PPC64_TPREL64", /* name */
1519 FALSE, /* partial_inplace */
1520 0, /* src_mask */
1521 ONES (64), /* dst_mask */
1522 FALSE), /* pcrel_offset */
1523
1524 /* A 16 bit tprel reloc. */
1525 HOWTO (R_PPC64_TPREL16,
1526 0, /* rightshift */
1527 1, /* size (0 = byte, 1 = short, 2 = long) */
1528 16, /* bitsize */
1529 FALSE, /* pc_relative */
1530 0, /* bitpos */
1531 complain_overflow_signed, /* complain_on_overflow */
1532 ppc64_elf_unhandled_reloc, /* special_function */
1533 "R_PPC64_TPREL16", /* name */
1534 FALSE, /* partial_inplace */
1535 0, /* src_mask */
1536 0xffff, /* dst_mask */
1537 FALSE), /* pcrel_offset */
1538
1539 /* Like TPREL16, but no overflow. */
1540 HOWTO (R_PPC64_TPREL16_LO,
1541 0, /* rightshift */
1542 1, /* size (0 = byte, 1 = short, 2 = long) */
1543 16, /* bitsize */
1544 FALSE, /* pc_relative */
1545 0, /* bitpos */
1546 complain_overflow_dont, /* complain_on_overflow */
1547 ppc64_elf_unhandled_reloc, /* special_function */
1548 "R_PPC64_TPREL16_LO", /* name */
1549 FALSE, /* partial_inplace */
1550 0, /* src_mask */
1551 0xffff, /* dst_mask */
1552 FALSE), /* pcrel_offset */
1553
1554 /* Like TPREL16_LO, but next higher group of 16 bits. */
1555 HOWTO (R_PPC64_TPREL16_HI,
1556 16, /* rightshift */
1557 1, /* size (0 = byte, 1 = short, 2 = long) */
1558 16, /* bitsize */
1559 FALSE, /* pc_relative */
1560 0, /* bitpos */
1561 complain_overflow_signed, /* complain_on_overflow */
1562 ppc64_elf_unhandled_reloc, /* special_function */
1563 "R_PPC64_TPREL16_HI", /* name */
1564 FALSE, /* partial_inplace */
1565 0, /* src_mask */
1566 0xffff, /* dst_mask */
1567 FALSE), /* pcrel_offset */
1568
1569 /* Like TPREL16_HI, but adjust for low 16 bits. */
1570 HOWTO (R_PPC64_TPREL16_HA,
1571 16, /* rightshift */
1572 1, /* size (0 = byte, 1 = short, 2 = long) */
1573 16, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_signed, /* complain_on_overflow */
1577 ppc64_elf_unhandled_reloc, /* special_function */
1578 "R_PPC64_TPREL16_HA", /* name */
1579 FALSE, /* partial_inplace */
1580 0, /* src_mask */
1581 0xffff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 /* Like TPREL16_HI, but next higher group of 16 bits. */
1585 HOWTO (R_PPC64_TPREL16_HIGHER,
1586 32, /* rightshift */
1587 1, /* size (0 = byte, 1 = short, 2 = long) */
1588 16, /* bitsize */
1589 FALSE, /* pc_relative */
1590 0, /* bitpos */
1591 complain_overflow_dont, /* complain_on_overflow */
1592 ppc64_elf_unhandled_reloc, /* special_function */
1593 "R_PPC64_TPREL16_HIGHER", /* name */
1594 FALSE, /* partial_inplace */
1595 0, /* src_mask */
1596 0xffff, /* dst_mask */
1597 FALSE), /* pcrel_offset */
1598
1599 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1600 HOWTO (R_PPC64_TPREL16_HIGHERA,
1601 32, /* rightshift */
1602 1, /* size (0 = byte, 1 = short, 2 = long) */
1603 16, /* bitsize */
1604 FALSE, /* pc_relative */
1605 0, /* bitpos */
1606 complain_overflow_dont, /* complain_on_overflow */
1607 ppc64_elf_unhandled_reloc, /* special_function */
1608 "R_PPC64_TPREL16_HIGHERA", /* name */
1609 FALSE, /* partial_inplace */
1610 0, /* src_mask */
1611 0xffff, /* dst_mask */
1612 FALSE), /* pcrel_offset */
1613
1614 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1615 HOWTO (R_PPC64_TPREL16_HIGHEST,
1616 48, /* rightshift */
1617 1, /* size (0 = byte, 1 = short, 2 = long) */
1618 16, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_dont, /* complain_on_overflow */
1622 ppc64_elf_unhandled_reloc, /* special_function */
1623 "R_PPC64_TPREL16_HIGHEST", /* name */
1624 FALSE, /* partial_inplace */
1625 0, /* src_mask */
1626 0xffff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1630 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1631 48, /* rightshift */
1632 1, /* size (0 = byte, 1 = short, 2 = long) */
1633 16, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_dont, /* complain_on_overflow */
1637 ppc64_elf_unhandled_reloc, /* special_function */
1638 "R_PPC64_TPREL16_HIGHESTA", /* name */
1639 FALSE, /* partial_inplace */
1640 0, /* src_mask */
1641 0xffff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 /* Like TPREL16, but for insns with a DS field. */
1645 HOWTO (R_PPC64_TPREL16_DS,
1646 0, /* rightshift */
1647 1, /* size (0 = byte, 1 = short, 2 = long) */
1648 16, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_signed, /* complain_on_overflow */
1652 ppc64_elf_unhandled_reloc, /* special_function */
1653 "R_PPC64_TPREL16_DS", /* name */
1654 FALSE, /* partial_inplace */
1655 0, /* src_mask */
1656 0xfffc, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 /* Like TPREL16_DS, but no overflow. */
1660 HOWTO (R_PPC64_TPREL16_LO_DS,
1661 0, /* rightshift */
1662 1, /* size (0 = byte, 1 = short, 2 = long) */
1663 16, /* bitsize */
1664 FALSE, /* pc_relative */
1665 0, /* bitpos */
1666 complain_overflow_dont, /* complain_on_overflow */
1667 ppc64_elf_unhandled_reloc, /* special_function */
1668 "R_PPC64_TPREL16_LO_DS", /* name */
1669 FALSE, /* partial_inplace */
1670 0, /* src_mask */
1671 0xfffc, /* dst_mask */
1672 FALSE), /* pcrel_offset */
1673
1674 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1675 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1676 to the first entry relative to the TOC base (r2). */
1677 HOWTO (R_PPC64_GOT_TLSGD16,
1678 0, /* rightshift */
1679 1, /* size (0 = byte, 1 = short, 2 = long) */
1680 16, /* bitsize */
1681 FALSE, /* pc_relative */
1682 0, /* bitpos */
1683 complain_overflow_signed, /* complain_on_overflow */
1684 ppc64_elf_unhandled_reloc, /* special_function */
1685 "R_PPC64_GOT_TLSGD16", /* name */
1686 FALSE, /* partial_inplace */
1687 0, /* src_mask */
1688 0xffff, /* dst_mask */
1689 FALSE), /* pcrel_offset */
1690
1691 /* Like GOT_TLSGD16, but no overflow. */
1692 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1693 0, /* rightshift */
1694 1, /* size (0 = byte, 1 = short, 2 = long) */
1695 16, /* bitsize */
1696 FALSE, /* pc_relative */
1697 0, /* bitpos */
1698 complain_overflow_dont, /* complain_on_overflow */
1699 ppc64_elf_unhandled_reloc, /* special_function */
1700 "R_PPC64_GOT_TLSGD16_LO", /* name */
1701 FALSE, /* partial_inplace */
1702 0, /* src_mask */
1703 0xffff, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1707 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1708 16, /* rightshift */
1709 1, /* size (0 = byte, 1 = short, 2 = long) */
1710 16, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_signed, /* complain_on_overflow */
1714 ppc64_elf_unhandled_reloc, /* special_function */
1715 "R_PPC64_GOT_TLSGD16_HI", /* name */
1716 FALSE, /* partial_inplace */
1717 0, /* src_mask */
1718 0xffff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1722 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1723 16, /* rightshift */
1724 1, /* size (0 = byte, 1 = short, 2 = long) */
1725 16, /* bitsize */
1726 FALSE, /* pc_relative */
1727 0, /* bitpos */
1728 complain_overflow_signed, /* complain_on_overflow */
1729 ppc64_elf_unhandled_reloc, /* special_function */
1730 "R_PPC64_GOT_TLSGD16_HA", /* name */
1731 FALSE, /* partial_inplace */
1732 0, /* src_mask */
1733 0xffff, /* dst_mask */
1734 FALSE), /* pcrel_offset */
1735
1736 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1737 with values (sym+add)@dtpmod and zero, and computes the offset to the
1738 first entry relative to the TOC base (r2). */
1739 HOWTO (R_PPC64_GOT_TLSLD16,
1740 0, /* rightshift */
1741 1, /* size (0 = byte, 1 = short, 2 = long) */
1742 16, /* bitsize */
1743 FALSE, /* pc_relative */
1744 0, /* bitpos */
1745 complain_overflow_signed, /* complain_on_overflow */
1746 ppc64_elf_unhandled_reloc, /* special_function */
1747 "R_PPC64_GOT_TLSLD16", /* name */
1748 FALSE, /* partial_inplace */
1749 0, /* src_mask */
1750 0xffff, /* dst_mask */
1751 FALSE), /* pcrel_offset */
1752
1753 /* Like GOT_TLSLD16, but no overflow. */
1754 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1755 0, /* rightshift */
1756 1, /* size (0 = byte, 1 = short, 2 = long) */
1757 16, /* bitsize */
1758 FALSE, /* pc_relative */
1759 0, /* bitpos */
1760 complain_overflow_dont, /* complain_on_overflow */
1761 ppc64_elf_unhandled_reloc, /* special_function */
1762 "R_PPC64_GOT_TLSLD16_LO", /* name */
1763 FALSE, /* partial_inplace */
1764 0, /* src_mask */
1765 0xffff, /* dst_mask */
1766 FALSE), /* pcrel_offset */
1767
1768 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1769 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1770 16, /* rightshift */
1771 1, /* size (0 = byte, 1 = short, 2 = long) */
1772 16, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_signed, /* complain_on_overflow */
1776 ppc64_elf_unhandled_reloc, /* special_function */
1777 "R_PPC64_GOT_TLSLD16_HI", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0xffff, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1784 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1785 16, /* rightshift */
1786 1, /* size (0 = byte, 1 = short, 2 = long) */
1787 16, /* bitsize */
1788 FALSE, /* pc_relative */
1789 0, /* bitpos */
1790 complain_overflow_signed, /* complain_on_overflow */
1791 ppc64_elf_unhandled_reloc, /* special_function */
1792 "R_PPC64_GOT_TLSLD16_HA", /* name */
1793 FALSE, /* partial_inplace */
1794 0, /* src_mask */
1795 0xffff, /* dst_mask */
1796 FALSE), /* pcrel_offset */
1797
1798 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1799 the offset to the entry relative to the TOC base (r2). */
1800 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1801 0, /* rightshift */
1802 1, /* size (0 = byte, 1 = short, 2 = long) */
1803 16, /* bitsize */
1804 FALSE, /* pc_relative */
1805 0, /* bitpos */
1806 complain_overflow_signed, /* complain_on_overflow */
1807 ppc64_elf_unhandled_reloc, /* special_function */
1808 "R_PPC64_GOT_DTPREL16_DS", /* name */
1809 FALSE, /* partial_inplace */
1810 0, /* src_mask */
1811 0xfffc, /* dst_mask */
1812 FALSE), /* pcrel_offset */
1813
1814 /* Like GOT_DTPREL16_DS, but no overflow. */
1815 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1816 0, /* rightshift */
1817 1, /* size (0 = byte, 1 = short, 2 = long) */
1818 16, /* bitsize */
1819 FALSE, /* pc_relative */
1820 0, /* bitpos */
1821 complain_overflow_dont, /* complain_on_overflow */
1822 ppc64_elf_unhandled_reloc, /* special_function */
1823 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1824 FALSE, /* partial_inplace */
1825 0, /* src_mask */
1826 0xfffc, /* dst_mask */
1827 FALSE), /* pcrel_offset */
1828
1829 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1830 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1831 16, /* rightshift */
1832 1, /* size (0 = byte, 1 = short, 2 = long) */
1833 16, /* bitsize */
1834 FALSE, /* pc_relative */
1835 0, /* bitpos */
1836 complain_overflow_signed, /* complain_on_overflow */
1837 ppc64_elf_unhandled_reloc, /* special_function */
1838 "R_PPC64_GOT_DTPREL16_HI", /* name */
1839 FALSE, /* partial_inplace */
1840 0, /* src_mask */
1841 0xffff, /* dst_mask */
1842 FALSE), /* pcrel_offset */
1843
1844 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1845 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1846 16, /* rightshift */
1847 1, /* size (0 = byte, 1 = short, 2 = long) */
1848 16, /* bitsize */
1849 FALSE, /* pc_relative */
1850 0, /* bitpos */
1851 complain_overflow_signed, /* complain_on_overflow */
1852 ppc64_elf_unhandled_reloc, /* special_function */
1853 "R_PPC64_GOT_DTPREL16_HA", /* name */
1854 FALSE, /* partial_inplace */
1855 0, /* src_mask */
1856 0xffff, /* dst_mask */
1857 FALSE), /* pcrel_offset */
1858
1859 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1860 offset to the entry relative to the TOC base (r2). */
1861 HOWTO (R_PPC64_GOT_TPREL16_DS,
1862 0, /* rightshift */
1863 1, /* size (0 = byte, 1 = short, 2 = long) */
1864 16, /* bitsize */
1865 FALSE, /* pc_relative */
1866 0, /* bitpos */
1867 complain_overflow_signed, /* complain_on_overflow */
1868 ppc64_elf_unhandled_reloc, /* special_function */
1869 "R_PPC64_GOT_TPREL16_DS", /* name */
1870 FALSE, /* partial_inplace */
1871 0, /* src_mask */
1872 0xfffc, /* dst_mask */
1873 FALSE), /* pcrel_offset */
1874
1875 /* Like GOT_TPREL16_DS, but no overflow. */
1876 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1877 0, /* rightshift */
1878 1, /* size (0 = byte, 1 = short, 2 = long) */
1879 16, /* bitsize */
1880 FALSE, /* pc_relative */
1881 0, /* bitpos */
1882 complain_overflow_dont, /* complain_on_overflow */
1883 ppc64_elf_unhandled_reloc, /* special_function */
1884 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1885 FALSE, /* partial_inplace */
1886 0, /* src_mask */
1887 0xfffc, /* dst_mask */
1888 FALSE), /* pcrel_offset */
1889
1890 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1891 HOWTO (R_PPC64_GOT_TPREL16_HI,
1892 16, /* rightshift */
1893 1, /* size (0 = byte, 1 = short, 2 = long) */
1894 16, /* bitsize */
1895 FALSE, /* pc_relative */
1896 0, /* bitpos */
1897 complain_overflow_signed, /* complain_on_overflow */
1898 ppc64_elf_unhandled_reloc, /* special_function */
1899 "R_PPC64_GOT_TPREL16_HI", /* name */
1900 FALSE, /* partial_inplace */
1901 0, /* src_mask */
1902 0xffff, /* dst_mask */
1903 FALSE), /* pcrel_offset */
1904
1905 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1906 HOWTO (R_PPC64_GOT_TPREL16_HA,
1907 16, /* rightshift */
1908 1, /* size (0 = byte, 1 = short, 2 = long) */
1909 16, /* bitsize */
1910 FALSE, /* pc_relative */
1911 0, /* bitpos */
1912 complain_overflow_signed, /* complain_on_overflow */
1913 ppc64_elf_unhandled_reloc, /* special_function */
1914 "R_PPC64_GOT_TPREL16_HA", /* name */
1915 FALSE, /* partial_inplace */
1916 0, /* src_mask */
1917 0xffff, /* dst_mask */
1918 FALSE), /* pcrel_offset */
1919
1920 HOWTO (R_PPC64_JMP_IREL, /* type */
1921 0, /* rightshift */
1922 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1923 0, /* bitsize */
1924 FALSE, /* pc_relative */
1925 0, /* bitpos */
1926 complain_overflow_dont, /* complain_on_overflow */
1927 ppc64_elf_unhandled_reloc, /* special_function */
1928 "R_PPC64_JMP_IREL", /* name */
1929 FALSE, /* partial_inplace */
1930 0, /* src_mask */
1931 0, /* dst_mask */
1932 FALSE), /* pcrel_offset */
1933
1934 HOWTO (R_PPC64_IRELATIVE, /* type */
1935 0, /* rightshift */
1936 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1937 64, /* bitsize */
1938 FALSE, /* pc_relative */
1939 0, /* bitpos */
1940 complain_overflow_dont, /* complain_on_overflow */
1941 bfd_elf_generic_reloc, /* special_function */
1942 "R_PPC64_IRELATIVE", /* name */
1943 FALSE, /* partial_inplace */
1944 0, /* src_mask */
1945 ONES (64), /* dst_mask */
1946 FALSE), /* pcrel_offset */
1947
1948 /* A 16 bit relative relocation. */
1949 HOWTO (R_PPC64_REL16, /* type */
1950 0, /* rightshift */
1951 1, /* size (0 = byte, 1 = short, 2 = long) */
1952 16, /* bitsize */
1953 TRUE, /* pc_relative */
1954 0, /* bitpos */
1955 complain_overflow_bitfield, /* complain_on_overflow */
1956 bfd_elf_generic_reloc, /* special_function */
1957 "R_PPC64_REL16", /* name */
1958 FALSE, /* partial_inplace */
1959 0, /* src_mask */
1960 0xffff, /* dst_mask */
1961 TRUE), /* pcrel_offset */
1962
1963 /* A 16 bit relative relocation without overflow. */
1964 HOWTO (R_PPC64_REL16_LO, /* type */
1965 0, /* rightshift */
1966 1, /* size (0 = byte, 1 = short, 2 = long) */
1967 16, /* bitsize */
1968 TRUE, /* pc_relative */
1969 0, /* bitpos */
1970 complain_overflow_dont,/* complain_on_overflow */
1971 bfd_elf_generic_reloc, /* special_function */
1972 "R_PPC64_REL16_LO", /* name */
1973 FALSE, /* partial_inplace */
1974 0, /* src_mask */
1975 0xffff, /* dst_mask */
1976 TRUE), /* pcrel_offset */
1977
1978 /* The high order 16 bits of a relative address. */
1979 HOWTO (R_PPC64_REL16_HI, /* type */
1980 16, /* rightshift */
1981 1, /* size (0 = byte, 1 = short, 2 = long) */
1982 16, /* bitsize */
1983 TRUE, /* pc_relative */
1984 0, /* bitpos */
1985 complain_overflow_signed, /* complain_on_overflow */
1986 bfd_elf_generic_reloc, /* special_function */
1987 "R_PPC64_REL16_HI", /* name */
1988 FALSE, /* partial_inplace */
1989 0, /* src_mask */
1990 0xffff, /* dst_mask */
1991 TRUE), /* pcrel_offset */
1992
1993 /* The high order 16 bits of a relative address, plus 1 if the contents of
1994 the low 16 bits, treated as a signed number, is negative. */
1995 HOWTO (R_PPC64_REL16_HA, /* type */
1996 16, /* rightshift */
1997 1, /* size (0 = byte, 1 = short, 2 = long) */
1998 16, /* bitsize */
1999 TRUE, /* pc_relative */
2000 0, /* bitpos */
2001 complain_overflow_signed, /* complain_on_overflow */
2002 ppc64_elf_ha_reloc, /* special_function */
2003 "R_PPC64_REL16_HA", /* name */
2004 FALSE, /* partial_inplace */
2005 0, /* src_mask */
2006 0xffff, /* dst_mask */
2007 TRUE), /* pcrel_offset */
2008
2009 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2010 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2011 16, /* rightshift */
2012 1, /* size (0 = byte, 1 = short, 2 = long) */
2013 16, /* bitsize */
2014 FALSE, /* pc_relative */
2015 0, /* bitpos */
2016 complain_overflow_dont, /* complain_on_overflow */
2017 bfd_elf_generic_reloc, /* special_function */
2018 "R_PPC64_ADDR16_HIGH", /* name */
2019 FALSE, /* partial_inplace */
2020 0, /* src_mask */
2021 0xffff, /* dst_mask */
2022 FALSE), /* pcrel_offset */
2023
2024 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2025 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2026 16, /* rightshift */
2027 1, /* size (0 = byte, 1 = short, 2 = long) */
2028 16, /* bitsize */
2029 FALSE, /* pc_relative */
2030 0, /* bitpos */
2031 complain_overflow_dont, /* complain_on_overflow */
2032 ppc64_elf_ha_reloc, /* special_function */
2033 "R_PPC64_ADDR16_HIGHA", /* name */
2034 FALSE, /* partial_inplace */
2035 0, /* src_mask */
2036 0xffff, /* dst_mask */
2037 FALSE), /* pcrel_offset */
2038
2039 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2040 HOWTO (R_PPC64_DTPREL16_HIGH,
2041 16, /* rightshift */
2042 1, /* size (0 = byte, 1 = short, 2 = long) */
2043 16, /* bitsize */
2044 FALSE, /* pc_relative */
2045 0, /* bitpos */
2046 complain_overflow_dont, /* complain_on_overflow */
2047 ppc64_elf_unhandled_reloc, /* special_function */
2048 "R_PPC64_DTPREL16_HIGH", /* name */
2049 FALSE, /* partial_inplace */
2050 0, /* src_mask */
2051 0xffff, /* dst_mask */
2052 FALSE), /* pcrel_offset */
2053
2054 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2055 HOWTO (R_PPC64_DTPREL16_HIGHA,
2056 16, /* rightshift */
2057 1, /* size (0 = byte, 1 = short, 2 = long) */
2058 16, /* bitsize */
2059 FALSE, /* pc_relative */
2060 0, /* bitpos */
2061 complain_overflow_dont, /* complain_on_overflow */
2062 ppc64_elf_unhandled_reloc, /* special_function */
2063 "R_PPC64_DTPREL16_HIGHA", /* name */
2064 FALSE, /* partial_inplace */
2065 0, /* src_mask */
2066 0xffff, /* dst_mask */
2067 FALSE), /* pcrel_offset */
2068
2069 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2070 HOWTO (R_PPC64_TPREL16_HIGH,
2071 16, /* rightshift */
2072 1, /* size (0 = byte, 1 = short, 2 = long) */
2073 16, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 ppc64_elf_unhandled_reloc, /* special_function */
2078 "R_PPC64_TPREL16_HIGH", /* name */
2079 FALSE, /* partial_inplace */
2080 0, /* src_mask */
2081 0xffff, /* dst_mask */
2082 FALSE), /* pcrel_offset */
2083
2084 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2085 HOWTO (R_PPC64_TPREL16_HIGHA,
2086 16, /* rightshift */
2087 1, /* size (0 = byte, 1 = short, 2 = long) */
2088 16, /* bitsize */
2089 FALSE, /* pc_relative */
2090 0, /* bitpos */
2091 complain_overflow_dont, /* complain_on_overflow */
2092 ppc64_elf_unhandled_reloc, /* special_function */
2093 "R_PPC64_TPREL16_HIGHA", /* name */
2094 FALSE, /* partial_inplace */
2095 0, /* src_mask */
2096 0xffff, /* dst_mask */
2097 FALSE), /* pcrel_offset */
2098
2099 /* GNU extension to record C++ vtable hierarchy. */
2100 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2101 0, /* rightshift */
2102 0, /* size (0 = byte, 1 = short, 2 = long) */
2103 0, /* bitsize */
2104 FALSE, /* pc_relative */
2105 0, /* bitpos */
2106 complain_overflow_dont, /* complain_on_overflow */
2107 NULL, /* special_function */
2108 "R_PPC64_GNU_VTINHERIT", /* name */
2109 FALSE, /* partial_inplace */
2110 0, /* src_mask */
2111 0, /* dst_mask */
2112 FALSE), /* pcrel_offset */
2113
2114 /* GNU extension to record C++ vtable member usage. */
2115 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2116 0, /* rightshift */
2117 0, /* size (0 = byte, 1 = short, 2 = long) */
2118 0, /* bitsize */
2119 FALSE, /* pc_relative */
2120 0, /* bitpos */
2121 complain_overflow_dont, /* complain_on_overflow */
2122 NULL, /* special_function */
2123 "R_PPC64_GNU_VTENTRY", /* name */
2124 FALSE, /* partial_inplace */
2125 0, /* src_mask */
2126 0, /* dst_mask */
2127 FALSE), /* pcrel_offset */
2128 };
2129
2130 \f
2131 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2132 be done. */
2133
2134 static void
2135 ppc_howto_init (void)
2136 {
2137 unsigned int i, type;
2138
2139 for (i = 0;
2140 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2141 i++)
2142 {
2143 type = ppc64_elf_howto_raw[i].type;
2144 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2145 / sizeof (ppc64_elf_howto_table[0])));
2146 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2147 }
2148 }
2149
2150 static reloc_howto_type *
2151 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2152 bfd_reloc_code_real_type code)
2153 {
2154 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2155
2156 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2157 /* Initialize howto table if needed. */
2158 ppc_howto_init ();
2159
2160 switch (code)
2161 {
2162 default:
2163 return NULL;
2164
2165 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2166 break;
2167 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2168 break;
2169 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2170 break;
2171 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2172 break;
2173 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2174 break;
2175 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2176 break;
2177 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2178 break;
2179 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2180 break;
2181 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2182 break;
2183 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2184 break;
2185 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2186 break;
2187 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2188 break;
2189 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2190 break;
2191 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2192 break;
2193 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2194 break;
2195 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2196 break;
2197 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2198 break;
2199 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2200 break;
2201 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2202 break;
2203 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2204 break;
2205 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2206 break;
2207 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2208 break;
2209 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2210 break;
2211 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2212 break;
2213 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2214 break;
2215 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2216 break;
2217 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2218 break;
2219 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2220 break;
2221 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2222 break;
2223 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2224 break;
2225 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2226 break;
2227 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2228 break;
2229 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2230 break;
2231 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2232 break;
2233 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2234 break;
2235 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2236 break;
2237 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2238 break;
2239 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2240 break;
2241 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2242 break;
2243 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2244 break;
2245 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2246 break;
2247 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2248 break;
2249 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2250 break;
2251 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2252 break;
2253 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2254 break;
2255 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2256 break;
2257 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2258 break;
2259 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2260 break;
2261 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2262 break;
2263 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2264 break;
2265 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2266 break;
2267 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2268 break;
2269 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2270 break;
2271 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2272 break;
2273 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2274 break;
2275 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2276 break;
2277 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2278 break;
2279 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2280 break;
2281 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2282 break;
2283 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2284 break;
2285 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2286 break;
2287 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2288 break;
2289 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2290 break;
2291 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2292 break;
2293 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2294 break;
2295 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2296 break;
2297 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2298 break;
2299 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2300 break;
2301 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2302 break;
2303 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2304 break;
2305 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2306 break;
2307 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2308 break;
2309 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2310 break;
2311 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2312 break;
2313 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2314 break;
2315 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2316 break;
2317 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2318 break;
2319 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2320 break;
2321 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2322 break;
2323 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2324 break;
2325 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2326 break;
2327 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2328 break;
2329 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2330 break;
2331 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2332 break;
2333 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2334 break;
2335 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2336 break;
2337 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2338 break;
2339 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2340 break;
2341 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2342 break;
2343 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2344 break;
2345 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2346 break;
2347 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2348 break;
2349 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2350 break;
2351 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2352 break;
2353 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2354 break;
2355 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2356 break;
2357 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2358 break;
2359 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2360 break;
2361 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2362 break;
2363 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2364 break;
2365 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2366 break;
2367 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2368 break;
2369 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2370 break;
2371 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2372 break;
2373 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2374 break;
2375 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2376 break;
2377 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2378 break;
2379 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2380 break;
2381 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2382 break;
2383 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2384 break;
2385 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2386 break;
2387 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2388 break;
2389 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2390 break;
2391 }
2392
2393 return ppc64_elf_howto_table[r];
2394 };
2395
2396 static reloc_howto_type *
2397 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2398 const char *r_name)
2399 {
2400 unsigned int i;
2401
2402 for (i = 0;
2403 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2404 i++)
2405 if (ppc64_elf_howto_raw[i].name != NULL
2406 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2407 return &ppc64_elf_howto_raw[i];
2408
2409 return NULL;
2410 }
2411
2412 /* Set the howto pointer for a PowerPC ELF reloc. */
2413
2414 static void
2415 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2416 Elf_Internal_Rela *dst)
2417 {
2418 unsigned int type;
2419
2420 /* Initialize howto table if needed. */
2421 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2422 ppc_howto_init ();
2423
2424 type = ELF64_R_TYPE (dst->r_info);
2425 if (type >= (sizeof (ppc64_elf_howto_table)
2426 / sizeof (ppc64_elf_howto_table[0])))
2427 {
2428 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2429 abfd, (int) type);
2430 type = R_PPC64_NONE;
2431 }
2432 cache_ptr->howto = ppc64_elf_howto_table[type];
2433 }
2434
2435 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2436
2437 static bfd_reloc_status_type
2438 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2439 void *data, asection *input_section,
2440 bfd *output_bfd, char **error_message)
2441 {
2442 /* If this is a relocatable link (output_bfd test tells us), just
2443 call the generic function. Any adjustment will be done at final
2444 link time. */
2445 if (output_bfd != NULL)
2446 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2447 input_section, output_bfd, error_message);
2448
2449 /* Adjust the addend for sign extension of the low 16 bits.
2450 We won't actually be using the low 16 bits, so trashing them
2451 doesn't matter. */
2452 reloc_entry->addend += 0x8000;
2453 return bfd_reloc_continue;
2454 }
2455
2456 static bfd_reloc_status_type
2457 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2458 void *data, asection *input_section,
2459 bfd *output_bfd, char **error_message)
2460 {
2461 if (output_bfd != NULL)
2462 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2463 input_section, output_bfd, error_message);
2464
2465 if (strcmp (symbol->section->name, ".opd") == 0
2466 && (symbol->section->owner->flags & DYNAMIC) == 0)
2467 {
2468 bfd_vma dest = opd_entry_value (symbol->section,
2469 symbol->value + reloc_entry->addend,
2470 NULL, NULL, FALSE);
2471 if (dest != (bfd_vma) -1)
2472 reloc_entry->addend = dest - (symbol->value
2473 + symbol->section->output_section->vma
2474 + symbol->section->output_offset);
2475 }
2476 return bfd_reloc_continue;
2477 }
2478
2479 static bfd_reloc_status_type
2480 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 long insn;
2485 enum elf_ppc64_reloc_type r_type;
2486 bfd_size_type octets;
2487 /* Assume 'at' branch hints. */
2488 bfd_boolean is_isa_v2 = TRUE;
2489
2490 /* If this is a relocatable link (output_bfd test tells us), just
2491 call the generic function. Any adjustment will be done at final
2492 link time. */
2493 if (output_bfd != NULL)
2494 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2495 input_section, output_bfd, error_message);
2496
2497 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2498 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2499 insn &= ~(0x01 << 21);
2500 r_type = reloc_entry->howto->type;
2501 if (r_type == R_PPC64_ADDR14_BRTAKEN
2502 || r_type == R_PPC64_REL14_BRTAKEN)
2503 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2504
2505 if (is_isa_v2)
2506 {
2507 /* Set 'a' bit. This is 0b00010 in BO field for branch
2508 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2509 for branch on CTR insns (BO == 1a00t or 1a01t). */
2510 if ((insn & (0x14 << 21)) == (0x04 << 21))
2511 insn |= 0x02 << 21;
2512 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2513 insn |= 0x08 << 21;
2514 else
2515 goto out;
2516 }
2517 else
2518 {
2519 bfd_vma target = 0;
2520 bfd_vma from;
2521
2522 if (!bfd_is_com_section (symbol->section))
2523 target = symbol->value;
2524 target += symbol->section->output_section->vma;
2525 target += symbol->section->output_offset;
2526 target += reloc_entry->addend;
2527
2528 from = (reloc_entry->address
2529 + input_section->output_offset
2530 + input_section->output_section->vma);
2531
2532 /* Invert 'y' bit if not the default. */
2533 if ((bfd_signed_vma) (target - from) < 0)
2534 insn ^= 0x01 << 21;
2535 }
2536 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2537 out:
2538 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2539 input_section, output_bfd, error_message);
2540 }
2541
2542 static bfd_reloc_status_type
2543 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2544 void *data, asection *input_section,
2545 bfd *output_bfd, char **error_message)
2546 {
2547 /* If this is a relocatable link (output_bfd test tells us), just
2548 call the generic function. Any adjustment will be done at final
2549 link time. */
2550 if (output_bfd != NULL)
2551 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2552 input_section, output_bfd, error_message);
2553
2554 /* Subtract the symbol section base address. */
2555 reloc_entry->addend -= symbol->section->output_section->vma;
2556 return bfd_reloc_continue;
2557 }
2558
2559 static bfd_reloc_status_type
2560 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2561 void *data, asection *input_section,
2562 bfd *output_bfd, char **error_message)
2563 {
2564 /* If this is a relocatable link (output_bfd test tells us), just
2565 call the generic function. Any adjustment will be done at final
2566 link time. */
2567 if (output_bfd != NULL)
2568 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2569 input_section, output_bfd, error_message);
2570
2571 /* Subtract the symbol section base address. */
2572 reloc_entry->addend -= symbol->section->output_section->vma;
2573
2574 /* Adjust the addend for sign extension of the low 16 bits. */
2575 reloc_entry->addend += 0x8000;
2576 return bfd_reloc_continue;
2577 }
2578
2579 static bfd_reloc_status_type
2580 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2581 void *data, asection *input_section,
2582 bfd *output_bfd, char **error_message)
2583 {
2584 bfd_vma TOCstart;
2585
2586 /* If this is a relocatable link (output_bfd test tells us), just
2587 call the generic function. Any adjustment will be done at final
2588 link time. */
2589 if (output_bfd != NULL)
2590 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd, error_message);
2592
2593 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2594 if (TOCstart == 0)
2595 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2596
2597 /* Subtract the TOC base address. */
2598 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2599 return bfd_reloc_continue;
2600 }
2601
2602 static bfd_reloc_status_type
2603 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2604 void *data, asection *input_section,
2605 bfd *output_bfd, char **error_message)
2606 {
2607 bfd_vma TOCstart;
2608
2609 /* If this is a relocatable link (output_bfd test tells us), just
2610 call the generic function. Any adjustment will be done at final
2611 link time. */
2612 if (output_bfd != NULL)
2613 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2614 input_section, output_bfd, error_message);
2615
2616 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2617 if (TOCstart == 0)
2618 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2619
2620 /* Subtract the TOC base address. */
2621 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2622
2623 /* Adjust the addend for sign extension of the low 16 bits. */
2624 reloc_entry->addend += 0x8000;
2625 return bfd_reloc_continue;
2626 }
2627
2628 static bfd_reloc_status_type
2629 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2630 void *data, asection *input_section,
2631 bfd *output_bfd, char **error_message)
2632 {
2633 bfd_vma TOCstart;
2634 bfd_size_type octets;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2648 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2649 return bfd_reloc_ok;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 /* If this is a relocatable link (output_bfd test tells us), just
2658 call the generic function. Any adjustment will be done at final
2659 link time. */
2660 if (output_bfd != NULL)
2661 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2662 input_section, output_bfd, error_message);
2663
2664 if (error_message != NULL)
2665 {
2666 static char buf[60];
2667 sprintf (buf, "generic linker can't handle %s",
2668 reloc_entry->howto->name);
2669 *error_message = buf;
2670 }
2671 return bfd_reloc_dangerous;
2672 }
2673
2674 /* Track GOT entries needed for a given symbol. We might need more
2675 than one got entry per symbol. */
2676 struct got_entry
2677 {
2678 struct got_entry *next;
2679
2680 /* The symbol addend that we'll be placing in the GOT. */
2681 bfd_vma addend;
2682
2683 /* Unlike other ELF targets, we use separate GOT entries for the same
2684 symbol referenced from different input files. This is to support
2685 automatic multiple TOC/GOT sections, where the TOC base can vary
2686 from one input file to another. After partitioning into TOC groups
2687 we merge entries within the group.
2688
2689 Point to the BFD owning this GOT entry. */
2690 bfd *owner;
2691
2692 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2693 TLS_TPREL or TLS_DTPREL for tls entries. */
2694 unsigned char tls_type;
2695
2696 /* Non-zero if got.ent points to real entry. */
2697 unsigned char is_indirect;
2698
2699 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2700 union
2701 {
2702 bfd_signed_vma refcount;
2703 bfd_vma offset;
2704 struct got_entry *ent;
2705 } got;
2706 };
2707
2708 /* The same for PLT. */
2709 struct plt_entry
2710 {
2711 struct plt_entry *next;
2712
2713 bfd_vma addend;
2714
2715 union
2716 {
2717 bfd_signed_vma refcount;
2718 bfd_vma offset;
2719 } plt;
2720 };
2721
2722 struct ppc64_elf_obj_tdata
2723 {
2724 struct elf_obj_tdata elf;
2725
2726 /* Shortcuts to dynamic linker sections. */
2727 asection *got;
2728 asection *relgot;
2729
2730 /* Used during garbage collection. We attach global symbols defined
2731 on removed .opd entries to this section so that the sym is removed. */
2732 asection *deleted_section;
2733
2734 /* TLS local dynamic got entry handling. Support for multiple GOT
2735 sections means we potentially need one of these for each input bfd. */
2736 struct got_entry tlsld_got;
2737
2738 union {
2739 /* A copy of relocs before they are modified for --emit-relocs. */
2740 Elf_Internal_Rela *relocs;
2741
2742 /* Section contents. */
2743 bfd_byte *contents;
2744 } opd;
2745
2746 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2747 the reloc to be in the range -32768 to 32767. */
2748 unsigned int has_small_toc_reloc : 1;
2749
2750 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2751 instruction not one we handle. */
2752 unsigned int unexpected_toc_insn : 1;
2753 };
2754
2755 #define ppc64_elf_tdata(bfd) \
2756 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2757
2758 #define ppc64_tlsld_got(bfd) \
2759 (&ppc64_elf_tdata (bfd)->tlsld_got)
2760
2761 #define is_ppc64_elf(bfd) \
2762 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2763 && elf_object_id (bfd) == PPC64_ELF_DATA)
2764
2765 /* Override the generic function because we store some extras. */
2766
2767 static bfd_boolean
2768 ppc64_elf_mkobject (bfd *abfd)
2769 {
2770 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2771 PPC64_ELF_DATA);
2772 }
2773
2774 /* Fix bad default arch selected for a 64 bit input bfd when the
2775 default is 32 bit. */
2776
2777 static bfd_boolean
2778 ppc64_elf_object_p (bfd *abfd)
2779 {
2780 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2781 {
2782 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2783
2784 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2785 {
2786 /* Relies on arch after 32 bit default being 64 bit default. */
2787 abfd->arch_info = abfd->arch_info->next;
2788 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2789 }
2790 }
2791 return TRUE;
2792 }
2793
2794 /* Support for core dump NOTE sections. */
2795
2796 static bfd_boolean
2797 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2798 {
2799 size_t offset, size;
2800
2801 if (note->descsz != 504)
2802 return FALSE;
2803
2804 /* pr_cursig */
2805 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2806
2807 /* pr_pid */
2808 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2809
2810 /* pr_reg */
2811 offset = 112;
2812 size = 384;
2813
2814 /* Make a ".reg/999" section. */
2815 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2816 size, note->descpos + offset);
2817 }
2818
2819 static bfd_boolean
2820 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2821 {
2822 if (note->descsz != 136)
2823 return FALSE;
2824
2825 elf_tdata (abfd)->core->pid
2826 = bfd_get_32 (abfd, note->descdata + 24);
2827 elf_tdata (abfd)->core->program
2828 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2829 elf_tdata (abfd)->core->command
2830 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2831
2832 return TRUE;
2833 }
2834
2835 static char *
2836 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2837 ...)
2838 {
2839 switch (note_type)
2840 {
2841 default:
2842 return NULL;
2843
2844 case NT_PRPSINFO:
2845 {
2846 char data[136];
2847 va_list ap;
2848
2849 va_start (ap, note_type);
2850 memset (data, 0, sizeof (data));
2851 strncpy (data + 40, va_arg (ap, const char *), 16);
2852 strncpy (data + 56, va_arg (ap, const char *), 80);
2853 va_end (ap);
2854 return elfcore_write_note (abfd, buf, bufsiz,
2855 "CORE", note_type, data, sizeof (data));
2856 }
2857
2858 case NT_PRSTATUS:
2859 {
2860 char data[504];
2861 va_list ap;
2862 long pid;
2863 int cursig;
2864 const void *greg;
2865
2866 va_start (ap, note_type);
2867 memset (data, 0, 112);
2868 pid = va_arg (ap, long);
2869 bfd_put_32 (abfd, pid, data + 32);
2870 cursig = va_arg (ap, int);
2871 bfd_put_16 (abfd, cursig, data + 12);
2872 greg = va_arg (ap, const void *);
2873 memcpy (data + 112, greg, 384);
2874 memset (data + 496, 0, 8);
2875 va_end (ap);
2876 return elfcore_write_note (abfd, buf, bufsiz,
2877 "CORE", note_type, data, sizeof (data));
2878 }
2879 }
2880 }
2881
2882 /* Add extra PPC sections. */
2883
2884 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2885 {
2886 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2887 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2888 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2889 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2890 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2891 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2892 { NULL, 0, 0, 0, 0 }
2893 };
2894
2895 enum _ppc64_sec_type {
2896 sec_normal = 0,
2897 sec_opd = 1,
2898 sec_toc = 2
2899 };
2900
2901 struct _ppc64_elf_section_data
2902 {
2903 struct bfd_elf_section_data elf;
2904
2905 union
2906 {
2907 /* An array with one entry for each opd function descriptor. */
2908 struct _opd_sec_data
2909 {
2910 /* Points to the function code section for local opd entries. */
2911 asection **func_sec;
2912
2913 /* After editing .opd, adjust references to opd local syms. */
2914 long *adjust;
2915 } opd;
2916
2917 /* An array for toc sections, indexed by offset/8. */
2918 struct _toc_sec_data
2919 {
2920 /* Specifies the relocation symbol index used at a given toc offset. */
2921 unsigned *symndx;
2922
2923 /* And the relocation addend. */
2924 bfd_vma *add;
2925 } toc;
2926 } u;
2927
2928 enum _ppc64_sec_type sec_type:2;
2929
2930 /* Flag set when small branches are detected. Used to
2931 select suitable defaults for the stub group size. */
2932 unsigned int has_14bit_branch:1;
2933 };
2934
2935 #define ppc64_elf_section_data(sec) \
2936 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2937
2938 static bfd_boolean
2939 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2940 {
2941 if (!sec->used_by_bfd)
2942 {
2943 struct _ppc64_elf_section_data *sdata;
2944 bfd_size_type amt = sizeof (*sdata);
2945
2946 sdata = bfd_zalloc (abfd, amt);
2947 if (sdata == NULL)
2948 return FALSE;
2949 sec->used_by_bfd = sdata;
2950 }
2951
2952 return _bfd_elf_new_section_hook (abfd, sec);
2953 }
2954
2955 static struct _opd_sec_data *
2956 get_opd_info (asection * sec)
2957 {
2958 if (sec != NULL
2959 && ppc64_elf_section_data (sec) != NULL
2960 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2961 return &ppc64_elf_section_data (sec)->u.opd;
2962 return NULL;
2963 }
2964
2965 static inline int
2966 abiversion (bfd *abfd)
2967 {
2968 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
2969 }
2970
2971 static inline void
2972 set_abiversion (bfd *abfd, int ver)
2973 {
2974 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
2975 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
2976 }
2977 \f
2978 /* Parameters for the qsort hook. */
2979 static bfd_boolean synthetic_relocatable;
2980
2981 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2982
2983 static int
2984 compare_symbols (const void *ap, const void *bp)
2985 {
2986 const asymbol *a = * (const asymbol **) ap;
2987 const asymbol *b = * (const asymbol **) bp;
2988
2989 /* Section symbols first. */
2990 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2991 return -1;
2992 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2993 return 1;
2994
2995 /* then .opd symbols. */
2996 if (strcmp (a->section->name, ".opd") == 0
2997 && strcmp (b->section->name, ".opd") != 0)
2998 return -1;
2999 if (strcmp (a->section->name, ".opd") != 0
3000 && strcmp (b->section->name, ".opd") == 0)
3001 return 1;
3002
3003 /* then other code symbols. */
3004 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3005 == (SEC_CODE | SEC_ALLOC)
3006 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3007 != (SEC_CODE | SEC_ALLOC))
3008 return -1;
3009
3010 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3011 != (SEC_CODE | SEC_ALLOC)
3012 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3013 == (SEC_CODE | SEC_ALLOC))
3014 return 1;
3015
3016 if (synthetic_relocatable)
3017 {
3018 if (a->section->id < b->section->id)
3019 return -1;
3020
3021 if (a->section->id > b->section->id)
3022 return 1;
3023 }
3024
3025 if (a->value + a->section->vma < b->value + b->section->vma)
3026 return -1;
3027
3028 if (a->value + a->section->vma > b->value + b->section->vma)
3029 return 1;
3030
3031 /* For syms with the same value, prefer strong dynamic global function
3032 syms over other syms. */
3033 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3034 return -1;
3035
3036 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3037 return 1;
3038
3039 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3040 return -1;
3041
3042 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3043 return 1;
3044
3045 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3046 return -1;
3047
3048 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3049 return 1;
3050
3051 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3052 return -1;
3053
3054 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3055 return 1;
3056
3057 return 0;
3058 }
3059
3060 /* Search SYMS for a symbol of the given VALUE. */
3061
3062 static asymbol *
3063 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3064 {
3065 long mid;
3066
3067 if (id == -1)
3068 {
3069 while (lo < hi)
3070 {
3071 mid = (lo + hi) >> 1;
3072 if (syms[mid]->value + syms[mid]->section->vma < value)
3073 lo = mid + 1;
3074 else if (syms[mid]->value + syms[mid]->section->vma > value)
3075 hi = mid;
3076 else
3077 return syms[mid];
3078 }
3079 }
3080 else
3081 {
3082 while (lo < hi)
3083 {
3084 mid = (lo + hi) >> 1;
3085 if (syms[mid]->section->id < id)
3086 lo = mid + 1;
3087 else if (syms[mid]->section->id > id)
3088 hi = mid;
3089 else if (syms[mid]->value < value)
3090 lo = mid + 1;
3091 else if (syms[mid]->value > value)
3092 hi = mid;
3093 else
3094 return syms[mid];
3095 }
3096 }
3097 return NULL;
3098 }
3099
3100 static bfd_boolean
3101 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3102 {
3103 bfd_vma vma = *(bfd_vma *) ptr;
3104 return ((section->flags & SEC_ALLOC) != 0
3105 && section->vma <= vma
3106 && vma < section->vma + section->size);
3107 }
3108
3109 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3110 entry syms. Also generate @plt symbols for the glink branch table. */
3111
3112 static long
3113 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3114 long static_count, asymbol **static_syms,
3115 long dyn_count, asymbol **dyn_syms,
3116 asymbol **ret)
3117 {
3118 asymbol *s;
3119 long i;
3120 long count;
3121 char *names;
3122 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3123 asection *opd = NULL;
3124 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3125 asymbol **syms;
3126 int abi = abiversion (abfd);
3127
3128 *ret = NULL;
3129
3130 if (abi < 2)
3131 {
3132 opd = bfd_get_section_by_name (abfd, ".opd");
3133 if (opd == NULL && abi == 1)
3134 return 0;
3135 }
3136
3137 symcount = static_count;
3138 if (!relocatable)
3139 symcount += dyn_count;
3140 if (symcount == 0)
3141 return 0;
3142
3143 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3144 if (syms == NULL)
3145 return -1;
3146
3147 if (!relocatable && static_count != 0 && dyn_count != 0)
3148 {
3149 /* Use both symbol tables. */
3150 memcpy (syms, static_syms, static_count * sizeof (*syms));
3151 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3152 }
3153 else if (!relocatable && static_count == 0)
3154 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3155 else
3156 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3157
3158 synthetic_relocatable = relocatable;
3159 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3160
3161 if (!relocatable && symcount > 1)
3162 {
3163 long j;
3164 /* Trim duplicate syms, since we may have merged the normal and
3165 dynamic symbols. Actually, we only care about syms that have
3166 different values, so trim any with the same value. */
3167 for (i = 1, j = 1; i < symcount; ++i)
3168 if (syms[i - 1]->value + syms[i - 1]->section->vma
3169 != syms[i]->value + syms[i]->section->vma)
3170 syms[j++] = syms[i];
3171 symcount = j;
3172 }
3173
3174 i = 0;
3175 if (strcmp (syms[i]->section->name, ".opd") == 0)
3176 ++i;
3177 codesecsym = i;
3178
3179 for (; i < symcount; ++i)
3180 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3181 != (SEC_CODE | SEC_ALLOC))
3182 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3183 break;
3184 codesecsymend = i;
3185
3186 for (; i < symcount; ++i)
3187 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3188 break;
3189 secsymend = i;
3190
3191 for (; i < symcount; ++i)
3192 if (strcmp (syms[i]->section->name, ".opd") != 0)
3193 break;
3194 opdsymend = i;
3195
3196 for (; i < symcount; ++i)
3197 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3198 != (SEC_CODE | SEC_ALLOC))
3199 break;
3200 symcount = i;
3201
3202 count = 0;
3203
3204 if (relocatable)
3205 {
3206 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3207 arelent *r;
3208 size_t size;
3209 long relcount;
3210
3211 if (opdsymend == secsymend)
3212 goto done;
3213
3214 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3215 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3216 if (relcount == 0)
3217 goto done;
3218
3219 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3220 {
3221 count = -1;
3222 goto done;
3223 }
3224
3225 size = 0;
3226 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3227 {
3228 asymbol *sym;
3229
3230 while (r < opd->relocation + relcount
3231 && r->address < syms[i]->value + opd->vma)
3232 ++r;
3233
3234 if (r == opd->relocation + relcount)
3235 break;
3236
3237 if (r->address != syms[i]->value + opd->vma)
3238 continue;
3239
3240 if (r->howto->type != R_PPC64_ADDR64)
3241 continue;
3242
3243 sym = *r->sym_ptr_ptr;
3244 if (!sym_exists_at (syms, opdsymend, symcount,
3245 sym->section->id, sym->value + r->addend))
3246 {
3247 ++count;
3248 size += sizeof (asymbol);
3249 size += strlen (syms[i]->name) + 2;
3250 }
3251 }
3252
3253 s = *ret = bfd_malloc (size);
3254 if (s == NULL)
3255 {
3256 count = -1;
3257 goto done;
3258 }
3259
3260 names = (char *) (s + count);
3261
3262 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3263 {
3264 asymbol *sym;
3265
3266 while (r < opd->relocation + relcount
3267 && r->address < syms[i]->value + opd->vma)
3268 ++r;
3269
3270 if (r == opd->relocation + relcount)
3271 break;
3272
3273 if (r->address != syms[i]->value + opd->vma)
3274 continue;
3275
3276 if (r->howto->type != R_PPC64_ADDR64)
3277 continue;
3278
3279 sym = *r->sym_ptr_ptr;
3280 if (!sym_exists_at (syms, opdsymend, symcount,
3281 sym->section->id, sym->value + r->addend))
3282 {
3283 size_t len;
3284
3285 *s = *syms[i];
3286 s->flags |= BSF_SYNTHETIC;
3287 s->section = sym->section;
3288 s->value = sym->value + r->addend;
3289 s->name = names;
3290 *names++ = '.';
3291 len = strlen (syms[i]->name);
3292 memcpy (names, syms[i]->name, len + 1);
3293 names += len + 1;
3294 /* Have udata.p point back to the original symbol this
3295 synthetic symbol was derived from. */
3296 s->udata.p = syms[i];
3297 s++;
3298 }
3299 }
3300 }
3301 else
3302 {
3303 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3304 bfd_byte *contents = NULL;
3305 size_t size;
3306 long plt_count = 0;
3307 bfd_vma glink_vma = 0, resolv_vma = 0;
3308 asection *dynamic, *glink = NULL, *relplt = NULL;
3309 arelent *p;
3310
3311 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3312 {
3313 free_contents_and_exit:
3314 if (contents)
3315 free (contents);
3316 count = -1;
3317 goto done;
3318 }
3319
3320 size = 0;
3321 for (i = secsymend; i < opdsymend; ++i)
3322 {
3323 bfd_vma ent;
3324
3325 /* Ignore bogus symbols. */
3326 if (syms[i]->value > opd->size - 8)
3327 continue;
3328
3329 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3330 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3331 {
3332 ++count;
3333 size += sizeof (asymbol);
3334 size += strlen (syms[i]->name) + 2;
3335 }
3336 }
3337
3338 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3339 if (dyn_count != 0
3340 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3341 {
3342 bfd_byte *dynbuf, *extdyn, *extdynend;
3343 size_t extdynsize;
3344 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3345
3346 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3347 goto free_contents_and_exit;
3348
3349 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3350 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3351
3352 extdyn = dynbuf;
3353 extdynend = extdyn + dynamic->size;
3354 for (; extdyn < extdynend; extdyn += extdynsize)
3355 {
3356 Elf_Internal_Dyn dyn;
3357 (*swap_dyn_in) (abfd, extdyn, &dyn);
3358
3359 if (dyn.d_tag == DT_NULL)
3360 break;
3361
3362 if (dyn.d_tag == DT_PPC64_GLINK)
3363 {
3364 /* The first glink stub starts at offset 32; see
3365 comment in ppc64_elf_finish_dynamic_sections. */
3366 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3367 /* The .glink section usually does not survive the final
3368 link; search for the section (usually .text) where the
3369 glink stubs now reside. */
3370 glink = bfd_sections_find_if (abfd, section_covers_vma,
3371 &glink_vma);
3372 break;
3373 }
3374 }
3375
3376 free (dynbuf);
3377 }
3378
3379 if (glink != NULL)
3380 {
3381 /* Determine __glink trampoline by reading the relative branch
3382 from the first glink stub. */
3383 bfd_byte buf[4];
3384 unsigned int off = 0;
3385
3386 while (bfd_get_section_contents (abfd, glink, buf,
3387 glink_vma + off - glink->vma, 4))
3388 {
3389 unsigned int insn = bfd_get_32 (abfd, buf);
3390 insn ^= B_DOT;
3391 if ((insn & ~0x3fffffc) == 0)
3392 {
3393 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3394 break;
3395 }
3396 off += 4;
3397 if (off > 4)
3398 break;
3399 }
3400
3401 if (resolv_vma)
3402 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3403
3404 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3405 if (relplt != NULL)
3406 {
3407 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3408 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3409 goto free_contents_and_exit;
3410
3411 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3412 size += plt_count * sizeof (asymbol);
3413
3414 p = relplt->relocation;
3415 for (i = 0; i < plt_count; i++, p++)
3416 {
3417 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3418 if (p->addend != 0)
3419 size += sizeof ("+0x") - 1 + 16;
3420 }
3421 }
3422 }
3423
3424 s = *ret = bfd_malloc (size);
3425 if (s == NULL)
3426 goto free_contents_and_exit;
3427
3428 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3429
3430 for (i = secsymend; i < opdsymend; ++i)
3431 {
3432 bfd_vma ent;
3433
3434 if (syms[i]->value > opd->size - 8)
3435 continue;
3436
3437 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3438 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3439 {
3440 long lo, hi;
3441 size_t len;
3442 asection *sec = abfd->sections;
3443
3444 *s = *syms[i];
3445 lo = codesecsym;
3446 hi = codesecsymend;
3447 while (lo < hi)
3448 {
3449 long mid = (lo + hi) >> 1;
3450 if (syms[mid]->section->vma < ent)
3451 lo = mid + 1;
3452 else if (syms[mid]->section->vma > ent)
3453 hi = mid;
3454 else
3455 {
3456 sec = syms[mid]->section;
3457 break;
3458 }
3459 }
3460
3461 if (lo >= hi && lo > codesecsym)
3462 sec = syms[lo - 1]->section;
3463
3464 for (; sec != NULL; sec = sec->next)
3465 {
3466 if (sec->vma > ent)
3467 break;
3468 /* SEC_LOAD may not be set if SEC is from a separate debug
3469 info file. */
3470 if ((sec->flags & SEC_ALLOC) == 0)
3471 break;
3472 if ((sec->flags & SEC_CODE) != 0)
3473 s->section = sec;
3474 }
3475 s->flags |= BSF_SYNTHETIC;
3476 s->value = ent - s->section->vma;
3477 s->name = names;
3478 *names++ = '.';
3479 len = strlen (syms[i]->name);
3480 memcpy (names, syms[i]->name, len + 1);
3481 names += len + 1;
3482 /* Have udata.p point back to the original symbol this
3483 synthetic symbol was derived from. */
3484 s->udata.p = syms[i];
3485 s++;
3486 }
3487 }
3488 free (contents);
3489
3490 if (glink != NULL && relplt != NULL)
3491 {
3492 if (resolv_vma)
3493 {
3494 /* Add a symbol for the main glink trampoline. */
3495 memset (s, 0, sizeof *s);
3496 s->the_bfd = abfd;
3497 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3498 s->section = glink;
3499 s->value = resolv_vma - glink->vma;
3500 s->name = names;
3501 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3502 names += sizeof ("__glink_PLTresolve");
3503 s++;
3504 count++;
3505 }
3506
3507 /* FIXME: It would be very much nicer to put sym@plt on the
3508 stub rather than on the glink branch table entry. The
3509 objdump disassembler would then use a sensible symbol
3510 name on plt calls. The difficulty in doing so is
3511 a) finding the stubs, and,
3512 b) matching stubs against plt entries, and,
3513 c) there can be multiple stubs for a given plt entry.
3514
3515 Solving (a) could be done by code scanning, but older
3516 ppc64 binaries used different stubs to current code.
3517 (b) is the tricky one since you need to known the toc
3518 pointer for at least one function that uses a pic stub to
3519 be able to calculate the plt address referenced.
3520 (c) means gdb would need to set multiple breakpoints (or
3521 find the glink branch itself) when setting breakpoints
3522 for pending shared library loads. */
3523 p = relplt->relocation;
3524 for (i = 0; i < plt_count; i++, p++)
3525 {
3526 size_t len;
3527
3528 *s = **p->sym_ptr_ptr;
3529 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3530 we are defining a symbol, ensure one of them is set. */
3531 if ((s->flags & BSF_LOCAL) == 0)
3532 s->flags |= BSF_GLOBAL;
3533 s->flags |= BSF_SYNTHETIC;
3534 s->section = glink;
3535 s->value = glink_vma - glink->vma;
3536 s->name = names;
3537 s->udata.p = NULL;
3538 len = strlen ((*p->sym_ptr_ptr)->name);
3539 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3540 names += len;
3541 if (p->addend != 0)
3542 {
3543 memcpy (names, "+0x", sizeof ("+0x") - 1);
3544 names += sizeof ("+0x") - 1;
3545 bfd_sprintf_vma (abfd, names, p->addend);
3546 names += strlen (names);
3547 }
3548 memcpy (names, "@plt", sizeof ("@plt"));
3549 names += sizeof ("@plt");
3550 s++;
3551 if (abi < 2)
3552 {
3553 glink_vma += 8;
3554 if (i >= 0x8000)
3555 glink_vma += 4;
3556 }
3557 else
3558 glink_vma += 4;
3559 }
3560 count += plt_count;
3561 }
3562 }
3563
3564 done:
3565 free (syms);
3566 return count;
3567 }
3568 \f
3569 /* The following functions are specific to the ELF linker, while
3570 functions above are used generally. Those named ppc64_elf_* are
3571 called by the main ELF linker code. They appear in this file more
3572 or less in the order in which they are called. eg.
3573 ppc64_elf_check_relocs is called early in the link process,
3574 ppc64_elf_finish_dynamic_sections is one of the last functions
3575 called.
3576
3577 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3578 functions have both a function code symbol and a function descriptor
3579 symbol. A call to foo in a relocatable object file looks like:
3580
3581 . .text
3582 . x:
3583 . bl .foo
3584 . nop
3585
3586 The function definition in another object file might be:
3587
3588 . .section .opd
3589 . foo: .quad .foo
3590 . .quad .TOC.@tocbase
3591 . .quad 0
3592 .
3593 . .text
3594 . .foo: blr
3595
3596 When the linker resolves the call during a static link, the branch
3597 unsurprisingly just goes to .foo and the .opd information is unused.
3598 If the function definition is in a shared library, things are a little
3599 different: The call goes via a plt call stub, the opd information gets
3600 copied to the plt, and the linker patches the nop.
3601
3602 . x:
3603 . bl .foo_stub
3604 . ld 2,40(1)
3605 .
3606 .
3607 . .foo_stub:
3608 . std 2,40(1) # in practice, the call stub
3609 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3610 . addi 11,11,Lfoo@toc@l # this is the general idea
3611 . ld 12,0(11)
3612 . ld 2,8(11)
3613 . mtctr 12
3614 . ld 11,16(11)
3615 . bctr
3616 .
3617 . .section .plt
3618 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3619
3620 The "reloc ()" notation is supposed to indicate that the linker emits
3621 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3622 copying.
3623
3624 What are the difficulties here? Well, firstly, the relocations
3625 examined by the linker in check_relocs are against the function code
3626 sym .foo, while the dynamic relocation in the plt is emitted against
3627 the function descriptor symbol, foo. Somewhere along the line, we need
3628 to carefully copy dynamic link information from one symbol to the other.
3629 Secondly, the generic part of the elf linker will make .foo a dynamic
3630 symbol as is normal for most other backends. We need foo dynamic
3631 instead, at least for an application final link. However, when
3632 creating a shared library containing foo, we need to have both symbols
3633 dynamic so that references to .foo are satisfied during the early
3634 stages of linking. Otherwise the linker might decide to pull in a
3635 definition from some other object, eg. a static library.
3636
3637 Update: As of August 2004, we support a new convention. Function
3638 calls may use the function descriptor symbol, ie. "bl foo". This
3639 behaves exactly as "bl .foo". */
3640
3641 /* Of those relocs that might be copied as dynamic relocs, this function
3642 selects those that must be copied when linking a shared library,
3643 even when the symbol is local. */
3644
3645 static int
3646 must_be_dyn_reloc (struct bfd_link_info *info,
3647 enum elf_ppc64_reloc_type r_type)
3648 {
3649 switch (r_type)
3650 {
3651 default:
3652 return 1;
3653
3654 case R_PPC64_REL32:
3655 case R_PPC64_REL64:
3656 case R_PPC64_REL30:
3657 return 0;
3658
3659 case R_PPC64_TPREL16:
3660 case R_PPC64_TPREL16_LO:
3661 case R_PPC64_TPREL16_HI:
3662 case R_PPC64_TPREL16_HA:
3663 case R_PPC64_TPREL16_DS:
3664 case R_PPC64_TPREL16_LO_DS:
3665 case R_PPC64_TPREL16_HIGH:
3666 case R_PPC64_TPREL16_HIGHA:
3667 case R_PPC64_TPREL16_HIGHER:
3668 case R_PPC64_TPREL16_HIGHERA:
3669 case R_PPC64_TPREL16_HIGHEST:
3670 case R_PPC64_TPREL16_HIGHESTA:
3671 case R_PPC64_TPREL64:
3672 return !info->executable;
3673 }
3674 }
3675
3676 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3677 copying dynamic variables from a shared lib into an app's dynbss
3678 section, and instead use a dynamic relocation to point into the
3679 shared lib. With code that gcc generates, it's vital that this be
3680 enabled; In the PowerPC64 ABI, the address of a function is actually
3681 the address of a function descriptor, which resides in the .opd
3682 section. gcc uses the descriptor directly rather than going via the
3683 GOT as some other ABI's do, which means that initialized function
3684 pointers must reference the descriptor. Thus, a function pointer
3685 initialized to the address of a function in a shared library will
3686 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3687 redefines the function descriptor symbol to point to the copy. This
3688 presents a problem as a plt entry for that function is also
3689 initialized from the function descriptor symbol and the copy reloc
3690 may not be initialized first. */
3691 #define ELIMINATE_COPY_RELOCS 1
3692
3693 /* Section name for stubs is the associated section name plus this
3694 string. */
3695 #define STUB_SUFFIX ".stub"
3696
3697 /* Linker stubs.
3698 ppc_stub_long_branch:
3699 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3700 destination, but a 24 bit branch in a stub section will reach.
3701 . b dest
3702
3703 ppc_stub_plt_branch:
3704 Similar to the above, but a 24 bit branch in the stub section won't
3705 reach its destination.
3706 . addis %r11,%r2,xxx@toc@ha
3707 . ld %r12,xxx@toc@l(%r11)
3708 . mtctr %r12
3709 . bctr
3710
3711 ppc_stub_plt_call:
3712 Used to call a function in a shared library. If it so happens that
3713 the plt entry referenced crosses a 64k boundary, then an extra
3714 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3715 . std %r2,40(%r1)
3716 . addis %r11,%r2,xxx@toc@ha
3717 . ld %r12,xxx+0@toc@l(%r11)
3718 . mtctr %r12
3719 . ld %r2,xxx+8@toc@l(%r11)
3720 . ld %r11,xxx+16@toc@l(%r11)
3721 . bctr
3722
3723 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3724 code to adjust the value and save r2 to support multiple toc sections.
3725 A ppc_stub_long_branch with an r2 offset looks like:
3726 . std %r2,40(%r1)
3727 . addis %r2,%r2,off@ha
3728 . addi %r2,%r2,off@l
3729 . b dest
3730
3731 A ppc_stub_plt_branch with an r2 offset looks like:
3732 . std %r2,40(%r1)
3733 . addis %r11,%r2,xxx@toc@ha
3734 . ld %r12,xxx@toc@l(%r11)
3735 . addis %r2,%r2,off@ha
3736 . addi %r2,%r2,off@l
3737 . mtctr %r12
3738 . bctr
3739
3740 In cases where the "addis" instruction would add zero, the "addis" is
3741 omitted and following instructions modified slightly in some cases.
3742 */
3743
3744 enum ppc_stub_type {
3745 ppc_stub_none,
3746 ppc_stub_long_branch,
3747 ppc_stub_long_branch_r2off,
3748 ppc_stub_plt_branch,
3749 ppc_stub_plt_branch_r2off,
3750 ppc_stub_plt_call,
3751 ppc_stub_plt_call_r2save
3752 };
3753
3754 struct ppc_stub_hash_entry {
3755
3756 /* Base hash table entry structure. */
3757 struct bfd_hash_entry root;
3758
3759 enum ppc_stub_type stub_type;
3760
3761 /* The stub section. */
3762 asection *stub_sec;
3763
3764 /* Offset within stub_sec of the beginning of this stub. */
3765 bfd_vma stub_offset;
3766
3767 /* Given the symbol's value and its section we can determine its final
3768 value when building the stubs (so the stub knows where to jump. */
3769 bfd_vma target_value;
3770 asection *target_section;
3771
3772 /* The symbol table entry, if any, that this was derived from. */
3773 struct ppc_link_hash_entry *h;
3774 struct plt_entry *plt_ent;
3775
3776 /* Where this stub is being called from, or, in the case of combined
3777 stub sections, the first input section in the group. */
3778 asection *id_sec;
3779
3780 /* Symbol st_other. */
3781 unsigned char other;
3782 };
3783
3784 struct ppc_branch_hash_entry {
3785
3786 /* Base hash table entry structure. */
3787 struct bfd_hash_entry root;
3788
3789 /* Offset within branch lookup table. */
3790 unsigned int offset;
3791
3792 /* Generation marker. */
3793 unsigned int iter;
3794 };
3795
3796 /* Used to track dynamic relocations for local symbols. */
3797 struct ppc_dyn_relocs
3798 {
3799 struct ppc_dyn_relocs *next;
3800
3801 /* The input section of the reloc. */
3802 asection *sec;
3803
3804 /* Total number of relocs copied for the input section. */
3805 unsigned int count : 31;
3806
3807 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3808 unsigned int ifunc : 1;
3809 };
3810
3811 struct ppc_link_hash_entry
3812 {
3813 struct elf_link_hash_entry elf;
3814
3815 union {
3816 /* A pointer to the most recently used stub hash entry against this
3817 symbol. */
3818 struct ppc_stub_hash_entry *stub_cache;
3819
3820 /* A pointer to the next symbol starting with a '.' */
3821 struct ppc_link_hash_entry *next_dot_sym;
3822 } u;
3823
3824 /* Track dynamic relocs copied for this symbol. */
3825 struct elf_dyn_relocs *dyn_relocs;
3826
3827 /* Link between function code and descriptor symbols. */
3828 struct ppc_link_hash_entry *oh;
3829
3830 /* Flag function code and descriptor symbols. */
3831 unsigned int is_func:1;
3832 unsigned int is_func_descriptor:1;
3833 unsigned int fake:1;
3834
3835 /* Whether global opd/toc sym has been adjusted or not.
3836 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3837 should be set for all globals defined in any opd/toc section. */
3838 unsigned int adjust_done:1;
3839
3840 /* Set if we twiddled this symbol to weak at some stage. */
3841 unsigned int was_undefined:1;
3842
3843 /* Contexts in which symbol is used in the GOT (or TOC).
3844 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3845 corresponding relocs are encountered during check_relocs.
3846 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3847 indicate the corresponding GOT entry type is not needed.
3848 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3849 a TPREL one. We use a separate flag rather than setting TPREL
3850 just for convenience in distinguishing the two cases. */
3851 #define TLS_GD 1 /* GD reloc. */
3852 #define TLS_LD 2 /* LD reloc. */
3853 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3854 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3855 #define TLS_TLS 16 /* Any TLS reloc. */
3856 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3857 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3858 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3859 unsigned char tls_mask;
3860 };
3861
3862 /* ppc64 ELF linker hash table. */
3863
3864 struct ppc_link_hash_table
3865 {
3866 struct elf_link_hash_table elf;
3867
3868 /* The stub hash table. */
3869 struct bfd_hash_table stub_hash_table;
3870
3871 /* Another hash table for plt_branch stubs. */
3872 struct bfd_hash_table branch_hash_table;
3873
3874 /* Hash table for function prologue tocsave. */
3875 htab_t tocsave_htab;
3876
3877 /* Linker stub bfd. */
3878 bfd *stub_bfd;
3879
3880 /* Linker call-backs. */
3881 asection * (*add_stub_section) (const char *, asection *);
3882 void (*layout_sections_again) (void);
3883
3884 /* Array to keep track of which stub sections have been created, and
3885 information on stub grouping. */
3886 struct map_stub {
3887 /* This is the section to which stubs in the group will be attached. */
3888 asection *link_sec;
3889 /* The stub section. */
3890 asection *stub_sec;
3891 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3892 bfd_vma toc_off;
3893 } *stub_group;
3894
3895 /* Temp used when calculating TOC pointers. */
3896 bfd_vma toc_curr;
3897 bfd *toc_bfd;
3898 asection *toc_first_sec;
3899
3900 /* Highest input section id. */
3901 int top_id;
3902
3903 /* Highest output section index. */
3904 int top_index;
3905
3906 /* Used when adding symbols. */
3907 struct ppc_link_hash_entry *dot_syms;
3908
3909 /* List of input sections for each output section. */
3910 asection **input_list;
3911
3912 /* Shortcuts to get to dynamic linker sections. */
3913 asection *dynbss;
3914 asection *relbss;
3915 asection *glink;
3916 asection *sfpr;
3917 asection *brlt;
3918 asection *relbrlt;
3919 asection *glink_eh_frame;
3920
3921 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3922 struct ppc_link_hash_entry *tls_get_addr;
3923 struct ppc_link_hash_entry *tls_get_addr_fd;
3924
3925 /* The size of reliplt used by got entry relocs. */
3926 bfd_size_type got_reli_size;
3927
3928 /* Statistics. */
3929 unsigned long stub_count[ppc_stub_plt_call_r2save];
3930
3931 /* Number of stubs against global syms. */
3932 unsigned long stub_globals;
3933
3934 /* Alignment of PLT call stubs. */
3935 unsigned int plt_stub_align:4;
3936
3937 /* Set if we're linking code with function descriptors. */
3938 unsigned int opd_abi:1;
3939
3940 /* Set if PLT call stubs should load r11. */
3941 unsigned int plt_static_chain:1;
3942
3943 /* Set if PLT call stubs need a read-read barrier. */
3944 unsigned int plt_thread_safe:1;
3945
3946 /* Set if we should emit symbols for stubs. */
3947 unsigned int emit_stub_syms:1;
3948
3949 /* Set if __tls_get_addr optimization should not be done. */
3950 unsigned int no_tls_get_addr_opt:1;
3951
3952 /* Support for multiple toc sections. */
3953 unsigned int do_multi_toc:1;
3954 unsigned int multi_toc_needed:1;
3955 unsigned int second_toc_pass:1;
3956 unsigned int do_toc_opt:1;
3957
3958 /* Set on error. */
3959 unsigned int stub_error:1;
3960
3961 /* Temp used by ppc64_elf_process_dot_syms. */
3962 unsigned int twiddled_syms:1;
3963
3964 /* Incremented every time we size stubs. */
3965 unsigned int stub_iteration;
3966
3967 /* Small local sym cache. */
3968 struct sym_cache sym_cache;
3969 };
3970
3971 /* Rename some of the generic section flags to better document how they
3972 are used here. */
3973
3974 /* Nonzero if this section has TLS related relocations. */
3975 #define has_tls_reloc sec_flg0
3976
3977 /* Nonzero if this section has a call to __tls_get_addr. */
3978 #define has_tls_get_addr_call sec_flg1
3979
3980 /* Nonzero if this section has any toc or got relocs. */
3981 #define has_toc_reloc sec_flg2
3982
3983 /* Nonzero if this section has a call to another section that uses
3984 the toc or got. */
3985 #define makes_toc_func_call sec_flg3
3986
3987 /* Recursion protection when determining above flag. */
3988 #define call_check_in_progress sec_flg4
3989 #define call_check_done sec_flg5
3990
3991 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3992
3993 #define ppc_hash_table(p) \
3994 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3995 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3996
3997 #define ppc_stub_hash_lookup(table, string, create, copy) \
3998 ((struct ppc_stub_hash_entry *) \
3999 bfd_hash_lookup ((table), (string), (create), (copy)))
4000
4001 #define ppc_branch_hash_lookup(table, string, create, copy) \
4002 ((struct ppc_branch_hash_entry *) \
4003 bfd_hash_lookup ((table), (string), (create), (copy)))
4004
4005 /* Create an entry in the stub hash table. */
4006
4007 static struct bfd_hash_entry *
4008 stub_hash_newfunc (struct bfd_hash_entry *entry,
4009 struct bfd_hash_table *table,
4010 const char *string)
4011 {
4012 /* Allocate the structure if it has not already been allocated by a
4013 subclass. */
4014 if (entry == NULL)
4015 {
4016 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4017 if (entry == NULL)
4018 return entry;
4019 }
4020
4021 /* Call the allocation method of the superclass. */
4022 entry = bfd_hash_newfunc (entry, table, string);
4023 if (entry != NULL)
4024 {
4025 struct ppc_stub_hash_entry *eh;
4026
4027 /* Initialize the local fields. */
4028 eh = (struct ppc_stub_hash_entry *) entry;
4029 eh->stub_type = ppc_stub_none;
4030 eh->stub_sec = NULL;
4031 eh->stub_offset = 0;
4032 eh->target_value = 0;
4033 eh->target_section = NULL;
4034 eh->h = NULL;
4035 eh->plt_ent = NULL;
4036 eh->id_sec = NULL;
4037 eh->other = 0;
4038 }
4039
4040 return entry;
4041 }
4042
4043 /* Create an entry in the branch hash table. */
4044
4045 static struct bfd_hash_entry *
4046 branch_hash_newfunc (struct bfd_hash_entry *entry,
4047 struct bfd_hash_table *table,
4048 const char *string)
4049 {
4050 /* Allocate the structure if it has not already been allocated by a
4051 subclass. */
4052 if (entry == NULL)
4053 {
4054 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4055 if (entry == NULL)
4056 return entry;
4057 }
4058
4059 /* Call the allocation method of the superclass. */
4060 entry = bfd_hash_newfunc (entry, table, string);
4061 if (entry != NULL)
4062 {
4063 struct ppc_branch_hash_entry *eh;
4064
4065 /* Initialize the local fields. */
4066 eh = (struct ppc_branch_hash_entry *) entry;
4067 eh->offset = 0;
4068 eh->iter = 0;
4069 }
4070
4071 return entry;
4072 }
4073
4074 /* Create an entry in a ppc64 ELF linker hash table. */
4075
4076 static struct bfd_hash_entry *
4077 link_hash_newfunc (struct bfd_hash_entry *entry,
4078 struct bfd_hash_table *table,
4079 const char *string)
4080 {
4081 /* Allocate the structure if it has not already been allocated by a
4082 subclass. */
4083 if (entry == NULL)
4084 {
4085 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4086 if (entry == NULL)
4087 return entry;
4088 }
4089
4090 /* Call the allocation method of the superclass. */
4091 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4092 if (entry != NULL)
4093 {
4094 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4095
4096 memset (&eh->u.stub_cache, 0,
4097 (sizeof (struct ppc_link_hash_entry)
4098 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4099
4100 /* When making function calls, old ABI code references function entry
4101 points (dot symbols), while new ABI code references the function
4102 descriptor symbol. We need to make any combination of reference and
4103 definition work together, without breaking archive linking.
4104
4105 For a defined function "foo" and an undefined call to "bar":
4106 An old object defines "foo" and ".foo", references ".bar" (possibly
4107 "bar" too).
4108 A new object defines "foo" and references "bar".
4109
4110 A new object thus has no problem with its undefined symbols being
4111 satisfied by definitions in an old object. On the other hand, the
4112 old object won't have ".bar" satisfied by a new object.
4113
4114 Keep a list of newly added dot-symbols. */
4115
4116 if (string[0] == '.')
4117 {
4118 struct ppc_link_hash_table *htab;
4119
4120 htab = (struct ppc_link_hash_table *) table;
4121 eh->u.next_dot_sym = htab->dot_syms;
4122 htab->dot_syms = eh;
4123 }
4124 }
4125
4126 return entry;
4127 }
4128
4129 struct tocsave_entry {
4130 asection *sec;
4131 bfd_vma offset;
4132 };
4133
4134 static hashval_t
4135 tocsave_htab_hash (const void *p)
4136 {
4137 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4138 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4139 }
4140
4141 static int
4142 tocsave_htab_eq (const void *p1, const void *p2)
4143 {
4144 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4145 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4146 return e1->sec == e2->sec && e1->offset == e2->offset;
4147 }
4148
4149 /* Create a ppc64 ELF linker hash table. */
4150
4151 static struct bfd_link_hash_table *
4152 ppc64_elf_link_hash_table_create (bfd *abfd)
4153 {
4154 struct ppc_link_hash_table *htab;
4155 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4156
4157 htab = bfd_zmalloc (amt);
4158 if (htab == NULL)
4159 return NULL;
4160
4161 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4162 sizeof (struct ppc_link_hash_entry),
4163 PPC64_ELF_DATA))
4164 {
4165 free (htab);
4166 return NULL;
4167 }
4168
4169 /* Init the stub hash table too. */
4170 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4171 sizeof (struct ppc_stub_hash_entry)))
4172 return NULL;
4173
4174 /* And the branch hash table. */
4175 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4176 sizeof (struct ppc_branch_hash_entry)))
4177 return NULL;
4178
4179 htab->tocsave_htab = htab_try_create (1024,
4180 tocsave_htab_hash,
4181 tocsave_htab_eq,
4182 NULL);
4183 if (htab->tocsave_htab == NULL)
4184 return NULL;
4185
4186 /* Initializing two fields of the union is just cosmetic. We really
4187 only care about glist, but when compiled on a 32-bit host the
4188 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4189 debugger inspection of these fields look nicer. */
4190 htab->elf.init_got_refcount.refcount = 0;
4191 htab->elf.init_got_refcount.glist = NULL;
4192 htab->elf.init_plt_refcount.refcount = 0;
4193 htab->elf.init_plt_refcount.glist = NULL;
4194 htab->elf.init_got_offset.offset = 0;
4195 htab->elf.init_got_offset.glist = NULL;
4196 htab->elf.init_plt_offset.offset = 0;
4197 htab->elf.init_plt_offset.glist = NULL;
4198
4199 return &htab->elf.root;
4200 }
4201
4202 /* Free the derived linker hash table. */
4203
4204 static void
4205 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4206 {
4207 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4208
4209 bfd_hash_table_free (&htab->stub_hash_table);
4210 bfd_hash_table_free (&htab->branch_hash_table);
4211 if (htab->tocsave_htab)
4212 htab_delete (htab->tocsave_htab);
4213 _bfd_elf_link_hash_table_free (hash);
4214 }
4215
4216 /* Create sections for linker generated code. */
4217
4218 static bfd_boolean
4219 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4220 {
4221 struct ppc_link_hash_table *htab;
4222 flagword flags;
4223
4224 htab = ppc_hash_table (info);
4225
4226 /* Create .sfpr for code to save and restore fp regs. */
4227 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4228 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4229 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4230 flags);
4231 if (htab->sfpr == NULL
4232 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4233 return FALSE;
4234
4235 /* Create .glink for lazy dynamic linking support. */
4236 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4237 flags);
4238 if (htab->glink == NULL
4239 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4240 return FALSE;
4241
4242 if (!info->no_ld_generated_unwind_info)
4243 {
4244 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4245 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4246 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4247 ".eh_frame",
4248 flags);
4249 if (htab->glink_eh_frame == NULL
4250 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4251 return FALSE;
4252 }
4253
4254 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4255 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4256 if (htab->elf.iplt == NULL
4257 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4258 return FALSE;
4259
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->elf.irelplt
4263 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4264 if (htab->elf.irelplt == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4266 return FALSE;
4267
4268 /* Create branch lookup table for plt_branch stubs. */
4269 flags = (SEC_ALLOC | SEC_LOAD
4270 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4271 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4272 flags);
4273 if (htab->brlt == NULL
4274 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4275 return FALSE;
4276
4277 if (!info->shared)
4278 return TRUE;
4279
4280 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4281 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4282 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4283 ".rela.branch_lt",
4284 flags);
4285 if (htab->relbrlt == NULL
4286 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4287 return FALSE;
4288
4289 return TRUE;
4290 }
4291
4292 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4293
4294 bfd_boolean
4295 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4296 {
4297 struct ppc_link_hash_table *htab;
4298
4299 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4300
4301 /* Always hook our dynamic sections into the first bfd, which is the
4302 linker created stub bfd. This ensures that the GOT header is at
4303 the start of the output TOC section. */
4304 htab = ppc_hash_table (info);
4305 if (htab == NULL)
4306 return FALSE;
4307 htab->stub_bfd = abfd;
4308 htab->elf.dynobj = abfd;
4309
4310 if (info->relocatable)
4311 return TRUE;
4312
4313 return create_linkage_sections (htab->elf.dynobj, info);
4314 }
4315
4316 /* Build a name for an entry in the stub hash table. */
4317
4318 static char *
4319 ppc_stub_name (const asection *input_section,
4320 const asection *sym_sec,
4321 const struct ppc_link_hash_entry *h,
4322 const Elf_Internal_Rela *rel)
4323 {
4324 char *stub_name;
4325 ssize_t len;
4326
4327 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4328 offsets from a sym as a branch target? In fact, we could
4329 probably assume the addend is always zero. */
4330 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4331
4332 if (h)
4333 {
4334 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4335 stub_name = bfd_malloc (len);
4336 if (stub_name == NULL)
4337 return stub_name;
4338
4339 len = sprintf (stub_name, "%08x.%s+%x",
4340 input_section->id & 0xffffffff,
4341 h->elf.root.root.string,
4342 (int) rel->r_addend & 0xffffffff);
4343 }
4344 else
4345 {
4346 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4347 stub_name = bfd_malloc (len);
4348 if (stub_name == NULL)
4349 return stub_name;
4350
4351 len = sprintf (stub_name, "%08x.%x:%x+%x",
4352 input_section->id & 0xffffffff,
4353 sym_sec->id & 0xffffffff,
4354 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4355 (int) rel->r_addend & 0xffffffff);
4356 }
4357 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4358 stub_name[len - 2] = 0;
4359 return stub_name;
4360 }
4361
4362 /* Look up an entry in the stub hash. Stub entries are cached because
4363 creating the stub name takes a bit of time. */
4364
4365 static struct ppc_stub_hash_entry *
4366 ppc_get_stub_entry (const asection *input_section,
4367 const asection *sym_sec,
4368 struct ppc_link_hash_entry *h,
4369 const Elf_Internal_Rela *rel,
4370 struct ppc_link_hash_table *htab)
4371 {
4372 struct ppc_stub_hash_entry *stub_entry;
4373 const asection *id_sec;
4374
4375 /* If this input section is part of a group of sections sharing one
4376 stub section, then use the id of the first section in the group.
4377 Stub names need to include a section id, as there may well be
4378 more than one stub used to reach say, printf, and we need to
4379 distinguish between them. */
4380 id_sec = htab->stub_group[input_section->id].link_sec;
4381
4382 if (h != NULL && h->u.stub_cache != NULL
4383 && h->u.stub_cache->h == h
4384 && h->u.stub_cache->id_sec == id_sec)
4385 {
4386 stub_entry = h->u.stub_cache;
4387 }
4388 else
4389 {
4390 char *stub_name;
4391
4392 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4393 if (stub_name == NULL)
4394 return NULL;
4395
4396 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4397 stub_name, FALSE, FALSE);
4398 if (h != NULL)
4399 h->u.stub_cache = stub_entry;
4400
4401 free (stub_name);
4402 }
4403
4404 return stub_entry;
4405 }
4406
4407 /* Add a new stub entry to the stub hash. Not all fields of the new
4408 stub entry are initialised. */
4409
4410 static struct ppc_stub_hash_entry *
4411 ppc_add_stub (const char *stub_name,
4412 asection *section,
4413 struct bfd_link_info *info)
4414 {
4415 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4416 asection *link_sec;
4417 asection *stub_sec;
4418 struct ppc_stub_hash_entry *stub_entry;
4419
4420 link_sec = htab->stub_group[section->id].link_sec;
4421 stub_sec = htab->stub_group[section->id].stub_sec;
4422 if (stub_sec == NULL)
4423 {
4424 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4425 if (stub_sec == NULL)
4426 {
4427 size_t namelen;
4428 bfd_size_type len;
4429 char *s_name;
4430
4431 namelen = strlen (link_sec->name);
4432 len = namelen + sizeof (STUB_SUFFIX);
4433 s_name = bfd_alloc (htab->stub_bfd, len);
4434 if (s_name == NULL)
4435 return NULL;
4436
4437 memcpy (s_name, link_sec->name, namelen);
4438 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4439 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4440 if (stub_sec == NULL)
4441 return NULL;
4442 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4443 }
4444 htab->stub_group[section->id].stub_sec = stub_sec;
4445 }
4446
4447 /* Enter this entry into the linker stub hash table. */
4448 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4449 TRUE, FALSE);
4450 if (stub_entry == NULL)
4451 {
4452 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4453 section->owner, stub_name);
4454 return NULL;
4455 }
4456
4457 stub_entry->stub_sec = stub_sec;
4458 stub_entry->stub_offset = 0;
4459 stub_entry->id_sec = link_sec;
4460 return stub_entry;
4461 }
4462
4463 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4464 not already done. */
4465
4466 static bfd_boolean
4467 create_got_section (bfd *abfd, struct bfd_link_info *info)
4468 {
4469 asection *got, *relgot;
4470 flagword flags;
4471 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4472
4473 if (!is_ppc64_elf (abfd))
4474 return FALSE;
4475 if (htab == NULL)
4476 return FALSE;
4477
4478 if (!htab->elf.sgot
4479 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4480 return FALSE;
4481
4482 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4483 | SEC_LINKER_CREATED);
4484
4485 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4486 if (!got
4487 || !bfd_set_section_alignment (abfd, got, 3))
4488 return FALSE;
4489
4490 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4491 flags | SEC_READONLY);
4492 if (!relgot
4493 || ! bfd_set_section_alignment (abfd, relgot, 3))
4494 return FALSE;
4495
4496 ppc64_elf_tdata (abfd)->got = got;
4497 ppc64_elf_tdata (abfd)->relgot = relgot;
4498 return TRUE;
4499 }
4500
4501 /* Create the dynamic sections, and set up shortcuts. */
4502
4503 static bfd_boolean
4504 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4505 {
4506 struct ppc_link_hash_table *htab;
4507
4508 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4509 return FALSE;
4510
4511 htab = ppc_hash_table (info);
4512 if (htab == NULL)
4513 return FALSE;
4514
4515 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4516 if (!info->shared)
4517 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4518
4519 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4520 || (!info->shared && !htab->relbss))
4521 abort ();
4522
4523 return TRUE;
4524 }
4525
4526 /* Follow indirect and warning symbol links. */
4527
4528 static inline struct bfd_link_hash_entry *
4529 follow_link (struct bfd_link_hash_entry *h)
4530 {
4531 while (h->type == bfd_link_hash_indirect
4532 || h->type == bfd_link_hash_warning)
4533 h = h->u.i.link;
4534 return h;
4535 }
4536
4537 static inline struct elf_link_hash_entry *
4538 elf_follow_link (struct elf_link_hash_entry *h)
4539 {
4540 return (struct elf_link_hash_entry *) follow_link (&h->root);
4541 }
4542
4543 static inline struct ppc_link_hash_entry *
4544 ppc_follow_link (struct ppc_link_hash_entry *h)
4545 {
4546 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4547 }
4548
4549 /* Merge PLT info on FROM with that on TO. */
4550
4551 static void
4552 move_plt_plist (struct ppc_link_hash_entry *from,
4553 struct ppc_link_hash_entry *to)
4554 {
4555 if (from->elf.plt.plist != NULL)
4556 {
4557 if (to->elf.plt.plist != NULL)
4558 {
4559 struct plt_entry **entp;
4560 struct plt_entry *ent;
4561
4562 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4563 {
4564 struct plt_entry *dent;
4565
4566 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4567 if (dent->addend == ent->addend)
4568 {
4569 dent->plt.refcount += ent->plt.refcount;
4570 *entp = ent->next;
4571 break;
4572 }
4573 if (dent == NULL)
4574 entp = &ent->next;
4575 }
4576 *entp = to->elf.plt.plist;
4577 }
4578
4579 to->elf.plt.plist = from->elf.plt.plist;
4580 from->elf.plt.plist = NULL;
4581 }
4582 }
4583
4584 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4585
4586 static void
4587 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4588 struct elf_link_hash_entry *dir,
4589 struct elf_link_hash_entry *ind)
4590 {
4591 struct ppc_link_hash_entry *edir, *eind;
4592
4593 edir = (struct ppc_link_hash_entry *) dir;
4594 eind = (struct ppc_link_hash_entry *) ind;
4595
4596 edir->is_func |= eind->is_func;
4597 edir->is_func_descriptor |= eind->is_func_descriptor;
4598 edir->tls_mask |= eind->tls_mask;
4599 if (eind->oh != NULL)
4600 edir->oh = ppc_follow_link (eind->oh);
4601
4602 /* If called to transfer flags for a weakdef during processing
4603 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4604 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4605 if (!(ELIMINATE_COPY_RELOCS
4606 && eind->elf.root.type != bfd_link_hash_indirect
4607 && edir->elf.dynamic_adjusted))
4608 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4609
4610 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4611 edir->elf.ref_regular |= eind->elf.ref_regular;
4612 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4613 edir->elf.needs_plt |= eind->elf.needs_plt;
4614 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4615
4616 /* Copy over any dynamic relocs we may have on the indirect sym. */
4617 if (eind->dyn_relocs != NULL)
4618 {
4619 if (edir->dyn_relocs != NULL)
4620 {
4621 struct elf_dyn_relocs **pp;
4622 struct elf_dyn_relocs *p;
4623
4624 /* Add reloc counts against the indirect sym to the direct sym
4625 list. Merge any entries against the same section. */
4626 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4627 {
4628 struct elf_dyn_relocs *q;
4629
4630 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4631 if (q->sec == p->sec)
4632 {
4633 q->pc_count += p->pc_count;
4634 q->count += p->count;
4635 *pp = p->next;
4636 break;
4637 }
4638 if (q == NULL)
4639 pp = &p->next;
4640 }
4641 *pp = edir->dyn_relocs;
4642 }
4643
4644 edir->dyn_relocs = eind->dyn_relocs;
4645 eind->dyn_relocs = NULL;
4646 }
4647
4648 /* If we were called to copy over info for a weak sym, that's all.
4649 You might think dyn_relocs need not be copied over; After all,
4650 both syms will be dynamic or both non-dynamic so we're just
4651 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4652 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4653 dyn_relocs in read-only sections, and it does so on what is the
4654 DIR sym here. */
4655 if (eind->elf.root.type != bfd_link_hash_indirect)
4656 return;
4657
4658 /* Copy over got entries that we may have already seen to the
4659 symbol which just became indirect. */
4660 if (eind->elf.got.glist != NULL)
4661 {
4662 if (edir->elf.got.glist != NULL)
4663 {
4664 struct got_entry **entp;
4665 struct got_entry *ent;
4666
4667 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4668 {
4669 struct got_entry *dent;
4670
4671 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4672 if (dent->addend == ent->addend
4673 && dent->owner == ent->owner
4674 && dent->tls_type == ent->tls_type)
4675 {
4676 dent->got.refcount += ent->got.refcount;
4677 *entp = ent->next;
4678 break;
4679 }
4680 if (dent == NULL)
4681 entp = &ent->next;
4682 }
4683 *entp = edir->elf.got.glist;
4684 }
4685
4686 edir->elf.got.glist = eind->elf.got.glist;
4687 eind->elf.got.glist = NULL;
4688 }
4689
4690 /* And plt entries. */
4691 move_plt_plist (eind, edir);
4692
4693 if (eind->elf.dynindx != -1)
4694 {
4695 if (edir->elf.dynindx != -1)
4696 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4697 edir->elf.dynstr_index);
4698 edir->elf.dynindx = eind->elf.dynindx;
4699 edir->elf.dynstr_index = eind->elf.dynstr_index;
4700 eind->elf.dynindx = -1;
4701 eind->elf.dynstr_index = 0;
4702 }
4703 }
4704
4705 /* Find the function descriptor hash entry from the given function code
4706 hash entry FH. Link the entries via their OH fields. */
4707
4708 static struct ppc_link_hash_entry *
4709 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4710 {
4711 struct ppc_link_hash_entry *fdh = fh->oh;
4712
4713 if (fdh == NULL)
4714 {
4715 const char *fd_name = fh->elf.root.root.string + 1;
4716
4717 fdh = (struct ppc_link_hash_entry *)
4718 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4719 if (fdh == NULL)
4720 return fdh;
4721
4722 fdh->is_func_descriptor = 1;
4723 fdh->oh = fh;
4724 fh->is_func = 1;
4725 fh->oh = fdh;
4726 }
4727
4728 return ppc_follow_link (fdh);
4729 }
4730
4731 /* Make a fake function descriptor sym for the code sym FH. */
4732
4733 static struct ppc_link_hash_entry *
4734 make_fdh (struct bfd_link_info *info,
4735 struct ppc_link_hash_entry *fh)
4736 {
4737 bfd *abfd;
4738 asymbol *newsym;
4739 struct bfd_link_hash_entry *bh;
4740 struct ppc_link_hash_entry *fdh;
4741
4742 abfd = fh->elf.root.u.undef.abfd;
4743 newsym = bfd_make_empty_symbol (abfd);
4744 newsym->name = fh->elf.root.root.string + 1;
4745 newsym->section = bfd_und_section_ptr;
4746 newsym->value = 0;
4747 newsym->flags = BSF_WEAK;
4748
4749 bh = NULL;
4750 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4751 newsym->flags, newsym->section,
4752 newsym->value, NULL, FALSE, FALSE,
4753 &bh))
4754 return NULL;
4755
4756 fdh = (struct ppc_link_hash_entry *) bh;
4757 fdh->elf.non_elf = 0;
4758 fdh->fake = 1;
4759 fdh->is_func_descriptor = 1;
4760 fdh->oh = fh;
4761 fh->is_func = 1;
4762 fh->oh = fdh;
4763 return fdh;
4764 }
4765
4766 /* Fix function descriptor symbols defined in .opd sections to be
4767 function type. */
4768
4769 static bfd_boolean
4770 ppc64_elf_add_symbol_hook (bfd *ibfd,
4771 struct bfd_link_info *info,
4772 Elf_Internal_Sym *isym,
4773 const char **name,
4774 flagword *flags ATTRIBUTE_UNUSED,
4775 asection **sec,
4776 bfd_vma *value ATTRIBUTE_UNUSED)
4777 {
4778 if ((ibfd->flags & DYNAMIC) == 0
4779 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4780 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4781
4782 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4783 {
4784 if ((ibfd->flags & DYNAMIC) == 0)
4785 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4786 }
4787 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4788 ;
4789 else if (*sec != NULL
4790 && strcmp ((*sec)->name, ".opd") == 0)
4791 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4792
4793 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4794 {
4795 if (abiversion (ibfd) == 0)
4796 set_abiversion (ibfd, 2);
4797 else if (abiversion (ibfd) == 1)
4798 {
4799 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4800 " for ABI version 1\n"), name);
4801 bfd_set_error (bfd_error_bad_value);
4802 return FALSE;
4803 }
4804 }
4805
4806 return TRUE;
4807 }
4808
4809 /* Merge non-visibility st_other attributes: local entry point. */
4810
4811 static void
4812 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4813 const Elf_Internal_Sym *isym,
4814 bfd_boolean definition,
4815 bfd_boolean dynamic)
4816 {
4817 if (definition && !dynamic)
4818 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4819 | ELF_ST_VISIBILITY (h->other));
4820 }
4821
4822 /* This function makes an old ABI object reference to ".bar" cause the
4823 inclusion of a new ABI object archive that defines "bar".
4824 NAME is a symbol defined in an archive. Return a symbol in the hash
4825 table that might be satisfied by the archive symbols. */
4826
4827 static struct elf_link_hash_entry *
4828 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4829 struct bfd_link_info *info,
4830 const char *name)
4831 {
4832 struct elf_link_hash_entry *h;
4833 char *dot_name;
4834 size_t len;
4835
4836 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4837 if (h != NULL
4838 /* Don't return this sym if it is a fake function descriptor
4839 created by add_symbol_adjust. */
4840 && !(h->root.type == bfd_link_hash_undefweak
4841 && ((struct ppc_link_hash_entry *) h)->fake))
4842 return h;
4843
4844 if (name[0] == '.')
4845 return h;
4846
4847 len = strlen (name);
4848 dot_name = bfd_alloc (abfd, len + 2);
4849 if (dot_name == NULL)
4850 return (struct elf_link_hash_entry *) 0 - 1;
4851 dot_name[0] = '.';
4852 memcpy (dot_name + 1, name, len + 1);
4853 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4854 bfd_release (abfd, dot_name);
4855 return h;
4856 }
4857
4858 /* This function satisfies all old ABI object references to ".bar" if a
4859 new ABI object defines "bar". Well, at least, undefined dot symbols
4860 are made weak. This stops later archive searches from including an
4861 object if we already have a function descriptor definition. It also
4862 prevents the linker complaining about undefined symbols.
4863 We also check and correct mismatched symbol visibility here. The
4864 most restrictive visibility of the function descriptor and the
4865 function entry symbol is used. */
4866
4867 static bfd_boolean
4868 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4869 {
4870 struct ppc_link_hash_table *htab;
4871 struct ppc_link_hash_entry *fdh;
4872
4873 if (eh->elf.root.type == bfd_link_hash_indirect)
4874 return TRUE;
4875
4876 if (eh->elf.root.type == bfd_link_hash_warning)
4877 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4878
4879 if (eh->elf.root.root.string[0] != '.')
4880 abort ();
4881
4882 htab = ppc_hash_table (info);
4883 if (htab == NULL)
4884 return FALSE;
4885
4886 fdh = lookup_fdh (eh, htab);
4887 if (fdh == NULL)
4888 {
4889 if (!info->relocatable
4890 && (eh->elf.root.type == bfd_link_hash_undefined
4891 || eh->elf.root.type == bfd_link_hash_undefweak)
4892 && eh->elf.ref_regular)
4893 {
4894 /* Make an undefweak function descriptor sym, which is enough to
4895 pull in an --as-needed shared lib, but won't cause link
4896 errors. Archives are handled elsewhere. */
4897 fdh = make_fdh (info, eh);
4898 if (fdh == NULL)
4899 return FALSE;
4900 fdh->elf.ref_regular = 1;
4901 }
4902 }
4903 else
4904 {
4905 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4906 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4907 if (entry_vis < descr_vis)
4908 fdh->elf.other += entry_vis - descr_vis;
4909 else if (entry_vis > descr_vis)
4910 eh->elf.other += descr_vis - entry_vis;
4911
4912 if ((fdh->elf.root.type == bfd_link_hash_defined
4913 || fdh->elf.root.type == bfd_link_hash_defweak)
4914 && eh->elf.root.type == bfd_link_hash_undefined)
4915 {
4916 eh->elf.root.type = bfd_link_hash_undefweak;
4917 eh->was_undefined = 1;
4918 htab->twiddled_syms = 1;
4919 }
4920 }
4921
4922 return TRUE;
4923 }
4924
4925 /* Process list of dot-symbols we made in link_hash_newfunc. */
4926
4927 static bfd_boolean
4928 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4929 {
4930 struct ppc_link_hash_table *htab;
4931 struct ppc_link_hash_entry **p, *eh;
4932
4933 if (!is_ppc64_elf (info->output_bfd))
4934 return TRUE;
4935 htab = ppc_hash_table (info);
4936 if (htab == NULL)
4937 return FALSE;
4938
4939 if (is_ppc64_elf (ibfd))
4940 {
4941 p = &htab->dot_syms;
4942 while ((eh = *p) != NULL)
4943 {
4944 *p = NULL;
4945 if (&eh->elf == htab->elf.hgot)
4946 ;
4947 else if (htab->elf.hgot == NULL
4948 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4949 htab->elf.hgot = &eh->elf;
4950 else if (!add_symbol_adjust (eh, info))
4951 return FALSE;
4952 p = &eh->u.next_dot_sym;
4953 }
4954 }
4955
4956 /* Clear the list for non-ppc64 input files. */
4957 p = &htab->dot_syms;
4958 while ((eh = *p) != NULL)
4959 {
4960 *p = NULL;
4961 p = &eh->u.next_dot_sym;
4962 }
4963
4964 /* We need to fix the undefs list for any syms we have twiddled to
4965 undef_weak. */
4966 if (htab->twiddled_syms)
4967 {
4968 bfd_link_repair_undef_list (&htab->elf.root);
4969 htab->twiddled_syms = 0;
4970 }
4971 return TRUE;
4972 }
4973
4974 /* Undo hash table changes when an --as-needed input file is determined
4975 not to be needed. */
4976
4977 static bfd_boolean
4978 ppc64_elf_notice_as_needed (bfd *ibfd,
4979 struct bfd_link_info *info,
4980 enum notice_asneeded_action act)
4981 {
4982 if (act == notice_not_needed)
4983 {
4984 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4985
4986 if (htab == NULL)
4987 return FALSE;
4988
4989 htab->dot_syms = NULL;
4990 }
4991 return _bfd_elf_notice_as_needed (ibfd, info, act);
4992 }
4993
4994 /* If --just-symbols against a final linked binary, then assume we need
4995 toc adjusting stubs when calling functions defined there. */
4996
4997 static void
4998 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4999 {
5000 if ((sec->flags & SEC_CODE) != 0
5001 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5002 && is_ppc64_elf (sec->owner))
5003 {
5004 asection *got = bfd_get_section_by_name (sec->owner, ".got");
5005 if (got != NULL
5006 && got->size >= elf_backend_got_header_size
5007 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5008 sec->has_toc_reloc = 1;
5009 }
5010 _bfd_elf_link_just_syms (sec, info);
5011 }
5012
5013 static struct plt_entry **
5014 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5015 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5016 {
5017 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5018 struct plt_entry **local_plt;
5019 unsigned char *local_got_tls_masks;
5020
5021 if (local_got_ents == NULL)
5022 {
5023 bfd_size_type size = symtab_hdr->sh_info;
5024
5025 size *= (sizeof (*local_got_ents)
5026 + sizeof (*local_plt)
5027 + sizeof (*local_got_tls_masks));
5028 local_got_ents = bfd_zalloc (abfd, size);
5029 if (local_got_ents == NULL)
5030 return NULL;
5031 elf_local_got_ents (abfd) = local_got_ents;
5032 }
5033
5034 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5035 {
5036 struct got_entry *ent;
5037
5038 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5039 if (ent->addend == r_addend
5040 && ent->owner == abfd
5041 && ent->tls_type == tls_type)
5042 break;
5043 if (ent == NULL)
5044 {
5045 bfd_size_type amt = sizeof (*ent);
5046 ent = bfd_alloc (abfd, amt);
5047 if (ent == NULL)
5048 return FALSE;
5049 ent->next = local_got_ents[r_symndx];
5050 ent->addend = r_addend;
5051 ent->owner = abfd;
5052 ent->tls_type = tls_type;
5053 ent->is_indirect = FALSE;
5054 ent->got.refcount = 0;
5055 local_got_ents[r_symndx] = ent;
5056 }
5057 ent->got.refcount += 1;
5058 }
5059
5060 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5061 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5062 local_got_tls_masks[r_symndx] |= tls_type;
5063
5064 return local_plt + r_symndx;
5065 }
5066
5067 static bfd_boolean
5068 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5069 {
5070 struct plt_entry *ent;
5071
5072 for (ent = *plist; ent != NULL; ent = ent->next)
5073 if (ent->addend == addend)
5074 break;
5075 if (ent == NULL)
5076 {
5077 bfd_size_type amt = sizeof (*ent);
5078 ent = bfd_alloc (abfd, amt);
5079 if (ent == NULL)
5080 return FALSE;
5081 ent->next = *plist;
5082 ent->addend = addend;
5083 ent->plt.refcount = 0;
5084 *plist = ent;
5085 }
5086 ent->plt.refcount += 1;
5087 return TRUE;
5088 }
5089
5090 static bfd_boolean
5091 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5092 {
5093 return (r_type == R_PPC64_REL24
5094 || r_type == R_PPC64_REL14
5095 || r_type == R_PPC64_REL14_BRTAKEN
5096 || r_type == R_PPC64_REL14_BRNTAKEN
5097 || r_type == R_PPC64_ADDR24
5098 || r_type == R_PPC64_ADDR14
5099 || r_type == R_PPC64_ADDR14_BRTAKEN
5100 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5101 }
5102
5103 /* Look through the relocs for a section during the first phase, and
5104 calculate needed space in the global offset table, procedure
5105 linkage table, and dynamic reloc sections. */
5106
5107 static bfd_boolean
5108 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5109 asection *sec, const Elf_Internal_Rela *relocs)
5110 {
5111 struct ppc_link_hash_table *htab;
5112 Elf_Internal_Shdr *symtab_hdr;
5113 struct elf_link_hash_entry **sym_hashes;
5114 const Elf_Internal_Rela *rel;
5115 const Elf_Internal_Rela *rel_end;
5116 asection *sreloc;
5117 asection **opd_sym_map;
5118 struct elf_link_hash_entry *tga, *dottga;
5119
5120 if (info->relocatable)
5121 return TRUE;
5122
5123 /* Don't do anything special with non-loaded, non-alloced sections.
5124 In particular, any relocs in such sections should not affect GOT
5125 and PLT reference counting (ie. we don't allow them to create GOT
5126 or PLT entries), there's no possibility or desire to optimize TLS
5127 relocs, and there's not much point in propagating relocs to shared
5128 libs that the dynamic linker won't relocate. */
5129 if ((sec->flags & SEC_ALLOC) == 0)
5130 return TRUE;
5131
5132 BFD_ASSERT (is_ppc64_elf (abfd));
5133
5134 htab = ppc_hash_table (info);
5135 if (htab == NULL)
5136 return FALSE;
5137
5138 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5139 FALSE, FALSE, TRUE);
5140 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5141 FALSE, FALSE, TRUE);
5142 symtab_hdr = &elf_symtab_hdr (abfd);
5143 sym_hashes = elf_sym_hashes (abfd);
5144 sreloc = NULL;
5145 opd_sym_map = NULL;
5146 if (strcmp (sec->name, ".opd") == 0)
5147 {
5148 /* Garbage collection needs some extra help with .opd sections.
5149 We don't want to necessarily keep everything referenced by
5150 relocs in .opd, as that would keep all functions. Instead,
5151 if we reference an .opd symbol (a function descriptor), we
5152 want to keep the function code symbol's section. This is
5153 easy for global symbols, but for local syms we need to keep
5154 information about the associated function section. */
5155 bfd_size_type amt;
5156
5157 if (abiversion (abfd) == 0)
5158 set_abiversion (abfd, 1);
5159 else if (abiversion (abfd) == 2)
5160 {
5161 info->callbacks->einfo (_("%P: .opd not allowed in ABI version %d\n"),
5162 abiversion (abfd));
5163 bfd_set_error (bfd_error_bad_value);
5164 return FALSE;
5165 }
5166 amt = sec->size * sizeof (*opd_sym_map) / 8;
5167 opd_sym_map = bfd_zalloc (abfd, amt);
5168 if (opd_sym_map == NULL)
5169 return FALSE;
5170 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
5171 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
5172 ppc64_elf_section_data (sec)->sec_type = sec_opd;
5173 }
5174
5175 rel_end = relocs + sec->reloc_count;
5176 for (rel = relocs; rel < rel_end; rel++)
5177 {
5178 unsigned long r_symndx;
5179 struct elf_link_hash_entry *h;
5180 enum elf_ppc64_reloc_type r_type;
5181 int tls_type;
5182 struct _ppc64_elf_section_data *ppc64_sec;
5183 struct plt_entry **ifunc;
5184
5185 r_symndx = ELF64_R_SYM (rel->r_info);
5186 if (r_symndx < symtab_hdr->sh_info)
5187 h = NULL;
5188 else
5189 {
5190 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5191 h = elf_follow_link (h);
5192
5193 /* PR15323, ref flags aren't set for references in the same
5194 object. */
5195 h->root.non_ir_ref = 1;
5196
5197 if (h == htab->elf.hgot)
5198 sec->has_toc_reloc = 1;
5199 }
5200
5201 tls_type = 0;
5202 ifunc = NULL;
5203 if (h != NULL)
5204 {
5205 if (h->type == STT_GNU_IFUNC)
5206 {
5207 h->needs_plt = 1;
5208 ifunc = &h->plt.plist;
5209 }
5210 }
5211 else
5212 {
5213 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5214 abfd, r_symndx);
5215 if (isym == NULL)
5216 return FALSE;
5217
5218 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5219 {
5220 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5221 rel->r_addend, PLT_IFUNC);
5222 if (ifunc == NULL)
5223 return FALSE;
5224 }
5225 }
5226 r_type = ELF64_R_TYPE (rel->r_info);
5227 if (is_branch_reloc (r_type))
5228 {
5229 if (h != NULL && (h == tga || h == dottga))
5230 {
5231 if (rel != relocs
5232 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5233 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5234 /* We have a new-style __tls_get_addr call with a marker
5235 reloc. */
5236 ;
5237 else
5238 /* Mark this section as having an old-style call. */
5239 sec->has_tls_get_addr_call = 1;
5240 }
5241
5242 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5243 if (ifunc != NULL
5244 && !update_plt_info (abfd, ifunc, rel->r_addend))
5245 return FALSE;
5246 }
5247
5248 switch (r_type)
5249 {
5250 case R_PPC64_TLSGD:
5251 case R_PPC64_TLSLD:
5252 /* These special tls relocs tie a call to __tls_get_addr with
5253 its parameter symbol. */
5254 break;
5255
5256 case R_PPC64_GOT_TLSLD16:
5257 case R_PPC64_GOT_TLSLD16_LO:
5258 case R_PPC64_GOT_TLSLD16_HI:
5259 case R_PPC64_GOT_TLSLD16_HA:
5260 tls_type = TLS_TLS | TLS_LD;
5261 goto dogottls;
5262
5263 case R_PPC64_GOT_TLSGD16:
5264 case R_PPC64_GOT_TLSGD16_LO:
5265 case R_PPC64_GOT_TLSGD16_HI:
5266 case R_PPC64_GOT_TLSGD16_HA:
5267 tls_type = TLS_TLS | TLS_GD;
5268 goto dogottls;
5269
5270 case R_PPC64_GOT_TPREL16_DS:
5271 case R_PPC64_GOT_TPREL16_LO_DS:
5272 case R_PPC64_GOT_TPREL16_HI:
5273 case R_PPC64_GOT_TPREL16_HA:
5274 if (!info->executable)
5275 info->flags |= DF_STATIC_TLS;
5276 tls_type = TLS_TLS | TLS_TPREL;
5277 goto dogottls;
5278
5279 case R_PPC64_GOT_DTPREL16_DS:
5280 case R_PPC64_GOT_DTPREL16_LO_DS:
5281 case R_PPC64_GOT_DTPREL16_HI:
5282 case R_PPC64_GOT_DTPREL16_HA:
5283 tls_type = TLS_TLS | TLS_DTPREL;
5284 dogottls:
5285 sec->has_tls_reloc = 1;
5286 /* Fall thru */
5287
5288 case R_PPC64_GOT16:
5289 case R_PPC64_GOT16_DS:
5290 case R_PPC64_GOT16_HA:
5291 case R_PPC64_GOT16_HI:
5292 case R_PPC64_GOT16_LO:
5293 case R_PPC64_GOT16_LO_DS:
5294 /* This symbol requires a global offset table entry. */
5295 sec->has_toc_reloc = 1;
5296 if (r_type == R_PPC64_GOT_TLSLD16
5297 || r_type == R_PPC64_GOT_TLSGD16
5298 || r_type == R_PPC64_GOT_TPREL16_DS
5299 || r_type == R_PPC64_GOT_DTPREL16_DS
5300 || r_type == R_PPC64_GOT16
5301 || r_type == R_PPC64_GOT16_DS)
5302 {
5303 htab->do_multi_toc = 1;
5304 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5305 }
5306
5307 if (ppc64_elf_tdata (abfd)->got == NULL
5308 && !create_got_section (abfd, info))
5309 return FALSE;
5310
5311 if (h != NULL)
5312 {
5313 struct ppc_link_hash_entry *eh;
5314 struct got_entry *ent;
5315
5316 eh = (struct ppc_link_hash_entry *) h;
5317 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5318 if (ent->addend == rel->r_addend
5319 && ent->owner == abfd
5320 && ent->tls_type == tls_type)
5321 break;
5322 if (ent == NULL)
5323 {
5324 bfd_size_type amt = sizeof (*ent);
5325 ent = bfd_alloc (abfd, amt);
5326 if (ent == NULL)
5327 return FALSE;
5328 ent->next = eh->elf.got.glist;
5329 ent->addend = rel->r_addend;
5330 ent->owner = abfd;
5331 ent->tls_type = tls_type;
5332 ent->is_indirect = FALSE;
5333 ent->got.refcount = 0;
5334 eh->elf.got.glist = ent;
5335 }
5336 ent->got.refcount += 1;
5337 eh->tls_mask |= tls_type;
5338 }
5339 else
5340 /* This is a global offset table entry for a local symbol. */
5341 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5342 rel->r_addend, tls_type))
5343 return FALSE;
5344
5345 /* We may also need a plt entry if the symbol turns out to be
5346 an ifunc. */
5347 if (h != NULL && !info->shared && abiversion (abfd) == 2)
5348 {
5349 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5350 return FALSE;
5351 }
5352 break;
5353
5354 case R_PPC64_PLT16_HA:
5355 case R_PPC64_PLT16_HI:
5356 case R_PPC64_PLT16_LO:
5357 case R_PPC64_PLT32:
5358 case R_PPC64_PLT64:
5359 /* This symbol requires a procedure linkage table entry. We
5360 actually build the entry in adjust_dynamic_symbol,
5361 because this might be a case of linking PIC code without
5362 linking in any dynamic objects, in which case we don't
5363 need to generate a procedure linkage table after all. */
5364 if (h == NULL)
5365 {
5366 /* It does not make sense to have a procedure linkage
5367 table entry for a local symbol. */
5368 bfd_set_error (bfd_error_bad_value);
5369 return FALSE;
5370 }
5371 else
5372 {
5373 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5374 return FALSE;
5375 h->needs_plt = 1;
5376 if (h->root.root.string[0] == '.'
5377 && h->root.root.string[1] != '\0')
5378 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5379 }
5380 break;
5381
5382 /* The following relocations don't need to propagate the
5383 relocation if linking a shared object since they are
5384 section relative. */
5385 case R_PPC64_SECTOFF:
5386 case R_PPC64_SECTOFF_LO:
5387 case R_PPC64_SECTOFF_HI:
5388 case R_PPC64_SECTOFF_HA:
5389 case R_PPC64_SECTOFF_DS:
5390 case R_PPC64_SECTOFF_LO_DS:
5391 case R_PPC64_DTPREL16:
5392 case R_PPC64_DTPREL16_LO:
5393 case R_PPC64_DTPREL16_HI:
5394 case R_PPC64_DTPREL16_HA:
5395 case R_PPC64_DTPREL16_DS:
5396 case R_PPC64_DTPREL16_LO_DS:
5397 case R_PPC64_DTPREL16_HIGH:
5398 case R_PPC64_DTPREL16_HIGHA:
5399 case R_PPC64_DTPREL16_HIGHER:
5400 case R_PPC64_DTPREL16_HIGHERA:
5401 case R_PPC64_DTPREL16_HIGHEST:
5402 case R_PPC64_DTPREL16_HIGHESTA:
5403 break;
5404
5405 /* Nor do these. */
5406 case R_PPC64_REL16:
5407 case R_PPC64_REL16_LO:
5408 case R_PPC64_REL16_HI:
5409 case R_PPC64_REL16_HA:
5410 break;
5411
5412 case R_PPC64_TOC16:
5413 case R_PPC64_TOC16_DS:
5414 htab->do_multi_toc = 1;
5415 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5416 case R_PPC64_TOC16_LO:
5417 case R_PPC64_TOC16_HI:
5418 case R_PPC64_TOC16_HA:
5419 case R_PPC64_TOC16_LO_DS:
5420 sec->has_toc_reloc = 1;
5421 break;
5422
5423 /* This relocation describes the C++ object vtable hierarchy.
5424 Reconstruct it for later use during GC. */
5425 case R_PPC64_GNU_VTINHERIT:
5426 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5427 return FALSE;
5428 break;
5429
5430 /* This relocation describes which C++ vtable entries are actually
5431 used. Record for later use during GC. */
5432 case R_PPC64_GNU_VTENTRY:
5433 BFD_ASSERT (h != NULL);
5434 if (h != NULL
5435 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5436 return FALSE;
5437 break;
5438
5439 case R_PPC64_REL14:
5440 case R_PPC64_REL14_BRTAKEN:
5441 case R_PPC64_REL14_BRNTAKEN:
5442 {
5443 asection *dest = NULL;
5444
5445 /* Heuristic: If jumping outside our section, chances are
5446 we are going to need a stub. */
5447 if (h != NULL)
5448 {
5449 /* If the sym is weak it may be overridden later, so
5450 don't assume we know where a weak sym lives. */
5451 if (h->root.type == bfd_link_hash_defined)
5452 dest = h->root.u.def.section;
5453 }
5454 else
5455 {
5456 Elf_Internal_Sym *isym;
5457
5458 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5459 abfd, r_symndx);
5460 if (isym == NULL)
5461 return FALSE;
5462
5463 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5464 }
5465
5466 if (dest != sec)
5467 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5468 }
5469 /* Fall through. */
5470
5471 case R_PPC64_REL24:
5472 if (h != NULL && ifunc == NULL)
5473 {
5474 /* We may need a .plt entry if the function this reloc
5475 refers to is in a shared lib. */
5476 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5477 return FALSE;
5478 h->needs_plt = 1;
5479 if (h->root.root.string[0] == '.'
5480 && h->root.root.string[1] != '\0')
5481 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5482 if (h == tga || h == dottga)
5483 sec->has_tls_reloc = 1;
5484 }
5485 break;
5486
5487 case R_PPC64_TPREL64:
5488 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5489 if (!info->executable)
5490 info->flags |= DF_STATIC_TLS;
5491 goto dotlstoc;
5492
5493 case R_PPC64_DTPMOD64:
5494 if (rel + 1 < rel_end
5495 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5496 && rel[1].r_offset == rel->r_offset + 8)
5497 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5498 else
5499 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5500 goto dotlstoc;
5501
5502 case R_PPC64_DTPREL64:
5503 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5504 if (rel != relocs
5505 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5506 && rel[-1].r_offset == rel->r_offset - 8)
5507 /* This is the second reloc of a dtpmod, dtprel pair.
5508 Don't mark with TLS_DTPREL. */
5509 goto dodyn;
5510
5511 dotlstoc:
5512 sec->has_tls_reloc = 1;
5513 if (h != NULL)
5514 {
5515 struct ppc_link_hash_entry *eh;
5516 eh = (struct ppc_link_hash_entry *) h;
5517 eh->tls_mask |= tls_type;
5518 }
5519 else
5520 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5521 rel->r_addend, tls_type))
5522 return FALSE;
5523
5524 ppc64_sec = ppc64_elf_section_data (sec);
5525 if (ppc64_sec->sec_type != sec_toc)
5526 {
5527 bfd_size_type amt;
5528
5529 /* One extra to simplify get_tls_mask. */
5530 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5531 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5532 if (ppc64_sec->u.toc.symndx == NULL)
5533 return FALSE;
5534 amt = sec->size * sizeof (bfd_vma) / 8;
5535 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5536 if (ppc64_sec->u.toc.add == NULL)
5537 return FALSE;
5538 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5539 ppc64_sec->sec_type = sec_toc;
5540 }
5541 BFD_ASSERT (rel->r_offset % 8 == 0);
5542 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5543 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5544
5545 /* Mark the second slot of a GD or LD entry.
5546 -1 to indicate GD and -2 to indicate LD. */
5547 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5548 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5549 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5550 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5551 goto dodyn;
5552
5553 case R_PPC64_TPREL16:
5554 case R_PPC64_TPREL16_LO:
5555 case R_PPC64_TPREL16_HI:
5556 case R_PPC64_TPREL16_HA:
5557 case R_PPC64_TPREL16_DS:
5558 case R_PPC64_TPREL16_LO_DS:
5559 case R_PPC64_TPREL16_HIGH:
5560 case R_PPC64_TPREL16_HIGHA:
5561 case R_PPC64_TPREL16_HIGHER:
5562 case R_PPC64_TPREL16_HIGHERA:
5563 case R_PPC64_TPREL16_HIGHEST:
5564 case R_PPC64_TPREL16_HIGHESTA:
5565 if (info->shared)
5566 {
5567 if (!info->executable)
5568 info->flags |= DF_STATIC_TLS;
5569 goto dodyn;
5570 }
5571 break;
5572
5573 case R_PPC64_ADDR64:
5574 if (opd_sym_map != NULL
5575 && rel + 1 < rel_end
5576 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5577 {
5578 if (h != NULL)
5579 {
5580 if (h->root.root.string[0] == '.'
5581 && h->root.root.string[1] != 0
5582 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5583 ;
5584 else
5585 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5586 }
5587 else
5588 {
5589 asection *s;
5590 Elf_Internal_Sym *isym;
5591
5592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5593 abfd, r_symndx);
5594 if (isym == NULL)
5595 return FALSE;
5596
5597 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5598 if (s != NULL && s != sec)
5599 opd_sym_map[rel->r_offset / 8] = s;
5600 }
5601 }
5602 /* Fall through. */
5603
5604 case R_PPC64_ADDR16:
5605 case R_PPC64_ADDR16_DS:
5606 case R_PPC64_ADDR16_HA:
5607 case R_PPC64_ADDR16_HI:
5608 case R_PPC64_ADDR16_HIGH:
5609 case R_PPC64_ADDR16_HIGHA:
5610 case R_PPC64_ADDR16_HIGHER:
5611 case R_PPC64_ADDR16_HIGHERA:
5612 case R_PPC64_ADDR16_HIGHEST:
5613 case R_PPC64_ADDR16_HIGHESTA:
5614 case R_PPC64_ADDR16_LO:
5615 case R_PPC64_ADDR16_LO_DS:
5616 if (h != NULL && !info->shared && abiversion (abfd) == 2
5617 && rel->r_addend == 0)
5618 {
5619 /* We may need a .plt entry if this reloc refers to a
5620 function in a shared lib. */
5621 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5622 return FALSE;
5623 h->pointer_equality_needed = 1;
5624 }
5625 /* Fall through. */
5626
5627 case R_PPC64_REL30:
5628 case R_PPC64_REL32:
5629 case R_PPC64_REL64:
5630 case R_PPC64_ADDR14:
5631 case R_PPC64_ADDR14_BRNTAKEN:
5632 case R_PPC64_ADDR14_BRTAKEN:
5633 case R_PPC64_ADDR24:
5634 case R_PPC64_ADDR32:
5635 case R_PPC64_UADDR16:
5636 case R_PPC64_UADDR32:
5637 case R_PPC64_UADDR64:
5638 case R_PPC64_TOC:
5639 if (h != NULL && !info->shared)
5640 /* We may need a copy reloc. */
5641 h->non_got_ref = 1;
5642
5643 /* Don't propagate .opd relocs. */
5644 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5645 break;
5646
5647 /* If we are creating a shared library, and this is a reloc
5648 against a global symbol, or a non PC relative reloc
5649 against a local symbol, then we need to copy the reloc
5650 into the shared library. However, if we are linking with
5651 -Bsymbolic, we do not need to copy a reloc against a
5652 global symbol which is defined in an object we are
5653 including in the link (i.e., DEF_REGULAR is set). At
5654 this point we have not seen all the input files, so it is
5655 possible that DEF_REGULAR is not set now but will be set
5656 later (it is never cleared). In case of a weak definition,
5657 DEF_REGULAR may be cleared later by a strong definition in
5658 a shared library. We account for that possibility below by
5659 storing information in the dyn_relocs field of the hash
5660 table entry. A similar situation occurs when creating
5661 shared libraries and symbol visibility changes render the
5662 symbol local.
5663
5664 If on the other hand, we are creating an executable, we
5665 may need to keep relocations for symbols satisfied by a
5666 dynamic library if we manage to avoid copy relocs for the
5667 symbol. */
5668 dodyn:
5669 if ((info->shared
5670 && (must_be_dyn_reloc (info, r_type)
5671 || (h != NULL
5672 && (!SYMBOLIC_BIND (info, h)
5673 || h->root.type == bfd_link_hash_defweak
5674 || !h->def_regular))))
5675 || (ELIMINATE_COPY_RELOCS
5676 && !info->shared
5677 && h != NULL
5678 && (h->root.type == bfd_link_hash_defweak
5679 || !h->def_regular))
5680 || (!info->shared
5681 && ifunc != NULL))
5682 {
5683 /* We must copy these reloc types into the output file.
5684 Create a reloc section in dynobj and make room for
5685 this reloc. */
5686 if (sreloc == NULL)
5687 {
5688 sreloc = _bfd_elf_make_dynamic_reloc_section
5689 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5690
5691 if (sreloc == NULL)
5692 return FALSE;
5693 }
5694
5695 /* If this is a global symbol, we count the number of
5696 relocations we need for this symbol. */
5697 if (h != NULL)
5698 {
5699 struct elf_dyn_relocs *p;
5700 struct elf_dyn_relocs **head;
5701
5702 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5703 p = *head;
5704 if (p == NULL || p->sec != sec)
5705 {
5706 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5707 if (p == NULL)
5708 return FALSE;
5709 p->next = *head;
5710 *head = p;
5711 p->sec = sec;
5712 p->count = 0;
5713 p->pc_count = 0;
5714 }
5715 p->count += 1;
5716 if (!must_be_dyn_reloc (info, r_type))
5717 p->pc_count += 1;
5718 }
5719 else
5720 {
5721 /* Track dynamic relocs needed for local syms too.
5722 We really need local syms available to do this
5723 easily. Oh well. */
5724 struct ppc_dyn_relocs *p;
5725 struct ppc_dyn_relocs **head;
5726 bfd_boolean is_ifunc;
5727 asection *s;
5728 void *vpp;
5729 Elf_Internal_Sym *isym;
5730
5731 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5732 abfd, r_symndx);
5733 if (isym == NULL)
5734 return FALSE;
5735
5736 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5737 if (s == NULL)
5738 s = sec;
5739
5740 vpp = &elf_section_data (s)->local_dynrel;
5741 head = (struct ppc_dyn_relocs **) vpp;
5742 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5743 p = *head;
5744 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5745 p = p->next;
5746 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5747 {
5748 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5749 if (p == NULL)
5750 return FALSE;
5751 p->next = *head;
5752 *head = p;
5753 p->sec = sec;
5754 p->ifunc = is_ifunc;
5755 p->count = 0;
5756 }
5757 p->count += 1;
5758 }
5759 }
5760 break;
5761
5762 default:
5763 break;
5764 }
5765 }
5766
5767 return TRUE;
5768 }
5769
5770 /* Merge backend specific data from an object file to the output
5771 object file when linking. */
5772
5773 static bfd_boolean
5774 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5775 {
5776 unsigned long iflags, oflags;
5777
5778 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5779 return TRUE;
5780
5781 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5782 return TRUE;
5783
5784 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5785 return FALSE;
5786
5787 iflags = elf_elfheader (ibfd)->e_flags;
5788 oflags = elf_elfheader (obfd)->e_flags;
5789
5790 if (!elf_flags_init (obfd) || oflags == 0)
5791 {
5792 elf_flags_init (obfd) = TRUE;
5793 elf_elfheader (obfd)->e_flags = iflags;
5794 }
5795 else if (iflags == oflags || iflags == 0)
5796 ;
5797 else if (iflags & ~EF_PPC64_ABI)
5798 {
5799 (*_bfd_error_handler)
5800 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5801 bfd_set_error (bfd_error_bad_value);
5802 return FALSE;
5803 }
5804 else
5805 {
5806 (*_bfd_error_handler)
5807 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5808 ibfd, iflags, oflags);
5809 bfd_set_error (bfd_error_bad_value);
5810 return FALSE;
5811 }
5812
5813 /* Merge Tag_compatibility attributes and any common GNU ones. */
5814 _bfd_elf_merge_object_attributes (ibfd, obfd);
5815
5816 return TRUE;
5817 }
5818
5819 static bfd_boolean
5820 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5821 {
5822 /* Print normal ELF private data. */
5823 _bfd_elf_print_private_bfd_data (abfd, ptr);
5824
5825 if (elf_elfheader (abfd)->e_flags != 0)
5826 {
5827 FILE *file = ptr;
5828
5829 /* xgettext:c-format */
5830 fprintf (file, _("private flags = 0x%lx:"),
5831 elf_elfheader (abfd)->e_flags);
5832
5833 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5834 fprintf (file, _(" [abiv%ld]"),
5835 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5836 fputc ('\n', file);
5837 }
5838
5839 return TRUE;
5840 }
5841
5842 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5843 of the code entry point, and its section. */
5844
5845 static bfd_vma
5846 opd_entry_value (asection *opd_sec,
5847 bfd_vma offset,
5848 asection **code_sec,
5849 bfd_vma *code_off,
5850 bfd_boolean in_code_sec)
5851 {
5852 bfd *opd_bfd = opd_sec->owner;
5853 Elf_Internal_Rela *relocs;
5854 Elf_Internal_Rela *lo, *hi, *look;
5855 bfd_vma val;
5856
5857 /* No relocs implies we are linking a --just-symbols object, or looking
5858 at a final linked executable with addr2line or somesuch. */
5859 if (opd_sec->reloc_count == 0)
5860 {
5861 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5862
5863 if (contents == NULL)
5864 {
5865 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5866 return (bfd_vma) -1;
5867 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5868 }
5869
5870 val = bfd_get_64 (opd_bfd, contents + offset);
5871 if (code_sec != NULL)
5872 {
5873 asection *sec, *likely = NULL;
5874
5875 if (in_code_sec)
5876 {
5877 sec = *code_sec;
5878 if (sec->vma <= val
5879 && val < sec->vma + sec->size)
5880 likely = sec;
5881 else
5882 val = -1;
5883 }
5884 else
5885 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5886 if (sec->vma <= val
5887 && (sec->flags & SEC_LOAD) != 0
5888 && (sec->flags & SEC_ALLOC) != 0)
5889 likely = sec;
5890 if (likely != NULL)
5891 {
5892 *code_sec = likely;
5893 if (code_off != NULL)
5894 *code_off = val - likely->vma;
5895 }
5896 }
5897 return val;
5898 }
5899
5900 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5901
5902 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5903 if (relocs == NULL)
5904 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5905
5906 /* Go find the opd reloc at the sym address. */
5907 lo = relocs;
5908 BFD_ASSERT (lo != NULL);
5909 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5910 val = (bfd_vma) -1;
5911 while (lo < hi)
5912 {
5913 look = lo + (hi - lo) / 2;
5914 if (look->r_offset < offset)
5915 lo = look + 1;
5916 else if (look->r_offset > offset)
5917 hi = look;
5918 else
5919 {
5920 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5921
5922 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5923 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5924 {
5925 unsigned long symndx = ELF64_R_SYM (look->r_info);
5926 asection *sec;
5927
5928 if (symndx < symtab_hdr->sh_info
5929 || elf_sym_hashes (opd_bfd) == NULL)
5930 {
5931 Elf_Internal_Sym *sym;
5932
5933 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5934 if (sym == NULL)
5935 {
5936 size_t symcnt = symtab_hdr->sh_info;
5937 if (elf_sym_hashes (opd_bfd) == NULL)
5938 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5939 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5940 0, NULL, NULL, NULL);
5941 if (sym == NULL)
5942 break;
5943 symtab_hdr->contents = (bfd_byte *) sym;
5944 }
5945
5946 sym += symndx;
5947 val = sym->st_value;
5948 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5949 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5950 }
5951 else
5952 {
5953 struct elf_link_hash_entry **sym_hashes;
5954 struct elf_link_hash_entry *rh;
5955
5956 sym_hashes = elf_sym_hashes (opd_bfd);
5957 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5958 if (rh != NULL)
5959 {
5960 rh = elf_follow_link (rh);
5961 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5962 || rh->root.type == bfd_link_hash_defweak);
5963 val = rh->root.u.def.value;
5964 sec = rh->root.u.def.section;
5965 }
5966 else
5967 {
5968 /* Handle the odd case where we can be called
5969 during bfd_elf_link_add_symbols before the
5970 symbol hashes have been fully populated. */
5971 Elf_Internal_Sym *sym;
5972
5973 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
5974 symndx, NULL, NULL, NULL);
5975 if (sym == NULL)
5976 break;
5977
5978 val = sym->st_value;
5979 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5980 free (sym);
5981 }
5982 }
5983 val += look->r_addend;
5984 if (code_off != NULL)
5985 *code_off = val;
5986 if (code_sec != NULL)
5987 {
5988 if (in_code_sec && *code_sec != sec)
5989 return -1;
5990 else
5991 *code_sec = sec;
5992 }
5993 if (sec != NULL && sec->output_section != NULL)
5994 val += sec->output_section->vma + sec->output_offset;
5995 }
5996 break;
5997 }
5998 }
5999
6000 return val;
6001 }
6002
6003 /* If the ELF symbol SYM might be a function in SEC, return the
6004 function size and set *CODE_OFF to the function's entry point,
6005 otherwise return zero. */
6006
6007 static bfd_size_type
6008 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6009 bfd_vma *code_off)
6010 {
6011 bfd_size_type size;
6012
6013 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6014 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6015 return 0;
6016
6017 size = 0;
6018 if (!(sym->flags & BSF_SYNTHETIC))
6019 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6020
6021 if (strcmp (sym->section->name, ".opd") == 0)
6022 {
6023 if (opd_entry_value (sym->section, sym->value,
6024 &sec, code_off, TRUE) == (bfd_vma) -1)
6025 return 0;
6026 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6027 symbol. This size has nothing to do with the code size of the
6028 function, which is what we're supposed to return, but the
6029 code size isn't available without looking up the dot-sym.
6030 However, doing that would be a waste of time particularly
6031 since elf_find_function will look at the dot-sym anyway.
6032 Now, elf_find_function will keep the largest size of any
6033 function sym found at the code address of interest, so return
6034 1 here to avoid it incorrectly caching a larger function size
6035 for a small function. This does mean we return the wrong
6036 size for a new-ABI function of size 24, but all that does is
6037 disable caching for such functions. */
6038 if (size == 24)
6039 size = 1;
6040 }
6041 else
6042 {
6043 if (sym->section != sec)
6044 return 0;
6045 *code_off = sym->value;
6046 }
6047 if (size == 0)
6048 size = 1;
6049 return size;
6050 }
6051
6052 /* Return true if symbol is defined in a regular object file. */
6053
6054 static bfd_boolean
6055 is_static_defined (struct elf_link_hash_entry *h)
6056 {
6057 return ((h->root.type == bfd_link_hash_defined
6058 || h->root.type == bfd_link_hash_defweak)
6059 && h->root.u.def.section != NULL
6060 && h->root.u.def.section->output_section != NULL);
6061 }
6062
6063 /* If FDH is a function descriptor symbol, return the associated code
6064 entry symbol if it is defined. Return NULL otherwise. */
6065
6066 static struct ppc_link_hash_entry *
6067 defined_code_entry (struct ppc_link_hash_entry *fdh)
6068 {
6069 if (fdh->is_func_descriptor)
6070 {
6071 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6072 if (fh->elf.root.type == bfd_link_hash_defined
6073 || fh->elf.root.type == bfd_link_hash_defweak)
6074 return fh;
6075 }
6076 return NULL;
6077 }
6078
6079 /* If FH is a function code entry symbol, return the associated
6080 function descriptor symbol if it is defined. Return NULL otherwise. */
6081
6082 static struct ppc_link_hash_entry *
6083 defined_func_desc (struct ppc_link_hash_entry *fh)
6084 {
6085 if (fh->oh != NULL
6086 && fh->oh->is_func_descriptor)
6087 {
6088 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6089 if (fdh->elf.root.type == bfd_link_hash_defined
6090 || fdh->elf.root.type == bfd_link_hash_defweak)
6091 return fdh;
6092 }
6093 return NULL;
6094 }
6095
6096 /* Mark all our entry sym sections, both opd and code section. */
6097
6098 static void
6099 ppc64_elf_gc_keep (struct bfd_link_info *info)
6100 {
6101 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6102 struct bfd_sym_chain *sym;
6103
6104 if (htab == NULL)
6105 return;
6106
6107 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6108 {
6109 struct ppc_link_hash_entry *eh, *fh;
6110 asection *sec;
6111
6112 eh = (struct ppc_link_hash_entry *)
6113 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6114 if (eh == NULL)
6115 continue;
6116 if (eh->elf.root.type != bfd_link_hash_defined
6117 && eh->elf.root.type != bfd_link_hash_defweak)
6118 continue;
6119
6120 fh = defined_code_entry (eh);
6121 if (fh != NULL)
6122 {
6123 sec = fh->elf.root.u.def.section;
6124 sec->flags |= SEC_KEEP;
6125 }
6126 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6127 && opd_entry_value (eh->elf.root.u.def.section,
6128 eh->elf.root.u.def.value,
6129 &sec, NULL, FALSE) != (bfd_vma) -1)
6130 sec->flags |= SEC_KEEP;
6131
6132 sec = eh->elf.root.u.def.section;
6133 sec->flags |= SEC_KEEP;
6134 }
6135 }
6136
6137 /* Mark sections containing dynamically referenced symbols. When
6138 building shared libraries, we must assume that any visible symbol is
6139 referenced. */
6140
6141 static bfd_boolean
6142 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6143 {
6144 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6145 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6146 struct ppc_link_hash_entry *fdh;
6147
6148 /* Dynamic linking info is on the func descriptor sym. */
6149 fdh = defined_func_desc (eh);
6150 if (fdh != NULL)
6151 eh = fdh;
6152
6153 if ((eh->elf.root.type == bfd_link_hash_defined
6154 || eh->elf.root.type == bfd_link_hash_defweak)
6155 && (eh->elf.ref_dynamic
6156 || (!info->executable
6157 && eh->elf.def_regular
6158 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6159 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6160 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6161 || !bfd_hide_sym_by_version (info->version_info,
6162 eh->elf.root.root.string)))))
6163 {
6164 asection *code_sec;
6165 struct ppc_link_hash_entry *fh;
6166
6167 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6168
6169 /* Function descriptor syms cause the associated
6170 function code sym section to be marked. */
6171 fh = defined_code_entry (eh);
6172 if (fh != NULL)
6173 {
6174 code_sec = fh->elf.root.u.def.section;
6175 code_sec->flags |= SEC_KEEP;
6176 }
6177 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6178 && opd_entry_value (eh->elf.root.u.def.section,
6179 eh->elf.root.u.def.value,
6180 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6181 code_sec->flags |= SEC_KEEP;
6182 }
6183
6184 return TRUE;
6185 }
6186
6187 /* Return the section that should be marked against GC for a given
6188 relocation. */
6189
6190 static asection *
6191 ppc64_elf_gc_mark_hook (asection *sec,
6192 struct bfd_link_info *info,
6193 Elf_Internal_Rela *rel,
6194 struct elf_link_hash_entry *h,
6195 Elf_Internal_Sym *sym)
6196 {
6197 asection *rsec;
6198
6199 /* Syms return NULL if we're marking .opd, so we avoid marking all
6200 function sections, as all functions are referenced in .opd. */
6201 rsec = NULL;
6202 if (get_opd_info (sec) != NULL)
6203 return rsec;
6204
6205 if (h != NULL)
6206 {
6207 enum elf_ppc64_reloc_type r_type;
6208 struct ppc_link_hash_entry *eh, *fh, *fdh;
6209
6210 r_type = ELF64_R_TYPE (rel->r_info);
6211 switch (r_type)
6212 {
6213 case R_PPC64_GNU_VTINHERIT:
6214 case R_PPC64_GNU_VTENTRY:
6215 break;
6216
6217 default:
6218 switch (h->root.type)
6219 {
6220 case bfd_link_hash_defined:
6221 case bfd_link_hash_defweak:
6222 eh = (struct ppc_link_hash_entry *) h;
6223 fdh = defined_func_desc (eh);
6224 if (fdh != NULL)
6225 eh = fdh;
6226
6227 /* Function descriptor syms cause the associated
6228 function code sym section to be marked. */
6229 fh = defined_code_entry (eh);
6230 if (fh != NULL)
6231 {
6232 /* They also mark their opd section. */
6233 eh->elf.root.u.def.section->gc_mark = 1;
6234
6235 rsec = fh->elf.root.u.def.section;
6236 }
6237 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6238 && opd_entry_value (eh->elf.root.u.def.section,
6239 eh->elf.root.u.def.value,
6240 &rsec, NULL, FALSE) != (bfd_vma) -1)
6241 eh->elf.root.u.def.section->gc_mark = 1;
6242 else
6243 rsec = h->root.u.def.section;
6244 break;
6245
6246 case bfd_link_hash_common:
6247 rsec = h->root.u.c.p->section;
6248 break;
6249
6250 default:
6251 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6252 }
6253 }
6254 }
6255 else
6256 {
6257 struct _opd_sec_data *opd;
6258
6259 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6260 opd = get_opd_info (rsec);
6261 if (opd != NULL && opd->func_sec != NULL)
6262 {
6263 rsec->gc_mark = 1;
6264
6265 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6266 }
6267 }
6268
6269 return rsec;
6270 }
6271
6272 /* Update the .got, .plt. and dynamic reloc reference counts for the
6273 section being removed. */
6274
6275 static bfd_boolean
6276 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6277 asection *sec, const Elf_Internal_Rela *relocs)
6278 {
6279 struct ppc_link_hash_table *htab;
6280 Elf_Internal_Shdr *symtab_hdr;
6281 struct elf_link_hash_entry **sym_hashes;
6282 struct got_entry **local_got_ents;
6283 const Elf_Internal_Rela *rel, *relend;
6284
6285 if (info->relocatable)
6286 return TRUE;
6287
6288 if ((sec->flags & SEC_ALLOC) == 0)
6289 return TRUE;
6290
6291 elf_section_data (sec)->local_dynrel = NULL;
6292
6293 htab = ppc_hash_table (info);
6294 if (htab == NULL)
6295 return FALSE;
6296
6297 symtab_hdr = &elf_symtab_hdr (abfd);
6298 sym_hashes = elf_sym_hashes (abfd);
6299 local_got_ents = elf_local_got_ents (abfd);
6300
6301 relend = relocs + sec->reloc_count;
6302 for (rel = relocs; rel < relend; rel++)
6303 {
6304 unsigned long r_symndx;
6305 enum elf_ppc64_reloc_type r_type;
6306 struct elf_link_hash_entry *h = NULL;
6307 unsigned char tls_type = 0;
6308
6309 r_symndx = ELF64_R_SYM (rel->r_info);
6310 r_type = ELF64_R_TYPE (rel->r_info);
6311 if (r_symndx >= symtab_hdr->sh_info)
6312 {
6313 struct ppc_link_hash_entry *eh;
6314 struct elf_dyn_relocs **pp;
6315 struct elf_dyn_relocs *p;
6316
6317 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6318 h = elf_follow_link (h);
6319 eh = (struct ppc_link_hash_entry *) h;
6320
6321 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6322 if (p->sec == sec)
6323 {
6324 /* Everything must go for SEC. */
6325 *pp = p->next;
6326 break;
6327 }
6328 }
6329
6330 if (is_branch_reloc (r_type))
6331 {
6332 struct plt_entry **ifunc = NULL;
6333 if (h != NULL)
6334 {
6335 if (h->type == STT_GNU_IFUNC)
6336 ifunc = &h->plt.plist;
6337 }
6338 else if (local_got_ents != NULL)
6339 {
6340 struct plt_entry **local_plt = (struct plt_entry **)
6341 (local_got_ents + symtab_hdr->sh_info);
6342 unsigned char *local_got_tls_masks = (unsigned char *)
6343 (local_plt + symtab_hdr->sh_info);
6344 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6345 ifunc = local_plt + r_symndx;
6346 }
6347 if (ifunc != NULL)
6348 {
6349 struct plt_entry *ent;
6350
6351 for (ent = *ifunc; ent != NULL; ent = ent->next)
6352 if (ent->addend == rel->r_addend)
6353 break;
6354 if (ent == NULL)
6355 abort ();
6356 if (ent->plt.refcount > 0)
6357 ent->plt.refcount -= 1;
6358 continue;
6359 }
6360 }
6361
6362 switch (r_type)
6363 {
6364 case R_PPC64_GOT_TLSLD16:
6365 case R_PPC64_GOT_TLSLD16_LO:
6366 case R_PPC64_GOT_TLSLD16_HI:
6367 case R_PPC64_GOT_TLSLD16_HA:
6368 tls_type = TLS_TLS | TLS_LD;
6369 goto dogot;
6370
6371 case R_PPC64_GOT_TLSGD16:
6372 case R_PPC64_GOT_TLSGD16_LO:
6373 case R_PPC64_GOT_TLSGD16_HI:
6374 case R_PPC64_GOT_TLSGD16_HA:
6375 tls_type = TLS_TLS | TLS_GD;
6376 goto dogot;
6377
6378 case R_PPC64_GOT_TPREL16_DS:
6379 case R_PPC64_GOT_TPREL16_LO_DS:
6380 case R_PPC64_GOT_TPREL16_HI:
6381 case R_PPC64_GOT_TPREL16_HA:
6382 tls_type = TLS_TLS | TLS_TPREL;
6383 goto dogot;
6384
6385 case R_PPC64_GOT_DTPREL16_DS:
6386 case R_PPC64_GOT_DTPREL16_LO_DS:
6387 case R_PPC64_GOT_DTPREL16_HI:
6388 case R_PPC64_GOT_DTPREL16_HA:
6389 tls_type = TLS_TLS | TLS_DTPREL;
6390 goto dogot;
6391
6392 case R_PPC64_GOT16:
6393 case R_PPC64_GOT16_DS:
6394 case R_PPC64_GOT16_HA:
6395 case R_PPC64_GOT16_HI:
6396 case R_PPC64_GOT16_LO:
6397 case R_PPC64_GOT16_LO_DS:
6398 dogot:
6399 {
6400 struct got_entry *ent;
6401
6402 if (h != NULL)
6403 ent = h->got.glist;
6404 else
6405 ent = local_got_ents[r_symndx];
6406
6407 for (; ent != NULL; ent = ent->next)
6408 if (ent->addend == rel->r_addend
6409 && ent->owner == abfd
6410 && ent->tls_type == tls_type)
6411 break;
6412 if (ent == NULL)
6413 abort ();
6414 if (ent->got.refcount > 0)
6415 ent->got.refcount -= 1;
6416 }
6417 break;
6418
6419 case R_PPC64_PLT16_HA:
6420 case R_PPC64_PLT16_HI:
6421 case R_PPC64_PLT16_LO:
6422 case R_PPC64_PLT32:
6423 case R_PPC64_PLT64:
6424 case R_PPC64_REL14:
6425 case R_PPC64_REL14_BRNTAKEN:
6426 case R_PPC64_REL14_BRTAKEN:
6427 case R_PPC64_REL24:
6428 if (h != NULL)
6429 {
6430 struct plt_entry *ent;
6431
6432 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6433 if (ent->addend == rel->r_addend)
6434 break;
6435 if (ent != NULL && ent->plt.refcount > 0)
6436 ent->plt.refcount -= 1;
6437 }
6438 break;
6439
6440 default:
6441 break;
6442 }
6443 }
6444 return TRUE;
6445 }
6446
6447 /* The maximum size of .sfpr. */
6448 #define SFPR_MAX (218*4)
6449
6450 struct sfpr_def_parms
6451 {
6452 const char name[12];
6453 unsigned char lo, hi;
6454 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6455 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6456 };
6457
6458 /* Auto-generate _save*, _rest* functions in .sfpr. */
6459
6460 static bfd_boolean
6461 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6462 {
6463 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6464 unsigned int i;
6465 size_t len = strlen (parm->name);
6466 bfd_boolean writing = FALSE;
6467 char sym[16];
6468
6469 if (htab == NULL)
6470 return FALSE;
6471
6472 memcpy (sym, parm->name, len);
6473 sym[len + 2] = 0;
6474
6475 for (i = parm->lo; i <= parm->hi; i++)
6476 {
6477 struct elf_link_hash_entry *h;
6478
6479 sym[len + 0] = i / 10 + '0';
6480 sym[len + 1] = i % 10 + '0';
6481 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6482 if (h != NULL
6483 && !h->def_regular)
6484 {
6485 h->root.type = bfd_link_hash_defined;
6486 h->root.u.def.section = htab->sfpr;
6487 h->root.u.def.value = htab->sfpr->size;
6488 h->type = STT_FUNC;
6489 h->def_regular = 1;
6490 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6491 writing = TRUE;
6492 if (htab->sfpr->contents == NULL)
6493 {
6494 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6495 if (htab->sfpr->contents == NULL)
6496 return FALSE;
6497 }
6498 }
6499 if (writing)
6500 {
6501 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6502 if (i != parm->hi)
6503 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6504 else
6505 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6506 htab->sfpr->size = p - htab->sfpr->contents;
6507 }
6508 }
6509
6510 return TRUE;
6511 }
6512
6513 static bfd_byte *
6514 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6515 {
6516 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6517 return p + 4;
6518 }
6519
6520 static bfd_byte *
6521 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6522 {
6523 p = savegpr0 (abfd, p, r);
6524 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6525 p = p + 4;
6526 bfd_put_32 (abfd, BLR, p);
6527 return p + 4;
6528 }
6529
6530 static bfd_byte *
6531 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6532 {
6533 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6534 return p + 4;
6535 }
6536
6537 static bfd_byte *
6538 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6539 {
6540 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6541 p = p + 4;
6542 p = restgpr0 (abfd, p, r);
6543 bfd_put_32 (abfd, MTLR_R0, p);
6544 p = p + 4;
6545 if (r == 29)
6546 {
6547 p = restgpr0 (abfd, p, 30);
6548 p = restgpr0 (abfd, p, 31);
6549 }
6550 bfd_put_32 (abfd, BLR, p);
6551 return p + 4;
6552 }
6553
6554 static bfd_byte *
6555 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6556 {
6557 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6558 return p + 4;
6559 }
6560
6561 static bfd_byte *
6562 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6563 {
6564 p = savegpr1 (abfd, p, r);
6565 bfd_put_32 (abfd, BLR, p);
6566 return p + 4;
6567 }
6568
6569 static bfd_byte *
6570 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6571 {
6572 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6573 return p + 4;
6574 }
6575
6576 static bfd_byte *
6577 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6578 {
6579 p = restgpr1 (abfd, p, r);
6580 bfd_put_32 (abfd, BLR, p);
6581 return p + 4;
6582 }
6583
6584 static bfd_byte *
6585 savefpr (bfd *abfd, bfd_byte *p, int r)
6586 {
6587 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6588 return p + 4;
6589 }
6590
6591 static bfd_byte *
6592 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6593 {
6594 p = savefpr (abfd, p, r);
6595 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6596 p = p + 4;
6597 bfd_put_32 (abfd, BLR, p);
6598 return p + 4;
6599 }
6600
6601 static bfd_byte *
6602 restfpr (bfd *abfd, bfd_byte *p, int r)
6603 {
6604 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6605 return p + 4;
6606 }
6607
6608 static bfd_byte *
6609 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6610 {
6611 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6612 p = p + 4;
6613 p = restfpr (abfd, p, r);
6614 bfd_put_32 (abfd, MTLR_R0, p);
6615 p = p + 4;
6616 if (r == 29)
6617 {
6618 p = restfpr (abfd, p, 30);
6619 p = restfpr (abfd, p, 31);
6620 }
6621 bfd_put_32 (abfd, BLR, p);
6622 return p + 4;
6623 }
6624
6625 static bfd_byte *
6626 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6627 {
6628 p = savefpr (abfd, p, r);
6629 bfd_put_32 (abfd, BLR, p);
6630 return p + 4;
6631 }
6632
6633 static bfd_byte *
6634 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6635 {
6636 p = restfpr (abfd, p, r);
6637 bfd_put_32 (abfd, BLR, p);
6638 return p + 4;
6639 }
6640
6641 static bfd_byte *
6642 savevr (bfd *abfd, bfd_byte *p, int r)
6643 {
6644 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6645 p = p + 4;
6646 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6647 return p + 4;
6648 }
6649
6650 static bfd_byte *
6651 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6652 {
6653 p = savevr (abfd, p, r);
6654 bfd_put_32 (abfd, BLR, p);
6655 return p + 4;
6656 }
6657
6658 static bfd_byte *
6659 restvr (bfd *abfd, bfd_byte *p, int r)
6660 {
6661 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6662 p = p + 4;
6663 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6664 return p + 4;
6665 }
6666
6667 static bfd_byte *
6668 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6669 {
6670 p = restvr (abfd, p, r);
6671 bfd_put_32 (abfd, BLR, p);
6672 return p + 4;
6673 }
6674
6675 /* Called via elf_link_hash_traverse to transfer dynamic linking
6676 information on function code symbol entries to their corresponding
6677 function descriptor symbol entries. */
6678
6679 static bfd_boolean
6680 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6681 {
6682 struct bfd_link_info *info;
6683 struct ppc_link_hash_table *htab;
6684 struct plt_entry *ent;
6685 struct ppc_link_hash_entry *fh;
6686 struct ppc_link_hash_entry *fdh;
6687 bfd_boolean force_local;
6688
6689 fh = (struct ppc_link_hash_entry *) h;
6690 if (fh->elf.root.type == bfd_link_hash_indirect)
6691 return TRUE;
6692
6693 info = inf;
6694 htab = ppc_hash_table (info);
6695 if (htab == NULL)
6696 return FALSE;
6697
6698 /* Resolve undefined references to dot-symbols as the value
6699 in the function descriptor, if we have one in a regular object.
6700 This is to satisfy cases like ".quad .foo". Calls to functions
6701 in dynamic objects are handled elsewhere. */
6702 if (fh->elf.root.type == bfd_link_hash_undefweak
6703 && fh->was_undefined
6704 && (fdh = defined_func_desc (fh)) != NULL
6705 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6706 && opd_entry_value (fdh->elf.root.u.def.section,
6707 fdh->elf.root.u.def.value,
6708 &fh->elf.root.u.def.section,
6709 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6710 {
6711 fh->elf.root.type = fdh->elf.root.type;
6712 fh->elf.forced_local = 1;
6713 fh->elf.def_regular = fdh->elf.def_regular;
6714 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6715 }
6716
6717 /* If this is a function code symbol, transfer dynamic linking
6718 information to the function descriptor symbol. */
6719 if (!fh->is_func)
6720 return TRUE;
6721
6722 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6723 if (ent->plt.refcount > 0)
6724 break;
6725 if (ent == NULL
6726 || fh->elf.root.root.string[0] != '.'
6727 || fh->elf.root.root.string[1] == '\0')
6728 return TRUE;
6729
6730 /* Find the corresponding function descriptor symbol. Create it
6731 as undefined if necessary. */
6732
6733 fdh = lookup_fdh (fh, htab);
6734 if (fdh == NULL
6735 && !info->executable
6736 && (fh->elf.root.type == bfd_link_hash_undefined
6737 || fh->elf.root.type == bfd_link_hash_undefweak))
6738 {
6739 fdh = make_fdh (info, fh);
6740 if (fdh == NULL)
6741 return FALSE;
6742 }
6743
6744 /* Fake function descriptors are made undefweak. If the function
6745 code symbol is strong undefined, make the fake sym the same.
6746 If the function code symbol is defined, then force the fake
6747 descriptor local; We can't support overriding of symbols in a
6748 shared library on a fake descriptor. */
6749
6750 if (fdh != NULL
6751 && fdh->fake
6752 && fdh->elf.root.type == bfd_link_hash_undefweak)
6753 {
6754 if (fh->elf.root.type == bfd_link_hash_undefined)
6755 {
6756 fdh->elf.root.type = bfd_link_hash_undefined;
6757 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6758 }
6759 else if (fh->elf.root.type == bfd_link_hash_defined
6760 || fh->elf.root.type == bfd_link_hash_defweak)
6761 {
6762 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6763 }
6764 }
6765
6766 if (fdh != NULL
6767 && !fdh->elf.forced_local
6768 && (!info->executable
6769 || fdh->elf.def_dynamic
6770 || fdh->elf.ref_dynamic
6771 || (fdh->elf.root.type == bfd_link_hash_undefweak
6772 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6773 {
6774 if (fdh->elf.dynindx == -1)
6775 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6776 return FALSE;
6777 fdh->elf.ref_regular |= fh->elf.ref_regular;
6778 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6779 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6780 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6781 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6782 {
6783 move_plt_plist (fh, fdh);
6784 fdh->elf.needs_plt = 1;
6785 }
6786 fdh->is_func_descriptor = 1;
6787 fdh->oh = fh;
6788 fh->oh = fdh;
6789 }
6790
6791 /* Now that the info is on the function descriptor, clear the
6792 function code sym info. Any function code syms for which we
6793 don't have a definition in a regular file, we force local.
6794 This prevents a shared library from exporting syms that have
6795 been imported from another library. Function code syms that
6796 are really in the library we must leave global to prevent the
6797 linker dragging in a definition from a static library. */
6798 force_local = (!fh->elf.def_regular
6799 || fdh == NULL
6800 || !fdh->elf.def_regular
6801 || fdh->elf.forced_local);
6802 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6803
6804 return TRUE;
6805 }
6806
6807 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6808 this hook to a) provide some gcc support functions, and b) transfer
6809 dynamic linking information gathered so far on function code symbol
6810 entries, to their corresponding function descriptor symbol entries. */
6811
6812 static bfd_boolean
6813 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6814 struct bfd_link_info *info)
6815 {
6816 struct ppc_link_hash_table *htab;
6817 unsigned int i;
6818 static const struct sfpr_def_parms funcs[] =
6819 {
6820 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6821 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6822 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6823 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6824 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6825 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6826 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6827 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6828 { "._savef", 14, 31, savefpr, savefpr1_tail },
6829 { "._restf", 14, 31, restfpr, restfpr1_tail },
6830 { "_savevr_", 20, 31, savevr, savevr_tail },
6831 { "_restvr_", 20, 31, restvr, restvr_tail }
6832 };
6833
6834 htab = ppc_hash_table (info);
6835 if (htab == NULL)
6836 return FALSE;
6837
6838 if (!info->relocatable
6839 && htab->elf.hgot != NULL)
6840 {
6841 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6842 /* Make .TOC. defined so as to prevent it being made dynamic.
6843 The wrong value here is fixed later in ppc64_elf_set_toc. */
6844 htab->elf.hgot->type = STT_OBJECT;
6845 htab->elf.hgot->root.type = bfd_link_hash_defined;
6846 htab->elf.hgot->root.u.def.value = 0;
6847 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6848 htab->elf.hgot->def_regular = 1;
6849 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6850 | STV_HIDDEN);
6851 }
6852
6853 if (htab->sfpr == NULL)
6854 /* We don't have any relocs. */
6855 return TRUE;
6856
6857 /* Provide any missing _save* and _rest* functions. */
6858 htab->sfpr->size = 0;
6859 if (!info->relocatable)
6860 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6861 if (!sfpr_define (info, &funcs[i]))
6862 return FALSE;
6863
6864 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6865
6866 if (htab->sfpr->size == 0)
6867 htab->sfpr->flags |= SEC_EXCLUDE;
6868
6869 return TRUE;
6870 }
6871
6872 /* Return true if we have dynamic relocs that apply to read-only sections. */
6873
6874 static bfd_boolean
6875 readonly_dynrelocs (struct elf_link_hash_entry *h)
6876 {
6877 struct ppc_link_hash_entry *eh;
6878 struct elf_dyn_relocs *p;
6879
6880 eh = (struct ppc_link_hash_entry *) h;
6881 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6882 {
6883 asection *s = p->sec->output_section;
6884
6885 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6886 return TRUE;
6887 }
6888 return FALSE;
6889 }
6890
6891 /* Adjust a symbol defined by a dynamic object and referenced by a
6892 regular object. The current definition is in some section of the
6893 dynamic object, but we're not including those sections. We have to
6894 change the definition to something the rest of the link can
6895 understand. */
6896
6897 static bfd_boolean
6898 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6899 struct elf_link_hash_entry *h)
6900 {
6901 struct ppc_link_hash_table *htab;
6902 asection *s;
6903
6904 htab = ppc_hash_table (info);
6905 if (htab == NULL)
6906 return FALSE;
6907
6908 /* Deal with function syms. */
6909 if (h->type == STT_FUNC
6910 || h->type == STT_GNU_IFUNC
6911 || h->needs_plt)
6912 {
6913 /* Clear procedure linkage table information for any symbol that
6914 won't need a .plt entry. */
6915 struct plt_entry *ent;
6916 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6917 if (ent->plt.refcount > 0)
6918 break;
6919 if (ent == NULL
6920 || (h->type != STT_GNU_IFUNC
6921 && (SYMBOL_CALLS_LOCAL (info, h)
6922 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6923 && h->root.type == bfd_link_hash_undefweak))))
6924 {
6925 h->plt.plist = NULL;
6926 h->needs_plt = 0;
6927 }
6928 else if (abiversion (info->output_bfd) == 2)
6929 {
6930 /* After adjust_dynamic_symbol, non_got_ref set in the
6931 non-shared case means that we have allocated space in
6932 .dynbss for the symbol and thus dyn_relocs for this
6933 symbol should be discarded.
6934 If we get here we know we are making a PLT entry for this
6935 symbol, and in an executable we'd normally resolve
6936 relocations against this symbol to the PLT entry. Allow
6937 dynamic relocs if the reference is weak, and the dynamic
6938 relocs will not cause text relocation. */
6939 if (!h->ref_regular_nonweak
6940 && h->non_got_ref
6941 && h->type != STT_GNU_IFUNC
6942 && !readonly_dynrelocs (h))
6943 h->non_got_ref = 0;
6944
6945 /* If making a plt entry, then we don't need copy relocs. */
6946 return TRUE;
6947 }
6948 }
6949 else
6950 h->plt.plist = NULL;
6951
6952 /* If this is a weak symbol, and there is a real definition, the
6953 processor independent code will have arranged for us to see the
6954 real definition first, and we can just use the same value. */
6955 if (h->u.weakdef != NULL)
6956 {
6957 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6958 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6959 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6960 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6961 if (ELIMINATE_COPY_RELOCS)
6962 h->non_got_ref = h->u.weakdef->non_got_ref;
6963 return TRUE;
6964 }
6965
6966 /* If we are creating a shared library, we must presume that the
6967 only references to the symbol are via the global offset table.
6968 For such cases we need not do anything here; the relocations will
6969 be handled correctly by relocate_section. */
6970 if (info->shared)
6971 return TRUE;
6972
6973 /* If there are no references to this symbol that do not use the
6974 GOT, we don't need to generate a copy reloc. */
6975 if (!h->non_got_ref)
6976 return TRUE;
6977
6978 /* Don't generate a copy reloc for symbols defined in the executable. */
6979 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6980 return TRUE;
6981
6982 /* If we didn't find any dynamic relocs in read-only sections, then
6983 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6984 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
6985 {
6986 h->non_got_ref = 0;
6987 return TRUE;
6988 }
6989
6990 if (h->plt.plist != NULL)
6991 {
6992 /* We should never get here, but unfortunately there are versions
6993 of gcc out there that improperly (for this ABI) put initialized
6994 function pointers, vtable refs and suchlike in read-only
6995 sections. Allow them to proceed, but warn that this might
6996 break at runtime. */
6997 info->callbacks->einfo
6998 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6999 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7000 h->root.root.string);
7001 }
7002
7003 /* This is a reference to a symbol defined by a dynamic object which
7004 is not a function. */
7005
7006 /* We must allocate the symbol in our .dynbss section, which will
7007 become part of the .bss section of the executable. There will be
7008 an entry for this symbol in the .dynsym section. The dynamic
7009 object will contain position independent code, so all references
7010 from the dynamic object to this symbol will go through the global
7011 offset table. The dynamic linker will use the .dynsym entry to
7012 determine the address it must put in the global offset table, so
7013 both the dynamic object and the regular object will refer to the
7014 same memory location for the variable. */
7015
7016 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7017 to copy the initial value out of the dynamic object and into the
7018 runtime process image. We need to remember the offset into the
7019 .rela.bss section we are going to use. */
7020 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7021 {
7022 htab->relbss->size += sizeof (Elf64_External_Rela);
7023 h->needs_copy = 1;
7024 }
7025
7026 s = htab->dynbss;
7027
7028 return _bfd_elf_adjust_dynamic_copy (h, s);
7029 }
7030
7031 /* If given a function descriptor symbol, hide both the function code
7032 sym and the descriptor. */
7033 static void
7034 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7035 struct elf_link_hash_entry *h,
7036 bfd_boolean force_local)
7037 {
7038 struct ppc_link_hash_entry *eh;
7039 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7040
7041 eh = (struct ppc_link_hash_entry *) h;
7042 if (eh->is_func_descriptor)
7043 {
7044 struct ppc_link_hash_entry *fh = eh->oh;
7045
7046 if (fh == NULL)
7047 {
7048 const char *p, *q;
7049 struct ppc_link_hash_table *htab;
7050 char save;
7051
7052 /* We aren't supposed to use alloca in BFD because on
7053 systems which do not have alloca the version in libiberty
7054 calls xmalloc, which might cause the program to crash
7055 when it runs out of memory. This function doesn't have a
7056 return status, so there's no way to gracefully return an
7057 error. So cheat. We know that string[-1] can be safely
7058 accessed; It's either a string in an ELF string table,
7059 or allocated in an objalloc structure. */
7060
7061 p = eh->elf.root.root.string - 1;
7062 save = *p;
7063 *(char *) p = '.';
7064 htab = ppc_hash_table (info);
7065 if (htab == NULL)
7066 return;
7067
7068 fh = (struct ppc_link_hash_entry *)
7069 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7070 *(char *) p = save;
7071
7072 /* Unfortunately, if it so happens that the string we were
7073 looking for was allocated immediately before this string,
7074 then we overwrote the string terminator. That's the only
7075 reason the lookup should fail. */
7076 if (fh == NULL)
7077 {
7078 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7079 while (q >= eh->elf.root.root.string && *q == *p)
7080 --q, --p;
7081 if (q < eh->elf.root.root.string && *p == '.')
7082 fh = (struct ppc_link_hash_entry *)
7083 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7084 }
7085 if (fh != NULL)
7086 {
7087 eh->oh = fh;
7088 fh->oh = eh;
7089 }
7090 }
7091 if (fh != NULL)
7092 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7093 }
7094 }
7095
7096 static bfd_boolean
7097 get_sym_h (struct elf_link_hash_entry **hp,
7098 Elf_Internal_Sym **symp,
7099 asection **symsecp,
7100 unsigned char **tls_maskp,
7101 Elf_Internal_Sym **locsymsp,
7102 unsigned long r_symndx,
7103 bfd *ibfd)
7104 {
7105 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7106
7107 if (r_symndx >= symtab_hdr->sh_info)
7108 {
7109 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7110 struct elf_link_hash_entry *h;
7111
7112 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7113 h = elf_follow_link (h);
7114
7115 if (hp != NULL)
7116 *hp = h;
7117
7118 if (symp != NULL)
7119 *symp = NULL;
7120
7121 if (symsecp != NULL)
7122 {
7123 asection *symsec = NULL;
7124 if (h->root.type == bfd_link_hash_defined
7125 || h->root.type == bfd_link_hash_defweak)
7126 symsec = h->root.u.def.section;
7127 *symsecp = symsec;
7128 }
7129
7130 if (tls_maskp != NULL)
7131 {
7132 struct ppc_link_hash_entry *eh;
7133
7134 eh = (struct ppc_link_hash_entry *) h;
7135 *tls_maskp = &eh->tls_mask;
7136 }
7137 }
7138 else
7139 {
7140 Elf_Internal_Sym *sym;
7141 Elf_Internal_Sym *locsyms = *locsymsp;
7142
7143 if (locsyms == NULL)
7144 {
7145 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7146 if (locsyms == NULL)
7147 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7148 symtab_hdr->sh_info,
7149 0, NULL, NULL, NULL);
7150 if (locsyms == NULL)
7151 return FALSE;
7152 *locsymsp = locsyms;
7153 }
7154 sym = locsyms + r_symndx;
7155
7156 if (hp != NULL)
7157 *hp = NULL;
7158
7159 if (symp != NULL)
7160 *symp = sym;
7161
7162 if (symsecp != NULL)
7163 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7164
7165 if (tls_maskp != NULL)
7166 {
7167 struct got_entry **lgot_ents;
7168 unsigned char *tls_mask;
7169
7170 tls_mask = NULL;
7171 lgot_ents = elf_local_got_ents (ibfd);
7172 if (lgot_ents != NULL)
7173 {
7174 struct plt_entry **local_plt = (struct plt_entry **)
7175 (lgot_ents + symtab_hdr->sh_info);
7176 unsigned char *lgot_masks = (unsigned char *)
7177 (local_plt + symtab_hdr->sh_info);
7178 tls_mask = &lgot_masks[r_symndx];
7179 }
7180 *tls_maskp = tls_mask;
7181 }
7182 }
7183 return TRUE;
7184 }
7185
7186 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7187 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7188 type suitable for optimization, and 1 otherwise. */
7189
7190 static int
7191 get_tls_mask (unsigned char **tls_maskp,
7192 unsigned long *toc_symndx,
7193 bfd_vma *toc_addend,
7194 Elf_Internal_Sym **locsymsp,
7195 const Elf_Internal_Rela *rel,
7196 bfd *ibfd)
7197 {
7198 unsigned long r_symndx;
7199 int next_r;
7200 struct elf_link_hash_entry *h;
7201 Elf_Internal_Sym *sym;
7202 asection *sec;
7203 bfd_vma off;
7204
7205 r_symndx = ELF64_R_SYM (rel->r_info);
7206 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7207 return 0;
7208
7209 if ((*tls_maskp != NULL && **tls_maskp != 0)
7210 || sec == NULL
7211 || ppc64_elf_section_data (sec) == NULL
7212 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7213 return 1;
7214
7215 /* Look inside a TOC section too. */
7216 if (h != NULL)
7217 {
7218 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7219 off = h->root.u.def.value;
7220 }
7221 else
7222 off = sym->st_value;
7223 off += rel->r_addend;
7224 BFD_ASSERT (off % 8 == 0);
7225 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7226 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7227 if (toc_symndx != NULL)
7228 *toc_symndx = r_symndx;
7229 if (toc_addend != NULL)
7230 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7231 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7232 return 0;
7233 if ((h == NULL || is_static_defined (h))
7234 && (next_r == -1 || next_r == -2))
7235 return 1 - next_r;
7236 return 1;
7237 }
7238
7239 /* Find (or create) an entry in the tocsave hash table. */
7240
7241 static struct tocsave_entry *
7242 tocsave_find (struct ppc_link_hash_table *htab,
7243 enum insert_option insert,
7244 Elf_Internal_Sym **local_syms,
7245 const Elf_Internal_Rela *irela,
7246 bfd *ibfd)
7247 {
7248 unsigned long r_indx;
7249 struct elf_link_hash_entry *h;
7250 Elf_Internal_Sym *sym;
7251 struct tocsave_entry ent, *p;
7252 hashval_t hash;
7253 struct tocsave_entry **slot;
7254
7255 r_indx = ELF64_R_SYM (irela->r_info);
7256 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7257 return NULL;
7258 if (ent.sec == NULL || ent.sec->output_section == NULL)
7259 {
7260 (*_bfd_error_handler)
7261 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7262 return NULL;
7263 }
7264
7265 if (h != NULL)
7266 ent.offset = h->root.u.def.value;
7267 else
7268 ent.offset = sym->st_value;
7269 ent.offset += irela->r_addend;
7270
7271 hash = tocsave_htab_hash (&ent);
7272 slot = ((struct tocsave_entry **)
7273 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7274 if (slot == NULL)
7275 return NULL;
7276
7277 if (*slot == NULL)
7278 {
7279 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7280 if (p == NULL)
7281 return NULL;
7282 *p = ent;
7283 *slot = p;
7284 }
7285 return *slot;
7286 }
7287
7288 /* Adjust all global syms defined in opd sections. In gcc generated
7289 code for the old ABI, these will already have been done. */
7290
7291 static bfd_boolean
7292 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7293 {
7294 struct ppc_link_hash_entry *eh;
7295 asection *sym_sec;
7296 struct _opd_sec_data *opd;
7297
7298 if (h->root.type == bfd_link_hash_indirect)
7299 return TRUE;
7300
7301 if (h->root.type != bfd_link_hash_defined
7302 && h->root.type != bfd_link_hash_defweak)
7303 return TRUE;
7304
7305 eh = (struct ppc_link_hash_entry *) h;
7306 if (eh->adjust_done)
7307 return TRUE;
7308
7309 sym_sec = eh->elf.root.u.def.section;
7310 opd = get_opd_info (sym_sec);
7311 if (opd != NULL && opd->adjust != NULL)
7312 {
7313 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7314 if (adjust == -1)
7315 {
7316 /* This entry has been deleted. */
7317 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7318 if (dsec == NULL)
7319 {
7320 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7321 if (discarded_section (dsec))
7322 {
7323 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7324 break;
7325 }
7326 }
7327 eh->elf.root.u.def.value = 0;
7328 eh->elf.root.u.def.section = dsec;
7329 }
7330 else
7331 eh->elf.root.u.def.value += adjust;
7332 eh->adjust_done = 1;
7333 }
7334 return TRUE;
7335 }
7336
7337 /* Handles decrementing dynamic reloc counts for the reloc specified by
7338 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7339 have already been determined. */
7340
7341 static bfd_boolean
7342 dec_dynrel_count (bfd_vma r_info,
7343 asection *sec,
7344 struct bfd_link_info *info,
7345 Elf_Internal_Sym **local_syms,
7346 struct elf_link_hash_entry *h,
7347 Elf_Internal_Sym *sym)
7348 {
7349 enum elf_ppc64_reloc_type r_type;
7350 asection *sym_sec = NULL;
7351
7352 /* Can this reloc be dynamic? This switch, and later tests here
7353 should be kept in sync with the code in check_relocs. */
7354 r_type = ELF64_R_TYPE (r_info);
7355 switch (r_type)
7356 {
7357 default:
7358 return TRUE;
7359
7360 case R_PPC64_TPREL16:
7361 case R_PPC64_TPREL16_LO:
7362 case R_PPC64_TPREL16_HI:
7363 case R_PPC64_TPREL16_HA:
7364 case R_PPC64_TPREL16_DS:
7365 case R_PPC64_TPREL16_LO_DS:
7366 case R_PPC64_TPREL16_HIGH:
7367 case R_PPC64_TPREL16_HIGHA:
7368 case R_PPC64_TPREL16_HIGHER:
7369 case R_PPC64_TPREL16_HIGHERA:
7370 case R_PPC64_TPREL16_HIGHEST:
7371 case R_PPC64_TPREL16_HIGHESTA:
7372 if (!info->shared)
7373 return TRUE;
7374
7375 case R_PPC64_TPREL64:
7376 case R_PPC64_DTPMOD64:
7377 case R_PPC64_DTPREL64:
7378 case R_PPC64_ADDR64:
7379 case R_PPC64_REL30:
7380 case R_PPC64_REL32:
7381 case R_PPC64_REL64:
7382 case R_PPC64_ADDR14:
7383 case R_PPC64_ADDR14_BRNTAKEN:
7384 case R_PPC64_ADDR14_BRTAKEN:
7385 case R_PPC64_ADDR16:
7386 case R_PPC64_ADDR16_DS:
7387 case R_PPC64_ADDR16_HA:
7388 case R_PPC64_ADDR16_HI:
7389 case R_PPC64_ADDR16_HIGH:
7390 case R_PPC64_ADDR16_HIGHA:
7391 case R_PPC64_ADDR16_HIGHER:
7392 case R_PPC64_ADDR16_HIGHERA:
7393 case R_PPC64_ADDR16_HIGHEST:
7394 case R_PPC64_ADDR16_HIGHESTA:
7395 case R_PPC64_ADDR16_LO:
7396 case R_PPC64_ADDR16_LO_DS:
7397 case R_PPC64_ADDR24:
7398 case R_PPC64_ADDR32:
7399 case R_PPC64_UADDR16:
7400 case R_PPC64_UADDR32:
7401 case R_PPC64_UADDR64:
7402 case R_PPC64_TOC:
7403 break;
7404 }
7405
7406 if (local_syms != NULL)
7407 {
7408 unsigned long r_symndx;
7409 bfd *ibfd = sec->owner;
7410
7411 r_symndx = ELF64_R_SYM (r_info);
7412 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7413 return FALSE;
7414 }
7415
7416 if ((info->shared
7417 && (must_be_dyn_reloc (info, r_type)
7418 || (h != NULL
7419 && (!SYMBOLIC_BIND (info, h)
7420 || h->root.type == bfd_link_hash_defweak
7421 || !h->def_regular))))
7422 || (ELIMINATE_COPY_RELOCS
7423 && !info->shared
7424 && h != NULL
7425 && (h->root.type == bfd_link_hash_defweak
7426 || !h->def_regular)))
7427 ;
7428 else
7429 return TRUE;
7430
7431 if (h != NULL)
7432 {
7433 struct elf_dyn_relocs *p;
7434 struct elf_dyn_relocs **pp;
7435 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7436
7437 /* elf_gc_sweep may have already removed all dyn relocs associated
7438 with local syms for a given section. Also, symbol flags are
7439 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7440 report a dynreloc miscount. */
7441 if (*pp == NULL && info->gc_sections)
7442 return TRUE;
7443
7444 while ((p = *pp) != NULL)
7445 {
7446 if (p->sec == sec)
7447 {
7448 if (!must_be_dyn_reloc (info, r_type))
7449 p->pc_count -= 1;
7450 p->count -= 1;
7451 if (p->count == 0)
7452 *pp = p->next;
7453 return TRUE;
7454 }
7455 pp = &p->next;
7456 }
7457 }
7458 else
7459 {
7460 struct ppc_dyn_relocs *p;
7461 struct ppc_dyn_relocs **pp;
7462 void *vpp;
7463 bfd_boolean is_ifunc;
7464
7465 if (local_syms == NULL)
7466 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7467 if (sym_sec == NULL)
7468 sym_sec = sec;
7469
7470 vpp = &elf_section_data (sym_sec)->local_dynrel;
7471 pp = (struct ppc_dyn_relocs **) vpp;
7472
7473 if (*pp == NULL && info->gc_sections)
7474 return TRUE;
7475
7476 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7477 while ((p = *pp) != NULL)
7478 {
7479 if (p->sec == sec && p->ifunc == is_ifunc)
7480 {
7481 p->count -= 1;
7482 if (p->count == 0)
7483 *pp = p->next;
7484 return TRUE;
7485 }
7486 pp = &p->next;
7487 }
7488 }
7489
7490 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7491 sec->owner, sec);
7492 bfd_set_error (bfd_error_bad_value);
7493 return FALSE;
7494 }
7495
7496 /* Remove unused Official Procedure Descriptor entries. Currently we
7497 only remove those associated with functions in discarded link-once
7498 sections, or weakly defined functions that have been overridden. It
7499 would be possible to remove many more entries for statically linked
7500 applications. */
7501
7502 bfd_boolean
7503 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7504 {
7505 bfd *ibfd;
7506 bfd_boolean some_edited = FALSE;
7507 asection *need_pad = NULL;
7508
7509 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7510 {
7511 asection *sec;
7512 Elf_Internal_Rela *relstart, *rel, *relend;
7513 Elf_Internal_Shdr *symtab_hdr;
7514 Elf_Internal_Sym *local_syms;
7515 bfd_vma offset;
7516 struct _opd_sec_data *opd;
7517 bfd_boolean need_edit, add_aux_fields;
7518 bfd_size_type cnt_16b = 0;
7519
7520 if (!is_ppc64_elf (ibfd))
7521 continue;
7522
7523 sec = bfd_get_section_by_name (ibfd, ".opd");
7524 if (sec == NULL || sec->size == 0)
7525 continue;
7526
7527 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7528 continue;
7529
7530 if (sec->output_section == bfd_abs_section_ptr)
7531 continue;
7532
7533 /* Look through the section relocs. */
7534 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7535 continue;
7536
7537 local_syms = NULL;
7538 symtab_hdr = &elf_symtab_hdr (ibfd);
7539
7540 /* Read the relocations. */
7541 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7542 info->keep_memory);
7543 if (relstart == NULL)
7544 return FALSE;
7545
7546 /* First run through the relocs to check they are sane, and to
7547 determine whether we need to edit this opd section. */
7548 need_edit = FALSE;
7549 need_pad = sec;
7550 offset = 0;
7551 relend = relstart + sec->reloc_count;
7552 for (rel = relstart; rel < relend; )
7553 {
7554 enum elf_ppc64_reloc_type r_type;
7555 unsigned long r_symndx;
7556 asection *sym_sec;
7557 struct elf_link_hash_entry *h;
7558 Elf_Internal_Sym *sym;
7559
7560 /* .opd contains a regular array of 16 or 24 byte entries. We're
7561 only interested in the reloc pointing to a function entry
7562 point. */
7563 if (rel->r_offset != offset
7564 || rel + 1 >= relend
7565 || (rel + 1)->r_offset != offset + 8)
7566 {
7567 /* If someone messes with .opd alignment then after a
7568 "ld -r" we might have padding in the middle of .opd.
7569 Also, there's nothing to prevent someone putting
7570 something silly in .opd with the assembler. No .opd
7571 optimization for them! */
7572 broken_opd:
7573 (*_bfd_error_handler)
7574 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7575 need_edit = FALSE;
7576 break;
7577 }
7578
7579 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7580 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7581 {
7582 (*_bfd_error_handler)
7583 (_("%B: unexpected reloc type %u in .opd section"),
7584 ibfd, r_type);
7585 need_edit = FALSE;
7586 break;
7587 }
7588
7589 r_symndx = ELF64_R_SYM (rel->r_info);
7590 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7591 r_symndx, ibfd))
7592 goto error_ret;
7593
7594 if (sym_sec == NULL || sym_sec->owner == NULL)
7595 {
7596 const char *sym_name;
7597 if (h != NULL)
7598 sym_name = h->root.root.string;
7599 else
7600 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7601 sym_sec);
7602
7603 (*_bfd_error_handler)
7604 (_("%B: undefined sym `%s' in .opd section"),
7605 ibfd, sym_name);
7606 need_edit = FALSE;
7607 break;
7608 }
7609
7610 /* opd entries are always for functions defined in the
7611 current input bfd. If the symbol isn't defined in the
7612 input bfd, then we won't be using the function in this
7613 bfd; It must be defined in a linkonce section in another
7614 bfd, or is weak. It's also possible that we are
7615 discarding the function due to a linker script /DISCARD/,
7616 which we test for via the output_section. */
7617 if (sym_sec->owner != ibfd
7618 || sym_sec->output_section == bfd_abs_section_ptr)
7619 need_edit = TRUE;
7620
7621 rel += 2;
7622 if (rel == relend
7623 || (rel + 1 == relend && rel->r_offset == offset + 16))
7624 {
7625 if (sec->size == offset + 24)
7626 {
7627 need_pad = NULL;
7628 break;
7629 }
7630 if (rel == relend && sec->size == offset + 16)
7631 {
7632 cnt_16b++;
7633 break;
7634 }
7635 goto broken_opd;
7636 }
7637
7638 if (rel->r_offset == offset + 24)
7639 offset += 24;
7640 else if (rel->r_offset != offset + 16)
7641 goto broken_opd;
7642 else if (rel + 1 < relend
7643 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7644 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7645 {
7646 offset += 16;
7647 cnt_16b++;
7648 }
7649 else if (rel + 2 < relend
7650 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7651 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7652 {
7653 offset += 24;
7654 rel += 1;
7655 }
7656 else
7657 goto broken_opd;
7658 }
7659
7660 add_aux_fields = non_overlapping && cnt_16b > 0;
7661
7662 if (need_edit || add_aux_fields)
7663 {
7664 Elf_Internal_Rela *write_rel;
7665 Elf_Internal_Shdr *rel_hdr;
7666 bfd_byte *rptr, *wptr;
7667 bfd_byte *new_contents;
7668 bfd_boolean skip;
7669 long opd_ent_size;
7670 bfd_size_type amt;
7671
7672 new_contents = NULL;
7673 amt = sec->size * sizeof (long) / 8;
7674 opd = &ppc64_elf_section_data (sec)->u.opd;
7675 opd->adjust = bfd_zalloc (sec->owner, amt);
7676 if (opd->adjust == NULL)
7677 return FALSE;
7678 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7679
7680 /* This seems a waste of time as input .opd sections are all
7681 zeros as generated by gcc, but I suppose there's no reason
7682 this will always be so. We might start putting something in
7683 the third word of .opd entries. */
7684 if ((sec->flags & SEC_IN_MEMORY) == 0)
7685 {
7686 bfd_byte *loc;
7687 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7688 {
7689 if (loc != NULL)
7690 free (loc);
7691 error_ret:
7692 if (local_syms != NULL
7693 && symtab_hdr->contents != (unsigned char *) local_syms)
7694 free (local_syms);
7695 if (elf_section_data (sec)->relocs != relstart)
7696 free (relstart);
7697 return FALSE;
7698 }
7699 sec->contents = loc;
7700 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7701 }
7702
7703 elf_section_data (sec)->relocs = relstart;
7704
7705 new_contents = sec->contents;
7706 if (add_aux_fields)
7707 {
7708 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7709 if (new_contents == NULL)
7710 return FALSE;
7711 need_pad = FALSE;
7712 }
7713 wptr = new_contents;
7714 rptr = sec->contents;
7715
7716 write_rel = relstart;
7717 skip = FALSE;
7718 offset = 0;
7719 opd_ent_size = 0;
7720 for (rel = relstart; rel < relend; rel++)
7721 {
7722 unsigned long r_symndx;
7723 asection *sym_sec;
7724 struct elf_link_hash_entry *h;
7725 Elf_Internal_Sym *sym;
7726
7727 r_symndx = ELF64_R_SYM (rel->r_info);
7728 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7729 r_symndx, ibfd))
7730 goto error_ret;
7731
7732 if (rel->r_offset == offset)
7733 {
7734 struct ppc_link_hash_entry *fdh = NULL;
7735
7736 /* See if the .opd entry is full 24 byte or
7737 16 byte (with fd_aux entry overlapped with next
7738 fd_func). */
7739 opd_ent_size = 24;
7740 if ((rel + 2 == relend && sec->size == offset + 16)
7741 || (rel + 3 < relend
7742 && rel[2].r_offset == offset + 16
7743 && rel[3].r_offset == offset + 24
7744 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7745 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7746 opd_ent_size = 16;
7747
7748 if (h != NULL
7749 && h->root.root.string[0] == '.')
7750 {
7751 struct ppc_link_hash_table *htab;
7752
7753 htab = ppc_hash_table (info);
7754 if (htab != NULL)
7755 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7756 htab);
7757 if (fdh != NULL
7758 && fdh->elf.root.type != bfd_link_hash_defined
7759 && fdh->elf.root.type != bfd_link_hash_defweak)
7760 fdh = NULL;
7761 }
7762
7763 skip = (sym_sec->owner != ibfd
7764 || sym_sec->output_section == bfd_abs_section_ptr);
7765 if (skip)
7766 {
7767 if (fdh != NULL && sym_sec->owner == ibfd)
7768 {
7769 /* Arrange for the function descriptor sym
7770 to be dropped. */
7771 fdh->elf.root.u.def.value = 0;
7772 fdh->elf.root.u.def.section = sym_sec;
7773 }
7774 opd->adjust[rel->r_offset / 8] = -1;
7775 }
7776 else
7777 {
7778 /* We'll be keeping this opd entry. */
7779
7780 if (fdh != NULL)
7781 {
7782 /* Redefine the function descriptor symbol to
7783 this location in the opd section. It is
7784 necessary to update the value here rather
7785 than using an array of adjustments as we do
7786 for local symbols, because various places
7787 in the generic ELF code use the value
7788 stored in u.def.value. */
7789 fdh->elf.root.u.def.value = wptr - new_contents;
7790 fdh->adjust_done = 1;
7791 }
7792
7793 /* Local syms are a bit tricky. We could
7794 tweak them as they can be cached, but
7795 we'd need to look through the local syms
7796 for the function descriptor sym which we
7797 don't have at the moment. So keep an
7798 array of adjustments. */
7799 opd->adjust[rel->r_offset / 8]
7800 = (wptr - new_contents) - (rptr - sec->contents);
7801
7802 if (wptr != rptr)
7803 memcpy (wptr, rptr, opd_ent_size);
7804 wptr += opd_ent_size;
7805 if (add_aux_fields && opd_ent_size == 16)
7806 {
7807 memset (wptr, '\0', 8);
7808 wptr += 8;
7809 }
7810 }
7811 rptr += opd_ent_size;
7812 offset += opd_ent_size;
7813 }
7814
7815 if (skip)
7816 {
7817 if (!NO_OPD_RELOCS
7818 && !info->relocatable
7819 && !dec_dynrel_count (rel->r_info, sec, info,
7820 NULL, h, sym))
7821 goto error_ret;
7822 }
7823 else
7824 {
7825 /* We need to adjust any reloc offsets to point to the
7826 new opd entries. While we're at it, we may as well
7827 remove redundant relocs. */
7828 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7829 if (write_rel != rel)
7830 memcpy (write_rel, rel, sizeof (*rel));
7831 ++write_rel;
7832 }
7833 }
7834
7835 sec->size = wptr - new_contents;
7836 sec->reloc_count = write_rel - relstart;
7837 if (add_aux_fields)
7838 {
7839 free (sec->contents);
7840 sec->contents = new_contents;
7841 }
7842
7843 /* Fudge the header size too, as this is used later in
7844 elf_bfd_final_link if we are emitting relocs. */
7845 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7846 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7847 some_edited = TRUE;
7848 }
7849 else if (elf_section_data (sec)->relocs != relstart)
7850 free (relstart);
7851
7852 if (local_syms != NULL
7853 && symtab_hdr->contents != (unsigned char *) local_syms)
7854 {
7855 if (!info->keep_memory)
7856 free (local_syms);
7857 else
7858 symtab_hdr->contents = (unsigned char *) local_syms;
7859 }
7860 }
7861
7862 if (some_edited)
7863 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7864
7865 /* If we are doing a final link and the last .opd entry is just 16 byte
7866 long, add a 8 byte padding after it. */
7867 if (need_pad != NULL && !info->relocatable)
7868 {
7869 bfd_byte *p;
7870
7871 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7872 {
7873 BFD_ASSERT (need_pad->size > 0);
7874
7875 p = bfd_malloc (need_pad->size + 8);
7876 if (p == NULL)
7877 return FALSE;
7878
7879 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7880 p, 0, need_pad->size))
7881 return FALSE;
7882
7883 need_pad->contents = p;
7884 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7885 }
7886 else
7887 {
7888 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7889 if (p == NULL)
7890 return FALSE;
7891
7892 need_pad->contents = p;
7893 }
7894
7895 memset (need_pad->contents + need_pad->size, 0, 8);
7896 need_pad->size += 8;
7897 }
7898
7899 return TRUE;
7900 }
7901
7902 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7903
7904 asection *
7905 ppc64_elf_tls_setup (struct bfd_link_info *info,
7906 int no_tls_get_addr_opt,
7907 int *no_multi_toc)
7908 {
7909 struct ppc_link_hash_table *htab;
7910
7911 htab = ppc_hash_table (info);
7912 if (htab == NULL)
7913 return NULL;
7914
7915 if (abiversion (info->output_bfd) == 1)
7916 htab->opd_abi = 1;
7917
7918 if (*no_multi_toc)
7919 htab->do_multi_toc = 0;
7920 else if (!htab->do_multi_toc)
7921 *no_multi_toc = 1;
7922
7923 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7924 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7925 FALSE, FALSE, TRUE));
7926 /* Move dynamic linking info to the function descriptor sym. */
7927 if (htab->tls_get_addr != NULL)
7928 func_desc_adjust (&htab->tls_get_addr->elf, info);
7929 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7930 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7931 FALSE, FALSE, TRUE));
7932 if (!no_tls_get_addr_opt)
7933 {
7934 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7935
7936 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7937 FALSE, FALSE, TRUE);
7938 if (opt != NULL)
7939 func_desc_adjust (opt, info);
7940 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7941 FALSE, FALSE, TRUE);
7942 if (opt_fd != NULL
7943 && (opt_fd->root.type == bfd_link_hash_defined
7944 || opt_fd->root.type == bfd_link_hash_defweak))
7945 {
7946 /* If glibc supports an optimized __tls_get_addr call stub,
7947 signalled by the presence of __tls_get_addr_opt, and we'll
7948 be calling __tls_get_addr via a plt call stub, then
7949 make __tls_get_addr point to __tls_get_addr_opt. */
7950 tga_fd = &htab->tls_get_addr_fd->elf;
7951 if (htab->elf.dynamic_sections_created
7952 && tga_fd != NULL
7953 && (tga_fd->type == STT_FUNC
7954 || tga_fd->needs_plt)
7955 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7956 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7957 && tga_fd->root.type == bfd_link_hash_undefweak)))
7958 {
7959 struct plt_entry *ent;
7960
7961 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7962 if (ent->plt.refcount > 0)
7963 break;
7964 if (ent != NULL)
7965 {
7966 tga_fd->root.type = bfd_link_hash_indirect;
7967 tga_fd->root.u.i.link = &opt_fd->root;
7968 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7969 if (opt_fd->dynindx != -1)
7970 {
7971 /* Use __tls_get_addr_opt in dynamic relocations. */
7972 opt_fd->dynindx = -1;
7973 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7974 opt_fd->dynstr_index);
7975 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7976 return NULL;
7977 }
7978 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7979 tga = &htab->tls_get_addr->elf;
7980 if (opt != NULL && tga != NULL)
7981 {
7982 tga->root.type = bfd_link_hash_indirect;
7983 tga->root.u.i.link = &opt->root;
7984 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7985 _bfd_elf_link_hash_hide_symbol (info, opt,
7986 tga->forced_local);
7987 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7988 }
7989 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7990 htab->tls_get_addr_fd->is_func_descriptor = 1;
7991 if (htab->tls_get_addr != NULL)
7992 {
7993 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7994 htab->tls_get_addr->is_func = 1;
7995 }
7996 }
7997 }
7998 }
7999 else
8000 no_tls_get_addr_opt = TRUE;
8001 }
8002 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
8003 return _bfd_elf_tls_setup (info->output_bfd, info);
8004 }
8005
8006 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8007 HASH1 or HASH2. */
8008
8009 static bfd_boolean
8010 branch_reloc_hash_match (const bfd *ibfd,
8011 const Elf_Internal_Rela *rel,
8012 const struct ppc_link_hash_entry *hash1,
8013 const struct ppc_link_hash_entry *hash2)
8014 {
8015 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8016 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8017 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8018
8019 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8020 {
8021 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8022 struct elf_link_hash_entry *h;
8023
8024 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8025 h = elf_follow_link (h);
8026 if (h == &hash1->elf || h == &hash2->elf)
8027 return TRUE;
8028 }
8029 return FALSE;
8030 }
8031
8032 /* Run through all the TLS relocs looking for optimization
8033 opportunities. The linker has been hacked (see ppc64elf.em) to do
8034 a preliminary section layout so that we know the TLS segment
8035 offsets. We can't optimize earlier because some optimizations need
8036 to know the tp offset, and we need to optimize before allocating
8037 dynamic relocations. */
8038
8039 bfd_boolean
8040 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8041 {
8042 bfd *ibfd;
8043 asection *sec;
8044 struct ppc_link_hash_table *htab;
8045 unsigned char *toc_ref;
8046 int pass;
8047
8048 if (info->relocatable || !info->executable)
8049 return TRUE;
8050
8051 htab = ppc_hash_table (info);
8052 if (htab == NULL)
8053 return FALSE;
8054
8055 /* Make two passes over the relocs. On the first pass, mark toc
8056 entries involved with tls relocs, and check that tls relocs
8057 involved in setting up a tls_get_addr call are indeed followed by
8058 such a call. If they are not, we can't do any tls optimization.
8059 On the second pass twiddle tls_mask flags to notify
8060 relocate_section that optimization can be done, and adjust got
8061 and plt refcounts. */
8062 toc_ref = NULL;
8063 for (pass = 0; pass < 2; ++pass)
8064 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8065 {
8066 Elf_Internal_Sym *locsyms = NULL;
8067 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8068
8069 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8070 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8071 {
8072 Elf_Internal_Rela *relstart, *rel, *relend;
8073 bfd_boolean found_tls_get_addr_arg = 0;
8074
8075 /* Read the relocations. */
8076 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8077 info->keep_memory);
8078 if (relstart == NULL)
8079 return FALSE;
8080
8081 relend = relstart + sec->reloc_count;
8082 for (rel = relstart; rel < relend; rel++)
8083 {
8084 enum elf_ppc64_reloc_type r_type;
8085 unsigned long r_symndx;
8086 struct elf_link_hash_entry *h;
8087 Elf_Internal_Sym *sym;
8088 asection *sym_sec;
8089 unsigned char *tls_mask;
8090 unsigned char tls_set, tls_clear, tls_type = 0;
8091 bfd_vma value;
8092 bfd_boolean ok_tprel, is_local;
8093 long toc_ref_index = 0;
8094 int expecting_tls_get_addr = 0;
8095 bfd_boolean ret = FALSE;
8096
8097 r_symndx = ELF64_R_SYM (rel->r_info);
8098 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8099 r_symndx, ibfd))
8100 {
8101 err_free_rel:
8102 if (elf_section_data (sec)->relocs != relstart)
8103 free (relstart);
8104 if (toc_ref != NULL)
8105 free (toc_ref);
8106 if (locsyms != NULL
8107 && (elf_symtab_hdr (ibfd).contents
8108 != (unsigned char *) locsyms))
8109 free (locsyms);
8110 return ret;
8111 }
8112
8113 if (h != NULL)
8114 {
8115 if (h->root.type == bfd_link_hash_defined
8116 || h->root.type == bfd_link_hash_defweak)
8117 value = h->root.u.def.value;
8118 else if (h->root.type == bfd_link_hash_undefweak)
8119 value = 0;
8120 else
8121 {
8122 found_tls_get_addr_arg = 0;
8123 continue;
8124 }
8125 }
8126 else
8127 /* Symbols referenced by TLS relocs must be of type
8128 STT_TLS. So no need for .opd local sym adjust. */
8129 value = sym->st_value;
8130
8131 ok_tprel = FALSE;
8132 is_local = FALSE;
8133 if (h == NULL
8134 || !h->def_dynamic)
8135 {
8136 is_local = TRUE;
8137 if (h != NULL
8138 && h->root.type == bfd_link_hash_undefweak)
8139 ok_tprel = TRUE;
8140 else
8141 {
8142 value += sym_sec->output_offset;
8143 value += sym_sec->output_section->vma;
8144 value -= htab->elf.tls_sec->vma;
8145 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8146 < (bfd_vma) 1 << 32);
8147 }
8148 }
8149
8150 r_type = ELF64_R_TYPE (rel->r_info);
8151 /* If this section has old-style __tls_get_addr calls
8152 without marker relocs, then check that each
8153 __tls_get_addr call reloc is preceded by a reloc
8154 that conceivably belongs to the __tls_get_addr arg
8155 setup insn. If we don't find matching arg setup
8156 relocs, don't do any tls optimization. */
8157 if (pass == 0
8158 && sec->has_tls_get_addr_call
8159 && h != NULL
8160 && (h == &htab->tls_get_addr->elf
8161 || h == &htab->tls_get_addr_fd->elf)
8162 && !found_tls_get_addr_arg
8163 && is_branch_reloc (r_type))
8164 {
8165 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8166 "TLS optimization disabled\n"),
8167 ibfd, sec, rel->r_offset);
8168 ret = TRUE;
8169 goto err_free_rel;
8170 }
8171
8172 found_tls_get_addr_arg = 0;
8173 switch (r_type)
8174 {
8175 case R_PPC64_GOT_TLSLD16:
8176 case R_PPC64_GOT_TLSLD16_LO:
8177 expecting_tls_get_addr = 1;
8178 found_tls_get_addr_arg = 1;
8179 /* Fall thru */
8180
8181 case R_PPC64_GOT_TLSLD16_HI:
8182 case R_PPC64_GOT_TLSLD16_HA:
8183 /* These relocs should never be against a symbol
8184 defined in a shared lib. Leave them alone if
8185 that turns out to be the case. */
8186 if (!is_local)
8187 continue;
8188
8189 /* LD -> LE */
8190 tls_set = 0;
8191 tls_clear = TLS_LD;
8192 tls_type = TLS_TLS | TLS_LD;
8193 break;
8194
8195 case R_PPC64_GOT_TLSGD16:
8196 case R_PPC64_GOT_TLSGD16_LO:
8197 expecting_tls_get_addr = 1;
8198 found_tls_get_addr_arg = 1;
8199 /* Fall thru */
8200
8201 case R_PPC64_GOT_TLSGD16_HI:
8202 case R_PPC64_GOT_TLSGD16_HA:
8203 if (ok_tprel)
8204 /* GD -> LE */
8205 tls_set = 0;
8206 else
8207 /* GD -> IE */
8208 tls_set = TLS_TLS | TLS_TPRELGD;
8209 tls_clear = TLS_GD;
8210 tls_type = TLS_TLS | TLS_GD;
8211 break;
8212
8213 case R_PPC64_GOT_TPREL16_DS:
8214 case R_PPC64_GOT_TPREL16_LO_DS:
8215 case R_PPC64_GOT_TPREL16_HI:
8216 case R_PPC64_GOT_TPREL16_HA:
8217 if (ok_tprel)
8218 {
8219 /* IE -> LE */
8220 tls_set = 0;
8221 tls_clear = TLS_TPREL;
8222 tls_type = TLS_TLS | TLS_TPREL;
8223 break;
8224 }
8225 continue;
8226
8227 case R_PPC64_TLSGD:
8228 case R_PPC64_TLSLD:
8229 found_tls_get_addr_arg = 1;
8230 /* Fall thru */
8231
8232 case R_PPC64_TLS:
8233 case R_PPC64_TOC16:
8234 case R_PPC64_TOC16_LO:
8235 if (sym_sec == NULL || sym_sec != toc)
8236 continue;
8237
8238 /* Mark this toc entry as referenced by a TLS
8239 code sequence. We can do that now in the
8240 case of R_PPC64_TLS, and after checking for
8241 tls_get_addr for the TOC16 relocs. */
8242 if (toc_ref == NULL)
8243 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8244 if (toc_ref == NULL)
8245 goto err_free_rel;
8246
8247 if (h != NULL)
8248 value = h->root.u.def.value;
8249 else
8250 value = sym->st_value;
8251 value += rel->r_addend;
8252 BFD_ASSERT (value < toc->size && value % 8 == 0);
8253 toc_ref_index = (value + toc->output_offset) / 8;
8254 if (r_type == R_PPC64_TLS
8255 || r_type == R_PPC64_TLSGD
8256 || r_type == R_PPC64_TLSLD)
8257 {
8258 toc_ref[toc_ref_index] = 1;
8259 continue;
8260 }
8261
8262 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8263 continue;
8264
8265 tls_set = 0;
8266 tls_clear = 0;
8267 expecting_tls_get_addr = 2;
8268 break;
8269
8270 case R_PPC64_TPREL64:
8271 if (pass == 0
8272 || sec != toc
8273 || toc_ref == NULL
8274 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8275 continue;
8276 if (ok_tprel)
8277 {
8278 /* IE -> LE */
8279 tls_set = TLS_EXPLICIT;
8280 tls_clear = TLS_TPREL;
8281 break;
8282 }
8283 continue;
8284
8285 case R_PPC64_DTPMOD64:
8286 if (pass == 0
8287 || sec != toc
8288 || toc_ref == NULL
8289 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8290 continue;
8291 if (rel + 1 < relend
8292 && (rel[1].r_info
8293 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8294 && rel[1].r_offset == rel->r_offset + 8)
8295 {
8296 if (ok_tprel)
8297 /* GD -> LE */
8298 tls_set = TLS_EXPLICIT | TLS_GD;
8299 else
8300 /* GD -> IE */
8301 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8302 tls_clear = TLS_GD;
8303 }
8304 else
8305 {
8306 if (!is_local)
8307 continue;
8308
8309 /* LD -> LE */
8310 tls_set = TLS_EXPLICIT;
8311 tls_clear = TLS_LD;
8312 }
8313 break;
8314
8315 default:
8316 continue;
8317 }
8318
8319 if (pass == 0)
8320 {
8321 if (!expecting_tls_get_addr
8322 || !sec->has_tls_get_addr_call)
8323 continue;
8324
8325 if (rel + 1 < relend
8326 && branch_reloc_hash_match (ibfd, rel + 1,
8327 htab->tls_get_addr,
8328 htab->tls_get_addr_fd))
8329 {
8330 if (expecting_tls_get_addr == 2)
8331 {
8332 /* Check for toc tls entries. */
8333 unsigned char *toc_tls;
8334 int retval;
8335
8336 retval = get_tls_mask (&toc_tls, NULL, NULL,
8337 &locsyms,
8338 rel, ibfd);
8339 if (retval == 0)
8340 goto err_free_rel;
8341 if (toc_tls != NULL)
8342 {
8343 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8344 found_tls_get_addr_arg = 1;
8345 if (retval > 1)
8346 toc_ref[toc_ref_index] = 1;
8347 }
8348 }
8349 continue;
8350 }
8351
8352 if (expecting_tls_get_addr != 1)
8353 continue;
8354
8355 /* Uh oh, we didn't find the expected call. We
8356 could just mark this symbol to exclude it
8357 from tls optimization but it's safer to skip
8358 the entire optimization. */
8359 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8360 "TLS optimization disabled\n"),
8361 ibfd, sec, rel->r_offset);
8362 ret = TRUE;
8363 goto err_free_rel;
8364 }
8365
8366 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8367 {
8368 struct plt_entry *ent;
8369 for (ent = htab->tls_get_addr->elf.plt.plist;
8370 ent != NULL;
8371 ent = ent->next)
8372 if (ent->addend == 0)
8373 {
8374 if (ent->plt.refcount > 0)
8375 {
8376 ent->plt.refcount -= 1;
8377 expecting_tls_get_addr = 0;
8378 }
8379 break;
8380 }
8381 }
8382
8383 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8384 {
8385 struct plt_entry *ent;
8386 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8387 ent != NULL;
8388 ent = ent->next)
8389 if (ent->addend == 0)
8390 {
8391 if (ent->plt.refcount > 0)
8392 ent->plt.refcount -= 1;
8393 break;
8394 }
8395 }
8396
8397 if (tls_clear == 0)
8398 continue;
8399
8400 if ((tls_set & TLS_EXPLICIT) == 0)
8401 {
8402 struct got_entry *ent;
8403
8404 /* Adjust got entry for this reloc. */
8405 if (h != NULL)
8406 ent = h->got.glist;
8407 else
8408 ent = elf_local_got_ents (ibfd)[r_symndx];
8409
8410 for (; ent != NULL; ent = ent->next)
8411 if (ent->addend == rel->r_addend
8412 && ent->owner == ibfd
8413 && ent->tls_type == tls_type)
8414 break;
8415 if (ent == NULL)
8416 abort ();
8417
8418 if (tls_set == 0)
8419 {
8420 /* We managed to get rid of a got entry. */
8421 if (ent->got.refcount > 0)
8422 ent->got.refcount -= 1;
8423 }
8424 }
8425 else
8426 {
8427 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8428 we'll lose one or two dyn relocs. */
8429 if (!dec_dynrel_count (rel->r_info, sec, info,
8430 NULL, h, sym))
8431 return FALSE;
8432
8433 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8434 {
8435 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8436 NULL, h, sym))
8437 return FALSE;
8438 }
8439 }
8440
8441 *tls_mask |= tls_set;
8442 *tls_mask &= ~tls_clear;
8443 }
8444
8445 if (elf_section_data (sec)->relocs != relstart)
8446 free (relstart);
8447 }
8448
8449 if (locsyms != NULL
8450 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8451 {
8452 if (!info->keep_memory)
8453 free (locsyms);
8454 else
8455 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8456 }
8457 }
8458
8459 if (toc_ref != NULL)
8460 free (toc_ref);
8461 return TRUE;
8462 }
8463
8464 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8465 the values of any global symbols in a toc section that has been
8466 edited. Globals in toc sections should be a rarity, so this function
8467 sets a flag if any are found in toc sections other than the one just
8468 edited, so that futher hash table traversals can be avoided. */
8469
8470 struct adjust_toc_info
8471 {
8472 asection *toc;
8473 unsigned long *skip;
8474 bfd_boolean global_toc_syms;
8475 };
8476
8477 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8478
8479 static bfd_boolean
8480 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8481 {
8482 struct ppc_link_hash_entry *eh;
8483 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8484 unsigned long i;
8485
8486 if (h->root.type != bfd_link_hash_defined
8487 && h->root.type != bfd_link_hash_defweak)
8488 return TRUE;
8489
8490 eh = (struct ppc_link_hash_entry *) h;
8491 if (eh->adjust_done)
8492 return TRUE;
8493
8494 if (eh->elf.root.u.def.section == toc_inf->toc)
8495 {
8496 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8497 i = toc_inf->toc->rawsize >> 3;
8498 else
8499 i = eh->elf.root.u.def.value >> 3;
8500
8501 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8502 {
8503 (*_bfd_error_handler)
8504 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8505 do
8506 ++i;
8507 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8508 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8509 }
8510
8511 eh->elf.root.u.def.value -= toc_inf->skip[i];
8512 eh->adjust_done = 1;
8513 }
8514 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8515 toc_inf->global_toc_syms = TRUE;
8516
8517 return TRUE;
8518 }
8519
8520 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8521
8522 static bfd_boolean
8523 ok_lo_toc_insn (unsigned int insn)
8524 {
8525 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8526 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8527 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8528 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8529 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8530 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8531 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8532 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8533 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8534 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8535 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8536 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8537 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8538 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8539 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8540 && (insn & 3) != 1)
8541 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8542 && ((insn & 3) == 0 || (insn & 3) == 3))
8543 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8544 }
8545
8546 /* Examine all relocs referencing .toc sections in order to remove
8547 unused .toc entries. */
8548
8549 bfd_boolean
8550 ppc64_elf_edit_toc (struct bfd_link_info *info)
8551 {
8552 bfd *ibfd;
8553 struct adjust_toc_info toc_inf;
8554 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8555
8556 htab->do_toc_opt = 1;
8557 toc_inf.global_toc_syms = TRUE;
8558 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8559 {
8560 asection *toc, *sec;
8561 Elf_Internal_Shdr *symtab_hdr;
8562 Elf_Internal_Sym *local_syms;
8563 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8564 unsigned long *skip, *drop;
8565 unsigned char *used;
8566 unsigned char *keep, last, some_unused;
8567
8568 if (!is_ppc64_elf (ibfd))
8569 continue;
8570
8571 toc = bfd_get_section_by_name (ibfd, ".toc");
8572 if (toc == NULL
8573 || toc->size == 0
8574 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8575 || discarded_section (toc))
8576 continue;
8577
8578 toc_relocs = NULL;
8579 local_syms = NULL;
8580 symtab_hdr = &elf_symtab_hdr (ibfd);
8581
8582 /* Look at sections dropped from the final link. */
8583 skip = NULL;
8584 relstart = NULL;
8585 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8586 {
8587 if (sec->reloc_count == 0
8588 || !discarded_section (sec)
8589 || get_opd_info (sec)
8590 || (sec->flags & SEC_ALLOC) == 0
8591 || (sec->flags & SEC_DEBUGGING) != 0)
8592 continue;
8593
8594 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8595 if (relstart == NULL)
8596 goto error_ret;
8597
8598 /* Run through the relocs to see which toc entries might be
8599 unused. */
8600 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8601 {
8602 enum elf_ppc64_reloc_type r_type;
8603 unsigned long r_symndx;
8604 asection *sym_sec;
8605 struct elf_link_hash_entry *h;
8606 Elf_Internal_Sym *sym;
8607 bfd_vma val;
8608
8609 r_type = ELF64_R_TYPE (rel->r_info);
8610 switch (r_type)
8611 {
8612 default:
8613 continue;
8614
8615 case R_PPC64_TOC16:
8616 case R_PPC64_TOC16_LO:
8617 case R_PPC64_TOC16_HI:
8618 case R_PPC64_TOC16_HA:
8619 case R_PPC64_TOC16_DS:
8620 case R_PPC64_TOC16_LO_DS:
8621 break;
8622 }
8623
8624 r_symndx = ELF64_R_SYM (rel->r_info);
8625 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8626 r_symndx, ibfd))
8627 goto error_ret;
8628
8629 if (sym_sec != toc)
8630 continue;
8631
8632 if (h != NULL)
8633 val = h->root.u.def.value;
8634 else
8635 val = sym->st_value;
8636 val += rel->r_addend;
8637
8638 if (val >= toc->size)
8639 continue;
8640
8641 /* Anything in the toc ought to be aligned to 8 bytes.
8642 If not, don't mark as unused. */
8643 if (val & 7)
8644 continue;
8645
8646 if (skip == NULL)
8647 {
8648 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8649 if (skip == NULL)
8650 goto error_ret;
8651 }
8652
8653 skip[val >> 3] = ref_from_discarded;
8654 }
8655
8656 if (elf_section_data (sec)->relocs != relstart)
8657 free (relstart);
8658 }
8659
8660 /* For largetoc loads of address constants, we can convert
8661 . addis rx,2,addr@got@ha
8662 . ld ry,addr@got@l(rx)
8663 to
8664 . addis rx,2,addr@toc@ha
8665 . addi ry,rx,addr@toc@l
8666 when addr is within 2G of the toc pointer. This then means
8667 that the word storing "addr" in the toc is no longer needed. */
8668
8669 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8670 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8671 && toc->reloc_count != 0)
8672 {
8673 /* Read toc relocs. */
8674 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8675 info->keep_memory);
8676 if (toc_relocs == NULL)
8677 goto error_ret;
8678
8679 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8680 {
8681 enum elf_ppc64_reloc_type r_type;
8682 unsigned long r_symndx;
8683 asection *sym_sec;
8684 struct elf_link_hash_entry *h;
8685 Elf_Internal_Sym *sym;
8686 bfd_vma val, addr;
8687
8688 r_type = ELF64_R_TYPE (rel->r_info);
8689 if (r_type != R_PPC64_ADDR64)
8690 continue;
8691
8692 r_symndx = ELF64_R_SYM (rel->r_info);
8693 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8694 r_symndx, ibfd))
8695 goto error_ret;
8696
8697 if (sym_sec == NULL
8698 || discarded_section (sym_sec))
8699 continue;
8700
8701 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8702 continue;
8703
8704 if (h != NULL)
8705 {
8706 if (h->type == STT_GNU_IFUNC)
8707 continue;
8708 val = h->root.u.def.value;
8709 }
8710 else
8711 {
8712 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8713 continue;
8714 val = sym->st_value;
8715 }
8716 val += rel->r_addend;
8717 val += sym_sec->output_section->vma + sym_sec->output_offset;
8718
8719 /* We don't yet know the exact toc pointer value, but we
8720 know it will be somewhere in the toc section. Don't
8721 optimize if the difference from any possible toc
8722 pointer is outside [ff..f80008000, 7fff7fff]. */
8723 addr = toc->output_section->vma + TOC_BASE_OFF;
8724 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8725 continue;
8726
8727 addr = toc->output_section->vma + toc->output_section->rawsize;
8728 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8729 continue;
8730
8731 if (skip == NULL)
8732 {
8733 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8734 if (skip == NULL)
8735 goto error_ret;
8736 }
8737
8738 skip[rel->r_offset >> 3]
8739 |= can_optimize | ((rel - toc_relocs) << 2);
8740 }
8741 }
8742
8743 if (skip == NULL)
8744 continue;
8745
8746 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8747 if (used == NULL)
8748 {
8749 error_ret:
8750 if (local_syms != NULL
8751 && symtab_hdr->contents != (unsigned char *) local_syms)
8752 free (local_syms);
8753 if (sec != NULL
8754 && relstart != NULL
8755 && elf_section_data (sec)->relocs != relstart)
8756 free (relstart);
8757 if (toc_relocs != NULL
8758 && elf_section_data (toc)->relocs != toc_relocs)
8759 free (toc_relocs);
8760 if (skip != NULL)
8761 free (skip);
8762 return FALSE;
8763 }
8764
8765 /* Now check all kept sections that might reference the toc.
8766 Check the toc itself last. */
8767 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8768 : ibfd->sections);
8769 sec != NULL;
8770 sec = (sec == toc ? NULL
8771 : sec->next == NULL ? toc
8772 : sec->next == toc && toc->next ? toc->next
8773 : sec->next))
8774 {
8775 int repeat;
8776
8777 if (sec->reloc_count == 0
8778 || discarded_section (sec)
8779 || get_opd_info (sec)
8780 || (sec->flags & SEC_ALLOC) == 0
8781 || (sec->flags & SEC_DEBUGGING) != 0)
8782 continue;
8783
8784 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8785 info->keep_memory);
8786 if (relstart == NULL)
8787 goto error_ret;
8788
8789 /* Mark toc entries referenced as used. */
8790 do
8791 {
8792 repeat = 0;
8793 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8794 {
8795 enum elf_ppc64_reloc_type r_type;
8796 unsigned long r_symndx;
8797 asection *sym_sec;
8798 struct elf_link_hash_entry *h;
8799 Elf_Internal_Sym *sym;
8800 bfd_vma val;
8801 enum {no_check, check_lo, check_ha} insn_check;
8802
8803 r_type = ELF64_R_TYPE (rel->r_info);
8804 switch (r_type)
8805 {
8806 default:
8807 insn_check = no_check;
8808 break;
8809
8810 case R_PPC64_GOT_TLSLD16_HA:
8811 case R_PPC64_GOT_TLSGD16_HA:
8812 case R_PPC64_GOT_TPREL16_HA:
8813 case R_PPC64_GOT_DTPREL16_HA:
8814 case R_PPC64_GOT16_HA:
8815 case R_PPC64_TOC16_HA:
8816 insn_check = check_ha;
8817 break;
8818
8819 case R_PPC64_GOT_TLSLD16_LO:
8820 case R_PPC64_GOT_TLSGD16_LO:
8821 case R_PPC64_GOT_TPREL16_LO_DS:
8822 case R_PPC64_GOT_DTPREL16_LO_DS:
8823 case R_PPC64_GOT16_LO:
8824 case R_PPC64_GOT16_LO_DS:
8825 case R_PPC64_TOC16_LO:
8826 case R_PPC64_TOC16_LO_DS:
8827 insn_check = check_lo;
8828 break;
8829 }
8830
8831 if (insn_check != no_check)
8832 {
8833 bfd_vma off = rel->r_offset & ~3;
8834 unsigned char buf[4];
8835 unsigned int insn;
8836
8837 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8838 {
8839 free (used);
8840 goto error_ret;
8841 }
8842 insn = bfd_get_32 (ibfd, buf);
8843 if (insn_check == check_lo
8844 ? !ok_lo_toc_insn (insn)
8845 : ((insn & ((0x3f << 26) | 0x1f << 16))
8846 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8847 {
8848 char str[12];
8849
8850 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8851 sprintf (str, "%#08x", insn);
8852 info->callbacks->einfo
8853 (_("%P: %H: toc optimization is not supported for"
8854 " %s instruction.\n"),
8855 ibfd, sec, rel->r_offset & ~3, str);
8856 }
8857 }
8858
8859 switch (r_type)
8860 {
8861 case R_PPC64_TOC16:
8862 case R_PPC64_TOC16_LO:
8863 case R_PPC64_TOC16_HI:
8864 case R_PPC64_TOC16_HA:
8865 case R_PPC64_TOC16_DS:
8866 case R_PPC64_TOC16_LO_DS:
8867 /* In case we're taking addresses of toc entries. */
8868 case R_PPC64_ADDR64:
8869 break;
8870
8871 default:
8872 continue;
8873 }
8874
8875 r_symndx = ELF64_R_SYM (rel->r_info);
8876 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8877 r_symndx, ibfd))
8878 {
8879 free (used);
8880 goto error_ret;
8881 }
8882
8883 if (sym_sec != toc)
8884 continue;
8885
8886 if (h != NULL)
8887 val = h->root.u.def.value;
8888 else
8889 val = sym->st_value;
8890 val += rel->r_addend;
8891
8892 if (val >= toc->size)
8893 continue;
8894
8895 if ((skip[val >> 3] & can_optimize) != 0)
8896 {
8897 bfd_vma off;
8898 unsigned char opc;
8899
8900 switch (r_type)
8901 {
8902 case R_PPC64_TOC16_HA:
8903 break;
8904
8905 case R_PPC64_TOC16_LO_DS:
8906 off = rel->r_offset;
8907 off += (bfd_big_endian (ibfd) ? -2 : 3);
8908 if (!bfd_get_section_contents (ibfd, sec, &opc,
8909 off, 1))
8910 {
8911 free (used);
8912 goto error_ret;
8913 }
8914 if ((opc & (0x3f << 2)) == (58u << 2))
8915 break;
8916 /* Fall thru */
8917
8918 default:
8919 /* Wrong sort of reloc, or not a ld. We may
8920 as well clear ref_from_discarded too. */
8921 skip[val >> 3] = 0;
8922 }
8923 }
8924
8925 if (sec != toc)
8926 used[val >> 3] = 1;
8927 /* For the toc section, we only mark as used if this
8928 entry itself isn't unused. */
8929 else if ((used[rel->r_offset >> 3]
8930 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8931 && !used[val >> 3])
8932 {
8933 /* Do all the relocs again, to catch reference
8934 chains. */
8935 repeat = 1;
8936 used[val >> 3] = 1;
8937 }
8938 }
8939 }
8940 while (repeat);
8941
8942 if (elf_section_data (sec)->relocs != relstart)
8943 free (relstart);
8944 }
8945
8946 /* Merge the used and skip arrays. Assume that TOC
8947 doublewords not appearing as either used or unused belong
8948 to to an entry more than one doubleword in size. */
8949 for (drop = skip, keep = used, last = 0, some_unused = 0;
8950 drop < skip + (toc->size + 7) / 8;
8951 ++drop, ++keep)
8952 {
8953 if (*keep)
8954 {
8955 *drop &= ~ref_from_discarded;
8956 if ((*drop & can_optimize) != 0)
8957 some_unused = 1;
8958 last = 0;
8959 }
8960 else if ((*drop & ref_from_discarded) != 0)
8961 {
8962 some_unused = 1;
8963 last = ref_from_discarded;
8964 }
8965 else
8966 *drop = last;
8967 }
8968
8969 free (used);
8970
8971 if (some_unused)
8972 {
8973 bfd_byte *contents, *src;
8974 unsigned long off;
8975 Elf_Internal_Sym *sym;
8976 bfd_boolean local_toc_syms = FALSE;
8977
8978 /* Shuffle the toc contents, and at the same time convert the
8979 skip array from booleans into offsets. */
8980 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8981 goto error_ret;
8982
8983 elf_section_data (toc)->this_hdr.contents = contents;
8984
8985 for (src = contents, off = 0, drop = skip;
8986 src < contents + toc->size;
8987 src += 8, ++drop)
8988 {
8989 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8990 off += 8;
8991 else if (off != 0)
8992 {
8993 *drop = off;
8994 memcpy (src - off, src, 8);
8995 }
8996 }
8997 *drop = off;
8998 toc->rawsize = toc->size;
8999 toc->size = src - contents - off;
9000
9001 /* Adjust addends for relocs against the toc section sym,
9002 and optimize any accesses we can. */
9003 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9004 {
9005 if (sec->reloc_count == 0
9006 || discarded_section (sec))
9007 continue;
9008
9009 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9010 info->keep_memory);
9011 if (relstart == NULL)
9012 goto error_ret;
9013
9014 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9015 {
9016 enum elf_ppc64_reloc_type r_type;
9017 unsigned long r_symndx;
9018 asection *sym_sec;
9019 struct elf_link_hash_entry *h;
9020 bfd_vma val;
9021
9022 r_type = ELF64_R_TYPE (rel->r_info);
9023 switch (r_type)
9024 {
9025 default:
9026 continue;
9027
9028 case R_PPC64_TOC16:
9029 case R_PPC64_TOC16_LO:
9030 case R_PPC64_TOC16_HI:
9031 case R_PPC64_TOC16_HA:
9032 case R_PPC64_TOC16_DS:
9033 case R_PPC64_TOC16_LO_DS:
9034 case R_PPC64_ADDR64:
9035 break;
9036 }
9037
9038 r_symndx = ELF64_R_SYM (rel->r_info);
9039 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9040 r_symndx, ibfd))
9041 goto error_ret;
9042
9043 if (sym_sec != toc)
9044 continue;
9045
9046 if (h != NULL)
9047 val = h->root.u.def.value;
9048 else
9049 {
9050 val = sym->st_value;
9051 if (val != 0)
9052 local_toc_syms = TRUE;
9053 }
9054
9055 val += rel->r_addend;
9056
9057 if (val > toc->rawsize)
9058 val = toc->rawsize;
9059 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9060 continue;
9061 else if ((skip[val >> 3] & can_optimize) != 0)
9062 {
9063 Elf_Internal_Rela *tocrel
9064 = toc_relocs + (skip[val >> 3] >> 2);
9065 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9066
9067 switch (r_type)
9068 {
9069 case R_PPC64_TOC16_HA:
9070 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9071 break;
9072
9073 case R_PPC64_TOC16_LO_DS:
9074 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9075 break;
9076
9077 default:
9078 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9079 ppc_howto_init ();
9080 info->callbacks->einfo
9081 (_("%P: %H: %s references "
9082 "optimized away TOC entry\n"),
9083 ibfd, sec, rel->r_offset,
9084 ppc64_elf_howto_table[r_type]->name);
9085 bfd_set_error (bfd_error_bad_value);
9086 goto error_ret;
9087 }
9088 rel->r_addend = tocrel->r_addend;
9089 elf_section_data (sec)->relocs = relstart;
9090 continue;
9091 }
9092
9093 if (h != NULL || sym->st_value != 0)
9094 continue;
9095
9096 rel->r_addend -= skip[val >> 3];
9097 elf_section_data (sec)->relocs = relstart;
9098 }
9099
9100 if (elf_section_data (sec)->relocs != relstart)
9101 free (relstart);
9102 }
9103
9104 /* We shouldn't have local or global symbols defined in the TOC,
9105 but handle them anyway. */
9106 if (local_syms != NULL)
9107 for (sym = local_syms;
9108 sym < local_syms + symtab_hdr->sh_info;
9109 ++sym)
9110 if (sym->st_value != 0
9111 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9112 {
9113 unsigned long i;
9114
9115 if (sym->st_value > toc->rawsize)
9116 i = toc->rawsize >> 3;
9117 else
9118 i = sym->st_value >> 3;
9119
9120 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9121 {
9122 if (local_toc_syms)
9123 (*_bfd_error_handler)
9124 (_("%s defined on removed toc entry"),
9125 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9126 do
9127 ++i;
9128 while ((skip[i] & (ref_from_discarded | can_optimize)));
9129 sym->st_value = (bfd_vma) i << 3;
9130 }
9131
9132 sym->st_value -= skip[i];
9133 symtab_hdr->contents = (unsigned char *) local_syms;
9134 }
9135
9136 /* Adjust any global syms defined in this toc input section. */
9137 if (toc_inf.global_toc_syms)
9138 {
9139 toc_inf.toc = toc;
9140 toc_inf.skip = skip;
9141 toc_inf.global_toc_syms = FALSE;
9142 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9143 &toc_inf);
9144 }
9145
9146 if (toc->reloc_count != 0)
9147 {
9148 Elf_Internal_Shdr *rel_hdr;
9149 Elf_Internal_Rela *wrel;
9150 bfd_size_type sz;
9151
9152 /* Remove unused toc relocs, and adjust those we keep. */
9153 if (toc_relocs == NULL)
9154 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9155 info->keep_memory);
9156 if (toc_relocs == NULL)
9157 goto error_ret;
9158
9159 wrel = toc_relocs;
9160 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9161 if ((skip[rel->r_offset >> 3]
9162 & (ref_from_discarded | can_optimize)) == 0)
9163 {
9164 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9165 wrel->r_info = rel->r_info;
9166 wrel->r_addend = rel->r_addend;
9167 ++wrel;
9168 }
9169 else if (!dec_dynrel_count (rel->r_info, toc, info,
9170 &local_syms, NULL, NULL))
9171 goto error_ret;
9172
9173 elf_section_data (toc)->relocs = toc_relocs;
9174 toc->reloc_count = wrel - toc_relocs;
9175 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9176 sz = rel_hdr->sh_entsize;
9177 rel_hdr->sh_size = toc->reloc_count * sz;
9178 }
9179 }
9180 else if (toc_relocs != NULL
9181 && elf_section_data (toc)->relocs != toc_relocs)
9182 free (toc_relocs);
9183
9184 if (local_syms != NULL
9185 && symtab_hdr->contents != (unsigned char *) local_syms)
9186 {
9187 if (!info->keep_memory)
9188 free (local_syms);
9189 else
9190 symtab_hdr->contents = (unsigned char *) local_syms;
9191 }
9192 free (skip);
9193 }
9194
9195 return TRUE;
9196 }
9197
9198 /* Return true iff input section I references the TOC using
9199 instructions limited to +/-32k offsets. */
9200
9201 bfd_boolean
9202 ppc64_elf_has_small_toc_reloc (asection *i)
9203 {
9204 return (is_ppc64_elf (i->owner)
9205 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9206 }
9207
9208 /* Allocate space for one GOT entry. */
9209
9210 static void
9211 allocate_got (struct elf_link_hash_entry *h,
9212 struct bfd_link_info *info,
9213 struct got_entry *gent)
9214 {
9215 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9216 bfd_boolean dyn;
9217 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9218 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9219 ? 16 : 8);
9220 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9221 ? 2 : 1) * sizeof (Elf64_External_Rela);
9222 asection *got = ppc64_elf_tdata (gent->owner)->got;
9223
9224 gent->got.offset = got->size;
9225 got->size += entsize;
9226
9227 dyn = htab->elf.dynamic_sections_created;
9228 if (h->type == STT_GNU_IFUNC)
9229 {
9230 htab->elf.irelplt->size += rentsize;
9231 htab->got_reli_size += rentsize;
9232 }
9233 else if ((info->shared
9234 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9235 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9236 || h->root.type != bfd_link_hash_undefweak))
9237 {
9238 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9239 relgot->size += rentsize;
9240 }
9241 }
9242
9243 /* This function merges got entries in the same toc group. */
9244
9245 static void
9246 merge_got_entries (struct got_entry **pent)
9247 {
9248 struct got_entry *ent, *ent2;
9249
9250 for (ent = *pent; ent != NULL; ent = ent->next)
9251 if (!ent->is_indirect)
9252 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9253 if (!ent2->is_indirect
9254 && ent2->addend == ent->addend
9255 && ent2->tls_type == ent->tls_type
9256 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9257 {
9258 ent2->is_indirect = TRUE;
9259 ent2->got.ent = ent;
9260 }
9261 }
9262
9263 /* Allocate space in .plt, .got and associated reloc sections for
9264 dynamic relocs. */
9265
9266 static bfd_boolean
9267 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9268 {
9269 struct bfd_link_info *info;
9270 struct ppc_link_hash_table *htab;
9271 asection *s;
9272 struct ppc_link_hash_entry *eh;
9273 struct elf_dyn_relocs *p;
9274 struct got_entry **pgent, *gent;
9275
9276 if (h->root.type == bfd_link_hash_indirect)
9277 return TRUE;
9278
9279 info = (struct bfd_link_info *) inf;
9280 htab = ppc_hash_table (info);
9281 if (htab == NULL)
9282 return FALSE;
9283
9284 if ((htab->elf.dynamic_sections_created
9285 && h->dynindx != -1
9286 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9287 || h->type == STT_GNU_IFUNC)
9288 {
9289 struct plt_entry *pent;
9290 bfd_boolean doneone = FALSE;
9291 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9292 if (pent->plt.refcount > 0)
9293 {
9294 if (!htab->elf.dynamic_sections_created
9295 || h->dynindx == -1)
9296 {
9297 s = htab->elf.iplt;
9298 pent->plt.offset = s->size;
9299 s->size += PLT_ENTRY_SIZE (htab);
9300 s = htab->elf.irelplt;
9301 }
9302 else
9303 {
9304 /* If this is the first .plt entry, make room for the special
9305 first entry. */
9306 s = htab->elf.splt;
9307 if (s->size == 0)
9308 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9309
9310 pent->plt.offset = s->size;
9311
9312 /* Make room for this entry. */
9313 s->size += PLT_ENTRY_SIZE (htab);
9314
9315 /* Make room for the .glink code. */
9316 s = htab->glink;
9317 if (s->size == 0)
9318 s->size += GLINK_CALL_STUB_SIZE;
9319 if (htab->opd_abi)
9320 {
9321 /* We need bigger stubs past index 32767. */
9322 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9323 s->size += 4;
9324 s->size += 2*4;
9325 }
9326 else
9327 s->size += 4;
9328
9329 /* We also need to make an entry in the .rela.plt section. */
9330 s = htab->elf.srelplt;
9331 }
9332 s->size += sizeof (Elf64_External_Rela);
9333 doneone = TRUE;
9334 }
9335 else
9336 pent->plt.offset = (bfd_vma) -1;
9337 if (!doneone)
9338 {
9339 h->plt.plist = NULL;
9340 h->needs_plt = 0;
9341 }
9342 }
9343 else
9344 {
9345 h->plt.plist = NULL;
9346 h->needs_plt = 0;
9347 }
9348
9349 eh = (struct ppc_link_hash_entry *) h;
9350 /* Run through the TLS GD got entries first if we're changing them
9351 to TPREL. */
9352 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9353 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9354 if (gent->got.refcount > 0
9355 && (gent->tls_type & TLS_GD) != 0)
9356 {
9357 /* This was a GD entry that has been converted to TPREL. If
9358 there happens to be a TPREL entry we can use that one. */
9359 struct got_entry *ent;
9360 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9361 if (ent->got.refcount > 0
9362 && (ent->tls_type & TLS_TPREL) != 0
9363 && ent->addend == gent->addend
9364 && ent->owner == gent->owner)
9365 {
9366 gent->got.refcount = 0;
9367 break;
9368 }
9369
9370 /* If not, then we'll be using our own TPREL entry. */
9371 if (gent->got.refcount != 0)
9372 gent->tls_type = TLS_TLS | TLS_TPREL;
9373 }
9374
9375 /* Remove any list entry that won't generate a word in the GOT before
9376 we call merge_got_entries. Otherwise we risk merging to empty
9377 entries. */
9378 pgent = &h->got.glist;
9379 while ((gent = *pgent) != NULL)
9380 if (gent->got.refcount > 0)
9381 {
9382 if ((gent->tls_type & TLS_LD) != 0
9383 && !h->def_dynamic)
9384 {
9385 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9386 *pgent = gent->next;
9387 }
9388 else
9389 pgent = &gent->next;
9390 }
9391 else
9392 *pgent = gent->next;
9393
9394 if (!htab->do_multi_toc)
9395 merge_got_entries (&h->got.glist);
9396
9397 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9398 if (!gent->is_indirect)
9399 {
9400 /* Make sure this symbol is output as a dynamic symbol.
9401 Undefined weak syms won't yet be marked as dynamic,
9402 nor will all TLS symbols. */
9403 if (h->dynindx == -1
9404 && !h->forced_local
9405 && h->type != STT_GNU_IFUNC
9406 && htab->elf.dynamic_sections_created)
9407 {
9408 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9409 return FALSE;
9410 }
9411
9412 if (!is_ppc64_elf (gent->owner))
9413 abort ();
9414
9415 allocate_got (h, info, gent);
9416 }
9417
9418 if (eh->dyn_relocs == NULL
9419 || (!htab->elf.dynamic_sections_created
9420 && (h->type != STT_GNU_IFUNC
9421 || !htab->opd_abi)))
9422 return TRUE;
9423
9424 /* In the shared -Bsymbolic case, discard space allocated for
9425 dynamic pc-relative relocs against symbols which turn out to be
9426 defined in regular objects. For the normal shared case, discard
9427 space for relocs that have become local due to symbol visibility
9428 changes. */
9429
9430 if (info->shared)
9431 {
9432 /* Relocs that use pc_count are those that appear on a call insn,
9433 or certain REL relocs (see must_be_dyn_reloc) that can be
9434 generated via assembly. We want calls to protected symbols to
9435 resolve directly to the function rather than going via the plt.
9436 If people want function pointer comparisons to work as expected
9437 then they should avoid writing weird assembly. */
9438 if (SYMBOL_CALLS_LOCAL (info, h))
9439 {
9440 struct elf_dyn_relocs **pp;
9441
9442 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9443 {
9444 p->count -= p->pc_count;
9445 p->pc_count = 0;
9446 if (p->count == 0)
9447 *pp = p->next;
9448 else
9449 pp = &p->next;
9450 }
9451 }
9452
9453 /* Also discard relocs on undefined weak syms with non-default
9454 visibility. */
9455 if (eh->dyn_relocs != NULL
9456 && h->root.type == bfd_link_hash_undefweak)
9457 {
9458 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9459 eh->dyn_relocs = NULL;
9460
9461 /* Make sure this symbol is output as a dynamic symbol.
9462 Undefined weak syms won't yet be marked as dynamic. */
9463 else if (h->dynindx == -1
9464 && !h->forced_local)
9465 {
9466 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9467 return FALSE;
9468 }
9469 }
9470 }
9471 else if (h->type == STT_GNU_IFUNC)
9472 {
9473 if (!h->non_got_ref)
9474 eh->dyn_relocs = NULL;
9475 }
9476 else if (ELIMINATE_COPY_RELOCS)
9477 {
9478 /* For the non-shared case, discard space for relocs against
9479 symbols which turn out to need copy relocs or are not
9480 dynamic. */
9481
9482 if (!h->non_got_ref
9483 && !h->def_regular)
9484 {
9485 /* Make sure this symbol is output as a dynamic symbol.
9486 Undefined weak syms won't yet be marked as dynamic. */
9487 if (h->dynindx == -1
9488 && !h->forced_local)
9489 {
9490 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9491 return FALSE;
9492 }
9493
9494 /* If that succeeded, we know we'll be keeping all the
9495 relocs. */
9496 if (h->dynindx != -1)
9497 goto keep;
9498 }
9499
9500 eh->dyn_relocs = NULL;
9501
9502 keep: ;
9503 }
9504
9505 /* Finally, allocate space. */
9506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9507 {
9508 asection *sreloc = elf_section_data (p->sec)->sreloc;
9509 if (eh->elf.type == STT_GNU_IFUNC)
9510 sreloc = htab->elf.irelplt;
9511 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9512 }
9513
9514 return TRUE;
9515 }
9516
9517 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9518 to set up space for global entry stubs. These are put in glink,
9519 after the branch table. */
9520
9521 static bfd_boolean
9522 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9523 {
9524 struct bfd_link_info *info;
9525 struct ppc_link_hash_table *htab;
9526 struct plt_entry *pent;
9527 asection *s;
9528
9529 if (h->root.type == bfd_link_hash_indirect)
9530 return TRUE;
9531
9532 if (!h->pointer_equality_needed)
9533 return TRUE;
9534
9535 if (h->def_regular)
9536 return TRUE;
9537
9538 info = inf;
9539 htab = ppc_hash_table (info);
9540 if (htab == NULL)
9541 return FALSE;
9542
9543 s = htab->glink;
9544 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9545 if (pent->plt.offset != (bfd_vma) -1
9546 && pent->addend == 0)
9547 {
9548 /* For ELFv2, if this symbol is not defined in a regular file
9549 and we are not generating a shared library or pie, then we
9550 need to define the symbol in the executable on a call stub.
9551 This is to avoid text relocations. */
9552 s->size = (s->size + 15) & -16;
9553 h->root.u.def.section = s;
9554 h->root.u.def.value = s->size;
9555 s->size += 16;
9556 break;
9557 }
9558 return TRUE;
9559 }
9560
9561 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9562 read-only sections. */
9563
9564 static bfd_boolean
9565 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9566 {
9567 if (h->root.type == bfd_link_hash_indirect)
9568 return TRUE;
9569
9570 if (readonly_dynrelocs (h))
9571 {
9572 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9573
9574 /* Not an error, just cut short the traversal. */
9575 return FALSE;
9576 }
9577 return TRUE;
9578 }
9579
9580 /* Set the sizes of the dynamic sections. */
9581
9582 static bfd_boolean
9583 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9584 struct bfd_link_info *info)
9585 {
9586 struct ppc_link_hash_table *htab;
9587 bfd *dynobj;
9588 asection *s;
9589 bfd_boolean relocs;
9590 bfd *ibfd;
9591 struct got_entry *first_tlsld;
9592
9593 htab = ppc_hash_table (info);
9594 if (htab == NULL)
9595 return FALSE;
9596
9597 dynobj = htab->elf.dynobj;
9598 if (dynobj == NULL)
9599 abort ();
9600
9601 if (htab->elf.dynamic_sections_created)
9602 {
9603 /* Set the contents of the .interp section to the interpreter. */
9604 if (info->executable)
9605 {
9606 s = bfd_get_linker_section (dynobj, ".interp");
9607 if (s == NULL)
9608 abort ();
9609 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9610 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9611 }
9612 }
9613
9614 /* Set up .got offsets for local syms, and space for local dynamic
9615 relocs. */
9616 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9617 {
9618 struct got_entry **lgot_ents;
9619 struct got_entry **end_lgot_ents;
9620 struct plt_entry **local_plt;
9621 struct plt_entry **end_local_plt;
9622 unsigned char *lgot_masks;
9623 bfd_size_type locsymcount;
9624 Elf_Internal_Shdr *symtab_hdr;
9625
9626 if (!is_ppc64_elf (ibfd))
9627 continue;
9628
9629 for (s = ibfd->sections; s != NULL; s = s->next)
9630 {
9631 struct ppc_dyn_relocs *p;
9632
9633 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9634 {
9635 if (!bfd_is_abs_section (p->sec)
9636 && bfd_is_abs_section (p->sec->output_section))
9637 {
9638 /* Input section has been discarded, either because
9639 it is a copy of a linkonce section or due to
9640 linker script /DISCARD/, so we'll be discarding
9641 the relocs too. */
9642 }
9643 else if (p->count != 0)
9644 {
9645 asection *srel = elf_section_data (p->sec)->sreloc;
9646 if (p->ifunc)
9647 srel = htab->elf.irelplt;
9648 srel->size += p->count * sizeof (Elf64_External_Rela);
9649 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9650 info->flags |= DF_TEXTREL;
9651 }
9652 }
9653 }
9654
9655 lgot_ents = elf_local_got_ents (ibfd);
9656 if (!lgot_ents)
9657 continue;
9658
9659 symtab_hdr = &elf_symtab_hdr (ibfd);
9660 locsymcount = symtab_hdr->sh_info;
9661 end_lgot_ents = lgot_ents + locsymcount;
9662 local_plt = (struct plt_entry **) end_lgot_ents;
9663 end_local_plt = local_plt + locsymcount;
9664 lgot_masks = (unsigned char *) end_local_plt;
9665 s = ppc64_elf_tdata (ibfd)->got;
9666 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9667 {
9668 struct got_entry **pent, *ent;
9669
9670 pent = lgot_ents;
9671 while ((ent = *pent) != NULL)
9672 if (ent->got.refcount > 0)
9673 {
9674 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9675 {
9676 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9677 *pent = ent->next;
9678 }
9679 else
9680 {
9681 unsigned int ent_size = 8;
9682 unsigned int rel_size = sizeof (Elf64_External_Rela);
9683
9684 ent->got.offset = s->size;
9685 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9686 {
9687 ent_size *= 2;
9688 rel_size *= 2;
9689 }
9690 s->size += ent_size;
9691 if ((*lgot_masks & PLT_IFUNC) != 0)
9692 {
9693 htab->elf.irelplt->size += rel_size;
9694 htab->got_reli_size += rel_size;
9695 }
9696 else if (info->shared)
9697 {
9698 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9699 srel->size += rel_size;
9700 }
9701 pent = &ent->next;
9702 }
9703 }
9704 else
9705 *pent = ent->next;
9706 }
9707
9708 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9709 for (; local_plt < end_local_plt; ++local_plt)
9710 {
9711 struct plt_entry *ent;
9712
9713 for (ent = *local_plt; ent != NULL; ent = ent->next)
9714 if (ent->plt.refcount > 0)
9715 {
9716 s = htab->elf.iplt;
9717 ent->plt.offset = s->size;
9718 s->size += PLT_ENTRY_SIZE (htab);
9719
9720 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9721 }
9722 else
9723 ent->plt.offset = (bfd_vma) -1;
9724 }
9725 }
9726
9727 /* Allocate global sym .plt and .got entries, and space for global
9728 sym dynamic relocs. */
9729 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9730 /* Stash the end of glink branch table. */
9731 if (htab->glink != NULL)
9732 htab->glink->rawsize = htab->glink->size;
9733
9734 if (!htab->opd_abi && !info->shared)
9735 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9736
9737 first_tlsld = NULL;
9738 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9739 {
9740 struct got_entry *ent;
9741
9742 if (!is_ppc64_elf (ibfd))
9743 continue;
9744
9745 ent = ppc64_tlsld_got (ibfd);
9746 if (ent->got.refcount > 0)
9747 {
9748 if (!htab->do_multi_toc && first_tlsld != NULL)
9749 {
9750 ent->is_indirect = TRUE;
9751 ent->got.ent = first_tlsld;
9752 }
9753 else
9754 {
9755 if (first_tlsld == NULL)
9756 first_tlsld = ent;
9757 s = ppc64_elf_tdata (ibfd)->got;
9758 ent->got.offset = s->size;
9759 ent->owner = ibfd;
9760 s->size += 16;
9761 if (info->shared)
9762 {
9763 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9764 srel->size += sizeof (Elf64_External_Rela);
9765 }
9766 }
9767 }
9768 else
9769 ent->got.offset = (bfd_vma) -1;
9770 }
9771
9772 /* We now have determined the sizes of the various dynamic sections.
9773 Allocate memory for them. */
9774 relocs = FALSE;
9775 for (s = dynobj->sections; s != NULL; s = s->next)
9776 {
9777 if ((s->flags & SEC_LINKER_CREATED) == 0)
9778 continue;
9779
9780 if (s == htab->brlt || s == htab->relbrlt)
9781 /* These haven't been allocated yet; don't strip. */
9782 continue;
9783 else if (s == htab->elf.sgot
9784 || s == htab->elf.splt
9785 || s == htab->elf.iplt
9786 || s == htab->glink
9787 || s == htab->dynbss)
9788 {
9789 /* Strip this section if we don't need it; see the
9790 comment below. */
9791 }
9792 else if (s == htab->glink_eh_frame)
9793 {
9794 if (!bfd_is_abs_section (s->output_section))
9795 /* Not sized yet. */
9796 continue;
9797 }
9798 else if (CONST_STRNEQ (s->name, ".rela"))
9799 {
9800 if (s->size != 0)
9801 {
9802 if (s != htab->elf.srelplt)
9803 relocs = TRUE;
9804
9805 /* We use the reloc_count field as a counter if we need
9806 to copy relocs into the output file. */
9807 s->reloc_count = 0;
9808 }
9809 }
9810 else
9811 {
9812 /* It's not one of our sections, so don't allocate space. */
9813 continue;
9814 }
9815
9816 if (s->size == 0)
9817 {
9818 /* If we don't need this section, strip it from the
9819 output file. This is mostly to handle .rela.bss and
9820 .rela.plt. We must create both sections in
9821 create_dynamic_sections, because they must be created
9822 before the linker maps input sections to output
9823 sections. The linker does that before
9824 adjust_dynamic_symbol is called, and it is that
9825 function which decides whether anything needs to go
9826 into these sections. */
9827 s->flags |= SEC_EXCLUDE;
9828 continue;
9829 }
9830
9831 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9832 continue;
9833
9834 /* Allocate memory for the section contents. We use bfd_zalloc
9835 here in case unused entries are not reclaimed before the
9836 section's contents are written out. This should not happen,
9837 but this way if it does we get a R_PPC64_NONE reloc in .rela
9838 sections instead of garbage.
9839 We also rely on the section contents being zero when writing
9840 the GOT. */
9841 s->contents = bfd_zalloc (dynobj, s->size);
9842 if (s->contents == NULL)
9843 return FALSE;
9844 }
9845
9846 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9847 {
9848 if (!is_ppc64_elf (ibfd))
9849 continue;
9850
9851 s = ppc64_elf_tdata (ibfd)->got;
9852 if (s != NULL && s != htab->elf.sgot)
9853 {
9854 if (s->size == 0)
9855 s->flags |= SEC_EXCLUDE;
9856 else
9857 {
9858 s->contents = bfd_zalloc (ibfd, s->size);
9859 if (s->contents == NULL)
9860 return FALSE;
9861 }
9862 }
9863 s = ppc64_elf_tdata (ibfd)->relgot;
9864 if (s != NULL)
9865 {
9866 if (s->size == 0)
9867 s->flags |= SEC_EXCLUDE;
9868 else
9869 {
9870 s->contents = bfd_zalloc (ibfd, s->size);
9871 if (s->contents == NULL)
9872 return FALSE;
9873 relocs = TRUE;
9874 s->reloc_count = 0;
9875 }
9876 }
9877 }
9878
9879 if (htab->elf.dynamic_sections_created)
9880 {
9881 bfd_boolean tls_opt;
9882
9883 /* Add some entries to the .dynamic section. We fill in the
9884 values later, in ppc64_elf_finish_dynamic_sections, but we
9885 must add the entries now so that we get the correct size for
9886 the .dynamic section. The DT_DEBUG entry is filled in by the
9887 dynamic linker and used by the debugger. */
9888 #define add_dynamic_entry(TAG, VAL) \
9889 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9890
9891 if (info->executable)
9892 {
9893 if (!add_dynamic_entry (DT_DEBUG, 0))
9894 return FALSE;
9895 }
9896
9897 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9898 {
9899 if (!add_dynamic_entry (DT_PLTGOT, 0)
9900 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9901 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9902 || !add_dynamic_entry (DT_JMPREL, 0)
9903 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9904 return FALSE;
9905 }
9906
9907 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
9908 {
9909 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9910 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9911 return FALSE;
9912 }
9913
9914 tls_opt = (!htab->no_tls_get_addr_opt
9915 && htab->tls_get_addr_fd != NULL
9916 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
9917 if (tls_opt || !htab->opd_abi)
9918 {
9919 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
9920 return FALSE;
9921 }
9922
9923 if (relocs)
9924 {
9925 if (!add_dynamic_entry (DT_RELA, 0)
9926 || !add_dynamic_entry (DT_RELASZ, 0)
9927 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9928 return FALSE;
9929
9930 /* If any dynamic relocs apply to a read-only section,
9931 then we need a DT_TEXTREL entry. */
9932 if ((info->flags & DF_TEXTREL) == 0)
9933 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
9934
9935 if ((info->flags & DF_TEXTREL) != 0)
9936 {
9937 if (!add_dynamic_entry (DT_TEXTREL, 0))
9938 return FALSE;
9939 }
9940 }
9941 }
9942 #undef add_dynamic_entry
9943
9944 return TRUE;
9945 }
9946
9947 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
9948
9949 static bfd_boolean
9950 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
9951 {
9952 if (h->plt.plist != NULL
9953 && !h->def_regular
9954 && !h->pointer_equality_needed)
9955 return FALSE;
9956
9957 return _bfd_elf_hash_symbol (h);
9958 }
9959
9960 /* Determine the type of stub needed, if any, for a call. */
9961
9962 static inline enum ppc_stub_type
9963 ppc_type_of_stub (asection *input_sec,
9964 const Elf_Internal_Rela *rel,
9965 struct ppc_link_hash_entry **hash,
9966 struct plt_entry **plt_ent,
9967 bfd_vma destination,
9968 unsigned long local_off)
9969 {
9970 struct ppc_link_hash_entry *h = *hash;
9971 bfd_vma location;
9972 bfd_vma branch_offset;
9973 bfd_vma max_branch_offset;
9974 enum elf_ppc64_reloc_type r_type;
9975
9976 if (h != NULL)
9977 {
9978 struct plt_entry *ent;
9979 struct ppc_link_hash_entry *fdh = h;
9980 if (h->oh != NULL
9981 && h->oh->is_func_descriptor)
9982 {
9983 fdh = ppc_follow_link (h->oh);
9984 *hash = fdh;
9985 }
9986
9987 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9988 if (ent->addend == rel->r_addend
9989 && ent->plt.offset != (bfd_vma) -1)
9990 {
9991 *plt_ent = ent;
9992 return ppc_stub_plt_call;
9993 }
9994
9995 /* Here, we know we don't have a plt entry. If we don't have a
9996 either a defined function descriptor or a defined entry symbol
9997 in a regular object file, then it is pointless trying to make
9998 any other type of stub. */
9999 if (!is_static_defined (&fdh->elf)
10000 && !is_static_defined (&h->elf))
10001 return ppc_stub_none;
10002 }
10003 else if (elf_local_got_ents (input_sec->owner) != NULL)
10004 {
10005 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10006 struct plt_entry **local_plt = (struct plt_entry **)
10007 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10008 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10009
10010 if (local_plt[r_symndx] != NULL)
10011 {
10012 struct plt_entry *ent;
10013
10014 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10015 if (ent->addend == rel->r_addend
10016 && ent->plt.offset != (bfd_vma) -1)
10017 {
10018 *plt_ent = ent;
10019 return ppc_stub_plt_call;
10020 }
10021 }
10022 }
10023
10024 /* Determine where the call point is. */
10025 location = (input_sec->output_offset
10026 + input_sec->output_section->vma
10027 + rel->r_offset);
10028
10029 branch_offset = destination - location;
10030 r_type = ELF64_R_TYPE (rel->r_info);
10031
10032 /* Determine if a long branch stub is needed. */
10033 max_branch_offset = 1 << 25;
10034 if (r_type != R_PPC64_REL24)
10035 max_branch_offset = 1 << 15;
10036
10037 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10038 /* We need a stub. Figure out whether a long_branch or plt_branch
10039 is needed later. */
10040 return ppc_stub_long_branch;
10041
10042 return ppc_stub_none;
10043 }
10044
10045 /* With power7 weakly ordered memory model, it is possible for ld.so
10046 to update a plt entry in one thread and have another thread see a
10047 stale zero toc entry. To avoid this we need some sort of acquire
10048 barrier in the call stub. One solution is to make the load of the
10049 toc word seem to appear to depend on the load of the function entry
10050 word. Another solution is to test for r2 being zero, and branch to
10051 the appropriate glink entry if so.
10052
10053 . fake dep barrier compare
10054 . ld 12,xxx(2) ld 12,xxx(2)
10055 . mtctr 12 mtctr 12
10056 . xor 11,12,12 ld 2,xxx+8(2)
10057 . add 2,2,11 cmpldi 2,0
10058 . ld 2,xxx+8(2) bnectr+
10059 . bctr b <glink_entry>
10060
10061 The solution involving the compare turns out to be faster, so
10062 that's what we use unless the branch won't reach. */
10063
10064 #define ALWAYS_USE_FAKE_DEP 0
10065 #define ALWAYS_EMIT_R2SAVE 0
10066
10067 #define PPC_LO(v) ((v) & 0xffff)
10068 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10069 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10070
10071 static inline unsigned int
10072 plt_stub_size (struct ppc_link_hash_table *htab,
10073 struct ppc_stub_hash_entry *stub_entry,
10074 bfd_vma off)
10075 {
10076 unsigned size = 12;
10077
10078 if (ALWAYS_EMIT_R2SAVE
10079 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10080 size += 4;
10081 if (PPC_HA (off) != 0)
10082 size += 4;
10083 if (htab->opd_abi)
10084 {
10085 size += 4;
10086 if (htab->plt_static_chain)
10087 size += 4;
10088 if (htab->plt_thread_safe)
10089 size += 8;
10090 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
10091 size += 4;
10092 }
10093 if (stub_entry->h != NULL
10094 && (stub_entry->h == htab->tls_get_addr_fd
10095 || stub_entry->h == htab->tls_get_addr)
10096 && !htab->no_tls_get_addr_opt)
10097 size += 13 * 4;
10098 return size;
10099 }
10100
10101 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10102 then return the padding needed to do so. */
10103 static inline unsigned int
10104 plt_stub_pad (struct ppc_link_hash_table *htab,
10105 struct ppc_stub_hash_entry *stub_entry,
10106 bfd_vma plt_off)
10107 {
10108 int stub_align = 1 << htab->plt_stub_align;
10109 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10110 bfd_vma stub_off = stub_entry->stub_sec->size;
10111
10112 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10113 > (stub_size & -stub_align))
10114 return stub_align - (stub_off & (stub_align - 1));
10115 return 0;
10116 }
10117
10118 /* Build a .plt call stub. */
10119
10120 static inline bfd_byte *
10121 build_plt_stub (struct ppc_link_hash_table *htab,
10122 struct ppc_stub_hash_entry *stub_entry,
10123 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10124 {
10125 bfd *obfd = htab->stub_bfd;
10126 bfd_boolean plt_load_toc = htab->opd_abi;
10127 bfd_boolean plt_static_chain = htab->plt_static_chain;
10128 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
10129 bfd_boolean use_fake_dep = plt_thread_safe;
10130 bfd_vma cmp_branch_off = 0;
10131
10132 if (!ALWAYS_USE_FAKE_DEP
10133 && plt_load_toc
10134 && plt_thread_safe
10135 && !(stub_entry->h != NULL
10136 && (stub_entry->h == htab->tls_get_addr_fd
10137 || stub_entry->h == htab->tls_get_addr)
10138 && !htab->no_tls_get_addr_opt))
10139 {
10140 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10141 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10142 / PLT_ENTRY_SIZE (htab));
10143 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10144 bfd_vma to, from;
10145
10146 if (pltindex > 32768)
10147 glinkoff += (pltindex - 32768) * 4;
10148 to = (glinkoff
10149 + htab->glink->output_offset
10150 + htab->glink->output_section->vma);
10151 from = (p - stub_entry->stub_sec->contents
10152 + 4 * (ALWAYS_EMIT_R2SAVE
10153 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10154 + 4 * (PPC_HA (offset) != 0)
10155 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10156 != PPC_HA (offset))
10157 + 4 * (plt_static_chain != 0)
10158 + 20
10159 + stub_entry->stub_sec->output_offset
10160 + stub_entry->stub_sec->output_section->vma);
10161 cmp_branch_off = to - from;
10162 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10163 }
10164
10165 if (PPC_HA (offset) != 0)
10166 {
10167 if (r != NULL)
10168 {
10169 if (ALWAYS_EMIT_R2SAVE
10170 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10171 r[0].r_offset += 4;
10172 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10173 r[1].r_offset = r[0].r_offset + 4;
10174 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10175 r[1].r_addend = r[0].r_addend;
10176 if (plt_load_toc)
10177 {
10178 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10179 {
10180 r[2].r_offset = r[1].r_offset + 4;
10181 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10182 r[2].r_addend = r[0].r_addend;
10183 }
10184 else
10185 {
10186 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10187 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10188 r[2].r_addend = r[0].r_addend + 8;
10189 if (plt_static_chain)
10190 {
10191 r[3].r_offset = r[2].r_offset + 4;
10192 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10193 r[3].r_addend = r[0].r_addend + 16;
10194 }
10195 }
10196 }
10197 }
10198 if (ALWAYS_EMIT_R2SAVE
10199 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10200 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10201 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10202 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10203 if (plt_load_toc
10204 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10205 {
10206 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10207 offset = 0;
10208 }
10209 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10210 if (plt_load_toc)
10211 {
10212 if (use_fake_dep)
10213 {
10214 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10215 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10216 }
10217 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10218 if (plt_static_chain)
10219 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10220 }
10221 }
10222 else
10223 {
10224 if (r != NULL)
10225 {
10226 if (ALWAYS_EMIT_R2SAVE
10227 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10228 r[0].r_offset += 4;
10229 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10230 if (plt_load_toc)
10231 {
10232 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10233 {
10234 r[1].r_offset = r[0].r_offset + 4;
10235 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10236 r[1].r_addend = r[0].r_addend;
10237 }
10238 else
10239 {
10240 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10241 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10242 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10243 if (plt_static_chain)
10244 {
10245 r[2].r_offset = r[1].r_offset + 4;
10246 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10247 r[2].r_addend = r[0].r_addend + 8;
10248 }
10249 }
10250 }
10251 }
10252 if (ALWAYS_EMIT_R2SAVE
10253 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10254 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10255 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10256 if (plt_load_toc
10257 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10258 {
10259 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10260 offset = 0;
10261 }
10262 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10263 if (plt_load_toc)
10264 {
10265 if (use_fake_dep)
10266 {
10267 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10268 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10269 }
10270 if (plt_static_chain)
10271 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10272 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10273 }
10274 }
10275 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10276 {
10277 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10278 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10279 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10280 }
10281 else
10282 bfd_put_32 (obfd, BCTR, p), p += 4;
10283 return p;
10284 }
10285
10286 /* Build a special .plt call stub for __tls_get_addr. */
10287
10288 #define LD_R11_0R3 0xe9630000
10289 #define LD_R12_0R3 0xe9830000
10290 #define MR_R0_R3 0x7c601b78
10291 #define CMPDI_R11_0 0x2c2b0000
10292 #define ADD_R3_R12_R13 0x7c6c6a14
10293 #define BEQLR 0x4d820020
10294 #define MR_R3_R0 0x7c030378
10295 #define STD_R11_0R1 0xf9610000
10296 #define BCTRL 0x4e800421
10297 #define LD_R11_0R1 0xe9610000
10298 #define MTLR_R11 0x7d6803a6
10299
10300 static inline bfd_byte *
10301 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10302 struct ppc_stub_hash_entry *stub_entry,
10303 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10304 {
10305 bfd *obfd = htab->stub_bfd;
10306
10307 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10308 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10309 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10310 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10311 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10312 bfd_put_32 (obfd, BEQLR, p), p += 4;
10313 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10314 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10315 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10316
10317 if (r != NULL)
10318 r[0].r_offset += 9 * 4;
10319 p = build_plt_stub (htab, stub_entry, p, offset, r);
10320 bfd_put_32 (obfd, BCTRL, p - 4);
10321
10322 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10323 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10324 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10325 bfd_put_32 (obfd, BLR, p), p += 4;
10326
10327 return p;
10328 }
10329
10330 static Elf_Internal_Rela *
10331 get_relocs (asection *sec, int count)
10332 {
10333 Elf_Internal_Rela *relocs;
10334 struct bfd_elf_section_data *elfsec_data;
10335
10336 elfsec_data = elf_section_data (sec);
10337 relocs = elfsec_data->relocs;
10338 if (relocs == NULL)
10339 {
10340 bfd_size_type relsize;
10341 relsize = sec->reloc_count * sizeof (*relocs);
10342 relocs = bfd_alloc (sec->owner, relsize);
10343 if (relocs == NULL)
10344 return NULL;
10345 elfsec_data->relocs = relocs;
10346 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10347 sizeof (Elf_Internal_Shdr));
10348 if (elfsec_data->rela.hdr == NULL)
10349 return NULL;
10350 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10351 * sizeof (Elf64_External_Rela));
10352 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10353 sec->reloc_count = 0;
10354 }
10355 relocs += sec->reloc_count;
10356 sec->reloc_count += count;
10357 return relocs;
10358 }
10359
10360 static bfd_vma
10361 get_r2off (struct bfd_link_info *info,
10362 struct ppc_stub_hash_entry *stub_entry)
10363 {
10364 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10365 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10366
10367 if (r2off == 0)
10368 {
10369 /* Support linking -R objects. Get the toc pointer from the
10370 opd entry. */
10371 char buf[8];
10372 if (!htab->opd_abi)
10373 return r2off;
10374 asection *opd = stub_entry->h->elf.root.u.def.section;
10375 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10376
10377 if (strcmp (opd->name, ".opd") != 0
10378 || opd->reloc_count != 0)
10379 {
10380 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10381 stub_entry->h->elf.root.root.string);
10382 bfd_set_error (bfd_error_bad_value);
10383 return 0;
10384 }
10385 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10386 return 0;
10387 r2off = bfd_get_64 (opd->owner, buf);
10388 r2off -= elf_gp (info->output_bfd);
10389 }
10390 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10391 return r2off;
10392 }
10393
10394 static bfd_boolean
10395 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10396 {
10397 struct ppc_stub_hash_entry *stub_entry;
10398 struct ppc_branch_hash_entry *br_entry;
10399 struct bfd_link_info *info;
10400 struct ppc_link_hash_table *htab;
10401 bfd_byte *loc;
10402 bfd_byte *p;
10403 bfd_vma dest, off;
10404 int size;
10405 Elf_Internal_Rela *r;
10406 asection *plt;
10407
10408 /* Massage our args to the form they really have. */
10409 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10410 info = in_arg;
10411
10412 htab = ppc_hash_table (info);
10413 if (htab == NULL)
10414 return FALSE;
10415
10416 /* Make a note of the offset within the stubs for this entry. */
10417 stub_entry->stub_offset = stub_entry->stub_sec->size;
10418 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10419
10420 htab->stub_count[stub_entry->stub_type - 1] += 1;
10421 switch (stub_entry->stub_type)
10422 {
10423 case ppc_stub_long_branch:
10424 case ppc_stub_long_branch_r2off:
10425 /* Branches are relative. This is where we are going to. */
10426 dest = (stub_entry->target_value
10427 + stub_entry->target_section->output_offset
10428 + stub_entry->target_section->output_section->vma);
10429 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10430 off = dest;
10431
10432 /* And this is where we are coming from. */
10433 off -= (stub_entry->stub_offset
10434 + stub_entry->stub_sec->output_offset
10435 + stub_entry->stub_sec->output_section->vma);
10436
10437 size = 4;
10438 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10439 {
10440 bfd_vma r2off = get_r2off (info, stub_entry);
10441
10442 if (r2off == 0)
10443 {
10444 htab->stub_error = TRUE;
10445 return FALSE;
10446 }
10447 bfd_put_32 (htab->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10448 loc += 4;
10449 size = 12;
10450 if (PPC_HA (r2off) != 0)
10451 {
10452 size = 16;
10453 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10454 loc += 4;
10455 }
10456 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10457 loc += 4;
10458 off -= size - 4;
10459 }
10460 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10461
10462 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10463 {
10464 info->callbacks->einfo
10465 (_("%P: long branch stub `%s' offset overflow\n"),
10466 stub_entry->root.string);
10467 htab->stub_error = TRUE;
10468 return FALSE;
10469 }
10470
10471 if (info->emitrelocations)
10472 {
10473 r = get_relocs (stub_entry->stub_sec, 1);
10474 if (r == NULL)
10475 return FALSE;
10476 r->r_offset = loc - stub_entry->stub_sec->contents;
10477 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10478 r->r_addend = dest;
10479 if (stub_entry->h != NULL)
10480 {
10481 struct elf_link_hash_entry **hashes;
10482 unsigned long symndx;
10483 struct ppc_link_hash_entry *h;
10484
10485 hashes = elf_sym_hashes (htab->stub_bfd);
10486 if (hashes == NULL)
10487 {
10488 bfd_size_type hsize;
10489
10490 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10491 hashes = bfd_zalloc (htab->stub_bfd, hsize);
10492 if (hashes == NULL)
10493 return FALSE;
10494 elf_sym_hashes (htab->stub_bfd) = hashes;
10495 htab->stub_globals = 1;
10496 }
10497 symndx = htab->stub_globals++;
10498 h = stub_entry->h;
10499 hashes[symndx] = &h->elf;
10500 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10501 if (h->oh != NULL && h->oh->is_func)
10502 h = ppc_follow_link (h->oh);
10503 if (h->elf.root.u.def.section != stub_entry->target_section)
10504 /* H is an opd symbol. The addend must be zero. */
10505 r->r_addend = 0;
10506 else
10507 {
10508 off = (h->elf.root.u.def.value
10509 + h->elf.root.u.def.section->output_offset
10510 + h->elf.root.u.def.section->output_section->vma);
10511 r->r_addend -= off;
10512 }
10513 }
10514 }
10515 break;
10516
10517 case ppc_stub_plt_branch:
10518 case ppc_stub_plt_branch_r2off:
10519 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10520 stub_entry->root.string + 9,
10521 FALSE, FALSE);
10522 if (br_entry == NULL)
10523 {
10524 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10525 stub_entry->root.string);
10526 htab->stub_error = TRUE;
10527 return FALSE;
10528 }
10529
10530 dest = (stub_entry->target_value
10531 + stub_entry->target_section->output_offset
10532 + stub_entry->target_section->output_section->vma);
10533 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10534 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10535
10536 bfd_put_64 (htab->brlt->owner, dest,
10537 htab->brlt->contents + br_entry->offset);
10538
10539 if (br_entry->iter == htab->stub_iteration)
10540 {
10541 br_entry->iter = 0;
10542
10543 if (htab->relbrlt != NULL)
10544 {
10545 /* Create a reloc for the branch lookup table entry. */
10546 Elf_Internal_Rela rela;
10547 bfd_byte *rl;
10548
10549 rela.r_offset = (br_entry->offset
10550 + htab->brlt->output_offset
10551 + htab->brlt->output_section->vma);
10552 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10553 rela.r_addend = dest;
10554
10555 rl = htab->relbrlt->contents;
10556 rl += (htab->relbrlt->reloc_count++
10557 * sizeof (Elf64_External_Rela));
10558 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10559 }
10560 else if (info->emitrelocations)
10561 {
10562 r = get_relocs (htab->brlt, 1);
10563 if (r == NULL)
10564 return FALSE;
10565 /* brlt, being SEC_LINKER_CREATED does not go through the
10566 normal reloc processing. Symbols and offsets are not
10567 translated from input file to output file form, so
10568 set up the offset per the output file. */
10569 r->r_offset = (br_entry->offset
10570 + htab->brlt->output_offset
10571 + htab->brlt->output_section->vma);
10572 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10573 r->r_addend = dest;
10574 }
10575 }
10576
10577 dest = (br_entry->offset
10578 + htab->brlt->output_offset
10579 + htab->brlt->output_section->vma);
10580
10581 off = (dest
10582 - elf_gp (htab->brlt->output_section->owner)
10583 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10584
10585 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10586 {
10587 info->callbacks->einfo
10588 (_("%P: linkage table error against `%T'\n"),
10589 stub_entry->root.string);
10590 bfd_set_error (bfd_error_bad_value);
10591 htab->stub_error = TRUE;
10592 return FALSE;
10593 }
10594
10595 if (info->emitrelocations)
10596 {
10597 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10598 if (r == NULL)
10599 return FALSE;
10600 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10601 if (bfd_big_endian (info->output_bfd))
10602 r[0].r_offset += 2;
10603 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off
10604 && htab->opd_abi)
10605 r[0].r_offset += 4;
10606 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10607 r[0].r_addend = dest;
10608 if (PPC_HA (off) != 0)
10609 {
10610 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10611 r[1].r_offset = r[0].r_offset + 4;
10612 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10613 r[1].r_addend = r[0].r_addend;
10614 }
10615 }
10616
10617 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off
10618 || !htab->opd_abi)
10619 {
10620 if (PPC_HA (off) != 0)
10621 {
10622 size = 16;
10623 bfd_put_32 (htab->stub_bfd, ADDIS_R11_R2 | PPC_HA (off), loc);
10624 loc += 4;
10625 bfd_put_32 (htab->stub_bfd, LD_R12_0R11 | PPC_LO (off), loc);
10626 }
10627 else
10628 {
10629 size = 12;
10630 bfd_put_32 (htab->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10631 }
10632 }
10633 else
10634 {
10635 bfd_vma r2off = get_r2off (info, stub_entry);
10636
10637 if (r2off == 0)
10638 {
10639 htab->stub_error = TRUE;
10640 return FALSE;
10641 }
10642
10643 bfd_put_32 (htab->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10644 loc += 4;
10645 size = 20;
10646 if (PPC_HA (off) != 0)
10647 {
10648 size += 4;
10649 bfd_put_32 (htab->stub_bfd, ADDIS_R11_R2 | PPC_HA (off), loc);
10650 loc += 4;
10651 bfd_put_32 (htab->stub_bfd, LD_R12_0R11 | PPC_LO (off), loc);
10652 loc += 4;
10653 }
10654 else
10655 {
10656 bfd_put_32 (htab->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10657 loc += 4;
10658 }
10659
10660 if (PPC_HA (r2off) != 0)
10661 {
10662 size += 4;
10663 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10664 loc += 4;
10665 }
10666 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10667 }
10668 loc += 4;
10669 bfd_put_32 (htab->stub_bfd, MTCTR_R12, loc);
10670 loc += 4;
10671 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10672 break;
10673
10674 case ppc_stub_plt_call:
10675 case ppc_stub_plt_call_r2save:
10676 if (stub_entry->h != NULL
10677 && stub_entry->h->is_func_descriptor
10678 && stub_entry->h->oh != NULL)
10679 {
10680 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10681
10682 /* If the old-ABI "dot-symbol" is undefined make it weak so
10683 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10684 FIXME: We used to define the symbol on one of the call
10685 stubs instead, which is why we test symbol section id
10686 against htab->top_id in various places. Likely all
10687 these checks could now disappear. */
10688 if (fh->elf.root.type == bfd_link_hash_undefined)
10689 fh->elf.root.type = bfd_link_hash_undefweak;
10690 /* Stop undo_symbol_twiddle changing it back to undefined. */
10691 fh->was_undefined = 0;
10692 }
10693
10694 /* Now build the stub. */
10695 dest = stub_entry->plt_ent->plt.offset & ~1;
10696 if (dest >= (bfd_vma) -2)
10697 abort ();
10698
10699 plt = htab->elf.splt;
10700 if (!htab->elf.dynamic_sections_created
10701 || stub_entry->h == NULL
10702 || stub_entry->h->elf.dynindx == -1)
10703 plt = htab->elf.iplt;
10704
10705 dest += plt->output_offset + plt->output_section->vma;
10706
10707 if (stub_entry->h == NULL
10708 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10709 {
10710 Elf_Internal_Rela rela;
10711 bfd_byte *rl;
10712
10713 rela.r_offset = dest;
10714 if (htab->opd_abi)
10715 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10716 else
10717 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10718 rela.r_addend = (stub_entry->target_value
10719 + stub_entry->target_section->output_offset
10720 + stub_entry->target_section->output_section->vma);
10721
10722 rl = (htab->elf.irelplt->contents
10723 + (htab->elf.irelplt->reloc_count++
10724 * sizeof (Elf64_External_Rela)));
10725 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10726 stub_entry->plt_ent->plt.offset |= 1;
10727 }
10728
10729 off = (dest
10730 - elf_gp (plt->output_section->owner)
10731 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10732
10733 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10734 {
10735 info->callbacks->einfo
10736 (_("%P: linkage table error against `%T'\n"),
10737 stub_entry->h != NULL
10738 ? stub_entry->h->elf.root.root.string
10739 : "<local sym>");
10740 bfd_set_error (bfd_error_bad_value);
10741 htab->stub_error = TRUE;
10742 return FALSE;
10743 }
10744
10745 if (htab->plt_stub_align != 0)
10746 {
10747 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10748
10749 stub_entry->stub_sec->size += pad;
10750 stub_entry->stub_offset = stub_entry->stub_sec->size;
10751 loc += pad;
10752 }
10753
10754 r = NULL;
10755 if (info->emitrelocations)
10756 {
10757 r = get_relocs (stub_entry->stub_sec,
10758 (2
10759 + (PPC_HA (off) != 0)
10760 + (htab->plt_static_chain
10761 && PPC_HA (off + 16) == PPC_HA (off))));
10762 if (r == NULL)
10763 return FALSE;
10764 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10765 if (bfd_big_endian (info->output_bfd))
10766 r[0].r_offset += 2;
10767 r[0].r_addend = dest;
10768 }
10769 if (stub_entry->h != NULL
10770 && (stub_entry->h == htab->tls_get_addr_fd
10771 || stub_entry->h == htab->tls_get_addr)
10772 && !htab->no_tls_get_addr_opt)
10773 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10774 else
10775 p = build_plt_stub (htab, stub_entry, loc, off, r);
10776 size = p - loc;
10777 break;
10778
10779 default:
10780 BFD_FAIL ();
10781 return FALSE;
10782 }
10783
10784 stub_entry->stub_sec->size += size;
10785
10786 if (htab->emit_stub_syms)
10787 {
10788 struct elf_link_hash_entry *h;
10789 size_t len1, len2;
10790 char *name;
10791 const char *const stub_str[] = { "long_branch",
10792 "long_branch_r2off",
10793 "plt_branch",
10794 "plt_branch_r2off",
10795 "plt_call",
10796 "plt_call" };
10797
10798 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10799 len2 = strlen (stub_entry->root.string);
10800 name = bfd_malloc (len1 + len2 + 2);
10801 if (name == NULL)
10802 return FALSE;
10803 memcpy (name, stub_entry->root.string, 9);
10804 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10805 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10806 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10807 if (h == NULL)
10808 return FALSE;
10809 if (h->root.type == bfd_link_hash_new)
10810 {
10811 h->root.type = bfd_link_hash_defined;
10812 h->root.u.def.section = stub_entry->stub_sec;
10813 h->root.u.def.value = stub_entry->stub_offset;
10814 h->ref_regular = 1;
10815 h->def_regular = 1;
10816 h->ref_regular_nonweak = 1;
10817 h->forced_local = 1;
10818 h->non_elf = 0;
10819 }
10820 }
10821
10822 return TRUE;
10823 }
10824
10825 /* As above, but don't actually build the stub. Just bump offset so
10826 we know stub section sizes, and select plt_branch stubs where
10827 long_branch stubs won't do. */
10828
10829 static bfd_boolean
10830 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10831 {
10832 struct ppc_stub_hash_entry *stub_entry;
10833 struct bfd_link_info *info;
10834 struct ppc_link_hash_table *htab;
10835 bfd_vma off;
10836 int size;
10837
10838 /* Massage our args to the form they really have. */
10839 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10840 info = in_arg;
10841
10842 htab = ppc_hash_table (info);
10843 if (htab == NULL)
10844 return FALSE;
10845
10846 if (stub_entry->stub_type == ppc_stub_plt_call
10847 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10848 {
10849 asection *plt;
10850 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10851 if (off >= (bfd_vma) -2)
10852 abort ();
10853 plt = htab->elf.splt;
10854 if (!htab->elf.dynamic_sections_created
10855 || stub_entry->h == NULL
10856 || stub_entry->h->elf.dynindx == -1)
10857 plt = htab->elf.iplt;
10858 off += (plt->output_offset
10859 + plt->output_section->vma
10860 - elf_gp (plt->output_section->owner)
10861 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10862
10863 size = plt_stub_size (htab, stub_entry, off);
10864 if (htab->plt_stub_align)
10865 size += plt_stub_pad (htab, stub_entry, off);
10866 if (info->emitrelocations)
10867 {
10868 stub_entry->stub_sec->reloc_count
10869 += ((PPC_HA (off) != 0)
10870 + (htab->opd_abi
10871 ? 2 + (htab->plt_static_chain
10872 && PPC_HA (off + 16) == PPC_HA (off))
10873 : 1));
10874 stub_entry->stub_sec->flags |= SEC_RELOC;
10875 }
10876 }
10877 else
10878 {
10879 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10880 variants. */
10881 bfd_vma r2off = 0;
10882 bfd_vma local_off = 0;
10883
10884 off = (stub_entry->target_value
10885 + stub_entry->target_section->output_offset
10886 + stub_entry->target_section->output_section->vma);
10887 off -= (stub_entry->stub_sec->size
10888 + stub_entry->stub_sec->output_offset
10889 + stub_entry->stub_sec->output_section->vma);
10890
10891 /* Reset the stub type from the plt variant in case we now
10892 can reach with a shorter stub. */
10893 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10894 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10895
10896 size = 4;
10897 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10898 {
10899 r2off = get_r2off (info, stub_entry);
10900 if (r2off == 0 && htab->opd_abi)
10901 {
10902 htab->stub_error = TRUE;
10903 return FALSE;
10904 }
10905 size = 12;
10906 if (PPC_HA (r2off) != 0)
10907 size = 16;
10908 off -= size - 4;
10909 }
10910
10911 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10912
10913 /* If the branch offset if too big, use a ppc_stub_plt_branch.
10914 Do the same for -R objects without function descriptors. */
10915 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
10916 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
10917 && r2off == 0))
10918 {
10919 struct ppc_branch_hash_entry *br_entry;
10920
10921 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10922 stub_entry->root.string + 9,
10923 TRUE, FALSE);
10924 if (br_entry == NULL)
10925 {
10926 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10927 stub_entry->root.string);
10928 htab->stub_error = TRUE;
10929 return FALSE;
10930 }
10931
10932 if (br_entry->iter != htab->stub_iteration)
10933 {
10934 br_entry->iter = htab->stub_iteration;
10935 br_entry->offset = htab->brlt->size;
10936 htab->brlt->size += 8;
10937
10938 if (htab->relbrlt != NULL)
10939 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10940 else if (info->emitrelocations)
10941 {
10942 htab->brlt->reloc_count += 1;
10943 htab->brlt->flags |= SEC_RELOC;
10944 }
10945 }
10946
10947 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10948 off = (br_entry->offset
10949 + htab->brlt->output_offset
10950 + htab->brlt->output_section->vma
10951 - elf_gp (htab->brlt->output_section->owner)
10952 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10953
10954 if (info->emitrelocations)
10955 {
10956 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10957 stub_entry->stub_sec->flags |= SEC_RELOC;
10958 }
10959
10960 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off
10961 || !htab->opd_abi)
10962 {
10963 size = 12;
10964 if (PPC_HA (off) != 0)
10965 size = 16;
10966 }
10967 else
10968 {
10969 size = 20;
10970 if (PPC_HA (off) != 0)
10971 size += 4;
10972
10973 if (PPC_HA (r2off) != 0)
10974 size += 4;
10975 }
10976 }
10977 else if (info->emitrelocations)
10978 {
10979 stub_entry->stub_sec->reloc_count += 1;
10980 stub_entry->stub_sec->flags |= SEC_RELOC;
10981 }
10982 }
10983
10984 stub_entry->stub_sec->size += size;
10985 return TRUE;
10986 }
10987
10988 /* Set up various things so that we can make a list of input sections
10989 for each output section included in the link. Returns -1 on error,
10990 0 when no stubs will be needed, and 1 on success. */
10991
10992 int
10993 ppc64_elf_setup_section_lists
10994 (struct bfd_link_info *info,
10995 asection *(*add_stub_section) (const char *, asection *),
10996 void (*layout_sections_again) (void))
10997 {
10998 bfd *input_bfd;
10999 int top_id, top_index, id;
11000 asection *section;
11001 asection **input_list;
11002 bfd_size_type amt;
11003 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11004
11005 if (htab == NULL)
11006 return -1;
11007 /* Stash our params away. */
11008 htab->add_stub_section = add_stub_section;
11009 htab->layout_sections_again = layout_sections_again;
11010
11011 /* Find the top input section id. */
11012 for (input_bfd = info->input_bfds, top_id = 3;
11013 input_bfd != NULL;
11014 input_bfd = input_bfd->link_next)
11015 {
11016 for (section = input_bfd->sections;
11017 section != NULL;
11018 section = section->next)
11019 {
11020 if (top_id < section->id)
11021 top_id = section->id;
11022 }
11023 }
11024
11025 htab->top_id = top_id;
11026 amt = sizeof (struct map_stub) * (top_id + 1);
11027 htab->stub_group = bfd_zmalloc (amt);
11028 if (htab->stub_group == NULL)
11029 return -1;
11030
11031 /* Set toc_off for com, und, abs and ind sections. */
11032 for (id = 0; id < 3; id++)
11033 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11034
11035 /* We can't use output_bfd->section_count here to find the top output
11036 section index as some sections may have been removed, and
11037 strip_excluded_output_sections doesn't renumber the indices. */
11038 for (section = info->output_bfd->sections, top_index = 0;
11039 section != NULL;
11040 section = section->next)
11041 {
11042 if (top_index < section->index)
11043 top_index = section->index;
11044 }
11045
11046 htab->top_index = top_index;
11047 amt = sizeof (asection *) * (top_index + 1);
11048 input_list = bfd_zmalloc (amt);
11049 htab->input_list = input_list;
11050 if (input_list == NULL)
11051 return -1;
11052
11053 return 1;
11054 }
11055
11056 /* Set up for first pass at multitoc partitioning. */
11057
11058 void
11059 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11060 {
11061 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11062
11063 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11064 htab->toc_bfd = NULL;
11065 htab->toc_first_sec = NULL;
11066 }
11067
11068 /* The linker repeatedly calls this function for each TOC input section
11069 and linker generated GOT section. Group input bfds such that the toc
11070 within a group is less than 64k in size. */
11071
11072 bfd_boolean
11073 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11074 {
11075 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11076 bfd_vma addr, off, limit;
11077
11078 if (htab == NULL)
11079 return FALSE;
11080
11081 if (!htab->second_toc_pass)
11082 {
11083 /* Keep track of the first .toc or .got section for this input bfd. */
11084 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11085
11086 if (new_bfd)
11087 {
11088 htab->toc_bfd = isec->owner;
11089 htab->toc_first_sec = isec;
11090 }
11091
11092 addr = isec->output_offset + isec->output_section->vma;
11093 off = addr - htab->toc_curr;
11094 limit = 0x80008000;
11095 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11096 limit = 0x10000;
11097 if (off + isec->size > limit)
11098 {
11099 addr = (htab->toc_first_sec->output_offset
11100 + htab->toc_first_sec->output_section->vma);
11101 htab->toc_curr = addr;
11102 }
11103
11104 /* toc_curr is the base address of this toc group. Set elf_gp
11105 for the input section to be the offset relative to the
11106 output toc base plus 0x8000. Making the input elf_gp an
11107 offset allows us to move the toc as a whole without
11108 recalculating input elf_gp. */
11109 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11110 off += TOC_BASE_OFF;
11111
11112 /* Die if someone uses a linker script that doesn't keep input
11113 file .toc and .got together. */
11114 if (new_bfd
11115 && elf_gp (isec->owner) != 0
11116 && elf_gp (isec->owner) != off)
11117 return FALSE;
11118
11119 elf_gp (isec->owner) = off;
11120 return TRUE;
11121 }
11122
11123 /* During the second pass toc_first_sec points to the start of
11124 a toc group, and toc_curr is used to track the old elf_gp.
11125 We use toc_bfd to ensure we only look at each bfd once. */
11126 if (htab->toc_bfd == isec->owner)
11127 return TRUE;
11128 htab->toc_bfd = isec->owner;
11129
11130 if (htab->toc_first_sec == NULL
11131 || htab->toc_curr != elf_gp (isec->owner))
11132 {
11133 htab->toc_curr = elf_gp (isec->owner);
11134 htab->toc_first_sec = isec;
11135 }
11136 addr = (htab->toc_first_sec->output_offset
11137 + htab->toc_first_sec->output_section->vma);
11138 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11139 elf_gp (isec->owner) = off;
11140
11141 return TRUE;
11142 }
11143
11144 /* Called via elf_link_hash_traverse to merge GOT entries for global
11145 symbol H. */
11146
11147 static bfd_boolean
11148 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11149 {
11150 if (h->root.type == bfd_link_hash_indirect)
11151 return TRUE;
11152
11153 merge_got_entries (&h->got.glist);
11154
11155 return TRUE;
11156 }
11157
11158 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11159 symbol H. */
11160
11161 static bfd_boolean
11162 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11163 {
11164 struct got_entry *gent;
11165
11166 if (h->root.type == bfd_link_hash_indirect)
11167 return TRUE;
11168
11169 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11170 if (!gent->is_indirect)
11171 allocate_got (h, (struct bfd_link_info *) inf, gent);
11172 return TRUE;
11173 }
11174
11175 /* Called on the first multitoc pass after the last call to
11176 ppc64_elf_next_toc_section. This function removes duplicate GOT
11177 entries. */
11178
11179 bfd_boolean
11180 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11181 {
11182 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11183 struct bfd *ibfd, *ibfd2;
11184 bfd_boolean done_something;
11185
11186 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11187
11188 if (!htab->do_multi_toc)
11189 return FALSE;
11190
11191 /* Merge global sym got entries within a toc group. */
11192 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11193
11194 /* And tlsld_got. */
11195 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11196 {
11197 struct got_entry *ent, *ent2;
11198
11199 if (!is_ppc64_elf (ibfd))
11200 continue;
11201
11202 ent = ppc64_tlsld_got (ibfd);
11203 if (!ent->is_indirect
11204 && ent->got.offset != (bfd_vma) -1)
11205 {
11206 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
11207 {
11208 if (!is_ppc64_elf (ibfd2))
11209 continue;
11210
11211 ent2 = ppc64_tlsld_got (ibfd2);
11212 if (!ent2->is_indirect
11213 && ent2->got.offset != (bfd_vma) -1
11214 && elf_gp (ibfd2) == elf_gp (ibfd))
11215 {
11216 ent2->is_indirect = TRUE;
11217 ent2->got.ent = ent;
11218 }
11219 }
11220 }
11221 }
11222
11223 /* Zap sizes of got sections. */
11224 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11225 htab->elf.irelplt->size -= htab->got_reli_size;
11226 htab->got_reli_size = 0;
11227
11228 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11229 {
11230 asection *got, *relgot;
11231
11232 if (!is_ppc64_elf (ibfd))
11233 continue;
11234
11235 got = ppc64_elf_tdata (ibfd)->got;
11236 if (got != NULL)
11237 {
11238 got->rawsize = got->size;
11239 got->size = 0;
11240 relgot = ppc64_elf_tdata (ibfd)->relgot;
11241 relgot->rawsize = relgot->size;
11242 relgot->size = 0;
11243 }
11244 }
11245
11246 /* Now reallocate the got, local syms first. We don't need to
11247 allocate section contents again since we never increase size. */
11248 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11249 {
11250 struct got_entry **lgot_ents;
11251 struct got_entry **end_lgot_ents;
11252 struct plt_entry **local_plt;
11253 struct plt_entry **end_local_plt;
11254 unsigned char *lgot_masks;
11255 bfd_size_type locsymcount;
11256 Elf_Internal_Shdr *symtab_hdr;
11257 asection *s;
11258
11259 if (!is_ppc64_elf (ibfd))
11260 continue;
11261
11262 lgot_ents = elf_local_got_ents (ibfd);
11263 if (!lgot_ents)
11264 continue;
11265
11266 symtab_hdr = &elf_symtab_hdr (ibfd);
11267 locsymcount = symtab_hdr->sh_info;
11268 end_lgot_ents = lgot_ents + locsymcount;
11269 local_plt = (struct plt_entry **) end_lgot_ents;
11270 end_local_plt = local_plt + locsymcount;
11271 lgot_masks = (unsigned char *) end_local_plt;
11272 s = ppc64_elf_tdata (ibfd)->got;
11273 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11274 {
11275 struct got_entry *ent;
11276
11277 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11278 {
11279 unsigned int ent_size = 8;
11280 unsigned int rel_size = sizeof (Elf64_External_Rela);
11281
11282 ent->got.offset = s->size;
11283 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11284 {
11285 ent_size *= 2;
11286 rel_size *= 2;
11287 }
11288 s->size += ent_size;
11289 if ((*lgot_masks & PLT_IFUNC) != 0)
11290 {
11291 htab->elf.irelplt->size += rel_size;
11292 htab->got_reli_size += rel_size;
11293 }
11294 else if (info->shared)
11295 {
11296 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11297 srel->size += rel_size;
11298 }
11299 }
11300 }
11301 }
11302
11303 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11304
11305 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11306 {
11307 struct got_entry *ent;
11308
11309 if (!is_ppc64_elf (ibfd))
11310 continue;
11311
11312 ent = ppc64_tlsld_got (ibfd);
11313 if (!ent->is_indirect
11314 && ent->got.offset != (bfd_vma) -1)
11315 {
11316 asection *s = ppc64_elf_tdata (ibfd)->got;
11317 ent->got.offset = s->size;
11318 s->size += 16;
11319 if (info->shared)
11320 {
11321 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11322 srel->size += sizeof (Elf64_External_Rela);
11323 }
11324 }
11325 }
11326
11327 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11328 if (!done_something)
11329 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11330 {
11331 asection *got;
11332
11333 if (!is_ppc64_elf (ibfd))
11334 continue;
11335
11336 got = ppc64_elf_tdata (ibfd)->got;
11337 if (got != NULL)
11338 {
11339 done_something = got->rawsize != got->size;
11340 if (done_something)
11341 break;
11342 }
11343 }
11344
11345 if (done_something)
11346 (*htab->layout_sections_again) ();
11347
11348 /* Set up for second pass over toc sections to recalculate elf_gp
11349 on input sections. */
11350 htab->toc_bfd = NULL;
11351 htab->toc_first_sec = NULL;
11352 htab->second_toc_pass = TRUE;
11353 return done_something;
11354 }
11355
11356 /* Called after second pass of multitoc partitioning. */
11357
11358 void
11359 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11360 {
11361 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11362
11363 /* After the second pass, toc_curr tracks the TOC offset used
11364 for code sections below in ppc64_elf_next_input_section. */
11365 htab->toc_curr = TOC_BASE_OFF;
11366 }
11367
11368 /* No toc references were found in ISEC. If the code in ISEC makes no
11369 calls, then there's no need to use toc adjusting stubs when branching
11370 into ISEC. Actually, indirect calls from ISEC are OK as they will
11371 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11372 needed, and 2 if a cyclical call-graph was found but no other reason
11373 for a stub was detected. If called from the top level, a return of
11374 2 means the same as a return of 0. */
11375
11376 static int
11377 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11378 {
11379 int ret;
11380
11381 /* Mark this section as checked. */
11382 isec->call_check_done = 1;
11383
11384 /* We know none of our code bearing sections will need toc stubs. */
11385 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11386 return 0;
11387
11388 if (isec->size == 0)
11389 return 0;
11390
11391 if (isec->output_section == NULL)
11392 return 0;
11393
11394 ret = 0;
11395 if (isec->reloc_count != 0)
11396 {
11397 Elf_Internal_Rela *relstart, *rel;
11398 Elf_Internal_Sym *local_syms;
11399 struct ppc_link_hash_table *htab;
11400
11401 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11402 info->keep_memory);
11403 if (relstart == NULL)
11404 return -1;
11405
11406 /* Look for branches to outside of this section. */
11407 local_syms = NULL;
11408 htab = ppc_hash_table (info);
11409 if (htab == NULL)
11410 return -1;
11411
11412 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11413 {
11414 enum elf_ppc64_reloc_type r_type;
11415 unsigned long r_symndx;
11416 struct elf_link_hash_entry *h;
11417 struct ppc_link_hash_entry *eh;
11418 Elf_Internal_Sym *sym;
11419 asection *sym_sec;
11420 struct _opd_sec_data *opd;
11421 bfd_vma sym_value;
11422 bfd_vma dest;
11423
11424 r_type = ELF64_R_TYPE (rel->r_info);
11425 if (r_type != R_PPC64_REL24
11426 && r_type != R_PPC64_REL14
11427 && r_type != R_PPC64_REL14_BRTAKEN
11428 && r_type != R_PPC64_REL14_BRNTAKEN)
11429 continue;
11430
11431 r_symndx = ELF64_R_SYM (rel->r_info);
11432 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11433 isec->owner))
11434 {
11435 ret = -1;
11436 break;
11437 }
11438
11439 /* Calls to dynamic lib functions go through a plt call stub
11440 that uses r2. */
11441 eh = (struct ppc_link_hash_entry *) h;
11442 if (eh != NULL
11443 && (eh->elf.plt.plist != NULL
11444 || (eh->oh != NULL
11445 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11446 {
11447 ret = 1;
11448 break;
11449 }
11450
11451 if (sym_sec == NULL)
11452 /* Ignore other undefined symbols. */
11453 continue;
11454
11455 /* Assume branches to other sections not included in the
11456 link need stubs too, to cover -R and absolute syms. */
11457 if (sym_sec->output_section == NULL)
11458 {
11459 ret = 1;
11460 break;
11461 }
11462
11463 if (h == NULL)
11464 sym_value = sym->st_value;
11465 else
11466 {
11467 if (h->root.type != bfd_link_hash_defined
11468 && h->root.type != bfd_link_hash_defweak)
11469 abort ();
11470 sym_value = h->root.u.def.value;
11471 }
11472 sym_value += rel->r_addend;
11473
11474 /* If this branch reloc uses an opd sym, find the code section. */
11475 opd = get_opd_info (sym_sec);
11476 if (opd != NULL)
11477 {
11478 if (h == NULL && opd->adjust != NULL)
11479 {
11480 long adjust;
11481
11482 adjust = opd->adjust[sym->st_value / 8];
11483 if (adjust == -1)
11484 /* Assume deleted functions won't ever be called. */
11485 continue;
11486 sym_value += adjust;
11487 }
11488
11489 dest = opd_entry_value (sym_sec, sym_value,
11490 &sym_sec, NULL, FALSE);
11491 if (dest == (bfd_vma) -1)
11492 continue;
11493 }
11494 else
11495 dest = (sym_value
11496 + sym_sec->output_offset
11497 + sym_sec->output_section->vma);
11498
11499 /* Ignore branch to self. */
11500 if (sym_sec == isec)
11501 continue;
11502
11503 /* If the called function uses the toc, we need a stub. */
11504 if (sym_sec->has_toc_reloc
11505 || sym_sec->makes_toc_func_call)
11506 {
11507 ret = 1;
11508 break;
11509 }
11510
11511 /* Assume any branch that needs a long branch stub might in fact
11512 need a plt_branch stub. A plt_branch stub uses r2. */
11513 else if (dest - (isec->output_offset
11514 + isec->output_section->vma
11515 + rel->r_offset) + (1 << 25)
11516 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11517 ? h->other
11518 : sym->st_other))
11519 {
11520 ret = 1;
11521 break;
11522 }
11523
11524 /* If calling back to a section in the process of being
11525 tested, we can't say for sure that no toc adjusting stubs
11526 are needed, so don't return zero. */
11527 else if (sym_sec->call_check_in_progress)
11528 ret = 2;
11529
11530 /* Branches to another section that itself doesn't have any TOC
11531 references are OK. Recursively call ourselves to check. */
11532 else if (!sym_sec->call_check_done)
11533 {
11534 int recur;
11535
11536 /* Mark current section as indeterminate, so that other
11537 sections that call back to current won't be marked as
11538 known. */
11539 isec->call_check_in_progress = 1;
11540 recur = toc_adjusting_stub_needed (info, sym_sec);
11541 isec->call_check_in_progress = 0;
11542
11543 if (recur != 0)
11544 {
11545 ret = recur;
11546 if (recur != 2)
11547 break;
11548 }
11549 }
11550 }
11551
11552 if (local_syms != NULL
11553 && (elf_symtab_hdr (isec->owner).contents
11554 != (unsigned char *) local_syms))
11555 free (local_syms);
11556 if (elf_section_data (isec)->relocs != relstart)
11557 free (relstart);
11558 }
11559
11560 if ((ret & 1) == 0
11561 && isec->map_head.s != NULL
11562 && (strcmp (isec->output_section->name, ".init") == 0
11563 || strcmp (isec->output_section->name, ".fini") == 0))
11564 {
11565 if (isec->map_head.s->has_toc_reloc
11566 || isec->map_head.s->makes_toc_func_call)
11567 ret = 1;
11568 else if (!isec->map_head.s->call_check_done)
11569 {
11570 int recur;
11571 isec->call_check_in_progress = 1;
11572 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11573 isec->call_check_in_progress = 0;
11574 if (recur != 0)
11575 ret = recur;
11576 }
11577 }
11578
11579 if (ret == 1)
11580 isec->makes_toc_func_call = 1;
11581
11582 return ret;
11583 }
11584
11585 /* The linker repeatedly calls this function for each input section,
11586 in the order that input sections are linked into output sections.
11587 Build lists of input sections to determine groupings between which
11588 we may insert linker stubs. */
11589
11590 bfd_boolean
11591 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11592 {
11593 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11594
11595 if (htab == NULL)
11596 return FALSE;
11597
11598 if ((isec->output_section->flags & SEC_CODE) != 0
11599 && isec->output_section->index <= htab->top_index)
11600 {
11601 asection **list = htab->input_list + isec->output_section->index;
11602 /* Steal the link_sec pointer for our list. */
11603 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11604 /* This happens to make the list in reverse order,
11605 which is what we want. */
11606 PREV_SEC (isec) = *list;
11607 *list = isec;
11608 }
11609
11610 if (htab->multi_toc_needed)
11611 {
11612 /* Analyse sections that aren't already flagged as needing a
11613 valid toc pointer. Exclude .fixup for the linux kernel.
11614 .fixup contains branches, but only back to the function that
11615 hit an exception. */
11616 if (!(isec->has_toc_reloc
11617 || (isec->flags & SEC_CODE) == 0
11618 || strcmp (isec->name, ".fixup") == 0
11619 || isec->call_check_done))
11620 {
11621 if (toc_adjusting_stub_needed (info, isec) < 0)
11622 return FALSE;
11623 }
11624 /* Make all sections use the TOC assigned for this object file.
11625 This will be wrong for pasted sections; We fix that in
11626 check_pasted_section(). */
11627 if (elf_gp (isec->owner) != 0)
11628 htab->toc_curr = elf_gp (isec->owner);
11629 }
11630
11631 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11632 return TRUE;
11633 }
11634
11635 /* Check that all .init and .fini sections use the same toc, if they
11636 have toc relocs. */
11637
11638 static bfd_boolean
11639 check_pasted_section (struct bfd_link_info *info, const char *name)
11640 {
11641 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11642
11643 if (o != NULL)
11644 {
11645 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11646 bfd_vma toc_off = 0;
11647 asection *i;
11648
11649 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11650 if (i->has_toc_reloc)
11651 {
11652 if (toc_off == 0)
11653 toc_off = htab->stub_group[i->id].toc_off;
11654 else if (toc_off != htab->stub_group[i->id].toc_off)
11655 return FALSE;
11656 }
11657
11658 if (toc_off == 0)
11659 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11660 if (i->makes_toc_func_call)
11661 {
11662 toc_off = htab->stub_group[i->id].toc_off;
11663 break;
11664 }
11665
11666 /* Make sure the whole pasted function uses the same toc offset. */
11667 if (toc_off != 0)
11668 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11669 htab->stub_group[i->id].toc_off = toc_off;
11670 }
11671 return TRUE;
11672 }
11673
11674 bfd_boolean
11675 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11676 {
11677 return (check_pasted_section (info, ".init")
11678 & check_pasted_section (info, ".fini"));
11679 }
11680
11681 /* See whether we can group stub sections together. Grouping stub
11682 sections may result in fewer stubs. More importantly, we need to
11683 put all .init* and .fini* stubs at the beginning of the .init or
11684 .fini output sections respectively, because glibc splits the
11685 _init and _fini functions into multiple parts. Putting a stub in
11686 the middle of a function is not a good idea. */
11687
11688 static void
11689 group_sections (struct ppc_link_hash_table *htab,
11690 bfd_size_type stub_group_size,
11691 bfd_boolean stubs_always_before_branch)
11692 {
11693 asection **list;
11694 bfd_size_type stub14_group_size;
11695 bfd_boolean suppress_size_errors;
11696
11697 suppress_size_errors = FALSE;
11698 stub14_group_size = stub_group_size;
11699 if (stub_group_size == 1)
11700 {
11701 /* Default values. */
11702 if (stubs_always_before_branch)
11703 {
11704 stub_group_size = 0x1e00000;
11705 stub14_group_size = 0x7800;
11706 }
11707 else
11708 {
11709 stub_group_size = 0x1c00000;
11710 stub14_group_size = 0x7000;
11711 }
11712 suppress_size_errors = TRUE;
11713 }
11714
11715 list = htab->input_list + htab->top_index;
11716 do
11717 {
11718 asection *tail = *list;
11719 while (tail != NULL)
11720 {
11721 asection *curr;
11722 asection *prev;
11723 bfd_size_type total;
11724 bfd_boolean big_sec;
11725 bfd_vma curr_toc;
11726
11727 curr = tail;
11728 total = tail->size;
11729 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11730 && ppc64_elf_section_data (tail)->has_14bit_branch
11731 ? stub14_group_size : stub_group_size);
11732 if (big_sec && !suppress_size_errors)
11733 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11734 tail->owner, tail);
11735 curr_toc = htab->stub_group[tail->id].toc_off;
11736
11737 while ((prev = PREV_SEC (curr)) != NULL
11738 && ((total += curr->output_offset - prev->output_offset)
11739 < (ppc64_elf_section_data (prev) != NULL
11740 && ppc64_elf_section_data (prev)->has_14bit_branch
11741 ? stub14_group_size : stub_group_size))
11742 && htab->stub_group[prev->id].toc_off == curr_toc)
11743 curr = prev;
11744
11745 /* OK, the size from the start of CURR to the end is less
11746 than stub_group_size and thus can be handled by one stub
11747 section. (or the tail section is itself larger than
11748 stub_group_size, in which case we may be toast.) We
11749 should really be keeping track of the total size of stubs
11750 added here, as stubs contribute to the final output
11751 section size. That's a little tricky, and this way will
11752 only break if stubs added make the total size more than
11753 2^25, ie. for the default stub_group_size, if stubs total
11754 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11755 do
11756 {
11757 prev = PREV_SEC (tail);
11758 /* Set up this stub group. */
11759 htab->stub_group[tail->id].link_sec = curr;
11760 }
11761 while (tail != curr && (tail = prev) != NULL);
11762
11763 /* But wait, there's more! Input sections up to stub_group_size
11764 bytes before the stub section can be handled by it too.
11765 Don't do this if we have a really large section after the
11766 stubs, as adding more stubs increases the chance that
11767 branches may not reach into the stub section. */
11768 if (!stubs_always_before_branch && !big_sec)
11769 {
11770 total = 0;
11771 while (prev != NULL
11772 && ((total += tail->output_offset - prev->output_offset)
11773 < (ppc64_elf_section_data (prev) != NULL
11774 && ppc64_elf_section_data (prev)->has_14bit_branch
11775 ? stub14_group_size : stub_group_size))
11776 && htab->stub_group[prev->id].toc_off == curr_toc)
11777 {
11778 tail = prev;
11779 prev = PREV_SEC (tail);
11780 htab->stub_group[tail->id].link_sec = curr;
11781 }
11782 }
11783 tail = prev;
11784 }
11785 }
11786 while (list-- != htab->input_list);
11787 free (htab->input_list);
11788 #undef PREV_SEC
11789 }
11790
11791 static const unsigned char glink_eh_frame_cie[] =
11792 {
11793 0, 0, 0, 16, /* length. */
11794 0, 0, 0, 0, /* id. */
11795 1, /* CIE version. */
11796 'z', 'R', 0, /* Augmentation string. */
11797 4, /* Code alignment. */
11798 0x78, /* Data alignment. */
11799 65, /* RA reg. */
11800 1, /* Augmentation size. */
11801 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11802 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11803 };
11804
11805 /* Stripping output sections is normally done before dynamic section
11806 symbols have been allocated. This function is called later, and
11807 handles cases like htab->brlt which is mapped to its own output
11808 section. */
11809
11810 static void
11811 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11812 {
11813 if (isec->size == 0
11814 && isec->output_section->size == 0
11815 && !(isec->output_section->flags & SEC_KEEP)
11816 && !bfd_section_removed_from_list (info->output_bfd,
11817 isec->output_section)
11818 && elf_section_data (isec->output_section)->dynindx == 0)
11819 {
11820 isec->output_section->flags |= SEC_EXCLUDE;
11821 bfd_section_list_remove (info->output_bfd, isec->output_section);
11822 info->output_bfd->section_count--;
11823 }
11824 }
11825
11826 /* Determine and set the size of the stub section for a final link.
11827
11828 The basic idea here is to examine all the relocations looking for
11829 PC-relative calls to a target that is unreachable with a "bl"
11830 instruction. */
11831
11832 bfd_boolean
11833 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11834 bfd_boolean plt_static_chain, int plt_thread_safe,
11835 int plt_stub_align)
11836 {
11837 bfd_size_type stub_group_size;
11838 bfd_boolean stubs_always_before_branch;
11839 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11840
11841 if (htab == NULL)
11842 return FALSE;
11843
11844 htab->plt_static_chain = plt_static_chain;
11845 htab->plt_stub_align = plt_stub_align;
11846 if (plt_thread_safe == -1 && !info->executable)
11847 plt_thread_safe = 1;
11848 if (!htab->opd_abi)
11849 plt_thread_safe = 0;
11850 else if (plt_thread_safe == -1)
11851 {
11852 static const char *const thread_starter[] =
11853 {
11854 "pthread_create",
11855 /* libstdc++ */
11856 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11857 /* librt */
11858 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11859 "mq_notify", "create_timer",
11860 /* libanl */
11861 "getaddrinfo_a",
11862 /* libgomp */
11863 "GOMP_parallel_start",
11864 "GOMP_parallel_loop_static_start",
11865 "GOMP_parallel_loop_dynamic_start",
11866 "GOMP_parallel_loop_guided_start",
11867 "GOMP_parallel_loop_runtime_start",
11868 "GOMP_parallel_sections_start",
11869 };
11870 unsigned i;
11871
11872 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11873 {
11874 struct elf_link_hash_entry *h;
11875 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11876 FALSE, FALSE, TRUE);
11877 plt_thread_safe = h != NULL && h->ref_regular;
11878 if (plt_thread_safe)
11879 break;
11880 }
11881 }
11882 htab->plt_thread_safe = plt_thread_safe;
11883 stubs_always_before_branch = group_size < 0;
11884 if (group_size < 0)
11885 stub_group_size = -group_size;
11886 else
11887 stub_group_size = group_size;
11888
11889 group_sections (htab, stub_group_size, stubs_always_before_branch);
11890
11891 while (1)
11892 {
11893 bfd *input_bfd;
11894 unsigned int bfd_indx;
11895 asection *stub_sec;
11896
11897 htab->stub_iteration += 1;
11898
11899 for (input_bfd = info->input_bfds, bfd_indx = 0;
11900 input_bfd != NULL;
11901 input_bfd = input_bfd->link_next, bfd_indx++)
11902 {
11903 Elf_Internal_Shdr *symtab_hdr;
11904 asection *section;
11905 Elf_Internal_Sym *local_syms = NULL;
11906
11907 if (!is_ppc64_elf (input_bfd))
11908 continue;
11909
11910 /* We'll need the symbol table in a second. */
11911 symtab_hdr = &elf_symtab_hdr (input_bfd);
11912 if (symtab_hdr->sh_info == 0)
11913 continue;
11914
11915 /* Walk over each section attached to the input bfd. */
11916 for (section = input_bfd->sections;
11917 section != NULL;
11918 section = section->next)
11919 {
11920 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11921
11922 /* If there aren't any relocs, then there's nothing more
11923 to do. */
11924 if ((section->flags & SEC_RELOC) == 0
11925 || (section->flags & SEC_ALLOC) == 0
11926 || (section->flags & SEC_LOAD) == 0
11927 || (section->flags & SEC_CODE) == 0
11928 || section->reloc_count == 0)
11929 continue;
11930
11931 /* If this section is a link-once section that will be
11932 discarded, then don't create any stubs. */
11933 if (section->output_section == NULL
11934 || section->output_section->owner != info->output_bfd)
11935 continue;
11936
11937 /* Get the relocs. */
11938 internal_relocs
11939 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11940 info->keep_memory);
11941 if (internal_relocs == NULL)
11942 goto error_ret_free_local;
11943
11944 /* Now examine each relocation. */
11945 irela = internal_relocs;
11946 irelaend = irela + section->reloc_count;
11947 for (; irela < irelaend; irela++)
11948 {
11949 enum elf_ppc64_reloc_type r_type;
11950 unsigned int r_indx;
11951 enum ppc_stub_type stub_type;
11952 struct ppc_stub_hash_entry *stub_entry;
11953 asection *sym_sec, *code_sec;
11954 bfd_vma sym_value, code_value;
11955 bfd_vma destination;
11956 unsigned long local_off;
11957 bfd_boolean ok_dest;
11958 struct ppc_link_hash_entry *hash;
11959 struct ppc_link_hash_entry *fdh;
11960 struct elf_link_hash_entry *h;
11961 Elf_Internal_Sym *sym;
11962 char *stub_name;
11963 const asection *id_sec;
11964 struct _opd_sec_data *opd;
11965 struct plt_entry *plt_ent;
11966
11967 r_type = ELF64_R_TYPE (irela->r_info);
11968 r_indx = ELF64_R_SYM (irela->r_info);
11969
11970 if (r_type >= R_PPC64_max)
11971 {
11972 bfd_set_error (bfd_error_bad_value);
11973 goto error_ret_free_internal;
11974 }
11975
11976 /* Only look for stubs on branch instructions. */
11977 if (r_type != R_PPC64_REL24
11978 && r_type != R_PPC64_REL14
11979 && r_type != R_PPC64_REL14_BRTAKEN
11980 && r_type != R_PPC64_REL14_BRNTAKEN)
11981 continue;
11982
11983 /* Now determine the call target, its name, value,
11984 section. */
11985 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11986 r_indx, input_bfd))
11987 goto error_ret_free_internal;
11988 hash = (struct ppc_link_hash_entry *) h;
11989
11990 ok_dest = FALSE;
11991 fdh = NULL;
11992 sym_value = 0;
11993 if (hash == NULL)
11994 {
11995 sym_value = sym->st_value;
11996 ok_dest = TRUE;
11997 }
11998 else if (hash->elf.root.type == bfd_link_hash_defined
11999 || hash->elf.root.type == bfd_link_hash_defweak)
12000 {
12001 sym_value = hash->elf.root.u.def.value;
12002 if (sym_sec->output_section != NULL)
12003 ok_dest = TRUE;
12004 }
12005 else if (hash->elf.root.type == bfd_link_hash_undefweak
12006 || hash->elf.root.type == bfd_link_hash_undefined)
12007 {
12008 /* Recognise an old ABI func code entry sym, and
12009 use the func descriptor sym instead if it is
12010 defined. */
12011 if (hash->elf.root.root.string[0] == '.'
12012 && (fdh = lookup_fdh (hash, htab)) != NULL)
12013 {
12014 if (fdh->elf.root.type == bfd_link_hash_defined
12015 || fdh->elf.root.type == bfd_link_hash_defweak)
12016 {
12017 sym_sec = fdh->elf.root.u.def.section;
12018 sym_value = fdh->elf.root.u.def.value;
12019 if (sym_sec->output_section != NULL)
12020 ok_dest = TRUE;
12021 }
12022 else
12023 fdh = NULL;
12024 }
12025 }
12026 else
12027 {
12028 bfd_set_error (bfd_error_bad_value);
12029 goto error_ret_free_internal;
12030 }
12031
12032 destination = 0;
12033 local_off = 0;
12034 if (ok_dest)
12035 {
12036 sym_value += irela->r_addend;
12037 destination = (sym_value
12038 + sym_sec->output_offset
12039 + sym_sec->output_section->vma);
12040 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12041 ? hash->elf.other
12042 : sym->st_other);
12043 }
12044
12045 code_sec = sym_sec;
12046 code_value = sym_value;
12047 opd = get_opd_info (sym_sec);
12048 if (opd != NULL)
12049 {
12050 bfd_vma dest;
12051
12052 if (hash == NULL && opd->adjust != NULL)
12053 {
12054 long adjust = opd->adjust[sym_value / 8];
12055 if (adjust == -1)
12056 continue;
12057 code_value += adjust;
12058 sym_value += adjust;
12059 }
12060 dest = opd_entry_value (sym_sec, sym_value,
12061 &code_sec, &code_value, FALSE);
12062 if (dest != (bfd_vma) -1)
12063 {
12064 destination = dest;
12065 if (fdh != NULL)
12066 {
12067 /* Fixup old ABI sym to point at code
12068 entry. */
12069 hash->elf.root.type = bfd_link_hash_defweak;
12070 hash->elf.root.u.def.section = code_sec;
12071 hash->elf.root.u.def.value = code_value;
12072 }
12073 }
12074 }
12075
12076 /* Determine what (if any) linker stub is needed. */
12077 plt_ent = NULL;
12078 stub_type = ppc_type_of_stub (section, irela, &hash,
12079 &plt_ent, destination,
12080 local_off);
12081
12082 if (stub_type != ppc_stub_plt_call)
12083 {
12084 /* Check whether we need a TOC adjusting stub.
12085 Since the linker pastes together pieces from
12086 different object files when creating the
12087 _init and _fini functions, it may be that a
12088 call to what looks like a local sym is in
12089 fact a call needing a TOC adjustment. */
12090 if (code_sec != NULL
12091 && code_sec->output_section != NULL
12092 && (htab->stub_group[code_sec->id].toc_off
12093 != htab->stub_group[section->id].toc_off)
12094 && (code_sec->has_toc_reloc
12095 || code_sec->makes_toc_func_call))
12096 stub_type = ppc_stub_long_branch_r2off;
12097 }
12098
12099 if (stub_type == ppc_stub_none)
12100 continue;
12101
12102 /* __tls_get_addr calls might be eliminated. */
12103 if (stub_type != ppc_stub_plt_call
12104 && hash != NULL
12105 && (hash == htab->tls_get_addr
12106 || hash == htab->tls_get_addr_fd)
12107 && section->has_tls_reloc
12108 && irela != internal_relocs)
12109 {
12110 /* Get tls info. */
12111 unsigned char *tls_mask;
12112
12113 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12114 irela - 1, input_bfd))
12115 goto error_ret_free_internal;
12116 if (*tls_mask != 0)
12117 continue;
12118 }
12119
12120 if (stub_type == ppc_stub_plt_call
12121 && irela + 1 < irelaend
12122 && irela[1].r_offset == irela->r_offset + 4
12123 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12124 {
12125 if (!tocsave_find (htab, INSERT,
12126 &local_syms, irela + 1, input_bfd))
12127 goto error_ret_free_internal;
12128 }
12129 else if (stub_type == ppc_stub_plt_call)
12130 stub_type = ppc_stub_plt_call_r2save;
12131
12132 /* Support for grouping stub sections. */
12133 id_sec = htab->stub_group[section->id].link_sec;
12134
12135 /* Get the name of this stub. */
12136 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12137 if (!stub_name)
12138 goto error_ret_free_internal;
12139
12140 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12141 stub_name, FALSE, FALSE);
12142 if (stub_entry != NULL)
12143 {
12144 /* The proper stub has already been created. */
12145 free (stub_name);
12146 if (stub_type == ppc_stub_plt_call_r2save)
12147 stub_entry->stub_type = stub_type;
12148 continue;
12149 }
12150
12151 stub_entry = ppc_add_stub (stub_name, section, info);
12152 if (stub_entry == NULL)
12153 {
12154 free (stub_name);
12155 error_ret_free_internal:
12156 if (elf_section_data (section)->relocs == NULL)
12157 free (internal_relocs);
12158 error_ret_free_local:
12159 if (local_syms != NULL
12160 && (symtab_hdr->contents
12161 != (unsigned char *) local_syms))
12162 free (local_syms);
12163 return FALSE;
12164 }
12165
12166 stub_entry->stub_type = stub_type;
12167 if (stub_type != ppc_stub_plt_call
12168 && stub_type != ppc_stub_plt_call_r2save)
12169 {
12170 stub_entry->target_value = code_value;
12171 stub_entry->target_section = code_sec;
12172 }
12173 else
12174 {
12175 stub_entry->target_value = sym_value;
12176 stub_entry->target_section = sym_sec;
12177 }
12178 stub_entry->h = hash;
12179 stub_entry->plt_ent = plt_ent;
12180 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12181
12182 if (stub_entry->h != NULL)
12183 htab->stub_globals += 1;
12184 }
12185
12186 /* We're done with the internal relocs, free them. */
12187 if (elf_section_data (section)->relocs != internal_relocs)
12188 free (internal_relocs);
12189 }
12190
12191 if (local_syms != NULL
12192 && symtab_hdr->contents != (unsigned char *) local_syms)
12193 {
12194 if (!info->keep_memory)
12195 free (local_syms);
12196 else
12197 symtab_hdr->contents = (unsigned char *) local_syms;
12198 }
12199 }
12200
12201 /* We may have added some stubs. Find out the new size of the
12202 stub sections. */
12203 for (stub_sec = htab->stub_bfd->sections;
12204 stub_sec != NULL;
12205 stub_sec = stub_sec->next)
12206 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12207 {
12208 stub_sec->rawsize = stub_sec->size;
12209 stub_sec->size = 0;
12210 stub_sec->reloc_count = 0;
12211 stub_sec->flags &= ~SEC_RELOC;
12212 }
12213
12214 htab->brlt->size = 0;
12215 htab->brlt->reloc_count = 0;
12216 htab->brlt->flags &= ~SEC_RELOC;
12217 if (htab->relbrlt != NULL)
12218 htab->relbrlt->size = 0;
12219
12220 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12221
12222 if (info->emitrelocations
12223 && htab->glink != NULL && htab->glink->size != 0)
12224 {
12225 htab->glink->reloc_count = 1;
12226 htab->glink->flags |= SEC_RELOC;
12227 }
12228
12229 if (htab->glink_eh_frame != NULL
12230 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12231 && htab->glink_eh_frame->output_section->size != 0)
12232 {
12233 size_t size = 0, align;
12234
12235 for (stub_sec = htab->stub_bfd->sections;
12236 stub_sec != NULL;
12237 stub_sec = stub_sec->next)
12238 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12239 size += 20;
12240 if (htab->glink != NULL && htab->glink->size != 0)
12241 size += 24;
12242 if (size != 0)
12243 size += sizeof (glink_eh_frame_cie);
12244 align = 1;
12245 align <<= htab->glink_eh_frame->output_section->alignment_power;
12246 align -= 1;
12247 size = (size + align) & ~align;
12248 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12249 htab->glink_eh_frame->size = size;
12250 }
12251
12252 if (htab->plt_stub_align != 0)
12253 for (stub_sec = htab->stub_bfd->sections;
12254 stub_sec != NULL;
12255 stub_sec = stub_sec->next)
12256 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12257 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12258 & (-1 << htab->plt_stub_align));
12259
12260 for (stub_sec = htab->stub_bfd->sections;
12261 stub_sec != NULL;
12262 stub_sec = stub_sec->next)
12263 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12264 && stub_sec->rawsize != stub_sec->size)
12265 break;
12266
12267 /* Exit from this loop when no stubs have been added, and no stubs
12268 have changed size. */
12269 if (stub_sec == NULL
12270 && (htab->glink_eh_frame == NULL
12271 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12272 break;
12273
12274 /* Ask the linker to do its stuff. */
12275 (*htab->layout_sections_again) ();
12276 }
12277
12278 maybe_strip_output (info, htab->brlt);
12279 if (htab->glink_eh_frame != NULL)
12280 maybe_strip_output (info, htab->glink_eh_frame);
12281
12282 return TRUE;
12283 }
12284
12285 /* Called after we have determined section placement. If sections
12286 move, we'll be called again. Provide a value for TOCstart. */
12287
12288 bfd_vma
12289 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12290 {
12291 asection *s;
12292 bfd_vma TOCstart;
12293
12294 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12295 order. The TOC starts where the first of these sections starts. */
12296 s = bfd_get_section_by_name (obfd, ".got");
12297 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12298 s = bfd_get_section_by_name (obfd, ".toc");
12299 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12300 s = bfd_get_section_by_name (obfd, ".tocbss");
12301 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12302 s = bfd_get_section_by_name (obfd, ".plt");
12303 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12304 {
12305 /* This may happen for
12306 o references to TOC base (SYM@toc / TOC[tc0]) without a
12307 .toc directive
12308 o bad linker script
12309 o --gc-sections and empty TOC sections
12310
12311 FIXME: Warn user? */
12312
12313 /* Look for a likely section. We probably won't even be
12314 using TOCstart. */
12315 for (s = obfd->sections; s != NULL; s = s->next)
12316 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12317 | SEC_EXCLUDE))
12318 == (SEC_ALLOC | SEC_SMALL_DATA))
12319 break;
12320 if (s == NULL)
12321 for (s = obfd->sections; s != NULL; s = s->next)
12322 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12323 == (SEC_ALLOC | SEC_SMALL_DATA))
12324 break;
12325 if (s == NULL)
12326 for (s = obfd->sections; s != NULL; s = s->next)
12327 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12328 == SEC_ALLOC)
12329 break;
12330 if (s == NULL)
12331 for (s = obfd->sections; s != NULL; s = s->next)
12332 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12333 break;
12334 }
12335
12336 TOCstart = 0;
12337 if (s != NULL)
12338 TOCstart = s->output_section->vma + s->output_offset;
12339
12340 _bfd_set_gp_value (obfd, TOCstart);
12341
12342 if (info != NULL && s != NULL && is_ppc64_elf (obfd))
12343 {
12344 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12345
12346 if (htab != NULL
12347 && htab->elf.hgot != NULL)
12348 {
12349 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12350 htab->elf.hgot->root.u.def.section = s;
12351 }
12352 }
12353 return TOCstart;
12354 }
12355
12356 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12357 write out any global entry stubs. */
12358
12359 static bfd_boolean
12360 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12361 {
12362 struct bfd_link_info *info;
12363 struct ppc_link_hash_table *htab;
12364 struct plt_entry *pent;
12365 asection *s;
12366
12367 if (h->root.type == bfd_link_hash_indirect)
12368 return TRUE;
12369
12370 if (!h->pointer_equality_needed)
12371 return TRUE;
12372
12373 if (h->def_regular)
12374 return TRUE;
12375
12376 info = inf;
12377 htab = ppc_hash_table (info);
12378 if (htab == NULL)
12379 return FALSE;
12380
12381 s = htab->glink;
12382 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12383 if (pent->plt.offset != (bfd_vma) -1
12384 && pent->addend == 0)
12385 {
12386 bfd_byte *p;
12387 asection *plt;
12388 bfd_vma off;
12389
12390 p = s->contents + h->root.u.def.value;
12391 plt = htab->elf.splt;
12392 if (!htab->elf.dynamic_sections_created
12393 || h->dynindx == -1)
12394 plt = htab->elf.iplt;
12395 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12396 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12397
12398 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12399 {
12400 info->callbacks->einfo
12401 (_("%P: linkage table error against `%T'\n"),
12402 h->root.root.string);
12403 bfd_set_error (bfd_error_bad_value);
12404 htab->stub_error = TRUE;
12405 }
12406
12407 if (PPC_HA (off) != 0)
12408 {
12409 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12410 p += 4;
12411 }
12412 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12413 p += 4;
12414 bfd_put_32 (s->owner, MTCTR_R12, p);
12415 p += 4;
12416 bfd_put_32 (s->owner, BCTR, p);
12417 break;
12418 }
12419 return TRUE;
12420 }
12421
12422 /* Build all the stubs associated with the current output file.
12423 The stubs are kept in a hash table attached to the main linker
12424 hash table. This function is called via gldelf64ppc_finish. */
12425
12426 bfd_boolean
12427 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
12428 struct bfd_link_info *info,
12429 char **stats)
12430 {
12431 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12432 asection *stub_sec;
12433 bfd_byte *p;
12434 int stub_sec_count = 0;
12435
12436 if (htab == NULL)
12437 return FALSE;
12438
12439 htab->emit_stub_syms = emit_stub_syms;
12440
12441 /* Allocate memory to hold the linker stubs. */
12442 for (stub_sec = htab->stub_bfd->sections;
12443 stub_sec != NULL;
12444 stub_sec = stub_sec->next)
12445 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12446 && stub_sec->size != 0)
12447 {
12448 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
12449 if (stub_sec->contents == NULL)
12450 return FALSE;
12451 /* We want to check that built size is the same as calculated
12452 size. rawsize is a convenient location to use. */
12453 stub_sec->rawsize = stub_sec->size;
12454 stub_sec->size = 0;
12455 }
12456
12457 if (htab->glink != NULL && htab->glink->size != 0)
12458 {
12459 unsigned int indx;
12460 bfd_vma plt0;
12461
12462 /* Build the .glink plt call stub. */
12463 if (htab->emit_stub_syms)
12464 {
12465 struct elf_link_hash_entry *h;
12466 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12467 TRUE, FALSE, FALSE);
12468 if (h == NULL)
12469 return FALSE;
12470 if (h->root.type == bfd_link_hash_new)
12471 {
12472 h->root.type = bfd_link_hash_defined;
12473 h->root.u.def.section = htab->glink;
12474 h->root.u.def.value = 8;
12475 h->ref_regular = 1;
12476 h->def_regular = 1;
12477 h->ref_regular_nonweak = 1;
12478 h->forced_local = 1;
12479 h->non_elf = 0;
12480 }
12481 }
12482 plt0 = (htab->elf.splt->output_section->vma
12483 + htab->elf.splt->output_offset
12484 - 16);
12485 if (info->emitrelocations)
12486 {
12487 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12488 if (r == NULL)
12489 return FALSE;
12490 r->r_offset = (htab->glink->output_offset
12491 + htab->glink->output_section->vma);
12492 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12493 r->r_addend = plt0;
12494 }
12495 p = htab->glink->contents;
12496 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12497 bfd_put_64 (htab->glink->owner, plt0, p);
12498 p += 8;
12499 if (htab->opd_abi)
12500 {
12501 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12502 p += 4;
12503 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12504 p += 4;
12505 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12506 p += 4;
12507 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12508 p += 4;
12509 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12510 p += 4;
12511 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12512 p += 4;
12513 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12514 p += 4;
12515 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12516 p += 4;
12517 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12518 p += 4;
12519 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12520 p += 4;
12521 }
12522 else
12523 {
12524 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12525 p += 4;
12526 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12527 p += 4;
12528 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12529 p += 4;
12530 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12531 p += 4;
12532 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12533 p += 4;
12534 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12535 p += 4;
12536 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12537 p += 4;
12538 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12539 p += 4;
12540 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12541 p += 4;
12542 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12543 p += 4;
12544 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12545 p += 4;
12546 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12547 p += 4;
12548 }
12549 bfd_put_32 (htab->glink->owner, BCTR, p);
12550 p += 4;
12551 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12552 {
12553 bfd_put_32 (htab->glink->owner, NOP, p);
12554 p += 4;
12555 }
12556
12557 /* Build the .glink lazy link call stubs. */
12558 indx = 0;
12559 while (p < htab->glink->contents + htab->glink->rawsize)
12560 {
12561 if (htab->opd_abi)
12562 {
12563 if (indx < 0x8000)
12564 {
12565 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12566 p += 4;
12567 }
12568 else
12569 {
12570 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12571 p += 4;
12572 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12573 p);
12574 p += 4;
12575 }
12576 }
12577 bfd_put_32 (htab->glink->owner,
12578 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12579 indx++;
12580 p += 4;
12581 }
12582
12583 /* Build .glink global entry stubs. */
12584 if (htab->glink->size > htab->glink->rawsize)
12585 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12586 }
12587
12588 if (htab->brlt->size != 0)
12589 {
12590 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12591 htab->brlt->size);
12592 if (htab->brlt->contents == NULL)
12593 return FALSE;
12594 }
12595 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12596 {
12597 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12598 htab->relbrlt->size);
12599 if (htab->relbrlt->contents == NULL)
12600 return FALSE;
12601 }
12602
12603 if (htab->glink_eh_frame != NULL
12604 && htab->glink_eh_frame->size != 0)
12605 {
12606 bfd_vma val;
12607 bfd_byte *last_fde;
12608 size_t last_fde_len, size, align, pad;
12609
12610 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12611 if (p == NULL)
12612 return FALSE;
12613 htab->glink_eh_frame->contents = p;
12614 last_fde = p;
12615
12616 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12617
12618 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12619 /* CIE length (rewrite in case little-endian). */
12620 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12621 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12622 p += sizeof (glink_eh_frame_cie);
12623
12624 for (stub_sec = htab->stub_bfd->sections;
12625 stub_sec != NULL;
12626 stub_sec = stub_sec->next)
12627 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12628 {
12629 last_fde = p;
12630 last_fde_len = 16;
12631 /* FDE length. */
12632 bfd_put_32 (htab->elf.dynobj, 16, p);
12633 p += 4;
12634 /* CIE pointer. */
12635 val = p - htab->glink_eh_frame->contents;
12636 bfd_put_32 (htab->elf.dynobj, val, p);
12637 p += 4;
12638 /* Offset to stub section. */
12639 val = (stub_sec->output_section->vma
12640 + stub_sec->output_offset);
12641 val -= (htab->glink_eh_frame->output_section->vma
12642 + htab->glink_eh_frame->output_offset);
12643 val -= p - htab->glink_eh_frame->contents;
12644 if (val + 0x80000000 > 0xffffffff)
12645 {
12646 info->callbacks->einfo
12647 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12648 stub_sec->name);
12649 return FALSE;
12650 }
12651 bfd_put_32 (htab->elf.dynobj, val, p);
12652 p += 4;
12653 /* stub section size. */
12654 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12655 p += 4;
12656 /* Augmentation. */
12657 p += 1;
12658 /* Pad. */
12659 p += 3;
12660 }
12661 if (htab->glink != NULL && htab->glink->size != 0)
12662 {
12663 last_fde = p;
12664 last_fde_len = 20;
12665 /* FDE length. */
12666 bfd_put_32 (htab->elf.dynobj, 20, p);
12667 p += 4;
12668 /* CIE pointer. */
12669 val = p - htab->glink_eh_frame->contents;
12670 bfd_put_32 (htab->elf.dynobj, val, p);
12671 p += 4;
12672 /* Offset to .glink. */
12673 val = (htab->glink->output_section->vma
12674 + htab->glink->output_offset
12675 + 8);
12676 val -= (htab->glink_eh_frame->output_section->vma
12677 + htab->glink_eh_frame->output_offset);
12678 val -= p - htab->glink_eh_frame->contents;
12679 if (val + 0x80000000 > 0xffffffff)
12680 {
12681 info->callbacks->einfo
12682 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12683 htab->glink->name);
12684 return FALSE;
12685 }
12686 bfd_put_32 (htab->elf.dynobj, val, p);
12687 p += 4;
12688 /* .glink size. */
12689 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12690 p += 4;
12691 /* Augmentation. */
12692 p += 1;
12693
12694 *p++ = DW_CFA_advance_loc + 1;
12695 *p++ = DW_CFA_register;
12696 *p++ = 65;
12697 *p++ = 12;
12698 *p++ = DW_CFA_advance_loc + 4;
12699 *p++ = DW_CFA_restore_extended;
12700 *p++ = 65;
12701 }
12702 /* Subsume any padding into the last FDE if user .eh_frame
12703 sections are aligned more than glink_eh_frame. Otherwise any
12704 zero padding will be seen as a terminator. */
12705 size = p - htab->glink_eh_frame->contents;
12706 align = 1;
12707 align <<= htab->glink_eh_frame->output_section->alignment_power;
12708 align -= 1;
12709 pad = ((size + align) & ~align) - size;
12710 htab->glink_eh_frame->size = size + pad;
12711 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12712 }
12713
12714 /* Build the stubs as directed by the stub hash table. */
12715 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12716
12717 if (htab->relbrlt != NULL)
12718 htab->relbrlt->reloc_count = 0;
12719
12720 if (htab->plt_stub_align != 0)
12721 for (stub_sec = htab->stub_bfd->sections;
12722 stub_sec != NULL;
12723 stub_sec = stub_sec->next)
12724 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12725 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12726 & (-1 << htab->plt_stub_align));
12727
12728 for (stub_sec = htab->stub_bfd->sections;
12729 stub_sec != NULL;
12730 stub_sec = stub_sec->next)
12731 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12732 {
12733 stub_sec_count += 1;
12734 if (stub_sec->rawsize != stub_sec->size)
12735 break;
12736 }
12737
12738 if (stub_sec != NULL
12739 || (htab->glink_eh_frame != NULL
12740 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12741 {
12742 htab->stub_error = TRUE;
12743 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12744 }
12745
12746 if (htab->stub_error)
12747 return FALSE;
12748
12749 if (stats != NULL)
12750 {
12751 *stats = bfd_malloc (500);
12752 if (*stats == NULL)
12753 return FALSE;
12754
12755 sprintf (*stats, _("linker stubs in %u group%s\n"
12756 " branch %lu\n"
12757 " toc adjust %lu\n"
12758 " long branch %lu\n"
12759 " long toc adj %lu\n"
12760 " plt call %lu\n"
12761 " plt call toc %lu"),
12762 stub_sec_count,
12763 stub_sec_count == 1 ? "" : "s",
12764 htab->stub_count[ppc_stub_long_branch - 1],
12765 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12766 htab->stub_count[ppc_stub_plt_branch - 1],
12767 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12768 htab->stub_count[ppc_stub_plt_call - 1],
12769 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12770 }
12771 return TRUE;
12772 }
12773
12774 /* This function undoes the changes made by add_symbol_adjust. */
12775
12776 static bfd_boolean
12777 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12778 {
12779 struct ppc_link_hash_entry *eh;
12780
12781 if (h->root.type == bfd_link_hash_indirect)
12782 return TRUE;
12783
12784 eh = (struct ppc_link_hash_entry *) h;
12785 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12786 return TRUE;
12787
12788 eh->elf.root.type = bfd_link_hash_undefined;
12789 return TRUE;
12790 }
12791
12792 void
12793 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12794 {
12795 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12796
12797 if (htab != NULL)
12798 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12799 }
12800
12801 /* What to do when ld finds relocations against symbols defined in
12802 discarded sections. */
12803
12804 static unsigned int
12805 ppc64_elf_action_discarded (asection *sec)
12806 {
12807 if (strcmp (".opd", sec->name) == 0)
12808 return 0;
12809
12810 if (strcmp (".toc", sec->name) == 0)
12811 return 0;
12812
12813 if (strcmp (".toc1", sec->name) == 0)
12814 return 0;
12815
12816 return _bfd_elf_default_action_discarded (sec);
12817 }
12818
12819 /* The RELOCATE_SECTION function is called by the ELF backend linker
12820 to handle the relocations for a section.
12821
12822 The relocs are always passed as Rela structures; if the section
12823 actually uses Rel structures, the r_addend field will always be
12824 zero.
12825
12826 This function is responsible for adjust the section contents as
12827 necessary, and (if using Rela relocs and generating a
12828 relocatable output file) adjusting the reloc addend as
12829 necessary.
12830
12831 This function does not have to worry about setting the reloc
12832 address or the reloc symbol index.
12833
12834 LOCAL_SYMS is a pointer to the swapped in local symbols.
12835
12836 LOCAL_SECTIONS is an array giving the section in the input file
12837 corresponding to the st_shndx field of each local symbol.
12838
12839 The global hash table entry for the global symbols can be found
12840 via elf_sym_hashes (input_bfd).
12841
12842 When generating relocatable output, this function must handle
12843 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12844 going to be the section symbol corresponding to the output
12845 section, which means that the addend must be adjusted
12846 accordingly. */
12847
12848 static bfd_boolean
12849 ppc64_elf_relocate_section (bfd *output_bfd,
12850 struct bfd_link_info *info,
12851 bfd *input_bfd,
12852 asection *input_section,
12853 bfd_byte *contents,
12854 Elf_Internal_Rela *relocs,
12855 Elf_Internal_Sym *local_syms,
12856 asection **local_sections)
12857 {
12858 struct ppc_link_hash_table *htab;
12859 Elf_Internal_Shdr *symtab_hdr;
12860 struct elf_link_hash_entry **sym_hashes;
12861 Elf_Internal_Rela *rel;
12862 Elf_Internal_Rela *relend;
12863 Elf_Internal_Rela outrel;
12864 bfd_byte *loc;
12865 struct got_entry **local_got_ents;
12866 bfd_vma TOCstart;
12867 bfd_boolean ret = TRUE;
12868 bfd_boolean is_opd;
12869 /* Assume 'at' branch hints. */
12870 bfd_boolean is_isa_v2 = TRUE;
12871 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12872
12873 /* Initialize howto table if needed. */
12874 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12875 ppc_howto_init ();
12876
12877 htab = ppc_hash_table (info);
12878 if (htab == NULL)
12879 return FALSE;
12880
12881 /* Don't relocate stub sections. */
12882 if (input_section->owner == htab->stub_bfd)
12883 return TRUE;
12884
12885 BFD_ASSERT (is_ppc64_elf (input_bfd));
12886
12887 local_got_ents = elf_local_got_ents (input_bfd);
12888 TOCstart = elf_gp (output_bfd);
12889 symtab_hdr = &elf_symtab_hdr (input_bfd);
12890 sym_hashes = elf_sym_hashes (input_bfd);
12891 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12892
12893 rel = relocs;
12894 relend = relocs + input_section->reloc_count;
12895 for (; rel < relend; rel++)
12896 {
12897 enum elf_ppc64_reloc_type r_type;
12898 bfd_vma addend;
12899 bfd_reloc_status_type r;
12900 Elf_Internal_Sym *sym;
12901 asection *sec;
12902 struct elf_link_hash_entry *h_elf;
12903 struct ppc_link_hash_entry *h;
12904 struct ppc_link_hash_entry *fdh;
12905 const char *sym_name;
12906 unsigned long r_symndx, toc_symndx;
12907 bfd_vma toc_addend;
12908 unsigned char tls_mask, tls_gd, tls_type;
12909 unsigned char sym_type;
12910 bfd_vma relocation;
12911 bfd_boolean unresolved_reloc;
12912 bfd_boolean warned;
12913 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12914 unsigned int insn;
12915 unsigned int mask;
12916 struct ppc_stub_hash_entry *stub_entry;
12917 bfd_vma max_br_offset;
12918 bfd_vma from;
12919 const Elf_Internal_Rela orig_rel = *rel;
12920
12921 r_type = ELF64_R_TYPE (rel->r_info);
12922 r_symndx = ELF64_R_SYM (rel->r_info);
12923
12924 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12925 symbol of the previous ADDR64 reloc. The symbol gives us the
12926 proper TOC base to use. */
12927 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12928 && rel != relocs
12929 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12930 && is_opd)
12931 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12932
12933 sym = NULL;
12934 sec = NULL;
12935 h_elf = NULL;
12936 sym_name = NULL;
12937 unresolved_reloc = FALSE;
12938 warned = FALSE;
12939
12940 if (r_symndx < symtab_hdr->sh_info)
12941 {
12942 /* It's a local symbol. */
12943 struct _opd_sec_data *opd;
12944
12945 sym = local_syms + r_symndx;
12946 sec = local_sections[r_symndx];
12947 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12948 sym_type = ELF64_ST_TYPE (sym->st_info);
12949 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12950 opd = get_opd_info (sec);
12951 if (opd != NULL && opd->adjust != NULL)
12952 {
12953 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12954 if (adjust == -1)
12955 relocation = 0;
12956 else
12957 {
12958 /* If this is a relocation against the opd section sym
12959 and we have edited .opd, adjust the reloc addend so
12960 that ld -r and ld --emit-relocs output is correct.
12961 If it is a reloc against some other .opd symbol,
12962 then the symbol value will be adjusted later. */
12963 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12964 rel->r_addend += adjust;
12965 else
12966 relocation += adjust;
12967 }
12968 }
12969 }
12970 else
12971 {
12972 bfd_boolean ignored;
12973
12974 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12975 r_symndx, symtab_hdr, sym_hashes,
12976 h_elf, sec, relocation,
12977 unresolved_reloc, warned, ignored);
12978 sym_name = h_elf->root.root.string;
12979 sym_type = h_elf->type;
12980 if (sec != NULL
12981 && sec->owner == output_bfd
12982 && strcmp (sec->name, ".opd") == 0)
12983 {
12984 /* This is a symbol defined in a linker script. All
12985 such are defined in output sections, even those
12986 defined by simple assignment from a symbol defined in
12987 an input section. Transfer the symbol to an
12988 appropriate input .opd section, so that a branch to
12989 this symbol will be mapped to the location specified
12990 by the opd entry. */
12991 struct bfd_link_order *lo;
12992 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12993 if (lo->type == bfd_indirect_link_order)
12994 {
12995 asection *isec = lo->u.indirect.section;
12996 if (h_elf->root.u.def.value >= isec->output_offset
12997 && h_elf->root.u.def.value < (isec->output_offset
12998 + isec->size))
12999 {
13000 h_elf->root.u.def.value -= isec->output_offset;
13001 h_elf->root.u.def.section = isec;
13002 sec = isec;
13003 break;
13004 }
13005 }
13006 }
13007 }
13008 h = (struct ppc_link_hash_entry *) h_elf;
13009
13010 if (sec != NULL && discarded_section (sec))
13011 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13012 rel, 1, relend,
13013 ppc64_elf_howto_table[r_type], 0,
13014 contents);
13015
13016 if (info->relocatable)
13017 continue;
13018
13019 if (h != NULL && &h->elf == htab->elf.hgot)
13020 {
13021 relocation = (TOCstart
13022 + htab->stub_group[input_section->id].toc_off);
13023 sec = bfd_abs_section_ptr;
13024 unresolved_reloc = FALSE;
13025 }
13026
13027 /* TLS optimizations. Replace instruction sequences and relocs
13028 based on information we collected in tls_optimize. We edit
13029 RELOCS so that --emit-relocs will output something sensible
13030 for the final instruction stream. */
13031 tls_mask = 0;
13032 tls_gd = 0;
13033 toc_symndx = 0;
13034 if (h != NULL)
13035 tls_mask = h->tls_mask;
13036 else if (local_got_ents != NULL)
13037 {
13038 struct plt_entry **local_plt = (struct plt_entry **)
13039 (local_got_ents + symtab_hdr->sh_info);
13040 unsigned char *lgot_masks = (unsigned char *)
13041 (local_plt + symtab_hdr->sh_info);
13042 tls_mask = lgot_masks[r_symndx];
13043 }
13044 if (tls_mask == 0
13045 && (r_type == R_PPC64_TLS
13046 || r_type == R_PPC64_TLSGD
13047 || r_type == R_PPC64_TLSLD))
13048 {
13049 /* Check for toc tls entries. */
13050 unsigned char *toc_tls;
13051
13052 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13053 &local_syms, rel, input_bfd))
13054 return FALSE;
13055
13056 if (toc_tls)
13057 tls_mask = *toc_tls;
13058 }
13059
13060 /* Check that tls relocs are used with tls syms, and non-tls
13061 relocs are used with non-tls syms. */
13062 if (r_symndx != STN_UNDEF
13063 && r_type != R_PPC64_NONE
13064 && (h == NULL
13065 || h->elf.root.type == bfd_link_hash_defined
13066 || h->elf.root.type == bfd_link_hash_defweak)
13067 && (IS_PPC64_TLS_RELOC (r_type)
13068 != (sym_type == STT_TLS
13069 || (sym_type == STT_SECTION
13070 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13071 {
13072 if (tls_mask != 0
13073 && (r_type == R_PPC64_TLS
13074 || r_type == R_PPC64_TLSGD
13075 || r_type == R_PPC64_TLSLD))
13076 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13077 ;
13078 else
13079 info->callbacks->einfo
13080 (!IS_PPC64_TLS_RELOC (r_type)
13081 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13082 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13083 input_bfd, input_section, rel->r_offset,
13084 ppc64_elf_howto_table[r_type]->name,
13085 sym_name);
13086 }
13087
13088 /* Ensure reloc mapping code below stays sane. */
13089 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13090 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13091 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13092 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13093 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13094 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13095 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13096 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13097 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13098 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13099 abort ();
13100
13101 switch (r_type)
13102 {
13103 default:
13104 break;
13105
13106 case R_PPC64_LO_DS_OPT:
13107 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13108 if ((insn & (0x3f << 26)) != 58u << 26)
13109 abort ();
13110 insn += (14u << 26) - (58u << 26);
13111 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13112 r_type = R_PPC64_TOC16_LO;
13113 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13114 break;
13115
13116 case R_PPC64_TOC16:
13117 case R_PPC64_TOC16_LO:
13118 case R_PPC64_TOC16_DS:
13119 case R_PPC64_TOC16_LO_DS:
13120 {
13121 /* Check for toc tls entries. */
13122 unsigned char *toc_tls;
13123 int retval;
13124
13125 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13126 &local_syms, rel, input_bfd);
13127 if (retval == 0)
13128 return FALSE;
13129
13130 if (toc_tls)
13131 {
13132 tls_mask = *toc_tls;
13133 if (r_type == R_PPC64_TOC16_DS
13134 || r_type == R_PPC64_TOC16_LO_DS)
13135 {
13136 if (tls_mask != 0
13137 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13138 goto toctprel;
13139 }
13140 else
13141 {
13142 /* If we found a GD reloc pair, then we might be
13143 doing a GD->IE transition. */
13144 if (retval == 2)
13145 {
13146 tls_gd = TLS_TPRELGD;
13147 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13148 goto tls_ldgd_opt;
13149 }
13150 else if (retval == 3)
13151 {
13152 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13153 goto tls_ldgd_opt;
13154 }
13155 }
13156 }
13157 }
13158 break;
13159
13160 case R_PPC64_GOT_TPREL16_HI:
13161 case R_PPC64_GOT_TPREL16_HA:
13162 if (tls_mask != 0
13163 && (tls_mask & TLS_TPREL) == 0)
13164 {
13165 rel->r_offset -= d_offset;
13166 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13167 r_type = R_PPC64_NONE;
13168 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13169 }
13170 break;
13171
13172 case R_PPC64_GOT_TPREL16_DS:
13173 case R_PPC64_GOT_TPREL16_LO_DS:
13174 if (tls_mask != 0
13175 && (tls_mask & TLS_TPREL) == 0)
13176 {
13177 toctprel:
13178 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13179 insn &= 31 << 21;
13180 insn |= 0x3c0d0000; /* addis 0,13,0 */
13181 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13182 r_type = R_PPC64_TPREL16_HA;
13183 if (toc_symndx != 0)
13184 {
13185 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13186 rel->r_addend = toc_addend;
13187 /* We changed the symbol. Start over in order to
13188 get h, sym, sec etc. right. */
13189 rel--;
13190 continue;
13191 }
13192 else
13193 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13194 }
13195 break;
13196
13197 case R_PPC64_TLS:
13198 if (tls_mask != 0
13199 && (tls_mask & TLS_TPREL) == 0)
13200 {
13201 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13202 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13203 if (insn == 0)
13204 abort ();
13205 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13206 /* Was PPC64_TLS which sits on insn boundary, now
13207 PPC64_TPREL16_LO which is at low-order half-word. */
13208 rel->r_offset += d_offset;
13209 r_type = R_PPC64_TPREL16_LO;
13210 if (toc_symndx != 0)
13211 {
13212 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13213 rel->r_addend = toc_addend;
13214 /* We changed the symbol. Start over in order to
13215 get h, sym, sec etc. right. */
13216 rel--;
13217 continue;
13218 }
13219 else
13220 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13221 }
13222 break;
13223
13224 case R_PPC64_GOT_TLSGD16_HI:
13225 case R_PPC64_GOT_TLSGD16_HA:
13226 tls_gd = TLS_TPRELGD;
13227 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13228 goto tls_gdld_hi;
13229 break;
13230
13231 case R_PPC64_GOT_TLSLD16_HI:
13232 case R_PPC64_GOT_TLSLD16_HA:
13233 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13234 {
13235 tls_gdld_hi:
13236 if ((tls_mask & tls_gd) != 0)
13237 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13238 + R_PPC64_GOT_TPREL16_DS);
13239 else
13240 {
13241 rel->r_offset -= d_offset;
13242 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13243 r_type = R_PPC64_NONE;
13244 }
13245 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13246 }
13247 break;
13248
13249 case R_PPC64_GOT_TLSGD16:
13250 case R_PPC64_GOT_TLSGD16_LO:
13251 tls_gd = TLS_TPRELGD;
13252 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13253 goto tls_ldgd_opt;
13254 break;
13255
13256 case R_PPC64_GOT_TLSLD16:
13257 case R_PPC64_GOT_TLSLD16_LO:
13258 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13259 {
13260 unsigned int insn1, insn2, insn3;
13261 bfd_vma offset;
13262
13263 tls_ldgd_opt:
13264 offset = (bfd_vma) -1;
13265 /* If not using the newer R_PPC64_TLSGD/LD to mark
13266 __tls_get_addr calls, we must trust that the call
13267 stays with its arg setup insns, ie. that the next
13268 reloc is the __tls_get_addr call associated with
13269 the current reloc. Edit both insns. */
13270 if (input_section->has_tls_get_addr_call
13271 && rel + 1 < relend
13272 && branch_reloc_hash_match (input_bfd, rel + 1,
13273 htab->tls_get_addr,
13274 htab->tls_get_addr_fd))
13275 offset = rel[1].r_offset;
13276 if ((tls_mask & tls_gd) != 0)
13277 {
13278 /* IE */
13279 insn1 = bfd_get_32 (output_bfd,
13280 contents + rel->r_offset - d_offset);
13281 insn1 &= (1 << 26) - (1 << 2);
13282 insn1 |= 58 << 26; /* ld */
13283 insn2 = 0x7c636a14; /* add 3,3,13 */
13284 if (offset != (bfd_vma) -1)
13285 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13286 if ((tls_mask & TLS_EXPLICIT) == 0)
13287 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13288 + R_PPC64_GOT_TPREL16_DS);
13289 else
13290 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13291 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13292 }
13293 else
13294 {
13295 /* LE */
13296 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13297 insn2 = 0x38630000; /* addi 3,3,0 */
13298 if (tls_gd == 0)
13299 {
13300 /* Was an LD reloc. */
13301 if (toc_symndx)
13302 sec = local_sections[toc_symndx];
13303 for (r_symndx = 0;
13304 r_symndx < symtab_hdr->sh_info;
13305 r_symndx++)
13306 if (local_sections[r_symndx] == sec)
13307 break;
13308 if (r_symndx >= symtab_hdr->sh_info)
13309 r_symndx = STN_UNDEF;
13310 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13311 if (r_symndx != STN_UNDEF)
13312 rel->r_addend -= (local_syms[r_symndx].st_value
13313 + sec->output_offset
13314 + sec->output_section->vma);
13315 }
13316 else if (toc_symndx != 0)
13317 {
13318 r_symndx = toc_symndx;
13319 rel->r_addend = toc_addend;
13320 }
13321 r_type = R_PPC64_TPREL16_HA;
13322 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13323 if (offset != (bfd_vma) -1)
13324 {
13325 rel[1].r_info = ELF64_R_INFO (r_symndx,
13326 R_PPC64_TPREL16_LO);
13327 rel[1].r_offset = offset + d_offset;
13328 rel[1].r_addend = rel->r_addend;
13329 }
13330 }
13331 bfd_put_32 (output_bfd, insn1,
13332 contents + rel->r_offset - d_offset);
13333 if (offset != (bfd_vma) -1)
13334 {
13335 insn3 = bfd_get_32 (output_bfd,
13336 contents + offset + 4);
13337 if (insn3 == NOP
13338 || insn3 == CROR_151515 || insn3 == CROR_313131)
13339 {
13340 rel[1].r_offset += 4;
13341 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13342 insn2 = NOP;
13343 }
13344 bfd_put_32 (output_bfd, insn2, contents + offset);
13345 }
13346 if ((tls_mask & tls_gd) == 0
13347 && (tls_gd == 0 || toc_symndx != 0))
13348 {
13349 /* We changed the symbol. Start over in order
13350 to get h, sym, sec etc. right. */
13351 rel--;
13352 continue;
13353 }
13354 }
13355 break;
13356
13357 case R_PPC64_TLSGD:
13358 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13359 {
13360 unsigned int insn2, insn3;
13361 bfd_vma offset = rel->r_offset;
13362
13363 if ((tls_mask & TLS_TPRELGD) != 0)
13364 {
13365 /* IE */
13366 r_type = R_PPC64_NONE;
13367 insn2 = 0x7c636a14; /* add 3,3,13 */
13368 }
13369 else
13370 {
13371 /* LE */
13372 if (toc_symndx != 0)
13373 {
13374 r_symndx = toc_symndx;
13375 rel->r_addend = toc_addend;
13376 }
13377 r_type = R_PPC64_TPREL16_LO;
13378 rel->r_offset = offset + d_offset;
13379 insn2 = 0x38630000; /* addi 3,3,0 */
13380 }
13381 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13382 /* Zap the reloc on the _tls_get_addr call too. */
13383 BFD_ASSERT (offset == rel[1].r_offset);
13384 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13385 insn3 = bfd_get_32 (output_bfd,
13386 contents + offset + 4);
13387 if (insn3 == NOP
13388 || insn3 == CROR_151515 || insn3 == CROR_313131)
13389 {
13390 rel->r_offset += 4;
13391 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13392 insn2 = NOP;
13393 }
13394 bfd_put_32 (output_bfd, insn2, contents + offset);
13395 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13396 {
13397 rel--;
13398 continue;
13399 }
13400 }
13401 break;
13402
13403 case R_PPC64_TLSLD:
13404 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13405 {
13406 unsigned int insn2, insn3;
13407 bfd_vma offset = rel->r_offset;
13408
13409 if (toc_symndx)
13410 sec = local_sections[toc_symndx];
13411 for (r_symndx = 0;
13412 r_symndx < symtab_hdr->sh_info;
13413 r_symndx++)
13414 if (local_sections[r_symndx] == sec)
13415 break;
13416 if (r_symndx >= symtab_hdr->sh_info)
13417 r_symndx = STN_UNDEF;
13418 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13419 if (r_symndx != STN_UNDEF)
13420 rel->r_addend -= (local_syms[r_symndx].st_value
13421 + sec->output_offset
13422 + sec->output_section->vma);
13423
13424 r_type = R_PPC64_TPREL16_LO;
13425 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13426 rel->r_offset = offset + d_offset;
13427 /* Zap the reloc on the _tls_get_addr call too. */
13428 BFD_ASSERT (offset == rel[1].r_offset);
13429 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13430 insn2 = 0x38630000; /* addi 3,3,0 */
13431 insn3 = bfd_get_32 (output_bfd,
13432 contents + offset + 4);
13433 if (insn3 == NOP
13434 || insn3 == CROR_151515 || insn3 == CROR_313131)
13435 {
13436 rel->r_offset += 4;
13437 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13438 insn2 = NOP;
13439 }
13440 bfd_put_32 (output_bfd, insn2, contents + offset);
13441 rel--;
13442 continue;
13443 }
13444 break;
13445
13446 case R_PPC64_DTPMOD64:
13447 if (rel + 1 < relend
13448 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13449 && rel[1].r_offset == rel->r_offset + 8)
13450 {
13451 if ((tls_mask & TLS_GD) == 0)
13452 {
13453 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13454 if ((tls_mask & TLS_TPRELGD) != 0)
13455 r_type = R_PPC64_TPREL64;
13456 else
13457 {
13458 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13459 r_type = R_PPC64_NONE;
13460 }
13461 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13462 }
13463 }
13464 else
13465 {
13466 if ((tls_mask & TLS_LD) == 0)
13467 {
13468 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13469 r_type = R_PPC64_NONE;
13470 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13471 }
13472 }
13473 break;
13474
13475 case R_PPC64_TPREL64:
13476 if ((tls_mask & TLS_TPREL) == 0)
13477 {
13478 r_type = R_PPC64_NONE;
13479 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13480 }
13481 break;
13482
13483 case R_PPC64_REL16_HA:
13484 /* If we are generating a non-PIC executable, edit
13485 . 0: addis 2,12,.TOC.-0b@ha
13486 . addi 2,2,.TOC.-0b@l
13487 used by ELFv2 global entry points to set up r2, to
13488 . lis 2,.TOC.@ha
13489 . addi 2,2,.TOC.@l
13490 if .TOC. is in range. */
13491 if (!info->shared
13492 && h != NULL && &h->elf == htab->elf.hgot
13493 && rel + 1 < relend
13494 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13495 && rel[1].r_offset == rel->r_offset + 4
13496 && rel[1].r_addend == rel->r_addend + 4
13497 && relocation + 0x80008000 <= 0xffffffff)
13498 {
13499 unsigned int insn1, insn2;
13500 bfd_vma offset = rel->r_offset - d_offset;
13501 insn1 = bfd_get_32 (output_bfd, contents + offset);
13502 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13503 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13504 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13505 {
13506 r_type = R_PPC64_ADDR16_HA;
13507 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13508 rel->r_addend -= d_offset;
13509 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13510 rel[1].r_addend -= d_offset + 4;
13511 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13512 }
13513 }
13514 break;
13515 }
13516
13517 /* Handle other relocations that tweak non-addend part of insn. */
13518 insn = 0;
13519 max_br_offset = 1 << 25;
13520 addend = rel->r_addend;
13521 reloc_dest = DEST_NORMAL;
13522 switch (r_type)
13523 {
13524 default:
13525 break;
13526
13527 case R_PPC64_TOCSAVE:
13528 if (relocation + addend == (rel->r_offset
13529 + input_section->output_offset
13530 + input_section->output_section->vma)
13531 && tocsave_find (htab, NO_INSERT,
13532 &local_syms, rel, input_bfd))
13533 {
13534 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13535 if (insn == NOP
13536 || insn == CROR_151515 || insn == CROR_313131)
13537 bfd_put_32 (input_bfd,
13538 STD_R2_0R1 + STK_TOC (htab),
13539 contents + rel->r_offset);
13540 }
13541 break;
13542
13543 /* Branch taken prediction relocations. */
13544 case R_PPC64_ADDR14_BRTAKEN:
13545 case R_PPC64_REL14_BRTAKEN:
13546 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13547 /* Fall thru. */
13548
13549 /* Branch not taken prediction relocations. */
13550 case R_PPC64_ADDR14_BRNTAKEN:
13551 case R_PPC64_REL14_BRNTAKEN:
13552 insn |= bfd_get_32 (output_bfd,
13553 contents + rel->r_offset) & ~(0x01 << 21);
13554 /* Fall thru. */
13555
13556 case R_PPC64_REL14:
13557 max_br_offset = 1 << 15;
13558 /* Fall thru. */
13559
13560 case R_PPC64_REL24:
13561 /* Calls to functions with a different TOC, such as calls to
13562 shared objects, need to alter the TOC pointer. This is
13563 done using a linkage stub. A REL24 branching to these
13564 linkage stubs needs to be followed by a nop, as the nop
13565 will be replaced with an instruction to restore the TOC
13566 base pointer. */
13567 fdh = h;
13568 if (h != NULL
13569 && h->oh != NULL
13570 && h->oh->is_func_descriptor)
13571 fdh = ppc_follow_link (h->oh);
13572 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13573 htab);
13574 if (stub_entry != NULL
13575 && (stub_entry->stub_type == ppc_stub_plt_call
13576 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13577 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13578 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13579 {
13580 bfd_boolean can_plt_call = FALSE;
13581
13582 /* All of these stubs will modify r2, so there must be a
13583 branch and link followed by a nop. The nop is
13584 replaced by an insn to restore r2. */
13585 if (rel->r_offset + 8 <= input_section->size)
13586 {
13587 unsigned long br;
13588
13589 br = bfd_get_32 (input_bfd,
13590 contents + rel->r_offset);
13591 if ((br & 1) != 0)
13592 {
13593 unsigned long nop;
13594
13595 nop = bfd_get_32 (input_bfd,
13596 contents + rel->r_offset + 4);
13597 if (nop == NOP
13598 || nop == CROR_151515 || nop == CROR_313131)
13599 {
13600 if (h != NULL
13601 && (h == htab->tls_get_addr_fd
13602 || h == htab->tls_get_addr)
13603 && !htab->no_tls_get_addr_opt)
13604 {
13605 /* Special stub used, leave nop alone. */
13606 }
13607 else
13608 bfd_put_32 (input_bfd,
13609 LD_R2_0R1 + STK_TOC (htab),
13610 contents + rel->r_offset + 4);
13611 can_plt_call = TRUE;
13612 }
13613 }
13614 }
13615
13616 if (!can_plt_call && h != NULL)
13617 {
13618 const char *name = h->elf.root.root.string;
13619
13620 if (*name == '.')
13621 ++name;
13622
13623 if (strncmp (name, "__libc_start_main", 17) == 0
13624 && (name[17] == 0 || name[17] == '@'))
13625 {
13626 /* Allow crt1 branch to go via a toc adjusting
13627 stub. Other calls that never return could do
13628 the same, if we could detect such. */
13629 can_plt_call = TRUE;
13630 }
13631 }
13632
13633 if (!can_plt_call)
13634 {
13635 /* g++ as of 20130507 emits self-calls without a
13636 following nop. This is arguably wrong since we
13637 have conflicting information. On the one hand a
13638 global symbol and on the other a local call
13639 sequence, but don't error for this special case.
13640 It isn't possible to cheaply verify we have
13641 exactly such a call. Allow all calls to the same
13642 section. */
13643 asection *code_sec = sec;
13644
13645 if (get_opd_info (sec) != NULL)
13646 {
13647 bfd_vma off = (relocation + addend
13648 - sec->output_section->vma
13649 - sec->output_offset);
13650
13651 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13652 }
13653 if (code_sec == input_section)
13654 can_plt_call = TRUE;
13655 }
13656
13657 if (!can_plt_call)
13658 {
13659 info->callbacks->einfo
13660 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13661 "recompile with -fPIC"),
13662 input_bfd, input_section, rel->r_offset, sym_name);
13663
13664 bfd_set_error (bfd_error_bad_value);
13665 ret = FALSE;
13666 }
13667
13668 if (can_plt_call
13669 && (stub_entry->stub_type == ppc_stub_plt_call
13670 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13671 unresolved_reloc = FALSE;
13672 }
13673
13674 if ((stub_entry == NULL
13675 || stub_entry->stub_type == ppc_stub_long_branch
13676 || stub_entry->stub_type == ppc_stub_plt_branch)
13677 && get_opd_info (sec) != NULL)
13678 {
13679 /* The branch destination is the value of the opd entry. */
13680 bfd_vma off = (relocation + addend
13681 - sec->output_section->vma
13682 - sec->output_offset);
13683 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13684 if (dest != (bfd_vma) -1)
13685 {
13686 relocation = dest;
13687 addend = 0;
13688 reloc_dest = DEST_OPD;
13689 }
13690 }
13691
13692 /* If the branch is out of reach we ought to have a long
13693 branch stub. */
13694 from = (rel->r_offset
13695 + input_section->output_offset
13696 + input_section->output_section->vma);
13697
13698 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13699 ? fdh->elf.other
13700 : sym->st_other);
13701
13702 if (stub_entry != NULL
13703 && (stub_entry->stub_type == ppc_stub_long_branch
13704 || stub_entry->stub_type == ppc_stub_plt_branch)
13705 && (r_type == R_PPC64_ADDR14_BRTAKEN
13706 || r_type == R_PPC64_ADDR14_BRNTAKEN
13707 || (relocation + addend - from + max_br_offset
13708 < 2 * max_br_offset)))
13709 /* Don't use the stub if this branch is in range. */
13710 stub_entry = NULL;
13711
13712 if (stub_entry != NULL)
13713 {
13714 /* Munge up the value and addend so that we call the stub
13715 rather than the procedure directly. */
13716 relocation = (stub_entry->stub_offset
13717 + stub_entry->stub_sec->output_offset
13718 + stub_entry->stub_sec->output_section->vma);
13719 addend = 0;
13720 reloc_dest = DEST_STUB;
13721
13722 if ((stub_entry->stub_type == ppc_stub_plt_call
13723 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13724 && (ALWAYS_EMIT_R2SAVE
13725 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13726 && rel + 1 < relend
13727 && rel[1].r_offset == rel->r_offset + 4
13728 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13729 relocation += 4;
13730 }
13731
13732 if (insn != 0)
13733 {
13734 if (is_isa_v2)
13735 {
13736 /* Set 'a' bit. This is 0b00010 in BO field for branch
13737 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13738 for branch on CTR insns (BO == 1a00t or 1a01t). */
13739 if ((insn & (0x14 << 21)) == (0x04 << 21))
13740 insn |= 0x02 << 21;
13741 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13742 insn |= 0x08 << 21;
13743 else
13744 break;
13745 }
13746 else
13747 {
13748 /* Invert 'y' bit if not the default. */
13749 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13750 insn ^= 0x01 << 21;
13751 }
13752
13753 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13754 }
13755
13756 /* NOP out calls to undefined weak functions.
13757 We can thus call a weak function without first
13758 checking whether the function is defined. */
13759 else if (h != NULL
13760 && h->elf.root.type == bfd_link_hash_undefweak
13761 && h->elf.dynindx == -1
13762 && r_type == R_PPC64_REL24
13763 && relocation == 0
13764 && addend == 0)
13765 {
13766 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13767 continue;
13768 }
13769 break;
13770 }
13771
13772 /* Set `addend'. */
13773 tls_type = 0;
13774 switch (r_type)
13775 {
13776 default:
13777 info->callbacks->einfo
13778 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13779 input_bfd, (int) r_type, sym_name);
13780
13781 bfd_set_error (bfd_error_bad_value);
13782 ret = FALSE;
13783 continue;
13784
13785 case R_PPC64_NONE:
13786 case R_PPC64_TLS:
13787 case R_PPC64_TLSGD:
13788 case R_PPC64_TLSLD:
13789 case R_PPC64_TOCSAVE:
13790 case R_PPC64_GNU_VTINHERIT:
13791 case R_PPC64_GNU_VTENTRY:
13792 continue;
13793
13794 /* GOT16 relocations. Like an ADDR16 using the symbol's
13795 address in the GOT as relocation value instead of the
13796 symbol's value itself. Also, create a GOT entry for the
13797 symbol and put the symbol value there. */
13798 case R_PPC64_GOT_TLSGD16:
13799 case R_PPC64_GOT_TLSGD16_LO:
13800 case R_PPC64_GOT_TLSGD16_HI:
13801 case R_PPC64_GOT_TLSGD16_HA:
13802 tls_type = TLS_TLS | TLS_GD;
13803 goto dogot;
13804
13805 case R_PPC64_GOT_TLSLD16:
13806 case R_PPC64_GOT_TLSLD16_LO:
13807 case R_PPC64_GOT_TLSLD16_HI:
13808 case R_PPC64_GOT_TLSLD16_HA:
13809 tls_type = TLS_TLS | TLS_LD;
13810 goto dogot;
13811
13812 case R_PPC64_GOT_TPREL16_DS:
13813 case R_PPC64_GOT_TPREL16_LO_DS:
13814 case R_PPC64_GOT_TPREL16_HI:
13815 case R_PPC64_GOT_TPREL16_HA:
13816 tls_type = TLS_TLS | TLS_TPREL;
13817 goto dogot;
13818
13819 case R_PPC64_GOT_DTPREL16_DS:
13820 case R_PPC64_GOT_DTPREL16_LO_DS:
13821 case R_PPC64_GOT_DTPREL16_HI:
13822 case R_PPC64_GOT_DTPREL16_HA:
13823 tls_type = TLS_TLS | TLS_DTPREL;
13824 goto dogot;
13825
13826 case R_PPC64_GOT16:
13827 case R_PPC64_GOT16_LO:
13828 case R_PPC64_GOT16_HI:
13829 case R_PPC64_GOT16_HA:
13830 case R_PPC64_GOT16_DS:
13831 case R_PPC64_GOT16_LO_DS:
13832 dogot:
13833 {
13834 /* Relocation is to the entry for this symbol in the global
13835 offset table. */
13836 asection *got;
13837 bfd_vma *offp;
13838 bfd_vma off;
13839 unsigned long indx = 0;
13840 struct got_entry *ent;
13841
13842 if (tls_type == (TLS_TLS | TLS_LD)
13843 && (h == NULL
13844 || !h->elf.def_dynamic))
13845 ent = ppc64_tlsld_got (input_bfd);
13846 else
13847 {
13848
13849 if (h != NULL)
13850 {
13851 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13852 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13853 &h->elf)
13854 || (info->shared
13855 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13856 /* This is actually a static link, or it is a
13857 -Bsymbolic link and the symbol is defined
13858 locally, or the symbol was forced to be local
13859 because of a version file. */
13860 ;
13861 else
13862 {
13863 BFD_ASSERT (h->elf.dynindx != -1);
13864 indx = h->elf.dynindx;
13865 unresolved_reloc = FALSE;
13866 }
13867 ent = h->elf.got.glist;
13868 }
13869 else
13870 {
13871 if (local_got_ents == NULL)
13872 abort ();
13873 ent = local_got_ents[r_symndx];
13874 }
13875
13876 for (; ent != NULL; ent = ent->next)
13877 if (ent->addend == orig_rel.r_addend
13878 && ent->owner == input_bfd
13879 && ent->tls_type == tls_type)
13880 break;
13881 }
13882
13883 if (ent == NULL)
13884 abort ();
13885 if (ent->is_indirect)
13886 ent = ent->got.ent;
13887 offp = &ent->got.offset;
13888 got = ppc64_elf_tdata (ent->owner)->got;
13889 if (got == NULL)
13890 abort ();
13891
13892 /* The offset must always be a multiple of 8. We use the
13893 least significant bit to record whether we have already
13894 processed this entry. */
13895 off = *offp;
13896 if ((off & 1) != 0)
13897 off &= ~1;
13898 else
13899 {
13900 /* Generate relocs for the dynamic linker, except in
13901 the case of TLSLD where we'll use one entry per
13902 module. */
13903 asection *relgot;
13904 bfd_boolean ifunc;
13905
13906 *offp = off | 1;
13907 relgot = NULL;
13908 ifunc = (h != NULL
13909 ? h->elf.type == STT_GNU_IFUNC
13910 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13911 if (ifunc)
13912 relgot = htab->elf.irelplt;
13913 else if ((info->shared || indx != 0)
13914 && (h == NULL
13915 || (tls_type == (TLS_TLS | TLS_LD)
13916 && !h->elf.def_dynamic)
13917 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13918 || h->elf.root.type != bfd_link_hash_undefweak))
13919 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13920 if (relgot != NULL)
13921 {
13922 outrel.r_offset = (got->output_section->vma
13923 + got->output_offset
13924 + off);
13925 outrel.r_addend = addend;
13926 if (tls_type & (TLS_LD | TLS_GD))
13927 {
13928 outrel.r_addend = 0;
13929 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13930 if (tls_type == (TLS_TLS | TLS_GD))
13931 {
13932 loc = relgot->contents;
13933 loc += (relgot->reloc_count++
13934 * sizeof (Elf64_External_Rela));
13935 bfd_elf64_swap_reloca_out (output_bfd,
13936 &outrel, loc);
13937 outrel.r_offset += 8;
13938 outrel.r_addend = addend;
13939 outrel.r_info
13940 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13941 }
13942 }
13943 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13944 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13945 else if (tls_type == (TLS_TLS | TLS_TPREL))
13946 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13947 else if (indx != 0)
13948 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13949 else
13950 {
13951 if (ifunc)
13952 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13953 else
13954 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13955
13956 /* Write the .got section contents for the sake
13957 of prelink. */
13958 loc = got->contents + off;
13959 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13960 loc);
13961 }
13962
13963 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13964 {
13965 outrel.r_addend += relocation;
13966 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13967 outrel.r_addend -= htab->elf.tls_sec->vma;
13968 }
13969 loc = relgot->contents;
13970 loc += (relgot->reloc_count++
13971 * sizeof (Elf64_External_Rela));
13972 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13973 }
13974
13975 /* Init the .got section contents here if we're not
13976 emitting a reloc. */
13977 else
13978 {
13979 relocation += addend;
13980 if (tls_type == (TLS_TLS | TLS_LD))
13981 relocation = 1;
13982 else if (tls_type != 0)
13983 {
13984 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13985 if (tls_type == (TLS_TLS | TLS_TPREL))
13986 relocation += DTP_OFFSET - TP_OFFSET;
13987
13988 if (tls_type == (TLS_TLS | TLS_GD))
13989 {
13990 bfd_put_64 (output_bfd, relocation,
13991 got->contents + off + 8);
13992 relocation = 1;
13993 }
13994 }
13995
13996 bfd_put_64 (output_bfd, relocation,
13997 got->contents + off);
13998 }
13999 }
14000
14001 if (off >= (bfd_vma) -2)
14002 abort ();
14003
14004 relocation = got->output_section->vma + got->output_offset + off;
14005 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14006 }
14007 break;
14008
14009 case R_PPC64_PLT16_HA:
14010 case R_PPC64_PLT16_HI:
14011 case R_PPC64_PLT16_LO:
14012 case R_PPC64_PLT32:
14013 case R_PPC64_PLT64:
14014 /* Relocation is to the entry for this symbol in the
14015 procedure linkage table. */
14016
14017 /* Resolve a PLT reloc against a local symbol directly,
14018 without using the procedure linkage table. */
14019 if (h == NULL)
14020 break;
14021
14022 /* It's possible that we didn't make a PLT entry for this
14023 symbol. This happens when statically linking PIC code,
14024 or when using -Bsymbolic. Go find a match if there is a
14025 PLT entry. */
14026 if (htab->elf.splt != NULL)
14027 {
14028 struct plt_entry *ent;
14029 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14030 if (ent->plt.offset != (bfd_vma) -1
14031 && ent->addend == orig_rel.r_addend)
14032 {
14033 relocation = (htab->elf.splt->output_section->vma
14034 + htab->elf.splt->output_offset
14035 + ent->plt.offset);
14036 unresolved_reloc = FALSE;
14037 break;
14038 }
14039 }
14040 break;
14041
14042 case R_PPC64_TOC:
14043 /* Relocation value is TOC base. */
14044 relocation = TOCstart;
14045 if (r_symndx == STN_UNDEF)
14046 relocation += htab->stub_group[input_section->id].toc_off;
14047 else if (unresolved_reloc)
14048 ;
14049 else if (sec != NULL && sec->id <= htab->top_id)
14050 relocation += htab->stub_group[sec->id].toc_off;
14051 else
14052 unresolved_reloc = TRUE;
14053 goto dodyn;
14054
14055 /* TOC16 relocs. We want the offset relative to the TOC base,
14056 which is the address of the start of the TOC plus 0x8000.
14057 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14058 in this order. */
14059 case R_PPC64_TOC16:
14060 case R_PPC64_TOC16_LO:
14061 case R_PPC64_TOC16_HI:
14062 case R_PPC64_TOC16_DS:
14063 case R_PPC64_TOC16_LO_DS:
14064 case R_PPC64_TOC16_HA:
14065 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14066 break;
14067
14068 /* Relocate against the beginning of the section. */
14069 case R_PPC64_SECTOFF:
14070 case R_PPC64_SECTOFF_LO:
14071 case R_PPC64_SECTOFF_HI:
14072 case R_PPC64_SECTOFF_DS:
14073 case R_PPC64_SECTOFF_LO_DS:
14074 case R_PPC64_SECTOFF_HA:
14075 if (sec != NULL)
14076 addend -= sec->output_section->vma;
14077 break;
14078
14079 case R_PPC64_REL16:
14080 case R_PPC64_REL16_LO:
14081 case R_PPC64_REL16_HI:
14082 case R_PPC64_REL16_HA:
14083 break;
14084
14085 case R_PPC64_REL14:
14086 case R_PPC64_REL14_BRNTAKEN:
14087 case R_PPC64_REL14_BRTAKEN:
14088 case R_PPC64_REL24:
14089 break;
14090
14091 case R_PPC64_TPREL16:
14092 case R_PPC64_TPREL16_LO:
14093 case R_PPC64_TPREL16_HI:
14094 case R_PPC64_TPREL16_HA:
14095 case R_PPC64_TPREL16_DS:
14096 case R_PPC64_TPREL16_LO_DS:
14097 case R_PPC64_TPREL16_HIGH:
14098 case R_PPC64_TPREL16_HIGHA:
14099 case R_PPC64_TPREL16_HIGHER:
14100 case R_PPC64_TPREL16_HIGHERA:
14101 case R_PPC64_TPREL16_HIGHEST:
14102 case R_PPC64_TPREL16_HIGHESTA:
14103 if (h != NULL
14104 && h->elf.root.type == bfd_link_hash_undefweak
14105 && h->elf.dynindx == -1)
14106 {
14107 /* Make this relocation against an undefined weak symbol
14108 resolve to zero. This is really just a tweak, since
14109 code using weak externs ought to check that they are
14110 defined before using them. */
14111 bfd_byte *p = contents + rel->r_offset - d_offset;
14112
14113 insn = bfd_get_32 (output_bfd, p);
14114 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14115 if (insn != 0)
14116 bfd_put_32 (output_bfd, insn, p);
14117 break;
14118 }
14119 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14120 if (info->shared)
14121 /* The TPREL16 relocs shouldn't really be used in shared
14122 libs as they will result in DT_TEXTREL being set, but
14123 support them anyway. */
14124 goto dodyn;
14125 break;
14126
14127 case R_PPC64_DTPREL16:
14128 case R_PPC64_DTPREL16_LO:
14129 case R_PPC64_DTPREL16_HI:
14130 case R_PPC64_DTPREL16_HA:
14131 case R_PPC64_DTPREL16_DS:
14132 case R_PPC64_DTPREL16_LO_DS:
14133 case R_PPC64_DTPREL16_HIGH:
14134 case R_PPC64_DTPREL16_HIGHA:
14135 case R_PPC64_DTPREL16_HIGHER:
14136 case R_PPC64_DTPREL16_HIGHERA:
14137 case R_PPC64_DTPREL16_HIGHEST:
14138 case R_PPC64_DTPREL16_HIGHESTA:
14139 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14140 break;
14141
14142 case R_PPC64_DTPMOD64:
14143 relocation = 1;
14144 addend = 0;
14145 goto dodyn;
14146
14147 case R_PPC64_TPREL64:
14148 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14149 goto dodyn;
14150
14151 case R_PPC64_DTPREL64:
14152 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14153 /* Fall thru */
14154
14155 /* Relocations that may need to be propagated if this is a
14156 dynamic object. */
14157 case R_PPC64_REL30:
14158 case R_PPC64_REL32:
14159 case R_PPC64_REL64:
14160 case R_PPC64_ADDR14:
14161 case R_PPC64_ADDR14_BRNTAKEN:
14162 case R_PPC64_ADDR14_BRTAKEN:
14163 case R_PPC64_ADDR16:
14164 case R_PPC64_ADDR16_DS:
14165 case R_PPC64_ADDR16_HA:
14166 case R_PPC64_ADDR16_HI:
14167 case R_PPC64_ADDR16_HIGH:
14168 case R_PPC64_ADDR16_HIGHA:
14169 case R_PPC64_ADDR16_HIGHER:
14170 case R_PPC64_ADDR16_HIGHERA:
14171 case R_PPC64_ADDR16_HIGHEST:
14172 case R_PPC64_ADDR16_HIGHESTA:
14173 case R_PPC64_ADDR16_LO:
14174 case R_PPC64_ADDR16_LO_DS:
14175 case R_PPC64_ADDR24:
14176 case R_PPC64_ADDR32:
14177 case R_PPC64_ADDR64:
14178 case R_PPC64_UADDR16:
14179 case R_PPC64_UADDR32:
14180 case R_PPC64_UADDR64:
14181 dodyn:
14182 if ((input_section->flags & SEC_ALLOC) == 0)
14183 break;
14184
14185 if (NO_OPD_RELOCS && is_opd)
14186 break;
14187
14188 if ((info->shared
14189 && (h == NULL
14190 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14191 || h->elf.root.type != bfd_link_hash_undefweak)
14192 && (must_be_dyn_reloc (info, r_type)
14193 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14194 || (ELIMINATE_COPY_RELOCS
14195 && !info->shared
14196 && h != NULL
14197 && h->elf.dynindx != -1
14198 && !h->elf.non_got_ref
14199 && !h->elf.def_regular)
14200 || (!info->shared
14201 && (h != NULL
14202 ? h->elf.type == STT_GNU_IFUNC
14203 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14204 {
14205 bfd_boolean skip, relocate;
14206 asection *sreloc;
14207 bfd_vma out_off;
14208
14209 /* When generating a dynamic object, these relocations
14210 are copied into the output file to be resolved at run
14211 time. */
14212
14213 skip = FALSE;
14214 relocate = FALSE;
14215
14216 out_off = _bfd_elf_section_offset (output_bfd, info,
14217 input_section, rel->r_offset);
14218 if (out_off == (bfd_vma) -1)
14219 skip = TRUE;
14220 else if (out_off == (bfd_vma) -2)
14221 skip = TRUE, relocate = TRUE;
14222 out_off += (input_section->output_section->vma
14223 + input_section->output_offset);
14224 outrel.r_offset = out_off;
14225 outrel.r_addend = rel->r_addend;
14226
14227 /* Optimize unaligned reloc use. */
14228 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14229 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14230 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14231 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14232 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14233 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14234 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14235 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14236 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14237
14238 if (skip)
14239 memset (&outrel, 0, sizeof outrel);
14240 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14241 && !is_opd
14242 && r_type != R_PPC64_TOC)
14243 {
14244 BFD_ASSERT (h->elf.dynindx != -1);
14245 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14246 }
14247 else
14248 {
14249 /* This symbol is local, or marked to become local,
14250 or this is an opd section reloc which must point
14251 at a local function. */
14252 outrel.r_addend += relocation;
14253 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14254 {
14255 if (is_opd && h != NULL)
14256 {
14257 /* Lie about opd entries. This case occurs
14258 when building shared libraries and we
14259 reference a function in another shared
14260 lib. The same thing happens for a weak
14261 definition in an application that's
14262 overridden by a strong definition in a
14263 shared lib. (I believe this is a generic
14264 bug in binutils handling of weak syms.)
14265 In these cases we won't use the opd
14266 entry in this lib. */
14267 unresolved_reloc = FALSE;
14268 }
14269 if (!is_opd
14270 && r_type == R_PPC64_ADDR64
14271 && (h != NULL
14272 ? h->elf.type == STT_GNU_IFUNC
14273 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14274 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14275 else
14276 {
14277 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14278
14279 /* We need to relocate .opd contents for ld.so.
14280 Prelink also wants simple and consistent rules
14281 for relocs. This make all RELATIVE relocs have
14282 *r_offset equal to r_addend. */
14283 relocate = TRUE;
14284 }
14285 }
14286 else
14287 {
14288 long indx = 0;
14289
14290 if (h != NULL
14291 ? h->elf.type == STT_GNU_IFUNC
14292 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14293 {
14294 info->callbacks->einfo
14295 (_("%P: %H: %s for indirect "
14296 "function `%T' unsupported\n"),
14297 input_bfd, input_section, rel->r_offset,
14298 ppc64_elf_howto_table[r_type]->name,
14299 sym_name);
14300 ret = FALSE;
14301 }
14302 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14303 ;
14304 else if (sec == NULL || sec->owner == NULL)
14305 {
14306 bfd_set_error (bfd_error_bad_value);
14307 return FALSE;
14308 }
14309 else
14310 {
14311 asection *osec;
14312
14313 osec = sec->output_section;
14314 indx = elf_section_data (osec)->dynindx;
14315
14316 if (indx == 0)
14317 {
14318 if ((osec->flags & SEC_READONLY) == 0
14319 && htab->elf.data_index_section != NULL)
14320 osec = htab->elf.data_index_section;
14321 else
14322 osec = htab->elf.text_index_section;
14323 indx = elf_section_data (osec)->dynindx;
14324 }
14325 BFD_ASSERT (indx != 0);
14326
14327 /* We are turning this relocation into one
14328 against a section symbol, so subtract out
14329 the output section's address but not the
14330 offset of the input section in the output
14331 section. */
14332 outrel.r_addend -= osec->vma;
14333 }
14334
14335 outrel.r_info = ELF64_R_INFO (indx, r_type);
14336 }
14337 }
14338
14339 sreloc = elf_section_data (input_section)->sreloc;
14340 if (h != NULL
14341 ? h->elf.type == STT_GNU_IFUNC
14342 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14343 sreloc = htab->elf.irelplt;
14344 if (sreloc == NULL)
14345 abort ();
14346
14347 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14348 >= sreloc->size)
14349 abort ();
14350 loc = sreloc->contents;
14351 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14352 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14353
14354 /* If this reloc is against an external symbol, it will
14355 be computed at runtime, so there's no need to do
14356 anything now. However, for the sake of prelink ensure
14357 that the section contents are a known value. */
14358 if (! relocate)
14359 {
14360 unresolved_reloc = FALSE;
14361 /* The value chosen here is quite arbitrary as ld.so
14362 ignores section contents except for the special
14363 case of .opd where the contents might be accessed
14364 before relocation. Choose zero, as that won't
14365 cause reloc overflow. */
14366 relocation = 0;
14367 addend = 0;
14368 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14369 to improve backward compatibility with older
14370 versions of ld. */
14371 if (r_type == R_PPC64_ADDR64)
14372 addend = outrel.r_addend;
14373 /* Adjust pc_relative relocs to have zero in *r_offset. */
14374 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14375 addend = (input_section->output_section->vma
14376 + input_section->output_offset
14377 + rel->r_offset);
14378 }
14379 }
14380 break;
14381
14382 case R_PPC64_COPY:
14383 case R_PPC64_GLOB_DAT:
14384 case R_PPC64_JMP_SLOT:
14385 case R_PPC64_JMP_IREL:
14386 case R_PPC64_RELATIVE:
14387 /* We shouldn't ever see these dynamic relocs in relocatable
14388 files. */
14389 /* Fall through. */
14390
14391 case R_PPC64_PLTGOT16:
14392 case R_PPC64_PLTGOT16_DS:
14393 case R_PPC64_PLTGOT16_HA:
14394 case R_PPC64_PLTGOT16_HI:
14395 case R_PPC64_PLTGOT16_LO:
14396 case R_PPC64_PLTGOT16_LO_DS:
14397 case R_PPC64_PLTREL32:
14398 case R_PPC64_PLTREL64:
14399 /* These ones haven't been implemented yet. */
14400
14401 info->callbacks->einfo
14402 (_("%P: %B: %s is not supported for `%T'\n"),
14403 input_bfd,
14404 ppc64_elf_howto_table[r_type]->name, sym_name);
14405
14406 bfd_set_error (bfd_error_invalid_operation);
14407 ret = FALSE;
14408 continue;
14409 }
14410
14411 /* Multi-instruction sequences that access the TOC can be
14412 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14413 to nop; addi rb,r2,x; */
14414 switch (r_type)
14415 {
14416 default:
14417 break;
14418
14419 case R_PPC64_GOT_TLSLD16_HI:
14420 case R_PPC64_GOT_TLSGD16_HI:
14421 case R_PPC64_GOT_TPREL16_HI:
14422 case R_PPC64_GOT_DTPREL16_HI:
14423 case R_PPC64_GOT16_HI:
14424 case R_PPC64_TOC16_HI:
14425 /* These relocs would only be useful if building up an
14426 offset to later add to r2, perhaps in an indexed
14427 addressing mode instruction. Don't try to optimize.
14428 Unfortunately, the possibility of someone building up an
14429 offset like this or even with the HA relocs, means that
14430 we need to check the high insn when optimizing the low
14431 insn. */
14432 break;
14433
14434 case R_PPC64_GOT_TLSLD16_HA:
14435 case R_PPC64_GOT_TLSGD16_HA:
14436 case R_PPC64_GOT_TPREL16_HA:
14437 case R_PPC64_GOT_DTPREL16_HA:
14438 case R_PPC64_GOT16_HA:
14439 case R_PPC64_TOC16_HA:
14440 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14441 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14442 {
14443 bfd_byte *p = contents + (rel->r_offset & ~3);
14444 bfd_put_32 (input_bfd, NOP, p);
14445 }
14446 break;
14447
14448 case R_PPC64_GOT_TLSLD16_LO:
14449 case R_PPC64_GOT_TLSGD16_LO:
14450 case R_PPC64_GOT_TPREL16_LO_DS:
14451 case R_PPC64_GOT_DTPREL16_LO_DS:
14452 case R_PPC64_GOT16_LO:
14453 case R_PPC64_GOT16_LO_DS:
14454 case R_PPC64_TOC16_LO:
14455 case R_PPC64_TOC16_LO_DS:
14456 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14457 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14458 {
14459 bfd_byte *p = contents + (rel->r_offset & ~3);
14460 insn = bfd_get_32 (input_bfd, p);
14461 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14462 {
14463 /* Transform addic to addi when we change reg. */
14464 insn &= ~((0x3f << 26) | (0x1f << 16));
14465 insn |= (14u << 26) | (2 << 16);
14466 }
14467 else
14468 {
14469 insn &= ~(0x1f << 16);
14470 insn |= 2 << 16;
14471 }
14472 bfd_put_32 (input_bfd, insn, p);
14473 }
14474 break;
14475 }
14476
14477 /* Do any further special processing. */
14478 switch (r_type)
14479 {
14480 default:
14481 break;
14482
14483 case R_PPC64_REL16_HA:
14484 case R_PPC64_ADDR16_HA:
14485 case R_PPC64_ADDR16_HIGHA:
14486 case R_PPC64_ADDR16_HIGHERA:
14487 case R_PPC64_ADDR16_HIGHESTA:
14488 case R_PPC64_TOC16_HA:
14489 case R_PPC64_SECTOFF_HA:
14490 case R_PPC64_TPREL16_HA:
14491 case R_PPC64_TPREL16_HIGHA:
14492 case R_PPC64_TPREL16_HIGHERA:
14493 case R_PPC64_TPREL16_HIGHESTA:
14494 case R_PPC64_DTPREL16_HA:
14495 case R_PPC64_DTPREL16_HIGHA:
14496 case R_PPC64_DTPREL16_HIGHERA:
14497 case R_PPC64_DTPREL16_HIGHESTA:
14498 /* It's just possible that this symbol is a weak symbol
14499 that's not actually defined anywhere. In that case,
14500 'sec' would be NULL, and we should leave the symbol
14501 alone (it will be set to zero elsewhere in the link). */
14502 if (sec == NULL)
14503 break;
14504 /* Fall thru */
14505
14506 case R_PPC64_GOT16_HA:
14507 case R_PPC64_PLTGOT16_HA:
14508 case R_PPC64_PLT16_HA:
14509 case R_PPC64_GOT_TLSGD16_HA:
14510 case R_PPC64_GOT_TLSLD16_HA:
14511 case R_PPC64_GOT_TPREL16_HA:
14512 case R_PPC64_GOT_DTPREL16_HA:
14513 /* Add 0x10000 if sign bit in 0:15 is set.
14514 Bits 0:15 are not used. */
14515 addend += 0x8000;
14516 break;
14517
14518 case R_PPC64_ADDR16_DS:
14519 case R_PPC64_ADDR16_LO_DS:
14520 case R_PPC64_GOT16_DS:
14521 case R_PPC64_GOT16_LO_DS:
14522 case R_PPC64_PLT16_LO_DS:
14523 case R_PPC64_SECTOFF_DS:
14524 case R_PPC64_SECTOFF_LO_DS:
14525 case R_PPC64_TOC16_DS:
14526 case R_PPC64_TOC16_LO_DS:
14527 case R_PPC64_PLTGOT16_DS:
14528 case R_PPC64_PLTGOT16_LO_DS:
14529 case R_PPC64_GOT_TPREL16_DS:
14530 case R_PPC64_GOT_TPREL16_LO_DS:
14531 case R_PPC64_GOT_DTPREL16_DS:
14532 case R_PPC64_GOT_DTPREL16_LO_DS:
14533 case R_PPC64_TPREL16_DS:
14534 case R_PPC64_TPREL16_LO_DS:
14535 case R_PPC64_DTPREL16_DS:
14536 case R_PPC64_DTPREL16_LO_DS:
14537 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14538 mask = 3;
14539 /* If this reloc is against an lq insn, then the value must be
14540 a multiple of 16. This is somewhat of a hack, but the
14541 "correct" way to do this by defining _DQ forms of all the
14542 _DS relocs bloats all reloc switches in this file. It
14543 doesn't seem to make much sense to use any of these relocs
14544 in data, so testing the insn should be safe. */
14545 if ((insn & (0x3f << 26)) == (56u << 26))
14546 mask = 15;
14547 if (((relocation + addend) & mask) != 0)
14548 {
14549 info->callbacks->einfo
14550 (_("%P: %H: error: %s not a multiple of %u\n"),
14551 input_bfd, input_section, rel->r_offset,
14552 ppc64_elf_howto_table[r_type]->name,
14553 mask + 1);
14554 bfd_set_error (bfd_error_bad_value);
14555 ret = FALSE;
14556 continue;
14557 }
14558 break;
14559 }
14560
14561 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14562 because such sections are not SEC_ALLOC and thus ld.so will
14563 not process them. */
14564 if (unresolved_reloc
14565 && !((input_section->flags & SEC_DEBUGGING) != 0
14566 && h->elf.def_dynamic)
14567 && _bfd_elf_section_offset (output_bfd, info, input_section,
14568 rel->r_offset) != (bfd_vma) -1)
14569 {
14570 info->callbacks->einfo
14571 (_("%P: %H: unresolvable %s against `%T'\n"),
14572 input_bfd, input_section, rel->r_offset,
14573 ppc64_elf_howto_table[(int) r_type]->name,
14574 h->elf.root.root.string);
14575 ret = FALSE;
14576 }
14577
14578 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
14579 input_bfd,
14580 input_section,
14581 contents,
14582 rel->r_offset,
14583 relocation,
14584 addend);
14585
14586 if (r != bfd_reloc_ok)
14587 {
14588 char *more_info = NULL;
14589 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
14590
14591 if (reloc_dest != DEST_NORMAL)
14592 {
14593 more_info = bfd_malloc (strlen (reloc_name) + 8);
14594 if (more_info != NULL)
14595 {
14596 strcpy (more_info, reloc_name);
14597 strcat (more_info, (reloc_dest == DEST_OPD
14598 ? " (OPD)" : " (stub)"));
14599 reloc_name = more_info;
14600 }
14601 }
14602
14603 if (r == bfd_reloc_overflow)
14604 {
14605 if (warned)
14606 continue;
14607 if (h != NULL
14608 && h->elf.root.type == bfd_link_hash_undefweak
14609 && ppc64_elf_howto_table[r_type]->pc_relative)
14610 {
14611 /* Assume this is a call protected by other code that
14612 detects the symbol is undefined. If this is the case,
14613 we can safely ignore the overflow. If not, the
14614 program is hosed anyway, and a little warning isn't
14615 going to help. */
14616
14617 continue;
14618 }
14619
14620 if (!((*info->callbacks->reloc_overflow)
14621 (info, &h->elf.root, sym_name,
14622 reloc_name, orig_rel.r_addend,
14623 input_bfd, input_section, rel->r_offset)))
14624 return FALSE;
14625 }
14626 else
14627 {
14628 info->callbacks->einfo
14629 (_("%P: %H: %s against `%T': error %d\n"),
14630 input_bfd, input_section, rel->r_offset,
14631 reloc_name, sym_name, (int) r);
14632 ret = FALSE;
14633 }
14634 if (more_info != NULL)
14635 free (more_info);
14636 }
14637 }
14638
14639 /* If we're emitting relocations, then shortly after this function
14640 returns, reloc offsets and addends for this section will be
14641 adjusted. Worse, reloc symbol indices will be for the output
14642 file rather than the input. Save a copy of the relocs for
14643 opd_entry_value. */
14644 if (is_opd && (info->emitrelocations || info->relocatable))
14645 {
14646 bfd_size_type amt;
14647 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14648 rel = bfd_alloc (input_bfd, amt);
14649 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14650 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14651 if (rel == NULL)
14652 return FALSE;
14653 memcpy (rel, relocs, amt);
14654 }
14655 return ret;
14656 }
14657
14658 /* Adjust the value of any local symbols in opd sections. */
14659
14660 static int
14661 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14662 const char *name ATTRIBUTE_UNUSED,
14663 Elf_Internal_Sym *elfsym,
14664 asection *input_sec,
14665 struct elf_link_hash_entry *h)
14666 {
14667 struct _opd_sec_data *opd;
14668 long adjust;
14669 bfd_vma value;
14670
14671 if (h != NULL)
14672 return 1;
14673
14674 opd = get_opd_info (input_sec);
14675 if (opd == NULL || opd->adjust == NULL)
14676 return 1;
14677
14678 value = elfsym->st_value - input_sec->output_offset;
14679 if (!info->relocatable)
14680 value -= input_sec->output_section->vma;
14681
14682 adjust = opd->adjust[value / 8];
14683 if (adjust == -1)
14684 return 2;
14685
14686 elfsym->st_value += adjust;
14687 return 1;
14688 }
14689
14690 /* Finish up dynamic symbol handling. We set the contents of various
14691 dynamic sections here. */
14692
14693 static bfd_boolean
14694 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14695 struct bfd_link_info *info,
14696 struct elf_link_hash_entry *h,
14697 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14698 {
14699 struct ppc_link_hash_table *htab;
14700 struct plt_entry *ent;
14701 Elf_Internal_Rela rela;
14702 bfd_byte *loc;
14703
14704 htab = ppc_hash_table (info);
14705 if (htab == NULL)
14706 return FALSE;
14707
14708 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14709 if (ent->plt.offset != (bfd_vma) -1)
14710 {
14711 /* This symbol has an entry in the procedure linkage
14712 table. Set it up. */
14713 if (!htab->elf.dynamic_sections_created
14714 || h->dynindx == -1)
14715 {
14716 BFD_ASSERT (h->type == STT_GNU_IFUNC
14717 && h->def_regular
14718 && (h->root.type == bfd_link_hash_defined
14719 || h->root.type == bfd_link_hash_defweak));
14720 rela.r_offset = (htab->elf.iplt->output_section->vma
14721 + htab->elf.iplt->output_offset
14722 + ent->plt.offset);
14723 if (htab->opd_abi)
14724 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14725 else
14726 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14727 rela.r_addend = (h->root.u.def.value
14728 + h->root.u.def.section->output_offset
14729 + h->root.u.def.section->output_section->vma
14730 + ent->addend);
14731 loc = (htab->elf.irelplt->contents
14732 + (htab->elf.irelplt->reloc_count++
14733 * sizeof (Elf64_External_Rela)));
14734 }
14735 else
14736 {
14737 rela.r_offset = (htab->elf.splt->output_section->vma
14738 + htab->elf.splt->output_offset
14739 + ent->plt.offset);
14740 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14741 rela.r_addend = ent->addend;
14742 loc = (htab->elf.srelplt->contents
14743 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14744 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14745 }
14746 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14747
14748 if (!htab->opd_abi)
14749 {
14750 if (!h->def_regular)
14751 {
14752 /* Mark the symbol as undefined, rather than as
14753 defined in glink. Leave the value if there were
14754 any relocations where pointer equality matters
14755 (this is a clue for the dynamic linker, to make
14756 function pointer comparisons work between an
14757 application and shared library), otherwise set it
14758 to zero. */
14759 sym->st_shndx = SHN_UNDEF;
14760 if (!h->pointer_equality_needed)
14761 sym->st_value = 0;
14762 else if (!h->ref_regular_nonweak)
14763 {
14764 /* This breaks function pointer comparisons, but
14765 that is better than breaking tests for a NULL
14766 function pointer. */
14767 sym->st_value = 0;
14768 }
14769 }
14770 }
14771 }
14772
14773 if (h->needs_copy)
14774 {
14775 /* This symbol needs a copy reloc. Set it up. */
14776
14777 if (h->dynindx == -1
14778 || (h->root.type != bfd_link_hash_defined
14779 && h->root.type != bfd_link_hash_defweak)
14780 || htab->relbss == NULL)
14781 abort ();
14782
14783 rela.r_offset = (h->root.u.def.value
14784 + h->root.u.def.section->output_section->vma
14785 + h->root.u.def.section->output_offset);
14786 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14787 rela.r_addend = 0;
14788 loc = htab->relbss->contents;
14789 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14790 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14791 }
14792
14793 return TRUE;
14794 }
14795
14796 /* Used to decide how to sort relocs in an optimal manner for the
14797 dynamic linker, before writing them out. */
14798
14799 static enum elf_reloc_type_class
14800 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14801 const asection *rel_sec,
14802 const Elf_Internal_Rela *rela)
14803 {
14804 enum elf_ppc64_reloc_type r_type;
14805 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14806
14807 if (rel_sec == htab->elf.irelplt)
14808 return reloc_class_ifunc;
14809
14810 r_type = ELF64_R_TYPE (rela->r_info);
14811 switch (r_type)
14812 {
14813 case R_PPC64_RELATIVE:
14814 return reloc_class_relative;
14815 case R_PPC64_JMP_SLOT:
14816 return reloc_class_plt;
14817 case R_PPC64_COPY:
14818 return reloc_class_copy;
14819 default:
14820 return reloc_class_normal;
14821 }
14822 }
14823
14824 /* Finish up the dynamic sections. */
14825
14826 static bfd_boolean
14827 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14828 struct bfd_link_info *info)
14829 {
14830 struct ppc_link_hash_table *htab;
14831 bfd *dynobj;
14832 asection *sdyn;
14833
14834 htab = ppc_hash_table (info);
14835 if (htab == NULL)
14836 return FALSE;
14837
14838 dynobj = htab->elf.dynobj;
14839 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14840
14841 if (htab->elf.dynamic_sections_created)
14842 {
14843 Elf64_External_Dyn *dyncon, *dynconend;
14844
14845 if (sdyn == NULL || htab->elf.sgot == NULL)
14846 abort ();
14847
14848 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14849 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14850 for (; dyncon < dynconend; dyncon++)
14851 {
14852 Elf_Internal_Dyn dyn;
14853 asection *s;
14854
14855 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14856
14857 switch (dyn.d_tag)
14858 {
14859 default:
14860 continue;
14861
14862 case DT_PPC64_GLINK:
14863 s = htab->glink;
14864 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14865 /* We stupidly defined DT_PPC64_GLINK to be the start
14866 of glink rather than the first entry point, which is
14867 what ld.so needs, and now have a bigger stub to
14868 support automatic multiple TOCs. */
14869 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
14870 break;
14871
14872 case DT_PPC64_OPD:
14873 s = bfd_get_section_by_name (output_bfd, ".opd");
14874 if (s == NULL)
14875 continue;
14876 dyn.d_un.d_ptr = s->vma;
14877 break;
14878
14879 case DT_PPC64_OPT:
14880 if (htab->do_multi_toc && htab->multi_toc_needed)
14881 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
14882 break;
14883
14884 case DT_PPC64_OPDSZ:
14885 s = bfd_get_section_by_name (output_bfd, ".opd");
14886 if (s == NULL)
14887 continue;
14888 dyn.d_un.d_val = s->size;
14889 break;
14890
14891 case DT_PLTGOT:
14892 s = htab->elf.splt;
14893 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14894 break;
14895
14896 case DT_JMPREL:
14897 s = htab->elf.srelplt;
14898 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14899 break;
14900
14901 case DT_PLTRELSZ:
14902 dyn.d_un.d_val = htab->elf.srelplt->size;
14903 break;
14904
14905 case DT_RELASZ:
14906 /* Don't count procedure linkage table relocs in the
14907 overall reloc count. */
14908 s = htab->elf.srelplt;
14909 if (s == NULL)
14910 continue;
14911 dyn.d_un.d_val -= s->size;
14912 break;
14913
14914 case DT_RELA:
14915 /* We may not be using the standard ELF linker script.
14916 If .rela.plt is the first .rela section, we adjust
14917 DT_RELA to not include it. */
14918 s = htab->elf.srelplt;
14919 if (s == NULL)
14920 continue;
14921 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14922 continue;
14923 dyn.d_un.d_ptr += s->size;
14924 break;
14925 }
14926
14927 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14928 }
14929 }
14930
14931 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
14932 {
14933 /* Fill in the first entry in the global offset table.
14934 We use it to hold the link-time TOCbase. */
14935 bfd_put_64 (output_bfd,
14936 elf_gp (output_bfd) + TOC_BASE_OFF,
14937 htab->elf.sgot->contents);
14938
14939 /* Set .got entry size. */
14940 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
14941 }
14942
14943 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
14944 {
14945 /* Set .plt entry size. */
14946 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
14947 = PLT_ENTRY_SIZE (htab);
14948 }
14949
14950 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14951 brlt ourselves if emitrelocations. */
14952 if (htab->brlt != NULL
14953 && htab->brlt->reloc_count != 0
14954 && !_bfd_elf_link_output_relocs (output_bfd,
14955 htab->brlt,
14956 elf_section_data (htab->brlt)->rela.hdr,
14957 elf_section_data (htab->brlt)->relocs,
14958 NULL))
14959 return FALSE;
14960
14961 if (htab->glink != NULL
14962 && htab->glink->reloc_count != 0
14963 && !_bfd_elf_link_output_relocs (output_bfd,
14964 htab->glink,
14965 elf_section_data (htab->glink)->rela.hdr,
14966 elf_section_data (htab->glink)->relocs,
14967 NULL))
14968 return FALSE;
14969
14970
14971 if (htab->glink_eh_frame != NULL
14972 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14973 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14974 htab->glink_eh_frame,
14975 htab->glink_eh_frame->contents))
14976 return FALSE;
14977
14978 /* We need to handle writing out multiple GOT sections ourselves,
14979 since we didn't add them to DYNOBJ. We know dynobj is the first
14980 bfd. */
14981 while ((dynobj = dynobj->link_next) != NULL)
14982 {
14983 asection *s;
14984
14985 if (!is_ppc64_elf (dynobj))
14986 continue;
14987
14988 s = ppc64_elf_tdata (dynobj)->got;
14989 if (s != NULL
14990 && s->size != 0
14991 && s->output_section != bfd_abs_section_ptr
14992 && !bfd_set_section_contents (output_bfd, s->output_section,
14993 s->contents, s->output_offset,
14994 s->size))
14995 return FALSE;
14996 s = ppc64_elf_tdata (dynobj)->relgot;
14997 if (s != NULL
14998 && s->size != 0
14999 && s->output_section != bfd_abs_section_ptr
15000 && !bfd_set_section_contents (output_bfd, s->output_section,
15001 s->contents, s->output_offset,
15002 s->size))
15003 return FALSE;
15004 }
15005
15006 return TRUE;
15007 }
15008
15009 #include "elf64-target.h"
15010
15011 /* FreeBSD support */
15012
15013 #undef TARGET_LITTLE_SYM
15014 #undef TARGET_LITTLE_NAME
15015
15016 #undef TARGET_BIG_SYM
15017 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
15018 #undef TARGET_BIG_NAME
15019 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15020
15021 #undef ELF_OSABI
15022 #define ELF_OSABI ELFOSABI_FREEBSD
15023
15024 #undef elf64_bed
15025 #define elf64_bed elf64_powerpc_fbsd_bed
15026
15027 #include "elf64-target.h"
15028
This page took 0.418666 seconds and 4 git commands to generate.