* elf64-ppc.c (ppc64_elf_edit_toc): Account for dynamic relocs
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_symbol_offset 0
71 #define elf_backend_got_header_size 8
72 #define elf_backend_can_gc_sections 1
73 #define elf_backend_can_refcount 1
74 #define elf_backend_rela_normal 1
75
76 #define bfd_elf64_mkobject ppc64_elf_mkobject
77 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84 #define elf_backend_object_p ppc64_elf_object_p
85 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90 #define elf_backend_check_directives ppc64_elf_check_directives
91 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92 #define elf_backend_check_relocs ppc64_elf_check_relocs
93 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
97 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99 #define elf_backend_relocate_section ppc64_elf_relocate_section
100 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104 #define elf_backend_special_sections ppc64_elf_special_sections
105
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 24
112
113 /* The initial size of the plt reserved for the dynamic linker. */
114 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116 /* TOC base pointers offset from start of TOC. */
117 #define TOC_BASE_OFF 0x8000
118
119 /* Offset of tp and dtp pointers from start of TLS block. */
120 #define TP_OFFSET 0x7000
121 #define DTP_OFFSET 0x8000
122
123 /* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126 #define PLT_CALL_STUB_SIZE (7*4)
127 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133 #define BCTR 0x4e800420 /* bctr */
134
135
136 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141 /* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143 #define GLINK_CALL_STUB_SIZE (16*4)
144 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161 /* Pad with this. */
162 #define NOP 0x60000000
163
164 /* Some other nops. */
165 #define CROR_151515 0x4def7b82
166 #define CROR_313131 0x4ffffb82
167
168 /* .glink entries for the first 32k functions are two instructions. */
169 #define LI_R0_0 0x38000000 /* li %r0,0 */
170 #define B_DOT 0x48000000 /* b . */
171
172 /* After that, we need two instructions to load the index, followed by
173 a branch. */
174 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177 /* Instructions used by the save and restore reg functions. */
178 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184 #define LI_R12_0 0x39800000 /* li %r12,0 */
185 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188 #define BLR 0x4e800020 /* blr */
189
190 /* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194 #ifndef NO_OPD_RELOCS
195 #define NO_OPD_RELOCS 0
196 #endif
197 \f
198 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200 /* Relocation HOWTO's. */
201 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203 static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864 };
1865
1866 \f
1867 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870 static void
1871 ppc_howto_init (void)
1872 {
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884 }
1885
1886 static reloc_howto_type *
1887 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889 {
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106 };
2107
2108 /* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110 static void
2111 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113 {
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124 }
2125
2126 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128 static bfd_reloc_status_type
2129 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132 {
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145 }
2146
2147 static bfd_reloc_status_type
2148 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151 {
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168 }
2169
2170 static bfd_reloc_status_type
2171 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174 {
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231 }
2232
2233 static bfd_reloc_status_type
2234 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248 }
2249
2250 static bfd_reloc_status_type
2251 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268 }
2269
2270 static bfd_reloc_status_type
2271 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291 }
2292
2293 static bfd_reloc_status_type
2294 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297 {
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317 }
2318
2319 static bfd_reloc_status_type
2320 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323 {
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341 }
2342
2343 static bfd_reloc_status_type
2344 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347 {
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363 }
2364
2365 struct ppc64_elf_obj_tdata
2366 {
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383
2384 /* A copy of relocs before they are modified for --emit-relocs. */
2385 Elf_Internal_Rela *opd_relocs;
2386 };
2387
2388 #define ppc64_elf_tdata(bfd) \
2389 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2390
2391 #define ppc64_tlsld_got(bfd) \
2392 (&ppc64_elf_tdata (bfd)->tlsld_got)
2393
2394 /* Override the generic function because we store some extras. */
2395
2396 static bfd_boolean
2397 ppc64_elf_mkobject (bfd *abfd)
2398 {
2399 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2400 abfd->tdata.any = bfd_zalloc (abfd, amt);
2401 if (abfd->tdata.any == NULL)
2402 return FALSE;
2403 return TRUE;
2404 }
2405
2406 /* Return 1 if target is one of ours. */
2407
2408 static bfd_boolean
2409 is_ppc64_elf_target (const struct bfd_target *targ)
2410 {
2411 extern const bfd_target bfd_elf64_powerpc_vec;
2412 extern const bfd_target bfd_elf64_powerpcle_vec;
2413
2414 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2415 }
2416
2417 /* Fix bad default arch selected for a 64 bit input bfd when the
2418 default is 32 bit. */
2419
2420 static bfd_boolean
2421 ppc64_elf_object_p (bfd *abfd)
2422 {
2423 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2424 {
2425 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2426
2427 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2428 {
2429 /* Relies on arch after 32 bit default being 64 bit default. */
2430 abfd->arch_info = abfd->arch_info->next;
2431 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2432 }
2433 }
2434 return TRUE;
2435 }
2436
2437 /* Support for core dump NOTE sections. */
2438
2439 static bfd_boolean
2440 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2441 {
2442 size_t offset, size;
2443
2444 if (note->descsz != 504)
2445 return FALSE;
2446
2447 /* pr_cursig */
2448 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2449
2450 /* pr_pid */
2451 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2452
2453 /* pr_reg */
2454 offset = 112;
2455 size = 384;
2456
2457 /* Make a ".reg/999" section. */
2458 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2459 size, note->descpos + offset);
2460 }
2461
2462 static bfd_boolean
2463 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2464 {
2465 if (note->descsz != 136)
2466 return FALSE;
2467
2468 elf_tdata (abfd)->core_program
2469 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2470 elf_tdata (abfd)->core_command
2471 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2472
2473 return TRUE;
2474 }
2475
2476 /* Merge backend specific data from an object file to the output
2477 object file when linking. */
2478
2479 static bfd_boolean
2480 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2481 {
2482 /* Check if we have the same endianess. */
2483 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2484 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2485 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2486 {
2487 const char *msg;
2488
2489 if (bfd_big_endian (ibfd))
2490 msg = _("%B: compiled for a big endian system "
2491 "and target is little endian");
2492 else
2493 msg = _("%B: compiled for a little endian system "
2494 "and target is big endian");
2495
2496 (*_bfd_error_handler) (msg, ibfd);
2497
2498 bfd_set_error (bfd_error_wrong_format);
2499 return FALSE;
2500 }
2501
2502 return TRUE;
2503 }
2504
2505 /* Add extra PPC sections. */
2506
2507 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2508 {
2509 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2510 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2511 { ".plt", 4, 0, SHT_NOBITS, 0 },
2512 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2513 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2514 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2515 { NULL, 0, 0, 0, 0 }
2516 };
2517
2518 struct _ppc64_elf_section_data
2519 {
2520 struct bfd_elf_section_data elf;
2521
2522 /* An array with one entry for each opd function descriptor. */
2523 union
2524 {
2525 /* Points to the function code section for local opd entries. */
2526 asection **func_sec;
2527 /* After editing .opd, adjust references to opd local syms. */
2528 long *adjust;
2529 } opd;
2530
2531 /* An array for toc sections, indexed by offset/8.
2532 Specifies the relocation symbol index used at a given toc offset. */
2533 unsigned *t_symndx;
2534 };
2535
2536 #define ppc64_elf_section_data(sec) \
2537 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2538
2539 static bfd_boolean
2540 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2541 {
2542 struct _ppc64_elf_section_data *sdata;
2543 bfd_size_type amt = sizeof (*sdata);
2544
2545 sdata = bfd_zalloc (abfd, amt);
2546 if (sdata == NULL)
2547 return FALSE;
2548 sec->used_by_bfd = sdata;
2549
2550 return _bfd_elf_new_section_hook (abfd, sec);
2551 }
2552
2553 static void *
2554 get_opd_info (asection * sec)
2555 {
2556 if (sec != NULL
2557 && ppc64_elf_section_data (sec) != NULL
2558 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2559 return ppc64_elf_section_data (sec)->opd.adjust;
2560 return NULL;
2561 }
2562 \f
2563 /* Parameters for the qsort hook. */
2564 static asection *synthetic_opd;
2565 static bfd_boolean synthetic_relocatable;
2566
2567 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2568
2569 static int
2570 compare_symbols (const void *ap, const void *bp)
2571 {
2572 const asymbol *a = * (const asymbol **) ap;
2573 const asymbol *b = * (const asymbol **) bp;
2574
2575 /* Section symbols first. */
2576 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2577 return -1;
2578 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2579 return 1;
2580
2581 /* then .opd symbols. */
2582 if (a->section == synthetic_opd && b->section != synthetic_opd)
2583 return -1;
2584 if (a->section != synthetic_opd && b->section == synthetic_opd)
2585 return 1;
2586
2587 /* then other code symbols. */
2588 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2589 == (SEC_CODE | SEC_ALLOC)
2590 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2591 != (SEC_CODE | SEC_ALLOC))
2592 return -1;
2593
2594 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2595 != (SEC_CODE | SEC_ALLOC)
2596 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2597 == (SEC_CODE | SEC_ALLOC))
2598 return 1;
2599
2600 if (synthetic_relocatable)
2601 {
2602 if (a->section->id < b->section->id)
2603 return -1;
2604
2605 if (a->section->id > b->section->id)
2606 return 1;
2607 }
2608
2609 if (a->value + a->section->vma < b->value + b->section->vma)
2610 return -1;
2611
2612 if (a->value + a->section->vma > b->value + b->section->vma)
2613 return 1;
2614
2615 return 0;
2616 }
2617
2618 /* Search SYMS for a symbol of the given VALUE. */
2619
2620 static asymbol *
2621 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2622 {
2623 long mid;
2624
2625 if (id == -1)
2626 {
2627 while (lo < hi)
2628 {
2629 mid = (lo + hi) >> 1;
2630 if (syms[mid]->value + syms[mid]->section->vma < value)
2631 lo = mid + 1;
2632 else if (syms[mid]->value + syms[mid]->section->vma > value)
2633 hi = mid;
2634 else
2635 return syms[mid];
2636 }
2637 }
2638 else
2639 {
2640 while (lo < hi)
2641 {
2642 mid = (lo + hi) >> 1;
2643 if (syms[mid]->section->id < id)
2644 lo = mid + 1;
2645 else if (syms[mid]->section->id > id)
2646 hi = mid;
2647 else if (syms[mid]->value < value)
2648 lo = mid + 1;
2649 else if (syms[mid]->value > value)
2650 hi = mid;
2651 else
2652 return syms[mid];
2653 }
2654 }
2655 return NULL;
2656 }
2657
2658 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2659 entry syms. */
2660
2661 static long
2662 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2663 long static_count, asymbol **static_syms,
2664 long dyn_count, asymbol **dyn_syms,
2665 asymbol **ret)
2666 {
2667 asymbol *s;
2668 long i;
2669 long count;
2670 char *names;
2671 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2672 asection *opd;
2673 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2674 asymbol **syms;
2675
2676 *ret = NULL;
2677
2678 opd = bfd_get_section_by_name (abfd, ".opd");
2679 if (opd == NULL)
2680 return 0;
2681
2682 symcount = static_count;
2683 if (!relocatable)
2684 symcount += dyn_count;
2685 if (symcount == 0)
2686 return 0;
2687
2688 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2689 if (syms == NULL)
2690 return -1;
2691
2692 if (!relocatable && static_count != 0 && dyn_count != 0)
2693 {
2694 /* Use both symbol tables. */
2695 memcpy (syms, static_syms, static_count * sizeof (*syms));
2696 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2697 }
2698 else if (!relocatable && static_count == 0)
2699 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2700 else
2701 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2702
2703 synthetic_opd = opd;
2704 synthetic_relocatable = relocatable;
2705 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2706
2707 if (!relocatable && symcount > 1)
2708 {
2709 long j;
2710 /* Trim duplicate syms, since we may have merged the normal and
2711 dynamic symbols. Actually, we only care about syms that have
2712 different values, so trim any with the same value. */
2713 for (i = 1, j = 1; i < symcount; ++i)
2714 if (syms[i - 1]->value + syms[i - 1]->section->vma
2715 != syms[i]->value + syms[i]->section->vma)
2716 syms[j++] = syms[i];
2717 symcount = j;
2718 }
2719
2720 i = 0;
2721 if (syms[i]->section == opd)
2722 ++i;
2723 codesecsym = i;
2724
2725 for (; i < symcount; ++i)
2726 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2727 != (SEC_CODE | SEC_ALLOC))
2728 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2729 break;
2730 codesecsymend = i;
2731
2732 for (; i < symcount; ++i)
2733 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2734 break;
2735 secsymend = i;
2736
2737 for (; i < symcount; ++i)
2738 if (syms[i]->section != opd)
2739 break;
2740 opdsymend = i;
2741
2742 for (; i < symcount; ++i)
2743 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2744 != (SEC_CODE | SEC_ALLOC))
2745 break;
2746 symcount = i;
2747
2748 count = 0;
2749 if (opdsymend == secsymend)
2750 goto done;
2751
2752 if (relocatable)
2753 {
2754 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2755 arelent *r;
2756 size_t size;
2757 long relcount;
2758
2759 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2760 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2761 if (relcount == 0)
2762 goto done;
2763
2764 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2765 {
2766 count = -1;
2767 goto done;
2768 }
2769
2770 size = 0;
2771 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2772 {
2773 asymbol *sym;
2774
2775 while (r < opd->relocation + relcount
2776 && r->address < syms[i]->value + opd->vma)
2777 ++r;
2778
2779 if (r == opd->relocation + relcount)
2780 break;
2781
2782 if (r->address != syms[i]->value + opd->vma)
2783 continue;
2784
2785 if (r->howto->type != R_PPC64_ADDR64)
2786 continue;
2787
2788 sym = *r->sym_ptr_ptr;
2789 if (!sym_exists_at (syms, opdsymend, symcount,
2790 sym->section->id, sym->value + r->addend))
2791 {
2792 ++count;
2793 size += sizeof (asymbol);
2794 size += strlen (syms[i]->name) + 2;
2795 }
2796 }
2797
2798 s = *ret = bfd_malloc (size);
2799 if (s == NULL)
2800 {
2801 count = -1;
2802 goto done;
2803 }
2804
2805 names = (char *) (s + count);
2806
2807 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2808 {
2809 asymbol *sym;
2810
2811 while (r < opd->relocation + relcount
2812 && r->address < syms[i]->value + opd->vma)
2813 ++r;
2814
2815 if (r == opd->relocation + relcount)
2816 break;
2817
2818 if (r->address != syms[i]->value + opd->vma)
2819 continue;
2820
2821 if (r->howto->type != R_PPC64_ADDR64)
2822 continue;
2823
2824 sym = *r->sym_ptr_ptr;
2825 if (!sym_exists_at (syms, opdsymend, symcount,
2826 sym->section->id, sym->value + r->addend))
2827 {
2828 size_t len;
2829
2830 *s = *syms[i];
2831 s->section = sym->section;
2832 s->value = sym->value + r->addend;
2833 s->name = names;
2834 *names++ = '.';
2835 len = strlen (syms[i]->name);
2836 memcpy (names, syms[i]->name, len + 1);
2837 names += len + 1;
2838 s++;
2839 }
2840 }
2841 }
2842 else
2843 {
2844 bfd_byte *contents;
2845 size_t size;
2846
2847 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2848 {
2849 if (contents)
2850 {
2851 free_contents_and_exit:
2852 free (contents);
2853 }
2854 count = -1;
2855 goto done;
2856 }
2857
2858 size = 0;
2859 for (i = secsymend; i < opdsymend; ++i)
2860 {
2861 bfd_vma ent;
2862
2863 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2864 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2865 {
2866 ++count;
2867 size += sizeof (asymbol);
2868 size += strlen (syms[i]->name) + 2;
2869 }
2870 }
2871
2872 s = *ret = bfd_malloc (size);
2873 if (s == NULL)
2874 goto free_contents_and_exit;
2875
2876 names = (char *) (s + count);
2877
2878 for (i = secsymend; i < opdsymend; ++i)
2879 {
2880 bfd_vma ent;
2881
2882 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2883 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2884 {
2885 long lo, hi;
2886 size_t len;
2887 asection *sec = abfd->sections;
2888
2889 *s = *syms[i];
2890 lo = codesecsym;
2891 hi = codesecsymend;
2892 while (lo < hi)
2893 {
2894 long mid = (lo + hi) >> 1;
2895 if (syms[mid]->section->vma < ent)
2896 lo = mid + 1;
2897 else if (syms[mid]->section->vma > ent)
2898 hi = mid;
2899 else
2900 {
2901 sec = syms[mid]->section;
2902 break;
2903 }
2904 }
2905
2906 if (lo >= hi && lo > codesecsym)
2907 sec = syms[lo - 1]->section;
2908
2909 for (; sec != NULL; sec = sec->next)
2910 {
2911 if (sec->vma > ent)
2912 break;
2913 if ((sec->flags & SEC_ALLOC) == 0
2914 || (sec->flags & SEC_LOAD) == 0)
2915 break;
2916 if ((sec->flags & SEC_CODE) != 0)
2917 s->section = sec;
2918 }
2919 s->value = ent - s->section->vma;
2920 s->name = names;
2921 *names++ = '.';
2922 len = strlen (syms[i]->name);
2923 memcpy (names, syms[i]->name, len + 1);
2924 names += len + 1;
2925 s++;
2926 }
2927 }
2928 free (contents);
2929 }
2930
2931 done:
2932 free (syms);
2933 return count;
2934 }
2935 \f
2936 /* The following functions are specific to the ELF linker, while
2937 functions above are used generally. Those named ppc64_elf_* are
2938 called by the main ELF linker code. They appear in this file more
2939 or less in the order in which they are called. eg.
2940 ppc64_elf_check_relocs is called early in the link process,
2941 ppc64_elf_finish_dynamic_sections is one of the last functions
2942 called.
2943
2944 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2945 functions have both a function code symbol and a function descriptor
2946 symbol. A call to foo in a relocatable object file looks like:
2947
2948 . .text
2949 . x:
2950 . bl .foo
2951 . nop
2952
2953 The function definition in another object file might be:
2954
2955 . .section .opd
2956 . foo: .quad .foo
2957 . .quad .TOC.@tocbase
2958 . .quad 0
2959 .
2960 . .text
2961 . .foo: blr
2962
2963 When the linker resolves the call during a static link, the branch
2964 unsurprisingly just goes to .foo and the .opd information is unused.
2965 If the function definition is in a shared library, things are a little
2966 different: The call goes via a plt call stub, the opd information gets
2967 copied to the plt, and the linker patches the nop.
2968
2969 . x:
2970 . bl .foo_stub
2971 . ld 2,40(1)
2972 .
2973 .
2974 . .foo_stub:
2975 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2976 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2977 . std 2,40(1) # this is the general idea
2978 . ld 11,0(12)
2979 . ld 2,8(12)
2980 . mtctr 11
2981 . ld 11,16(12)
2982 . bctr
2983 .
2984 . .section .plt
2985 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2986
2987 The "reloc ()" notation is supposed to indicate that the linker emits
2988 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2989 copying.
2990
2991 What are the difficulties here? Well, firstly, the relocations
2992 examined by the linker in check_relocs are against the function code
2993 sym .foo, while the dynamic relocation in the plt is emitted against
2994 the function descriptor symbol, foo. Somewhere along the line, we need
2995 to carefully copy dynamic link information from one symbol to the other.
2996 Secondly, the generic part of the elf linker will make .foo a dynamic
2997 symbol as is normal for most other backends. We need foo dynamic
2998 instead, at least for an application final link. However, when
2999 creating a shared library containing foo, we need to have both symbols
3000 dynamic so that references to .foo are satisfied during the early
3001 stages of linking. Otherwise the linker might decide to pull in a
3002 definition from some other object, eg. a static library.
3003
3004 Update: As of August 2004, we support a new convention. Function
3005 calls may use the function descriptor symbol, ie. "bl foo". This
3006 behaves exactly as "bl .foo". */
3007
3008 /* The linker needs to keep track of the number of relocs that it
3009 decides to copy as dynamic relocs in check_relocs for each symbol.
3010 This is so that it can later discard them if they are found to be
3011 unnecessary. We store the information in a field extending the
3012 regular ELF linker hash table. */
3013
3014 struct ppc_dyn_relocs
3015 {
3016 struct ppc_dyn_relocs *next;
3017
3018 /* The input section of the reloc. */
3019 asection *sec;
3020
3021 /* Total number of relocs copied for the input section. */
3022 bfd_size_type count;
3023
3024 /* Number of pc-relative relocs copied for the input section. */
3025 bfd_size_type pc_count;
3026 };
3027
3028 /* Track GOT entries needed for a given symbol. We might need more
3029 than one got entry per symbol. */
3030 struct got_entry
3031 {
3032 struct got_entry *next;
3033
3034 /* The symbol addend that we'll be placing in the GOT. */
3035 bfd_vma addend;
3036
3037 /* Unlike other ELF targets, we use separate GOT entries for the same
3038 symbol referenced from different input files. This is to support
3039 automatic multiple TOC/GOT sections, where the TOC base can vary
3040 from one input file to another.
3041
3042 Point to the BFD owning this GOT entry. */
3043 bfd *owner;
3044
3045 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3046 TLS_TPREL or TLS_DTPREL for tls entries. */
3047 char tls_type;
3048
3049 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3050 union
3051 {
3052 bfd_signed_vma refcount;
3053 bfd_vma offset;
3054 } got;
3055 };
3056
3057 /* The same for PLT. */
3058 struct plt_entry
3059 {
3060 struct plt_entry *next;
3061
3062 bfd_vma addend;
3063
3064 union
3065 {
3066 bfd_signed_vma refcount;
3067 bfd_vma offset;
3068 } plt;
3069 };
3070
3071 /* Of those relocs that might be copied as dynamic relocs, this macro
3072 selects those that must be copied when linking a shared library,
3073 even when the symbol is local. */
3074
3075 #define MUST_BE_DYN_RELOC(RTYPE) \
3076 ((RTYPE) != R_PPC64_REL32 \
3077 && (RTYPE) != R_PPC64_REL64 \
3078 && (RTYPE) != R_PPC64_REL30)
3079
3080 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3081 copying dynamic variables from a shared lib into an app's dynbss
3082 section, and instead use a dynamic relocation to point into the
3083 shared lib. With code that gcc generates, it's vital that this be
3084 enabled; In the PowerPC64 ABI, the address of a function is actually
3085 the address of a function descriptor, which resides in the .opd
3086 section. gcc uses the descriptor directly rather than going via the
3087 GOT as some other ABI's do, which means that initialized function
3088 pointers must reference the descriptor. Thus, a function pointer
3089 initialized to the address of a function in a shared library will
3090 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3091 redefines the function descriptor symbol to point to the copy. This
3092 presents a problem as a plt entry for that function is also
3093 initialized from the function descriptor symbol and the copy reloc
3094 may not be initialized first. */
3095 #define ELIMINATE_COPY_RELOCS 1
3096
3097 /* Section name for stubs is the associated section name plus this
3098 string. */
3099 #define STUB_SUFFIX ".stub"
3100
3101 /* Linker stubs.
3102 ppc_stub_long_branch:
3103 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3104 destination, but a 24 bit branch in a stub section will reach.
3105 . b dest
3106
3107 ppc_stub_plt_branch:
3108 Similar to the above, but a 24 bit branch in the stub section won't
3109 reach its destination.
3110 . addis %r12,%r2,xxx@toc@ha
3111 . ld %r11,xxx@toc@l(%r12)
3112 . mtctr %r11
3113 . bctr
3114
3115 ppc_stub_plt_call:
3116 Used to call a function in a shared library. If it so happens that
3117 the plt entry referenced crosses a 64k boundary, then an extra
3118 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3119 xxx+16 as appropriate.
3120 . addis %r12,%r2,xxx@toc@ha
3121 . std %r2,40(%r1)
3122 . ld %r11,xxx+0@toc@l(%r12)
3123 . ld %r2,xxx+8@toc@l(%r12)
3124 . mtctr %r11
3125 . ld %r11,xxx+16@toc@l(%r12)
3126 . bctr
3127
3128 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3129 code to adjust the value and save r2 to support multiple toc sections.
3130 A ppc_stub_long_branch with an r2 offset looks like:
3131 . std %r2,40(%r1)
3132 . addis %r2,%r2,off@ha
3133 . addi %r2,%r2,off@l
3134 . b dest
3135
3136 A ppc_stub_plt_branch with an r2 offset looks like:
3137 . std %r2,40(%r1)
3138 . addis %r12,%r2,xxx@toc@ha
3139 . ld %r11,xxx@toc@l(%r12)
3140 . addis %r2,%r2,off@ha
3141 . addi %r2,%r2,off@l
3142 . mtctr %r11
3143 . bctr
3144 */
3145
3146 enum ppc_stub_type {
3147 ppc_stub_none,
3148 ppc_stub_long_branch,
3149 ppc_stub_long_branch_r2off,
3150 ppc_stub_plt_branch,
3151 ppc_stub_plt_branch_r2off,
3152 ppc_stub_plt_call
3153 };
3154
3155 struct ppc_stub_hash_entry {
3156
3157 /* Base hash table entry structure. */
3158 struct bfd_hash_entry root;
3159
3160 enum ppc_stub_type stub_type;
3161
3162 /* The stub section. */
3163 asection *stub_sec;
3164
3165 /* Offset within stub_sec of the beginning of this stub. */
3166 bfd_vma stub_offset;
3167
3168 /* Given the symbol's value and its section we can determine its final
3169 value when building the stubs (so the stub knows where to jump. */
3170 bfd_vma target_value;
3171 asection *target_section;
3172
3173 /* The symbol table entry, if any, that this was derived from. */
3174 struct ppc_link_hash_entry *h;
3175
3176 /* And the reloc addend that this was derived from. */
3177 bfd_vma addend;
3178
3179 /* Where this stub is being called from, or, in the case of combined
3180 stub sections, the first input section in the group. */
3181 asection *id_sec;
3182 };
3183
3184 struct ppc_branch_hash_entry {
3185
3186 /* Base hash table entry structure. */
3187 struct bfd_hash_entry root;
3188
3189 /* Offset within .branch_lt. */
3190 unsigned int offset;
3191
3192 /* Generation marker. */
3193 unsigned int iter;
3194 };
3195
3196 struct ppc_link_hash_entry
3197 {
3198 struct elf_link_hash_entry elf;
3199
3200 /* A pointer to the most recently used stub hash entry against this
3201 symbol. */
3202 struct ppc_stub_hash_entry *stub_cache;
3203
3204 /* Track dynamic relocs copied for this symbol. */
3205 struct ppc_dyn_relocs *dyn_relocs;
3206
3207 /* Link between function code and descriptor symbols. */
3208 struct ppc_link_hash_entry *oh;
3209
3210 /* Flag function code and descriptor symbols. */
3211 unsigned int is_func:1;
3212 unsigned int is_func_descriptor:1;
3213 unsigned int fake:1;
3214
3215 /* Whether global opd/toc sym has been adjusted or not.
3216 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3217 should be set for all globals defined in any opd/toc section. */
3218 unsigned int adjust_done:1;
3219
3220 /* Set if we twiddled this symbol to weak at some stage. */
3221 unsigned int was_undefined:1;
3222
3223 /* Contexts in which symbol is used in the GOT (or TOC).
3224 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3225 corresponding relocs are encountered during check_relocs.
3226 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3227 indicate the corresponding GOT entry type is not needed.
3228 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3229 a TPREL one. We use a separate flag rather than setting TPREL
3230 just for convenience in distinguishing the two cases. */
3231 #define TLS_GD 1 /* GD reloc. */
3232 #define TLS_LD 2 /* LD reloc. */
3233 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3234 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3235 #define TLS_TLS 16 /* Any TLS reloc. */
3236 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3237 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3238 char tls_mask;
3239 };
3240
3241 /* ppc64 ELF linker hash table. */
3242
3243 struct ppc_link_hash_table
3244 {
3245 struct elf_link_hash_table elf;
3246
3247 /* The stub hash table. */
3248 struct bfd_hash_table stub_hash_table;
3249
3250 /* Another hash table for plt_branch stubs. */
3251 struct bfd_hash_table branch_hash_table;
3252
3253 /* Linker stub bfd. */
3254 bfd *stub_bfd;
3255
3256 /* Linker call-backs. */
3257 asection * (*add_stub_section) (const char *, asection *);
3258 void (*layout_sections_again) (void);
3259
3260 /* Array to keep track of which stub sections have been created, and
3261 information on stub grouping. */
3262 struct map_stub {
3263 /* This is the section to which stubs in the group will be attached. */
3264 asection *link_sec;
3265 /* The stub section. */
3266 asection *stub_sec;
3267 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3268 bfd_vma toc_off;
3269 } *stub_group;
3270
3271 /* Temp used when calculating TOC pointers. */
3272 bfd_vma toc_curr;
3273
3274 /* Highest input section id. */
3275 int top_id;
3276
3277 /* Highest output section index. */
3278 int top_index;
3279
3280 /* List of input sections for each output section. */
3281 asection **input_list;
3282
3283 /* Short-cuts to get to dynamic linker sections. */
3284 asection *got;
3285 asection *plt;
3286 asection *relplt;
3287 asection *dynbss;
3288 asection *relbss;
3289 asection *glink;
3290 asection *sfpr;
3291 asection *brlt;
3292 asection *relbrlt;
3293
3294 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3295 struct ppc_link_hash_entry *tls_get_addr;
3296 struct ppc_link_hash_entry *tls_get_addr_fd;
3297
3298 /* Statistics. */
3299 unsigned long stub_count[ppc_stub_plt_call];
3300
3301 /* Number of stubs against global syms. */
3302 unsigned long stub_globals;
3303
3304 /* Set if we should emit symbols for stubs. */
3305 unsigned int emit_stub_syms:1;
3306
3307 /* Support for multiple toc sections. */
3308 unsigned int no_multi_toc:1;
3309 unsigned int multi_toc_needed:1;
3310
3311 /* Set on error. */
3312 unsigned int stub_error:1;
3313
3314 /* Flag set when small branches are detected. Used to
3315 select suitable defaults for the stub group size. */
3316 unsigned int has_14bit_branch:1;
3317
3318 /* Temp used by ppc64_elf_check_directives. */
3319 unsigned int twiddled_syms:1;
3320
3321 /* Incremented every time we size stubs. */
3322 unsigned int stub_iteration;
3323
3324 /* Small local sym to section mapping cache. */
3325 struct sym_sec_cache sym_sec;
3326 };
3327
3328 /* Rename some of the generic section flags to better document how they
3329 are used here. */
3330 #define has_toc_reloc has_gp_reloc
3331 #define makes_toc_func_call need_finalize_relax
3332 #define call_check_in_progress reloc_done
3333
3334 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3335
3336 #define ppc_hash_table(p) \
3337 ((struct ppc_link_hash_table *) ((p)->hash))
3338
3339 #define ppc_stub_hash_lookup(table, string, create, copy) \
3340 ((struct ppc_stub_hash_entry *) \
3341 bfd_hash_lookup ((table), (string), (create), (copy)))
3342
3343 #define ppc_branch_hash_lookup(table, string, create, copy) \
3344 ((struct ppc_branch_hash_entry *) \
3345 bfd_hash_lookup ((table), (string), (create), (copy)))
3346
3347 /* Create an entry in the stub hash table. */
3348
3349 static struct bfd_hash_entry *
3350 stub_hash_newfunc (struct bfd_hash_entry *entry,
3351 struct bfd_hash_table *table,
3352 const char *string)
3353 {
3354 /* Allocate the structure if it has not already been allocated by a
3355 subclass. */
3356 if (entry == NULL)
3357 {
3358 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3359 if (entry == NULL)
3360 return entry;
3361 }
3362
3363 /* Call the allocation method of the superclass. */
3364 entry = bfd_hash_newfunc (entry, table, string);
3365 if (entry != NULL)
3366 {
3367 struct ppc_stub_hash_entry *eh;
3368
3369 /* Initialize the local fields. */
3370 eh = (struct ppc_stub_hash_entry *) entry;
3371 eh->stub_type = ppc_stub_none;
3372 eh->stub_sec = NULL;
3373 eh->stub_offset = 0;
3374 eh->target_value = 0;
3375 eh->target_section = NULL;
3376 eh->h = NULL;
3377 eh->id_sec = NULL;
3378 }
3379
3380 return entry;
3381 }
3382
3383 /* Create an entry in the branch hash table. */
3384
3385 static struct bfd_hash_entry *
3386 branch_hash_newfunc (struct bfd_hash_entry *entry,
3387 struct bfd_hash_table *table,
3388 const char *string)
3389 {
3390 /* Allocate the structure if it has not already been allocated by a
3391 subclass. */
3392 if (entry == NULL)
3393 {
3394 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3395 if (entry == NULL)
3396 return entry;
3397 }
3398
3399 /* Call the allocation method of the superclass. */
3400 entry = bfd_hash_newfunc (entry, table, string);
3401 if (entry != NULL)
3402 {
3403 struct ppc_branch_hash_entry *eh;
3404
3405 /* Initialize the local fields. */
3406 eh = (struct ppc_branch_hash_entry *) entry;
3407 eh->offset = 0;
3408 eh->iter = 0;
3409 }
3410
3411 return entry;
3412 }
3413
3414 /* Create an entry in a ppc64 ELF linker hash table. */
3415
3416 static struct bfd_hash_entry *
3417 link_hash_newfunc (struct bfd_hash_entry *entry,
3418 struct bfd_hash_table *table,
3419 const char *string)
3420 {
3421 /* Allocate the structure if it has not already been allocated by a
3422 subclass. */
3423 if (entry == NULL)
3424 {
3425 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3426 if (entry == NULL)
3427 return entry;
3428 }
3429
3430 /* Call the allocation method of the superclass. */
3431 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3432 if (entry != NULL)
3433 {
3434 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3435
3436 memset (&eh->stub_cache, 0,
3437 (sizeof (struct ppc_link_hash_entry)
3438 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3439 }
3440
3441 return entry;
3442 }
3443
3444 /* Create a ppc64 ELF linker hash table. */
3445
3446 static struct bfd_link_hash_table *
3447 ppc64_elf_link_hash_table_create (bfd *abfd)
3448 {
3449 struct ppc_link_hash_table *htab;
3450 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3451
3452 htab = bfd_zmalloc (amt);
3453 if (htab == NULL)
3454 return NULL;
3455
3456 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3457 {
3458 free (htab);
3459 return NULL;
3460 }
3461
3462 /* Init the stub hash table too. */
3463 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3464 return NULL;
3465
3466 /* And the branch hash table. */
3467 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3468 return NULL;
3469
3470 /* Initializing two fields of the union is just cosmetic. We really
3471 only care about glist, but when compiled on a 32-bit host the
3472 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3473 debugger inspection of these fields look nicer. */
3474 htab->elf.init_refcount.refcount = 0;
3475 htab->elf.init_refcount.glist = NULL;
3476 htab->elf.init_offset.offset = 0;
3477 htab->elf.init_offset.glist = NULL;
3478
3479 return &htab->elf.root;
3480 }
3481
3482 /* Free the derived linker hash table. */
3483
3484 static void
3485 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3486 {
3487 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3488
3489 bfd_hash_table_free (&ret->stub_hash_table);
3490 bfd_hash_table_free (&ret->branch_hash_table);
3491 _bfd_generic_link_hash_table_free (hash);
3492 }
3493
3494 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3495
3496 void
3497 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3498 {
3499 struct ppc_link_hash_table *htab;
3500
3501 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3502
3503 /* Always hook our dynamic sections into the first bfd, which is the
3504 linker created stub bfd. This ensures that the GOT header is at
3505 the start of the output TOC section. */
3506 htab = ppc_hash_table (info);
3507 htab->stub_bfd = abfd;
3508 htab->elf.dynobj = abfd;
3509 }
3510
3511 /* Build a name for an entry in the stub hash table. */
3512
3513 static char *
3514 ppc_stub_name (const asection *input_section,
3515 const asection *sym_sec,
3516 const struct ppc_link_hash_entry *h,
3517 const Elf_Internal_Rela *rel)
3518 {
3519 char *stub_name;
3520 bfd_size_type len;
3521
3522 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3523 offsets from a sym as a branch target? In fact, we could
3524 probably assume the addend is always zero. */
3525 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3526
3527 if (h)
3528 {
3529 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3530 stub_name = bfd_malloc (len);
3531 if (stub_name != NULL)
3532 {
3533 sprintf (stub_name, "%08x.%s+%x",
3534 input_section->id & 0xffffffff,
3535 h->elf.root.root.string,
3536 (int) rel->r_addend & 0xffffffff);
3537 }
3538 }
3539 else
3540 {
3541 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3542 stub_name = bfd_malloc (len);
3543 if (stub_name != NULL)
3544 {
3545 sprintf (stub_name, "%08x.%x:%x+%x",
3546 input_section->id & 0xffffffff,
3547 sym_sec->id & 0xffffffff,
3548 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3549 (int) rel->r_addend & 0xffffffff);
3550 }
3551 }
3552 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3553 stub_name[len - 2] = 0;
3554 return stub_name;
3555 }
3556
3557 /* Look up an entry in the stub hash. Stub entries are cached because
3558 creating the stub name takes a bit of time. */
3559
3560 static struct ppc_stub_hash_entry *
3561 ppc_get_stub_entry (const asection *input_section,
3562 const asection *sym_sec,
3563 struct ppc_link_hash_entry *h,
3564 const Elf_Internal_Rela *rel,
3565 struct ppc_link_hash_table *htab)
3566 {
3567 struct ppc_stub_hash_entry *stub_entry;
3568 const asection *id_sec;
3569
3570 /* If this input section is part of a group of sections sharing one
3571 stub section, then use the id of the first section in the group.
3572 Stub names need to include a section id, as there may well be
3573 more than one stub used to reach say, printf, and we need to
3574 distinguish between them. */
3575 id_sec = htab->stub_group[input_section->id].link_sec;
3576
3577 if (h != NULL && h->stub_cache != NULL
3578 && h->stub_cache->h == h
3579 && h->stub_cache->id_sec == id_sec)
3580 {
3581 stub_entry = h->stub_cache;
3582 }
3583 else
3584 {
3585 char *stub_name;
3586
3587 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3588 if (stub_name == NULL)
3589 return NULL;
3590
3591 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3592 stub_name, FALSE, FALSE);
3593 if (h != NULL)
3594 h->stub_cache = stub_entry;
3595
3596 free (stub_name);
3597 }
3598
3599 return stub_entry;
3600 }
3601
3602 /* Add a new stub entry to the stub hash. Not all fields of the new
3603 stub entry are initialised. */
3604
3605 static struct ppc_stub_hash_entry *
3606 ppc_add_stub (const char *stub_name,
3607 asection *section,
3608 struct ppc_link_hash_table *htab)
3609 {
3610 asection *link_sec;
3611 asection *stub_sec;
3612 struct ppc_stub_hash_entry *stub_entry;
3613
3614 link_sec = htab->stub_group[section->id].link_sec;
3615 stub_sec = htab->stub_group[section->id].stub_sec;
3616 if (stub_sec == NULL)
3617 {
3618 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3619 if (stub_sec == NULL)
3620 {
3621 size_t namelen;
3622 bfd_size_type len;
3623 char *s_name;
3624
3625 namelen = strlen (link_sec->name);
3626 len = namelen + sizeof (STUB_SUFFIX);
3627 s_name = bfd_alloc (htab->stub_bfd, len);
3628 if (s_name == NULL)
3629 return NULL;
3630
3631 memcpy (s_name, link_sec->name, namelen);
3632 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3633 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3634 if (stub_sec == NULL)
3635 return NULL;
3636 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3637 }
3638 htab->stub_group[section->id].stub_sec = stub_sec;
3639 }
3640
3641 /* Enter this entry into the linker stub hash table. */
3642 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3643 TRUE, FALSE);
3644 if (stub_entry == NULL)
3645 {
3646 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3647 section->owner, stub_name);
3648 return NULL;
3649 }
3650
3651 stub_entry->stub_sec = stub_sec;
3652 stub_entry->stub_offset = 0;
3653 stub_entry->id_sec = link_sec;
3654 return stub_entry;
3655 }
3656
3657 /* Create sections for linker generated code. */
3658
3659 static bfd_boolean
3660 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3661 {
3662 struct ppc_link_hash_table *htab;
3663 flagword flags;
3664
3665 htab = ppc_hash_table (info);
3666
3667 /* Create .sfpr for code to save and restore fp regs. */
3668 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3669 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3670 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3671 if (htab->sfpr == NULL
3672 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3673 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3674 return FALSE;
3675
3676 /* Create .glink for lazy dynamic linking support. */
3677 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3678 if (htab->glink == NULL
3679 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3680 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3681 return FALSE;
3682
3683 /* Create .branch_lt for plt_branch stubs. */
3684 flags = (SEC_ALLOC | SEC_LOAD
3685 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3686 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3687 if (htab->brlt == NULL
3688 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3689 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3690 return FALSE;
3691
3692 if (info->shared || info->emitrelocations)
3693 {
3694 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3695 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3696 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3697 if (!htab->relbrlt
3698 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3699 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3700 return FALSE;
3701 }
3702 return TRUE;
3703 }
3704
3705 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3706 not already done. */
3707
3708 static bfd_boolean
3709 create_got_section (bfd *abfd, struct bfd_link_info *info)
3710 {
3711 asection *got, *relgot;
3712 flagword flags;
3713 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3714
3715 if (!htab->got)
3716 {
3717 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3718 return FALSE;
3719
3720 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3721 if (!htab->got)
3722 abort ();
3723 }
3724
3725 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3726 | SEC_LINKER_CREATED);
3727
3728 got = bfd_make_section (abfd, ".got");
3729 if (!got
3730 || !bfd_set_section_flags (abfd, got, flags)
3731 || !bfd_set_section_alignment (abfd, got, 3))
3732 return FALSE;
3733
3734 relgot = bfd_make_section (abfd, ".rela.got");
3735 if (!relgot
3736 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3737 || ! bfd_set_section_alignment (abfd, relgot, 3))
3738 return FALSE;
3739
3740 ppc64_elf_tdata (abfd)->got = got;
3741 ppc64_elf_tdata (abfd)->relgot = relgot;
3742 return TRUE;
3743 }
3744
3745 /* Create the dynamic sections, and set up shortcuts. */
3746
3747 static bfd_boolean
3748 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3749 {
3750 struct ppc_link_hash_table *htab;
3751
3752 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3753 return FALSE;
3754
3755 htab = ppc_hash_table (info);
3756 if (!htab->got)
3757 htab->got = bfd_get_section_by_name (dynobj, ".got");
3758 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3759 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3760 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3761 if (!info->shared)
3762 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3763
3764 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3765 || (!info->shared && !htab->relbss))
3766 abort ();
3767
3768 return TRUE;
3769 }
3770
3771 /* Merge PLT info on FROM with that on TO. */
3772
3773 static void
3774 move_plt_plist (struct ppc_link_hash_entry *from,
3775 struct ppc_link_hash_entry *to)
3776 {
3777 if (from->elf.plt.plist != NULL)
3778 {
3779 if (to->elf.plt.plist != NULL)
3780 {
3781 struct plt_entry **entp;
3782 struct plt_entry *ent;
3783
3784 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3785 {
3786 struct plt_entry *dent;
3787
3788 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3789 if (dent->addend == ent->addend)
3790 {
3791 dent->plt.refcount += ent->plt.refcount;
3792 *entp = ent->next;
3793 break;
3794 }
3795 if (dent == NULL)
3796 entp = &ent->next;
3797 }
3798 *entp = to->elf.plt.plist;
3799 }
3800
3801 to->elf.plt.plist = from->elf.plt.plist;
3802 from->elf.plt.plist = NULL;
3803 }
3804 }
3805
3806 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3807
3808 static void
3809 ppc64_elf_copy_indirect_symbol
3810 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3811 struct elf_link_hash_entry *dir,
3812 struct elf_link_hash_entry *ind)
3813 {
3814 struct ppc_link_hash_entry *edir, *eind;
3815
3816 edir = (struct ppc_link_hash_entry *) dir;
3817 eind = (struct ppc_link_hash_entry *) ind;
3818
3819 /* Copy over any dynamic relocs we may have on the indirect sym. */
3820 if (eind->dyn_relocs != NULL)
3821 {
3822 if (edir->dyn_relocs != NULL)
3823 {
3824 struct ppc_dyn_relocs **pp;
3825 struct ppc_dyn_relocs *p;
3826
3827 if (eind->elf.root.type == bfd_link_hash_indirect)
3828 abort ();
3829
3830 /* Add reloc counts against the weak sym to the strong sym
3831 list. Merge any entries against the same section. */
3832 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3833 {
3834 struct ppc_dyn_relocs *q;
3835
3836 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3837 if (q->sec == p->sec)
3838 {
3839 q->pc_count += p->pc_count;
3840 q->count += p->count;
3841 *pp = p->next;
3842 break;
3843 }
3844 if (q == NULL)
3845 pp = &p->next;
3846 }
3847 *pp = edir->dyn_relocs;
3848 }
3849
3850 edir->dyn_relocs = eind->dyn_relocs;
3851 eind->dyn_relocs = NULL;
3852 }
3853
3854 edir->is_func |= eind->is_func;
3855 edir->is_func_descriptor |= eind->is_func_descriptor;
3856 edir->tls_mask |= eind->tls_mask;
3857
3858 /* If called to transfer flags for a weakdef during processing
3859 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3860 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3861 if (!(ELIMINATE_COPY_RELOCS
3862 && eind->elf.root.type != bfd_link_hash_indirect
3863 && edir->elf.dynamic_adjusted))
3864 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3865
3866 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3867 edir->elf.ref_regular |= eind->elf.ref_regular;
3868 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3869 edir->elf.needs_plt |= eind->elf.needs_plt;
3870
3871 /* If we were called to copy over info for a weak sym, that's all. */
3872 if (eind->elf.root.type != bfd_link_hash_indirect)
3873 return;
3874
3875 /* Copy over got entries that we may have already seen to the
3876 symbol which just became indirect. */
3877 if (eind->elf.got.glist != NULL)
3878 {
3879 if (edir->elf.got.glist != NULL)
3880 {
3881 struct got_entry **entp;
3882 struct got_entry *ent;
3883
3884 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3885 {
3886 struct got_entry *dent;
3887
3888 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3889 if (dent->addend == ent->addend
3890 && dent->owner == ent->owner
3891 && dent->tls_type == ent->tls_type)
3892 {
3893 dent->got.refcount += ent->got.refcount;
3894 *entp = ent->next;
3895 break;
3896 }
3897 if (dent == NULL)
3898 entp = &ent->next;
3899 }
3900 *entp = edir->elf.got.glist;
3901 }
3902
3903 edir->elf.got.glist = eind->elf.got.glist;
3904 eind->elf.got.glist = NULL;
3905 }
3906
3907 /* And plt entries. */
3908 move_plt_plist (eind, edir);
3909
3910 if (edir->elf.dynindx == -1)
3911 {
3912 edir->elf.dynindx = eind->elf.dynindx;
3913 edir->elf.dynstr_index = eind->elf.dynstr_index;
3914 eind->elf.dynindx = -1;
3915 eind->elf.dynstr_index = 0;
3916 }
3917 else
3918 BFD_ASSERT (eind->elf.dynindx == -1);
3919 }
3920
3921 /* Find the function descriptor hash entry from the given function code
3922 hash entry FH. Link the entries via their OH fields. */
3923
3924 static struct ppc_link_hash_entry *
3925 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3926 {
3927 struct ppc_link_hash_entry *fdh = fh->oh;
3928
3929 if (fdh == NULL)
3930 {
3931 const char *fd_name = fh->elf.root.root.string + 1;
3932
3933 fdh = (struct ppc_link_hash_entry *)
3934 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3935 if (fdh != NULL)
3936 {
3937 fdh->is_func_descriptor = 1;
3938 fdh->oh = fh;
3939 fh->is_func = 1;
3940 fh->oh = fdh;
3941 }
3942 }
3943
3944 return fdh;
3945 }
3946
3947 /* Make a fake function descriptor sym for the code sym FH. */
3948
3949 static struct ppc_link_hash_entry *
3950 make_fdh (struct bfd_link_info *info,
3951 struct ppc_link_hash_entry *fh)
3952 {
3953 bfd *abfd;
3954 asymbol *newsym;
3955 struct bfd_link_hash_entry *bh;
3956 struct ppc_link_hash_entry *fdh;
3957
3958 abfd = fh->elf.root.u.undef.abfd;
3959 newsym = bfd_make_empty_symbol (abfd);
3960 newsym->name = fh->elf.root.root.string + 1;
3961 newsym->section = bfd_und_section_ptr;
3962 newsym->value = 0;
3963 newsym->flags = BSF_WEAK;
3964
3965 bh = NULL;
3966 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
3967 newsym->flags, newsym->section,
3968 newsym->value, NULL, FALSE, FALSE,
3969 &bh))
3970 return NULL;
3971
3972 fdh = (struct ppc_link_hash_entry *) bh;
3973 fdh->elf.non_elf = 0;
3974 fdh->fake = 1;
3975 fdh->is_func_descriptor = 1;
3976 fdh->oh = fh;
3977 fh->is_func = 1;
3978 fh->oh = fdh;
3979 return fdh;
3980 }
3981
3982 /* Hacks to support old ABI code.
3983 When making function calls, old ABI code references function entry
3984 points (dot symbols), while new ABI code references the function
3985 descriptor symbol. We need to make any combination of reference and
3986 definition work together, without breaking archive linking.
3987
3988 For a defined function "foo" and an undefined call to "bar":
3989 An old object defines "foo" and ".foo", references ".bar" (possibly
3990 "bar" too).
3991 A new object defines "foo" and references "bar".
3992
3993 A new object thus has no problem with its undefined symbols being
3994 satisfied by definitions in an old object. On the other hand, the
3995 old object won't have ".bar" satisfied by a new object. */
3996
3997 /* Fix function descriptor symbols defined in .opd sections to be
3998 function type. */
3999
4000 static bfd_boolean
4001 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4002 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4003 Elf_Internal_Sym *isym,
4004 const char **name ATTRIBUTE_UNUSED,
4005 flagword *flags ATTRIBUTE_UNUSED,
4006 asection **sec,
4007 bfd_vma *value ATTRIBUTE_UNUSED)
4008 {
4009 if (*sec != NULL
4010 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4011 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4012 return TRUE;
4013 }
4014
4015 /* This function makes an old ABI object reference to ".bar" cause the
4016 inclusion of a new ABI object archive that defines "bar".
4017 NAME is a symbol defined in an archive. Return a symbol in the hash
4018 table that might be satisfied by the archive symbols. */
4019
4020 static struct elf_link_hash_entry *
4021 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4022 struct bfd_link_info *info,
4023 const char *name)
4024 {
4025 struct elf_link_hash_entry *h;
4026 char *dot_name;
4027 size_t len;
4028
4029 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4030 if (h != NULL
4031 /* Don't return this sym if it is a fake function descriptor
4032 created by add_symbol_adjust. */
4033 && !(h->root.type == bfd_link_hash_undefweak
4034 && ((struct ppc_link_hash_entry *) h)->fake))
4035 return h;
4036
4037 if (name[0] == '.')
4038 return h;
4039
4040 len = strlen (name);
4041 dot_name = bfd_alloc (abfd, len + 2);
4042 if (dot_name == NULL)
4043 return (struct elf_link_hash_entry *) 0 - 1;
4044 dot_name[0] = '.';
4045 memcpy (dot_name + 1, name, len + 1);
4046 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4047 bfd_release (abfd, dot_name);
4048 return h;
4049 }
4050
4051 /* This function satisfies all old ABI object references to ".bar" if a
4052 new ABI object defines "bar". Well, at least, undefined dot symbols
4053 are made weak. This stops later archive searches from including an
4054 object if we already have a function descriptor definition. It also
4055 prevents the linker complaining about undefined symbols.
4056 We also check and correct mismatched symbol visibility here. The
4057 most restrictive visibility of the function descriptor and the
4058 function entry symbol is used. */
4059
4060 struct add_symbol_adjust_data
4061 {
4062 struct bfd_link_info *info;
4063 bfd_boolean ok;
4064 };
4065
4066 static bfd_boolean
4067 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4068 {
4069 struct add_symbol_adjust_data *data;
4070 struct ppc_link_hash_table *htab;
4071 struct ppc_link_hash_entry *eh;
4072 struct ppc_link_hash_entry *fdh;
4073
4074 if (h->root.type == bfd_link_hash_indirect)
4075 return TRUE;
4076
4077 if (h->root.type == bfd_link_hash_warning)
4078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4079
4080 if (h->root.root.string[0] != '.')
4081 return TRUE;
4082
4083 data = inf;
4084 htab = ppc_hash_table (data->info);
4085 eh = (struct ppc_link_hash_entry *) h;
4086 fdh = get_fdh (eh, htab);
4087 if (fdh == NULL
4088 && !data->info->relocatable
4089 && (eh->elf.root.type == bfd_link_hash_undefined
4090 || eh->elf.root.type == bfd_link_hash_undefweak)
4091 && eh->elf.ref_regular)
4092 {
4093 /* Make an undefweak function descriptor sym, which is enough to
4094 pull in an --as-needed shared lib, but won't cause link
4095 errors. Archives are handled elsewhere. */
4096 fdh = make_fdh (data->info, eh);
4097 if (fdh == NULL)
4098 data->ok = FALSE;
4099 else
4100 fdh->elf.ref_regular = 1;
4101 }
4102 else if (fdh != NULL
4103 && (fdh->elf.root.type == bfd_link_hash_defined
4104 || fdh->elf.root.type == bfd_link_hash_defweak))
4105 {
4106 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4107 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4108 if (entry_vis < descr_vis)
4109 fdh->elf.other += entry_vis - descr_vis;
4110 else if (entry_vis > descr_vis)
4111 eh->elf.other += descr_vis - entry_vis;
4112
4113 if (eh->elf.root.type == bfd_link_hash_undefined)
4114 {
4115 eh->elf.root.type = bfd_link_hash_undefweak;
4116 eh->was_undefined = 1;
4117 htab->twiddled_syms = 1;
4118 }
4119 }
4120
4121 return TRUE;
4122 }
4123
4124 static bfd_boolean
4125 ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4126 struct bfd_link_info *info)
4127 {
4128 struct ppc_link_hash_table *htab;
4129 struct add_symbol_adjust_data data;
4130
4131 htab = ppc_hash_table (info);
4132 if (!is_ppc64_elf_target (htab->elf.root.creator))
4133 return TRUE;
4134
4135 data.info = info;
4136 data.ok = TRUE;
4137 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4138
4139 /* We need to fix the undefs list for any syms we have twiddled to
4140 undef_weak. */
4141 if (htab->twiddled_syms)
4142 {
4143 bfd_link_repair_undef_list (&htab->elf.root);
4144 htab->twiddled_syms = 0;
4145 }
4146 return data.ok;
4147 }
4148
4149 static bfd_boolean
4150 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4151 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4152 {
4153 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4154 char *local_got_tls_masks;
4155
4156 if (local_got_ents == NULL)
4157 {
4158 bfd_size_type size = symtab_hdr->sh_info;
4159
4160 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4161 local_got_ents = bfd_zalloc (abfd, size);
4162 if (local_got_ents == NULL)
4163 return FALSE;
4164 elf_local_got_ents (abfd) = local_got_ents;
4165 }
4166
4167 if ((tls_type & TLS_EXPLICIT) == 0)
4168 {
4169 struct got_entry *ent;
4170
4171 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4172 if (ent->addend == r_addend
4173 && ent->owner == abfd
4174 && ent->tls_type == tls_type)
4175 break;
4176 if (ent == NULL)
4177 {
4178 bfd_size_type amt = sizeof (*ent);
4179 ent = bfd_alloc (abfd, amt);
4180 if (ent == NULL)
4181 return FALSE;
4182 ent->next = local_got_ents[r_symndx];
4183 ent->addend = r_addend;
4184 ent->owner = abfd;
4185 ent->tls_type = tls_type;
4186 ent->got.refcount = 0;
4187 local_got_ents[r_symndx] = ent;
4188 }
4189 ent->got.refcount += 1;
4190 }
4191
4192 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4193 local_got_tls_masks[r_symndx] |= tls_type;
4194 return TRUE;
4195 }
4196
4197 static bfd_boolean
4198 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4199 {
4200 struct plt_entry *ent;
4201
4202 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4203 if (ent->addend == addend)
4204 break;
4205 if (ent == NULL)
4206 {
4207 bfd_size_type amt = sizeof (*ent);
4208 ent = bfd_alloc (abfd, amt);
4209 if (ent == NULL)
4210 return FALSE;
4211 ent->next = eh->elf.plt.plist;
4212 ent->addend = addend;
4213 ent->plt.refcount = 0;
4214 eh->elf.plt.plist = ent;
4215 }
4216 ent->plt.refcount += 1;
4217 eh->elf.needs_plt = 1;
4218 if (eh->elf.root.root.string[0] == '.'
4219 && eh->elf.root.root.string[1] != '\0')
4220 eh->is_func = 1;
4221 return TRUE;
4222 }
4223
4224 /* Look through the relocs for a section during the first phase, and
4225 calculate needed space in the global offset table, procedure
4226 linkage table, and dynamic reloc sections. */
4227
4228 static bfd_boolean
4229 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4230 asection *sec, const Elf_Internal_Rela *relocs)
4231 {
4232 struct ppc_link_hash_table *htab;
4233 Elf_Internal_Shdr *symtab_hdr;
4234 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4235 const Elf_Internal_Rela *rel;
4236 const Elf_Internal_Rela *rel_end;
4237 asection *sreloc;
4238 asection **opd_sym_map;
4239
4240 if (info->relocatable)
4241 return TRUE;
4242
4243 /* Don't do anything special with non-loaded, non-alloced sections.
4244 In particular, any relocs in such sections should not affect GOT
4245 and PLT reference counting (ie. we don't allow them to create GOT
4246 or PLT entries), there's no possibility or desire to optimize TLS
4247 relocs, and there's not much point in propagating relocs to shared
4248 libs that the dynamic linker won't relocate. */
4249 if ((sec->flags & SEC_ALLOC) == 0)
4250 return TRUE;
4251
4252 htab = ppc_hash_table (info);
4253 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4254
4255 sym_hashes = elf_sym_hashes (abfd);
4256 sym_hashes_end = (sym_hashes
4257 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4258 - symtab_hdr->sh_info);
4259
4260 sreloc = NULL;
4261 opd_sym_map = NULL;
4262 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4263 {
4264 /* Garbage collection needs some extra help with .opd sections.
4265 We don't want to necessarily keep everything referenced by
4266 relocs in .opd, as that would keep all functions. Instead,
4267 if we reference an .opd symbol (a function descriptor), we
4268 want to keep the function code symbol's section. This is
4269 easy for global symbols, but for local syms we need to keep
4270 information about the associated function section. Later, if
4271 edit_opd deletes entries, we'll use this array to adjust
4272 local syms in .opd. */
4273 union opd_info {
4274 asection *func_section;
4275 long entry_adjust;
4276 };
4277 bfd_size_type amt;
4278
4279 amt = sec->size * sizeof (union opd_info) / 8;
4280 opd_sym_map = bfd_zalloc (abfd, amt);
4281 if (opd_sym_map == NULL)
4282 return FALSE;
4283 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4284 }
4285
4286 if (htab->sfpr == NULL
4287 && !create_linkage_sections (htab->elf.dynobj, info))
4288 return FALSE;
4289
4290 rel_end = relocs + sec->reloc_count;
4291 for (rel = relocs; rel < rel_end; rel++)
4292 {
4293 unsigned long r_symndx;
4294 struct elf_link_hash_entry *h;
4295 enum elf_ppc64_reloc_type r_type;
4296 int tls_type = 0;
4297
4298 r_symndx = ELF64_R_SYM (rel->r_info);
4299 if (r_symndx < symtab_hdr->sh_info)
4300 h = NULL;
4301 else
4302 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4303
4304 r_type = ELF64_R_TYPE (rel->r_info);
4305 switch (r_type)
4306 {
4307 case R_PPC64_GOT_TLSLD16:
4308 case R_PPC64_GOT_TLSLD16_LO:
4309 case R_PPC64_GOT_TLSLD16_HI:
4310 case R_PPC64_GOT_TLSLD16_HA:
4311 ppc64_tlsld_got (abfd)->refcount += 1;
4312 tls_type = TLS_TLS | TLS_LD;
4313 goto dogottls;
4314
4315 case R_PPC64_GOT_TLSGD16:
4316 case R_PPC64_GOT_TLSGD16_LO:
4317 case R_PPC64_GOT_TLSGD16_HI:
4318 case R_PPC64_GOT_TLSGD16_HA:
4319 tls_type = TLS_TLS | TLS_GD;
4320 goto dogottls;
4321
4322 case R_PPC64_GOT_TPREL16_DS:
4323 case R_PPC64_GOT_TPREL16_LO_DS:
4324 case R_PPC64_GOT_TPREL16_HI:
4325 case R_PPC64_GOT_TPREL16_HA:
4326 if (info->shared)
4327 info->flags |= DF_STATIC_TLS;
4328 tls_type = TLS_TLS | TLS_TPREL;
4329 goto dogottls;
4330
4331 case R_PPC64_GOT_DTPREL16_DS:
4332 case R_PPC64_GOT_DTPREL16_LO_DS:
4333 case R_PPC64_GOT_DTPREL16_HI:
4334 case R_PPC64_GOT_DTPREL16_HA:
4335 tls_type = TLS_TLS | TLS_DTPREL;
4336 dogottls:
4337 sec->has_tls_reloc = 1;
4338 /* Fall thru */
4339
4340 case R_PPC64_GOT16:
4341 case R_PPC64_GOT16_DS:
4342 case R_PPC64_GOT16_HA:
4343 case R_PPC64_GOT16_HI:
4344 case R_PPC64_GOT16_LO:
4345 case R_PPC64_GOT16_LO_DS:
4346 /* This symbol requires a global offset table entry. */
4347 sec->has_toc_reloc = 1;
4348 if (ppc64_elf_tdata (abfd)->got == NULL
4349 && !create_got_section (abfd, info))
4350 return FALSE;
4351
4352 if (h != NULL)
4353 {
4354 struct ppc_link_hash_entry *eh;
4355 struct got_entry *ent;
4356
4357 eh = (struct ppc_link_hash_entry *) h;
4358 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4359 if (ent->addend == rel->r_addend
4360 && ent->owner == abfd
4361 && ent->tls_type == tls_type)
4362 break;
4363 if (ent == NULL)
4364 {
4365 bfd_size_type amt = sizeof (*ent);
4366 ent = bfd_alloc (abfd, amt);
4367 if (ent == NULL)
4368 return FALSE;
4369 ent->next = eh->elf.got.glist;
4370 ent->addend = rel->r_addend;
4371 ent->owner = abfd;
4372 ent->tls_type = tls_type;
4373 ent->got.refcount = 0;
4374 eh->elf.got.glist = ent;
4375 }
4376 ent->got.refcount += 1;
4377 eh->tls_mask |= tls_type;
4378 }
4379 else
4380 /* This is a global offset table entry for a local symbol. */
4381 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4382 rel->r_addend, tls_type))
4383 return FALSE;
4384 break;
4385
4386 case R_PPC64_PLT16_HA:
4387 case R_PPC64_PLT16_HI:
4388 case R_PPC64_PLT16_LO:
4389 case R_PPC64_PLT32:
4390 case R_PPC64_PLT64:
4391 /* This symbol requires a procedure linkage table entry. We
4392 actually build the entry in adjust_dynamic_symbol,
4393 because this might be a case of linking PIC code without
4394 linking in any dynamic objects, in which case we don't
4395 need to generate a procedure linkage table after all. */
4396 if (h == NULL)
4397 {
4398 /* It does not make sense to have a procedure linkage
4399 table entry for a local symbol. */
4400 bfd_set_error (bfd_error_bad_value);
4401 return FALSE;
4402 }
4403 else
4404 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4405 rel->r_addend))
4406 return FALSE;
4407 break;
4408
4409 /* The following relocations don't need to propagate the
4410 relocation if linking a shared object since they are
4411 section relative. */
4412 case R_PPC64_SECTOFF:
4413 case R_PPC64_SECTOFF_LO:
4414 case R_PPC64_SECTOFF_HI:
4415 case R_PPC64_SECTOFF_HA:
4416 case R_PPC64_SECTOFF_DS:
4417 case R_PPC64_SECTOFF_LO_DS:
4418 case R_PPC64_DTPREL16:
4419 case R_PPC64_DTPREL16_LO:
4420 case R_PPC64_DTPREL16_HI:
4421 case R_PPC64_DTPREL16_HA:
4422 case R_PPC64_DTPREL16_DS:
4423 case R_PPC64_DTPREL16_LO_DS:
4424 case R_PPC64_DTPREL16_HIGHER:
4425 case R_PPC64_DTPREL16_HIGHERA:
4426 case R_PPC64_DTPREL16_HIGHEST:
4427 case R_PPC64_DTPREL16_HIGHESTA:
4428 break;
4429
4430 /* Nor do these. */
4431 case R_PPC64_TOC16:
4432 case R_PPC64_TOC16_LO:
4433 case R_PPC64_TOC16_HI:
4434 case R_PPC64_TOC16_HA:
4435 case R_PPC64_TOC16_DS:
4436 case R_PPC64_TOC16_LO_DS:
4437 sec->has_toc_reloc = 1;
4438 break;
4439
4440 /* This relocation describes the C++ object vtable hierarchy.
4441 Reconstruct it for later use during GC. */
4442 case R_PPC64_GNU_VTINHERIT:
4443 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4444 return FALSE;
4445 break;
4446
4447 /* This relocation describes which C++ vtable entries are actually
4448 used. Record for later use during GC. */
4449 case R_PPC64_GNU_VTENTRY:
4450 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4451 return FALSE;
4452 break;
4453
4454 case R_PPC64_REL14:
4455 case R_PPC64_REL14_BRTAKEN:
4456 case R_PPC64_REL14_BRNTAKEN:
4457 htab->has_14bit_branch = 1;
4458 /* Fall through. */
4459
4460 case R_PPC64_REL24:
4461 if (h != NULL)
4462 {
4463 /* We may need a .plt entry if the function this reloc
4464 refers to is in a shared lib. */
4465 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4466 rel->r_addend))
4467 return FALSE;
4468 if (h == &htab->tls_get_addr->elf
4469 || h == &htab->tls_get_addr_fd->elf)
4470 sec->has_tls_reloc = 1;
4471 else if (htab->tls_get_addr == NULL
4472 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4473 && (h->root.root.string[15] == 0
4474 || h->root.root.string[15] == '@'))
4475 {
4476 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4477 sec->has_tls_reloc = 1;
4478 }
4479 else if (htab->tls_get_addr_fd == NULL
4480 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4481 && (h->root.root.string[14] == 0
4482 || h->root.root.string[14] == '@'))
4483 {
4484 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4485 sec->has_tls_reloc = 1;
4486 }
4487 }
4488 break;
4489
4490 case R_PPC64_TPREL64:
4491 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4492 if (info->shared)
4493 info->flags |= DF_STATIC_TLS;
4494 goto dotlstoc;
4495
4496 case R_PPC64_DTPMOD64:
4497 if (rel + 1 < rel_end
4498 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4499 && rel[1].r_offset == rel->r_offset + 8)
4500 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4501 else
4502 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4503 goto dotlstoc;
4504
4505 case R_PPC64_DTPREL64:
4506 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4507 if (rel != relocs
4508 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4509 && rel[-1].r_offset == rel->r_offset - 8)
4510 /* This is the second reloc of a dtpmod, dtprel pair.
4511 Don't mark with TLS_DTPREL. */
4512 goto dodyn;
4513
4514 dotlstoc:
4515 sec->has_tls_reloc = 1;
4516 if (h != NULL)
4517 {
4518 struct ppc_link_hash_entry *eh;
4519 eh = (struct ppc_link_hash_entry *) h;
4520 eh->tls_mask |= tls_type;
4521 }
4522 else
4523 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4524 rel->r_addend, tls_type))
4525 return FALSE;
4526
4527 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4528 {
4529 /* One extra to simplify get_tls_mask. */
4530 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4531 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4532 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4533 return FALSE;
4534 }
4535 BFD_ASSERT (rel->r_offset % 8 == 0);
4536 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4537
4538 /* Mark the second slot of a GD or LD entry.
4539 -1 to indicate GD and -2 to indicate LD. */
4540 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4541 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4542 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4543 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4544 goto dodyn;
4545
4546 case R_PPC64_TPREL16:
4547 case R_PPC64_TPREL16_LO:
4548 case R_PPC64_TPREL16_HI:
4549 case R_PPC64_TPREL16_HA:
4550 case R_PPC64_TPREL16_DS:
4551 case R_PPC64_TPREL16_LO_DS:
4552 case R_PPC64_TPREL16_HIGHER:
4553 case R_PPC64_TPREL16_HIGHERA:
4554 case R_PPC64_TPREL16_HIGHEST:
4555 case R_PPC64_TPREL16_HIGHESTA:
4556 if (info->shared)
4557 {
4558 info->flags |= DF_STATIC_TLS;
4559 goto dodyn;
4560 }
4561 break;
4562
4563 case R_PPC64_ADDR64:
4564 if (opd_sym_map != NULL
4565 && rel + 1 < rel_end
4566 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4567 {
4568 if (h != NULL)
4569 {
4570 if (h->root.root.string[0] == '.'
4571 && h->root.root.string[1] != 0
4572 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4573 ;
4574 else
4575 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4576 }
4577 else
4578 {
4579 asection *s;
4580
4581 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4582 r_symndx);
4583 if (s == NULL)
4584 return FALSE;
4585 else if (s != sec)
4586 opd_sym_map[rel->r_offset / 8] = s;
4587 }
4588 }
4589 /* Fall through. */
4590
4591 case R_PPC64_REL30:
4592 case R_PPC64_REL32:
4593 case R_PPC64_REL64:
4594 case R_PPC64_ADDR14:
4595 case R_PPC64_ADDR14_BRNTAKEN:
4596 case R_PPC64_ADDR14_BRTAKEN:
4597 case R_PPC64_ADDR16:
4598 case R_PPC64_ADDR16_DS:
4599 case R_PPC64_ADDR16_HA:
4600 case R_PPC64_ADDR16_HI:
4601 case R_PPC64_ADDR16_HIGHER:
4602 case R_PPC64_ADDR16_HIGHERA:
4603 case R_PPC64_ADDR16_HIGHEST:
4604 case R_PPC64_ADDR16_HIGHESTA:
4605 case R_PPC64_ADDR16_LO:
4606 case R_PPC64_ADDR16_LO_DS:
4607 case R_PPC64_ADDR24:
4608 case R_PPC64_ADDR32:
4609 case R_PPC64_UADDR16:
4610 case R_PPC64_UADDR32:
4611 case R_PPC64_UADDR64:
4612 case R_PPC64_TOC:
4613 if (h != NULL && !info->shared)
4614 /* We may need a copy reloc. */
4615 h->non_got_ref = 1;
4616
4617 /* Don't propagate .opd relocs. */
4618 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4619 break;
4620
4621 /* If we are creating a shared library, and this is a reloc
4622 against a global symbol, or a non PC relative reloc
4623 against a local symbol, then we need to copy the reloc
4624 into the shared library. However, if we are linking with
4625 -Bsymbolic, we do not need to copy a reloc against a
4626 global symbol which is defined in an object we are
4627 including in the link (i.e., DEF_REGULAR is set). At
4628 this point we have not seen all the input files, so it is
4629 possible that DEF_REGULAR is not set now but will be set
4630 later (it is never cleared). In case of a weak definition,
4631 DEF_REGULAR may be cleared later by a strong definition in
4632 a shared library. We account for that possibility below by
4633 storing information in the dyn_relocs field of the hash
4634 table entry. A similar situation occurs when creating
4635 shared libraries and symbol visibility changes render the
4636 symbol local.
4637
4638 If on the other hand, we are creating an executable, we
4639 may need to keep relocations for symbols satisfied by a
4640 dynamic library if we manage to avoid copy relocs for the
4641 symbol. */
4642 dodyn:
4643 if ((info->shared
4644 && (MUST_BE_DYN_RELOC (r_type)
4645 || (h != NULL
4646 && (! info->symbolic
4647 || h->root.type == bfd_link_hash_defweak
4648 || !h->def_regular))))
4649 || (ELIMINATE_COPY_RELOCS
4650 && !info->shared
4651 && h != NULL
4652 && (h->root.type == bfd_link_hash_defweak
4653 || !h->def_regular)))
4654 {
4655 struct ppc_dyn_relocs *p;
4656 struct ppc_dyn_relocs **head;
4657
4658 /* We must copy these reloc types into the output file.
4659 Create a reloc section in dynobj and make room for
4660 this reloc. */
4661 if (sreloc == NULL)
4662 {
4663 const char *name;
4664 bfd *dynobj;
4665
4666 name = (bfd_elf_string_from_elf_section
4667 (abfd,
4668 elf_elfheader (abfd)->e_shstrndx,
4669 elf_section_data (sec)->rel_hdr.sh_name));
4670 if (name == NULL)
4671 return FALSE;
4672
4673 if (strncmp (name, ".rela", 5) != 0
4674 || strcmp (bfd_get_section_name (abfd, sec),
4675 name + 5) != 0)
4676 {
4677 (*_bfd_error_handler)
4678 (_("%B: bad relocation section name `%s\'"),
4679 abfd, name);
4680 bfd_set_error (bfd_error_bad_value);
4681 }
4682
4683 dynobj = htab->elf.dynobj;
4684 sreloc = bfd_get_section_by_name (dynobj, name);
4685 if (sreloc == NULL)
4686 {
4687 flagword flags;
4688
4689 sreloc = bfd_make_section (dynobj, name);
4690 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4691 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4692 | SEC_ALLOC | SEC_LOAD);
4693 if (sreloc == NULL
4694 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4695 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4696 return FALSE;
4697 }
4698 elf_section_data (sec)->sreloc = sreloc;
4699 }
4700
4701 /* If this is a global symbol, we count the number of
4702 relocations we need for this symbol. */
4703 if (h != NULL)
4704 {
4705 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4706 }
4707 else
4708 {
4709 /* Track dynamic relocs needed for local syms too.
4710 We really need local syms available to do this
4711 easily. Oh well. */
4712
4713 asection *s;
4714 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4715 sec, r_symndx);
4716 if (s == NULL)
4717 return FALSE;
4718
4719 head = ((struct ppc_dyn_relocs **)
4720 &elf_section_data (s)->local_dynrel);
4721 }
4722
4723 p = *head;
4724 if (p == NULL || p->sec != sec)
4725 {
4726 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4727 if (p == NULL)
4728 return FALSE;
4729 p->next = *head;
4730 *head = p;
4731 p->sec = sec;
4732 p->count = 0;
4733 p->pc_count = 0;
4734 }
4735
4736 p->count += 1;
4737 if (!MUST_BE_DYN_RELOC (r_type))
4738 p->pc_count += 1;
4739 }
4740 break;
4741
4742 default:
4743 break;
4744 }
4745 }
4746
4747 return TRUE;
4748 }
4749
4750 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4751 of the code entry point, and its section. */
4752
4753 static bfd_vma
4754 opd_entry_value (asection *opd_sec,
4755 bfd_vma offset,
4756 asection **code_sec,
4757 bfd_vma *code_off)
4758 {
4759 bfd *opd_bfd = opd_sec->owner;
4760 Elf_Internal_Rela *relocs;
4761 Elf_Internal_Rela *lo, *hi, *look;
4762 bfd_vma val;
4763
4764 /* No relocs implies we are linking a --just-symbols object. */
4765 if (opd_sec->reloc_count == 0)
4766 {
4767 bfd_vma val;
4768
4769 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4770 return (bfd_vma) -1;
4771
4772 if (code_sec != NULL)
4773 {
4774 asection *sec, *likely = NULL;
4775 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4776 if (sec->vma <= val
4777 && (sec->flags & SEC_LOAD) != 0
4778 && (sec->flags & SEC_ALLOC) != 0)
4779 likely = sec;
4780 if (likely != NULL)
4781 {
4782 *code_sec = likely;
4783 if (code_off != NULL)
4784 *code_off = val - likely->vma;
4785 }
4786 }
4787 return val;
4788 }
4789
4790 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4791 if (relocs == NULL)
4792 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4793
4794 /* Go find the opd reloc at the sym address. */
4795 lo = relocs;
4796 BFD_ASSERT (lo != NULL);
4797 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4798 val = (bfd_vma) -1;
4799 while (lo < hi)
4800 {
4801 look = lo + (hi - lo) / 2;
4802 if (look->r_offset < offset)
4803 lo = look + 1;
4804 else if (look->r_offset > offset)
4805 hi = look;
4806 else
4807 {
4808 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4809 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4810 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4811 {
4812 unsigned long symndx = ELF64_R_SYM (look->r_info);
4813 asection *sec;
4814
4815 if (symndx < symtab_hdr->sh_info)
4816 {
4817 Elf_Internal_Sym *sym;
4818
4819 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4820 if (sym == NULL)
4821 {
4822 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4823 symtab_hdr->sh_info,
4824 0, NULL, NULL, NULL);
4825 if (sym == NULL)
4826 break;
4827 symtab_hdr->contents = (bfd_byte *) sym;
4828 }
4829
4830 sym += symndx;
4831 val = sym->st_value;
4832 sec = NULL;
4833 if ((sym->st_shndx != SHN_UNDEF
4834 && sym->st_shndx < SHN_LORESERVE)
4835 || sym->st_shndx > SHN_HIRESERVE)
4836 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4837 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4838 }
4839 else
4840 {
4841 struct elf_link_hash_entry **sym_hashes;
4842 struct elf_link_hash_entry *rh;
4843
4844 sym_hashes = elf_sym_hashes (opd_bfd);
4845 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4846 while (rh->root.type == bfd_link_hash_indirect
4847 || rh->root.type == bfd_link_hash_warning)
4848 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4849 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4850 || rh->root.type == bfd_link_hash_defweak);
4851 val = rh->root.u.def.value;
4852 sec = rh->root.u.def.section;
4853 }
4854 val += look->r_addend;
4855 if (code_off != NULL)
4856 *code_off = val;
4857 if (code_sec != NULL)
4858 *code_sec = sec;
4859 if (sec != NULL && sec->output_section != NULL)
4860 val += sec->output_section->vma + sec->output_offset;
4861 }
4862 break;
4863 }
4864 }
4865
4866 return val;
4867 }
4868
4869 /* Return the section that should be marked against GC for a given
4870 relocation. */
4871
4872 static asection *
4873 ppc64_elf_gc_mark_hook (asection *sec,
4874 struct bfd_link_info *info,
4875 Elf_Internal_Rela *rel,
4876 struct elf_link_hash_entry *h,
4877 Elf_Internal_Sym *sym)
4878 {
4879 asection *rsec;
4880
4881 /* First mark all our entry sym sections. */
4882 if (info->gc_sym_list != NULL)
4883 {
4884 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4885 struct bfd_sym_chain *sym = info->gc_sym_list;
4886
4887 info->gc_sym_list = NULL;
4888 do
4889 {
4890 struct ppc_link_hash_entry *eh;
4891
4892 eh = (struct ppc_link_hash_entry *)
4893 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4894 if (eh == NULL)
4895 continue;
4896 if (eh->elf.root.type != bfd_link_hash_defined
4897 && eh->elf.root.type != bfd_link_hash_defweak)
4898 continue;
4899
4900 if (eh->is_func_descriptor
4901 && (eh->oh->elf.root.type == bfd_link_hash_defined
4902 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4903 rsec = eh->oh->elf.root.u.def.section;
4904 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4905 && opd_entry_value (eh->elf.root.u.def.section,
4906 eh->elf.root.u.def.value,
4907 &rsec, NULL) != (bfd_vma) -1)
4908 ;
4909 else
4910 continue;
4911
4912 if (!rsec->gc_mark)
4913 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4914
4915 rsec = eh->elf.root.u.def.section;
4916 if (!rsec->gc_mark)
4917 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4918
4919 sym = sym->next;
4920 }
4921 while (sym != NULL);
4922 }
4923
4924 /* Syms return NULL if we're marking .opd, so we avoid marking all
4925 function sections, as all functions are referenced in .opd. */
4926 rsec = NULL;
4927 if (get_opd_info (sec) != NULL)
4928 return rsec;
4929
4930 if (h != NULL)
4931 {
4932 enum elf_ppc64_reloc_type r_type;
4933 struct ppc_link_hash_entry *eh;
4934
4935 r_type = ELF64_R_TYPE (rel->r_info);
4936 switch (r_type)
4937 {
4938 case R_PPC64_GNU_VTINHERIT:
4939 case R_PPC64_GNU_VTENTRY:
4940 break;
4941
4942 default:
4943 switch (h->root.type)
4944 {
4945 case bfd_link_hash_defined:
4946 case bfd_link_hash_defweak:
4947 eh = (struct ppc_link_hash_entry *) h;
4948 if (eh->oh != NULL
4949 && eh->oh->is_func_descriptor
4950 && (eh->oh->elf.root.type == bfd_link_hash_defined
4951 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4952 eh = eh->oh;
4953
4954 /* Function descriptor syms cause the associated
4955 function code sym section to be marked. */
4956 if (eh->is_func_descriptor
4957 && (eh->oh->elf.root.type == bfd_link_hash_defined
4958 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4959 {
4960 /* They also mark their opd section. */
4961 if (!eh->elf.root.u.def.section->gc_mark)
4962 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4963 ppc64_elf_gc_mark_hook);
4964
4965 rsec = eh->oh->elf.root.u.def.section;
4966 }
4967 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4968 && opd_entry_value (eh->elf.root.u.def.section,
4969 eh->elf.root.u.def.value,
4970 &rsec, NULL) != (bfd_vma) -1)
4971 {
4972 if (!eh->elf.root.u.def.section->gc_mark)
4973 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4974 ppc64_elf_gc_mark_hook);
4975 }
4976 else
4977 rsec = h->root.u.def.section;
4978 break;
4979
4980 case bfd_link_hash_common:
4981 rsec = h->root.u.c.p->section;
4982 break;
4983
4984 default:
4985 break;
4986 }
4987 }
4988 }
4989 else
4990 {
4991 asection **opd_sym_section;
4992
4993 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4994 opd_sym_section = get_opd_info (rsec);
4995 if (opd_sym_section != NULL)
4996 {
4997 if (!rsec->gc_mark)
4998 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4999
5000 rsec = opd_sym_section[sym->st_value / 8];
5001 }
5002 }
5003
5004 return rsec;
5005 }
5006
5007 /* Update the .got, .plt. and dynamic reloc reference counts for the
5008 section being removed. */
5009
5010 static bfd_boolean
5011 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5012 asection *sec, const Elf_Internal_Rela *relocs)
5013 {
5014 struct ppc_link_hash_table *htab;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 struct elf_link_hash_entry **sym_hashes;
5017 struct got_entry **local_got_ents;
5018 const Elf_Internal_Rela *rel, *relend;
5019
5020 if ((sec->flags & SEC_ALLOC) == 0)
5021 return TRUE;
5022
5023 elf_section_data (sec)->local_dynrel = NULL;
5024
5025 htab = ppc_hash_table (info);
5026 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5027 sym_hashes = elf_sym_hashes (abfd);
5028 local_got_ents = elf_local_got_ents (abfd);
5029
5030 relend = relocs + sec->reloc_count;
5031 for (rel = relocs; rel < relend; rel++)
5032 {
5033 unsigned long r_symndx;
5034 enum elf_ppc64_reloc_type r_type;
5035 struct elf_link_hash_entry *h = NULL;
5036 char tls_type = 0;
5037
5038 r_symndx = ELF64_R_SYM (rel->r_info);
5039 r_type = ELF64_R_TYPE (rel->r_info);
5040 if (r_symndx >= symtab_hdr->sh_info)
5041 {
5042 struct ppc_link_hash_entry *eh;
5043 struct ppc_dyn_relocs **pp;
5044 struct ppc_dyn_relocs *p;
5045
5046 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5047 while (h->root.type == bfd_link_hash_indirect
5048 || h->root.type == bfd_link_hash_warning)
5049 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5050 eh = (struct ppc_link_hash_entry *) h;
5051
5052 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5053 if (p->sec == sec)
5054 {
5055 /* Everything must go for SEC. */
5056 *pp = p->next;
5057 break;
5058 }
5059 }
5060
5061 switch (r_type)
5062 {
5063 case R_PPC64_GOT_TLSLD16:
5064 case R_PPC64_GOT_TLSLD16_LO:
5065 case R_PPC64_GOT_TLSLD16_HI:
5066 case R_PPC64_GOT_TLSLD16_HA:
5067 ppc64_tlsld_got (abfd)->refcount -= 1;
5068 tls_type = TLS_TLS | TLS_LD;
5069 goto dogot;
5070
5071 case R_PPC64_GOT_TLSGD16:
5072 case R_PPC64_GOT_TLSGD16_LO:
5073 case R_PPC64_GOT_TLSGD16_HI:
5074 case R_PPC64_GOT_TLSGD16_HA:
5075 tls_type = TLS_TLS | TLS_GD;
5076 goto dogot;
5077
5078 case R_PPC64_GOT_TPREL16_DS:
5079 case R_PPC64_GOT_TPREL16_LO_DS:
5080 case R_PPC64_GOT_TPREL16_HI:
5081 case R_PPC64_GOT_TPREL16_HA:
5082 tls_type = TLS_TLS | TLS_TPREL;
5083 goto dogot;
5084
5085 case R_PPC64_GOT_DTPREL16_DS:
5086 case R_PPC64_GOT_DTPREL16_LO_DS:
5087 case R_PPC64_GOT_DTPREL16_HI:
5088 case R_PPC64_GOT_DTPREL16_HA:
5089 tls_type = TLS_TLS | TLS_DTPREL;
5090 goto dogot;
5091
5092 case R_PPC64_GOT16:
5093 case R_PPC64_GOT16_DS:
5094 case R_PPC64_GOT16_HA:
5095 case R_PPC64_GOT16_HI:
5096 case R_PPC64_GOT16_LO:
5097 case R_PPC64_GOT16_LO_DS:
5098 dogot:
5099 {
5100 struct got_entry *ent;
5101
5102 if (h != NULL)
5103 ent = h->got.glist;
5104 else
5105 ent = local_got_ents[r_symndx];
5106
5107 for (; ent != NULL; ent = ent->next)
5108 if (ent->addend == rel->r_addend
5109 && ent->owner == abfd
5110 && ent->tls_type == tls_type)
5111 break;
5112 if (ent == NULL)
5113 abort ();
5114 if (ent->got.refcount > 0)
5115 ent->got.refcount -= 1;
5116 }
5117 break;
5118
5119 case R_PPC64_PLT16_HA:
5120 case R_PPC64_PLT16_HI:
5121 case R_PPC64_PLT16_LO:
5122 case R_PPC64_PLT32:
5123 case R_PPC64_PLT64:
5124 case R_PPC64_REL14:
5125 case R_PPC64_REL14_BRNTAKEN:
5126 case R_PPC64_REL14_BRTAKEN:
5127 case R_PPC64_REL24:
5128 if (h != NULL)
5129 {
5130 struct plt_entry *ent;
5131
5132 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5133 if (ent->addend == rel->r_addend)
5134 break;
5135 if (ent == NULL)
5136 abort ();
5137 if (ent->plt.refcount > 0)
5138 ent->plt.refcount -= 1;
5139 }
5140 break;
5141
5142 default:
5143 break;
5144 }
5145 }
5146 return TRUE;
5147 }
5148
5149 /* The maximum size of .sfpr. */
5150 #define SFPR_MAX (218*4)
5151
5152 struct sfpr_def_parms
5153 {
5154 const char name[12];
5155 unsigned char lo, hi;
5156 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5157 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5158 };
5159
5160 /* Auto-generate _save*, _rest* functions in .sfpr. */
5161
5162 static unsigned int
5163 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5164 {
5165 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5166 unsigned int i;
5167 size_t len = strlen (parm->name);
5168 bfd_boolean writing = FALSE;
5169 char sym[16];
5170
5171 memcpy (sym, parm->name, len);
5172 sym[len + 2] = 0;
5173
5174 for (i = parm->lo; i <= parm->hi; i++)
5175 {
5176 struct elf_link_hash_entry *h;
5177
5178 sym[len + 0] = i / 10 + '0';
5179 sym[len + 1] = i % 10 + '0';
5180 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5181 if (h != NULL
5182 && !h->def_regular)
5183 {
5184 h->root.type = bfd_link_hash_defined;
5185 h->root.u.def.section = htab->sfpr;
5186 h->root.u.def.value = htab->sfpr->size;
5187 h->type = STT_FUNC;
5188 h->def_regular = 1;
5189 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5190 writing = TRUE;
5191 if (htab->sfpr->contents == NULL)
5192 {
5193 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5194 if (htab->sfpr->contents == NULL)
5195 return FALSE;
5196 }
5197 }
5198 if (writing)
5199 {
5200 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5201 if (i != parm->hi)
5202 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5203 else
5204 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5205 htab->sfpr->size = p - htab->sfpr->contents;
5206 }
5207 }
5208
5209 return TRUE;
5210 }
5211
5212 static bfd_byte *
5213 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5214 {
5215 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5216 return p + 4;
5217 }
5218
5219 static bfd_byte *
5220 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5221 {
5222 p = savegpr0 (abfd, p, r);
5223 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5224 p = p + 4;
5225 bfd_put_32 (abfd, BLR, p);
5226 return p + 4;
5227 }
5228
5229 static bfd_byte *
5230 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5231 {
5232 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5233 return p + 4;
5234 }
5235
5236 static bfd_byte *
5237 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5238 {
5239 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5240 p = p + 4;
5241 p = restgpr0 (abfd, p, r);
5242 bfd_put_32 (abfd, MTLR_R0, p);
5243 p = p + 4;
5244 if (r == 29)
5245 {
5246 p = restgpr0 (abfd, p, 30);
5247 p = restgpr0 (abfd, p, 31);
5248 }
5249 bfd_put_32 (abfd, BLR, p);
5250 return p + 4;
5251 }
5252
5253 static bfd_byte *
5254 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5255 {
5256 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5257 return p + 4;
5258 }
5259
5260 static bfd_byte *
5261 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5262 {
5263 p = savegpr1 (abfd, p, r);
5264 bfd_put_32 (abfd, BLR, p);
5265 return p + 4;
5266 }
5267
5268 static bfd_byte *
5269 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5270 {
5271 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5272 return p + 4;
5273 }
5274
5275 static bfd_byte *
5276 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5277 {
5278 p = restgpr1 (abfd, p, r);
5279 bfd_put_32 (abfd, BLR, p);
5280 return p + 4;
5281 }
5282
5283 static bfd_byte *
5284 savefpr (bfd *abfd, bfd_byte *p, int r)
5285 {
5286 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5287 return p + 4;
5288 }
5289
5290 static bfd_byte *
5291 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5292 {
5293 p = savefpr (abfd, p, r);
5294 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5295 p = p + 4;
5296 bfd_put_32 (abfd, BLR, p);
5297 return p + 4;
5298 }
5299
5300 static bfd_byte *
5301 restfpr (bfd *abfd, bfd_byte *p, int r)
5302 {
5303 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5304 return p + 4;
5305 }
5306
5307 static bfd_byte *
5308 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5309 {
5310 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5311 p = p + 4;
5312 p = restfpr (abfd, p, r);
5313 bfd_put_32 (abfd, MTLR_R0, p);
5314 p = p + 4;
5315 if (r == 29)
5316 {
5317 p = restfpr (abfd, p, 30);
5318 p = restfpr (abfd, p, 31);
5319 }
5320 bfd_put_32 (abfd, BLR, p);
5321 return p + 4;
5322 }
5323
5324 static bfd_byte *
5325 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5326 {
5327 p = savefpr (abfd, p, r);
5328 bfd_put_32 (abfd, BLR, p);
5329 return p + 4;
5330 }
5331
5332 static bfd_byte *
5333 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5334 {
5335 p = restfpr (abfd, p, r);
5336 bfd_put_32 (abfd, BLR, p);
5337 return p + 4;
5338 }
5339
5340 static bfd_byte *
5341 savevr (bfd *abfd, bfd_byte *p, int r)
5342 {
5343 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5344 p = p + 4;
5345 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5346 return p + 4;
5347 }
5348
5349 static bfd_byte *
5350 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5351 {
5352 p = savevr (abfd, p, r);
5353 bfd_put_32 (abfd, BLR, p);
5354 return p + 4;
5355 }
5356
5357 static bfd_byte *
5358 restvr (bfd *abfd, bfd_byte *p, int r)
5359 {
5360 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5361 p = p + 4;
5362 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5363 return p + 4;
5364 }
5365
5366 static bfd_byte *
5367 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5368 {
5369 p = restvr (abfd, p, r);
5370 bfd_put_32 (abfd, BLR, p);
5371 return p + 4;
5372 }
5373
5374 /* Called via elf_link_hash_traverse to transfer dynamic linking
5375 information on function code symbol entries to their corresponding
5376 function descriptor symbol entries. */
5377
5378 static bfd_boolean
5379 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5380 {
5381 struct bfd_link_info *info;
5382 struct ppc_link_hash_table *htab;
5383 struct plt_entry *ent;
5384 struct ppc_link_hash_entry *fh;
5385 struct ppc_link_hash_entry *fdh;
5386 bfd_boolean force_local;
5387
5388 fh = (struct ppc_link_hash_entry *) h;
5389 if (fh->elf.root.type == bfd_link_hash_indirect)
5390 return TRUE;
5391
5392 if (fh->elf.root.type == bfd_link_hash_warning)
5393 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5394
5395 info = inf;
5396 htab = ppc_hash_table (info);
5397
5398 /* Resolve undefined references to dot-symbols as the value
5399 in the function descriptor, if we have one in a regular object.
5400 This is to satisfy cases like ".quad .foo". Calls to functions
5401 in dynamic objects are handled elsewhere. */
5402 if (fh->elf.root.type == bfd_link_hash_undefweak
5403 && fh->was_undefined
5404 && (fh->oh->elf.root.type == bfd_link_hash_defined
5405 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5406 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5407 && opd_entry_value (fh->oh->elf.root.u.def.section,
5408 fh->oh->elf.root.u.def.value,
5409 &fh->elf.root.u.def.section,
5410 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5411 {
5412 fh->elf.root.type = fh->oh->elf.root.type;
5413 fh->elf.forced_local = 1;
5414 }
5415
5416 /* If this is a function code symbol, transfer dynamic linking
5417 information to the function descriptor symbol. */
5418 if (!fh->is_func)
5419 return TRUE;
5420
5421 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5422 if (ent->plt.refcount > 0)
5423 break;
5424 if (ent == NULL
5425 || fh->elf.root.root.string[0] != '.'
5426 || fh->elf.root.root.string[1] == '\0')
5427 return TRUE;
5428
5429 /* Find the corresponding function descriptor symbol. Create it
5430 as undefined if necessary. */
5431
5432 fdh = get_fdh (fh, htab);
5433 if (fdh != NULL)
5434 while (fdh->elf.root.type == bfd_link_hash_indirect
5435 || fdh->elf.root.type == bfd_link_hash_warning)
5436 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5437
5438 if (fdh == NULL
5439 && info->shared
5440 && (fh->elf.root.type == bfd_link_hash_undefined
5441 || fh->elf.root.type == bfd_link_hash_undefweak))
5442 {
5443 fdh = make_fdh (info, fh);
5444 if (fdh == NULL)
5445 return FALSE;
5446 }
5447
5448 /* Fake function descriptors are made undefweak. If the function
5449 code symbol is strong undefined, make the fake sym the same. */
5450
5451 if (fdh != NULL
5452 && fdh->fake
5453 && fdh->elf.root.type == bfd_link_hash_undefweak
5454 && fh->elf.root.type == bfd_link_hash_undefined)
5455 {
5456 fdh->elf.root.type = bfd_link_hash_undefined;
5457 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5458 }
5459
5460 if (fdh != NULL
5461 && !fdh->elf.forced_local
5462 && (info->shared
5463 || fdh->elf.def_dynamic
5464 || fdh->elf.ref_dynamic
5465 || (fdh->elf.root.type == bfd_link_hash_undefweak
5466 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5467 {
5468 if (fdh->elf.dynindx == -1)
5469 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5470 return FALSE;
5471 fdh->elf.ref_regular |= fh->elf.ref_regular;
5472 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5473 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5474 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5475 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5476 {
5477 move_plt_plist (fh, fdh);
5478 fdh->elf.needs_plt = 1;
5479 }
5480 fdh->is_func_descriptor = 1;
5481 fdh->oh = fh;
5482 fh->oh = fdh;
5483 }
5484
5485 /* Now that the info is on the function descriptor, clear the
5486 function code sym info. Any function code syms for which we
5487 don't have a definition in a regular file, we force local.
5488 This prevents a shared library from exporting syms that have
5489 been imported from another library. Function code syms that
5490 are really in the library we must leave global to prevent the
5491 linker dragging in a definition from a static library. */
5492 force_local = (!fh->elf.def_regular
5493 || fdh == NULL
5494 || !fdh->elf.def_regular
5495 || fdh->elf.forced_local);
5496 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5497
5498 return TRUE;
5499 }
5500
5501 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5502 this hook to a) provide some gcc support functions, and b) transfer
5503 dynamic linking information gathered so far on function code symbol
5504 entries, to their corresponding function descriptor symbol entries. */
5505
5506 static bfd_boolean
5507 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5508 struct bfd_link_info *info)
5509 {
5510 struct ppc_link_hash_table *htab;
5511 unsigned int i;
5512 const struct sfpr_def_parms funcs[] =
5513 {
5514 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5515 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5516 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5517 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5518 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5519 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5520 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5521 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5522 { "._savef", 14, 31, savefpr, savefpr1_tail },
5523 { "._restf", 14, 31, restfpr, restfpr1_tail },
5524 { "_savevr_", 20, 31, savevr, savevr_tail },
5525 { "_restvr_", 20, 31, restvr, restvr_tail }
5526 };
5527
5528 htab = ppc_hash_table (info);
5529 if (htab->sfpr == NULL)
5530 /* We don't have any relocs. */
5531 return TRUE;
5532
5533 /* Provide any missing _save* and _rest* functions. */
5534 htab->sfpr->size = 0;
5535 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5536 if (!sfpr_define (info, &funcs[i]))
5537 return FALSE;
5538
5539 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5540
5541 if (htab->sfpr->size == 0)
5542 _bfd_strip_section_from_output (info, htab->sfpr);
5543
5544 return TRUE;
5545 }
5546
5547 /* Adjust a symbol defined by a dynamic object and referenced by a
5548 regular object. The current definition is in some section of the
5549 dynamic object, but we're not including those sections. We have to
5550 change the definition to something the rest of the link can
5551 understand. */
5552
5553 static bfd_boolean
5554 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5555 struct elf_link_hash_entry *h)
5556 {
5557 struct ppc_link_hash_table *htab;
5558 asection *s;
5559 unsigned int power_of_two;
5560
5561 htab = ppc_hash_table (info);
5562
5563 /* Deal with function syms. */
5564 if (h->type == STT_FUNC
5565 || h->needs_plt)
5566 {
5567 /* Clear procedure linkage table information for any symbol that
5568 won't need a .plt entry. */
5569 struct plt_entry *ent;
5570 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5571 if (ent->plt.refcount > 0)
5572 break;
5573 if (ent == NULL
5574 || SYMBOL_CALLS_LOCAL (info, h)
5575 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5576 && h->root.type == bfd_link_hash_undefweak))
5577 {
5578 h->plt.plist = NULL;
5579 h->needs_plt = 0;
5580 }
5581 }
5582 else
5583 h->plt.plist = NULL;
5584
5585 /* If this is a weak symbol, and there is a real definition, the
5586 processor independent code will have arranged for us to see the
5587 real definition first, and we can just use the same value. */
5588 if (h->u.weakdef != NULL)
5589 {
5590 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5591 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5592 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5593 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5594 if (ELIMINATE_COPY_RELOCS)
5595 h->non_got_ref = h->u.weakdef->non_got_ref;
5596 return TRUE;
5597 }
5598
5599 /* If we are creating a shared library, we must presume that the
5600 only references to the symbol are via the global offset table.
5601 For such cases we need not do anything here; the relocations will
5602 be handled correctly by relocate_section. */
5603 if (info->shared)
5604 return TRUE;
5605
5606 /* If there are no references to this symbol that do not use the
5607 GOT, we don't need to generate a copy reloc. */
5608 if (!h->non_got_ref)
5609 return TRUE;
5610
5611 if (ELIMINATE_COPY_RELOCS)
5612 {
5613 struct ppc_link_hash_entry * eh;
5614 struct ppc_dyn_relocs *p;
5615
5616 eh = (struct ppc_link_hash_entry *) h;
5617 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5618 {
5619 s = p->sec->output_section;
5620 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5621 break;
5622 }
5623
5624 /* If we didn't find any dynamic relocs in read-only sections, then
5625 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5626 if (p == NULL)
5627 {
5628 h->non_got_ref = 0;
5629 return TRUE;
5630 }
5631 }
5632
5633 if (h->plt.plist != NULL)
5634 {
5635 /* We should never get here, but unfortunately there are versions
5636 of gcc out there that improperly (for this ABI) put initialized
5637 function pointers, vtable refs and suchlike in read-only
5638 sections. Allow them to proceed, but warn that this might
5639 break at runtime. */
5640 (*_bfd_error_handler)
5641 (_("copy reloc against `%s' requires lazy plt linking; "
5642 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5643 h->root.root.string);
5644 }
5645
5646 /* This is a reference to a symbol defined by a dynamic object which
5647 is not a function. */
5648
5649 /* We must allocate the symbol in our .dynbss section, which will
5650 become part of the .bss section of the executable. There will be
5651 an entry for this symbol in the .dynsym section. The dynamic
5652 object will contain position independent code, so all references
5653 from the dynamic object to this symbol will go through the global
5654 offset table. The dynamic linker will use the .dynsym entry to
5655 determine the address it must put in the global offset table, so
5656 both the dynamic object and the regular object will refer to the
5657 same memory location for the variable. */
5658
5659 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5660 to copy the initial value out of the dynamic object and into the
5661 runtime process image. We need to remember the offset into the
5662 .rela.bss section we are going to use. */
5663 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5664 {
5665 htab->relbss->size += sizeof (Elf64_External_Rela);
5666 h->needs_copy = 1;
5667 }
5668
5669 /* We need to figure out the alignment required for this symbol. I
5670 have no idea how ELF linkers handle this. */
5671 power_of_two = bfd_log2 (h->size);
5672 if (power_of_two > 4)
5673 power_of_two = 4;
5674
5675 /* Apply the required alignment. */
5676 s = htab->dynbss;
5677 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5678 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5679 {
5680 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5681 return FALSE;
5682 }
5683
5684 /* Define the symbol as being at this point in the section. */
5685 h->root.u.def.section = s;
5686 h->root.u.def.value = s->size;
5687
5688 /* Increment the section size to make room for the symbol. */
5689 s->size += h->size;
5690
5691 return TRUE;
5692 }
5693
5694 /* If given a function descriptor symbol, hide both the function code
5695 sym and the descriptor. */
5696 static void
5697 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5698 struct elf_link_hash_entry *h,
5699 bfd_boolean force_local)
5700 {
5701 struct ppc_link_hash_entry *eh;
5702 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5703
5704 eh = (struct ppc_link_hash_entry *) h;
5705 if (eh->is_func_descriptor)
5706 {
5707 struct ppc_link_hash_entry *fh = eh->oh;
5708
5709 if (fh == NULL)
5710 {
5711 const char *p, *q;
5712 struct ppc_link_hash_table *htab;
5713 char save;
5714
5715 /* We aren't supposed to use alloca in BFD because on
5716 systems which do not have alloca the version in libiberty
5717 calls xmalloc, which might cause the program to crash
5718 when it runs out of memory. This function doesn't have a
5719 return status, so there's no way to gracefully return an
5720 error. So cheat. We know that string[-1] can be safely
5721 accessed; It's either a string in an ELF string table,
5722 or allocated in an objalloc structure. */
5723
5724 p = eh->elf.root.root.string - 1;
5725 save = *p;
5726 *(char *) p = '.';
5727 htab = ppc_hash_table (info);
5728 fh = (struct ppc_link_hash_entry *)
5729 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5730 *(char *) p = save;
5731
5732 /* Unfortunately, if it so happens that the string we were
5733 looking for was allocated immediately before this string,
5734 then we overwrote the string terminator. That's the only
5735 reason the lookup should fail. */
5736 if (fh == NULL)
5737 {
5738 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5739 while (q >= eh->elf.root.root.string && *q == *p)
5740 --q, --p;
5741 if (q < eh->elf.root.root.string && *p == '.')
5742 fh = (struct ppc_link_hash_entry *)
5743 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5744 }
5745 if (fh != NULL)
5746 {
5747 eh->oh = fh;
5748 fh->oh = eh;
5749 }
5750 }
5751 if (fh != NULL)
5752 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5753 }
5754 }
5755
5756 static bfd_boolean
5757 get_sym_h (struct elf_link_hash_entry **hp,
5758 Elf_Internal_Sym **symp,
5759 asection **symsecp,
5760 char **tls_maskp,
5761 Elf_Internal_Sym **locsymsp,
5762 unsigned long r_symndx,
5763 bfd *ibfd)
5764 {
5765 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5766
5767 if (r_symndx >= symtab_hdr->sh_info)
5768 {
5769 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5770 struct elf_link_hash_entry *h;
5771
5772 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5773 while (h->root.type == bfd_link_hash_indirect
5774 || h->root.type == bfd_link_hash_warning)
5775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5776
5777 if (hp != NULL)
5778 *hp = h;
5779
5780 if (symp != NULL)
5781 *symp = NULL;
5782
5783 if (symsecp != NULL)
5784 {
5785 asection *symsec = NULL;
5786 if (h->root.type == bfd_link_hash_defined
5787 || h->root.type == bfd_link_hash_defweak)
5788 symsec = h->root.u.def.section;
5789 *symsecp = symsec;
5790 }
5791
5792 if (tls_maskp != NULL)
5793 {
5794 struct ppc_link_hash_entry *eh;
5795
5796 eh = (struct ppc_link_hash_entry *) h;
5797 *tls_maskp = &eh->tls_mask;
5798 }
5799 }
5800 else
5801 {
5802 Elf_Internal_Sym *sym;
5803 Elf_Internal_Sym *locsyms = *locsymsp;
5804
5805 if (locsyms == NULL)
5806 {
5807 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5808 if (locsyms == NULL)
5809 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5810 symtab_hdr->sh_info,
5811 0, NULL, NULL, NULL);
5812 if (locsyms == NULL)
5813 return FALSE;
5814 *locsymsp = locsyms;
5815 }
5816 sym = locsyms + r_symndx;
5817
5818 if (hp != NULL)
5819 *hp = NULL;
5820
5821 if (symp != NULL)
5822 *symp = sym;
5823
5824 if (symsecp != NULL)
5825 {
5826 asection *symsec = NULL;
5827 if ((sym->st_shndx != SHN_UNDEF
5828 && sym->st_shndx < SHN_LORESERVE)
5829 || sym->st_shndx > SHN_HIRESERVE)
5830 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5831 *symsecp = symsec;
5832 }
5833
5834 if (tls_maskp != NULL)
5835 {
5836 struct got_entry **lgot_ents;
5837 char *tls_mask;
5838
5839 tls_mask = NULL;
5840 lgot_ents = elf_local_got_ents (ibfd);
5841 if (lgot_ents != NULL)
5842 {
5843 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5844 tls_mask = &lgot_masks[r_symndx];
5845 }
5846 *tls_maskp = tls_mask;
5847 }
5848 }
5849 return TRUE;
5850 }
5851
5852 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5853 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5854 type suitable for optimization, and 1 otherwise. */
5855
5856 static int
5857 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5858 Elf_Internal_Sym **locsymsp,
5859 const Elf_Internal_Rela *rel, bfd *ibfd)
5860 {
5861 unsigned long r_symndx;
5862 int next_r;
5863 struct elf_link_hash_entry *h;
5864 Elf_Internal_Sym *sym;
5865 asection *sec;
5866 bfd_vma off;
5867
5868 r_symndx = ELF64_R_SYM (rel->r_info);
5869 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5870 return 0;
5871
5872 if ((*tls_maskp != NULL && **tls_maskp != 0)
5873 || sec == NULL
5874 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5875 return 1;
5876
5877 /* Look inside a TOC section too. */
5878 if (h != NULL)
5879 {
5880 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5881 off = h->root.u.def.value;
5882 }
5883 else
5884 off = sym->st_value;
5885 off += rel->r_addend;
5886 BFD_ASSERT (off % 8 == 0);
5887 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5888 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5889 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5890 return 0;
5891 if (toc_symndx != NULL)
5892 *toc_symndx = r_symndx;
5893 if ((h == NULL
5894 || ((h->root.type == bfd_link_hash_defined
5895 || h->root.type == bfd_link_hash_defweak)
5896 && !h->def_dynamic))
5897 && (next_r == -1 || next_r == -2))
5898 return 1 - next_r;
5899 return 1;
5900 }
5901
5902 /* Adjust all global syms defined in opd sections. In gcc generated
5903 code for the old ABI, these will already have been done. */
5904
5905 static bfd_boolean
5906 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5907 {
5908 struct ppc_link_hash_entry *eh;
5909 asection *sym_sec;
5910 long *opd_adjust;
5911
5912 if (h->root.type == bfd_link_hash_indirect)
5913 return TRUE;
5914
5915 if (h->root.type == bfd_link_hash_warning)
5916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5917
5918 if (h->root.type != bfd_link_hash_defined
5919 && h->root.type != bfd_link_hash_defweak)
5920 return TRUE;
5921
5922 eh = (struct ppc_link_hash_entry *) h;
5923 if (eh->adjust_done)
5924 return TRUE;
5925
5926 sym_sec = eh->elf.root.u.def.section;
5927 opd_adjust = get_opd_info (sym_sec);
5928 if (opd_adjust != NULL)
5929 {
5930 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5931 if (adjust == -1)
5932 {
5933 /* This entry has been deleted. */
5934 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5935 if (dsec == NULL)
5936 {
5937 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5938 if (elf_discarded_section (dsec))
5939 {
5940 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5941 break;
5942 }
5943 }
5944 eh->elf.root.u.def.value = 0;
5945 eh->elf.root.u.def.section = dsec;
5946 }
5947 else
5948 eh->elf.root.u.def.value += adjust;
5949 eh->adjust_done = 1;
5950 }
5951 return TRUE;
5952 }
5953
5954 /* Remove unused Official Procedure Descriptor entries. Currently we
5955 only remove those associated with functions in discarded link-once
5956 sections, or weakly defined functions that have been overridden. It
5957 would be possible to remove many more entries for statically linked
5958 applications. */
5959
5960 bfd_boolean
5961 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5962 bfd_boolean non_overlapping)
5963 {
5964 bfd *ibfd;
5965 bfd_boolean some_edited = FALSE;
5966 asection *need_pad = NULL;
5967
5968 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5969 {
5970 asection *sec;
5971 Elf_Internal_Rela *relstart, *rel, *relend;
5972 Elf_Internal_Shdr *symtab_hdr;
5973 Elf_Internal_Sym *local_syms;
5974 struct elf_link_hash_entry **sym_hashes;
5975 bfd_vma offset;
5976 bfd_size_type amt;
5977 long *opd_adjust;
5978 bfd_boolean need_edit, add_aux_fields;
5979 bfd_size_type cnt_16b = 0;
5980
5981 sec = bfd_get_section_by_name (ibfd, ".opd");
5982 if (sec == NULL)
5983 continue;
5984
5985 amt = sec->size * sizeof (long) / 8;
5986 opd_adjust = get_opd_info (sec);
5987 if (opd_adjust == NULL)
5988 {
5989 /* check_relocs hasn't been called. Must be a ld -r link
5990 or --just-symbols object. */
5991 opd_adjust = bfd_zalloc (obfd, amt);
5992 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5993 }
5994 memset (opd_adjust, 0, amt);
5995
5996 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
5997 continue;
5998
5999 if (sec->output_section == bfd_abs_section_ptr)
6000 continue;
6001
6002 /* Look through the section relocs. */
6003 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6004 continue;
6005
6006 local_syms = NULL;
6007 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6008 sym_hashes = elf_sym_hashes (ibfd);
6009
6010 /* Read the relocations. */
6011 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6012 info->keep_memory);
6013 if (relstart == NULL)
6014 return FALSE;
6015
6016 /* First run through the relocs to check they are sane, and to
6017 determine whether we need to edit this opd section. */
6018 need_edit = FALSE;
6019 need_pad = sec;
6020 offset = 0;
6021 relend = relstart + sec->reloc_count;
6022 for (rel = relstart; rel < relend; )
6023 {
6024 enum elf_ppc64_reloc_type r_type;
6025 unsigned long r_symndx;
6026 asection *sym_sec;
6027 struct elf_link_hash_entry *h;
6028 Elf_Internal_Sym *sym;
6029
6030 /* .opd contains a regular array of 16 or 24 byte entries. We're
6031 only interested in the reloc pointing to a function entry
6032 point. */
6033 if (rel->r_offset != offset
6034 || rel + 1 >= relend
6035 || (rel + 1)->r_offset != offset + 8)
6036 {
6037 /* If someone messes with .opd alignment then after a
6038 "ld -r" we might have padding in the middle of .opd.
6039 Also, there's nothing to prevent someone putting
6040 something silly in .opd with the assembler. No .opd
6041 optimization for them! */
6042 broken_opd:
6043 (*_bfd_error_handler)
6044 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6045 need_edit = FALSE;
6046 break;
6047 }
6048
6049 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6050 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6051 {
6052 (*_bfd_error_handler)
6053 (_("%B: unexpected reloc type %u in .opd section"),
6054 ibfd, r_type);
6055 need_edit = FALSE;
6056 break;
6057 }
6058
6059 r_symndx = ELF64_R_SYM (rel->r_info);
6060 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6061 r_symndx, ibfd))
6062 goto error_ret;
6063
6064 if (sym_sec == NULL || sym_sec->owner == NULL)
6065 {
6066 const char *sym_name;
6067 if (h != NULL)
6068 sym_name = h->root.root.string;
6069 else
6070 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym);
6071
6072 (*_bfd_error_handler)
6073 (_("%B: undefined sym `%s' in .opd section"),
6074 ibfd, sym_name);
6075 need_edit = FALSE;
6076 break;
6077 }
6078
6079 /* opd entries are always for functions defined in the
6080 current input bfd. If the symbol isn't defined in the
6081 input bfd, then we won't be using the function in this
6082 bfd; It must be defined in a linkonce section in another
6083 bfd, or is weak. It's also possible that we are
6084 discarding the function due to a linker script /DISCARD/,
6085 which we test for via the output_section. */
6086 if (sym_sec->owner != ibfd
6087 || sym_sec->output_section == bfd_abs_section_ptr)
6088 need_edit = TRUE;
6089
6090 rel += 2;
6091 if (rel == relend
6092 || (rel + 1 == relend && rel->r_offset == offset + 16))
6093 {
6094 if (sec->size == offset + 24)
6095 {
6096 need_pad = NULL;
6097 break;
6098 }
6099 if (rel == relend && sec->size == offset + 16)
6100 {
6101 cnt_16b++;
6102 break;
6103 }
6104 goto broken_opd;
6105 }
6106
6107 if (rel->r_offset == offset + 24)
6108 offset += 24;
6109 else if (rel->r_offset != offset + 16)
6110 goto broken_opd;
6111 else if (rel + 1 < relend
6112 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6113 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6114 {
6115 offset += 16;
6116 cnt_16b++;
6117 }
6118 else if (rel + 2 < relend
6119 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6120 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6121 {
6122 offset += 24;
6123 rel += 1;
6124 }
6125 else
6126 goto broken_opd;
6127 }
6128
6129 add_aux_fields = non_overlapping && cnt_16b > 0;
6130
6131 if (need_edit || add_aux_fields)
6132 {
6133 Elf_Internal_Rela *write_rel;
6134 bfd_byte *rptr, *wptr;
6135 bfd_byte *new_contents = NULL;
6136 bfd_boolean skip;
6137 long opd_ent_size;
6138
6139 /* This seems a waste of time as input .opd sections are all
6140 zeros as generated by gcc, but I suppose there's no reason
6141 this will always be so. We might start putting something in
6142 the third word of .opd entries. */
6143 if ((sec->flags & SEC_IN_MEMORY) == 0)
6144 {
6145 bfd_byte *loc;
6146 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6147 {
6148 if (loc != NULL)
6149 free (loc);
6150 error_ret:
6151 if (local_syms != NULL
6152 && symtab_hdr->contents != (unsigned char *) local_syms)
6153 free (local_syms);
6154 if (elf_section_data (sec)->relocs != relstart)
6155 free (relstart);
6156 return FALSE;
6157 }
6158 sec->contents = loc;
6159 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6160 }
6161
6162 elf_section_data (sec)->relocs = relstart;
6163
6164 wptr = sec->contents;
6165 rptr = sec->contents;
6166 new_contents = sec->contents;
6167
6168 if (add_aux_fields)
6169 {
6170 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6171 if (new_contents == NULL)
6172 return FALSE;
6173 need_pad = FALSE;
6174 wptr = new_contents;
6175 }
6176
6177 write_rel = relstart;
6178 skip = FALSE;
6179 offset = 0;
6180 opd_ent_size = 0;
6181 for (rel = relstart; rel < relend; rel++)
6182 {
6183 unsigned long r_symndx;
6184 asection *sym_sec;
6185 struct elf_link_hash_entry *h;
6186 Elf_Internal_Sym *sym;
6187
6188 r_symndx = ELF64_R_SYM (rel->r_info);
6189 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6190 r_symndx, ibfd))
6191 goto error_ret;
6192
6193 if (rel->r_offset == offset)
6194 {
6195 struct ppc_link_hash_entry *fdh = NULL;
6196
6197 /* See if the .opd entry is full 24 byte or
6198 16 byte (with fd_aux entry overlapped with next
6199 fd_func). */
6200 opd_ent_size = 24;
6201 if ((rel + 2 == relend && sec->size == offset + 16)
6202 || (rel + 3 < relend
6203 && rel[2].r_offset == offset + 16
6204 && rel[3].r_offset == offset + 24
6205 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6206 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6207 opd_ent_size = 16;
6208
6209 if (h != NULL
6210 && h->root.root.string[0] == '.')
6211 {
6212 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6213 ppc_hash_table (info));
6214 if (fdh != NULL
6215 && fdh->elf.root.type != bfd_link_hash_defined
6216 && fdh->elf.root.type != bfd_link_hash_defweak)
6217 fdh = NULL;
6218 }
6219
6220 skip = (sym_sec->owner != ibfd
6221 || sym_sec->output_section == bfd_abs_section_ptr);
6222 if (skip)
6223 {
6224 if (fdh != NULL && sym_sec->owner == ibfd)
6225 {
6226 /* Arrange for the function descriptor sym
6227 to be dropped. */
6228 fdh->elf.root.u.def.value = 0;
6229 fdh->elf.root.u.def.section = sym_sec;
6230 }
6231 opd_adjust[rel->r_offset / 8] = -1;
6232 }
6233 else
6234 {
6235 /* We'll be keeping this opd entry. */
6236
6237 if (fdh != NULL)
6238 {
6239 /* Redefine the function descriptor symbol to
6240 this location in the opd section. It is
6241 necessary to update the value here rather
6242 than using an array of adjustments as we do
6243 for local symbols, because various places
6244 in the generic ELF code use the value
6245 stored in u.def.value. */
6246 fdh->elf.root.u.def.value = wptr - new_contents;
6247 fdh->adjust_done = 1;
6248 }
6249
6250 /* Local syms are a bit tricky. We could
6251 tweak them as they can be cached, but
6252 we'd need to look through the local syms
6253 for the function descriptor sym which we
6254 don't have at the moment. So keep an
6255 array of adjustments. */
6256 opd_adjust[rel->r_offset / 8]
6257 = (wptr - new_contents) - (rptr - sec->contents);
6258
6259 if (wptr != rptr)
6260 memcpy (wptr, rptr, opd_ent_size);
6261 wptr += opd_ent_size;
6262 if (add_aux_fields && opd_ent_size == 16)
6263 {
6264 memset (wptr, '\0', 8);
6265 wptr += 8;
6266 }
6267 }
6268 rptr += opd_ent_size;
6269 offset += opd_ent_size;
6270 }
6271
6272 if (skip)
6273 {
6274 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6275 if (info->shared)
6276 {
6277 /* We won't be needing dynamic relocs here. */
6278 struct ppc_dyn_relocs **pp;
6279 struct ppc_dyn_relocs *p;
6280
6281 if (h != NULL)
6282 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6283 else if (sym_sec != NULL)
6284 pp = ((struct ppc_dyn_relocs **)
6285 &elf_section_data (sym_sec)->local_dynrel);
6286 else
6287 pp = ((struct ppc_dyn_relocs **)
6288 &elf_section_data (sec)->local_dynrel);
6289 while ((p = *pp) != NULL)
6290 {
6291 if (p->sec == sec)
6292 {
6293 p->count -= 1;
6294 if (p->count == 0)
6295 *pp = p->next;
6296 break;
6297 }
6298 pp = &p->next;
6299 }
6300 }
6301 }
6302 else
6303 {
6304 /* We need to adjust any reloc offsets to point to the
6305 new opd entries. While we're at it, we may as well
6306 remove redundant relocs. */
6307 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6308 if (write_rel != rel)
6309 memcpy (write_rel, rel, sizeof (*rel));
6310 ++write_rel;
6311 }
6312 }
6313
6314 sec->size = wptr - new_contents;
6315 sec->reloc_count = write_rel - relstart;
6316 if (add_aux_fields)
6317 {
6318 free (sec->contents);
6319 sec->contents = new_contents;
6320 }
6321
6322 /* Fudge the size too, as this is used later in
6323 elf_bfd_final_link if we are emitting relocs. */
6324 elf_section_data (sec)->rel_hdr.sh_size
6325 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6326 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6327 some_edited = TRUE;
6328 }
6329 else if (elf_section_data (sec)->relocs != relstart)
6330 free (relstart);
6331
6332 if (local_syms != NULL
6333 && symtab_hdr->contents != (unsigned char *) local_syms)
6334 {
6335 if (!info->keep_memory)
6336 free (local_syms);
6337 else
6338 symtab_hdr->contents = (unsigned char *) local_syms;
6339 }
6340 }
6341
6342 if (some_edited)
6343 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6344
6345 /* If we are doing a final link and the last .opd entry is just 16 byte
6346 long, add a 8 byte padding after it. */
6347 if (need_pad != NULL && !info->relocatable)
6348 {
6349 bfd_byte *p;
6350
6351 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6352 {
6353 BFD_ASSERT (need_pad->size > 0);
6354
6355 p = bfd_malloc (need_pad->size + 8);
6356 if (p == NULL)
6357 return FALSE;
6358
6359 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6360 p, 0, need_pad->size))
6361 return FALSE;
6362
6363 need_pad->contents = p;
6364 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6365 }
6366 else
6367 {
6368 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6369 if (p == NULL)
6370 return FALSE;
6371
6372 need_pad->contents = p;
6373 }
6374
6375 memset (need_pad->contents + need_pad->size, 0, 8);
6376 need_pad->size += 8;
6377 }
6378
6379 return TRUE;
6380 }
6381
6382 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6383
6384 asection *
6385 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6386 {
6387 struct ppc_link_hash_table *htab;
6388
6389 htab = ppc_hash_table (info);
6390 if (htab->tls_get_addr != NULL)
6391 {
6392 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6393
6394 while (h->elf.root.type == bfd_link_hash_indirect
6395 || h->elf.root.type == bfd_link_hash_warning)
6396 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6397
6398 htab->tls_get_addr = h;
6399
6400 if (htab->tls_get_addr_fd == NULL
6401 && h->oh != NULL
6402 && h->oh->is_func_descriptor
6403 && (h->oh->elf.root.type == bfd_link_hash_defined
6404 || h->oh->elf.root.type == bfd_link_hash_defweak))
6405 htab->tls_get_addr_fd = h->oh;
6406 }
6407
6408 if (htab->tls_get_addr_fd != NULL)
6409 {
6410 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6411
6412 while (h->elf.root.type == bfd_link_hash_indirect
6413 || h->elf.root.type == bfd_link_hash_warning)
6414 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6415
6416 htab->tls_get_addr_fd = h;
6417 }
6418
6419 return _bfd_elf_tls_setup (obfd, info);
6420 }
6421
6422 /* Run through all the TLS relocs looking for optimization
6423 opportunities. The linker has been hacked (see ppc64elf.em) to do
6424 a preliminary section layout so that we know the TLS segment
6425 offsets. We can't optimize earlier because some optimizations need
6426 to know the tp offset, and we need to optimize before allocating
6427 dynamic relocations. */
6428
6429 bfd_boolean
6430 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6431 {
6432 bfd *ibfd;
6433 asection *sec;
6434 struct ppc_link_hash_table *htab;
6435
6436 if (info->relocatable || info->shared)
6437 return TRUE;
6438
6439 htab = ppc_hash_table (info);
6440 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6441 {
6442 Elf_Internal_Sym *locsyms = NULL;
6443
6444 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6445 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6446 {
6447 Elf_Internal_Rela *relstart, *rel, *relend;
6448 int expecting_tls_get_addr;
6449
6450 /* Read the relocations. */
6451 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6452 info->keep_memory);
6453 if (relstart == NULL)
6454 return FALSE;
6455
6456 expecting_tls_get_addr = 0;
6457 relend = relstart + sec->reloc_count;
6458 for (rel = relstart; rel < relend; rel++)
6459 {
6460 enum elf_ppc64_reloc_type r_type;
6461 unsigned long r_symndx;
6462 struct elf_link_hash_entry *h;
6463 Elf_Internal_Sym *sym;
6464 asection *sym_sec;
6465 char *tls_mask;
6466 char tls_set, tls_clear, tls_type = 0;
6467 bfd_vma value;
6468 bfd_boolean ok_tprel, is_local;
6469
6470 r_symndx = ELF64_R_SYM (rel->r_info);
6471 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6472 r_symndx, ibfd))
6473 {
6474 err_free_rel:
6475 if (elf_section_data (sec)->relocs != relstart)
6476 free (relstart);
6477 if (locsyms != NULL
6478 && (elf_tdata (ibfd)->symtab_hdr.contents
6479 != (unsigned char *) locsyms))
6480 free (locsyms);
6481 return FALSE;
6482 }
6483
6484 if (h != NULL)
6485 {
6486 if (h->root.type != bfd_link_hash_defined
6487 && h->root.type != bfd_link_hash_defweak)
6488 continue;
6489 value = h->root.u.def.value;
6490 }
6491 else
6492 /* Symbols referenced by TLS relocs must be of type
6493 STT_TLS. So no need for .opd local sym adjust. */
6494 value = sym->st_value;
6495
6496 ok_tprel = FALSE;
6497 is_local = FALSE;
6498 if (h == NULL
6499 || !h->def_dynamic)
6500 {
6501 is_local = TRUE;
6502 value += sym_sec->output_offset;
6503 value += sym_sec->output_section->vma;
6504 value -= htab->elf.tls_sec->vma;
6505 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6506 < (bfd_vma) 1 << 32);
6507 }
6508
6509 r_type = ELF64_R_TYPE (rel->r_info);
6510 switch (r_type)
6511 {
6512 case R_PPC64_GOT_TLSLD16:
6513 case R_PPC64_GOT_TLSLD16_LO:
6514 case R_PPC64_GOT_TLSLD16_HI:
6515 case R_PPC64_GOT_TLSLD16_HA:
6516 /* These relocs should never be against a symbol
6517 defined in a shared lib. Leave them alone if
6518 that turns out to be the case. */
6519 ppc64_tlsld_got (ibfd)->refcount -= 1;
6520 if (!is_local)
6521 continue;
6522
6523 /* LD -> LE */
6524 tls_set = 0;
6525 tls_clear = TLS_LD;
6526 tls_type = TLS_TLS | TLS_LD;
6527 expecting_tls_get_addr = 1;
6528 break;
6529
6530 case R_PPC64_GOT_TLSGD16:
6531 case R_PPC64_GOT_TLSGD16_LO:
6532 case R_PPC64_GOT_TLSGD16_HI:
6533 case R_PPC64_GOT_TLSGD16_HA:
6534 if (ok_tprel)
6535 /* GD -> LE */
6536 tls_set = 0;
6537 else
6538 /* GD -> IE */
6539 tls_set = TLS_TLS | TLS_TPRELGD;
6540 tls_clear = TLS_GD;
6541 tls_type = TLS_TLS | TLS_GD;
6542 expecting_tls_get_addr = 1;
6543 break;
6544
6545 case R_PPC64_GOT_TPREL16_DS:
6546 case R_PPC64_GOT_TPREL16_LO_DS:
6547 case R_PPC64_GOT_TPREL16_HI:
6548 case R_PPC64_GOT_TPREL16_HA:
6549 expecting_tls_get_addr = 0;
6550 if (ok_tprel)
6551 {
6552 /* IE -> LE */
6553 tls_set = 0;
6554 tls_clear = TLS_TPREL;
6555 tls_type = TLS_TLS | TLS_TPREL;
6556 break;
6557 }
6558 else
6559 continue;
6560
6561 case R_PPC64_REL14:
6562 case R_PPC64_REL14_BRTAKEN:
6563 case R_PPC64_REL14_BRNTAKEN:
6564 case R_PPC64_REL24:
6565 if (h != NULL
6566 && (h == &htab->tls_get_addr->elf
6567 || h == &htab->tls_get_addr_fd->elf))
6568 {
6569 if (!expecting_tls_get_addr
6570 && rel != relstart
6571 && ((ELF64_R_TYPE (rel[-1].r_info)
6572 == R_PPC64_TOC16)
6573 || (ELF64_R_TYPE (rel[-1].r_info)
6574 == R_PPC64_TOC16_LO)))
6575 {
6576 /* Check for toc tls entries. */
6577 char *toc_tls;
6578 int retval;
6579
6580 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6581 rel - 1, ibfd);
6582 if (retval == 0)
6583 goto err_free_rel;
6584 if (toc_tls != NULL)
6585 expecting_tls_get_addr = retval > 1;
6586 }
6587
6588 if (expecting_tls_get_addr)
6589 {
6590 struct plt_entry *ent;
6591 for (ent = h->plt.plist; ent; ent = ent->next)
6592 if (ent->addend == 0)
6593 {
6594 if (ent->plt.refcount > 0)
6595 ent->plt.refcount -= 1;
6596 break;
6597 }
6598 }
6599 }
6600 expecting_tls_get_addr = 0;
6601 continue;
6602
6603 case R_PPC64_TPREL64:
6604 expecting_tls_get_addr = 0;
6605 if (ok_tprel)
6606 {
6607 /* IE -> LE */
6608 tls_set = TLS_EXPLICIT;
6609 tls_clear = TLS_TPREL;
6610 break;
6611 }
6612 else
6613 continue;
6614
6615 case R_PPC64_DTPMOD64:
6616 expecting_tls_get_addr = 0;
6617 if (rel + 1 < relend
6618 && (rel[1].r_info
6619 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6620 && rel[1].r_offset == rel->r_offset + 8)
6621 {
6622 if (ok_tprel)
6623 /* GD -> LE */
6624 tls_set = TLS_EXPLICIT | TLS_GD;
6625 else
6626 /* GD -> IE */
6627 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6628 tls_clear = TLS_GD;
6629 }
6630 else
6631 {
6632 if (!is_local)
6633 continue;
6634
6635 /* LD -> LE */
6636 tls_set = TLS_EXPLICIT;
6637 tls_clear = TLS_LD;
6638 }
6639 break;
6640
6641 default:
6642 expecting_tls_get_addr = 0;
6643 continue;
6644 }
6645
6646 if ((tls_set & TLS_EXPLICIT) == 0)
6647 {
6648 struct got_entry *ent;
6649
6650 /* Adjust got entry for this reloc. */
6651 if (h != NULL)
6652 ent = h->got.glist;
6653 else
6654 ent = elf_local_got_ents (ibfd)[r_symndx];
6655
6656 for (; ent != NULL; ent = ent->next)
6657 if (ent->addend == rel->r_addend
6658 && ent->owner == ibfd
6659 && ent->tls_type == tls_type)
6660 break;
6661 if (ent == NULL)
6662 abort ();
6663
6664 if (tls_set == 0)
6665 {
6666 /* We managed to get rid of a got entry. */
6667 if (ent->got.refcount > 0)
6668 ent->got.refcount -= 1;
6669 }
6670 }
6671 else if (h != NULL)
6672 {
6673 struct ppc_link_hash_entry * eh;
6674 struct ppc_dyn_relocs **pp;
6675 struct ppc_dyn_relocs *p;
6676
6677 /* Adjust dynamic relocs. */
6678 eh = (struct ppc_link_hash_entry *) h;
6679 for (pp = &eh->dyn_relocs;
6680 (p = *pp) != NULL;
6681 pp = &p->next)
6682 if (p->sec == sec)
6683 {
6684 /* If we got rid of a DTPMOD/DTPREL reloc
6685 pair then we'll lose one or two dyn
6686 relocs. */
6687 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6688 p->count -= 1;
6689 p->count -= 1;
6690 if (p->count == 0)
6691 *pp = p->next;
6692 break;
6693 }
6694 }
6695
6696 *tls_mask |= tls_set;
6697 *tls_mask &= ~tls_clear;
6698 }
6699
6700 if (elf_section_data (sec)->relocs != relstart)
6701 free (relstart);
6702 }
6703
6704 if (locsyms != NULL
6705 && (elf_tdata (ibfd)->symtab_hdr.contents
6706 != (unsigned char *) locsyms))
6707 {
6708 if (!info->keep_memory)
6709 free (locsyms);
6710 else
6711 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6712 }
6713 }
6714 return TRUE;
6715 }
6716
6717 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6718 the values of any global symbols in a toc section that has been
6719 edited. Globals in toc sections should be a rarity, so this function
6720 sets a flag if any are found in toc sections other than the one just
6721 edited, so that futher hash table traversals can be avoided. */
6722
6723 struct adjust_toc_info
6724 {
6725 asection *toc;
6726 unsigned long *skip;
6727 bfd_boolean global_toc_syms;
6728 };
6729
6730 static bfd_boolean
6731 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6732 {
6733 struct ppc_link_hash_entry *eh;
6734 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6735
6736 if (h->root.type == bfd_link_hash_indirect)
6737 return TRUE;
6738
6739 if (h->root.type == bfd_link_hash_warning)
6740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6741
6742 if (h->root.type != bfd_link_hash_defined
6743 && h->root.type != bfd_link_hash_defweak)
6744 return TRUE;
6745
6746 eh = (struct ppc_link_hash_entry *) h;
6747 if (eh->adjust_done)
6748 return TRUE;
6749
6750 if (eh->elf.root.u.def.section == toc_inf->toc)
6751 {
6752 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6753 if (skip != (unsigned long) -1)
6754 eh->elf.root.u.def.value -= skip;
6755 else
6756 {
6757 (*_bfd_error_handler)
6758 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6759 eh->elf.root.u.def.section = &bfd_abs_section;
6760 eh->elf.root.u.def.value = 0;
6761 }
6762 eh->adjust_done = 1;
6763 }
6764 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6765 toc_inf->global_toc_syms = TRUE;
6766
6767 return TRUE;
6768 }
6769
6770 /* Examine all relocs referencing .toc sections in order to remove
6771 unused .toc entries. */
6772
6773 bfd_boolean
6774 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6775 {
6776 bfd *ibfd;
6777 struct adjust_toc_info toc_inf;
6778
6779 toc_inf.global_toc_syms = TRUE;
6780 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6781 {
6782 asection *toc, *sec;
6783 Elf_Internal_Shdr *symtab_hdr;
6784 Elf_Internal_Sym *local_syms;
6785 struct elf_link_hash_entry **sym_hashes;
6786 Elf_Internal_Rela *relstart, *rel;
6787 unsigned long *skip, *drop;
6788 unsigned char *used;
6789 unsigned char *keep, last, some_unused;
6790
6791 toc = bfd_get_section_by_name (ibfd, ".toc");
6792 if (toc == NULL
6793 || toc->size == 0
6794 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6795 || elf_discarded_section (toc))
6796 continue;
6797
6798 local_syms = NULL;
6799 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6800 sym_hashes = elf_sym_hashes (ibfd);
6801
6802 /* Look at sections dropped from the final link. */
6803 skip = NULL;
6804 relstart = NULL;
6805 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6806 {
6807 if (sec->reloc_count == 0
6808 || !elf_discarded_section (sec)
6809 || get_opd_info (sec)
6810 || (sec->flags & SEC_ALLOC) == 0
6811 || (sec->flags & SEC_DEBUGGING) != 0)
6812 continue;
6813
6814 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6815 if (relstart == NULL)
6816 goto error_ret;
6817
6818 /* Run through the relocs to see which toc entries might be
6819 unused. */
6820 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6821 {
6822 enum elf_ppc64_reloc_type r_type;
6823 unsigned long r_symndx;
6824 asection *sym_sec;
6825 struct elf_link_hash_entry *h;
6826 Elf_Internal_Sym *sym;
6827 bfd_vma val;
6828
6829 r_type = ELF64_R_TYPE (rel->r_info);
6830 switch (r_type)
6831 {
6832 default:
6833 continue;
6834
6835 case R_PPC64_TOC16:
6836 case R_PPC64_TOC16_LO:
6837 case R_PPC64_TOC16_HI:
6838 case R_PPC64_TOC16_HA:
6839 case R_PPC64_TOC16_DS:
6840 case R_PPC64_TOC16_LO_DS:
6841 break;
6842 }
6843
6844 r_symndx = ELF64_R_SYM (rel->r_info);
6845 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6846 r_symndx, ibfd))
6847 goto error_ret;
6848
6849 if (sym_sec != toc)
6850 continue;
6851
6852 if (h != NULL)
6853 val = h->root.u.def.value;
6854 else
6855 val = sym->st_value;
6856 val += rel->r_addend;
6857
6858 if (val >= toc->size)
6859 continue;
6860
6861 /* Anything in the toc ought to be aligned to 8 bytes.
6862 If not, don't mark as unused. */
6863 if (val & 7)
6864 continue;
6865
6866 if (skip == NULL)
6867 {
6868 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
6869 if (skip == NULL)
6870 goto error_ret;
6871 }
6872
6873 skip[val >> 3] = 1;
6874 }
6875
6876 if (elf_section_data (sec)->relocs != relstart)
6877 free (relstart);
6878 }
6879
6880 if (skip == NULL)
6881 continue;
6882
6883 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
6884 if (used == NULL)
6885 {
6886 error_ret:
6887 if (local_syms != NULL
6888 && symtab_hdr->contents != (unsigned char *) local_syms)
6889 free (local_syms);
6890 if (sec != NULL
6891 && relstart != NULL
6892 && elf_section_data (sec)->relocs != relstart)
6893 free (relstart);
6894 if (skip != NULL)
6895 free (skip);
6896 return FALSE;
6897 }
6898
6899 /* Now check all kept sections that might reference the toc. */
6900 for (sec = ibfd->sections;
6901 sec != NULL;
6902 /* Check the toc itself last. */
6903 sec = (sec == toc ? NULL
6904 : sec->next == toc && sec->next->next ? sec->next->next
6905 : sec->next == NULL ? toc
6906 : sec->next))
6907 {
6908 int repeat;
6909
6910 if (sec->reloc_count == 0
6911 || elf_discarded_section (sec)
6912 || get_opd_info (sec)
6913 || (sec->flags & SEC_ALLOC) == 0
6914 || (sec->flags & SEC_DEBUGGING) != 0)
6915 continue;
6916
6917 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
6918 if (relstart == NULL)
6919 goto error_ret;
6920
6921 /* Mark toc entries referenced as used. */
6922 repeat = 0;
6923 do
6924 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6925 {
6926 enum elf_ppc64_reloc_type r_type;
6927 unsigned long r_symndx;
6928 asection *sym_sec;
6929 struct elf_link_hash_entry *h;
6930 Elf_Internal_Sym *sym;
6931 bfd_vma val;
6932
6933 r_type = ELF64_R_TYPE (rel->r_info);
6934 switch (r_type)
6935 {
6936 case R_PPC64_TOC16:
6937 case R_PPC64_TOC16_LO:
6938 case R_PPC64_TOC16_HI:
6939 case R_PPC64_TOC16_HA:
6940 case R_PPC64_TOC16_DS:
6941 case R_PPC64_TOC16_LO_DS:
6942 /* In case we're taking addresses of toc entries. */
6943 case R_PPC64_ADDR64:
6944 break;
6945
6946 default:
6947 continue;
6948 }
6949
6950 r_symndx = ELF64_R_SYM (rel->r_info);
6951 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6952 r_symndx, ibfd))
6953 {
6954 free (used);
6955 goto error_ret;
6956 }
6957
6958 if (sym_sec != toc)
6959 continue;
6960
6961 if (h != NULL)
6962 val = h->root.u.def.value;
6963 else
6964 val = sym->st_value;
6965 val += rel->r_addend;
6966
6967 if (val >= toc->size)
6968 continue;
6969
6970 /* For the toc section, we only mark as used if
6971 this entry itself isn't unused. */
6972 if (sec == toc
6973 && !used[val >> 3]
6974 && (used[rel->r_offset >> 3]
6975 || !skip[rel->r_offset >> 3]))
6976 /* Do all the relocs again, to catch reference
6977 chains. */
6978 repeat = 1;
6979
6980 used[val >> 3] = 1;
6981 }
6982 while (repeat);
6983 }
6984
6985 /* Merge the used and skip arrays. Assume that TOC
6986 doublewords not appearing as either used or unused belong
6987 to to an entry more than one doubleword in size. */
6988 for (drop = skip, keep = used, last = 0, some_unused = 0;
6989 drop < skip + (toc->size + 7) / 8;
6990 ++drop, ++keep)
6991 {
6992 if (*keep)
6993 {
6994 *drop = 0;
6995 last = 0;
6996 }
6997 else if (*drop)
6998 {
6999 some_unused = 1;
7000 last = 1;
7001 }
7002 else
7003 *drop = last;
7004 }
7005
7006 free (used);
7007
7008 if (some_unused)
7009 {
7010 bfd_byte *contents, *src;
7011 unsigned long off;
7012
7013 /* Shuffle the toc contents, and at the same time convert the
7014 skip array from booleans into offsets. */
7015 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7016 goto error_ret;
7017
7018 elf_section_data (toc)->this_hdr.contents = contents;
7019
7020 for (src = contents, off = 0, drop = skip;
7021 src < contents + toc->size;
7022 src += 8, ++drop)
7023 {
7024 if (*drop)
7025 {
7026 *drop = (unsigned long) -1;
7027 off += 8;
7028 }
7029 else if (off != 0)
7030 {
7031 *drop = off;
7032 memcpy (src - off, src, 8);
7033 }
7034 }
7035 toc->rawsize = toc->size;
7036 toc->size = src - contents - off;
7037
7038 if (toc->reloc_count != 0)
7039 {
7040 Elf_Internal_Rela *wrel;
7041 bfd_size_type sz;
7042
7043 /* Read toc relocs. */
7044 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7045 TRUE);
7046 if (relstart == NULL)
7047 goto error_ret;
7048
7049 /* Remove unused toc relocs, and adjust those we keep. */
7050 wrel = relstart;
7051 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7052 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7053 {
7054 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7055 wrel->r_info = rel->r_info;
7056 wrel->r_addend = rel->r_addend;
7057 ++wrel;
7058 }
7059 else
7060 {
7061 unsigned long r_symndx;
7062 enum elf_ppc64_reloc_type r_type;
7063 asection *sym_sec;
7064 struct elf_link_hash_entry *h;
7065 Elf_Internal_Sym *sym;
7066 struct ppc_dyn_relocs *p;
7067 struct ppc_dyn_relocs **head;
7068
7069 /* Can this reloc be dynamic?
7070 This switch, and later tests here should be kept
7071 in sync with the code in check_relocs. */
7072 r_type = ELF64_R_TYPE (rel->r_info);
7073 switch (r_type)
7074 {
7075 default:
7076 continue;
7077
7078 case R_PPC64_TPREL16:
7079 case R_PPC64_TPREL16_LO:
7080 case R_PPC64_TPREL16_HI:
7081 case R_PPC64_TPREL16_HA:
7082 case R_PPC64_TPREL16_DS:
7083 case R_PPC64_TPREL16_LO_DS:
7084 case R_PPC64_TPREL16_HIGHER:
7085 case R_PPC64_TPREL16_HIGHERA:
7086 case R_PPC64_TPREL16_HIGHEST:
7087 case R_PPC64_TPREL16_HIGHESTA:
7088 if (!info->shared)
7089 continue;
7090
7091 case R_PPC64_TPREL64:
7092 case R_PPC64_DTPMOD64:
7093 case R_PPC64_DTPREL64:
7094 case R_PPC64_ADDR64:
7095 case R_PPC64_REL30:
7096 case R_PPC64_REL32:
7097 case R_PPC64_REL64:
7098 case R_PPC64_ADDR14:
7099 case R_PPC64_ADDR14_BRNTAKEN:
7100 case R_PPC64_ADDR14_BRTAKEN:
7101 case R_PPC64_ADDR16:
7102 case R_PPC64_ADDR16_DS:
7103 case R_PPC64_ADDR16_HA:
7104 case R_PPC64_ADDR16_HI:
7105 case R_PPC64_ADDR16_HIGHER:
7106 case R_PPC64_ADDR16_HIGHERA:
7107 case R_PPC64_ADDR16_HIGHEST:
7108 case R_PPC64_ADDR16_HIGHESTA:
7109 case R_PPC64_ADDR16_LO:
7110 case R_PPC64_ADDR16_LO_DS:
7111 case R_PPC64_ADDR24:
7112 case R_PPC64_ADDR32:
7113 case R_PPC64_UADDR16:
7114 case R_PPC64_UADDR32:
7115 case R_PPC64_UADDR64:
7116 case R_PPC64_TOC:
7117 break;
7118 }
7119
7120 r_symndx = ELF64_R_SYM (rel->r_info);
7121 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7122 r_symndx, ibfd))
7123 goto error_ret;
7124
7125 if ((info->shared
7126 && (MUST_BE_DYN_RELOC (r_type)
7127 || (h != NULL
7128 && (!info->symbolic
7129 || h->root.type == bfd_link_hash_defweak
7130 || !h->def_regular))))
7131 || (ELIMINATE_COPY_RELOCS
7132 && !info->shared
7133 && h != NULL
7134 && (h->root.type == bfd_link_hash_defweak
7135 || !h->def_regular)))
7136 ;
7137 else
7138 continue;
7139
7140 if (h != NULL)
7141 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7142 else
7143 {
7144 if (sym_sec == NULL)
7145 goto error_ret;
7146
7147 head = ((struct ppc_dyn_relocs **)
7148 &elf_section_data (sym_sec)->local_dynrel);
7149 }
7150 for (p = *head; p != NULL; p = p->next)
7151 if (p->sec == toc)
7152 {
7153 p->count -= 1;
7154 if (!MUST_BE_DYN_RELOC (r_type))
7155 p->pc_count -= 1;
7156 break;
7157 }
7158 }
7159
7160 toc->reloc_count = wrel - relstart;
7161 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7162 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7163 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7164 }
7165
7166 /* Adjust addends for relocs against the toc section sym. */
7167 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7168 {
7169 if (sec->reloc_count == 0
7170 || elf_discarded_section (sec))
7171 continue;
7172
7173 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7174 TRUE);
7175 if (relstart == NULL)
7176 goto error_ret;
7177
7178 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7179 {
7180 enum elf_ppc64_reloc_type r_type;
7181 unsigned long r_symndx;
7182 asection *sym_sec;
7183 struct elf_link_hash_entry *h;
7184 Elf_Internal_Sym *sym;
7185
7186 r_type = ELF64_R_TYPE (rel->r_info);
7187 switch (r_type)
7188 {
7189 default:
7190 continue;
7191
7192 case R_PPC64_TOC16:
7193 case R_PPC64_TOC16_LO:
7194 case R_PPC64_TOC16_HI:
7195 case R_PPC64_TOC16_HA:
7196 case R_PPC64_TOC16_DS:
7197 case R_PPC64_TOC16_LO_DS:
7198 case R_PPC64_ADDR64:
7199 break;
7200 }
7201
7202 r_symndx = ELF64_R_SYM (rel->r_info);
7203 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7204 r_symndx, ibfd))
7205 goto error_ret;
7206
7207 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7208 continue;
7209
7210 rel->r_addend -= skip[rel->r_addend >> 3];
7211 }
7212 }
7213
7214 /* We shouldn't have local or global symbols defined in the TOC,
7215 but handle them anyway. */
7216 if (local_syms != NULL)
7217 {
7218 Elf_Internal_Sym *sym;
7219
7220 for (sym = local_syms;
7221 sym < local_syms + symtab_hdr->sh_info;
7222 ++sym)
7223 if (sym->st_shndx != SHN_UNDEF
7224 && (sym->st_shndx < SHN_LORESERVE
7225 || sym->st_shndx > SHN_HIRESERVE)
7226 && sym->st_value != 0
7227 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7228 {
7229 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7230 sym->st_value -= skip[sym->st_value >> 3];
7231 else
7232 {
7233 (*_bfd_error_handler)
7234 (_("%s defined in removed toc entry"),
7235 bfd_elf_sym_name (ibfd, symtab_hdr, sym));
7236 sym->st_value = 0;
7237 sym->st_shndx = SHN_ABS;
7238 }
7239 symtab_hdr->contents = (unsigned char *) local_syms;
7240 }
7241 }
7242
7243 /* Finally, adjust any global syms defined in the toc. */
7244 if (toc_inf.global_toc_syms)
7245 {
7246 toc_inf.toc = toc;
7247 toc_inf.skip = skip;
7248 toc_inf.global_toc_syms = FALSE;
7249 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7250 &toc_inf);
7251 }
7252 }
7253
7254 if (local_syms != NULL
7255 && symtab_hdr->contents != (unsigned char *) local_syms)
7256 {
7257 if (!info->keep_memory)
7258 free (local_syms);
7259 else
7260 symtab_hdr->contents = (unsigned char *) local_syms;
7261 }
7262 free (skip);
7263 }
7264
7265 return TRUE;
7266 }
7267
7268 /* Allocate space in .plt, .got and associated reloc sections for
7269 dynamic relocs. */
7270
7271 static bfd_boolean
7272 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7273 {
7274 struct bfd_link_info *info;
7275 struct ppc_link_hash_table *htab;
7276 asection *s;
7277 struct ppc_link_hash_entry *eh;
7278 struct ppc_dyn_relocs *p;
7279 struct got_entry *gent;
7280
7281 if (h->root.type == bfd_link_hash_indirect)
7282 return TRUE;
7283
7284 if (h->root.type == bfd_link_hash_warning)
7285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7286
7287 info = (struct bfd_link_info *) inf;
7288 htab = ppc_hash_table (info);
7289
7290 if (htab->elf.dynamic_sections_created
7291 && h->dynindx != -1
7292 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7293 {
7294 struct plt_entry *pent;
7295 bfd_boolean doneone = FALSE;
7296 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7297 if (pent->plt.refcount > 0)
7298 {
7299 /* If this is the first .plt entry, make room for the special
7300 first entry. */
7301 s = htab->plt;
7302 if (s->size == 0)
7303 s->size += PLT_INITIAL_ENTRY_SIZE;
7304
7305 pent->plt.offset = s->size;
7306
7307 /* Make room for this entry. */
7308 s->size += PLT_ENTRY_SIZE;
7309
7310 /* Make room for the .glink code. */
7311 s = htab->glink;
7312 if (s->size == 0)
7313 s->size += GLINK_CALL_STUB_SIZE;
7314 /* We need bigger stubs past index 32767. */
7315 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7316 s->size += 4;
7317 s->size += 2*4;
7318
7319 /* We also need to make an entry in the .rela.plt section. */
7320 s = htab->relplt;
7321 s->size += sizeof (Elf64_External_Rela);
7322 doneone = TRUE;
7323 }
7324 else
7325 pent->plt.offset = (bfd_vma) -1;
7326 if (!doneone)
7327 {
7328 h->plt.plist = NULL;
7329 h->needs_plt = 0;
7330 }
7331 }
7332 else
7333 {
7334 h->plt.plist = NULL;
7335 h->needs_plt = 0;
7336 }
7337
7338 eh = (struct ppc_link_hash_entry *) h;
7339 /* Run through the TLS GD got entries first if we're changing them
7340 to TPREL. */
7341 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7342 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7343 if (gent->got.refcount > 0
7344 && (gent->tls_type & TLS_GD) != 0)
7345 {
7346 /* This was a GD entry that has been converted to TPREL. If
7347 there happens to be a TPREL entry we can use that one. */
7348 struct got_entry *ent;
7349 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7350 if (ent->got.refcount > 0
7351 && (ent->tls_type & TLS_TPREL) != 0
7352 && ent->addend == gent->addend
7353 && ent->owner == gent->owner)
7354 {
7355 gent->got.refcount = 0;
7356 break;
7357 }
7358
7359 /* If not, then we'll be using our own TPREL entry. */
7360 if (gent->got.refcount != 0)
7361 gent->tls_type = TLS_TLS | TLS_TPREL;
7362 }
7363
7364 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7365 if (gent->got.refcount > 0)
7366 {
7367 bfd_boolean dyn;
7368
7369 /* Make sure this symbol is output as a dynamic symbol.
7370 Undefined weak syms won't yet be marked as dynamic,
7371 nor will all TLS symbols. */
7372 if (h->dynindx == -1
7373 && !h->forced_local)
7374 {
7375 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7376 return FALSE;
7377 }
7378
7379 if ((gent->tls_type & TLS_LD) != 0
7380 && !h->def_dynamic)
7381 {
7382 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7383 continue;
7384 }
7385
7386 s = ppc64_elf_tdata (gent->owner)->got;
7387 gent->got.offset = s->size;
7388 s->size
7389 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7390 dyn = htab->elf.dynamic_sections_created;
7391 if ((info->shared
7392 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7393 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7394 || h->root.type != bfd_link_hash_undefweak))
7395 ppc64_elf_tdata (gent->owner)->relgot->size
7396 += (gent->tls_type & eh->tls_mask & TLS_GD
7397 ? 2 * sizeof (Elf64_External_Rela)
7398 : sizeof (Elf64_External_Rela));
7399 }
7400 else
7401 gent->got.offset = (bfd_vma) -1;
7402
7403 if (eh->dyn_relocs == NULL)
7404 return TRUE;
7405
7406 /* In the shared -Bsymbolic case, discard space allocated for
7407 dynamic pc-relative relocs against symbols which turn out to be
7408 defined in regular objects. For the normal shared case, discard
7409 space for relocs that have become local due to symbol visibility
7410 changes. */
7411
7412 if (info->shared)
7413 {
7414 /* Relocs that use pc_count are those that appear on a call insn,
7415 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7416 generated via assembly. We want calls to protected symbols to
7417 resolve directly to the function rather than going via the plt.
7418 If people want function pointer comparisons to work as expected
7419 then they should avoid writing weird assembly. */
7420 if (SYMBOL_CALLS_LOCAL (info, h))
7421 {
7422 struct ppc_dyn_relocs **pp;
7423
7424 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7425 {
7426 p->count -= p->pc_count;
7427 p->pc_count = 0;
7428 if (p->count == 0)
7429 *pp = p->next;
7430 else
7431 pp = &p->next;
7432 }
7433 }
7434
7435 /* Also discard relocs on undefined weak syms with non-default
7436 visibility. */
7437 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7438 && h->root.type == bfd_link_hash_undefweak)
7439 eh->dyn_relocs = NULL;
7440 }
7441 else if (ELIMINATE_COPY_RELOCS)
7442 {
7443 /* For the non-shared case, discard space for relocs against
7444 symbols which turn out to need copy relocs or are not
7445 dynamic. */
7446
7447 if (!h->non_got_ref
7448 && h->def_dynamic
7449 && !h->def_regular)
7450 {
7451 /* Make sure this symbol is output as a dynamic symbol.
7452 Undefined weak syms won't yet be marked as dynamic. */
7453 if (h->dynindx == -1
7454 && !h->forced_local)
7455 {
7456 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7457 return FALSE;
7458 }
7459
7460 /* If that succeeded, we know we'll be keeping all the
7461 relocs. */
7462 if (h->dynindx != -1)
7463 goto keep;
7464 }
7465
7466 eh->dyn_relocs = NULL;
7467
7468 keep: ;
7469 }
7470
7471 /* Finally, allocate space. */
7472 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7473 {
7474 asection *sreloc = elf_section_data (p->sec)->sreloc;
7475 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7476 }
7477
7478 return TRUE;
7479 }
7480
7481 /* Find any dynamic relocs that apply to read-only sections. */
7482
7483 static bfd_boolean
7484 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7485 {
7486 struct ppc_link_hash_entry *eh;
7487 struct ppc_dyn_relocs *p;
7488
7489 if (h->root.type == bfd_link_hash_warning)
7490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7491
7492 eh = (struct ppc_link_hash_entry *) h;
7493 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7494 {
7495 asection *s = p->sec->output_section;
7496
7497 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7498 {
7499 struct bfd_link_info *info = inf;
7500
7501 info->flags |= DF_TEXTREL;
7502
7503 /* Not an error, just cut short the traversal. */
7504 return FALSE;
7505 }
7506 }
7507 return TRUE;
7508 }
7509
7510 /* Set the sizes of the dynamic sections. */
7511
7512 static bfd_boolean
7513 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7514 struct bfd_link_info *info)
7515 {
7516 struct ppc_link_hash_table *htab;
7517 bfd *dynobj;
7518 asection *s;
7519 bfd_boolean relocs;
7520 bfd *ibfd;
7521
7522 htab = ppc_hash_table (info);
7523 dynobj = htab->elf.dynobj;
7524 if (dynobj == NULL)
7525 abort ();
7526
7527 if (htab->elf.dynamic_sections_created)
7528 {
7529 /* Set the contents of the .interp section to the interpreter. */
7530 if (info->executable)
7531 {
7532 s = bfd_get_section_by_name (dynobj, ".interp");
7533 if (s == NULL)
7534 abort ();
7535 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7536 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7537 }
7538 }
7539
7540 /* Set up .got offsets for local syms, and space for local dynamic
7541 relocs. */
7542 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7543 {
7544 struct got_entry **lgot_ents;
7545 struct got_entry **end_lgot_ents;
7546 char *lgot_masks;
7547 bfd_size_type locsymcount;
7548 Elf_Internal_Shdr *symtab_hdr;
7549 asection *srel;
7550
7551 if (!is_ppc64_elf_target (ibfd->xvec))
7552 continue;
7553
7554 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7555 {
7556 s = ppc64_elf_tdata (ibfd)->got;
7557 ppc64_tlsld_got (ibfd)->offset = s->size;
7558 s->size += 16;
7559 if (info->shared)
7560 {
7561 srel = ppc64_elf_tdata (ibfd)->relgot;
7562 srel->size += sizeof (Elf64_External_Rela);
7563 }
7564 }
7565 else
7566 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7567
7568 for (s = ibfd->sections; s != NULL; s = s->next)
7569 {
7570 struct ppc_dyn_relocs *p;
7571
7572 for (p = *((struct ppc_dyn_relocs **)
7573 &elf_section_data (s)->local_dynrel);
7574 p != NULL;
7575 p = p->next)
7576 {
7577 if (!bfd_is_abs_section (p->sec)
7578 && bfd_is_abs_section (p->sec->output_section))
7579 {
7580 /* Input section has been discarded, either because
7581 it is a copy of a linkonce section or due to
7582 linker script /DISCARD/, so we'll be discarding
7583 the relocs too. */
7584 }
7585 else if (p->count != 0)
7586 {
7587 srel = elf_section_data (p->sec)->sreloc;
7588 srel->size += p->count * sizeof (Elf64_External_Rela);
7589 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7590 info->flags |= DF_TEXTREL;
7591 }
7592 }
7593 }
7594
7595 lgot_ents = elf_local_got_ents (ibfd);
7596 if (!lgot_ents)
7597 continue;
7598
7599 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7600 locsymcount = symtab_hdr->sh_info;
7601 end_lgot_ents = lgot_ents + locsymcount;
7602 lgot_masks = (char *) end_lgot_ents;
7603 s = ppc64_elf_tdata (ibfd)->got;
7604 srel = ppc64_elf_tdata (ibfd)->relgot;
7605 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7606 {
7607 struct got_entry *ent;
7608
7609 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7610 if (ent->got.refcount > 0)
7611 {
7612 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7613 {
7614 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7615 {
7616 ppc64_tlsld_got (ibfd)->offset = s->size;
7617 s->size += 16;
7618 if (info->shared)
7619 srel->size += sizeof (Elf64_External_Rela);
7620 }
7621 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7622 }
7623 else
7624 {
7625 ent->got.offset = s->size;
7626 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7627 {
7628 s->size += 16;
7629 if (info->shared)
7630 srel->size += 2 * sizeof (Elf64_External_Rela);
7631 }
7632 else
7633 {
7634 s->size += 8;
7635 if (info->shared)
7636 srel->size += sizeof (Elf64_External_Rela);
7637 }
7638 }
7639 }
7640 else
7641 ent->got.offset = (bfd_vma) -1;
7642 }
7643 }
7644
7645 /* Allocate global sym .plt and .got entries, and space for global
7646 sym dynamic relocs. */
7647 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7648
7649 /* We now have determined the sizes of the various dynamic sections.
7650 Allocate memory for them. */
7651 relocs = FALSE;
7652 for (s = dynobj->sections; s != NULL; s = s->next)
7653 {
7654 if ((s->flags & SEC_LINKER_CREATED) == 0)
7655 continue;
7656
7657 if (s == htab->brlt || s == htab->relbrlt)
7658 /* These haven't been allocated yet; don't strip. */
7659 continue;
7660 else if (s == htab->got
7661 || s == htab->plt
7662 || s == htab->glink)
7663 {
7664 /* Strip this section if we don't need it; see the
7665 comment below. */
7666 }
7667 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7668 {
7669 if (s->size == 0)
7670 {
7671 /* If we don't need this section, strip it from the
7672 output file. This is mostly to handle .rela.bss and
7673 .rela.plt. We must create both sections in
7674 create_dynamic_sections, because they must be created
7675 before the linker maps input sections to output
7676 sections. The linker does that before
7677 adjust_dynamic_symbol is called, and it is that
7678 function which decides whether anything needs to go
7679 into these sections. */
7680 }
7681 else
7682 {
7683 if (s != htab->relplt)
7684 relocs = TRUE;
7685
7686 /* We use the reloc_count field as a counter if we need
7687 to copy relocs into the output file. */
7688 s->reloc_count = 0;
7689 }
7690 }
7691 else
7692 {
7693 /* It's not one of our sections, so don't allocate space. */
7694 continue;
7695 }
7696
7697 if (s->size == 0)
7698 {
7699 _bfd_strip_section_from_output (info, s);
7700 continue;
7701 }
7702
7703 /* .plt is in the bss section. We don't initialise it. */
7704 if (s == htab->plt)
7705 continue;
7706
7707 /* Allocate memory for the section contents. We use bfd_zalloc
7708 here in case unused entries are not reclaimed before the
7709 section's contents are written out. This should not happen,
7710 but this way if it does we get a R_PPC64_NONE reloc in .rela
7711 sections instead of garbage.
7712 We also rely on the section contents being zero when writing
7713 the GOT. */
7714 s->contents = bfd_zalloc (dynobj, s->size);
7715 if (s->contents == NULL)
7716 return FALSE;
7717 }
7718
7719 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7720 {
7721 if (!is_ppc64_elf_target (ibfd->xvec))
7722 continue;
7723
7724 s = ppc64_elf_tdata (ibfd)->got;
7725 if (s != NULL && s != htab->got)
7726 {
7727 if (s->size == 0)
7728 _bfd_strip_section_from_output (info, s);
7729 else
7730 {
7731 s->contents = bfd_zalloc (ibfd, s->size);
7732 if (s->contents == NULL)
7733 return FALSE;
7734 }
7735 }
7736 s = ppc64_elf_tdata (ibfd)->relgot;
7737 if (s != NULL)
7738 {
7739 if (s->size == 0)
7740 _bfd_strip_section_from_output (info, s);
7741 else
7742 {
7743 s->contents = bfd_zalloc (ibfd, s->size);
7744 if (s->contents == NULL)
7745 return FALSE;
7746 relocs = TRUE;
7747 s->reloc_count = 0;
7748 }
7749 }
7750 }
7751
7752 if (htab->elf.dynamic_sections_created)
7753 {
7754 /* Add some entries to the .dynamic section. We fill in the
7755 values later, in ppc64_elf_finish_dynamic_sections, but we
7756 must add the entries now so that we get the correct size for
7757 the .dynamic section. The DT_DEBUG entry is filled in by the
7758 dynamic linker and used by the debugger. */
7759 #define add_dynamic_entry(TAG, VAL) \
7760 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7761
7762 if (info->executable)
7763 {
7764 if (!add_dynamic_entry (DT_DEBUG, 0))
7765 return FALSE;
7766 }
7767
7768 if (htab->plt != NULL && htab->plt->size != 0)
7769 {
7770 if (!add_dynamic_entry (DT_PLTGOT, 0)
7771 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7772 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7773 || !add_dynamic_entry (DT_JMPREL, 0)
7774 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7775 return FALSE;
7776 }
7777
7778 if (NO_OPD_RELOCS)
7779 {
7780 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7781 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7782 return FALSE;
7783 }
7784
7785 if (relocs)
7786 {
7787 if (!add_dynamic_entry (DT_RELA, 0)
7788 || !add_dynamic_entry (DT_RELASZ, 0)
7789 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7790 return FALSE;
7791
7792 /* If any dynamic relocs apply to a read-only section,
7793 then we need a DT_TEXTREL entry. */
7794 if ((info->flags & DF_TEXTREL) == 0)
7795 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7796
7797 if ((info->flags & DF_TEXTREL) != 0)
7798 {
7799 if (!add_dynamic_entry (DT_TEXTREL, 0))
7800 return FALSE;
7801 }
7802 }
7803 }
7804 #undef add_dynamic_entry
7805
7806 return TRUE;
7807 }
7808
7809 /* Determine the type of stub needed, if any, for a call. */
7810
7811 static inline enum ppc_stub_type
7812 ppc_type_of_stub (asection *input_sec,
7813 const Elf_Internal_Rela *rel,
7814 struct ppc_link_hash_entry **hash,
7815 bfd_vma destination)
7816 {
7817 struct ppc_link_hash_entry *h = *hash;
7818 bfd_vma location;
7819 bfd_vma branch_offset;
7820 bfd_vma max_branch_offset;
7821 enum elf_ppc64_reloc_type r_type;
7822
7823 if (h != NULL)
7824 {
7825 if (h->oh != NULL
7826 && h->oh->is_func_descriptor)
7827 h = h->oh;
7828
7829 if (h->elf.dynindx != -1)
7830 {
7831 struct plt_entry *ent;
7832
7833 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7834 if (ent->addend == rel->r_addend
7835 && ent->plt.offset != (bfd_vma) -1)
7836 {
7837 *hash = h;
7838 return ppc_stub_plt_call;
7839 }
7840 }
7841
7842 if (!(h->elf.root.type == bfd_link_hash_defined
7843 || h->elf.root.type == bfd_link_hash_defweak)
7844 || h->elf.root.u.def.section->output_section == NULL)
7845 return ppc_stub_none;
7846 }
7847
7848 /* Determine where the call point is. */
7849 location = (input_sec->output_offset
7850 + input_sec->output_section->vma
7851 + rel->r_offset);
7852
7853 branch_offset = destination - location;
7854 r_type = ELF64_R_TYPE (rel->r_info);
7855
7856 /* Determine if a long branch stub is needed. */
7857 max_branch_offset = 1 << 25;
7858 if (r_type != R_PPC64_REL24)
7859 max_branch_offset = 1 << 15;
7860
7861 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7862 /* We need a stub. Figure out whether a long_branch or plt_branch
7863 is needed later. */
7864 return ppc_stub_long_branch;
7865
7866 return ppc_stub_none;
7867 }
7868
7869 /* Build a .plt call stub. */
7870
7871 static inline bfd_byte *
7872 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7873 {
7874 #define PPC_LO(v) ((v) & 0xffff)
7875 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7876 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7877
7878 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7879 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7880 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7881 if (PPC_HA (offset + 8) != PPC_HA (offset))
7882 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7883 offset += 8;
7884 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7885 if (PPC_HA (offset + 8) != PPC_HA (offset))
7886 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7887 offset += 8;
7888 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7889 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7890 bfd_put_32 (obfd, BCTR, p), p += 4;
7891 return p;
7892 }
7893
7894 static bfd_boolean
7895 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7896 {
7897 struct ppc_stub_hash_entry *stub_entry;
7898 struct ppc_branch_hash_entry *br_entry;
7899 struct bfd_link_info *info;
7900 struct ppc_link_hash_table *htab;
7901 bfd_byte *loc;
7902 bfd_byte *p;
7903 unsigned int indx;
7904 struct plt_entry *ent;
7905 bfd_vma dest, off;
7906 int size;
7907
7908 /* Massage our args to the form they really have. */
7909 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7910 info = in_arg;
7911
7912 htab = ppc_hash_table (info);
7913
7914 /* Make a note of the offset within the stubs for this entry. */
7915 stub_entry->stub_offset = stub_entry->stub_sec->size;
7916 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7917
7918 htab->stub_count[stub_entry->stub_type - 1] += 1;
7919 switch (stub_entry->stub_type)
7920 {
7921 case ppc_stub_long_branch:
7922 case ppc_stub_long_branch_r2off:
7923 /* Branches are relative. This is where we are going to. */
7924 off = dest = (stub_entry->target_value
7925 + stub_entry->target_section->output_offset
7926 + stub_entry->target_section->output_section->vma);
7927
7928 /* And this is where we are coming from. */
7929 off -= (stub_entry->stub_offset
7930 + stub_entry->stub_sec->output_offset
7931 + stub_entry->stub_sec->output_section->vma);
7932
7933 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7934 size = 4;
7935 else
7936 {
7937 bfd_vma r2off;
7938
7939 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7940 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7941 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7942 loc += 4;
7943 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7944 loc += 4;
7945 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7946 loc += 4;
7947 off -= 12;
7948 size = 16;
7949 }
7950 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7951
7952 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7953
7954 if (info->emitrelocations)
7955 {
7956 Elf_Internal_Rela *relocs, *r;
7957 struct bfd_elf_section_data *elfsec_data;
7958
7959 elfsec_data = elf_section_data (stub_entry->stub_sec);
7960 relocs = elfsec_data->relocs;
7961 if (relocs == NULL)
7962 {
7963 bfd_size_type relsize;
7964 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
7965 relocs = bfd_alloc (htab->stub_bfd, relsize);
7966 if (relocs == NULL)
7967 return FALSE;
7968 elfsec_data->relocs = relocs;
7969 elfsec_data->rel_hdr.sh_size = relsize;
7970 elfsec_data->rel_hdr.sh_entsize = 24;
7971 stub_entry->stub_sec->reloc_count = 0;
7972 }
7973 r = relocs + stub_entry->stub_sec->reloc_count;
7974 stub_entry->stub_sec->reloc_count += 1;
7975 r->r_offset = loc - stub_entry->stub_sec->contents;
7976 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
7977 r->r_addend = dest;
7978 if (stub_entry->h != NULL)
7979 {
7980 struct elf_link_hash_entry **hashes;
7981 unsigned long symndx;
7982 struct ppc_link_hash_entry *h;
7983
7984 hashes = elf_sym_hashes (htab->stub_bfd);
7985 if (hashes == NULL)
7986 {
7987 bfd_size_type hsize;
7988
7989 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
7990 hashes = bfd_zalloc (htab->stub_bfd, hsize);
7991 if (hashes == NULL)
7992 return FALSE;
7993 elf_sym_hashes (htab->stub_bfd) = hashes;
7994 htab->stub_globals = 1;
7995 }
7996 symndx = htab->stub_globals++;
7997 h = stub_entry->h;
7998 hashes[symndx] = &h->elf;
7999 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8000 if (h->oh != NULL && h->oh->is_func)
8001 h = h->oh;
8002 if (h->elf.root.u.def.section != stub_entry->target_section)
8003 /* H is an opd symbol. The addend must be zero. */
8004 r->r_addend = 0;
8005 else
8006 {
8007 off = (h->elf.root.u.def.value
8008 + h->elf.root.u.def.section->output_offset
8009 + h->elf.root.u.def.section->output_section->vma);
8010 r->r_addend -= off;
8011 }
8012 }
8013 }
8014 break;
8015
8016 case ppc_stub_plt_branch:
8017 case ppc_stub_plt_branch_r2off:
8018 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8019 stub_entry->root.string + 9,
8020 FALSE, FALSE);
8021 if (br_entry == NULL)
8022 {
8023 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8024 stub_entry->root.string + 9);
8025 htab->stub_error = TRUE;
8026 return FALSE;
8027 }
8028
8029 off = (stub_entry->target_value
8030 + stub_entry->target_section->output_offset
8031 + stub_entry->target_section->output_section->vma);
8032
8033 bfd_put_64 (htab->brlt->owner, off,
8034 htab->brlt->contents + br_entry->offset);
8035
8036 if (htab->relbrlt != NULL)
8037 {
8038 /* Create a reloc for the branch lookup table entry. */
8039 Elf_Internal_Rela rela;
8040 bfd_byte *rl;
8041
8042 rela.r_offset = (br_entry->offset
8043 + htab->brlt->output_offset
8044 + htab->brlt->output_section->vma);
8045 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8046 rela.r_addend = off;
8047
8048 rl = htab->relbrlt->contents;
8049 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
8050 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8051 }
8052
8053 off = (br_entry->offset
8054 + htab->brlt->output_offset
8055 + htab->brlt->output_section->vma
8056 - elf_gp (htab->brlt->output_section->owner)
8057 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8058
8059 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8060 {
8061 (*_bfd_error_handler)
8062 (_("linkage table error against `%s'"),
8063 stub_entry->root.string);
8064 bfd_set_error (bfd_error_bad_value);
8065 htab->stub_error = TRUE;
8066 return FALSE;
8067 }
8068
8069 indx = off;
8070 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8071 {
8072 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8073 loc += 4;
8074 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8075 size = 16;
8076 }
8077 else
8078 {
8079 bfd_vma r2off;
8080
8081 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8082 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8083 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8084 loc += 4;
8085 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8086 loc += 4;
8087 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8088 loc += 4;
8089 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8090 loc += 4;
8091 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8092 size = 28;
8093 }
8094 loc += 4;
8095 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8096 loc += 4;
8097 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8098 break;
8099
8100 case ppc_stub_plt_call:
8101 /* Do the best we can for shared libraries built without
8102 exporting ".foo" for each "foo". This can happen when symbol
8103 versioning scripts strip all bar a subset of symbols. */
8104 if (stub_entry->h->oh != NULL
8105 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8106 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8107 {
8108 /* Point the symbol at the stub. There may be multiple stubs,
8109 we don't really care; The main thing is to make this sym
8110 defined somewhere. Maybe defining the symbol in the stub
8111 section is a silly idea. If we didn't do this, htab->top_id
8112 could disappear. */
8113 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8114 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8115 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8116 }
8117
8118 /* Now build the stub. */
8119 off = (bfd_vma) -1;
8120 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8121 if (ent->addend == stub_entry->addend)
8122 {
8123 off = ent->plt.offset;
8124 break;
8125 }
8126 if (off >= (bfd_vma) -2)
8127 abort ();
8128
8129 off &= ~ (bfd_vma) 1;
8130 off += (htab->plt->output_offset
8131 + htab->plt->output_section->vma
8132 - elf_gp (htab->plt->output_section->owner)
8133 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8134
8135 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8136 {
8137 (*_bfd_error_handler)
8138 (_("linkage table error against `%s'"),
8139 stub_entry->h->elf.root.root.string);
8140 bfd_set_error (bfd_error_bad_value);
8141 htab->stub_error = TRUE;
8142 return FALSE;
8143 }
8144
8145 p = build_plt_stub (htab->stub_bfd, loc, off);
8146 size = p - loc;
8147 break;
8148
8149 default:
8150 BFD_FAIL ();
8151 return FALSE;
8152 }
8153
8154 stub_entry->stub_sec->size += size;
8155
8156 if (htab->emit_stub_syms)
8157 {
8158 struct elf_link_hash_entry *h;
8159 size_t len1, len2;
8160 char *name;
8161 const char *const stub_str[] = { "long_branch",
8162 "long_branch_r2off",
8163 "plt_branch",
8164 "plt_branch_r2off",
8165 "plt_call" };
8166
8167 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8168 len2 = strlen (stub_entry->root.string);
8169 name = bfd_malloc (len1 + len2 + 2);
8170 if (name == NULL)
8171 return FALSE;
8172 memcpy (name, stub_entry->root.string, 9);
8173 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8174 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8175 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8176 if (h == NULL)
8177 return FALSE;
8178 if (h->root.type == bfd_link_hash_new)
8179 {
8180 h->root.type = bfd_link_hash_defined;
8181 h->root.u.def.section = stub_entry->stub_sec;
8182 h->root.u.def.value = stub_entry->stub_offset;
8183 h->ref_regular = 1;
8184 h->def_regular = 1;
8185 h->ref_regular_nonweak = 1;
8186 h->forced_local = 1;
8187 h->non_elf = 0;
8188 }
8189 }
8190
8191 return TRUE;
8192 }
8193
8194 /* As above, but don't actually build the stub. Just bump offset so
8195 we know stub section sizes, and select plt_branch stubs where
8196 long_branch stubs won't do. */
8197
8198 static bfd_boolean
8199 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8200 {
8201 struct ppc_stub_hash_entry *stub_entry;
8202 struct bfd_link_info *info;
8203 struct ppc_link_hash_table *htab;
8204 bfd_vma off;
8205 int size;
8206
8207 /* Massage our args to the form they really have. */
8208 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8209 info = in_arg;
8210
8211 htab = ppc_hash_table (info);
8212
8213 if (stub_entry->stub_type == ppc_stub_plt_call)
8214 {
8215 struct plt_entry *ent;
8216 off = (bfd_vma) -1;
8217 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8218 if (ent->addend == stub_entry->addend)
8219 {
8220 off = ent->plt.offset & ~(bfd_vma) 1;
8221 break;
8222 }
8223 if (off >= (bfd_vma) -2)
8224 abort ();
8225 off += (htab->plt->output_offset
8226 + htab->plt->output_section->vma
8227 - elf_gp (htab->plt->output_section->owner)
8228 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8229
8230 size = PLT_CALL_STUB_SIZE;
8231 if (PPC_HA (off + 16) != PPC_HA (off))
8232 size += 4;
8233 }
8234 else
8235 {
8236 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8237 variants. */
8238 off = (stub_entry->target_value
8239 + stub_entry->target_section->output_offset
8240 + stub_entry->target_section->output_section->vma);
8241 off -= (stub_entry->stub_sec->size
8242 + stub_entry->stub_sec->output_offset
8243 + stub_entry->stub_sec->output_section->vma);
8244
8245 /* Reset the stub type from the plt variant in case we now
8246 can reach with a shorter stub. */
8247 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8248 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8249
8250 size = 4;
8251 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8252 {
8253 off -= 12;
8254 size = 16;
8255 }
8256
8257 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8258 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8259 {
8260 struct ppc_branch_hash_entry *br_entry;
8261
8262 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8263 stub_entry->root.string + 9,
8264 TRUE, FALSE);
8265 if (br_entry == NULL)
8266 {
8267 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8268 stub_entry->root.string + 9);
8269 htab->stub_error = TRUE;
8270 return FALSE;
8271 }
8272
8273 if (br_entry->iter != htab->stub_iteration)
8274 {
8275 br_entry->iter = htab->stub_iteration;
8276 br_entry->offset = htab->brlt->size;
8277 htab->brlt->size += 8;
8278
8279 if (htab->relbrlt != NULL)
8280 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8281 }
8282
8283 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8284 size = 16;
8285 if (stub_entry->stub_type != ppc_stub_plt_branch)
8286 size = 28;
8287 }
8288
8289 if (info->emitrelocations
8290 && (stub_entry->stub_type == ppc_stub_long_branch
8291 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8292 stub_entry->stub_sec->reloc_count += 1;
8293 }
8294
8295 stub_entry->stub_sec->size += size;
8296 return TRUE;
8297 }
8298
8299 /* Set up various things so that we can make a list of input sections
8300 for each output section included in the link. Returns -1 on error,
8301 0 when no stubs will be needed, and 1 on success. */
8302
8303 int
8304 ppc64_elf_setup_section_lists (bfd *output_bfd,
8305 struct bfd_link_info *info,
8306 int no_multi_toc)
8307 {
8308 bfd *input_bfd;
8309 int top_id, top_index, id;
8310 asection *section;
8311 asection **input_list;
8312 bfd_size_type amt;
8313 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8314
8315 htab->no_multi_toc = no_multi_toc;
8316
8317 if (htab->brlt == NULL)
8318 return 0;
8319
8320 /* Find the top input section id. */
8321 for (input_bfd = info->input_bfds, top_id = 3;
8322 input_bfd != NULL;
8323 input_bfd = input_bfd->link_next)
8324 {
8325 for (section = input_bfd->sections;
8326 section != NULL;
8327 section = section->next)
8328 {
8329 if (top_id < section->id)
8330 top_id = section->id;
8331 }
8332 }
8333
8334 htab->top_id = top_id;
8335 amt = sizeof (struct map_stub) * (top_id + 1);
8336 htab->stub_group = bfd_zmalloc (amt);
8337 if (htab->stub_group == NULL)
8338 return -1;
8339
8340 /* Set toc_off for com, und, abs and ind sections. */
8341 for (id = 0; id < 3; id++)
8342 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8343
8344 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8345
8346 /* We can't use output_bfd->section_count here to find the top output
8347 section index as some sections may have been removed, and
8348 _bfd_strip_section_from_output doesn't renumber the indices. */
8349 for (section = output_bfd->sections, top_index = 0;
8350 section != NULL;
8351 section = section->next)
8352 {
8353 if (top_index < section->index)
8354 top_index = section->index;
8355 }
8356
8357 htab->top_index = top_index;
8358 amt = sizeof (asection *) * (top_index + 1);
8359 input_list = bfd_zmalloc (amt);
8360 htab->input_list = input_list;
8361 if (input_list == NULL)
8362 return -1;
8363
8364 return 1;
8365 }
8366
8367 /* The linker repeatedly calls this function for each TOC input section
8368 and linker generated GOT section. Group input bfds such that the toc
8369 within a group is less than 64k in size. Will break with cute linker
8370 scripts that play games with dot in the output toc section. */
8371
8372 void
8373 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8374 {
8375 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8376
8377 if (!htab->no_multi_toc)
8378 {
8379 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8380 bfd_vma off = addr - htab->toc_curr;
8381
8382 if (off + isec->size > 0x10000)
8383 htab->toc_curr = addr;
8384
8385 elf_gp (isec->owner) = (htab->toc_curr
8386 - elf_gp (isec->output_section->owner)
8387 + TOC_BASE_OFF);
8388 }
8389 }
8390
8391 /* Called after the last call to the above function. */
8392
8393 void
8394 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8395 {
8396 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8397
8398 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8399
8400 /* toc_curr tracks the TOC offset used for code sections below in
8401 ppc64_elf_next_input_section. Start off at 0x8000. */
8402 htab->toc_curr = TOC_BASE_OFF;
8403 }
8404
8405 /* No toc references were found in ISEC. If the code in ISEC makes no
8406 calls, then there's no need to use toc adjusting stubs when branching
8407 into ISEC. Actually, indirect calls from ISEC are OK as they will
8408 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8409 needed, and 2 if a cyclical call-graph was found but no other reason
8410 for a stub was detected. If called from the top level, a return of
8411 2 means the same as a return of 0. */
8412
8413 static int
8414 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8415 {
8416 Elf_Internal_Rela *relstart, *rel;
8417 Elf_Internal_Sym *local_syms;
8418 int ret;
8419 struct ppc_link_hash_table *htab;
8420
8421 /* We know none of our code bearing sections will need toc stubs. */
8422 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8423 return 0;
8424
8425 if (isec->size == 0)
8426 return 0;
8427
8428 if (isec->output_section == NULL)
8429 return 0;
8430
8431 /* Hack for linux kernel. .fixup contains branches, but only back to
8432 the function that hit an exception. */
8433 if (strcmp (isec->name, ".fixup") == 0)
8434 return 0;
8435
8436 if (isec->reloc_count == 0)
8437 return 0;
8438
8439 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8440 info->keep_memory);
8441 if (relstart == NULL)
8442 return -1;
8443
8444 /* Look for branches to outside of this section. */
8445 local_syms = NULL;
8446 ret = 0;
8447 htab = ppc_hash_table (info);
8448 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8449 {
8450 enum elf_ppc64_reloc_type r_type;
8451 unsigned long r_symndx;
8452 struct elf_link_hash_entry *h;
8453 Elf_Internal_Sym *sym;
8454 asection *sym_sec;
8455 long *opd_adjust;
8456 bfd_vma sym_value;
8457 bfd_vma dest;
8458
8459 r_type = ELF64_R_TYPE (rel->r_info);
8460 if (r_type != R_PPC64_REL24
8461 && r_type != R_PPC64_REL14
8462 && r_type != R_PPC64_REL14_BRTAKEN
8463 && r_type != R_PPC64_REL14_BRNTAKEN)
8464 continue;
8465
8466 r_symndx = ELF64_R_SYM (rel->r_info);
8467 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8468 isec->owner))
8469 {
8470 ret = -1;
8471 break;
8472 }
8473
8474 /* Calls to dynamic lib functions go through a plt call stub
8475 that uses r2. Branches to undefined symbols might be a call
8476 using old-style dot symbols that can be satisfied by a plt
8477 call into a new-style dynamic library. */
8478 if (sym_sec == NULL)
8479 {
8480 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8481 if (eh != NULL
8482 && eh->oh != NULL
8483 && eh->oh->elf.plt.plist != NULL)
8484 {
8485 ret = 1;
8486 break;
8487 }
8488
8489 /* Ignore other undefined symbols. */
8490 continue;
8491 }
8492
8493 /* Assume branches to other sections not included in the link need
8494 stubs too, to cover -R and absolute syms. */
8495 if (sym_sec->output_section == NULL)
8496 {
8497 ret = 1;
8498 break;
8499 }
8500
8501 if (h == NULL)
8502 sym_value = sym->st_value;
8503 else
8504 {
8505 if (h->root.type != bfd_link_hash_defined
8506 && h->root.type != bfd_link_hash_defweak)
8507 abort ();
8508 sym_value = h->root.u.def.value;
8509 }
8510 sym_value += rel->r_addend;
8511
8512 /* If this branch reloc uses an opd sym, find the code section. */
8513 opd_adjust = get_opd_info (sym_sec);
8514 if (opd_adjust != NULL)
8515 {
8516 if (h == NULL)
8517 {
8518 long adjust;
8519
8520 adjust = opd_adjust[sym->st_value / 8];
8521 if (adjust == -1)
8522 /* Assume deleted functions won't ever be called. */
8523 continue;
8524 sym_value += adjust;
8525 }
8526
8527 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8528 if (dest == (bfd_vma) -1)
8529 continue;
8530 }
8531 else
8532 dest = (sym_value
8533 + sym_sec->output_offset
8534 + sym_sec->output_section->vma);
8535
8536 /* Ignore branch to self. */
8537 if (sym_sec == isec)
8538 continue;
8539
8540 /* If the called function uses the toc, we need a stub. */
8541 if (sym_sec->has_toc_reloc
8542 || sym_sec->makes_toc_func_call)
8543 {
8544 ret = 1;
8545 break;
8546 }
8547
8548 /* Assume any branch that needs a long branch stub might in fact
8549 need a plt_branch stub. A plt_branch stub uses r2. */
8550 else if (dest - (isec->output_offset
8551 + isec->output_section->vma
8552 + rel->r_offset) + (1 << 25) >= (2 << 25))
8553 {
8554 ret = 1;
8555 break;
8556 }
8557
8558 /* If calling back to a section in the process of being tested, we
8559 can't say for sure that no toc adjusting stubs are needed, so
8560 don't return zero. */
8561 else if (sym_sec->call_check_in_progress)
8562 ret = 2;
8563
8564 /* Branches to another section that itself doesn't have any TOC
8565 references are OK. Recursively call ourselves to check. */
8566 else if (sym_sec->id <= htab->top_id
8567 && htab->stub_group[sym_sec->id].toc_off == 0)
8568 {
8569 int recur;
8570
8571 /* Mark current section as indeterminate, so that other
8572 sections that call back to current won't be marked as
8573 known. */
8574 isec->call_check_in_progress = 1;
8575 recur = toc_adjusting_stub_needed (info, sym_sec);
8576 isec->call_check_in_progress = 0;
8577
8578 if (recur < 0)
8579 {
8580 /* An error. Exit. */
8581 ret = -1;
8582 break;
8583 }
8584 else if (recur <= 1)
8585 {
8586 /* Known result. Mark as checked and set section flag. */
8587 htab->stub_group[sym_sec->id].toc_off = 1;
8588 if (recur != 0)
8589 {
8590 sym_sec->makes_toc_func_call = 1;
8591 ret = 1;
8592 break;
8593 }
8594 }
8595 else
8596 {
8597 /* Unknown result. Continue checking. */
8598 ret = 2;
8599 }
8600 }
8601 }
8602
8603 if (local_syms != NULL
8604 && (elf_tdata (isec->owner)->symtab_hdr.contents
8605 != (unsigned char *) local_syms))
8606 free (local_syms);
8607 if (elf_section_data (isec)->relocs != relstart)
8608 free (relstart);
8609
8610 return ret;
8611 }
8612
8613 /* The linker repeatedly calls this function for each input section,
8614 in the order that input sections are linked into output sections.
8615 Build lists of input sections to determine groupings between which
8616 we may insert linker stubs. */
8617
8618 bfd_boolean
8619 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8620 {
8621 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8622
8623 if ((isec->output_section->flags & SEC_CODE) != 0
8624 && isec->output_section->index <= htab->top_index)
8625 {
8626 asection **list = htab->input_list + isec->output_section->index;
8627 /* Steal the link_sec pointer for our list. */
8628 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8629 /* This happens to make the list in reverse order,
8630 which is what we want. */
8631 PREV_SEC (isec) = *list;
8632 *list = isec;
8633 }
8634
8635 if (htab->multi_toc_needed)
8636 {
8637 /* If a code section has a function that uses the TOC then we need
8638 to use the right TOC (obviously). Also, make sure that .opd gets
8639 the correct TOC value for R_PPC64_TOC relocs that don't have or
8640 can't find their function symbol (shouldn't ever happen now). */
8641 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8642 {
8643 if (elf_gp (isec->owner) != 0)
8644 htab->toc_curr = elf_gp (isec->owner);
8645 }
8646 else if (htab->stub_group[isec->id].toc_off == 0)
8647 {
8648 int ret = toc_adjusting_stub_needed (info, isec);
8649 if (ret < 0)
8650 return FALSE;
8651 else
8652 isec->makes_toc_func_call = ret & 1;
8653 }
8654 }
8655
8656 /* Functions that don't use the TOC can belong in any TOC group.
8657 Use the last TOC base. This happens to make _init and _fini
8658 pasting work. */
8659 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8660 return TRUE;
8661 }
8662
8663 /* See whether we can group stub sections together. Grouping stub
8664 sections may result in fewer stubs. More importantly, we need to
8665 put all .init* and .fini* stubs at the beginning of the .init or
8666 .fini output sections respectively, because glibc splits the
8667 _init and _fini functions into multiple parts. Putting a stub in
8668 the middle of a function is not a good idea. */
8669
8670 static void
8671 group_sections (struct ppc_link_hash_table *htab,
8672 bfd_size_type stub_group_size,
8673 bfd_boolean stubs_always_before_branch)
8674 {
8675 asection **list = htab->input_list + htab->top_index;
8676 do
8677 {
8678 asection *tail = *list;
8679 while (tail != NULL)
8680 {
8681 asection *curr;
8682 asection *prev;
8683 bfd_size_type total;
8684 bfd_boolean big_sec;
8685 bfd_vma curr_toc;
8686
8687 curr = tail;
8688 total = tail->size;
8689 big_sec = total >= stub_group_size;
8690 curr_toc = htab->stub_group[tail->id].toc_off;
8691
8692 while ((prev = PREV_SEC (curr)) != NULL
8693 && ((total += curr->output_offset - prev->output_offset)
8694 < stub_group_size)
8695 && htab->stub_group[prev->id].toc_off == curr_toc)
8696 curr = prev;
8697
8698 /* OK, the size from the start of CURR to the end is less
8699 than stub_group_size and thus can be handled by one stub
8700 section. (or the tail section is itself larger than
8701 stub_group_size, in which case we may be toast.) We
8702 should really be keeping track of the total size of stubs
8703 added here, as stubs contribute to the final output
8704 section size. That's a little tricky, and this way will
8705 only break if stubs added make the total size more than
8706 2^25, ie. for the default stub_group_size, if stubs total
8707 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8708 do
8709 {
8710 prev = PREV_SEC (tail);
8711 /* Set up this stub group. */
8712 htab->stub_group[tail->id].link_sec = curr;
8713 }
8714 while (tail != curr && (tail = prev) != NULL);
8715
8716 /* But wait, there's more! Input sections up to stub_group_size
8717 bytes before the stub section can be handled by it too.
8718 Don't do this if we have a really large section after the
8719 stubs, as adding more stubs increases the chance that
8720 branches may not reach into the stub section. */
8721 if (!stubs_always_before_branch && !big_sec)
8722 {
8723 total = 0;
8724 while (prev != NULL
8725 && ((total += tail->output_offset - prev->output_offset)
8726 < stub_group_size)
8727 && htab->stub_group[prev->id].toc_off == curr_toc)
8728 {
8729 tail = prev;
8730 prev = PREV_SEC (tail);
8731 htab->stub_group[tail->id].link_sec = curr;
8732 }
8733 }
8734 tail = prev;
8735 }
8736 }
8737 while (list-- != htab->input_list);
8738 free (htab->input_list);
8739 #undef PREV_SEC
8740 }
8741
8742 /* Determine and set the size of the stub section for a final link.
8743
8744 The basic idea here is to examine all the relocations looking for
8745 PC-relative calls to a target that is unreachable with a "bl"
8746 instruction. */
8747
8748 bfd_boolean
8749 ppc64_elf_size_stubs (bfd *output_bfd,
8750 struct bfd_link_info *info,
8751 bfd_signed_vma group_size,
8752 asection *(*add_stub_section) (const char *, asection *),
8753 void (*layout_sections_again) (void))
8754 {
8755 bfd_size_type stub_group_size;
8756 bfd_boolean stubs_always_before_branch;
8757 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8758
8759 /* Stash our params away. */
8760 htab->add_stub_section = add_stub_section;
8761 htab->layout_sections_again = layout_sections_again;
8762 stubs_always_before_branch = group_size < 0;
8763 if (group_size < 0)
8764 stub_group_size = -group_size;
8765 else
8766 stub_group_size = group_size;
8767 if (stub_group_size == 1)
8768 {
8769 /* Default values. */
8770 if (stubs_always_before_branch)
8771 {
8772 stub_group_size = 0x1e00000;
8773 if (htab->has_14bit_branch)
8774 stub_group_size = 0x7800;
8775 }
8776 else
8777 {
8778 stub_group_size = 0x1c00000;
8779 if (htab->has_14bit_branch)
8780 stub_group_size = 0x7000;
8781 }
8782 }
8783
8784 group_sections (htab, stub_group_size, stubs_always_before_branch);
8785
8786 while (1)
8787 {
8788 bfd *input_bfd;
8789 unsigned int bfd_indx;
8790 asection *stub_sec;
8791 bfd_boolean stub_changed;
8792
8793 htab->stub_iteration += 1;
8794 stub_changed = FALSE;
8795
8796 for (input_bfd = info->input_bfds, bfd_indx = 0;
8797 input_bfd != NULL;
8798 input_bfd = input_bfd->link_next, bfd_indx++)
8799 {
8800 Elf_Internal_Shdr *symtab_hdr;
8801 asection *section;
8802 Elf_Internal_Sym *local_syms = NULL;
8803
8804 /* We'll need the symbol table in a second. */
8805 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8806 if (symtab_hdr->sh_info == 0)
8807 continue;
8808
8809 /* Walk over each section attached to the input bfd. */
8810 for (section = input_bfd->sections;
8811 section != NULL;
8812 section = section->next)
8813 {
8814 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8815
8816 /* If there aren't any relocs, then there's nothing more
8817 to do. */
8818 if ((section->flags & SEC_RELOC) == 0
8819 || section->reloc_count == 0)
8820 continue;
8821
8822 /* If this section is a link-once section that will be
8823 discarded, then don't create any stubs. */
8824 if (section->output_section == NULL
8825 || section->output_section->owner != output_bfd)
8826 continue;
8827
8828 /* Get the relocs. */
8829 internal_relocs
8830 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8831 info->keep_memory);
8832 if (internal_relocs == NULL)
8833 goto error_ret_free_local;
8834
8835 /* Now examine each relocation. */
8836 irela = internal_relocs;
8837 irelaend = irela + section->reloc_count;
8838 for (; irela < irelaend; irela++)
8839 {
8840 enum elf_ppc64_reloc_type r_type;
8841 unsigned int r_indx;
8842 enum ppc_stub_type stub_type;
8843 struct ppc_stub_hash_entry *stub_entry;
8844 asection *sym_sec, *code_sec;
8845 bfd_vma sym_value;
8846 bfd_vma destination;
8847 bfd_boolean ok_dest;
8848 struct ppc_link_hash_entry *hash;
8849 struct ppc_link_hash_entry *fdh;
8850 struct elf_link_hash_entry *h;
8851 Elf_Internal_Sym *sym;
8852 char *stub_name;
8853 const asection *id_sec;
8854 long *opd_adjust;
8855
8856 r_type = ELF64_R_TYPE (irela->r_info);
8857 r_indx = ELF64_R_SYM (irela->r_info);
8858
8859 if (r_type >= R_PPC64_max)
8860 {
8861 bfd_set_error (bfd_error_bad_value);
8862 goto error_ret_free_internal;
8863 }
8864
8865 /* Only look for stubs on branch instructions. */
8866 if (r_type != R_PPC64_REL24
8867 && r_type != R_PPC64_REL14
8868 && r_type != R_PPC64_REL14_BRTAKEN
8869 && r_type != R_PPC64_REL14_BRNTAKEN)
8870 continue;
8871
8872 /* Now determine the call target, its name, value,
8873 section. */
8874 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8875 r_indx, input_bfd))
8876 goto error_ret_free_internal;
8877 hash = (struct ppc_link_hash_entry *) h;
8878
8879 ok_dest = FALSE;
8880 fdh = NULL;
8881 if (hash == NULL)
8882 {
8883 sym_value = sym->st_value;
8884 ok_dest = TRUE;
8885 }
8886 else
8887 {
8888 sym_value = 0;
8889 /* Recognise an old ABI func code entry sym, and
8890 use the func descriptor sym instead. */
8891 if (hash->elf.root.root.string[0] == '.'
8892 && (fdh = get_fdh (hash, htab)) != NULL)
8893 {
8894 if (fdh->elf.root.type == bfd_link_hash_defined
8895 || fdh->elf.root.type == bfd_link_hash_defweak)
8896 {
8897 sym_sec = fdh->elf.root.u.def.section;
8898 sym_value = fdh->elf.root.u.def.value;
8899 if (sym_sec->output_section != NULL)
8900 ok_dest = TRUE;
8901 }
8902 else
8903 fdh = NULL;
8904 }
8905 else if (hash->elf.root.type == bfd_link_hash_defined
8906 || hash->elf.root.type == bfd_link_hash_defweak)
8907 {
8908 sym_value = hash->elf.root.u.def.value;
8909 if (sym_sec->output_section != NULL)
8910 ok_dest = TRUE;
8911 }
8912 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8913 ;
8914 else if (hash->elf.root.type == bfd_link_hash_undefined)
8915 ;
8916 else
8917 {
8918 bfd_set_error (bfd_error_bad_value);
8919 goto error_ret_free_internal;
8920 }
8921 }
8922
8923 destination = 0;
8924 if (ok_dest)
8925 {
8926 sym_value += irela->r_addend;
8927 destination = (sym_value
8928 + sym_sec->output_offset
8929 + sym_sec->output_section->vma);
8930 }
8931
8932 code_sec = sym_sec;
8933 opd_adjust = get_opd_info (sym_sec);
8934 if (opd_adjust != NULL)
8935 {
8936 bfd_vma dest;
8937
8938 if (hash == NULL)
8939 {
8940 long adjust = opd_adjust[sym_value / 8];
8941 if (adjust == -1)
8942 continue;
8943 sym_value += adjust;
8944 }
8945 dest = opd_entry_value (sym_sec, sym_value,
8946 &code_sec, &sym_value);
8947 if (dest != (bfd_vma) -1)
8948 {
8949 destination = dest;
8950 if (fdh != NULL)
8951 {
8952 /* Fixup old ABI sym to point at code
8953 entry. */
8954 hash->elf.root.type = bfd_link_hash_defweak;
8955 hash->elf.root.u.def.section = code_sec;
8956 hash->elf.root.u.def.value = sym_value;
8957 }
8958 }
8959 }
8960
8961 /* Determine what (if any) linker stub is needed. */
8962 stub_type = ppc_type_of_stub (section, irela, &hash,
8963 destination);
8964
8965 if (stub_type != ppc_stub_plt_call)
8966 {
8967 /* Check whether we need a TOC adjusting stub.
8968 Since the linker pastes together pieces from
8969 different object files when creating the
8970 _init and _fini functions, it may be that a
8971 call to what looks like a local sym is in
8972 fact a call needing a TOC adjustment. */
8973 if (code_sec != NULL
8974 && code_sec->output_section != NULL
8975 && (htab->stub_group[code_sec->id].toc_off
8976 != htab->stub_group[section->id].toc_off)
8977 && (code_sec->has_toc_reloc
8978 || code_sec->makes_toc_func_call))
8979 stub_type = ppc_stub_long_branch_r2off;
8980 }
8981
8982 if (stub_type == ppc_stub_none)
8983 continue;
8984
8985 /* __tls_get_addr calls might be eliminated. */
8986 if (stub_type != ppc_stub_plt_call
8987 && hash != NULL
8988 && (hash == htab->tls_get_addr
8989 || hash == htab->tls_get_addr_fd)
8990 && section->has_tls_reloc
8991 && irela != internal_relocs)
8992 {
8993 /* Get tls info. */
8994 char *tls_mask;
8995
8996 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8997 irela - 1, input_bfd))
8998 goto error_ret_free_internal;
8999 if (*tls_mask != 0)
9000 continue;
9001 }
9002
9003 /* Support for grouping stub sections. */
9004 id_sec = htab->stub_group[section->id].link_sec;
9005
9006 /* Get the name of this stub. */
9007 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9008 if (!stub_name)
9009 goto error_ret_free_internal;
9010
9011 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9012 stub_name, FALSE, FALSE);
9013 if (stub_entry != NULL)
9014 {
9015 /* The proper stub has already been created. */
9016 free (stub_name);
9017 continue;
9018 }
9019
9020 stub_entry = ppc_add_stub (stub_name, section, htab);
9021 if (stub_entry == NULL)
9022 {
9023 free (stub_name);
9024 error_ret_free_internal:
9025 if (elf_section_data (section)->relocs == NULL)
9026 free (internal_relocs);
9027 error_ret_free_local:
9028 if (local_syms != NULL
9029 && (symtab_hdr->contents
9030 != (unsigned char *) local_syms))
9031 free (local_syms);
9032 return FALSE;
9033 }
9034
9035 stub_entry->stub_type = stub_type;
9036 stub_entry->target_value = sym_value;
9037 stub_entry->target_section = code_sec;
9038 stub_entry->h = hash;
9039 stub_entry->addend = irela->r_addend;
9040
9041 if (stub_entry->h != NULL)
9042 htab->stub_globals += 1;
9043
9044 stub_changed = TRUE;
9045 }
9046
9047 /* We're done with the internal relocs, free them. */
9048 if (elf_section_data (section)->relocs != internal_relocs)
9049 free (internal_relocs);
9050 }
9051
9052 if (local_syms != NULL
9053 && symtab_hdr->contents != (unsigned char *) local_syms)
9054 {
9055 if (!info->keep_memory)
9056 free (local_syms);
9057 else
9058 symtab_hdr->contents = (unsigned char *) local_syms;
9059 }
9060 }
9061
9062 if (!stub_changed)
9063 break;
9064
9065 /* OK, we've added some stubs. Find out the new size of the
9066 stub sections. */
9067 for (stub_sec = htab->stub_bfd->sections;
9068 stub_sec != NULL;
9069 stub_sec = stub_sec->next)
9070 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9071 {
9072 stub_sec->size = 0;
9073 stub_sec->reloc_count = 0;
9074 }
9075
9076 htab->brlt->size = 0;
9077 if (htab->relbrlt != NULL)
9078 htab->relbrlt->size = 0;
9079
9080 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9081
9082 /* Ask the linker to do its stuff. */
9083 (*htab->layout_sections_again) ();
9084 }
9085
9086 /* It would be nice to strip .branch_lt from the output if the
9087 section is empty, but it's too late. If we strip sections here,
9088 the dynamic symbol table is corrupted since the section symbol
9089 for the stripped section isn't written. */
9090
9091 return TRUE;
9092 }
9093
9094 /* Called after we have determined section placement. If sections
9095 move, we'll be called again. Provide a value for TOCstart. */
9096
9097 bfd_vma
9098 ppc64_elf_toc (bfd *obfd)
9099 {
9100 asection *s;
9101 bfd_vma TOCstart;
9102
9103 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9104 order. The TOC starts where the first of these sections starts. */
9105 s = bfd_get_section_by_name (obfd, ".got");
9106 if (s == NULL)
9107 s = bfd_get_section_by_name (obfd, ".toc");
9108 if (s == NULL)
9109 s = bfd_get_section_by_name (obfd, ".tocbss");
9110 if (s == NULL)
9111 s = bfd_get_section_by_name (obfd, ".plt");
9112 if (s == NULL)
9113 {
9114 /* This may happen for
9115 o references to TOC base (SYM@toc / TOC[tc0]) without a
9116 .toc directive
9117 o bad linker script
9118 o --gc-sections and empty TOC sections
9119
9120 FIXME: Warn user? */
9121
9122 /* Look for a likely section. We probably won't even be
9123 using TOCstart. */
9124 for (s = obfd->sections; s != NULL; s = s->next)
9125 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9126 == (SEC_ALLOC | SEC_SMALL_DATA))
9127 break;
9128 if (s == NULL)
9129 for (s = obfd->sections; s != NULL; s = s->next)
9130 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9131 == (SEC_ALLOC | SEC_SMALL_DATA))
9132 break;
9133 if (s == NULL)
9134 for (s = obfd->sections; s != NULL; s = s->next)
9135 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9136 break;
9137 if (s == NULL)
9138 for (s = obfd->sections; s != NULL; s = s->next)
9139 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9140 break;
9141 }
9142
9143 TOCstart = 0;
9144 if (s != NULL)
9145 TOCstart = s->output_section->vma + s->output_offset;
9146
9147 return TOCstart;
9148 }
9149
9150 /* Build all the stubs associated with the current output file.
9151 The stubs are kept in a hash table attached to the main linker
9152 hash table. This function is called via gldelf64ppc_finish. */
9153
9154 bfd_boolean
9155 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9156 struct bfd_link_info *info,
9157 char **stats)
9158 {
9159 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9160 asection *stub_sec;
9161 bfd_byte *p;
9162 int stub_sec_count = 0;
9163
9164 htab->emit_stub_syms = emit_stub_syms;
9165
9166 /* Allocate memory to hold the linker stubs. */
9167 for (stub_sec = htab->stub_bfd->sections;
9168 stub_sec != NULL;
9169 stub_sec = stub_sec->next)
9170 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9171 && stub_sec->size != 0)
9172 {
9173 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9174 if (stub_sec->contents == NULL)
9175 return FALSE;
9176 /* We want to check that built size is the same as calculated
9177 size. rawsize is a convenient location to use. */
9178 stub_sec->rawsize = stub_sec->size;
9179 stub_sec->size = 0;
9180 }
9181
9182 if (htab->plt != NULL)
9183 {
9184 unsigned int indx;
9185 bfd_vma plt0;
9186
9187 /* Build the .glink plt call stub. */
9188 plt0 = (htab->plt->output_section->vma
9189 + htab->plt->output_offset
9190 - (htab->glink->output_section->vma
9191 + htab->glink->output_offset
9192 + GLINK_CALL_STUB_SIZE));
9193 if (plt0 + 0x80008000 > 0xffffffff)
9194 {
9195 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9196 bfd_set_error (bfd_error_bad_value);
9197 return FALSE;
9198 }
9199
9200 if (htab->emit_stub_syms)
9201 {
9202 struct elf_link_hash_entry *h;
9203 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9204 if (h == NULL)
9205 return FALSE;
9206 if (h->root.type == bfd_link_hash_new)
9207 {
9208 h->root.type = bfd_link_hash_defined;
9209 h->root.u.def.section = htab->glink;
9210 h->root.u.def.value = 0;
9211 h->ref_regular = 1;
9212 h->def_regular = 1;
9213 h->ref_regular_nonweak = 1;
9214 h->forced_local = 1;
9215 h->non_elf = 0;
9216 }
9217 }
9218 p = htab->glink->contents;
9219 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9220 p += 4;
9221 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9222 p += 4;
9223 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9224 p += 4;
9225 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9226 p += 4;
9227 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9228 p += 4;
9229 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9230 p += 4;
9231 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9232 p += 4;
9233 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9234 p += 4;
9235 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9236 p += 4;
9237 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9238 p += 4;
9239 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9240 p += 4;
9241 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9242 p += 4;
9243 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9244 p += 4;
9245 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9246 p += 4;
9247 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9248 p += 4;
9249 bfd_put_32 (htab->glink->owner, BCTR, p);
9250 p += 4;
9251
9252 /* Build the .glink lazy link call stubs. */
9253 indx = 0;
9254 while (p < htab->glink->contents + htab->glink->size)
9255 {
9256 if (indx < 0x8000)
9257 {
9258 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9259 p += 4;
9260 }
9261 else
9262 {
9263 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9264 p += 4;
9265 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9266 p += 4;
9267 }
9268 bfd_put_32 (htab->glink->owner,
9269 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9270 indx++;
9271 p += 4;
9272 }
9273 htab->glink->rawsize = p - htab->glink->contents;
9274 }
9275
9276 if (htab->brlt->size != 0)
9277 {
9278 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9279 htab->brlt->size);
9280 if (htab->brlt->contents == NULL)
9281 return FALSE;
9282 }
9283 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9284 {
9285 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9286 htab->relbrlt->size);
9287 if (htab->relbrlt->contents == NULL)
9288 return FALSE;
9289 }
9290
9291 /* Build the stubs as directed by the stub hash table. */
9292 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9293
9294 for (stub_sec = htab->stub_bfd->sections;
9295 stub_sec != NULL;
9296 stub_sec = stub_sec->next)
9297 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9298 {
9299 stub_sec_count += 1;
9300 if (stub_sec->rawsize != stub_sec->size)
9301 break;
9302 }
9303
9304 if (stub_sec != NULL
9305 || htab->glink->rawsize != htab->glink->size)
9306 {
9307 htab->stub_error = TRUE;
9308 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9309 }
9310
9311 if (htab->stub_error)
9312 return FALSE;
9313
9314 if (stats != NULL)
9315 {
9316 *stats = bfd_malloc (500);
9317 if (*stats == NULL)
9318 return FALSE;
9319
9320 sprintf (*stats, _("linker stubs in %u group%s\n"
9321 " branch %lu\n"
9322 " toc adjust %lu\n"
9323 " long branch %lu\n"
9324 " long toc adj %lu\n"
9325 " plt call %lu"),
9326 stub_sec_count,
9327 stub_sec_count == 1 ? "" : "s",
9328 htab->stub_count[ppc_stub_long_branch - 1],
9329 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9330 htab->stub_count[ppc_stub_plt_branch - 1],
9331 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9332 htab->stub_count[ppc_stub_plt_call - 1]);
9333 }
9334 return TRUE;
9335 }
9336
9337 /* This function undoes the changes made by add_symbol_adjust. */
9338
9339 static bfd_boolean
9340 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9341 {
9342 struct ppc_link_hash_entry *eh;
9343
9344 if (h->root.type == bfd_link_hash_indirect)
9345 return TRUE;
9346
9347 if (h->root.type == bfd_link_hash_warning)
9348 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9349
9350 eh = (struct ppc_link_hash_entry *) h;
9351 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9352 return TRUE;
9353
9354 eh->elf.root.type = bfd_link_hash_undefined;
9355 return TRUE;
9356 }
9357
9358 void
9359 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9360 {
9361 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9362 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9363 }
9364
9365 /* The RELOCATE_SECTION function is called by the ELF backend linker
9366 to handle the relocations for a section.
9367
9368 The relocs are always passed as Rela structures; if the section
9369 actually uses Rel structures, the r_addend field will always be
9370 zero.
9371
9372 This function is responsible for adjust the section contents as
9373 necessary, and (if using Rela relocs and generating a
9374 relocatable output file) adjusting the reloc addend as
9375 necessary.
9376
9377 This function does not have to worry about setting the reloc
9378 address or the reloc symbol index.
9379
9380 LOCAL_SYMS is a pointer to the swapped in local symbols.
9381
9382 LOCAL_SECTIONS is an array giving the section in the input file
9383 corresponding to the st_shndx field of each local symbol.
9384
9385 The global hash table entry for the global symbols can be found
9386 via elf_sym_hashes (input_bfd).
9387
9388 When generating relocatable output, this function must handle
9389 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9390 going to be the section symbol corresponding to the output
9391 section, which means that the addend must be adjusted
9392 accordingly. */
9393
9394 static bfd_boolean
9395 ppc64_elf_relocate_section (bfd *output_bfd,
9396 struct bfd_link_info *info,
9397 bfd *input_bfd,
9398 asection *input_section,
9399 bfd_byte *contents,
9400 Elf_Internal_Rela *relocs,
9401 Elf_Internal_Sym *local_syms,
9402 asection **local_sections)
9403 {
9404 struct ppc_link_hash_table *htab;
9405 Elf_Internal_Shdr *symtab_hdr;
9406 struct elf_link_hash_entry **sym_hashes;
9407 Elf_Internal_Rela *rel;
9408 Elf_Internal_Rela *relend;
9409 Elf_Internal_Rela outrel;
9410 bfd_byte *loc;
9411 struct got_entry **local_got_ents;
9412 bfd_vma TOCstart;
9413 bfd_boolean ret = TRUE;
9414 bfd_boolean is_opd;
9415 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9416 bfd_boolean is_power4 = FALSE;
9417
9418 if (info->relocatable)
9419 return TRUE;
9420
9421 /* Initialize howto table if needed. */
9422 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9423 ppc_howto_init ();
9424
9425 htab = ppc_hash_table (info);
9426
9427 /* Don't relocate stub sections. */
9428 if (input_section->owner == htab->stub_bfd)
9429 return TRUE;
9430
9431 local_got_ents = elf_local_got_ents (input_bfd);
9432 TOCstart = elf_gp (output_bfd);
9433 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9434 sym_hashes = elf_sym_hashes (input_bfd);
9435 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9436
9437 rel = relocs;
9438 relend = relocs + input_section->reloc_count;
9439 for (; rel < relend; rel++)
9440 {
9441 enum elf_ppc64_reloc_type r_type;
9442 bfd_vma addend;
9443 bfd_reloc_status_type r;
9444 Elf_Internal_Sym *sym;
9445 asection *sec;
9446 struct elf_link_hash_entry *h_elf;
9447 struct ppc_link_hash_entry *h;
9448 struct ppc_link_hash_entry *fdh;
9449 const char *sym_name;
9450 unsigned long r_symndx, toc_symndx;
9451 char tls_mask, tls_gd, tls_type;
9452 char sym_type;
9453 bfd_vma relocation;
9454 bfd_boolean unresolved_reloc;
9455 bfd_boolean warned;
9456 unsigned long insn, mask;
9457 struct ppc_stub_hash_entry *stub_entry;
9458 bfd_vma max_br_offset;
9459 bfd_vma from;
9460
9461 r_type = ELF64_R_TYPE (rel->r_info);
9462 r_symndx = ELF64_R_SYM (rel->r_info);
9463
9464 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9465 symbol of the previous ADDR64 reloc. The symbol gives us the
9466 proper TOC base to use. */
9467 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9468 && rel != relocs
9469 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9470 && is_opd)
9471 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9472
9473 sym = NULL;
9474 sec = NULL;
9475 h_elf = NULL;
9476 sym_name = NULL;
9477 unresolved_reloc = FALSE;
9478 warned = FALSE;
9479
9480 if (r_symndx < symtab_hdr->sh_info)
9481 {
9482 /* It's a local symbol. */
9483 long *opd_adjust;
9484
9485 sym = local_syms + r_symndx;
9486 sec = local_sections[r_symndx];
9487 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
9488 sym_type = ELF64_ST_TYPE (sym->st_info);
9489 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9490 opd_adjust = get_opd_info (sec);
9491 if (opd_adjust != NULL)
9492 {
9493 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9494 if (adjust == -1)
9495 relocation = 0;
9496 else
9497 relocation += adjust;
9498 }
9499 }
9500 else
9501 {
9502 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9503 r_symndx, symtab_hdr, sym_hashes,
9504 h_elf, sec, relocation,
9505 unresolved_reloc, warned);
9506 sym_name = h_elf->root.root.string;
9507 sym_type = h_elf->type;
9508 }
9509 h = (struct ppc_link_hash_entry *) h_elf;
9510
9511 /* TLS optimizations. Replace instruction sequences and relocs
9512 based on information we collected in tls_optimize. We edit
9513 RELOCS so that --emit-relocs will output something sensible
9514 for the final instruction stream. */
9515 tls_mask = 0;
9516 tls_gd = 0;
9517 toc_symndx = 0;
9518 if (IS_PPC64_TLS_RELOC (r_type))
9519 {
9520 if (h != NULL)
9521 tls_mask = h->tls_mask;
9522 else if (local_got_ents != NULL)
9523 {
9524 char *lgot_masks;
9525 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9526 tls_mask = lgot_masks[r_symndx];
9527 }
9528 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9529 {
9530 /* Check for toc tls entries. */
9531 char *toc_tls;
9532
9533 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9534 rel, input_bfd))
9535 return FALSE;
9536
9537 if (toc_tls)
9538 tls_mask = *toc_tls;
9539 }
9540 }
9541
9542 /* Check that tls relocs are used with tls syms, and non-tls
9543 relocs are used with non-tls syms. */
9544 if (r_symndx != 0
9545 && r_type != R_PPC64_NONE
9546 && (h == NULL
9547 || h->elf.root.type == bfd_link_hash_defined
9548 || h->elf.root.type == bfd_link_hash_defweak)
9549 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9550 {
9551 if (r_type == R_PPC64_TLS && tls_mask != 0)
9552 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9553 ;
9554 else
9555 (*_bfd_error_handler)
9556 (sym_type == STT_TLS
9557 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9558 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9559 input_bfd,
9560 input_section,
9561 (long) rel->r_offset,
9562 ppc64_elf_howto_table[r_type]->name,
9563 sym_name);
9564 }
9565
9566 /* Ensure reloc mapping code below stays sane. */
9567 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9568 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9569 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9570 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9571 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9572 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9573 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9574 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9575 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9576 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9577 abort ();
9578
9579 switch (r_type)
9580 {
9581 default:
9582 break;
9583
9584 case R_PPC64_TOC16:
9585 case R_PPC64_TOC16_LO:
9586 case R_PPC64_TOC16_DS:
9587 case R_PPC64_TOC16_LO_DS:
9588 {
9589 /* Check for toc tls entries. */
9590 char *toc_tls;
9591 int retval;
9592
9593 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9594 rel, input_bfd);
9595 if (retval == 0)
9596 return FALSE;
9597
9598 if (toc_tls)
9599 {
9600 tls_mask = *toc_tls;
9601 if (r_type == R_PPC64_TOC16_DS
9602 || r_type == R_PPC64_TOC16_LO_DS)
9603 {
9604 if (tls_mask != 0
9605 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9606 goto toctprel;
9607 }
9608 else
9609 {
9610 /* If we found a GD reloc pair, then we might be
9611 doing a GD->IE transition. */
9612 if (retval == 2)
9613 {
9614 tls_gd = TLS_TPRELGD;
9615 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9616 goto tls_get_addr_check;
9617 }
9618 else if (retval == 3)
9619 {
9620 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9621 goto tls_get_addr_check;
9622 }
9623 }
9624 }
9625 }
9626 break;
9627
9628 case R_PPC64_GOT_TPREL16_DS:
9629 case R_PPC64_GOT_TPREL16_LO_DS:
9630 if (tls_mask != 0
9631 && (tls_mask & TLS_TPREL) == 0)
9632 {
9633 toctprel:
9634 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9635 insn &= 31 << 21;
9636 insn |= 0x3c0d0000; /* addis 0,13,0 */
9637 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9638 r_type = R_PPC64_TPREL16_HA;
9639 if (toc_symndx != 0)
9640 {
9641 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9642 /* We changed the symbol. Start over in order to
9643 get h, sym, sec etc. right. */
9644 rel--;
9645 continue;
9646 }
9647 else
9648 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9649 }
9650 break;
9651
9652 case R_PPC64_TLS:
9653 if (tls_mask != 0
9654 && (tls_mask & TLS_TPREL) == 0)
9655 {
9656 bfd_vma rtra;
9657 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9658 if ((insn & ((0x3f << 26) | (31 << 11)))
9659 == ((31 << 26) | (13 << 11)))
9660 rtra = insn & ((1 << 26) - (1 << 16));
9661 else if ((insn & ((0x3f << 26) | (31 << 16)))
9662 == ((31 << 26) | (13 << 16)))
9663 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9664 else
9665 abort ();
9666 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9667 /* add -> addi. */
9668 insn = 14 << 26;
9669 else if ((insn & (31 << 1)) == 23 << 1
9670 && ((insn & (31 << 6)) < 14 << 6
9671 || ((insn & (31 << 6)) >= 16 << 6
9672 && (insn & (31 << 6)) < 24 << 6)))
9673 /* load and store indexed -> dform. */
9674 insn = (32 | ((insn >> 6) & 31)) << 26;
9675 else if ((insn & (31 << 1)) == 21 << 1
9676 && (insn & (0x1a << 6)) == 0)
9677 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9678 insn = (((58 | ((insn >> 6) & 4)) << 26)
9679 | ((insn >> 6) & 1));
9680 else if ((insn & (31 << 1)) == 21 << 1
9681 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9682 /* lwax -> lwa. */
9683 insn = (58 << 26) | 2;
9684 else
9685 abort ();
9686 insn |= rtra;
9687 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9688 /* Was PPC64_TLS which sits on insn boundary, now
9689 PPC64_TPREL16_LO which is at insn+2. */
9690 rel->r_offset += 2;
9691 r_type = R_PPC64_TPREL16_LO;
9692 if (toc_symndx != 0)
9693 {
9694 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9695 /* We changed the symbol. Start over in order to
9696 get h, sym, sec etc. right. */
9697 rel--;
9698 continue;
9699 }
9700 else
9701 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9702 }
9703 break;
9704
9705 case R_PPC64_GOT_TLSGD16_HI:
9706 case R_PPC64_GOT_TLSGD16_HA:
9707 tls_gd = TLS_TPRELGD;
9708 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9709 goto tls_gdld_hi;
9710 break;
9711
9712 case R_PPC64_GOT_TLSLD16_HI:
9713 case R_PPC64_GOT_TLSLD16_HA:
9714 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9715 {
9716 tls_gdld_hi:
9717 if ((tls_mask & tls_gd) != 0)
9718 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9719 + R_PPC64_GOT_TPREL16_DS);
9720 else
9721 {
9722 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9723 rel->r_offset -= 2;
9724 r_type = R_PPC64_NONE;
9725 }
9726 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9727 }
9728 break;
9729
9730 case R_PPC64_GOT_TLSGD16:
9731 case R_PPC64_GOT_TLSGD16_LO:
9732 tls_gd = TLS_TPRELGD;
9733 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9734 goto tls_get_addr_check;
9735 break;
9736
9737 case R_PPC64_GOT_TLSLD16:
9738 case R_PPC64_GOT_TLSLD16_LO:
9739 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9740 {
9741 tls_get_addr_check:
9742 if (rel + 1 < relend)
9743 {
9744 enum elf_ppc64_reloc_type r_type2;
9745 unsigned long r_symndx2;
9746 struct elf_link_hash_entry *h2;
9747 bfd_vma insn1, insn2, insn3;
9748 bfd_vma offset;
9749
9750 /* The next instruction should be a call to
9751 __tls_get_addr. Peek at the reloc to be sure. */
9752 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9753 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9754 if (r_symndx2 < symtab_hdr->sh_info
9755 || (r_type2 != R_PPC64_REL14
9756 && r_type2 != R_PPC64_REL14_BRTAKEN
9757 && r_type2 != R_PPC64_REL14_BRNTAKEN
9758 && r_type2 != R_PPC64_REL24))
9759 break;
9760
9761 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9762 while (h2->root.type == bfd_link_hash_indirect
9763 || h2->root.type == bfd_link_hash_warning)
9764 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9765 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9766 && h2 != &htab->tls_get_addr_fd->elf))
9767 break;
9768
9769 /* OK, it checks out. Replace the call. */
9770 offset = rel[1].r_offset;
9771 insn1 = bfd_get_32 (output_bfd,
9772 contents + rel->r_offset - 2);
9773 insn3 = bfd_get_32 (output_bfd,
9774 contents + offset + 4);
9775 if ((tls_mask & tls_gd) != 0)
9776 {
9777 /* IE */
9778 insn1 &= (1 << 26) - (1 << 2);
9779 insn1 |= 58 << 26; /* ld */
9780 insn2 = 0x7c636a14; /* add 3,3,13 */
9781 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9782 if ((tls_mask & TLS_EXPLICIT) == 0)
9783 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9784 + R_PPC64_GOT_TPREL16_DS);
9785 else
9786 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9787 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9788 }
9789 else
9790 {
9791 /* LE */
9792 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9793 insn2 = 0x38630000; /* addi 3,3,0 */
9794 if (tls_gd == 0)
9795 {
9796 /* Was an LD reloc. */
9797 r_symndx = 0;
9798 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9799 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9800 }
9801 else if (toc_symndx != 0)
9802 r_symndx = toc_symndx;
9803 r_type = R_PPC64_TPREL16_HA;
9804 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9805 rel[1].r_info = ELF64_R_INFO (r_symndx,
9806 R_PPC64_TPREL16_LO);
9807 rel[1].r_offset += 2;
9808 }
9809 if (insn3 == NOP
9810 || insn3 == CROR_151515 || insn3 == CROR_313131)
9811 {
9812 insn3 = insn2;
9813 insn2 = NOP;
9814 rel[1].r_offset += 4;
9815 }
9816 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9817 bfd_put_32 (output_bfd, insn2, contents + offset);
9818 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9819 if (tls_gd == 0 || toc_symndx != 0)
9820 {
9821 /* We changed the symbol. Start over in order
9822 to get h, sym, sec etc. right. */
9823 rel--;
9824 continue;
9825 }
9826 }
9827 }
9828 break;
9829
9830 case R_PPC64_DTPMOD64:
9831 if (rel + 1 < relend
9832 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9833 && rel[1].r_offset == rel->r_offset + 8)
9834 {
9835 if ((tls_mask & TLS_GD) == 0)
9836 {
9837 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9838 if ((tls_mask & TLS_TPRELGD) != 0)
9839 r_type = R_PPC64_TPREL64;
9840 else
9841 {
9842 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9843 r_type = R_PPC64_NONE;
9844 }
9845 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9846 }
9847 }
9848 else
9849 {
9850 if ((tls_mask & TLS_LD) == 0)
9851 {
9852 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9853 r_type = R_PPC64_NONE;
9854 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9855 }
9856 }
9857 break;
9858
9859 case R_PPC64_TPREL64:
9860 if ((tls_mask & TLS_TPREL) == 0)
9861 {
9862 r_type = R_PPC64_NONE;
9863 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9864 }
9865 break;
9866 }
9867
9868 /* Handle other relocations that tweak non-addend part of insn. */
9869 insn = 0;
9870 max_br_offset = 1 << 25;
9871 addend = rel->r_addend;
9872 switch (r_type)
9873 {
9874 default:
9875 break;
9876
9877 /* Branch taken prediction relocations. */
9878 case R_PPC64_ADDR14_BRTAKEN:
9879 case R_PPC64_REL14_BRTAKEN:
9880 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9881 /* Fall thru. */
9882
9883 /* Branch not taken prediction relocations. */
9884 case R_PPC64_ADDR14_BRNTAKEN:
9885 case R_PPC64_REL14_BRNTAKEN:
9886 insn |= bfd_get_32 (output_bfd,
9887 contents + rel->r_offset) & ~(0x01 << 21);
9888 /* Fall thru. */
9889
9890 case R_PPC64_REL14:
9891 max_br_offset = 1 << 15;
9892 /* Fall thru. */
9893
9894 case R_PPC64_REL24:
9895 /* Calls to functions with a different TOC, such as calls to
9896 shared objects, need to alter the TOC pointer. This is
9897 done using a linkage stub. A REL24 branching to these
9898 linkage stubs needs to be followed by a nop, as the nop
9899 will be replaced with an instruction to restore the TOC
9900 base pointer. */
9901 stub_entry = NULL;
9902 fdh = h;
9903 if (((h != NULL
9904 && (((fdh = h->oh) != NULL
9905 && fdh->elf.plt.plist != NULL)
9906 || (fdh = h)->elf.plt.plist != NULL))
9907 || (sec != NULL
9908 && sec->output_section != NULL
9909 && sec->id <= htab->top_id
9910 && (htab->stub_group[sec->id].toc_off
9911 != htab->stub_group[input_section->id].toc_off)))
9912 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9913 rel, htab)) != NULL
9914 && (stub_entry->stub_type == ppc_stub_plt_call
9915 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9916 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9917 {
9918 bfd_boolean can_plt_call = FALSE;
9919
9920 if (rel->r_offset + 8 <= input_section->size)
9921 {
9922 unsigned long nop;
9923 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9924 if (nop == NOP
9925 || nop == CROR_151515 || nop == CROR_313131)
9926 {
9927 bfd_put_32 (input_bfd, LD_R2_40R1,
9928 contents + rel->r_offset + 4);
9929 can_plt_call = TRUE;
9930 }
9931 }
9932
9933 if (!can_plt_call)
9934 {
9935 if (stub_entry->stub_type == ppc_stub_plt_call)
9936 {
9937 /* If this is a plain branch rather than a branch
9938 and link, don't require a nop. */
9939 unsigned long br;
9940 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9941 if ((br & 1) == 0)
9942 can_plt_call = TRUE;
9943 }
9944 else if (h != NULL
9945 && strcmp (h->elf.root.root.string,
9946 ".__libc_start_main") == 0)
9947 {
9948 /* Allow crt1 branch to go via a toc adjusting stub. */
9949 can_plt_call = TRUE;
9950 }
9951 else
9952 {
9953 if (strcmp (input_section->output_section->name,
9954 ".init") == 0
9955 || strcmp (input_section->output_section->name,
9956 ".fini") == 0)
9957 (*_bfd_error_handler)
9958 (_("%B(%A+0x%lx): automatic multiple TOCs "
9959 "not supported using your crt files; "
9960 "recompile with -mminimal-toc or upgrade gcc"),
9961 input_bfd,
9962 input_section,
9963 (long) rel->r_offset);
9964 else
9965 (*_bfd_error_handler)
9966 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9967 "does not allow automatic multiple TOCs; "
9968 "recompile with -mminimal-toc or "
9969 "-fno-optimize-sibling-calls, "
9970 "or make `%s' extern"),
9971 input_bfd,
9972 input_section,
9973 (long) rel->r_offset,
9974 sym_name,
9975 sym_name);
9976 bfd_set_error (bfd_error_bad_value);
9977 ret = FALSE;
9978 }
9979 }
9980
9981 if (can_plt_call
9982 && stub_entry->stub_type == ppc_stub_plt_call)
9983 unresolved_reloc = FALSE;
9984 }
9985
9986 if (stub_entry == NULL
9987 && get_opd_info (sec) != NULL)
9988 {
9989 /* The branch destination is the value of the opd entry. */
9990 bfd_vma off = (relocation - sec->output_section->vma
9991 - sec->output_offset + rel->r_addend);
9992 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9993 if (dest != (bfd_vma) -1)
9994 {
9995 relocation = dest;
9996 addend = 0;
9997 }
9998 }
9999
10000 /* If the branch is out of reach we ought to have a long
10001 branch stub. */
10002 from = (rel->r_offset
10003 + input_section->output_offset
10004 + input_section->output_section->vma);
10005
10006 if (stub_entry == NULL
10007 && (relocation + rel->r_addend - from + max_br_offset
10008 >= 2 * max_br_offset)
10009 && r_type != R_PPC64_ADDR14_BRTAKEN
10010 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10011 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10012 htab);
10013
10014 if (stub_entry != NULL)
10015 {
10016 /* Munge up the value and addend so that we call the stub
10017 rather than the procedure directly. */
10018 relocation = (stub_entry->stub_offset
10019 + stub_entry->stub_sec->output_offset
10020 + stub_entry->stub_sec->output_section->vma);
10021 addend = 0;
10022 }
10023
10024 if (insn != 0)
10025 {
10026 if (is_power4)
10027 {
10028 /* Set 'a' bit. This is 0b00010 in BO field for branch
10029 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10030 for branch on CTR insns (BO == 1a00t or 1a01t). */
10031 if ((insn & (0x14 << 21)) == (0x04 << 21))
10032 insn |= 0x02 << 21;
10033 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10034 insn |= 0x08 << 21;
10035 else
10036 break;
10037 }
10038 else
10039 {
10040 /* Invert 'y' bit if not the default. */
10041 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
10042 insn ^= 0x01 << 21;
10043 }
10044
10045 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10046 }
10047
10048 /* NOP out calls to undefined weak functions.
10049 We can thus call a weak function without first
10050 checking whether the function is defined. */
10051 else if (h != NULL
10052 && h->elf.root.type == bfd_link_hash_undefweak
10053 && r_type == R_PPC64_REL24
10054 && relocation == 0
10055 && rel->r_addend == 0)
10056 {
10057 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10058 continue;
10059 }
10060 break;
10061 }
10062
10063 /* Set `addend'. */
10064 tls_type = 0;
10065 switch (r_type)
10066 {
10067 default:
10068 (*_bfd_error_handler)
10069 (_("%B: unknown relocation type %d for symbol %s"),
10070 input_bfd, (int) r_type, sym_name);
10071
10072 bfd_set_error (bfd_error_bad_value);
10073 ret = FALSE;
10074 continue;
10075
10076 case R_PPC64_NONE:
10077 case R_PPC64_TLS:
10078 case R_PPC64_GNU_VTINHERIT:
10079 case R_PPC64_GNU_VTENTRY:
10080 continue;
10081
10082 /* GOT16 relocations. Like an ADDR16 using the symbol's
10083 address in the GOT as relocation value instead of the
10084 symbol's value itself. Also, create a GOT entry for the
10085 symbol and put the symbol value there. */
10086 case R_PPC64_GOT_TLSGD16:
10087 case R_PPC64_GOT_TLSGD16_LO:
10088 case R_PPC64_GOT_TLSGD16_HI:
10089 case R_PPC64_GOT_TLSGD16_HA:
10090 tls_type = TLS_TLS | TLS_GD;
10091 goto dogot;
10092
10093 case R_PPC64_GOT_TLSLD16:
10094 case R_PPC64_GOT_TLSLD16_LO:
10095 case R_PPC64_GOT_TLSLD16_HI:
10096 case R_PPC64_GOT_TLSLD16_HA:
10097 tls_type = TLS_TLS | TLS_LD;
10098 goto dogot;
10099
10100 case R_PPC64_GOT_TPREL16_DS:
10101 case R_PPC64_GOT_TPREL16_LO_DS:
10102 case R_PPC64_GOT_TPREL16_HI:
10103 case R_PPC64_GOT_TPREL16_HA:
10104 tls_type = TLS_TLS | TLS_TPREL;
10105 goto dogot;
10106
10107 case R_PPC64_GOT_DTPREL16_DS:
10108 case R_PPC64_GOT_DTPREL16_LO_DS:
10109 case R_PPC64_GOT_DTPREL16_HI:
10110 case R_PPC64_GOT_DTPREL16_HA:
10111 tls_type = TLS_TLS | TLS_DTPREL;
10112 goto dogot;
10113
10114 case R_PPC64_GOT16:
10115 case R_PPC64_GOT16_LO:
10116 case R_PPC64_GOT16_HI:
10117 case R_PPC64_GOT16_HA:
10118 case R_PPC64_GOT16_DS:
10119 case R_PPC64_GOT16_LO_DS:
10120 dogot:
10121 {
10122 /* Relocation is to the entry for this symbol in the global
10123 offset table. */
10124 asection *got;
10125 bfd_vma *offp;
10126 bfd_vma off;
10127 unsigned long indx = 0;
10128
10129 if (tls_type == (TLS_TLS | TLS_LD)
10130 && (h == NULL
10131 || !h->elf.def_dynamic))
10132 offp = &ppc64_tlsld_got (input_bfd)->offset;
10133 else
10134 {
10135 struct got_entry *ent;
10136
10137 if (h != NULL)
10138 {
10139 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10140 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10141 &h->elf)
10142 || (info->shared
10143 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10144 /* This is actually a static link, or it is a
10145 -Bsymbolic link and the symbol is defined
10146 locally, or the symbol was forced to be local
10147 because of a version file. */
10148 ;
10149 else
10150 {
10151 indx = h->elf.dynindx;
10152 unresolved_reloc = FALSE;
10153 }
10154 ent = h->elf.got.glist;
10155 }
10156 else
10157 {
10158 if (local_got_ents == NULL)
10159 abort ();
10160 ent = local_got_ents[r_symndx];
10161 }
10162
10163 for (; ent != NULL; ent = ent->next)
10164 if (ent->addend == rel->r_addend
10165 && ent->owner == input_bfd
10166 && ent->tls_type == tls_type)
10167 break;
10168 if (ent == NULL)
10169 abort ();
10170 offp = &ent->got.offset;
10171 }
10172
10173 got = ppc64_elf_tdata (input_bfd)->got;
10174 if (got == NULL)
10175 abort ();
10176
10177 /* The offset must always be a multiple of 8. We use the
10178 least significant bit to record whether we have already
10179 processed this entry. */
10180 off = *offp;
10181 if ((off & 1) != 0)
10182 off &= ~1;
10183 else
10184 {
10185 /* Generate relocs for the dynamic linker, except in
10186 the case of TLSLD where we'll use one entry per
10187 module. */
10188 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10189
10190 *offp = off | 1;
10191 if ((info->shared || indx != 0)
10192 && (h == NULL
10193 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10194 || h->elf.root.type != bfd_link_hash_undefweak))
10195 {
10196 outrel.r_offset = (got->output_section->vma
10197 + got->output_offset
10198 + off);
10199 outrel.r_addend = rel->r_addend;
10200 if (tls_type & (TLS_LD | TLS_GD))
10201 {
10202 outrel.r_addend = 0;
10203 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10204 if (tls_type == (TLS_TLS | TLS_GD))
10205 {
10206 loc = relgot->contents;
10207 loc += (relgot->reloc_count++
10208 * sizeof (Elf64_External_Rela));
10209 bfd_elf64_swap_reloca_out (output_bfd,
10210 &outrel, loc);
10211 outrel.r_offset += 8;
10212 outrel.r_addend = rel->r_addend;
10213 outrel.r_info
10214 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10215 }
10216 }
10217 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10218 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10219 else if (tls_type == (TLS_TLS | TLS_TPREL))
10220 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10221 else if (indx == 0)
10222 {
10223 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10224
10225 /* Write the .got section contents for the sake
10226 of prelink. */
10227 loc = got->contents + off;
10228 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10229 loc);
10230 }
10231 else
10232 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10233
10234 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10235 {
10236 outrel.r_addend += relocation;
10237 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10238 outrel.r_addend -= htab->elf.tls_sec->vma;
10239 }
10240 loc = relgot->contents;
10241 loc += (relgot->reloc_count++
10242 * sizeof (Elf64_External_Rela));
10243 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10244 }
10245
10246 /* Init the .got section contents here if we're not
10247 emitting a reloc. */
10248 else
10249 {
10250 relocation += rel->r_addend;
10251 if (tls_type == (TLS_TLS | TLS_LD))
10252 relocation = 1;
10253 else if (tls_type != 0)
10254 {
10255 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10256 if (tls_type == (TLS_TLS | TLS_TPREL))
10257 relocation += DTP_OFFSET - TP_OFFSET;
10258
10259 if (tls_type == (TLS_TLS | TLS_GD))
10260 {
10261 bfd_put_64 (output_bfd, relocation,
10262 got->contents + off + 8);
10263 relocation = 1;
10264 }
10265 }
10266
10267 bfd_put_64 (output_bfd, relocation,
10268 got->contents + off);
10269 }
10270 }
10271
10272 if (off >= (bfd_vma) -2)
10273 abort ();
10274
10275 relocation = got->output_offset + off;
10276
10277 /* TOC base (r2) is TOC start plus 0x8000. */
10278 addend = -TOC_BASE_OFF;
10279 }
10280 break;
10281
10282 case R_PPC64_PLT16_HA:
10283 case R_PPC64_PLT16_HI:
10284 case R_PPC64_PLT16_LO:
10285 case R_PPC64_PLT32:
10286 case R_PPC64_PLT64:
10287 /* Relocation is to the entry for this symbol in the
10288 procedure linkage table. */
10289
10290 /* Resolve a PLT reloc against a local symbol directly,
10291 without using the procedure linkage table. */
10292 if (h == NULL)
10293 break;
10294
10295 /* It's possible that we didn't make a PLT entry for this
10296 symbol. This happens when statically linking PIC code,
10297 or when using -Bsymbolic. Go find a match if there is a
10298 PLT entry. */
10299 if (htab->plt != NULL)
10300 {
10301 struct plt_entry *ent;
10302 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10303 if (ent->addend == rel->r_addend
10304 && ent->plt.offset != (bfd_vma) -1)
10305 {
10306 relocation = (htab->plt->output_section->vma
10307 + htab->plt->output_offset
10308 + ent->plt.offset);
10309 unresolved_reloc = FALSE;
10310 }
10311 }
10312 break;
10313
10314 case R_PPC64_TOC:
10315 /* Relocation value is TOC base. */
10316 relocation = TOCstart;
10317 if (r_symndx == 0)
10318 relocation += htab->stub_group[input_section->id].toc_off;
10319 else if (unresolved_reloc)
10320 ;
10321 else if (sec != NULL && sec->id <= htab->top_id)
10322 relocation += htab->stub_group[sec->id].toc_off;
10323 else
10324 unresolved_reloc = TRUE;
10325 goto dodyn2;
10326
10327 /* TOC16 relocs. We want the offset relative to the TOC base,
10328 which is the address of the start of the TOC plus 0x8000.
10329 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10330 in this order. */
10331 case R_PPC64_TOC16:
10332 case R_PPC64_TOC16_LO:
10333 case R_PPC64_TOC16_HI:
10334 case R_PPC64_TOC16_DS:
10335 case R_PPC64_TOC16_LO_DS:
10336 case R_PPC64_TOC16_HA:
10337 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10338 break;
10339
10340 /* Relocate against the beginning of the section. */
10341 case R_PPC64_SECTOFF:
10342 case R_PPC64_SECTOFF_LO:
10343 case R_PPC64_SECTOFF_HI:
10344 case R_PPC64_SECTOFF_DS:
10345 case R_PPC64_SECTOFF_LO_DS:
10346 case R_PPC64_SECTOFF_HA:
10347 if (sec != NULL)
10348 addend -= sec->output_section->vma;
10349 break;
10350
10351 case R_PPC64_REL14:
10352 case R_PPC64_REL14_BRNTAKEN:
10353 case R_PPC64_REL14_BRTAKEN:
10354 case R_PPC64_REL24:
10355 break;
10356
10357 case R_PPC64_TPREL16:
10358 case R_PPC64_TPREL16_LO:
10359 case R_PPC64_TPREL16_HI:
10360 case R_PPC64_TPREL16_HA:
10361 case R_PPC64_TPREL16_DS:
10362 case R_PPC64_TPREL16_LO_DS:
10363 case R_PPC64_TPREL16_HIGHER:
10364 case R_PPC64_TPREL16_HIGHERA:
10365 case R_PPC64_TPREL16_HIGHEST:
10366 case R_PPC64_TPREL16_HIGHESTA:
10367 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10368 if (info->shared)
10369 /* The TPREL16 relocs shouldn't really be used in shared
10370 libs as they will result in DT_TEXTREL being set, but
10371 support them anyway. */
10372 goto dodyn;
10373 break;
10374
10375 case R_PPC64_DTPREL16:
10376 case R_PPC64_DTPREL16_LO:
10377 case R_PPC64_DTPREL16_HI:
10378 case R_PPC64_DTPREL16_HA:
10379 case R_PPC64_DTPREL16_DS:
10380 case R_PPC64_DTPREL16_LO_DS:
10381 case R_PPC64_DTPREL16_HIGHER:
10382 case R_PPC64_DTPREL16_HIGHERA:
10383 case R_PPC64_DTPREL16_HIGHEST:
10384 case R_PPC64_DTPREL16_HIGHESTA:
10385 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10386 break;
10387
10388 case R_PPC64_DTPMOD64:
10389 relocation = 1;
10390 addend = 0;
10391 goto dodyn;
10392
10393 case R_PPC64_TPREL64:
10394 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10395 goto dodyn;
10396
10397 case R_PPC64_DTPREL64:
10398 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10399 /* Fall thru */
10400
10401 /* Relocations that may need to be propagated if this is a
10402 dynamic object. */
10403 case R_PPC64_REL30:
10404 case R_PPC64_REL32:
10405 case R_PPC64_REL64:
10406 case R_PPC64_ADDR14:
10407 case R_PPC64_ADDR14_BRNTAKEN:
10408 case R_PPC64_ADDR14_BRTAKEN:
10409 case R_PPC64_ADDR16:
10410 case R_PPC64_ADDR16_DS:
10411 case R_PPC64_ADDR16_HA:
10412 case R_PPC64_ADDR16_HI:
10413 case R_PPC64_ADDR16_HIGHER:
10414 case R_PPC64_ADDR16_HIGHERA:
10415 case R_PPC64_ADDR16_HIGHEST:
10416 case R_PPC64_ADDR16_HIGHESTA:
10417 case R_PPC64_ADDR16_LO:
10418 case R_PPC64_ADDR16_LO_DS:
10419 case R_PPC64_ADDR24:
10420 case R_PPC64_ADDR32:
10421 case R_PPC64_ADDR64:
10422 case R_PPC64_UADDR16:
10423 case R_PPC64_UADDR32:
10424 case R_PPC64_UADDR64:
10425 /* r_symndx will be zero only for relocs against symbols
10426 from removed linkonce sections, or sections discarded by
10427 a linker script. */
10428 dodyn:
10429 if (r_symndx == 0)
10430 break;
10431 /* Fall thru. */
10432
10433 dodyn2:
10434 if ((input_section->flags & SEC_ALLOC) == 0)
10435 break;
10436
10437 if (NO_OPD_RELOCS && is_opd)
10438 break;
10439
10440 if ((info->shared
10441 && (h == NULL
10442 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10443 || h->elf.root.type != bfd_link_hash_undefweak)
10444 && (MUST_BE_DYN_RELOC (r_type)
10445 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10446 || (ELIMINATE_COPY_RELOCS
10447 && !info->shared
10448 && h != NULL
10449 && h->elf.dynindx != -1
10450 && !h->elf.non_got_ref
10451 && h->elf.def_dynamic
10452 && !h->elf.def_regular))
10453 {
10454 Elf_Internal_Rela outrel;
10455 bfd_boolean skip, relocate;
10456 asection *sreloc;
10457 bfd_byte *loc;
10458 bfd_vma out_off;
10459
10460 /* When generating a dynamic object, these relocations
10461 are copied into the output file to be resolved at run
10462 time. */
10463
10464 skip = FALSE;
10465 relocate = FALSE;
10466
10467 out_off = _bfd_elf_section_offset (output_bfd, info,
10468 input_section, rel->r_offset);
10469 if (out_off == (bfd_vma) -1)
10470 skip = TRUE;
10471 else if (out_off == (bfd_vma) -2)
10472 skip = TRUE, relocate = TRUE;
10473 out_off += (input_section->output_section->vma
10474 + input_section->output_offset);
10475 outrel.r_offset = out_off;
10476 outrel.r_addend = rel->r_addend;
10477
10478 /* Optimize unaligned reloc use. */
10479 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10480 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10481 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10482 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10483 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10484 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10485 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10486 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10487 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10488
10489 if (skip)
10490 memset (&outrel, 0, sizeof outrel);
10491 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10492 && !is_opd
10493 && r_type != R_PPC64_TOC)
10494 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10495 else
10496 {
10497 /* This symbol is local, or marked to become local,
10498 or this is an opd section reloc which must point
10499 at a local function. */
10500 outrel.r_addend += relocation;
10501 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10502 {
10503 if (is_opd && h != NULL)
10504 {
10505 /* Lie about opd entries. This case occurs
10506 when building shared libraries and we
10507 reference a function in another shared
10508 lib. The same thing happens for a weak
10509 definition in an application that's
10510 overridden by a strong definition in a
10511 shared lib. (I believe this is a generic
10512 bug in binutils handling of weak syms.)
10513 In these cases we won't use the opd
10514 entry in this lib. */
10515 unresolved_reloc = FALSE;
10516 }
10517 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10518
10519 /* We need to relocate .opd contents for ld.so.
10520 Prelink also wants simple and consistent rules
10521 for relocs. This make all RELATIVE relocs have
10522 *r_offset equal to r_addend. */
10523 relocate = TRUE;
10524 }
10525 else
10526 {
10527 long indx = 0;
10528
10529 if (bfd_is_abs_section (sec))
10530 ;
10531 else if (sec == NULL || sec->owner == NULL)
10532 {
10533 bfd_set_error (bfd_error_bad_value);
10534 return FALSE;
10535 }
10536 else
10537 {
10538 asection *osec;
10539
10540 osec = sec->output_section;
10541 indx = elf_section_data (osec)->dynindx;
10542
10543 /* We are turning this relocation into one
10544 against a section symbol, so subtract out
10545 the output section's address but not the
10546 offset of the input section in the output
10547 section. */
10548 outrel.r_addend -= osec->vma;
10549 }
10550
10551 outrel.r_info = ELF64_R_INFO (indx, r_type);
10552 }
10553 }
10554
10555 sreloc = elf_section_data (input_section)->sreloc;
10556 if (sreloc == NULL)
10557 abort ();
10558
10559 loc = sreloc->contents;
10560 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10561 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10562
10563 /* If this reloc is against an external symbol, it will
10564 be computed at runtime, so there's no need to do
10565 anything now. However, for the sake of prelink ensure
10566 that the section contents are a known value. */
10567 if (! relocate)
10568 {
10569 unresolved_reloc = FALSE;
10570 /* The value chosen here is quite arbitrary as ld.so
10571 ignores section contents except for the special
10572 case of .opd where the contents might be accessed
10573 before relocation. Choose zero, as that won't
10574 cause reloc overflow. */
10575 relocation = 0;
10576 addend = 0;
10577 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10578 to improve backward compatibility with older
10579 versions of ld. */
10580 if (r_type == R_PPC64_ADDR64)
10581 addend = outrel.r_addend;
10582 /* Adjust pc_relative relocs to have zero in *r_offset. */
10583 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10584 addend = (input_section->output_section->vma
10585 + input_section->output_offset
10586 + rel->r_offset);
10587 }
10588 }
10589 break;
10590
10591 case R_PPC64_COPY:
10592 case R_PPC64_GLOB_DAT:
10593 case R_PPC64_JMP_SLOT:
10594 case R_PPC64_RELATIVE:
10595 /* We shouldn't ever see these dynamic relocs in relocatable
10596 files. */
10597 /* Fall through. */
10598
10599 case R_PPC64_PLTGOT16:
10600 case R_PPC64_PLTGOT16_DS:
10601 case R_PPC64_PLTGOT16_HA:
10602 case R_PPC64_PLTGOT16_HI:
10603 case R_PPC64_PLTGOT16_LO:
10604 case R_PPC64_PLTGOT16_LO_DS:
10605 case R_PPC64_PLTREL32:
10606 case R_PPC64_PLTREL64:
10607 /* These ones haven't been implemented yet. */
10608
10609 (*_bfd_error_handler)
10610 (_("%B: relocation %s is not supported for symbol %s."),
10611 input_bfd,
10612 ppc64_elf_howto_table[r_type]->name, sym_name);
10613
10614 bfd_set_error (bfd_error_invalid_operation);
10615 ret = FALSE;
10616 continue;
10617 }
10618
10619 /* Do any further special processing. */
10620 switch (r_type)
10621 {
10622 default:
10623 break;
10624
10625 case R_PPC64_ADDR16_HA:
10626 case R_PPC64_ADDR16_HIGHERA:
10627 case R_PPC64_ADDR16_HIGHESTA:
10628 case R_PPC64_GOT16_HA:
10629 case R_PPC64_PLTGOT16_HA:
10630 case R_PPC64_PLT16_HA:
10631 case R_PPC64_TOC16_HA:
10632 case R_PPC64_SECTOFF_HA:
10633 case R_PPC64_TPREL16_HA:
10634 case R_PPC64_DTPREL16_HA:
10635 case R_PPC64_GOT_TLSGD16_HA:
10636 case R_PPC64_GOT_TLSLD16_HA:
10637 case R_PPC64_GOT_TPREL16_HA:
10638 case R_PPC64_GOT_DTPREL16_HA:
10639 case R_PPC64_TPREL16_HIGHER:
10640 case R_PPC64_TPREL16_HIGHERA:
10641 case R_PPC64_TPREL16_HIGHEST:
10642 case R_PPC64_TPREL16_HIGHESTA:
10643 case R_PPC64_DTPREL16_HIGHER:
10644 case R_PPC64_DTPREL16_HIGHERA:
10645 case R_PPC64_DTPREL16_HIGHEST:
10646 case R_PPC64_DTPREL16_HIGHESTA:
10647 /* It's just possible that this symbol is a weak symbol
10648 that's not actually defined anywhere. In that case,
10649 'sec' would be NULL, and we should leave the symbol
10650 alone (it will be set to zero elsewhere in the link). */
10651 if (sec != NULL)
10652 /* Add 0x10000 if sign bit in 0:15 is set.
10653 Bits 0:15 are not used. */
10654 addend += 0x8000;
10655 break;
10656
10657 case R_PPC64_ADDR16_DS:
10658 case R_PPC64_ADDR16_LO_DS:
10659 case R_PPC64_GOT16_DS:
10660 case R_PPC64_GOT16_LO_DS:
10661 case R_PPC64_PLT16_LO_DS:
10662 case R_PPC64_SECTOFF_DS:
10663 case R_PPC64_SECTOFF_LO_DS:
10664 case R_PPC64_TOC16_DS:
10665 case R_PPC64_TOC16_LO_DS:
10666 case R_PPC64_PLTGOT16_DS:
10667 case R_PPC64_PLTGOT16_LO_DS:
10668 case R_PPC64_GOT_TPREL16_DS:
10669 case R_PPC64_GOT_TPREL16_LO_DS:
10670 case R_PPC64_GOT_DTPREL16_DS:
10671 case R_PPC64_GOT_DTPREL16_LO_DS:
10672 case R_PPC64_TPREL16_DS:
10673 case R_PPC64_TPREL16_LO_DS:
10674 case R_PPC64_DTPREL16_DS:
10675 case R_PPC64_DTPREL16_LO_DS:
10676 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10677 mask = 3;
10678 /* If this reloc is against an lq insn, then the value must be
10679 a multiple of 16. This is somewhat of a hack, but the
10680 "correct" way to do this by defining _DQ forms of all the
10681 _DS relocs bloats all reloc switches in this file. It
10682 doesn't seem to make much sense to use any of these relocs
10683 in data, so testing the insn should be safe. */
10684 if ((insn & (0x3f << 26)) == (56u << 26))
10685 mask = 15;
10686 if (((relocation + addend) & mask) != 0)
10687 {
10688 (*_bfd_error_handler)
10689 (_("%B: error: relocation %s not a multiple of %d"),
10690 input_bfd,
10691 ppc64_elf_howto_table[r_type]->name,
10692 mask + 1);
10693 bfd_set_error (bfd_error_bad_value);
10694 ret = FALSE;
10695 continue;
10696 }
10697 break;
10698 }
10699
10700 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10701 because such sections are not SEC_ALLOC and thus ld.so will
10702 not process them. */
10703 if (unresolved_reloc
10704 && !((input_section->flags & SEC_DEBUGGING) != 0
10705 && h->elf.def_dynamic))
10706 {
10707 (*_bfd_error_handler)
10708 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10709 input_bfd,
10710 input_section,
10711 (long) rel->r_offset,
10712 ppc64_elf_howto_table[(int) r_type]->name,
10713 h->elf.root.root.string);
10714 ret = FALSE;
10715 }
10716
10717 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10718 input_bfd,
10719 input_section,
10720 contents,
10721 rel->r_offset,
10722 relocation,
10723 addend);
10724
10725 if (r != bfd_reloc_ok)
10726 {
10727 if (sym_name == NULL)
10728 sym_name = "(null)";
10729 if (r == bfd_reloc_overflow)
10730 {
10731 if (warned)
10732 continue;
10733 if (h != NULL
10734 && h->elf.root.type == bfd_link_hash_undefweak
10735 && ppc64_elf_howto_table[r_type]->pc_relative)
10736 {
10737 /* Assume this is a call protected by other code that
10738 detects the symbol is undefined. If this is the case,
10739 we can safely ignore the overflow. If not, the
10740 program is hosed anyway, and a little warning isn't
10741 going to help. */
10742
10743 continue;
10744 }
10745
10746 if (!((*info->callbacks->reloc_overflow)
10747 (info, (h ? &h->elf.root : NULL), sym_name,
10748 ppc64_elf_howto_table[r_type]->name,
10749 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10750 return FALSE;
10751 }
10752 else
10753 {
10754 (*_bfd_error_handler)
10755 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10756 input_bfd,
10757 input_section,
10758 (long) rel->r_offset,
10759 ppc64_elf_howto_table[r_type]->name,
10760 sym_name,
10761 (int) r);
10762 ret = FALSE;
10763 }
10764 }
10765 }
10766
10767 /* If we're emitting relocations, then shortly after this function
10768 returns, reloc offsets and addends for this section will be
10769 adjusted. Worse, reloc symbol indices will be for the output
10770 file rather than the input. Save a copy of the relocs for
10771 opd_entry_value. */
10772 if (is_opd && info->emitrelocations)
10773 {
10774 bfd_size_type amt;
10775 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10776 rel = bfd_alloc (input_bfd, amt);
10777 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10778 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10779 if (rel == NULL)
10780 return FALSE;
10781 memcpy (rel, relocs, amt);
10782 }
10783 return ret;
10784 }
10785
10786 /* Adjust the value of any local symbols in opd sections. */
10787
10788 static bfd_boolean
10789 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10790 const char *name ATTRIBUTE_UNUSED,
10791 Elf_Internal_Sym *elfsym,
10792 asection *input_sec,
10793 struct elf_link_hash_entry *h)
10794 {
10795 long *opd_adjust, adjust;
10796 bfd_vma value;
10797
10798 if (h != NULL)
10799 return TRUE;
10800
10801 opd_adjust = get_opd_info (input_sec);
10802 if (opd_adjust == NULL)
10803 return TRUE;
10804
10805 value = elfsym->st_value - input_sec->output_offset;
10806 if (!info->relocatable)
10807 value -= input_sec->output_section->vma;
10808
10809 adjust = opd_adjust[value / 8];
10810 if (adjust == -1)
10811 elfsym->st_value = 0;
10812 else
10813 elfsym->st_value += adjust;
10814 return TRUE;
10815 }
10816
10817 /* Finish up dynamic symbol handling. We set the contents of various
10818 dynamic sections here. */
10819
10820 static bfd_boolean
10821 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10822 struct bfd_link_info *info,
10823 struct elf_link_hash_entry *h,
10824 Elf_Internal_Sym *sym)
10825 {
10826 struct ppc_link_hash_table *htab;
10827 bfd *dynobj;
10828 struct plt_entry *ent;
10829 Elf_Internal_Rela rela;
10830 bfd_byte *loc;
10831
10832 htab = ppc_hash_table (info);
10833 dynobj = htab->elf.dynobj;
10834
10835 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10836 if (ent->plt.offset != (bfd_vma) -1)
10837 {
10838 /* This symbol has an entry in the procedure linkage
10839 table. Set it up. */
10840
10841 if (htab->plt == NULL
10842 || htab->relplt == NULL
10843 || htab->glink == NULL)
10844 abort ();
10845
10846 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10847 fill in the PLT entry. */
10848 rela.r_offset = (htab->plt->output_section->vma
10849 + htab->plt->output_offset
10850 + ent->plt.offset);
10851 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10852 rela.r_addend = ent->addend;
10853
10854 loc = htab->relplt->contents;
10855 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10856 * sizeof (Elf64_External_Rela));
10857 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10858 }
10859
10860 if (h->needs_copy)
10861 {
10862 Elf_Internal_Rela rela;
10863 bfd_byte *loc;
10864
10865 /* This symbol needs a copy reloc. Set it up. */
10866
10867 if (h->dynindx == -1
10868 || (h->root.type != bfd_link_hash_defined
10869 && h->root.type != bfd_link_hash_defweak)
10870 || htab->relbss == NULL)
10871 abort ();
10872
10873 rela.r_offset = (h->root.u.def.value
10874 + h->root.u.def.section->output_section->vma
10875 + h->root.u.def.section->output_offset);
10876 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10877 rela.r_addend = 0;
10878 loc = htab->relbss->contents;
10879 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10880 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10881 }
10882
10883 /* Mark some specially defined symbols as absolute. */
10884 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10885 sym->st_shndx = SHN_ABS;
10886
10887 return TRUE;
10888 }
10889
10890 /* Used to decide how to sort relocs in an optimal manner for the
10891 dynamic linker, before writing them out. */
10892
10893 static enum elf_reloc_type_class
10894 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10895 {
10896 enum elf_ppc64_reloc_type r_type;
10897
10898 r_type = ELF64_R_TYPE (rela->r_info);
10899 switch (r_type)
10900 {
10901 case R_PPC64_RELATIVE:
10902 return reloc_class_relative;
10903 case R_PPC64_JMP_SLOT:
10904 return reloc_class_plt;
10905 case R_PPC64_COPY:
10906 return reloc_class_copy;
10907 default:
10908 return reloc_class_normal;
10909 }
10910 }
10911
10912 /* Finish up the dynamic sections. */
10913
10914 static bfd_boolean
10915 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10916 struct bfd_link_info *info)
10917 {
10918 struct ppc_link_hash_table *htab;
10919 bfd *dynobj;
10920 asection *sdyn;
10921
10922 htab = ppc_hash_table (info);
10923 dynobj = htab->elf.dynobj;
10924 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10925
10926 if (htab->elf.dynamic_sections_created)
10927 {
10928 Elf64_External_Dyn *dyncon, *dynconend;
10929
10930 if (sdyn == NULL || htab->got == NULL)
10931 abort ();
10932
10933 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10934 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10935 for (; dyncon < dynconend; dyncon++)
10936 {
10937 Elf_Internal_Dyn dyn;
10938 asection *s;
10939
10940 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10941
10942 switch (dyn.d_tag)
10943 {
10944 default:
10945 continue;
10946
10947 case DT_PPC64_GLINK:
10948 s = htab->glink;
10949 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10950 /* We stupidly defined DT_PPC64_GLINK to be the start
10951 of glink rather than the first entry point, which is
10952 what ld.so needs, and now have a bigger stub to
10953 support automatic multiple TOCs. */
10954 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10955 break;
10956
10957 case DT_PPC64_OPD:
10958 s = bfd_get_section_by_name (output_bfd, ".opd");
10959 if (s == NULL)
10960 continue;
10961 dyn.d_un.d_ptr = s->vma;
10962 break;
10963
10964 case DT_PPC64_OPDSZ:
10965 s = bfd_get_section_by_name (output_bfd, ".opd");
10966 if (s == NULL)
10967 continue;
10968 dyn.d_un.d_val = s->size;
10969 break;
10970
10971 case DT_PLTGOT:
10972 s = htab->plt;
10973 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10974 break;
10975
10976 case DT_JMPREL:
10977 s = htab->relplt;
10978 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10979 break;
10980
10981 case DT_PLTRELSZ:
10982 dyn.d_un.d_val = htab->relplt->size;
10983 break;
10984
10985 case DT_RELASZ:
10986 /* Don't count procedure linkage table relocs in the
10987 overall reloc count. */
10988 s = htab->relplt;
10989 if (s == NULL)
10990 continue;
10991 dyn.d_un.d_val -= s->size;
10992 break;
10993
10994 case DT_RELA:
10995 /* We may not be using the standard ELF linker script.
10996 If .rela.plt is the first .rela section, we adjust
10997 DT_RELA to not include it. */
10998 s = htab->relplt;
10999 if (s == NULL)
11000 continue;
11001 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11002 continue;
11003 dyn.d_un.d_ptr += s->size;
11004 break;
11005 }
11006
11007 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11008 }
11009 }
11010
11011 if (htab->got != NULL && htab->got->size != 0)
11012 {
11013 /* Fill in the first entry in the global offset table.
11014 We use it to hold the link-time TOCbase. */
11015 bfd_put_64 (output_bfd,
11016 elf_gp (output_bfd) + TOC_BASE_OFF,
11017 htab->got->contents);
11018
11019 /* Set .got entry size. */
11020 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11021 }
11022
11023 if (htab->plt != NULL && htab->plt->size != 0)
11024 {
11025 /* Set .plt entry size. */
11026 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11027 = PLT_ENTRY_SIZE;
11028 }
11029
11030 /* We need to handle writing out multiple GOT sections ourselves,
11031 since we didn't add them to DYNOBJ. We know dynobj is the first
11032 bfd. */
11033 while ((dynobj = dynobj->link_next) != NULL)
11034 {
11035 asection *s;
11036
11037 if (!is_ppc64_elf_target (dynobj->xvec))
11038 continue;
11039
11040 s = ppc64_elf_tdata (dynobj)->got;
11041 if (s != NULL
11042 && s->size != 0
11043 && s->output_section != bfd_abs_section_ptr
11044 && !bfd_set_section_contents (output_bfd, s->output_section,
11045 s->contents, s->output_offset,
11046 s->size))
11047 return FALSE;
11048 s = ppc64_elf_tdata (dynobj)->relgot;
11049 if (s != NULL
11050 && s->size != 0
11051 && s->output_section != bfd_abs_section_ptr
11052 && !bfd_set_section_contents (output_bfd, s->output_section,
11053 s->contents, s->output_offset,
11054 s->size))
11055 return FALSE;
11056 }
11057
11058 return TRUE;
11059 }
11060
11061 #include "elf64-target.h"
This page took 0.385091 seconds and 5 git commands to generate.