Fallout from recent bfd_reloc_outofrange changes
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x10000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 3, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor,
2958 and some spares since opd entries may be either 16 or 24 bytes. */
2959 #define OPD_NDX(OFF) ((OFF) >> 4)
2960 struct _opd_sec_data
2961 {
2962 /* Points to the function code section for local opd entries. */
2963 asection **func_sec;
2964
2965 /* After editing .opd, adjust references to opd local syms. */
2966 long *adjust;
2967 } opd;
2968
2969 /* An array for toc sections, indexed by offset/8. */
2970 struct _toc_sec_data
2971 {
2972 /* Specifies the relocation symbol index used at a given toc offset. */
2973 unsigned *symndx;
2974
2975 /* And the relocation addend. */
2976 bfd_vma *add;
2977 } toc;
2978 } u;
2979
2980 enum _ppc64_sec_type sec_type:2;
2981
2982 /* Flag set when small branches are detected. Used to
2983 select suitable defaults for the stub group size. */
2984 unsigned int has_14bit_branch:1;
2985 };
2986
2987 #define ppc64_elf_section_data(sec) \
2988 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2989
2990 static bfd_boolean
2991 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2992 {
2993 if (!sec->used_by_bfd)
2994 {
2995 struct _ppc64_elf_section_data *sdata;
2996 bfd_size_type amt = sizeof (*sdata);
2997
2998 sdata = bfd_zalloc (abfd, amt);
2999 if (sdata == NULL)
3000 return FALSE;
3001 sec->used_by_bfd = sdata;
3002 }
3003
3004 return _bfd_elf_new_section_hook (abfd, sec);
3005 }
3006
3007 static struct _opd_sec_data *
3008 get_opd_info (asection * sec)
3009 {
3010 if (sec != NULL
3011 && ppc64_elf_section_data (sec) != NULL
3012 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3013 return &ppc64_elf_section_data (sec)->u.opd;
3014 return NULL;
3015 }
3016 \f
3017 /* Parameters for the qsort hook. */
3018 static bfd_boolean synthetic_relocatable;
3019
3020 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3021
3022 static int
3023 compare_symbols (const void *ap, const void *bp)
3024 {
3025 const asymbol *a = * (const asymbol **) ap;
3026 const asymbol *b = * (const asymbol **) bp;
3027
3028 /* Section symbols first. */
3029 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3030 return -1;
3031 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3032 return 1;
3033
3034 /* then .opd symbols. */
3035 if (strcmp (a->section->name, ".opd") == 0
3036 && strcmp (b->section->name, ".opd") != 0)
3037 return -1;
3038 if (strcmp (a->section->name, ".opd") != 0
3039 && strcmp (b->section->name, ".opd") == 0)
3040 return 1;
3041
3042 /* then other code symbols. */
3043 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 == (SEC_CODE | SEC_ALLOC)
3045 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 != (SEC_CODE | SEC_ALLOC))
3047 return -1;
3048
3049 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 != (SEC_CODE | SEC_ALLOC)
3051 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 == (SEC_CODE | SEC_ALLOC))
3053 return 1;
3054
3055 if (synthetic_relocatable)
3056 {
3057 if (a->section->id < b->section->id)
3058 return -1;
3059
3060 if (a->section->id > b->section->id)
3061 return 1;
3062 }
3063
3064 if (a->value + a->section->vma < b->value + b->section->vma)
3065 return -1;
3066
3067 if (a->value + a->section->vma > b->value + b->section->vma)
3068 return 1;
3069
3070 /* For syms with the same value, prefer strong dynamic global function
3071 syms over other syms. */
3072 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3073 return -1;
3074
3075 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3076 return 1;
3077
3078 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3079 return -1;
3080
3081 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3082 return 1;
3083
3084 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3085 return -1;
3086
3087 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3088 return 1;
3089
3090 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3091 return -1;
3092
3093 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 /* Search SYMS for a symbol of the given VALUE. */
3100
3101 static asymbol *
3102 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3103 {
3104 long mid;
3105
3106 if (id == -1)
3107 {
3108 while (lo < hi)
3109 {
3110 mid = (lo + hi) >> 1;
3111 if (syms[mid]->value + syms[mid]->section->vma < value)
3112 lo = mid + 1;
3113 else if (syms[mid]->value + syms[mid]->section->vma > value)
3114 hi = mid;
3115 else
3116 return syms[mid];
3117 }
3118 }
3119 else
3120 {
3121 while (lo < hi)
3122 {
3123 mid = (lo + hi) >> 1;
3124 if (syms[mid]->section->id < id)
3125 lo = mid + 1;
3126 else if (syms[mid]->section->id > id)
3127 hi = mid;
3128 else if (syms[mid]->value < value)
3129 lo = mid + 1;
3130 else if (syms[mid]->value > value)
3131 hi = mid;
3132 else
3133 return syms[mid];
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static bfd_boolean
3140 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3141 {
3142 bfd_vma vma = *(bfd_vma *) ptr;
3143 return ((section->flags & SEC_ALLOC) != 0
3144 && section->vma <= vma
3145 && vma < section->vma + section->size);
3146 }
3147
3148 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3149 entry syms. Also generate @plt symbols for the glink branch table. */
3150
3151 static long
3152 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3153 long static_count, asymbol **static_syms,
3154 long dyn_count, asymbol **dyn_syms,
3155 asymbol **ret)
3156 {
3157 asymbol *s;
3158 long i;
3159 long count;
3160 char *names;
3161 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3162 asection *opd = NULL;
3163 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3164 asymbol **syms;
3165 int abi = abiversion (abfd);
3166
3167 *ret = NULL;
3168
3169 if (abi < 2)
3170 {
3171 opd = bfd_get_section_by_name (abfd, ".opd");
3172 if (opd == NULL && abi == 1)
3173 return 0;
3174 }
3175
3176 symcount = static_count;
3177 if (!relocatable)
3178 symcount += dyn_count;
3179 if (symcount == 0)
3180 return 0;
3181
3182 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3183 if (syms == NULL)
3184 return -1;
3185
3186 if (!relocatable && static_count != 0 && dyn_count != 0)
3187 {
3188 /* Use both symbol tables. */
3189 memcpy (syms, static_syms, static_count * sizeof (*syms));
3190 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3191 }
3192 else if (!relocatable && static_count == 0)
3193 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3194 else
3195 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3196
3197 synthetic_relocatable = relocatable;
3198 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3199
3200 if (!relocatable && symcount > 1)
3201 {
3202 long j;
3203 /* Trim duplicate syms, since we may have merged the normal and
3204 dynamic symbols. Actually, we only care about syms that have
3205 different values, so trim any with the same value. */
3206 for (i = 1, j = 1; i < symcount; ++i)
3207 if (syms[i - 1]->value + syms[i - 1]->section->vma
3208 != syms[i]->value + syms[i]->section->vma)
3209 syms[j++] = syms[i];
3210 symcount = j;
3211 }
3212
3213 i = 0;
3214 if (strcmp (syms[i]->section->name, ".opd") == 0)
3215 ++i;
3216 codesecsym = i;
3217
3218 for (; i < symcount; ++i)
3219 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3220 != (SEC_CODE | SEC_ALLOC))
3221 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3222 break;
3223 codesecsymend = i;
3224
3225 for (; i < symcount; ++i)
3226 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3227 break;
3228 secsymend = i;
3229
3230 for (; i < symcount; ++i)
3231 if (strcmp (syms[i]->section->name, ".opd") != 0)
3232 break;
3233 opdsymend = i;
3234
3235 for (; i < symcount; ++i)
3236 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3237 != (SEC_CODE | SEC_ALLOC))
3238 break;
3239 symcount = i;
3240
3241 count = 0;
3242
3243 if (relocatable)
3244 {
3245 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3246 arelent *r;
3247 size_t size;
3248 long relcount;
3249
3250 if (opdsymend == secsymend)
3251 goto done;
3252
3253 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3254 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3255 if (relcount == 0)
3256 goto done;
3257
3258 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3259 {
3260 count = -1;
3261 goto done;
3262 }
3263
3264 size = 0;
3265 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3266 {
3267 asymbol *sym;
3268
3269 while (r < opd->relocation + relcount
3270 && r->address < syms[i]->value + opd->vma)
3271 ++r;
3272
3273 if (r == opd->relocation + relcount)
3274 break;
3275
3276 if (r->address != syms[i]->value + opd->vma)
3277 continue;
3278
3279 if (r->howto->type != R_PPC64_ADDR64)
3280 continue;
3281
3282 sym = *r->sym_ptr_ptr;
3283 if (!sym_exists_at (syms, opdsymend, symcount,
3284 sym->section->id, sym->value + r->addend))
3285 {
3286 ++count;
3287 size += sizeof (asymbol);
3288 size += strlen (syms[i]->name) + 2;
3289 }
3290 }
3291
3292 s = *ret = bfd_malloc (size);
3293 if (s == NULL)
3294 {
3295 count = -1;
3296 goto done;
3297 }
3298
3299 names = (char *) (s + count);
3300
3301 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3302 {
3303 asymbol *sym;
3304
3305 while (r < opd->relocation + relcount
3306 && r->address < syms[i]->value + opd->vma)
3307 ++r;
3308
3309 if (r == opd->relocation + relcount)
3310 break;
3311
3312 if (r->address != syms[i]->value + opd->vma)
3313 continue;
3314
3315 if (r->howto->type != R_PPC64_ADDR64)
3316 continue;
3317
3318 sym = *r->sym_ptr_ptr;
3319 if (!sym_exists_at (syms, opdsymend, symcount,
3320 sym->section->id, sym->value + r->addend))
3321 {
3322 size_t len;
3323
3324 *s = *syms[i];
3325 s->flags |= BSF_SYNTHETIC;
3326 s->section = sym->section;
3327 s->value = sym->value + r->addend;
3328 s->name = names;
3329 *names++ = '.';
3330 len = strlen (syms[i]->name);
3331 memcpy (names, syms[i]->name, len + 1);
3332 names += len + 1;
3333 /* Have udata.p point back to the original symbol this
3334 synthetic symbol was derived from. */
3335 s->udata.p = syms[i];
3336 s++;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3343 bfd_byte *contents = NULL;
3344 size_t size;
3345 long plt_count = 0;
3346 bfd_vma glink_vma = 0, resolv_vma = 0;
3347 asection *dynamic, *glink = NULL, *relplt = NULL;
3348 arelent *p;
3349
3350 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3351 {
3352 free_contents_and_exit:
3353 if (contents)
3354 free (contents);
3355 count = -1;
3356 goto done;
3357 }
3358
3359 size = 0;
3360 for (i = secsymend; i < opdsymend; ++i)
3361 {
3362 bfd_vma ent;
3363
3364 /* Ignore bogus symbols. */
3365 if (syms[i]->value > opd->size - 8)
3366 continue;
3367
3368 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3369 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3370 {
3371 ++count;
3372 size += sizeof (asymbol);
3373 size += strlen (syms[i]->name) + 2;
3374 }
3375 }
3376
3377 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3378 if (dyn_count != 0
3379 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3380 {
3381 bfd_byte *dynbuf, *extdyn, *extdynend;
3382 size_t extdynsize;
3383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3384
3385 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3386 goto free_contents_and_exit;
3387
3388 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3389 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3390
3391 extdyn = dynbuf;
3392 extdynend = extdyn + dynamic->size;
3393 for (; extdyn < extdynend; extdyn += extdynsize)
3394 {
3395 Elf_Internal_Dyn dyn;
3396 (*swap_dyn_in) (abfd, extdyn, &dyn);
3397
3398 if (dyn.d_tag == DT_NULL)
3399 break;
3400
3401 if (dyn.d_tag == DT_PPC64_GLINK)
3402 {
3403 /* The first glink stub starts at offset 32; see
3404 comment in ppc64_elf_finish_dynamic_sections. */
3405 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3406 /* The .glink section usually does not survive the final
3407 link; search for the section (usually .text) where the
3408 glink stubs now reside. */
3409 glink = bfd_sections_find_if (abfd, section_covers_vma,
3410 &glink_vma);
3411 break;
3412 }
3413 }
3414
3415 free (dynbuf);
3416 }
3417
3418 if (glink != NULL)
3419 {
3420 /* Determine __glink trampoline by reading the relative branch
3421 from the first glink stub. */
3422 bfd_byte buf[4];
3423 unsigned int off = 0;
3424
3425 while (bfd_get_section_contents (abfd, glink, buf,
3426 glink_vma + off - glink->vma, 4))
3427 {
3428 unsigned int insn = bfd_get_32 (abfd, buf);
3429 insn ^= B_DOT;
3430 if ((insn & ~0x3fffffc) == 0)
3431 {
3432 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3433 break;
3434 }
3435 off += 4;
3436 if (off > 4)
3437 break;
3438 }
3439
3440 if (resolv_vma)
3441 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3442
3443 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3444 if (relplt != NULL)
3445 {
3446 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3447 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3448 goto free_contents_and_exit;
3449
3450 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3451 size += plt_count * sizeof (asymbol);
3452
3453 p = relplt->relocation;
3454 for (i = 0; i < plt_count; i++, p++)
3455 {
3456 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3457 if (p->addend != 0)
3458 size += sizeof ("+0x") - 1 + 16;
3459 }
3460 }
3461 }
3462
3463 s = *ret = bfd_malloc (size);
3464 if (s == NULL)
3465 goto free_contents_and_exit;
3466
3467 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3468
3469 for (i = secsymend; i < opdsymend; ++i)
3470 {
3471 bfd_vma ent;
3472
3473 if (syms[i]->value > opd->size - 8)
3474 continue;
3475
3476 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3477 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3478 {
3479 long lo, hi;
3480 size_t len;
3481 asection *sec = abfd->sections;
3482
3483 *s = *syms[i];
3484 lo = codesecsym;
3485 hi = codesecsymend;
3486 while (lo < hi)
3487 {
3488 long mid = (lo + hi) >> 1;
3489 if (syms[mid]->section->vma < ent)
3490 lo = mid + 1;
3491 else if (syms[mid]->section->vma > ent)
3492 hi = mid;
3493 else
3494 {
3495 sec = syms[mid]->section;
3496 break;
3497 }
3498 }
3499
3500 if (lo >= hi && lo > codesecsym)
3501 sec = syms[lo - 1]->section;
3502
3503 for (; sec != NULL; sec = sec->next)
3504 {
3505 if (sec->vma > ent)
3506 break;
3507 /* SEC_LOAD may not be set if SEC is from a separate debug
3508 info file. */
3509 if ((sec->flags & SEC_ALLOC) == 0)
3510 break;
3511 if ((sec->flags & SEC_CODE) != 0)
3512 s->section = sec;
3513 }
3514 s->flags |= BSF_SYNTHETIC;
3515 s->value = ent - s->section->vma;
3516 s->name = names;
3517 *names++ = '.';
3518 len = strlen (syms[i]->name);
3519 memcpy (names, syms[i]->name, len + 1);
3520 names += len + 1;
3521 /* Have udata.p point back to the original symbol this
3522 synthetic symbol was derived from. */
3523 s->udata.p = syms[i];
3524 s++;
3525 }
3526 }
3527 free (contents);
3528
3529 if (glink != NULL && relplt != NULL)
3530 {
3531 if (resolv_vma)
3532 {
3533 /* Add a symbol for the main glink trampoline. */
3534 memset (s, 0, sizeof *s);
3535 s->the_bfd = abfd;
3536 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3537 s->section = glink;
3538 s->value = resolv_vma - glink->vma;
3539 s->name = names;
3540 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3541 names += sizeof ("__glink_PLTresolve");
3542 s++;
3543 count++;
3544 }
3545
3546 /* FIXME: It would be very much nicer to put sym@plt on the
3547 stub rather than on the glink branch table entry. The
3548 objdump disassembler would then use a sensible symbol
3549 name on plt calls. The difficulty in doing so is
3550 a) finding the stubs, and,
3551 b) matching stubs against plt entries, and,
3552 c) there can be multiple stubs for a given plt entry.
3553
3554 Solving (a) could be done by code scanning, but older
3555 ppc64 binaries used different stubs to current code.
3556 (b) is the tricky one since you need to known the toc
3557 pointer for at least one function that uses a pic stub to
3558 be able to calculate the plt address referenced.
3559 (c) means gdb would need to set multiple breakpoints (or
3560 find the glink branch itself) when setting breakpoints
3561 for pending shared library loads. */
3562 p = relplt->relocation;
3563 for (i = 0; i < plt_count; i++, p++)
3564 {
3565 size_t len;
3566
3567 *s = **p->sym_ptr_ptr;
3568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3569 we are defining a symbol, ensure one of them is set. */
3570 if ((s->flags & BSF_LOCAL) == 0)
3571 s->flags |= BSF_GLOBAL;
3572 s->flags |= BSF_SYNTHETIC;
3573 s->section = glink;
3574 s->value = glink_vma - glink->vma;
3575 s->name = names;
3576 s->udata.p = NULL;
3577 len = strlen ((*p->sym_ptr_ptr)->name);
3578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3579 names += len;
3580 if (p->addend != 0)
3581 {
3582 memcpy (names, "+0x", sizeof ("+0x") - 1);
3583 names += sizeof ("+0x") - 1;
3584 bfd_sprintf_vma (abfd, names, p->addend);
3585 names += strlen (names);
3586 }
3587 memcpy (names, "@plt", sizeof ("@plt"));
3588 names += sizeof ("@plt");
3589 s++;
3590 if (abi < 2)
3591 {
3592 glink_vma += 8;
3593 if (i >= 0x8000)
3594 glink_vma += 4;
3595 }
3596 else
3597 glink_vma += 4;
3598 }
3599 count += plt_count;
3600 }
3601 }
3602
3603 done:
3604 free (syms);
3605 return count;
3606 }
3607 \f
3608 /* The following functions are specific to the ELF linker, while
3609 functions above are used generally. Those named ppc64_elf_* are
3610 called by the main ELF linker code. They appear in this file more
3611 or less in the order in which they are called. eg.
3612 ppc64_elf_check_relocs is called early in the link process,
3613 ppc64_elf_finish_dynamic_sections is one of the last functions
3614 called.
3615
3616 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3617 functions have both a function code symbol and a function descriptor
3618 symbol. A call to foo in a relocatable object file looks like:
3619
3620 . .text
3621 . x:
3622 . bl .foo
3623 . nop
3624
3625 The function definition in another object file might be:
3626
3627 . .section .opd
3628 . foo: .quad .foo
3629 . .quad .TOC.@tocbase
3630 . .quad 0
3631 .
3632 . .text
3633 . .foo: blr
3634
3635 When the linker resolves the call during a static link, the branch
3636 unsurprisingly just goes to .foo and the .opd information is unused.
3637 If the function definition is in a shared library, things are a little
3638 different: The call goes via a plt call stub, the opd information gets
3639 copied to the plt, and the linker patches the nop.
3640
3641 . x:
3642 . bl .foo_stub
3643 . ld 2,40(1)
3644 .
3645 .
3646 . .foo_stub:
3647 . std 2,40(1) # in practice, the call stub
3648 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3649 . addi 11,11,Lfoo@toc@l # this is the general idea
3650 . ld 12,0(11)
3651 . ld 2,8(11)
3652 . mtctr 12
3653 . ld 11,16(11)
3654 . bctr
3655 .
3656 . .section .plt
3657 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3658
3659 The "reloc ()" notation is supposed to indicate that the linker emits
3660 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3661 copying.
3662
3663 What are the difficulties here? Well, firstly, the relocations
3664 examined by the linker in check_relocs are against the function code
3665 sym .foo, while the dynamic relocation in the plt is emitted against
3666 the function descriptor symbol, foo. Somewhere along the line, we need
3667 to carefully copy dynamic link information from one symbol to the other.
3668 Secondly, the generic part of the elf linker will make .foo a dynamic
3669 symbol as is normal for most other backends. We need foo dynamic
3670 instead, at least for an application final link. However, when
3671 creating a shared library containing foo, we need to have both symbols
3672 dynamic so that references to .foo are satisfied during the early
3673 stages of linking. Otherwise the linker might decide to pull in a
3674 definition from some other object, eg. a static library.
3675
3676 Update: As of August 2004, we support a new convention. Function
3677 calls may use the function descriptor symbol, ie. "bl foo". This
3678 behaves exactly as "bl .foo". */
3679
3680 /* Of those relocs that might be copied as dynamic relocs, this function
3681 selects those that must be copied when linking a shared library,
3682 even when the symbol is local. */
3683
3684 static int
3685 must_be_dyn_reloc (struct bfd_link_info *info,
3686 enum elf_ppc64_reloc_type r_type)
3687 {
3688 switch (r_type)
3689 {
3690 default:
3691 return 1;
3692
3693 case R_PPC64_REL32:
3694 case R_PPC64_REL64:
3695 case R_PPC64_REL30:
3696 return 0;
3697
3698 case R_PPC64_TPREL16:
3699 case R_PPC64_TPREL16_LO:
3700 case R_PPC64_TPREL16_HI:
3701 case R_PPC64_TPREL16_HA:
3702 case R_PPC64_TPREL16_DS:
3703 case R_PPC64_TPREL16_LO_DS:
3704 case R_PPC64_TPREL16_HIGH:
3705 case R_PPC64_TPREL16_HIGHA:
3706 case R_PPC64_TPREL16_HIGHER:
3707 case R_PPC64_TPREL16_HIGHERA:
3708 case R_PPC64_TPREL16_HIGHEST:
3709 case R_PPC64_TPREL16_HIGHESTA:
3710 case R_PPC64_TPREL64:
3711 return !info->executable;
3712 }
3713 }
3714
3715 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3716 copying dynamic variables from a shared lib into an app's dynbss
3717 section, and instead use a dynamic relocation to point into the
3718 shared lib. With code that gcc generates, it's vital that this be
3719 enabled; In the PowerPC64 ABI, the address of a function is actually
3720 the address of a function descriptor, which resides in the .opd
3721 section. gcc uses the descriptor directly rather than going via the
3722 GOT as some other ABI's do, which means that initialized function
3723 pointers must reference the descriptor. Thus, a function pointer
3724 initialized to the address of a function in a shared library will
3725 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3726 redefines the function descriptor symbol to point to the copy. This
3727 presents a problem as a plt entry for that function is also
3728 initialized from the function descriptor symbol and the copy reloc
3729 may not be initialized first. */
3730 #define ELIMINATE_COPY_RELOCS 1
3731
3732 /* Section name for stubs is the associated section name plus this
3733 string. */
3734 #define STUB_SUFFIX ".stub"
3735
3736 /* Linker stubs.
3737 ppc_stub_long_branch:
3738 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3739 destination, but a 24 bit branch in a stub section will reach.
3740 . b dest
3741
3742 ppc_stub_plt_branch:
3743 Similar to the above, but a 24 bit branch in the stub section won't
3744 reach its destination.
3745 . addis %r11,%r2,xxx@toc@ha
3746 . ld %r12,xxx@toc@l(%r11)
3747 . mtctr %r12
3748 . bctr
3749
3750 ppc_stub_plt_call:
3751 Used to call a function in a shared library. If it so happens that
3752 the plt entry referenced crosses a 64k boundary, then an extra
3753 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3754 . std %r2,40(%r1)
3755 . addis %r11,%r2,xxx@toc@ha
3756 . ld %r12,xxx+0@toc@l(%r11)
3757 . mtctr %r12
3758 . ld %r2,xxx+8@toc@l(%r11)
3759 . ld %r11,xxx+16@toc@l(%r11)
3760 . bctr
3761
3762 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3763 code to adjust the value and save r2 to support multiple toc sections.
3764 A ppc_stub_long_branch with an r2 offset looks like:
3765 . std %r2,40(%r1)
3766 . addis %r2,%r2,off@ha
3767 . addi %r2,%r2,off@l
3768 . b dest
3769
3770 A ppc_stub_plt_branch with an r2 offset looks like:
3771 . std %r2,40(%r1)
3772 . addis %r11,%r2,xxx@toc@ha
3773 . ld %r12,xxx@toc@l(%r11)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . mtctr %r12
3777 . bctr
3778
3779 In cases where the "addis" instruction would add zero, the "addis" is
3780 omitted and following instructions modified slightly in some cases.
3781 */
3782
3783 enum ppc_stub_type {
3784 ppc_stub_none,
3785 ppc_stub_long_branch,
3786 ppc_stub_long_branch_r2off,
3787 ppc_stub_plt_branch,
3788 ppc_stub_plt_branch_r2off,
3789 ppc_stub_plt_call,
3790 ppc_stub_plt_call_r2save,
3791 ppc_stub_global_entry
3792 };
3793
3794 struct ppc_stub_hash_entry {
3795
3796 /* Base hash table entry structure. */
3797 struct bfd_hash_entry root;
3798
3799 enum ppc_stub_type stub_type;
3800
3801 /* The stub section. */
3802 asection *stub_sec;
3803
3804 /* Offset within stub_sec of the beginning of this stub. */
3805 bfd_vma stub_offset;
3806
3807 /* Given the symbol's value and its section we can determine its final
3808 value when building the stubs (so the stub knows where to jump. */
3809 bfd_vma target_value;
3810 asection *target_section;
3811
3812 /* The symbol table entry, if any, that this was derived from. */
3813 struct ppc_link_hash_entry *h;
3814 struct plt_entry *plt_ent;
3815
3816 /* Where this stub is being called from, or, in the case of combined
3817 stub sections, the first input section in the group. */
3818 asection *id_sec;
3819
3820 /* Symbol st_other. */
3821 unsigned char other;
3822 };
3823
3824 struct ppc_branch_hash_entry {
3825
3826 /* Base hash table entry structure. */
3827 struct bfd_hash_entry root;
3828
3829 /* Offset within branch lookup table. */
3830 unsigned int offset;
3831
3832 /* Generation marker. */
3833 unsigned int iter;
3834 };
3835
3836 /* Used to track dynamic relocations for local symbols. */
3837 struct ppc_dyn_relocs
3838 {
3839 struct ppc_dyn_relocs *next;
3840
3841 /* The input section of the reloc. */
3842 asection *sec;
3843
3844 /* Total number of relocs copied for the input section. */
3845 unsigned int count : 31;
3846
3847 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3848 unsigned int ifunc : 1;
3849 };
3850
3851 struct ppc_link_hash_entry
3852 {
3853 struct elf_link_hash_entry elf;
3854
3855 union {
3856 /* A pointer to the most recently used stub hash entry against this
3857 symbol. */
3858 struct ppc_stub_hash_entry *stub_cache;
3859
3860 /* A pointer to the next symbol starting with a '.' */
3861 struct ppc_link_hash_entry *next_dot_sym;
3862 } u;
3863
3864 /* Track dynamic relocs copied for this symbol. */
3865 struct elf_dyn_relocs *dyn_relocs;
3866
3867 /* Link between function code and descriptor symbols. */
3868 struct ppc_link_hash_entry *oh;
3869
3870 /* Flag function code and descriptor symbols. */
3871 unsigned int is_func:1;
3872 unsigned int is_func_descriptor:1;
3873 unsigned int fake:1;
3874
3875 /* Whether global opd/toc sym has been adjusted or not.
3876 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3877 should be set for all globals defined in any opd/toc section. */
3878 unsigned int adjust_done:1;
3879
3880 /* Set if we twiddled this symbol to weak at some stage. */
3881 unsigned int was_undefined:1;
3882
3883 /* Contexts in which symbol is used in the GOT (or TOC).
3884 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3885 corresponding relocs are encountered during check_relocs.
3886 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3887 indicate the corresponding GOT entry type is not needed.
3888 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3889 a TPREL one. We use a separate flag rather than setting TPREL
3890 just for convenience in distinguishing the two cases. */
3891 #define TLS_GD 1 /* GD reloc. */
3892 #define TLS_LD 2 /* LD reloc. */
3893 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3894 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3895 #define TLS_TLS 16 /* Any TLS reloc. */
3896 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3897 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3898 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3899 unsigned char tls_mask;
3900 };
3901
3902 /* ppc64 ELF linker hash table. */
3903
3904 struct ppc_link_hash_table
3905 {
3906 struct elf_link_hash_table elf;
3907
3908 /* The stub hash table. */
3909 struct bfd_hash_table stub_hash_table;
3910
3911 /* Another hash table for plt_branch stubs. */
3912 struct bfd_hash_table branch_hash_table;
3913
3914 /* Hash table for function prologue tocsave. */
3915 htab_t tocsave_htab;
3916
3917 /* Various options and other info passed from the linker. */
3918 struct ppc64_elf_params *params;
3919
3920 /* Array to keep track of which stub sections have been created, and
3921 information on stub grouping. */
3922 struct map_stub {
3923 /* This is the section to which stubs in the group will be attached. */
3924 asection *link_sec;
3925 /* The stub section. */
3926 asection *stub_sec;
3927 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3928 bfd_vma toc_off;
3929 } *stub_group;
3930
3931 /* Temp used when calculating TOC pointers. */
3932 bfd_vma toc_curr;
3933 bfd *toc_bfd;
3934 asection *toc_first_sec;
3935
3936 /* Highest input section id. */
3937 int top_id;
3938
3939 /* Highest output section index. */
3940 int top_index;
3941
3942 /* Used when adding symbols. */
3943 struct ppc_link_hash_entry *dot_syms;
3944
3945 /* List of input sections for each output section. */
3946 asection **input_list;
3947
3948 /* Shortcuts to get to dynamic linker sections. */
3949 asection *dynbss;
3950 asection *relbss;
3951 asection *glink;
3952 asection *sfpr;
3953 asection *brlt;
3954 asection *relbrlt;
3955 asection *glink_eh_frame;
3956
3957 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3958 struct ppc_link_hash_entry *tls_get_addr;
3959 struct ppc_link_hash_entry *tls_get_addr_fd;
3960
3961 /* The size of reliplt used by got entry relocs. */
3962 bfd_size_type got_reli_size;
3963
3964 /* Statistics. */
3965 unsigned long stub_count[ppc_stub_global_entry];
3966
3967 /* Number of stubs against global syms. */
3968 unsigned long stub_globals;
3969
3970 /* Set if we're linking code with function descriptors. */
3971 unsigned int opd_abi:1;
3972
3973 /* Support for multiple toc sections. */
3974 unsigned int do_multi_toc:1;
3975 unsigned int multi_toc_needed:1;
3976 unsigned int second_toc_pass:1;
3977 unsigned int do_toc_opt:1;
3978
3979 /* Set on error. */
3980 unsigned int stub_error:1;
3981
3982 /* Temp used by ppc64_elf_before_check_relocs. */
3983 unsigned int twiddled_syms:1;
3984
3985 /* Incremented every time we size stubs. */
3986 unsigned int stub_iteration;
3987
3988 /* Small local sym cache. */
3989 struct sym_cache sym_cache;
3990 };
3991
3992 /* Rename some of the generic section flags to better document how they
3993 are used here. */
3994
3995 /* Nonzero if this section has TLS related relocations. */
3996 #define has_tls_reloc sec_flg0
3997
3998 /* Nonzero if this section has a call to __tls_get_addr. */
3999 #define has_tls_get_addr_call sec_flg1
4000
4001 /* Nonzero if this section has any toc or got relocs. */
4002 #define has_toc_reloc sec_flg2
4003
4004 /* Nonzero if this section has a call to another section that uses
4005 the toc or got. */
4006 #define makes_toc_func_call sec_flg3
4007
4008 /* Recursion protection when determining above flag. */
4009 #define call_check_in_progress sec_flg4
4010 #define call_check_done sec_flg5
4011
4012 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4013
4014 #define ppc_hash_table(p) \
4015 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4016 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4017
4018 #define ppc_stub_hash_lookup(table, string, create, copy) \
4019 ((struct ppc_stub_hash_entry *) \
4020 bfd_hash_lookup ((table), (string), (create), (copy)))
4021
4022 #define ppc_branch_hash_lookup(table, string, create, copy) \
4023 ((struct ppc_branch_hash_entry *) \
4024 bfd_hash_lookup ((table), (string), (create), (copy)))
4025
4026 /* Create an entry in the stub hash table. */
4027
4028 static struct bfd_hash_entry *
4029 stub_hash_newfunc (struct bfd_hash_entry *entry,
4030 struct bfd_hash_table *table,
4031 const char *string)
4032 {
4033 /* Allocate the structure if it has not already been allocated by a
4034 subclass. */
4035 if (entry == NULL)
4036 {
4037 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4038 if (entry == NULL)
4039 return entry;
4040 }
4041
4042 /* Call the allocation method of the superclass. */
4043 entry = bfd_hash_newfunc (entry, table, string);
4044 if (entry != NULL)
4045 {
4046 struct ppc_stub_hash_entry *eh;
4047
4048 /* Initialize the local fields. */
4049 eh = (struct ppc_stub_hash_entry *) entry;
4050 eh->stub_type = ppc_stub_none;
4051 eh->stub_sec = NULL;
4052 eh->stub_offset = 0;
4053 eh->target_value = 0;
4054 eh->target_section = NULL;
4055 eh->h = NULL;
4056 eh->plt_ent = NULL;
4057 eh->id_sec = NULL;
4058 eh->other = 0;
4059 }
4060
4061 return entry;
4062 }
4063
4064 /* Create an entry in the branch hash table. */
4065
4066 static struct bfd_hash_entry *
4067 branch_hash_newfunc (struct bfd_hash_entry *entry,
4068 struct bfd_hash_table *table,
4069 const char *string)
4070 {
4071 /* Allocate the structure if it has not already been allocated by a
4072 subclass. */
4073 if (entry == NULL)
4074 {
4075 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4076 if (entry == NULL)
4077 return entry;
4078 }
4079
4080 /* Call the allocation method of the superclass. */
4081 entry = bfd_hash_newfunc (entry, table, string);
4082 if (entry != NULL)
4083 {
4084 struct ppc_branch_hash_entry *eh;
4085
4086 /* Initialize the local fields. */
4087 eh = (struct ppc_branch_hash_entry *) entry;
4088 eh->offset = 0;
4089 eh->iter = 0;
4090 }
4091
4092 return entry;
4093 }
4094
4095 /* Create an entry in a ppc64 ELF linker hash table. */
4096
4097 static struct bfd_hash_entry *
4098 link_hash_newfunc (struct bfd_hash_entry *entry,
4099 struct bfd_hash_table *table,
4100 const char *string)
4101 {
4102 /* Allocate the structure if it has not already been allocated by a
4103 subclass. */
4104 if (entry == NULL)
4105 {
4106 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4107 if (entry == NULL)
4108 return entry;
4109 }
4110
4111 /* Call the allocation method of the superclass. */
4112 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4113 if (entry != NULL)
4114 {
4115 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4116
4117 memset (&eh->u.stub_cache, 0,
4118 (sizeof (struct ppc_link_hash_entry)
4119 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4120
4121 /* When making function calls, old ABI code references function entry
4122 points (dot symbols), while new ABI code references the function
4123 descriptor symbol. We need to make any combination of reference and
4124 definition work together, without breaking archive linking.
4125
4126 For a defined function "foo" and an undefined call to "bar":
4127 An old object defines "foo" and ".foo", references ".bar" (possibly
4128 "bar" too).
4129 A new object defines "foo" and references "bar".
4130
4131 A new object thus has no problem with its undefined symbols being
4132 satisfied by definitions in an old object. On the other hand, the
4133 old object won't have ".bar" satisfied by a new object.
4134
4135 Keep a list of newly added dot-symbols. */
4136
4137 if (string[0] == '.')
4138 {
4139 struct ppc_link_hash_table *htab;
4140
4141 htab = (struct ppc_link_hash_table *) table;
4142 eh->u.next_dot_sym = htab->dot_syms;
4143 htab->dot_syms = eh;
4144 }
4145 }
4146
4147 return entry;
4148 }
4149
4150 struct tocsave_entry {
4151 asection *sec;
4152 bfd_vma offset;
4153 };
4154
4155 static hashval_t
4156 tocsave_htab_hash (const void *p)
4157 {
4158 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4159 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4160 }
4161
4162 static int
4163 tocsave_htab_eq (const void *p1, const void *p2)
4164 {
4165 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4166 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4167 return e1->sec == e2->sec && e1->offset == e2->offset;
4168 }
4169
4170 /* Destroy a ppc64 ELF linker hash table. */
4171
4172 static void
4173 ppc64_elf_link_hash_table_free (bfd *obfd)
4174 {
4175 struct ppc_link_hash_table *htab;
4176
4177 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4178 if (htab->tocsave_htab)
4179 htab_delete (htab->tocsave_htab);
4180 bfd_hash_table_free (&htab->branch_hash_table);
4181 bfd_hash_table_free (&htab->stub_hash_table);
4182 _bfd_elf_link_hash_table_free (obfd);
4183 }
4184
4185 /* Create a ppc64 ELF linker hash table. */
4186
4187 static struct bfd_link_hash_table *
4188 ppc64_elf_link_hash_table_create (bfd *abfd)
4189 {
4190 struct ppc_link_hash_table *htab;
4191 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4192
4193 htab = bfd_zmalloc (amt);
4194 if (htab == NULL)
4195 return NULL;
4196
4197 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4198 sizeof (struct ppc_link_hash_entry),
4199 PPC64_ELF_DATA))
4200 {
4201 free (htab);
4202 return NULL;
4203 }
4204
4205 /* Init the stub hash table too. */
4206 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4207 sizeof (struct ppc_stub_hash_entry)))
4208 {
4209 _bfd_elf_link_hash_table_free (abfd);
4210 return NULL;
4211 }
4212
4213 /* And the branch hash table. */
4214 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4215 sizeof (struct ppc_branch_hash_entry)))
4216 {
4217 bfd_hash_table_free (&htab->stub_hash_table);
4218 _bfd_elf_link_hash_table_free (abfd);
4219 return NULL;
4220 }
4221
4222 htab->tocsave_htab = htab_try_create (1024,
4223 tocsave_htab_hash,
4224 tocsave_htab_eq,
4225 NULL);
4226 if (htab->tocsave_htab == NULL)
4227 {
4228 ppc64_elf_link_hash_table_free (abfd);
4229 return NULL;
4230 }
4231 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4232
4233 /* Initializing two fields of the union is just cosmetic. We really
4234 only care about glist, but when compiled on a 32-bit host the
4235 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4236 debugger inspection of these fields look nicer. */
4237 htab->elf.init_got_refcount.refcount = 0;
4238 htab->elf.init_got_refcount.glist = NULL;
4239 htab->elf.init_plt_refcount.refcount = 0;
4240 htab->elf.init_plt_refcount.glist = NULL;
4241 htab->elf.init_got_offset.offset = 0;
4242 htab->elf.init_got_offset.glist = NULL;
4243 htab->elf.init_plt_offset.offset = 0;
4244 htab->elf.init_plt_offset.glist = NULL;
4245
4246 return &htab->elf.root;
4247 }
4248
4249 /* Create sections for linker generated code. */
4250
4251 static bfd_boolean
4252 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4253 {
4254 struct ppc_link_hash_table *htab;
4255 flagword flags;
4256
4257 htab = ppc_hash_table (info);
4258
4259 /* Create .sfpr for code to save and restore fp regs. */
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4263 flags);
4264 if (htab->sfpr == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4266 return FALSE;
4267
4268 /* Create .glink for lazy dynamic linking support. */
4269 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4270 flags);
4271 if (htab->glink == NULL
4272 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4273 return FALSE;
4274
4275 if (!info->no_ld_generated_unwind_info)
4276 {
4277 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4278 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4279 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4280 ".eh_frame",
4281 flags);
4282 if (htab->glink_eh_frame == NULL
4283 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4284 return FALSE;
4285 }
4286
4287 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4288 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4289 if (htab->elf.iplt == NULL
4290 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4291 return FALSE;
4292
4293 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4294 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 htab->elf.irelplt
4296 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4297 if (htab->elf.irelplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4299 return FALSE;
4300
4301 /* Create branch lookup table for plt_branch stubs. */
4302 flags = (SEC_ALLOC | SEC_LOAD
4303 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4304 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4305 flags);
4306 if (htab->brlt == NULL
4307 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4308 return FALSE;
4309
4310 if (!info->shared)
4311 return TRUE;
4312
4313 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4314 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4315 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4316 ".rela.branch_lt",
4317 flags);
4318 if (htab->relbrlt == NULL
4319 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4320 return FALSE;
4321
4322 return TRUE;
4323 }
4324
4325 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4326
4327 bfd_boolean
4328 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4329 struct ppc64_elf_params *params)
4330 {
4331 struct ppc_link_hash_table *htab;
4332
4333 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4334
4335 /* Always hook our dynamic sections into the first bfd, which is the
4336 linker created stub bfd. This ensures that the GOT header is at
4337 the start of the output TOC section. */
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return FALSE;
4341 htab->elf.dynobj = params->stub_bfd;
4342 htab->params = params;
4343
4344 if (info->relocatable)
4345 return TRUE;
4346
4347 return create_linkage_sections (htab->elf.dynobj, info);
4348 }
4349
4350 /* Build a name for an entry in the stub hash table. */
4351
4352 static char *
4353 ppc_stub_name (const asection *input_section,
4354 const asection *sym_sec,
4355 const struct ppc_link_hash_entry *h,
4356 const Elf_Internal_Rela *rel)
4357 {
4358 char *stub_name;
4359 ssize_t len;
4360
4361 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4362 offsets from a sym as a branch target? In fact, we could
4363 probably assume the addend is always zero. */
4364 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4365
4366 if (h)
4367 {
4368 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4369 stub_name = bfd_malloc (len);
4370 if (stub_name == NULL)
4371 return stub_name;
4372
4373 len = sprintf (stub_name, "%08x.%s+%x",
4374 input_section->id & 0xffffffff,
4375 h->elf.root.root.string,
4376 (int) rel->r_addend & 0xffffffff);
4377 }
4378 else
4379 {
4380 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4381 stub_name = bfd_malloc (len);
4382 if (stub_name == NULL)
4383 return stub_name;
4384
4385 len = sprintf (stub_name, "%08x.%x:%x+%x",
4386 input_section->id & 0xffffffff,
4387 sym_sec->id & 0xffffffff,
4388 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4389 (int) rel->r_addend & 0xffffffff);
4390 }
4391 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4392 stub_name[len - 2] = 0;
4393 return stub_name;
4394 }
4395
4396 /* Look up an entry in the stub hash. Stub entries are cached because
4397 creating the stub name takes a bit of time. */
4398
4399 static struct ppc_stub_hash_entry *
4400 ppc_get_stub_entry (const asection *input_section,
4401 const asection *sym_sec,
4402 struct ppc_link_hash_entry *h,
4403 const Elf_Internal_Rela *rel,
4404 struct ppc_link_hash_table *htab)
4405 {
4406 struct ppc_stub_hash_entry *stub_entry;
4407 const asection *id_sec;
4408
4409 /* If this input section is part of a group of sections sharing one
4410 stub section, then use the id of the first section in the group.
4411 Stub names need to include a section id, as there may well be
4412 more than one stub used to reach say, printf, and we need to
4413 distinguish between them. */
4414 id_sec = htab->stub_group[input_section->id].link_sec;
4415
4416 if (h != NULL && h->u.stub_cache != NULL
4417 && h->u.stub_cache->h == h
4418 && h->u.stub_cache->id_sec == id_sec)
4419 {
4420 stub_entry = h->u.stub_cache;
4421 }
4422 else
4423 {
4424 char *stub_name;
4425
4426 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4427 if (stub_name == NULL)
4428 return NULL;
4429
4430 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4431 stub_name, FALSE, FALSE);
4432 if (h != NULL)
4433 h->u.stub_cache = stub_entry;
4434
4435 free (stub_name);
4436 }
4437
4438 return stub_entry;
4439 }
4440
4441 /* Add a new stub entry to the stub hash. Not all fields of the new
4442 stub entry are initialised. */
4443
4444 static struct ppc_stub_hash_entry *
4445 ppc_add_stub (const char *stub_name,
4446 asection *section,
4447 struct bfd_link_info *info)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450 asection *link_sec;
4451 asection *stub_sec;
4452 struct ppc_stub_hash_entry *stub_entry;
4453
4454 link_sec = htab->stub_group[section->id].link_sec;
4455 stub_sec = htab->stub_group[section->id].stub_sec;
4456 if (stub_sec == NULL)
4457 {
4458 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4459 if (stub_sec == NULL)
4460 {
4461 size_t namelen;
4462 bfd_size_type len;
4463 char *s_name;
4464
4465 namelen = strlen (link_sec->name);
4466 len = namelen + sizeof (STUB_SUFFIX);
4467 s_name = bfd_alloc (htab->params->stub_bfd, len);
4468 if (s_name == NULL)
4469 return NULL;
4470
4471 memcpy (s_name, link_sec->name, namelen);
4472 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4473 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4474 if (stub_sec == NULL)
4475 return NULL;
4476 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4477 }
4478 htab->stub_group[section->id].stub_sec = stub_sec;
4479 }
4480
4481 /* Enter this entry into the linker stub hash table. */
4482 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4483 TRUE, FALSE);
4484 if (stub_entry == NULL)
4485 {
4486 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4487 section->owner, stub_name);
4488 return NULL;
4489 }
4490
4491 stub_entry->stub_sec = stub_sec;
4492 stub_entry->stub_offset = 0;
4493 stub_entry->id_sec = link_sec;
4494 return stub_entry;
4495 }
4496
4497 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4498 not already done. */
4499
4500 static bfd_boolean
4501 create_got_section (bfd *abfd, struct bfd_link_info *info)
4502 {
4503 asection *got, *relgot;
4504 flagword flags;
4505 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4506
4507 if (!is_ppc64_elf (abfd))
4508 return FALSE;
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (!htab->elf.sgot
4513 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4514 return FALSE;
4515
4516 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4517 | SEC_LINKER_CREATED);
4518
4519 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4520 if (!got
4521 || !bfd_set_section_alignment (abfd, got, 3))
4522 return FALSE;
4523
4524 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4525 flags | SEC_READONLY);
4526 if (!relgot
4527 || ! bfd_set_section_alignment (abfd, relgot, 3))
4528 return FALSE;
4529
4530 ppc64_elf_tdata (abfd)->got = got;
4531 ppc64_elf_tdata (abfd)->relgot = relgot;
4532 return TRUE;
4533 }
4534
4535 /* Create the dynamic sections, and set up shortcuts. */
4536
4537 static bfd_boolean
4538 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4539 {
4540 struct ppc_link_hash_table *htab;
4541
4542 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4543 return FALSE;
4544
4545 htab = ppc_hash_table (info);
4546 if (htab == NULL)
4547 return FALSE;
4548
4549 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4550 if (!info->shared)
4551 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4552
4553 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4554 || (!info->shared && !htab->relbss))
4555 abort ();
4556
4557 return TRUE;
4558 }
4559
4560 /* Follow indirect and warning symbol links. */
4561
4562 static inline struct bfd_link_hash_entry *
4563 follow_link (struct bfd_link_hash_entry *h)
4564 {
4565 while (h->type == bfd_link_hash_indirect
4566 || h->type == bfd_link_hash_warning)
4567 h = h->u.i.link;
4568 return h;
4569 }
4570
4571 static inline struct elf_link_hash_entry *
4572 elf_follow_link (struct elf_link_hash_entry *h)
4573 {
4574 return (struct elf_link_hash_entry *) follow_link (&h->root);
4575 }
4576
4577 static inline struct ppc_link_hash_entry *
4578 ppc_follow_link (struct ppc_link_hash_entry *h)
4579 {
4580 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4581 }
4582
4583 /* Merge PLT info on FROM with that on TO. */
4584
4585 static void
4586 move_plt_plist (struct ppc_link_hash_entry *from,
4587 struct ppc_link_hash_entry *to)
4588 {
4589 if (from->elf.plt.plist != NULL)
4590 {
4591 if (to->elf.plt.plist != NULL)
4592 {
4593 struct plt_entry **entp;
4594 struct plt_entry *ent;
4595
4596 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4597 {
4598 struct plt_entry *dent;
4599
4600 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4601 if (dent->addend == ent->addend)
4602 {
4603 dent->plt.refcount += ent->plt.refcount;
4604 *entp = ent->next;
4605 break;
4606 }
4607 if (dent == NULL)
4608 entp = &ent->next;
4609 }
4610 *entp = to->elf.plt.plist;
4611 }
4612
4613 to->elf.plt.plist = from->elf.plt.plist;
4614 from->elf.plt.plist = NULL;
4615 }
4616 }
4617
4618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4619
4620 static void
4621 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4622 struct elf_link_hash_entry *dir,
4623 struct elf_link_hash_entry *ind)
4624 {
4625 struct ppc_link_hash_entry *edir, *eind;
4626
4627 edir = (struct ppc_link_hash_entry *) dir;
4628 eind = (struct ppc_link_hash_entry *) ind;
4629
4630 edir->is_func |= eind->is_func;
4631 edir->is_func_descriptor |= eind->is_func_descriptor;
4632 edir->tls_mask |= eind->tls_mask;
4633 if (eind->oh != NULL)
4634 edir->oh = ppc_follow_link (eind->oh);
4635
4636 /* If called to transfer flags for a weakdef during processing
4637 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4638 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4639 if (!(ELIMINATE_COPY_RELOCS
4640 && eind->elf.root.type != bfd_link_hash_indirect
4641 && edir->elf.dynamic_adjusted))
4642 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4643
4644 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4645 edir->elf.ref_regular |= eind->elf.ref_regular;
4646 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4647 edir->elf.needs_plt |= eind->elf.needs_plt;
4648 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4649
4650 /* Copy over any dynamic relocs we may have on the indirect sym. */
4651 if (eind->dyn_relocs != NULL)
4652 {
4653 if (edir->dyn_relocs != NULL)
4654 {
4655 struct elf_dyn_relocs **pp;
4656 struct elf_dyn_relocs *p;
4657
4658 /* Add reloc counts against the indirect sym to the direct sym
4659 list. Merge any entries against the same section. */
4660 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4661 {
4662 struct elf_dyn_relocs *q;
4663
4664 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4665 if (q->sec == p->sec)
4666 {
4667 q->pc_count += p->pc_count;
4668 q->count += p->count;
4669 *pp = p->next;
4670 break;
4671 }
4672 if (q == NULL)
4673 pp = &p->next;
4674 }
4675 *pp = edir->dyn_relocs;
4676 }
4677
4678 edir->dyn_relocs = eind->dyn_relocs;
4679 eind->dyn_relocs = NULL;
4680 }
4681
4682 /* If we were called to copy over info for a weak sym, that's all.
4683 You might think dyn_relocs need not be copied over; After all,
4684 both syms will be dynamic or both non-dynamic so we're just
4685 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4686 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4687 dyn_relocs in read-only sections, and it does so on what is the
4688 DIR sym here. */
4689 if (eind->elf.root.type != bfd_link_hash_indirect)
4690 return;
4691
4692 /* Copy over got entries that we may have already seen to the
4693 symbol which just became indirect. */
4694 if (eind->elf.got.glist != NULL)
4695 {
4696 if (edir->elf.got.glist != NULL)
4697 {
4698 struct got_entry **entp;
4699 struct got_entry *ent;
4700
4701 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4702 {
4703 struct got_entry *dent;
4704
4705 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4706 if (dent->addend == ent->addend
4707 && dent->owner == ent->owner
4708 && dent->tls_type == ent->tls_type)
4709 {
4710 dent->got.refcount += ent->got.refcount;
4711 *entp = ent->next;
4712 break;
4713 }
4714 if (dent == NULL)
4715 entp = &ent->next;
4716 }
4717 *entp = edir->elf.got.glist;
4718 }
4719
4720 edir->elf.got.glist = eind->elf.got.glist;
4721 eind->elf.got.glist = NULL;
4722 }
4723
4724 /* And plt entries. */
4725 move_plt_plist (eind, edir);
4726
4727 if (eind->elf.dynindx != -1)
4728 {
4729 if (edir->elf.dynindx != -1)
4730 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4731 edir->elf.dynstr_index);
4732 edir->elf.dynindx = eind->elf.dynindx;
4733 edir->elf.dynstr_index = eind->elf.dynstr_index;
4734 eind->elf.dynindx = -1;
4735 eind->elf.dynstr_index = 0;
4736 }
4737 }
4738
4739 /* Find the function descriptor hash entry from the given function code
4740 hash entry FH. Link the entries via their OH fields. */
4741
4742 static struct ppc_link_hash_entry *
4743 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4744 {
4745 struct ppc_link_hash_entry *fdh = fh->oh;
4746
4747 if (fdh == NULL)
4748 {
4749 const char *fd_name = fh->elf.root.root.string + 1;
4750
4751 fdh = (struct ppc_link_hash_entry *)
4752 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4753 if (fdh == NULL)
4754 return fdh;
4755
4756 fdh->is_func_descriptor = 1;
4757 fdh->oh = fh;
4758 fh->is_func = 1;
4759 fh->oh = fdh;
4760 }
4761
4762 return ppc_follow_link (fdh);
4763 }
4764
4765 /* Make a fake function descriptor sym for the code sym FH. */
4766
4767 static struct ppc_link_hash_entry *
4768 make_fdh (struct bfd_link_info *info,
4769 struct ppc_link_hash_entry *fh)
4770 {
4771 bfd *abfd;
4772 asymbol *newsym;
4773 struct bfd_link_hash_entry *bh;
4774 struct ppc_link_hash_entry *fdh;
4775
4776 abfd = fh->elf.root.u.undef.abfd;
4777 newsym = bfd_make_empty_symbol (abfd);
4778 newsym->name = fh->elf.root.root.string + 1;
4779 newsym->section = bfd_und_section_ptr;
4780 newsym->value = 0;
4781 newsym->flags = BSF_WEAK;
4782
4783 bh = NULL;
4784 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4785 newsym->flags, newsym->section,
4786 newsym->value, NULL, FALSE, FALSE,
4787 &bh))
4788 return NULL;
4789
4790 fdh = (struct ppc_link_hash_entry *) bh;
4791 fdh->elf.non_elf = 0;
4792 fdh->fake = 1;
4793 fdh->is_func_descriptor = 1;
4794 fdh->oh = fh;
4795 fh->is_func = 1;
4796 fh->oh = fdh;
4797 return fdh;
4798 }
4799
4800 /* Fix function descriptor symbols defined in .opd sections to be
4801 function type. */
4802
4803 static bfd_boolean
4804 ppc64_elf_add_symbol_hook (bfd *ibfd,
4805 struct bfd_link_info *info,
4806 Elf_Internal_Sym *isym,
4807 const char **name,
4808 flagword *flags ATTRIBUTE_UNUSED,
4809 asection **sec,
4810 bfd_vma *value)
4811 {
4812 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4813 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4814 && (ibfd->flags & DYNAMIC) == 0
4815 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4816 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4817
4818 if (*sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 {
4821 asection *code_sec;
4822
4823 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4824 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4825 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4826
4827 /* If the symbol is a function defined in .opd, and the function
4828 code is in a discarded group, let it appear to be undefined. */
4829 if (!info->relocatable
4830 && (*sec)->reloc_count != 0
4831 && opd_entry_value (*sec, *value, &code_sec, NULL,
4832 FALSE) != (bfd_vma) -1
4833 && discarded_section (code_sec))
4834 {
4835 *sec = bfd_und_section_ptr;
4836 isym->st_shndx = SHN_UNDEF;
4837 }
4838 }
4839
4840 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4841 {
4842 if (abiversion (ibfd) == 0)
4843 set_abiversion (ibfd, 2);
4844 else if (abiversion (ibfd) == 1)
4845 {
4846 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4847 " for ABI version 1\n"), name);
4848 bfd_set_error (bfd_error_bad_value);
4849 return FALSE;
4850 }
4851 }
4852
4853 return TRUE;
4854 }
4855
4856 /* Merge non-visibility st_other attributes: local entry point. */
4857
4858 static void
4859 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4860 const Elf_Internal_Sym *isym,
4861 bfd_boolean definition,
4862 bfd_boolean dynamic)
4863 {
4864 if (definition && !dynamic)
4865 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4866 | ELF_ST_VISIBILITY (h->other));
4867 }
4868
4869 /* This function makes an old ABI object reference to ".bar" cause the
4870 inclusion of a new ABI object archive that defines "bar".
4871 NAME is a symbol defined in an archive. Return a symbol in the hash
4872 table that might be satisfied by the archive symbols. */
4873
4874 static struct elf_link_hash_entry *
4875 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4876 struct bfd_link_info *info,
4877 const char *name)
4878 {
4879 struct elf_link_hash_entry *h;
4880 char *dot_name;
4881 size_t len;
4882
4883 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4884 if (h != NULL
4885 /* Don't return this sym if it is a fake function descriptor
4886 created by add_symbol_adjust. */
4887 && !(h->root.type == bfd_link_hash_undefweak
4888 && ((struct ppc_link_hash_entry *) h)->fake))
4889 return h;
4890
4891 if (name[0] == '.')
4892 return h;
4893
4894 len = strlen (name);
4895 dot_name = bfd_alloc (abfd, len + 2);
4896 if (dot_name == NULL)
4897 return (struct elf_link_hash_entry *) 0 - 1;
4898 dot_name[0] = '.';
4899 memcpy (dot_name + 1, name, len + 1);
4900 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4901 bfd_release (abfd, dot_name);
4902 return h;
4903 }
4904
4905 /* This function satisfies all old ABI object references to ".bar" if a
4906 new ABI object defines "bar". Well, at least, undefined dot symbols
4907 are made weak. This stops later archive searches from including an
4908 object if we already have a function descriptor definition. It also
4909 prevents the linker complaining about undefined symbols.
4910 We also check and correct mismatched symbol visibility here. The
4911 most restrictive visibility of the function descriptor and the
4912 function entry symbol is used. */
4913
4914 static bfd_boolean
4915 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4916 {
4917 struct ppc_link_hash_table *htab;
4918 struct ppc_link_hash_entry *fdh;
4919
4920 if (eh->elf.root.type == bfd_link_hash_indirect)
4921 return TRUE;
4922
4923 if (eh->elf.root.type == bfd_link_hash_warning)
4924 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4925
4926 if (eh->elf.root.root.string[0] != '.')
4927 abort ();
4928
4929 htab = ppc_hash_table (info);
4930 if (htab == NULL)
4931 return FALSE;
4932
4933 fdh = lookup_fdh (eh, htab);
4934 if (fdh == NULL)
4935 {
4936 if (!info->relocatable
4937 && (eh->elf.root.type == bfd_link_hash_undefined
4938 || eh->elf.root.type == bfd_link_hash_undefweak)
4939 && eh->elf.ref_regular)
4940 {
4941 /* Make an undefweak function descriptor sym, which is enough to
4942 pull in an --as-needed shared lib, but won't cause link
4943 errors. Archives are handled elsewhere. */
4944 fdh = make_fdh (info, eh);
4945 if (fdh == NULL)
4946 return FALSE;
4947 fdh->elf.ref_regular = 1;
4948 }
4949 }
4950 else
4951 {
4952 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4953 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4954 if (entry_vis < descr_vis)
4955 fdh->elf.other += entry_vis - descr_vis;
4956 else if (entry_vis > descr_vis)
4957 eh->elf.other += descr_vis - entry_vis;
4958
4959 if ((fdh->elf.root.type == bfd_link_hash_defined
4960 || fdh->elf.root.type == bfd_link_hash_defweak)
4961 && eh->elf.root.type == bfd_link_hash_undefined)
4962 {
4963 eh->elf.root.type = bfd_link_hash_undefweak;
4964 eh->was_undefined = 1;
4965 htab->twiddled_syms = 1;
4966 }
4967 }
4968
4969 return TRUE;
4970 }
4971
4972 /* Set up opd section info and abiversion for IBFD, and process list
4973 of dot-symbols we made in link_hash_newfunc. */
4974
4975 static bfd_boolean
4976 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4977 {
4978 struct ppc_link_hash_table *htab;
4979 struct ppc_link_hash_entry **p, *eh;
4980 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4981
4982 if (opd != NULL && opd->size != 0)
4983 {
4984 if (abiversion (ibfd) == 0)
4985 set_abiversion (ibfd, 1);
4986 else if (abiversion (ibfd) == 2)
4987 {
4988 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4989 " version %d\n"),
4990 ibfd, abiversion (ibfd));
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993 }
4994
4995 if ((ibfd->flags & DYNAMIC) == 0
4996 && (opd->flags & SEC_RELOC) != 0
4997 && opd->reloc_count != 0
4998 && !bfd_is_abs_section (opd->output_section))
4999 {
5000 /* Garbage collection needs some extra help with .opd sections.
5001 We don't want to necessarily keep everything referenced by
5002 relocs in .opd, as that would keep all functions. Instead,
5003 if we reference an .opd symbol (a function descriptor), we
5004 want to keep the function code symbol's section. This is
5005 easy for global symbols, but for local syms we need to keep
5006 information about the associated function section. */
5007 bfd_size_type amt;
5008 asection **opd_sym_map;
5009
5010 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5011 opd_sym_map = bfd_zalloc (ibfd, amt);
5012 if (opd_sym_map == NULL)
5013 return FALSE;
5014 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5015 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5016 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5017 }
5018 }
5019
5020 if (!is_ppc64_elf (info->output_bfd))
5021 return TRUE;
5022 htab = ppc_hash_table (info);
5023 if (htab == NULL)
5024 return FALSE;
5025
5026 /* For input files without an explicit abiversion in e_flags
5027 we should have flagged any with symbol st_other bits set
5028 as ELFv1 and above flagged those with .opd as ELFv2.
5029 Set the output abiversion if not yet set, and for any input
5030 still ambiguous, take its abiversion from the output.
5031 Differences in ABI are reported later. */
5032 if (abiversion (info->output_bfd) == 0)
5033 set_abiversion (info->output_bfd, abiversion (ibfd));
5034 else if (abiversion (ibfd) == 0)
5035 set_abiversion (ibfd, abiversion (info->output_bfd));
5036
5037 p = &htab->dot_syms;
5038 while ((eh = *p) != NULL)
5039 {
5040 *p = NULL;
5041 if (&eh->elf == htab->elf.hgot)
5042 ;
5043 else if (htab->elf.hgot == NULL
5044 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5045 htab->elf.hgot = &eh->elf;
5046 else if (!add_symbol_adjust (eh, info))
5047 return FALSE;
5048 p = &eh->u.next_dot_sym;
5049 }
5050
5051 /* Clear the list for non-ppc64 input files. */
5052 p = &htab->dot_syms;
5053 while ((eh = *p) != NULL)
5054 {
5055 *p = NULL;
5056 p = &eh->u.next_dot_sym;
5057 }
5058
5059 /* We need to fix the undefs list for any syms we have twiddled to
5060 undef_weak. */
5061 if (htab->twiddled_syms)
5062 {
5063 bfd_link_repair_undef_list (&htab->elf.root);
5064 htab->twiddled_syms = 0;
5065 }
5066 return TRUE;
5067 }
5068
5069 /* Undo hash table changes when an --as-needed input file is determined
5070 not to be needed. */
5071
5072 static bfd_boolean
5073 ppc64_elf_notice_as_needed (bfd *ibfd,
5074 struct bfd_link_info *info,
5075 enum notice_asneeded_action act)
5076 {
5077 if (act == notice_not_needed)
5078 {
5079 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5080
5081 if (htab == NULL)
5082 return FALSE;
5083
5084 htab->dot_syms = NULL;
5085 }
5086 return _bfd_elf_notice_as_needed (ibfd, info, act);
5087 }
5088
5089 /* If --just-symbols against a final linked binary, then assume we need
5090 toc adjusting stubs when calling functions defined there. */
5091
5092 static void
5093 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5094 {
5095 if ((sec->flags & SEC_CODE) != 0
5096 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5097 && is_ppc64_elf (sec->owner))
5098 {
5099 if (abiversion (sec->owner) >= 2
5100 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5101 sec->has_toc_reloc = 1;
5102 }
5103 _bfd_elf_link_just_syms (sec, info);
5104 }
5105
5106 static struct plt_entry **
5107 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5108 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5109 {
5110 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5111 struct plt_entry **local_plt;
5112 unsigned char *local_got_tls_masks;
5113
5114 if (local_got_ents == NULL)
5115 {
5116 bfd_size_type size = symtab_hdr->sh_info;
5117
5118 size *= (sizeof (*local_got_ents)
5119 + sizeof (*local_plt)
5120 + sizeof (*local_got_tls_masks));
5121 local_got_ents = bfd_zalloc (abfd, size);
5122 if (local_got_ents == NULL)
5123 return NULL;
5124 elf_local_got_ents (abfd) = local_got_ents;
5125 }
5126
5127 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5128 {
5129 struct got_entry *ent;
5130
5131 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5132 if (ent->addend == r_addend
5133 && ent->owner == abfd
5134 && ent->tls_type == tls_type)
5135 break;
5136 if (ent == NULL)
5137 {
5138 bfd_size_type amt = sizeof (*ent);
5139 ent = bfd_alloc (abfd, amt);
5140 if (ent == NULL)
5141 return FALSE;
5142 ent->next = local_got_ents[r_symndx];
5143 ent->addend = r_addend;
5144 ent->owner = abfd;
5145 ent->tls_type = tls_type;
5146 ent->is_indirect = FALSE;
5147 ent->got.refcount = 0;
5148 local_got_ents[r_symndx] = ent;
5149 }
5150 ent->got.refcount += 1;
5151 }
5152
5153 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5154 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5155 local_got_tls_masks[r_symndx] |= tls_type;
5156
5157 return local_plt + r_symndx;
5158 }
5159
5160 static bfd_boolean
5161 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5162 {
5163 struct plt_entry *ent;
5164
5165 for (ent = *plist; ent != NULL; ent = ent->next)
5166 if (ent->addend == addend)
5167 break;
5168 if (ent == NULL)
5169 {
5170 bfd_size_type amt = sizeof (*ent);
5171 ent = bfd_alloc (abfd, amt);
5172 if (ent == NULL)
5173 return FALSE;
5174 ent->next = *plist;
5175 ent->addend = addend;
5176 ent->plt.refcount = 0;
5177 *plist = ent;
5178 }
5179 ent->plt.refcount += 1;
5180 return TRUE;
5181 }
5182
5183 static bfd_boolean
5184 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5185 {
5186 return (r_type == R_PPC64_REL24
5187 || r_type == R_PPC64_REL14
5188 || r_type == R_PPC64_REL14_BRTAKEN
5189 || r_type == R_PPC64_REL14_BRNTAKEN
5190 || r_type == R_PPC64_ADDR24
5191 || r_type == R_PPC64_ADDR14
5192 || r_type == R_PPC64_ADDR14_BRTAKEN
5193 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5194 }
5195
5196 /* Look through the relocs for a section during the first phase, and
5197 calculate needed space in the global offset table, procedure
5198 linkage table, and dynamic reloc sections. */
5199
5200 static bfd_boolean
5201 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5202 asection *sec, const Elf_Internal_Rela *relocs)
5203 {
5204 struct ppc_link_hash_table *htab;
5205 Elf_Internal_Shdr *symtab_hdr;
5206 struct elf_link_hash_entry **sym_hashes;
5207 const Elf_Internal_Rela *rel;
5208 const Elf_Internal_Rela *rel_end;
5209 asection *sreloc;
5210 asection **opd_sym_map;
5211 struct elf_link_hash_entry *tga, *dottga;
5212
5213 if (info->relocatable)
5214 return TRUE;
5215
5216 /* Don't do anything special with non-loaded, non-alloced sections.
5217 In particular, any relocs in such sections should not affect GOT
5218 and PLT reference counting (ie. we don't allow them to create GOT
5219 or PLT entries), there's no possibility or desire to optimize TLS
5220 relocs, and there's not much point in propagating relocs to shared
5221 libs that the dynamic linker won't relocate. */
5222 if ((sec->flags & SEC_ALLOC) == 0)
5223 return TRUE;
5224
5225 BFD_ASSERT (is_ppc64_elf (abfd));
5226
5227 htab = ppc_hash_table (info);
5228 if (htab == NULL)
5229 return FALSE;
5230
5231 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5232 FALSE, FALSE, TRUE);
5233 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5234 FALSE, FALSE, TRUE);
5235 symtab_hdr = &elf_symtab_hdr (abfd);
5236 sym_hashes = elf_sym_hashes (abfd);
5237 sreloc = NULL;
5238 opd_sym_map = NULL;
5239 if (ppc64_elf_section_data (sec) != NULL
5240 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5241 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5242
5243 rel_end = relocs + sec->reloc_count;
5244 for (rel = relocs; rel < rel_end; rel++)
5245 {
5246 unsigned long r_symndx;
5247 struct elf_link_hash_entry *h;
5248 enum elf_ppc64_reloc_type r_type;
5249 int tls_type;
5250 struct _ppc64_elf_section_data *ppc64_sec;
5251 struct plt_entry **ifunc;
5252
5253 r_symndx = ELF64_R_SYM (rel->r_info);
5254 if (r_symndx < symtab_hdr->sh_info)
5255 h = NULL;
5256 else
5257 {
5258 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5259 h = elf_follow_link (h);
5260
5261 /* PR15323, ref flags aren't set for references in the same
5262 object. */
5263 h->root.non_ir_ref = 1;
5264
5265 if (h == htab->elf.hgot)
5266 sec->has_toc_reloc = 1;
5267 }
5268
5269 tls_type = 0;
5270 ifunc = NULL;
5271 if (h != NULL)
5272 {
5273 if (h->type == STT_GNU_IFUNC)
5274 {
5275 h->needs_plt = 1;
5276 ifunc = &h->plt.plist;
5277 }
5278 }
5279 else
5280 {
5281 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5282 abfd, r_symndx);
5283 if (isym == NULL)
5284 return FALSE;
5285
5286 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5287 {
5288 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5289 rel->r_addend, PLT_IFUNC);
5290 if (ifunc == NULL)
5291 return FALSE;
5292 }
5293 }
5294 r_type = ELF64_R_TYPE (rel->r_info);
5295 if (is_branch_reloc (r_type))
5296 {
5297 if (h != NULL && (h == tga || h == dottga))
5298 {
5299 if (rel != relocs
5300 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5301 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5302 /* We have a new-style __tls_get_addr call with a marker
5303 reloc. */
5304 ;
5305 else
5306 /* Mark this section as having an old-style call. */
5307 sec->has_tls_get_addr_call = 1;
5308 }
5309
5310 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5311 if (ifunc != NULL
5312 && !update_plt_info (abfd, ifunc, rel->r_addend))
5313 return FALSE;
5314 }
5315
5316 switch (r_type)
5317 {
5318 case R_PPC64_TLSGD:
5319 case R_PPC64_TLSLD:
5320 /* These special tls relocs tie a call to __tls_get_addr with
5321 its parameter symbol. */
5322 break;
5323
5324 case R_PPC64_GOT_TLSLD16:
5325 case R_PPC64_GOT_TLSLD16_LO:
5326 case R_PPC64_GOT_TLSLD16_HI:
5327 case R_PPC64_GOT_TLSLD16_HA:
5328 tls_type = TLS_TLS | TLS_LD;
5329 goto dogottls;
5330
5331 case R_PPC64_GOT_TLSGD16:
5332 case R_PPC64_GOT_TLSGD16_LO:
5333 case R_PPC64_GOT_TLSGD16_HI:
5334 case R_PPC64_GOT_TLSGD16_HA:
5335 tls_type = TLS_TLS | TLS_GD;
5336 goto dogottls;
5337
5338 case R_PPC64_GOT_TPREL16_DS:
5339 case R_PPC64_GOT_TPREL16_LO_DS:
5340 case R_PPC64_GOT_TPREL16_HI:
5341 case R_PPC64_GOT_TPREL16_HA:
5342 if (info->shared)
5343 info->flags |= DF_STATIC_TLS;
5344 tls_type = TLS_TLS | TLS_TPREL;
5345 goto dogottls;
5346
5347 case R_PPC64_GOT_DTPREL16_DS:
5348 case R_PPC64_GOT_DTPREL16_LO_DS:
5349 case R_PPC64_GOT_DTPREL16_HI:
5350 case R_PPC64_GOT_DTPREL16_HA:
5351 tls_type = TLS_TLS | TLS_DTPREL;
5352 dogottls:
5353 sec->has_tls_reloc = 1;
5354 /* Fall thru */
5355
5356 case R_PPC64_GOT16:
5357 case R_PPC64_GOT16_DS:
5358 case R_PPC64_GOT16_HA:
5359 case R_PPC64_GOT16_HI:
5360 case R_PPC64_GOT16_LO:
5361 case R_PPC64_GOT16_LO_DS:
5362 /* This symbol requires a global offset table entry. */
5363 sec->has_toc_reloc = 1;
5364 if (r_type == R_PPC64_GOT_TLSLD16
5365 || r_type == R_PPC64_GOT_TLSGD16
5366 || r_type == R_PPC64_GOT_TPREL16_DS
5367 || r_type == R_PPC64_GOT_DTPREL16_DS
5368 || r_type == R_PPC64_GOT16
5369 || r_type == R_PPC64_GOT16_DS)
5370 {
5371 htab->do_multi_toc = 1;
5372 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5373 }
5374
5375 if (ppc64_elf_tdata (abfd)->got == NULL
5376 && !create_got_section (abfd, info))
5377 return FALSE;
5378
5379 if (h != NULL)
5380 {
5381 struct ppc_link_hash_entry *eh;
5382 struct got_entry *ent;
5383
5384 eh = (struct ppc_link_hash_entry *) h;
5385 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5386 if (ent->addend == rel->r_addend
5387 && ent->owner == abfd
5388 && ent->tls_type == tls_type)
5389 break;
5390 if (ent == NULL)
5391 {
5392 bfd_size_type amt = sizeof (*ent);
5393 ent = bfd_alloc (abfd, amt);
5394 if (ent == NULL)
5395 return FALSE;
5396 ent->next = eh->elf.got.glist;
5397 ent->addend = rel->r_addend;
5398 ent->owner = abfd;
5399 ent->tls_type = tls_type;
5400 ent->is_indirect = FALSE;
5401 ent->got.refcount = 0;
5402 eh->elf.got.glist = ent;
5403 }
5404 ent->got.refcount += 1;
5405 eh->tls_mask |= tls_type;
5406 }
5407 else
5408 /* This is a global offset table entry for a local symbol. */
5409 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5410 rel->r_addend, tls_type))
5411 return FALSE;
5412
5413 /* We may also need a plt entry if the symbol turns out to be
5414 an ifunc. */
5415 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5416 {
5417 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5418 return FALSE;
5419 }
5420 break;
5421
5422 case R_PPC64_PLT16_HA:
5423 case R_PPC64_PLT16_HI:
5424 case R_PPC64_PLT16_LO:
5425 case R_PPC64_PLT32:
5426 case R_PPC64_PLT64:
5427 /* This symbol requires a procedure linkage table entry. We
5428 actually build the entry in adjust_dynamic_symbol,
5429 because this might be a case of linking PIC code without
5430 linking in any dynamic objects, in which case we don't
5431 need to generate a procedure linkage table after all. */
5432 if (h == NULL)
5433 {
5434 /* It does not make sense to have a procedure linkage
5435 table entry for a local symbol. */
5436 bfd_set_error (bfd_error_bad_value);
5437 return FALSE;
5438 }
5439 else
5440 {
5441 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5442 return FALSE;
5443 h->needs_plt = 1;
5444 if (h->root.root.string[0] == '.'
5445 && h->root.root.string[1] != '\0')
5446 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5447 }
5448 break;
5449
5450 /* The following relocations don't need to propagate the
5451 relocation if linking a shared object since they are
5452 section relative. */
5453 case R_PPC64_SECTOFF:
5454 case R_PPC64_SECTOFF_LO:
5455 case R_PPC64_SECTOFF_HI:
5456 case R_PPC64_SECTOFF_HA:
5457 case R_PPC64_SECTOFF_DS:
5458 case R_PPC64_SECTOFF_LO_DS:
5459 case R_PPC64_DTPREL16:
5460 case R_PPC64_DTPREL16_LO:
5461 case R_PPC64_DTPREL16_HI:
5462 case R_PPC64_DTPREL16_HA:
5463 case R_PPC64_DTPREL16_DS:
5464 case R_PPC64_DTPREL16_LO_DS:
5465 case R_PPC64_DTPREL16_HIGH:
5466 case R_PPC64_DTPREL16_HIGHA:
5467 case R_PPC64_DTPREL16_HIGHER:
5468 case R_PPC64_DTPREL16_HIGHERA:
5469 case R_PPC64_DTPREL16_HIGHEST:
5470 case R_PPC64_DTPREL16_HIGHESTA:
5471 break;
5472
5473 /* Nor do these. */
5474 case R_PPC64_REL16:
5475 case R_PPC64_REL16_LO:
5476 case R_PPC64_REL16_HI:
5477 case R_PPC64_REL16_HA:
5478 break;
5479
5480 /* Not supported as a dynamic relocation. */
5481 case R_PPC64_ADDR64_LOCAL:
5482 if (info->shared)
5483 {
5484 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5485 ppc_howto_init ();
5486 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5487 "in shared libraries and PIEs.\n"),
5488 abfd, sec, rel->r_offset,
5489 ppc64_elf_howto_table[r_type]->name);
5490 bfd_set_error (bfd_error_bad_value);
5491 return FALSE;
5492 }
5493 break;
5494
5495 case R_PPC64_TOC16:
5496 case R_PPC64_TOC16_DS:
5497 htab->do_multi_toc = 1;
5498 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5499 case R_PPC64_TOC16_LO:
5500 case R_PPC64_TOC16_HI:
5501 case R_PPC64_TOC16_HA:
5502 case R_PPC64_TOC16_LO_DS:
5503 sec->has_toc_reloc = 1;
5504 break;
5505
5506 /* This relocation describes the C++ object vtable hierarchy.
5507 Reconstruct it for later use during GC. */
5508 case R_PPC64_GNU_VTINHERIT:
5509 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5510 return FALSE;
5511 break;
5512
5513 /* This relocation describes which C++ vtable entries are actually
5514 used. Record for later use during GC. */
5515 case R_PPC64_GNU_VTENTRY:
5516 BFD_ASSERT (h != NULL);
5517 if (h != NULL
5518 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5519 return FALSE;
5520 break;
5521
5522 case R_PPC64_REL14:
5523 case R_PPC64_REL14_BRTAKEN:
5524 case R_PPC64_REL14_BRNTAKEN:
5525 {
5526 asection *dest = NULL;
5527
5528 /* Heuristic: If jumping outside our section, chances are
5529 we are going to need a stub. */
5530 if (h != NULL)
5531 {
5532 /* If the sym is weak it may be overridden later, so
5533 don't assume we know where a weak sym lives. */
5534 if (h->root.type == bfd_link_hash_defined)
5535 dest = h->root.u.def.section;
5536 }
5537 else
5538 {
5539 Elf_Internal_Sym *isym;
5540
5541 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5542 abfd, r_symndx);
5543 if (isym == NULL)
5544 return FALSE;
5545
5546 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5547 }
5548
5549 if (dest != sec)
5550 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5551 }
5552 /* Fall through. */
5553
5554 case R_PPC64_REL24:
5555 if (h != NULL && ifunc == NULL)
5556 {
5557 /* We may need a .plt entry if the function this reloc
5558 refers to is in a shared lib. */
5559 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5560 return FALSE;
5561 h->needs_plt = 1;
5562 if (h->root.root.string[0] == '.'
5563 && h->root.root.string[1] != '\0')
5564 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5565 if (h == tga || h == dottga)
5566 sec->has_tls_reloc = 1;
5567 }
5568 break;
5569
5570 case R_PPC64_TPREL64:
5571 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5572 if (info->shared)
5573 info->flags |= DF_STATIC_TLS;
5574 goto dotlstoc;
5575
5576 case R_PPC64_DTPMOD64:
5577 if (rel + 1 < rel_end
5578 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5579 && rel[1].r_offset == rel->r_offset + 8)
5580 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5581 else
5582 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5583 goto dotlstoc;
5584
5585 case R_PPC64_DTPREL64:
5586 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5587 if (rel != relocs
5588 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5589 && rel[-1].r_offset == rel->r_offset - 8)
5590 /* This is the second reloc of a dtpmod, dtprel pair.
5591 Don't mark with TLS_DTPREL. */
5592 goto dodyn;
5593
5594 dotlstoc:
5595 sec->has_tls_reloc = 1;
5596 if (h != NULL)
5597 {
5598 struct ppc_link_hash_entry *eh;
5599 eh = (struct ppc_link_hash_entry *) h;
5600 eh->tls_mask |= tls_type;
5601 }
5602 else
5603 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5604 rel->r_addend, tls_type))
5605 return FALSE;
5606
5607 ppc64_sec = ppc64_elf_section_data (sec);
5608 if (ppc64_sec->sec_type != sec_toc)
5609 {
5610 bfd_size_type amt;
5611
5612 /* One extra to simplify get_tls_mask. */
5613 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5614 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5615 if (ppc64_sec->u.toc.symndx == NULL)
5616 return FALSE;
5617 amt = sec->size * sizeof (bfd_vma) / 8;
5618 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5619 if (ppc64_sec->u.toc.add == NULL)
5620 return FALSE;
5621 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5622 ppc64_sec->sec_type = sec_toc;
5623 }
5624 BFD_ASSERT (rel->r_offset % 8 == 0);
5625 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5626 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5627
5628 /* Mark the second slot of a GD or LD entry.
5629 -1 to indicate GD and -2 to indicate LD. */
5630 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5631 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5632 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5633 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5634 goto dodyn;
5635
5636 case R_PPC64_TPREL16:
5637 case R_PPC64_TPREL16_LO:
5638 case R_PPC64_TPREL16_HI:
5639 case R_PPC64_TPREL16_HA:
5640 case R_PPC64_TPREL16_DS:
5641 case R_PPC64_TPREL16_LO_DS:
5642 case R_PPC64_TPREL16_HIGH:
5643 case R_PPC64_TPREL16_HIGHA:
5644 case R_PPC64_TPREL16_HIGHER:
5645 case R_PPC64_TPREL16_HIGHERA:
5646 case R_PPC64_TPREL16_HIGHEST:
5647 case R_PPC64_TPREL16_HIGHESTA:
5648 if (info->shared)
5649 {
5650 info->flags |= DF_STATIC_TLS;
5651 goto dodyn;
5652 }
5653 break;
5654
5655 case R_PPC64_ADDR64:
5656 if (opd_sym_map != NULL
5657 && rel + 1 < rel_end
5658 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5659 {
5660 if (h != NULL)
5661 {
5662 if (h->root.root.string[0] == '.'
5663 && h->root.root.string[1] != 0
5664 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5665 ;
5666 else
5667 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5668 }
5669 else
5670 {
5671 asection *s;
5672 Elf_Internal_Sym *isym;
5673
5674 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5675 abfd, r_symndx);
5676 if (isym == NULL)
5677 return FALSE;
5678
5679 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5680 if (s != NULL && s != sec)
5681 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5682 }
5683 }
5684 /* Fall through. */
5685
5686 case R_PPC64_ADDR16:
5687 case R_PPC64_ADDR16_DS:
5688 case R_PPC64_ADDR16_HA:
5689 case R_PPC64_ADDR16_HI:
5690 case R_PPC64_ADDR16_HIGH:
5691 case R_PPC64_ADDR16_HIGHA:
5692 case R_PPC64_ADDR16_HIGHER:
5693 case R_PPC64_ADDR16_HIGHERA:
5694 case R_PPC64_ADDR16_HIGHEST:
5695 case R_PPC64_ADDR16_HIGHESTA:
5696 case R_PPC64_ADDR16_LO:
5697 case R_PPC64_ADDR16_LO_DS:
5698 if (h != NULL && !info->shared && abiversion (abfd) != 1
5699 && rel->r_addend == 0)
5700 {
5701 /* We may need a .plt entry if this reloc refers to a
5702 function in a shared lib. */
5703 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5704 return FALSE;
5705 h->pointer_equality_needed = 1;
5706 }
5707 /* Fall through. */
5708
5709 case R_PPC64_REL30:
5710 case R_PPC64_REL32:
5711 case R_PPC64_REL64:
5712 case R_PPC64_ADDR14:
5713 case R_PPC64_ADDR14_BRNTAKEN:
5714 case R_PPC64_ADDR14_BRTAKEN:
5715 case R_PPC64_ADDR24:
5716 case R_PPC64_ADDR32:
5717 case R_PPC64_UADDR16:
5718 case R_PPC64_UADDR32:
5719 case R_PPC64_UADDR64:
5720 case R_PPC64_TOC:
5721 if (h != NULL && !info->shared)
5722 /* We may need a copy reloc. */
5723 h->non_got_ref = 1;
5724
5725 /* Don't propagate .opd relocs. */
5726 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5727 break;
5728
5729 /* If we are creating a shared library, and this is a reloc
5730 against a global symbol, or a non PC relative reloc
5731 against a local symbol, then we need to copy the reloc
5732 into the shared library. However, if we are linking with
5733 -Bsymbolic, we do not need to copy a reloc against a
5734 global symbol which is defined in an object we are
5735 including in the link (i.e., DEF_REGULAR is set). At
5736 this point we have not seen all the input files, so it is
5737 possible that DEF_REGULAR is not set now but will be set
5738 later (it is never cleared). In case of a weak definition,
5739 DEF_REGULAR may be cleared later by a strong definition in
5740 a shared library. We account for that possibility below by
5741 storing information in the dyn_relocs field of the hash
5742 table entry. A similar situation occurs when creating
5743 shared libraries and symbol visibility changes render the
5744 symbol local.
5745
5746 If on the other hand, we are creating an executable, we
5747 may need to keep relocations for symbols satisfied by a
5748 dynamic library if we manage to avoid copy relocs for the
5749 symbol. */
5750 dodyn:
5751 if ((info->shared
5752 && (must_be_dyn_reloc (info, r_type)
5753 || (h != NULL
5754 && (!SYMBOLIC_BIND (info, h)
5755 || h->root.type == bfd_link_hash_defweak
5756 || !h->def_regular))))
5757 || (ELIMINATE_COPY_RELOCS
5758 && !info->shared
5759 && h != NULL
5760 && (h->root.type == bfd_link_hash_defweak
5761 || !h->def_regular))
5762 || (!info->shared
5763 && ifunc != NULL))
5764 {
5765 /* We must copy these reloc types into the output file.
5766 Create a reloc section in dynobj and make room for
5767 this reloc. */
5768 if (sreloc == NULL)
5769 {
5770 sreloc = _bfd_elf_make_dynamic_reloc_section
5771 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5772
5773 if (sreloc == NULL)
5774 return FALSE;
5775 }
5776
5777 /* If this is a global symbol, we count the number of
5778 relocations we need for this symbol. */
5779 if (h != NULL)
5780 {
5781 struct elf_dyn_relocs *p;
5782 struct elf_dyn_relocs **head;
5783
5784 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5785 p = *head;
5786 if (p == NULL || p->sec != sec)
5787 {
5788 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5789 if (p == NULL)
5790 return FALSE;
5791 p->next = *head;
5792 *head = p;
5793 p->sec = sec;
5794 p->count = 0;
5795 p->pc_count = 0;
5796 }
5797 p->count += 1;
5798 if (!must_be_dyn_reloc (info, r_type))
5799 p->pc_count += 1;
5800 }
5801 else
5802 {
5803 /* Track dynamic relocs needed for local syms too.
5804 We really need local syms available to do this
5805 easily. Oh well. */
5806 struct ppc_dyn_relocs *p;
5807 struct ppc_dyn_relocs **head;
5808 bfd_boolean is_ifunc;
5809 asection *s;
5810 void *vpp;
5811 Elf_Internal_Sym *isym;
5812
5813 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5814 abfd, r_symndx);
5815 if (isym == NULL)
5816 return FALSE;
5817
5818 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5819 if (s == NULL)
5820 s = sec;
5821
5822 vpp = &elf_section_data (s)->local_dynrel;
5823 head = (struct ppc_dyn_relocs **) vpp;
5824 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5825 p = *head;
5826 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5827 p = p->next;
5828 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5829 {
5830 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5831 if (p == NULL)
5832 return FALSE;
5833 p->next = *head;
5834 *head = p;
5835 p->sec = sec;
5836 p->ifunc = is_ifunc;
5837 p->count = 0;
5838 }
5839 p->count += 1;
5840 }
5841 }
5842 break;
5843
5844 default:
5845 break;
5846 }
5847 }
5848
5849 return TRUE;
5850 }
5851
5852 /* Merge backend specific data from an object file to the output
5853 object file when linking. */
5854
5855 static bfd_boolean
5856 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5857 {
5858 unsigned long iflags, oflags;
5859
5860 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5861 return TRUE;
5862
5863 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5864 return TRUE;
5865
5866 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5867 return FALSE;
5868
5869 iflags = elf_elfheader (ibfd)->e_flags;
5870 oflags = elf_elfheader (obfd)->e_flags;
5871
5872 if (iflags & ~EF_PPC64_ABI)
5873 {
5874 (*_bfd_error_handler)
5875 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5876 bfd_set_error (bfd_error_bad_value);
5877 return FALSE;
5878 }
5879 else if (iflags != oflags && iflags != 0)
5880 {
5881 (*_bfd_error_handler)
5882 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5883 ibfd, iflags, oflags);
5884 bfd_set_error (bfd_error_bad_value);
5885 return FALSE;
5886 }
5887
5888 /* Merge Tag_compatibility attributes and any common GNU ones. */
5889 _bfd_elf_merge_object_attributes (ibfd, obfd);
5890
5891 return TRUE;
5892 }
5893
5894 static bfd_boolean
5895 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5896 {
5897 /* Print normal ELF private data. */
5898 _bfd_elf_print_private_bfd_data (abfd, ptr);
5899
5900 if (elf_elfheader (abfd)->e_flags != 0)
5901 {
5902 FILE *file = ptr;
5903
5904 /* xgettext:c-format */
5905 fprintf (file, _("private flags = 0x%lx:"),
5906 elf_elfheader (abfd)->e_flags);
5907
5908 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5909 fprintf (file, _(" [abiv%ld]"),
5910 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5911 fputc ('\n', file);
5912 }
5913
5914 return TRUE;
5915 }
5916
5917 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5918 of the code entry point, and its section, which must be in the same
5919 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5920
5921 static bfd_vma
5922 opd_entry_value (asection *opd_sec,
5923 bfd_vma offset,
5924 asection **code_sec,
5925 bfd_vma *code_off,
5926 bfd_boolean in_code_sec)
5927 {
5928 bfd *opd_bfd = opd_sec->owner;
5929 Elf_Internal_Rela *relocs;
5930 Elf_Internal_Rela *lo, *hi, *look;
5931 bfd_vma val;
5932
5933 /* No relocs implies we are linking a --just-symbols object, or looking
5934 at a final linked executable with addr2line or somesuch. */
5935 if (opd_sec->reloc_count == 0)
5936 {
5937 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5938
5939 if (contents == NULL)
5940 {
5941 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5942 return (bfd_vma) -1;
5943 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5944 }
5945
5946 val = bfd_get_64 (opd_bfd, contents + offset);
5947 if (code_sec != NULL)
5948 {
5949 asection *sec, *likely = NULL;
5950
5951 if (in_code_sec)
5952 {
5953 sec = *code_sec;
5954 if (sec->vma <= val
5955 && val < sec->vma + sec->size)
5956 likely = sec;
5957 else
5958 val = -1;
5959 }
5960 else
5961 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5962 if (sec->vma <= val
5963 && (sec->flags & SEC_LOAD) != 0
5964 && (sec->flags & SEC_ALLOC) != 0)
5965 likely = sec;
5966 if (likely != NULL)
5967 {
5968 *code_sec = likely;
5969 if (code_off != NULL)
5970 *code_off = val - likely->vma;
5971 }
5972 }
5973 return val;
5974 }
5975
5976 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5977
5978 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5979 if (relocs == NULL)
5980 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5981
5982 /* Go find the opd reloc at the sym address. */
5983 lo = relocs;
5984 BFD_ASSERT (lo != NULL);
5985 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5986 val = (bfd_vma) -1;
5987 while (lo < hi)
5988 {
5989 look = lo + (hi - lo) / 2;
5990 if (look->r_offset < offset)
5991 lo = look + 1;
5992 else if (look->r_offset > offset)
5993 hi = look;
5994 else
5995 {
5996 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5997
5998 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5999 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6000 {
6001 unsigned long symndx = ELF64_R_SYM (look->r_info);
6002 asection *sec = NULL;
6003
6004 if (symndx >= symtab_hdr->sh_info
6005 && elf_sym_hashes (opd_bfd) != NULL)
6006 {
6007 struct elf_link_hash_entry **sym_hashes;
6008 struct elf_link_hash_entry *rh;
6009
6010 sym_hashes = elf_sym_hashes (opd_bfd);
6011 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6012 if (rh != NULL)
6013 {
6014 rh = elf_follow_link (rh);
6015 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6016 || rh->root.type == bfd_link_hash_defweak);
6017 val = rh->root.u.def.value;
6018 sec = rh->root.u.def.section;
6019 if (sec->owner != opd_bfd)
6020 {
6021 sec = NULL;
6022 val = (bfd_vma) -1;
6023 }
6024 }
6025 }
6026
6027 if (sec == NULL)
6028 {
6029 Elf_Internal_Sym *sym;
6030
6031 if (symndx < symtab_hdr->sh_info)
6032 {
6033 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6034 if (sym == NULL)
6035 {
6036 size_t symcnt = symtab_hdr->sh_info;
6037 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6038 symcnt, 0,
6039 NULL, NULL, NULL);
6040 if (sym == NULL)
6041 break;
6042 symtab_hdr->contents = (bfd_byte *) sym;
6043 }
6044 sym += symndx;
6045 }
6046 else
6047 {
6048 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6049 1, symndx,
6050 NULL, NULL, NULL);
6051 if (sym == NULL)
6052 break;
6053 }
6054 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6055 if (sec == NULL)
6056 break;
6057 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6058 val = sym->st_value;
6059 }
6060
6061 val += look->r_addend;
6062 if (code_off != NULL)
6063 *code_off = val;
6064 if (code_sec != NULL)
6065 {
6066 if (in_code_sec && *code_sec != sec)
6067 return -1;
6068 else
6069 *code_sec = sec;
6070 }
6071 if (sec->output_section != NULL)
6072 val += sec->output_section->vma + sec->output_offset;
6073 }
6074 break;
6075 }
6076 }
6077
6078 return val;
6079 }
6080
6081 /* If the ELF symbol SYM might be a function in SEC, return the
6082 function size and set *CODE_OFF to the function's entry point,
6083 otherwise return zero. */
6084
6085 static bfd_size_type
6086 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6087 bfd_vma *code_off)
6088 {
6089 bfd_size_type size;
6090
6091 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6092 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6093 return 0;
6094
6095 size = 0;
6096 if (!(sym->flags & BSF_SYNTHETIC))
6097 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6098
6099 if (strcmp (sym->section->name, ".opd") == 0)
6100 {
6101 if (opd_entry_value (sym->section, sym->value,
6102 &sec, code_off, TRUE) == (bfd_vma) -1)
6103 return 0;
6104 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6105 symbol. This size has nothing to do with the code size of the
6106 function, which is what we're supposed to return, but the
6107 code size isn't available without looking up the dot-sym.
6108 However, doing that would be a waste of time particularly
6109 since elf_find_function will look at the dot-sym anyway.
6110 Now, elf_find_function will keep the largest size of any
6111 function sym found at the code address of interest, so return
6112 1 here to avoid it incorrectly caching a larger function size
6113 for a small function. This does mean we return the wrong
6114 size for a new-ABI function of size 24, but all that does is
6115 disable caching for such functions. */
6116 if (size == 24)
6117 size = 1;
6118 }
6119 else
6120 {
6121 if (sym->section != sec)
6122 return 0;
6123 *code_off = sym->value;
6124 }
6125 if (size == 0)
6126 size = 1;
6127 return size;
6128 }
6129
6130 /* Return true if symbol is defined in a regular object file. */
6131
6132 static bfd_boolean
6133 is_static_defined (struct elf_link_hash_entry *h)
6134 {
6135 return ((h->root.type == bfd_link_hash_defined
6136 || h->root.type == bfd_link_hash_defweak)
6137 && h->root.u.def.section != NULL
6138 && h->root.u.def.section->output_section != NULL);
6139 }
6140
6141 /* If FDH is a function descriptor symbol, return the associated code
6142 entry symbol if it is defined. Return NULL otherwise. */
6143
6144 static struct ppc_link_hash_entry *
6145 defined_code_entry (struct ppc_link_hash_entry *fdh)
6146 {
6147 if (fdh->is_func_descriptor)
6148 {
6149 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6150 if (fh->elf.root.type == bfd_link_hash_defined
6151 || fh->elf.root.type == bfd_link_hash_defweak)
6152 return fh;
6153 }
6154 return NULL;
6155 }
6156
6157 /* If FH is a function code entry symbol, return the associated
6158 function descriptor symbol if it is defined. Return NULL otherwise. */
6159
6160 static struct ppc_link_hash_entry *
6161 defined_func_desc (struct ppc_link_hash_entry *fh)
6162 {
6163 if (fh->oh != NULL
6164 && fh->oh->is_func_descriptor)
6165 {
6166 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6167 if (fdh->elf.root.type == bfd_link_hash_defined
6168 || fdh->elf.root.type == bfd_link_hash_defweak)
6169 return fdh;
6170 }
6171 return NULL;
6172 }
6173
6174 /* Mark all our entry sym sections, both opd and code section. */
6175
6176 static void
6177 ppc64_elf_gc_keep (struct bfd_link_info *info)
6178 {
6179 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6180 struct bfd_sym_chain *sym;
6181
6182 if (htab == NULL)
6183 return;
6184
6185 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6186 {
6187 struct ppc_link_hash_entry *eh, *fh;
6188 asection *sec;
6189
6190 eh = (struct ppc_link_hash_entry *)
6191 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6192 if (eh == NULL)
6193 continue;
6194 if (eh->elf.root.type != bfd_link_hash_defined
6195 && eh->elf.root.type != bfd_link_hash_defweak)
6196 continue;
6197
6198 fh = defined_code_entry (eh);
6199 if (fh != NULL)
6200 {
6201 sec = fh->elf.root.u.def.section;
6202 sec->flags |= SEC_KEEP;
6203 }
6204 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6205 && opd_entry_value (eh->elf.root.u.def.section,
6206 eh->elf.root.u.def.value,
6207 &sec, NULL, FALSE) != (bfd_vma) -1)
6208 sec->flags |= SEC_KEEP;
6209
6210 sec = eh->elf.root.u.def.section;
6211 sec->flags |= SEC_KEEP;
6212 }
6213 }
6214
6215 /* Mark sections containing dynamically referenced symbols. When
6216 building shared libraries, we must assume that any visible symbol is
6217 referenced. */
6218
6219 static bfd_boolean
6220 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6221 {
6222 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6223 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6224 struct ppc_link_hash_entry *fdh;
6225 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6226
6227 /* Dynamic linking info is on the func descriptor sym. */
6228 fdh = defined_func_desc (eh);
6229 if (fdh != NULL)
6230 eh = fdh;
6231
6232 if ((eh->elf.root.type == bfd_link_hash_defined
6233 || eh->elf.root.type == bfd_link_hash_defweak)
6234 && (eh->elf.ref_dynamic
6235 || (eh->elf.def_regular
6236 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6237 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6238 && (!info->executable
6239 || info->export_dynamic
6240 || (eh->elf.dynamic
6241 && d != NULL
6242 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6243 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6244 || !bfd_hide_sym_by_version (info->version_info,
6245 eh->elf.root.root.string)))))
6246 {
6247 asection *code_sec;
6248 struct ppc_link_hash_entry *fh;
6249
6250 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6251
6252 /* Function descriptor syms cause the associated
6253 function code sym section to be marked. */
6254 fh = defined_code_entry (eh);
6255 if (fh != NULL)
6256 {
6257 code_sec = fh->elf.root.u.def.section;
6258 code_sec->flags |= SEC_KEEP;
6259 }
6260 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6261 && opd_entry_value (eh->elf.root.u.def.section,
6262 eh->elf.root.u.def.value,
6263 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6264 code_sec->flags |= SEC_KEEP;
6265 }
6266
6267 return TRUE;
6268 }
6269
6270 /* Return the section that should be marked against GC for a given
6271 relocation. */
6272
6273 static asection *
6274 ppc64_elf_gc_mark_hook (asection *sec,
6275 struct bfd_link_info *info,
6276 Elf_Internal_Rela *rel,
6277 struct elf_link_hash_entry *h,
6278 Elf_Internal_Sym *sym)
6279 {
6280 asection *rsec;
6281
6282 /* Syms return NULL if we're marking .opd, so we avoid marking all
6283 function sections, as all functions are referenced in .opd. */
6284 rsec = NULL;
6285 if (get_opd_info (sec) != NULL)
6286 return rsec;
6287
6288 if (h != NULL)
6289 {
6290 enum elf_ppc64_reloc_type r_type;
6291 struct ppc_link_hash_entry *eh, *fh, *fdh;
6292
6293 r_type = ELF64_R_TYPE (rel->r_info);
6294 switch (r_type)
6295 {
6296 case R_PPC64_GNU_VTINHERIT:
6297 case R_PPC64_GNU_VTENTRY:
6298 break;
6299
6300 default:
6301 switch (h->root.type)
6302 {
6303 case bfd_link_hash_defined:
6304 case bfd_link_hash_defweak:
6305 eh = (struct ppc_link_hash_entry *) h;
6306 fdh = defined_func_desc (eh);
6307 if (fdh != NULL)
6308 eh = fdh;
6309
6310 /* Function descriptor syms cause the associated
6311 function code sym section to be marked. */
6312 fh = defined_code_entry (eh);
6313 if (fh != NULL)
6314 {
6315 /* They also mark their opd section. */
6316 eh->elf.root.u.def.section->gc_mark = 1;
6317
6318 rsec = fh->elf.root.u.def.section;
6319 }
6320 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6321 && opd_entry_value (eh->elf.root.u.def.section,
6322 eh->elf.root.u.def.value,
6323 &rsec, NULL, FALSE) != (bfd_vma) -1)
6324 eh->elf.root.u.def.section->gc_mark = 1;
6325 else
6326 rsec = h->root.u.def.section;
6327 break;
6328
6329 case bfd_link_hash_common:
6330 rsec = h->root.u.c.p->section;
6331 break;
6332
6333 default:
6334 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6335 }
6336 }
6337 }
6338 else
6339 {
6340 struct _opd_sec_data *opd;
6341
6342 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6343 opd = get_opd_info (rsec);
6344 if (opd != NULL && opd->func_sec != NULL)
6345 {
6346 rsec->gc_mark = 1;
6347
6348 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6349 }
6350 }
6351
6352 return rsec;
6353 }
6354
6355 /* Update the .got, .plt. and dynamic reloc reference counts for the
6356 section being removed. */
6357
6358 static bfd_boolean
6359 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6360 asection *sec, const Elf_Internal_Rela *relocs)
6361 {
6362 struct ppc_link_hash_table *htab;
6363 Elf_Internal_Shdr *symtab_hdr;
6364 struct elf_link_hash_entry **sym_hashes;
6365 struct got_entry **local_got_ents;
6366 const Elf_Internal_Rela *rel, *relend;
6367
6368 if (info->relocatable)
6369 return TRUE;
6370
6371 if ((sec->flags & SEC_ALLOC) == 0)
6372 return TRUE;
6373
6374 elf_section_data (sec)->local_dynrel = NULL;
6375
6376 htab = ppc_hash_table (info);
6377 if (htab == NULL)
6378 return FALSE;
6379
6380 symtab_hdr = &elf_symtab_hdr (abfd);
6381 sym_hashes = elf_sym_hashes (abfd);
6382 local_got_ents = elf_local_got_ents (abfd);
6383
6384 relend = relocs + sec->reloc_count;
6385 for (rel = relocs; rel < relend; rel++)
6386 {
6387 unsigned long r_symndx;
6388 enum elf_ppc64_reloc_type r_type;
6389 struct elf_link_hash_entry *h = NULL;
6390 unsigned char tls_type = 0;
6391
6392 r_symndx = ELF64_R_SYM (rel->r_info);
6393 r_type = ELF64_R_TYPE (rel->r_info);
6394 if (r_symndx >= symtab_hdr->sh_info)
6395 {
6396 struct ppc_link_hash_entry *eh;
6397 struct elf_dyn_relocs **pp;
6398 struct elf_dyn_relocs *p;
6399
6400 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6401 h = elf_follow_link (h);
6402 eh = (struct ppc_link_hash_entry *) h;
6403
6404 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6405 if (p->sec == sec)
6406 {
6407 /* Everything must go for SEC. */
6408 *pp = p->next;
6409 break;
6410 }
6411 }
6412
6413 if (is_branch_reloc (r_type))
6414 {
6415 struct plt_entry **ifunc = NULL;
6416 if (h != NULL)
6417 {
6418 if (h->type == STT_GNU_IFUNC)
6419 ifunc = &h->plt.plist;
6420 }
6421 else if (local_got_ents != NULL)
6422 {
6423 struct plt_entry **local_plt = (struct plt_entry **)
6424 (local_got_ents + symtab_hdr->sh_info);
6425 unsigned char *local_got_tls_masks = (unsigned char *)
6426 (local_plt + symtab_hdr->sh_info);
6427 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6428 ifunc = local_plt + r_symndx;
6429 }
6430 if (ifunc != NULL)
6431 {
6432 struct plt_entry *ent;
6433
6434 for (ent = *ifunc; ent != NULL; ent = ent->next)
6435 if (ent->addend == rel->r_addend)
6436 break;
6437 if (ent == NULL)
6438 abort ();
6439 if (ent->plt.refcount > 0)
6440 ent->plt.refcount -= 1;
6441 continue;
6442 }
6443 }
6444
6445 switch (r_type)
6446 {
6447 case R_PPC64_GOT_TLSLD16:
6448 case R_PPC64_GOT_TLSLD16_LO:
6449 case R_PPC64_GOT_TLSLD16_HI:
6450 case R_PPC64_GOT_TLSLD16_HA:
6451 tls_type = TLS_TLS | TLS_LD;
6452 goto dogot;
6453
6454 case R_PPC64_GOT_TLSGD16:
6455 case R_PPC64_GOT_TLSGD16_LO:
6456 case R_PPC64_GOT_TLSGD16_HI:
6457 case R_PPC64_GOT_TLSGD16_HA:
6458 tls_type = TLS_TLS | TLS_GD;
6459 goto dogot;
6460
6461 case R_PPC64_GOT_TPREL16_DS:
6462 case R_PPC64_GOT_TPREL16_LO_DS:
6463 case R_PPC64_GOT_TPREL16_HI:
6464 case R_PPC64_GOT_TPREL16_HA:
6465 tls_type = TLS_TLS | TLS_TPREL;
6466 goto dogot;
6467
6468 case R_PPC64_GOT_DTPREL16_DS:
6469 case R_PPC64_GOT_DTPREL16_LO_DS:
6470 case R_PPC64_GOT_DTPREL16_HI:
6471 case R_PPC64_GOT_DTPREL16_HA:
6472 tls_type = TLS_TLS | TLS_DTPREL;
6473 goto dogot;
6474
6475 case R_PPC64_GOT16:
6476 case R_PPC64_GOT16_DS:
6477 case R_PPC64_GOT16_HA:
6478 case R_PPC64_GOT16_HI:
6479 case R_PPC64_GOT16_LO:
6480 case R_PPC64_GOT16_LO_DS:
6481 dogot:
6482 {
6483 struct got_entry *ent;
6484
6485 if (h != NULL)
6486 ent = h->got.glist;
6487 else
6488 ent = local_got_ents[r_symndx];
6489
6490 for (; ent != NULL; ent = ent->next)
6491 if (ent->addend == rel->r_addend
6492 && ent->owner == abfd
6493 && ent->tls_type == tls_type)
6494 break;
6495 if (ent == NULL)
6496 abort ();
6497 if (ent->got.refcount > 0)
6498 ent->got.refcount -= 1;
6499 }
6500 break;
6501
6502 case R_PPC64_PLT16_HA:
6503 case R_PPC64_PLT16_HI:
6504 case R_PPC64_PLT16_LO:
6505 case R_PPC64_PLT32:
6506 case R_PPC64_PLT64:
6507 case R_PPC64_REL14:
6508 case R_PPC64_REL14_BRNTAKEN:
6509 case R_PPC64_REL14_BRTAKEN:
6510 case R_PPC64_REL24:
6511 if (h != NULL)
6512 {
6513 struct plt_entry *ent;
6514
6515 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6516 if (ent->addend == rel->r_addend)
6517 break;
6518 if (ent != NULL && ent->plt.refcount > 0)
6519 ent->plt.refcount -= 1;
6520 }
6521 break;
6522
6523 default:
6524 break;
6525 }
6526 }
6527 return TRUE;
6528 }
6529
6530 /* The maximum size of .sfpr. */
6531 #define SFPR_MAX (218*4)
6532
6533 struct sfpr_def_parms
6534 {
6535 const char name[12];
6536 unsigned char lo, hi;
6537 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6538 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6539 };
6540
6541 /* Auto-generate _save*, _rest* functions in .sfpr. */
6542
6543 static bfd_boolean
6544 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6545 {
6546 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6547 unsigned int i;
6548 size_t len = strlen (parm->name);
6549 bfd_boolean writing = FALSE;
6550 char sym[16];
6551
6552 if (htab == NULL)
6553 return FALSE;
6554
6555 memcpy (sym, parm->name, len);
6556 sym[len + 2] = 0;
6557
6558 for (i = parm->lo; i <= parm->hi; i++)
6559 {
6560 struct elf_link_hash_entry *h;
6561
6562 sym[len + 0] = i / 10 + '0';
6563 sym[len + 1] = i % 10 + '0';
6564 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6565 if (h != NULL
6566 && !h->def_regular)
6567 {
6568 h->root.type = bfd_link_hash_defined;
6569 h->root.u.def.section = htab->sfpr;
6570 h->root.u.def.value = htab->sfpr->size;
6571 h->type = STT_FUNC;
6572 h->def_regular = 1;
6573 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6574 writing = TRUE;
6575 if (htab->sfpr->contents == NULL)
6576 {
6577 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6578 if (htab->sfpr->contents == NULL)
6579 return FALSE;
6580 }
6581 }
6582 if (writing)
6583 {
6584 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6585 if (i != parm->hi)
6586 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6587 else
6588 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6589 htab->sfpr->size = p - htab->sfpr->contents;
6590 }
6591 }
6592
6593 return TRUE;
6594 }
6595
6596 static bfd_byte *
6597 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6598 {
6599 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6600 return p + 4;
6601 }
6602
6603 static bfd_byte *
6604 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6605 {
6606 p = savegpr0 (abfd, p, r);
6607 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6608 p = p + 4;
6609 bfd_put_32 (abfd, BLR, p);
6610 return p + 4;
6611 }
6612
6613 static bfd_byte *
6614 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6615 {
6616 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6617 return p + 4;
6618 }
6619
6620 static bfd_byte *
6621 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6622 {
6623 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6624 p = p + 4;
6625 p = restgpr0 (abfd, p, r);
6626 bfd_put_32 (abfd, MTLR_R0, p);
6627 p = p + 4;
6628 if (r == 29)
6629 {
6630 p = restgpr0 (abfd, p, 30);
6631 p = restgpr0 (abfd, p, 31);
6632 }
6633 bfd_put_32 (abfd, BLR, p);
6634 return p + 4;
6635 }
6636
6637 static bfd_byte *
6638 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6639 {
6640 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6641 return p + 4;
6642 }
6643
6644 static bfd_byte *
6645 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6646 {
6647 p = savegpr1 (abfd, p, r);
6648 bfd_put_32 (abfd, BLR, p);
6649 return p + 4;
6650 }
6651
6652 static bfd_byte *
6653 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6654 {
6655 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6656 return p + 4;
6657 }
6658
6659 static bfd_byte *
6660 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6661 {
6662 p = restgpr1 (abfd, p, r);
6663 bfd_put_32 (abfd, BLR, p);
6664 return p + 4;
6665 }
6666
6667 static bfd_byte *
6668 savefpr (bfd *abfd, bfd_byte *p, int r)
6669 {
6670 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6671 return p + 4;
6672 }
6673
6674 static bfd_byte *
6675 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6676 {
6677 p = savefpr (abfd, p, r);
6678 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6679 p = p + 4;
6680 bfd_put_32 (abfd, BLR, p);
6681 return p + 4;
6682 }
6683
6684 static bfd_byte *
6685 restfpr (bfd *abfd, bfd_byte *p, int r)
6686 {
6687 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6688 return p + 4;
6689 }
6690
6691 static bfd_byte *
6692 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6693 {
6694 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6695 p = p + 4;
6696 p = restfpr (abfd, p, r);
6697 bfd_put_32 (abfd, MTLR_R0, p);
6698 p = p + 4;
6699 if (r == 29)
6700 {
6701 p = restfpr (abfd, p, 30);
6702 p = restfpr (abfd, p, 31);
6703 }
6704 bfd_put_32 (abfd, BLR, p);
6705 return p + 4;
6706 }
6707
6708 static bfd_byte *
6709 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6710 {
6711 p = savefpr (abfd, p, r);
6712 bfd_put_32 (abfd, BLR, p);
6713 return p + 4;
6714 }
6715
6716 static bfd_byte *
6717 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6718 {
6719 p = restfpr (abfd, p, r);
6720 bfd_put_32 (abfd, BLR, p);
6721 return p + 4;
6722 }
6723
6724 static bfd_byte *
6725 savevr (bfd *abfd, bfd_byte *p, int r)
6726 {
6727 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6728 p = p + 4;
6729 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6730 return p + 4;
6731 }
6732
6733 static bfd_byte *
6734 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6735 {
6736 p = savevr (abfd, p, r);
6737 bfd_put_32 (abfd, BLR, p);
6738 return p + 4;
6739 }
6740
6741 static bfd_byte *
6742 restvr (bfd *abfd, bfd_byte *p, int r)
6743 {
6744 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6745 p = p + 4;
6746 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6747 return p + 4;
6748 }
6749
6750 static bfd_byte *
6751 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6752 {
6753 p = restvr (abfd, p, r);
6754 bfd_put_32 (abfd, BLR, p);
6755 return p + 4;
6756 }
6757
6758 /* Called via elf_link_hash_traverse to transfer dynamic linking
6759 information on function code symbol entries to their corresponding
6760 function descriptor symbol entries. */
6761
6762 static bfd_boolean
6763 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6764 {
6765 struct bfd_link_info *info;
6766 struct ppc_link_hash_table *htab;
6767 struct plt_entry *ent;
6768 struct ppc_link_hash_entry *fh;
6769 struct ppc_link_hash_entry *fdh;
6770 bfd_boolean force_local;
6771
6772 fh = (struct ppc_link_hash_entry *) h;
6773 if (fh->elf.root.type == bfd_link_hash_indirect)
6774 return TRUE;
6775
6776 info = inf;
6777 htab = ppc_hash_table (info);
6778 if (htab == NULL)
6779 return FALSE;
6780
6781 /* Resolve undefined references to dot-symbols as the value
6782 in the function descriptor, if we have one in a regular object.
6783 This is to satisfy cases like ".quad .foo". Calls to functions
6784 in dynamic objects are handled elsewhere. */
6785 if (fh->elf.root.type == bfd_link_hash_undefweak
6786 && fh->was_undefined
6787 && (fdh = defined_func_desc (fh)) != NULL
6788 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6789 && opd_entry_value (fdh->elf.root.u.def.section,
6790 fdh->elf.root.u.def.value,
6791 &fh->elf.root.u.def.section,
6792 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6793 {
6794 fh->elf.root.type = fdh->elf.root.type;
6795 fh->elf.forced_local = 1;
6796 fh->elf.def_regular = fdh->elf.def_regular;
6797 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6798 }
6799
6800 /* If this is a function code symbol, transfer dynamic linking
6801 information to the function descriptor symbol. */
6802 if (!fh->is_func)
6803 return TRUE;
6804
6805 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6806 if (ent->plt.refcount > 0)
6807 break;
6808 if (ent == NULL
6809 || fh->elf.root.root.string[0] != '.'
6810 || fh->elf.root.root.string[1] == '\0')
6811 return TRUE;
6812
6813 /* Find the corresponding function descriptor symbol. Create it
6814 as undefined if necessary. */
6815
6816 fdh = lookup_fdh (fh, htab);
6817 if (fdh == NULL
6818 && !info->executable
6819 && (fh->elf.root.type == bfd_link_hash_undefined
6820 || fh->elf.root.type == bfd_link_hash_undefweak))
6821 {
6822 fdh = make_fdh (info, fh);
6823 if (fdh == NULL)
6824 return FALSE;
6825 }
6826
6827 /* Fake function descriptors are made undefweak. If the function
6828 code symbol is strong undefined, make the fake sym the same.
6829 If the function code symbol is defined, then force the fake
6830 descriptor local; We can't support overriding of symbols in a
6831 shared library on a fake descriptor. */
6832
6833 if (fdh != NULL
6834 && fdh->fake
6835 && fdh->elf.root.type == bfd_link_hash_undefweak)
6836 {
6837 if (fh->elf.root.type == bfd_link_hash_undefined)
6838 {
6839 fdh->elf.root.type = bfd_link_hash_undefined;
6840 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6841 }
6842 else if (fh->elf.root.type == bfd_link_hash_defined
6843 || fh->elf.root.type == bfd_link_hash_defweak)
6844 {
6845 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6846 }
6847 }
6848
6849 if (fdh != NULL
6850 && !fdh->elf.forced_local
6851 && (!info->executable
6852 || fdh->elf.def_dynamic
6853 || fdh->elf.ref_dynamic
6854 || (fdh->elf.root.type == bfd_link_hash_undefweak
6855 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6856 {
6857 if (fdh->elf.dynindx == -1)
6858 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6859 return FALSE;
6860 fdh->elf.ref_regular |= fh->elf.ref_regular;
6861 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6862 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6863 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6864 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6865 {
6866 move_plt_plist (fh, fdh);
6867 fdh->elf.needs_plt = 1;
6868 }
6869 fdh->is_func_descriptor = 1;
6870 fdh->oh = fh;
6871 fh->oh = fdh;
6872 }
6873
6874 /* Now that the info is on the function descriptor, clear the
6875 function code sym info. Any function code syms for which we
6876 don't have a definition in a regular file, we force local.
6877 This prevents a shared library from exporting syms that have
6878 been imported from another library. Function code syms that
6879 are really in the library we must leave global to prevent the
6880 linker dragging in a definition from a static library. */
6881 force_local = (!fh->elf.def_regular
6882 || fdh == NULL
6883 || !fdh->elf.def_regular
6884 || fdh->elf.forced_local);
6885 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6886
6887 return TRUE;
6888 }
6889
6890 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6891 this hook to a) provide some gcc support functions, and b) transfer
6892 dynamic linking information gathered so far on function code symbol
6893 entries, to their corresponding function descriptor symbol entries. */
6894
6895 static bfd_boolean
6896 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6897 struct bfd_link_info *info)
6898 {
6899 struct ppc_link_hash_table *htab;
6900 unsigned int i;
6901 static const struct sfpr_def_parms funcs[] =
6902 {
6903 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6904 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6905 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6906 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6907 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6908 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6909 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6910 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6911 { "._savef", 14, 31, savefpr, savefpr1_tail },
6912 { "._restf", 14, 31, restfpr, restfpr1_tail },
6913 { "_savevr_", 20, 31, savevr, savevr_tail },
6914 { "_restvr_", 20, 31, restvr, restvr_tail }
6915 };
6916
6917 htab = ppc_hash_table (info);
6918 if (htab == NULL)
6919 return FALSE;
6920
6921 if (!info->relocatable
6922 && htab->elf.hgot != NULL)
6923 {
6924 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6925 /* Make .TOC. defined so as to prevent it being made dynamic.
6926 The wrong value here is fixed later in ppc64_elf_set_toc. */
6927 htab->elf.hgot->type = STT_OBJECT;
6928 htab->elf.hgot->root.type = bfd_link_hash_defined;
6929 htab->elf.hgot->root.u.def.value = 0;
6930 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6931 htab->elf.hgot->def_regular = 1;
6932 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6933 | STV_HIDDEN);
6934 }
6935
6936 if (htab->sfpr == NULL)
6937 /* We don't have any relocs. */
6938 return TRUE;
6939
6940 /* Provide any missing _save* and _rest* functions. */
6941 htab->sfpr->size = 0;
6942 if (htab->params->save_restore_funcs)
6943 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6944 if (!sfpr_define (info, &funcs[i]))
6945 return FALSE;
6946
6947 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6948
6949 if (htab->sfpr->size == 0)
6950 htab->sfpr->flags |= SEC_EXCLUDE;
6951
6952 return TRUE;
6953 }
6954
6955 /* Return true if we have dynamic relocs that apply to read-only sections. */
6956
6957 static bfd_boolean
6958 readonly_dynrelocs (struct elf_link_hash_entry *h)
6959 {
6960 struct ppc_link_hash_entry *eh;
6961 struct elf_dyn_relocs *p;
6962
6963 eh = (struct ppc_link_hash_entry *) h;
6964 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6965 {
6966 asection *s = p->sec->output_section;
6967
6968 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6969 return TRUE;
6970 }
6971 return FALSE;
6972 }
6973
6974 /* Adjust a symbol defined by a dynamic object and referenced by a
6975 regular object. The current definition is in some section of the
6976 dynamic object, but we're not including those sections. We have to
6977 change the definition to something the rest of the link can
6978 understand. */
6979
6980 static bfd_boolean
6981 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6982 struct elf_link_hash_entry *h)
6983 {
6984 struct ppc_link_hash_table *htab;
6985 asection *s;
6986
6987 htab = ppc_hash_table (info);
6988 if (htab == NULL)
6989 return FALSE;
6990
6991 /* Deal with function syms. */
6992 if (h->type == STT_FUNC
6993 || h->type == STT_GNU_IFUNC
6994 || h->needs_plt)
6995 {
6996 /* Clear procedure linkage table information for any symbol that
6997 won't need a .plt entry. */
6998 struct plt_entry *ent;
6999 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7000 if (ent->plt.refcount > 0)
7001 break;
7002 if (ent == NULL
7003 || (h->type != STT_GNU_IFUNC
7004 && (SYMBOL_CALLS_LOCAL (info, h)
7005 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7006 && h->root.type == bfd_link_hash_undefweak))))
7007 {
7008 h->plt.plist = NULL;
7009 h->needs_plt = 0;
7010 h->pointer_equality_needed = 0;
7011 }
7012 else if (abiversion (info->output_bfd) == 2)
7013 {
7014 /* Taking a function's address in a read/write section
7015 doesn't require us to define the function symbol in the
7016 executable on a global entry stub. A dynamic reloc can
7017 be used instead. */
7018 if (h->pointer_equality_needed
7019 && h->type != STT_GNU_IFUNC
7020 && !readonly_dynrelocs (h))
7021 {
7022 h->pointer_equality_needed = 0;
7023 h->non_got_ref = 0;
7024 }
7025
7026 /* After adjust_dynamic_symbol, non_got_ref set in the
7027 non-shared case means that we have allocated space in
7028 .dynbss for the symbol and thus dyn_relocs for this
7029 symbol should be discarded.
7030 If we get here we know we are making a PLT entry for this
7031 symbol, and in an executable we'd normally resolve
7032 relocations against this symbol to the PLT entry. Allow
7033 dynamic relocs if the reference is weak, and the dynamic
7034 relocs will not cause text relocation. */
7035 else if (!h->ref_regular_nonweak
7036 && h->non_got_ref
7037 && h->type != STT_GNU_IFUNC
7038 && !readonly_dynrelocs (h))
7039 h->non_got_ref = 0;
7040
7041 /* If making a plt entry, then we don't need copy relocs. */
7042 return TRUE;
7043 }
7044 }
7045 else
7046 h->plt.plist = NULL;
7047
7048 /* If this is a weak symbol, and there is a real definition, the
7049 processor independent code will have arranged for us to see the
7050 real definition first, and we can just use the same value. */
7051 if (h->u.weakdef != NULL)
7052 {
7053 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7054 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7055 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7056 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7057 if (ELIMINATE_COPY_RELOCS)
7058 h->non_got_ref = h->u.weakdef->non_got_ref;
7059 return TRUE;
7060 }
7061
7062 /* If we are creating a shared library, we must presume that the
7063 only references to the symbol are via the global offset table.
7064 For such cases we need not do anything here; the relocations will
7065 be handled correctly by relocate_section. */
7066 if (info->shared)
7067 return TRUE;
7068
7069 /* If there are no references to this symbol that do not use the
7070 GOT, we don't need to generate a copy reloc. */
7071 if (!h->non_got_ref)
7072 return TRUE;
7073
7074 /* Don't generate a copy reloc for symbols defined in the executable. */
7075 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7076 return TRUE;
7077
7078 /* If we didn't find any dynamic relocs in read-only sections, then
7079 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7080 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7081 {
7082 h->non_got_ref = 0;
7083 return TRUE;
7084 }
7085
7086 if (h->plt.plist != NULL)
7087 {
7088 /* We should never get here, but unfortunately there are versions
7089 of gcc out there that improperly (for this ABI) put initialized
7090 function pointers, vtable refs and suchlike in read-only
7091 sections. Allow them to proceed, but warn that this might
7092 break at runtime. */
7093 info->callbacks->einfo
7094 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7095 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7096 h->root.root.string);
7097 }
7098
7099 /* This is a reference to a symbol defined by a dynamic object which
7100 is not a function. */
7101
7102 /* We must allocate the symbol in our .dynbss section, which will
7103 become part of the .bss section of the executable. There will be
7104 an entry for this symbol in the .dynsym section. The dynamic
7105 object will contain position independent code, so all references
7106 from the dynamic object to this symbol will go through the global
7107 offset table. The dynamic linker will use the .dynsym entry to
7108 determine the address it must put in the global offset table, so
7109 both the dynamic object and the regular object will refer to the
7110 same memory location for the variable. */
7111
7112 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7113 to copy the initial value out of the dynamic object and into the
7114 runtime process image. We need to remember the offset into the
7115 .rela.bss section we are going to use. */
7116 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7117 {
7118 htab->relbss->size += sizeof (Elf64_External_Rela);
7119 h->needs_copy = 1;
7120 }
7121
7122 s = htab->dynbss;
7123
7124 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7125 }
7126
7127 /* If given a function descriptor symbol, hide both the function code
7128 sym and the descriptor. */
7129 static void
7130 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7131 struct elf_link_hash_entry *h,
7132 bfd_boolean force_local)
7133 {
7134 struct ppc_link_hash_entry *eh;
7135 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7136
7137 eh = (struct ppc_link_hash_entry *) h;
7138 if (eh->is_func_descriptor)
7139 {
7140 struct ppc_link_hash_entry *fh = eh->oh;
7141
7142 if (fh == NULL)
7143 {
7144 const char *p, *q;
7145 struct ppc_link_hash_table *htab;
7146 char save;
7147
7148 /* We aren't supposed to use alloca in BFD because on
7149 systems which do not have alloca the version in libiberty
7150 calls xmalloc, which might cause the program to crash
7151 when it runs out of memory. This function doesn't have a
7152 return status, so there's no way to gracefully return an
7153 error. So cheat. We know that string[-1] can be safely
7154 accessed; It's either a string in an ELF string table,
7155 or allocated in an objalloc structure. */
7156
7157 p = eh->elf.root.root.string - 1;
7158 save = *p;
7159 *(char *) p = '.';
7160 htab = ppc_hash_table (info);
7161 if (htab == NULL)
7162 return;
7163
7164 fh = (struct ppc_link_hash_entry *)
7165 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7166 *(char *) p = save;
7167
7168 /* Unfortunately, if it so happens that the string we were
7169 looking for was allocated immediately before this string,
7170 then we overwrote the string terminator. That's the only
7171 reason the lookup should fail. */
7172 if (fh == NULL)
7173 {
7174 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7175 while (q >= eh->elf.root.root.string && *q == *p)
7176 --q, --p;
7177 if (q < eh->elf.root.root.string && *p == '.')
7178 fh = (struct ppc_link_hash_entry *)
7179 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7180 }
7181 if (fh != NULL)
7182 {
7183 eh->oh = fh;
7184 fh->oh = eh;
7185 }
7186 }
7187 if (fh != NULL)
7188 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7189 }
7190 }
7191
7192 static bfd_boolean
7193 get_sym_h (struct elf_link_hash_entry **hp,
7194 Elf_Internal_Sym **symp,
7195 asection **symsecp,
7196 unsigned char **tls_maskp,
7197 Elf_Internal_Sym **locsymsp,
7198 unsigned long r_symndx,
7199 bfd *ibfd)
7200 {
7201 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7202
7203 if (r_symndx >= symtab_hdr->sh_info)
7204 {
7205 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7206 struct elf_link_hash_entry *h;
7207
7208 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7209 h = elf_follow_link (h);
7210
7211 if (hp != NULL)
7212 *hp = h;
7213
7214 if (symp != NULL)
7215 *symp = NULL;
7216
7217 if (symsecp != NULL)
7218 {
7219 asection *symsec = NULL;
7220 if (h->root.type == bfd_link_hash_defined
7221 || h->root.type == bfd_link_hash_defweak)
7222 symsec = h->root.u.def.section;
7223 *symsecp = symsec;
7224 }
7225
7226 if (tls_maskp != NULL)
7227 {
7228 struct ppc_link_hash_entry *eh;
7229
7230 eh = (struct ppc_link_hash_entry *) h;
7231 *tls_maskp = &eh->tls_mask;
7232 }
7233 }
7234 else
7235 {
7236 Elf_Internal_Sym *sym;
7237 Elf_Internal_Sym *locsyms = *locsymsp;
7238
7239 if (locsyms == NULL)
7240 {
7241 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7242 if (locsyms == NULL)
7243 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7244 symtab_hdr->sh_info,
7245 0, NULL, NULL, NULL);
7246 if (locsyms == NULL)
7247 return FALSE;
7248 *locsymsp = locsyms;
7249 }
7250 sym = locsyms + r_symndx;
7251
7252 if (hp != NULL)
7253 *hp = NULL;
7254
7255 if (symp != NULL)
7256 *symp = sym;
7257
7258 if (symsecp != NULL)
7259 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7260
7261 if (tls_maskp != NULL)
7262 {
7263 struct got_entry **lgot_ents;
7264 unsigned char *tls_mask;
7265
7266 tls_mask = NULL;
7267 lgot_ents = elf_local_got_ents (ibfd);
7268 if (lgot_ents != NULL)
7269 {
7270 struct plt_entry **local_plt = (struct plt_entry **)
7271 (lgot_ents + symtab_hdr->sh_info);
7272 unsigned char *lgot_masks = (unsigned char *)
7273 (local_plt + symtab_hdr->sh_info);
7274 tls_mask = &lgot_masks[r_symndx];
7275 }
7276 *tls_maskp = tls_mask;
7277 }
7278 }
7279 return TRUE;
7280 }
7281
7282 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7283 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7284 type suitable for optimization, and 1 otherwise. */
7285
7286 static int
7287 get_tls_mask (unsigned char **tls_maskp,
7288 unsigned long *toc_symndx,
7289 bfd_vma *toc_addend,
7290 Elf_Internal_Sym **locsymsp,
7291 const Elf_Internal_Rela *rel,
7292 bfd *ibfd)
7293 {
7294 unsigned long r_symndx;
7295 int next_r;
7296 struct elf_link_hash_entry *h;
7297 Elf_Internal_Sym *sym;
7298 asection *sec;
7299 bfd_vma off;
7300
7301 r_symndx = ELF64_R_SYM (rel->r_info);
7302 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7303 return 0;
7304
7305 if ((*tls_maskp != NULL && **tls_maskp != 0)
7306 || sec == NULL
7307 || ppc64_elf_section_data (sec) == NULL
7308 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7309 return 1;
7310
7311 /* Look inside a TOC section too. */
7312 if (h != NULL)
7313 {
7314 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7315 off = h->root.u.def.value;
7316 }
7317 else
7318 off = sym->st_value;
7319 off += rel->r_addend;
7320 BFD_ASSERT (off % 8 == 0);
7321 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7322 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7323 if (toc_symndx != NULL)
7324 *toc_symndx = r_symndx;
7325 if (toc_addend != NULL)
7326 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7327 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7328 return 0;
7329 if ((h == NULL || is_static_defined (h))
7330 && (next_r == -1 || next_r == -2))
7331 return 1 - next_r;
7332 return 1;
7333 }
7334
7335 /* Find (or create) an entry in the tocsave hash table. */
7336
7337 static struct tocsave_entry *
7338 tocsave_find (struct ppc_link_hash_table *htab,
7339 enum insert_option insert,
7340 Elf_Internal_Sym **local_syms,
7341 const Elf_Internal_Rela *irela,
7342 bfd *ibfd)
7343 {
7344 unsigned long r_indx;
7345 struct elf_link_hash_entry *h;
7346 Elf_Internal_Sym *sym;
7347 struct tocsave_entry ent, *p;
7348 hashval_t hash;
7349 struct tocsave_entry **slot;
7350
7351 r_indx = ELF64_R_SYM (irela->r_info);
7352 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7353 return NULL;
7354 if (ent.sec == NULL || ent.sec->output_section == NULL)
7355 {
7356 (*_bfd_error_handler)
7357 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7358 return NULL;
7359 }
7360
7361 if (h != NULL)
7362 ent.offset = h->root.u.def.value;
7363 else
7364 ent.offset = sym->st_value;
7365 ent.offset += irela->r_addend;
7366
7367 hash = tocsave_htab_hash (&ent);
7368 slot = ((struct tocsave_entry **)
7369 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7370 if (slot == NULL)
7371 return NULL;
7372
7373 if (*slot == NULL)
7374 {
7375 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7376 if (p == NULL)
7377 return NULL;
7378 *p = ent;
7379 *slot = p;
7380 }
7381 return *slot;
7382 }
7383
7384 /* Adjust all global syms defined in opd sections. In gcc generated
7385 code for the old ABI, these will already have been done. */
7386
7387 static bfd_boolean
7388 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7389 {
7390 struct ppc_link_hash_entry *eh;
7391 asection *sym_sec;
7392 struct _opd_sec_data *opd;
7393
7394 if (h->root.type == bfd_link_hash_indirect)
7395 return TRUE;
7396
7397 if (h->root.type != bfd_link_hash_defined
7398 && h->root.type != bfd_link_hash_defweak)
7399 return TRUE;
7400
7401 eh = (struct ppc_link_hash_entry *) h;
7402 if (eh->adjust_done)
7403 return TRUE;
7404
7405 sym_sec = eh->elf.root.u.def.section;
7406 opd = get_opd_info (sym_sec);
7407 if (opd != NULL && opd->adjust != NULL)
7408 {
7409 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7410 if (adjust == -1)
7411 {
7412 /* This entry has been deleted. */
7413 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7414 if (dsec == NULL)
7415 {
7416 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7417 if (discarded_section (dsec))
7418 {
7419 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7420 break;
7421 }
7422 }
7423 eh->elf.root.u.def.value = 0;
7424 eh->elf.root.u.def.section = dsec;
7425 }
7426 else
7427 eh->elf.root.u.def.value += adjust;
7428 eh->adjust_done = 1;
7429 }
7430 return TRUE;
7431 }
7432
7433 /* Handles decrementing dynamic reloc counts for the reloc specified by
7434 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7435 have already been determined. */
7436
7437 static bfd_boolean
7438 dec_dynrel_count (bfd_vma r_info,
7439 asection *sec,
7440 struct bfd_link_info *info,
7441 Elf_Internal_Sym **local_syms,
7442 struct elf_link_hash_entry *h,
7443 Elf_Internal_Sym *sym)
7444 {
7445 enum elf_ppc64_reloc_type r_type;
7446 asection *sym_sec = NULL;
7447
7448 /* Can this reloc be dynamic? This switch, and later tests here
7449 should be kept in sync with the code in check_relocs. */
7450 r_type = ELF64_R_TYPE (r_info);
7451 switch (r_type)
7452 {
7453 default:
7454 return TRUE;
7455
7456 case R_PPC64_TPREL16:
7457 case R_PPC64_TPREL16_LO:
7458 case R_PPC64_TPREL16_HI:
7459 case R_PPC64_TPREL16_HA:
7460 case R_PPC64_TPREL16_DS:
7461 case R_PPC64_TPREL16_LO_DS:
7462 case R_PPC64_TPREL16_HIGH:
7463 case R_PPC64_TPREL16_HIGHA:
7464 case R_PPC64_TPREL16_HIGHER:
7465 case R_PPC64_TPREL16_HIGHERA:
7466 case R_PPC64_TPREL16_HIGHEST:
7467 case R_PPC64_TPREL16_HIGHESTA:
7468 if (!info->shared)
7469 return TRUE;
7470
7471 case R_PPC64_TPREL64:
7472 case R_PPC64_DTPMOD64:
7473 case R_PPC64_DTPREL64:
7474 case R_PPC64_ADDR64:
7475 case R_PPC64_REL30:
7476 case R_PPC64_REL32:
7477 case R_PPC64_REL64:
7478 case R_PPC64_ADDR14:
7479 case R_PPC64_ADDR14_BRNTAKEN:
7480 case R_PPC64_ADDR14_BRTAKEN:
7481 case R_PPC64_ADDR16:
7482 case R_PPC64_ADDR16_DS:
7483 case R_PPC64_ADDR16_HA:
7484 case R_PPC64_ADDR16_HI:
7485 case R_PPC64_ADDR16_HIGH:
7486 case R_PPC64_ADDR16_HIGHA:
7487 case R_PPC64_ADDR16_HIGHER:
7488 case R_PPC64_ADDR16_HIGHERA:
7489 case R_PPC64_ADDR16_HIGHEST:
7490 case R_PPC64_ADDR16_HIGHESTA:
7491 case R_PPC64_ADDR16_LO:
7492 case R_PPC64_ADDR16_LO_DS:
7493 case R_PPC64_ADDR24:
7494 case R_PPC64_ADDR32:
7495 case R_PPC64_UADDR16:
7496 case R_PPC64_UADDR32:
7497 case R_PPC64_UADDR64:
7498 case R_PPC64_TOC:
7499 break;
7500 }
7501
7502 if (local_syms != NULL)
7503 {
7504 unsigned long r_symndx;
7505 bfd *ibfd = sec->owner;
7506
7507 r_symndx = ELF64_R_SYM (r_info);
7508 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7509 return FALSE;
7510 }
7511
7512 if ((info->shared
7513 && (must_be_dyn_reloc (info, r_type)
7514 || (h != NULL
7515 && (!SYMBOLIC_BIND (info, h)
7516 || h->root.type == bfd_link_hash_defweak
7517 || !h->def_regular))))
7518 || (ELIMINATE_COPY_RELOCS
7519 && !info->shared
7520 && h != NULL
7521 && (h->root.type == bfd_link_hash_defweak
7522 || !h->def_regular)))
7523 ;
7524 else
7525 return TRUE;
7526
7527 if (h != NULL)
7528 {
7529 struct elf_dyn_relocs *p;
7530 struct elf_dyn_relocs **pp;
7531 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7532
7533 /* elf_gc_sweep may have already removed all dyn relocs associated
7534 with local syms for a given section. Also, symbol flags are
7535 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7536 report a dynreloc miscount. */
7537 if (*pp == NULL && info->gc_sections)
7538 return TRUE;
7539
7540 while ((p = *pp) != NULL)
7541 {
7542 if (p->sec == sec)
7543 {
7544 if (!must_be_dyn_reloc (info, r_type))
7545 p->pc_count -= 1;
7546 p->count -= 1;
7547 if (p->count == 0)
7548 *pp = p->next;
7549 return TRUE;
7550 }
7551 pp = &p->next;
7552 }
7553 }
7554 else
7555 {
7556 struct ppc_dyn_relocs *p;
7557 struct ppc_dyn_relocs **pp;
7558 void *vpp;
7559 bfd_boolean is_ifunc;
7560
7561 if (local_syms == NULL)
7562 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7563 if (sym_sec == NULL)
7564 sym_sec = sec;
7565
7566 vpp = &elf_section_data (sym_sec)->local_dynrel;
7567 pp = (struct ppc_dyn_relocs **) vpp;
7568
7569 if (*pp == NULL && info->gc_sections)
7570 return TRUE;
7571
7572 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7573 while ((p = *pp) != NULL)
7574 {
7575 if (p->sec == sec && p->ifunc == is_ifunc)
7576 {
7577 p->count -= 1;
7578 if (p->count == 0)
7579 *pp = p->next;
7580 return TRUE;
7581 }
7582 pp = &p->next;
7583 }
7584 }
7585
7586 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7587 sec->owner, sec);
7588 bfd_set_error (bfd_error_bad_value);
7589 return FALSE;
7590 }
7591
7592 /* Remove unused Official Procedure Descriptor entries. Currently we
7593 only remove those associated with functions in discarded link-once
7594 sections, or weakly defined functions that have been overridden. It
7595 would be possible to remove many more entries for statically linked
7596 applications. */
7597
7598 bfd_boolean
7599 ppc64_elf_edit_opd (struct bfd_link_info *info)
7600 {
7601 bfd *ibfd;
7602 bfd_boolean some_edited = FALSE;
7603 asection *need_pad = NULL;
7604 struct ppc_link_hash_table *htab;
7605
7606 htab = ppc_hash_table (info);
7607 if (htab == NULL)
7608 return FALSE;
7609
7610 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7611 {
7612 asection *sec;
7613 Elf_Internal_Rela *relstart, *rel, *relend;
7614 Elf_Internal_Shdr *symtab_hdr;
7615 Elf_Internal_Sym *local_syms;
7616 struct _opd_sec_data *opd;
7617 bfd_boolean need_edit, add_aux_fields, broken;
7618 bfd_size_type cnt_16b = 0;
7619
7620 if (!is_ppc64_elf (ibfd))
7621 continue;
7622
7623 sec = bfd_get_section_by_name (ibfd, ".opd");
7624 if (sec == NULL || sec->size == 0)
7625 continue;
7626
7627 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7628 continue;
7629
7630 if (sec->output_section == bfd_abs_section_ptr)
7631 continue;
7632
7633 /* Look through the section relocs. */
7634 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7635 continue;
7636
7637 local_syms = NULL;
7638 symtab_hdr = &elf_symtab_hdr (ibfd);
7639
7640 /* Read the relocations. */
7641 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7642 info->keep_memory);
7643 if (relstart == NULL)
7644 return FALSE;
7645
7646 /* First run through the relocs to check they are sane, and to
7647 determine whether we need to edit this opd section. */
7648 need_edit = FALSE;
7649 broken = FALSE;
7650 need_pad = sec;
7651 relend = relstart + sec->reloc_count;
7652 for (rel = relstart; rel < relend; )
7653 {
7654 enum elf_ppc64_reloc_type r_type;
7655 unsigned long r_symndx;
7656 asection *sym_sec;
7657 struct elf_link_hash_entry *h;
7658 Elf_Internal_Sym *sym;
7659 bfd_vma offset;
7660
7661 /* .opd contains an array of 16 or 24 byte entries. We're
7662 only interested in the reloc pointing to a function entry
7663 point. */
7664 offset = rel->r_offset;
7665 if (rel + 1 == relend
7666 || rel[1].r_offset != offset + 8)
7667 {
7668 /* If someone messes with .opd alignment then after a
7669 "ld -r" we might have padding in the middle of .opd.
7670 Also, there's nothing to prevent someone putting
7671 something silly in .opd with the assembler. No .opd
7672 optimization for them! */
7673 broken_opd:
7674 (*_bfd_error_handler)
7675 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7676 broken = TRUE;
7677 break;
7678 }
7679
7680 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7681 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7682 {
7683 (*_bfd_error_handler)
7684 (_("%B: unexpected reloc type %u in .opd section"),
7685 ibfd, r_type);
7686 broken = TRUE;
7687 break;
7688 }
7689
7690 r_symndx = ELF64_R_SYM (rel->r_info);
7691 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7692 r_symndx, ibfd))
7693 goto error_ret;
7694
7695 if (sym_sec == NULL || sym_sec->owner == NULL)
7696 {
7697 const char *sym_name;
7698 if (h != NULL)
7699 sym_name = h->root.root.string;
7700 else
7701 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7702 sym_sec);
7703
7704 (*_bfd_error_handler)
7705 (_("%B: undefined sym `%s' in .opd section"),
7706 ibfd, sym_name);
7707 broken = TRUE;
7708 break;
7709 }
7710
7711 /* opd entries are always for functions defined in the
7712 current input bfd. If the symbol isn't defined in the
7713 input bfd, then we won't be using the function in this
7714 bfd; It must be defined in a linkonce section in another
7715 bfd, or is weak. It's also possible that we are
7716 discarding the function due to a linker script /DISCARD/,
7717 which we test for via the output_section. */
7718 if (sym_sec->owner != ibfd
7719 || sym_sec->output_section == bfd_abs_section_ptr)
7720 need_edit = TRUE;
7721
7722 rel += 2;
7723 if (rel + 1 == relend
7724 || (rel + 2 < relend
7725 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7726 ++rel;
7727
7728 if (rel == relend)
7729 {
7730 if (sec->size == offset + 24)
7731 {
7732 need_pad = NULL;
7733 break;
7734 }
7735 if (sec->size == offset + 16)
7736 {
7737 cnt_16b++;
7738 break;
7739 }
7740 goto broken_opd;
7741 }
7742 else if (rel + 1 < relend
7743 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7744 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7745 {
7746 if (rel[0].r_offset == offset + 16)
7747 cnt_16b++;
7748 else if (rel[0].r_offset != offset + 24)
7749 goto broken_opd;
7750 }
7751 else
7752 goto broken_opd;
7753 }
7754
7755 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7756
7757 if (!broken && (need_edit || add_aux_fields))
7758 {
7759 Elf_Internal_Rela *write_rel;
7760 Elf_Internal_Shdr *rel_hdr;
7761 bfd_byte *rptr, *wptr;
7762 bfd_byte *new_contents;
7763 bfd_size_type amt;
7764
7765 new_contents = NULL;
7766 amt = OPD_NDX (sec->size) * sizeof (long);
7767 opd = &ppc64_elf_section_data (sec)->u.opd;
7768 opd->adjust = bfd_zalloc (sec->owner, amt);
7769 if (opd->adjust == NULL)
7770 return FALSE;
7771 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7772
7773 /* This seems a waste of time as input .opd sections are all
7774 zeros as generated by gcc, but I suppose there's no reason
7775 this will always be so. We might start putting something in
7776 the third word of .opd entries. */
7777 if ((sec->flags & SEC_IN_MEMORY) == 0)
7778 {
7779 bfd_byte *loc;
7780 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7781 {
7782 if (loc != NULL)
7783 free (loc);
7784 error_ret:
7785 if (local_syms != NULL
7786 && symtab_hdr->contents != (unsigned char *) local_syms)
7787 free (local_syms);
7788 if (elf_section_data (sec)->relocs != relstart)
7789 free (relstart);
7790 return FALSE;
7791 }
7792 sec->contents = loc;
7793 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7794 }
7795
7796 elf_section_data (sec)->relocs = relstart;
7797
7798 new_contents = sec->contents;
7799 if (add_aux_fields)
7800 {
7801 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7802 if (new_contents == NULL)
7803 return FALSE;
7804 need_pad = NULL;
7805 }
7806 wptr = new_contents;
7807 rptr = sec->contents;
7808 write_rel = relstart;
7809 for (rel = relstart; rel < relend; )
7810 {
7811 unsigned long r_symndx;
7812 asection *sym_sec;
7813 struct elf_link_hash_entry *h;
7814 struct ppc_link_hash_entry *fdh = NULL;
7815 Elf_Internal_Sym *sym;
7816 long opd_ent_size;
7817 Elf_Internal_Rela *next_rel;
7818 bfd_boolean skip;
7819
7820 r_symndx = ELF64_R_SYM (rel->r_info);
7821 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7822 r_symndx, ibfd))
7823 goto error_ret;
7824
7825 next_rel = rel + 2;
7826 if (next_rel + 1 == relend
7827 || (next_rel + 2 < relend
7828 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7829 ++next_rel;
7830
7831 /* See if the .opd entry is full 24 byte or
7832 16 byte (with fd_aux entry overlapped with next
7833 fd_func). */
7834 opd_ent_size = 24;
7835 if (next_rel == relend)
7836 {
7837 if (sec->size == rel->r_offset + 16)
7838 opd_ent_size = 16;
7839 }
7840 else if (next_rel->r_offset == rel->r_offset + 16)
7841 opd_ent_size = 16;
7842
7843 if (h != NULL
7844 && h->root.root.string[0] == '.')
7845 {
7846 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7847 if (fdh != NULL
7848 && fdh->elf.root.type != bfd_link_hash_defined
7849 && fdh->elf.root.type != bfd_link_hash_defweak)
7850 fdh = NULL;
7851 }
7852
7853 skip = (sym_sec->owner != ibfd
7854 || sym_sec->output_section == bfd_abs_section_ptr);
7855 if (skip)
7856 {
7857 if (fdh != NULL && sym_sec->owner == ibfd)
7858 {
7859 /* Arrange for the function descriptor sym
7860 to be dropped. */
7861 fdh->elf.root.u.def.value = 0;
7862 fdh->elf.root.u.def.section = sym_sec;
7863 }
7864 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7865
7866 if (NO_OPD_RELOCS || info->relocatable)
7867 rel = next_rel;
7868 else
7869 while (1)
7870 {
7871 if (!dec_dynrel_count (rel->r_info, sec, info,
7872 NULL, h, sym))
7873 goto error_ret;
7874
7875 if (++rel == next_rel)
7876 break;
7877
7878 r_symndx = ELF64_R_SYM (rel->r_info);
7879 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7880 r_symndx, ibfd))
7881 goto error_ret;
7882 }
7883 }
7884 else
7885 {
7886 /* We'll be keeping this opd entry. */
7887 long adjust;
7888
7889 if (fdh != NULL)
7890 {
7891 /* Redefine the function descriptor symbol to
7892 this location in the opd section. It is
7893 necessary to update the value here rather
7894 than using an array of adjustments as we do
7895 for local symbols, because various places
7896 in the generic ELF code use the value
7897 stored in u.def.value. */
7898 fdh->elf.root.u.def.value = wptr - new_contents;
7899 fdh->adjust_done = 1;
7900 }
7901
7902 /* Local syms are a bit tricky. We could
7903 tweak them as they can be cached, but
7904 we'd need to look through the local syms
7905 for the function descriptor sym which we
7906 don't have at the moment. So keep an
7907 array of adjustments. */
7908 adjust = (wptr - new_contents) - (rptr - sec->contents);
7909 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7910
7911 if (wptr != rptr)
7912 memcpy (wptr, rptr, opd_ent_size);
7913 wptr += opd_ent_size;
7914 if (add_aux_fields && opd_ent_size == 16)
7915 {
7916 memset (wptr, '\0', 8);
7917 wptr += 8;
7918 }
7919
7920 /* We need to adjust any reloc offsets to point to the
7921 new opd entries. */
7922 for ( ; rel != next_rel; ++rel)
7923 {
7924 rel->r_offset += adjust;
7925 if (write_rel != rel)
7926 memcpy (write_rel, rel, sizeof (*rel));
7927 ++write_rel;
7928 }
7929 }
7930
7931 rptr += opd_ent_size;
7932 }
7933
7934 sec->size = wptr - new_contents;
7935 sec->reloc_count = write_rel - relstart;
7936 if (add_aux_fields)
7937 {
7938 free (sec->contents);
7939 sec->contents = new_contents;
7940 }
7941
7942 /* Fudge the header size too, as this is used later in
7943 elf_bfd_final_link if we are emitting relocs. */
7944 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7945 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7946 some_edited = TRUE;
7947 }
7948 else if (elf_section_data (sec)->relocs != relstart)
7949 free (relstart);
7950
7951 if (local_syms != NULL
7952 && symtab_hdr->contents != (unsigned char *) local_syms)
7953 {
7954 if (!info->keep_memory)
7955 free (local_syms);
7956 else
7957 symtab_hdr->contents = (unsigned char *) local_syms;
7958 }
7959 }
7960
7961 if (some_edited)
7962 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7963
7964 /* If we are doing a final link and the last .opd entry is just 16 byte
7965 long, add a 8 byte padding after it. */
7966 if (need_pad != NULL && !info->relocatable)
7967 {
7968 bfd_byte *p;
7969
7970 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7971 {
7972 BFD_ASSERT (need_pad->size > 0);
7973
7974 p = bfd_malloc (need_pad->size + 8);
7975 if (p == NULL)
7976 return FALSE;
7977
7978 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7979 p, 0, need_pad->size))
7980 return FALSE;
7981
7982 need_pad->contents = p;
7983 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7984 }
7985 else
7986 {
7987 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7988 if (p == NULL)
7989 return FALSE;
7990
7991 need_pad->contents = p;
7992 }
7993
7994 memset (need_pad->contents + need_pad->size, 0, 8);
7995 need_pad->size += 8;
7996 }
7997
7998 return TRUE;
7999 }
8000
8001 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8002
8003 asection *
8004 ppc64_elf_tls_setup (struct bfd_link_info *info)
8005 {
8006 struct ppc_link_hash_table *htab;
8007
8008 htab = ppc_hash_table (info);
8009 if (htab == NULL)
8010 return NULL;
8011
8012 if (abiversion (info->output_bfd) == 1)
8013 htab->opd_abi = 1;
8014
8015 if (htab->params->no_multi_toc)
8016 htab->do_multi_toc = 0;
8017 else if (!htab->do_multi_toc)
8018 htab->params->no_multi_toc = 1;
8019
8020 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8021 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8022 FALSE, FALSE, TRUE));
8023 /* Move dynamic linking info to the function descriptor sym. */
8024 if (htab->tls_get_addr != NULL)
8025 func_desc_adjust (&htab->tls_get_addr->elf, info);
8026 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8027 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8028 FALSE, FALSE, TRUE));
8029 if (!htab->params->no_tls_get_addr_opt)
8030 {
8031 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8032
8033 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8034 FALSE, FALSE, TRUE);
8035 if (opt != NULL)
8036 func_desc_adjust (opt, info);
8037 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8038 FALSE, FALSE, TRUE);
8039 if (opt_fd != NULL
8040 && (opt_fd->root.type == bfd_link_hash_defined
8041 || opt_fd->root.type == bfd_link_hash_defweak))
8042 {
8043 /* If glibc supports an optimized __tls_get_addr call stub,
8044 signalled by the presence of __tls_get_addr_opt, and we'll
8045 be calling __tls_get_addr via a plt call stub, then
8046 make __tls_get_addr point to __tls_get_addr_opt. */
8047 tga_fd = &htab->tls_get_addr_fd->elf;
8048 if (htab->elf.dynamic_sections_created
8049 && tga_fd != NULL
8050 && (tga_fd->type == STT_FUNC
8051 || tga_fd->needs_plt)
8052 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8053 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8054 && tga_fd->root.type == bfd_link_hash_undefweak)))
8055 {
8056 struct plt_entry *ent;
8057
8058 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8059 if (ent->plt.refcount > 0)
8060 break;
8061 if (ent != NULL)
8062 {
8063 tga_fd->root.type = bfd_link_hash_indirect;
8064 tga_fd->root.u.i.link = &opt_fd->root;
8065 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8066 if (opt_fd->dynindx != -1)
8067 {
8068 /* Use __tls_get_addr_opt in dynamic relocations. */
8069 opt_fd->dynindx = -1;
8070 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8071 opt_fd->dynstr_index);
8072 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8073 return NULL;
8074 }
8075 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8076 tga = &htab->tls_get_addr->elf;
8077 if (opt != NULL && tga != NULL)
8078 {
8079 tga->root.type = bfd_link_hash_indirect;
8080 tga->root.u.i.link = &opt->root;
8081 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8082 _bfd_elf_link_hash_hide_symbol (info, opt,
8083 tga->forced_local);
8084 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8085 }
8086 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8087 htab->tls_get_addr_fd->is_func_descriptor = 1;
8088 if (htab->tls_get_addr != NULL)
8089 {
8090 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8091 htab->tls_get_addr->is_func = 1;
8092 }
8093 }
8094 }
8095 }
8096 else
8097 htab->params->no_tls_get_addr_opt = TRUE;
8098 }
8099 return _bfd_elf_tls_setup (info->output_bfd, info);
8100 }
8101
8102 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8103 HASH1 or HASH2. */
8104
8105 static bfd_boolean
8106 branch_reloc_hash_match (const bfd *ibfd,
8107 const Elf_Internal_Rela *rel,
8108 const struct ppc_link_hash_entry *hash1,
8109 const struct ppc_link_hash_entry *hash2)
8110 {
8111 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8112 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8113 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8114
8115 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8116 {
8117 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8118 struct elf_link_hash_entry *h;
8119
8120 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8121 h = elf_follow_link (h);
8122 if (h == &hash1->elf || h == &hash2->elf)
8123 return TRUE;
8124 }
8125 return FALSE;
8126 }
8127
8128 /* Run through all the TLS relocs looking for optimization
8129 opportunities. The linker has been hacked (see ppc64elf.em) to do
8130 a preliminary section layout so that we know the TLS segment
8131 offsets. We can't optimize earlier because some optimizations need
8132 to know the tp offset, and we need to optimize before allocating
8133 dynamic relocations. */
8134
8135 bfd_boolean
8136 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8137 {
8138 bfd *ibfd;
8139 asection *sec;
8140 struct ppc_link_hash_table *htab;
8141 unsigned char *toc_ref;
8142 int pass;
8143
8144 if (info->relocatable || !info->executable)
8145 return TRUE;
8146
8147 htab = ppc_hash_table (info);
8148 if (htab == NULL)
8149 return FALSE;
8150
8151 /* Make two passes over the relocs. On the first pass, mark toc
8152 entries involved with tls relocs, and check that tls relocs
8153 involved in setting up a tls_get_addr call are indeed followed by
8154 such a call. If they are not, we can't do any tls optimization.
8155 On the second pass twiddle tls_mask flags to notify
8156 relocate_section that optimization can be done, and adjust got
8157 and plt refcounts. */
8158 toc_ref = NULL;
8159 for (pass = 0; pass < 2; ++pass)
8160 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8161 {
8162 Elf_Internal_Sym *locsyms = NULL;
8163 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8164
8165 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8166 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8167 {
8168 Elf_Internal_Rela *relstart, *rel, *relend;
8169 bfd_boolean found_tls_get_addr_arg = 0;
8170
8171 /* Read the relocations. */
8172 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8173 info->keep_memory);
8174 if (relstart == NULL)
8175 {
8176 free (toc_ref);
8177 return FALSE;
8178 }
8179
8180 relend = relstart + sec->reloc_count;
8181 for (rel = relstart; rel < relend; rel++)
8182 {
8183 enum elf_ppc64_reloc_type r_type;
8184 unsigned long r_symndx;
8185 struct elf_link_hash_entry *h;
8186 Elf_Internal_Sym *sym;
8187 asection *sym_sec;
8188 unsigned char *tls_mask;
8189 unsigned char tls_set, tls_clear, tls_type = 0;
8190 bfd_vma value;
8191 bfd_boolean ok_tprel, is_local;
8192 long toc_ref_index = 0;
8193 int expecting_tls_get_addr = 0;
8194 bfd_boolean ret = FALSE;
8195
8196 r_symndx = ELF64_R_SYM (rel->r_info);
8197 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8198 r_symndx, ibfd))
8199 {
8200 err_free_rel:
8201 if (elf_section_data (sec)->relocs != relstart)
8202 free (relstart);
8203 if (toc_ref != NULL)
8204 free (toc_ref);
8205 if (locsyms != NULL
8206 && (elf_symtab_hdr (ibfd).contents
8207 != (unsigned char *) locsyms))
8208 free (locsyms);
8209 return ret;
8210 }
8211
8212 if (h != NULL)
8213 {
8214 if (h->root.type == bfd_link_hash_defined
8215 || h->root.type == bfd_link_hash_defweak)
8216 value = h->root.u.def.value;
8217 else if (h->root.type == bfd_link_hash_undefweak)
8218 value = 0;
8219 else
8220 {
8221 found_tls_get_addr_arg = 0;
8222 continue;
8223 }
8224 }
8225 else
8226 /* Symbols referenced by TLS relocs must be of type
8227 STT_TLS. So no need for .opd local sym adjust. */
8228 value = sym->st_value;
8229
8230 ok_tprel = FALSE;
8231 is_local = FALSE;
8232 if (h == NULL
8233 || !h->def_dynamic)
8234 {
8235 is_local = TRUE;
8236 if (h != NULL
8237 && h->root.type == bfd_link_hash_undefweak)
8238 ok_tprel = TRUE;
8239 else
8240 {
8241 value += sym_sec->output_offset;
8242 value += sym_sec->output_section->vma;
8243 value -= htab->elf.tls_sec->vma;
8244 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8245 < (bfd_vma) 1 << 32);
8246 }
8247 }
8248
8249 r_type = ELF64_R_TYPE (rel->r_info);
8250 /* If this section has old-style __tls_get_addr calls
8251 without marker relocs, then check that each
8252 __tls_get_addr call reloc is preceded by a reloc
8253 that conceivably belongs to the __tls_get_addr arg
8254 setup insn. If we don't find matching arg setup
8255 relocs, don't do any tls optimization. */
8256 if (pass == 0
8257 && sec->has_tls_get_addr_call
8258 && h != NULL
8259 && (h == &htab->tls_get_addr->elf
8260 || h == &htab->tls_get_addr_fd->elf)
8261 && !found_tls_get_addr_arg
8262 && is_branch_reloc (r_type))
8263 {
8264 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8265 "TLS optimization disabled\n"),
8266 ibfd, sec, rel->r_offset);
8267 ret = TRUE;
8268 goto err_free_rel;
8269 }
8270
8271 found_tls_get_addr_arg = 0;
8272 switch (r_type)
8273 {
8274 case R_PPC64_GOT_TLSLD16:
8275 case R_PPC64_GOT_TLSLD16_LO:
8276 expecting_tls_get_addr = 1;
8277 found_tls_get_addr_arg = 1;
8278 /* Fall thru */
8279
8280 case R_PPC64_GOT_TLSLD16_HI:
8281 case R_PPC64_GOT_TLSLD16_HA:
8282 /* These relocs should never be against a symbol
8283 defined in a shared lib. Leave them alone if
8284 that turns out to be the case. */
8285 if (!is_local)
8286 continue;
8287
8288 /* LD -> LE */
8289 tls_set = 0;
8290 tls_clear = TLS_LD;
8291 tls_type = TLS_TLS | TLS_LD;
8292 break;
8293
8294 case R_PPC64_GOT_TLSGD16:
8295 case R_PPC64_GOT_TLSGD16_LO:
8296 expecting_tls_get_addr = 1;
8297 found_tls_get_addr_arg = 1;
8298 /* Fall thru */
8299
8300 case R_PPC64_GOT_TLSGD16_HI:
8301 case R_PPC64_GOT_TLSGD16_HA:
8302 if (ok_tprel)
8303 /* GD -> LE */
8304 tls_set = 0;
8305 else
8306 /* GD -> IE */
8307 tls_set = TLS_TLS | TLS_TPRELGD;
8308 tls_clear = TLS_GD;
8309 tls_type = TLS_TLS | TLS_GD;
8310 break;
8311
8312 case R_PPC64_GOT_TPREL16_DS:
8313 case R_PPC64_GOT_TPREL16_LO_DS:
8314 case R_PPC64_GOT_TPREL16_HI:
8315 case R_PPC64_GOT_TPREL16_HA:
8316 if (ok_tprel)
8317 {
8318 /* IE -> LE */
8319 tls_set = 0;
8320 tls_clear = TLS_TPREL;
8321 tls_type = TLS_TLS | TLS_TPREL;
8322 break;
8323 }
8324 continue;
8325
8326 case R_PPC64_TLSGD:
8327 case R_PPC64_TLSLD:
8328 found_tls_get_addr_arg = 1;
8329 /* Fall thru */
8330
8331 case R_PPC64_TLS:
8332 case R_PPC64_TOC16:
8333 case R_PPC64_TOC16_LO:
8334 if (sym_sec == NULL || sym_sec != toc)
8335 continue;
8336
8337 /* Mark this toc entry as referenced by a TLS
8338 code sequence. We can do that now in the
8339 case of R_PPC64_TLS, and after checking for
8340 tls_get_addr for the TOC16 relocs. */
8341 if (toc_ref == NULL)
8342 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8343 if (toc_ref == NULL)
8344 goto err_free_rel;
8345
8346 if (h != NULL)
8347 value = h->root.u.def.value;
8348 else
8349 value = sym->st_value;
8350 value += rel->r_addend;
8351 if (value % 8 != 0)
8352 continue;
8353 BFD_ASSERT (value < toc->size
8354 && toc->output_offset % 8 == 0);
8355 toc_ref_index = (value + toc->output_offset) / 8;
8356 if (r_type == R_PPC64_TLS
8357 || r_type == R_PPC64_TLSGD
8358 || r_type == R_PPC64_TLSLD)
8359 {
8360 toc_ref[toc_ref_index] = 1;
8361 continue;
8362 }
8363
8364 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8365 continue;
8366
8367 tls_set = 0;
8368 tls_clear = 0;
8369 expecting_tls_get_addr = 2;
8370 break;
8371
8372 case R_PPC64_TPREL64:
8373 if (pass == 0
8374 || sec != toc
8375 || toc_ref == NULL
8376 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8377 continue;
8378 if (ok_tprel)
8379 {
8380 /* IE -> LE */
8381 tls_set = TLS_EXPLICIT;
8382 tls_clear = TLS_TPREL;
8383 break;
8384 }
8385 continue;
8386
8387 case R_PPC64_DTPMOD64:
8388 if (pass == 0
8389 || sec != toc
8390 || toc_ref == NULL
8391 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8392 continue;
8393 if (rel + 1 < relend
8394 && (rel[1].r_info
8395 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8396 && rel[1].r_offset == rel->r_offset + 8)
8397 {
8398 if (ok_tprel)
8399 /* GD -> LE */
8400 tls_set = TLS_EXPLICIT | TLS_GD;
8401 else
8402 /* GD -> IE */
8403 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8404 tls_clear = TLS_GD;
8405 }
8406 else
8407 {
8408 if (!is_local)
8409 continue;
8410
8411 /* LD -> LE */
8412 tls_set = TLS_EXPLICIT;
8413 tls_clear = TLS_LD;
8414 }
8415 break;
8416
8417 default:
8418 continue;
8419 }
8420
8421 if (pass == 0)
8422 {
8423 if (!expecting_tls_get_addr
8424 || !sec->has_tls_get_addr_call)
8425 continue;
8426
8427 if (rel + 1 < relend
8428 && branch_reloc_hash_match (ibfd, rel + 1,
8429 htab->tls_get_addr,
8430 htab->tls_get_addr_fd))
8431 {
8432 if (expecting_tls_get_addr == 2)
8433 {
8434 /* Check for toc tls entries. */
8435 unsigned char *toc_tls;
8436 int retval;
8437
8438 retval = get_tls_mask (&toc_tls, NULL, NULL,
8439 &locsyms,
8440 rel, ibfd);
8441 if (retval == 0)
8442 goto err_free_rel;
8443 if (toc_tls != NULL)
8444 {
8445 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8446 found_tls_get_addr_arg = 1;
8447 if (retval > 1)
8448 toc_ref[toc_ref_index] = 1;
8449 }
8450 }
8451 continue;
8452 }
8453
8454 if (expecting_tls_get_addr != 1)
8455 continue;
8456
8457 /* Uh oh, we didn't find the expected call. We
8458 could just mark this symbol to exclude it
8459 from tls optimization but it's safer to skip
8460 the entire optimization. */
8461 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8462 "TLS optimization disabled\n"),
8463 ibfd, sec, rel->r_offset);
8464 ret = TRUE;
8465 goto err_free_rel;
8466 }
8467
8468 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8469 {
8470 struct plt_entry *ent;
8471 for (ent = htab->tls_get_addr->elf.plt.plist;
8472 ent != NULL;
8473 ent = ent->next)
8474 if (ent->addend == 0)
8475 {
8476 if (ent->plt.refcount > 0)
8477 {
8478 ent->plt.refcount -= 1;
8479 expecting_tls_get_addr = 0;
8480 }
8481 break;
8482 }
8483 }
8484
8485 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8486 {
8487 struct plt_entry *ent;
8488 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8489 ent != NULL;
8490 ent = ent->next)
8491 if (ent->addend == 0)
8492 {
8493 if (ent->plt.refcount > 0)
8494 ent->plt.refcount -= 1;
8495 break;
8496 }
8497 }
8498
8499 if (tls_clear == 0)
8500 continue;
8501
8502 if ((tls_set & TLS_EXPLICIT) == 0)
8503 {
8504 struct got_entry *ent;
8505
8506 /* Adjust got entry for this reloc. */
8507 if (h != NULL)
8508 ent = h->got.glist;
8509 else
8510 ent = elf_local_got_ents (ibfd)[r_symndx];
8511
8512 for (; ent != NULL; ent = ent->next)
8513 if (ent->addend == rel->r_addend
8514 && ent->owner == ibfd
8515 && ent->tls_type == tls_type)
8516 break;
8517 if (ent == NULL)
8518 abort ();
8519
8520 if (tls_set == 0)
8521 {
8522 /* We managed to get rid of a got entry. */
8523 if (ent->got.refcount > 0)
8524 ent->got.refcount -= 1;
8525 }
8526 }
8527 else
8528 {
8529 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8530 we'll lose one or two dyn relocs. */
8531 if (!dec_dynrel_count (rel->r_info, sec, info,
8532 NULL, h, sym))
8533 return FALSE;
8534
8535 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8536 {
8537 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8538 NULL, h, sym))
8539 return FALSE;
8540 }
8541 }
8542
8543 *tls_mask |= tls_set;
8544 *tls_mask &= ~tls_clear;
8545 }
8546
8547 if (elf_section_data (sec)->relocs != relstart)
8548 free (relstart);
8549 }
8550
8551 if (locsyms != NULL
8552 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8553 {
8554 if (!info->keep_memory)
8555 free (locsyms);
8556 else
8557 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8558 }
8559 }
8560
8561 if (toc_ref != NULL)
8562 free (toc_ref);
8563 return TRUE;
8564 }
8565
8566 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8567 the values of any global symbols in a toc section that has been
8568 edited. Globals in toc sections should be a rarity, so this function
8569 sets a flag if any are found in toc sections other than the one just
8570 edited, so that futher hash table traversals can be avoided. */
8571
8572 struct adjust_toc_info
8573 {
8574 asection *toc;
8575 unsigned long *skip;
8576 bfd_boolean global_toc_syms;
8577 };
8578
8579 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8580
8581 static bfd_boolean
8582 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8583 {
8584 struct ppc_link_hash_entry *eh;
8585 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8586 unsigned long i;
8587
8588 if (h->root.type != bfd_link_hash_defined
8589 && h->root.type != bfd_link_hash_defweak)
8590 return TRUE;
8591
8592 eh = (struct ppc_link_hash_entry *) h;
8593 if (eh->adjust_done)
8594 return TRUE;
8595
8596 if (eh->elf.root.u.def.section == toc_inf->toc)
8597 {
8598 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8599 i = toc_inf->toc->rawsize >> 3;
8600 else
8601 i = eh->elf.root.u.def.value >> 3;
8602
8603 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8604 {
8605 (*_bfd_error_handler)
8606 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8607 do
8608 ++i;
8609 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8610 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8611 }
8612
8613 eh->elf.root.u.def.value -= toc_inf->skip[i];
8614 eh->adjust_done = 1;
8615 }
8616 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8617 toc_inf->global_toc_syms = TRUE;
8618
8619 return TRUE;
8620 }
8621
8622 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8623
8624 static bfd_boolean
8625 ok_lo_toc_insn (unsigned int insn)
8626 {
8627 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8628 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8629 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8630 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8631 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8632 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8633 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8634 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8635 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8636 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8637 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8638 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8639 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8640 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8641 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8642 && (insn & 3) != 1)
8643 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8644 && ((insn & 3) == 0 || (insn & 3) == 3))
8645 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8646 }
8647
8648 /* Examine all relocs referencing .toc sections in order to remove
8649 unused .toc entries. */
8650
8651 bfd_boolean
8652 ppc64_elf_edit_toc (struct bfd_link_info *info)
8653 {
8654 bfd *ibfd;
8655 struct adjust_toc_info toc_inf;
8656 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8657
8658 htab->do_toc_opt = 1;
8659 toc_inf.global_toc_syms = TRUE;
8660 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8661 {
8662 asection *toc, *sec;
8663 Elf_Internal_Shdr *symtab_hdr;
8664 Elf_Internal_Sym *local_syms;
8665 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8666 unsigned long *skip, *drop;
8667 unsigned char *used;
8668 unsigned char *keep, last, some_unused;
8669
8670 if (!is_ppc64_elf (ibfd))
8671 continue;
8672
8673 toc = bfd_get_section_by_name (ibfd, ".toc");
8674 if (toc == NULL
8675 || toc->size == 0
8676 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8677 || discarded_section (toc))
8678 continue;
8679
8680 toc_relocs = NULL;
8681 local_syms = NULL;
8682 symtab_hdr = &elf_symtab_hdr (ibfd);
8683
8684 /* Look at sections dropped from the final link. */
8685 skip = NULL;
8686 relstart = NULL;
8687 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8688 {
8689 if (sec->reloc_count == 0
8690 || !discarded_section (sec)
8691 || get_opd_info (sec)
8692 || (sec->flags & SEC_ALLOC) == 0
8693 || (sec->flags & SEC_DEBUGGING) != 0)
8694 continue;
8695
8696 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8697 if (relstart == NULL)
8698 goto error_ret;
8699
8700 /* Run through the relocs to see which toc entries might be
8701 unused. */
8702 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8703 {
8704 enum elf_ppc64_reloc_type r_type;
8705 unsigned long r_symndx;
8706 asection *sym_sec;
8707 struct elf_link_hash_entry *h;
8708 Elf_Internal_Sym *sym;
8709 bfd_vma val;
8710
8711 r_type = ELF64_R_TYPE (rel->r_info);
8712 switch (r_type)
8713 {
8714 default:
8715 continue;
8716
8717 case R_PPC64_TOC16:
8718 case R_PPC64_TOC16_LO:
8719 case R_PPC64_TOC16_HI:
8720 case R_PPC64_TOC16_HA:
8721 case R_PPC64_TOC16_DS:
8722 case R_PPC64_TOC16_LO_DS:
8723 break;
8724 }
8725
8726 r_symndx = ELF64_R_SYM (rel->r_info);
8727 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8728 r_symndx, ibfd))
8729 goto error_ret;
8730
8731 if (sym_sec != toc)
8732 continue;
8733
8734 if (h != NULL)
8735 val = h->root.u.def.value;
8736 else
8737 val = sym->st_value;
8738 val += rel->r_addend;
8739
8740 if (val >= toc->size)
8741 continue;
8742
8743 /* Anything in the toc ought to be aligned to 8 bytes.
8744 If not, don't mark as unused. */
8745 if (val & 7)
8746 continue;
8747
8748 if (skip == NULL)
8749 {
8750 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8751 if (skip == NULL)
8752 goto error_ret;
8753 }
8754
8755 skip[val >> 3] = ref_from_discarded;
8756 }
8757
8758 if (elf_section_data (sec)->relocs != relstart)
8759 free (relstart);
8760 }
8761
8762 /* For largetoc loads of address constants, we can convert
8763 . addis rx,2,addr@got@ha
8764 . ld ry,addr@got@l(rx)
8765 to
8766 . addis rx,2,addr@toc@ha
8767 . addi ry,rx,addr@toc@l
8768 when addr is within 2G of the toc pointer. This then means
8769 that the word storing "addr" in the toc is no longer needed. */
8770
8771 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8772 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8773 && toc->reloc_count != 0)
8774 {
8775 /* Read toc relocs. */
8776 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8777 info->keep_memory);
8778 if (toc_relocs == NULL)
8779 goto error_ret;
8780
8781 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8782 {
8783 enum elf_ppc64_reloc_type r_type;
8784 unsigned long r_symndx;
8785 asection *sym_sec;
8786 struct elf_link_hash_entry *h;
8787 Elf_Internal_Sym *sym;
8788 bfd_vma val, addr;
8789
8790 r_type = ELF64_R_TYPE (rel->r_info);
8791 if (r_type != R_PPC64_ADDR64)
8792 continue;
8793
8794 r_symndx = ELF64_R_SYM (rel->r_info);
8795 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8796 r_symndx, ibfd))
8797 goto error_ret;
8798
8799 if (sym_sec == NULL
8800 || discarded_section (sym_sec))
8801 continue;
8802
8803 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8804 continue;
8805
8806 if (h != NULL)
8807 {
8808 if (h->type == STT_GNU_IFUNC)
8809 continue;
8810 val = h->root.u.def.value;
8811 }
8812 else
8813 {
8814 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8815 continue;
8816 val = sym->st_value;
8817 }
8818 val += rel->r_addend;
8819 val += sym_sec->output_section->vma + sym_sec->output_offset;
8820
8821 /* We don't yet know the exact toc pointer value, but we
8822 know it will be somewhere in the toc section. Don't
8823 optimize if the difference from any possible toc
8824 pointer is outside [ff..f80008000, 7fff7fff]. */
8825 addr = toc->output_section->vma + TOC_BASE_OFF;
8826 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8827 continue;
8828
8829 addr = toc->output_section->vma + toc->output_section->rawsize;
8830 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8831 continue;
8832
8833 if (skip == NULL)
8834 {
8835 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8836 if (skip == NULL)
8837 goto error_ret;
8838 }
8839
8840 skip[rel->r_offset >> 3]
8841 |= can_optimize | ((rel - toc_relocs) << 2);
8842 }
8843 }
8844
8845 if (skip == NULL)
8846 continue;
8847
8848 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8849 if (used == NULL)
8850 {
8851 error_ret:
8852 if (local_syms != NULL
8853 && symtab_hdr->contents != (unsigned char *) local_syms)
8854 free (local_syms);
8855 if (sec != NULL
8856 && relstart != NULL
8857 && elf_section_data (sec)->relocs != relstart)
8858 free (relstart);
8859 if (toc_relocs != NULL
8860 && elf_section_data (toc)->relocs != toc_relocs)
8861 free (toc_relocs);
8862 if (skip != NULL)
8863 free (skip);
8864 return FALSE;
8865 }
8866
8867 /* Now check all kept sections that might reference the toc.
8868 Check the toc itself last. */
8869 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8870 : ibfd->sections);
8871 sec != NULL;
8872 sec = (sec == toc ? NULL
8873 : sec->next == NULL ? toc
8874 : sec->next == toc && toc->next ? toc->next
8875 : sec->next))
8876 {
8877 int repeat;
8878
8879 if (sec->reloc_count == 0
8880 || discarded_section (sec)
8881 || get_opd_info (sec)
8882 || (sec->flags & SEC_ALLOC) == 0
8883 || (sec->flags & SEC_DEBUGGING) != 0)
8884 continue;
8885
8886 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8887 info->keep_memory);
8888 if (relstart == NULL)
8889 {
8890 free (used);
8891 goto error_ret;
8892 }
8893
8894 /* Mark toc entries referenced as used. */
8895 do
8896 {
8897 repeat = 0;
8898 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8899 {
8900 enum elf_ppc64_reloc_type r_type;
8901 unsigned long r_symndx;
8902 asection *sym_sec;
8903 struct elf_link_hash_entry *h;
8904 Elf_Internal_Sym *sym;
8905 bfd_vma val;
8906 enum {no_check, check_lo, check_ha} insn_check;
8907
8908 r_type = ELF64_R_TYPE (rel->r_info);
8909 switch (r_type)
8910 {
8911 default:
8912 insn_check = no_check;
8913 break;
8914
8915 case R_PPC64_GOT_TLSLD16_HA:
8916 case R_PPC64_GOT_TLSGD16_HA:
8917 case R_PPC64_GOT_TPREL16_HA:
8918 case R_PPC64_GOT_DTPREL16_HA:
8919 case R_PPC64_GOT16_HA:
8920 case R_PPC64_TOC16_HA:
8921 insn_check = check_ha;
8922 break;
8923
8924 case R_PPC64_GOT_TLSLD16_LO:
8925 case R_PPC64_GOT_TLSGD16_LO:
8926 case R_PPC64_GOT_TPREL16_LO_DS:
8927 case R_PPC64_GOT_DTPREL16_LO_DS:
8928 case R_PPC64_GOT16_LO:
8929 case R_PPC64_GOT16_LO_DS:
8930 case R_PPC64_TOC16_LO:
8931 case R_PPC64_TOC16_LO_DS:
8932 insn_check = check_lo;
8933 break;
8934 }
8935
8936 if (insn_check != no_check)
8937 {
8938 bfd_vma off = rel->r_offset & ~3;
8939 unsigned char buf[4];
8940 unsigned int insn;
8941
8942 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8943 {
8944 free (used);
8945 goto error_ret;
8946 }
8947 insn = bfd_get_32 (ibfd, buf);
8948 if (insn_check == check_lo
8949 ? !ok_lo_toc_insn (insn)
8950 : ((insn & ((0x3f << 26) | 0x1f << 16))
8951 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8952 {
8953 char str[12];
8954
8955 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8956 sprintf (str, "%#08x", insn);
8957 info->callbacks->einfo
8958 (_("%P: %H: toc optimization is not supported for"
8959 " %s instruction.\n"),
8960 ibfd, sec, rel->r_offset & ~3, str);
8961 }
8962 }
8963
8964 switch (r_type)
8965 {
8966 case R_PPC64_TOC16:
8967 case R_PPC64_TOC16_LO:
8968 case R_PPC64_TOC16_HI:
8969 case R_PPC64_TOC16_HA:
8970 case R_PPC64_TOC16_DS:
8971 case R_PPC64_TOC16_LO_DS:
8972 /* In case we're taking addresses of toc entries. */
8973 case R_PPC64_ADDR64:
8974 break;
8975
8976 default:
8977 continue;
8978 }
8979
8980 r_symndx = ELF64_R_SYM (rel->r_info);
8981 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8982 r_symndx, ibfd))
8983 {
8984 free (used);
8985 goto error_ret;
8986 }
8987
8988 if (sym_sec != toc)
8989 continue;
8990
8991 if (h != NULL)
8992 val = h->root.u.def.value;
8993 else
8994 val = sym->st_value;
8995 val += rel->r_addend;
8996
8997 if (val >= toc->size)
8998 continue;
8999
9000 if ((skip[val >> 3] & can_optimize) != 0)
9001 {
9002 bfd_vma off;
9003 unsigned char opc;
9004
9005 switch (r_type)
9006 {
9007 case R_PPC64_TOC16_HA:
9008 break;
9009
9010 case R_PPC64_TOC16_LO_DS:
9011 off = rel->r_offset;
9012 off += (bfd_big_endian (ibfd) ? -2 : 3);
9013 if (!bfd_get_section_contents (ibfd, sec, &opc,
9014 off, 1))
9015 {
9016 free (used);
9017 goto error_ret;
9018 }
9019 if ((opc & (0x3f << 2)) == (58u << 2))
9020 break;
9021 /* Fall thru */
9022
9023 default:
9024 /* Wrong sort of reloc, or not a ld. We may
9025 as well clear ref_from_discarded too. */
9026 skip[val >> 3] = 0;
9027 }
9028 }
9029
9030 if (sec != toc)
9031 used[val >> 3] = 1;
9032 /* For the toc section, we only mark as used if this
9033 entry itself isn't unused. */
9034 else if ((used[rel->r_offset >> 3]
9035 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9036 && !used[val >> 3])
9037 {
9038 /* Do all the relocs again, to catch reference
9039 chains. */
9040 repeat = 1;
9041 used[val >> 3] = 1;
9042 }
9043 }
9044 }
9045 while (repeat);
9046
9047 if (elf_section_data (sec)->relocs != relstart)
9048 free (relstart);
9049 }
9050
9051 /* Merge the used and skip arrays. Assume that TOC
9052 doublewords not appearing as either used or unused belong
9053 to to an entry more than one doubleword in size. */
9054 for (drop = skip, keep = used, last = 0, some_unused = 0;
9055 drop < skip + (toc->size + 7) / 8;
9056 ++drop, ++keep)
9057 {
9058 if (*keep)
9059 {
9060 *drop &= ~ref_from_discarded;
9061 if ((*drop & can_optimize) != 0)
9062 some_unused = 1;
9063 last = 0;
9064 }
9065 else if ((*drop & ref_from_discarded) != 0)
9066 {
9067 some_unused = 1;
9068 last = ref_from_discarded;
9069 }
9070 else
9071 *drop = last;
9072 }
9073
9074 free (used);
9075
9076 if (some_unused)
9077 {
9078 bfd_byte *contents, *src;
9079 unsigned long off;
9080 Elf_Internal_Sym *sym;
9081 bfd_boolean local_toc_syms = FALSE;
9082
9083 /* Shuffle the toc contents, and at the same time convert the
9084 skip array from booleans into offsets. */
9085 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9086 goto error_ret;
9087
9088 elf_section_data (toc)->this_hdr.contents = contents;
9089
9090 for (src = contents, off = 0, drop = skip;
9091 src < contents + toc->size;
9092 src += 8, ++drop)
9093 {
9094 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9095 off += 8;
9096 else if (off != 0)
9097 {
9098 *drop = off;
9099 memcpy (src - off, src, 8);
9100 }
9101 }
9102 *drop = off;
9103 toc->rawsize = toc->size;
9104 toc->size = src - contents - off;
9105
9106 /* Adjust addends for relocs against the toc section sym,
9107 and optimize any accesses we can. */
9108 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9109 {
9110 if (sec->reloc_count == 0
9111 || discarded_section (sec))
9112 continue;
9113
9114 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9115 info->keep_memory);
9116 if (relstart == NULL)
9117 goto error_ret;
9118
9119 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9120 {
9121 enum elf_ppc64_reloc_type r_type;
9122 unsigned long r_symndx;
9123 asection *sym_sec;
9124 struct elf_link_hash_entry *h;
9125 bfd_vma val;
9126
9127 r_type = ELF64_R_TYPE (rel->r_info);
9128 switch (r_type)
9129 {
9130 default:
9131 continue;
9132
9133 case R_PPC64_TOC16:
9134 case R_PPC64_TOC16_LO:
9135 case R_PPC64_TOC16_HI:
9136 case R_PPC64_TOC16_HA:
9137 case R_PPC64_TOC16_DS:
9138 case R_PPC64_TOC16_LO_DS:
9139 case R_PPC64_ADDR64:
9140 break;
9141 }
9142
9143 r_symndx = ELF64_R_SYM (rel->r_info);
9144 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9145 r_symndx, ibfd))
9146 goto error_ret;
9147
9148 if (sym_sec != toc)
9149 continue;
9150
9151 if (h != NULL)
9152 val = h->root.u.def.value;
9153 else
9154 {
9155 val = sym->st_value;
9156 if (val != 0)
9157 local_toc_syms = TRUE;
9158 }
9159
9160 val += rel->r_addend;
9161
9162 if (val > toc->rawsize)
9163 val = toc->rawsize;
9164 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9165 continue;
9166 else if ((skip[val >> 3] & can_optimize) != 0)
9167 {
9168 Elf_Internal_Rela *tocrel
9169 = toc_relocs + (skip[val >> 3] >> 2);
9170 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9171
9172 switch (r_type)
9173 {
9174 case R_PPC64_TOC16_HA:
9175 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9176 break;
9177
9178 case R_PPC64_TOC16_LO_DS:
9179 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9180 break;
9181
9182 default:
9183 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9184 ppc_howto_init ();
9185 info->callbacks->einfo
9186 (_("%P: %H: %s references "
9187 "optimized away TOC entry\n"),
9188 ibfd, sec, rel->r_offset,
9189 ppc64_elf_howto_table[r_type]->name);
9190 bfd_set_error (bfd_error_bad_value);
9191 goto error_ret;
9192 }
9193 rel->r_addend = tocrel->r_addend;
9194 elf_section_data (sec)->relocs = relstart;
9195 continue;
9196 }
9197
9198 if (h != NULL || sym->st_value != 0)
9199 continue;
9200
9201 rel->r_addend -= skip[val >> 3];
9202 elf_section_data (sec)->relocs = relstart;
9203 }
9204
9205 if (elf_section_data (sec)->relocs != relstart)
9206 free (relstart);
9207 }
9208
9209 /* We shouldn't have local or global symbols defined in the TOC,
9210 but handle them anyway. */
9211 if (local_syms != NULL)
9212 for (sym = local_syms;
9213 sym < local_syms + symtab_hdr->sh_info;
9214 ++sym)
9215 if (sym->st_value != 0
9216 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9217 {
9218 unsigned long i;
9219
9220 if (sym->st_value > toc->rawsize)
9221 i = toc->rawsize >> 3;
9222 else
9223 i = sym->st_value >> 3;
9224
9225 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9226 {
9227 if (local_toc_syms)
9228 (*_bfd_error_handler)
9229 (_("%s defined on removed toc entry"),
9230 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9231 do
9232 ++i;
9233 while ((skip[i] & (ref_from_discarded | can_optimize)));
9234 sym->st_value = (bfd_vma) i << 3;
9235 }
9236
9237 sym->st_value -= skip[i];
9238 symtab_hdr->contents = (unsigned char *) local_syms;
9239 }
9240
9241 /* Adjust any global syms defined in this toc input section. */
9242 if (toc_inf.global_toc_syms)
9243 {
9244 toc_inf.toc = toc;
9245 toc_inf.skip = skip;
9246 toc_inf.global_toc_syms = FALSE;
9247 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9248 &toc_inf);
9249 }
9250
9251 if (toc->reloc_count != 0)
9252 {
9253 Elf_Internal_Shdr *rel_hdr;
9254 Elf_Internal_Rela *wrel;
9255 bfd_size_type sz;
9256
9257 /* Remove unused toc relocs, and adjust those we keep. */
9258 if (toc_relocs == NULL)
9259 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9260 info->keep_memory);
9261 if (toc_relocs == NULL)
9262 goto error_ret;
9263
9264 wrel = toc_relocs;
9265 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9266 if ((skip[rel->r_offset >> 3]
9267 & (ref_from_discarded | can_optimize)) == 0)
9268 {
9269 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9270 wrel->r_info = rel->r_info;
9271 wrel->r_addend = rel->r_addend;
9272 ++wrel;
9273 }
9274 else if (!dec_dynrel_count (rel->r_info, toc, info,
9275 &local_syms, NULL, NULL))
9276 goto error_ret;
9277
9278 elf_section_data (toc)->relocs = toc_relocs;
9279 toc->reloc_count = wrel - toc_relocs;
9280 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9281 sz = rel_hdr->sh_entsize;
9282 rel_hdr->sh_size = toc->reloc_count * sz;
9283 }
9284 }
9285 else if (toc_relocs != NULL
9286 && elf_section_data (toc)->relocs != toc_relocs)
9287 free (toc_relocs);
9288
9289 if (local_syms != NULL
9290 && symtab_hdr->contents != (unsigned char *) local_syms)
9291 {
9292 if (!info->keep_memory)
9293 free (local_syms);
9294 else
9295 symtab_hdr->contents = (unsigned char *) local_syms;
9296 }
9297 free (skip);
9298 }
9299
9300 return TRUE;
9301 }
9302
9303 /* Return true iff input section I references the TOC using
9304 instructions limited to +/-32k offsets. */
9305
9306 bfd_boolean
9307 ppc64_elf_has_small_toc_reloc (asection *i)
9308 {
9309 return (is_ppc64_elf (i->owner)
9310 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9311 }
9312
9313 /* Allocate space for one GOT entry. */
9314
9315 static void
9316 allocate_got (struct elf_link_hash_entry *h,
9317 struct bfd_link_info *info,
9318 struct got_entry *gent)
9319 {
9320 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9321 bfd_boolean dyn;
9322 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9323 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9324 ? 16 : 8);
9325 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9326 ? 2 : 1) * sizeof (Elf64_External_Rela);
9327 asection *got = ppc64_elf_tdata (gent->owner)->got;
9328
9329 gent->got.offset = got->size;
9330 got->size += entsize;
9331
9332 dyn = htab->elf.dynamic_sections_created;
9333 if (h->type == STT_GNU_IFUNC)
9334 {
9335 htab->elf.irelplt->size += rentsize;
9336 htab->got_reli_size += rentsize;
9337 }
9338 else if ((info->shared
9339 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9340 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9341 || h->root.type != bfd_link_hash_undefweak))
9342 {
9343 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9344 relgot->size += rentsize;
9345 }
9346 }
9347
9348 /* This function merges got entries in the same toc group. */
9349
9350 static void
9351 merge_got_entries (struct got_entry **pent)
9352 {
9353 struct got_entry *ent, *ent2;
9354
9355 for (ent = *pent; ent != NULL; ent = ent->next)
9356 if (!ent->is_indirect)
9357 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9358 if (!ent2->is_indirect
9359 && ent2->addend == ent->addend
9360 && ent2->tls_type == ent->tls_type
9361 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9362 {
9363 ent2->is_indirect = TRUE;
9364 ent2->got.ent = ent;
9365 }
9366 }
9367
9368 /* Allocate space in .plt, .got and associated reloc sections for
9369 dynamic relocs. */
9370
9371 static bfd_boolean
9372 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9373 {
9374 struct bfd_link_info *info;
9375 struct ppc_link_hash_table *htab;
9376 asection *s;
9377 struct ppc_link_hash_entry *eh;
9378 struct elf_dyn_relocs *p;
9379 struct got_entry **pgent, *gent;
9380
9381 if (h->root.type == bfd_link_hash_indirect)
9382 return TRUE;
9383
9384 info = (struct bfd_link_info *) inf;
9385 htab = ppc_hash_table (info);
9386 if (htab == NULL)
9387 return FALSE;
9388
9389 if ((htab->elf.dynamic_sections_created
9390 && h->dynindx != -1
9391 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9392 || h->type == STT_GNU_IFUNC)
9393 {
9394 struct plt_entry *pent;
9395 bfd_boolean doneone = FALSE;
9396 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9397 if (pent->plt.refcount > 0)
9398 {
9399 if (!htab->elf.dynamic_sections_created
9400 || h->dynindx == -1)
9401 {
9402 s = htab->elf.iplt;
9403 pent->plt.offset = s->size;
9404 s->size += PLT_ENTRY_SIZE (htab);
9405 s = htab->elf.irelplt;
9406 }
9407 else
9408 {
9409 /* If this is the first .plt entry, make room for the special
9410 first entry. */
9411 s = htab->elf.splt;
9412 if (s->size == 0)
9413 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9414
9415 pent->plt.offset = s->size;
9416
9417 /* Make room for this entry. */
9418 s->size += PLT_ENTRY_SIZE (htab);
9419
9420 /* Make room for the .glink code. */
9421 s = htab->glink;
9422 if (s->size == 0)
9423 s->size += GLINK_CALL_STUB_SIZE;
9424 if (htab->opd_abi)
9425 {
9426 /* We need bigger stubs past index 32767. */
9427 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9428 s->size += 4;
9429 s->size += 2*4;
9430 }
9431 else
9432 s->size += 4;
9433
9434 /* We also need to make an entry in the .rela.plt section. */
9435 s = htab->elf.srelplt;
9436 }
9437 s->size += sizeof (Elf64_External_Rela);
9438 doneone = TRUE;
9439 }
9440 else
9441 pent->plt.offset = (bfd_vma) -1;
9442 if (!doneone)
9443 {
9444 h->plt.plist = NULL;
9445 h->needs_plt = 0;
9446 }
9447 }
9448 else
9449 {
9450 h->plt.plist = NULL;
9451 h->needs_plt = 0;
9452 }
9453
9454 eh = (struct ppc_link_hash_entry *) h;
9455 /* Run through the TLS GD got entries first if we're changing them
9456 to TPREL. */
9457 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9458 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9459 if (gent->got.refcount > 0
9460 && (gent->tls_type & TLS_GD) != 0)
9461 {
9462 /* This was a GD entry that has been converted to TPREL. If
9463 there happens to be a TPREL entry we can use that one. */
9464 struct got_entry *ent;
9465 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9466 if (ent->got.refcount > 0
9467 && (ent->tls_type & TLS_TPREL) != 0
9468 && ent->addend == gent->addend
9469 && ent->owner == gent->owner)
9470 {
9471 gent->got.refcount = 0;
9472 break;
9473 }
9474
9475 /* If not, then we'll be using our own TPREL entry. */
9476 if (gent->got.refcount != 0)
9477 gent->tls_type = TLS_TLS | TLS_TPREL;
9478 }
9479
9480 /* Remove any list entry that won't generate a word in the GOT before
9481 we call merge_got_entries. Otherwise we risk merging to empty
9482 entries. */
9483 pgent = &h->got.glist;
9484 while ((gent = *pgent) != NULL)
9485 if (gent->got.refcount > 0)
9486 {
9487 if ((gent->tls_type & TLS_LD) != 0
9488 && !h->def_dynamic)
9489 {
9490 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9491 *pgent = gent->next;
9492 }
9493 else
9494 pgent = &gent->next;
9495 }
9496 else
9497 *pgent = gent->next;
9498
9499 if (!htab->do_multi_toc)
9500 merge_got_entries (&h->got.glist);
9501
9502 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9503 if (!gent->is_indirect)
9504 {
9505 /* Make sure this symbol is output as a dynamic symbol.
9506 Undefined weak syms won't yet be marked as dynamic,
9507 nor will all TLS symbols. */
9508 if (h->dynindx == -1
9509 && !h->forced_local
9510 && h->type != STT_GNU_IFUNC
9511 && htab->elf.dynamic_sections_created)
9512 {
9513 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9514 return FALSE;
9515 }
9516
9517 if (!is_ppc64_elf (gent->owner))
9518 abort ();
9519
9520 allocate_got (h, info, gent);
9521 }
9522
9523 if (eh->dyn_relocs == NULL
9524 || (!htab->elf.dynamic_sections_created
9525 && h->type != STT_GNU_IFUNC))
9526 return TRUE;
9527
9528 /* In the shared -Bsymbolic case, discard space allocated for
9529 dynamic pc-relative relocs against symbols which turn out to be
9530 defined in regular objects. For the normal shared case, discard
9531 space for relocs that have become local due to symbol visibility
9532 changes. */
9533
9534 if (info->shared)
9535 {
9536 /* Relocs that use pc_count are those that appear on a call insn,
9537 or certain REL relocs (see must_be_dyn_reloc) that can be
9538 generated via assembly. We want calls to protected symbols to
9539 resolve directly to the function rather than going via the plt.
9540 If people want function pointer comparisons to work as expected
9541 then they should avoid writing weird assembly. */
9542 if (SYMBOL_CALLS_LOCAL (info, h))
9543 {
9544 struct elf_dyn_relocs **pp;
9545
9546 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9547 {
9548 p->count -= p->pc_count;
9549 p->pc_count = 0;
9550 if (p->count == 0)
9551 *pp = p->next;
9552 else
9553 pp = &p->next;
9554 }
9555 }
9556
9557 /* Also discard relocs on undefined weak syms with non-default
9558 visibility. */
9559 if (eh->dyn_relocs != NULL
9560 && h->root.type == bfd_link_hash_undefweak)
9561 {
9562 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9563 eh->dyn_relocs = NULL;
9564
9565 /* Make sure this symbol is output as a dynamic symbol.
9566 Undefined weak syms won't yet be marked as dynamic. */
9567 else if (h->dynindx == -1
9568 && !h->forced_local)
9569 {
9570 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9571 return FALSE;
9572 }
9573 }
9574 }
9575 else if (h->type == STT_GNU_IFUNC)
9576 {
9577 if (!h->non_got_ref)
9578 eh->dyn_relocs = NULL;
9579 }
9580 else if (ELIMINATE_COPY_RELOCS)
9581 {
9582 /* For the non-shared case, discard space for relocs against
9583 symbols which turn out to need copy relocs or are not
9584 dynamic. */
9585
9586 if (!h->non_got_ref
9587 && !h->def_regular)
9588 {
9589 /* Make sure this symbol is output as a dynamic symbol.
9590 Undefined weak syms won't yet be marked as dynamic. */
9591 if (h->dynindx == -1
9592 && !h->forced_local)
9593 {
9594 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9595 return FALSE;
9596 }
9597
9598 /* If that succeeded, we know we'll be keeping all the
9599 relocs. */
9600 if (h->dynindx != -1)
9601 goto keep;
9602 }
9603
9604 eh->dyn_relocs = NULL;
9605
9606 keep: ;
9607 }
9608
9609 /* Finally, allocate space. */
9610 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9611 {
9612 asection *sreloc = elf_section_data (p->sec)->sreloc;
9613 if (eh->elf.type == STT_GNU_IFUNC)
9614 sreloc = htab->elf.irelplt;
9615 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9616 }
9617
9618 return TRUE;
9619 }
9620
9621 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9622 to set up space for global entry stubs. These are put in glink,
9623 after the branch table. */
9624
9625 static bfd_boolean
9626 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9627 {
9628 struct bfd_link_info *info;
9629 struct ppc_link_hash_table *htab;
9630 struct plt_entry *pent;
9631 asection *s;
9632
9633 if (h->root.type == bfd_link_hash_indirect)
9634 return TRUE;
9635
9636 if (!h->pointer_equality_needed)
9637 return TRUE;
9638
9639 if (h->def_regular)
9640 return TRUE;
9641
9642 info = inf;
9643 htab = ppc_hash_table (info);
9644 if (htab == NULL)
9645 return FALSE;
9646
9647 s = htab->glink;
9648 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9649 if (pent->plt.offset != (bfd_vma) -1
9650 && pent->addend == 0)
9651 {
9652 /* For ELFv2, if this symbol is not defined in a regular file
9653 and we are not generating a shared library or pie, then we
9654 need to define the symbol in the executable on a call stub.
9655 This is to avoid text relocations. */
9656 s->size = (s->size + 15) & -16;
9657 h->root.u.def.section = s;
9658 h->root.u.def.value = s->size;
9659 s->size += 16;
9660 break;
9661 }
9662 return TRUE;
9663 }
9664
9665 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9666 read-only sections. */
9667
9668 static bfd_boolean
9669 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9670 {
9671 if (h->root.type == bfd_link_hash_indirect)
9672 return TRUE;
9673
9674 if (readonly_dynrelocs (h))
9675 {
9676 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9677
9678 /* Not an error, just cut short the traversal. */
9679 return FALSE;
9680 }
9681 return TRUE;
9682 }
9683
9684 /* Set the sizes of the dynamic sections. */
9685
9686 static bfd_boolean
9687 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9688 struct bfd_link_info *info)
9689 {
9690 struct ppc_link_hash_table *htab;
9691 bfd *dynobj;
9692 asection *s;
9693 bfd_boolean relocs;
9694 bfd *ibfd;
9695 struct got_entry *first_tlsld;
9696
9697 htab = ppc_hash_table (info);
9698 if (htab == NULL)
9699 return FALSE;
9700
9701 dynobj = htab->elf.dynobj;
9702 if (dynobj == NULL)
9703 abort ();
9704
9705 if (htab->elf.dynamic_sections_created)
9706 {
9707 /* Set the contents of the .interp section to the interpreter. */
9708 if (info->executable)
9709 {
9710 s = bfd_get_linker_section (dynobj, ".interp");
9711 if (s == NULL)
9712 abort ();
9713 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9714 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9715 }
9716 }
9717
9718 /* Set up .got offsets for local syms, and space for local dynamic
9719 relocs. */
9720 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9721 {
9722 struct got_entry **lgot_ents;
9723 struct got_entry **end_lgot_ents;
9724 struct plt_entry **local_plt;
9725 struct plt_entry **end_local_plt;
9726 unsigned char *lgot_masks;
9727 bfd_size_type locsymcount;
9728 Elf_Internal_Shdr *symtab_hdr;
9729
9730 if (!is_ppc64_elf (ibfd))
9731 continue;
9732
9733 for (s = ibfd->sections; s != NULL; s = s->next)
9734 {
9735 struct ppc_dyn_relocs *p;
9736
9737 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9738 {
9739 if (!bfd_is_abs_section (p->sec)
9740 && bfd_is_abs_section (p->sec->output_section))
9741 {
9742 /* Input section has been discarded, either because
9743 it is a copy of a linkonce section or due to
9744 linker script /DISCARD/, so we'll be discarding
9745 the relocs too. */
9746 }
9747 else if (p->count != 0)
9748 {
9749 asection *srel = elf_section_data (p->sec)->sreloc;
9750 if (p->ifunc)
9751 srel = htab->elf.irelplt;
9752 srel->size += p->count * sizeof (Elf64_External_Rela);
9753 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9754 info->flags |= DF_TEXTREL;
9755 }
9756 }
9757 }
9758
9759 lgot_ents = elf_local_got_ents (ibfd);
9760 if (!lgot_ents)
9761 continue;
9762
9763 symtab_hdr = &elf_symtab_hdr (ibfd);
9764 locsymcount = symtab_hdr->sh_info;
9765 end_lgot_ents = lgot_ents + locsymcount;
9766 local_plt = (struct plt_entry **) end_lgot_ents;
9767 end_local_plt = local_plt + locsymcount;
9768 lgot_masks = (unsigned char *) end_local_plt;
9769 s = ppc64_elf_tdata (ibfd)->got;
9770 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9771 {
9772 struct got_entry **pent, *ent;
9773
9774 pent = lgot_ents;
9775 while ((ent = *pent) != NULL)
9776 if (ent->got.refcount > 0)
9777 {
9778 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9779 {
9780 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9781 *pent = ent->next;
9782 }
9783 else
9784 {
9785 unsigned int ent_size = 8;
9786 unsigned int rel_size = sizeof (Elf64_External_Rela);
9787
9788 ent->got.offset = s->size;
9789 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9790 {
9791 ent_size *= 2;
9792 rel_size *= 2;
9793 }
9794 s->size += ent_size;
9795 if ((*lgot_masks & PLT_IFUNC) != 0)
9796 {
9797 htab->elf.irelplt->size += rel_size;
9798 htab->got_reli_size += rel_size;
9799 }
9800 else if (info->shared)
9801 {
9802 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9803 srel->size += rel_size;
9804 }
9805 pent = &ent->next;
9806 }
9807 }
9808 else
9809 *pent = ent->next;
9810 }
9811
9812 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9813 for (; local_plt < end_local_plt; ++local_plt)
9814 {
9815 struct plt_entry *ent;
9816
9817 for (ent = *local_plt; ent != NULL; ent = ent->next)
9818 if (ent->plt.refcount > 0)
9819 {
9820 s = htab->elf.iplt;
9821 ent->plt.offset = s->size;
9822 s->size += PLT_ENTRY_SIZE (htab);
9823
9824 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9825 }
9826 else
9827 ent->plt.offset = (bfd_vma) -1;
9828 }
9829 }
9830
9831 /* Allocate global sym .plt and .got entries, and space for global
9832 sym dynamic relocs. */
9833 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9834 /* Stash the end of glink branch table. */
9835 if (htab->glink != NULL)
9836 htab->glink->rawsize = htab->glink->size;
9837
9838 if (!htab->opd_abi && !info->shared)
9839 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9840
9841 first_tlsld = NULL;
9842 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9843 {
9844 struct got_entry *ent;
9845
9846 if (!is_ppc64_elf (ibfd))
9847 continue;
9848
9849 ent = ppc64_tlsld_got (ibfd);
9850 if (ent->got.refcount > 0)
9851 {
9852 if (!htab->do_multi_toc && first_tlsld != NULL)
9853 {
9854 ent->is_indirect = TRUE;
9855 ent->got.ent = first_tlsld;
9856 }
9857 else
9858 {
9859 if (first_tlsld == NULL)
9860 first_tlsld = ent;
9861 s = ppc64_elf_tdata (ibfd)->got;
9862 ent->got.offset = s->size;
9863 ent->owner = ibfd;
9864 s->size += 16;
9865 if (info->shared)
9866 {
9867 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9868 srel->size += sizeof (Elf64_External_Rela);
9869 }
9870 }
9871 }
9872 else
9873 ent->got.offset = (bfd_vma) -1;
9874 }
9875
9876 /* We now have determined the sizes of the various dynamic sections.
9877 Allocate memory for them. */
9878 relocs = FALSE;
9879 for (s = dynobj->sections; s != NULL; s = s->next)
9880 {
9881 if ((s->flags & SEC_LINKER_CREATED) == 0)
9882 continue;
9883
9884 if (s == htab->brlt || s == htab->relbrlt)
9885 /* These haven't been allocated yet; don't strip. */
9886 continue;
9887 else if (s == htab->elf.sgot
9888 || s == htab->elf.splt
9889 || s == htab->elf.iplt
9890 || s == htab->glink
9891 || s == htab->dynbss)
9892 {
9893 /* Strip this section if we don't need it; see the
9894 comment below. */
9895 }
9896 else if (s == htab->glink_eh_frame)
9897 {
9898 if (!bfd_is_abs_section (s->output_section))
9899 /* Not sized yet. */
9900 continue;
9901 }
9902 else if (CONST_STRNEQ (s->name, ".rela"))
9903 {
9904 if (s->size != 0)
9905 {
9906 if (s != htab->elf.srelplt)
9907 relocs = TRUE;
9908
9909 /* We use the reloc_count field as a counter if we need
9910 to copy relocs into the output file. */
9911 s->reloc_count = 0;
9912 }
9913 }
9914 else
9915 {
9916 /* It's not one of our sections, so don't allocate space. */
9917 continue;
9918 }
9919
9920 if (s->size == 0)
9921 {
9922 /* If we don't need this section, strip it from the
9923 output file. This is mostly to handle .rela.bss and
9924 .rela.plt. We must create both sections in
9925 create_dynamic_sections, because they must be created
9926 before the linker maps input sections to output
9927 sections. The linker does that before
9928 adjust_dynamic_symbol is called, and it is that
9929 function which decides whether anything needs to go
9930 into these sections. */
9931 s->flags |= SEC_EXCLUDE;
9932 continue;
9933 }
9934
9935 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9936 continue;
9937
9938 /* Allocate memory for the section contents. We use bfd_zalloc
9939 here in case unused entries are not reclaimed before the
9940 section's contents are written out. This should not happen,
9941 but this way if it does we get a R_PPC64_NONE reloc in .rela
9942 sections instead of garbage.
9943 We also rely on the section contents being zero when writing
9944 the GOT. */
9945 s->contents = bfd_zalloc (dynobj, s->size);
9946 if (s->contents == NULL)
9947 return FALSE;
9948 }
9949
9950 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9951 {
9952 if (!is_ppc64_elf (ibfd))
9953 continue;
9954
9955 s = ppc64_elf_tdata (ibfd)->got;
9956 if (s != NULL && s != htab->elf.sgot)
9957 {
9958 if (s->size == 0)
9959 s->flags |= SEC_EXCLUDE;
9960 else
9961 {
9962 s->contents = bfd_zalloc (ibfd, s->size);
9963 if (s->contents == NULL)
9964 return FALSE;
9965 }
9966 }
9967 s = ppc64_elf_tdata (ibfd)->relgot;
9968 if (s != NULL)
9969 {
9970 if (s->size == 0)
9971 s->flags |= SEC_EXCLUDE;
9972 else
9973 {
9974 s->contents = bfd_zalloc (ibfd, s->size);
9975 if (s->contents == NULL)
9976 return FALSE;
9977 relocs = TRUE;
9978 s->reloc_count = 0;
9979 }
9980 }
9981 }
9982
9983 if (htab->elf.dynamic_sections_created)
9984 {
9985 bfd_boolean tls_opt;
9986
9987 /* Add some entries to the .dynamic section. We fill in the
9988 values later, in ppc64_elf_finish_dynamic_sections, but we
9989 must add the entries now so that we get the correct size for
9990 the .dynamic section. The DT_DEBUG entry is filled in by the
9991 dynamic linker and used by the debugger. */
9992 #define add_dynamic_entry(TAG, VAL) \
9993 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9994
9995 if (info->executable)
9996 {
9997 if (!add_dynamic_entry (DT_DEBUG, 0))
9998 return FALSE;
9999 }
10000
10001 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10002 {
10003 if (!add_dynamic_entry (DT_PLTGOT, 0)
10004 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10005 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10006 || !add_dynamic_entry (DT_JMPREL, 0)
10007 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10008 return FALSE;
10009 }
10010
10011 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10012 {
10013 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10014 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10015 return FALSE;
10016 }
10017
10018 tls_opt = (!htab->params->no_tls_get_addr_opt
10019 && htab->tls_get_addr_fd != NULL
10020 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10021 if (tls_opt || !htab->opd_abi)
10022 {
10023 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10024 return FALSE;
10025 }
10026
10027 if (relocs)
10028 {
10029 if (!add_dynamic_entry (DT_RELA, 0)
10030 || !add_dynamic_entry (DT_RELASZ, 0)
10031 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10032 return FALSE;
10033
10034 /* If any dynamic relocs apply to a read-only section,
10035 then we need a DT_TEXTREL entry. */
10036 if ((info->flags & DF_TEXTREL) == 0)
10037 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10038
10039 if ((info->flags & DF_TEXTREL) != 0)
10040 {
10041 if (!add_dynamic_entry (DT_TEXTREL, 0))
10042 return FALSE;
10043 }
10044 }
10045 }
10046 #undef add_dynamic_entry
10047
10048 return TRUE;
10049 }
10050
10051 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10052
10053 static bfd_boolean
10054 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10055 {
10056 if (h->plt.plist != NULL
10057 && !h->def_regular
10058 && !h->pointer_equality_needed)
10059 return FALSE;
10060
10061 return _bfd_elf_hash_symbol (h);
10062 }
10063
10064 /* Determine the type of stub needed, if any, for a call. */
10065
10066 static inline enum ppc_stub_type
10067 ppc_type_of_stub (asection *input_sec,
10068 const Elf_Internal_Rela *rel,
10069 struct ppc_link_hash_entry **hash,
10070 struct plt_entry **plt_ent,
10071 bfd_vma destination,
10072 unsigned long local_off)
10073 {
10074 struct ppc_link_hash_entry *h = *hash;
10075 bfd_vma location;
10076 bfd_vma branch_offset;
10077 bfd_vma max_branch_offset;
10078 enum elf_ppc64_reloc_type r_type;
10079
10080 if (h != NULL)
10081 {
10082 struct plt_entry *ent;
10083 struct ppc_link_hash_entry *fdh = h;
10084 if (h->oh != NULL
10085 && h->oh->is_func_descriptor)
10086 {
10087 fdh = ppc_follow_link (h->oh);
10088 *hash = fdh;
10089 }
10090
10091 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10092 if (ent->addend == rel->r_addend
10093 && ent->plt.offset != (bfd_vma) -1)
10094 {
10095 *plt_ent = ent;
10096 return ppc_stub_plt_call;
10097 }
10098
10099 /* Here, we know we don't have a plt entry. If we don't have a
10100 either a defined function descriptor or a defined entry symbol
10101 in a regular object file, then it is pointless trying to make
10102 any other type of stub. */
10103 if (!is_static_defined (&fdh->elf)
10104 && !is_static_defined (&h->elf))
10105 return ppc_stub_none;
10106 }
10107 else if (elf_local_got_ents (input_sec->owner) != NULL)
10108 {
10109 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10110 struct plt_entry **local_plt = (struct plt_entry **)
10111 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10112 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10113
10114 if (local_plt[r_symndx] != NULL)
10115 {
10116 struct plt_entry *ent;
10117
10118 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10119 if (ent->addend == rel->r_addend
10120 && ent->plt.offset != (bfd_vma) -1)
10121 {
10122 *plt_ent = ent;
10123 return ppc_stub_plt_call;
10124 }
10125 }
10126 }
10127
10128 /* Determine where the call point is. */
10129 location = (input_sec->output_offset
10130 + input_sec->output_section->vma
10131 + rel->r_offset);
10132
10133 branch_offset = destination - location;
10134 r_type = ELF64_R_TYPE (rel->r_info);
10135
10136 /* Determine if a long branch stub is needed. */
10137 max_branch_offset = 1 << 25;
10138 if (r_type != R_PPC64_REL24)
10139 max_branch_offset = 1 << 15;
10140
10141 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10142 /* We need a stub. Figure out whether a long_branch or plt_branch
10143 is needed later. */
10144 return ppc_stub_long_branch;
10145
10146 return ppc_stub_none;
10147 }
10148
10149 /* With power7 weakly ordered memory model, it is possible for ld.so
10150 to update a plt entry in one thread and have another thread see a
10151 stale zero toc entry. To avoid this we need some sort of acquire
10152 barrier in the call stub. One solution is to make the load of the
10153 toc word seem to appear to depend on the load of the function entry
10154 word. Another solution is to test for r2 being zero, and branch to
10155 the appropriate glink entry if so.
10156
10157 . fake dep barrier compare
10158 . ld 12,xxx(2) ld 12,xxx(2)
10159 . mtctr 12 mtctr 12
10160 . xor 11,12,12 ld 2,xxx+8(2)
10161 . add 2,2,11 cmpldi 2,0
10162 . ld 2,xxx+8(2) bnectr+
10163 . bctr b <glink_entry>
10164
10165 The solution involving the compare turns out to be faster, so
10166 that's what we use unless the branch won't reach. */
10167
10168 #define ALWAYS_USE_FAKE_DEP 0
10169 #define ALWAYS_EMIT_R2SAVE 0
10170
10171 #define PPC_LO(v) ((v) & 0xffff)
10172 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10173 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10174
10175 static inline unsigned int
10176 plt_stub_size (struct ppc_link_hash_table *htab,
10177 struct ppc_stub_hash_entry *stub_entry,
10178 bfd_vma off)
10179 {
10180 unsigned size = 12;
10181
10182 if (ALWAYS_EMIT_R2SAVE
10183 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10184 size += 4;
10185 if (PPC_HA (off) != 0)
10186 size += 4;
10187 if (htab->opd_abi)
10188 {
10189 size += 4;
10190 if (htab->params->plt_static_chain)
10191 size += 4;
10192 if (htab->params->plt_thread_safe)
10193 size += 8;
10194 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10195 size += 4;
10196 }
10197 if (stub_entry->h != NULL
10198 && (stub_entry->h == htab->tls_get_addr_fd
10199 || stub_entry->h == htab->tls_get_addr)
10200 && !htab->params->no_tls_get_addr_opt)
10201 size += 13 * 4;
10202 return size;
10203 }
10204
10205 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10206 then return the padding needed to do so. */
10207 static inline unsigned int
10208 plt_stub_pad (struct ppc_link_hash_table *htab,
10209 struct ppc_stub_hash_entry *stub_entry,
10210 bfd_vma plt_off)
10211 {
10212 int stub_align = 1 << htab->params->plt_stub_align;
10213 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10214 bfd_vma stub_off = stub_entry->stub_sec->size;
10215
10216 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10217 > ((stub_size - 1) & -stub_align))
10218 return stub_align - (stub_off & (stub_align - 1));
10219 return 0;
10220 }
10221
10222 /* Build a .plt call stub. */
10223
10224 static inline bfd_byte *
10225 build_plt_stub (struct ppc_link_hash_table *htab,
10226 struct ppc_stub_hash_entry *stub_entry,
10227 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10228 {
10229 bfd *obfd = htab->params->stub_bfd;
10230 bfd_boolean plt_load_toc = htab->opd_abi;
10231 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10232 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10233 bfd_boolean use_fake_dep = plt_thread_safe;
10234 bfd_vma cmp_branch_off = 0;
10235
10236 if (!ALWAYS_USE_FAKE_DEP
10237 && plt_load_toc
10238 && plt_thread_safe
10239 && !(stub_entry->h != NULL
10240 && (stub_entry->h == htab->tls_get_addr_fd
10241 || stub_entry->h == htab->tls_get_addr)
10242 && !htab->params->no_tls_get_addr_opt))
10243 {
10244 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10245 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10246 / PLT_ENTRY_SIZE (htab));
10247 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10248 bfd_vma to, from;
10249
10250 if (pltindex > 32768)
10251 glinkoff += (pltindex - 32768) * 4;
10252 to = (glinkoff
10253 + htab->glink->output_offset
10254 + htab->glink->output_section->vma);
10255 from = (p - stub_entry->stub_sec->contents
10256 + 4 * (ALWAYS_EMIT_R2SAVE
10257 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10258 + 4 * (PPC_HA (offset) != 0)
10259 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10260 != PPC_HA (offset))
10261 + 4 * (plt_static_chain != 0)
10262 + 20
10263 + stub_entry->stub_sec->output_offset
10264 + stub_entry->stub_sec->output_section->vma);
10265 cmp_branch_off = to - from;
10266 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10267 }
10268
10269 if (PPC_HA (offset) != 0)
10270 {
10271 if (r != NULL)
10272 {
10273 if (ALWAYS_EMIT_R2SAVE
10274 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10275 r[0].r_offset += 4;
10276 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10277 r[1].r_offset = r[0].r_offset + 4;
10278 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10279 r[1].r_addend = r[0].r_addend;
10280 if (plt_load_toc)
10281 {
10282 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10283 {
10284 r[2].r_offset = r[1].r_offset + 4;
10285 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10286 r[2].r_addend = r[0].r_addend;
10287 }
10288 else
10289 {
10290 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10291 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10292 r[2].r_addend = r[0].r_addend + 8;
10293 if (plt_static_chain)
10294 {
10295 r[3].r_offset = r[2].r_offset + 4;
10296 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10297 r[3].r_addend = r[0].r_addend + 16;
10298 }
10299 }
10300 }
10301 }
10302 if (ALWAYS_EMIT_R2SAVE
10303 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10304 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10305 if (plt_load_toc)
10306 {
10307 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10308 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10309 }
10310 else
10311 {
10312 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10313 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10314 }
10315 if (plt_load_toc
10316 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10317 {
10318 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10319 offset = 0;
10320 }
10321 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10322 if (plt_load_toc)
10323 {
10324 if (use_fake_dep)
10325 {
10326 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10327 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10328 }
10329 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10330 if (plt_static_chain)
10331 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10332 }
10333 }
10334 else
10335 {
10336 if (r != NULL)
10337 {
10338 if (ALWAYS_EMIT_R2SAVE
10339 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10340 r[0].r_offset += 4;
10341 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10342 if (plt_load_toc)
10343 {
10344 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10345 {
10346 r[1].r_offset = r[0].r_offset + 4;
10347 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10348 r[1].r_addend = r[0].r_addend;
10349 }
10350 else
10351 {
10352 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10353 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10354 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10355 if (plt_static_chain)
10356 {
10357 r[2].r_offset = r[1].r_offset + 4;
10358 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10359 r[2].r_addend = r[0].r_addend + 8;
10360 }
10361 }
10362 }
10363 }
10364 if (ALWAYS_EMIT_R2SAVE
10365 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10366 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10367 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10368 if (plt_load_toc
10369 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10370 {
10371 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10372 offset = 0;
10373 }
10374 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10375 if (plt_load_toc)
10376 {
10377 if (use_fake_dep)
10378 {
10379 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10380 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10381 }
10382 if (plt_static_chain)
10383 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10384 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10385 }
10386 }
10387 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10388 {
10389 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10390 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10391 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10392 }
10393 else
10394 bfd_put_32 (obfd, BCTR, p), p += 4;
10395 return p;
10396 }
10397
10398 /* Build a special .plt call stub for __tls_get_addr. */
10399
10400 #define LD_R11_0R3 0xe9630000
10401 #define LD_R12_0R3 0xe9830000
10402 #define MR_R0_R3 0x7c601b78
10403 #define CMPDI_R11_0 0x2c2b0000
10404 #define ADD_R3_R12_R13 0x7c6c6a14
10405 #define BEQLR 0x4d820020
10406 #define MR_R3_R0 0x7c030378
10407 #define STD_R11_0R1 0xf9610000
10408 #define BCTRL 0x4e800421
10409 #define LD_R11_0R1 0xe9610000
10410 #define MTLR_R11 0x7d6803a6
10411
10412 static inline bfd_byte *
10413 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10414 struct ppc_stub_hash_entry *stub_entry,
10415 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10416 {
10417 bfd *obfd = htab->params->stub_bfd;
10418
10419 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10420 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10421 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10422 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10423 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10424 bfd_put_32 (obfd, BEQLR, p), p += 4;
10425 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10426 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10427 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10428
10429 if (r != NULL)
10430 r[0].r_offset += 9 * 4;
10431 p = build_plt_stub (htab, stub_entry, p, offset, r);
10432 bfd_put_32 (obfd, BCTRL, p - 4);
10433
10434 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10435 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10436 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10437 bfd_put_32 (obfd, BLR, p), p += 4;
10438
10439 return p;
10440 }
10441
10442 static Elf_Internal_Rela *
10443 get_relocs (asection *sec, int count)
10444 {
10445 Elf_Internal_Rela *relocs;
10446 struct bfd_elf_section_data *elfsec_data;
10447
10448 elfsec_data = elf_section_data (sec);
10449 relocs = elfsec_data->relocs;
10450 if (relocs == NULL)
10451 {
10452 bfd_size_type relsize;
10453 relsize = sec->reloc_count * sizeof (*relocs);
10454 relocs = bfd_alloc (sec->owner, relsize);
10455 if (relocs == NULL)
10456 return NULL;
10457 elfsec_data->relocs = relocs;
10458 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10459 sizeof (Elf_Internal_Shdr));
10460 if (elfsec_data->rela.hdr == NULL)
10461 return NULL;
10462 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10463 * sizeof (Elf64_External_Rela));
10464 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10465 sec->reloc_count = 0;
10466 }
10467 relocs += sec->reloc_count;
10468 sec->reloc_count += count;
10469 return relocs;
10470 }
10471
10472 static bfd_vma
10473 get_r2off (struct bfd_link_info *info,
10474 struct ppc_stub_hash_entry *stub_entry)
10475 {
10476 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10477 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10478
10479 if (r2off == 0)
10480 {
10481 /* Support linking -R objects. Get the toc pointer from the
10482 opd entry. */
10483 char buf[8];
10484 if (!htab->opd_abi)
10485 return r2off;
10486 asection *opd = stub_entry->h->elf.root.u.def.section;
10487 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10488
10489 if (strcmp (opd->name, ".opd") != 0
10490 || opd->reloc_count != 0)
10491 {
10492 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10493 stub_entry->h->elf.root.root.string);
10494 bfd_set_error (bfd_error_bad_value);
10495 return 0;
10496 }
10497 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10498 return 0;
10499 r2off = bfd_get_64 (opd->owner, buf);
10500 r2off -= elf_gp (info->output_bfd);
10501 }
10502 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10503 return r2off;
10504 }
10505
10506 static bfd_boolean
10507 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10508 {
10509 struct ppc_stub_hash_entry *stub_entry;
10510 struct ppc_branch_hash_entry *br_entry;
10511 struct bfd_link_info *info;
10512 struct ppc_link_hash_table *htab;
10513 bfd_byte *loc;
10514 bfd_byte *p;
10515 bfd_vma dest, off;
10516 int size;
10517 Elf_Internal_Rela *r;
10518 asection *plt;
10519
10520 /* Massage our args to the form they really have. */
10521 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10522 info = in_arg;
10523
10524 htab = ppc_hash_table (info);
10525 if (htab == NULL)
10526 return FALSE;
10527
10528 /* Make a note of the offset within the stubs for this entry. */
10529 stub_entry->stub_offset = stub_entry->stub_sec->size;
10530 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10531
10532 htab->stub_count[stub_entry->stub_type - 1] += 1;
10533 switch (stub_entry->stub_type)
10534 {
10535 case ppc_stub_long_branch:
10536 case ppc_stub_long_branch_r2off:
10537 /* Branches are relative. This is where we are going to. */
10538 dest = (stub_entry->target_value
10539 + stub_entry->target_section->output_offset
10540 + stub_entry->target_section->output_section->vma);
10541 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10542 off = dest;
10543
10544 /* And this is where we are coming from. */
10545 off -= (stub_entry->stub_offset
10546 + stub_entry->stub_sec->output_offset
10547 + stub_entry->stub_sec->output_section->vma);
10548
10549 size = 4;
10550 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10551 {
10552 bfd_vma r2off = get_r2off (info, stub_entry);
10553
10554 if (r2off == 0)
10555 {
10556 htab->stub_error = TRUE;
10557 return FALSE;
10558 }
10559 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10560 loc += 4;
10561 size = 12;
10562 if (PPC_HA (r2off) != 0)
10563 {
10564 size = 16;
10565 bfd_put_32 (htab->params->stub_bfd,
10566 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10567 loc += 4;
10568 }
10569 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10570 loc += 4;
10571 off -= size - 4;
10572 }
10573 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10574
10575 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10576 {
10577 info->callbacks->einfo
10578 (_("%P: long branch stub `%s' offset overflow\n"),
10579 stub_entry->root.string);
10580 htab->stub_error = TRUE;
10581 return FALSE;
10582 }
10583
10584 if (info->emitrelocations)
10585 {
10586 r = get_relocs (stub_entry->stub_sec, 1);
10587 if (r == NULL)
10588 return FALSE;
10589 r->r_offset = loc - stub_entry->stub_sec->contents;
10590 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10591 r->r_addend = dest;
10592 if (stub_entry->h != NULL)
10593 {
10594 struct elf_link_hash_entry **hashes;
10595 unsigned long symndx;
10596 struct ppc_link_hash_entry *h;
10597
10598 hashes = elf_sym_hashes (htab->params->stub_bfd);
10599 if (hashes == NULL)
10600 {
10601 bfd_size_type hsize;
10602
10603 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10604 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10605 if (hashes == NULL)
10606 return FALSE;
10607 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10608 htab->stub_globals = 1;
10609 }
10610 symndx = htab->stub_globals++;
10611 h = stub_entry->h;
10612 hashes[symndx] = &h->elf;
10613 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10614 if (h->oh != NULL && h->oh->is_func)
10615 h = ppc_follow_link (h->oh);
10616 if (h->elf.root.u.def.section != stub_entry->target_section)
10617 /* H is an opd symbol. The addend must be zero. */
10618 r->r_addend = 0;
10619 else
10620 {
10621 off = (h->elf.root.u.def.value
10622 + h->elf.root.u.def.section->output_offset
10623 + h->elf.root.u.def.section->output_section->vma);
10624 r->r_addend -= off;
10625 }
10626 }
10627 }
10628 break;
10629
10630 case ppc_stub_plt_branch:
10631 case ppc_stub_plt_branch_r2off:
10632 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10633 stub_entry->root.string + 9,
10634 FALSE, FALSE);
10635 if (br_entry == NULL)
10636 {
10637 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10638 stub_entry->root.string);
10639 htab->stub_error = TRUE;
10640 return FALSE;
10641 }
10642
10643 dest = (stub_entry->target_value
10644 + stub_entry->target_section->output_offset
10645 + stub_entry->target_section->output_section->vma);
10646 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10647 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10648
10649 bfd_put_64 (htab->brlt->owner, dest,
10650 htab->brlt->contents + br_entry->offset);
10651
10652 if (br_entry->iter == htab->stub_iteration)
10653 {
10654 br_entry->iter = 0;
10655
10656 if (htab->relbrlt != NULL)
10657 {
10658 /* Create a reloc for the branch lookup table entry. */
10659 Elf_Internal_Rela rela;
10660 bfd_byte *rl;
10661
10662 rela.r_offset = (br_entry->offset
10663 + htab->brlt->output_offset
10664 + htab->brlt->output_section->vma);
10665 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10666 rela.r_addend = dest;
10667
10668 rl = htab->relbrlt->contents;
10669 rl += (htab->relbrlt->reloc_count++
10670 * sizeof (Elf64_External_Rela));
10671 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10672 }
10673 else if (info->emitrelocations)
10674 {
10675 r = get_relocs (htab->brlt, 1);
10676 if (r == NULL)
10677 return FALSE;
10678 /* brlt, being SEC_LINKER_CREATED does not go through the
10679 normal reloc processing. Symbols and offsets are not
10680 translated from input file to output file form, so
10681 set up the offset per the output file. */
10682 r->r_offset = (br_entry->offset
10683 + htab->brlt->output_offset
10684 + htab->brlt->output_section->vma);
10685 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10686 r->r_addend = dest;
10687 }
10688 }
10689
10690 dest = (br_entry->offset
10691 + htab->brlt->output_offset
10692 + htab->brlt->output_section->vma);
10693
10694 off = (dest
10695 - elf_gp (htab->brlt->output_section->owner)
10696 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10697
10698 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10699 {
10700 info->callbacks->einfo
10701 (_("%P: linkage table error against `%T'\n"),
10702 stub_entry->root.string);
10703 bfd_set_error (bfd_error_bad_value);
10704 htab->stub_error = TRUE;
10705 return FALSE;
10706 }
10707
10708 if (info->emitrelocations)
10709 {
10710 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10711 if (r == NULL)
10712 return FALSE;
10713 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10714 if (bfd_big_endian (info->output_bfd))
10715 r[0].r_offset += 2;
10716 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10717 r[0].r_offset += 4;
10718 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10719 r[0].r_addend = dest;
10720 if (PPC_HA (off) != 0)
10721 {
10722 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10723 r[1].r_offset = r[0].r_offset + 4;
10724 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10725 r[1].r_addend = r[0].r_addend;
10726 }
10727 }
10728
10729 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10730 {
10731 if (PPC_HA (off) != 0)
10732 {
10733 size = 16;
10734 bfd_put_32 (htab->params->stub_bfd,
10735 ADDIS_R12_R2 | PPC_HA (off), loc);
10736 loc += 4;
10737 bfd_put_32 (htab->params->stub_bfd,
10738 LD_R12_0R12 | PPC_LO (off), loc);
10739 }
10740 else
10741 {
10742 size = 12;
10743 bfd_put_32 (htab->params->stub_bfd,
10744 LD_R12_0R2 | PPC_LO (off), loc);
10745 }
10746 }
10747 else
10748 {
10749 bfd_vma r2off = get_r2off (info, stub_entry);
10750
10751 if (r2off == 0 && htab->opd_abi)
10752 {
10753 htab->stub_error = TRUE;
10754 return FALSE;
10755 }
10756
10757 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10758 loc += 4;
10759 size = 16;
10760 if (PPC_HA (off) != 0)
10761 {
10762 size += 4;
10763 bfd_put_32 (htab->params->stub_bfd,
10764 ADDIS_R12_R2 | PPC_HA (off), loc);
10765 loc += 4;
10766 bfd_put_32 (htab->params->stub_bfd,
10767 LD_R12_0R12 | PPC_LO (off), loc);
10768 }
10769 else
10770 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10771
10772 if (PPC_HA (r2off) != 0)
10773 {
10774 size += 4;
10775 loc += 4;
10776 bfd_put_32 (htab->params->stub_bfd,
10777 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10778 }
10779 if (PPC_LO (r2off) != 0)
10780 {
10781 size += 4;
10782 loc += 4;
10783 bfd_put_32 (htab->params->stub_bfd,
10784 ADDI_R2_R2 | PPC_LO (r2off), loc);
10785 }
10786 }
10787 loc += 4;
10788 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10789 loc += 4;
10790 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10791 break;
10792
10793 case ppc_stub_plt_call:
10794 case ppc_stub_plt_call_r2save:
10795 if (stub_entry->h != NULL
10796 && stub_entry->h->is_func_descriptor
10797 && stub_entry->h->oh != NULL)
10798 {
10799 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10800
10801 /* If the old-ABI "dot-symbol" is undefined make it weak so
10802 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10803 FIXME: We used to define the symbol on one of the call
10804 stubs instead, which is why we test symbol section id
10805 against htab->top_id in various places. Likely all
10806 these checks could now disappear. */
10807 if (fh->elf.root.type == bfd_link_hash_undefined)
10808 fh->elf.root.type = bfd_link_hash_undefweak;
10809 /* Stop undo_symbol_twiddle changing it back to undefined. */
10810 fh->was_undefined = 0;
10811 }
10812
10813 /* Now build the stub. */
10814 dest = stub_entry->plt_ent->plt.offset & ~1;
10815 if (dest >= (bfd_vma) -2)
10816 abort ();
10817
10818 plt = htab->elf.splt;
10819 if (!htab->elf.dynamic_sections_created
10820 || stub_entry->h == NULL
10821 || stub_entry->h->elf.dynindx == -1)
10822 plt = htab->elf.iplt;
10823
10824 dest += plt->output_offset + plt->output_section->vma;
10825
10826 if (stub_entry->h == NULL
10827 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10828 {
10829 Elf_Internal_Rela rela;
10830 bfd_byte *rl;
10831
10832 rela.r_offset = dest;
10833 if (htab->opd_abi)
10834 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10835 else
10836 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10837 rela.r_addend = (stub_entry->target_value
10838 + stub_entry->target_section->output_offset
10839 + stub_entry->target_section->output_section->vma);
10840
10841 rl = (htab->elf.irelplt->contents
10842 + (htab->elf.irelplt->reloc_count++
10843 * sizeof (Elf64_External_Rela)));
10844 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10845 stub_entry->plt_ent->plt.offset |= 1;
10846 }
10847
10848 off = (dest
10849 - elf_gp (plt->output_section->owner)
10850 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10851
10852 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10853 {
10854 info->callbacks->einfo
10855 (_("%P: linkage table error against `%T'\n"),
10856 stub_entry->h != NULL
10857 ? stub_entry->h->elf.root.root.string
10858 : "<local sym>");
10859 bfd_set_error (bfd_error_bad_value);
10860 htab->stub_error = TRUE;
10861 return FALSE;
10862 }
10863
10864 if (htab->params->plt_stub_align != 0)
10865 {
10866 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10867
10868 stub_entry->stub_sec->size += pad;
10869 stub_entry->stub_offset = stub_entry->stub_sec->size;
10870 loc += pad;
10871 }
10872
10873 r = NULL;
10874 if (info->emitrelocations)
10875 {
10876 r = get_relocs (stub_entry->stub_sec,
10877 ((PPC_HA (off) != 0)
10878 + (htab->opd_abi
10879 ? 2 + (htab->params->plt_static_chain
10880 && PPC_HA (off + 16) == PPC_HA (off))
10881 : 1)));
10882 if (r == NULL)
10883 return FALSE;
10884 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10885 if (bfd_big_endian (info->output_bfd))
10886 r[0].r_offset += 2;
10887 r[0].r_addend = dest;
10888 }
10889 if (stub_entry->h != NULL
10890 && (stub_entry->h == htab->tls_get_addr_fd
10891 || stub_entry->h == htab->tls_get_addr)
10892 && !htab->params->no_tls_get_addr_opt)
10893 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10894 else
10895 p = build_plt_stub (htab, stub_entry, loc, off, r);
10896 size = p - loc;
10897 break;
10898
10899 default:
10900 BFD_FAIL ();
10901 return FALSE;
10902 }
10903
10904 stub_entry->stub_sec->size += size;
10905
10906 if (htab->params->emit_stub_syms)
10907 {
10908 struct elf_link_hash_entry *h;
10909 size_t len1, len2;
10910 char *name;
10911 const char *const stub_str[] = { "long_branch",
10912 "long_branch_r2off",
10913 "plt_branch",
10914 "plt_branch_r2off",
10915 "plt_call",
10916 "plt_call" };
10917
10918 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10919 len2 = strlen (stub_entry->root.string);
10920 name = bfd_malloc (len1 + len2 + 2);
10921 if (name == NULL)
10922 return FALSE;
10923 memcpy (name, stub_entry->root.string, 9);
10924 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10925 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10926 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10927 if (h == NULL)
10928 return FALSE;
10929 if (h->root.type == bfd_link_hash_new)
10930 {
10931 h->root.type = bfd_link_hash_defined;
10932 h->root.u.def.section = stub_entry->stub_sec;
10933 h->root.u.def.value = stub_entry->stub_offset;
10934 h->ref_regular = 1;
10935 h->def_regular = 1;
10936 h->ref_regular_nonweak = 1;
10937 h->forced_local = 1;
10938 h->non_elf = 0;
10939 }
10940 }
10941
10942 return TRUE;
10943 }
10944
10945 /* As above, but don't actually build the stub. Just bump offset so
10946 we know stub section sizes, and select plt_branch stubs where
10947 long_branch stubs won't do. */
10948
10949 static bfd_boolean
10950 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10951 {
10952 struct ppc_stub_hash_entry *stub_entry;
10953 struct bfd_link_info *info;
10954 struct ppc_link_hash_table *htab;
10955 bfd_vma off;
10956 int size;
10957
10958 /* Massage our args to the form they really have. */
10959 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10960 info = in_arg;
10961
10962 htab = ppc_hash_table (info);
10963 if (htab == NULL)
10964 return FALSE;
10965
10966 if (stub_entry->stub_type == ppc_stub_plt_call
10967 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10968 {
10969 asection *plt;
10970 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10971 if (off >= (bfd_vma) -2)
10972 abort ();
10973 plt = htab->elf.splt;
10974 if (!htab->elf.dynamic_sections_created
10975 || stub_entry->h == NULL
10976 || stub_entry->h->elf.dynindx == -1)
10977 plt = htab->elf.iplt;
10978 off += (plt->output_offset
10979 + plt->output_section->vma
10980 - elf_gp (plt->output_section->owner)
10981 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10982
10983 size = plt_stub_size (htab, stub_entry, off);
10984 if (htab->params->plt_stub_align)
10985 size += plt_stub_pad (htab, stub_entry, off);
10986 if (info->emitrelocations)
10987 {
10988 stub_entry->stub_sec->reloc_count
10989 += ((PPC_HA (off) != 0)
10990 + (htab->opd_abi
10991 ? 2 + (htab->params->plt_static_chain
10992 && PPC_HA (off + 16) == PPC_HA (off))
10993 : 1));
10994 stub_entry->stub_sec->flags |= SEC_RELOC;
10995 }
10996 }
10997 else
10998 {
10999 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11000 variants. */
11001 bfd_vma r2off = 0;
11002 bfd_vma local_off = 0;
11003
11004 off = (stub_entry->target_value
11005 + stub_entry->target_section->output_offset
11006 + stub_entry->target_section->output_section->vma);
11007 off -= (stub_entry->stub_sec->size
11008 + stub_entry->stub_sec->output_offset
11009 + stub_entry->stub_sec->output_section->vma);
11010
11011 /* Reset the stub type from the plt variant in case we now
11012 can reach with a shorter stub. */
11013 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11014 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11015
11016 size = 4;
11017 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11018 {
11019 r2off = get_r2off (info, stub_entry);
11020 if (r2off == 0 && htab->opd_abi)
11021 {
11022 htab->stub_error = TRUE;
11023 return FALSE;
11024 }
11025 size = 12;
11026 if (PPC_HA (r2off) != 0)
11027 size = 16;
11028 off -= size - 4;
11029 }
11030
11031 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11032
11033 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11034 Do the same for -R objects without function descriptors. */
11035 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11036 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11037 && r2off == 0))
11038 {
11039 struct ppc_branch_hash_entry *br_entry;
11040
11041 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11042 stub_entry->root.string + 9,
11043 TRUE, FALSE);
11044 if (br_entry == NULL)
11045 {
11046 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11047 stub_entry->root.string);
11048 htab->stub_error = TRUE;
11049 return FALSE;
11050 }
11051
11052 if (br_entry->iter != htab->stub_iteration)
11053 {
11054 br_entry->iter = htab->stub_iteration;
11055 br_entry->offset = htab->brlt->size;
11056 htab->brlt->size += 8;
11057
11058 if (htab->relbrlt != NULL)
11059 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11060 else if (info->emitrelocations)
11061 {
11062 htab->brlt->reloc_count += 1;
11063 htab->brlt->flags |= SEC_RELOC;
11064 }
11065 }
11066
11067 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11068 off = (br_entry->offset
11069 + htab->brlt->output_offset
11070 + htab->brlt->output_section->vma
11071 - elf_gp (htab->brlt->output_section->owner)
11072 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11073
11074 if (info->emitrelocations)
11075 {
11076 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11077 stub_entry->stub_sec->flags |= SEC_RELOC;
11078 }
11079
11080 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11081 {
11082 size = 12;
11083 if (PPC_HA (off) != 0)
11084 size = 16;
11085 }
11086 else
11087 {
11088 size = 16;
11089 if (PPC_HA (off) != 0)
11090 size += 4;
11091
11092 if (PPC_HA (r2off) != 0)
11093 size += 4;
11094 if (PPC_LO (r2off) != 0)
11095 size += 4;
11096 }
11097 }
11098 else if (info->emitrelocations)
11099 {
11100 stub_entry->stub_sec->reloc_count += 1;
11101 stub_entry->stub_sec->flags |= SEC_RELOC;
11102 }
11103 }
11104
11105 stub_entry->stub_sec->size += size;
11106 return TRUE;
11107 }
11108
11109 /* Set up various things so that we can make a list of input sections
11110 for each output section included in the link. Returns -1 on error,
11111 0 when no stubs will be needed, and 1 on success. */
11112
11113 int
11114 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11115 {
11116 bfd *input_bfd;
11117 int top_id, top_index, id;
11118 asection *section;
11119 asection **input_list;
11120 bfd_size_type amt;
11121 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11122
11123 if (htab == NULL)
11124 return -1;
11125
11126 /* Find the top input section id. */
11127 for (input_bfd = info->input_bfds, top_id = 3;
11128 input_bfd != NULL;
11129 input_bfd = input_bfd->link.next)
11130 {
11131 for (section = input_bfd->sections;
11132 section != NULL;
11133 section = section->next)
11134 {
11135 if (top_id < section->id)
11136 top_id = section->id;
11137 }
11138 }
11139
11140 htab->top_id = top_id;
11141 amt = sizeof (struct map_stub) * (top_id + 1);
11142 htab->stub_group = bfd_zmalloc (amt);
11143 if (htab->stub_group == NULL)
11144 return -1;
11145
11146 /* Set toc_off for com, und, abs and ind sections. */
11147 for (id = 0; id < 3; id++)
11148 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11149
11150 /* We can't use output_bfd->section_count here to find the top output
11151 section index as some sections may have been removed, and
11152 strip_excluded_output_sections doesn't renumber the indices. */
11153 for (section = info->output_bfd->sections, top_index = 0;
11154 section != NULL;
11155 section = section->next)
11156 {
11157 if (top_index < section->index)
11158 top_index = section->index;
11159 }
11160
11161 htab->top_index = top_index;
11162 amt = sizeof (asection *) * (top_index + 1);
11163 input_list = bfd_zmalloc (amt);
11164 htab->input_list = input_list;
11165 if (input_list == NULL)
11166 return -1;
11167
11168 return 1;
11169 }
11170
11171 /* Set up for first pass at multitoc partitioning. */
11172
11173 void
11174 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11175 {
11176 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11177
11178 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11179 htab->toc_bfd = NULL;
11180 htab->toc_first_sec = NULL;
11181 }
11182
11183 /* The linker repeatedly calls this function for each TOC input section
11184 and linker generated GOT section. Group input bfds such that the toc
11185 within a group is less than 64k in size. */
11186
11187 bfd_boolean
11188 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11189 {
11190 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11191 bfd_vma addr, off, limit;
11192
11193 if (htab == NULL)
11194 return FALSE;
11195
11196 if (!htab->second_toc_pass)
11197 {
11198 /* Keep track of the first .toc or .got section for this input bfd. */
11199 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11200
11201 if (new_bfd)
11202 {
11203 htab->toc_bfd = isec->owner;
11204 htab->toc_first_sec = isec;
11205 }
11206
11207 addr = isec->output_offset + isec->output_section->vma;
11208 off = addr - htab->toc_curr;
11209 limit = 0x80008000;
11210 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11211 limit = 0x10000;
11212 if (off + isec->size > limit)
11213 {
11214 addr = (htab->toc_first_sec->output_offset
11215 + htab->toc_first_sec->output_section->vma);
11216 htab->toc_curr = addr;
11217 }
11218
11219 /* toc_curr is the base address of this toc group. Set elf_gp
11220 for the input section to be the offset relative to the
11221 output toc base plus 0x8000. Making the input elf_gp an
11222 offset allows us to move the toc as a whole without
11223 recalculating input elf_gp. */
11224 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11225 off += TOC_BASE_OFF;
11226
11227 /* Die if someone uses a linker script that doesn't keep input
11228 file .toc and .got together. */
11229 if (new_bfd
11230 && elf_gp (isec->owner) != 0
11231 && elf_gp (isec->owner) != off)
11232 return FALSE;
11233
11234 elf_gp (isec->owner) = off;
11235 return TRUE;
11236 }
11237
11238 /* During the second pass toc_first_sec points to the start of
11239 a toc group, and toc_curr is used to track the old elf_gp.
11240 We use toc_bfd to ensure we only look at each bfd once. */
11241 if (htab->toc_bfd == isec->owner)
11242 return TRUE;
11243 htab->toc_bfd = isec->owner;
11244
11245 if (htab->toc_first_sec == NULL
11246 || htab->toc_curr != elf_gp (isec->owner))
11247 {
11248 htab->toc_curr = elf_gp (isec->owner);
11249 htab->toc_first_sec = isec;
11250 }
11251 addr = (htab->toc_first_sec->output_offset
11252 + htab->toc_first_sec->output_section->vma);
11253 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11254 elf_gp (isec->owner) = off;
11255
11256 return TRUE;
11257 }
11258
11259 /* Called via elf_link_hash_traverse to merge GOT entries for global
11260 symbol H. */
11261
11262 static bfd_boolean
11263 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11264 {
11265 if (h->root.type == bfd_link_hash_indirect)
11266 return TRUE;
11267
11268 merge_got_entries (&h->got.glist);
11269
11270 return TRUE;
11271 }
11272
11273 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11274 symbol H. */
11275
11276 static bfd_boolean
11277 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11278 {
11279 struct got_entry *gent;
11280
11281 if (h->root.type == bfd_link_hash_indirect)
11282 return TRUE;
11283
11284 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11285 if (!gent->is_indirect)
11286 allocate_got (h, (struct bfd_link_info *) inf, gent);
11287 return TRUE;
11288 }
11289
11290 /* Called on the first multitoc pass after the last call to
11291 ppc64_elf_next_toc_section. This function removes duplicate GOT
11292 entries. */
11293
11294 bfd_boolean
11295 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11296 {
11297 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11298 struct bfd *ibfd, *ibfd2;
11299 bfd_boolean done_something;
11300
11301 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11302
11303 if (!htab->do_multi_toc)
11304 return FALSE;
11305
11306 /* Merge global sym got entries within a toc group. */
11307 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11308
11309 /* And tlsld_got. */
11310 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11311 {
11312 struct got_entry *ent, *ent2;
11313
11314 if (!is_ppc64_elf (ibfd))
11315 continue;
11316
11317 ent = ppc64_tlsld_got (ibfd);
11318 if (!ent->is_indirect
11319 && ent->got.offset != (bfd_vma) -1)
11320 {
11321 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11322 {
11323 if (!is_ppc64_elf (ibfd2))
11324 continue;
11325
11326 ent2 = ppc64_tlsld_got (ibfd2);
11327 if (!ent2->is_indirect
11328 && ent2->got.offset != (bfd_vma) -1
11329 && elf_gp (ibfd2) == elf_gp (ibfd))
11330 {
11331 ent2->is_indirect = TRUE;
11332 ent2->got.ent = ent;
11333 }
11334 }
11335 }
11336 }
11337
11338 /* Zap sizes of got sections. */
11339 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11340 htab->elf.irelplt->size -= htab->got_reli_size;
11341 htab->got_reli_size = 0;
11342
11343 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11344 {
11345 asection *got, *relgot;
11346
11347 if (!is_ppc64_elf (ibfd))
11348 continue;
11349
11350 got = ppc64_elf_tdata (ibfd)->got;
11351 if (got != NULL)
11352 {
11353 got->rawsize = got->size;
11354 got->size = 0;
11355 relgot = ppc64_elf_tdata (ibfd)->relgot;
11356 relgot->rawsize = relgot->size;
11357 relgot->size = 0;
11358 }
11359 }
11360
11361 /* Now reallocate the got, local syms first. We don't need to
11362 allocate section contents again since we never increase size. */
11363 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11364 {
11365 struct got_entry **lgot_ents;
11366 struct got_entry **end_lgot_ents;
11367 struct plt_entry **local_plt;
11368 struct plt_entry **end_local_plt;
11369 unsigned char *lgot_masks;
11370 bfd_size_type locsymcount;
11371 Elf_Internal_Shdr *symtab_hdr;
11372 asection *s;
11373
11374 if (!is_ppc64_elf (ibfd))
11375 continue;
11376
11377 lgot_ents = elf_local_got_ents (ibfd);
11378 if (!lgot_ents)
11379 continue;
11380
11381 symtab_hdr = &elf_symtab_hdr (ibfd);
11382 locsymcount = symtab_hdr->sh_info;
11383 end_lgot_ents = lgot_ents + locsymcount;
11384 local_plt = (struct plt_entry **) end_lgot_ents;
11385 end_local_plt = local_plt + locsymcount;
11386 lgot_masks = (unsigned char *) end_local_plt;
11387 s = ppc64_elf_tdata (ibfd)->got;
11388 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11389 {
11390 struct got_entry *ent;
11391
11392 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11393 {
11394 unsigned int ent_size = 8;
11395 unsigned int rel_size = sizeof (Elf64_External_Rela);
11396
11397 ent->got.offset = s->size;
11398 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11399 {
11400 ent_size *= 2;
11401 rel_size *= 2;
11402 }
11403 s->size += ent_size;
11404 if ((*lgot_masks & PLT_IFUNC) != 0)
11405 {
11406 htab->elf.irelplt->size += rel_size;
11407 htab->got_reli_size += rel_size;
11408 }
11409 else if (info->shared)
11410 {
11411 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11412 srel->size += rel_size;
11413 }
11414 }
11415 }
11416 }
11417
11418 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11419
11420 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11421 {
11422 struct got_entry *ent;
11423
11424 if (!is_ppc64_elf (ibfd))
11425 continue;
11426
11427 ent = ppc64_tlsld_got (ibfd);
11428 if (!ent->is_indirect
11429 && ent->got.offset != (bfd_vma) -1)
11430 {
11431 asection *s = ppc64_elf_tdata (ibfd)->got;
11432 ent->got.offset = s->size;
11433 s->size += 16;
11434 if (info->shared)
11435 {
11436 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11437 srel->size += sizeof (Elf64_External_Rela);
11438 }
11439 }
11440 }
11441
11442 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11443 if (!done_something)
11444 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11445 {
11446 asection *got;
11447
11448 if (!is_ppc64_elf (ibfd))
11449 continue;
11450
11451 got = ppc64_elf_tdata (ibfd)->got;
11452 if (got != NULL)
11453 {
11454 done_something = got->rawsize != got->size;
11455 if (done_something)
11456 break;
11457 }
11458 }
11459
11460 if (done_something)
11461 (*htab->params->layout_sections_again) ();
11462
11463 /* Set up for second pass over toc sections to recalculate elf_gp
11464 on input sections. */
11465 htab->toc_bfd = NULL;
11466 htab->toc_first_sec = NULL;
11467 htab->second_toc_pass = TRUE;
11468 return done_something;
11469 }
11470
11471 /* Called after second pass of multitoc partitioning. */
11472
11473 void
11474 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11475 {
11476 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11477
11478 /* After the second pass, toc_curr tracks the TOC offset used
11479 for code sections below in ppc64_elf_next_input_section. */
11480 htab->toc_curr = TOC_BASE_OFF;
11481 }
11482
11483 /* No toc references were found in ISEC. If the code in ISEC makes no
11484 calls, then there's no need to use toc adjusting stubs when branching
11485 into ISEC. Actually, indirect calls from ISEC are OK as they will
11486 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11487 needed, and 2 if a cyclical call-graph was found but no other reason
11488 for a stub was detected. If called from the top level, a return of
11489 2 means the same as a return of 0. */
11490
11491 static int
11492 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11493 {
11494 int ret;
11495
11496 /* Mark this section as checked. */
11497 isec->call_check_done = 1;
11498
11499 /* We know none of our code bearing sections will need toc stubs. */
11500 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11501 return 0;
11502
11503 if (isec->size == 0)
11504 return 0;
11505
11506 if (isec->output_section == NULL)
11507 return 0;
11508
11509 ret = 0;
11510 if (isec->reloc_count != 0)
11511 {
11512 Elf_Internal_Rela *relstart, *rel;
11513 Elf_Internal_Sym *local_syms;
11514 struct ppc_link_hash_table *htab;
11515
11516 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11517 info->keep_memory);
11518 if (relstart == NULL)
11519 return -1;
11520
11521 /* Look for branches to outside of this section. */
11522 local_syms = NULL;
11523 htab = ppc_hash_table (info);
11524 if (htab == NULL)
11525 return -1;
11526
11527 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11528 {
11529 enum elf_ppc64_reloc_type r_type;
11530 unsigned long r_symndx;
11531 struct elf_link_hash_entry *h;
11532 struct ppc_link_hash_entry *eh;
11533 Elf_Internal_Sym *sym;
11534 asection *sym_sec;
11535 struct _opd_sec_data *opd;
11536 bfd_vma sym_value;
11537 bfd_vma dest;
11538
11539 r_type = ELF64_R_TYPE (rel->r_info);
11540 if (r_type != R_PPC64_REL24
11541 && r_type != R_PPC64_REL14
11542 && r_type != R_PPC64_REL14_BRTAKEN
11543 && r_type != R_PPC64_REL14_BRNTAKEN)
11544 continue;
11545
11546 r_symndx = ELF64_R_SYM (rel->r_info);
11547 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11548 isec->owner))
11549 {
11550 ret = -1;
11551 break;
11552 }
11553
11554 /* Calls to dynamic lib functions go through a plt call stub
11555 that uses r2. */
11556 eh = (struct ppc_link_hash_entry *) h;
11557 if (eh != NULL
11558 && (eh->elf.plt.plist != NULL
11559 || (eh->oh != NULL
11560 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11561 {
11562 ret = 1;
11563 break;
11564 }
11565
11566 if (sym_sec == NULL)
11567 /* Ignore other undefined symbols. */
11568 continue;
11569
11570 /* Assume branches to other sections not included in the
11571 link need stubs too, to cover -R and absolute syms. */
11572 if (sym_sec->output_section == NULL)
11573 {
11574 ret = 1;
11575 break;
11576 }
11577
11578 if (h == NULL)
11579 sym_value = sym->st_value;
11580 else
11581 {
11582 if (h->root.type != bfd_link_hash_defined
11583 && h->root.type != bfd_link_hash_defweak)
11584 abort ();
11585 sym_value = h->root.u.def.value;
11586 }
11587 sym_value += rel->r_addend;
11588
11589 /* If this branch reloc uses an opd sym, find the code section. */
11590 opd = get_opd_info (sym_sec);
11591 if (opd != NULL)
11592 {
11593 if (h == NULL && opd->adjust != NULL)
11594 {
11595 long adjust;
11596
11597 adjust = opd->adjust[OPD_NDX (sym->st_value)];
11598 if (adjust == -1)
11599 /* Assume deleted functions won't ever be called. */
11600 continue;
11601 sym_value += adjust;
11602 }
11603
11604 dest = opd_entry_value (sym_sec, sym_value,
11605 &sym_sec, NULL, FALSE);
11606 if (dest == (bfd_vma) -1)
11607 continue;
11608 }
11609 else
11610 dest = (sym_value
11611 + sym_sec->output_offset
11612 + sym_sec->output_section->vma);
11613
11614 /* Ignore branch to self. */
11615 if (sym_sec == isec)
11616 continue;
11617
11618 /* If the called function uses the toc, we need a stub. */
11619 if (sym_sec->has_toc_reloc
11620 || sym_sec->makes_toc_func_call)
11621 {
11622 ret = 1;
11623 break;
11624 }
11625
11626 /* Assume any branch that needs a long branch stub might in fact
11627 need a plt_branch stub. A plt_branch stub uses r2. */
11628 else if (dest - (isec->output_offset
11629 + isec->output_section->vma
11630 + rel->r_offset) + (1 << 25)
11631 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11632 ? h->other
11633 : sym->st_other))
11634 {
11635 ret = 1;
11636 break;
11637 }
11638
11639 /* If calling back to a section in the process of being
11640 tested, we can't say for sure that no toc adjusting stubs
11641 are needed, so don't return zero. */
11642 else if (sym_sec->call_check_in_progress)
11643 ret = 2;
11644
11645 /* Branches to another section that itself doesn't have any TOC
11646 references are OK. Recursively call ourselves to check. */
11647 else if (!sym_sec->call_check_done)
11648 {
11649 int recur;
11650
11651 /* Mark current section as indeterminate, so that other
11652 sections that call back to current won't be marked as
11653 known. */
11654 isec->call_check_in_progress = 1;
11655 recur = toc_adjusting_stub_needed (info, sym_sec);
11656 isec->call_check_in_progress = 0;
11657
11658 if (recur != 0)
11659 {
11660 ret = recur;
11661 if (recur != 2)
11662 break;
11663 }
11664 }
11665 }
11666
11667 if (local_syms != NULL
11668 && (elf_symtab_hdr (isec->owner).contents
11669 != (unsigned char *) local_syms))
11670 free (local_syms);
11671 if (elf_section_data (isec)->relocs != relstart)
11672 free (relstart);
11673 }
11674
11675 if ((ret & 1) == 0
11676 && isec->map_head.s != NULL
11677 && (strcmp (isec->output_section->name, ".init") == 0
11678 || strcmp (isec->output_section->name, ".fini") == 0))
11679 {
11680 if (isec->map_head.s->has_toc_reloc
11681 || isec->map_head.s->makes_toc_func_call)
11682 ret = 1;
11683 else if (!isec->map_head.s->call_check_done)
11684 {
11685 int recur;
11686 isec->call_check_in_progress = 1;
11687 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11688 isec->call_check_in_progress = 0;
11689 if (recur != 0)
11690 ret = recur;
11691 }
11692 }
11693
11694 if (ret == 1)
11695 isec->makes_toc_func_call = 1;
11696
11697 return ret;
11698 }
11699
11700 /* The linker repeatedly calls this function for each input section,
11701 in the order that input sections are linked into output sections.
11702 Build lists of input sections to determine groupings between which
11703 we may insert linker stubs. */
11704
11705 bfd_boolean
11706 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11707 {
11708 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11709
11710 if (htab == NULL)
11711 return FALSE;
11712
11713 if ((isec->output_section->flags & SEC_CODE) != 0
11714 && isec->output_section->index <= htab->top_index)
11715 {
11716 asection **list = htab->input_list + isec->output_section->index;
11717 /* Steal the link_sec pointer for our list. */
11718 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11719 /* This happens to make the list in reverse order,
11720 which is what we want. */
11721 PREV_SEC (isec) = *list;
11722 *list = isec;
11723 }
11724
11725 if (htab->multi_toc_needed)
11726 {
11727 /* Analyse sections that aren't already flagged as needing a
11728 valid toc pointer. Exclude .fixup for the linux kernel.
11729 .fixup contains branches, but only back to the function that
11730 hit an exception. */
11731 if (!(isec->has_toc_reloc
11732 || (isec->flags & SEC_CODE) == 0
11733 || strcmp (isec->name, ".fixup") == 0
11734 || isec->call_check_done))
11735 {
11736 if (toc_adjusting_stub_needed (info, isec) < 0)
11737 return FALSE;
11738 }
11739 /* Make all sections use the TOC assigned for this object file.
11740 This will be wrong for pasted sections; We fix that in
11741 check_pasted_section(). */
11742 if (elf_gp (isec->owner) != 0)
11743 htab->toc_curr = elf_gp (isec->owner);
11744 }
11745
11746 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11747 return TRUE;
11748 }
11749
11750 /* Check that all .init and .fini sections use the same toc, if they
11751 have toc relocs. */
11752
11753 static bfd_boolean
11754 check_pasted_section (struct bfd_link_info *info, const char *name)
11755 {
11756 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11757
11758 if (o != NULL)
11759 {
11760 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11761 bfd_vma toc_off = 0;
11762 asection *i;
11763
11764 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11765 if (i->has_toc_reloc)
11766 {
11767 if (toc_off == 0)
11768 toc_off = htab->stub_group[i->id].toc_off;
11769 else if (toc_off != htab->stub_group[i->id].toc_off)
11770 return FALSE;
11771 }
11772
11773 if (toc_off == 0)
11774 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11775 if (i->makes_toc_func_call)
11776 {
11777 toc_off = htab->stub_group[i->id].toc_off;
11778 break;
11779 }
11780
11781 /* Make sure the whole pasted function uses the same toc offset. */
11782 if (toc_off != 0)
11783 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11784 htab->stub_group[i->id].toc_off = toc_off;
11785 }
11786 return TRUE;
11787 }
11788
11789 bfd_boolean
11790 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11791 {
11792 return (check_pasted_section (info, ".init")
11793 & check_pasted_section (info, ".fini"));
11794 }
11795
11796 /* See whether we can group stub sections together. Grouping stub
11797 sections may result in fewer stubs. More importantly, we need to
11798 put all .init* and .fini* stubs at the beginning of the .init or
11799 .fini output sections respectively, because glibc splits the
11800 _init and _fini functions into multiple parts. Putting a stub in
11801 the middle of a function is not a good idea. */
11802
11803 static void
11804 group_sections (struct ppc_link_hash_table *htab,
11805 bfd_size_type stub_group_size,
11806 bfd_boolean stubs_always_before_branch)
11807 {
11808 asection **list;
11809 bfd_size_type stub14_group_size;
11810 bfd_boolean suppress_size_errors;
11811
11812 suppress_size_errors = FALSE;
11813 stub14_group_size = stub_group_size >> 10;
11814 if (stub_group_size == 1)
11815 {
11816 /* Default values. */
11817 if (stubs_always_before_branch)
11818 {
11819 stub_group_size = 0x1e00000;
11820 stub14_group_size = 0x7800;
11821 }
11822 else
11823 {
11824 stub_group_size = 0x1c00000;
11825 stub14_group_size = 0x7000;
11826 }
11827 suppress_size_errors = TRUE;
11828 }
11829
11830 list = htab->input_list + htab->top_index;
11831 do
11832 {
11833 asection *tail = *list;
11834 while (tail != NULL)
11835 {
11836 asection *curr;
11837 asection *prev;
11838 bfd_size_type total;
11839 bfd_boolean big_sec;
11840 bfd_vma curr_toc;
11841
11842 curr = tail;
11843 total = tail->size;
11844 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11845 && ppc64_elf_section_data (tail)->has_14bit_branch
11846 ? stub14_group_size : stub_group_size);
11847 if (big_sec && !suppress_size_errors)
11848 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11849 tail->owner, tail);
11850 curr_toc = htab->stub_group[tail->id].toc_off;
11851
11852 while ((prev = PREV_SEC (curr)) != NULL
11853 && ((total += curr->output_offset - prev->output_offset)
11854 < (ppc64_elf_section_data (prev) != NULL
11855 && ppc64_elf_section_data (prev)->has_14bit_branch
11856 ? stub14_group_size : stub_group_size))
11857 && htab->stub_group[prev->id].toc_off == curr_toc)
11858 curr = prev;
11859
11860 /* OK, the size from the start of CURR to the end is less
11861 than stub_group_size and thus can be handled by one stub
11862 section. (or the tail section is itself larger than
11863 stub_group_size, in which case we may be toast.) We
11864 should really be keeping track of the total size of stubs
11865 added here, as stubs contribute to the final output
11866 section size. That's a little tricky, and this way will
11867 only break if stubs added make the total size more than
11868 2^25, ie. for the default stub_group_size, if stubs total
11869 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11870 do
11871 {
11872 prev = PREV_SEC (tail);
11873 /* Set up this stub group. */
11874 htab->stub_group[tail->id].link_sec = curr;
11875 }
11876 while (tail != curr && (tail = prev) != NULL);
11877
11878 /* But wait, there's more! Input sections up to stub_group_size
11879 bytes before the stub section can be handled by it too.
11880 Don't do this if we have a really large section after the
11881 stubs, as adding more stubs increases the chance that
11882 branches may not reach into the stub section. */
11883 if (!stubs_always_before_branch && !big_sec)
11884 {
11885 total = 0;
11886 while (prev != NULL
11887 && ((total += tail->output_offset - prev->output_offset)
11888 < (ppc64_elf_section_data (prev) != NULL
11889 && ppc64_elf_section_data (prev)->has_14bit_branch
11890 ? stub14_group_size : stub_group_size))
11891 && htab->stub_group[prev->id].toc_off == curr_toc)
11892 {
11893 tail = prev;
11894 prev = PREV_SEC (tail);
11895 htab->stub_group[tail->id].link_sec = curr;
11896 }
11897 }
11898 tail = prev;
11899 }
11900 }
11901 while (list-- != htab->input_list);
11902 free (htab->input_list);
11903 #undef PREV_SEC
11904 }
11905
11906 static const unsigned char glink_eh_frame_cie[] =
11907 {
11908 0, 0, 0, 16, /* length. */
11909 0, 0, 0, 0, /* id. */
11910 1, /* CIE version. */
11911 'z', 'R', 0, /* Augmentation string. */
11912 4, /* Code alignment. */
11913 0x78, /* Data alignment. */
11914 65, /* RA reg. */
11915 1, /* Augmentation size. */
11916 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11917 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11918 0, 0, 0, 0
11919 };
11920
11921 /* Stripping output sections is normally done before dynamic section
11922 symbols have been allocated. This function is called later, and
11923 handles cases like htab->brlt which is mapped to its own output
11924 section. */
11925
11926 static void
11927 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11928 {
11929 if (isec->size == 0
11930 && isec->output_section->size == 0
11931 && !(isec->output_section->flags & SEC_KEEP)
11932 && !bfd_section_removed_from_list (info->output_bfd,
11933 isec->output_section)
11934 && elf_section_data (isec->output_section)->dynindx == 0)
11935 {
11936 isec->output_section->flags |= SEC_EXCLUDE;
11937 bfd_section_list_remove (info->output_bfd, isec->output_section);
11938 info->output_bfd->section_count--;
11939 }
11940 }
11941
11942 /* Determine and set the size of the stub section for a final link.
11943
11944 The basic idea here is to examine all the relocations looking for
11945 PC-relative calls to a target that is unreachable with a "bl"
11946 instruction. */
11947
11948 bfd_boolean
11949 ppc64_elf_size_stubs (struct bfd_link_info *info)
11950 {
11951 bfd_size_type stub_group_size;
11952 bfd_boolean stubs_always_before_branch;
11953 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11954
11955 if (htab == NULL)
11956 return FALSE;
11957
11958 if (htab->params->plt_thread_safe == -1 && !info->executable)
11959 htab->params->plt_thread_safe = 1;
11960 if (!htab->opd_abi)
11961 htab->params->plt_thread_safe = 0;
11962 else if (htab->params->plt_thread_safe == -1)
11963 {
11964 static const char *const thread_starter[] =
11965 {
11966 "pthread_create",
11967 /* libstdc++ */
11968 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11969 /* librt */
11970 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11971 "mq_notify", "create_timer",
11972 /* libanl */
11973 "getaddrinfo_a",
11974 /* libgomp */
11975 "GOMP_parallel",
11976 "GOMP_parallel_start",
11977 "GOMP_parallel_loop_static",
11978 "GOMP_parallel_loop_static_start",
11979 "GOMP_parallel_loop_dynamic",
11980 "GOMP_parallel_loop_dynamic_start",
11981 "GOMP_parallel_loop_guided",
11982 "GOMP_parallel_loop_guided_start",
11983 "GOMP_parallel_loop_runtime",
11984 "GOMP_parallel_loop_runtime_start",
11985 "GOMP_parallel_sections",
11986 "GOMP_parallel_sections_start",
11987 /* libgo */
11988 "__go_go",
11989 };
11990 unsigned i;
11991
11992 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11993 {
11994 struct elf_link_hash_entry *h;
11995 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11996 FALSE, FALSE, TRUE);
11997 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
11998 if (htab->params->plt_thread_safe)
11999 break;
12000 }
12001 }
12002 stubs_always_before_branch = htab->params->group_size < 0;
12003 if (htab->params->group_size < 0)
12004 stub_group_size = -htab->params->group_size;
12005 else
12006 stub_group_size = htab->params->group_size;
12007
12008 group_sections (htab, stub_group_size, stubs_always_before_branch);
12009
12010 while (1)
12011 {
12012 bfd *input_bfd;
12013 unsigned int bfd_indx;
12014 asection *stub_sec;
12015
12016 htab->stub_iteration += 1;
12017
12018 for (input_bfd = info->input_bfds, bfd_indx = 0;
12019 input_bfd != NULL;
12020 input_bfd = input_bfd->link.next, bfd_indx++)
12021 {
12022 Elf_Internal_Shdr *symtab_hdr;
12023 asection *section;
12024 Elf_Internal_Sym *local_syms = NULL;
12025
12026 if (!is_ppc64_elf (input_bfd))
12027 continue;
12028
12029 /* We'll need the symbol table in a second. */
12030 symtab_hdr = &elf_symtab_hdr (input_bfd);
12031 if (symtab_hdr->sh_info == 0)
12032 continue;
12033
12034 /* Walk over each section attached to the input bfd. */
12035 for (section = input_bfd->sections;
12036 section != NULL;
12037 section = section->next)
12038 {
12039 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12040
12041 /* If there aren't any relocs, then there's nothing more
12042 to do. */
12043 if ((section->flags & SEC_RELOC) == 0
12044 || (section->flags & SEC_ALLOC) == 0
12045 || (section->flags & SEC_LOAD) == 0
12046 || (section->flags & SEC_CODE) == 0
12047 || section->reloc_count == 0)
12048 continue;
12049
12050 /* If this section is a link-once section that will be
12051 discarded, then don't create any stubs. */
12052 if (section->output_section == NULL
12053 || section->output_section->owner != info->output_bfd)
12054 continue;
12055
12056 /* Get the relocs. */
12057 internal_relocs
12058 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12059 info->keep_memory);
12060 if (internal_relocs == NULL)
12061 goto error_ret_free_local;
12062
12063 /* Now examine each relocation. */
12064 irela = internal_relocs;
12065 irelaend = irela + section->reloc_count;
12066 for (; irela < irelaend; irela++)
12067 {
12068 enum elf_ppc64_reloc_type r_type;
12069 unsigned int r_indx;
12070 enum ppc_stub_type stub_type;
12071 struct ppc_stub_hash_entry *stub_entry;
12072 asection *sym_sec, *code_sec;
12073 bfd_vma sym_value, code_value;
12074 bfd_vma destination;
12075 unsigned long local_off;
12076 bfd_boolean ok_dest;
12077 struct ppc_link_hash_entry *hash;
12078 struct ppc_link_hash_entry *fdh;
12079 struct elf_link_hash_entry *h;
12080 Elf_Internal_Sym *sym;
12081 char *stub_name;
12082 const asection *id_sec;
12083 struct _opd_sec_data *opd;
12084 struct plt_entry *plt_ent;
12085
12086 r_type = ELF64_R_TYPE (irela->r_info);
12087 r_indx = ELF64_R_SYM (irela->r_info);
12088
12089 if (r_type >= R_PPC64_max)
12090 {
12091 bfd_set_error (bfd_error_bad_value);
12092 goto error_ret_free_internal;
12093 }
12094
12095 /* Only look for stubs on branch instructions. */
12096 if (r_type != R_PPC64_REL24
12097 && r_type != R_PPC64_REL14
12098 && r_type != R_PPC64_REL14_BRTAKEN
12099 && r_type != R_PPC64_REL14_BRNTAKEN)
12100 continue;
12101
12102 /* Now determine the call target, its name, value,
12103 section. */
12104 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12105 r_indx, input_bfd))
12106 goto error_ret_free_internal;
12107 hash = (struct ppc_link_hash_entry *) h;
12108
12109 ok_dest = FALSE;
12110 fdh = NULL;
12111 sym_value = 0;
12112 if (hash == NULL)
12113 {
12114 sym_value = sym->st_value;
12115 ok_dest = TRUE;
12116 }
12117 else if (hash->elf.root.type == bfd_link_hash_defined
12118 || hash->elf.root.type == bfd_link_hash_defweak)
12119 {
12120 sym_value = hash->elf.root.u.def.value;
12121 if (sym_sec->output_section != NULL)
12122 ok_dest = TRUE;
12123 }
12124 else if (hash->elf.root.type == bfd_link_hash_undefweak
12125 || hash->elf.root.type == bfd_link_hash_undefined)
12126 {
12127 /* Recognise an old ABI func code entry sym, and
12128 use the func descriptor sym instead if it is
12129 defined. */
12130 if (hash->elf.root.root.string[0] == '.'
12131 && (fdh = lookup_fdh (hash, htab)) != NULL)
12132 {
12133 if (fdh->elf.root.type == bfd_link_hash_defined
12134 || fdh->elf.root.type == bfd_link_hash_defweak)
12135 {
12136 sym_sec = fdh->elf.root.u.def.section;
12137 sym_value = fdh->elf.root.u.def.value;
12138 if (sym_sec->output_section != NULL)
12139 ok_dest = TRUE;
12140 }
12141 else
12142 fdh = NULL;
12143 }
12144 }
12145 else
12146 {
12147 bfd_set_error (bfd_error_bad_value);
12148 goto error_ret_free_internal;
12149 }
12150
12151 destination = 0;
12152 local_off = 0;
12153 if (ok_dest)
12154 {
12155 sym_value += irela->r_addend;
12156 destination = (sym_value
12157 + sym_sec->output_offset
12158 + sym_sec->output_section->vma);
12159 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12160 ? hash->elf.other
12161 : sym->st_other);
12162 }
12163
12164 code_sec = sym_sec;
12165 code_value = sym_value;
12166 opd = get_opd_info (sym_sec);
12167 if (opd != NULL)
12168 {
12169 bfd_vma dest;
12170
12171 if (hash == NULL && opd->adjust != NULL)
12172 {
12173 long adjust = opd->adjust[OPD_NDX (sym_value)];
12174 if (adjust == -1)
12175 continue;
12176 code_value += adjust;
12177 sym_value += adjust;
12178 }
12179 dest = opd_entry_value (sym_sec, sym_value,
12180 &code_sec, &code_value, FALSE);
12181 if (dest != (bfd_vma) -1)
12182 {
12183 destination = dest;
12184 if (fdh != NULL)
12185 {
12186 /* Fixup old ABI sym to point at code
12187 entry. */
12188 hash->elf.root.type = bfd_link_hash_defweak;
12189 hash->elf.root.u.def.section = code_sec;
12190 hash->elf.root.u.def.value = code_value;
12191 }
12192 }
12193 }
12194
12195 /* Determine what (if any) linker stub is needed. */
12196 plt_ent = NULL;
12197 stub_type = ppc_type_of_stub (section, irela, &hash,
12198 &plt_ent, destination,
12199 local_off);
12200
12201 if (stub_type != ppc_stub_plt_call)
12202 {
12203 /* Check whether we need a TOC adjusting stub.
12204 Since the linker pastes together pieces from
12205 different object files when creating the
12206 _init and _fini functions, it may be that a
12207 call to what looks like a local sym is in
12208 fact a call needing a TOC adjustment. */
12209 if (code_sec != NULL
12210 && code_sec->output_section != NULL
12211 && (htab->stub_group[code_sec->id].toc_off
12212 != htab->stub_group[section->id].toc_off)
12213 && (code_sec->has_toc_reloc
12214 || code_sec->makes_toc_func_call))
12215 stub_type = ppc_stub_long_branch_r2off;
12216 }
12217
12218 if (stub_type == ppc_stub_none)
12219 continue;
12220
12221 /* __tls_get_addr calls might be eliminated. */
12222 if (stub_type != ppc_stub_plt_call
12223 && hash != NULL
12224 && (hash == htab->tls_get_addr
12225 || hash == htab->tls_get_addr_fd)
12226 && section->has_tls_reloc
12227 && irela != internal_relocs)
12228 {
12229 /* Get tls info. */
12230 unsigned char *tls_mask;
12231
12232 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12233 irela - 1, input_bfd))
12234 goto error_ret_free_internal;
12235 if (*tls_mask != 0)
12236 continue;
12237 }
12238
12239 if (stub_type == ppc_stub_plt_call
12240 && irela + 1 < irelaend
12241 && irela[1].r_offset == irela->r_offset + 4
12242 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12243 {
12244 if (!tocsave_find (htab, INSERT,
12245 &local_syms, irela + 1, input_bfd))
12246 goto error_ret_free_internal;
12247 }
12248 else if (stub_type == ppc_stub_plt_call)
12249 stub_type = ppc_stub_plt_call_r2save;
12250
12251 /* Support for grouping stub sections. */
12252 id_sec = htab->stub_group[section->id].link_sec;
12253
12254 /* Get the name of this stub. */
12255 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12256 if (!stub_name)
12257 goto error_ret_free_internal;
12258
12259 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12260 stub_name, FALSE, FALSE);
12261 if (stub_entry != NULL)
12262 {
12263 /* The proper stub has already been created. */
12264 free (stub_name);
12265 if (stub_type == ppc_stub_plt_call_r2save)
12266 stub_entry->stub_type = stub_type;
12267 continue;
12268 }
12269
12270 stub_entry = ppc_add_stub (stub_name, section, info);
12271 if (stub_entry == NULL)
12272 {
12273 free (stub_name);
12274 error_ret_free_internal:
12275 if (elf_section_data (section)->relocs == NULL)
12276 free (internal_relocs);
12277 error_ret_free_local:
12278 if (local_syms != NULL
12279 && (symtab_hdr->contents
12280 != (unsigned char *) local_syms))
12281 free (local_syms);
12282 return FALSE;
12283 }
12284
12285 stub_entry->stub_type = stub_type;
12286 if (stub_type != ppc_stub_plt_call
12287 && stub_type != ppc_stub_plt_call_r2save)
12288 {
12289 stub_entry->target_value = code_value;
12290 stub_entry->target_section = code_sec;
12291 }
12292 else
12293 {
12294 stub_entry->target_value = sym_value;
12295 stub_entry->target_section = sym_sec;
12296 }
12297 stub_entry->h = hash;
12298 stub_entry->plt_ent = plt_ent;
12299 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12300
12301 if (stub_entry->h != NULL)
12302 htab->stub_globals += 1;
12303 }
12304
12305 /* We're done with the internal relocs, free them. */
12306 if (elf_section_data (section)->relocs != internal_relocs)
12307 free (internal_relocs);
12308 }
12309
12310 if (local_syms != NULL
12311 && symtab_hdr->contents != (unsigned char *) local_syms)
12312 {
12313 if (!info->keep_memory)
12314 free (local_syms);
12315 else
12316 symtab_hdr->contents = (unsigned char *) local_syms;
12317 }
12318 }
12319
12320 /* We may have added some stubs. Find out the new size of the
12321 stub sections. */
12322 for (stub_sec = htab->params->stub_bfd->sections;
12323 stub_sec != NULL;
12324 stub_sec = stub_sec->next)
12325 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12326 {
12327 stub_sec->rawsize = stub_sec->size;
12328 stub_sec->size = 0;
12329 stub_sec->reloc_count = 0;
12330 stub_sec->flags &= ~SEC_RELOC;
12331 }
12332
12333 htab->brlt->size = 0;
12334 htab->brlt->reloc_count = 0;
12335 htab->brlt->flags &= ~SEC_RELOC;
12336 if (htab->relbrlt != NULL)
12337 htab->relbrlt->size = 0;
12338
12339 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12340
12341 if (info->emitrelocations
12342 && htab->glink != NULL && htab->glink->size != 0)
12343 {
12344 htab->glink->reloc_count = 1;
12345 htab->glink->flags |= SEC_RELOC;
12346 }
12347
12348 if (htab->glink_eh_frame != NULL
12349 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12350 && htab->glink_eh_frame->output_section->size != 0)
12351 {
12352 size_t size = 0, align;
12353
12354 for (stub_sec = htab->params->stub_bfd->sections;
12355 stub_sec != NULL;
12356 stub_sec = stub_sec->next)
12357 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12358 size += 24;
12359 if (htab->glink != NULL && htab->glink->size != 0)
12360 size += 24;
12361 if (size != 0)
12362 size += sizeof (glink_eh_frame_cie);
12363 align = 1;
12364 align <<= htab->glink_eh_frame->output_section->alignment_power;
12365 align -= 1;
12366 size = (size + align) & ~align;
12367 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12368 htab->glink_eh_frame->size = size;
12369 }
12370
12371 if (htab->params->plt_stub_align != 0)
12372 for (stub_sec = htab->params->stub_bfd->sections;
12373 stub_sec != NULL;
12374 stub_sec = stub_sec->next)
12375 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12376 stub_sec->size = ((stub_sec->size
12377 + (1 << htab->params->plt_stub_align) - 1)
12378 & (-1 << htab->params->plt_stub_align));
12379
12380 for (stub_sec = htab->params->stub_bfd->sections;
12381 stub_sec != NULL;
12382 stub_sec = stub_sec->next)
12383 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12384 && stub_sec->rawsize != stub_sec->size)
12385 break;
12386
12387 /* Exit from this loop when no stubs have been added, and no stubs
12388 have changed size. */
12389 if (stub_sec == NULL
12390 && (htab->glink_eh_frame == NULL
12391 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12392 break;
12393
12394 /* Ask the linker to do its stuff. */
12395 (*htab->params->layout_sections_again) ();
12396 }
12397
12398 if (htab->glink_eh_frame != NULL
12399 && htab->glink_eh_frame->size != 0)
12400 {
12401 bfd_vma val;
12402 bfd_byte *p, *last_fde;
12403 size_t last_fde_len, size, align, pad;
12404 asection *stub_sec;
12405
12406 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12407 if (p == NULL)
12408 return FALSE;
12409 htab->glink_eh_frame->contents = p;
12410 last_fde = p;
12411
12412 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12413 /* CIE length (rewrite in case little-endian). */
12414 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12415 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12416 p += sizeof (glink_eh_frame_cie);
12417
12418 for (stub_sec = htab->params->stub_bfd->sections;
12419 stub_sec != NULL;
12420 stub_sec = stub_sec->next)
12421 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12422 {
12423 last_fde = p;
12424 last_fde_len = 20;
12425 /* FDE length. */
12426 bfd_put_32 (htab->elf.dynobj, 20, p);
12427 p += 4;
12428 /* CIE pointer. */
12429 val = p - htab->glink_eh_frame->contents;
12430 bfd_put_32 (htab->elf.dynobj, val, p);
12431 p += 4;
12432 /* Offset to stub section, written later. */
12433 p += 4;
12434 /* stub section size. */
12435 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12436 p += 4;
12437 /* Augmentation. */
12438 p += 1;
12439 /* Pad. */
12440 p += 7;
12441 }
12442 if (htab->glink != NULL && htab->glink->size != 0)
12443 {
12444 last_fde = p;
12445 last_fde_len = 20;
12446 /* FDE length. */
12447 bfd_put_32 (htab->elf.dynobj, 20, p);
12448 p += 4;
12449 /* CIE pointer. */
12450 val = p - htab->glink_eh_frame->contents;
12451 bfd_put_32 (htab->elf.dynobj, val, p);
12452 p += 4;
12453 /* Offset to .glink, written later. */
12454 p += 4;
12455 /* .glink size. */
12456 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12457 p += 4;
12458 /* Augmentation. */
12459 p += 1;
12460
12461 *p++ = DW_CFA_advance_loc + 1;
12462 *p++ = DW_CFA_register;
12463 *p++ = 65;
12464 *p++ = 12;
12465 *p++ = DW_CFA_advance_loc + 4;
12466 *p++ = DW_CFA_restore_extended;
12467 *p++ = 65;
12468 }
12469 /* Subsume any padding into the last FDE if user .eh_frame
12470 sections are aligned more than glink_eh_frame. Otherwise any
12471 zero padding will be seen as a terminator. */
12472 size = p - htab->glink_eh_frame->contents;
12473 align = 1;
12474 align <<= htab->glink_eh_frame->output_section->alignment_power;
12475 align -= 1;
12476 pad = ((size + align) & ~align) - size;
12477 htab->glink_eh_frame->size = size + pad;
12478 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12479 }
12480
12481 maybe_strip_output (info, htab->brlt);
12482 if (htab->glink_eh_frame != NULL)
12483 maybe_strip_output (info, htab->glink_eh_frame);
12484
12485 return TRUE;
12486 }
12487
12488 /* Called after we have determined section placement. If sections
12489 move, we'll be called again. Provide a value for TOCstart. */
12490
12491 bfd_vma
12492 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12493 {
12494 asection *s;
12495 bfd_vma TOCstart;
12496
12497 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12498 order. The TOC starts where the first of these sections starts. */
12499 s = bfd_get_section_by_name (obfd, ".got");
12500 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12501 s = bfd_get_section_by_name (obfd, ".toc");
12502 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12503 s = bfd_get_section_by_name (obfd, ".tocbss");
12504 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12505 s = bfd_get_section_by_name (obfd, ".plt");
12506 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12507 {
12508 /* This may happen for
12509 o references to TOC base (SYM@toc / TOC[tc0]) without a
12510 .toc directive
12511 o bad linker script
12512 o --gc-sections and empty TOC sections
12513
12514 FIXME: Warn user? */
12515
12516 /* Look for a likely section. We probably won't even be
12517 using TOCstart. */
12518 for (s = obfd->sections; s != NULL; s = s->next)
12519 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12520 | SEC_EXCLUDE))
12521 == (SEC_ALLOC | SEC_SMALL_DATA))
12522 break;
12523 if (s == NULL)
12524 for (s = obfd->sections; s != NULL; s = s->next)
12525 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12526 == (SEC_ALLOC | SEC_SMALL_DATA))
12527 break;
12528 if (s == NULL)
12529 for (s = obfd->sections; s != NULL; s = s->next)
12530 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12531 == SEC_ALLOC)
12532 break;
12533 if (s == NULL)
12534 for (s = obfd->sections; s != NULL; s = s->next)
12535 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12536 break;
12537 }
12538
12539 TOCstart = 0;
12540 if (s != NULL)
12541 TOCstart = s->output_section->vma + s->output_offset;
12542
12543 _bfd_set_gp_value (obfd, TOCstart);
12544
12545 if (info != NULL && s != NULL)
12546 {
12547 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12548
12549 if (htab != NULL)
12550 {
12551 if (htab->elf.hgot != NULL)
12552 {
12553 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12554 htab->elf.hgot->root.u.def.section = s;
12555 }
12556 }
12557 else
12558 {
12559 struct bfd_link_hash_entry *bh = NULL;
12560 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12561 s, TOC_BASE_OFF, NULL, FALSE,
12562 FALSE, &bh);
12563 }
12564 }
12565 return TOCstart;
12566 }
12567
12568 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12569 write out any global entry stubs. */
12570
12571 static bfd_boolean
12572 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12573 {
12574 struct bfd_link_info *info;
12575 struct ppc_link_hash_table *htab;
12576 struct plt_entry *pent;
12577 asection *s;
12578
12579 if (h->root.type == bfd_link_hash_indirect)
12580 return TRUE;
12581
12582 if (!h->pointer_equality_needed)
12583 return TRUE;
12584
12585 if (h->def_regular)
12586 return TRUE;
12587
12588 info = inf;
12589 htab = ppc_hash_table (info);
12590 if (htab == NULL)
12591 return FALSE;
12592
12593 s = htab->glink;
12594 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12595 if (pent->plt.offset != (bfd_vma) -1
12596 && pent->addend == 0)
12597 {
12598 bfd_byte *p;
12599 asection *plt;
12600 bfd_vma off;
12601
12602 p = s->contents + h->root.u.def.value;
12603 plt = htab->elf.splt;
12604 if (!htab->elf.dynamic_sections_created
12605 || h->dynindx == -1)
12606 plt = htab->elf.iplt;
12607 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12608 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12609
12610 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12611 {
12612 info->callbacks->einfo
12613 (_("%P: linkage table error against `%T'\n"),
12614 h->root.root.string);
12615 bfd_set_error (bfd_error_bad_value);
12616 htab->stub_error = TRUE;
12617 }
12618
12619 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12620 if (htab->params->emit_stub_syms)
12621 {
12622 size_t len = strlen (h->root.root.string);
12623 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12624
12625 if (name == NULL)
12626 return FALSE;
12627
12628 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12629 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12630 if (h == NULL)
12631 return FALSE;
12632 if (h->root.type == bfd_link_hash_new)
12633 {
12634 h->root.type = bfd_link_hash_defined;
12635 h->root.u.def.section = s;
12636 h->root.u.def.value = p - s->contents;
12637 h->ref_regular = 1;
12638 h->def_regular = 1;
12639 h->ref_regular_nonweak = 1;
12640 h->forced_local = 1;
12641 h->non_elf = 0;
12642 }
12643 }
12644
12645 if (PPC_HA (off) != 0)
12646 {
12647 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12648 p += 4;
12649 }
12650 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12651 p += 4;
12652 bfd_put_32 (s->owner, MTCTR_R12, p);
12653 p += 4;
12654 bfd_put_32 (s->owner, BCTR, p);
12655 break;
12656 }
12657 return TRUE;
12658 }
12659
12660 /* Build all the stubs associated with the current output file.
12661 The stubs are kept in a hash table attached to the main linker
12662 hash table. This function is called via gldelf64ppc_finish. */
12663
12664 bfd_boolean
12665 ppc64_elf_build_stubs (struct bfd_link_info *info,
12666 char **stats)
12667 {
12668 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12669 asection *stub_sec;
12670 bfd_byte *p;
12671 int stub_sec_count = 0;
12672
12673 if (htab == NULL)
12674 return FALSE;
12675
12676 /* Allocate memory to hold the linker stubs. */
12677 for (stub_sec = htab->params->stub_bfd->sections;
12678 stub_sec != NULL;
12679 stub_sec = stub_sec->next)
12680 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12681 && stub_sec->size != 0)
12682 {
12683 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12684 if (stub_sec->contents == NULL)
12685 return FALSE;
12686 /* We want to check that built size is the same as calculated
12687 size. rawsize is a convenient location to use. */
12688 stub_sec->rawsize = stub_sec->size;
12689 stub_sec->size = 0;
12690 }
12691
12692 if (htab->glink != NULL && htab->glink->size != 0)
12693 {
12694 unsigned int indx;
12695 bfd_vma plt0;
12696
12697 /* Build the .glink plt call stub. */
12698 if (htab->params->emit_stub_syms)
12699 {
12700 struct elf_link_hash_entry *h;
12701 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12702 TRUE, FALSE, FALSE);
12703 if (h == NULL)
12704 return FALSE;
12705 if (h->root.type == bfd_link_hash_new)
12706 {
12707 h->root.type = bfd_link_hash_defined;
12708 h->root.u.def.section = htab->glink;
12709 h->root.u.def.value = 8;
12710 h->ref_regular = 1;
12711 h->def_regular = 1;
12712 h->ref_regular_nonweak = 1;
12713 h->forced_local = 1;
12714 h->non_elf = 0;
12715 }
12716 }
12717 plt0 = (htab->elf.splt->output_section->vma
12718 + htab->elf.splt->output_offset
12719 - 16);
12720 if (info->emitrelocations)
12721 {
12722 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12723 if (r == NULL)
12724 return FALSE;
12725 r->r_offset = (htab->glink->output_offset
12726 + htab->glink->output_section->vma);
12727 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12728 r->r_addend = plt0;
12729 }
12730 p = htab->glink->contents;
12731 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12732 bfd_put_64 (htab->glink->owner, plt0, p);
12733 p += 8;
12734 if (htab->opd_abi)
12735 {
12736 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12737 p += 4;
12738 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12739 p += 4;
12740 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12741 p += 4;
12742 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12743 p += 4;
12744 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12745 p += 4;
12746 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12747 p += 4;
12748 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12749 p += 4;
12750 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12751 p += 4;
12752 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12753 p += 4;
12754 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12755 p += 4;
12756 }
12757 else
12758 {
12759 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12760 p += 4;
12761 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12762 p += 4;
12763 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12764 p += 4;
12765 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12766 p += 4;
12767 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12768 p += 4;
12769 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12770 p += 4;
12771 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12772 p += 4;
12773 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12774 p += 4;
12775 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12776 p += 4;
12777 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12778 p += 4;
12779 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12780 p += 4;
12781 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12782 p += 4;
12783 }
12784 bfd_put_32 (htab->glink->owner, BCTR, p);
12785 p += 4;
12786 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12787 {
12788 bfd_put_32 (htab->glink->owner, NOP, p);
12789 p += 4;
12790 }
12791
12792 /* Build the .glink lazy link call stubs. */
12793 indx = 0;
12794 while (p < htab->glink->contents + htab->glink->rawsize)
12795 {
12796 if (htab->opd_abi)
12797 {
12798 if (indx < 0x8000)
12799 {
12800 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12801 p += 4;
12802 }
12803 else
12804 {
12805 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12806 p += 4;
12807 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12808 p);
12809 p += 4;
12810 }
12811 }
12812 bfd_put_32 (htab->glink->owner,
12813 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12814 indx++;
12815 p += 4;
12816 }
12817
12818 /* Build .glink global entry stubs. */
12819 if (htab->glink->size > htab->glink->rawsize)
12820 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12821 }
12822
12823 if (htab->brlt != NULL && htab->brlt->size != 0)
12824 {
12825 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12826 htab->brlt->size);
12827 if (htab->brlt->contents == NULL)
12828 return FALSE;
12829 }
12830 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12831 {
12832 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12833 htab->relbrlt->size);
12834 if (htab->relbrlt->contents == NULL)
12835 return FALSE;
12836 }
12837
12838 /* Build the stubs as directed by the stub hash table. */
12839 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12840
12841 if (htab->relbrlt != NULL)
12842 htab->relbrlt->reloc_count = 0;
12843
12844 if (htab->params->plt_stub_align != 0)
12845 for (stub_sec = htab->params->stub_bfd->sections;
12846 stub_sec != NULL;
12847 stub_sec = stub_sec->next)
12848 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12849 stub_sec->size = ((stub_sec->size
12850 + (1 << htab->params->plt_stub_align) - 1)
12851 & (-1 << htab->params->plt_stub_align));
12852
12853 for (stub_sec = htab->params->stub_bfd->sections;
12854 stub_sec != NULL;
12855 stub_sec = stub_sec->next)
12856 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12857 {
12858 stub_sec_count += 1;
12859 if (stub_sec->rawsize != stub_sec->size)
12860 break;
12861 }
12862
12863 /* Note that the glink_eh_frame check here is not only testing that
12864 the generated size matched the calculated size but also that
12865 bfd_elf_discard_info didn't make any changes to the section. */
12866 if (stub_sec != NULL
12867 || (htab->glink_eh_frame != NULL
12868 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12869 {
12870 htab->stub_error = TRUE;
12871 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12872 }
12873
12874 if (htab->stub_error)
12875 return FALSE;
12876
12877 if (stats != NULL)
12878 {
12879 *stats = bfd_malloc (500);
12880 if (*stats == NULL)
12881 return FALSE;
12882
12883 sprintf (*stats, _("linker stubs in %u group%s\n"
12884 " branch %lu\n"
12885 " toc adjust %lu\n"
12886 " long branch %lu\n"
12887 " long toc adj %lu\n"
12888 " plt call %lu\n"
12889 " plt call toc %lu\n"
12890 " global entry %lu"),
12891 stub_sec_count,
12892 stub_sec_count == 1 ? "" : "s",
12893 htab->stub_count[ppc_stub_long_branch - 1],
12894 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12895 htab->stub_count[ppc_stub_plt_branch - 1],
12896 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12897 htab->stub_count[ppc_stub_plt_call - 1],
12898 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12899 htab->stub_count[ppc_stub_global_entry - 1]);
12900 }
12901 return TRUE;
12902 }
12903
12904 /* This function undoes the changes made by add_symbol_adjust. */
12905
12906 static bfd_boolean
12907 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12908 {
12909 struct ppc_link_hash_entry *eh;
12910
12911 if (h->root.type == bfd_link_hash_indirect)
12912 return TRUE;
12913
12914 eh = (struct ppc_link_hash_entry *) h;
12915 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12916 return TRUE;
12917
12918 eh->elf.root.type = bfd_link_hash_undefined;
12919 return TRUE;
12920 }
12921
12922 void
12923 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12924 {
12925 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12926
12927 if (htab != NULL)
12928 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12929 }
12930
12931 /* What to do when ld finds relocations against symbols defined in
12932 discarded sections. */
12933
12934 static unsigned int
12935 ppc64_elf_action_discarded (asection *sec)
12936 {
12937 if (strcmp (".opd", sec->name) == 0)
12938 return 0;
12939
12940 if (strcmp (".toc", sec->name) == 0)
12941 return 0;
12942
12943 if (strcmp (".toc1", sec->name) == 0)
12944 return 0;
12945
12946 return _bfd_elf_default_action_discarded (sec);
12947 }
12948
12949 /* The RELOCATE_SECTION function is called by the ELF backend linker
12950 to handle the relocations for a section.
12951
12952 The relocs are always passed as Rela structures; if the section
12953 actually uses Rel structures, the r_addend field will always be
12954 zero.
12955
12956 This function is responsible for adjust the section contents as
12957 necessary, and (if using Rela relocs and generating a
12958 relocatable output file) adjusting the reloc addend as
12959 necessary.
12960
12961 This function does not have to worry about setting the reloc
12962 address or the reloc symbol index.
12963
12964 LOCAL_SYMS is a pointer to the swapped in local symbols.
12965
12966 LOCAL_SECTIONS is an array giving the section in the input file
12967 corresponding to the st_shndx field of each local symbol.
12968
12969 The global hash table entry for the global symbols can be found
12970 via elf_sym_hashes (input_bfd).
12971
12972 When generating relocatable output, this function must handle
12973 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12974 going to be the section symbol corresponding to the output
12975 section, which means that the addend must be adjusted
12976 accordingly. */
12977
12978 static bfd_boolean
12979 ppc64_elf_relocate_section (bfd *output_bfd,
12980 struct bfd_link_info *info,
12981 bfd *input_bfd,
12982 asection *input_section,
12983 bfd_byte *contents,
12984 Elf_Internal_Rela *relocs,
12985 Elf_Internal_Sym *local_syms,
12986 asection **local_sections)
12987 {
12988 struct ppc_link_hash_table *htab;
12989 Elf_Internal_Shdr *symtab_hdr;
12990 struct elf_link_hash_entry **sym_hashes;
12991 Elf_Internal_Rela *rel;
12992 Elf_Internal_Rela *relend;
12993 Elf_Internal_Rela outrel;
12994 bfd_byte *loc;
12995 struct got_entry **local_got_ents;
12996 bfd_vma TOCstart;
12997 bfd_boolean ret = TRUE;
12998 bfd_boolean is_opd;
12999 /* Assume 'at' branch hints. */
13000 bfd_boolean is_isa_v2 = TRUE;
13001 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13002
13003 /* Initialize howto table if needed. */
13004 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13005 ppc_howto_init ();
13006
13007 htab = ppc_hash_table (info);
13008 if (htab == NULL)
13009 return FALSE;
13010
13011 /* Don't relocate stub sections. */
13012 if (input_section->owner == htab->params->stub_bfd)
13013 return TRUE;
13014
13015 BFD_ASSERT (is_ppc64_elf (input_bfd));
13016
13017 local_got_ents = elf_local_got_ents (input_bfd);
13018 TOCstart = elf_gp (output_bfd);
13019 symtab_hdr = &elf_symtab_hdr (input_bfd);
13020 sym_hashes = elf_sym_hashes (input_bfd);
13021 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13022
13023 rel = relocs;
13024 relend = relocs + input_section->reloc_count;
13025 for (; rel < relend; rel++)
13026 {
13027 enum elf_ppc64_reloc_type r_type;
13028 bfd_vma addend;
13029 bfd_reloc_status_type r;
13030 Elf_Internal_Sym *sym;
13031 asection *sec;
13032 struct elf_link_hash_entry *h_elf;
13033 struct ppc_link_hash_entry *h;
13034 struct ppc_link_hash_entry *fdh;
13035 const char *sym_name;
13036 unsigned long r_symndx, toc_symndx;
13037 bfd_vma toc_addend;
13038 unsigned char tls_mask, tls_gd, tls_type;
13039 unsigned char sym_type;
13040 bfd_vma relocation;
13041 bfd_boolean unresolved_reloc;
13042 bfd_boolean warned;
13043 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13044 unsigned int insn;
13045 unsigned int mask;
13046 struct ppc_stub_hash_entry *stub_entry;
13047 bfd_vma max_br_offset;
13048 bfd_vma from;
13049 const Elf_Internal_Rela orig_rel = *rel;
13050 reloc_howto_type *howto;
13051 struct reloc_howto_struct alt_howto;
13052
13053 r_type = ELF64_R_TYPE (rel->r_info);
13054 r_symndx = ELF64_R_SYM (rel->r_info);
13055
13056 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13057 symbol of the previous ADDR64 reloc. The symbol gives us the
13058 proper TOC base to use. */
13059 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13060 && rel != relocs
13061 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13062 && is_opd)
13063 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13064
13065 sym = NULL;
13066 sec = NULL;
13067 h_elf = NULL;
13068 sym_name = NULL;
13069 unresolved_reloc = FALSE;
13070 warned = FALSE;
13071
13072 if (r_symndx < symtab_hdr->sh_info)
13073 {
13074 /* It's a local symbol. */
13075 struct _opd_sec_data *opd;
13076
13077 sym = local_syms + r_symndx;
13078 sec = local_sections[r_symndx];
13079 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13080 sym_type = ELF64_ST_TYPE (sym->st_info);
13081 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13082 opd = get_opd_info (sec);
13083 if (opd != NULL && opd->adjust != NULL)
13084 {
13085 long adjust = opd->adjust[OPD_NDX (sym->st_value
13086 + rel->r_addend)];
13087 if (adjust == -1)
13088 relocation = 0;
13089 else
13090 {
13091 /* If this is a relocation against the opd section sym
13092 and we have edited .opd, adjust the reloc addend so
13093 that ld -r and ld --emit-relocs output is correct.
13094 If it is a reloc against some other .opd symbol,
13095 then the symbol value will be adjusted later. */
13096 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13097 rel->r_addend += adjust;
13098 else
13099 relocation += adjust;
13100 }
13101 }
13102 }
13103 else
13104 {
13105 bfd_boolean ignored;
13106
13107 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13108 r_symndx, symtab_hdr, sym_hashes,
13109 h_elf, sec, relocation,
13110 unresolved_reloc, warned, ignored);
13111 sym_name = h_elf->root.root.string;
13112 sym_type = h_elf->type;
13113 if (sec != NULL
13114 && sec->owner == output_bfd
13115 && strcmp (sec->name, ".opd") == 0)
13116 {
13117 /* This is a symbol defined in a linker script. All
13118 such are defined in output sections, even those
13119 defined by simple assignment from a symbol defined in
13120 an input section. Transfer the symbol to an
13121 appropriate input .opd section, so that a branch to
13122 this symbol will be mapped to the location specified
13123 by the opd entry. */
13124 struct bfd_link_order *lo;
13125 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13126 if (lo->type == bfd_indirect_link_order)
13127 {
13128 asection *isec = lo->u.indirect.section;
13129 if (h_elf->root.u.def.value >= isec->output_offset
13130 && h_elf->root.u.def.value < (isec->output_offset
13131 + isec->size))
13132 {
13133 h_elf->root.u.def.value -= isec->output_offset;
13134 h_elf->root.u.def.section = isec;
13135 sec = isec;
13136 break;
13137 }
13138 }
13139 }
13140 }
13141 h = (struct ppc_link_hash_entry *) h_elf;
13142
13143 if (sec != NULL && discarded_section (sec))
13144 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13145 rel, 1, relend,
13146 ppc64_elf_howto_table[r_type], 0,
13147 contents);
13148
13149 if (info->relocatable)
13150 continue;
13151
13152 if (h != NULL && &h->elf == htab->elf.hgot)
13153 {
13154 relocation = (TOCstart
13155 + htab->stub_group[input_section->id].toc_off);
13156 sec = bfd_abs_section_ptr;
13157 unresolved_reloc = FALSE;
13158 }
13159
13160 /* TLS optimizations. Replace instruction sequences and relocs
13161 based on information we collected in tls_optimize. We edit
13162 RELOCS so that --emit-relocs will output something sensible
13163 for the final instruction stream. */
13164 tls_mask = 0;
13165 tls_gd = 0;
13166 toc_symndx = 0;
13167 if (h != NULL)
13168 tls_mask = h->tls_mask;
13169 else if (local_got_ents != NULL)
13170 {
13171 struct plt_entry **local_plt = (struct plt_entry **)
13172 (local_got_ents + symtab_hdr->sh_info);
13173 unsigned char *lgot_masks = (unsigned char *)
13174 (local_plt + symtab_hdr->sh_info);
13175 tls_mask = lgot_masks[r_symndx];
13176 }
13177 if (tls_mask == 0
13178 && (r_type == R_PPC64_TLS
13179 || r_type == R_PPC64_TLSGD
13180 || r_type == R_PPC64_TLSLD))
13181 {
13182 /* Check for toc tls entries. */
13183 unsigned char *toc_tls;
13184
13185 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13186 &local_syms, rel, input_bfd))
13187 return FALSE;
13188
13189 if (toc_tls)
13190 tls_mask = *toc_tls;
13191 }
13192
13193 /* Check that tls relocs are used with tls syms, and non-tls
13194 relocs are used with non-tls syms. */
13195 if (r_symndx != STN_UNDEF
13196 && r_type != R_PPC64_NONE
13197 && (h == NULL
13198 || h->elf.root.type == bfd_link_hash_defined
13199 || h->elf.root.type == bfd_link_hash_defweak)
13200 && (IS_PPC64_TLS_RELOC (r_type)
13201 != (sym_type == STT_TLS
13202 || (sym_type == STT_SECTION
13203 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13204 {
13205 if (tls_mask != 0
13206 && (r_type == R_PPC64_TLS
13207 || r_type == R_PPC64_TLSGD
13208 || r_type == R_PPC64_TLSLD))
13209 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13210 ;
13211 else
13212 info->callbacks->einfo
13213 (!IS_PPC64_TLS_RELOC (r_type)
13214 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13215 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13216 input_bfd, input_section, rel->r_offset,
13217 ppc64_elf_howto_table[r_type]->name,
13218 sym_name);
13219 }
13220
13221 /* Ensure reloc mapping code below stays sane. */
13222 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13223 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13224 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13225 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13226 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13227 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13228 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13229 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13230 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13231 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13232 abort ();
13233
13234 switch (r_type)
13235 {
13236 default:
13237 break;
13238
13239 case R_PPC64_LO_DS_OPT:
13240 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13241 if ((insn & (0x3f << 26)) != 58u << 26)
13242 abort ();
13243 insn += (14u << 26) - (58u << 26);
13244 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13245 r_type = R_PPC64_TOC16_LO;
13246 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13247 break;
13248
13249 case R_PPC64_TOC16:
13250 case R_PPC64_TOC16_LO:
13251 case R_PPC64_TOC16_DS:
13252 case R_PPC64_TOC16_LO_DS:
13253 {
13254 /* Check for toc tls entries. */
13255 unsigned char *toc_tls;
13256 int retval;
13257
13258 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13259 &local_syms, rel, input_bfd);
13260 if (retval == 0)
13261 return FALSE;
13262
13263 if (toc_tls)
13264 {
13265 tls_mask = *toc_tls;
13266 if (r_type == R_PPC64_TOC16_DS
13267 || r_type == R_PPC64_TOC16_LO_DS)
13268 {
13269 if (tls_mask != 0
13270 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13271 goto toctprel;
13272 }
13273 else
13274 {
13275 /* If we found a GD reloc pair, then we might be
13276 doing a GD->IE transition. */
13277 if (retval == 2)
13278 {
13279 tls_gd = TLS_TPRELGD;
13280 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13281 goto tls_ldgd_opt;
13282 }
13283 else if (retval == 3)
13284 {
13285 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13286 goto tls_ldgd_opt;
13287 }
13288 }
13289 }
13290 }
13291 break;
13292
13293 case R_PPC64_GOT_TPREL16_HI:
13294 case R_PPC64_GOT_TPREL16_HA:
13295 if (tls_mask != 0
13296 && (tls_mask & TLS_TPREL) == 0)
13297 {
13298 rel->r_offset -= d_offset;
13299 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13300 r_type = R_PPC64_NONE;
13301 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13302 }
13303 break;
13304
13305 case R_PPC64_GOT_TPREL16_DS:
13306 case R_PPC64_GOT_TPREL16_LO_DS:
13307 if (tls_mask != 0
13308 && (tls_mask & TLS_TPREL) == 0)
13309 {
13310 toctprel:
13311 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13312 insn &= 31 << 21;
13313 insn |= 0x3c0d0000; /* addis 0,13,0 */
13314 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13315 r_type = R_PPC64_TPREL16_HA;
13316 if (toc_symndx != 0)
13317 {
13318 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13319 rel->r_addend = toc_addend;
13320 /* We changed the symbol. Start over in order to
13321 get h, sym, sec etc. right. */
13322 rel--;
13323 continue;
13324 }
13325 else
13326 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13327 }
13328 break;
13329
13330 case R_PPC64_TLS:
13331 if (tls_mask != 0
13332 && (tls_mask & TLS_TPREL) == 0)
13333 {
13334 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13335 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13336 if (insn == 0)
13337 abort ();
13338 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13339 /* Was PPC64_TLS which sits on insn boundary, now
13340 PPC64_TPREL16_LO which is at low-order half-word. */
13341 rel->r_offset += d_offset;
13342 r_type = R_PPC64_TPREL16_LO;
13343 if (toc_symndx != 0)
13344 {
13345 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13346 rel->r_addend = toc_addend;
13347 /* We changed the symbol. Start over in order to
13348 get h, sym, sec etc. right. */
13349 rel--;
13350 continue;
13351 }
13352 else
13353 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13354 }
13355 break;
13356
13357 case R_PPC64_GOT_TLSGD16_HI:
13358 case R_PPC64_GOT_TLSGD16_HA:
13359 tls_gd = TLS_TPRELGD;
13360 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13361 goto tls_gdld_hi;
13362 break;
13363
13364 case R_PPC64_GOT_TLSLD16_HI:
13365 case R_PPC64_GOT_TLSLD16_HA:
13366 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13367 {
13368 tls_gdld_hi:
13369 if ((tls_mask & tls_gd) != 0)
13370 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13371 + R_PPC64_GOT_TPREL16_DS);
13372 else
13373 {
13374 rel->r_offset -= d_offset;
13375 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13376 r_type = R_PPC64_NONE;
13377 }
13378 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13379 }
13380 break;
13381
13382 case R_PPC64_GOT_TLSGD16:
13383 case R_PPC64_GOT_TLSGD16_LO:
13384 tls_gd = TLS_TPRELGD;
13385 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13386 goto tls_ldgd_opt;
13387 break;
13388
13389 case R_PPC64_GOT_TLSLD16:
13390 case R_PPC64_GOT_TLSLD16_LO:
13391 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13392 {
13393 unsigned int insn1, insn2, insn3;
13394 bfd_vma offset;
13395
13396 tls_ldgd_opt:
13397 offset = (bfd_vma) -1;
13398 /* If not using the newer R_PPC64_TLSGD/LD to mark
13399 __tls_get_addr calls, we must trust that the call
13400 stays with its arg setup insns, ie. that the next
13401 reloc is the __tls_get_addr call associated with
13402 the current reloc. Edit both insns. */
13403 if (input_section->has_tls_get_addr_call
13404 && rel + 1 < relend
13405 && branch_reloc_hash_match (input_bfd, rel + 1,
13406 htab->tls_get_addr,
13407 htab->tls_get_addr_fd))
13408 offset = rel[1].r_offset;
13409 if ((tls_mask & tls_gd) != 0)
13410 {
13411 /* IE */
13412 insn1 = bfd_get_32 (output_bfd,
13413 contents + rel->r_offset - d_offset);
13414 insn1 &= (1 << 26) - (1 << 2);
13415 insn1 |= 58 << 26; /* ld */
13416 insn2 = 0x7c636a14; /* add 3,3,13 */
13417 if (offset != (bfd_vma) -1)
13418 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13419 if ((tls_mask & TLS_EXPLICIT) == 0)
13420 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13421 + R_PPC64_GOT_TPREL16_DS);
13422 else
13423 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13424 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13425 }
13426 else
13427 {
13428 /* LE */
13429 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13430 insn2 = 0x38630000; /* addi 3,3,0 */
13431 if (tls_gd == 0)
13432 {
13433 /* Was an LD reloc. */
13434 if (toc_symndx)
13435 sec = local_sections[toc_symndx];
13436 for (r_symndx = 0;
13437 r_symndx < symtab_hdr->sh_info;
13438 r_symndx++)
13439 if (local_sections[r_symndx] == sec)
13440 break;
13441 if (r_symndx >= symtab_hdr->sh_info)
13442 r_symndx = STN_UNDEF;
13443 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13444 if (r_symndx != STN_UNDEF)
13445 rel->r_addend -= (local_syms[r_symndx].st_value
13446 + sec->output_offset
13447 + sec->output_section->vma);
13448 }
13449 else if (toc_symndx != 0)
13450 {
13451 r_symndx = toc_symndx;
13452 rel->r_addend = toc_addend;
13453 }
13454 r_type = R_PPC64_TPREL16_HA;
13455 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13456 if (offset != (bfd_vma) -1)
13457 {
13458 rel[1].r_info = ELF64_R_INFO (r_symndx,
13459 R_PPC64_TPREL16_LO);
13460 rel[1].r_offset = offset + d_offset;
13461 rel[1].r_addend = rel->r_addend;
13462 }
13463 }
13464 bfd_put_32 (output_bfd, insn1,
13465 contents + rel->r_offset - d_offset);
13466 if (offset != (bfd_vma) -1)
13467 {
13468 insn3 = bfd_get_32 (output_bfd,
13469 contents + offset + 4);
13470 if (insn3 == NOP
13471 || insn3 == CROR_151515 || insn3 == CROR_313131)
13472 {
13473 rel[1].r_offset += 4;
13474 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13475 insn2 = NOP;
13476 }
13477 bfd_put_32 (output_bfd, insn2, contents + offset);
13478 }
13479 if ((tls_mask & tls_gd) == 0
13480 && (tls_gd == 0 || toc_symndx != 0))
13481 {
13482 /* We changed the symbol. Start over in order
13483 to get h, sym, sec etc. right. */
13484 rel--;
13485 continue;
13486 }
13487 }
13488 break;
13489
13490 case R_PPC64_TLSGD:
13491 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13492 {
13493 unsigned int insn2, insn3;
13494 bfd_vma offset = rel->r_offset;
13495
13496 if ((tls_mask & TLS_TPRELGD) != 0)
13497 {
13498 /* IE */
13499 r_type = R_PPC64_NONE;
13500 insn2 = 0x7c636a14; /* add 3,3,13 */
13501 }
13502 else
13503 {
13504 /* LE */
13505 if (toc_symndx != 0)
13506 {
13507 r_symndx = toc_symndx;
13508 rel->r_addend = toc_addend;
13509 }
13510 r_type = R_PPC64_TPREL16_LO;
13511 rel->r_offset = offset + d_offset;
13512 insn2 = 0x38630000; /* addi 3,3,0 */
13513 }
13514 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13515 /* Zap the reloc on the _tls_get_addr call too. */
13516 BFD_ASSERT (offset == rel[1].r_offset);
13517 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13518 insn3 = bfd_get_32 (output_bfd,
13519 contents + offset + 4);
13520 if (insn3 == NOP
13521 || insn3 == CROR_151515 || insn3 == CROR_313131)
13522 {
13523 rel->r_offset += 4;
13524 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13525 insn2 = NOP;
13526 }
13527 bfd_put_32 (output_bfd, insn2, contents + offset);
13528 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13529 {
13530 rel--;
13531 continue;
13532 }
13533 }
13534 break;
13535
13536 case R_PPC64_TLSLD:
13537 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13538 {
13539 unsigned int insn2, insn3;
13540 bfd_vma offset = rel->r_offset;
13541
13542 if (toc_symndx)
13543 sec = local_sections[toc_symndx];
13544 for (r_symndx = 0;
13545 r_symndx < symtab_hdr->sh_info;
13546 r_symndx++)
13547 if (local_sections[r_symndx] == sec)
13548 break;
13549 if (r_symndx >= symtab_hdr->sh_info)
13550 r_symndx = STN_UNDEF;
13551 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13552 if (r_symndx != STN_UNDEF)
13553 rel->r_addend -= (local_syms[r_symndx].st_value
13554 + sec->output_offset
13555 + sec->output_section->vma);
13556
13557 r_type = R_PPC64_TPREL16_LO;
13558 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13559 rel->r_offset = offset + d_offset;
13560 /* Zap the reloc on the _tls_get_addr call too. */
13561 BFD_ASSERT (offset == rel[1].r_offset);
13562 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13563 insn2 = 0x38630000; /* addi 3,3,0 */
13564 insn3 = bfd_get_32 (output_bfd,
13565 contents + offset + 4);
13566 if (insn3 == NOP
13567 || insn3 == CROR_151515 || insn3 == CROR_313131)
13568 {
13569 rel->r_offset += 4;
13570 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13571 insn2 = NOP;
13572 }
13573 bfd_put_32 (output_bfd, insn2, contents + offset);
13574 rel--;
13575 continue;
13576 }
13577 break;
13578
13579 case R_PPC64_DTPMOD64:
13580 if (rel + 1 < relend
13581 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13582 && rel[1].r_offset == rel->r_offset + 8)
13583 {
13584 if ((tls_mask & TLS_GD) == 0)
13585 {
13586 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13587 if ((tls_mask & TLS_TPRELGD) != 0)
13588 r_type = R_PPC64_TPREL64;
13589 else
13590 {
13591 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13592 r_type = R_PPC64_NONE;
13593 }
13594 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13595 }
13596 }
13597 else
13598 {
13599 if ((tls_mask & TLS_LD) == 0)
13600 {
13601 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13602 r_type = R_PPC64_NONE;
13603 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13604 }
13605 }
13606 break;
13607
13608 case R_PPC64_TPREL64:
13609 if ((tls_mask & TLS_TPREL) == 0)
13610 {
13611 r_type = R_PPC64_NONE;
13612 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13613 }
13614 break;
13615
13616 case R_PPC64_REL16_HA:
13617 /* If we are generating a non-PIC executable, edit
13618 . 0: addis 2,12,.TOC.-0b@ha
13619 . addi 2,2,.TOC.-0b@l
13620 used by ELFv2 global entry points to set up r2, to
13621 . lis 2,.TOC.@ha
13622 . addi 2,2,.TOC.@l
13623 if .TOC. is in range. */
13624 if (!info->shared
13625 && !info->traditional_format
13626 && h != NULL && &h->elf == htab->elf.hgot
13627 && rel + 1 < relend
13628 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13629 && rel[1].r_offset == rel->r_offset + 4
13630 && rel[1].r_addend == rel->r_addend + 4
13631 && relocation + 0x80008000 <= 0xffffffff)
13632 {
13633 unsigned int insn1, insn2;
13634 bfd_vma offset = rel->r_offset - d_offset;
13635 insn1 = bfd_get_32 (output_bfd, contents + offset);
13636 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13637 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13638 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13639 {
13640 r_type = R_PPC64_ADDR16_HA;
13641 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13642 rel->r_addend -= d_offset;
13643 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13644 rel[1].r_addend -= d_offset + 4;
13645 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13646 }
13647 }
13648 break;
13649 }
13650
13651 /* Handle other relocations that tweak non-addend part of insn. */
13652 insn = 0;
13653 max_br_offset = 1 << 25;
13654 addend = rel->r_addend;
13655 reloc_dest = DEST_NORMAL;
13656 switch (r_type)
13657 {
13658 default:
13659 break;
13660
13661 case R_PPC64_TOCSAVE:
13662 if (relocation + addend == (rel->r_offset
13663 + input_section->output_offset
13664 + input_section->output_section->vma)
13665 && tocsave_find (htab, NO_INSERT,
13666 &local_syms, rel, input_bfd))
13667 {
13668 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13669 if (insn == NOP
13670 || insn == CROR_151515 || insn == CROR_313131)
13671 bfd_put_32 (input_bfd,
13672 STD_R2_0R1 + STK_TOC (htab),
13673 contents + rel->r_offset);
13674 }
13675 break;
13676
13677 /* Branch taken prediction relocations. */
13678 case R_PPC64_ADDR14_BRTAKEN:
13679 case R_PPC64_REL14_BRTAKEN:
13680 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13681 /* Fall thru. */
13682
13683 /* Branch not taken prediction relocations. */
13684 case R_PPC64_ADDR14_BRNTAKEN:
13685 case R_PPC64_REL14_BRNTAKEN:
13686 insn |= bfd_get_32 (output_bfd,
13687 contents + rel->r_offset) & ~(0x01 << 21);
13688 /* Fall thru. */
13689
13690 case R_PPC64_REL14:
13691 max_br_offset = 1 << 15;
13692 /* Fall thru. */
13693
13694 case R_PPC64_REL24:
13695 /* Calls to functions with a different TOC, such as calls to
13696 shared objects, need to alter the TOC pointer. This is
13697 done using a linkage stub. A REL24 branching to these
13698 linkage stubs needs to be followed by a nop, as the nop
13699 will be replaced with an instruction to restore the TOC
13700 base pointer. */
13701 fdh = h;
13702 if (h != NULL
13703 && h->oh != NULL
13704 && h->oh->is_func_descriptor)
13705 fdh = ppc_follow_link (h->oh);
13706 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13707 htab);
13708 if (stub_entry != NULL
13709 && (stub_entry->stub_type == ppc_stub_plt_call
13710 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13711 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13712 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13713 {
13714 bfd_boolean can_plt_call = FALSE;
13715
13716 /* All of these stubs will modify r2, so there must be a
13717 branch and link followed by a nop. The nop is
13718 replaced by an insn to restore r2. */
13719 if (rel->r_offset + 8 <= input_section->size)
13720 {
13721 unsigned long br;
13722
13723 br = bfd_get_32 (input_bfd,
13724 contents + rel->r_offset);
13725 if ((br & 1) != 0)
13726 {
13727 unsigned long nop;
13728
13729 nop = bfd_get_32 (input_bfd,
13730 contents + rel->r_offset + 4);
13731 if (nop == NOP
13732 || nop == CROR_151515 || nop == CROR_313131)
13733 {
13734 if (h != NULL
13735 && (h == htab->tls_get_addr_fd
13736 || h == htab->tls_get_addr)
13737 && !htab->params->no_tls_get_addr_opt)
13738 {
13739 /* Special stub used, leave nop alone. */
13740 }
13741 else
13742 bfd_put_32 (input_bfd,
13743 LD_R2_0R1 + STK_TOC (htab),
13744 contents + rel->r_offset + 4);
13745 can_plt_call = TRUE;
13746 }
13747 }
13748 }
13749
13750 if (!can_plt_call && h != NULL)
13751 {
13752 const char *name = h->elf.root.root.string;
13753
13754 if (*name == '.')
13755 ++name;
13756
13757 if (strncmp (name, "__libc_start_main", 17) == 0
13758 && (name[17] == 0 || name[17] == '@'))
13759 {
13760 /* Allow crt1 branch to go via a toc adjusting
13761 stub. Other calls that never return could do
13762 the same, if we could detect such. */
13763 can_plt_call = TRUE;
13764 }
13765 }
13766
13767 if (!can_plt_call)
13768 {
13769 /* g++ as of 20130507 emits self-calls without a
13770 following nop. This is arguably wrong since we
13771 have conflicting information. On the one hand a
13772 global symbol and on the other a local call
13773 sequence, but don't error for this special case.
13774 It isn't possible to cheaply verify we have
13775 exactly such a call. Allow all calls to the same
13776 section. */
13777 asection *code_sec = sec;
13778
13779 if (get_opd_info (sec) != NULL)
13780 {
13781 bfd_vma off = (relocation + addend
13782 - sec->output_section->vma
13783 - sec->output_offset);
13784
13785 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13786 }
13787 if (code_sec == input_section)
13788 can_plt_call = TRUE;
13789 }
13790
13791 if (!can_plt_call)
13792 {
13793 if (stub_entry->stub_type == ppc_stub_plt_call
13794 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13795 info->callbacks->einfo
13796 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13797 "recompile with -fPIC\n"),
13798 input_bfd, input_section, rel->r_offset, sym_name);
13799 else
13800 info->callbacks->einfo
13801 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13802 "(-mcmodel=small toc adjust stub)\n"),
13803 input_bfd, input_section, rel->r_offset, sym_name);
13804
13805 bfd_set_error (bfd_error_bad_value);
13806 ret = FALSE;
13807 }
13808
13809 if (can_plt_call
13810 && (stub_entry->stub_type == ppc_stub_plt_call
13811 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13812 unresolved_reloc = FALSE;
13813 }
13814
13815 if ((stub_entry == NULL
13816 || stub_entry->stub_type == ppc_stub_long_branch
13817 || stub_entry->stub_type == ppc_stub_plt_branch)
13818 && get_opd_info (sec) != NULL)
13819 {
13820 /* The branch destination is the value of the opd entry. */
13821 bfd_vma off = (relocation + addend
13822 - sec->output_section->vma
13823 - sec->output_offset);
13824 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13825 if (dest != (bfd_vma) -1)
13826 {
13827 relocation = dest;
13828 addend = 0;
13829 reloc_dest = DEST_OPD;
13830 }
13831 }
13832
13833 /* If the branch is out of reach we ought to have a long
13834 branch stub. */
13835 from = (rel->r_offset
13836 + input_section->output_offset
13837 + input_section->output_section->vma);
13838
13839 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13840 ? fdh->elf.other
13841 : sym->st_other);
13842
13843 if (stub_entry != NULL
13844 && (stub_entry->stub_type == ppc_stub_long_branch
13845 || stub_entry->stub_type == ppc_stub_plt_branch)
13846 && (r_type == R_PPC64_ADDR14_BRTAKEN
13847 || r_type == R_PPC64_ADDR14_BRNTAKEN
13848 || (relocation + addend - from + max_br_offset
13849 < 2 * max_br_offset)))
13850 /* Don't use the stub if this branch is in range. */
13851 stub_entry = NULL;
13852
13853 if (stub_entry != NULL)
13854 {
13855 /* Munge up the value and addend so that we call the stub
13856 rather than the procedure directly. */
13857 relocation = (stub_entry->stub_offset
13858 + stub_entry->stub_sec->output_offset
13859 + stub_entry->stub_sec->output_section->vma);
13860 addend = 0;
13861 reloc_dest = DEST_STUB;
13862
13863 if ((stub_entry->stub_type == ppc_stub_plt_call
13864 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13865 && (ALWAYS_EMIT_R2SAVE
13866 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13867 && rel + 1 < relend
13868 && rel[1].r_offset == rel->r_offset + 4
13869 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13870 relocation += 4;
13871 }
13872
13873 if (insn != 0)
13874 {
13875 if (is_isa_v2)
13876 {
13877 /* Set 'a' bit. This is 0b00010 in BO field for branch
13878 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13879 for branch on CTR insns (BO == 1a00t or 1a01t). */
13880 if ((insn & (0x14 << 21)) == (0x04 << 21))
13881 insn |= 0x02 << 21;
13882 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13883 insn |= 0x08 << 21;
13884 else
13885 break;
13886 }
13887 else
13888 {
13889 /* Invert 'y' bit if not the default. */
13890 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13891 insn ^= 0x01 << 21;
13892 }
13893
13894 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13895 }
13896
13897 /* NOP out calls to undefined weak functions.
13898 We can thus call a weak function without first
13899 checking whether the function is defined. */
13900 else if (h != NULL
13901 && h->elf.root.type == bfd_link_hash_undefweak
13902 && h->elf.dynindx == -1
13903 && r_type == R_PPC64_REL24
13904 && relocation == 0
13905 && addend == 0)
13906 {
13907 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13908 continue;
13909 }
13910 break;
13911 }
13912
13913 /* Set `addend'. */
13914 tls_type = 0;
13915 switch (r_type)
13916 {
13917 default:
13918 info->callbacks->einfo
13919 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13920 input_bfd, (int) r_type, sym_name);
13921
13922 bfd_set_error (bfd_error_bad_value);
13923 ret = FALSE;
13924 continue;
13925
13926 case R_PPC64_NONE:
13927 case R_PPC64_TLS:
13928 case R_PPC64_TLSGD:
13929 case R_PPC64_TLSLD:
13930 case R_PPC64_TOCSAVE:
13931 case R_PPC64_GNU_VTINHERIT:
13932 case R_PPC64_GNU_VTENTRY:
13933 continue;
13934
13935 /* GOT16 relocations. Like an ADDR16 using the symbol's
13936 address in the GOT as relocation value instead of the
13937 symbol's value itself. Also, create a GOT entry for the
13938 symbol and put the symbol value there. */
13939 case R_PPC64_GOT_TLSGD16:
13940 case R_PPC64_GOT_TLSGD16_LO:
13941 case R_PPC64_GOT_TLSGD16_HI:
13942 case R_PPC64_GOT_TLSGD16_HA:
13943 tls_type = TLS_TLS | TLS_GD;
13944 goto dogot;
13945
13946 case R_PPC64_GOT_TLSLD16:
13947 case R_PPC64_GOT_TLSLD16_LO:
13948 case R_PPC64_GOT_TLSLD16_HI:
13949 case R_PPC64_GOT_TLSLD16_HA:
13950 tls_type = TLS_TLS | TLS_LD;
13951 goto dogot;
13952
13953 case R_PPC64_GOT_TPREL16_DS:
13954 case R_PPC64_GOT_TPREL16_LO_DS:
13955 case R_PPC64_GOT_TPREL16_HI:
13956 case R_PPC64_GOT_TPREL16_HA:
13957 tls_type = TLS_TLS | TLS_TPREL;
13958 goto dogot;
13959
13960 case R_PPC64_GOT_DTPREL16_DS:
13961 case R_PPC64_GOT_DTPREL16_LO_DS:
13962 case R_PPC64_GOT_DTPREL16_HI:
13963 case R_PPC64_GOT_DTPREL16_HA:
13964 tls_type = TLS_TLS | TLS_DTPREL;
13965 goto dogot;
13966
13967 case R_PPC64_GOT16:
13968 case R_PPC64_GOT16_LO:
13969 case R_PPC64_GOT16_HI:
13970 case R_PPC64_GOT16_HA:
13971 case R_PPC64_GOT16_DS:
13972 case R_PPC64_GOT16_LO_DS:
13973 dogot:
13974 {
13975 /* Relocation is to the entry for this symbol in the global
13976 offset table. */
13977 asection *got;
13978 bfd_vma *offp;
13979 bfd_vma off;
13980 unsigned long indx = 0;
13981 struct got_entry *ent;
13982
13983 if (tls_type == (TLS_TLS | TLS_LD)
13984 && (h == NULL
13985 || !h->elf.def_dynamic))
13986 ent = ppc64_tlsld_got (input_bfd);
13987 else
13988 {
13989
13990 if (h != NULL)
13991 {
13992 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13993 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13994 &h->elf)
13995 || (info->shared
13996 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13997 /* This is actually a static link, or it is a
13998 -Bsymbolic link and the symbol is defined
13999 locally, or the symbol was forced to be local
14000 because of a version file. */
14001 ;
14002 else
14003 {
14004 BFD_ASSERT (h->elf.dynindx != -1);
14005 indx = h->elf.dynindx;
14006 unresolved_reloc = FALSE;
14007 }
14008 ent = h->elf.got.glist;
14009 }
14010 else
14011 {
14012 if (local_got_ents == NULL)
14013 abort ();
14014 ent = local_got_ents[r_symndx];
14015 }
14016
14017 for (; ent != NULL; ent = ent->next)
14018 if (ent->addend == orig_rel.r_addend
14019 && ent->owner == input_bfd
14020 && ent->tls_type == tls_type)
14021 break;
14022 }
14023
14024 if (ent == NULL)
14025 abort ();
14026 if (ent->is_indirect)
14027 ent = ent->got.ent;
14028 offp = &ent->got.offset;
14029 got = ppc64_elf_tdata (ent->owner)->got;
14030 if (got == NULL)
14031 abort ();
14032
14033 /* The offset must always be a multiple of 8. We use the
14034 least significant bit to record whether we have already
14035 processed this entry. */
14036 off = *offp;
14037 if ((off & 1) != 0)
14038 off &= ~1;
14039 else
14040 {
14041 /* Generate relocs for the dynamic linker, except in
14042 the case of TLSLD where we'll use one entry per
14043 module. */
14044 asection *relgot;
14045 bfd_boolean ifunc;
14046
14047 *offp = off | 1;
14048 relgot = NULL;
14049 ifunc = (h != NULL
14050 ? h->elf.type == STT_GNU_IFUNC
14051 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14052 if (ifunc)
14053 relgot = htab->elf.irelplt;
14054 else if ((info->shared || indx != 0)
14055 && (h == NULL
14056 || (tls_type == (TLS_TLS | TLS_LD)
14057 && !h->elf.def_dynamic)
14058 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14059 || h->elf.root.type != bfd_link_hash_undefweak))
14060 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14061 if (relgot != NULL)
14062 {
14063 outrel.r_offset = (got->output_section->vma
14064 + got->output_offset
14065 + off);
14066 outrel.r_addend = addend;
14067 if (tls_type & (TLS_LD | TLS_GD))
14068 {
14069 outrel.r_addend = 0;
14070 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14071 if (tls_type == (TLS_TLS | TLS_GD))
14072 {
14073 loc = relgot->contents;
14074 loc += (relgot->reloc_count++
14075 * sizeof (Elf64_External_Rela));
14076 bfd_elf64_swap_reloca_out (output_bfd,
14077 &outrel, loc);
14078 outrel.r_offset += 8;
14079 outrel.r_addend = addend;
14080 outrel.r_info
14081 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14082 }
14083 }
14084 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14085 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14086 else if (tls_type == (TLS_TLS | TLS_TPREL))
14087 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14088 else if (indx != 0)
14089 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14090 else
14091 {
14092 if (ifunc)
14093 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14094 else
14095 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14096
14097 /* Write the .got section contents for the sake
14098 of prelink. */
14099 loc = got->contents + off;
14100 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14101 loc);
14102 }
14103
14104 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14105 {
14106 outrel.r_addend += relocation;
14107 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14108 outrel.r_addend -= htab->elf.tls_sec->vma;
14109 }
14110 loc = relgot->contents;
14111 loc += (relgot->reloc_count++
14112 * sizeof (Elf64_External_Rela));
14113 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14114 }
14115
14116 /* Init the .got section contents here if we're not
14117 emitting a reloc. */
14118 else
14119 {
14120 relocation += addend;
14121 if (tls_type == (TLS_TLS | TLS_LD))
14122 relocation = 1;
14123 else if (tls_type != 0)
14124 {
14125 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14126 if (tls_type == (TLS_TLS | TLS_TPREL))
14127 relocation += DTP_OFFSET - TP_OFFSET;
14128
14129 if (tls_type == (TLS_TLS | TLS_GD))
14130 {
14131 bfd_put_64 (output_bfd, relocation,
14132 got->contents + off + 8);
14133 relocation = 1;
14134 }
14135 }
14136
14137 bfd_put_64 (output_bfd, relocation,
14138 got->contents + off);
14139 }
14140 }
14141
14142 if (off >= (bfd_vma) -2)
14143 abort ();
14144
14145 relocation = got->output_section->vma + got->output_offset + off;
14146 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14147 }
14148 break;
14149
14150 case R_PPC64_PLT16_HA:
14151 case R_PPC64_PLT16_HI:
14152 case R_PPC64_PLT16_LO:
14153 case R_PPC64_PLT32:
14154 case R_PPC64_PLT64:
14155 /* Relocation is to the entry for this symbol in the
14156 procedure linkage table. */
14157
14158 /* Resolve a PLT reloc against a local symbol directly,
14159 without using the procedure linkage table. */
14160 if (h == NULL)
14161 break;
14162
14163 /* It's possible that we didn't make a PLT entry for this
14164 symbol. This happens when statically linking PIC code,
14165 or when using -Bsymbolic. Go find a match if there is a
14166 PLT entry. */
14167 if (htab->elf.splt != NULL)
14168 {
14169 struct plt_entry *ent;
14170 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14171 if (ent->plt.offset != (bfd_vma) -1
14172 && ent->addend == orig_rel.r_addend)
14173 {
14174 relocation = (htab->elf.splt->output_section->vma
14175 + htab->elf.splt->output_offset
14176 + ent->plt.offset);
14177 unresolved_reloc = FALSE;
14178 break;
14179 }
14180 }
14181 break;
14182
14183 case R_PPC64_TOC:
14184 /* Relocation value is TOC base. */
14185 relocation = TOCstart;
14186 if (r_symndx == STN_UNDEF)
14187 relocation += htab->stub_group[input_section->id].toc_off;
14188 else if (unresolved_reloc)
14189 ;
14190 else if (sec != NULL && sec->id <= htab->top_id)
14191 relocation += htab->stub_group[sec->id].toc_off;
14192 else
14193 unresolved_reloc = TRUE;
14194 goto dodyn;
14195
14196 /* TOC16 relocs. We want the offset relative to the TOC base,
14197 which is the address of the start of the TOC plus 0x8000.
14198 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14199 in this order. */
14200 case R_PPC64_TOC16:
14201 case R_PPC64_TOC16_LO:
14202 case R_PPC64_TOC16_HI:
14203 case R_PPC64_TOC16_DS:
14204 case R_PPC64_TOC16_LO_DS:
14205 case R_PPC64_TOC16_HA:
14206 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14207 break;
14208
14209 /* Relocate against the beginning of the section. */
14210 case R_PPC64_SECTOFF:
14211 case R_PPC64_SECTOFF_LO:
14212 case R_PPC64_SECTOFF_HI:
14213 case R_PPC64_SECTOFF_DS:
14214 case R_PPC64_SECTOFF_LO_DS:
14215 case R_PPC64_SECTOFF_HA:
14216 if (sec != NULL)
14217 addend -= sec->output_section->vma;
14218 break;
14219
14220 case R_PPC64_REL16:
14221 case R_PPC64_REL16_LO:
14222 case R_PPC64_REL16_HI:
14223 case R_PPC64_REL16_HA:
14224 break;
14225
14226 case R_PPC64_REL14:
14227 case R_PPC64_REL14_BRNTAKEN:
14228 case R_PPC64_REL14_BRTAKEN:
14229 case R_PPC64_REL24:
14230 break;
14231
14232 case R_PPC64_TPREL16:
14233 case R_PPC64_TPREL16_LO:
14234 case R_PPC64_TPREL16_HI:
14235 case R_PPC64_TPREL16_HA:
14236 case R_PPC64_TPREL16_DS:
14237 case R_PPC64_TPREL16_LO_DS:
14238 case R_PPC64_TPREL16_HIGH:
14239 case R_PPC64_TPREL16_HIGHA:
14240 case R_PPC64_TPREL16_HIGHER:
14241 case R_PPC64_TPREL16_HIGHERA:
14242 case R_PPC64_TPREL16_HIGHEST:
14243 case R_PPC64_TPREL16_HIGHESTA:
14244 if (h != NULL
14245 && h->elf.root.type == bfd_link_hash_undefweak
14246 && h->elf.dynindx == -1)
14247 {
14248 /* Make this relocation against an undefined weak symbol
14249 resolve to zero. This is really just a tweak, since
14250 code using weak externs ought to check that they are
14251 defined before using them. */
14252 bfd_byte *p = contents + rel->r_offset - d_offset;
14253
14254 insn = bfd_get_32 (output_bfd, p);
14255 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14256 if (insn != 0)
14257 bfd_put_32 (output_bfd, insn, p);
14258 break;
14259 }
14260 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14261 if (info->shared)
14262 /* The TPREL16 relocs shouldn't really be used in shared
14263 libs as they will result in DT_TEXTREL being set, but
14264 support them anyway. */
14265 goto dodyn;
14266 break;
14267
14268 case R_PPC64_DTPREL16:
14269 case R_PPC64_DTPREL16_LO:
14270 case R_PPC64_DTPREL16_HI:
14271 case R_PPC64_DTPREL16_HA:
14272 case R_PPC64_DTPREL16_DS:
14273 case R_PPC64_DTPREL16_LO_DS:
14274 case R_PPC64_DTPREL16_HIGH:
14275 case R_PPC64_DTPREL16_HIGHA:
14276 case R_PPC64_DTPREL16_HIGHER:
14277 case R_PPC64_DTPREL16_HIGHERA:
14278 case R_PPC64_DTPREL16_HIGHEST:
14279 case R_PPC64_DTPREL16_HIGHESTA:
14280 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14281 break;
14282
14283 case R_PPC64_ADDR64_LOCAL:
14284 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14285 ? h->elf.other
14286 : sym->st_other);
14287 break;
14288
14289 case R_PPC64_DTPMOD64:
14290 relocation = 1;
14291 addend = 0;
14292 goto dodyn;
14293
14294 case R_PPC64_TPREL64:
14295 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14296 goto dodyn;
14297
14298 case R_PPC64_DTPREL64:
14299 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14300 /* Fall thru */
14301
14302 /* Relocations that may need to be propagated if this is a
14303 dynamic object. */
14304 case R_PPC64_REL30:
14305 case R_PPC64_REL32:
14306 case R_PPC64_REL64:
14307 case R_PPC64_ADDR14:
14308 case R_PPC64_ADDR14_BRNTAKEN:
14309 case R_PPC64_ADDR14_BRTAKEN:
14310 case R_PPC64_ADDR16:
14311 case R_PPC64_ADDR16_DS:
14312 case R_PPC64_ADDR16_HA:
14313 case R_PPC64_ADDR16_HI:
14314 case R_PPC64_ADDR16_HIGH:
14315 case R_PPC64_ADDR16_HIGHA:
14316 case R_PPC64_ADDR16_HIGHER:
14317 case R_PPC64_ADDR16_HIGHERA:
14318 case R_PPC64_ADDR16_HIGHEST:
14319 case R_PPC64_ADDR16_HIGHESTA:
14320 case R_PPC64_ADDR16_LO:
14321 case R_PPC64_ADDR16_LO_DS:
14322 case R_PPC64_ADDR24:
14323 case R_PPC64_ADDR32:
14324 case R_PPC64_ADDR64:
14325 case R_PPC64_UADDR16:
14326 case R_PPC64_UADDR32:
14327 case R_PPC64_UADDR64:
14328 dodyn:
14329 if ((input_section->flags & SEC_ALLOC) == 0)
14330 break;
14331
14332 if (NO_OPD_RELOCS && is_opd)
14333 break;
14334
14335 if ((info->shared
14336 && (h == NULL
14337 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14338 || h->elf.root.type != bfd_link_hash_undefweak)
14339 && (must_be_dyn_reloc (info, r_type)
14340 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14341 || (ELIMINATE_COPY_RELOCS
14342 && !info->shared
14343 && h != NULL
14344 && h->elf.dynindx != -1
14345 && !h->elf.non_got_ref
14346 && !h->elf.def_regular)
14347 || (!info->shared
14348 && (h != NULL
14349 ? h->elf.type == STT_GNU_IFUNC
14350 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14351 {
14352 bfd_boolean skip, relocate;
14353 asection *sreloc;
14354 bfd_vma out_off;
14355
14356 /* When generating a dynamic object, these relocations
14357 are copied into the output file to be resolved at run
14358 time. */
14359
14360 skip = FALSE;
14361 relocate = FALSE;
14362
14363 out_off = _bfd_elf_section_offset (output_bfd, info,
14364 input_section, rel->r_offset);
14365 if (out_off == (bfd_vma) -1)
14366 skip = TRUE;
14367 else if (out_off == (bfd_vma) -2)
14368 skip = TRUE, relocate = TRUE;
14369 out_off += (input_section->output_section->vma
14370 + input_section->output_offset);
14371 outrel.r_offset = out_off;
14372 outrel.r_addend = rel->r_addend;
14373
14374 /* Optimize unaligned reloc use. */
14375 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14376 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14377 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14378 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14379 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14380 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14381 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14382 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14383 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14384
14385 if (skip)
14386 memset (&outrel, 0, sizeof outrel);
14387 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14388 && !is_opd
14389 && r_type != R_PPC64_TOC)
14390 {
14391 BFD_ASSERT (h->elf.dynindx != -1);
14392 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14393 }
14394 else
14395 {
14396 /* This symbol is local, or marked to become local,
14397 or this is an opd section reloc which must point
14398 at a local function. */
14399 outrel.r_addend += relocation;
14400 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14401 {
14402 if (is_opd && h != NULL)
14403 {
14404 /* Lie about opd entries. This case occurs
14405 when building shared libraries and we
14406 reference a function in another shared
14407 lib. The same thing happens for a weak
14408 definition in an application that's
14409 overridden by a strong definition in a
14410 shared lib. (I believe this is a generic
14411 bug in binutils handling of weak syms.)
14412 In these cases we won't use the opd
14413 entry in this lib. */
14414 unresolved_reloc = FALSE;
14415 }
14416 if (!is_opd
14417 && r_type == R_PPC64_ADDR64
14418 && (h != NULL
14419 ? h->elf.type == STT_GNU_IFUNC
14420 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14421 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14422 else
14423 {
14424 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14425
14426 /* We need to relocate .opd contents for ld.so.
14427 Prelink also wants simple and consistent rules
14428 for relocs. This make all RELATIVE relocs have
14429 *r_offset equal to r_addend. */
14430 relocate = TRUE;
14431 }
14432 }
14433 else
14434 {
14435 long indx = 0;
14436
14437 if (h != NULL
14438 ? h->elf.type == STT_GNU_IFUNC
14439 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14440 {
14441 info->callbacks->einfo
14442 (_("%P: %H: %s for indirect "
14443 "function `%T' unsupported\n"),
14444 input_bfd, input_section, rel->r_offset,
14445 ppc64_elf_howto_table[r_type]->name,
14446 sym_name);
14447 ret = FALSE;
14448 }
14449 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14450 ;
14451 else if (sec == NULL || sec->owner == NULL)
14452 {
14453 bfd_set_error (bfd_error_bad_value);
14454 return FALSE;
14455 }
14456 else
14457 {
14458 asection *osec;
14459
14460 osec = sec->output_section;
14461 indx = elf_section_data (osec)->dynindx;
14462
14463 if (indx == 0)
14464 {
14465 if ((osec->flags & SEC_READONLY) == 0
14466 && htab->elf.data_index_section != NULL)
14467 osec = htab->elf.data_index_section;
14468 else
14469 osec = htab->elf.text_index_section;
14470 indx = elf_section_data (osec)->dynindx;
14471 }
14472 BFD_ASSERT (indx != 0);
14473
14474 /* We are turning this relocation into one
14475 against a section symbol, so subtract out
14476 the output section's address but not the
14477 offset of the input section in the output
14478 section. */
14479 outrel.r_addend -= osec->vma;
14480 }
14481
14482 outrel.r_info = ELF64_R_INFO (indx, r_type);
14483 }
14484 }
14485
14486 sreloc = elf_section_data (input_section)->sreloc;
14487 if (h != NULL
14488 ? h->elf.type == STT_GNU_IFUNC
14489 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14490 sreloc = htab->elf.irelplt;
14491 if (sreloc == NULL)
14492 abort ();
14493
14494 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14495 >= sreloc->size)
14496 abort ();
14497 loc = sreloc->contents;
14498 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14499 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14500
14501 /* If this reloc is against an external symbol, it will
14502 be computed at runtime, so there's no need to do
14503 anything now. However, for the sake of prelink ensure
14504 that the section contents are a known value. */
14505 if (! relocate)
14506 {
14507 unresolved_reloc = FALSE;
14508 /* The value chosen here is quite arbitrary as ld.so
14509 ignores section contents except for the special
14510 case of .opd where the contents might be accessed
14511 before relocation. Choose zero, as that won't
14512 cause reloc overflow. */
14513 relocation = 0;
14514 addend = 0;
14515 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14516 to improve backward compatibility with older
14517 versions of ld. */
14518 if (r_type == R_PPC64_ADDR64)
14519 addend = outrel.r_addend;
14520 /* Adjust pc_relative relocs to have zero in *r_offset. */
14521 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14522 addend = (input_section->output_section->vma
14523 + input_section->output_offset
14524 + rel->r_offset);
14525 }
14526 }
14527 break;
14528
14529 case R_PPC64_COPY:
14530 case R_PPC64_GLOB_DAT:
14531 case R_PPC64_JMP_SLOT:
14532 case R_PPC64_JMP_IREL:
14533 case R_PPC64_RELATIVE:
14534 /* We shouldn't ever see these dynamic relocs in relocatable
14535 files. */
14536 /* Fall through. */
14537
14538 case R_PPC64_PLTGOT16:
14539 case R_PPC64_PLTGOT16_DS:
14540 case R_PPC64_PLTGOT16_HA:
14541 case R_PPC64_PLTGOT16_HI:
14542 case R_PPC64_PLTGOT16_LO:
14543 case R_PPC64_PLTGOT16_LO_DS:
14544 case R_PPC64_PLTREL32:
14545 case R_PPC64_PLTREL64:
14546 /* These ones haven't been implemented yet. */
14547
14548 info->callbacks->einfo
14549 (_("%P: %B: %s is not supported for `%T'\n"),
14550 input_bfd,
14551 ppc64_elf_howto_table[r_type]->name, sym_name);
14552
14553 bfd_set_error (bfd_error_invalid_operation);
14554 ret = FALSE;
14555 continue;
14556 }
14557
14558 /* Multi-instruction sequences that access the TOC can be
14559 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14560 to nop; addi rb,r2,x; */
14561 switch (r_type)
14562 {
14563 default:
14564 break;
14565
14566 case R_PPC64_GOT_TLSLD16_HI:
14567 case R_PPC64_GOT_TLSGD16_HI:
14568 case R_PPC64_GOT_TPREL16_HI:
14569 case R_PPC64_GOT_DTPREL16_HI:
14570 case R_PPC64_GOT16_HI:
14571 case R_PPC64_TOC16_HI:
14572 /* These relocs would only be useful if building up an
14573 offset to later add to r2, perhaps in an indexed
14574 addressing mode instruction. Don't try to optimize.
14575 Unfortunately, the possibility of someone building up an
14576 offset like this or even with the HA relocs, means that
14577 we need to check the high insn when optimizing the low
14578 insn. */
14579 break;
14580
14581 case R_PPC64_GOT_TLSLD16_HA:
14582 case R_PPC64_GOT_TLSGD16_HA:
14583 case R_PPC64_GOT_TPREL16_HA:
14584 case R_PPC64_GOT_DTPREL16_HA:
14585 case R_PPC64_GOT16_HA:
14586 case R_PPC64_TOC16_HA:
14587 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14588 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14589 {
14590 bfd_byte *p = contents + (rel->r_offset & ~3);
14591 bfd_put_32 (input_bfd, NOP, p);
14592 }
14593 break;
14594
14595 case R_PPC64_GOT_TLSLD16_LO:
14596 case R_PPC64_GOT_TLSGD16_LO:
14597 case R_PPC64_GOT_TPREL16_LO_DS:
14598 case R_PPC64_GOT_DTPREL16_LO_DS:
14599 case R_PPC64_GOT16_LO:
14600 case R_PPC64_GOT16_LO_DS:
14601 case R_PPC64_TOC16_LO:
14602 case R_PPC64_TOC16_LO_DS:
14603 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14604 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14605 {
14606 bfd_byte *p = contents + (rel->r_offset & ~3);
14607 insn = bfd_get_32 (input_bfd, p);
14608 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14609 {
14610 /* Transform addic to addi when we change reg. */
14611 insn &= ~((0x3f << 26) | (0x1f << 16));
14612 insn |= (14u << 26) | (2 << 16);
14613 }
14614 else
14615 {
14616 insn &= ~(0x1f << 16);
14617 insn |= 2 << 16;
14618 }
14619 bfd_put_32 (input_bfd, insn, p);
14620 }
14621 break;
14622 }
14623
14624 /* Do any further special processing. */
14625 howto = ppc64_elf_howto_table[(int) r_type];
14626 switch (r_type)
14627 {
14628 default:
14629 break;
14630
14631 case R_PPC64_REL16_HA:
14632 case R_PPC64_ADDR16_HA:
14633 case R_PPC64_ADDR16_HIGHA:
14634 case R_PPC64_ADDR16_HIGHERA:
14635 case R_PPC64_ADDR16_HIGHESTA:
14636 case R_PPC64_TOC16_HA:
14637 case R_PPC64_SECTOFF_HA:
14638 case R_PPC64_TPREL16_HA:
14639 case R_PPC64_TPREL16_HIGHA:
14640 case R_PPC64_TPREL16_HIGHERA:
14641 case R_PPC64_TPREL16_HIGHESTA:
14642 case R_PPC64_DTPREL16_HA:
14643 case R_PPC64_DTPREL16_HIGHA:
14644 case R_PPC64_DTPREL16_HIGHERA:
14645 case R_PPC64_DTPREL16_HIGHESTA:
14646 /* It's just possible that this symbol is a weak symbol
14647 that's not actually defined anywhere. In that case,
14648 'sec' would be NULL, and we should leave the symbol
14649 alone (it will be set to zero elsewhere in the link). */
14650 if (sec == NULL)
14651 break;
14652 /* Fall thru */
14653
14654 case R_PPC64_GOT16_HA:
14655 case R_PPC64_PLTGOT16_HA:
14656 case R_PPC64_PLT16_HA:
14657 case R_PPC64_GOT_TLSGD16_HA:
14658 case R_PPC64_GOT_TLSLD16_HA:
14659 case R_PPC64_GOT_TPREL16_HA:
14660 case R_PPC64_GOT_DTPREL16_HA:
14661 /* Add 0x10000 if sign bit in 0:15 is set.
14662 Bits 0:15 are not used. */
14663 addend += 0x8000;
14664 break;
14665
14666 case R_PPC64_ADDR16_DS:
14667 case R_PPC64_ADDR16_LO_DS:
14668 case R_PPC64_GOT16_DS:
14669 case R_PPC64_GOT16_LO_DS:
14670 case R_PPC64_PLT16_LO_DS:
14671 case R_PPC64_SECTOFF_DS:
14672 case R_PPC64_SECTOFF_LO_DS:
14673 case R_PPC64_TOC16_DS:
14674 case R_PPC64_TOC16_LO_DS:
14675 case R_PPC64_PLTGOT16_DS:
14676 case R_PPC64_PLTGOT16_LO_DS:
14677 case R_PPC64_GOT_TPREL16_DS:
14678 case R_PPC64_GOT_TPREL16_LO_DS:
14679 case R_PPC64_GOT_DTPREL16_DS:
14680 case R_PPC64_GOT_DTPREL16_LO_DS:
14681 case R_PPC64_TPREL16_DS:
14682 case R_PPC64_TPREL16_LO_DS:
14683 case R_PPC64_DTPREL16_DS:
14684 case R_PPC64_DTPREL16_LO_DS:
14685 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14686 mask = 3;
14687 /* If this reloc is against an lq insn, then the value must be
14688 a multiple of 16. This is somewhat of a hack, but the
14689 "correct" way to do this by defining _DQ forms of all the
14690 _DS relocs bloats all reloc switches in this file. It
14691 doesn't seem to make much sense to use any of these relocs
14692 in data, so testing the insn should be safe. */
14693 if ((insn & (0x3f << 26)) == (56u << 26))
14694 mask = 15;
14695 if (((relocation + addend) & mask) != 0)
14696 {
14697 info->callbacks->einfo
14698 (_("%P: %H: error: %s not a multiple of %u\n"),
14699 input_bfd, input_section, rel->r_offset,
14700 howto->name,
14701 mask + 1);
14702 bfd_set_error (bfd_error_bad_value);
14703 ret = FALSE;
14704 continue;
14705 }
14706 break;
14707 }
14708
14709 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14710 because such sections are not SEC_ALLOC and thus ld.so will
14711 not process them. */
14712 if (unresolved_reloc
14713 && !((input_section->flags & SEC_DEBUGGING) != 0
14714 && h->elf.def_dynamic)
14715 && _bfd_elf_section_offset (output_bfd, info, input_section,
14716 rel->r_offset) != (bfd_vma) -1)
14717 {
14718 info->callbacks->einfo
14719 (_("%P: %H: unresolvable %s against `%T'\n"),
14720 input_bfd, input_section, rel->r_offset,
14721 howto->name,
14722 h->elf.root.root.string);
14723 ret = FALSE;
14724 }
14725
14726 /* 16-bit fields in insns mostly have signed values, but a
14727 few insns have 16-bit unsigned values. Really, we should
14728 have different reloc types. */
14729 if (howto->complain_on_overflow != complain_overflow_dont
14730 && howto->dst_mask == 0xffff
14731 && (input_section->flags & SEC_CODE) != 0)
14732 {
14733 enum complain_overflow complain = complain_overflow_signed;
14734
14735 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14736 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14737 complain = complain_overflow_bitfield;
14738 else if (howto->rightshift == 0
14739 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14740 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14741 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14742 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14743 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14744 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14745 complain = complain_overflow_unsigned;
14746 if (howto->complain_on_overflow != complain)
14747 {
14748 alt_howto = *howto;
14749 alt_howto.complain_on_overflow = complain;
14750 howto = &alt_howto;
14751 }
14752 }
14753
14754 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14755 rel->r_offset, relocation, addend);
14756
14757 if (r != bfd_reloc_ok)
14758 {
14759 char *more_info = NULL;
14760 const char *reloc_name = howto->name;
14761
14762 if (reloc_dest != DEST_NORMAL)
14763 {
14764 more_info = bfd_malloc (strlen (reloc_name) + 8);
14765 if (more_info != NULL)
14766 {
14767 strcpy (more_info, reloc_name);
14768 strcat (more_info, (reloc_dest == DEST_OPD
14769 ? " (OPD)" : " (stub)"));
14770 reloc_name = more_info;
14771 }
14772 }
14773
14774 if (r == bfd_reloc_overflow)
14775 {
14776 if (warned)
14777 continue;
14778 if (h != NULL
14779 && h->elf.root.type == bfd_link_hash_undefweak
14780 && howto->pc_relative)
14781 {
14782 /* Assume this is a call protected by other code that
14783 detects the symbol is undefined. If this is the case,
14784 we can safely ignore the overflow. If not, the
14785 program is hosed anyway, and a little warning isn't
14786 going to help. */
14787
14788 continue;
14789 }
14790
14791 if (!((*info->callbacks->reloc_overflow)
14792 (info, &h->elf.root, sym_name,
14793 reloc_name, orig_rel.r_addend,
14794 input_bfd, input_section, rel->r_offset)))
14795 return FALSE;
14796 }
14797 else
14798 {
14799 info->callbacks->einfo
14800 (_("%P: %H: %s against `%T': error %d\n"),
14801 input_bfd, input_section, rel->r_offset,
14802 reloc_name, sym_name, (int) r);
14803 ret = FALSE;
14804 }
14805 if (more_info != NULL)
14806 free (more_info);
14807 }
14808 }
14809
14810 /* If we're emitting relocations, then shortly after this function
14811 returns, reloc offsets and addends for this section will be
14812 adjusted. Worse, reloc symbol indices will be for the output
14813 file rather than the input. Save a copy of the relocs for
14814 opd_entry_value. */
14815 if (is_opd && (info->emitrelocations || info->relocatable))
14816 {
14817 bfd_size_type amt;
14818 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14819 rel = bfd_alloc (input_bfd, amt);
14820 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14821 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14822 if (rel == NULL)
14823 return FALSE;
14824 memcpy (rel, relocs, amt);
14825 }
14826 return ret;
14827 }
14828
14829 /* Adjust the value of any local symbols in opd sections. */
14830
14831 static int
14832 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14833 const char *name ATTRIBUTE_UNUSED,
14834 Elf_Internal_Sym *elfsym,
14835 asection *input_sec,
14836 struct elf_link_hash_entry *h)
14837 {
14838 struct _opd_sec_data *opd;
14839 long adjust;
14840 bfd_vma value;
14841
14842 if (h != NULL)
14843 return 1;
14844
14845 opd = get_opd_info (input_sec);
14846 if (opd == NULL || opd->adjust == NULL)
14847 return 1;
14848
14849 value = elfsym->st_value - input_sec->output_offset;
14850 if (!info->relocatable)
14851 value -= input_sec->output_section->vma;
14852
14853 adjust = opd->adjust[OPD_NDX (value)];
14854 if (adjust == -1)
14855 return 2;
14856
14857 elfsym->st_value += adjust;
14858 return 1;
14859 }
14860
14861 /* Finish up dynamic symbol handling. We set the contents of various
14862 dynamic sections here. */
14863
14864 static bfd_boolean
14865 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14866 struct bfd_link_info *info,
14867 struct elf_link_hash_entry *h,
14868 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14869 {
14870 struct ppc_link_hash_table *htab;
14871 struct plt_entry *ent;
14872 Elf_Internal_Rela rela;
14873 bfd_byte *loc;
14874
14875 htab = ppc_hash_table (info);
14876 if (htab == NULL)
14877 return FALSE;
14878
14879 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14880 if (ent->plt.offset != (bfd_vma) -1)
14881 {
14882 /* This symbol has an entry in the procedure linkage
14883 table. Set it up. */
14884 if (!htab->elf.dynamic_sections_created
14885 || h->dynindx == -1)
14886 {
14887 BFD_ASSERT (h->type == STT_GNU_IFUNC
14888 && h->def_regular
14889 && (h->root.type == bfd_link_hash_defined
14890 || h->root.type == bfd_link_hash_defweak));
14891 rela.r_offset = (htab->elf.iplt->output_section->vma
14892 + htab->elf.iplt->output_offset
14893 + ent->plt.offset);
14894 if (htab->opd_abi)
14895 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14896 else
14897 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14898 rela.r_addend = (h->root.u.def.value
14899 + h->root.u.def.section->output_offset
14900 + h->root.u.def.section->output_section->vma
14901 + ent->addend);
14902 loc = (htab->elf.irelplt->contents
14903 + (htab->elf.irelplt->reloc_count++
14904 * sizeof (Elf64_External_Rela)));
14905 }
14906 else
14907 {
14908 rela.r_offset = (htab->elf.splt->output_section->vma
14909 + htab->elf.splt->output_offset
14910 + ent->plt.offset);
14911 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14912 rela.r_addend = ent->addend;
14913 loc = (htab->elf.srelplt->contents
14914 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14915 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14916 }
14917 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14918
14919 if (!htab->opd_abi)
14920 {
14921 if (!h->def_regular)
14922 {
14923 /* Mark the symbol as undefined, rather than as
14924 defined in glink. Leave the value if there were
14925 any relocations where pointer equality matters
14926 (this is a clue for the dynamic linker, to make
14927 function pointer comparisons work between an
14928 application and shared library), otherwise set it
14929 to zero. */
14930 sym->st_shndx = SHN_UNDEF;
14931 if (!h->pointer_equality_needed)
14932 sym->st_value = 0;
14933 else if (!h->ref_regular_nonweak)
14934 {
14935 /* This breaks function pointer comparisons, but
14936 that is better than breaking tests for a NULL
14937 function pointer. */
14938 sym->st_value = 0;
14939 }
14940 }
14941 }
14942 }
14943
14944 if (h->needs_copy)
14945 {
14946 /* This symbol needs a copy reloc. Set it up. */
14947
14948 if (h->dynindx == -1
14949 || (h->root.type != bfd_link_hash_defined
14950 && h->root.type != bfd_link_hash_defweak)
14951 || htab->relbss == NULL)
14952 abort ();
14953
14954 rela.r_offset = (h->root.u.def.value
14955 + h->root.u.def.section->output_section->vma
14956 + h->root.u.def.section->output_offset);
14957 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14958 rela.r_addend = 0;
14959 loc = htab->relbss->contents;
14960 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14961 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14962 }
14963
14964 return TRUE;
14965 }
14966
14967 /* Used to decide how to sort relocs in an optimal manner for the
14968 dynamic linker, before writing them out. */
14969
14970 static enum elf_reloc_type_class
14971 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14972 const asection *rel_sec,
14973 const Elf_Internal_Rela *rela)
14974 {
14975 enum elf_ppc64_reloc_type r_type;
14976 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14977
14978 if (rel_sec == htab->elf.irelplt)
14979 return reloc_class_ifunc;
14980
14981 r_type = ELF64_R_TYPE (rela->r_info);
14982 switch (r_type)
14983 {
14984 case R_PPC64_RELATIVE:
14985 return reloc_class_relative;
14986 case R_PPC64_JMP_SLOT:
14987 return reloc_class_plt;
14988 case R_PPC64_COPY:
14989 return reloc_class_copy;
14990 default:
14991 return reloc_class_normal;
14992 }
14993 }
14994
14995 /* Finish up the dynamic sections. */
14996
14997 static bfd_boolean
14998 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14999 struct bfd_link_info *info)
15000 {
15001 struct ppc_link_hash_table *htab;
15002 bfd *dynobj;
15003 asection *sdyn;
15004
15005 htab = ppc_hash_table (info);
15006 if (htab == NULL)
15007 return FALSE;
15008
15009 dynobj = htab->elf.dynobj;
15010 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15011
15012 if (htab->elf.dynamic_sections_created)
15013 {
15014 Elf64_External_Dyn *dyncon, *dynconend;
15015
15016 if (sdyn == NULL || htab->elf.sgot == NULL)
15017 abort ();
15018
15019 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15020 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15021 for (; dyncon < dynconend; dyncon++)
15022 {
15023 Elf_Internal_Dyn dyn;
15024 asection *s;
15025
15026 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15027
15028 switch (dyn.d_tag)
15029 {
15030 default:
15031 continue;
15032
15033 case DT_PPC64_GLINK:
15034 s = htab->glink;
15035 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15036 /* We stupidly defined DT_PPC64_GLINK to be the start
15037 of glink rather than the first entry point, which is
15038 what ld.so needs, and now have a bigger stub to
15039 support automatic multiple TOCs. */
15040 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15041 break;
15042
15043 case DT_PPC64_OPD:
15044 s = bfd_get_section_by_name (output_bfd, ".opd");
15045 if (s == NULL)
15046 continue;
15047 dyn.d_un.d_ptr = s->vma;
15048 break;
15049
15050 case DT_PPC64_OPT:
15051 if (htab->do_multi_toc && htab->multi_toc_needed)
15052 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15053 break;
15054
15055 case DT_PPC64_OPDSZ:
15056 s = bfd_get_section_by_name (output_bfd, ".opd");
15057 if (s == NULL)
15058 continue;
15059 dyn.d_un.d_val = s->size;
15060 break;
15061
15062 case DT_PLTGOT:
15063 s = htab->elf.splt;
15064 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15065 break;
15066
15067 case DT_JMPREL:
15068 s = htab->elf.srelplt;
15069 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15070 break;
15071
15072 case DT_PLTRELSZ:
15073 dyn.d_un.d_val = htab->elf.srelplt->size;
15074 break;
15075
15076 case DT_RELASZ:
15077 /* Don't count procedure linkage table relocs in the
15078 overall reloc count. */
15079 s = htab->elf.srelplt;
15080 if (s == NULL)
15081 continue;
15082 dyn.d_un.d_val -= s->size;
15083 break;
15084
15085 case DT_RELA:
15086 /* We may not be using the standard ELF linker script.
15087 If .rela.plt is the first .rela section, we adjust
15088 DT_RELA to not include it. */
15089 s = htab->elf.srelplt;
15090 if (s == NULL)
15091 continue;
15092 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15093 continue;
15094 dyn.d_un.d_ptr += s->size;
15095 break;
15096 }
15097
15098 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15099 }
15100 }
15101
15102 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15103 {
15104 /* Fill in the first entry in the global offset table.
15105 We use it to hold the link-time TOCbase. */
15106 bfd_put_64 (output_bfd,
15107 elf_gp (output_bfd) + TOC_BASE_OFF,
15108 htab->elf.sgot->contents);
15109
15110 /* Set .got entry size. */
15111 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15112 }
15113
15114 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15115 {
15116 /* Set .plt entry size. */
15117 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15118 = PLT_ENTRY_SIZE (htab);
15119 }
15120
15121 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15122 brlt ourselves if emitrelocations. */
15123 if (htab->brlt != NULL
15124 && htab->brlt->reloc_count != 0
15125 && !_bfd_elf_link_output_relocs (output_bfd,
15126 htab->brlt,
15127 elf_section_data (htab->brlt)->rela.hdr,
15128 elf_section_data (htab->brlt)->relocs,
15129 NULL))
15130 return FALSE;
15131
15132 if (htab->glink != NULL
15133 && htab->glink->reloc_count != 0
15134 && !_bfd_elf_link_output_relocs (output_bfd,
15135 htab->glink,
15136 elf_section_data (htab->glink)->rela.hdr,
15137 elf_section_data (htab->glink)->relocs,
15138 NULL))
15139 return FALSE;
15140
15141 if (htab->glink_eh_frame != NULL
15142 && htab->glink_eh_frame->size != 0)
15143 {
15144 bfd_vma val;
15145 bfd_byte *p;
15146 asection *stub_sec;
15147
15148 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15149 for (stub_sec = htab->params->stub_bfd->sections;
15150 stub_sec != NULL;
15151 stub_sec = stub_sec->next)
15152 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15153 {
15154 /* FDE length. */
15155 p += 4;
15156 /* CIE pointer. */
15157 p += 4;
15158 /* Offset to stub section. */
15159 val = (stub_sec->output_section->vma
15160 + stub_sec->output_offset);
15161 val -= (htab->glink_eh_frame->output_section->vma
15162 + htab->glink_eh_frame->output_offset
15163 + (p - htab->glink_eh_frame->contents));
15164 if (val + 0x80000000 > 0xffffffff)
15165 {
15166 info->callbacks->einfo
15167 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15168 stub_sec->name);
15169 return FALSE;
15170 }
15171 bfd_put_32 (dynobj, val, p);
15172 p += 4;
15173 /* stub section size. */
15174 p += 4;
15175 /* Augmentation. */
15176 p += 1;
15177 /* Pad. */
15178 p += 7;
15179 }
15180 if (htab->glink != NULL && htab->glink->size != 0)
15181 {
15182 /* FDE length. */
15183 p += 4;
15184 /* CIE pointer. */
15185 p += 4;
15186 /* Offset to .glink. */
15187 val = (htab->glink->output_section->vma
15188 + htab->glink->output_offset
15189 + 8);
15190 val -= (htab->glink_eh_frame->output_section->vma
15191 + htab->glink_eh_frame->output_offset
15192 + (p - htab->glink_eh_frame->contents));
15193 if (val + 0x80000000 > 0xffffffff)
15194 {
15195 info->callbacks->einfo
15196 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15197 htab->glink->name);
15198 return FALSE;
15199 }
15200 bfd_put_32 (dynobj, val, p);
15201 p += 4;
15202 /* .glink size. */
15203 p += 4;
15204 /* Augmentation. */
15205 p += 1;
15206 /* Ops. */
15207 p += 7;
15208 }
15209
15210 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15211 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15212 htab->glink_eh_frame,
15213 htab->glink_eh_frame->contents))
15214 return FALSE;
15215 }
15216
15217 /* We need to handle writing out multiple GOT sections ourselves,
15218 since we didn't add them to DYNOBJ. We know dynobj is the first
15219 bfd. */
15220 while ((dynobj = dynobj->link.next) != NULL)
15221 {
15222 asection *s;
15223
15224 if (!is_ppc64_elf (dynobj))
15225 continue;
15226
15227 s = ppc64_elf_tdata (dynobj)->got;
15228 if (s != NULL
15229 && s->size != 0
15230 && s->output_section != bfd_abs_section_ptr
15231 && !bfd_set_section_contents (output_bfd, s->output_section,
15232 s->contents, s->output_offset,
15233 s->size))
15234 return FALSE;
15235 s = ppc64_elf_tdata (dynobj)->relgot;
15236 if (s != NULL
15237 && s->size != 0
15238 && s->output_section != bfd_abs_section_ptr
15239 && !bfd_set_section_contents (output_bfd, s->output_section,
15240 s->contents, s->output_offset,
15241 s->size))
15242 return FALSE;
15243 }
15244
15245 return TRUE;
15246 }
15247
15248 #include "elf64-target.h"
15249
15250 /* FreeBSD support */
15251
15252 #undef TARGET_LITTLE_SYM
15253 #undef TARGET_LITTLE_NAME
15254
15255 #undef TARGET_BIG_SYM
15256 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15257 #undef TARGET_BIG_NAME
15258 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15259
15260 #undef ELF_OSABI
15261 #define ELF_OSABI ELFOSABI_FREEBSD
15262
15263 #undef elf64_bed
15264 #define elf64_bed elf64_powerpc_fbsd_bed
15265
15266 #include "elf64-target.h"
15267
This page took 0.354564 seconds and 4 git commands to generate.