PowerPC64 segfault in ppc64_elf_edit_toc
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_prefix_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
57 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
58 static bfd_vma opd_entry_value
59 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
60
61 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
62 #define TARGET_LITTLE_NAME "elf64-powerpcle"
63 #define TARGET_BIG_SYM powerpc_elf64_vec
64 #define TARGET_BIG_NAME "elf64-powerpc"
65 #define ELF_ARCH bfd_arch_powerpc
66 #define ELF_TARGET_ID PPC64_ELF_DATA
67 #define ELF_MACHINE_CODE EM_PPC64
68 #define ELF_MAXPAGESIZE 0x10000
69 #define ELF_COMMONPAGESIZE 0x1000
70 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
71 #define elf_info_to_howto ppc64_elf_info_to_howto
72
73 #define elf_backend_want_got_sym 0
74 #define elf_backend_want_plt_sym 0
75 #define elf_backend_plt_alignment 3
76 #define elf_backend_plt_not_loaded 1
77 #define elf_backend_got_header_size 8
78 #define elf_backend_want_dynrelro 1
79 #define elf_backend_can_gc_sections 1
80 #define elf_backend_can_refcount 1
81 #define elf_backend_rela_normal 1
82 #define elf_backend_dtrel_excludes_plt 1
83 #define elf_backend_default_execstack 0
84
85 #define bfd_elf64_mkobject ppc64_elf_mkobject
86 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
87 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
88 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
89 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
90 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
91 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
92 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
93 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
94 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
95
96 #define elf_backend_object_p ppc64_elf_object_p
97 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
98 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
99 #define elf_backend_write_core_note ppc64_elf_write_core_note
100 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
101 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
102 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
103 #define elf_backend_check_directives ppc64_elf_before_check_relocs
104 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
105 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
106 #define elf_backend_check_relocs ppc64_elf_check_relocs
107 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
108 #define elf_backend_gc_keep ppc64_elf_gc_keep
109 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
110 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
111 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
112 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
113 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
114 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
115 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
116 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
117 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
118 #define elf_backend_action_discarded ppc64_elf_action_discarded
119 #define elf_backend_relocate_section ppc64_elf_relocate_section
120 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
121 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
122 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
123 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
124 #define elf_backend_special_sections ppc64_elf_special_sections
125 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
126 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
127 #define elf_backend_get_reloc_section bfd_get_section_by_name
128
129 /* The name of the dynamic interpreter. This is put in the .interp
130 section. */
131 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
132
133 /* The size in bytes of an entry in the procedure linkage table. */
134 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
135 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
136
137 /* The initial size of the plt reserved for the dynamic linker. */
138 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
139
140 /* Offsets to some stack save slots. */
141 #define STK_LR 16
142 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
143 /* This one is dodgy. ELFv2 does not have a linker word, so use the
144 CR save slot. Used only by optimised __tls_get_addr call stub,
145 relying on __tls_get_addr_opt not saving CR.. */
146 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
147
148 /* TOC base pointers offset from start of TOC. */
149 #define TOC_BASE_OFF 0x8000
150 /* TOC base alignment. */
151 #define TOC_BASE_ALIGN 256
152
153 /* Offset of tp and dtp pointers from start of TLS block. */
154 #define TP_OFFSET 0x7000
155 #define DTP_OFFSET 0x8000
156
157 /* .plt call stub instructions. The normal stub is like this, but
158 sometimes the .plt entry crosses a 64k boundary and we need to
159 insert an addi to adjust r11. */
160 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
161 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
162 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
163 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
164 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
165 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
166 #define BCTR 0x4e800420 /* bctr */
167
168 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
169 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
170 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
171 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
172 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
173
174 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
175 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
176 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
177 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
178 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
179 #define BNECTR 0x4ca20420 /* bnectr+ */
180 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
181
182 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
183 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
184 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
185
186 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
187 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
188 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
189
190 #define LI_R11_0 0x39600000 /* li %r11,0 */
191 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
192 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
193 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
194 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
195 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
196 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
197 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
198 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
199 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
200 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
201 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
202 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
203 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
204 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
205 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
206 #define PADDI_R12_PC 0x0610000039800000ULL
207 #define PLD_R12_PC 0x04100000e5800000ULL
208 #define PNOP 0x0700000000000000ULL
209
210 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
211 #define GLINK_PLTRESOLVE_SIZE(htab) \
212 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
213 /* 0: */
214 /* .quad plt0-1f */
215 /* __glink: */
216 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
217 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
218 /* 1: */
219 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
220 /* ld %2,(0b-1b)(%11) */
221 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
222 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
223 /* ld %12,0(%11) */
224 /* ld %2,8(%11) */
225 /* mtctr %12 */
226 /* ld %11,16(%11) */
227 /* bctr */
228 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
229 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
230 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
231 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
232 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
233
234 /* Pad with this. */
235 #define NOP 0x60000000
236
237 /* Some other nops. */
238 #define CROR_151515 0x4def7b82
239 #define CROR_313131 0x4ffffb82
240
241 /* .glink entries for the first 32k functions are two instructions. */
242 #define LI_R0_0 0x38000000 /* li %r0,0 */
243 #define B_DOT 0x48000000 /* b . */
244
245 /* After that, we need two instructions to load the index, followed by
246 a branch. */
247 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
248 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
249
250 /* Instructions used by the save and restore reg functions. */
251 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
252 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
253 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
254 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
255 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
256 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
257 #define LI_R12_0 0x39800000 /* li %r12,0 */
258 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
259 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
260 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
261 #define BLR 0x4e800020 /* blr */
262
263 /* Since .opd is an array of descriptors and each entry will end up
264 with identical R_PPC64_RELATIVE relocs, there is really no need to
265 propagate .opd relocs; The dynamic linker should be taught to
266 relocate .opd without reloc entries. */
267 #ifndef NO_OPD_RELOCS
268 #define NO_OPD_RELOCS 0
269 #endif
270
271 #ifndef ARRAY_SIZE
272 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
273 #endif
274
275 static inline int
276 abiversion (bfd *abfd)
277 {
278 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
279 }
280
281 static inline void
282 set_abiversion (bfd *abfd, int ver)
283 {
284 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
285 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
286 }
287 \f
288 /* Relocation HOWTO's. */
289 /* Like other ELF RELA targets that don't apply multiple
290 field-altering relocations to the same localation, src_mask is
291 always zero and pcrel_offset is the same as pc_relative.
292 PowerPC can always use a zero bitpos, even when the field is not at
293 the LSB. For example, a REL24 could use rightshift=2, bisize=24
294 and bitpos=2 which matches the ABI description, or as we do here,
295 rightshift=0, bitsize=26 and bitpos=0. */
296 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
297 complain, special_func) \
298 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
299 complain_overflow_ ## complain, special_func, \
300 #type, FALSE, 0, mask, pc_relative)
301
302 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
303
304 static reloc_howto_type ppc64_elf_howto_raw[] =
305 {
306 /* This reloc does nothing. */
307 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
308 bfd_elf_generic_reloc),
309
310 /* A standard 32 bit relocation. */
311 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
312 bfd_elf_generic_reloc),
313
314 /* An absolute 26 bit branch; the lower two bits must be zero.
315 FIXME: we don't check that, we just clear them. */
316 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
317 bfd_elf_generic_reloc),
318
319 /* A standard 16 bit relocation. */
320 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A 16 bit relocation without overflow. */
324 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
325 bfd_elf_generic_reloc),
326
327 /* Bits 16-31 of an address. */
328 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
332 bits, treated as a signed number, is negative. */
333 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
334 ppc64_elf_ha_reloc),
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
339 ppc64_elf_branch_reloc),
340
341 /* An absolute 16 bit branch, for which bit 10 should be set to
342 indicate that the branch is expected to be taken. The lower two
343 bits must be zero. */
344 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
345 ppc64_elf_brtaken_reloc),
346
347 /* An absolute 16 bit branch, for which bit 10 should be set to
348 indicate that the branch is not expected to be taken. The lower
349 two bits must be zero. */
350 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
351 ppc64_elf_brtaken_reloc),
352
353 /* A relative 26 bit branch; the lower two bits must be zero. */
354 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
355 ppc64_elf_branch_reloc),
356
357 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
358 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A relative 16 bit branch; the lower two bits must be zero. */
362 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch. Bit 10 should be set to indicate that
366 the branch is expected to be taken. The lower two bits must be
367 zero. */
368 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
369 ppc64_elf_brtaken_reloc),
370
371 /* A relative 16 bit branch. Bit 10 should be set to indicate that
372 the branch is not expected to be taken. The lower two bits must
373 be zero. */
374 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
375 ppc64_elf_brtaken_reloc),
376
377 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
378 symbol. */
379 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
380 ppc64_elf_unhandled_reloc),
381
382 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
383 the symbol. */
384 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
385 ppc64_elf_unhandled_reloc),
386
387 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
388 the symbol. */
389 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
390 ppc64_elf_unhandled_reloc),
391
392 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
393 the symbol. */
394 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
395 ppc64_elf_unhandled_reloc),
396
397 /* This is used only by the dynamic linker. The symbol should exist
398 both in the object being run and in some shared library. The
399 dynamic linker copies the data addressed by the symbol from the
400 shared library into the object, because the object being
401 run has to have the data at some particular address. */
402 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
403 ppc64_elf_unhandled_reloc),
404
405 /* Like R_PPC64_ADDR64, but used when setting global offset table
406 entries. */
407 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
408 ppc64_elf_unhandled_reloc),
409
410 /* Created by the link editor. Marks a procedure linkage table
411 entry for a symbol. */
412 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
413 ppc64_elf_unhandled_reloc),
414
415 /* Used only by the dynamic linker. When the object is run, this
416 doubleword64 is set to the load address of the object, plus the
417 addend. */
418 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
419 bfd_elf_generic_reloc),
420
421 /* Like R_PPC64_ADDR32, but may be unaligned. */
422 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR16, but may be unaligned. */
426 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* 32-bit PC relative. */
430 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit relocation to the symbol's procedure linkage table. */
434 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
435 ppc64_elf_unhandled_reloc),
436
437 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
438 FIXME: R_PPC64_PLTREL32 not supported. */
439 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
440 ppc64_elf_unhandled_reloc),
441
442 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
443 the symbol. */
444 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
445 ppc64_elf_unhandled_reloc),
446
447 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
448 the symbol. */
449 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
450 ppc64_elf_unhandled_reloc),
451
452 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
453 the symbol. */
454 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
455 ppc64_elf_unhandled_reloc),
456
457 /* 16-bit section relative relocation. */
458 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
459 ppc64_elf_sectoff_reloc),
460
461 /* Like R_PPC64_SECTOFF, but no overflow warning. */
462 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
463 ppc64_elf_sectoff_reloc),
464
465 /* 16-bit upper half section relative relocation. */
466 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half adjusted section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_ha_reloc),
472
473 /* Like R_PPC64_REL24 without touching the two least significant bits. */
474 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
475 bfd_elf_generic_reloc),
476
477 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
478
479 /* A standard 64-bit relocation. */
480 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
481 bfd_elf_generic_reloc),
482
483 /* The bits 32-47 of an address. */
484 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address, plus 1 if the contents of the low
488 16 bits, treated as a signed number, is negative. */
489 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
490 ppc64_elf_ha_reloc),
491
492 /* The bits 48-63 of an address. */
493 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
494 bfd_elf_generic_reloc),
495
496 /* The bits 48-63 of an address, plus 1 if the contents of the low
497 16 bits, treated as a signed number, is negative. */
498 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
499 ppc64_elf_ha_reloc),
500
501 /* Like ADDR64, but may be unaligned. */
502 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
503 bfd_elf_generic_reloc),
504
505 /* 64-bit relative relocation. */
506 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relocation to the symbol's procedure linkage table. */
510 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
511 ppc64_elf_unhandled_reloc),
512
513 /* 64-bit PC relative relocation to the symbol's procedure linkage
514 table. */
515 /* FIXME: R_PPC64_PLTREL64 not supported. */
516 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
517 ppc64_elf_unhandled_reloc),
518
519 /* 16 bit TOC-relative relocation. */
520 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
521 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
522 ppc64_elf_toc_reloc),
523
524 /* 16 bit TOC-relative relocation without overflow. */
525 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
526 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
527 ppc64_elf_toc_reloc),
528
529 /* 16 bit TOC-relative relocation, high 16 bits. */
530 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
531 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
532 ppc64_elf_toc_reloc),
533
534 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
535 contents of the low 16 bits, treated as a signed number, is
536 negative. */
537 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
538 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
539 ppc64_elf_toc_ha_reloc),
540
541 /* 64-bit relocation; insert value of TOC base (.TOC.). */
542 /* R_PPC64_TOC 51 doubleword64 .TOC. */
543 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
544 ppc64_elf_toc64_reloc),
545
546 /* Like R_PPC64_GOT16, but also informs the link editor that the
547 value to relocate may (!) refer to a PLT entry which the link
548 editor (a) may replace with the symbol value. If the link editor
549 is unable to fully resolve the symbol, it may (b) create a PLT
550 entry and store the address to the new PLT entry in the GOT.
551 This permits lazy resolution of function symbols at run time.
552 The link editor may also skip all of this and just (c) emit a
553 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
554 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
555 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
556 ppc64_elf_unhandled_reloc),
557
558 /* Like R_PPC64_PLTGOT16, but without overflow. */
559 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
560 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
561 ppc64_elf_unhandled_reloc),
562
563 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
564 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
565 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
566 ppc64_elf_unhandled_reloc),
567
568 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
569 1 if the contents of the low 16 bits, treated as a signed number,
570 is negative. */
571 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
572 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
573 ppc64_elf_unhandled_reloc),
574
575 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
576 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
577 bfd_elf_generic_reloc),
578
579 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
584 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
585 ppc64_elf_unhandled_reloc),
586
587 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
596 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
597 ppc64_elf_sectoff_reloc),
598
599 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
604 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
605 ppc64_elf_toc_reloc),
606
607 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
612 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
613 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
614 ppc64_elf_unhandled_reloc),
615
616 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
617 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
618 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
619 ppc64_elf_unhandled_reloc),
620
621 /* Marker relocs for TLS. */
622 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
623 bfd_elf_generic_reloc),
624
625 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
626 bfd_elf_generic_reloc),
627
628 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
629 bfd_elf_generic_reloc),
630
631 /* Marker reloc for optimizing r2 save in prologue rather than on
632 each plt call stub. */
633 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
634 bfd_elf_generic_reloc),
635
636 /* Marker relocs on inline plt call instructions. */
637 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
641 bfd_elf_generic_reloc),
642
643 /* Computes the load module index of the load module that contains the
644 definition of its TLS sym. */
645 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
646 ppc64_elf_unhandled_reloc),
647
648 /* Computes a dtv-relative displacement, the difference between the value
649 of sym+add and the base address of the thread-local storage block that
650 contains the definition of sym, minus 0x8000. */
651 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
652 ppc64_elf_unhandled_reloc),
653
654 /* A 16 bit dtprel reloc. */
655 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
656 ppc64_elf_unhandled_reloc),
657
658 /* Like DTPREL16, but no overflow. */
659 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16_LO, but next higher group of 16 bits. */
663 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_HI, but adjust for low 16 bits. */
667 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but next higher group of 16 bits. */
671 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16, but for insns with a DS field. */
687 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16_DS, but no overflow. */
691 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
692 ppc64_elf_unhandled_reloc),
693
694 /* Computes a tp-relative displacement, the difference between the value of
695 sym+add and the value of the thread pointer (r13). */
696 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
697 ppc64_elf_unhandled_reloc),
698
699 /* A 16 bit tprel reloc. */
700 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
701 ppc64_elf_unhandled_reloc),
702
703 /* Like TPREL16, but no overflow. */
704 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16_LO, but next higher group of 16 bits. */
708 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_HI, but adjust for low 16 bits. */
712 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but next higher group of 16 bits. */
716 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16, but for insns with a DS field. */
732 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16_DS, but no overflow. */
736 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
737 ppc64_elf_unhandled_reloc),
738
739 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
740 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
741 to the first entry relative to the TOC base (r2). */
742 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
743 ppc64_elf_unhandled_reloc),
744
745 /* Like GOT_TLSGD16, but no overflow. */
746 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
750 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
758 with values (sym+add)@dtpmod and zero, and computes the offset to the
759 first entry relative to the TOC base (r2). */
760 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
761 ppc64_elf_unhandled_reloc),
762
763 /* Like GOT_TLSLD16, but no overflow. */
764 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
768 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
776 the offset to the entry relative to the TOC base (r2). */
777 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
778 ppc64_elf_unhandled_reloc),
779
780 /* Like GOT_DTPREL16_DS, but no overflow. */
781 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
785 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
793 offset to the entry relative to the TOC base (r2). */
794 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
795 ppc64_elf_unhandled_reloc),
796
797 /* Like GOT_TPREL16_DS, but no overflow. */
798 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
802 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
810 ppc64_elf_unhandled_reloc),
811
812 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
813 bfd_elf_generic_reloc),
814
815 /* A 16 bit relative relocation. */
816 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation without overflow. */
820 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
821 bfd_elf_generic_reloc),
822
823 /* The high order 16 bits of a relative address. */
824 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address, plus 1 if the contents of
828 the low 16 bits, treated as a signed number, is negative. */
829 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
830 ppc64_elf_ha_reloc),
831
832 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
833 bfd_elf_generic_reloc),
834
835 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
836 ppc64_elf_ha_reloc),
837
838 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
839 bfd_elf_generic_reloc),
840
841 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
842 ppc64_elf_ha_reloc),
843
844 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
845 bfd_elf_generic_reloc),
846
847 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
848 ppc64_elf_ha_reloc),
849
850 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
851 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
852 ppc64_elf_ha_reloc),
853
854 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
855 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* Like R_PPC64_ADDR16_HI, but no overflow. */
859 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
860 bfd_elf_generic_reloc),
861
862 /* Like R_PPC64_ADDR16_HA, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
864 ppc64_elf_ha_reloc),
865
866 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
867 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_unhandled_reloc),
869
870 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_TPREL16_HI, but no overflow. */
875 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HA, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Marker reloc on ELFv2 large-model function entry. */
883 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
884 bfd_elf_generic_reloc),
885
886 /* Like ADDR64, but use local entry point of function. */
887 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
891 bfd_elf_generic_reloc),
892
893 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
894 bfd_elf_generic_reloc),
895
896 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
897 bfd_elf_generic_reloc),
898
899 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
900 ppc64_elf_prefix_reloc),
901
902 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
903 ppc64_elf_prefix_reloc),
904
905 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
906 ppc64_elf_prefix_reloc),
907
908 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
909 ppc64_elf_prefix_reloc),
910
911 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
912 ppc64_elf_prefix_reloc),
913
914 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
915 ppc64_elf_unhandled_reloc),
916
917 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
918 ppc64_elf_unhandled_reloc),
919
920 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
921 ppc64_elf_unhandled_reloc),
922
923 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
924 ppc64_elf_unhandled_reloc),
925
926 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
927 ppc64_elf_unhandled_reloc),
928
929 HOW (R_PPC64_GOT_TLSGD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
930 ppc64_elf_unhandled_reloc),
931
932 HOW (R_PPC64_GOT_TLSLD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
933 ppc64_elf_unhandled_reloc),
934
935 HOW (R_PPC64_GOT_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
936 ppc64_elf_unhandled_reloc),
937
938 HOW (R_PPC64_GOT_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
939 ppc64_elf_unhandled_reloc),
940
941 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
942 bfd_elf_generic_reloc),
943
944 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
945 ppc64_elf_ha_reloc),
946
947 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
948 bfd_elf_generic_reloc),
949
950 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
951 ppc64_elf_ha_reloc),
952
953 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
954 bfd_elf_generic_reloc),
955
956 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
957 ppc64_elf_ha_reloc),
958
959 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
960 bfd_elf_generic_reloc),
961
962 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
963 ppc64_elf_ha_reloc),
964
965 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
966 ppc64_elf_prefix_reloc),
967
968 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
969 ppc64_elf_prefix_reloc),
970
971 /* GNU extension to record C++ vtable hierarchy. */
972 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
973 NULL),
974
975 /* GNU extension to record C++ vtable member usage. */
976 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978 };
979
980 \f
981 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
982 be done. */
983
984 static void
985 ppc_howto_init (void)
986 {
987 unsigned int i, type;
988
989 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
990 {
991 type = ppc64_elf_howto_raw[i].type;
992 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
993 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
994 }
995 }
996
997 static reloc_howto_type *
998 ppc64_elf_reloc_type_lookup (bfd *abfd,
999 bfd_reloc_code_real_type code)
1000 {
1001 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1002
1003 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1004 /* Initialize howto table if needed. */
1005 ppc_howto_init ();
1006
1007 switch (code)
1008 {
1009 default:
1010 /* xgettext:c-format */
1011 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1012 (int) code);
1013 bfd_set_error (bfd_error_bad_value);
1014 return NULL;
1015
1016 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1017 break;
1018 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1019 break;
1020 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1021 break;
1022 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1023 break;
1024 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1025 break;
1026 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1027 break;
1028 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1029 break;
1030 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1031 break;
1032 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1033 break;
1034 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1035 break;
1036 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1037 break;
1038 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1039 break;
1040 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1041 break;
1042 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1043 break;
1044 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1045 break;
1046 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1047 break;
1048 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1049 break;
1050 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1051 break;
1052 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1053 break;
1054 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1055 break;
1056 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1057 break;
1058 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1059 break;
1060 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1061 break;
1062 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1063 break;
1064 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1065 break;
1066 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1067 break;
1068 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1069 break;
1070 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1071 break;
1072 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1073 break;
1074 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1075 break;
1076 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1077 break;
1078 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1079 break;
1080 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1081 break;
1082 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1083 break;
1084 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1085 break;
1086 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1087 break;
1088 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1089 break;
1090 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1091 break;
1092 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1093 break;
1094 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1095 break;
1096 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1097 break;
1098 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1099 break;
1100 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1101 break;
1102 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1103 break;
1104 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1105 break;
1106 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1107 break;
1108 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1109 break;
1110 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1111 break;
1112 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1113 break;
1114 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1115 break;
1116 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1117 break;
1118 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1119 break;
1120 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1121 break;
1122 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1123 break;
1124 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1125 break;
1126 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1127 break;
1128 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1129 break;
1130 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1131 break;
1132 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1133 break;
1134 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1135 break;
1136 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1137 break;
1138 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1139 break;
1140 case BFD_RELOC_PPC64_TLS_PCREL:
1141 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1142 break;
1143 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1144 break;
1145 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1146 break;
1147 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1148 break;
1149 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1150 break;
1151 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1152 break;
1153 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1154 break;
1155 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1156 break;
1157 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1158 break;
1159 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1160 break;
1161 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1162 break;
1163 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1164 break;
1165 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1166 break;
1167 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1168 break;
1169 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1170 break;
1171 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1172 break;
1173 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1174 break;
1175 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1176 break;
1177 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1178 break;
1179 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1180 break;
1181 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1182 break;
1183 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1184 break;
1185 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1186 break;
1187 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1188 break;
1189 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1190 break;
1191 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1192 break;
1193 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1194 break;
1195 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1196 break;
1197 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1198 break;
1199 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1200 break;
1201 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1202 break;
1203 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1204 break;
1205 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1206 break;
1207 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1208 break;
1209 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1210 break;
1211 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1212 break;
1213 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1214 break;
1215 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1216 break;
1217 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1218 break;
1219 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1220 break;
1221 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1222 break;
1223 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1224 break;
1225 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1226 break;
1227 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1228 break;
1229 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1230 break;
1231 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1232 break;
1233 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1234 break;
1235 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1236 break;
1237 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1238 break;
1239 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1240 break;
1241 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1242 break;
1243 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1244 break;
1245 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1246 break;
1247 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1248 break;
1249 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1250 break;
1251 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1252 break;
1253 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1254 break;
1255 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1256 break;
1257 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1258 break;
1259 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1260 break;
1261 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1262 break;
1263 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1264 break;
1265 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1266 break;
1267 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1268 break;
1269 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1270 break;
1271 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1272 break;
1273 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1274 break;
1275 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1276 break;
1277 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1278 break;
1279 case BFD_RELOC_PPC64_GOT_TLSGD34: r = R_PPC64_GOT_TLSGD34;
1280 break;
1281 case BFD_RELOC_PPC64_GOT_TLSLD34: r = R_PPC64_GOT_TLSLD34;
1282 break;
1283 case BFD_RELOC_PPC64_GOT_TPREL34: r = R_PPC64_GOT_TPREL34;
1284 break;
1285 case BFD_RELOC_PPC64_GOT_DTPREL34: r = R_PPC64_GOT_DTPREL34;
1286 break;
1287 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1288 break;
1289 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1290 break;
1291 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1292 break;
1293 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1294 break;
1295 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1296 break;
1297 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1298 break;
1299 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1300 break;
1301 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1302 break;
1303 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1304 break;
1305 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1306 break;
1307 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1308 break;
1309 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1310 break;
1311 }
1312
1313 return ppc64_elf_howto_table[r];
1314 };
1315
1316 static reloc_howto_type *
1317 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1318 const char *r_name)
1319 {
1320 unsigned int i;
1321
1322 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1323 if (ppc64_elf_howto_raw[i].name != NULL
1324 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1325 return &ppc64_elf_howto_raw[i];
1326
1327 return NULL;
1328 }
1329
1330 /* Set the howto pointer for a PowerPC ELF reloc. */
1331
1332 static bfd_boolean
1333 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1334 Elf_Internal_Rela *dst)
1335 {
1336 unsigned int type;
1337
1338 /* Initialize howto table if needed. */
1339 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1340 ppc_howto_init ();
1341
1342 type = ELF64_R_TYPE (dst->r_info);
1343 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1344 {
1345 /* xgettext:c-format */
1346 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1347 abfd, type);
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351 cache_ptr->howto = ppc64_elf_howto_table[type];
1352 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1353 {
1354 /* xgettext:c-format */
1355 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1356 abfd, type);
1357 bfd_set_error (bfd_error_bad_value);
1358 return FALSE;
1359 }
1360
1361 return TRUE;
1362 }
1363
1364 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1365
1366 static bfd_reloc_status_type
1367 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1368 void *data, asection *input_section,
1369 bfd *output_bfd, char **error_message)
1370 {
1371 enum elf_ppc64_reloc_type r_type;
1372 long insn;
1373 bfd_size_type octets;
1374 bfd_vma value;
1375
1376 /* If this is a relocatable link (output_bfd test tells us), just
1377 call the generic function. Any adjustment will be done at final
1378 link time. */
1379 if (output_bfd != NULL)
1380 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1381 input_section, output_bfd, error_message);
1382
1383 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1384 We won't actually be using the low bits, so trashing them
1385 doesn't matter. */
1386 r_type = reloc_entry->howto->type;
1387 if (r_type == R_PPC64_ADDR16_HIGHERA34
1388 || r_type == R_PPC64_ADDR16_HIGHESTA34
1389 || r_type == R_PPC64_REL16_HIGHERA34
1390 || r_type == R_PPC64_REL16_HIGHESTA34)
1391 reloc_entry->addend += 1ULL << 33;
1392 else
1393 reloc_entry->addend += 1U << 15;
1394 if (r_type != R_PPC64_REL16DX_HA)
1395 return bfd_reloc_continue;
1396
1397 value = 0;
1398 if (!bfd_is_com_section (symbol->section))
1399 value = symbol->value;
1400 value += (reloc_entry->addend
1401 + symbol->section->output_offset
1402 + symbol->section->output_section->vma);
1403 value -= (reloc_entry->address
1404 + input_section->output_offset
1405 + input_section->output_section->vma);
1406 value = (bfd_signed_vma) value >> 16;
1407
1408 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1409 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1410 insn &= ~0x1fffc1;
1411 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1412 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1413 if (value + 0x8000 > 0xffff)
1414 return bfd_reloc_overflow;
1415 return bfd_reloc_ok;
1416 }
1417
1418 static bfd_reloc_status_type
1419 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1420 void *data, asection *input_section,
1421 bfd *output_bfd, char **error_message)
1422 {
1423 if (output_bfd != NULL)
1424 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426
1427 if (strcmp (symbol->section->name, ".opd") == 0
1428 && (symbol->section->owner->flags & DYNAMIC) == 0)
1429 {
1430 bfd_vma dest = opd_entry_value (symbol->section,
1431 symbol->value + reloc_entry->addend,
1432 NULL, NULL, FALSE);
1433 if (dest != (bfd_vma) -1)
1434 reloc_entry->addend = dest - (symbol->value
1435 + symbol->section->output_section->vma
1436 + symbol->section->output_offset);
1437 }
1438 else
1439 {
1440 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1441
1442 if (symbol->section->owner != abfd
1443 && symbol->section->owner != NULL
1444 && abiversion (symbol->section->owner) >= 2)
1445 {
1446 unsigned int i;
1447
1448 for (i = 0; i < symbol->section->owner->symcount; ++i)
1449 {
1450 asymbol *symdef = symbol->section->owner->outsymbols[i];
1451
1452 if (strcmp (symdef->name, symbol->name) == 0)
1453 {
1454 elfsym = (elf_symbol_type *) symdef;
1455 break;
1456 }
1457 }
1458 }
1459 reloc_entry->addend
1460 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1461 }
1462 return bfd_reloc_continue;
1463 }
1464
1465 static bfd_reloc_status_type
1466 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1467 void *data, asection *input_section,
1468 bfd *output_bfd, char **error_message)
1469 {
1470 long insn;
1471 enum elf_ppc64_reloc_type r_type;
1472 bfd_size_type octets;
1473 /* Assume 'at' branch hints. */
1474 bfd_boolean is_isa_v2 = TRUE;
1475
1476 /* If this is a relocatable link (output_bfd test tells us), just
1477 call the generic function. Any adjustment will be done at final
1478 link time. */
1479 if (output_bfd != NULL)
1480 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1481 input_section, output_bfd, error_message);
1482
1483 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1484 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1485 insn &= ~(0x01 << 21);
1486 r_type = reloc_entry->howto->type;
1487 if (r_type == R_PPC64_ADDR14_BRTAKEN
1488 || r_type == R_PPC64_REL14_BRTAKEN)
1489 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1490
1491 if (is_isa_v2)
1492 {
1493 /* Set 'a' bit. This is 0b00010 in BO field for branch
1494 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1495 for branch on CTR insns (BO == 1a00t or 1a01t). */
1496 if ((insn & (0x14 << 21)) == (0x04 << 21))
1497 insn |= 0x02 << 21;
1498 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1499 insn |= 0x08 << 21;
1500 else
1501 goto out;
1502 }
1503 else
1504 {
1505 bfd_vma target = 0;
1506 bfd_vma from;
1507
1508 if (!bfd_is_com_section (symbol->section))
1509 target = symbol->value;
1510 target += symbol->section->output_section->vma;
1511 target += symbol->section->output_offset;
1512 target += reloc_entry->addend;
1513
1514 from = (reloc_entry->address
1515 + input_section->output_offset
1516 + input_section->output_section->vma);
1517
1518 /* Invert 'y' bit if not the default. */
1519 if ((bfd_signed_vma) (target - from) < 0)
1520 insn ^= 0x01 << 21;
1521 }
1522 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1523 out:
1524 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1525 input_section, output_bfd, error_message);
1526 }
1527
1528 static bfd_reloc_status_type
1529 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1530 void *data, asection *input_section,
1531 bfd *output_bfd, char **error_message)
1532 {
1533 /* If this is a relocatable link (output_bfd test tells us), just
1534 call the generic function. Any adjustment will be done at final
1535 link time. */
1536 if (output_bfd != NULL)
1537 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1538 input_section, output_bfd, error_message);
1539
1540 /* Subtract the symbol section base address. */
1541 reloc_entry->addend -= symbol->section->output_section->vma;
1542 return bfd_reloc_continue;
1543 }
1544
1545 static bfd_reloc_status_type
1546 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1547 void *data, asection *input_section,
1548 bfd *output_bfd, char **error_message)
1549 {
1550 /* If this is a relocatable link (output_bfd test tells us), just
1551 call the generic function. Any adjustment will be done at final
1552 link time. */
1553 if (output_bfd != NULL)
1554 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1555 input_section, output_bfd, error_message);
1556
1557 /* Subtract the symbol section base address. */
1558 reloc_entry->addend -= symbol->section->output_section->vma;
1559
1560 /* Adjust the addend for sign extension of the low 16 bits. */
1561 reloc_entry->addend += 0x8000;
1562 return bfd_reloc_continue;
1563 }
1564
1565 static bfd_reloc_status_type
1566 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1567 void *data, asection *input_section,
1568 bfd *output_bfd, char **error_message)
1569 {
1570 bfd_vma TOCstart;
1571
1572 /* If this is a relocatable link (output_bfd test tells us), just
1573 call the generic function. Any adjustment will be done at final
1574 link time. */
1575 if (output_bfd != NULL)
1576 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1577 input_section, output_bfd, error_message);
1578
1579 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1580 if (TOCstart == 0)
1581 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1582
1583 /* Subtract the TOC base address. */
1584 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1585 return bfd_reloc_continue;
1586 }
1587
1588 static bfd_reloc_status_type
1589 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1590 void *data, asection *input_section,
1591 bfd *output_bfd, char **error_message)
1592 {
1593 bfd_vma TOCstart;
1594
1595 /* If this is a relocatable link (output_bfd test tells us), just
1596 call the generic function. Any adjustment will be done at final
1597 link time. */
1598 if (output_bfd != NULL)
1599 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1600 input_section, output_bfd, error_message);
1601
1602 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1603 if (TOCstart == 0)
1604 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1605
1606 /* Subtract the TOC base address. */
1607 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1608
1609 /* Adjust the addend for sign extension of the low 16 bits. */
1610 reloc_entry->addend += 0x8000;
1611 return bfd_reloc_continue;
1612 }
1613
1614 static bfd_reloc_status_type
1615 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1616 void *data, asection *input_section,
1617 bfd *output_bfd, char **error_message)
1618 {
1619 bfd_vma TOCstart;
1620 bfd_size_type octets;
1621
1622 /* If this is a relocatable link (output_bfd test tells us), just
1623 call the generic function. Any adjustment will be done at final
1624 link time. */
1625 if (output_bfd != NULL)
1626 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1627 input_section, output_bfd, error_message);
1628
1629 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1630 if (TOCstart == 0)
1631 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1632
1633 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1634 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1635 return bfd_reloc_ok;
1636 }
1637
1638 static bfd_reloc_status_type
1639 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1640 void *data, asection *input_section,
1641 bfd *output_bfd, char **error_message)
1642 {
1643 uint64_t insn;
1644 bfd_vma targ;
1645
1646 if (output_bfd != NULL)
1647 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1648 input_section, output_bfd, error_message);
1649
1650 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1651 insn <<= 32;
1652 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1653
1654 targ = (symbol->section->output_section->vma
1655 + symbol->section->output_offset
1656 + reloc_entry->addend);
1657 if (!bfd_is_com_section (symbol->section))
1658 targ += symbol->value;
1659 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1660 targ += 1ULL << 33;
1661 if (reloc_entry->howto->pc_relative)
1662 {
1663 bfd_vma from = (reloc_entry->address
1664 + input_section->output_offset
1665 + input_section->output_section->vma);
1666 targ -=from;
1667 }
1668 targ >>= reloc_entry->howto->rightshift;
1669 insn &= ~reloc_entry->howto->dst_mask;
1670 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1671 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1672 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1673 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1674 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1675 >= 1ULL << reloc_entry->howto->bitsize))
1676 return bfd_reloc_overflow;
1677 return bfd_reloc_ok;
1678 }
1679
1680 static bfd_reloc_status_type
1681 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1682 void *data, asection *input_section,
1683 bfd *output_bfd, char **error_message)
1684 {
1685 /* If this is a relocatable link (output_bfd test tells us), just
1686 call the generic function. Any adjustment will be done at final
1687 link time. */
1688 if (output_bfd != NULL)
1689 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1690 input_section, output_bfd, error_message);
1691
1692 if (error_message != NULL)
1693 {
1694 static char buf[60];
1695 sprintf (buf, "generic linker can't handle %s",
1696 reloc_entry->howto->name);
1697 *error_message = buf;
1698 }
1699 return bfd_reloc_dangerous;
1700 }
1701
1702 /* Track GOT entries needed for a given symbol. We might need more
1703 than one got entry per symbol. */
1704 struct got_entry
1705 {
1706 struct got_entry *next;
1707
1708 /* The symbol addend that we'll be placing in the GOT. */
1709 bfd_vma addend;
1710
1711 /* Unlike other ELF targets, we use separate GOT entries for the same
1712 symbol referenced from different input files. This is to support
1713 automatic multiple TOC/GOT sections, where the TOC base can vary
1714 from one input file to another. After partitioning into TOC groups
1715 we merge entries within the group.
1716
1717 Point to the BFD owning this GOT entry. */
1718 bfd *owner;
1719
1720 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1721 TLS_TPREL or TLS_DTPREL for tls entries. */
1722 unsigned char tls_type;
1723
1724 /* Non-zero if got.ent points to real entry. */
1725 unsigned char is_indirect;
1726
1727 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1728 union
1729 {
1730 bfd_signed_vma refcount;
1731 bfd_vma offset;
1732 struct got_entry *ent;
1733 } got;
1734 };
1735
1736 /* The same for PLT. */
1737 struct plt_entry
1738 {
1739 struct plt_entry *next;
1740
1741 bfd_vma addend;
1742
1743 union
1744 {
1745 bfd_signed_vma refcount;
1746 bfd_vma offset;
1747 } plt;
1748 };
1749
1750 struct ppc64_elf_obj_tdata
1751 {
1752 struct elf_obj_tdata elf;
1753
1754 /* Shortcuts to dynamic linker sections. */
1755 asection *got;
1756 asection *relgot;
1757
1758 /* Used during garbage collection. We attach global symbols defined
1759 on removed .opd entries to this section so that the sym is removed. */
1760 asection *deleted_section;
1761
1762 /* TLS local dynamic got entry handling. Support for multiple GOT
1763 sections means we potentially need one of these for each input bfd. */
1764 struct got_entry tlsld_got;
1765
1766 union
1767 {
1768 /* A copy of relocs before they are modified for --emit-relocs. */
1769 Elf_Internal_Rela *relocs;
1770
1771 /* Section contents. */
1772 bfd_byte *contents;
1773 } opd;
1774
1775 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1776 the reloc to be in the range -32768 to 32767. */
1777 unsigned int has_small_toc_reloc : 1;
1778
1779 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1780 instruction not one we handle. */
1781 unsigned int unexpected_toc_insn : 1;
1782
1783 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1784 this file. */
1785 unsigned int has_optrel : 1;
1786 };
1787
1788 #define ppc64_elf_tdata(bfd) \
1789 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1790
1791 #define ppc64_tlsld_got(bfd) \
1792 (&ppc64_elf_tdata (bfd)->tlsld_got)
1793
1794 #define is_ppc64_elf(bfd) \
1795 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1796 && elf_object_id (bfd) == PPC64_ELF_DATA)
1797
1798 /* Override the generic function because we store some extras. */
1799
1800 static bfd_boolean
1801 ppc64_elf_mkobject (bfd *abfd)
1802 {
1803 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1804 PPC64_ELF_DATA);
1805 }
1806
1807 /* Fix bad default arch selected for a 64 bit input bfd when the
1808 default is 32 bit. Also select arch based on apuinfo. */
1809
1810 static bfd_boolean
1811 ppc64_elf_object_p (bfd *abfd)
1812 {
1813 if (!abfd->arch_info->the_default)
1814 return TRUE;
1815
1816 if (abfd->arch_info->bits_per_word == 32)
1817 {
1818 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1819
1820 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1821 {
1822 /* Relies on arch after 32 bit default being 64 bit default. */
1823 abfd->arch_info = abfd->arch_info->next;
1824 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1825 }
1826 }
1827 return _bfd_elf_ppc_set_arch (abfd);
1828 }
1829
1830 /* Support for core dump NOTE sections. */
1831
1832 static bfd_boolean
1833 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1834 {
1835 size_t offset, size;
1836
1837 if (note->descsz != 504)
1838 return FALSE;
1839
1840 /* pr_cursig */
1841 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1842
1843 /* pr_pid */
1844 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1845
1846 /* pr_reg */
1847 offset = 112;
1848 size = 384;
1849
1850 /* Make a ".reg/999" section. */
1851 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1852 size, note->descpos + offset);
1853 }
1854
1855 static bfd_boolean
1856 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1857 {
1858 if (note->descsz != 136)
1859 return FALSE;
1860
1861 elf_tdata (abfd)->core->pid
1862 = bfd_get_32 (abfd, note->descdata + 24);
1863 elf_tdata (abfd)->core->program
1864 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1865 elf_tdata (abfd)->core->command
1866 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1867
1868 return TRUE;
1869 }
1870
1871 static char *
1872 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1873 ...)
1874 {
1875 switch (note_type)
1876 {
1877 default:
1878 return NULL;
1879
1880 case NT_PRPSINFO:
1881 {
1882 char data[136] ATTRIBUTE_NONSTRING;
1883 va_list ap;
1884
1885 va_start (ap, note_type);
1886 memset (data, 0, sizeof (data));
1887 strncpy (data + 40, va_arg (ap, const char *), 16);
1888 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1889 DIAGNOSTIC_PUSH;
1890 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1891 -Wstringop-truncation:
1892 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1893 */
1894 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1895 #endif
1896 strncpy (data + 56, va_arg (ap, const char *), 80);
1897 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1898 DIAGNOSTIC_POP;
1899 #endif
1900 va_end (ap);
1901 return elfcore_write_note (abfd, buf, bufsiz,
1902 "CORE", note_type, data, sizeof (data));
1903 }
1904
1905 case NT_PRSTATUS:
1906 {
1907 char data[504];
1908 va_list ap;
1909 long pid;
1910 int cursig;
1911 const void *greg;
1912
1913 va_start (ap, note_type);
1914 memset (data, 0, 112);
1915 pid = va_arg (ap, long);
1916 bfd_put_32 (abfd, pid, data + 32);
1917 cursig = va_arg (ap, int);
1918 bfd_put_16 (abfd, cursig, data + 12);
1919 greg = va_arg (ap, const void *);
1920 memcpy (data + 112, greg, 384);
1921 memset (data + 496, 0, 8);
1922 va_end (ap);
1923 return elfcore_write_note (abfd, buf, bufsiz,
1924 "CORE", note_type, data, sizeof (data));
1925 }
1926 }
1927 }
1928
1929 /* Add extra PPC sections. */
1930
1931 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1932 {
1933 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1934 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1935 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1936 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1937 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1938 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1939 { NULL, 0, 0, 0, 0 }
1940 };
1941
1942 enum _ppc64_sec_type {
1943 sec_normal = 0,
1944 sec_opd = 1,
1945 sec_toc = 2
1946 };
1947
1948 struct _ppc64_elf_section_data
1949 {
1950 struct bfd_elf_section_data elf;
1951
1952 union
1953 {
1954 /* An array with one entry for each opd function descriptor,
1955 and some spares since opd entries may be either 16 or 24 bytes. */
1956 #define OPD_NDX(OFF) ((OFF) >> 4)
1957 struct _opd_sec_data
1958 {
1959 /* Points to the function code section for local opd entries. */
1960 asection **func_sec;
1961
1962 /* After editing .opd, adjust references to opd local syms. */
1963 long *adjust;
1964 } opd;
1965
1966 /* An array for toc sections, indexed by offset/8. */
1967 struct _toc_sec_data
1968 {
1969 /* Specifies the relocation symbol index used at a given toc offset. */
1970 unsigned *symndx;
1971
1972 /* And the relocation addend. */
1973 bfd_vma *add;
1974 } toc;
1975 } u;
1976
1977 enum _ppc64_sec_type sec_type:2;
1978
1979 /* Flag set when small branches are detected. Used to
1980 select suitable defaults for the stub group size. */
1981 unsigned int has_14bit_branch:1;
1982
1983 /* Flag set when PLTCALL relocs are detected. */
1984 unsigned int has_pltcall:1;
1985
1986 /* Flag set when section has PLT/GOT/TOC relocations that can be
1987 optimised. */
1988 unsigned int has_optrel:1;
1989 };
1990
1991 #define ppc64_elf_section_data(sec) \
1992 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
1993
1994 static bfd_boolean
1995 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
1996 {
1997 if (!sec->used_by_bfd)
1998 {
1999 struct _ppc64_elf_section_data *sdata;
2000 bfd_size_type amt = sizeof (*sdata);
2001
2002 sdata = bfd_zalloc (abfd, amt);
2003 if (sdata == NULL)
2004 return FALSE;
2005 sec->used_by_bfd = sdata;
2006 }
2007
2008 return _bfd_elf_new_section_hook (abfd, sec);
2009 }
2010
2011 static struct _opd_sec_data *
2012 get_opd_info (asection * sec)
2013 {
2014 if (sec != NULL
2015 && ppc64_elf_section_data (sec) != NULL
2016 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2017 return &ppc64_elf_section_data (sec)->u.opd;
2018 return NULL;
2019 }
2020 \f
2021 /* Parameters for the qsort hook. */
2022 static bfd_boolean synthetic_relocatable;
2023 static asection *synthetic_opd;
2024
2025 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2026
2027 static int
2028 compare_symbols (const void *ap, const void *bp)
2029 {
2030 const asymbol *a = *(const asymbol **) ap;
2031 const asymbol *b = *(const asymbol **) bp;
2032
2033 /* Section symbols first. */
2034 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2035 return -1;
2036 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2037 return 1;
2038
2039 /* then .opd symbols. */
2040 if (synthetic_opd != NULL)
2041 {
2042 if (strcmp (a->section->name, ".opd") == 0
2043 && strcmp (b->section->name, ".opd") != 0)
2044 return -1;
2045 if (strcmp (a->section->name, ".opd") != 0
2046 && strcmp (b->section->name, ".opd") == 0)
2047 return 1;
2048 }
2049
2050 /* then other code symbols. */
2051 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2052 == (SEC_CODE | SEC_ALLOC))
2053 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2054 != (SEC_CODE | SEC_ALLOC)))
2055 return -1;
2056
2057 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2058 != (SEC_CODE | SEC_ALLOC))
2059 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2060 == (SEC_CODE | SEC_ALLOC)))
2061 return 1;
2062
2063 if (synthetic_relocatable)
2064 {
2065 if (a->section->id < b->section->id)
2066 return -1;
2067
2068 if (a->section->id > b->section->id)
2069 return 1;
2070 }
2071
2072 if (a->value + a->section->vma < b->value + b->section->vma)
2073 return -1;
2074
2075 if (a->value + a->section->vma > b->value + b->section->vma)
2076 return 1;
2077
2078 /* For syms with the same value, prefer strong dynamic global function
2079 syms over other syms. */
2080 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2081 return -1;
2082
2083 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2084 return 1;
2085
2086 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2087 return -1;
2088
2089 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2090 return 1;
2091
2092 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2093 return -1;
2094
2095 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2096 return 1;
2097
2098 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2099 return -1;
2100
2101 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2102 return 1;
2103
2104 return a > b;
2105 }
2106
2107 /* Search SYMS for a symbol of the given VALUE. */
2108
2109 static asymbol *
2110 sym_exists_at (asymbol **syms, long lo, long hi, unsigned int id, bfd_vma value)
2111 {
2112 long mid;
2113
2114 if (id == (unsigned) -1)
2115 {
2116 while (lo < hi)
2117 {
2118 mid = (lo + hi) >> 1;
2119 if (syms[mid]->value + syms[mid]->section->vma < value)
2120 lo = mid + 1;
2121 else if (syms[mid]->value + syms[mid]->section->vma > value)
2122 hi = mid;
2123 else
2124 return syms[mid];
2125 }
2126 }
2127 else
2128 {
2129 while (lo < hi)
2130 {
2131 mid = (lo + hi) >> 1;
2132 if (syms[mid]->section->id < id)
2133 lo = mid + 1;
2134 else if (syms[mid]->section->id > id)
2135 hi = mid;
2136 else if (syms[mid]->value < value)
2137 lo = mid + 1;
2138 else if (syms[mid]->value > value)
2139 hi = mid;
2140 else
2141 return syms[mid];
2142 }
2143 }
2144 return NULL;
2145 }
2146
2147 static bfd_boolean
2148 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2149 {
2150 bfd_vma vma = *(bfd_vma *) ptr;
2151 return ((section->flags & SEC_ALLOC) != 0
2152 && section->vma <= vma
2153 && vma < section->vma + section->size);
2154 }
2155
2156 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2157 entry syms. Also generate @plt symbols for the glink branch table.
2158 Returns count of synthetic symbols in RET or -1 on error. */
2159
2160 static long
2161 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2162 long static_count, asymbol **static_syms,
2163 long dyn_count, asymbol **dyn_syms,
2164 asymbol **ret)
2165 {
2166 asymbol *s;
2167 size_t i, j, count;
2168 char *names;
2169 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2170 asection *opd = NULL;
2171 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2172 asymbol **syms;
2173 int abi = abiversion (abfd);
2174
2175 *ret = NULL;
2176
2177 if (abi < 2)
2178 {
2179 opd = bfd_get_section_by_name (abfd, ".opd");
2180 if (opd == NULL && abi == 1)
2181 return 0;
2182 }
2183
2184 syms = NULL;
2185 codesecsym = 0;
2186 codesecsymend = 0;
2187 secsymend = 0;
2188 opdsymend = 0;
2189 symcount = 0;
2190 if (opd != NULL)
2191 {
2192 symcount = static_count;
2193 if (!relocatable)
2194 symcount += dyn_count;
2195 if (symcount == 0)
2196 return 0;
2197
2198 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2199 if (syms == NULL)
2200 return -1;
2201
2202 if (!relocatable && static_count != 0 && dyn_count != 0)
2203 {
2204 /* Use both symbol tables. */
2205 memcpy (syms, static_syms, static_count * sizeof (*syms));
2206 memcpy (syms + static_count, dyn_syms,
2207 (dyn_count + 1) * sizeof (*syms));
2208 }
2209 else if (!relocatable && static_count == 0)
2210 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2211 else
2212 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2213
2214 /* Trim uninteresting symbols. Interesting symbols are section,
2215 function, and notype symbols. */
2216 for (i = 0, j = 0; i < symcount; ++i)
2217 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2218 | BSF_RELC | BSF_SRELC)) == 0)
2219 syms[j++] = syms[i];
2220 symcount = j;
2221
2222 synthetic_relocatable = relocatable;
2223 synthetic_opd = opd;
2224 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2225
2226 if (!relocatable && symcount > 1)
2227 {
2228 /* Trim duplicate syms, since we may have merged the normal
2229 and dynamic symbols. Actually, we only care about syms
2230 that have different values, so trim any with the same
2231 value. Don't consider ifunc and ifunc resolver symbols
2232 duplicates however, because GDB wants to know whether a
2233 text symbol is an ifunc resolver. */
2234 for (i = 1, j = 1; i < symcount; ++i)
2235 {
2236 const asymbol *s0 = syms[i - 1];
2237 const asymbol *s1 = syms[i];
2238
2239 if ((s0->value + s0->section->vma
2240 != s1->value + s1->section->vma)
2241 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2242 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2243 syms[j++] = syms[i];
2244 }
2245 symcount = j;
2246 }
2247
2248 i = 0;
2249 /* Note that here and in compare_symbols we can't compare opd and
2250 sym->section directly. With separate debug info files, the
2251 symbols will be extracted from the debug file while abfd passed
2252 to this function is the real binary. */
2253 if (strcmp (syms[i]->section->name, ".opd") == 0)
2254 ++i;
2255 codesecsym = i;
2256
2257 for (; i < symcount; ++i)
2258 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2259 | SEC_THREAD_LOCAL))
2260 != (SEC_CODE | SEC_ALLOC))
2261 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2262 break;
2263 codesecsymend = i;
2264
2265 for (; i < symcount; ++i)
2266 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2267 break;
2268 secsymend = i;
2269
2270 for (; i < symcount; ++i)
2271 if (strcmp (syms[i]->section->name, ".opd") != 0)
2272 break;
2273 opdsymend = i;
2274
2275 for (; i < symcount; ++i)
2276 if (((syms[i]->section->flags
2277 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2278 != (SEC_CODE | SEC_ALLOC))
2279 break;
2280 symcount = i;
2281 }
2282 count = 0;
2283
2284 if (relocatable)
2285 {
2286 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2287 arelent *r;
2288 size_t size;
2289 size_t relcount;
2290
2291 if (opdsymend == secsymend)
2292 goto done;
2293
2294 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2295 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2296 if (relcount == 0)
2297 goto done;
2298
2299 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2300 {
2301 count = -1;
2302 goto done;
2303 }
2304
2305 size = 0;
2306 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2307 {
2308 asymbol *sym;
2309
2310 while (r < opd->relocation + relcount
2311 && r->address < syms[i]->value + opd->vma)
2312 ++r;
2313
2314 if (r == opd->relocation + relcount)
2315 break;
2316
2317 if (r->address != syms[i]->value + opd->vma)
2318 continue;
2319
2320 if (r->howto->type != R_PPC64_ADDR64)
2321 continue;
2322
2323 sym = *r->sym_ptr_ptr;
2324 if (!sym_exists_at (syms, opdsymend, symcount,
2325 sym->section->id, sym->value + r->addend))
2326 {
2327 ++count;
2328 size += sizeof (asymbol);
2329 size += strlen (syms[i]->name) + 2;
2330 }
2331 }
2332
2333 if (size == 0)
2334 goto done;
2335 s = *ret = bfd_malloc (size);
2336 if (s == NULL)
2337 {
2338 count = -1;
2339 goto done;
2340 }
2341
2342 names = (char *) (s + count);
2343
2344 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2345 {
2346 asymbol *sym;
2347
2348 while (r < opd->relocation + relcount
2349 && r->address < syms[i]->value + opd->vma)
2350 ++r;
2351
2352 if (r == opd->relocation + relcount)
2353 break;
2354
2355 if (r->address != syms[i]->value + opd->vma)
2356 continue;
2357
2358 if (r->howto->type != R_PPC64_ADDR64)
2359 continue;
2360
2361 sym = *r->sym_ptr_ptr;
2362 if (!sym_exists_at (syms, opdsymend, symcount,
2363 sym->section->id, sym->value + r->addend))
2364 {
2365 size_t len;
2366
2367 *s = *syms[i];
2368 s->flags |= BSF_SYNTHETIC;
2369 s->section = sym->section;
2370 s->value = sym->value + r->addend;
2371 s->name = names;
2372 *names++ = '.';
2373 len = strlen (syms[i]->name);
2374 memcpy (names, syms[i]->name, len + 1);
2375 names += len + 1;
2376 /* Have udata.p point back to the original symbol this
2377 synthetic symbol was derived from. */
2378 s->udata.p = syms[i];
2379 s++;
2380 }
2381 }
2382 }
2383 else
2384 {
2385 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2386 bfd_byte *contents = NULL;
2387 size_t size;
2388 size_t plt_count = 0;
2389 bfd_vma glink_vma = 0, resolv_vma = 0;
2390 asection *dynamic, *glink = NULL, *relplt = NULL;
2391 arelent *p;
2392
2393 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2394 {
2395 free_contents_and_exit_err:
2396 count = -1;
2397 free_contents_and_exit:
2398 if (contents)
2399 free (contents);
2400 goto done;
2401 }
2402
2403 size = 0;
2404 for (i = secsymend; i < opdsymend; ++i)
2405 {
2406 bfd_vma ent;
2407
2408 /* Ignore bogus symbols. */
2409 if (syms[i]->value > opd->size - 8)
2410 continue;
2411
2412 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2413 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2414 {
2415 ++count;
2416 size += sizeof (asymbol);
2417 size += strlen (syms[i]->name) + 2;
2418 }
2419 }
2420
2421 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2422 if (dyn_count != 0
2423 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2424 {
2425 bfd_byte *dynbuf, *extdyn, *extdynend;
2426 size_t extdynsize;
2427 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2428
2429 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2430 goto free_contents_and_exit_err;
2431
2432 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2433 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2434
2435 extdyn = dynbuf;
2436 extdynend = extdyn + dynamic->size;
2437 for (; extdyn < extdynend; extdyn += extdynsize)
2438 {
2439 Elf_Internal_Dyn dyn;
2440 (*swap_dyn_in) (abfd, extdyn, &dyn);
2441
2442 if (dyn.d_tag == DT_NULL)
2443 break;
2444
2445 if (dyn.d_tag == DT_PPC64_GLINK)
2446 {
2447 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2448 See comment in ppc64_elf_finish_dynamic_sections. */
2449 glink_vma = dyn.d_un.d_val + 8 * 4;
2450 /* The .glink section usually does not survive the final
2451 link; search for the section (usually .text) where the
2452 glink stubs now reside. */
2453 glink = bfd_sections_find_if (abfd, section_covers_vma,
2454 &glink_vma);
2455 break;
2456 }
2457 }
2458
2459 free (dynbuf);
2460 }
2461
2462 if (glink != NULL)
2463 {
2464 /* Determine __glink trampoline by reading the relative branch
2465 from the first glink stub. */
2466 bfd_byte buf[4];
2467 unsigned int off = 0;
2468
2469 while (bfd_get_section_contents (abfd, glink, buf,
2470 glink_vma + off - glink->vma, 4))
2471 {
2472 unsigned int insn = bfd_get_32 (abfd, buf);
2473 insn ^= B_DOT;
2474 if ((insn & ~0x3fffffc) == 0)
2475 {
2476 resolv_vma
2477 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2478 break;
2479 }
2480 off += 4;
2481 if (off > 4)
2482 break;
2483 }
2484
2485 if (resolv_vma)
2486 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2487
2488 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2489 if (relplt != NULL)
2490 {
2491 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2492 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2493 goto free_contents_and_exit_err;
2494
2495 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2496 size += plt_count * sizeof (asymbol);
2497
2498 p = relplt->relocation;
2499 for (i = 0; i < plt_count; i++, p++)
2500 {
2501 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2502 if (p->addend != 0)
2503 size += sizeof ("+0x") - 1 + 16;
2504 }
2505 }
2506 }
2507
2508 if (size == 0)
2509 goto free_contents_and_exit;
2510 s = *ret = bfd_malloc (size);
2511 if (s == NULL)
2512 goto free_contents_and_exit_err;
2513
2514 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2515
2516 for (i = secsymend; i < opdsymend; ++i)
2517 {
2518 bfd_vma ent;
2519
2520 if (syms[i]->value > opd->size - 8)
2521 continue;
2522
2523 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2524 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2525 {
2526 size_t lo, hi;
2527 size_t len;
2528 asection *sec = abfd->sections;
2529
2530 *s = *syms[i];
2531 lo = codesecsym;
2532 hi = codesecsymend;
2533 while (lo < hi)
2534 {
2535 size_t mid = (lo + hi) >> 1;
2536 if (syms[mid]->section->vma < ent)
2537 lo = mid + 1;
2538 else if (syms[mid]->section->vma > ent)
2539 hi = mid;
2540 else
2541 {
2542 sec = syms[mid]->section;
2543 break;
2544 }
2545 }
2546
2547 if (lo >= hi && lo > codesecsym)
2548 sec = syms[lo - 1]->section;
2549
2550 for (; sec != NULL; sec = sec->next)
2551 {
2552 if (sec->vma > ent)
2553 break;
2554 /* SEC_LOAD may not be set if SEC is from a separate debug
2555 info file. */
2556 if ((sec->flags & SEC_ALLOC) == 0)
2557 break;
2558 if ((sec->flags & SEC_CODE) != 0)
2559 s->section = sec;
2560 }
2561 s->flags |= BSF_SYNTHETIC;
2562 s->value = ent - s->section->vma;
2563 s->name = names;
2564 *names++ = '.';
2565 len = strlen (syms[i]->name);
2566 memcpy (names, syms[i]->name, len + 1);
2567 names += len + 1;
2568 /* Have udata.p point back to the original symbol this
2569 synthetic symbol was derived from. */
2570 s->udata.p = syms[i];
2571 s++;
2572 }
2573 }
2574 free (contents);
2575
2576 if (glink != NULL && relplt != NULL)
2577 {
2578 if (resolv_vma)
2579 {
2580 /* Add a symbol for the main glink trampoline. */
2581 memset (s, 0, sizeof *s);
2582 s->the_bfd = abfd;
2583 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2584 s->section = glink;
2585 s->value = resolv_vma - glink->vma;
2586 s->name = names;
2587 memcpy (names, "__glink_PLTresolve",
2588 sizeof ("__glink_PLTresolve"));
2589 names += sizeof ("__glink_PLTresolve");
2590 s++;
2591 count++;
2592 }
2593
2594 /* FIXME: It would be very much nicer to put sym@plt on the
2595 stub rather than on the glink branch table entry. The
2596 objdump disassembler would then use a sensible symbol
2597 name on plt calls. The difficulty in doing so is
2598 a) finding the stubs, and,
2599 b) matching stubs against plt entries, and,
2600 c) there can be multiple stubs for a given plt entry.
2601
2602 Solving (a) could be done by code scanning, but older
2603 ppc64 binaries used different stubs to current code.
2604 (b) is the tricky one since you need to known the toc
2605 pointer for at least one function that uses a pic stub to
2606 be able to calculate the plt address referenced.
2607 (c) means gdb would need to set multiple breakpoints (or
2608 find the glink branch itself) when setting breakpoints
2609 for pending shared library loads. */
2610 p = relplt->relocation;
2611 for (i = 0; i < plt_count; i++, p++)
2612 {
2613 size_t len;
2614
2615 *s = **p->sym_ptr_ptr;
2616 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2617 we are defining a symbol, ensure one of them is set. */
2618 if ((s->flags & BSF_LOCAL) == 0)
2619 s->flags |= BSF_GLOBAL;
2620 s->flags |= BSF_SYNTHETIC;
2621 s->section = glink;
2622 s->value = glink_vma - glink->vma;
2623 s->name = names;
2624 s->udata.p = NULL;
2625 len = strlen ((*p->sym_ptr_ptr)->name);
2626 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2627 names += len;
2628 if (p->addend != 0)
2629 {
2630 memcpy (names, "+0x", sizeof ("+0x") - 1);
2631 names += sizeof ("+0x") - 1;
2632 bfd_sprintf_vma (abfd, names, p->addend);
2633 names += strlen (names);
2634 }
2635 memcpy (names, "@plt", sizeof ("@plt"));
2636 names += sizeof ("@plt");
2637 s++;
2638 if (abi < 2)
2639 {
2640 glink_vma += 8;
2641 if (i >= 0x8000)
2642 glink_vma += 4;
2643 }
2644 else
2645 glink_vma += 4;
2646 }
2647 count += plt_count;
2648 }
2649 }
2650
2651 done:
2652 free (syms);
2653 return count;
2654 }
2655 \f
2656 /* The following functions are specific to the ELF linker, while
2657 functions above are used generally. Those named ppc64_elf_* are
2658 called by the main ELF linker code. They appear in this file more
2659 or less in the order in which they are called. eg.
2660 ppc64_elf_check_relocs is called early in the link process,
2661 ppc64_elf_finish_dynamic_sections is one of the last functions
2662 called.
2663
2664 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2665 functions have both a function code symbol and a function descriptor
2666 symbol. A call to foo in a relocatable object file looks like:
2667
2668 . .text
2669 . x:
2670 . bl .foo
2671 . nop
2672
2673 The function definition in another object file might be:
2674
2675 . .section .opd
2676 . foo: .quad .foo
2677 . .quad .TOC.@tocbase
2678 . .quad 0
2679 .
2680 . .text
2681 . .foo: blr
2682
2683 When the linker resolves the call during a static link, the branch
2684 unsurprisingly just goes to .foo and the .opd information is unused.
2685 If the function definition is in a shared library, things are a little
2686 different: The call goes via a plt call stub, the opd information gets
2687 copied to the plt, and the linker patches the nop.
2688
2689 . x:
2690 . bl .foo_stub
2691 . ld 2,40(1)
2692 .
2693 .
2694 . .foo_stub:
2695 . std 2,40(1) # in practice, the call stub
2696 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2697 . addi 11,11,Lfoo@toc@l # this is the general idea
2698 . ld 12,0(11)
2699 . ld 2,8(11)
2700 . mtctr 12
2701 . ld 11,16(11)
2702 . bctr
2703 .
2704 . .section .plt
2705 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2706
2707 The "reloc ()" notation is supposed to indicate that the linker emits
2708 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2709 copying.
2710
2711 What are the difficulties here? Well, firstly, the relocations
2712 examined by the linker in check_relocs are against the function code
2713 sym .foo, while the dynamic relocation in the plt is emitted against
2714 the function descriptor symbol, foo. Somewhere along the line, we need
2715 to carefully copy dynamic link information from one symbol to the other.
2716 Secondly, the generic part of the elf linker will make .foo a dynamic
2717 symbol as is normal for most other backends. We need foo dynamic
2718 instead, at least for an application final link. However, when
2719 creating a shared library containing foo, we need to have both symbols
2720 dynamic so that references to .foo are satisfied during the early
2721 stages of linking. Otherwise the linker might decide to pull in a
2722 definition from some other object, eg. a static library.
2723
2724 Update: As of August 2004, we support a new convention. Function
2725 calls may use the function descriptor symbol, ie. "bl foo". This
2726 behaves exactly as "bl .foo". */
2727
2728 /* Of those relocs that might be copied as dynamic relocs, this
2729 function selects those that must be copied when linking a shared
2730 library or PIE, even when the symbol is local. */
2731
2732 static int
2733 must_be_dyn_reloc (struct bfd_link_info *info,
2734 enum elf_ppc64_reloc_type r_type)
2735 {
2736 switch (r_type)
2737 {
2738 default:
2739 /* Only relative relocs can be resolved when the object load
2740 address isn't fixed. DTPREL64 is excluded because the
2741 dynamic linker needs to differentiate global dynamic from
2742 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2743 return 1;
2744
2745 case R_PPC64_REL32:
2746 case R_PPC64_REL64:
2747 case R_PPC64_REL30:
2748 return 0;
2749
2750 case R_PPC64_TPREL16:
2751 case R_PPC64_TPREL16_LO:
2752 case R_PPC64_TPREL16_HI:
2753 case R_PPC64_TPREL16_HA:
2754 case R_PPC64_TPREL16_DS:
2755 case R_PPC64_TPREL16_LO_DS:
2756 case R_PPC64_TPREL16_HIGH:
2757 case R_PPC64_TPREL16_HIGHA:
2758 case R_PPC64_TPREL16_HIGHER:
2759 case R_PPC64_TPREL16_HIGHERA:
2760 case R_PPC64_TPREL16_HIGHEST:
2761 case R_PPC64_TPREL16_HIGHESTA:
2762 case R_PPC64_TPREL64:
2763 case R_PPC64_TPREL34:
2764 /* These relocations are relative but in a shared library the
2765 linker doesn't know the thread pointer base. */
2766 return bfd_link_dll (info);
2767 }
2768 }
2769
2770 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2771 copying dynamic variables from a shared lib into an app's dynbss
2772 section, and instead use a dynamic relocation to point into the
2773 shared lib. With code that gcc generates, it's vital that this be
2774 enabled; In the PowerPC64 ABI, the address of a function is actually
2775 the address of a function descriptor, which resides in the .opd
2776 section. gcc uses the descriptor directly rather than going via the
2777 GOT as some other ABI's do, which means that initialized function
2778 pointers must reference the descriptor. Thus, a function pointer
2779 initialized to the address of a function in a shared library will
2780 either require a copy reloc, or a dynamic reloc. Using a copy reloc
2781 redefines the function descriptor symbol to point to the copy. This
2782 presents a problem as a plt entry for that function is also
2783 initialized from the function descriptor symbol and the copy reloc
2784 may not be initialized first. */
2785 #define ELIMINATE_COPY_RELOCS 1
2786
2787 /* Section name for stubs is the associated section name plus this
2788 string. */
2789 #define STUB_SUFFIX ".stub"
2790
2791 /* Linker stubs.
2792 ppc_stub_long_branch:
2793 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2794 destination, but a 24 bit branch in a stub section will reach.
2795 . b dest
2796
2797 ppc_stub_plt_branch:
2798 Similar to the above, but a 24 bit branch in the stub section won't
2799 reach its destination.
2800 . addis %r11,%r2,xxx@toc@ha
2801 . ld %r12,xxx@toc@l(%r11)
2802 . mtctr %r12
2803 . bctr
2804
2805 ppc_stub_plt_call:
2806 Used to call a function in a shared library. If it so happens that
2807 the plt entry referenced crosses a 64k boundary, then an extra
2808 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2809 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2810 . addis %r11,%r2,xxx@toc@ha
2811 . ld %r12,xxx+0@toc@l(%r11)
2812 . mtctr %r12
2813 . ld %r2,xxx+8@toc@l(%r11)
2814 . ld %r11,xxx+16@toc@l(%r11)
2815 . bctr
2816
2817 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2818 code to adjust the value and save r2 to support multiple toc sections.
2819 A ppc_stub_long_branch with an r2 offset looks like:
2820 . std %r2,40(%r1)
2821 . addis %r2,%r2,off@ha
2822 . addi %r2,%r2,off@l
2823 . b dest
2824
2825 A ppc_stub_plt_branch with an r2 offset looks like:
2826 . std %r2,40(%r1)
2827 . addis %r11,%r2,xxx@toc@ha
2828 . ld %r12,xxx@toc@l(%r11)
2829 . addis %r2,%r2,off@ha
2830 . addi %r2,%r2,off@l
2831 . mtctr %r12
2832 . bctr
2833
2834 All of the above stubs are shown as their ELFv1 variants. ELFv2
2835 variants exist too, simpler for plt calls since a new toc pointer
2836 and static chain are not loaded by the stub. In addition, ELFv2
2837 has some more complex stubs to handle calls marked with NOTOC
2838 relocs from functions where r2 is not a valid toc pointer. These
2839 come in two flavours, the ones shown below, and _both variants that
2840 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2841 one call is from a function where r2 is used as the toc pointer but
2842 needs a toc adjusting stub for small-model multi-toc, and another
2843 call is from a function where r2 is not valid.
2844 ppc_stub_long_branch_notoc:
2845 . mflr %r12
2846 . bcl 20,31,1f
2847 . 1:
2848 . mflr %r11
2849 . mtlr %r12
2850 . addis %r12,%r11,dest-1b@ha
2851 . addi %r12,%r12,dest-1b@l
2852 . b dest
2853
2854 ppc_stub_plt_branch_notoc:
2855 . mflr %r12
2856 . bcl 20,31,1f
2857 . 1:
2858 . mflr %r11
2859 . mtlr %r12
2860 . lis %r12,xxx-1b@highest
2861 . ori %r12,%r12,xxx-1b@higher
2862 . sldi %r12,%r12,32
2863 . oris %r12,%r12,xxx-1b@high
2864 . ori %r12,%r12,xxx-1b@l
2865 . add %r12,%r11,%r12
2866 . mtctr %r12
2867 . bctr
2868
2869 ppc_stub_plt_call_notoc:
2870 . mflr %r12
2871 . bcl 20,31,1f
2872 . 1:
2873 . mflr %r11
2874 . mtlr %r12
2875 . lis %r12,xxx-1b@highest
2876 . ori %r12,%r12,xxx-1b@higher
2877 . sldi %r12,%r12,32
2878 . oris %r12,%r12,xxx-1b@high
2879 . ori %r12,%r12,xxx-1b@l
2880 . ldx %r12,%r11,%r12
2881 . mtctr %r12
2882 . bctr
2883
2884 There are also ELFv1 powerxx variants of these stubs.
2885 ppc_stub_long_branch_notoc:
2886 . pla %r12,dest@pcrel
2887 . b dest
2888 ppc_stub_plt_branch_notoc:
2889 . lis %r11,(dest-1f)@highesta34
2890 . ori %r11,%r11,(dest-1f)@highera34
2891 . sldi %r11,%r11,34
2892 . 1: pla %r12,dest@pcrel
2893 . add %r12,%r11,%r12
2894 . mtctr %r12
2895 . bctr
2896 ppc_stub_plt_call_notoc:
2897 . lis %r11,(xxx-1f)@highesta34
2898 . ori %r11,%r11,(xxx-1f)@highera34
2899 . sldi %r11,%r11,34
2900 . 1: pla %r12,xxx@pcrel
2901 . ldx %r12,%r11,%r12
2902 . mtctr %r12
2903 . bctr
2904
2905 In cases where the high instructions would add zero, they are
2906 omitted and following instructions modified in some cases.
2907 For example, a powerxx ppc_stub_plt_call_notoc might simplify down
2908 to
2909 . pld %r12,xxx@pcrel
2910 . mtctr %r12
2911 . bctr
2912
2913 For a given stub group (a set of sections all using the same toc
2914 pointer value) there will be just one stub type used for any
2915 particular function symbol. For example, if printf is called from
2916 code with the tocsave optimization (ie. r2 saved in function
2917 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2918 and from other code without the tocsave optimization requiring a
2919 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2920 type will be created. Calls with the tocsave optimization will
2921 enter this stub after the instruction saving r2. A similar
2922 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2923 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2924 to call an external function like printf. If other calls to printf
2925 require a ppc_stub_plt_call linkage stub then a single
2926 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2927 call. If other calls to printf require a ppc_stub_plt_call_r2save
2928 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2929 be created and calls not requiring r2 to be saved will enter the
2930 stub after the r2 save instruction. There is an analogous
2931 hierarchy of long branch and plt branch stubs for local call
2932 linkage. */
2933
2934 enum ppc_stub_type
2935 {
2936 ppc_stub_none,
2937 ppc_stub_long_branch,
2938 ppc_stub_long_branch_r2off,
2939 ppc_stub_long_branch_notoc,
2940 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2941 ppc_stub_plt_branch,
2942 ppc_stub_plt_branch_r2off,
2943 ppc_stub_plt_branch_notoc,
2944 ppc_stub_plt_branch_both,
2945 ppc_stub_plt_call,
2946 ppc_stub_plt_call_r2save,
2947 ppc_stub_plt_call_notoc,
2948 ppc_stub_plt_call_both,
2949 ppc_stub_global_entry,
2950 ppc_stub_save_res
2951 };
2952
2953 /* Information on stub grouping. */
2954 struct map_stub
2955 {
2956 /* The stub section. */
2957 asection *stub_sec;
2958 /* This is the section to which stubs in the group will be attached. */
2959 asection *link_sec;
2960 /* Next group. */
2961 struct map_stub *next;
2962 /* Whether to emit a copy of register save/restore functions in this
2963 group. */
2964 int needs_save_res;
2965 /* Current offset within stubs after the insn restoring lr in a
2966 _notoc or _both stub using bcl for pc-relative addressing, or
2967 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
2968 unsigned int lr_restore;
2969 /* Accumulated size of EH info emitted to describe return address
2970 if stubs modify lr. Does not include 17 byte FDE header. */
2971 unsigned int eh_size;
2972 /* Offset in glink_eh_frame to the start of EH info for this group. */
2973 unsigned int eh_base;
2974 };
2975
2976 struct ppc_stub_hash_entry
2977 {
2978 /* Base hash table entry structure. */
2979 struct bfd_hash_entry root;
2980
2981 enum ppc_stub_type stub_type;
2982
2983 /* Group information. */
2984 struct map_stub *group;
2985
2986 /* Offset within stub_sec of the beginning of this stub. */
2987 bfd_vma stub_offset;
2988
2989 /* Given the symbol's value and its section we can determine its final
2990 value when building the stubs (so the stub knows where to jump. */
2991 bfd_vma target_value;
2992 asection *target_section;
2993
2994 /* The symbol table entry, if any, that this was derived from. */
2995 struct ppc_link_hash_entry *h;
2996 struct plt_entry *plt_ent;
2997
2998 /* Symbol type. */
2999 unsigned char symtype;
3000
3001 /* Symbol st_other. */
3002 unsigned char other;
3003 };
3004
3005 struct ppc_branch_hash_entry
3006 {
3007 /* Base hash table entry structure. */
3008 struct bfd_hash_entry root;
3009
3010 /* Offset within branch lookup table. */
3011 unsigned int offset;
3012
3013 /* Generation marker. */
3014 unsigned int iter;
3015 };
3016
3017 /* Used to track dynamic relocations for local symbols. */
3018 struct ppc_dyn_relocs
3019 {
3020 struct ppc_dyn_relocs *next;
3021
3022 /* The input section of the reloc. */
3023 asection *sec;
3024
3025 /* Total number of relocs copied for the input section. */
3026 unsigned int count : 31;
3027
3028 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3029 unsigned int ifunc : 1;
3030 };
3031
3032 struct ppc_link_hash_entry
3033 {
3034 struct elf_link_hash_entry elf;
3035
3036 union
3037 {
3038 /* A pointer to the most recently used stub hash entry against this
3039 symbol. */
3040 struct ppc_stub_hash_entry *stub_cache;
3041
3042 /* A pointer to the next symbol starting with a '.' */
3043 struct ppc_link_hash_entry *next_dot_sym;
3044 } u;
3045
3046 /* Track dynamic relocs copied for this symbol. */
3047 struct elf_dyn_relocs *dyn_relocs;
3048
3049 /* Link between function code and descriptor symbols. */
3050 struct ppc_link_hash_entry *oh;
3051
3052 /* Flag function code and descriptor symbols. */
3053 unsigned int is_func:1;
3054 unsigned int is_func_descriptor:1;
3055 unsigned int fake:1;
3056
3057 /* Whether global opd/toc sym has been adjusted or not.
3058 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3059 should be set for all globals defined in any opd/toc section. */
3060 unsigned int adjust_done:1;
3061
3062 /* Set if this is an out-of-line register save/restore function,
3063 with non-standard calling convention. */
3064 unsigned int save_res:1;
3065
3066 /* Set if a duplicate symbol with non-zero localentry is detected,
3067 even when the duplicate symbol does not provide a definition. */
3068 unsigned int non_zero_localentry:1;
3069
3070 /* Contexts in which symbol is used in the GOT (or TOC).
3071 Bits are or'd into the mask as the corresponding relocs are
3072 encountered during check_relocs, with TLS_TLS being set when any
3073 of the other TLS bits are set. tls_optimize clears bits when
3074 optimizing to indicate the corresponding GOT entry type is not
3075 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3076 set TLS_GDIE when a GD reloc turns into an IE one.
3077 These flags are also kept for local symbols. */
3078 #define TLS_TLS 1 /* Any TLS reloc. */
3079 #define TLS_GD 2 /* GD reloc. */
3080 #define TLS_LD 4 /* LD reloc. */
3081 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3082 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3083 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3084 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3085 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3086 unsigned char tls_mask;
3087
3088 /* The above field is also used to mark function symbols. In which
3089 case TLS_TLS will be 0. */
3090 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3091 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3092 #define NON_GOT 256 /* local symbol plt, not stored. */
3093 };
3094
3095 /* ppc64 ELF linker hash table. */
3096
3097 struct ppc_link_hash_table
3098 {
3099 struct elf_link_hash_table elf;
3100
3101 /* The stub hash table. */
3102 struct bfd_hash_table stub_hash_table;
3103
3104 /* Another hash table for plt_branch stubs. */
3105 struct bfd_hash_table branch_hash_table;
3106
3107 /* Hash table for function prologue tocsave. */
3108 htab_t tocsave_htab;
3109
3110 /* Various options and other info passed from the linker. */
3111 struct ppc64_elf_params *params;
3112
3113 /* The size of sec_info below. */
3114 unsigned int sec_info_arr_size;
3115
3116 /* Per-section array of extra section info. Done this way rather
3117 than as part of ppc64_elf_section_data so we have the info for
3118 non-ppc64 sections. */
3119 struct
3120 {
3121 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3122 bfd_vma toc_off;
3123
3124 union
3125 {
3126 /* The section group that this section belongs to. */
3127 struct map_stub *group;
3128 /* A temp section list pointer. */
3129 asection *list;
3130 } u;
3131 } *sec_info;
3132
3133 /* Linked list of groups. */
3134 struct map_stub *group;
3135
3136 /* Temp used when calculating TOC pointers. */
3137 bfd_vma toc_curr;
3138 bfd *toc_bfd;
3139 asection *toc_first_sec;
3140
3141 /* Used when adding symbols. */
3142 struct ppc_link_hash_entry *dot_syms;
3143
3144 /* Shortcuts to get to dynamic linker sections. */
3145 asection *glink;
3146 asection *global_entry;
3147 asection *sfpr;
3148 asection *pltlocal;
3149 asection *relpltlocal;
3150 asection *brlt;
3151 asection *relbrlt;
3152 asection *glink_eh_frame;
3153
3154 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3155 struct ppc_link_hash_entry *tls_get_addr;
3156 struct ppc_link_hash_entry *tls_get_addr_fd;
3157
3158 /* The size of reliplt used by got entry relocs. */
3159 bfd_size_type got_reli_size;
3160
3161 /* Statistics. */
3162 unsigned long stub_count[ppc_stub_global_entry];
3163
3164 /* Number of stubs against global syms. */
3165 unsigned long stub_globals;
3166
3167 /* Set if we're linking code with function descriptors. */
3168 unsigned int opd_abi:1;
3169
3170 /* Support for multiple toc sections. */
3171 unsigned int do_multi_toc:1;
3172 unsigned int multi_toc_needed:1;
3173 unsigned int second_toc_pass:1;
3174 unsigned int do_toc_opt:1;
3175
3176 /* Set if tls optimization is enabled. */
3177 unsigned int do_tls_opt:1;
3178
3179 /* Set if inline plt calls should be converted to direct calls. */
3180 unsigned int can_convert_all_inline_plt:1;
3181
3182 /* Set on error. */
3183 unsigned int stub_error:1;
3184
3185 /* Whether func_desc_adjust needs to be run over symbols. */
3186 unsigned int need_func_desc_adj:1;
3187
3188 /* Whether there exist local gnu indirect function resolvers,
3189 referenced by dynamic relocations. */
3190 unsigned int local_ifunc_resolver:1;
3191 unsigned int maybe_local_ifunc_resolver:1;
3192
3193 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3194 unsigned int has_plt_localentry0:1;
3195
3196 /* Whether calls are made via the PLT from NOTOC functions. */
3197 unsigned int notoc_plt:1;
3198
3199 /* Whether to use powerxx instructions in linkage stubs. */
3200 unsigned int powerxx_stubs:1;
3201
3202 /* Incremented every time we size stubs. */
3203 unsigned int stub_iteration;
3204
3205 /* Small local sym cache. */
3206 struct sym_cache sym_cache;
3207 };
3208
3209 /* Rename some of the generic section flags to better document how they
3210 are used here. */
3211
3212 /* Nonzero if this section has TLS related relocations. */
3213 #define has_tls_reloc sec_flg0
3214
3215 /* Nonzero if this section has an old-style call to __tls_get_addr. */
3216 #define has_tls_get_addr_call sec_flg1
3217
3218 /* Nonzero if this section has any toc or got relocs. */
3219 #define has_toc_reloc sec_flg2
3220
3221 /* Nonzero if this section has a call to another section that uses
3222 the toc or got. */
3223 #define makes_toc_func_call sec_flg3
3224
3225 /* Recursion protection when determining above flag. */
3226 #define call_check_in_progress sec_flg4
3227 #define call_check_done sec_flg5
3228
3229 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3230
3231 #define ppc_hash_table(p) \
3232 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3233 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3234
3235 #define ppc_stub_hash_lookup(table, string, create, copy) \
3236 ((struct ppc_stub_hash_entry *) \
3237 bfd_hash_lookup ((table), (string), (create), (copy)))
3238
3239 #define ppc_branch_hash_lookup(table, string, create, copy) \
3240 ((struct ppc_branch_hash_entry *) \
3241 bfd_hash_lookup ((table), (string), (create), (copy)))
3242
3243 /* Create an entry in the stub hash table. */
3244
3245 static struct bfd_hash_entry *
3246 stub_hash_newfunc (struct bfd_hash_entry *entry,
3247 struct bfd_hash_table *table,
3248 const char *string)
3249 {
3250 /* Allocate the structure if it has not already been allocated by a
3251 subclass. */
3252 if (entry == NULL)
3253 {
3254 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3255 if (entry == NULL)
3256 return entry;
3257 }
3258
3259 /* Call the allocation method of the superclass. */
3260 entry = bfd_hash_newfunc (entry, table, string);
3261 if (entry != NULL)
3262 {
3263 struct ppc_stub_hash_entry *eh;
3264
3265 /* Initialize the local fields. */
3266 eh = (struct ppc_stub_hash_entry *) entry;
3267 eh->stub_type = ppc_stub_none;
3268 eh->group = NULL;
3269 eh->stub_offset = 0;
3270 eh->target_value = 0;
3271 eh->target_section = NULL;
3272 eh->h = NULL;
3273 eh->plt_ent = NULL;
3274 eh->other = 0;
3275 }
3276
3277 return entry;
3278 }
3279
3280 /* Create an entry in the branch hash table. */
3281
3282 static struct bfd_hash_entry *
3283 branch_hash_newfunc (struct bfd_hash_entry *entry,
3284 struct bfd_hash_table *table,
3285 const char *string)
3286 {
3287 /* Allocate the structure if it has not already been allocated by a
3288 subclass. */
3289 if (entry == NULL)
3290 {
3291 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3292 if (entry == NULL)
3293 return entry;
3294 }
3295
3296 /* Call the allocation method of the superclass. */
3297 entry = bfd_hash_newfunc (entry, table, string);
3298 if (entry != NULL)
3299 {
3300 struct ppc_branch_hash_entry *eh;
3301
3302 /* Initialize the local fields. */
3303 eh = (struct ppc_branch_hash_entry *) entry;
3304 eh->offset = 0;
3305 eh->iter = 0;
3306 }
3307
3308 return entry;
3309 }
3310
3311 /* Create an entry in a ppc64 ELF linker hash table. */
3312
3313 static struct bfd_hash_entry *
3314 link_hash_newfunc (struct bfd_hash_entry *entry,
3315 struct bfd_hash_table *table,
3316 const char *string)
3317 {
3318 /* Allocate the structure if it has not already been allocated by a
3319 subclass. */
3320 if (entry == NULL)
3321 {
3322 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3323 if (entry == NULL)
3324 return entry;
3325 }
3326
3327 /* Call the allocation method of the superclass. */
3328 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3329 if (entry != NULL)
3330 {
3331 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3332
3333 memset (&eh->u.stub_cache, 0,
3334 (sizeof (struct ppc_link_hash_entry)
3335 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3336
3337 /* When making function calls, old ABI code references function entry
3338 points (dot symbols), while new ABI code references the function
3339 descriptor symbol. We need to make any combination of reference and
3340 definition work together, without breaking archive linking.
3341
3342 For a defined function "foo" and an undefined call to "bar":
3343 An old object defines "foo" and ".foo", references ".bar" (possibly
3344 "bar" too).
3345 A new object defines "foo" and references "bar".
3346
3347 A new object thus has no problem with its undefined symbols being
3348 satisfied by definitions in an old object. On the other hand, the
3349 old object won't have ".bar" satisfied by a new object.
3350
3351 Keep a list of newly added dot-symbols. */
3352
3353 if (string[0] == '.')
3354 {
3355 struct ppc_link_hash_table *htab;
3356
3357 htab = (struct ppc_link_hash_table *) table;
3358 eh->u.next_dot_sym = htab->dot_syms;
3359 htab->dot_syms = eh;
3360 }
3361 }
3362
3363 return entry;
3364 }
3365
3366 struct tocsave_entry
3367 {
3368 asection *sec;
3369 bfd_vma offset;
3370 };
3371
3372 static hashval_t
3373 tocsave_htab_hash (const void *p)
3374 {
3375 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3376 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3377 }
3378
3379 static int
3380 tocsave_htab_eq (const void *p1, const void *p2)
3381 {
3382 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3383 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3384 return e1->sec == e2->sec && e1->offset == e2->offset;
3385 }
3386
3387 /* Destroy a ppc64 ELF linker hash table. */
3388
3389 static void
3390 ppc64_elf_link_hash_table_free (bfd *obfd)
3391 {
3392 struct ppc_link_hash_table *htab;
3393
3394 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3395 if (htab->tocsave_htab)
3396 htab_delete (htab->tocsave_htab);
3397 bfd_hash_table_free (&htab->branch_hash_table);
3398 bfd_hash_table_free (&htab->stub_hash_table);
3399 _bfd_elf_link_hash_table_free (obfd);
3400 }
3401
3402 /* Create a ppc64 ELF linker hash table. */
3403
3404 static struct bfd_link_hash_table *
3405 ppc64_elf_link_hash_table_create (bfd *abfd)
3406 {
3407 struct ppc_link_hash_table *htab;
3408 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3409
3410 htab = bfd_zmalloc (amt);
3411 if (htab == NULL)
3412 return NULL;
3413
3414 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3415 sizeof (struct ppc_link_hash_entry),
3416 PPC64_ELF_DATA))
3417 {
3418 free (htab);
3419 return NULL;
3420 }
3421
3422 /* Init the stub hash table too. */
3423 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3424 sizeof (struct ppc_stub_hash_entry)))
3425 {
3426 _bfd_elf_link_hash_table_free (abfd);
3427 return NULL;
3428 }
3429
3430 /* And the branch hash table. */
3431 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3432 sizeof (struct ppc_branch_hash_entry)))
3433 {
3434 bfd_hash_table_free (&htab->stub_hash_table);
3435 _bfd_elf_link_hash_table_free (abfd);
3436 return NULL;
3437 }
3438
3439 htab->tocsave_htab = htab_try_create (1024,
3440 tocsave_htab_hash,
3441 tocsave_htab_eq,
3442 NULL);
3443 if (htab->tocsave_htab == NULL)
3444 {
3445 ppc64_elf_link_hash_table_free (abfd);
3446 return NULL;
3447 }
3448 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3449
3450 /* Initializing two fields of the union is just cosmetic. We really
3451 only care about glist, but when compiled on a 32-bit host the
3452 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3453 debugger inspection of these fields look nicer. */
3454 htab->elf.init_got_refcount.refcount = 0;
3455 htab->elf.init_got_refcount.glist = NULL;
3456 htab->elf.init_plt_refcount.refcount = 0;
3457 htab->elf.init_plt_refcount.glist = NULL;
3458 htab->elf.init_got_offset.offset = 0;
3459 htab->elf.init_got_offset.glist = NULL;
3460 htab->elf.init_plt_offset.offset = 0;
3461 htab->elf.init_plt_offset.glist = NULL;
3462
3463 return &htab->elf.root;
3464 }
3465
3466 /* Create sections for linker generated code. */
3467
3468 static bfd_boolean
3469 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3470 {
3471 struct ppc_link_hash_table *htab;
3472 flagword flags;
3473
3474 htab = ppc_hash_table (info);
3475
3476 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3477 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3478 if (htab->params->save_restore_funcs)
3479 {
3480 /* Create .sfpr for code to save and restore fp regs. */
3481 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3482 flags);
3483 if (htab->sfpr == NULL
3484 || !bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3485 return FALSE;
3486 }
3487
3488 if (bfd_link_relocatable (info))
3489 return TRUE;
3490
3491 /* Create .glink for lazy dynamic linking support. */
3492 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3493 flags);
3494 if (htab->glink == NULL
3495 || !bfd_set_section_alignment (dynobj, htab->glink, 3))
3496 return FALSE;
3497
3498 /* The part of .glink used by global entry stubs, separate so that
3499 it can be aligned appropriately without affecting htab->glink. */
3500 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3501 flags);
3502 if (htab->global_entry == NULL
3503 || !bfd_set_section_alignment (dynobj, htab->global_entry, 2))
3504 return FALSE;
3505
3506 if (!info->no_ld_generated_unwind_info)
3507 {
3508 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3509 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3510 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3511 ".eh_frame",
3512 flags);
3513 if (htab->glink_eh_frame == NULL
3514 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
3515 return FALSE;
3516 }
3517
3518 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3519 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3520 if (htab->elf.iplt == NULL
3521 || !bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
3522 return FALSE;
3523
3524 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3525 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3526 htab->elf.irelplt
3527 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3528 if (htab->elf.irelplt == NULL
3529 || !bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
3530 return FALSE;
3531
3532 /* Create branch lookup table for plt_branch stubs. */
3533 flags = (SEC_ALLOC | SEC_LOAD
3534 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3535 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3536 flags);
3537 if (htab->brlt == NULL
3538 || !bfd_set_section_alignment (dynobj, htab->brlt, 3))
3539 return FALSE;
3540
3541 /* Local plt entries, put in .branch_lt but a separate section for
3542 convenience. */
3543 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3544 flags);
3545 if (htab->pltlocal == NULL
3546 || !bfd_set_section_alignment (dynobj, htab->pltlocal, 3))
3547 return FALSE;
3548
3549 if (!bfd_link_pic (info))
3550 return TRUE;
3551
3552 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3553 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3554 htab->relbrlt
3555 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3556 if (htab->relbrlt == NULL
3557 || !bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3558 return FALSE;
3559
3560 htab->relpltlocal
3561 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3562 if (htab->relpltlocal == NULL
3563 || !bfd_set_section_alignment (dynobj, htab->relpltlocal, 3))
3564 return FALSE;
3565
3566 return TRUE;
3567 }
3568
3569 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3570
3571 bfd_boolean
3572 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3573 struct ppc64_elf_params *params)
3574 {
3575 struct ppc_link_hash_table *htab;
3576
3577 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3578
3579 /* Always hook our dynamic sections into the first bfd, which is the
3580 linker created stub bfd. This ensures that the GOT header is at
3581 the start of the output TOC section. */
3582 htab = ppc_hash_table (info);
3583 htab->elf.dynobj = params->stub_bfd;
3584 htab->params = params;
3585
3586 return create_linkage_sections (htab->elf.dynobj, info);
3587 }
3588
3589 /* Build a name for an entry in the stub hash table. */
3590
3591 static char *
3592 ppc_stub_name (const asection *input_section,
3593 const asection *sym_sec,
3594 const struct ppc_link_hash_entry *h,
3595 const Elf_Internal_Rela *rel)
3596 {
3597 char *stub_name;
3598 ssize_t len;
3599
3600 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3601 offsets from a sym as a branch target? In fact, we could
3602 probably assume the addend is always zero. */
3603 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3604
3605 if (h)
3606 {
3607 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3608 stub_name = bfd_malloc (len);
3609 if (stub_name == NULL)
3610 return stub_name;
3611
3612 len = sprintf (stub_name, "%08x.%s+%x",
3613 input_section->id & 0xffffffff,
3614 h->elf.root.root.string,
3615 (int) rel->r_addend & 0xffffffff);
3616 }
3617 else
3618 {
3619 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3620 stub_name = bfd_malloc (len);
3621 if (stub_name == NULL)
3622 return stub_name;
3623
3624 len = sprintf (stub_name, "%08x.%x:%x+%x",
3625 input_section->id & 0xffffffff,
3626 sym_sec->id & 0xffffffff,
3627 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3628 (int) rel->r_addend & 0xffffffff);
3629 }
3630 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3631 stub_name[len - 2] = 0;
3632 return stub_name;
3633 }
3634
3635 /* Look up an entry in the stub hash. Stub entries are cached because
3636 creating the stub name takes a bit of time. */
3637
3638 static struct ppc_stub_hash_entry *
3639 ppc_get_stub_entry (const asection *input_section,
3640 const asection *sym_sec,
3641 struct ppc_link_hash_entry *h,
3642 const Elf_Internal_Rela *rel,
3643 struct ppc_link_hash_table *htab)
3644 {
3645 struct ppc_stub_hash_entry *stub_entry;
3646 struct map_stub *group;
3647
3648 /* If this input section is part of a group of sections sharing one
3649 stub section, then use the id of the first section in the group.
3650 Stub names need to include a section id, as there may well be
3651 more than one stub used to reach say, printf, and we need to
3652 distinguish between them. */
3653 group = htab->sec_info[input_section->id].u.group;
3654 if (group == NULL)
3655 return NULL;
3656
3657 if (h != NULL && h->u.stub_cache != NULL
3658 && h->u.stub_cache->h == h
3659 && h->u.stub_cache->group == group)
3660 {
3661 stub_entry = h->u.stub_cache;
3662 }
3663 else
3664 {
3665 char *stub_name;
3666
3667 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3668 if (stub_name == NULL)
3669 return NULL;
3670
3671 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3672 stub_name, FALSE, FALSE);
3673 if (h != NULL)
3674 h->u.stub_cache = stub_entry;
3675
3676 free (stub_name);
3677 }
3678
3679 return stub_entry;
3680 }
3681
3682 /* Add a new stub entry to the stub hash. Not all fields of the new
3683 stub entry are initialised. */
3684
3685 static struct ppc_stub_hash_entry *
3686 ppc_add_stub (const char *stub_name,
3687 asection *section,
3688 struct bfd_link_info *info)
3689 {
3690 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3691 struct map_stub *group;
3692 asection *link_sec;
3693 asection *stub_sec;
3694 struct ppc_stub_hash_entry *stub_entry;
3695
3696 group = htab->sec_info[section->id].u.group;
3697 link_sec = group->link_sec;
3698 stub_sec = group->stub_sec;
3699 if (stub_sec == NULL)
3700 {
3701 size_t namelen;
3702 bfd_size_type len;
3703 char *s_name;
3704
3705 namelen = strlen (link_sec->name);
3706 len = namelen + sizeof (STUB_SUFFIX);
3707 s_name = bfd_alloc (htab->params->stub_bfd, len);
3708 if (s_name == NULL)
3709 return NULL;
3710
3711 memcpy (s_name, link_sec->name, namelen);
3712 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3713 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3714 if (stub_sec == NULL)
3715 return NULL;
3716 group->stub_sec = stub_sec;
3717 }
3718
3719 /* Enter this entry into the linker stub hash table. */
3720 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3721 TRUE, FALSE);
3722 if (stub_entry == NULL)
3723 {
3724 /* xgettext:c-format */
3725 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3726 section->owner, stub_name);
3727 return NULL;
3728 }
3729
3730 stub_entry->group = group;
3731 stub_entry->stub_offset = 0;
3732 return stub_entry;
3733 }
3734
3735 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3736 not already done. */
3737
3738 static bfd_boolean
3739 create_got_section (bfd *abfd, struct bfd_link_info *info)
3740 {
3741 asection *got, *relgot;
3742 flagword flags;
3743 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3744
3745 if (!is_ppc64_elf (abfd))
3746 return FALSE;
3747 if (htab == NULL)
3748 return FALSE;
3749
3750 if (!htab->elf.sgot
3751 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3752 return FALSE;
3753
3754 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3755 | SEC_LINKER_CREATED);
3756
3757 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3758 if (!got
3759 || !bfd_set_section_alignment (abfd, got, 3))
3760 return FALSE;
3761
3762 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3763 flags | SEC_READONLY);
3764 if (!relgot
3765 || !bfd_set_section_alignment (abfd, relgot, 3))
3766 return FALSE;
3767
3768 ppc64_elf_tdata (abfd)->got = got;
3769 ppc64_elf_tdata (abfd)->relgot = relgot;
3770 return TRUE;
3771 }
3772
3773 /* Follow indirect and warning symbol links. */
3774
3775 static inline struct bfd_link_hash_entry *
3776 follow_link (struct bfd_link_hash_entry *h)
3777 {
3778 while (h->type == bfd_link_hash_indirect
3779 || h->type == bfd_link_hash_warning)
3780 h = h->u.i.link;
3781 return h;
3782 }
3783
3784 static inline struct elf_link_hash_entry *
3785 elf_follow_link (struct elf_link_hash_entry *h)
3786 {
3787 return (struct elf_link_hash_entry *) follow_link (&h->root);
3788 }
3789
3790 static inline struct ppc_link_hash_entry *
3791 ppc_follow_link (struct ppc_link_hash_entry *h)
3792 {
3793 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
3794 }
3795
3796 /* Merge PLT info on FROM with that on TO. */
3797
3798 static void
3799 move_plt_plist (struct ppc_link_hash_entry *from,
3800 struct ppc_link_hash_entry *to)
3801 {
3802 if (from->elf.plt.plist != NULL)
3803 {
3804 if (to->elf.plt.plist != NULL)
3805 {
3806 struct plt_entry **entp;
3807 struct plt_entry *ent;
3808
3809 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3810 {
3811 struct plt_entry *dent;
3812
3813 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3814 if (dent->addend == ent->addend)
3815 {
3816 dent->plt.refcount += ent->plt.refcount;
3817 *entp = ent->next;
3818 break;
3819 }
3820 if (dent == NULL)
3821 entp = &ent->next;
3822 }
3823 *entp = to->elf.plt.plist;
3824 }
3825
3826 to->elf.plt.plist = from->elf.plt.plist;
3827 from->elf.plt.plist = NULL;
3828 }
3829 }
3830
3831 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3832
3833 static void
3834 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3835 struct elf_link_hash_entry *dir,
3836 struct elf_link_hash_entry *ind)
3837 {
3838 struct ppc_link_hash_entry *edir, *eind;
3839
3840 edir = (struct ppc_link_hash_entry *) dir;
3841 eind = (struct ppc_link_hash_entry *) ind;
3842
3843 edir->is_func |= eind->is_func;
3844 edir->is_func_descriptor |= eind->is_func_descriptor;
3845 edir->tls_mask |= eind->tls_mask;
3846 if (eind->oh != NULL)
3847 edir->oh = ppc_follow_link (eind->oh);
3848
3849 if (edir->elf.versioned != versioned_hidden)
3850 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3851 edir->elf.ref_regular |= eind->elf.ref_regular;
3852 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3853 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3854 edir->elf.needs_plt |= eind->elf.needs_plt;
3855 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3856
3857 /* If we were called to copy over info for a weak sym, don't copy
3858 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3859 in order to simplify readonly_dynrelocs and save a field in the
3860 symbol hash entry, but that means dyn_relocs can't be used in any
3861 tests about a specific symbol, or affect other symbol flags which
3862 are then tested. */
3863 if (eind->elf.root.type != bfd_link_hash_indirect)
3864 return;
3865
3866 /* Copy over any dynamic relocs we may have on the indirect sym. */
3867 if (eind->dyn_relocs != NULL)
3868 {
3869 if (edir->dyn_relocs != NULL)
3870 {
3871 struct elf_dyn_relocs **pp;
3872 struct elf_dyn_relocs *p;
3873
3874 /* Add reloc counts against the indirect sym to the direct sym
3875 list. Merge any entries against the same section. */
3876 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3877 {
3878 struct elf_dyn_relocs *q;
3879
3880 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3881 if (q->sec == p->sec)
3882 {
3883 q->pc_count += p->pc_count;
3884 q->count += p->count;
3885 *pp = p->next;
3886 break;
3887 }
3888 if (q == NULL)
3889 pp = &p->next;
3890 }
3891 *pp = edir->dyn_relocs;
3892 }
3893
3894 edir->dyn_relocs = eind->dyn_relocs;
3895 eind->dyn_relocs = NULL;
3896 }
3897
3898 /* Copy over got entries that we may have already seen to the
3899 symbol which just became indirect. */
3900 if (eind->elf.got.glist != NULL)
3901 {
3902 if (edir->elf.got.glist != NULL)
3903 {
3904 struct got_entry **entp;
3905 struct got_entry *ent;
3906
3907 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3908 {
3909 struct got_entry *dent;
3910
3911 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3912 if (dent->addend == ent->addend
3913 && dent->owner == ent->owner
3914 && dent->tls_type == ent->tls_type)
3915 {
3916 dent->got.refcount += ent->got.refcount;
3917 *entp = ent->next;
3918 break;
3919 }
3920 if (dent == NULL)
3921 entp = &ent->next;
3922 }
3923 *entp = edir->elf.got.glist;
3924 }
3925
3926 edir->elf.got.glist = eind->elf.got.glist;
3927 eind->elf.got.glist = NULL;
3928 }
3929
3930 /* And plt entries. */
3931 move_plt_plist (eind, edir);
3932
3933 if (eind->elf.dynindx != -1)
3934 {
3935 if (edir->elf.dynindx != -1)
3936 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3937 edir->elf.dynstr_index);
3938 edir->elf.dynindx = eind->elf.dynindx;
3939 edir->elf.dynstr_index = eind->elf.dynstr_index;
3940 eind->elf.dynindx = -1;
3941 eind->elf.dynstr_index = 0;
3942 }
3943 }
3944
3945 /* Find the function descriptor hash entry from the given function code
3946 hash entry FH. Link the entries via their OH fields. */
3947
3948 static struct ppc_link_hash_entry *
3949 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3950 {
3951 struct ppc_link_hash_entry *fdh = fh->oh;
3952
3953 if (fdh == NULL)
3954 {
3955 const char *fd_name = fh->elf.root.root.string + 1;
3956
3957 fdh = (struct ppc_link_hash_entry *)
3958 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3959 if (fdh == NULL)
3960 return fdh;
3961
3962 fdh->is_func_descriptor = 1;
3963 fdh->oh = fh;
3964 fh->is_func = 1;
3965 fh->oh = fdh;
3966 }
3967
3968 fdh = ppc_follow_link (fdh);
3969 fdh->is_func_descriptor = 1;
3970 fdh->oh = fh;
3971 return fdh;
3972 }
3973
3974 /* Make a fake function descriptor sym for the undefined code sym FH. */
3975
3976 static struct ppc_link_hash_entry *
3977 make_fdh (struct bfd_link_info *info,
3978 struct ppc_link_hash_entry *fh)
3979 {
3980 bfd *abfd = fh->elf.root.u.undef.abfd;
3981 struct bfd_link_hash_entry *bh = NULL;
3982 struct ppc_link_hash_entry *fdh;
3983 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
3984 ? BSF_WEAK
3985 : BSF_GLOBAL);
3986
3987 if (!_bfd_generic_link_add_one_symbol (info, abfd,
3988 fh->elf.root.root.string + 1,
3989 flags, bfd_und_section_ptr, 0,
3990 NULL, FALSE, FALSE, &bh))
3991 return NULL;
3992
3993 fdh = (struct ppc_link_hash_entry *) bh;
3994 fdh->elf.non_elf = 0;
3995 fdh->fake = 1;
3996 fdh->is_func_descriptor = 1;
3997 fdh->oh = fh;
3998 fh->is_func = 1;
3999 fh->oh = fdh;
4000 return fdh;
4001 }
4002
4003 /* Fix function descriptor symbols defined in .opd sections to be
4004 function type. */
4005
4006 static bfd_boolean
4007 ppc64_elf_add_symbol_hook (bfd *ibfd,
4008 struct bfd_link_info *info,
4009 Elf_Internal_Sym *isym,
4010 const char **name,
4011 flagword *flags ATTRIBUTE_UNUSED,
4012 asection **sec,
4013 bfd_vma *value)
4014 {
4015 if (*sec != NULL
4016 && strcmp ((*sec)->name, ".opd") == 0)
4017 {
4018 asection *code_sec;
4019
4020 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4021 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4022 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4023
4024 /* If the symbol is a function defined in .opd, and the function
4025 code is in a discarded group, let it appear to be undefined. */
4026 if (!bfd_link_relocatable (info)
4027 && (*sec)->reloc_count != 0
4028 && opd_entry_value (*sec, *value, &code_sec, NULL,
4029 FALSE) != (bfd_vma) -1
4030 && discarded_section (code_sec))
4031 {
4032 *sec = bfd_und_section_ptr;
4033 isym->st_shndx = SHN_UNDEF;
4034 }
4035 }
4036 else if (*sec != NULL
4037 && strcmp ((*sec)->name, ".toc") == 0
4038 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4039 {
4040 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4041 if (htab != NULL)
4042 htab->params->object_in_toc = 1;
4043 }
4044
4045 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4046 {
4047 if (abiversion (ibfd) == 0)
4048 set_abiversion (ibfd, 2);
4049 else if (abiversion (ibfd) == 1)
4050 {
4051 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4052 " for ABI version 1"), *name);
4053 bfd_set_error (bfd_error_bad_value);
4054 return FALSE;
4055 }
4056 }
4057
4058 return TRUE;
4059 }
4060
4061 /* Merge non-visibility st_other attributes: local entry point. */
4062
4063 static void
4064 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4065 const Elf_Internal_Sym *isym,
4066 bfd_boolean definition,
4067 bfd_boolean dynamic)
4068 {
4069 if (definition && (!dynamic || !h->def_regular))
4070 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4071 | ELF_ST_VISIBILITY (h->other));
4072 }
4073
4074 /* Hook called on merging a symbol. We use this to clear "fake" since
4075 we now have a real symbol. */
4076
4077 static bfd_boolean
4078 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4079 const Elf_Internal_Sym *isym,
4080 asection **psec ATTRIBUTE_UNUSED,
4081 bfd_boolean newdef ATTRIBUTE_UNUSED,
4082 bfd_boolean olddef ATTRIBUTE_UNUSED,
4083 bfd *oldbfd ATTRIBUTE_UNUSED,
4084 const asection *oldsec ATTRIBUTE_UNUSED)
4085 {
4086 ((struct ppc_link_hash_entry *) h)->fake = 0;
4087 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4088 ((struct ppc_link_hash_entry *) h)->non_zero_localentry = 1;
4089 return TRUE;
4090 }
4091
4092 /* This function makes an old ABI object reference to ".bar" cause the
4093 inclusion of a new ABI object archive that defines "bar".
4094 NAME is a symbol defined in an archive. Return a symbol in the hash
4095 table that might be satisfied by the archive symbols. */
4096
4097 static struct elf_link_hash_entry *
4098 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4099 struct bfd_link_info *info,
4100 const char *name)
4101 {
4102 struct elf_link_hash_entry *h;
4103 char *dot_name;
4104 size_t len;
4105
4106 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4107 if (h != NULL
4108 /* Don't return this sym if it is a fake function descriptor
4109 created by add_symbol_adjust. */
4110 && !((struct ppc_link_hash_entry *) h)->fake)
4111 return h;
4112
4113 if (name[0] == '.')
4114 return h;
4115
4116 len = strlen (name);
4117 dot_name = bfd_alloc (abfd, len + 2);
4118 if (dot_name == NULL)
4119 return (struct elf_link_hash_entry *) -1;
4120 dot_name[0] = '.';
4121 memcpy (dot_name + 1, name, len + 1);
4122 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4123 bfd_release (abfd, dot_name);
4124 return h;
4125 }
4126
4127 /* This function satisfies all old ABI object references to ".bar" if a
4128 new ABI object defines "bar". Well, at least, undefined dot symbols
4129 are made weak. This stops later archive searches from including an
4130 object if we already have a function descriptor definition. It also
4131 prevents the linker complaining about undefined symbols.
4132 We also check and correct mismatched symbol visibility here. The
4133 most restrictive visibility of the function descriptor and the
4134 function entry symbol is used. */
4135
4136 static bfd_boolean
4137 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4138 {
4139 struct ppc_link_hash_table *htab;
4140 struct ppc_link_hash_entry *fdh;
4141
4142 if (eh->elf.root.type == bfd_link_hash_warning)
4143 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4144
4145 if (eh->elf.root.type == bfd_link_hash_indirect)
4146 return TRUE;
4147
4148 if (eh->elf.root.root.string[0] != '.')
4149 abort ();
4150
4151 htab = ppc_hash_table (info);
4152 if (htab == NULL)
4153 return FALSE;
4154
4155 fdh = lookup_fdh (eh, htab);
4156 if (fdh == NULL
4157 && !bfd_link_relocatable (info)
4158 && (eh->elf.root.type == bfd_link_hash_undefined
4159 || eh->elf.root.type == bfd_link_hash_undefweak)
4160 && eh->elf.ref_regular)
4161 {
4162 /* Make an undefined function descriptor sym, in order to
4163 pull in an --as-needed shared lib. Archives are handled
4164 elsewhere. */
4165 fdh = make_fdh (info, eh);
4166 if (fdh == NULL)
4167 return FALSE;
4168 }
4169
4170 if (fdh != NULL)
4171 {
4172 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4173 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4174
4175 /* Make both descriptor and entry symbol have the most
4176 constraining visibility of either symbol. */
4177 if (entry_vis < descr_vis)
4178 fdh->elf.other += entry_vis - descr_vis;
4179 else if (entry_vis > descr_vis)
4180 eh->elf.other += descr_vis - entry_vis;
4181
4182 /* Propagate reference flags from entry symbol to function
4183 descriptor symbol. */
4184 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4185 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4186 fdh->elf.ref_regular |= eh->elf.ref_regular;
4187 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4188
4189 if (!fdh->elf.forced_local
4190 && fdh->elf.dynindx == -1
4191 && fdh->elf.versioned != versioned_hidden
4192 && (bfd_link_dll (info)
4193 || fdh->elf.def_dynamic
4194 || fdh->elf.ref_dynamic)
4195 && (eh->elf.ref_regular
4196 || eh->elf.def_regular))
4197 {
4198 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4199 return FALSE;
4200 }
4201 }
4202
4203 return TRUE;
4204 }
4205
4206 /* Set up opd section info and abiversion for IBFD, and process list
4207 of dot-symbols we made in link_hash_newfunc. */
4208
4209 static bfd_boolean
4210 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4211 {
4212 struct ppc_link_hash_table *htab;
4213 struct ppc_link_hash_entry **p, *eh;
4214 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4215
4216 if (opd != NULL && opd->size != 0)
4217 {
4218 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4219 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4220
4221 if (abiversion (ibfd) == 0)
4222 set_abiversion (ibfd, 1);
4223 else if (abiversion (ibfd) >= 2)
4224 {
4225 /* xgettext:c-format */
4226 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4227 ibfd, abiversion (ibfd));
4228 bfd_set_error (bfd_error_bad_value);
4229 return FALSE;
4230 }
4231 }
4232
4233 if (is_ppc64_elf (info->output_bfd))
4234 {
4235 /* For input files without an explicit abiversion in e_flags
4236 we should have flagged any with symbol st_other bits set
4237 as ELFv1 and above flagged those with .opd as ELFv2.
4238 Set the output abiversion if not yet set, and for any input
4239 still ambiguous, take its abiversion from the output.
4240 Differences in ABI are reported later. */
4241 if (abiversion (info->output_bfd) == 0)
4242 set_abiversion (info->output_bfd, abiversion (ibfd));
4243 else if (abiversion (ibfd) == 0)
4244 set_abiversion (ibfd, abiversion (info->output_bfd));
4245 }
4246
4247 htab = ppc_hash_table (info);
4248 if (htab == NULL)
4249 return TRUE;
4250
4251 if (opd != NULL && opd->size != 0
4252 && (ibfd->flags & DYNAMIC) == 0
4253 && (opd->flags & SEC_RELOC) != 0
4254 && opd->reloc_count != 0
4255 && !bfd_is_abs_section (opd->output_section)
4256 && info->gc_sections)
4257 {
4258 /* Garbage collection needs some extra help with .opd sections.
4259 We don't want to necessarily keep everything referenced by
4260 relocs in .opd, as that would keep all functions. Instead,
4261 if we reference an .opd symbol (a function descriptor), we
4262 want to keep the function code symbol's section. This is
4263 easy for global symbols, but for local syms we need to keep
4264 information about the associated function section. */
4265 bfd_size_type amt;
4266 asection **opd_sym_map;
4267 Elf_Internal_Shdr *symtab_hdr;
4268 Elf_Internal_Rela *relocs, *rel_end, *rel;
4269
4270 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4271 opd_sym_map = bfd_zalloc (ibfd, amt);
4272 if (opd_sym_map == NULL)
4273 return FALSE;
4274 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4275 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4276 info->keep_memory);
4277 if (relocs == NULL)
4278 return FALSE;
4279 symtab_hdr = &elf_symtab_hdr (ibfd);
4280 rel_end = relocs + opd->reloc_count - 1;
4281 for (rel = relocs; rel < rel_end; rel++)
4282 {
4283 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4284 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4285
4286 if (r_type == R_PPC64_ADDR64
4287 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4288 && r_symndx < symtab_hdr->sh_info)
4289 {
4290 Elf_Internal_Sym *isym;
4291 asection *s;
4292
4293 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, r_symndx);
4294 if (isym == NULL)
4295 {
4296 if (elf_section_data (opd)->relocs != relocs)
4297 free (relocs);
4298 return FALSE;
4299 }
4300
4301 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4302 if (s != NULL && s != opd)
4303 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4304 }
4305 }
4306 if (elf_section_data (opd)->relocs != relocs)
4307 free (relocs);
4308 }
4309
4310 p = &htab->dot_syms;
4311 while ((eh = *p) != NULL)
4312 {
4313 *p = NULL;
4314 if (&eh->elf == htab->elf.hgot)
4315 ;
4316 else if (htab->elf.hgot == NULL
4317 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4318 htab->elf.hgot = &eh->elf;
4319 else if (abiversion (ibfd) <= 1)
4320 {
4321 htab->need_func_desc_adj = 1;
4322 if (!add_symbol_adjust (eh, info))
4323 return FALSE;
4324 }
4325 p = &eh->u.next_dot_sym;
4326 }
4327 return TRUE;
4328 }
4329
4330 /* Undo hash table changes when an --as-needed input file is determined
4331 not to be needed. */
4332
4333 static bfd_boolean
4334 ppc64_elf_notice_as_needed (bfd *ibfd,
4335 struct bfd_link_info *info,
4336 enum notice_asneeded_action act)
4337 {
4338 if (act == notice_not_needed)
4339 {
4340 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4341
4342 if (htab == NULL)
4343 return FALSE;
4344
4345 htab->dot_syms = NULL;
4346 }
4347 return _bfd_elf_notice_as_needed (ibfd, info, act);
4348 }
4349
4350 /* If --just-symbols against a final linked binary, then assume we need
4351 toc adjusting stubs when calling functions defined there. */
4352
4353 static void
4354 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4355 {
4356 if ((sec->flags & SEC_CODE) != 0
4357 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4358 && is_ppc64_elf (sec->owner))
4359 {
4360 if (abiversion (sec->owner) >= 2
4361 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4362 sec->has_toc_reloc = 1;
4363 }
4364 _bfd_elf_link_just_syms (sec, info);
4365 }
4366
4367 static struct plt_entry **
4368 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4369 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4370 {
4371 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4372 struct plt_entry **local_plt;
4373 unsigned char *local_got_tls_masks;
4374
4375 if (local_got_ents == NULL)
4376 {
4377 bfd_size_type size = symtab_hdr->sh_info;
4378
4379 size *= (sizeof (*local_got_ents)
4380 + sizeof (*local_plt)
4381 + sizeof (*local_got_tls_masks));
4382 local_got_ents = bfd_zalloc (abfd, size);
4383 if (local_got_ents == NULL)
4384 return NULL;
4385 elf_local_got_ents (abfd) = local_got_ents;
4386 }
4387
4388 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4389 {
4390 struct got_entry *ent;
4391
4392 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4393 if (ent->addend == r_addend
4394 && ent->owner == abfd
4395 && ent->tls_type == tls_type)
4396 break;
4397 if (ent == NULL)
4398 {
4399 bfd_size_type amt = sizeof (*ent);
4400 ent = bfd_alloc (abfd, amt);
4401 if (ent == NULL)
4402 return FALSE;
4403 ent->next = local_got_ents[r_symndx];
4404 ent->addend = r_addend;
4405 ent->owner = abfd;
4406 ent->tls_type = tls_type;
4407 ent->is_indirect = FALSE;
4408 ent->got.refcount = 0;
4409 local_got_ents[r_symndx] = ent;
4410 }
4411 ent->got.refcount += 1;
4412 }
4413
4414 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4415 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4416 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4417
4418 return local_plt + r_symndx;
4419 }
4420
4421 static bfd_boolean
4422 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4423 {
4424 struct plt_entry *ent;
4425
4426 for (ent = *plist; ent != NULL; ent = ent->next)
4427 if (ent->addend == addend)
4428 break;
4429 if (ent == NULL)
4430 {
4431 bfd_size_type amt = sizeof (*ent);
4432 ent = bfd_alloc (abfd, amt);
4433 if (ent == NULL)
4434 return FALSE;
4435 ent->next = *plist;
4436 ent->addend = addend;
4437 ent->plt.refcount = 0;
4438 *plist = ent;
4439 }
4440 ent->plt.refcount += 1;
4441 return TRUE;
4442 }
4443
4444 static bfd_boolean
4445 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4446 {
4447 return (r_type == R_PPC64_REL24
4448 || r_type == R_PPC64_REL24_NOTOC
4449 || r_type == R_PPC64_REL14
4450 || r_type == R_PPC64_REL14_BRTAKEN
4451 || r_type == R_PPC64_REL14_BRNTAKEN
4452 || r_type == R_PPC64_ADDR24
4453 || r_type == R_PPC64_ADDR14
4454 || r_type == R_PPC64_ADDR14_BRTAKEN
4455 || r_type == R_PPC64_ADDR14_BRNTAKEN
4456 || r_type == R_PPC64_PLTCALL
4457 || r_type == R_PPC64_PLTCALL_NOTOC);
4458 }
4459
4460 /* Relocs on inline plt call sequence insns prior to the call. */
4461
4462 static bfd_boolean
4463 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4464 {
4465 return (r_type == R_PPC64_PLT16_HA
4466 || r_type == R_PPC64_PLT16_HI
4467 || r_type == R_PPC64_PLT16_LO
4468 || r_type == R_PPC64_PLT16_LO_DS
4469 || r_type == R_PPC64_PLT_PCREL34
4470 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4471 || r_type == R_PPC64_PLTSEQ
4472 || r_type == R_PPC64_PLTSEQ_NOTOC);
4473 }
4474
4475 /* Look through the relocs for a section during the first phase, and
4476 calculate needed space in the global offset table, procedure
4477 linkage table, and dynamic reloc sections. */
4478
4479 static bfd_boolean
4480 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4481 asection *sec, const Elf_Internal_Rela *relocs)
4482 {
4483 struct ppc_link_hash_table *htab;
4484 Elf_Internal_Shdr *symtab_hdr;
4485 struct elf_link_hash_entry **sym_hashes;
4486 const Elf_Internal_Rela *rel;
4487 const Elf_Internal_Rela *rel_end;
4488 asection *sreloc;
4489 struct elf_link_hash_entry *tga, *dottga;
4490 bfd_boolean is_opd;
4491
4492 if (bfd_link_relocatable (info))
4493 return TRUE;
4494
4495 /* Don't do anything special with non-loaded, non-alloced sections.
4496 In particular, any relocs in such sections should not affect GOT
4497 and PLT reference counting (ie. we don't allow them to create GOT
4498 or PLT entries), there's no possibility or desire to optimize TLS
4499 relocs, and there's not much point in propagating relocs to shared
4500 libs that the dynamic linker won't relocate. */
4501 if ((sec->flags & SEC_ALLOC) == 0)
4502 return TRUE;
4503
4504 BFD_ASSERT (is_ppc64_elf (abfd));
4505
4506 htab = ppc_hash_table (info);
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4511 FALSE, FALSE, TRUE);
4512 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4513 FALSE, FALSE, TRUE);
4514 symtab_hdr = &elf_symtab_hdr (abfd);
4515 sym_hashes = elf_sym_hashes (abfd);
4516 sreloc = NULL;
4517 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4518 rel_end = relocs + sec->reloc_count;
4519 for (rel = relocs; rel < rel_end; rel++)
4520 {
4521 unsigned long r_symndx;
4522 struct elf_link_hash_entry *h;
4523 enum elf_ppc64_reloc_type r_type;
4524 int tls_type;
4525 struct _ppc64_elf_section_data *ppc64_sec;
4526 struct plt_entry **ifunc, **plt_list;
4527 bfd_vma sym_addend;
4528
4529 r_symndx = ELF64_R_SYM (rel->r_info);
4530 if (r_symndx < symtab_hdr->sh_info)
4531 h = NULL;
4532 else
4533 {
4534 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4535 h = elf_follow_link (h);
4536
4537 if (h == htab->elf.hgot)
4538 sec->has_toc_reloc = 1;
4539 }
4540
4541 tls_type = 0;
4542 ifunc = NULL;
4543 r_type = ELF64_R_TYPE (rel->r_info);
4544 switch (r_type)
4545 {
4546 case R_PPC64_D34:
4547 case R_PPC64_D34_LO:
4548 case R_PPC64_D34_HI30:
4549 case R_PPC64_D34_HA30:
4550 case R_PPC64_D28:
4551 case R_PPC64_TPREL34:
4552 case R_PPC64_DTPREL34:
4553 htab->powerxx_stubs = 1;
4554 /* Fall through. */
4555 default:
4556 /* Somewhat foolishly, because the ABIs don't specifically
4557 allow it, ppc64 gas and ld support GOT and PLT relocs
4558 with non-zero addends where the addend results in
4559 sym+addend being stored in the GOT or PLT entry. This
4560 can't be supported for pcrel relocs because the addend is
4561 used to specify the pcrel offset. */
4562 sym_addend = rel->r_addend;
4563 break;
4564
4565 case R_PPC64_PCREL34:
4566 case R_PPC64_GOT_PCREL34:
4567 case R_PPC64_GOT_TLSGD34:
4568 case R_PPC64_GOT_TLSLD34:
4569 case R_PPC64_GOT_TPREL34:
4570 case R_PPC64_GOT_DTPREL34:
4571 case R_PPC64_PLT_PCREL34:
4572 case R_PPC64_PLT_PCREL34_NOTOC:
4573 case R_PPC64_PCREL28:
4574 htab->powerxx_stubs = 1;
4575 sym_addend = 0;
4576 break;
4577 }
4578
4579 switch (r_type)
4580 {
4581 case R_PPC64_PLT16_HA:
4582 case R_PPC64_GOT_TLSLD16_HA:
4583 case R_PPC64_GOT_TLSGD16_HA:
4584 case R_PPC64_GOT_TPREL16_HA:
4585 case R_PPC64_GOT_DTPREL16_HA:
4586 case R_PPC64_GOT16_HA:
4587 case R_PPC64_TOC16_HA:
4588 case R_PPC64_PLT16_LO:
4589 case R_PPC64_PLT16_LO_DS:
4590 case R_PPC64_GOT_TLSLD16_LO:
4591 case R_PPC64_GOT_TLSGD16_LO:
4592 case R_PPC64_GOT_TPREL16_LO_DS:
4593 case R_PPC64_GOT_DTPREL16_LO_DS:
4594 case R_PPC64_GOT16_LO:
4595 case R_PPC64_GOT16_LO_DS:
4596 case R_PPC64_TOC16_LO:
4597 case R_PPC64_TOC16_LO_DS:
4598 case R_PPC64_GOT_PCREL34:
4599 ppc64_elf_tdata (abfd)->has_optrel = 1;
4600 ppc64_elf_section_data (sec)->has_optrel = 1;
4601 break;
4602 default:
4603 break;
4604 }
4605
4606 if (h != NULL)
4607 {
4608 if (h->type == STT_GNU_IFUNC)
4609 {
4610 h->needs_plt = 1;
4611 ifunc = &h->plt.plist;
4612 }
4613 }
4614 else
4615 {
4616 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4617 abfd, r_symndx);
4618 if (isym == NULL)
4619 return FALSE;
4620
4621 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4622 {
4623 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4624 sym_addend,
4625 NON_GOT | PLT_IFUNC);
4626 if (ifunc == NULL)
4627 return FALSE;
4628 }
4629 }
4630
4631 switch (r_type)
4632 {
4633 case R_PPC64_TLSGD:
4634 case R_PPC64_TLSLD:
4635 /* These special tls relocs tie a call to __tls_get_addr with
4636 its parameter symbol. */
4637 if (h != NULL)
4638 ((struct ppc_link_hash_entry *) h)->tls_mask |= TLS_TLS | TLS_MARK;
4639 else
4640 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4641 sym_addend,
4642 NON_GOT | TLS_TLS | TLS_MARK))
4643 return FALSE;
4644 sec->has_tls_reloc = 1;
4645 break;
4646
4647 case R_PPC64_GOT_TLSLD16:
4648 case R_PPC64_GOT_TLSLD16_LO:
4649 case R_PPC64_GOT_TLSLD16_HI:
4650 case R_PPC64_GOT_TLSLD16_HA:
4651 case R_PPC64_GOT_TLSLD34:
4652 tls_type = TLS_TLS | TLS_LD;
4653 goto dogottls;
4654
4655 case R_PPC64_GOT_TLSGD16:
4656 case R_PPC64_GOT_TLSGD16_LO:
4657 case R_PPC64_GOT_TLSGD16_HI:
4658 case R_PPC64_GOT_TLSGD16_HA:
4659 case R_PPC64_GOT_TLSGD34:
4660 tls_type = TLS_TLS | TLS_GD;
4661 goto dogottls;
4662
4663 case R_PPC64_GOT_TPREL16_DS:
4664 case R_PPC64_GOT_TPREL16_LO_DS:
4665 case R_PPC64_GOT_TPREL16_HI:
4666 case R_PPC64_GOT_TPREL16_HA:
4667 case R_PPC64_GOT_TPREL34:
4668 if (bfd_link_dll (info))
4669 info->flags |= DF_STATIC_TLS;
4670 tls_type = TLS_TLS | TLS_TPREL;
4671 goto dogottls;
4672
4673 case R_PPC64_GOT_DTPREL16_DS:
4674 case R_PPC64_GOT_DTPREL16_LO_DS:
4675 case R_PPC64_GOT_DTPREL16_HI:
4676 case R_PPC64_GOT_DTPREL16_HA:
4677 case R_PPC64_GOT_DTPREL34:
4678 tls_type = TLS_TLS | TLS_DTPREL;
4679 dogottls:
4680 sec->has_tls_reloc = 1;
4681 goto dogot;
4682
4683 case R_PPC64_GOT16:
4684 case R_PPC64_GOT16_LO:
4685 case R_PPC64_GOT16_HI:
4686 case R_PPC64_GOT16_HA:
4687 case R_PPC64_GOT16_DS:
4688 case R_PPC64_GOT16_LO_DS:
4689 case R_PPC64_GOT_PCREL34:
4690 dogot:
4691 /* This symbol requires a global offset table entry. */
4692 sec->has_toc_reloc = 1;
4693 if (r_type == R_PPC64_GOT_TLSLD16
4694 || r_type == R_PPC64_GOT_TLSGD16
4695 || r_type == R_PPC64_GOT_TPREL16_DS
4696 || r_type == R_PPC64_GOT_DTPREL16_DS
4697 || r_type == R_PPC64_GOT16
4698 || r_type == R_PPC64_GOT16_DS)
4699 {
4700 htab->do_multi_toc = 1;
4701 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4702 }
4703
4704 if (ppc64_elf_tdata (abfd)->got == NULL
4705 && !create_got_section (abfd, info))
4706 return FALSE;
4707
4708 if (h != NULL)
4709 {
4710 struct ppc_link_hash_entry *eh;
4711 struct got_entry *ent;
4712
4713 eh = (struct ppc_link_hash_entry *) h;
4714 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4715 if (ent->addend == sym_addend
4716 && ent->owner == abfd
4717 && ent->tls_type == tls_type)
4718 break;
4719 if (ent == NULL)
4720 {
4721 bfd_size_type amt = sizeof (*ent);
4722 ent = bfd_alloc (abfd, amt);
4723 if (ent == NULL)
4724 return FALSE;
4725 ent->next = eh->elf.got.glist;
4726 ent->addend = sym_addend;
4727 ent->owner = abfd;
4728 ent->tls_type = tls_type;
4729 ent->is_indirect = FALSE;
4730 ent->got.refcount = 0;
4731 eh->elf.got.glist = ent;
4732 }
4733 ent->got.refcount += 1;
4734 eh->tls_mask |= tls_type;
4735 }
4736 else
4737 /* This is a global offset table entry for a local symbol. */
4738 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4739 sym_addend, tls_type))
4740 return FALSE;
4741
4742 /* We may also need a plt entry if the symbol turns out to be
4743 an ifunc. */
4744 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1)
4745 {
4746 if (!update_plt_info (abfd, &h->plt.plist, sym_addend))
4747 return FALSE;
4748 }
4749 break;
4750
4751 case R_PPC64_PLT16_HA:
4752 case R_PPC64_PLT16_HI:
4753 case R_PPC64_PLT16_LO:
4754 case R_PPC64_PLT16_LO_DS:
4755 case R_PPC64_PLT_PCREL34:
4756 case R_PPC64_PLT_PCREL34_NOTOC:
4757 case R_PPC64_PLT32:
4758 case R_PPC64_PLT64:
4759 /* This symbol requires a procedure linkage table entry. */
4760 plt_list = ifunc;
4761 if (h != NULL)
4762 {
4763 h->needs_plt = 1;
4764 if (h->root.root.string[0] == '.'
4765 && h->root.root.string[1] != '\0')
4766 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4767 ((struct ppc_link_hash_entry *) h)->tls_mask |= PLT_KEEP;
4768 plt_list = &h->plt.plist;
4769 }
4770 if (plt_list == NULL)
4771 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4772 sym_addend,
4773 NON_GOT | PLT_KEEP);
4774 if (!update_plt_info (abfd, plt_list, sym_addend))
4775 return FALSE;
4776 break;
4777
4778 /* The following relocations don't need to propagate the
4779 relocation if linking a shared object since they are
4780 section relative. */
4781 case R_PPC64_SECTOFF:
4782 case R_PPC64_SECTOFF_LO:
4783 case R_PPC64_SECTOFF_HI:
4784 case R_PPC64_SECTOFF_HA:
4785 case R_PPC64_SECTOFF_DS:
4786 case R_PPC64_SECTOFF_LO_DS:
4787 case R_PPC64_DTPREL16:
4788 case R_PPC64_DTPREL16_LO:
4789 case R_PPC64_DTPREL16_HI:
4790 case R_PPC64_DTPREL16_HA:
4791 case R_PPC64_DTPREL16_DS:
4792 case R_PPC64_DTPREL16_LO_DS:
4793 case R_PPC64_DTPREL16_HIGH:
4794 case R_PPC64_DTPREL16_HIGHA:
4795 case R_PPC64_DTPREL16_HIGHER:
4796 case R_PPC64_DTPREL16_HIGHERA:
4797 case R_PPC64_DTPREL16_HIGHEST:
4798 case R_PPC64_DTPREL16_HIGHESTA:
4799 break;
4800
4801 /* Nor do these. */
4802 case R_PPC64_REL16:
4803 case R_PPC64_REL16_LO:
4804 case R_PPC64_REL16_HI:
4805 case R_PPC64_REL16_HA:
4806 case R_PPC64_REL16_HIGH:
4807 case R_PPC64_REL16_HIGHA:
4808 case R_PPC64_REL16_HIGHER:
4809 case R_PPC64_REL16_HIGHERA:
4810 case R_PPC64_REL16_HIGHEST:
4811 case R_PPC64_REL16_HIGHESTA:
4812 case R_PPC64_REL16_HIGHER34:
4813 case R_PPC64_REL16_HIGHERA34:
4814 case R_PPC64_REL16_HIGHEST34:
4815 case R_PPC64_REL16_HIGHESTA34:
4816 case R_PPC64_REL16DX_HA:
4817 break;
4818
4819 /* Not supported as a dynamic relocation. */
4820 case R_PPC64_ADDR64_LOCAL:
4821 if (bfd_link_pic (info))
4822 {
4823 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4824 ppc_howto_init ();
4825 /* xgettext:c-format */
4826 info->callbacks->einfo (_("%H: %s reloc unsupported "
4827 "in shared libraries and PIEs\n"),
4828 abfd, sec, rel->r_offset,
4829 ppc64_elf_howto_table[r_type]->name);
4830 bfd_set_error (bfd_error_bad_value);
4831 return FALSE;
4832 }
4833 break;
4834
4835 case R_PPC64_TOC16:
4836 case R_PPC64_TOC16_DS:
4837 htab->do_multi_toc = 1;
4838 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4839 /* Fall through. */
4840 case R_PPC64_TOC16_LO:
4841 case R_PPC64_TOC16_HI:
4842 case R_PPC64_TOC16_HA:
4843 case R_PPC64_TOC16_LO_DS:
4844 sec->has_toc_reloc = 1;
4845 break;
4846
4847 /* Marker reloc. */
4848 case R_PPC64_ENTRY:
4849 break;
4850
4851 /* This relocation describes the C++ object vtable hierarchy.
4852 Reconstruct it for later use during GC. */
4853 case R_PPC64_GNU_VTINHERIT:
4854 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4855 return FALSE;
4856 break;
4857
4858 /* This relocation describes which C++ vtable entries are actually
4859 used. Record for later use during GC. */
4860 case R_PPC64_GNU_VTENTRY:
4861 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4862 return FALSE;
4863 break;
4864
4865 case R_PPC64_REL14:
4866 case R_PPC64_REL14_BRTAKEN:
4867 case R_PPC64_REL14_BRNTAKEN:
4868 {
4869 asection *dest = NULL;
4870
4871 /* Heuristic: If jumping outside our section, chances are
4872 we are going to need a stub. */
4873 if (h != NULL)
4874 {
4875 /* If the sym is weak it may be overridden later, so
4876 don't assume we know where a weak sym lives. */
4877 if (h->root.type == bfd_link_hash_defined)
4878 dest = h->root.u.def.section;
4879 }
4880 else
4881 {
4882 Elf_Internal_Sym *isym;
4883
4884 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4885 abfd, r_symndx);
4886 if (isym == NULL)
4887 return FALSE;
4888
4889 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4890 }
4891
4892 if (dest != sec)
4893 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4894 }
4895 goto rel24;
4896
4897 case R_PPC64_PLTCALL:
4898 case R_PPC64_PLTCALL_NOTOC:
4899 ppc64_elf_section_data (sec)->has_pltcall = 1;
4900 /* Fall through. */
4901
4902 case R_PPC64_REL24:
4903 case R_PPC64_REL24_NOTOC:
4904 rel24:
4905 plt_list = ifunc;
4906 if (h != NULL)
4907 {
4908 h->needs_plt = 1;
4909 if (h->root.root.string[0] == '.'
4910 && h->root.root.string[1] != '\0')
4911 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4912
4913 if (h == tga || h == dottga)
4914 {
4915 sec->has_tls_reloc = 1;
4916 if (rel != relocs
4917 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4918 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4919 /* We have a new-style __tls_get_addr call with
4920 a marker reloc. */
4921 ;
4922 else
4923 /* Mark this section as having an old-style call. */
4924 sec->has_tls_get_addr_call = 1;
4925 }
4926 plt_list = &h->plt.plist;
4927 }
4928
4929 /* We may need a .plt entry if the function this reloc
4930 refers to is in a shared lib. */
4931 if (plt_list
4932 && !update_plt_info (abfd, plt_list, sym_addend))
4933 return FALSE;
4934 break;
4935
4936 case R_PPC64_ADDR14:
4937 case R_PPC64_ADDR14_BRNTAKEN:
4938 case R_PPC64_ADDR14_BRTAKEN:
4939 case R_PPC64_ADDR24:
4940 goto dodyn;
4941
4942 case R_PPC64_TPREL64:
4943 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4944 if (bfd_link_dll (info))
4945 info->flags |= DF_STATIC_TLS;
4946 goto dotlstoc;
4947
4948 case R_PPC64_DTPMOD64:
4949 if (rel + 1 < rel_end
4950 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4951 && rel[1].r_offset == rel->r_offset + 8)
4952 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4953 else
4954 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4955 goto dotlstoc;
4956
4957 case R_PPC64_DTPREL64:
4958 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4959 if (rel != relocs
4960 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4961 && rel[-1].r_offset == rel->r_offset - 8)
4962 /* This is the second reloc of a dtpmod, dtprel pair.
4963 Don't mark with TLS_DTPREL. */
4964 goto dodyn;
4965
4966 dotlstoc:
4967 sec->has_tls_reloc = 1;
4968 if (h != NULL)
4969 {
4970 struct ppc_link_hash_entry *eh;
4971 eh = (struct ppc_link_hash_entry *) h;
4972 eh->tls_mask |= tls_type & 0xff;
4973 }
4974 else
4975 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4976 sym_addend, tls_type))
4977 return FALSE;
4978
4979 ppc64_sec = ppc64_elf_section_data (sec);
4980 if (ppc64_sec->sec_type != sec_toc)
4981 {
4982 bfd_size_type amt;
4983
4984 /* One extra to simplify get_tls_mask. */
4985 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
4986 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
4987 if (ppc64_sec->u.toc.symndx == NULL)
4988 return FALSE;
4989 amt = sec->size * sizeof (bfd_vma) / 8;
4990 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
4991 if (ppc64_sec->u.toc.add == NULL)
4992 return FALSE;
4993 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4994 ppc64_sec->sec_type = sec_toc;
4995 }
4996 BFD_ASSERT (rel->r_offset % 8 == 0);
4997 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
4998 ppc64_sec->u.toc.add[rel->r_offset / 8] = sym_addend;
4999
5000 /* Mark the second slot of a GD or LD entry.
5001 -1 to indicate GD and -2 to indicate LD. */
5002 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5003 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5004 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5005 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5006 goto dodyn;
5007
5008 case R_PPC64_TPREL16:
5009 case R_PPC64_TPREL16_LO:
5010 case R_PPC64_TPREL16_HI:
5011 case R_PPC64_TPREL16_HA:
5012 case R_PPC64_TPREL16_DS:
5013 case R_PPC64_TPREL16_LO_DS:
5014 case R_PPC64_TPREL16_HIGH:
5015 case R_PPC64_TPREL16_HIGHA:
5016 case R_PPC64_TPREL16_HIGHER:
5017 case R_PPC64_TPREL16_HIGHERA:
5018 case R_PPC64_TPREL16_HIGHEST:
5019 case R_PPC64_TPREL16_HIGHESTA:
5020 case R_PPC64_TPREL34:
5021 if (bfd_link_dll (info))
5022 info->flags |= DF_STATIC_TLS;
5023 goto dodyn;
5024
5025 case R_PPC64_ADDR64:
5026 if (is_opd
5027 && rel + 1 < rel_end
5028 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5029 {
5030 if (h != NULL)
5031 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5032 }
5033 /* Fall through. */
5034
5035 case R_PPC64_ADDR16:
5036 case R_PPC64_ADDR16_DS:
5037 case R_PPC64_ADDR16_HA:
5038 case R_PPC64_ADDR16_HI:
5039 case R_PPC64_ADDR16_HIGH:
5040 case R_PPC64_ADDR16_HIGHA:
5041 case R_PPC64_ADDR16_HIGHER:
5042 case R_PPC64_ADDR16_HIGHERA:
5043 case R_PPC64_ADDR16_HIGHEST:
5044 case R_PPC64_ADDR16_HIGHESTA:
5045 case R_PPC64_ADDR16_LO:
5046 case R_PPC64_ADDR16_LO_DS:
5047 case R_PPC64_D34:
5048 case R_PPC64_D34_LO:
5049 case R_PPC64_D34_HI30:
5050 case R_PPC64_D34_HA30:
5051 case R_PPC64_ADDR16_HIGHER34:
5052 case R_PPC64_ADDR16_HIGHERA34:
5053 case R_PPC64_ADDR16_HIGHEST34:
5054 case R_PPC64_ADDR16_HIGHESTA34:
5055 case R_PPC64_D28:
5056 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5057 && rel->r_addend == 0)
5058 {
5059 /* We may need a .plt entry if this reloc refers to a
5060 function in a shared lib. */
5061 if (!update_plt_info (abfd, &h->plt.plist, 0))
5062 return FALSE;
5063 h->pointer_equality_needed = 1;
5064 }
5065 /* Fall through. */
5066
5067 case R_PPC64_REL30:
5068 case R_PPC64_REL32:
5069 case R_PPC64_REL64:
5070 case R_PPC64_ADDR32:
5071 case R_PPC64_UADDR16:
5072 case R_PPC64_UADDR32:
5073 case R_PPC64_UADDR64:
5074 case R_PPC64_TOC:
5075 if (h != NULL && !bfd_link_pic (info))
5076 /* We may need a copy reloc. */
5077 h->non_got_ref = 1;
5078
5079 /* Don't propagate .opd relocs. */
5080 if (NO_OPD_RELOCS && is_opd)
5081 break;
5082
5083 /* If we are creating a shared library, and this is a reloc
5084 against a global symbol, or a non PC relative reloc
5085 against a local symbol, then we need to copy the reloc
5086 into the shared library. However, if we are linking with
5087 -Bsymbolic, we do not need to copy a reloc against a
5088 global symbol which is defined in an object we are
5089 including in the link (i.e., DEF_REGULAR is set). At
5090 this point we have not seen all the input files, so it is
5091 possible that DEF_REGULAR is not set now but will be set
5092 later (it is never cleared). In case of a weak definition,
5093 DEF_REGULAR may be cleared later by a strong definition in
5094 a shared library. We account for that possibility below by
5095 storing information in the dyn_relocs field of the hash
5096 table entry. A similar situation occurs when creating
5097 shared libraries and symbol visibility changes render the
5098 symbol local.
5099
5100 If on the other hand, we are creating an executable, we
5101 may need to keep relocations for symbols satisfied by a
5102 dynamic library if we manage to avoid copy relocs for the
5103 symbol. */
5104 dodyn:
5105 if ((bfd_link_pic (info)
5106 && (must_be_dyn_reloc (info, r_type)
5107 || (h != NULL
5108 && (!SYMBOLIC_BIND (info, h)
5109 || h->root.type == bfd_link_hash_defweak
5110 || !h->def_regular))))
5111 || (ELIMINATE_COPY_RELOCS
5112 && !bfd_link_pic (info)
5113 && h != NULL
5114 && (h->root.type == bfd_link_hash_defweak
5115 || !h->def_regular))
5116 || (!bfd_link_pic (info)
5117 && ifunc != NULL))
5118 {
5119 /* We must copy these reloc types into the output file.
5120 Create a reloc section in dynobj and make room for
5121 this reloc. */
5122 if (sreloc == NULL)
5123 {
5124 sreloc = _bfd_elf_make_dynamic_reloc_section
5125 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5126
5127 if (sreloc == NULL)
5128 return FALSE;
5129 }
5130
5131 /* If this is a global symbol, we count the number of
5132 relocations we need for this symbol. */
5133 if (h != NULL)
5134 {
5135 struct elf_dyn_relocs *p;
5136 struct elf_dyn_relocs **head;
5137
5138 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5139 p = *head;
5140 if (p == NULL || p->sec != sec)
5141 {
5142 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5143 if (p == NULL)
5144 return FALSE;
5145 p->next = *head;
5146 *head = p;
5147 p->sec = sec;
5148 p->count = 0;
5149 p->pc_count = 0;
5150 }
5151 p->count += 1;
5152 if (!must_be_dyn_reloc (info, r_type))
5153 p->pc_count += 1;
5154 }
5155 else
5156 {
5157 /* Track dynamic relocs needed for local syms too.
5158 We really need local syms available to do this
5159 easily. Oh well. */
5160 struct ppc_dyn_relocs *p;
5161 struct ppc_dyn_relocs **head;
5162 bfd_boolean is_ifunc;
5163 asection *s;
5164 void *vpp;
5165 Elf_Internal_Sym *isym;
5166
5167 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5168 abfd, r_symndx);
5169 if (isym == NULL)
5170 return FALSE;
5171
5172 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5173 if (s == NULL)
5174 s = sec;
5175
5176 vpp = &elf_section_data (s)->local_dynrel;
5177 head = (struct ppc_dyn_relocs **) vpp;
5178 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5179 p = *head;
5180 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5181 p = p->next;
5182 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5183 {
5184 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5185 if (p == NULL)
5186 return FALSE;
5187 p->next = *head;
5188 *head = p;
5189 p->sec = sec;
5190 p->ifunc = is_ifunc;
5191 p->count = 0;
5192 }
5193 p->count += 1;
5194 }
5195 }
5196 break;
5197
5198 default:
5199 break;
5200 }
5201 }
5202
5203 return TRUE;
5204 }
5205
5206 /* Merge backend specific data from an object file to the output
5207 object file when linking. */
5208
5209 static bfd_boolean
5210 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5211 {
5212 bfd *obfd = info->output_bfd;
5213 unsigned long iflags, oflags;
5214
5215 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5216 return TRUE;
5217
5218 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5219 return TRUE;
5220
5221 if (!_bfd_generic_verify_endian_match (ibfd, info))
5222 return FALSE;
5223
5224 iflags = elf_elfheader (ibfd)->e_flags;
5225 oflags = elf_elfheader (obfd)->e_flags;
5226
5227 if (iflags & ~EF_PPC64_ABI)
5228 {
5229 _bfd_error_handler
5230 /* xgettext:c-format */
5231 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5232 bfd_set_error (bfd_error_bad_value);
5233 return FALSE;
5234 }
5235 else if (iflags != oflags && iflags != 0)
5236 {
5237 _bfd_error_handler
5238 /* xgettext:c-format */
5239 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5240 ibfd, iflags, oflags);
5241 bfd_set_error (bfd_error_bad_value);
5242 return FALSE;
5243 }
5244
5245 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5246 return FALSE;
5247
5248 /* Merge Tag_compatibility attributes and any common GNU ones. */
5249 return _bfd_elf_merge_object_attributes (ibfd, info);
5250 }
5251
5252 static bfd_boolean
5253 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5254 {
5255 /* Print normal ELF private data. */
5256 _bfd_elf_print_private_bfd_data (abfd, ptr);
5257
5258 if (elf_elfheader (abfd)->e_flags != 0)
5259 {
5260 FILE *file = ptr;
5261
5262 fprintf (file, _("private flags = 0x%lx:"),
5263 elf_elfheader (abfd)->e_flags);
5264
5265 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5266 fprintf (file, _(" [abiv%ld]"),
5267 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5268 fputc ('\n', file);
5269 }
5270
5271 return TRUE;
5272 }
5273
5274 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5275 of the code entry point, and its section, which must be in the same
5276 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5277
5278 static bfd_vma
5279 opd_entry_value (asection *opd_sec,
5280 bfd_vma offset,
5281 asection **code_sec,
5282 bfd_vma *code_off,
5283 bfd_boolean in_code_sec)
5284 {
5285 bfd *opd_bfd = opd_sec->owner;
5286 Elf_Internal_Rela *relocs;
5287 Elf_Internal_Rela *lo, *hi, *look;
5288 bfd_vma val;
5289
5290 /* No relocs implies we are linking a --just-symbols object, or looking
5291 at a final linked executable with addr2line or somesuch. */
5292 if (opd_sec->reloc_count == 0)
5293 {
5294 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5295
5296 if (contents == NULL)
5297 {
5298 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5299 return (bfd_vma) -1;
5300 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5301 }
5302
5303 /* PR 17512: file: 64b9dfbb. */
5304 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5305 return (bfd_vma) -1;
5306
5307 val = bfd_get_64 (opd_bfd, contents + offset);
5308 if (code_sec != NULL)
5309 {
5310 asection *sec, *likely = NULL;
5311
5312 if (in_code_sec)
5313 {
5314 sec = *code_sec;
5315 if (sec->vma <= val
5316 && val < sec->vma + sec->size)
5317 likely = sec;
5318 else
5319 val = -1;
5320 }
5321 else
5322 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5323 if (sec->vma <= val
5324 && (sec->flags & SEC_LOAD) != 0
5325 && (sec->flags & SEC_ALLOC) != 0)
5326 likely = sec;
5327 if (likely != NULL)
5328 {
5329 *code_sec = likely;
5330 if (code_off != NULL)
5331 *code_off = val - likely->vma;
5332 }
5333 }
5334 return val;
5335 }
5336
5337 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5338
5339 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5340 if (relocs == NULL)
5341 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5342 /* PR 17512: file: df8e1fd6. */
5343 if (relocs == NULL)
5344 return (bfd_vma) -1;
5345
5346 /* Go find the opd reloc at the sym address. */
5347 lo = relocs;
5348 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5349 val = (bfd_vma) -1;
5350 while (lo < hi)
5351 {
5352 look = lo + (hi - lo) / 2;
5353 if (look->r_offset < offset)
5354 lo = look + 1;
5355 else if (look->r_offset > offset)
5356 hi = look;
5357 else
5358 {
5359 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5360
5361 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5362 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5363 {
5364 unsigned long symndx = ELF64_R_SYM (look->r_info);
5365 asection *sec = NULL;
5366
5367 if (symndx >= symtab_hdr->sh_info
5368 && elf_sym_hashes (opd_bfd) != NULL)
5369 {
5370 struct elf_link_hash_entry **sym_hashes;
5371 struct elf_link_hash_entry *rh;
5372
5373 sym_hashes = elf_sym_hashes (opd_bfd);
5374 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5375 if (rh != NULL)
5376 {
5377 rh = elf_follow_link (rh);
5378 if (rh->root.type != bfd_link_hash_defined
5379 && rh->root.type != bfd_link_hash_defweak)
5380 break;
5381 if (rh->root.u.def.section->owner == opd_bfd)
5382 {
5383 val = rh->root.u.def.value;
5384 sec = rh->root.u.def.section;
5385 }
5386 }
5387 }
5388
5389 if (sec == NULL)
5390 {
5391 Elf_Internal_Sym *sym;
5392
5393 if (symndx < symtab_hdr->sh_info)
5394 {
5395 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5396 if (sym == NULL)
5397 {
5398 size_t symcnt = symtab_hdr->sh_info;
5399 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5400 symcnt, 0,
5401 NULL, NULL, NULL);
5402 if (sym == NULL)
5403 break;
5404 symtab_hdr->contents = (bfd_byte *) sym;
5405 }
5406 sym += symndx;
5407 }
5408 else
5409 {
5410 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5411 1, symndx,
5412 NULL, NULL, NULL);
5413 if (sym == NULL)
5414 break;
5415 }
5416 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5417 if (sec == NULL)
5418 break;
5419 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5420 val = sym->st_value;
5421 }
5422
5423 val += look->r_addend;
5424 if (code_off != NULL)
5425 *code_off = val;
5426 if (code_sec != NULL)
5427 {
5428 if (in_code_sec && *code_sec != sec)
5429 return -1;
5430 else
5431 *code_sec = sec;
5432 }
5433 if (sec->output_section != NULL)
5434 val += sec->output_section->vma + sec->output_offset;
5435 }
5436 break;
5437 }
5438 }
5439
5440 return val;
5441 }
5442
5443 /* If the ELF symbol SYM might be a function in SEC, return the
5444 function size and set *CODE_OFF to the function's entry point,
5445 otherwise return zero. */
5446
5447 static bfd_size_type
5448 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5449 bfd_vma *code_off)
5450 {
5451 bfd_size_type size;
5452
5453 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5454 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5455 return 0;
5456
5457 size = 0;
5458 if (!(sym->flags & BSF_SYNTHETIC))
5459 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5460
5461 if (strcmp (sym->section->name, ".opd") == 0)
5462 {
5463 struct _opd_sec_data *opd = get_opd_info (sym->section);
5464 bfd_vma symval = sym->value;
5465
5466 if (opd != NULL
5467 && opd->adjust != NULL
5468 && elf_section_data (sym->section)->relocs != NULL)
5469 {
5470 /* opd_entry_value will use cached relocs that have been
5471 adjusted, but with raw symbols. That means both local
5472 and global symbols need adjusting. */
5473 long adjust = opd->adjust[OPD_NDX (symval)];
5474 if (adjust == -1)
5475 return 0;
5476 symval += adjust;
5477 }
5478
5479 if (opd_entry_value (sym->section, symval,
5480 &sec, code_off, TRUE) == (bfd_vma) -1)
5481 return 0;
5482 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5483 symbol. This size has nothing to do with the code size of the
5484 function, which is what we're supposed to return, but the
5485 code size isn't available without looking up the dot-sym.
5486 However, doing that would be a waste of time particularly
5487 since elf_find_function will look at the dot-sym anyway.
5488 Now, elf_find_function will keep the largest size of any
5489 function sym found at the code address of interest, so return
5490 1 here to avoid it incorrectly caching a larger function size
5491 for a small function. This does mean we return the wrong
5492 size for a new-ABI function of size 24, but all that does is
5493 disable caching for such functions. */
5494 if (size == 24)
5495 size = 1;
5496 }
5497 else
5498 {
5499 if (sym->section != sec)
5500 return 0;
5501 *code_off = sym->value;
5502 }
5503 if (size == 0)
5504 size = 1;
5505 return size;
5506 }
5507
5508 /* Return true if symbol is a strong function defined in an ELFv2
5509 object with st_other localentry bits of zero, ie. its local entry
5510 point coincides with its global entry point. */
5511
5512 static bfd_boolean
5513 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5514 {
5515 return (h != NULL
5516 && h->type == STT_FUNC
5517 && h->root.type == bfd_link_hash_defined
5518 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5519 && !((struct ppc_link_hash_entry *) h)->non_zero_localentry
5520 && is_ppc64_elf (h->root.u.def.section->owner)
5521 && abiversion (h->root.u.def.section->owner) >= 2);
5522 }
5523
5524 /* Return true if symbol is defined in a regular object file. */
5525
5526 static bfd_boolean
5527 is_static_defined (struct elf_link_hash_entry *h)
5528 {
5529 return ((h->root.type == bfd_link_hash_defined
5530 || h->root.type == bfd_link_hash_defweak)
5531 && h->root.u.def.section != NULL
5532 && h->root.u.def.section->output_section != NULL);
5533 }
5534
5535 /* If FDH is a function descriptor symbol, return the associated code
5536 entry symbol if it is defined. Return NULL otherwise. */
5537
5538 static struct ppc_link_hash_entry *
5539 defined_code_entry (struct ppc_link_hash_entry *fdh)
5540 {
5541 if (fdh->is_func_descriptor)
5542 {
5543 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5544 if (fh->elf.root.type == bfd_link_hash_defined
5545 || fh->elf.root.type == bfd_link_hash_defweak)
5546 return fh;
5547 }
5548 return NULL;
5549 }
5550
5551 /* If FH is a function code entry symbol, return the associated
5552 function descriptor symbol if it is defined. Return NULL otherwise. */
5553
5554 static struct ppc_link_hash_entry *
5555 defined_func_desc (struct ppc_link_hash_entry *fh)
5556 {
5557 if (fh->oh != NULL
5558 && fh->oh->is_func_descriptor)
5559 {
5560 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5561 if (fdh->elf.root.type == bfd_link_hash_defined
5562 || fdh->elf.root.type == bfd_link_hash_defweak)
5563 return fdh;
5564 }
5565 return NULL;
5566 }
5567
5568 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5569
5570 /* Garbage collect sections, after first dealing with dot-symbols. */
5571
5572 static bfd_boolean
5573 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5574 {
5575 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5576
5577 if (htab != NULL && htab->need_func_desc_adj)
5578 {
5579 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5580 htab->need_func_desc_adj = 0;
5581 }
5582 return bfd_elf_gc_sections (abfd, info);
5583 }
5584
5585 /* Mark all our entry sym sections, both opd and code section. */
5586
5587 static void
5588 ppc64_elf_gc_keep (struct bfd_link_info *info)
5589 {
5590 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5591 struct bfd_sym_chain *sym;
5592
5593 if (htab == NULL)
5594 return;
5595
5596 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5597 {
5598 struct ppc_link_hash_entry *eh, *fh;
5599 asection *sec;
5600
5601 eh = (struct ppc_link_hash_entry *)
5602 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5603 if (eh == NULL)
5604 continue;
5605 if (eh->elf.root.type != bfd_link_hash_defined
5606 && eh->elf.root.type != bfd_link_hash_defweak)
5607 continue;
5608
5609 fh = defined_code_entry (eh);
5610 if (fh != NULL)
5611 {
5612 sec = fh->elf.root.u.def.section;
5613 sec->flags |= SEC_KEEP;
5614 }
5615 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5616 && opd_entry_value (eh->elf.root.u.def.section,
5617 eh->elf.root.u.def.value,
5618 &sec, NULL, FALSE) != (bfd_vma) -1)
5619 sec->flags |= SEC_KEEP;
5620
5621 sec = eh->elf.root.u.def.section;
5622 sec->flags |= SEC_KEEP;
5623 }
5624 }
5625
5626 /* Mark sections containing dynamically referenced symbols. When
5627 building shared libraries, we must assume that any visible symbol is
5628 referenced. */
5629
5630 static bfd_boolean
5631 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5632 {
5633 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5634 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5635 struct ppc_link_hash_entry *fdh;
5636 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5637
5638 /* Dynamic linking info is on the func descriptor sym. */
5639 fdh = defined_func_desc (eh);
5640 if (fdh != NULL)
5641 eh = fdh;
5642
5643 if ((eh->elf.root.type == bfd_link_hash_defined
5644 || eh->elf.root.type == bfd_link_hash_defweak)
5645 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5646 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5647 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5648 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5649 && (!bfd_link_executable (info)
5650 || info->gc_keep_exported
5651 || info->export_dynamic
5652 || (eh->elf.dynamic
5653 && d != NULL
5654 && (*d->match) (&d->head, NULL,
5655 eh->elf.root.root.string)))
5656 && (eh->elf.versioned >= versioned
5657 || !bfd_hide_sym_by_version (info->version_info,
5658 eh->elf.root.root.string)))))
5659 {
5660 asection *code_sec;
5661 struct ppc_link_hash_entry *fh;
5662
5663 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5664
5665 /* Function descriptor syms cause the associated
5666 function code sym section to be marked. */
5667 fh = defined_code_entry (eh);
5668 if (fh != NULL)
5669 {
5670 code_sec = fh->elf.root.u.def.section;
5671 code_sec->flags |= SEC_KEEP;
5672 }
5673 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5674 && opd_entry_value (eh->elf.root.u.def.section,
5675 eh->elf.root.u.def.value,
5676 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5677 code_sec->flags |= SEC_KEEP;
5678 }
5679
5680 return TRUE;
5681 }
5682
5683 /* Return the section that should be marked against GC for a given
5684 relocation. */
5685
5686 static asection *
5687 ppc64_elf_gc_mark_hook (asection *sec,
5688 struct bfd_link_info *info,
5689 Elf_Internal_Rela *rel,
5690 struct elf_link_hash_entry *h,
5691 Elf_Internal_Sym *sym)
5692 {
5693 asection *rsec;
5694
5695 /* Syms return NULL if we're marking .opd, so we avoid marking all
5696 function sections, as all functions are referenced in .opd. */
5697 rsec = NULL;
5698 if (get_opd_info (sec) != NULL)
5699 return rsec;
5700
5701 if (h != NULL)
5702 {
5703 enum elf_ppc64_reloc_type r_type;
5704 struct ppc_link_hash_entry *eh, *fh, *fdh;
5705
5706 r_type = ELF64_R_TYPE (rel->r_info);
5707 switch (r_type)
5708 {
5709 case R_PPC64_GNU_VTINHERIT:
5710 case R_PPC64_GNU_VTENTRY:
5711 break;
5712
5713 default:
5714 switch (h->root.type)
5715 {
5716 case bfd_link_hash_defined:
5717 case bfd_link_hash_defweak:
5718 eh = (struct ppc_link_hash_entry *) h;
5719 fdh = defined_func_desc (eh);
5720 if (fdh != NULL)
5721 {
5722 /* -mcall-aixdesc code references the dot-symbol on
5723 a call reloc. Mark the function descriptor too
5724 against garbage collection. */
5725 fdh->elf.mark = 1;
5726 if (fdh->elf.is_weakalias)
5727 weakdef (&fdh->elf)->mark = 1;
5728 eh = fdh;
5729 }
5730
5731 /* Function descriptor syms cause the associated
5732 function code sym section to be marked. */
5733 fh = defined_code_entry (eh);
5734 if (fh != NULL)
5735 {
5736 /* They also mark their opd section. */
5737 eh->elf.root.u.def.section->gc_mark = 1;
5738
5739 rsec = fh->elf.root.u.def.section;
5740 }
5741 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5742 && opd_entry_value (eh->elf.root.u.def.section,
5743 eh->elf.root.u.def.value,
5744 &rsec, NULL, FALSE) != (bfd_vma) -1)
5745 eh->elf.root.u.def.section->gc_mark = 1;
5746 else
5747 rsec = h->root.u.def.section;
5748 break;
5749
5750 case bfd_link_hash_common:
5751 rsec = h->root.u.c.p->section;
5752 break;
5753
5754 default:
5755 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5756 }
5757 }
5758 }
5759 else
5760 {
5761 struct _opd_sec_data *opd;
5762
5763 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5764 opd = get_opd_info (rsec);
5765 if (opd != NULL && opd->func_sec != NULL)
5766 {
5767 rsec->gc_mark = 1;
5768
5769 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5770 }
5771 }
5772
5773 return rsec;
5774 }
5775
5776 /* The maximum size of .sfpr. */
5777 #define SFPR_MAX (218*4)
5778
5779 struct sfpr_def_parms
5780 {
5781 const char name[12];
5782 unsigned char lo, hi;
5783 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5784 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5785 };
5786
5787 /* Auto-generate _save*, _rest* functions in .sfpr.
5788 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5789 instead. */
5790
5791 static bfd_boolean
5792 sfpr_define (struct bfd_link_info *info,
5793 const struct sfpr_def_parms *parm,
5794 asection *stub_sec)
5795 {
5796 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5797 unsigned int i;
5798 size_t len = strlen (parm->name);
5799 bfd_boolean writing = FALSE;
5800 char sym[16];
5801
5802 if (htab == NULL)
5803 return FALSE;
5804
5805 memcpy (sym, parm->name, len);
5806 sym[len + 2] = 0;
5807
5808 for (i = parm->lo; i <= parm->hi; i++)
5809 {
5810 struct ppc_link_hash_entry *h;
5811
5812 sym[len + 0] = i / 10 + '0';
5813 sym[len + 1] = i % 10 + '0';
5814 h = (struct ppc_link_hash_entry *)
5815 elf_link_hash_lookup (&htab->elf, sym, writing, TRUE, TRUE);
5816 if (stub_sec != NULL)
5817 {
5818 if (h != NULL
5819 && h->elf.root.type == bfd_link_hash_defined
5820 && h->elf.root.u.def.section == htab->sfpr)
5821 {
5822 struct elf_link_hash_entry *s;
5823 char buf[32];
5824 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5825 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5826 if (s == NULL)
5827 return FALSE;
5828 if (s->root.type == bfd_link_hash_new
5829 || (s->root.type = bfd_link_hash_defined
5830 && s->root.u.def.section == stub_sec))
5831 {
5832 s->root.type = bfd_link_hash_defined;
5833 s->root.u.def.section = stub_sec;
5834 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5835 + h->elf.root.u.def.value);
5836 s->ref_regular = 1;
5837 s->def_regular = 1;
5838 s->ref_regular_nonweak = 1;
5839 s->forced_local = 1;
5840 s->non_elf = 0;
5841 s->root.linker_def = 1;
5842 }
5843 }
5844 continue;
5845 }
5846 if (h != NULL)
5847 {
5848 h->save_res = 1;
5849 if (!h->elf.def_regular)
5850 {
5851 h->elf.root.type = bfd_link_hash_defined;
5852 h->elf.root.u.def.section = htab->sfpr;
5853 h->elf.root.u.def.value = htab->sfpr->size;
5854 h->elf.type = STT_FUNC;
5855 h->elf.def_regular = 1;
5856 h->elf.non_elf = 0;
5857 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5858 writing = TRUE;
5859 if (htab->sfpr->contents == NULL)
5860 {
5861 htab->sfpr->contents
5862 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5863 if (htab->sfpr->contents == NULL)
5864 return FALSE;
5865 }
5866 }
5867 }
5868 if (writing)
5869 {
5870 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5871 if (i != parm->hi)
5872 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5873 else
5874 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5875 htab->sfpr->size = p - htab->sfpr->contents;
5876 }
5877 }
5878
5879 return TRUE;
5880 }
5881
5882 static bfd_byte *
5883 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5884 {
5885 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5886 return p + 4;
5887 }
5888
5889 static bfd_byte *
5890 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5891 {
5892 p = savegpr0 (abfd, p, r);
5893 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5894 p = p + 4;
5895 bfd_put_32 (abfd, BLR, p);
5896 return p + 4;
5897 }
5898
5899 static bfd_byte *
5900 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5901 {
5902 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5903 return p + 4;
5904 }
5905
5906 static bfd_byte *
5907 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5908 {
5909 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5910 p = p + 4;
5911 p = restgpr0 (abfd, p, r);
5912 bfd_put_32 (abfd, MTLR_R0, p);
5913 p = p + 4;
5914 if (r == 29)
5915 {
5916 p = restgpr0 (abfd, p, 30);
5917 p = restgpr0 (abfd, p, 31);
5918 }
5919 bfd_put_32 (abfd, BLR, p);
5920 return p + 4;
5921 }
5922
5923 static bfd_byte *
5924 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5925 {
5926 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5927 return p + 4;
5928 }
5929
5930 static bfd_byte *
5931 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5932 {
5933 p = savegpr1 (abfd, p, r);
5934 bfd_put_32 (abfd, BLR, p);
5935 return p + 4;
5936 }
5937
5938 static bfd_byte *
5939 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5940 {
5941 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5942 return p + 4;
5943 }
5944
5945 static bfd_byte *
5946 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5947 {
5948 p = restgpr1 (abfd, p, r);
5949 bfd_put_32 (abfd, BLR, p);
5950 return p + 4;
5951 }
5952
5953 static bfd_byte *
5954 savefpr (bfd *abfd, bfd_byte *p, int r)
5955 {
5956 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5957 return p + 4;
5958 }
5959
5960 static bfd_byte *
5961 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5962 {
5963 p = savefpr (abfd, p, r);
5964 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5965 p = p + 4;
5966 bfd_put_32 (abfd, BLR, p);
5967 return p + 4;
5968 }
5969
5970 static bfd_byte *
5971 restfpr (bfd *abfd, bfd_byte *p, int r)
5972 {
5973 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5974 return p + 4;
5975 }
5976
5977 static bfd_byte *
5978 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5979 {
5980 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5981 p = p + 4;
5982 p = restfpr (abfd, p, r);
5983 bfd_put_32 (abfd, MTLR_R0, p);
5984 p = p + 4;
5985 if (r == 29)
5986 {
5987 p = restfpr (abfd, p, 30);
5988 p = restfpr (abfd, p, 31);
5989 }
5990 bfd_put_32 (abfd, BLR, p);
5991 return p + 4;
5992 }
5993
5994 static bfd_byte *
5995 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5996 {
5997 p = savefpr (abfd, p, r);
5998 bfd_put_32 (abfd, BLR, p);
5999 return p + 4;
6000 }
6001
6002 static bfd_byte *
6003 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6004 {
6005 p = restfpr (abfd, p, r);
6006 bfd_put_32 (abfd, BLR, p);
6007 return p + 4;
6008 }
6009
6010 static bfd_byte *
6011 savevr (bfd *abfd, bfd_byte *p, int r)
6012 {
6013 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6014 p = p + 4;
6015 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6016 return p + 4;
6017 }
6018
6019 static bfd_byte *
6020 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6021 {
6022 p = savevr (abfd, p, r);
6023 bfd_put_32 (abfd, BLR, p);
6024 return p + 4;
6025 }
6026
6027 static bfd_byte *
6028 restvr (bfd *abfd, bfd_byte *p, int r)
6029 {
6030 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6031 p = p + 4;
6032 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6033 return p + 4;
6034 }
6035
6036 static bfd_byte *
6037 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6038 {
6039 p = restvr (abfd, p, r);
6040 bfd_put_32 (abfd, BLR, p);
6041 return p + 4;
6042 }
6043
6044 /* Called via elf_link_hash_traverse to transfer dynamic linking
6045 information on function code symbol entries to their corresponding
6046 function descriptor symbol entries. */
6047
6048 static bfd_boolean
6049 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6050 {
6051 struct bfd_link_info *info;
6052 struct ppc_link_hash_table *htab;
6053 struct ppc_link_hash_entry *fh;
6054 struct ppc_link_hash_entry *fdh;
6055 bfd_boolean force_local;
6056
6057 fh = (struct ppc_link_hash_entry *) h;
6058 if (fh->elf.root.type == bfd_link_hash_indirect)
6059 return TRUE;
6060
6061 if (!fh->is_func)
6062 return TRUE;
6063
6064 if (fh->elf.root.root.string[0] != '.'
6065 || fh->elf.root.root.string[1] == '\0')
6066 return TRUE;
6067
6068 info = inf;
6069 htab = ppc_hash_table (info);
6070 if (htab == NULL)
6071 return FALSE;
6072
6073 /* Find the corresponding function descriptor symbol. */
6074 fdh = lookup_fdh (fh, htab);
6075
6076 /* Resolve undefined references to dot-symbols as the value
6077 in the function descriptor, if we have one in a regular object.
6078 This is to satisfy cases like ".quad .foo". Calls to functions
6079 in dynamic objects are handled elsewhere. */
6080 if ((fh->elf.root.type == bfd_link_hash_undefined
6081 || fh->elf.root.type == bfd_link_hash_undefweak)
6082 && (fdh->elf.root.type == bfd_link_hash_defined
6083 || fdh->elf.root.type == bfd_link_hash_defweak)
6084 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6085 && opd_entry_value (fdh->elf.root.u.def.section,
6086 fdh->elf.root.u.def.value,
6087 &fh->elf.root.u.def.section,
6088 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6089 {
6090 fh->elf.root.type = fdh->elf.root.type;
6091 fh->elf.forced_local = 1;
6092 fh->elf.def_regular = fdh->elf.def_regular;
6093 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6094 }
6095
6096 if (!fh->elf.dynamic)
6097 {
6098 struct plt_entry *ent;
6099
6100 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6101 if (ent->plt.refcount > 0)
6102 break;
6103 if (ent == NULL)
6104 return TRUE;
6105 }
6106
6107 /* Create a descriptor as undefined if necessary. */
6108 if (fdh == NULL
6109 && !bfd_link_executable (info)
6110 && (fh->elf.root.type == bfd_link_hash_undefined
6111 || fh->elf.root.type == bfd_link_hash_undefweak))
6112 {
6113 fdh = make_fdh (info, fh);
6114 if (fdh == NULL)
6115 return FALSE;
6116 }
6117
6118 /* We can't support overriding of symbols on a fake descriptor. */
6119 if (fdh != NULL
6120 && fdh->fake
6121 && (fh->elf.root.type == bfd_link_hash_defined
6122 || fh->elf.root.type == bfd_link_hash_defweak))
6123 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6124
6125 /* Transfer dynamic linking information to the function descriptor. */
6126 if (fdh != NULL)
6127 {
6128 fdh->elf.ref_regular |= fh->elf.ref_regular;
6129 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6130 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6131 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6132 fdh->elf.dynamic |= fh->elf.dynamic;
6133 fdh->elf.needs_plt |= (fh->elf.needs_plt
6134 || fh->elf.type == STT_FUNC
6135 || fh->elf.type == STT_GNU_IFUNC);
6136 move_plt_plist (fh, fdh);
6137
6138 if (!fdh->elf.forced_local
6139 && fh->elf.dynindx != -1)
6140 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6141 return FALSE;
6142 }
6143
6144 /* Now that the info is on the function descriptor, clear the
6145 function code sym info. Any function code syms for which we
6146 don't have a definition in a regular file, we force local.
6147 This prevents a shared library from exporting syms that have
6148 been imported from another library. Function code syms that
6149 are really in the library we must leave global to prevent the
6150 linker dragging in a definition from a static library. */
6151 force_local = (!fh->elf.def_regular
6152 || fdh == NULL
6153 || !fdh->elf.def_regular
6154 || fdh->elf.forced_local);
6155 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6156
6157 return TRUE;
6158 }
6159
6160 static const struct sfpr_def_parms save_res_funcs[] =
6161 {
6162 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6163 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6164 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6165 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6166 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6167 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6168 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6169 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6170 { "._savef", 14, 31, savefpr, savefpr1_tail },
6171 { "._restf", 14, 31, restfpr, restfpr1_tail },
6172 { "_savevr_", 20, 31, savevr, savevr_tail },
6173 { "_restvr_", 20, 31, restvr, restvr_tail }
6174 };
6175
6176 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6177 this hook to a) provide some gcc support functions, and b) transfer
6178 dynamic linking information gathered so far on function code symbol
6179 entries, to their corresponding function descriptor symbol entries. */
6180
6181 static bfd_boolean
6182 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6183 struct bfd_link_info *info)
6184 {
6185 struct ppc_link_hash_table *htab;
6186
6187 htab = ppc_hash_table (info);
6188 if (htab == NULL)
6189 return FALSE;
6190
6191 /* Provide any missing _save* and _rest* functions. */
6192 if (htab->sfpr != NULL)
6193 {
6194 unsigned int i;
6195
6196 htab->sfpr->size = 0;
6197 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6198 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6199 return FALSE;
6200 if (htab->sfpr->size == 0)
6201 htab->sfpr->flags |= SEC_EXCLUDE;
6202 }
6203
6204 if (bfd_link_relocatable (info))
6205 return TRUE;
6206
6207 if (htab->elf.hgot != NULL)
6208 {
6209 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6210 /* Make .TOC. defined so as to prevent it being made dynamic.
6211 The wrong value here is fixed later in ppc64_elf_set_toc. */
6212 if (!htab->elf.hgot->def_regular
6213 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6214 {
6215 htab->elf.hgot->root.type = bfd_link_hash_defined;
6216 htab->elf.hgot->root.u.def.value = 0;
6217 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6218 htab->elf.hgot->def_regular = 1;
6219 htab->elf.hgot->root.linker_def = 1;
6220 }
6221 htab->elf.hgot->type = STT_OBJECT;
6222 htab->elf.hgot->other
6223 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6224 }
6225
6226 if (htab->need_func_desc_adj)
6227 {
6228 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6229 htab->need_func_desc_adj = 0;
6230 }
6231
6232 return TRUE;
6233 }
6234
6235 /* Find dynamic relocs for H that apply to read-only sections. */
6236
6237 static asection *
6238 readonly_dynrelocs (struct elf_link_hash_entry *h)
6239 {
6240 struct ppc_link_hash_entry *eh;
6241 struct elf_dyn_relocs *p;
6242
6243 eh = (struct ppc_link_hash_entry *) h;
6244 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6245 {
6246 asection *s = p->sec->output_section;
6247
6248 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6249 return p->sec;
6250 }
6251 return NULL;
6252 }
6253
6254 /* Return true if we have dynamic relocs against H or any of its weak
6255 aliases, that apply to read-only sections. Cannot be used after
6256 size_dynamic_sections. */
6257
6258 static bfd_boolean
6259 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6260 {
6261 struct ppc_link_hash_entry *eh;
6262
6263 eh = (struct ppc_link_hash_entry *) h;
6264 do
6265 {
6266 if (readonly_dynrelocs (&eh->elf))
6267 return TRUE;
6268 eh = (struct ppc_link_hash_entry *) eh->elf.u.alias;
6269 }
6270 while (eh != NULL && &eh->elf != h);
6271
6272 return FALSE;
6273 }
6274
6275 /* Return whether EH has pc-relative dynamic relocs. */
6276
6277 static bfd_boolean
6278 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6279 {
6280 struct elf_dyn_relocs *p;
6281
6282 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6283 if (p->pc_count != 0)
6284 return TRUE;
6285 return FALSE;
6286 }
6287
6288 /* Return true if a global entry stub will be created for H. Valid
6289 for ELFv2 before plt entries have been allocated. */
6290
6291 static bfd_boolean
6292 global_entry_stub (struct elf_link_hash_entry *h)
6293 {
6294 struct plt_entry *pent;
6295
6296 if (!h->pointer_equality_needed
6297 || h->def_regular)
6298 return FALSE;
6299
6300 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6301 if (pent->plt.refcount > 0
6302 && pent->addend == 0)
6303 return TRUE;
6304
6305 return FALSE;
6306 }
6307
6308 /* Adjust a symbol defined by a dynamic object and referenced by a
6309 regular object. The current definition is in some section of the
6310 dynamic object, but we're not including those sections. We have to
6311 change the definition to something the rest of the link can
6312 understand. */
6313
6314 static bfd_boolean
6315 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6316 struct elf_link_hash_entry *h)
6317 {
6318 struct ppc_link_hash_table *htab;
6319 asection *s, *srel;
6320
6321 htab = ppc_hash_table (info);
6322 if (htab == NULL)
6323 return FALSE;
6324
6325 /* Deal with function syms. */
6326 if (h->type == STT_FUNC
6327 || h->type == STT_GNU_IFUNC
6328 || h->needs_plt)
6329 {
6330 bfd_boolean local = (((struct ppc_link_hash_entry *) h)->save_res
6331 || SYMBOL_CALLS_LOCAL (info, h)
6332 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6333 /* Discard dyn_relocs when non-pic if we've decided that a
6334 function symbol is local and not an ifunc. We keep dynamic
6335 relocs for ifuncs when local rather than always emitting a
6336 plt call stub for them and defining the symbol on the call
6337 stub. We can't do that for ELFv1 anyway (a function symbol
6338 is defined on a descriptor, not code) and it can be faster at
6339 run-time due to not needing to bounce through a stub. The
6340 dyn_relocs for ifuncs will be applied even in a static
6341 executable. */
6342 if (!bfd_link_pic (info)
6343 && h->type != STT_GNU_IFUNC
6344 && local)
6345 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6346
6347 /* Clear procedure linkage table information for any symbol that
6348 won't need a .plt entry. */
6349 struct plt_entry *ent;
6350 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6351 if (ent->plt.refcount > 0)
6352 break;
6353 if (ent == NULL
6354 || (h->type != STT_GNU_IFUNC
6355 && local
6356 && (htab->can_convert_all_inline_plt
6357 || (((struct ppc_link_hash_entry *) h)->tls_mask
6358 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6359 {
6360 h->plt.plist = NULL;
6361 h->needs_plt = 0;
6362 h->pointer_equality_needed = 0;
6363 }
6364 else if (abiversion (info->output_bfd) >= 2)
6365 {
6366 /* Taking a function's address in a read/write section
6367 doesn't require us to define the function symbol in the
6368 executable on a global entry stub. A dynamic reloc can
6369 be used instead. The reason we prefer a few more dynamic
6370 relocs is that calling via a global entry stub costs a
6371 few more instructions, and pointer_equality_needed causes
6372 extra work in ld.so when resolving these symbols. */
6373 if (global_entry_stub (h))
6374 {
6375 if (!readonly_dynrelocs (h))
6376 {
6377 h->pointer_equality_needed = 0;
6378 /* If we haven't seen a branch reloc and the symbol
6379 isn't an ifunc then we don't need a plt entry. */
6380 if (!h->needs_plt)
6381 h->plt.plist = NULL;
6382 }
6383 else if (!bfd_link_pic (info))
6384 /* We are going to be defining the function symbol on the
6385 plt stub, so no dyn_relocs needed when non-pic. */
6386 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6387 }
6388
6389 /* ELFv2 function symbols can't have copy relocs. */
6390 return TRUE;
6391 }
6392 else if (!h->needs_plt
6393 && !readonly_dynrelocs (h))
6394 {
6395 /* If we haven't seen a branch reloc and the symbol isn't an
6396 ifunc then we don't need a plt entry. */
6397 h->plt.plist = NULL;
6398 h->pointer_equality_needed = 0;
6399 return TRUE;
6400 }
6401 }
6402 else
6403 h->plt.plist = NULL;
6404
6405 /* If this is a weak symbol, and there is a real definition, the
6406 processor independent code will have arranged for us to see the
6407 real definition first, and we can just use the same value. */
6408 if (h->is_weakalias)
6409 {
6410 struct elf_link_hash_entry *def = weakdef (h);
6411 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6412 h->root.u.def.section = def->root.u.def.section;
6413 h->root.u.def.value = def->root.u.def.value;
6414 if (def->root.u.def.section == htab->elf.sdynbss
6415 || def->root.u.def.section == htab->elf.sdynrelro)
6416 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6417 return TRUE;
6418 }
6419
6420 /* If we are creating a shared library, we must presume that the
6421 only references to the symbol are via the global offset table.
6422 For such cases we need not do anything here; the relocations will
6423 be handled correctly by relocate_section. */
6424 if (bfd_link_pic (info))
6425 return TRUE;
6426
6427 /* If there are no references to this symbol that do not use the
6428 GOT, we don't need to generate a copy reloc. */
6429 if (!h->non_got_ref)
6430 return TRUE;
6431
6432 /* Don't generate a copy reloc for symbols defined in the executable. */
6433 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6434
6435 /* If -z nocopyreloc was given, don't generate them either. */
6436 || info->nocopyreloc
6437
6438 /* If we don't find any dynamic relocs in read-only sections, then
6439 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6440 || (ELIMINATE_COPY_RELOCS && !alias_readonly_dynrelocs (h))
6441
6442 /* Protected variables do not work with .dynbss. The copy in
6443 .dynbss won't be used by the shared library with the protected
6444 definition for the variable. Text relocations are preferable
6445 to an incorrect program. */
6446 || h->protected_def)
6447 return TRUE;
6448
6449 if (h->plt.plist != NULL)
6450 {
6451 /* We should never get here, but unfortunately there are versions
6452 of gcc out there that improperly (for this ABI) put initialized
6453 function pointers, vtable refs and suchlike in read-only
6454 sections. Allow them to proceed, but warn that this might
6455 break at runtime. */
6456 info->callbacks->einfo
6457 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6458 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6459 h->root.root.string);
6460 }
6461
6462 /* This is a reference to a symbol defined by a dynamic object which
6463 is not a function. */
6464
6465 /* We must allocate the symbol in our .dynbss section, which will
6466 become part of the .bss section of the executable. There will be
6467 an entry for this symbol in the .dynsym section. The dynamic
6468 object will contain position independent code, so all references
6469 from the dynamic object to this symbol will go through the global
6470 offset table. The dynamic linker will use the .dynsym entry to
6471 determine the address it must put in the global offset table, so
6472 both the dynamic object and the regular object will refer to the
6473 same memory location for the variable. */
6474 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6475 {
6476 s = htab->elf.sdynrelro;
6477 srel = htab->elf.sreldynrelro;
6478 }
6479 else
6480 {
6481 s = htab->elf.sdynbss;
6482 srel = htab->elf.srelbss;
6483 }
6484 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6485 {
6486 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6487 linker to copy the initial value out of the dynamic object
6488 and into the runtime process image. */
6489 srel->size += sizeof (Elf64_External_Rela);
6490 h->needs_copy = 1;
6491 }
6492
6493 /* We no longer want dyn_relocs. */
6494 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6495 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6496 }
6497
6498 /* If given a function descriptor symbol, hide both the function code
6499 sym and the descriptor. */
6500 static void
6501 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6502 struct elf_link_hash_entry *h,
6503 bfd_boolean force_local)
6504 {
6505 struct ppc_link_hash_entry *eh;
6506 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6507
6508 if (ppc_hash_table (info) == NULL)
6509 return;
6510
6511 eh = (struct ppc_link_hash_entry *) h;
6512 if (eh->is_func_descriptor)
6513 {
6514 struct ppc_link_hash_entry *fh = eh->oh;
6515
6516 if (fh == NULL)
6517 {
6518 const char *p, *q;
6519 struct elf_link_hash_table *htab = elf_hash_table (info);
6520 char save;
6521
6522 /* We aren't supposed to use alloca in BFD because on
6523 systems which do not have alloca the version in libiberty
6524 calls xmalloc, which might cause the program to crash
6525 when it runs out of memory. This function doesn't have a
6526 return status, so there's no way to gracefully return an
6527 error. So cheat. We know that string[-1] can be safely
6528 accessed; It's either a string in an ELF string table,
6529 or allocated in an objalloc structure. */
6530
6531 p = eh->elf.root.root.string - 1;
6532 save = *p;
6533 *(char *) p = '.';
6534 fh = (struct ppc_link_hash_entry *)
6535 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6536 *(char *) p = save;
6537
6538 /* Unfortunately, if it so happens that the string we were
6539 looking for was allocated immediately before this string,
6540 then we overwrote the string terminator. That's the only
6541 reason the lookup should fail. */
6542 if (fh == NULL)
6543 {
6544 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6545 while (q >= eh->elf.root.root.string && *q == *p)
6546 --q, --p;
6547 if (q < eh->elf.root.root.string && *p == '.')
6548 fh = (struct ppc_link_hash_entry *)
6549 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6550 }
6551 if (fh != NULL)
6552 {
6553 eh->oh = fh;
6554 fh->oh = eh;
6555 }
6556 }
6557 if (fh != NULL)
6558 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6559 }
6560 }
6561
6562 static bfd_boolean
6563 get_sym_h (struct elf_link_hash_entry **hp,
6564 Elf_Internal_Sym **symp,
6565 asection **symsecp,
6566 unsigned char **tls_maskp,
6567 Elf_Internal_Sym **locsymsp,
6568 unsigned long r_symndx,
6569 bfd *ibfd)
6570 {
6571 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6572
6573 if (r_symndx >= symtab_hdr->sh_info)
6574 {
6575 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6576 struct elf_link_hash_entry *h;
6577
6578 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6579 h = elf_follow_link (h);
6580
6581 if (hp != NULL)
6582 *hp = h;
6583
6584 if (symp != NULL)
6585 *symp = NULL;
6586
6587 if (symsecp != NULL)
6588 {
6589 asection *symsec = NULL;
6590 if (h->root.type == bfd_link_hash_defined
6591 || h->root.type == bfd_link_hash_defweak)
6592 symsec = h->root.u.def.section;
6593 *symsecp = symsec;
6594 }
6595
6596 if (tls_maskp != NULL)
6597 {
6598 struct ppc_link_hash_entry *eh;
6599
6600 eh = (struct ppc_link_hash_entry *) h;
6601 *tls_maskp = &eh->tls_mask;
6602 }
6603 }
6604 else
6605 {
6606 Elf_Internal_Sym *sym;
6607 Elf_Internal_Sym *locsyms = *locsymsp;
6608
6609 if (locsyms == NULL)
6610 {
6611 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6612 if (locsyms == NULL)
6613 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6614 symtab_hdr->sh_info,
6615 0, NULL, NULL, NULL);
6616 if (locsyms == NULL)
6617 return FALSE;
6618 *locsymsp = locsyms;
6619 }
6620 sym = locsyms + r_symndx;
6621
6622 if (hp != NULL)
6623 *hp = NULL;
6624
6625 if (symp != NULL)
6626 *symp = sym;
6627
6628 if (symsecp != NULL)
6629 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6630
6631 if (tls_maskp != NULL)
6632 {
6633 struct got_entry **lgot_ents;
6634 unsigned char *tls_mask;
6635
6636 tls_mask = NULL;
6637 lgot_ents = elf_local_got_ents (ibfd);
6638 if (lgot_ents != NULL)
6639 {
6640 struct plt_entry **local_plt = (struct plt_entry **)
6641 (lgot_ents + symtab_hdr->sh_info);
6642 unsigned char *lgot_masks = (unsigned char *)
6643 (local_plt + symtab_hdr->sh_info);
6644 tls_mask = &lgot_masks[r_symndx];
6645 }
6646 *tls_maskp = tls_mask;
6647 }
6648 }
6649 return TRUE;
6650 }
6651
6652 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6653 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6654 type suitable for optimization, and 1 otherwise. */
6655
6656 static int
6657 get_tls_mask (unsigned char **tls_maskp,
6658 unsigned long *toc_symndx,
6659 bfd_vma *toc_addend,
6660 Elf_Internal_Sym **locsymsp,
6661 const Elf_Internal_Rela *rel,
6662 bfd *ibfd)
6663 {
6664 unsigned long r_symndx;
6665 int next_r;
6666 struct elf_link_hash_entry *h;
6667 Elf_Internal_Sym *sym;
6668 asection *sec;
6669 bfd_vma off;
6670
6671 r_symndx = ELF64_R_SYM (rel->r_info);
6672 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6673 return 0;
6674
6675 if ((*tls_maskp != NULL
6676 && (**tls_maskp & TLS_TLS) != 0
6677 && **tls_maskp != (TLS_TLS | TLS_MARK))
6678 || sec == NULL
6679 || ppc64_elf_section_data (sec) == NULL
6680 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6681 return 1;
6682
6683 /* Look inside a TOC section too. */
6684 if (h != NULL)
6685 {
6686 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6687 off = h->root.u.def.value;
6688 }
6689 else
6690 off = sym->st_value;
6691 off += rel->r_addend;
6692 BFD_ASSERT (off % 8 == 0);
6693 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6694 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6695 if (toc_symndx != NULL)
6696 *toc_symndx = r_symndx;
6697 if (toc_addend != NULL)
6698 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6699 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6700 return 0;
6701 if ((h == NULL || is_static_defined (h))
6702 && (next_r == -1 || next_r == -2))
6703 return 1 - next_r;
6704 return 1;
6705 }
6706
6707 /* Find (or create) an entry in the tocsave hash table. */
6708
6709 static struct tocsave_entry *
6710 tocsave_find (struct ppc_link_hash_table *htab,
6711 enum insert_option insert,
6712 Elf_Internal_Sym **local_syms,
6713 const Elf_Internal_Rela *irela,
6714 bfd *ibfd)
6715 {
6716 unsigned long r_indx;
6717 struct elf_link_hash_entry *h;
6718 Elf_Internal_Sym *sym;
6719 struct tocsave_entry ent, *p;
6720 hashval_t hash;
6721 struct tocsave_entry **slot;
6722
6723 r_indx = ELF64_R_SYM (irela->r_info);
6724 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6725 return NULL;
6726 if (ent.sec == NULL || ent.sec->output_section == NULL)
6727 {
6728 _bfd_error_handler
6729 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6730 return NULL;
6731 }
6732
6733 if (h != NULL)
6734 ent.offset = h->root.u.def.value;
6735 else
6736 ent.offset = sym->st_value;
6737 ent.offset += irela->r_addend;
6738
6739 hash = tocsave_htab_hash (&ent);
6740 slot = ((struct tocsave_entry **)
6741 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6742 if (slot == NULL)
6743 return NULL;
6744
6745 if (*slot == NULL)
6746 {
6747 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6748 if (p == NULL)
6749 return NULL;
6750 *p = ent;
6751 *slot = p;
6752 }
6753 return *slot;
6754 }
6755
6756 /* Adjust all global syms defined in opd sections. In gcc generated
6757 code for the old ABI, these will already have been done. */
6758
6759 static bfd_boolean
6760 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6761 {
6762 struct ppc_link_hash_entry *eh;
6763 asection *sym_sec;
6764 struct _opd_sec_data *opd;
6765
6766 if (h->root.type == bfd_link_hash_indirect)
6767 return TRUE;
6768
6769 if (h->root.type != bfd_link_hash_defined
6770 && h->root.type != bfd_link_hash_defweak)
6771 return TRUE;
6772
6773 eh = (struct ppc_link_hash_entry *) h;
6774 if (eh->adjust_done)
6775 return TRUE;
6776
6777 sym_sec = eh->elf.root.u.def.section;
6778 opd = get_opd_info (sym_sec);
6779 if (opd != NULL && opd->adjust != NULL)
6780 {
6781 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6782 if (adjust == -1)
6783 {
6784 /* This entry has been deleted. */
6785 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6786 if (dsec == NULL)
6787 {
6788 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6789 if (discarded_section (dsec))
6790 {
6791 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6792 break;
6793 }
6794 }
6795 eh->elf.root.u.def.value = 0;
6796 eh->elf.root.u.def.section = dsec;
6797 }
6798 else
6799 eh->elf.root.u.def.value += adjust;
6800 eh->adjust_done = 1;
6801 }
6802 return TRUE;
6803 }
6804
6805 /* Handles decrementing dynamic reloc counts for the reloc specified by
6806 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6807 have already been determined. */
6808
6809 static bfd_boolean
6810 dec_dynrel_count (bfd_vma r_info,
6811 asection *sec,
6812 struct bfd_link_info *info,
6813 Elf_Internal_Sym **local_syms,
6814 struct elf_link_hash_entry *h,
6815 Elf_Internal_Sym *sym)
6816 {
6817 enum elf_ppc64_reloc_type r_type;
6818 asection *sym_sec = NULL;
6819
6820 /* Can this reloc be dynamic? This switch, and later tests here
6821 should be kept in sync with the code in check_relocs. */
6822 r_type = ELF64_R_TYPE (r_info);
6823 switch (r_type)
6824 {
6825 default:
6826 return TRUE;
6827
6828 case R_PPC64_TPREL16:
6829 case R_PPC64_TPREL16_LO:
6830 case R_PPC64_TPREL16_HI:
6831 case R_PPC64_TPREL16_HA:
6832 case R_PPC64_TPREL16_DS:
6833 case R_PPC64_TPREL16_LO_DS:
6834 case R_PPC64_TPREL16_HIGH:
6835 case R_PPC64_TPREL16_HIGHA:
6836 case R_PPC64_TPREL16_HIGHER:
6837 case R_PPC64_TPREL16_HIGHERA:
6838 case R_PPC64_TPREL16_HIGHEST:
6839 case R_PPC64_TPREL16_HIGHESTA:
6840 case R_PPC64_TPREL64:
6841 case R_PPC64_TPREL34:
6842 case R_PPC64_DTPMOD64:
6843 case R_PPC64_DTPREL64:
6844 case R_PPC64_ADDR64:
6845 case R_PPC64_REL30:
6846 case R_PPC64_REL32:
6847 case R_PPC64_REL64:
6848 case R_PPC64_ADDR14:
6849 case R_PPC64_ADDR14_BRNTAKEN:
6850 case R_PPC64_ADDR14_BRTAKEN:
6851 case R_PPC64_ADDR16:
6852 case R_PPC64_ADDR16_DS:
6853 case R_PPC64_ADDR16_HA:
6854 case R_PPC64_ADDR16_HI:
6855 case R_PPC64_ADDR16_HIGH:
6856 case R_PPC64_ADDR16_HIGHA:
6857 case R_PPC64_ADDR16_HIGHER:
6858 case R_PPC64_ADDR16_HIGHERA:
6859 case R_PPC64_ADDR16_HIGHEST:
6860 case R_PPC64_ADDR16_HIGHESTA:
6861 case R_PPC64_ADDR16_LO:
6862 case R_PPC64_ADDR16_LO_DS:
6863 case R_PPC64_ADDR24:
6864 case R_PPC64_ADDR32:
6865 case R_PPC64_UADDR16:
6866 case R_PPC64_UADDR32:
6867 case R_PPC64_UADDR64:
6868 case R_PPC64_TOC:
6869 case R_PPC64_D34:
6870 case R_PPC64_D34_LO:
6871 case R_PPC64_D34_HI30:
6872 case R_PPC64_D34_HA30:
6873 case R_PPC64_ADDR16_HIGHER34:
6874 case R_PPC64_ADDR16_HIGHERA34:
6875 case R_PPC64_ADDR16_HIGHEST34:
6876 case R_PPC64_ADDR16_HIGHESTA34:
6877 case R_PPC64_D28:
6878 break;
6879 }
6880
6881 if (local_syms != NULL)
6882 {
6883 unsigned long r_symndx;
6884 bfd *ibfd = sec->owner;
6885
6886 r_symndx = ELF64_R_SYM (r_info);
6887 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6888 return FALSE;
6889 }
6890
6891 if ((bfd_link_pic (info)
6892 && (must_be_dyn_reloc (info, r_type)
6893 || (h != NULL
6894 && (!SYMBOLIC_BIND (info, h)
6895 || h->root.type == bfd_link_hash_defweak
6896 || !h->def_regular))))
6897 || (ELIMINATE_COPY_RELOCS
6898 && !bfd_link_pic (info)
6899 && h != NULL
6900 && (h->root.type == bfd_link_hash_defweak
6901 || !h->def_regular)))
6902 ;
6903 else
6904 return TRUE;
6905
6906 if (h != NULL)
6907 {
6908 struct elf_dyn_relocs *p;
6909 struct elf_dyn_relocs **pp;
6910 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6911
6912 /* elf_gc_sweep may have already removed all dyn relocs associated
6913 with local syms for a given section. Also, symbol flags are
6914 changed by elf_gc_sweep_symbol, confusing the test above. Don't
6915 report a dynreloc miscount. */
6916 if (*pp == NULL && info->gc_sections)
6917 return TRUE;
6918
6919 while ((p = *pp) != NULL)
6920 {
6921 if (p->sec == sec)
6922 {
6923 if (!must_be_dyn_reloc (info, r_type))
6924 p->pc_count -= 1;
6925 p->count -= 1;
6926 if (p->count == 0)
6927 *pp = p->next;
6928 return TRUE;
6929 }
6930 pp = &p->next;
6931 }
6932 }
6933 else
6934 {
6935 struct ppc_dyn_relocs *p;
6936 struct ppc_dyn_relocs **pp;
6937 void *vpp;
6938 bfd_boolean is_ifunc;
6939
6940 if (local_syms == NULL)
6941 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6942 if (sym_sec == NULL)
6943 sym_sec = sec;
6944
6945 vpp = &elf_section_data (sym_sec)->local_dynrel;
6946 pp = (struct ppc_dyn_relocs **) vpp;
6947
6948 if (*pp == NULL && info->gc_sections)
6949 return TRUE;
6950
6951 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
6952 while ((p = *pp) != NULL)
6953 {
6954 if (p->sec == sec && p->ifunc == is_ifunc)
6955 {
6956 p->count -= 1;
6957 if (p->count == 0)
6958 *pp = p->next;
6959 return TRUE;
6960 }
6961 pp = &p->next;
6962 }
6963 }
6964
6965 /* xgettext:c-format */
6966 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
6967 sec->owner, sec);
6968 bfd_set_error (bfd_error_bad_value);
6969 return FALSE;
6970 }
6971
6972 /* Remove unused Official Procedure Descriptor entries. Currently we
6973 only remove those associated with functions in discarded link-once
6974 sections, or weakly defined functions that have been overridden. It
6975 would be possible to remove many more entries for statically linked
6976 applications. */
6977
6978 bfd_boolean
6979 ppc64_elf_edit_opd (struct bfd_link_info *info)
6980 {
6981 bfd *ibfd;
6982 bfd_boolean some_edited = FALSE;
6983 asection *need_pad = NULL;
6984 struct ppc_link_hash_table *htab;
6985
6986 htab = ppc_hash_table (info);
6987 if (htab == NULL)
6988 return FALSE;
6989
6990 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6991 {
6992 asection *sec;
6993 Elf_Internal_Rela *relstart, *rel, *relend;
6994 Elf_Internal_Shdr *symtab_hdr;
6995 Elf_Internal_Sym *local_syms;
6996 struct _opd_sec_data *opd;
6997 bfd_boolean need_edit, add_aux_fields, broken;
6998 bfd_size_type cnt_16b = 0;
6999
7000 if (!is_ppc64_elf (ibfd))
7001 continue;
7002
7003 sec = bfd_get_section_by_name (ibfd, ".opd");
7004 if (sec == NULL || sec->size == 0)
7005 continue;
7006
7007 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7008 continue;
7009
7010 if (sec->output_section == bfd_abs_section_ptr)
7011 continue;
7012
7013 /* Look through the section relocs. */
7014 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7015 continue;
7016
7017 local_syms = NULL;
7018 symtab_hdr = &elf_symtab_hdr (ibfd);
7019
7020 /* Read the relocations. */
7021 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7022 info->keep_memory);
7023 if (relstart == NULL)
7024 return FALSE;
7025
7026 /* First run through the relocs to check they are sane, and to
7027 determine whether we need to edit this opd section. */
7028 need_edit = FALSE;
7029 broken = FALSE;
7030 need_pad = sec;
7031 relend = relstart + sec->reloc_count;
7032 for (rel = relstart; rel < relend; )
7033 {
7034 enum elf_ppc64_reloc_type r_type;
7035 unsigned long r_symndx;
7036 asection *sym_sec;
7037 struct elf_link_hash_entry *h;
7038 Elf_Internal_Sym *sym;
7039 bfd_vma offset;
7040
7041 /* .opd contains an array of 16 or 24 byte entries. We're
7042 only interested in the reloc pointing to a function entry
7043 point. */
7044 offset = rel->r_offset;
7045 if (rel + 1 == relend
7046 || rel[1].r_offset != offset + 8)
7047 {
7048 /* If someone messes with .opd alignment then after a
7049 "ld -r" we might have padding in the middle of .opd.
7050 Also, there's nothing to prevent someone putting
7051 something silly in .opd with the assembler. No .opd
7052 optimization for them! */
7053 broken_opd:
7054 _bfd_error_handler
7055 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7056 broken = TRUE;
7057 break;
7058 }
7059
7060 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7061 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7062 {
7063 _bfd_error_handler
7064 /* xgettext:c-format */
7065 (_("%pB: unexpected reloc type %u in .opd section"),
7066 ibfd, r_type);
7067 broken = TRUE;
7068 break;
7069 }
7070
7071 r_symndx = ELF64_R_SYM (rel->r_info);
7072 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7073 r_symndx, ibfd))
7074 goto error_ret;
7075
7076 if (sym_sec == NULL || sym_sec->owner == NULL)
7077 {
7078 const char *sym_name;
7079 if (h != NULL)
7080 sym_name = h->root.root.string;
7081 else
7082 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7083 sym_sec);
7084
7085 _bfd_error_handler
7086 /* xgettext:c-format */
7087 (_("%pB: undefined sym `%s' in .opd section"),
7088 ibfd, sym_name);
7089 broken = TRUE;
7090 break;
7091 }
7092
7093 /* opd entries are always for functions defined in the
7094 current input bfd. If the symbol isn't defined in the
7095 input bfd, then we won't be using the function in this
7096 bfd; It must be defined in a linkonce section in another
7097 bfd, or is weak. It's also possible that we are
7098 discarding the function due to a linker script /DISCARD/,
7099 which we test for via the output_section. */
7100 if (sym_sec->owner != ibfd
7101 || sym_sec->output_section == bfd_abs_section_ptr)
7102 need_edit = TRUE;
7103
7104 rel += 2;
7105 if (rel + 1 == relend
7106 || (rel + 2 < relend
7107 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7108 ++rel;
7109
7110 if (rel == relend)
7111 {
7112 if (sec->size == offset + 24)
7113 {
7114 need_pad = NULL;
7115 break;
7116 }
7117 if (sec->size == offset + 16)
7118 {
7119 cnt_16b++;
7120 break;
7121 }
7122 goto broken_opd;
7123 }
7124 else if (rel + 1 < relend
7125 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7126 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7127 {
7128 if (rel[0].r_offset == offset + 16)
7129 cnt_16b++;
7130 else if (rel[0].r_offset != offset + 24)
7131 goto broken_opd;
7132 }
7133 else
7134 goto broken_opd;
7135 }
7136
7137 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7138
7139 if (!broken && (need_edit || add_aux_fields))
7140 {
7141 Elf_Internal_Rela *write_rel;
7142 Elf_Internal_Shdr *rel_hdr;
7143 bfd_byte *rptr, *wptr;
7144 bfd_byte *new_contents;
7145 bfd_size_type amt;
7146
7147 new_contents = NULL;
7148 amt = OPD_NDX (sec->size) * sizeof (long);
7149 opd = &ppc64_elf_section_data (sec)->u.opd;
7150 opd->adjust = bfd_zalloc (sec->owner, amt);
7151 if (opd->adjust == NULL)
7152 return FALSE;
7153
7154 /* This seems a waste of time as input .opd sections are all
7155 zeros as generated by gcc, but I suppose there's no reason
7156 this will always be so. We might start putting something in
7157 the third word of .opd entries. */
7158 if ((sec->flags & SEC_IN_MEMORY) == 0)
7159 {
7160 bfd_byte *loc;
7161 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7162 {
7163 if (loc != NULL)
7164 free (loc);
7165 error_ret:
7166 if (local_syms != NULL
7167 && symtab_hdr->contents != (unsigned char *) local_syms)
7168 free (local_syms);
7169 if (elf_section_data (sec)->relocs != relstart)
7170 free (relstart);
7171 return FALSE;
7172 }
7173 sec->contents = loc;
7174 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7175 }
7176
7177 elf_section_data (sec)->relocs = relstart;
7178
7179 new_contents = sec->contents;
7180 if (add_aux_fields)
7181 {
7182 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7183 if (new_contents == NULL)
7184 return FALSE;
7185 need_pad = NULL;
7186 }
7187 wptr = new_contents;
7188 rptr = sec->contents;
7189 write_rel = relstart;
7190 for (rel = relstart; rel < relend; )
7191 {
7192 unsigned long r_symndx;
7193 asection *sym_sec;
7194 struct elf_link_hash_entry *h;
7195 struct ppc_link_hash_entry *fdh = NULL;
7196 Elf_Internal_Sym *sym;
7197 long opd_ent_size;
7198 Elf_Internal_Rela *next_rel;
7199 bfd_boolean skip;
7200
7201 r_symndx = ELF64_R_SYM (rel->r_info);
7202 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7203 r_symndx, ibfd))
7204 goto error_ret;
7205
7206 next_rel = rel + 2;
7207 if (next_rel + 1 == relend
7208 || (next_rel + 2 < relend
7209 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7210 ++next_rel;
7211
7212 /* See if the .opd entry is full 24 byte or
7213 16 byte (with fd_aux entry overlapped with next
7214 fd_func). */
7215 opd_ent_size = 24;
7216 if (next_rel == relend)
7217 {
7218 if (sec->size == rel->r_offset + 16)
7219 opd_ent_size = 16;
7220 }
7221 else if (next_rel->r_offset == rel->r_offset + 16)
7222 opd_ent_size = 16;
7223
7224 if (h != NULL
7225 && h->root.root.string[0] == '.')
7226 {
7227 fdh = ((struct ppc_link_hash_entry *) h)->oh;
7228 if (fdh != NULL)
7229 {
7230 fdh = ppc_follow_link (fdh);
7231 if (fdh->elf.root.type != bfd_link_hash_defined
7232 && fdh->elf.root.type != bfd_link_hash_defweak)
7233 fdh = NULL;
7234 }
7235 }
7236
7237 skip = (sym_sec->owner != ibfd
7238 || sym_sec->output_section == bfd_abs_section_ptr);
7239 if (skip)
7240 {
7241 if (fdh != NULL && sym_sec->owner == ibfd)
7242 {
7243 /* Arrange for the function descriptor sym
7244 to be dropped. */
7245 fdh->elf.root.u.def.value = 0;
7246 fdh->elf.root.u.def.section = sym_sec;
7247 }
7248 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7249
7250 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7251 rel = next_rel;
7252 else
7253 while (1)
7254 {
7255 if (!dec_dynrel_count (rel->r_info, sec, info,
7256 NULL, h, sym))
7257 goto error_ret;
7258
7259 if (++rel == next_rel)
7260 break;
7261
7262 r_symndx = ELF64_R_SYM (rel->r_info);
7263 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7264 r_symndx, ibfd))
7265 goto error_ret;
7266 }
7267 }
7268 else
7269 {
7270 /* We'll be keeping this opd entry. */
7271 long adjust;
7272
7273 if (fdh != NULL)
7274 {
7275 /* Redefine the function descriptor symbol to
7276 this location in the opd section. It is
7277 necessary to update the value here rather
7278 than using an array of adjustments as we do
7279 for local symbols, because various places
7280 in the generic ELF code use the value
7281 stored in u.def.value. */
7282 fdh->elf.root.u.def.value = wptr - new_contents;
7283 fdh->adjust_done = 1;
7284 }
7285
7286 /* Local syms are a bit tricky. We could
7287 tweak them as they can be cached, but
7288 we'd need to look through the local syms
7289 for the function descriptor sym which we
7290 don't have at the moment. So keep an
7291 array of adjustments. */
7292 adjust = (wptr - new_contents) - (rptr - sec->contents);
7293 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7294
7295 if (wptr != rptr)
7296 memcpy (wptr, rptr, opd_ent_size);
7297 wptr += opd_ent_size;
7298 if (add_aux_fields && opd_ent_size == 16)
7299 {
7300 memset (wptr, '\0', 8);
7301 wptr += 8;
7302 }
7303
7304 /* We need to adjust any reloc offsets to point to the
7305 new opd entries. */
7306 for ( ; rel != next_rel; ++rel)
7307 {
7308 rel->r_offset += adjust;
7309 if (write_rel != rel)
7310 memcpy (write_rel, rel, sizeof (*rel));
7311 ++write_rel;
7312 }
7313 }
7314
7315 rptr += opd_ent_size;
7316 }
7317
7318 sec->size = wptr - new_contents;
7319 sec->reloc_count = write_rel - relstart;
7320 if (add_aux_fields)
7321 {
7322 free (sec->contents);
7323 sec->contents = new_contents;
7324 }
7325
7326 /* Fudge the header size too, as this is used later in
7327 elf_bfd_final_link if we are emitting relocs. */
7328 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7329 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7330 some_edited = TRUE;
7331 }
7332 else if (elf_section_data (sec)->relocs != relstart)
7333 free (relstart);
7334
7335 if (local_syms != NULL
7336 && symtab_hdr->contents != (unsigned char *) local_syms)
7337 {
7338 if (!info->keep_memory)
7339 free (local_syms);
7340 else
7341 symtab_hdr->contents = (unsigned char *) local_syms;
7342 }
7343 }
7344
7345 if (some_edited)
7346 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7347
7348 /* If we are doing a final link and the last .opd entry is just 16 byte
7349 long, add a 8 byte padding after it. */
7350 if (need_pad != NULL && !bfd_link_relocatable (info))
7351 {
7352 bfd_byte *p;
7353
7354 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7355 {
7356 BFD_ASSERT (need_pad->size > 0);
7357
7358 p = bfd_malloc (need_pad->size + 8);
7359 if (p == NULL)
7360 return FALSE;
7361
7362 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7363 p, 0, need_pad->size))
7364 return FALSE;
7365
7366 need_pad->contents = p;
7367 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7368 }
7369 else
7370 {
7371 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7372 if (p == NULL)
7373 return FALSE;
7374
7375 need_pad->contents = p;
7376 }
7377
7378 memset (need_pad->contents + need_pad->size, 0, 8);
7379 need_pad->size += 8;
7380 }
7381
7382 return TRUE;
7383 }
7384
7385 /* Analyze inline PLT call relocations to see whether calls to locally
7386 defined functions can be converted to direct calls. */
7387
7388 bfd_boolean
7389 ppc64_elf_inline_plt (struct bfd_link_info *info)
7390 {
7391 struct ppc_link_hash_table *htab;
7392 bfd *ibfd;
7393 asection *sec;
7394 bfd_vma low_vma, high_vma, limit;
7395
7396 htab = ppc_hash_table (info);
7397 if (htab == NULL)
7398 return FALSE;
7399
7400 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7401 reduced somewhat to cater for possible stubs that might be added
7402 between the call and its destination. */
7403 if (htab->params->group_size < 0)
7404 {
7405 limit = -htab->params->group_size;
7406 if (limit == 1)
7407 limit = 0x1e00000;
7408 }
7409 else
7410 {
7411 limit = htab->params->group_size;
7412 if (limit == 1)
7413 limit = 0x1c00000;
7414 }
7415
7416 low_vma = -1;
7417 high_vma = 0;
7418 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7419 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7420 {
7421 if (low_vma > sec->vma)
7422 low_vma = sec->vma;
7423 if (high_vma < sec->vma + sec->size)
7424 high_vma = sec->vma + sec->size;
7425 }
7426
7427 /* If a "bl" can reach anywhere in local code sections, then we can
7428 convert all inline PLT sequences to direct calls when the symbol
7429 is local. */
7430 if (high_vma - low_vma < limit)
7431 {
7432 htab->can_convert_all_inline_plt = 1;
7433 return TRUE;
7434 }
7435
7436 /* Otherwise, go looking through relocs for cases where a direct
7437 call won't reach. Mark the symbol on any such reloc to disable
7438 the optimization and keep the PLT entry as it seems likely that
7439 this will be better than creating trampolines. Note that this
7440 will disable the optimization for all inline PLT calls to a
7441 particular symbol, not just those that won't reach. The
7442 difficulty in doing a more precise optimization is that the
7443 linker needs to make a decision depending on whether a
7444 particular R_PPC64_PLTCALL insn can be turned into a direct
7445 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7446 the sequence, and there is nothing that ties those relocs
7447 together except their symbol. */
7448
7449 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7450 {
7451 Elf_Internal_Shdr *symtab_hdr;
7452 Elf_Internal_Sym *local_syms;
7453
7454 if (!is_ppc64_elf (ibfd))
7455 continue;
7456
7457 local_syms = NULL;
7458 symtab_hdr = &elf_symtab_hdr (ibfd);
7459
7460 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7461 if (ppc64_elf_section_data (sec)->has_pltcall
7462 && !bfd_is_abs_section (sec->output_section))
7463 {
7464 Elf_Internal_Rela *relstart, *rel, *relend;
7465
7466 /* Read the relocations. */
7467 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7468 info->keep_memory);
7469 if (relstart == NULL)
7470 return FALSE;
7471
7472 relend = relstart + sec->reloc_count;
7473 for (rel = relstart; rel < relend; )
7474 {
7475 enum elf_ppc64_reloc_type r_type;
7476 unsigned long r_symndx;
7477 asection *sym_sec;
7478 struct elf_link_hash_entry *h;
7479 Elf_Internal_Sym *sym;
7480 unsigned char *tls_maskp;
7481
7482 r_type = ELF64_R_TYPE (rel->r_info);
7483 if (r_type != R_PPC64_PLTCALL
7484 && r_type != R_PPC64_PLTCALL_NOTOC)
7485 continue;
7486
7487 r_symndx = ELF64_R_SYM (rel->r_info);
7488 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7489 r_symndx, ibfd))
7490 {
7491 if (elf_section_data (sec)->relocs != relstart)
7492 free (relstart);
7493 if (local_syms != NULL
7494 && symtab_hdr->contents != (bfd_byte *) local_syms)
7495 free (local_syms);
7496 return FALSE;
7497 }
7498
7499 if (sym_sec != NULL && sym_sec->output_section != NULL)
7500 {
7501 bfd_vma from, to;
7502 if (h != NULL)
7503 to = h->root.u.def.value;
7504 else
7505 to = sym->st_value;
7506 to += (rel->r_addend
7507 + sym_sec->output_offset
7508 + sym_sec->output_section->vma);
7509 from = (rel->r_offset
7510 + sec->output_offset
7511 + sec->output_section->vma);
7512 if (to - from + limit < 2 * limit
7513 && !(r_type == R_PPC64_PLTCALL_NOTOC
7514 && (((h ? h->other : sym->st_other)
7515 & STO_PPC64_LOCAL_MASK)
7516 > 1 << STO_PPC64_LOCAL_BIT)))
7517 *tls_maskp &= ~PLT_KEEP;
7518 }
7519 }
7520 if (elf_section_data (sec)->relocs != relstart)
7521 free (relstart);
7522 }
7523
7524 if (local_syms != NULL
7525 && symtab_hdr->contents != (unsigned char *) local_syms)
7526 {
7527 if (!info->keep_memory)
7528 free (local_syms);
7529 else
7530 symtab_hdr->contents = (unsigned char *) local_syms;
7531 }
7532 }
7533
7534 return TRUE;
7535 }
7536
7537 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7538
7539 asection *
7540 ppc64_elf_tls_setup (struct bfd_link_info *info)
7541 {
7542 struct ppc_link_hash_table *htab;
7543
7544 htab = ppc_hash_table (info);
7545 if (htab == NULL)
7546 return NULL;
7547
7548 if (abiversion (info->output_bfd) == 1)
7549 htab->opd_abi = 1;
7550
7551 if (htab->params->no_multi_toc)
7552 htab->do_multi_toc = 0;
7553 else if (!htab->do_multi_toc)
7554 htab->params->no_multi_toc = 1;
7555
7556 /* Default to --no-plt-localentry, as this option can cause problems
7557 with symbol interposition. For example, glibc libpthread.so and
7558 libc.so duplicate many pthread symbols, with a fallback
7559 implementation in libc.so. In some cases the fallback does more
7560 work than the pthread implementation. __pthread_condattr_destroy
7561 is one such symbol: the libpthread.so implementation is
7562 localentry:0 while the libc.so implementation is localentry:8.
7563 An app that "cleverly" uses dlopen to only load necessary
7564 libraries at runtime may omit loading libpthread.so when not
7565 running multi-threaded, which then results in the libc.so
7566 fallback symbols being used and ld.so complaining. Now there
7567 are workarounds in ld (see non_zero_localentry) to detect the
7568 pthread situation, but that may not be the only case where
7569 --plt-localentry can cause trouble. */
7570 if (htab->params->plt_localentry0 < 0)
7571 htab->params->plt_localentry0 = 0;
7572 if (htab->params->plt_localentry0
7573 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7574 FALSE, FALSE, FALSE) == NULL)
7575 _bfd_error_handler
7576 (_("warning: --plt-localentry is especially dangerous without "
7577 "ld.so support to detect ABI violations"));
7578
7579 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7580 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7581 FALSE, FALSE, TRUE));
7582 /* Move dynamic linking info to the function descriptor sym. */
7583 if (htab->tls_get_addr != NULL)
7584 func_desc_adjust (&htab->tls_get_addr->elf, info);
7585 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7586 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7587 FALSE, FALSE, TRUE));
7588 if (htab->params->tls_get_addr_opt)
7589 {
7590 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7591
7592 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7593 FALSE, FALSE, TRUE);
7594 if (opt != NULL)
7595 func_desc_adjust (opt, info);
7596 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7597 FALSE, FALSE, TRUE);
7598 if (opt_fd != NULL
7599 && (opt_fd->root.type == bfd_link_hash_defined
7600 || opt_fd->root.type == bfd_link_hash_defweak))
7601 {
7602 /* If glibc supports an optimized __tls_get_addr call stub,
7603 signalled by the presence of __tls_get_addr_opt, and we'll
7604 be calling __tls_get_addr via a plt call stub, then
7605 make __tls_get_addr point to __tls_get_addr_opt. */
7606 tga_fd = &htab->tls_get_addr_fd->elf;
7607 if (htab->elf.dynamic_sections_created
7608 && tga_fd != NULL
7609 && (tga_fd->type == STT_FUNC
7610 || tga_fd->needs_plt)
7611 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7612 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd)))
7613 {
7614 struct plt_entry *ent;
7615
7616 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7617 if (ent->plt.refcount > 0)
7618 break;
7619 if (ent != NULL)
7620 {
7621 tga_fd->root.type = bfd_link_hash_indirect;
7622 tga_fd->root.u.i.link = &opt_fd->root;
7623 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7624 opt_fd->mark = 1;
7625 if (opt_fd->dynindx != -1)
7626 {
7627 /* Use __tls_get_addr_opt in dynamic relocations. */
7628 opt_fd->dynindx = -1;
7629 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7630 opt_fd->dynstr_index);
7631 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7632 return NULL;
7633 }
7634 htab->tls_get_addr_fd
7635 = (struct ppc_link_hash_entry *) opt_fd;
7636 tga = &htab->tls_get_addr->elf;
7637 if (opt != NULL && tga != NULL)
7638 {
7639 tga->root.type = bfd_link_hash_indirect;
7640 tga->root.u.i.link = &opt->root;
7641 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7642 opt->mark = 1;
7643 _bfd_elf_link_hash_hide_symbol (info, opt,
7644 tga->forced_local);
7645 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7646 }
7647 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7648 htab->tls_get_addr_fd->is_func_descriptor = 1;
7649 if (htab->tls_get_addr != NULL)
7650 {
7651 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7652 htab->tls_get_addr->is_func = 1;
7653 }
7654 }
7655 }
7656 }
7657 else if (htab->params->tls_get_addr_opt < 0)
7658 htab->params->tls_get_addr_opt = 0;
7659 }
7660 return _bfd_elf_tls_setup (info->output_bfd, info);
7661 }
7662
7663 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7664 HASH1 or HASH2. */
7665
7666 static bfd_boolean
7667 branch_reloc_hash_match (const bfd *ibfd,
7668 const Elf_Internal_Rela *rel,
7669 const struct ppc_link_hash_entry *hash1,
7670 const struct ppc_link_hash_entry *hash2)
7671 {
7672 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7673 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7674 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7675
7676 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7677 {
7678 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7679 struct elf_link_hash_entry *h;
7680
7681 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7682 h = elf_follow_link (h);
7683 if (h == &hash1->elf || h == &hash2->elf)
7684 return TRUE;
7685 }
7686 return FALSE;
7687 }
7688
7689 /* Run through all the TLS relocs looking for optimization
7690 opportunities. The linker has been hacked (see ppc64elf.em) to do
7691 a preliminary section layout so that we know the TLS segment
7692 offsets. We can't optimize earlier because some optimizations need
7693 to know the tp offset, and we need to optimize before allocating
7694 dynamic relocations. */
7695
7696 bfd_boolean
7697 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7698 {
7699 bfd *ibfd;
7700 asection *sec;
7701 struct ppc_link_hash_table *htab;
7702 unsigned char *toc_ref;
7703 int pass;
7704
7705 if (!bfd_link_executable (info))
7706 return TRUE;
7707
7708 htab = ppc_hash_table (info);
7709 if (htab == NULL)
7710 return FALSE;
7711
7712 /* Make two passes over the relocs. On the first pass, mark toc
7713 entries involved with tls relocs, and check that tls relocs
7714 involved in setting up a tls_get_addr call are indeed followed by
7715 such a call. If they are not, we can't do any tls optimization.
7716 On the second pass twiddle tls_mask flags to notify
7717 relocate_section that optimization can be done, and adjust got
7718 and plt refcounts. */
7719 toc_ref = NULL;
7720 for (pass = 0; pass < 2; ++pass)
7721 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7722 {
7723 Elf_Internal_Sym *locsyms = NULL;
7724 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7725
7726 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7727 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7728 {
7729 Elf_Internal_Rela *relstart, *rel, *relend;
7730 bfd_boolean found_tls_get_addr_arg = 0;
7731
7732 /* Read the relocations. */
7733 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7734 info->keep_memory);
7735 if (relstart == NULL)
7736 {
7737 free (toc_ref);
7738 return FALSE;
7739 }
7740
7741 relend = relstart + sec->reloc_count;
7742 for (rel = relstart; rel < relend; rel++)
7743 {
7744 enum elf_ppc64_reloc_type r_type;
7745 unsigned long r_symndx;
7746 struct elf_link_hash_entry *h;
7747 Elf_Internal_Sym *sym;
7748 asection *sym_sec;
7749 unsigned char *tls_mask;
7750 unsigned int tls_set, tls_clear, tls_type = 0;
7751 bfd_vma value;
7752 bfd_boolean ok_tprel, is_local;
7753 long toc_ref_index = 0;
7754 int expecting_tls_get_addr = 0;
7755 bfd_boolean ret = FALSE;
7756
7757 r_symndx = ELF64_R_SYM (rel->r_info);
7758 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7759 r_symndx, ibfd))
7760 {
7761 err_free_rel:
7762 if (elf_section_data (sec)->relocs != relstart)
7763 free (relstart);
7764 if (toc_ref != NULL)
7765 free (toc_ref);
7766 if (locsyms != NULL
7767 && (elf_symtab_hdr (ibfd).contents
7768 != (unsigned char *) locsyms))
7769 free (locsyms);
7770 return ret;
7771 }
7772
7773 if (h != NULL)
7774 {
7775 if (h->root.type == bfd_link_hash_defined
7776 || h->root.type == bfd_link_hash_defweak)
7777 value = h->root.u.def.value;
7778 else if (h->root.type == bfd_link_hash_undefweak)
7779 value = 0;
7780 else
7781 {
7782 found_tls_get_addr_arg = 0;
7783 continue;
7784 }
7785 }
7786 else
7787 /* Symbols referenced by TLS relocs must be of type
7788 STT_TLS. So no need for .opd local sym adjust. */
7789 value = sym->st_value;
7790
7791 ok_tprel = FALSE;
7792 is_local = FALSE;
7793 if (h == NULL
7794 || !h->def_dynamic)
7795 {
7796 is_local = TRUE;
7797 if (h != NULL
7798 && h->root.type == bfd_link_hash_undefweak)
7799 ok_tprel = TRUE;
7800 else if (sym_sec != NULL
7801 && sym_sec->output_section != NULL)
7802 {
7803 value += sym_sec->output_offset;
7804 value += sym_sec->output_section->vma;
7805 value -= htab->elf.tls_sec->vma + TP_OFFSET;
7806 /* Note that even though the prefix insns
7807 allow a 1<<33 offset we use the same test
7808 as for addis;addi. There may be a mix of
7809 pcrel and non-pcrel code and the decision
7810 to optimise is per symbol, not per TLS
7811 sequence. */
7812 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
7813 }
7814 }
7815
7816 r_type = ELF64_R_TYPE (rel->r_info);
7817 /* If this section has old-style __tls_get_addr calls
7818 without marker relocs, then check that each
7819 __tls_get_addr call reloc is preceded by a reloc
7820 that conceivably belongs to the __tls_get_addr arg
7821 setup insn. If we don't find matching arg setup
7822 relocs, don't do any tls optimization. */
7823 if (pass == 0
7824 && sec->has_tls_get_addr_call
7825 && h != NULL
7826 && (h == &htab->tls_get_addr->elf
7827 || h == &htab->tls_get_addr_fd->elf)
7828 && !found_tls_get_addr_arg
7829 && is_branch_reloc (r_type))
7830 {
7831 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7832 "TLS optimization disabled\n"),
7833 ibfd, sec, rel->r_offset);
7834 ret = TRUE;
7835 goto err_free_rel;
7836 }
7837
7838 found_tls_get_addr_arg = 0;
7839 switch (r_type)
7840 {
7841 case R_PPC64_GOT_TLSLD16:
7842 case R_PPC64_GOT_TLSLD16_LO:
7843 case R_PPC64_GOT_TLSLD34:
7844 expecting_tls_get_addr = 1;
7845 found_tls_get_addr_arg = 1;
7846 /* Fall through. */
7847
7848 case R_PPC64_GOT_TLSLD16_HI:
7849 case R_PPC64_GOT_TLSLD16_HA:
7850 /* These relocs should never be against a symbol
7851 defined in a shared lib. Leave them alone if
7852 that turns out to be the case. */
7853 if (!is_local)
7854 continue;
7855
7856 /* LD -> LE */
7857 tls_set = 0;
7858 tls_clear = TLS_LD;
7859 tls_type = TLS_TLS | TLS_LD;
7860 break;
7861
7862 case R_PPC64_GOT_TLSGD16:
7863 case R_PPC64_GOT_TLSGD16_LO:
7864 case R_PPC64_GOT_TLSGD34:
7865 expecting_tls_get_addr = 1;
7866 found_tls_get_addr_arg = 1;
7867 /* Fall through. */
7868
7869 case R_PPC64_GOT_TLSGD16_HI:
7870 case R_PPC64_GOT_TLSGD16_HA:
7871 if (ok_tprel)
7872 /* GD -> LE */
7873 tls_set = 0;
7874 else
7875 /* GD -> IE */
7876 tls_set = TLS_TLS | TLS_GDIE;
7877 tls_clear = TLS_GD;
7878 tls_type = TLS_TLS | TLS_GD;
7879 break;
7880
7881 case R_PPC64_GOT_TPREL34:
7882 case R_PPC64_GOT_TPREL16_DS:
7883 case R_PPC64_GOT_TPREL16_LO_DS:
7884 case R_PPC64_GOT_TPREL16_HI:
7885 case R_PPC64_GOT_TPREL16_HA:
7886 if (ok_tprel)
7887 {
7888 /* IE -> LE */
7889 tls_set = 0;
7890 tls_clear = TLS_TPREL;
7891 tls_type = TLS_TLS | TLS_TPREL;
7892 break;
7893 }
7894 continue;
7895
7896 case R_PPC64_TLSGD:
7897 case R_PPC64_TLSLD:
7898 if (rel + 1 < relend
7899 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
7900 {
7901 if (pass != 0
7902 && (ELF64_R_TYPE (rel[1].r_info)
7903 != R_PPC64_PLTSEQ)
7904 && (ELF64_R_TYPE (rel[1].r_info)
7905 != R_PPC64_PLTSEQ_NOTOC))
7906 {
7907 r_symndx = ELF64_R_SYM (rel[1].r_info);
7908 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
7909 r_symndx, ibfd))
7910 goto err_free_rel;
7911 if (h != NULL)
7912 {
7913 struct plt_entry *ent = NULL;
7914
7915 for (ent = h->plt.plist;
7916 ent != NULL;
7917 ent = ent->next)
7918 if (ent->addend == rel[1].r_addend)
7919 break;
7920
7921 if (ent != NULL
7922 && ent->plt.refcount > 0)
7923 ent->plt.refcount -= 1;
7924 }
7925 }
7926 continue;
7927 }
7928 found_tls_get_addr_arg = 1;
7929 /* Fall through. */
7930
7931 case R_PPC64_TLS:
7932 case R_PPC64_TOC16:
7933 case R_PPC64_TOC16_LO:
7934 if (sym_sec == NULL || sym_sec != toc)
7935 continue;
7936
7937 /* Mark this toc entry as referenced by a TLS
7938 code sequence. We can do that now in the
7939 case of R_PPC64_TLS, and after checking for
7940 tls_get_addr for the TOC16 relocs. */
7941 if (toc_ref == NULL)
7942 toc_ref
7943 = bfd_zmalloc (toc->output_section->rawsize / 8);
7944 if (toc_ref == NULL)
7945 goto err_free_rel;
7946
7947 if (h != NULL)
7948 value = h->root.u.def.value;
7949 else
7950 value = sym->st_value;
7951 value += rel->r_addend;
7952 if (value % 8 != 0)
7953 continue;
7954 BFD_ASSERT (value < toc->size
7955 && toc->output_offset % 8 == 0);
7956 toc_ref_index = (value + toc->output_offset) / 8;
7957 if (r_type == R_PPC64_TLS
7958 || r_type == R_PPC64_TLSGD
7959 || r_type == R_PPC64_TLSLD)
7960 {
7961 toc_ref[toc_ref_index] = 1;
7962 continue;
7963 }
7964
7965 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7966 continue;
7967
7968 tls_set = 0;
7969 tls_clear = 0;
7970 expecting_tls_get_addr = 2;
7971 break;
7972
7973 case R_PPC64_TPREL64:
7974 if (pass == 0
7975 || sec != toc
7976 || toc_ref == NULL
7977 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7978 continue;
7979 if (ok_tprel)
7980 {
7981 /* IE -> LE */
7982 tls_set = TLS_EXPLICIT;
7983 tls_clear = TLS_TPREL;
7984 break;
7985 }
7986 continue;
7987
7988 case R_PPC64_DTPMOD64:
7989 if (pass == 0
7990 || sec != toc
7991 || toc_ref == NULL
7992 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7993 continue;
7994 if (rel + 1 < relend
7995 && (rel[1].r_info
7996 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7997 && rel[1].r_offset == rel->r_offset + 8)
7998 {
7999 if (ok_tprel)
8000 /* GD -> LE */
8001 tls_set = TLS_EXPLICIT | TLS_GD;
8002 else
8003 /* GD -> IE */
8004 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8005 tls_clear = TLS_GD;
8006 }
8007 else
8008 {
8009 if (!is_local)
8010 continue;
8011
8012 /* LD -> LE */
8013 tls_set = TLS_EXPLICIT;
8014 tls_clear = TLS_LD;
8015 }
8016 break;
8017
8018 default:
8019 continue;
8020 }
8021
8022 if (pass == 0)
8023 {
8024 if (!expecting_tls_get_addr
8025 || !sec->has_tls_get_addr_call)
8026 continue;
8027
8028 if (rel + 1 < relend
8029 && branch_reloc_hash_match (ibfd, rel + 1,
8030 htab->tls_get_addr,
8031 htab->tls_get_addr_fd))
8032 {
8033 if (expecting_tls_get_addr == 2)
8034 {
8035 /* Check for toc tls entries. */
8036 unsigned char *toc_tls;
8037 int retval;
8038
8039 retval = get_tls_mask (&toc_tls, NULL, NULL,
8040 &locsyms,
8041 rel, ibfd);
8042 if (retval == 0)
8043 goto err_free_rel;
8044 if (toc_tls != NULL)
8045 {
8046 if ((*toc_tls & TLS_TLS) != 0
8047 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8048 found_tls_get_addr_arg = 1;
8049 if (retval > 1)
8050 toc_ref[toc_ref_index] = 1;
8051 }
8052 }
8053 continue;
8054 }
8055
8056 /* Uh oh, we didn't find the expected call. We
8057 could just mark this symbol to exclude it
8058 from tls optimization but it's safer to skip
8059 the entire optimization. */
8060 /* xgettext:c-format */
8061 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8062 "TLS optimization disabled\n"),
8063 ibfd, sec, rel->r_offset);
8064 ret = TRUE;
8065 goto err_free_rel;
8066 }
8067
8068 /* If we don't have old-style __tls_get_addr calls
8069 without TLSGD/TLSLD marker relocs, and we haven't
8070 found a new-style __tls_get_addr call with a
8071 marker for this symbol, then we either have a
8072 broken object file or an -mlongcall style
8073 indirect call to __tls_get_addr without a marker.
8074 Disable optimization in this case. */
8075 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8076 && (tls_set & TLS_EXPLICIT) == 0
8077 && !sec->has_tls_get_addr_call
8078 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8079 != (TLS_TLS | TLS_MARK)))
8080 continue;
8081
8082 if (expecting_tls_get_addr)
8083 {
8084 struct plt_entry *ent = NULL;
8085
8086 if (htab->tls_get_addr != NULL)
8087 for (ent = htab->tls_get_addr->elf.plt.plist;
8088 ent != NULL;
8089 ent = ent->next)
8090 if (ent->addend == 0)
8091 break;
8092
8093 if (ent == NULL && htab->tls_get_addr_fd != NULL)
8094 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8095 ent != NULL;
8096 ent = ent->next)
8097 if (ent->addend == 0)
8098 break;
8099
8100 if (ent != NULL
8101 && ent->plt.refcount > 0)
8102 ent->plt.refcount -= 1;
8103 }
8104
8105 if (tls_clear == 0)
8106 continue;
8107
8108 if ((tls_set & TLS_EXPLICIT) == 0)
8109 {
8110 struct got_entry *ent;
8111
8112 /* Adjust got entry for this reloc. */
8113 if (h != NULL)
8114 ent = h->got.glist;
8115 else
8116 ent = elf_local_got_ents (ibfd)[r_symndx];
8117
8118 for (; ent != NULL; ent = ent->next)
8119 if (ent->addend == rel->r_addend
8120 && ent->owner == ibfd
8121 && ent->tls_type == tls_type)
8122 break;
8123 if (ent == NULL)
8124 abort ();
8125
8126 if (tls_set == 0)
8127 {
8128 /* We managed to get rid of a got entry. */
8129 if (ent->got.refcount > 0)
8130 ent->got.refcount -= 1;
8131 }
8132 }
8133 else
8134 {
8135 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8136 we'll lose one or two dyn relocs. */
8137 if (!dec_dynrel_count (rel->r_info, sec, info,
8138 NULL, h, sym))
8139 return FALSE;
8140
8141 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8142 {
8143 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8144 NULL, h, sym))
8145 return FALSE;
8146 }
8147 }
8148
8149 *tls_mask |= tls_set & 0xff;
8150 *tls_mask &= ~tls_clear;
8151 }
8152
8153 if (elf_section_data (sec)->relocs != relstart)
8154 free (relstart);
8155 }
8156
8157 if (locsyms != NULL
8158 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8159 {
8160 if (!info->keep_memory)
8161 free (locsyms);
8162 else
8163 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8164 }
8165 }
8166
8167 if (toc_ref != NULL)
8168 free (toc_ref);
8169 htab->do_tls_opt = 1;
8170 return TRUE;
8171 }
8172
8173 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8174 the values of any global symbols in a toc section that has been
8175 edited. Globals in toc sections should be a rarity, so this function
8176 sets a flag if any are found in toc sections other than the one just
8177 edited, so that further hash table traversals can be avoided. */
8178
8179 struct adjust_toc_info
8180 {
8181 asection *toc;
8182 unsigned long *skip;
8183 bfd_boolean global_toc_syms;
8184 };
8185
8186 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8187
8188 static bfd_boolean
8189 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8190 {
8191 struct ppc_link_hash_entry *eh;
8192 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8193 unsigned long i;
8194
8195 if (h->root.type != bfd_link_hash_defined
8196 && h->root.type != bfd_link_hash_defweak)
8197 return TRUE;
8198
8199 eh = (struct ppc_link_hash_entry *) h;
8200 if (eh->adjust_done)
8201 return TRUE;
8202
8203 if (eh->elf.root.u.def.section == toc_inf->toc)
8204 {
8205 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8206 i = toc_inf->toc->rawsize >> 3;
8207 else
8208 i = eh->elf.root.u.def.value >> 3;
8209
8210 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8211 {
8212 _bfd_error_handler
8213 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8214 do
8215 ++i;
8216 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8217 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8218 }
8219
8220 eh->elf.root.u.def.value -= toc_inf->skip[i];
8221 eh->adjust_done = 1;
8222 }
8223 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8224 toc_inf->global_toc_syms = TRUE;
8225
8226 return TRUE;
8227 }
8228
8229 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8230 on a _LO variety toc/got reloc. */
8231
8232 static bfd_boolean
8233 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8234 {
8235 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
8236 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
8237 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8238 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8239 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8240 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8241 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8242 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8243 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8244 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8245 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8246 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8247 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8248 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8249 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8250 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
8251 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8252 /* Exclude lfqu by testing reloc. If relocs are ever
8253 defined for the reduced D field in psq_lu then those
8254 will need testing too. */
8255 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8256 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
8257 && (insn & 1) == 0)
8258 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
8259 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8260 /* Exclude stfqu. psq_stu as above for psq_lu. */
8261 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8262 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
8263 && (insn & 1) == 0));
8264 }
8265
8266 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8267 pld ra,symbol@got@pcrel
8268 load/store rt,0(ra)
8269 or
8270 pla ra,symbol@pcrel
8271 load/store rt,0(ra)
8272 may be translated to
8273 pload/pstore rt,symbol@pcrel
8274 nop.
8275 This function returns true if the optimization is possible, placing
8276 the prefix insn in *PINSN1 and a NOP in *PINSN2.
8277
8278 On entry to this function, the linker has already determined that
8279 the pld can be replaced with pla: *PINSN1 is that pla insn,
8280 while *PINSN2 is the second instruction. */
8281
8282 static bfd_boolean
8283 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2)
8284 {
8285 uint32_t insn2 = *pinsn2 >> 32;
8286 uint64_t i1new;
8287
8288 /* Check that regs match. */
8289 if (((insn2 >> 16) & 31) != ((*pinsn1 >> 21) & 31))
8290 return FALSE;
8291
8292 switch ((insn2 >> 26) & 63)
8293 {
8294 default:
8295 return FALSE;
8296
8297 case 32: /* lwz */
8298 case 34: /* lbz */
8299 case 36: /* stw */
8300 case 38: /* stb */
8301 case 40: /* lhz */
8302 case 42: /* lha */
8303 case 44: /* sth */
8304 case 48: /* lfs */
8305 case 50: /* lfd */
8306 case 52: /* stfs */
8307 case 54: /* stfd */
8308 /* These are the PMLS cases, where we just need to tack a prefix
8309 on the insn. Check that the D field is zero. */
8310 if ((insn2 & 0xffff) != 0)
8311 return FALSE;
8312 i1new = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8313 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8314 break;
8315
8316 case 58: /* lwa, ld */
8317 if ((insn2 & 0xfffd) != 0)
8318 return FALSE;
8319 i1new = ((1ULL << 58) | (1ULL << 52)
8320 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8321 | (insn2 & (31ULL << 21)));
8322 break;
8323
8324 case 57: /* lxsd, lxssp */
8325 if ((insn2 & 0xfffc) != 0 || (insn2 & 3) < 2)
8326 return FALSE;
8327 i1new = ((1ULL << 58) | (1ULL << 52)
8328 | ((40ULL | (insn2 & 3)) << 26)
8329 | (insn2 & (31ULL << 21)));
8330 break;
8331
8332 case 61: /* stxsd, stxssp, lxv, stxv */
8333 if ((insn2 & 3) == 0)
8334 return FALSE;
8335 else if ((insn2 & 3) >= 2)
8336 {
8337 if ((insn2 & 0xfffc) != 0)
8338 return FALSE;
8339 i1new = ((1ULL << 58) | (1ULL << 52)
8340 | ((44ULL | (insn2 & 3)) << 26)
8341 | (insn2 & (31ULL << 21)));
8342 }
8343 else
8344 {
8345 if ((insn2 & 0xfff0) != 0)
8346 return FALSE;
8347 i1new = ((1ULL << 58) | (1ULL << 52)
8348 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8349 | (insn2 & (31ULL << 21)));
8350 }
8351 break;
8352
8353 case 56: /* lq */
8354 if ((insn2 & 0xffff) != 0)
8355 return FALSE;
8356 i1new = ((1ULL << 58) | (1ULL << 52)
8357 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8358 break;
8359
8360 case 62: /* std, stq */
8361 if ((insn2 & 0xfffd) != 0)
8362 return FALSE;
8363 i1new = ((1ULL << 58) | (1ULL << 52)
8364 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8365 | (insn2 & (31ULL << 21)));
8366 break;
8367 }
8368
8369 *pinsn1 = i1new;
8370 *pinsn2 = (uint64_t) NOP << 32;
8371 return TRUE;
8372 }
8373
8374 /* Examine all relocs referencing .toc sections in order to remove
8375 unused .toc entries. */
8376
8377 bfd_boolean
8378 ppc64_elf_edit_toc (struct bfd_link_info *info)
8379 {
8380 bfd *ibfd;
8381 struct adjust_toc_info toc_inf;
8382 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8383
8384 htab->do_toc_opt = 1;
8385 toc_inf.global_toc_syms = TRUE;
8386 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8387 {
8388 asection *toc, *sec;
8389 Elf_Internal_Shdr *symtab_hdr;
8390 Elf_Internal_Sym *local_syms;
8391 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8392 unsigned long *skip, *drop;
8393 unsigned char *used;
8394 unsigned char *keep, last, some_unused;
8395
8396 if (!is_ppc64_elf (ibfd))
8397 continue;
8398
8399 toc = bfd_get_section_by_name (ibfd, ".toc");
8400 if (toc == NULL
8401 || toc->size == 0
8402 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8403 || discarded_section (toc))
8404 continue;
8405
8406 toc_relocs = NULL;
8407 local_syms = NULL;
8408 symtab_hdr = &elf_symtab_hdr (ibfd);
8409
8410 /* Look at sections dropped from the final link. */
8411 skip = NULL;
8412 relstart = NULL;
8413 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8414 {
8415 if (sec->reloc_count == 0
8416 || !discarded_section (sec)
8417 || get_opd_info (sec)
8418 || (sec->flags & SEC_ALLOC) == 0
8419 || (sec->flags & SEC_DEBUGGING) != 0)
8420 continue;
8421
8422 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8423 if (relstart == NULL)
8424 goto error_ret;
8425
8426 /* Run through the relocs to see which toc entries might be
8427 unused. */
8428 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8429 {
8430 enum elf_ppc64_reloc_type r_type;
8431 unsigned long r_symndx;
8432 asection *sym_sec;
8433 struct elf_link_hash_entry *h;
8434 Elf_Internal_Sym *sym;
8435 bfd_vma val;
8436
8437 r_type = ELF64_R_TYPE (rel->r_info);
8438 switch (r_type)
8439 {
8440 default:
8441 continue;
8442
8443 case R_PPC64_TOC16:
8444 case R_PPC64_TOC16_LO:
8445 case R_PPC64_TOC16_HI:
8446 case R_PPC64_TOC16_HA:
8447 case R_PPC64_TOC16_DS:
8448 case R_PPC64_TOC16_LO_DS:
8449 break;
8450 }
8451
8452 r_symndx = ELF64_R_SYM (rel->r_info);
8453 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8454 r_symndx, ibfd))
8455 goto error_ret;
8456
8457 if (sym_sec != toc)
8458 continue;
8459
8460 if (h != NULL)
8461 val = h->root.u.def.value;
8462 else
8463 val = sym->st_value;
8464 val += rel->r_addend;
8465
8466 if (val >= toc->size)
8467 continue;
8468
8469 /* Anything in the toc ought to be aligned to 8 bytes.
8470 If not, don't mark as unused. */
8471 if (val & 7)
8472 continue;
8473
8474 if (skip == NULL)
8475 {
8476 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8477 if (skip == NULL)
8478 goto error_ret;
8479 }
8480
8481 skip[val >> 3] = ref_from_discarded;
8482 }
8483
8484 if (elf_section_data (sec)->relocs != relstart)
8485 free (relstart);
8486 }
8487
8488 /* For largetoc loads of address constants, we can convert
8489 . addis rx,2,addr@got@ha
8490 . ld ry,addr@got@l(rx)
8491 to
8492 . addis rx,2,addr@toc@ha
8493 . addi ry,rx,addr@toc@l
8494 when addr is within 2G of the toc pointer. This then means
8495 that the word storing "addr" in the toc is no longer needed. */
8496
8497 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8498 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8499 && toc->reloc_count != 0)
8500 {
8501 /* Read toc relocs. */
8502 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8503 info->keep_memory);
8504 if (toc_relocs == NULL)
8505 goto error_ret;
8506
8507 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8508 {
8509 enum elf_ppc64_reloc_type r_type;
8510 unsigned long r_symndx;
8511 asection *sym_sec;
8512 struct elf_link_hash_entry *h;
8513 Elf_Internal_Sym *sym;
8514 bfd_vma val, addr;
8515
8516 r_type = ELF64_R_TYPE (rel->r_info);
8517 if (r_type != R_PPC64_ADDR64)
8518 continue;
8519
8520 r_symndx = ELF64_R_SYM (rel->r_info);
8521 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8522 r_symndx, ibfd))
8523 goto error_ret;
8524
8525 if (sym_sec == NULL
8526 || sym_sec->output_section == NULL
8527 || discarded_section (sym_sec))
8528 continue;
8529
8530 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8531 continue;
8532
8533 if (h != NULL)
8534 {
8535 if (h->type == STT_GNU_IFUNC)
8536 continue;
8537 val = h->root.u.def.value;
8538 }
8539 else
8540 {
8541 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8542 continue;
8543 val = sym->st_value;
8544 }
8545 val += rel->r_addend;
8546 val += sym_sec->output_section->vma + sym_sec->output_offset;
8547
8548 /* We don't yet know the exact toc pointer value, but we
8549 know it will be somewhere in the toc section. Don't
8550 optimize if the difference from any possible toc
8551 pointer is outside [ff..f80008000, 7fff7fff]. */
8552 addr = toc->output_section->vma + TOC_BASE_OFF;
8553 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8554 continue;
8555
8556 addr = toc->output_section->vma + toc->output_section->rawsize;
8557 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8558 continue;
8559
8560 if (skip == NULL)
8561 {
8562 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8563 if (skip == NULL)
8564 goto error_ret;
8565 }
8566
8567 skip[rel->r_offset >> 3]
8568 |= can_optimize | ((rel - toc_relocs) << 2);
8569 }
8570 }
8571
8572 if (skip == NULL)
8573 continue;
8574
8575 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8576 if (used == NULL)
8577 {
8578 error_ret:
8579 if (local_syms != NULL
8580 && symtab_hdr->contents != (unsigned char *) local_syms)
8581 free (local_syms);
8582 if (sec != NULL
8583 && relstart != NULL
8584 && elf_section_data (sec)->relocs != relstart)
8585 free (relstart);
8586 if (toc_relocs != NULL
8587 && elf_section_data (toc)->relocs != toc_relocs)
8588 free (toc_relocs);
8589 if (skip != NULL)
8590 free (skip);
8591 return FALSE;
8592 }
8593
8594 /* Now check all kept sections that might reference the toc.
8595 Check the toc itself last. */
8596 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8597 : ibfd->sections);
8598 sec != NULL;
8599 sec = (sec == toc ? NULL
8600 : sec->next == NULL ? toc
8601 : sec->next == toc && toc->next ? toc->next
8602 : sec->next))
8603 {
8604 int repeat;
8605
8606 if (sec->reloc_count == 0
8607 || discarded_section (sec)
8608 || get_opd_info (sec)
8609 || (sec->flags & SEC_ALLOC) == 0
8610 || (sec->flags & SEC_DEBUGGING) != 0)
8611 continue;
8612
8613 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8614 info->keep_memory);
8615 if (relstart == NULL)
8616 {
8617 free (used);
8618 goto error_ret;
8619 }
8620
8621 /* Mark toc entries referenced as used. */
8622 do
8623 {
8624 repeat = 0;
8625 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8626 {
8627 enum elf_ppc64_reloc_type r_type;
8628 unsigned long r_symndx;
8629 asection *sym_sec;
8630 struct elf_link_hash_entry *h;
8631 Elf_Internal_Sym *sym;
8632 bfd_vma val;
8633
8634 r_type = ELF64_R_TYPE (rel->r_info);
8635 switch (r_type)
8636 {
8637 case R_PPC64_TOC16:
8638 case R_PPC64_TOC16_LO:
8639 case R_PPC64_TOC16_HI:
8640 case R_PPC64_TOC16_HA:
8641 case R_PPC64_TOC16_DS:
8642 case R_PPC64_TOC16_LO_DS:
8643 /* In case we're taking addresses of toc entries. */
8644 case R_PPC64_ADDR64:
8645 break;
8646
8647 default:
8648 continue;
8649 }
8650
8651 r_symndx = ELF64_R_SYM (rel->r_info);
8652 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8653 r_symndx, ibfd))
8654 {
8655 free (used);
8656 goto error_ret;
8657 }
8658
8659 if (sym_sec != toc)
8660 continue;
8661
8662 if (h != NULL)
8663 val = h->root.u.def.value;
8664 else
8665 val = sym->st_value;
8666 val += rel->r_addend;
8667
8668 if (val >= toc->size)
8669 continue;
8670
8671 if ((skip[val >> 3] & can_optimize) != 0)
8672 {
8673 bfd_vma off;
8674 unsigned char opc;
8675
8676 switch (r_type)
8677 {
8678 case R_PPC64_TOC16_HA:
8679 break;
8680
8681 case R_PPC64_TOC16_LO_DS:
8682 off = rel->r_offset;
8683 off += (bfd_big_endian (ibfd) ? -2 : 3);
8684 if (!bfd_get_section_contents (ibfd, sec, &opc,
8685 off, 1))
8686 {
8687 free (used);
8688 goto error_ret;
8689 }
8690 if ((opc & (0x3f << 2)) == (58u << 2))
8691 break;
8692 /* Fall through. */
8693
8694 default:
8695 /* Wrong sort of reloc, or not a ld. We may
8696 as well clear ref_from_discarded too. */
8697 skip[val >> 3] = 0;
8698 }
8699 }
8700
8701 if (sec != toc)
8702 used[val >> 3] = 1;
8703 /* For the toc section, we only mark as used if this
8704 entry itself isn't unused. */
8705 else if ((used[rel->r_offset >> 3]
8706 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8707 && !used[val >> 3])
8708 {
8709 /* Do all the relocs again, to catch reference
8710 chains. */
8711 repeat = 1;
8712 used[val >> 3] = 1;
8713 }
8714 }
8715 }
8716 while (repeat);
8717
8718 if (elf_section_data (sec)->relocs != relstart)
8719 free (relstart);
8720 }
8721
8722 /* Merge the used and skip arrays. Assume that TOC
8723 doublewords not appearing as either used or unused belong
8724 to an entry more than one doubleword in size. */
8725 for (drop = skip, keep = used, last = 0, some_unused = 0;
8726 drop < skip + (toc->size + 7) / 8;
8727 ++drop, ++keep)
8728 {
8729 if (*keep)
8730 {
8731 *drop &= ~ref_from_discarded;
8732 if ((*drop & can_optimize) != 0)
8733 some_unused = 1;
8734 last = 0;
8735 }
8736 else if ((*drop & ref_from_discarded) != 0)
8737 {
8738 some_unused = 1;
8739 last = ref_from_discarded;
8740 }
8741 else
8742 *drop = last;
8743 }
8744
8745 free (used);
8746
8747 if (some_unused)
8748 {
8749 bfd_byte *contents, *src;
8750 unsigned long off;
8751 Elf_Internal_Sym *sym;
8752 bfd_boolean local_toc_syms = FALSE;
8753
8754 /* Shuffle the toc contents, and at the same time convert the
8755 skip array from booleans into offsets. */
8756 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8757 goto error_ret;
8758
8759 elf_section_data (toc)->this_hdr.contents = contents;
8760
8761 for (src = contents, off = 0, drop = skip;
8762 src < contents + toc->size;
8763 src += 8, ++drop)
8764 {
8765 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8766 off += 8;
8767 else if (off != 0)
8768 {
8769 *drop = off;
8770 memcpy (src - off, src, 8);
8771 }
8772 }
8773 *drop = off;
8774 toc->rawsize = toc->size;
8775 toc->size = src - contents - off;
8776
8777 /* Adjust addends for relocs against the toc section sym,
8778 and optimize any accesses we can. */
8779 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8780 {
8781 if (sec->reloc_count == 0
8782 || discarded_section (sec))
8783 continue;
8784
8785 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8786 info->keep_memory);
8787 if (relstart == NULL)
8788 goto error_ret;
8789
8790 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8791 {
8792 enum elf_ppc64_reloc_type r_type;
8793 unsigned long r_symndx;
8794 asection *sym_sec;
8795 struct elf_link_hash_entry *h;
8796 bfd_vma val;
8797
8798 r_type = ELF64_R_TYPE (rel->r_info);
8799 switch (r_type)
8800 {
8801 default:
8802 continue;
8803
8804 case R_PPC64_TOC16:
8805 case R_PPC64_TOC16_LO:
8806 case R_PPC64_TOC16_HI:
8807 case R_PPC64_TOC16_HA:
8808 case R_PPC64_TOC16_DS:
8809 case R_PPC64_TOC16_LO_DS:
8810 case R_PPC64_ADDR64:
8811 break;
8812 }
8813
8814 r_symndx = ELF64_R_SYM (rel->r_info);
8815 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8816 r_symndx, ibfd))
8817 goto error_ret;
8818
8819 if (sym_sec != toc)
8820 continue;
8821
8822 if (h != NULL)
8823 val = h->root.u.def.value;
8824 else
8825 {
8826 val = sym->st_value;
8827 if (val != 0)
8828 local_toc_syms = TRUE;
8829 }
8830
8831 val += rel->r_addend;
8832
8833 if (val > toc->rawsize)
8834 val = toc->rawsize;
8835 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8836 continue;
8837 else if ((skip[val >> 3] & can_optimize) != 0)
8838 {
8839 Elf_Internal_Rela *tocrel
8840 = toc_relocs + (skip[val >> 3] >> 2);
8841 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8842
8843 switch (r_type)
8844 {
8845 case R_PPC64_TOC16_HA:
8846 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8847 break;
8848
8849 case R_PPC64_TOC16_LO_DS:
8850 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8851 break;
8852
8853 default:
8854 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8855 ppc_howto_init ();
8856 info->callbacks->einfo
8857 /* xgettext:c-format */
8858 (_("%H: %s references "
8859 "optimized away TOC entry\n"),
8860 ibfd, sec, rel->r_offset,
8861 ppc64_elf_howto_table[r_type]->name);
8862 bfd_set_error (bfd_error_bad_value);
8863 goto error_ret;
8864 }
8865 rel->r_addend = tocrel->r_addend;
8866 elf_section_data (sec)->relocs = relstart;
8867 continue;
8868 }
8869
8870 if (h != NULL || sym->st_value != 0)
8871 continue;
8872
8873 rel->r_addend -= skip[val >> 3];
8874 elf_section_data (sec)->relocs = relstart;
8875 }
8876
8877 if (elf_section_data (sec)->relocs != relstart)
8878 free (relstart);
8879 }
8880
8881 /* We shouldn't have local or global symbols defined in the TOC,
8882 but handle them anyway. */
8883 if (local_syms != NULL)
8884 for (sym = local_syms;
8885 sym < local_syms + symtab_hdr->sh_info;
8886 ++sym)
8887 if (sym->st_value != 0
8888 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8889 {
8890 unsigned long i;
8891
8892 if (sym->st_value > toc->rawsize)
8893 i = toc->rawsize >> 3;
8894 else
8895 i = sym->st_value >> 3;
8896
8897 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8898 {
8899 if (local_toc_syms)
8900 _bfd_error_handler
8901 (_("%s defined on removed toc entry"),
8902 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8903 do
8904 ++i;
8905 while ((skip[i] & (ref_from_discarded | can_optimize)));
8906 sym->st_value = (bfd_vma) i << 3;
8907 }
8908
8909 sym->st_value -= skip[i];
8910 symtab_hdr->contents = (unsigned char *) local_syms;
8911 }
8912
8913 /* Adjust any global syms defined in this toc input section. */
8914 if (toc_inf.global_toc_syms)
8915 {
8916 toc_inf.toc = toc;
8917 toc_inf.skip = skip;
8918 toc_inf.global_toc_syms = FALSE;
8919 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8920 &toc_inf);
8921 }
8922
8923 if (toc->reloc_count != 0)
8924 {
8925 Elf_Internal_Shdr *rel_hdr;
8926 Elf_Internal_Rela *wrel;
8927 bfd_size_type sz;
8928
8929 /* Remove unused toc relocs, and adjust those we keep. */
8930 if (toc_relocs == NULL)
8931 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8932 info->keep_memory);
8933 if (toc_relocs == NULL)
8934 goto error_ret;
8935
8936 wrel = toc_relocs;
8937 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8938 if ((skip[rel->r_offset >> 3]
8939 & (ref_from_discarded | can_optimize)) == 0)
8940 {
8941 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8942 wrel->r_info = rel->r_info;
8943 wrel->r_addend = rel->r_addend;
8944 ++wrel;
8945 }
8946 else if (!dec_dynrel_count (rel->r_info, toc, info,
8947 &local_syms, NULL, NULL))
8948 goto error_ret;
8949
8950 elf_section_data (toc)->relocs = toc_relocs;
8951 toc->reloc_count = wrel - toc_relocs;
8952 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8953 sz = rel_hdr->sh_entsize;
8954 rel_hdr->sh_size = toc->reloc_count * sz;
8955 }
8956 }
8957 else if (toc_relocs != NULL
8958 && elf_section_data (toc)->relocs != toc_relocs)
8959 free (toc_relocs);
8960
8961 if (local_syms != NULL
8962 && symtab_hdr->contents != (unsigned char *) local_syms)
8963 {
8964 if (!info->keep_memory)
8965 free (local_syms);
8966 else
8967 symtab_hdr->contents = (unsigned char *) local_syms;
8968 }
8969 free (skip);
8970 }
8971
8972 /* Look for cases where we can change an indirect GOT access to
8973 a GOT relative or PC relative access, possibly reducing the
8974 number of GOT entries. */
8975 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8976 {
8977 asection *sec;
8978 Elf_Internal_Shdr *symtab_hdr;
8979 Elf_Internal_Sym *local_syms;
8980 Elf_Internal_Rela *relstart, *rel;
8981 bfd_vma got;
8982
8983 if (!is_ppc64_elf (ibfd))
8984 continue;
8985
8986 if (!ppc64_elf_tdata (ibfd)->has_optrel)
8987 continue;
8988
8989 sec = ppc64_elf_tdata (ibfd)->got;
8990 got = 0;
8991 if (sec != NULL)
8992 got = sec->output_section->vma + sec->output_offset + 0x8000;
8993
8994 local_syms = NULL;
8995 symtab_hdr = &elf_symtab_hdr (ibfd);
8996
8997 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8998 {
8999 if (sec->reloc_count == 0
9000 || !ppc64_elf_section_data (sec)->has_optrel
9001 || discarded_section (sec))
9002 continue;
9003
9004 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9005 info->keep_memory);
9006 if (relstart == NULL)
9007 {
9008 got_error_ret:
9009 if (local_syms != NULL
9010 && symtab_hdr->contents != (unsigned char *) local_syms)
9011 free (local_syms);
9012 if (sec != NULL
9013 && relstart != NULL
9014 && elf_section_data (sec)->relocs != relstart)
9015 free (relstart);
9016 return FALSE;
9017 }
9018
9019 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9020 {
9021 enum elf_ppc64_reloc_type r_type;
9022 unsigned long r_symndx;
9023 Elf_Internal_Sym *sym;
9024 asection *sym_sec;
9025 struct elf_link_hash_entry *h;
9026 struct got_entry *ent;
9027 bfd_vma sym_addend, val, pc;
9028 unsigned char buf[8];
9029 unsigned int insn;
9030 enum {no_check, check_lo, check_ha} insn_check;
9031
9032 r_type = ELF64_R_TYPE (rel->r_info);
9033 switch (r_type)
9034 {
9035 default:
9036 insn_check = no_check;
9037 break;
9038
9039 case R_PPC64_PLT16_HA:
9040 case R_PPC64_GOT_TLSLD16_HA:
9041 case R_PPC64_GOT_TLSGD16_HA:
9042 case R_PPC64_GOT_TPREL16_HA:
9043 case R_PPC64_GOT_DTPREL16_HA:
9044 case R_PPC64_GOT16_HA:
9045 case R_PPC64_TOC16_HA:
9046 insn_check = check_ha;
9047 break;
9048
9049 case R_PPC64_PLT16_LO:
9050 case R_PPC64_PLT16_LO_DS:
9051 case R_PPC64_GOT_TLSLD16_LO:
9052 case R_PPC64_GOT_TLSGD16_LO:
9053 case R_PPC64_GOT_TPREL16_LO_DS:
9054 case R_PPC64_GOT_DTPREL16_LO_DS:
9055 case R_PPC64_GOT16_LO:
9056 case R_PPC64_GOT16_LO_DS:
9057 case R_PPC64_TOC16_LO:
9058 case R_PPC64_TOC16_LO_DS:
9059 insn_check = check_lo;
9060 break;
9061 }
9062
9063 if (insn_check != no_check)
9064 {
9065 bfd_vma off = rel->r_offset & ~3;
9066
9067 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9068 goto got_error_ret;
9069
9070 insn = bfd_get_32 (ibfd, buf);
9071 if (insn_check == check_lo
9072 ? !ok_lo_toc_insn (insn, r_type)
9073 : ((insn & ((0x3f << 26) | 0x1f << 16))
9074 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9075 {
9076 char str[12];
9077
9078 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9079 sprintf (str, "%#08x", insn);
9080 info->callbacks->einfo
9081 /* xgettext:c-format */
9082 (_("%H: got/toc optimization is not supported for"
9083 " %s instruction\n"),
9084 ibfd, sec, rel->r_offset & ~3, str);
9085 continue;
9086 }
9087 }
9088
9089 switch (r_type)
9090 {
9091 /* Note that we don't delete GOT entries for
9092 R_PPC64_GOT16_DS since we'd need a lot more
9093 analysis. For starters, the preliminary layout is
9094 before the GOT, PLT, dynamic sections and stubs are
9095 laid out. Then we'd need to allow for changes in
9096 distance between sections caused by alignment. */
9097 default:
9098 continue;
9099
9100 case R_PPC64_GOT16_HA:
9101 case R_PPC64_GOT16_LO_DS:
9102 sym_addend = rel->r_addend;
9103 break;
9104
9105 case R_PPC64_GOT_PCREL34:
9106 sym_addend = 0;
9107 break;
9108 }
9109
9110 r_symndx = ELF64_R_SYM (rel->r_info);
9111 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9112 r_symndx, ibfd))
9113 goto got_error_ret;
9114
9115 if (sym_sec == NULL
9116 || sym_sec->output_section == NULL
9117 || discarded_section (sym_sec))
9118 continue;
9119
9120 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9121 continue;
9122
9123 if (h != NULL)
9124 val = h->root.u.def.value;
9125 else
9126 val = sym->st_value;
9127 val += sym_addend;
9128 val += sym_sec->output_section->vma + sym_sec->output_offset;
9129
9130 /* Fudge factor to allow for the fact that the preliminary layout
9131 isn't exact. Reduce limits by this factor. */
9132 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9133
9134 switch (r_type)
9135 {
9136 default:
9137 continue;
9138
9139 case R_PPC64_GOT16_HA:
9140 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9141 >= LIMIT_ADJUST (0x100000000ULL))
9142 continue;
9143
9144 if (!bfd_get_section_contents (ibfd, sec, buf,
9145 rel->r_offset & ~3, 4))
9146 goto got_error_ret;
9147 insn = bfd_get_32 (ibfd, buf);
9148 if (((insn & ((0x3f << 26) | 0x1f << 16))
9149 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9150 continue;
9151 break;
9152
9153 case R_PPC64_GOT16_LO_DS:
9154 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9155 >= LIMIT_ADJUST (0x100000000ULL))
9156 continue;
9157 if (!bfd_get_section_contents (ibfd, sec, buf,
9158 rel->r_offset & ~3, 4))
9159 goto got_error_ret;
9160 insn = bfd_get_32 (ibfd, buf);
9161 if ((insn & (0x3f << 26 | 0x3)) != 58u << 26 /* ld */)
9162 continue;
9163 break;
9164
9165 case R_PPC64_GOT_PCREL34:
9166 pc = rel->r_offset;
9167 pc += sec->output_section->vma + sec->output_offset;
9168 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9169 >= LIMIT_ADJUST (1ULL << 34))
9170 continue;
9171 if (!bfd_get_section_contents (ibfd, sec, buf,
9172 rel->r_offset & ~3, 8))
9173 goto got_error_ret;
9174 insn = bfd_get_32 (ibfd, buf);
9175 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9176 continue;
9177 insn = bfd_get_32 (ibfd, buf + 4);
9178 if ((insn & (0x3f << 26)) != 57u << 26)
9179 continue;
9180 break;
9181 }
9182 #undef LIMIT_ADJUST
9183
9184 if (h != NULL)
9185 ent = h->got.glist;
9186 else
9187 {
9188 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9189 ent = local_got_ents[r_symndx];
9190 }
9191 for (; ent != NULL; ent = ent->next)
9192 if (ent->addend == sym_addend
9193 && ent->owner == ibfd
9194 && ent->tls_type == 0)
9195 break;
9196 BFD_ASSERT (ent && ent->got.refcount > 0);
9197 ent->got.refcount -= 1;
9198 }
9199
9200 if (elf_section_data (sec)->relocs != relstart)
9201 free (relstart);
9202 }
9203
9204 if (local_syms != NULL
9205 && symtab_hdr->contents != (unsigned char *) local_syms)
9206 {
9207 if (!info->keep_memory)
9208 free (local_syms);
9209 else
9210 symtab_hdr->contents = (unsigned char *) local_syms;
9211 }
9212 }
9213
9214 return TRUE;
9215 }
9216
9217 /* Return true iff input section I references the TOC using
9218 instructions limited to +/-32k offsets. */
9219
9220 bfd_boolean
9221 ppc64_elf_has_small_toc_reloc (asection *i)
9222 {
9223 return (is_ppc64_elf (i->owner)
9224 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9225 }
9226
9227 /* Allocate space for one GOT entry. */
9228
9229 static void
9230 allocate_got (struct elf_link_hash_entry *h,
9231 struct bfd_link_info *info,
9232 struct got_entry *gent)
9233 {
9234 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9235 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9236 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9237 ? 16 : 8);
9238 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9239 ? 2 : 1) * sizeof (Elf64_External_Rela);
9240 asection *got = ppc64_elf_tdata (gent->owner)->got;
9241
9242 gent->got.offset = got->size;
9243 got->size += entsize;
9244
9245 if (h->type == STT_GNU_IFUNC)
9246 {
9247 htab->elf.irelplt->size += rentsize;
9248 htab->got_reli_size += rentsize;
9249 }
9250 else if (((bfd_link_pic (info)
9251 && !((gent->tls_type & TLS_TPREL) != 0
9252 && bfd_link_executable (info)
9253 && SYMBOL_REFERENCES_LOCAL (info, h)))
9254 || (htab->elf.dynamic_sections_created
9255 && h->dynindx != -1
9256 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9257 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9258 {
9259 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9260 relgot->size += rentsize;
9261 }
9262 }
9263
9264 /* This function merges got entries in the same toc group. */
9265
9266 static void
9267 merge_got_entries (struct got_entry **pent)
9268 {
9269 struct got_entry *ent, *ent2;
9270
9271 for (ent = *pent; ent != NULL; ent = ent->next)
9272 if (!ent->is_indirect)
9273 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9274 if (!ent2->is_indirect
9275 && ent2->addend == ent->addend
9276 && ent2->tls_type == ent->tls_type
9277 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9278 {
9279 ent2->is_indirect = TRUE;
9280 ent2->got.ent = ent;
9281 }
9282 }
9283
9284 /* If H is undefined, make it dynamic if that makes sense. */
9285
9286 static bfd_boolean
9287 ensure_undef_dynamic (struct bfd_link_info *info,
9288 struct elf_link_hash_entry *h)
9289 {
9290 struct elf_link_hash_table *htab = elf_hash_table (info);
9291
9292 if (htab->dynamic_sections_created
9293 && ((info->dynamic_undefined_weak != 0
9294 && h->root.type == bfd_link_hash_undefweak)
9295 || h->root.type == bfd_link_hash_undefined)
9296 && h->dynindx == -1
9297 && !h->forced_local
9298 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9299 return bfd_elf_link_record_dynamic_symbol (info, h);
9300 return TRUE;
9301 }
9302
9303 /* Allocate space in .plt, .got and associated reloc sections for
9304 dynamic relocs. */
9305
9306 static bfd_boolean
9307 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9308 {
9309 struct bfd_link_info *info;
9310 struct ppc_link_hash_table *htab;
9311 asection *s;
9312 struct ppc_link_hash_entry *eh;
9313 struct got_entry **pgent, *gent;
9314
9315 if (h->root.type == bfd_link_hash_indirect)
9316 return TRUE;
9317
9318 info = (struct bfd_link_info *) inf;
9319 htab = ppc_hash_table (info);
9320 if (htab == NULL)
9321 return FALSE;
9322
9323 eh = (struct ppc_link_hash_entry *) h;
9324 /* Run through the TLS GD got entries first if we're changing them
9325 to TPREL. */
9326 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9327 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9328 if (gent->got.refcount > 0
9329 && (gent->tls_type & TLS_GD) != 0)
9330 {
9331 /* This was a GD entry that has been converted to TPREL. If
9332 there happens to be a TPREL entry we can use that one. */
9333 struct got_entry *ent;
9334 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9335 if (ent->got.refcount > 0
9336 && (ent->tls_type & TLS_TPREL) != 0
9337 && ent->addend == gent->addend
9338 && ent->owner == gent->owner)
9339 {
9340 gent->got.refcount = 0;
9341 break;
9342 }
9343
9344 /* If not, then we'll be using our own TPREL entry. */
9345 if (gent->got.refcount != 0)
9346 gent->tls_type = TLS_TLS | TLS_TPREL;
9347 }
9348
9349 /* Remove any list entry that won't generate a word in the GOT before
9350 we call merge_got_entries. Otherwise we risk merging to empty
9351 entries. */
9352 pgent = &h->got.glist;
9353 while ((gent = *pgent) != NULL)
9354 if (gent->got.refcount > 0)
9355 {
9356 if ((gent->tls_type & TLS_LD) != 0
9357 && !h->def_dynamic)
9358 {
9359 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9360 *pgent = gent->next;
9361 }
9362 else
9363 pgent = &gent->next;
9364 }
9365 else
9366 *pgent = gent->next;
9367
9368 if (!htab->do_multi_toc)
9369 merge_got_entries (&h->got.glist);
9370
9371 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9372 if (!gent->is_indirect)
9373 {
9374 /* Make sure this symbol is output as a dynamic symbol. */
9375 if (!ensure_undef_dynamic (info, h))
9376 return FALSE;
9377
9378 if (!is_ppc64_elf (gent->owner))
9379 abort ();
9380
9381 allocate_got (h, info, gent);
9382 }
9383
9384 /* If no dynamic sections we can't have dynamic relocs, except for
9385 IFUNCs which are handled even in static executables. */
9386 if (!htab->elf.dynamic_sections_created
9387 && h->type != STT_GNU_IFUNC)
9388 eh->dyn_relocs = NULL;
9389
9390 /* Discard relocs on undefined symbols that must be local. */
9391 else if (h->root.type == bfd_link_hash_undefined
9392 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9393 eh->dyn_relocs = NULL;
9394
9395 /* Also discard relocs on undefined weak syms with non-default
9396 visibility, or when dynamic_undefined_weak says so. */
9397 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9398 eh->dyn_relocs = NULL;
9399
9400 if (eh->dyn_relocs != NULL)
9401 {
9402 struct elf_dyn_relocs *p, **pp;
9403
9404 /* In the shared -Bsymbolic case, discard space allocated for
9405 dynamic pc-relative relocs against symbols which turn out to
9406 be defined in regular objects. For the normal shared case,
9407 discard space for relocs that have become local due to symbol
9408 visibility changes. */
9409
9410 if (bfd_link_pic (info))
9411 {
9412 /* Relocs that use pc_count are those that appear on a call
9413 insn, or certain REL relocs (see must_be_dyn_reloc) that
9414 can be generated via assembly. We want calls to
9415 protected symbols to resolve directly to the function
9416 rather than going via the plt. If people want function
9417 pointer comparisons to work as expected then they should
9418 avoid writing weird assembly. */
9419 if (SYMBOL_CALLS_LOCAL (info, h))
9420 {
9421 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9422 {
9423 p->count -= p->pc_count;
9424 p->pc_count = 0;
9425 if (p->count == 0)
9426 *pp = p->next;
9427 else
9428 pp = &p->next;
9429 }
9430 }
9431
9432 if (eh->dyn_relocs != NULL)
9433 {
9434 /* Make sure this symbol is output as a dynamic symbol. */
9435 if (!ensure_undef_dynamic (info, h))
9436 return FALSE;
9437 }
9438 }
9439 else if (ELIMINATE_COPY_RELOCS && h->type != STT_GNU_IFUNC)
9440 {
9441 /* For the non-pic case, discard space for relocs against
9442 symbols which turn out to need copy relocs or are not
9443 dynamic. */
9444 if (h->dynamic_adjusted
9445 && !h->def_regular
9446 && !ELF_COMMON_DEF_P (h))
9447 {
9448 /* Make sure this symbol is output as a dynamic symbol. */
9449 if (!ensure_undef_dynamic (info, h))
9450 return FALSE;
9451
9452 if (h->dynindx == -1)
9453 eh->dyn_relocs = NULL;
9454 }
9455 else
9456 eh->dyn_relocs = NULL;
9457 }
9458
9459 /* Finally, allocate space. */
9460 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9461 {
9462 asection *sreloc = elf_section_data (p->sec)->sreloc;
9463 if (eh->elf.type == STT_GNU_IFUNC)
9464 sreloc = htab->elf.irelplt;
9465 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9466 }
9467 }
9468
9469 /* We might need a PLT entry when the symbol
9470 a) is dynamic, or
9471 b) is an ifunc, or
9472 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9473 d) has plt16 relocs and we are linking statically. */
9474 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9475 || h->type == STT_GNU_IFUNC
9476 || (h->needs_plt && h->dynamic_adjusted)
9477 || (h->needs_plt
9478 && h->def_regular
9479 && !htab->elf.dynamic_sections_created
9480 && !htab->can_convert_all_inline_plt
9481 && (((struct ppc_link_hash_entry *) h)->tls_mask
9482 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9483 {
9484 struct plt_entry *pent;
9485 bfd_boolean doneone = FALSE;
9486 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9487 if (pent->plt.refcount > 0)
9488 {
9489 if (!htab->elf.dynamic_sections_created
9490 || h->dynindx == -1)
9491 {
9492 if (h->type == STT_GNU_IFUNC)
9493 {
9494 s = htab->elf.iplt;
9495 pent->plt.offset = s->size;
9496 s->size += PLT_ENTRY_SIZE (htab);
9497 s = htab->elf.irelplt;
9498 }
9499 else
9500 {
9501 s = htab->pltlocal;
9502 pent->plt.offset = s->size;
9503 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9504 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9505 }
9506 }
9507 else
9508 {
9509 /* If this is the first .plt entry, make room for the special
9510 first entry. */
9511 s = htab->elf.splt;
9512 if (s->size == 0)
9513 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9514
9515 pent->plt.offset = s->size;
9516
9517 /* Make room for this entry. */
9518 s->size += PLT_ENTRY_SIZE (htab);
9519
9520 /* Make room for the .glink code. */
9521 s = htab->glink;
9522 if (s->size == 0)
9523 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9524 if (htab->opd_abi)
9525 {
9526 /* We need bigger stubs past index 32767. */
9527 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9528 s->size += 4;
9529 s->size += 2*4;
9530 }
9531 else
9532 s->size += 4;
9533
9534 /* We also need to make an entry in the .rela.plt section. */
9535 s = htab->elf.srelplt;
9536 }
9537 if (s != NULL)
9538 s->size += sizeof (Elf64_External_Rela);
9539 doneone = TRUE;
9540 }
9541 else
9542 pent->plt.offset = (bfd_vma) -1;
9543 if (!doneone)
9544 {
9545 h->plt.plist = NULL;
9546 h->needs_plt = 0;
9547 }
9548 }
9549 else
9550 {
9551 h->plt.plist = NULL;
9552 h->needs_plt = 0;
9553 }
9554
9555 return TRUE;
9556 }
9557
9558 #define PPC_LO(v) ((v) & 0xffff)
9559 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9560 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9561 #define D34(v) \
9562 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9563 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9564
9565 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9566 to set up space for global entry stubs. These are put in glink,
9567 after the branch table. */
9568
9569 static bfd_boolean
9570 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9571 {
9572 struct bfd_link_info *info;
9573 struct ppc_link_hash_table *htab;
9574 struct plt_entry *pent;
9575 asection *s, *plt;
9576
9577 if (h->root.type == bfd_link_hash_indirect)
9578 return TRUE;
9579
9580 if (!h->pointer_equality_needed)
9581 return TRUE;
9582
9583 if (h->def_regular)
9584 return TRUE;
9585
9586 info = inf;
9587 htab = ppc_hash_table (info);
9588 if (htab == NULL)
9589 return FALSE;
9590
9591 s = htab->global_entry;
9592 plt = htab->elf.splt;
9593 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9594 if (pent->plt.offset != (bfd_vma) -1
9595 && pent->addend == 0)
9596 {
9597 /* For ELFv2, if this symbol is not defined in a regular file
9598 and we are not generating a shared library or pie, then we
9599 need to define the symbol in the executable on a call stub.
9600 This is to avoid text relocations. */
9601 bfd_vma off, stub_align, stub_off, stub_size;
9602 unsigned int align_power;
9603
9604 stub_size = 16;
9605 stub_off = s->size;
9606 if (htab->params->plt_stub_align >= 0)
9607 align_power = htab->params->plt_stub_align;
9608 else
9609 align_power = -htab->params->plt_stub_align;
9610 /* Setting section alignment is delayed until we know it is
9611 non-empty. Otherwise the .text output section will be
9612 aligned at least to plt_stub_align even when no global
9613 entry stubs are needed. */
9614 if (s->alignment_power < align_power)
9615 s->alignment_power = align_power;
9616 stub_align = (bfd_vma) 1 << align_power;
9617 if (htab->params->plt_stub_align >= 0
9618 || ((((stub_off + stub_size - 1) & -stub_align)
9619 - (stub_off & -stub_align))
9620 > ((stub_size - 1) & -stub_align)))
9621 stub_off = (stub_off + stub_align - 1) & -stub_align;
9622 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9623 off -= stub_off + s->output_offset + s->output_section->vma;
9624 /* Note that for --plt-stub-align negative we have a possible
9625 dependency between stub offset and size. Break that
9626 dependency by assuming the max stub size when calculating
9627 the stub offset. */
9628 if (PPC_HA (off) == 0)
9629 stub_size -= 4;
9630 h->root.type = bfd_link_hash_defined;
9631 h->root.u.def.section = s;
9632 h->root.u.def.value = stub_off;
9633 s->size = stub_off + stub_size;
9634 break;
9635 }
9636 return TRUE;
9637 }
9638
9639 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9640 read-only sections. */
9641
9642 static bfd_boolean
9643 maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
9644 {
9645 asection *sec;
9646
9647 if (h->root.type == bfd_link_hash_indirect)
9648 return TRUE;
9649
9650 sec = readonly_dynrelocs (h);
9651 if (sec != NULL)
9652 {
9653 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9654
9655 info->flags |= DF_TEXTREL;
9656 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT'"
9657 " in read-only section `%pA'\n"),
9658 sec->owner, h->root.root.string, sec);
9659
9660 /* Not an error, just cut short the traversal. */
9661 return FALSE;
9662 }
9663 return TRUE;
9664 }
9665
9666 /* Set the sizes of the dynamic sections. */
9667
9668 static bfd_boolean
9669 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9670 struct bfd_link_info *info)
9671 {
9672 struct ppc_link_hash_table *htab;
9673 bfd *dynobj;
9674 asection *s;
9675 bfd_boolean relocs;
9676 bfd *ibfd;
9677 struct got_entry *first_tlsld;
9678
9679 htab = ppc_hash_table (info);
9680 if (htab == NULL)
9681 return FALSE;
9682
9683 dynobj = htab->elf.dynobj;
9684 if (dynobj == NULL)
9685 abort ();
9686
9687 if (htab->elf.dynamic_sections_created)
9688 {
9689 /* Set the contents of the .interp section to the interpreter. */
9690 if (bfd_link_executable (info) && !info->nointerp)
9691 {
9692 s = bfd_get_linker_section (dynobj, ".interp");
9693 if (s == NULL)
9694 abort ();
9695 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9696 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9697 }
9698 }
9699
9700 /* Set up .got offsets for local syms, and space for local dynamic
9701 relocs. */
9702 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9703 {
9704 struct got_entry **lgot_ents;
9705 struct got_entry **end_lgot_ents;
9706 struct plt_entry **local_plt;
9707 struct plt_entry **end_local_plt;
9708 unsigned char *lgot_masks;
9709 bfd_size_type locsymcount;
9710 Elf_Internal_Shdr *symtab_hdr;
9711
9712 if (!is_ppc64_elf (ibfd))
9713 continue;
9714
9715 for (s = ibfd->sections; s != NULL; s = s->next)
9716 {
9717 struct ppc_dyn_relocs *p;
9718
9719 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9720 {
9721 if (!bfd_is_abs_section (p->sec)
9722 && bfd_is_abs_section (p->sec->output_section))
9723 {
9724 /* Input section has been discarded, either because
9725 it is a copy of a linkonce section or due to
9726 linker script /DISCARD/, so we'll be discarding
9727 the relocs too. */
9728 }
9729 else if (p->count != 0)
9730 {
9731 asection *srel = elf_section_data (p->sec)->sreloc;
9732 if (p->ifunc)
9733 srel = htab->elf.irelplt;
9734 srel->size += p->count * sizeof (Elf64_External_Rela);
9735 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9736 info->flags |= DF_TEXTREL;
9737 }
9738 }
9739 }
9740
9741 lgot_ents = elf_local_got_ents (ibfd);
9742 if (!lgot_ents)
9743 continue;
9744
9745 symtab_hdr = &elf_symtab_hdr (ibfd);
9746 locsymcount = symtab_hdr->sh_info;
9747 end_lgot_ents = lgot_ents + locsymcount;
9748 local_plt = (struct plt_entry **) end_lgot_ents;
9749 end_local_plt = local_plt + locsymcount;
9750 lgot_masks = (unsigned char *) end_local_plt;
9751 s = ppc64_elf_tdata (ibfd)->got;
9752 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9753 {
9754 struct got_entry **pent, *ent;
9755
9756 pent = lgot_ents;
9757 while ((ent = *pent) != NULL)
9758 if (ent->got.refcount > 0)
9759 {
9760 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9761 {
9762 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9763 *pent = ent->next;
9764 }
9765 else
9766 {
9767 unsigned int ent_size = 8;
9768 unsigned int rel_size = sizeof (Elf64_External_Rela);
9769
9770 ent->got.offset = s->size;
9771 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9772 {
9773 ent_size *= 2;
9774 rel_size *= 2;
9775 }
9776 s->size += ent_size;
9777 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9778 {
9779 htab->elf.irelplt->size += rel_size;
9780 htab->got_reli_size += rel_size;
9781 }
9782 else if (bfd_link_pic (info)
9783 && !((ent->tls_type & TLS_TPREL) != 0
9784 && bfd_link_executable (info)))
9785 {
9786 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9787 srel->size += rel_size;
9788 }
9789 pent = &ent->next;
9790 }
9791 }
9792 else
9793 *pent = ent->next;
9794 }
9795
9796 /* Allocate space for plt calls to local syms. */
9797 lgot_masks = (unsigned char *) end_local_plt;
9798 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
9799 {
9800 struct plt_entry *ent;
9801
9802 for (ent = *local_plt; ent != NULL; ent = ent->next)
9803 if (ent->plt.refcount > 0)
9804 {
9805 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9806 {
9807 s = htab->elf.iplt;
9808 ent->plt.offset = s->size;
9809 s->size += PLT_ENTRY_SIZE (htab);
9810 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9811 }
9812 else if (htab->can_convert_all_inline_plt
9813 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
9814 ent->plt.offset = (bfd_vma) -1;
9815 else
9816 {
9817 s = htab->pltlocal;
9818 ent->plt.offset = s->size;
9819 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9820 if (bfd_link_pic (info))
9821 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
9822 }
9823 }
9824 else
9825 ent->plt.offset = (bfd_vma) -1;
9826 }
9827 }
9828
9829 /* Allocate global sym .plt and .got entries, and space for global
9830 sym dynamic relocs. */
9831 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9832
9833 if (!htab->opd_abi && !bfd_link_pic (info))
9834 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9835
9836 first_tlsld = NULL;
9837 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9838 {
9839 struct got_entry *ent;
9840
9841 if (!is_ppc64_elf (ibfd))
9842 continue;
9843
9844 ent = ppc64_tlsld_got (ibfd);
9845 if (ent->got.refcount > 0)
9846 {
9847 if (!htab->do_multi_toc && first_tlsld != NULL)
9848 {
9849 ent->is_indirect = TRUE;
9850 ent->got.ent = first_tlsld;
9851 }
9852 else
9853 {
9854 if (first_tlsld == NULL)
9855 first_tlsld = ent;
9856 s = ppc64_elf_tdata (ibfd)->got;
9857 ent->got.offset = s->size;
9858 ent->owner = ibfd;
9859 s->size += 16;
9860 if (bfd_link_pic (info))
9861 {
9862 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9863 srel->size += sizeof (Elf64_External_Rela);
9864 }
9865 }
9866 }
9867 else
9868 ent->got.offset = (bfd_vma) -1;
9869 }
9870
9871 /* We now have determined the sizes of the various dynamic sections.
9872 Allocate memory for them. */
9873 relocs = FALSE;
9874 for (s = dynobj->sections; s != NULL; s = s->next)
9875 {
9876 if ((s->flags & SEC_LINKER_CREATED) == 0)
9877 continue;
9878
9879 if (s == htab->brlt || s == htab->relbrlt)
9880 /* These haven't been allocated yet; don't strip. */
9881 continue;
9882 else if (s == htab->elf.sgot
9883 || s == htab->elf.splt
9884 || s == htab->elf.iplt
9885 || s == htab->pltlocal
9886 || s == htab->glink
9887 || s == htab->global_entry
9888 || s == htab->elf.sdynbss
9889 || s == htab->elf.sdynrelro)
9890 {
9891 /* Strip this section if we don't need it; see the
9892 comment below. */
9893 }
9894 else if (s == htab->glink_eh_frame)
9895 {
9896 if (!bfd_is_abs_section (s->output_section))
9897 /* Not sized yet. */
9898 continue;
9899 }
9900 else if (CONST_STRNEQ (s->name, ".rela"))
9901 {
9902 if (s->size != 0)
9903 {
9904 if (s != htab->elf.srelplt)
9905 relocs = TRUE;
9906
9907 /* We use the reloc_count field as a counter if we need
9908 to copy relocs into the output file. */
9909 s->reloc_count = 0;
9910 }
9911 }
9912 else
9913 {
9914 /* It's not one of our sections, so don't allocate space. */
9915 continue;
9916 }
9917
9918 if (s->size == 0)
9919 {
9920 /* If we don't need this section, strip it from the
9921 output file. This is mostly to handle .rela.bss and
9922 .rela.plt. We must create both sections in
9923 create_dynamic_sections, because they must be created
9924 before the linker maps input sections to output
9925 sections. The linker does that before
9926 adjust_dynamic_symbol is called, and it is that
9927 function which decides whether anything needs to go
9928 into these sections. */
9929 s->flags |= SEC_EXCLUDE;
9930 continue;
9931 }
9932
9933 if (bfd_is_abs_section (s->output_section))
9934 _bfd_error_handler (_("warning: discarding dynamic section %s"),
9935 s->name);
9936
9937 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9938 continue;
9939
9940 /* Allocate memory for the section contents. We use bfd_zalloc
9941 here in case unused entries are not reclaimed before the
9942 section's contents are written out. This should not happen,
9943 but this way if it does we get a R_PPC64_NONE reloc in .rela
9944 sections instead of garbage.
9945 We also rely on the section contents being zero when writing
9946 the GOT and .dynrelro. */
9947 s->contents = bfd_zalloc (dynobj, s->size);
9948 if (s->contents == NULL)
9949 return FALSE;
9950 }
9951
9952 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9953 {
9954 if (!is_ppc64_elf (ibfd))
9955 continue;
9956
9957 s = ppc64_elf_tdata (ibfd)->got;
9958 if (s != NULL && s != htab->elf.sgot)
9959 {
9960 if (s->size == 0)
9961 s->flags |= SEC_EXCLUDE;
9962 else
9963 {
9964 s->contents = bfd_zalloc (ibfd, s->size);
9965 if (s->contents == NULL)
9966 return FALSE;
9967 }
9968 }
9969 s = ppc64_elf_tdata (ibfd)->relgot;
9970 if (s != NULL)
9971 {
9972 if (s->size == 0)
9973 s->flags |= SEC_EXCLUDE;
9974 else
9975 {
9976 s->contents = bfd_zalloc (ibfd, s->size);
9977 if (s->contents == NULL)
9978 return FALSE;
9979 relocs = TRUE;
9980 s->reloc_count = 0;
9981 }
9982 }
9983 }
9984
9985 if (htab->elf.dynamic_sections_created)
9986 {
9987 bfd_boolean tls_opt;
9988
9989 /* Add some entries to the .dynamic section. We fill in the
9990 values later, in ppc64_elf_finish_dynamic_sections, but we
9991 must add the entries now so that we get the correct size for
9992 the .dynamic section. The DT_DEBUG entry is filled in by the
9993 dynamic linker and used by the debugger. */
9994 #define add_dynamic_entry(TAG, VAL) \
9995 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9996
9997 if (bfd_link_executable (info))
9998 {
9999 if (!add_dynamic_entry (DT_DEBUG, 0))
10000 return FALSE;
10001 }
10002
10003 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10004 {
10005 if (!add_dynamic_entry (DT_PLTGOT, 0)
10006 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10007 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10008 || !add_dynamic_entry (DT_JMPREL, 0)
10009 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10010 return FALSE;
10011 }
10012
10013 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10014 {
10015 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10016 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10017 return FALSE;
10018 }
10019
10020 tls_opt = (htab->params->tls_get_addr_opt
10021 && htab->tls_get_addr_fd != NULL
10022 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10023 if (tls_opt || !htab->opd_abi)
10024 {
10025 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10026 return FALSE;
10027 }
10028
10029 if (relocs)
10030 {
10031 if (!add_dynamic_entry (DT_RELA, 0)
10032 || !add_dynamic_entry (DT_RELASZ, 0)
10033 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10034 return FALSE;
10035
10036 /* If any dynamic relocs apply to a read-only section,
10037 then we need a DT_TEXTREL entry. */
10038 if ((info->flags & DF_TEXTREL) == 0)
10039 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10040
10041 if ((info->flags & DF_TEXTREL) != 0)
10042 {
10043 if (!add_dynamic_entry (DT_TEXTREL, 0))
10044 return FALSE;
10045 }
10046 }
10047 }
10048 #undef add_dynamic_entry
10049
10050 return TRUE;
10051 }
10052
10053 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10054
10055 static bfd_boolean
10056 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10057 {
10058 if (h->plt.plist != NULL
10059 && !h->def_regular
10060 && !h->pointer_equality_needed)
10061 return FALSE;
10062
10063 return _bfd_elf_hash_symbol (h);
10064 }
10065
10066 /* Determine the type of stub needed, if any, for a call. */
10067
10068 static inline enum ppc_stub_type
10069 ppc_type_of_stub (asection *input_sec,
10070 const Elf_Internal_Rela *rel,
10071 struct ppc_link_hash_entry **hash,
10072 struct plt_entry **plt_ent,
10073 bfd_vma destination,
10074 unsigned long local_off)
10075 {
10076 struct ppc_link_hash_entry *h = *hash;
10077 bfd_vma location;
10078 bfd_vma branch_offset;
10079 bfd_vma max_branch_offset;
10080 enum elf_ppc64_reloc_type r_type;
10081
10082 if (h != NULL)
10083 {
10084 struct plt_entry *ent;
10085 struct ppc_link_hash_entry *fdh = h;
10086 if (h->oh != NULL
10087 && h->oh->is_func_descriptor)
10088 {
10089 fdh = ppc_follow_link (h->oh);
10090 *hash = fdh;
10091 }
10092
10093 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10094 if (ent->addend == rel->r_addend
10095 && ent->plt.offset != (bfd_vma) -1)
10096 {
10097 *plt_ent = ent;
10098 return ppc_stub_plt_call;
10099 }
10100
10101 /* Here, we know we don't have a plt entry. If we don't have a
10102 either a defined function descriptor or a defined entry symbol
10103 in a regular object file, then it is pointless trying to make
10104 any other type of stub. */
10105 if (!is_static_defined (&fdh->elf)
10106 && !is_static_defined (&h->elf))
10107 return ppc_stub_none;
10108 }
10109 else if (elf_local_got_ents (input_sec->owner) != NULL)
10110 {
10111 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10112 struct plt_entry **local_plt = (struct plt_entry **)
10113 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10114 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10115
10116 if (local_plt[r_symndx] != NULL)
10117 {
10118 struct plt_entry *ent;
10119
10120 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10121 if (ent->addend == rel->r_addend
10122 && ent->plt.offset != (bfd_vma) -1)
10123 {
10124 *plt_ent = ent;
10125 return ppc_stub_plt_call;
10126 }
10127 }
10128 }
10129
10130 /* Determine where the call point is. */
10131 location = (input_sec->output_offset
10132 + input_sec->output_section->vma
10133 + rel->r_offset);
10134
10135 branch_offset = destination - location;
10136 r_type = ELF64_R_TYPE (rel->r_info);
10137
10138 /* Determine if a long branch stub is needed. */
10139 max_branch_offset = 1 << 25;
10140 if (r_type == R_PPC64_REL14
10141 || r_type == R_PPC64_REL14_BRTAKEN
10142 || r_type == R_PPC64_REL14_BRNTAKEN)
10143 max_branch_offset = 1 << 15;
10144
10145 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10146 /* We need a stub. Figure out whether a long_branch or plt_branch
10147 is needed later. */
10148 return ppc_stub_long_branch;
10149
10150 return ppc_stub_none;
10151 }
10152
10153 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10154 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10155 . mflr %r12
10156 . bcl 20,31,1f
10157 .1: mflr %r11
10158 . mtlr %r12
10159 . lis %r12,xxx-1b@highest
10160 . ori %r12,%r12,xxx-1b@higher
10161 . sldi %r12,%r12,32
10162 . oris %r12,%r12,xxx-1b@high
10163 . ori %r12,%r12,xxx-1b@l
10164 . add/ldx %r12,%r11,%r12 */
10165
10166 static bfd_byte *
10167 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10168 {
10169 bfd_put_32 (abfd, MFLR_R12, p);
10170 p += 4;
10171 bfd_put_32 (abfd, BCL_20_31, p);
10172 p += 4;
10173 bfd_put_32 (abfd, MFLR_R11, p);
10174 p += 4;
10175 bfd_put_32 (abfd, MTLR_R12, p);
10176 p += 4;
10177 if (off + 0x8000 < 0x10000)
10178 {
10179 if (load)
10180 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10181 else
10182 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10183 p += 4;
10184 }
10185 else if (off + 0x80008000ULL < 0x100000000ULL)
10186 {
10187 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10188 p += 4;
10189 if (load)
10190 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10191 else
10192 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10193 p += 4;
10194 }
10195 else
10196 {
10197 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10198 {
10199 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10200 p += 4;
10201 }
10202 else
10203 {
10204 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10205 p += 4;
10206 if (((off >> 32) & 0xffff) != 0)
10207 {
10208 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10209 p += 4;
10210 }
10211 }
10212 if (((off >> 32) & 0xffffffffULL) != 0)
10213 {
10214 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10215 p += 4;
10216 }
10217 if (PPC_HI (off) != 0)
10218 {
10219 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10220 p += 4;
10221 }
10222 if (PPC_LO (off) != 0)
10223 {
10224 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10225 p += 4;
10226 }
10227 if (load)
10228 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10229 else
10230 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10231 p += 4;
10232 }
10233 return p;
10234 }
10235
10236 static unsigned int
10237 size_offset (bfd_vma off)
10238 {
10239 unsigned int size;
10240 if (off + 0x8000 < 0x10000)
10241 size = 4;
10242 else if (off + 0x80008000ULL < 0x100000000ULL)
10243 size = 8;
10244 else
10245 {
10246 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10247 size = 4;
10248 else
10249 {
10250 size = 4;
10251 if (((off >> 32) & 0xffff) != 0)
10252 size += 4;
10253 }
10254 if (((off >> 32) & 0xffffffffULL) != 0)
10255 size += 4;
10256 if (PPC_HI (off) != 0)
10257 size += 4;
10258 if (PPC_LO (off) != 0)
10259 size += 4;
10260 size += 4;
10261 }
10262 return size + 16;
10263 }
10264
10265 static unsigned int
10266 num_relocs_for_offset (bfd_vma off)
10267 {
10268 unsigned int num_rel;
10269 if (off + 0x8000 < 0x10000)
10270 num_rel = 1;
10271 else if (off + 0x80008000ULL < 0x100000000ULL)
10272 num_rel = 2;
10273 else
10274 {
10275 num_rel = 1;
10276 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10277 && ((off >> 32) & 0xffff) != 0)
10278 num_rel += 1;
10279 if (PPC_HI (off) != 0)
10280 num_rel += 1;
10281 if (PPC_LO (off) != 0)
10282 num_rel += 1;
10283 }
10284 return num_rel;
10285 }
10286
10287 static Elf_Internal_Rela *
10288 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10289 bfd_vma roff, bfd_vma targ, bfd_vma off)
10290 {
10291 bfd_vma relative_targ = targ - (roff - 8);
10292 if (bfd_big_endian (info->output_bfd))
10293 roff += 2;
10294 r->r_offset = roff;
10295 r->r_addend = relative_targ + roff;
10296 if (off + 0x8000 < 0x10000)
10297 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10298 else if (off + 0x80008000ULL < 0x100000000ULL)
10299 {
10300 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10301 ++r;
10302 roff += 4;
10303 r->r_offset = roff;
10304 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10305 r->r_addend = relative_targ + roff;
10306 }
10307 else
10308 {
10309 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10310 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10311 else
10312 {
10313 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10314 if (((off >> 32) & 0xffff) != 0)
10315 {
10316 ++r;
10317 roff += 4;
10318 r->r_offset = roff;
10319 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10320 r->r_addend = relative_targ + roff;
10321 }
10322 }
10323 if (((off >> 32) & 0xffffffffULL) != 0)
10324 roff += 4;
10325 if (PPC_HI (off) != 0)
10326 {
10327 ++r;
10328 roff += 4;
10329 r->r_offset = roff;
10330 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10331 r->r_addend = relative_targ + roff;
10332 }
10333 if (PPC_LO (off) != 0)
10334 {
10335 ++r;
10336 roff += 4;
10337 r->r_offset = roff;
10338 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10339 r->r_addend = relative_targ + roff;
10340 }
10341 }
10342 return r;
10343 }
10344
10345 static bfd_byte *
10346 build_powerxx_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10347 bfd_boolean load)
10348 {
10349 uint64_t insn;
10350 if (off - odd + (1ULL << 33) < 1ULL << 34)
10351 {
10352 off -= odd;
10353 if (odd)
10354 {
10355 bfd_put_32 (abfd, NOP, p);
10356 p += 4;
10357 }
10358 if (load)
10359 insn = PLD_R12_PC;
10360 else
10361 insn = PADDI_R12_PC;
10362 insn |= D34 (off);
10363 bfd_put_32 (abfd, insn >> 32, p);
10364 p += 4;
10365 bfd_put_32 (abfd, insn, p);
10366 }
10367 /* The minimum value for paddi is -0x200000000. The minimum value
10368 for li is -0x8000, which when shifted by 34 and added gives a
10369 minimum value of -0x2000200000000. The maximum value is
10370 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10371 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10372 {
10373 off -= 8 - odd;
10374 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10375 p += 4;
10376 if (!odd)
10377 {
10378 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10379 p += 4;
10380 }
10381 insn = PADDI_R12_PC | D34 (off);
10382 bfd_put_32 (abfd, insn >> 32, p);
10383 p += 4;
10384 bfd_put_32 (abfd, insn, p);
10385 p += 4;
10386 if (odd)
10387 {
10388 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10389 p += 4;
10390 }
10391 if (load)
10392 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10393 else
10394 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10395 }
10396 else
10397 {
10398 off -= odd + 8;
10399 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10400 p += 4;
10401 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10402 p += 4;
10403 if (odd)
10404 {
10405 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10406 p += 4;
10407 }
10408 insn = PADDI_R12_PC | D34 (off);
10409 bfd_put_32 (abfd, insn >> 32, p);
10410 p += 4;
10411 bfd_put_32 (abfd, insn, p);
10412 p += 4;
10413 if (!odd)
10414 {
10415 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10416 p += 4;
10417 }
10418 if (load)
10419 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10420 else
10421 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10422 }
10423 p += 4;
10424 return p;
10425 }
10426
10427 static unsigned int
10428 size_powerxx_offset (bfd_vma off, int odd)
10429 {
10430 if (off - odd + (1ULL << 33) < 1ULL << 34)
10431 return odd + 8;
10432 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10433 return 20;
10434 else
10435 return 24;
10436 }
10437
10438 static unsigned int
10439 num_relocs_for_powerxx_offset (bfd_vma off, int odd)
10440 {
10441 if (off - odd + (1ULL << 33) < 1ULL << 34)
10442 return 1;
10443 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10444 return 2;
10445 else
10446 return 3;
10447 }
10448
10449 static Elf_Internal_Rela *
10450 emit_relocs_for_powerxx_offset (struct bfd_link_info *info,
10451 Elf_Internal_Rela *r, bfd_vma roff,
10452 bfd_vma targ, bfd_vma off, int odd)
10453 {
10454 if (off - odd + (1ULL << 33) < 1ULL << 34)
10455 roff += odd;
10456 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10457 {
10458 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10459 r->r_offset = roff + d_offset;
10460 r->r_addend = targ + 8 - odd - d_offset;
10461 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10462 ++r;
10463 roff += 8 - odd;
10464 }
10465 else
10466 {
10467 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10468 r->r_offset = roff + d_offset;
10469 r->r_addend = targ + 8 + odd - d_offset;
10470 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10471 ++r;
10472 roff += 4;
10473 r->r_offset = roff + d_offset;
10474 r->r_addend = targ + 4 + odd - d_offset;
10475 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10476 ++r;
10477 roff += 4 + odd;
10478 }
10479 r->r_offset = roff;
10480 r->r_addend = targ;
10481 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10482 return r;
10483 }
10484
10485 /* Emit .eh_frame opcode to advance pc by DELTA. */
10486
10487 static bfd_byte *
10488 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10489 {
10490 delta /= 4;
10491 if (delta < 64)
10492 *eh++ = DW_CFA_advance_loc + delta;
10493 else if (delta < 256)
10494 {
10495 *eh++ = DW_CFA_advance_loc1;
10496 *eh++ = delta;
10497 }
10498 else if (delta < 65536)
10499 {
10500 *eh++ = DW_CFA_advance_loc2;
10501 bfd_put_16 (abfd, delta, eh);
10502 eh += 2;
10503 }
10504 else
10505 {
10506 *eh++ = DW_CFA_advance_loc4;
10507 bfd_put_32 (abfd, delta, eh);
10508 eh += 4;
10509 }
10510 return eh;
10511 }
10512
10513 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10514
10515 static unsigned int
10516 eh_advance_size (unsigned int delta)
10517 {
10518 if (delta < 64 * 4)
10519 /* DW_CFA_advance_loc+[1..63]. */
10520 return 1;
10521 if (delta < 256 * 4)
10522 /* DW_CFA_advance_loc1, byte. */
10523 return 2;
10524 if (delta < 65536 * 4)
10525 /* DW_CFA_advance_loc2, 2 bytes. */
10526 return 3;
10527 /* DW_CFA_advance_loc4, 4 bytes. */
10528 return 5;
10529 }
10530
10531 /* With power7 weakly ordered memory model, it is possible for ld.so
10532 to update a plt entry in one thread and have another thread see a
10533 stale zero toc entry. To avoid this we need some sort of acquire
10534 barrier in the call stub. One solution is to make the load of the
10535 toc word seem to appear to depend on the load of the function entry
10536 word. Another solution is to test for r2 being zero, and branch to
10537 the appropriate glink entry if so.
10538
10539 . fake dep barrier compare
10540 . ld 12,xxx(2) ld 12,xxx(2)
10541 . mtctr 12 mtctr 12
10542 . xor 11,12,12 ld 2,xxx+8(2)
10543 . add 2,2,11 cmpldi 2,0
10544 . ld 2,xxx+8(2) bnectr+
10545 . bctr b <glink_entry>
10546
10547 The solution involving the compare turns out to be faster, so
10548 that's what we use unless the branch won't reach. */
10549
10550 #define ALWAYS_USE_FAKE_DEP 0
10551 #define ALWAYS_EMIT_R2SAVE 0
10552
10553 static inline unsigned int
10554 plt_stub_size (struct ppc_link_hash_table *htab,
10555 struct ppc_stub_hash_entry *stub_entry,
10556 bfd_vma off)
10557 {
10558 unsigned size;
10559
10560 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10561 {
10562 if (htab->powerxx_stubs)
10563 {
10564 bfd_vma start = (stub_entry->stub_offset
10565 + stub_entry->group->stub_sec->output_offset
10566 + stub_entry->group->stub_sec->output_section->vma);
10567 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10568 start += 4;
10569 size = 8 + size_powerxx_offset (off, start & 4);
10570 }
10571 else
10572 size = 8 + size_offset (off - 8);
10573 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10574 size += 4;
10575 return size;
10576 }
10577
10578 size = 12;
10579 if (ALWAYS_EMIT_R2SAVE
10580 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10581 size += 4;
10582 if (PPC_HA (off) != 0)
10583 size += 4;
10584 if (htab->opd_abi)
10585 {
10586 size += 4;
10587 if (htab->params->plt_static_chain)
10588 size += 4;
10589 if (htab->params->plt_thread_safe
10590 && htab->elf.dynamic_sections_created
10591 && stub_entry->h != NULL
10592 && stub_entry->h->elf.dynindx != -1)
10593 size += 8;
10594 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10595 size += 4;
10596 }
10597 if (stub_entry->h != NULL
10598 && (stub_entry->h == htab->tls_get_addr_fd
10599 || stub_entry->h == htab->tls_get_addr)
10600 && htab->params->tls_get_addr_opt)
10601 {
10602 size += 7 * 4;
10603 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10604 size += 6 * 4;
10605 }
10606 return size;
10607 }
10608
10609 /* Depending on the sign of plt_stub_align:
10610 If positive, return the padding to align to a 2**plt_stub_align
10611 boundary.
10612 If negative, if this stub would cross fewer 2**plt_stub_align
10613 boundaries if we align, then return the padding needed to do so. */
10614
10615 static inline unsigned int
10616 plt_stub_pad (struct ppc_link_hash_table *htab,
10617 struct ppc_stub_hash_entry *stub_entry,
10618 bfd_vma plt_off)
10619 {
10620 int stub_align;
10621 unsigned stub_size;
10622 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10623
10624 if (htab->params->plt_stub_align >= 0)
10625 {
10626 stub_align = 1 << htab->params->plt_stub_align;
10627 if ((stub_off & (stub_align - 1)) != 0)
10628 return stub_align - (stub_off & (stub_align - 1));
10629 return 0;
10630 }
10631
10632 stub_align = 1 << -htab->params->plt_stub_align;
10633 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10634 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10635 > ((stub_size - 1) & -stub_align))
10636 return stub_align - (stub_off & (stub_align - 1));
10637 return 0;
10638 }
10639
10640 /* Build a .plt call stub. */
10641
10642 static inline bfd_byte *
10643 build_plt_stub (struct ppc_link_hash_table *htab,
10644 struct ppc_stub_hash_entry *stub_entry,
10645 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10646 {
10647 bfd *obfd = htab->params->stub_bfd;
10648 bfd_boolean plt_load_toc = htab->opd_abi;
10649 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10650 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10651 && htab->elf.dynamic_sections_created
10652 && stub_entry->h != NULL
10653 && stub_entry->h->elf.dynindx != -1);
10654 bfd_boolean use_fake_dep = plt_thread_safe;
10655 bfd_vma cmp_branch_off = 0;
10656
10657 if (!ALWAYS_USE_FAKE_DEP
10658 && plt_load_toc
10659 && plt_thread_safe
10660 && !((stub_entry->h == htab->tls_get_addr_fd
10661 || stub_entry->h == htab->tls_get_addr)
10662 && htab->params->tls_get_addr_opt))
10663 {
10664 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10665 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10666 / PLT_ENTRY_SIZE (htab));
10667 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10668 bfd_vma to, from;
10669
10670 if (pltindex > 32768)
10671 glinkoff += (pltindex - 32768) * 4;
10672 to = (glinkoff
10673 + htab->glink->output_offset
10674 + htab->glink->output_section->vma);
10675 from = (p - stub_entry->group->stub_sec->contents
10676 + 4 * (ALWAYS_EMIT_R2SAVE
10677 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10678 + 4 * (PPC_HA (offset) != 0)
10679 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10680 != PPC_HA (offset))
10681 + 4 * (plt_static_chain != 0)
10682 + 20
10683 + stub_entry->group->stub_sec->output_offset
10684 + stub_entry->group->stub_sec->output_section->vma);
10685 cmp_branch_off = to - from;
10686 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10687 }
10688
10689 if (PPC_HA (offset) != 0)
10690 {
10691 if (r != NULL)
10692 {
10693 if (ALWAYS_EMIT_R2SAVE
10694 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10695 r[0].r_offset += 4;
10696 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10697 r[1].r_offset = r[0].r_offset + 4;
10698 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10699 r[1].r_addend = r[0].r_addend;
10700 if (plt_load_toc)
10701 {
10702 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10703 {
10704 r[2].r_offset = r[1].r_offset + 4;
10705 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10706 r[2].r_addend = r[0].r_addend;
10707 }
10708 else
10709 {
10710 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10711 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10712 r[2].r_addend = r[0].r_addend + 8;
10713 if (plt_static_chain)
10714 {
10715 r[3].r_offset = r[2].r_offset + 4;
10716 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10717 r[3].r_addend = r[0].r_addend + 16;
10718 }
10719 }
10720 }
10721 }
10722 if (ALWAYS_EMIT_R2SAVE
10723 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10724 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10725 if (plt_load_toc)
10726 {
10727 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10728 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10729 }
10730 else
10731 {
10732 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10733 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10734 }
10735 if (plt_load_toc
10736 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10737 {
10738 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10739 offset = 0;
10740 }
10741 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10742 if (plt_load_toc)
10743 {
10744 if (use_fake_dep)
10745 {
10746 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10747 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10748 }
10749 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10750 if (plt_static_chain)
10751 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10752 }
10753 }
10754 else
10755 {
10756 if (r != NULL)
10757 {
10758 if (ALWAYS_EMIT_R2SAVE
10759 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10760 r[0].r_offset += 4;
10761 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10762 if (plt_load_toc)
10763 {
10764 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10765 {
10766 r[1].r_offset = r[0].r_offset + 4;
10767 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10768 r[1].r_addend = r[0].r_addend;
10769 }
10770 else
10771 {
10772 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10773 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10774 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10775 if (plt_static_chain)
10776 {
10777 r[2].r_offset = r[1].r_offset + 4;
10778 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10779 r[2].r_addend = r[0].r_addend + 8;
10780 }
10781 }
10782 }
10783 }
10784 if (ALWAYS_EMIT_R2SAVE
10785 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10786 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10787 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10788 if (plt_load_toc
10789 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10790 {
10791 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10792 offset = 0;
10793 }
10794 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10795 if (plt_load_toc)
10796 {
10797 if (use_fake_dep)
10798 {
10799 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10800 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10801 }
10802 if (plt_static_chain)
10803 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10804 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10805 }
10806 }
10807 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10808 {
10809 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10810 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10811 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10812 }
10813 else
10814 bfd_put_32 (obfd, BCTR, p), p += 4;
10815 return p;
10816 }
10817
10818 /* Build a special .plt call stub for __tls_get_addr. */
10819
10820 #define LD_R11_0R3 0xe9630000
10821 #define LD_R12_0R3 0xe9830000
10822 #define MR_R0_R3 0x7c601b78
10823 #define CMPDI_R11_0 0x2c2b0000
10824 #define ADD_R3_R12_R13 0x7c6c6a14
10825 #define BEQLR 0x4d820020
10826 #define MR_R3_R0 0x7c030378
10827 #define STD_R11_0R1 0xf9610000
10828 #define BCTRL 0x4e800421
10829 #define LD_R11_0R1 0xe9610000
10830 #define MTLR_R11 0x7d6803a6
10831
10832 static inline bfd_byte *
10833 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10834 struct ppc_stub_hash_entry *stub_entry,
10835 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10836 {
10837 bfd *obfd = htab->params->stub_bfd;
10838 bfd_byte *loc = p;
10839
10840 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10841 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10842 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10843 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10844 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10845 bfd_put_32 (obfd, BEQLR, p), p += 4;
10846 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10847 if (r != NULL)
10848 r[0].r_offset += 7 * 4;
10849 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
10850 return build_plt_stub (htab, stub_entry, p, offset, r);
10851
10852 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10853 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10854
10855 if (r != NULL)
10856 r[0].r_offset += 2 * 4;
10857 p = build_plt_stub (htab, stub_entry, p, offset, r);
10858 bfd_put_32 (obfd, BCTRL, p - 4);
10859
10860 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10861 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10862 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10863 bfd_put_32 (obfd, BLR, p), p += 4;
10864
10865 if (htab->glink_eh_frame != NULL
10866 && htab->glink_eh_frame->size != 0)
10867 {
10868 bfd_byte *base, *eh;
10869 unsigned int lr_used, delta;
10870
10871 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
10872 eh = base + stub_entry->group->eh_size;
10873 lr_used = stub_entry->stub_offset + (p - 20 - loc);
10874 delta = lr_used - stub_entry->group->lr_restore;
10875 stub_entry->group->lr_restore = lr_used + 16;
10876 eh = eh_advance (htab->elf.dynobj, eh, delta);
10877 *eh++ = DW_CFA_offset_extended_sf;
10878 *eh++ = 65;
10879 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
10880 *eh++ = DW_CFA_advance_loc + 4;
10881 *eh++ = DW_CFA_restore_extended;
10882 *eh++ = 65;
10883 stub_entry->group->eh_size = eh - base;
10884 }
10885 return p;
10886 }
10887
10888 static Elf_Internal_Rela *
10889 get_relocs (asection *sec, int count)
10890 {
10891 Elf_Internal_Rela *relocs;
10892 struct bfd_elf_section_data *elfsec_data;
10893
10894 elfsec_data = elf_section_data (sec);
10895 relocs = elfsec_data->relocs;
10896 if (relocs == NULL)
10897 {
10898 bfd_size_type relsize;
10899 relsize = sec->reloc_count * sizeof (*relocs);
10900 relocs = bfd_alloc (sec->owner, relsize);
10901 if (relocs == NULL)
10902 return NULL;
10903 elfsec_data->relocs = relocs;
10904 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10905 sizeof (Elf_Internal_Shdr));
10906 if (elfsec_data->rela.hdr == NULL)
10907 return NULL;
10908 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10909 * sizeof (Elf64_External_Rela));
10910 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10911 sec->reloc_count = 0;
10912 }
10913 relocs += sec->reloc_count;
10914 sec->reloc_count += count;
10915 return relocs;
10916 }
10917
10918 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
10919 forms, to the equivalent relocs against the global symbol given by
10920 STUB_ENTRY->H. */
10921
10922 static bfd_boolean
10923 use_global_in_relocs (struct ppc_link_hash_table *htab,
10924 struct ppc_stub_hash_entry *stub_entry,
10925 Elf_Internal_Rela *r, unsigned int num_rel)
10926 {
10927 struct elf_link_hash_entry **hashes;
10928 unsigned long symndx;
10929 struct ppc_link_hash_entry *h;
10930 bfd_vma symval;
10931
10932 /* Relocs are always against symbols in their own object file. Fake
10933 up global sym hashes for the stub bfd (which has no symbols). */
10934 hashes = elf_sym_hashes (htab->params->stub_bfd);
10935 if (hashes == NULL)
10936 {
10937 bfd_size_type hsize;
10938
10939 /* When called the first time, stub_globals will contain the
10940 total number of symbols seen during stub sizing. After
10941 allocating, stub_globals is used as an index to fill the
10942 hashes array. */
10943 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10944 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10945 if (hashes == NULL)
10946 return FALSE;
10947 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10948 htab->stub_globals = 1;
10949 }
10950 symndx = htab->stub_globals++;
10951 h = stub_entry->h;
10952 hashes[symndx] = &h->elf;
10953 if (h->oh != NULL && h->oh->is_func)
10954 h = ppc_follow_link (h->oh);
10955 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
10956 || h->elf.root.type == bfd_link_hash_defweak);
10957 symval = (h->elf.root.u.def.value
10958 + h->elf.root.u.def.section->output_offset
10959 + h->elf.root.u.def.section->output_section->vma);
10960 while (num_rel-- != 0)
10961 {
10962 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
10963 if (h->elf.root.u.def.section != stub_entry->target_section)
10964 {
10965 /* H is an opd symbol. The addend must be zero, and the
10966 branch reloc is the only one we can convert. */
10967 r->r_addend = 0;
10968 break;
10969 }
10970 else
10971 r->r_addend -= symval;
10972 --r;
10973 }
10974 return TRUE;
10975 }
10976
10977 static bfd_vma
10978 get_r2off (struct bfd_link_info *info,
10979 struct ppc_stub_hash_entry *stub_entry)
10980 {
10981 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10982 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
10983
10984 if (r2off == 0)
10985 {
10986 /* Support linking -R objects. Get the toc pointer from the
10987 opd entry. */
10988 char buf[8];
10989 if (!htab->opd_abi)
10990 return r2off;
10991 asection *opd = stub_entry->h->elf.root.u.def.section;
10992 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10993
10994 if (strcmp (opd->name, ".opd") != 0
10995 || opd->reloc_count != 0)
10996 {
10997 info->callbacks->einfo
10998 (_("%P: cannot find opd entry toc for `%pT'\n"),
10999 stub_entry->h->elf.root.root.string);
11000 bfd_set_error (bfd_error_bad_value);
11001 return (bfd_vma) -1;
11002 }
11003 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11004 return (bfd_vma) -1;
11005 r2off = bfd_get_64 (opd->owner, buf);
11006 r2off -= elf_gp (info->output_bfd);
11007 }
11008 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11009 return r2off;
11010 }
11011
11012 static bfd_boolean
11013 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11014 {
11015 struct ppc_stub_hash_entry *stub_entry;
11016 struct ppc_branch_hash_entry *br_entry;
11017 struct bfd_link_info *info;
11018 struct ppc_link_hash_table *htab;
11019 bfd_byte *loc;
11020 bfd_byte *p, *relp;
11021 bfd_vma targ, off;
11022 Elf_Internal_Rela *r;
11023 asection *plt;
11024 int num_rel;
11025 int odd;
11026
11027 /* Massage our args to the form they really have. */
11028 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11029 info = in_arg;
11030
11031 htab = ppc_hash_table (info);
11032 if (htab == NULL)
11033 return FALSE;
11034
11035 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11036 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11037
11038 htab->stub_count[stub_entry->stub_type - 1] += 1;
11039 switch (stub_entry->stub_type)
11040 {
11041 case ppc_stub_long_branch:
11042 case ppc_stub_long_branch_r2off:
11043 /* Branches are relative. This is where we are going to. */
11044 targ = (stub_entry->target_value
11045 + stub_entry->target_section->output_offset
11046 + stub_entry->target_section->output_section->vma);
11047 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11048
11049 /* And this is where we are coming from. */
11050 off = (stub_entry->stub_offset
11051 + stub_entry->group->stub_sec->output_offset
11052 + stub_entry->group->stub_sec->output_section->vma);
11053 off = targ - off;
11054
11055 p = loc;
11056 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11057 {
11058 bfd_vma r2off = get_r2off (info, stub_entry);
11059
11060 if (r2off == (bfd_vma) -1)
11061 {
11062 htab->stub_error = TRUE;
11063 return FALSE;
11064 }
11065 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11066 p += 4;
11067 if (PPC_HA (r2off) != 0)
11068 {
11069 bfd_put_32 (htab->params->stub_bfd,
11070 ADDIS_R2_R2 | PPC_HA (r2off), p);
11071 p += 4;
11072 }
11073 if (PPC_LO (r2off) != 0)
11074 {
11075 bfd_put_32 (htab->params->stub_bfd,
11076 ADDI_R2_R2 | PPC_LO (r2off), p);
11077 p += 4;
11078 }
11079 off -= p - loc;
11080 }
11081 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
11082 p += 4;
11083
11084 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11085 {
11086 _bfd_error_handler
11087 (_("long branch stub `%s' offset overflow"),
11088 stub_entry->root.string);
11089 htab->stub_error = TRUE;
11090 return FALSE;
11091 }
11092
11093 if (info->emitrelocations)
11094 {
11095 r = get_relocs (stub_entry->group->stub_sec, 1);
11096 if (r == NULL)
11097 return FALSE;
11098 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11099 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11100 r->r_addend = targ;
11101 if (stub_entry->h != NULL
11102 && !use_global_in_relocs (htab, stub_entry, r, 1))
11103 return FALSE;
11104 }
11105 break;
11106
11107 case ppc_stub_plt_branch:
11108 case ppc_stub_plt_branch_r2off:
11109 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11110 stub_entry->root.string + 9,
11111 FALSE, FALSE);
11112 if (br_entry == NULL)
11113 {
11114 _bfd_error_handler (_("can't find branch stub `%s'"),
11115 stub_entry->root.string);
11116 htab->stub_error = TRUE;
11117 return FALSE;
11118 }
11119
11120 targ = (stub_entry->target_value
11121 + stub_entry->target_section->output_offset
11122 + stub_entry->target_section->output_section->vma);
11123 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11124 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11125
11126 bfd_put_64 (htab->brlt->owner, targ,
11127 htab->brlt->contents + br_entry->offset);
11128
11129 if (br_entry->iter == htab->stub_iteration)
11130 {
11131 br_entry->iter = 0;
11132
11133 if (htab->relbrlt != NULL)
11134 {
11135 /* Create a reloc for the branch lookup table entry. */
11136 Elf_Internal_Rela rela;
11137 bfd_byte *rl;
11138
11139 rela.r_offset = (br_entry->offset
11140 + htab->brlt->output_offset
11141 + htab->brlt->output_section->vma);
11142 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11143 rela.r_addend = targ;
11144
11145 rl = htab->relbrlt->contents;
11146 rl += (htab->relbrlt->reloc_count++
11147 * sizeof (Elf64_External_Rela));
11148 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11149 }
11150 else if (info->emitrelocations)
11151 {
11152 r = get_relocs (htab->brlt, 1);
11153 if (r == NULL)
11154 return FALSE;
11155 /* brlt, being SEC_LINKER_CREATED does not go through the
11156 normal reloc processing. Symbols and offsets are not
11157 translated from input file to output file form, so
11158 set up the offset per the output file. */
11159 r->r_offset = (br_entry->offset
11160 + htab->brlt->output_offset
11161 + htab->brlt->output_section->vma);
11162 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11163 r->r_addend = targ;
11164 }
11165 }
11166
11167 targ = (br_entry->offset
11168 + htab->brlt->output_offset
11169 + htab->brlt->output_section->vma);
11170
11171 off = (elf_gp (info->output_bfd)
11172 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11173 off = targ - off;
11174
11175 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11176 {
11177 info->callbacks->einfo
11178 (_("%P: linkage table error against `%pT'\n"),
11179 stub_entry->root.string);
11180 bfd_set_error (bfd_error_bad_value);
11181 htab->stub_error = TRUE;
11182 return FALSE;
11183 }
11184
11185 if (info->emitrelocations)
11186 {
11187 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11188 if (r == NULL)
11189 return FALSE;
11190 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11191 if (bfd_big_endian (info->output_bfd))
11192 r[0].r_offset += 2;
11193 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11194 r[0].r_offset += 4;
11195 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11196 r[0].r_addend = targ;
11197 if (PPC_HA (off) != 0)
11198 {
11199 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11200 r[1].r_offset = r[0].r_offset + 4;
11201 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11202 r[1].r_addend = r[0].r_addend;
11203 }
11204 }
11205
11206 p = loc;
11207 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11208 {
11209 if (PPC_HA (off) != 0)
11210 {
11211 bfd_put_32 (htab->params->stub_bfd,
11212 ADDIS_R12_R2 | PPC_HA (off), p);
11213 p += 4;
11214 bfd_put_32 (htab->params->stub_bfd,
11215 LD_R12_0R12 | PPC_LO (off), p);
11216 }
11217 else
11218 bfd_put_32 (htab->params->stub_bfd,
11219 LD_R12_0R2 | PPC_LO (off), p);
11220 }
11221 else
11222 {
11223 bfd_vma r2off = get_r2off (info, stub_entry);
11224
11225 if (r2off == (bfd_vma) -1)
11226 {
11227 htab->stub_error = TRUE;
11228 return FALSE;
11229 }
11230
11231 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11232 p += 4;
11233 if (PPC_HA (off) != 0)
11234 {
11235 bfd_put_32 (htab->params->stub_bfd,
11236 ADDIS_R12_R2 | PPC_HA (off), p);
11237 p += 4;
11238 bfd_put_32 (htab->params->stub_bfd,
11239 LD_R12_0R12 | PPC_LO (off), p);
11240 }
11241 else
11242 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11243
11244 if (PPC_HA (r2off) != 0)
11245 {
11246 p += 4;
11247 bfd_put_32 (htab->params->stub_bfd,
11248 ADDIS_R2_R2 | PPC_HA (r2off), p);
11249 }
11250 if (PPC_LO (r2off) != 0)
11251 {
11252 p += 4;
11253 bfd_put_32 (htab->params->stub_bfd,
11254 ADDI_R2_R2 | PPC_LO (r2off), p);
11255 }
11256 }
11257 p += 4;
11258 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11259 p += 4;
11260 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11261 p += 4;
11262 break;
11263
11264 case ppc_stub_long_branch_notoc:
11265 case ppc_stub_long_branch_both:
11266 case ppc_stub_plt_branch_notoc:
11267 case ppc_stub_plt_branch_both:
11268 case ppc_stub_plt_call_notoc:
11269 case ppc_stub_plt_call_both:
11270 p = loc;
11271 off = (stub_entry->stub_offset
11272 + stub_entry->group->stub_sec->output_offset
11273 + stub_entry->group->stub_sec->output_section->vma);
11274 if (stub_entry->stub_type == ppc_stub_long_branch_both
11275 || stub_entry->stub_type == ppc_stub_plt_branch_both
11276 || stub_entry->stub_type == ppc_stub_plt_call_both)
11277 {
11278 off += 4;
11279 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11280 p += 4;
11281 }
11282 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11283 {
11284 targ = stub_entry->plt_ent->plt.offset & ~1;
11285 if (targ >= (bfd_vma) -2)
11286 abort ();
11287
11288 plt = htab->elf.splt;
11289 if (!htab->elf.dynamic_sections_created
11290 || stub_entry->h == NULL
11291 || stub_entry->h->elf.dynindx == -1)
11292 {
11293 if (stub_entry->symtype == STT_GNU_IFUNC)
11294 plt = htab->elf.iplt;
11295 else
11296 plt = htab->pltlocal;
11297 }
11298 targ += plt->output_offset + plt->output_section->vma;
11299 }
11300 else
11301 targ = (stub_entry->target_value
11302 + stub_entry->target_section->output_offset
11303 + stub_entry->target_section->output_section->vma);
11304 odd = off & 4;
11305 off = targ - off;
11306
11307 relp = p;
11308 num_rel = 0;
11309 if (htab->powerxx_stubs)
11310 {
11311 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11312 p = build_powerxx_offset (htab->params->stub_bfd, p, off, odd, load);
11313 }
11314 else
11315 {
11316 /* The notoc stubs calculate their target (either a PLT entry or
11317 the global entry point of a function) relative to the PC
11318 returned by the "bcl" two instructions past the start of the
11319 sequence emitted by build_offset. The offset is therefore 8
11320 less than calculated from the start of the sequence. */
11321 off -= 8;
11322 p = build_offset (htab->params->stub_bfd, p, off,
11323 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11324 }
11325
11326 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11327 {
11328 bfd_vma from;
11329 num_rel = 1;
11330 from = (stub_entry->stub_offset
11331 + stub_entry->group->stub_sec->output_offset
11332 + stub_entry->group->stub_sec->output_section->vma
11333 + (p - loc));
11334 bfd_put_32 (htab->params->stub_bfd,
11335 B_DOT | ((targ - from) & 0x3fffffc), p);
11336 }
11337 else
11338 {
11339 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11340 p += 4;
11341 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11342 }
11343 p += 4;
11344
11345 if (info->emitrelocations)
11346 {
11347 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11348 if (htab->powerxx_stubs)
11349 num_rel += num_relocs_for_powerxx_offset (off, odd);
11350 else
11351 {
11352 num_rel += num_relocs_for_offset (off);
11353 roff += 16;
11354 }
11355 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11356 if (r == NULL)
11357 return FALSE;
11358 if (htab->powerxx_stubs)
11359 r = emit_relocs_for_powerxx_offset (info, r, roff, targ, off, odd);
11360 else
11361 r = emit_relocs_for_offset (info, r, roff, targ, off);
11362 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11363 || stub_entry->stub_type == ppc_stub_long_branch_both)
11364 {
11365 ++r;
11366 roff = p - 4 - stub_entry->group->stub_sec->contents;
11367 r->r_offset = roff;
11368 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11369 r->r_addend = targ;
11370 if (stub_entry->h != NULL
11371 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11372 return FALSE;
11373 }
11374 }
11375
11376 if (!htab->powerxx_stubs
11377 && htab->glink_eh_frame != NULL
11378 && htab->glink_eh_frame->size != 0)
11379 {
11380 bfd_byte *base, *eh;
11381 unsigned int lr_used, delta;
11382
11383 base = (htab->glink_eh_frame->contents
11384 + stub_entry->group->eh_base + 17);
11385 eh = base + stub_entry->group->eh_size;
11386 lr_used = stub_entry->stub_offset + 8;
11387 if (stub_entry->stub_type == ppc_stub_long_branch_both
11388 || stub_entry->stub_type == ppc_stub_plt_branch_both
11389 || stub_entry->stub_type == ppc_stub_plt_call_both)
11390 lr_used += 4;
11391 delta = lr_used - stub_entry->group->lr_restore;
11392 stub_entry->group->lr_restore = lr_used + 8;
11393 eh = eh_advance (htab->elf.dynobj, eh, delta);
11394 *eh++ = DW_CFA_register;
11395 *eh++ = 65;
11396 *eh++ = 12;
11397 *eh++ = DW_CFA_advance_loc + 2;
11398 *eh++ = DW_CFA_restore_extended;
11399 *eh++ = 65;
11400 stub_entry->group->eh_size = eh - base;
11401 }
11402 break;
11403
11404 case ppc_stub_plt_call:
11405 case ppc_stub_plt_call_r2save:
11406 if (stub_entry->h != NULL
11407 && stub_entry->h->is_func_descriptor
11408 && stub_entry->h->oh != NULL)
11409 {
11410 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11411
11412 /* If the old-ABI "dot-symbol" is undefined make it weak so
11413 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11414 if (fh->elf.root.type == bfd_link_hash_undefined
11415 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11416 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11417 fh->elf.root.type = bfd_link_hash_undefweak;
11418 }
11419
11420 /* Now build the stub. */
11421 targ = stub_entry->plt_ent->plt.offset & ~1;
11422 if (targ >= (bfd_vma) -2)
11423 abort ();
11424
11425 plt = htab->elf.splt;
11426 if (!htab->elf.dynamic_sections_created
11427 || stub_entry->h == NULL
11428 || stub_entry->h->elf.dynindx == -1)
11429 {
11430 if (stub_entry->symtype == STT_GNU_IFUNC)
11431 plt = htab->elf.iplt;
11432 else
11433 plt = htab->pltlocal;
11434 }
11435 targ += plt->output_offset + plt->output_section->vma;
11436
11437 off = (elf_gp (info->output_bfd)
11438 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11439 off = targ - off;
11440
11441 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11442 {
11443 info->callbacks->einfo
11444 /* xgettext:c-format */
11445 (_("%P: linkage table error against `%pT'\n"),
11446 stub_entry->h != NULL
11447 ? stub_entry->h->elf.root.root.string
11448 : "<local sym>");
11449 bfd_set_error (bfd_error_bad_value);
11450 htab->stub_error = TRUE;
11451 return FALSE;
11452 }
11453
11454 r = NULL;
11455 if (info->emitrelocations)
11456 {
11457 r = get_relocs (stub_entry->group->stub_sec,
11458 ((PPC_HA (off) != 0)
11459 + (htab->opd_abi
11460 ? 2 + (htab->params->plt_static_chain
11461 && PPC_HA (off + 16) == PPC_HA (off))
11462 : 1)));
11463 if (r == NULL)
11464 return FALSE;
11465 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11466 if (bfd_big_endian (info->output_bfd))
11467 r[0].r_offset += 2;
11468 r[0].r_addend = targ;
11469 }
11470 if (stub_entry->h != NULL
11471 && (stub_entry->h == htab->tls_get_addr_fd
11472 || stub_entry->h == htab->tls_get_addr)
11473 && htab->params->tls_get_addr_opt)
11474 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11475 else
11476 p = build_plt_stub (htab, stub_entry, loc, off, r);
11477 break;
11478
11479 case ppc_stub_save_res:
11480 return TRUE;
11481
11482 default:
11483 BFD_FAIL ();
11484 return FALSE;
11485 }
11486
11487 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11488
11489 if (htab->params->emit_stub_syms)
11490 {
11491 struct elf_link_hash_entry *h;
11492 size_t len1, len2;
11493 char *name;
11494 const char *const stub_str[] = { "long_branch",
11495 "long_branch",
11496 "long_branch",
11497 "long_branch",
11498 "plt_branch",
11499 "plt_branch",
11500 "plt_branch",
11501 "plt_branch",
11502 "plt_call",
11503 "plt_call",
11504 "plt_call",
11505 "plt_call" };
11506
11507 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11508 len2 = strlen (stub_entry->root.string);
11509 name = bfd_malloc (len1 + len2 + 2);
11510 if (name == NULL)
11511 return FALSE;
11512 memcpy (name, stub_entry->root.string, 9);
11513 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11514 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11515 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11516 if (h == NULL)
11517 return FALSE;
11518 if (h->root.type == bfd_link_hash_new)
11519 {
11520 h->root.type = bfd_link_hash_defined;
11521 h->root.u.def.section = stub_entry->group->stub_sec;
11522 h->root.u.def.value = stub_entry->stub_offset;
11523 h->ref_regular = 1;
11524 h->def_regular = 1;
11525 h->ref_regular_nonweak = 1;
11526 h->forced_local = 1;
11527 h->non_elf = 0;
11528 h->root.linker_def = 1;
11529 }
11530 }
11531
11532 return TRUE;
11533 }
11534
11535 /* As above, but don't actually build the stub. Just bump offset so
11536 we know stub section sizes, and select plt_branch stubs where
11537 long_branch stubs won't do. */
11538
11539 static bfd_boolean
11540 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11541 {
11542 struct ppc_stub_hash_entry *stub_entry;
11543 struct bfd_link_info *info;
11544 struct ppc_link_hash_table *htab;
11545 asection *plt;
11546 bfd_vma targ, off, r2off;
11547 unsigned int size, extra, lr_used, delta, odd;
11548
11549 /* Massage our args to the form they really have. */
11550 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11551 info = in_arg;
11552
11553 htab = ppc_hash_table (info);
11554 if (htab == NULL)
11555 return FALSE;
11556
11557 /* Make a note of the offset within the stubs for this entry. */
11558 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11559
11560 if (stub_entry->h != NULL
11561 && stub_entry->h->save_res
11562 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11563 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11564 {
11565 /* Don't make stubs to out-of-line register save/restore
11566 functions. Instead, emit copies of the functions. */
11567 stub_entry->group->needs_save_res = 1;
11568 stub_entry->stub_type = ppc_stub_save_res;
11569 return TRUE;
11570 }
11571
11572 switch (stub_entry->stub_type)
11573 {
11574 case ppc_stub_plt_branch:
11575 case ppc_stub_plt_branch_r2off:
11576 /* Reset the stub type from the plt branch variant in case we now
11577 can reach with a shorter stub. */
11578 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11579 /* Fall through. */
11580 case ppc_stub_long_branch:
11581 case ppc_stub_long_branch_r2off:
11582 targ = (stub_entry->target_value
11583 + stub_entry->target_section->output_offset
11584 + stub_entry->target_section->output_section->vma);
11585 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11586 off = (stub_entry->stub_offset
11587 + stub_entry->group->stub_sec->output_offset
11588 + stub_entry->group->stub_sec->output_section->vma);
11589
11590 size = 4;
11591 r2off = 0;
11592 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11593 {
11594 r2off = get_r2off (info, stub_entry);
11595 if (r2off == (bfd_vma) -1)
11596 {
11597 htab->stub_error = TRUE;
11598 return FALSE;
11599 }
11600 size = 8;
11601 if (PPC_HA (r2off) != 0)
11602 size += 4;
11603 if (PPC_LO (r2off) != 0)
11604 size += 4;
11605 off += size - 4;
11606 }
11607 off = targ - off;
11608
11609 /* If the branch offset is too big, use a ppc_stub_plt_branch.
11610 Do the same for -R objects without function descriptors. */
11611 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
11612 && r2off == 0
11613 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
11614 || off + (1 << 25) >= (bfd_vma) (1 << 26))
11615 {
11616 struct ppc_branch_hash_entry *br_entry;
11617
11618 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11619 stub_entry->root.string + 9,
11620 TRUE, FALSE);
11621 if (br_entry == NULL)
11622 {
11623 _bfd_error_handler (_("can't build branch stub `%s'"),
11624 stub_entry->root.string);
11625 htab->stub_error = TRUE;
11626 return FALSE;
11627 }
11628
11629 if (br_entry->iter != htab->stub_iteration)
11630 {
11631 br_entry->iter = htab->stub_iteration;
11632 br_entry->offset = htab->brlt->size;
11633 htab->brlt->size += 8;
11634
11635 if (htab->relbrlt != NULL)
11636 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11637 else if (info->emitrelocations)
11638 {
11639 htab->brlt->reloc_count += 1;
11640 htab->brlt->flags |= SEC_RELOC;
11641 }
11642 }
11643
11644 targ = (br_entry->offset
11645 + htab->brlt->output_offset
11646 + htab->brlt->output_section->vma);
11647 off = (elf_gp (info->output_bfd)
11648 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11649 off = targ - off;
11650
11651 if (info->emitrelocations)
11652 {
11653 stub_entry->group->stub_sec->reloc_count
11654 += 1 + (PPC_HA (off) != 0);
11655 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11656 }
11657
11658 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11659 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11660 {
11661 size = 12;
11662 if (PPC_HA (off) != 0)
11663 size = 16;
11664 }
11665 else
11666 {
11667 size = 16;
11668 if (PPC_HA (off) != 0)
11669 size += 4;
11670
11671 if (PPC_HA (r2off) != 0)
11672 size += 4;
11673 if (PPC_LO (r2off) != 0)
11674 size += 4;
11675 }
11676 }
11677 else if (info->emitrelocations)
11678 {
11679 stub_entry->group->stub_sec->reloc_count += 1;
11680 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11681 }
11682 break;
11683
11684 case ppc_stub_plt_branch_notoc:
11685 case ppc_stub_plt_branch_both:
11686 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11687 /* Fall through. */
11688 case ppc_stub_long_branch_notoc:
11689 case ppc_stub_long_branch_both:
11690 off = (stub_entry->stub_offset
11691 + stub_entry->group->stub_sec->output_offset
11692 + stub_entry->group->stub_sec->output_section->vma);
11693 size = 0;
11694 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11695 size = 4;
11696 off += size;
11697 targ = (stub_entry->target_value
11698 + stub_entry->target_section->output_offset
11699 + stub_entry->target_section->output_section->vma);
11700 odd = off & 4;
11701 off = targ - off;
11702
11703 if (info->emitrelocations)
11704 {
11705 unsigned int num_rel;
11706 if (htab->powerxx_stubs)
11707 num_rel = num_relocs_for_powerxx_offset (off, odd);
11708 else
11709 num_rel = num_relocs_for_offset (off - 8);
11710 stub_entry->group->stub_sec->reloc_count += num_rel;
11711 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11712 }
11713
11714 if (htab->powerxx_stubs)
11715 extra = size_powerxx_offset (off, odd);
11716 else
11717 extra = size_offset (off - 8);
11718 /* Include branch insn plus those in the offset sequence. */
11719 size += 4 + extra;
11720 /* The branch insn is at the end, or "extra" bytes along. So
11721 its offset will be "extra" bytes less that that already
11722 calculated. */
11723 off -= extra;
11724
11725 if (!htab->powerxx_stubs)
11726 {
11727 /* After the bcl, lr has been modified so we need to emit
11728 .eh_frame info saying the return address is in r12. */
11729 lr_used = stub_entry->stub_offset + 8;
11730 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11731 lr_used += 4;
11732 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11733 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11734 DW_CFA_restore_extended 65. */
11735 delta = lr_used - stub_entry->group->lr_restore;
11736 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11737 stub_entry->group->lr_restore = lr_used + 8;
11738 }
11739
11740 /* If the branch can't reach, use a plt_branch. */
11741 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11742 {
11743 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
11744 - ppc_stub_long_branch_notoc);
11745 size += 4;
11746 }
11747 else if (info->emitrelocations)
11748 stub_entry->group->stub_sec->reloc_count +=1;
11749 break;
11750
11751 case ppc_stub_plt_call_notoc:
11752 case ppc_stub_plt_call_both:
11753 off = (stub_entry->stub_offset
11754 + stub_entry->group->stub_sec->output_offset
11755 + stub_entry->group->stub_sec->output_section->vma);
11756 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11757 off += 4;
11758 targ = stub_entry->plt_ent->plt.offset & ~1;
11759 if (targ >= (bfd_vma) -2)
11760 abort ();
11761
11762 plt = htab->elf.splt;
11763 if (!htab->elf.dynamic_sections_created
11764 || stub_entry->h == NULL
11765 || stub_entry->h->elf.dynindx == -1)
11766 {
11767 if (stub_entry->symtype == STT_GNU_IFUNC)
11768 plt = htab->elf.iplt;
11769 else
11770 plt = htab->pltlocal;
11771 }
11772 targ += plt->output_offset + plt->output_section->vma;
11773 odd = off & 4;
11774 off = targ - off;
11775
11776 if (htab->params->plt_stub_align != 0)
11777 {
11778 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11779
11780 stub_entry->group->stub_sec->size += pad;
11781 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11782 off -= pad;
11783 }
11784
11785 if (info->emitrelocations)
11786 {
11787 unsigned int num_rel;
11788 if (htab->powerxx_stubs)
11789 num_rel = num_relocs_for_powerxx_offset (off, odd);
11790 else
11791 num_rel = num_relocs_for_offset (off - 8);
11792 stub_entry->group->stub_sec->reloc_count += num_rel;
11793 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11794 }
11795
11796 size = plt_stub_size (htab, stub_entry, off);
11797
11798 if (!htab->powerxx_stubs)
11799 {
11800 /* After the bcl, lr has been modified so we need to emit
11801 .eh_frame info saying the return address is in r12. */
11802 lr_used = stub_entry->stub_offset + 8;
11803 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11804 lr_used += 4;
11805 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11806 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11807 DW_CFA_restore_extended 65. */
11808 delta = lr_used - stub_entry->group->lr_restore;
11809 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11810 stub_entry->group->lr_restore = lr_used + 8;
11811 }
11812 break;
11813
11814 case ppc_stub_plt_call:
11815 case ppc_stub_plt_call_r2save:
11816 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
11817 if (targ >= (bfd_vma) -2)
11818 abort ();
11819 plt = htab->elf.splt;
11820 if (!htab->elf.dynamic_sections_created
11821 || stub_entry->h == NULL
11822 || stub_entry->h->elf.dynindx == -1)
11823 {
11824 if (stub_entry->symtype == STT_GNU_IFUNC)
11825 plt = htab->elf.iplt;
11826 else
11827 plt = htab->pltlocal;
11828 }
11829 targ += plt->output_offset + plt->output_section->vma;
11830
11831 off = (elf_gp (info->output_bfd)
11832 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11833 off = targ - off;
11834
11835 if (htab->params->plt_stub_align != 0)
11836 {
11837 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11838
11839 stub_entry->group->stub_sec->size += pad;
11840 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11841 }
11842
11843 if (info->emitrelocations)
11844 {
11845 stub_entry->group->stub_sec->reloc_count
11846 += ((PPC_HA (off) != 0)
11847 + (htab->opd_abi
11848 ? 2 + (htab->params->plt_static_chain
11849 && PPC_HA (off + 16) == PPC_HA (off))
11850 : 1));
11851 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11852 }
11853
11854 size = plt_stub_size (htab, stub_entry, off);
11855
11856 if (stub_entry->h != NULL
11857 && (stub_entry->h == htab->tls_get_addr_fd
11858 || stub_entry->h == htab->tls_get_addr)
11859 && htab->params->tls_get_addr_opt
11860 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
11861 {
11862 /* After the bctrl, lr has been modified so we need to
11863 emit .eh_frame info saying the return address is
11864 on the stack. In fact we put the EH info specifying
11865 that the return address is on the stack *at* the
11866 call rather than after it, because the EH info for a
11867 call needs to be specified by that point.
11868 See libgcc/unwind-dw2.c execute_cfa_program. */
11869 lr_used = stub_entry->stub_offset + size - 20;
11870 /* The eh_frame info will consist of a DW_CFA_advance_loc
11871 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
11872 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
11873 delta = lr_used - stub_entry->group->lr_restore;
11874 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11875 stub_entry->group->lr_restore = size - 4;
11876 }
11877 break;
11878
11879 default:
11880 BFD_FAIL ();
11881 return FALSE;
11882 }
11883
11884 stub_entry->group->stub_sec->size += size;
11885 return TRUE;
11886 }
11887
11888 /* Set up various things so that we can make a list of input sections
11889 for each output section included in the link. Returns -1 on error,
11890 0 when no stubs will be needed, and 1 on success. */
11891
11892 int
11893 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11894 {
11895 unsigned int id;
11896 bfd_size_type amt;
11897 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11898
11899 if (htab == NULL)
11900 return -1;
11901
11902 htab->sec_info_arr_size = _bfd_section_id;
11903 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
11904 htab->sec_info = bfd_zmalloc (amt);
11905 if (htab->sec_info == NULL)
11906 return -1;
11907
11908 /* Set toc_off for com, und, abs and ind sections. */
11909 for (id = 0; id < 3; id++)
11910 htab->sec_info[id].toc_off = TOC_BASE_OFF;
11911
11912 return 1;
11913 }
11914
11915 /* Set up for first pass at multitoc partitioning. */
11916
11917 void
11918 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11919 {
11920 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11921
11922 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11923 htab->toc_bfd = NULL;
11924 htab->toc_first_sec = NULL;
11925 }
11926
11927 /* The linker repeatedly calls this function for each TOC input section
11928 and linker generated GOT section. Group input bfds such that the toc
11929 within a group is less than 64k in size. */
11930
11931 bfd_boolean
11932 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11933 {
11934 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11935 bfd_vma addr, off, limit;
11936
11937 if (htab == NULL)
11938 return FALSE;
11939
11940 if (!htab->second_toc_pass)
11941 {
11942 /* Keep track of the first .toc or .got section for this input bfd. */
11943 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11944
11945 if (new_bfd)
11946 {
11947 htab->toc_bfd = isec->owner;
11948 htab->toc_first_sec = isec;
11949 }
11950
11951 addr = isec->output_offset + isec->output_section->vma;
11952 off = addr - htab->toc_curr;
11953 limit = 0x80008000;
11954 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11955 limit = 0x10000;
11956 if (off + isec->size > limit)
11957 {
11958 addr = (htab->toc_first_sec->output_offset
11959 + htab->toc_first_sec->output_section->vma);
11960 htab->toc_curr = addr;
11961 htab->toc_curr &= -TOC_BASE_ALIGN;
11962 }
11963
11964 /* toc_curr is the base address of this toc group. Set elf_gp
11965 for the input section to be the offset relative to the
11966 output toc base plus 0x8000. Making the input elf_gp an
11967 offset allows us to move the toc as a whole without
11968 recalculating input elf_gp. */
11969 off = htab->toc_curr - elf_gp (info->output_bfd);
11970 off += TOC_BASE_OFF;
11971
11972 /* Die if someone uses a linker script that doesn't keep input
11973 file .toc and .got together. */
11974 if (new_bfd
11975 && elf_gp (isec->owner) != 0
11976 && elf_gp (isec->owner) != off)
11977 return FALSE;
11978
11979 elf_gp (isec->owner) = off;
11980 return TRUE;
11981 }
11982
11983 /* During the second pass toc_first_sec points to the start of
11984 a toc group, and toc_curr is used to track the old elf_gp.
11985 We use toc_bfd to ensure we only look at each bfd once. */
11986 if (htab->toc_bfd == isec->owner)
11987 return TRUE;
11988 htab->toc_bfd = isec->owner;
11989
11990 if (htab->toc_first_sec == NULL
11991 || htab->toc_curr != elf_gp (isec->owner))
11992 {
11993 htab->toc_curr = elf_gp (isec->owner);
11994 htab->toc_first_sec = isec;
11995 }
11996 addr = (htab->toc_first_sec->output_offset
11997 + htab->toc_first_sec->output_section->vma);
11998 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
11999 elf_gp (isec->owner) = off;
12000
12001 return TRUE;
12002 }
12003
12004 /* Called via elf_link_hash_traverse to merge GOT entries for global
12005 symbol H. */
12006
12007 static bfd_boolean
12008 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12009 {
12010 if (h->root.type == bfd_link_hash_indirect)
12011 return TRUE;
12012
12013 merge_got_entries (&h->got.glist);
12014
12015 return TRUE;
12016 }
12017
12018 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12019 symbol H. */
12020
12021 static bfd_boolean
12022 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12023 {
12024 struct got_entry *gent;
12025
12026 if (h->root.type == bfd_link_hash_indirect)
12027 return TRUE;
12028
12029 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12030 if (!gent->is_indirect)
12031 allocate_got (h, (struct bfd_link_info *) inf, gent);
12032 return TRUE;
12033 }
12034
12035 /* Called on the first multitoc pass after the last call to
12036 ppc64_elf_next_toc_section. This function removes duplicate GOT
12037 entries. */
12038
12039 bfd_boolean
12040 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12041 {
12042 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12043 struct bfd *ibfd, *ibfd2;
12044 bfd_boolean done_something;
12045
12046 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12047
12048 if (!htab->do_multi_toc)
12049 return FALSE;
12050
12051 /* Merge global sym got entries within a toc group. */
12052 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12053
12054 /* And tlsld_got. */
12055 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12056 {
12057 struct got_entry *ent, *ent2;
12058
12059 if (!is_ppc64_elf (ibfd))
12060 continue;
12061
12062 ent = ppc64_tlsld_got (ibfd);
12063 if (!ent->is_indirect
12064 && ent->got.offset != (bfd_vma) -1)
12065 {
12066 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12067 {
12068 if (!is_ppc64_elf (ibfd2))
12069 continue;
12070
12071 ent2 = ppc64_tlsld_got (ibfd2);
12072 if (!ent2->is_indirect
12073 && ent2->got.offset != (bfd_vma) -1
12074 && elf_gp (ibfd2) == elf_gp (ibfd))
12075 {
12076 ent2->is_indirect = TRUE;
12077 ent2->got.ent = ent;
12078 }
12079 }
12080 }
12081 }
12082
12083 /* Zap sizes of got sections. */
12084 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12085 htab->elf.irelplt->size -= htab->got_reli_size;
12086 htab->got_reli_size = 0;
12087
12088 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12089 {
12090 asection *got, *relgot;
12091
12092 if (!is_ppc64_elf (ibfd))
12093 continue;
12094
12095 got = ppc64_elf_tdata (ibfd)->got;
12096 if (got != NULL)
12097 {
12098 got->rawsize = got->size;
12099 got->size = 0;
12100 relgot = ppc64_elf_tdata (ibfd)->relgot;
12101 relgot->rawsize = relgot->size;
12102 relgot->size = 0;
12103 }
12104 }
12105
12106 /* Now reallocate the got, local syms first. We don't need to
12107 allocate section contents again since we never increase size. */
12108 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12109 {
12110 struct got_entry **lgot_ents;
12111 struct got_entry **end_lgot_ents;
12112 struct plt_entry **local_plt;
12113 struct plt_entry **end_local_plt;
12114 unsigned char *lgot_masks;
12115 bfd_size_type locsymcount;
12116 Elf_Internal_Shdr *symtab_hdr;
12117 asection *s;
12118
12119 if (!is_ppc64_elf (ibfd))
12120 continue;
12121
12122 lgot_ents = elf_local_got_ents (ibfd);
12123 if (!lgot_ents)
12124 continue;
12125
12126 symtab_hdr = &elf_symtab_hdr (ibfd);
12127 locsymcount = symtab_hdr->sh_info;
12128 end_lgot_ents = lgot_ents + locsymcount;
12129 local_plt = (struct plt_entry **) end_lgot_ents;
12130 end_local_plt = local_plt + locsymcount;
12131 lgot_masks = (unsigned char *) end_local_plt;
12132 s = ppc64_elf_tdata (ibfd)->got;
12133 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12134 {
12135 struct got_entry *ent;
12136
12137 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12138 {
12139 unsigned int ent_size = 8;
12140 unsigned int rel_size = sizeof (Elf64_External_Rela);
12141
12142 ent->got.offset = s->size;
12143 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12144 {
12145 ent_size *= 2;
12146 rel_size *= 2;
12147 }
12148 s->size += ent_size;
12149 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12150 {
12151 htab->elf.irelplt->size += rel_size;
12152 htab->got_reli_size += rel_size;
12153 }
12154 else if (bfd_link_pic (info)
12155 && !((ent->tls_type & TLS_TPREL) != 0
12156 && bfd_link_executable (info)))
12157 {
12158 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12159 srel->size += rel_size;
12160 }
12161 }
12162 }
12163 }
12164
12165 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12166
12167 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12168 {
12169 struct got_entry *ent;
12170
12171 if (!is_ppc64_elf (ibfd))
12172 continue;
12173
12174 ent = ppc64_tlsld_got (ibfd);
12175 if (!ent->is_indirect
12176 && ent->got.offset != (bfd_vma) -1)
12177 {
12178 asection *s = ppc64_elf_tdata (ibfd)->got;
12179 ent->got.offset = s->size;
12180 s->size += 16;
12181 if (bfd_link_pic (info))
12182 {
12183 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12184 srel->size += sizeof (Elf64_External_Rela);
12185 }
12186 }
12187 }
12188
12189 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12190 if (!done_something)
12191 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12192 {
12193 asection *got;
12194
12195 if (!is_ppc64_elf (ibfd))
12196 continue;
12197
12198 got = ppc64_elf_tdata (ibfd)->got;
12199 if (got != NULL)
12200 {
12201 done_something = got->rawsize != got->size;
12202 if (done_something)
12203 break;
12204 }
12205 }
12206
12207 if (done_something)
12208 (*htab->params->layout_sections_again) ();
12209
12210 /* Set up for second pass over toc sections to recalculate elf_gp
12211 on input sections. */
12212 htab->toc_bfd = NULL;
12213 htab->toc_first_sec = NULL;
12214 htab->second_toc_pass = TRUE;
12215 return done_something;
12216 }
12217
12218 /* Called after second pass of multitoc partitioning. */
12219
12220 void
12221 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12222 {
12223 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12224
12225 /* After the second pass, toc_curr tracks the TOC offset used
12226 for code sections below in ppc64_elf_next_input_section. */
12227 htab->toc_curr = TOC_BASE_OFF;
12228 }
12229
12230 /* No toc references were found in ISEC. If the code in ISEC makes no
12231 calls, then there's no need to use toc adjusting stubs when branching
12232 into ISEC. Actually, indirect calls from ISEC are OK as they will
12233 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12234 needed, and 2 if a cyclical call-graph was found but no other reason
12235 for a stub was detected. If called from the top level, a return of
12236 2 means the same as a return of 0. */
12237
12238 static int
12239 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12240 {
12241 int ret;
12242
12243 /* Mark this section as checked. */
12244 isec->call_check_done = 1;
12245
12246 /* We know none of our code bearing sections will need toc stubs. */
12247 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12248 return 0;
12249
12250 if (isec->size == 0)
12251 return 0;
12252
12253 if (isec->output_section == NULL)
12254 return 0;
12255
12256 ret = 0;
12257 if (isec->reloc_count != 0)
12258 {
12259 Elf_Internal_Rela *relstart, *rel;
12260 Elf_Internal_Sym *local_syms;
12261 struct ppc_link_hash_table *htab;
12262
12263 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12264 info->keep_memory);
12265 if (relstart == NULL)
12266 return -1;
12267
12268 /* Look for branches to outside of this section. */
12269 local_syms = NULL;
12270 htab = ppc_hash_table (info);
12271 if (htab == NULL)
12272 return -1;
12273
12274 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12275 {
12276 enum elf_ppc64_reloc_type r_type;
12277 unsigned long r_symndx;
12278 struct elf_link_hash_entry *h;
12279 struct ppc_link_hash_entry *eh;
12280 Elf_Internal_Sym *sym;
12281 asection *sym_sec;
12282 struct _opd_sec_data *opd;
12283 bfd_vma sym_value;
12284 bfd_vma dest;
12285
12286 r_type = ELF64_R_TYPE (rel->r_info);
12287 if (r_type != R_PPC64_REL24
12288 && r_type != R_PPC64_REL24_NOTOC
12289 && r_type != R_PPC64_REL14
12290 && r_type != R_PPC64_REL14_BRTAKEN
12291 && r_type != R_PPC64_REL14_BRNTAKEN
12292 && r_type != R_PPC64_PLTCALL
12293 && r_type != R_PPC64_PLTCALL_NOTOC)
12294 continue;
12295
12296 r_symndx = ELF64_R_SYM (rel->r_info);
12297 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12298 isec->owner))
12299 {
12300 ret = -1;
12301 break;
12302 }
12303
12304 /* Calls to dynamic lib functions go through a plt call stub
12305 that uses r2. */
12306 eh = (struct ppc_link_hash_entry *) h;
12307 if (eh != NULL
12308 && (eh->elf.plt.plist != NULL
12309 || (eh->oh != NULL
12310 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12311 {
12312 ret = 1;
12313 break;
12314 }
12315
12316 if (sym_sec == NULL)
12317 /* Ignore other undefined symbols. */
12318 continue;
12319
12320 /* Assume branches to other sections not included in the
12321 link need stubs too, to cover -R and absolute syms. */
12322 if (sym_sec->output_section == NULL)
12323 {
12324 ret = 1;
12325 break;
12326 }
12327
12328 if (h == NULL)
12329 sym_value = sym->st_value;
12330 else
12331 {
12332 if (h->root.type != bfd_link_hash_defined
12333 && h->root.type != bfd_link_hash_defweak)
12334 abort ();
12335 sym_value = h->root.u.def.value;
12336 }
12337 sym_value += rel->r_addend;
12338
12339 /* If this branch reloc uses an opd sym, find the code section. */
12340 opd = get_opd_info (sym_sec);
12341 if (opd != NULL)
12342 {
12343 if (h == NULL && opd->adjust != NULL)
12344 {
12345 long adjust;
12346
12347 adjust = opd->adjust[OPD_NDX (sym_value)];
12348 if (adjust == -1)
12349 /* Assume deleted functions won't ever be called. */
12350 continue;
12351 sym_value += adjust;
12352 }
12353
12354 dest = opd_entry_value (sym_sec, sym_value,
12355 &sym_sec, NULL, FALSE);
12356 if (dest == (bfd_vma) -1)
12357 continue;
12358 }
12359 else
12360 dest = (sym_value
12361 + sym_sec->output_offset
12362 + sym_sec->output_section->vma);
12363
12364 /* Ignore branch to self. */
12365 if (sym_sec == isec)
12366 continue;
12367
12368 /* If the called function uses the toc, we need a stub. */
12369 if (sym_sec->has_toc_reloc
12370 || sym_sec->makes_toc_func_call)
12371 {
12372 ret = 1;
12373 break;
12374 }
12375
12376 /* Assume any branch that needs a long branch stub might in fact
12377 need a plt_branch stub. A plt_branch stub uses r2. */
12378 else if (dest - (isec->output_offset
12379 + isec->output_section->vma
12380 + rel->r_offset) + (1 << 25)
12381 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12382 ? h->other
12383 : sym->st_other))
12384 {
12385 ret = 1;
12386 break;
12387 }
12388
12389 /* If calling back to a section in the process of being
12390 tested, we can't say for sure that no toc adjusting stubs
12391 are needed, so don't return zero. */
12392 else if (sym_sec->call_check_in_progress)
12393 ret = 2;
12394
12395 /* Branches to another section that itself doesn't have any TOC
12396 references are OK. Recursively call ourselves to check. */
12397 else if (!sym_sec->call_check_done)
12398 {
12399 int recur;
12400
12401 /* Mark current section as indeterminate, so that other
12402 sections that call back to current won't be marked as
12403 known. */
12404 isec->call_check_in_progress = 1;
12405 recur = toc_adjusting_stub_needed (info, sym_sec);
12406 isec->call_check_in_progress = 0;
12407
12408 if (recur != 0)
12409 {
12410 ret = recur;
12411 if (recur != 2)
12412 break;
12413 }
12414 }
12415 }
12416
12417 if (local_syms != NULL
12418 && (elf_symtab_hdr (isec->owner).contents
12419 != (unsigned char *) local_syms))
12420 free (local_syms);
12421 if (elf_section_data (isec)->relocs != relstart)
12422 free (relstart);
12423 }
12424
12425 if ((ret & 1) == 0
12426 && isec->map_head.s != NULL
12427 && (strcmp (isec->output_section->name, ".init") == 0
12428 || strcmp (isec->output_section->name, ".fini") == 0))
12429 {
12430 if (isec->map_head.s->has_toc_reloc
12431 || isec->map_head.s->makes_toc_func_call)
12432 ret = 1;
12433 else if (!isec->map_head.s->call_check_done)
12434 {
12435 int recur;
12436 isec->call_check_in_progress = 1;
12437 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12438 isec->call_check_in_progress = 0;
12439 if (recur != 0)
12440 ret = recur;
12441 }
12442 }
12443
12444 if (ret == 1)
12445 isec->makes_toc_func_call = 1;
12446
12447 return ret;
12448 }
12449
12450 /* The linker repeatedly calls this function for each input section,
12451 in the order that input sections are linked into output sections.
12452 Build lists of input sections to determine groupings between which
12453 we may insert linker stubs. */
12454
12455 bfd_boolean
12456 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12457 {
12458 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12459
12460 if (htab == NULL)
12461 return FALSE;
12462
12463 if ((isec->output_section->flags & SEC_CODE) != 0
12464 && isec->output_section->id < htab->sec_info_arr_size)
12465 {
12466 /* This happens to make the list in reverse order,
12467 which is what we want. */
12468 htab->sec_info[isec->id].u.list
12469 = htab->sec_info[isec->output_section->id].u.list;
12470 htab->sec_info[isec->output_section->id].u.list = isec;
12471 }
12472
12473 if (htab->multi_toc_needed)
12474 {
12475 /* Analyse sections that aren't already flagged as needing a
12476 valid toc pointer. Exclude .fixup for the linux kernel.
12477 .fixup contains branches, but only back to the function that
12478 hit an exception. */
12479 if (!(isec->has_toc_reloc
12480 || (isec->flags & SEC_CODE) == 0
12481 || strcmp (isec->name, ".fixup") == 0
12482 || isec->call_check_done))
12483 {
12484 if (toc_adjusting_stub_needed (info, isec) < 0)
12485 return FALSE;
12486 }
12487 /* Make all sections use the TOC assigned for this object file.
12488 This will be wrong for pasted sections; We fix that in
12489 check_pasted_section(). */
12490 if (elf_gp (isec->owner) != 0)
12491 htab->toc_curr = elf_gp (isec->owner);
12492 }
12493
12494 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12495 return TRUE;
12496 }
12497
12498 /* Check that all .init and .fini sections use the same toc, if they
12499 have toc relocs. */
12500
12501 static bfd_boolean
12502 check_pasted_section (struct bfd_link_info *info, const char *name)
12503 {
12504 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12505
12506 if (o != NULL)
12507 {
12508 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12509 bfd_vma toc_off = 0;
12510 asection *i;
12511
12512 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12513 if (i->has_toc_reloc)
12514 {
12515 if (toc_off == 0)
12516 toc_off = htab->sec_info[i->id].toc_off;
12517 else if (toc_off != htab->sec_info[i->id].toc_off)
12518 return FALSE;
12519 }
12520
12521 if (toc_off == 0)
12522 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12523 if (i->makes_toc_func_call)
12524 {
12525 toc_off = htab->sec_info[i->id].toc_off;
12526 break;
12527 }
12528
12529 /* Make sure the whole pasted function uses the same toc offset. */
12530 if (toc_off != 0)
12531 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12532 htab->sec_info[i->id].toc_off = toc_off;
12533 }
12534 return TRUE;
12535 }
12536
12537 bfd_boolean
12538 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12539 {
12540 return (check_pasted_section (info, ".init")
12541 & check_pasted_section (info, ".fini"));
12542 }
12543
12544 /* See whether we can group stub sections together. Grouping stub
12545 sections may result in fewer stubs. More importantly, we need to
12546 put all .init* and .fini* stubs at the beginning of the .init or
12547 .fini output sections respectively, because glibc splits the
12548 _init and _fini functions into multiple parts. Putting a stub in
12549 the middle of a function is not a good idea. */
12550
12551 static bfd_boolean
12552 group_sections (struct bfd_link_info *info,
12553 bfd_size_type stub_group_size,
12554 bfd_boolean stubs_always_before_branch)
12555 {
12556 struct ppc_link_hash_table *htab;
12557 asection *osec;
12558 bfd_boolean suppress_size_errors;
12559
12560 htab = ppc_hash_table (info);
12561 if (htab == NULL)
12562 return FALSE;
12563
12564 suppress_size_errors = FALSE;
12565 if (stub_group_size == 1)
12566 {
12567 /* Default values. */
12568 if (stubs_always_before_branch)
12569 stub_group_size = 0x1e00000;
12570 else
12571 stub_group_size = 0x1c00000;
12572 suppress_size_errors = TRUE;
12573 }
12574
12575 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12576 {
12577 asection *tail;
12578
12579 if (osec->id >= htab->sec_info_arr_size)
12580 continue;
12581
12582 tail = htab->sec_info[osec->id].u.list;
12583 while (tail != NULL)
12584 {
12585 asection *curr;
12586 asection *prev;
12587 bfd_size_type total;
12588 bfd_boolean big_sec;
12589 bfd_vma curr_toc;
12590 struct map_stub *group;
12591 bfd_size_type group_size;
12592
12593 curr = tail;
12594 total = tail->size;
12595 group_size = (ppc64_elf_section_data (tail) != NULL
12596 && ppc64_elf_section_data (tail)->has_14bit_branch
12597 ? stub_group_size >> 10 : stub_group_size);
12598
12599 big_sec = total > group_size;
12600 if (big_sec && !suppress_size_errors)
12601 /* xgettext:c-format */
12602 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
12603 tail->owner, tail);
12604 curr_toc = htab->sec_info[tail->id].toc_off;
12605
12606 while ((prev = htab->sec_info[curr->id].u.list) != NULL
12607 && ((total += curr->output_offset - prev->output_offset)
12608 < (ppc64_elf_section_data (prev) != NULL
12609 && ppc64_elf_section_data (prev)->has_14bit_branch
12610 ? (group_size = stub_group_size >> 10) : group_size))
12611 && htab->sec_info[prev->id].toc_off == curr_toc)
12612 curr = prev;
12613
12614 /* OK, the size from the start of CURR to the end is less
12615 than group_size and thus can be handled by one stub
12616 section. (or the tail section is itself larger than
12617 group_size, in which case we may be toast.) We should
12618 really be keeping track of the total size of stubs added
12619 here, as stubs contribute to the final output section
12620 size. That's a little tricky, and this way will only
12621 break if stubs added make the total size more than 2^25,
12622 ie. for the default stub_group_size, if stubs total more
12623 than 2097152 bytes, or nearly 75000 plt call stubs. */
12624 group = bfd_alloc (curr->owner, sizeof (*group));
12625 if (group == NULL)
12626 return FALSE;
12627 group->link_sec = curr;
12628 group->stub_sec = NULL;
12629 group->needs_save_res = 0;
12630 group->lr_restore = 0;
12631 group->eh_size = 0;
12632 group->eh_base = 0;
12633 group->next = htab->group;
12634 htab->group = group;
12635 do
12636 {
12637 prev = htab->sec_info[tail->id].u.list;
12638 /* Set up this stub group. */
12639 htab->sec_info[tail->id].u.group = group;
12640 }
12641 while (tail != curr && (tail = prev) != NULL);
12642
12643 /* But wait, there's more! Input sections up to group_size
12644 bytes before the stub section can be handled by it too.
12645 Don't do this if we have a really large section after the
12646 stubs, as adding more stubs increases the chance that
12647 branches may not reach into the stub section. */
12648 if (!stubs_always_before_branch && !big_sec)
12649 {
12650 total = 0;
12651 while (prev != NULL
12652 && ((total += tail->output_offset - prev->output_offset)
12653 < (ppc64_elf_section_data (prev) != NULL
12654 && ppc64_elf_section_data (prev)->has_14bit_branch
12655 ? (group_size = stub_group_size >> 10)
12656 : group_size))
12657 && htab->sec_info[prev->id].toc_off == curr_toc)
12658 {
12659 tail = prev;
12660 prev = htab->sec_info[tail->id].u.list;
12661 htab->sec_info[tail->id].u.group = group;
12662 }
12663 }
12664 tail = prev;
12665 }
12666 }
12667 return TRUE;
12668 }
12669
12670 static const unsigned char glink_eh_frame_cie[] =
12671 {
12672 0, 0, 0, 16, /* length. */
12673 0, 0, 0, 0, /* id. */
12674 1, /* CIE version. */
12675 'z', 'R', 0, /* Augmentation string. */
12676 4, /* Code alignment. */
12677 0x78, /* Data alignment. */
12678 65, /* RA reg. */
12679 1, /* Augmentation size. */
12680 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
12681 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
12682 };
12683
12684 /* Stripping output sections is normally done before dynamic section
12685 symbols have been allocated. This function is called later, and
12686 handles cases like htab->brlt which is mapped to its own output
12687 section. */
12688
12689 static void
12690 maybe_strip_output (struct bfd_link_info *info, asection *isec)
12691 {
12692 if (isec->size == 0
12693 && isec->output_section->size == 0
12694 && !(isec->output_section->flags & SEC_KEEP)
12695 && !bfd_section_removed_from_list (info->output_bfd,
12696 isec->output_section)
12697 && elf_section_data (isec->output_section)->dynindx == 0)
12698 {
12699 isec->output_section->flags |= SEC_EXCLUDE;
12700 bfd_section_list_remove (info->output_bfd, isec->output_section);
12701 info->output_bfd->section_count--;
12702 }
12703 }
12704
12705 /* Determine and set the size of the stub section for a final link.
12706
12707 The basic idea here is to examine all the relocations looking for
12708 PC-relative calls to a target that is unreachable with a "bl"
12709 instruction. */
12710
12711 bfd_boolean
12712 ppc64_elf_size_stubs (struct bfd_link_info *info)
12713 {
12714 bfd_size_type stub_group_size;
12715 bfd_boolean stubs_always_before_branch;
12716 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12717
12718 if (htab == NULL)
12719 return FALSE;
12720
12721 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
12722 htab->params->plt_thread_safe = 1;
12723 if (!htab->opd_abi)
12724 htab->params->plt_thread_safe = 0;
12725 else if (htab->params->plt_thread_safe == -1)
12726 {
12727 static const char *const thread_starter[] =
12728 {
12729 "pthread_create",
12730 /* libstdc++ */
12731 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
12732 /* librt */
12733 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
12734 "mq_notify", "create_timer",
12735 /* libanl */
12736 "getaddrinfo_a",
12737 /* libgomp */
12738 "GOMP_parallel",
12739 "GOMP_parallel_start",
12740 "GOMP_parallel_loop_static",
12741 "GOMP_parallel_loop_static_start",
12742 "GOMP_parallel_loop_dynamic",
12743 "GOMP_parallel_loop_dynamic_start",
12744 "GOMP_parallel_loop_guided",
12745 "GOMP_parallel_loop_guided_start",
12746 "GOMP_parallel_loop_runtime",
12747 "GOMP_parallel_loop_runtime_start",
12748 "GOMP_parallel_sections",
12749 "GOMP_parallel_sections_start",
12750 /* libgo */
12751 "__go_go",
12752 };
12753 unsigned i;
12754
12755 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
12756 {
12757 struct elf_link_hash_entry *h;
12758 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12759 FALSE, FALSE, TRUE);
12760 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12761 if (htab->params->plt_thread_safe)
12762 break;
12763 }
12764 }
12765 stubs_always_before_branch = htab->params->group_size < 0;
12766 if (htab->params->group_size < 0)
12767 stub_group_size = -htab->params->group_size;
12768 else
12769 stub_group_size = htab->params->group_size;
12770
12771 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
12772 return FALSE;
12773
12774 #define STUB_SHRINK_ITER 20
12775 /* Loop until no stubs added. After iteration 20 of this loop we may
12776 exit on a stub section shrinking. This is to break out of a
12777 pathological case where adding stubs on one iteration decreases
12778 section gaps (perhaps due to alignment), which then requires
12779 fewer or smaller stubs on the next iteration. */
12780
12781 while (1)
12782 {
12783 bfd *input_bfd;
12784 unsigned int bfd_indx;
12785 struct map_stub *group;
12786
12787 htab->stub_iteration += 1;
12788
12789 for (input_bfd = info->input_bfds, bfd_indx = 0;
12790 input_bfd != NULL;
12791 input_bfd = input_bfd->link.next, bfd_indx++)
12792 {
12793 Elf_Internal_Shdr *symtab_hdr;
12794 asection *section;
12795 Elf_Internal_Sym *local_syms = NULL;
12796
12797 if (!is_ppc64_elf (input_bfd))
12798 continue;
12799
12800 /* We'll need the symbol table in a second. */
12801 symtab_hdr = &elf_symtab_hdr (input_bfd);
12802 if (symtab_hdr->sh_info == 0)
12803 continue;
12804
12805 /* Walk over each section attached to the input bfd. */
12806 for (section = input_bfd->sections;
12807 section != NULL;
12808 section = section->next)
12809 {
12810 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12811
12812 /* If there aren't any relocs, then there's nothing more
12813 to do. */
12814 if ((section->flags & SEC_RELOC) == 0
12815 || (section->flags & SEC_ALLOC) == 0
12816 || (section->flags & SEC_LOAD) == 0
12817 || (section->flags & SEC_CODE) == 0
12818 || section->reloc_count == 0)
12819 continue;
12820
12821 /* If this section is a link-once section that will be
12822 discarded, then don't create any stubs. */
12823 if (section->output_section == NULL
12824 || section->output_section->owner != info->output_bfd)
12825 continue;
12826
12827 /* Get the relocs. */
12828 internal_relocs
12829 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12830 info->keep_memory);
12831 if (internal_relocs == NULL)
12832 goto error_ret_free_local;
12833
12834 /* Now examine each relocation. */
12835 irela = internal_relocs;
12836 irelaend = irela + section->reloc_count;
12837 for (; irela < irelaend; irela++)
12838 {
12839 enum elf_ppc64_reloc_type r_type;
12840 unsigned int r_indx;
12841 enum ppc_stub_type stub_type;
12842 struct ppc_stub_hash_entry *stub_entry;
12843 asection *sym_sec, *code_sec;
12844 bfd_vma sym_value, code_value;
12845 bfd_vma destination;
12846 unsigned long local_off;
12847 bfd_boolean ok_dest;
12848 struct ppc_link_hash_entry *hash;
12849 struct ppc_link_hash_entry *fdh;
12850 struct elf_link_hash_entry *h;
12851 Elf_Internal_Sym *sym;
12852 char *stub_name;
12853 const asection *id_sec;
12854 struct _opd_sec_data *opd;
12855 struct plt_entry *plt_ent;
12856
12857 r_type = ELF64_R_TYPE (irela->r_info);
12858 r_indx = ELF64_R_SYM (irela->r_info);
12859
12860 if (r_type >= R_PPC64_max)
12861 {
12862 bfd_set_error (bfd_error_bad_value);
12863 goto error_ret_free_internal;
12864 }
12865
12866 /* Only look for stubs on branch instructions. */
12867 if (r_type != R_PPC64_REL24
12868 && r_type != R_PPC64_REL24_NOTOC
12869 && r_type != R_PPC64_REL14
12870 && r_type != R_PPC64_REL14_BRTAKEN
12871 && r_type != R_PPC64_REL14_BRNTAKEN)
12872 continue;
12873
12874 /* Now determine the call target, its name, value,
12875 section. */
12876 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12877 r_indx, input_bfd))
12878 goto error_ret_free_internal;
12879 hash = (struct ppc_link_hash_entry *) h;
12880
12881 ok_dest = FALSE;
12882 fdh = NULL;
12883 sym_value = 0;
12884 if (hash == NULL)
12885 {
12886 sym_value = sym->st_value;
12887 if (sym_sec != NULL
12888 && sym_sec->output_section != NULL)
12889 ok_dest = TRUE;
12890 }
12891 else if (hash->elf.root.type == bfd_link_hash_defined
12892 || hash->elf.root.type == bfd_link_hash_defweak)
12893 {
12894 sym_value = hash->elf.root.u.def.value;
12895 if (sym_sec->output_section != NULL)
12896 ok_dest = TRUE;
12897 }
12898 else if (hash->elf.root.type == bfd_link_hash_undefweak
12899 || hash->elf.root.type == bfd_link_hash_undefined)
12900 {
12901 /* Recognise an old ABI func code entry sym, and
12902 use the func descriptor sym instead if it is
12903 defined. */
12904 if (hash->elf.root.root.string[0] == '.'
12905 && hash->oh != NULL)
12906 {
12907 fdh = ppc_follow_link (hash->oh);
12908 if (fdh->elf.root.type == bfd_link_hash_defined
12909 || fdh->elf.root.type == bfd_link_hash_defweak)
12910 {
12911 sym_sec = fdh->elf.root.u.def.section;
12912 sym_value = fdh->elf.root.u.def.value;
12913 if (sym_sec->output_section != NULL)
12914 ok_dest = TRUE;
12915 }
12916 else
12917 fdh = NULL;
12918 }
12919 }
12920 else
12921 {
12922 bfd_set_error (bfd_error_bad_value);
12923 goto error_ret_free_internal;
12924 }
12925
12926 destination = 0;
12927 local_off = 0;
12928 if (ok_dest)
12929 {
12930 sym_value += irela->r_addend;
12931 destination = (sym_value
12932 + sym_sec->output_offset
12933 + sym_sec->output_section->vma);
12934 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12935 ? hash->elf.other
12936 : sym->st_other);
12937 }
12938
12939 code_sec = sym_sec;
12940 code_value = sym_value;
12941 opd = get_opd_info (sym_sec);
12942 if (opd != NULL)
12943 {
12944 bfd_vma dest;
12945
12946 if (hash == NULL && opd->adjust != NULL)
12947 {
12948 long adjust = opd->adjust[OPD_NDX (sym_value)];
12949 if (adjust == -1)
12950 continue;
12951 code_value += adjust;
12952 sym_value += adjust;
12953 }
12954 dest = opd_entry_value (sym_sec, sym_value,
12955 &code_sec, &code_value, FALSE);
12956 if (dest != (bfd_vma) -1)
12957 {
12958 destination = dest;
12959 if (fdh != NULL)
12960 {
12961 /* Fixup old ABI sym to point at code
12962 entry. */
12963 hash->elf.root.type = bfd_link_hash_defweak;
12964 hash->elf.root.u.def.section = code_sec;
12965 hash->elf.root.u.def.value = code_value;
12966 }
12967 }
12968 }
12969
12970 /* Determine what (if any) linker stub is needed. */
12971 plt_ent = NULL;
12972 stub_type = ppc_type_of_stub (section, irela, &hash,
12973 &plt_ent, destination,
12974 local_off);
12975
12976 if (r_type == R_PPC64_REL24_NOTOC)
12977 {
12978 if (stub_type == ppc_stub_plt_call)
12979 stub_type = ppc_stub_plt_call_notoc;
12980 else if (stub_type == ppc_stub_long_branch
12981 || (code_sec != NULL
12982 && code_sec->output_section != NULL
12983 && (((hash ? hash->elf.other : sym->st_other)
12984 & STO_PPC64_LOCAL_MASK)
12985 > 1 << STO_PPC64_LOCAL_BIT)))
12986 stub_type = ppc_stub_long_branch_notoc;
12987 }
12988 else if (stub_type != ppc_stub_plt_call)
12989 {
12990 /* Check whether we need a TOC adjusting stub.
12991 Since the linker pastes together pieces from
12992 different object files when creating the
12993 _init and _fini functions, it may be that a
12994 call to what looks like a local sym is in
12995 fact a call needing a TOC adjustment. */
12996 if ((code_sec != NULL
12997 && code_sec->output_section != NULL
12998 && (htab->sec_info[code_sec->id].toc_off
12999 != htab->sec_info[section->id].toc_off)
13000 && (code_sec->has_toc_reloc
13001 || code_sec->makes_toc_func_call))
13002 || (((hash ? hash->elf.other : sym->st_other)
13003 & STO_PPC64_LOCAL_MASK)
13004 == 1 << STO_PPC64_LOCAL_BIT))
13005 stub_type = ppc_stub_long_branch_r2off;
13006 }
13007
13008 if (stub_type == ppc_stub_none)
13009 continue;
13010
13011 /* __tls_get_addr calls might be eliminated. */
13012 if (stub_type != ppc_stub_plt_call
13013 && stub_type != ppc_stub_plt_call_notoc
13014 && hash != NULL
13015 && (hash == htab->tls_get_addr
13016 || hash == htab->tls_get_addr_fd)
13017 && section->has_tls_reloc
13018 && irela != internal_relocs)
13019 {
13020 /* Get tls info. */
13021 unsigned char *tls_mask;
13022
13023 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13024 irela - 1, input_bfd))
13025 goto error_ret_free_internal;
13026 if ((*tls_mask & TLS_TLS) != 0)
13027 continue;
13028 }
13029
13030 if (stub_type == ppc_stub_plt_call)
13031 {
13032 if (!htab->opd_abi
13033 && htab->params->plt_localentry0 != 0
13034 && is_elfv2_localentry0 (&hash->elf))
13035 htab->has_plt_localentry0 = 1;
13036 else if (irela + 1 < irelaend
13037 && irela[1].r_offset == irela->r_offset + 4
13038 && (ELF64_R_TYPE (irela[1].r_info)
13039 == R_PPC64_TOCSAVE))
13040 {
13041 if (!tocsave_find (htab, INSERT,
13042 &local_syms, irela + 1, input_bfd))
13043 goto error_ret_free_internal;
13044 }
13045 else
13046 stub_type = ppc_stub_plt_call_r2save;
13047 }
13048
13049 /* Support for grouping stub sections. */
13050 id_sec = htab->sec_info[section->id].u.group->link_sec;
13051
13052 /* Get the name of this stub. */
13053 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13054 if (!stub_name)
13055 goto error_ret_free_internal;
13056
13057 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13058 stub_name, FALSE, FALSE);
13059 if (stub_entry != NULL)
13060 {
13061 enum ppc_stub_type old_type;
13062 /* A stub has already been created, but it may
13063 not be the required type. We shouldn't be
13064 transitioning from plt_call to long_branch
13065 stubs or vice versa, but we might be
13066 upgrading from plt_call to plt_call_r2save or
13067 from long_branch to long_branch_r2off. */
13068 free (stub_name);
13069 old_type = stub_entry->stub_type;
13070 switch (old_type)
13071 {
13072 default:
13073 abort ();
13074
13075 case ppc_stub_save_res:
13076 continue;
13077
13078 case ppc_stub_plt_call:
13079 case ppc_stub_plt_call_r2save:
13080 case ppc_stub_plt_call_notoc:
13081 case ppc_stub_plt_call_both:
13082 if (stub_type == ppc_stub_plt_call)
13083 continue;
13084 else if (stub_type == ppc_stub_plt_call_r2save)
13085 {
13086 if (old_type == ppc_stub_plt_call_notoc)
13087 stub_type = ppc_stub_plt_call_both;
13088 }
13089 else if (stub_type == ppc_stub_plt_call_notoc)
13090 {
13091 if (old_type == ppc_stub_plt_call_r2save)
13092 stub_type = ppc_stub_plt_call_both;
13093 }
13094 else
13095 abort ();
13096 break;
13097
13098 case ppc_stub_plt_branch:
13099 case ppc_stub_plt_branch_r2off:
13100 case ppc_stub_plt_branch_notoc:
13101 case ppc_stub_plt_branch_both:
13102 old_type += (ppc_stub_long_branch
13103 - ppc_stub_plt_branch);
13104 /* Fall through. */
13105 case ppc_stub_long_branch:
13106 case ppc_stub_long_branch_r2off:
13107 case ppc_stub_long_branch_notoc:
13108 case ppc_stub_long_branch_both:
13109 if (stub_type == ppc_stub_long_branch)
13110 continue;
13111 else if (stub_type == ppc_stub_long_branch_r2off)
13112 {
13113 if (old_type == ppc_stub_long_branch_notoc)
13114 stub_type = ppc_stub_long_branch_both;
13115 }
13116 else if (stub_type == ppc_stub_long_branch_notoc)
13117 {
13118 if (old_type == ppc_stub_long_branch_r2off)
13119 stub_type = ppc_stub_long_branch_both;
13120 }
13121 else
13122 abort ();
13123 break;
13124 }
13125 if (old_type < stub_type)
13126 stub_entry->stub_type = stub_type;
13127 continue;
13128 }
13129
13130 stub_entry = ppc_add_stub (stub_name, section, info);
13131 if (stub_entry == NULL)
13132 {
13133 free (stub_name);
13134 error_ret_free_internal:
13135 if (elf_section_data (section)->relocs == NULL)
13136 free (internal_relocs);
13137 error_ret_free_local:
13138 if (local_syms != NULL
13139 && (symtab_hdr->contents
13140 != (unsigned char *) local_syms))
13141 free (local_syms);
13142 return FALSE;
13143 }
13144
13145 stub_entry->stub_type = stub_type;
13146 if (stub_type >= ppc_stub_plt_call
13147 && stub_type <= ppc_stub_plt_call_both)
13148 {
13149 stub_entry->target_value = sym_value;
13150 stub_entry->target_section = sym_sec;
13151 }
13152 else
13153 {
13154 stub_entry->target_value = code_value;
13155 stub_entry->target_section = code_sec;
13156 }
13157 stub_entry->h = hash;
13158 stub_entry->plt_ent = plt_ent;
13159 stub_entry->symtype
13160 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13161 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13162
13163 if (hash != NULL
13164 && (hash->elf.root.type == bfd_link_hash_defined
13165 || hash->elf.root.type == bfd_link_hash_defweak))
13166 htab->stub_globals += 1;
13167 }
13168
13169 /* We're done with the internal relocs, free them. */
13170 if (elf_section_data (section)->relocs != internal_relocs)
13171 free (internal_relocs);
13172 }
13173
13174 if (local_syms != NULL
13175 && symtab_hdr->contents != (unsigned char *) local_syms)
13176 {
13177 if (!info->keep_memory)
13178 free (local_syms);
13179 else
13180 symtab_hdr->contents = (unsigned char *) local_syms;
13181 }
13182 }
13183
13184 /* We may have added some stubs. Find out the new size of the
13185 stub sections. */
13186 for (group = htab->group; group != NULL; group = group->next)
13187 {
13188 group->lr_restore = 0;
13189 group->eh_size = 0;
13190 if (group->stub_sec != NULL)
13191 {
13192 asection *stub_sec = group->stub_sec;
13193
13194 if (htab->stub_iteration <= STUB_SHRINK_ITER
13195 || stub_sec->rawsize < stub_sec->size)
13196 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13197 stub_sec->rawsize = stub_sec->size;
13198 stub_sec->size = 0;
13199 stub_sec->reloc_count = 0;
13200 stub_sec->flags &= ~SEC_RELOC;
13201 }
13202 }
13203
13204 if (htab->stub_iteration <= STUB_SHRINK_ITER
13205 || htab->brlt->rawsize < htab->brlt->size)
13206 htab->brlt->rawsize = htab->brlt->size;
13207 htab->brlt->size = 0;
13208 htab->brlt->reloc_count = 0;
13209 htab->brlt->flags &= ~SEC_RELOC;
13210 if (htab->relbrlt != NULL)
13211 htab->relbrlt->size = 0;
13212
13213 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13214
13215 for (group = htab->group; group != NULL; group = group->next)
13216 if (group->needs_save_res)
13217 group->stub_sec->size += htab->sfpr->size;
13218
13219 if (info->emitrelocations
13220 && htab->glink != NULL && htab->glink->size != 0)
13221 {
13222 htab->glink->reloc_count = 1;
13223 htab->glink->flags |= SEC_RELOC;
13224 }
13225
13226 if (htab->glink_eh_frame != NULL
13227 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13228 && htab->glink_eh_frame->output_section->size > 8)
13229 {
13230 size_t size = 0, align = 4;
13231
13232 for (group = htab->group; group != NULL; group = group->next)
13233 if (group->eh_size != 0)
13234 size += (group->eh_size + 17 + align - 1) & -align;
13235 if (htab->glink != NULL && htab->glink->size != 0)
13236 size += (24 + align - 1) & -align;
13237 if (size != 0)
13238 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13239 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13240 size = (size + align - 1) & -align;
13241 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13242 htab->glink_eh_frame->size = size;
13243 }
13244
13245 if (htab->params->plt_stub_align != 0)
13246 for (group = htab->group; group != NULL; group = group->next)
13247 if (group->stub_sec != NULL)
13248 {
13249 int align = abs (htab->params->plt_stub_align);
13250 group->stub_sec->size
13251 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13252 }
13253
13254 for (group = htab->group; group != NULL; group = group->next)
13255 if (group->stub_sec != NULL
13256 && group->stub_sec->rawsize != group->stub_sec->size
13257 && (htab->stub_iteration <= STUB_SHRINK_ITER
13258 || group->stub_sec->rawsize < group->stub_sec->size))
13259 break;
13260
13261 if (group == NULL
13262 && (htab->brlt->rawsize == htab->brlt->size
13263 || (htab->stub_iteration > STUB_SHRINK_ITER
13264 && htab->brlt->rawsize > htab->brlt->size))
13265 && (htab->glink_eh_frame == NULL
13266 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
13267 break;
13268
13269 /* Ask the linker to do its stuff. */
13270 (*htab->params->layout_sections_again) ();
13271 }
13272
13273 if (htab->glink_eh_frame != NULL
13274 && htab->glink_eh_frame->size != 0)
13275 {
13276 bfd_vma val;
13277 bfd_byte *p, *last_fde;
13278 size_t last_fde_len, size, align, pad;
13279 struct map_stub *group;
13280
13281 /* It is necessary to at least have a rough outline of the
13282 linker generated CIEs and FDEs written before
13283 bfd_elf_discard_info is run, in order for these FDEs to be
13284 indexed in .eh_frame_hdr. */
13285 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13286 if (p == NULL)
13287 return FALSE;
13288 htab->glink_eh_frame->contents = p;
13289 last_fde = p;
13290 align = 4;
13291
13292 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13293 /* CIE length (rewrite in case little-endian). */
13294 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13295 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13296 p += last_fde_len + 4;
13297
13298 for (group = htab->group; group != NULL; group = group->next)
13299 if (group->eh_size != 0)
13300 {
13301 group->eh_base = p - htab->glink_eh_frame->contents;
13302 last_fde = p;
13303 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13304 /* FDE length. */
13305 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13306 p += 4;
13307 /* CIE pointer. */
13308 val = p - htab->glink_eh_frame->contents;
13309 bfd_put_32 (htab->elf.dynobj, val, p);
13310 p += 4;
13311 /* Offset to stub section, written later. */
13312 p += 4;
13313 /* stub section size. */
13314 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13315 p += 4;
13316 /* Augmentation. */
13317 p += 1;
13318 /* Make sure we don't have all nops. This is enough for
13319 elf-eh-frame.c to detect the last non-nop opcode. */
13320 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13321 p = last_fde + last_fde_len + 4;
13322 }
13323 if (htab->glink != NULL && htab->glink->size != 0)
13324 {
13325 last_fde = p;
13326 last_fde_len = ((24 + align - 1) & -align) - 4;
13327 /* FDE length. */
13328 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13329 p += 4;
13330 /* CIE pointer. */
13331 val = p - htab->glink_eh_frame->contents;
13332 bfd_put_32 (htab->elf.dynobj, val, p);
13333 p += 4;
13334 /* Offset to .glink, written later. */
13335 p += 4;
13336 /* .glink size. */
13337 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13338 p += 4;
13339 /* Augmentation. */
13340 p += 1;
13341
13342 *p++ = DW_CFA_advance_loc + 1;
13343 *p++ = DW_CFA_register;
13344 *p++ = 65;
13345 *p++ = htab->opd_abi ? 12 : 0;
13346 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13347 *p++ = DW_CFA_restore_extended;
13348 *p++ = 65;
13349 p += ((24 + align - 1) & -align) - 24;
13350 }
13351 /* Subsume any padding into the last FDE if user .eh_frame
13352 sections are aligned more than glink_eh_frame. Otherwise any
13353 zero padding will be seen as a terminator. */
13354 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13355 size = p - htab->glink_eh_frame->contents;
13356 pad = ((size + align - 1) & -align) - size;
13357 htab->glink_eh_frame->size = size + pad;
13358 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13359 }
13360
13361 maybe_strip_output (info, htab->brlt);
13362 if (htab->glink_eh_frame != NULL)
13363 maybe_strip_output (info, htab->glink_eh_frame);
13364
13365 return TRUE;
13366 }
13367
13368 /* Called after we have determined section placement. If sections
13369 move, we'll be called again. Provide a value for TOCstart. */
13370
13371 bfd_vma
13372 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13373 {
13374 asection *s;
13375 bfd_vma TOCstart, adjust;
13376
13377 if (info != NULL)
13378 {
13379 struct elf_link_hash_entry *h;
13380 struct elf_link_hash_table *htab = elf_hash_table (info);
13381
13382 if (is_elf_hash_table (htab)
13383 && htab->hgot != NULL)
13384 h = htab->hgot;
13385 else
13386 {
13387 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13388 if (is_elf_hash_table (htab))
13389 htab->hgot = h;
13390 }
13391 if (h != NULL
13392 && h->root.type == bfd_link_hash_defined
13393 && !h->root.linker_def
13394 && (!is_elf_hash_table (htab)
13395 || h->def_regular))
13396 {
13397 TOCstart = (h->root.u.def.value - TOC_BASE_OFF
13398 + h->root.u.def.section->output_offset
13399 + h->root.u.def.section->output_section->vma);
13400 _bfd_set_gp_value (obfd, TOCstart);
13401 return TOCstart;
13402 }
13403 }
13404
13405 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13406 order. The TOC starts where the first of these sections starts. */
13407 s = bfd_get_section_by_name (obfd, ".got");
13408 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13409 s = bfd_get_section_by_name (obfd, ".toc");
13410 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13411 s = bfd_get_section_by_name (obfd, ".tocbss");
13412 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13413 s = bfd_get_section_by_name (obfd, ".plt");
13414 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13415 {
13416 /* This may happen for
13417 o references to TOC base (SYM@toc / TOC[tc0]) without a
13418 .toc directive
13419 o bad linker script
13420 o --gc-sections and empty TOC sections
13421
13422 FIXME: Warn user? */
13423
13424 /* Look for a likely section. We probably won't even be
13425 using TOCstart. */
13426 for (s = obfd->sections; s != NULL; s = s->next)
13427 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13428 | SEC_EXCLUDE))
13429 == (SEC_ALLOC | SEC_SMALL_DATA))
13430 break;
13431 if (s == NULL)
13432 for (s = obfd->sections; s != NULL; s = s->next)
13433 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13434 == (SEC_ALLOC | SEC_SMALL_DATA))
13435 break;
13436 if (s == NULL)
13437 for (s = obfd->sections; s != NULL; s = s->next)
13438 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13439 == SEC_ALLOC)
13440 break;
13441 if (s == NULL)
13442 for (s = obfd->sections; s != NULL; s = s->next)
13443 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13444 break;
13445 }
13446
13447 TOCstart = 0;
13448 if (s != NULL)
13449 TOCstart = s->output_section->vma + s->output_offset;
13450
13451 /* Force alignment. */
13452 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13453 TOCstart -= adjust;
13454 _bfd_set_gp_value (obfd, TOCstart);
13455
13456 if (info != NULL && s != NULL)
13457 {
13458 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13459
13460 if (htab != NULL)
13461 {
13462 if (htab->elf.hgot != NULL)
13463 {
13464 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13465 htab->elf.hgot->root.u.def.section = s;
13466 }
13467 }
13468 else
13469 {
13470 struct bfd_link_hash_entry *bh = NULL;
13471 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13472 s, TOC_BASE_OFF - adjust,
13473 NULL, FALSE, FALSE, &bh);
13474 }
13475 }
13476 return TOCstart;
13477 }
13478
13479 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13480 write out any global entry stubs, and PLT relocations. */
13481
13482 static bfd_boolean
13483 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13484 {
13485 struct bfd_link_info *info;
13486 struct ppc_link_hash_table *htab;
13487 struct plt_entry *ent;
13488 asection *s;
13489
13490 if (h->root.type == bfd_link_hash_indirect)
13491 return TRUE;
13492
13493 info = inf;
13494 htab = ppc_hash_table (info);
13495 if (htab == NULL)
13496 return FALSE;
13497
13498 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13499 if (ent->plt.offset != (bfd_vma) -1)
13500 {
13501 /* This symbol has an entry in the procedure linkage
13502 table. Set it up. */
13503 Elf_Internal_Rela rela;
13504 asection *plt, *relplt;
13505 bfd_byte *loc;
13506
13507 if (!htab->elf.dynamic_sections_created
13508 || h->dynindx == -1)
13509 {
13510 if (!(h->def_regular
13511 && (h->root.type == bfd_link_hash_defined
13512 || h->root.type == bfd_link_hash_defweak)))
13513 continue;
13514 if (h->type == STT_GNU_IFUNC)
13515 {
13516 plt = htab->elf.iplt;
13517 relplt = htab->elf.irelplt;
13518 htab->local_ifunc_resolver = 1;
13519 if (htab->opd_abi)
13520 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13521 else
13522 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13523 }
13524 else
13525 {
13526 plt = htab->pltlocal;
13527 if (bfd_link_pic (info))
13528 {
13529 relplt = htab->relpltlocal;
13530 if (htab->opd_abi)
13531 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13532 else
13533 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13534 }
13535 else
13536 relplt = NULL;
13537 }
13538 rela.r_addend = (h->root.u.def.value
13539 + h->root.u.def.section->output_offset
13540 + h->root.u.def.section->output_section->vma
13541 + ent->addend);
13542
13543 if (relplt == NULL)
13544 {
13545 loc = plt->contents + ent->plt.offset;
13546 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
13547 if (htab->opd_abi)
13548 {
13549 bfd_vma toc = elf_gp (info->output_bfd);
13550 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
13551 bfd_put_64 (info->output_bfd, toc, loc + 8);
13552 }
13553 }
13554 else
13555 {
13556 rela.r_offset = (plt->output_section->vma
13557 + plt->output_offset
13558 + ent->plt.offset);
13559 loc = relplt->contents + (relplt->reloc_count++
13560 * sizeof (Elf64_External_Rela));
13561 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13562 }
13563 }
13564 else
13565 {
13566 rela.r_offset = (htab->elf.splt->output_section->vma
13567 + htab->elf.splt->output_offset
13568 + ent->plt.offset);
13569 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13570 rela.r_addend = ent->addend;
13571 loc = (htab->elf.srelplt->contents
13572 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
13573 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
13574 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
13575 htab->maybe_local_ifunc_resolver = 1;
13576 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13577 }
13578 }
13579
13580 if (!h->pointer_equality_needed)
13581 return TRUE;
13582
13583 if (h->def_regular)
13584 return TRUE;
13585
13586 s = htab->global_entry;
13587 if (s == NULL || s->size == 0)
13588 return TRUE;
13589
13590 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13591 if (ent->plt.offset != (bfd_vma) -1
13592 && ent->addend == 0)
13593 {
13594 bfd_byte *p;
13595 asection *plt;
13596 bfd_vma off;
13597
13598 p = s->contents + h->root.u.def.value;
13599 plt = htab->elf.splt;
13600 if (!htab->elf.dynamic_sections_created
13601 || h->dynindx == -1)
13602 {
13603 if (h->type == STT_GNU_IFUNC)
13604 plt = htab->elf.iplt;
13605 else
13606 plt = htab->pltlocal;
13607 }
13608 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
13609 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
13610
13611 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
13612 {
13613 info->callbacks->einfo
13614 (_("%P: linkage table error against `%pT'\n"),
13615 h->root.root.string);
13616 bfd_set_error (bfd_error_bad_value);
13617 htab->stub_error = TRUE;
13618 }
13619
13620 htab->stub_count[ppc_stub_global_entry - 1] += 1;
13621 if (htab->params->emit_stub_syms)
13622 {
13623 size_t len = strlen (h->root.root.string);
13624 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
13625
13626 if (name == NULL)
13627 return FALSE;
13628
13629 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
13630 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
13631 if (h == NULL)
13632 return FALSE;
13633 if (h->root.type == bfd_link_hash_new)
13634 {
13635 h->root.type = bfd_link_hash_defined;
13636 h->root.u.def.section = s;
13637 h->root.u.def.value = p - s->contents;
13638 h->ref_regular = 1;
13639 h->def_regular = 1;
13640 h->ref_regular_nonweak = 1;
13641 h->forced_local = 1;
13642 h->non_elf = 0;
13643 h->root.linker_def = 1;
13644 }
13645 }
13646
13647 if (PPC_HA (off) != 0)
13648 {
13649 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
13650 p += 4;
13651 }
13652 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
13653 p += 4;
13654 bfd_put_32 (s->owner, MTCTR_R12, p);
13655 p += 4;
13656 bfd_put_32 (s->owner, BCTR, p);
13657 break;
13658 }
13659 return TRUE;
13660 }
13661
13662 /* Write PLT relocs for locals. */
13663
13664 static bfd_boolean
13665 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
13666 {
13667 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13668 bfd *ibfd;
13669
13670 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13671 {
13672 struct got_entry **lgot_ents, **end_lgot_ents;
13673 struct plt_entry **local_plt, **lplt, **end_local_plt;
13674 Elf_Internal_Shdr *symtab_hdr;
13675 bfd_size_type locsymcount;
13676 Elf_Internal_Sym *local_syms = NULL;
13677 struct plt_entry *ent;
13678
13679 if (!is_ppc64_elf (ibfd))
13680 continue;
13681
13682 lgot_ents = elf_local_got_ents (ibfd);
13683 if (!lgot_ents)
13684 continue;
13685
13686 symtab_hdr = &elf_symtab_hdr (ibfd);
13687 locsymcount = symtab_hdr->sh_info;
13688 end_lgot_ents = lgot_ents + locsymcount;
13689 local_plt = (struct plt_entry **) end_lgot_ents;
13690 end_local_plt = local_plt + locsymcount;
13691 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
13692 for (ent = *lplt; ent != NULL; ent = ent->next)
13693 if (ent->plt.offset != (bfd_vma) -1)
13694 {
13695 Elf_Internal_Sym *sym;
13696 asection *sym_sec;
13697 asection *plt, *relplt;
13698 bfd_byte *loc;
13699 bfd_vma val;
13700
13701 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
13702 lplt - local_plt, ibfd))
13703 {
13704 if (local_syms != NULL
13705 && symtab_hdr->contents != (unsigned char *) local_syms)
13706 free (local_syms);
13707 return FALSE;
13708 }
13709
13710 val = sym->st_value + ent->addend;
13711 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
13712 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
13713 if (sym_sec != NULL && sym_sec->output_section != NULL)
13714 val += sym_sec->output_offset + sym_sec->output_section->vma;
13715
13716 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13717 {
13718 htab->local_ifunc_resolver = 1;
13719 plt = htab->elf.iplt;
13720 relplt = htab->elf.irelplt;
13721 }
13722 else
13723 {
13724 plt = htab->pltlocal;
13725 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
13726 }
13727
13728 if (relplt == NULL)
13729 {
13730 loc = plt->contents + ent->plt.offset;
13731 bfd_put_64 (info->output_bfd, val, loc);
13732 if (htab->opd_abi)
13733 {
13734 bfd_vma toc = elf_gp (ibfd);
13735 bfd_put_64 (info->output_bfd, toc, loc + 8);
13736 }
13737 }
13738 else
13739 {
13740 Elf_Internal_Rela rela;
13741 rela.r_offset = (ent->plt.offset
13742 + plt->output_offset
13743 + plt->output_section->vma);
13744 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13745 {
13746 if (htab->opd_abi)
13747 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13748 else
13749 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13750 }
13751 else
13752 {
13753 if (htab->opd_abi)
13754 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13755 else
13756 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13757 }
13758 rela.r_addend = val;
13759 loc = relplt->contents + (relplt->reloc_count++
13760 * sizeof (Elf64_External_Rela));
13761 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13762 }
13763 }
13764
13765 if (local_syms != NULL
13766 && symtab_hdr->contents != (unsigned char *) local_syms)
13767 {
13768 if (!info->keep_memory)
13769 free (local_syms);
13770 else
13771 symtab_hdr->contents = (unsigned char *) local_syms;
13772 }
13773 }
13774 return TRUE;
13775 }
13776
13777 /* Build all the stubs associated with the current output file.
13778 The stubs are kept in a hash table attached to the main linker
13779 hash table. This function is called via gldelf64ppc_finish. */
13780
13781 bfd_boolean
13782 ppc64_elf_build_stubs (struct bfd_link_info *info,
13783 char **stats)
13784 {
13785 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13786 struct map_stub *group;
13787 asection *stub_sec;
13788 bfd_byte *p;
13789 int stub_sec_count = 0;
13790
13791 if (htab == NULL)
13792 return FALSE;
13793
13794 /* Allocate memory to hold the linker stubs. */
13795 for (group = htab->group; group != NULL; group = group->next)
13796 {
13797 group->eh_size = 0;
13798 group->lr_restore = 0;
13799 if ((stub_sec = group->stub_sec) != NULL
13800 && stub_sec->size != 0)
13801 {
13802 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
13803 stub_sec->size);
13804 if (stub_sec->contents == NULL)
13805 return FALSE;
13806 stub_sec->size = 0;
13807 }
13808 }
13809
13810 if (htab->glink != NULL && htab->glink->size != 0)
13811 {
13812 unsigned int indx;
13813 bfd_vma plt0;
13814
13815 /* Build the .glink plt call stub. */
13816 if (htab->params->emit_stub_syms)
13817 {
13818 struct elf_link_hash_entry *h;
13819 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
13820 TRUE, FALSE, FALSE);
13821 if (h == NULL)
13822 return FALSE;
13823 if (h->root.type == bfd_link_hash_new)
13824 {
13825 h->root.type = bfd_link_hash_defined;
13826 h->root.u.def.section = htab->glink;
13827 h->root.u.def.value = 8;
13828 h->ref_regular = 1;
13829 h->def_regular = 1;
13830 h->ref_regular_nonweak = 1;
13831 h->forced_local = 1;
13832 h->non_elf = 0;
13833 h->root.linker_def = 1;
13834 }
13835 }
13836 plt0 = (htab->elf.splt->output_section->vma
13837 + htab->elf.splt->output_offset
13838 - 16);
13839 if (info->emitrelocations)
13840 {
13841 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
13842 if (r == NULL)
13843 return FALSE;
13844 r->r_offset = (htab->glink->output_offset
13845 + htab->glink->output_section->vma);
13846 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
13847 r->r_addend = plt0;
13848 }
13849 p = htab->glink->contents;
13850 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
13851 bfd_put_64 (htab->glink->owner, plt0, p);
13852 p += 8;
13853 if (htab->opd_abi)
13854 {
13855 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
13856 p += 4;
13857 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13858 p += 4;
13859 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13860 p += 4;
13861 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13862 p += 4;
13863 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
13864 p += 4;
13865 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13866 p += 4;
13867 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13868 p += 4;
13869 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
13870 p += 4;
13871 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13872 p += 4;
13873 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
13874 p += 4;
13875 }
13876 else
13877 {
13878 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
13879 p += 4;
13880 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13881 p += 4;
13882 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13883 p += 4;
13884 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
13885 p += 4;
13886 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13887 p += 4;
13888 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
13889 p += 4;
13890 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
13891 p += 4;
13892 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13893 p += 4;
13894 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
13895 p += 4;
13896 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13897 p += 4;
13898 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
13899 p += 4;
13900 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13901 p += 4;
13902 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
13903 p += 4;
13904 }
13905 bfd_put_32 (htab->glink->owner, BCTR, p);
13906 p += 4;
13907 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
13908
13909 /* Build the .glink lazy link call stubs. */
13910 indx = 0;
13911 while (p < htab->glink->contents + htab->glink->size)
13912 {
13913 if (htab->opd_abi)
13914 {
13915 if (indx < 0x8000)
13916 {
13917 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
13918 p += 4;
13919 }
13920 else
13921 {
13922 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
13923 p += 4;
13924 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
13925 p);
13926 p += 4;
13927 }
13928 }
13929 bfd_put_32 (htab->glink->owner,
13930 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
13931 indx++;
13932 p += 4;
13933 }
13934 }
13935
13936 /* Build .glink global entry stubs, and PLT relocs for globals. */
13937 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
13938
13939 if (!write_plt_relocs_for_local_syms (info))
13940 return FALSE;
13941
13942 if (htab->brlt != NULL && htab->brlt->size != 0)
13943 {
13944 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
13945 htab->brlt->size);
13946 if (htab->brlt->contents == NULL)
13947 return FALSE;
13948 }
13949 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
13950 {
13951 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
13952 htab->relbrlt->size);
13953 if (htab->relbrlt->contents == NULL)
13954 return FALSE;
13955 }
13956
13957 /* Build the stubs as directed by the stub hash table. */
13958 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
13959
13960 for (group = htab->group; group != NULL; group = group->next)
13961 if (group->needs_save_res)
13962 group->stub_sec->size += htab->sfpr->size;
13963
13964 if (htab->relbrlt != NULL)
13965 htab->relbrlt->reloc_count = 0;
13966
13967 if (htab->params->plt_stub_align != 0)
13968 for (group = htab->group; group != NULL; group = group->next)
13969 if ((stub_sec = group->stub_sec) != NULL)
13970 {
13971 int align = abs (htab->params->plt_stub_align);
13972 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
13973 }
13974
13975 for (group = htab->group; group != NULL; group = group->next)
13976 if (group->needs_save_res)
13977 {
13978 stub_sec = group->stub_sec;
13979 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
13980 htab->sfpr->contents, htab->sfpr->size);
13981 if (htab->params->emit_stub_syms)
13982 {
13983 unsigned int i;
13984
13985 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
13986 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
13987 return FALSE;
13988 }
13989 }
13990
13991 if (htab->glink_eh_frame != NULL
13992 && htab->glink_eh_frame->size != 0)
13993 {
13994 bfd_vma val;
13995 size_t align = 4;
13996
13997 p = htab->glink_eh_frame->contents;
13998 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13999
14000 for (group = htab->group; group != NULL; group = group->next)
14001 if (group->eh_size != 0)
14002 {
14003 /* Offset to stub section. */
14004 val = (group->stub_sec->output_section->vma
14005 + group->stub_sec->output_offset);
14006 val -= (htab->glink_eh_frame->output_section->vma
14007 + htab->glink_eh_frame->output_offset
14008 + (p + 8 - htab->glink_eh_frame->contents));
14009 if (val + 0x80000000 > 0xffffffff)
14010 {
14011 _bfd_error_handler
14012 (_("%s offset too large for .eh_frame sdata4 encoding"),
14013 group->stub_sec->name);
14014 return FALSE;
14015 }
14016 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14017 p += (group->eh_size + 17 + 3) & -4;
14018 }
14019 if (htab->glink != NULL && htab->glink->size != 0)
14020 {
14021 /* Offset to .glink. */
14022 val = (htab->glink->output_section->vma
14023 + htab->glink->output_offset
14024 + 8);
14025 val -= (htab->glink_eh_frame->output_section->vma
14026 + htab->glink_eh_frame->output_offset
14027 + (p + 8 - htab->glink_eh_frame->contents));
14028 if (val + 0x80000000 > 0xffffffff)
14029 {
14030 _bfd_error_handler
14031 (_("%s offset too large for .eh_frame sdata4 encoding"),
14032 htab->glink->name);
14033 return FALSE;
14034 }
14035 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14036 p += (24 + align - 1) & -align;
14037 }
14038 }
14039
14040 for (group = htab->group; group != NULL; group = group->next)
14041 if ((stub_sec = group->stub_sec) != NULL)
14042 {
14043 stub_sec_count += 1;
14044 if (stub_sec->rawsize != stub_sec->size
14045 && (htab->stub_iteration <= STUB_SHRINK_ITER
14046 || stub_sec->rawsize < stub_sec->size))
14047 break;
14048 }
14049
14050 if (group != NULL)
14051 {
14052 htab->stub_error = TRUE;
14053 _bfd_error_handler (_("stubs don't match calculated size"));
14054 }
14055
14056 if (htab->stub_error)
14057 return FALSE;
14058
14059 if (stats != NULL)
14060 {
14061 size_t len;
14062 *stats = bfd_malloc (500);
14063 if (*stats == NULL)
14064 return FALSE;
14065
14066 len = sprintf (*stats,
14067 ngettext ("linker stubs in %u group\n",
14068 "linker stubs in %u groups\n",
14069 stub_sec_count),
14070 stub_sec_count);
14071 sprintf (*stats + len, _(" branch %lu\n"
14072 " branch toc adj %lu\n"
14073 " branch notoc %lu\n"
14074 " branch both %lu\n"
14075 " long branch %lu\n"
14076 " long toc adj %lu\n"
14077 " long notoc %lu\n"
14078 " long both %lu\n"
14079 " plt call %lu\n"
14080 " plt call save %lu\n"
14081 " plt call notoc %lu\n"
14082 " plt call both %lu\n"
14083 " global entry %lu"),
14084 htab->stub_count[ppc_stub_long_branch - 1],
14085 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14086 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14087 htab->stub_count[ppc_stub_long_branch_both - 1],
14088 htab->stub_count[ppc_stub_plt_branch - 1],
14089 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14090 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14091 htab->stub_count[ppc_stub_plt_branch_both - 1],
14092 htab->stub_count[ppc_stub_plt_call - 1],
14093 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14094 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14095 htab->stub_count[ppc_stub_plt_call_both - 1],
14096 htab->stub_count[ppc_stub_global_entry - 1]);
14097 }
14098 return TRUE;
14099 }
14100
14101 /* What to do when ld finds relocations against symbols defined in
14102 discarded sections. */
14103
14104 static unsigned int
14105 ppc64_elf_action_discarded (asection *sec)
14106 {
14107 if (strcmp (".opd", sec->name) == 0)
14108 return 0;
14109
14110 if (strcmp (".toc", sec->name) == 0)
14111 return 0;
14112
14113 if (strcmp (".toc1", sec->name) == 0)
14114 return 0;
14115
14116 return _bfd_elf_default_action_discarded (sec);
14117 }
14118
14119 /* The RELOCATE_SECTION function is called by the ELF backend linker
14120 to handle the relocations for a section.
14121
14122 The relocs are always passed as Rela structures; if the section
14123 actually uses Rel structures, the r_addend field will always be
14124 zero.
14125
14126 This function is responsible for adjust the section contents as
14127 necessary, and (if using Rela relocs and generating a
14128 relocatable output file) adjusting the reloc addend as
14129 necessary.
14130
14131 This function does not have to worry about setting the reloc
14132 address or the reloc symbol index.
14133
14134 LOCAL_SYMS is a pointer to the swapped in local symbols.
14135
14136 LOCAL_SECTIONS is an array giving the section in the input file
14137 corresponding to the st_shndx field of each local symbol.
14138
14139 The global hash table entry for the global symbols can be found
14140 via elf_sym_hashes (input_bfd).
14141
14142 When generating relocatable output, this function must handle
14143 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14144 going to be the section symbol corresponding to the output
14145 section, which means that the addend must be adjusted
14146 accordingly. */
14147
14148 static bfd_boolean
14149 ppc64_elf_relocate_section (bfd *output_bfd,
14150 struct bfd_link_info *info,
14151 bfd *input_bfd,
14152 asection *input_section,
14153 bfd_byte *contents,
14154 Elf_Internal_Rela *relocs,
14155 Elf_Internal_Sym *local_syms,
14156 asection **local_sections)
14157 {
14158 struct ppc_link_hash_table *htab;
14159 Elf_Internal_Shdr *symtab_hdr;
14160 struct elf_link_hash_entry **sym_hashes;
14161 Elf_Internal_Rela *rel;
14162 Elf_Internal_Rela *wrel;
14163 Elf_Internal_Rela *relend;
14164 Elf_Internal_Rela outrel;
14165 bfd_byte *loc;
14166 struct got_entry **local_got_ents;
14167 bfd_vma TOCstart;
14168 bfd_boolean ret = TRUE;
14169 bfd_boolean is_opd;
14170 /* Assume 'at' branch hints. */
14171 bfd_boolean is_isa_v2 = TRUE;
14172 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14173
14174 /* Initialize howto table if needed. */
14175 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14176 ppc_howto_init ();
14177
14178 htab = ppc_hash_table (info);
14179 if (htab == NULL)
14180 return FALSE;
14181
14182 /* Don't relocate stub sections. */
14183 if (input_section->owner == htab->params->stub_bfd)
14184 return TRUE;
14185
14186 if (!is_ppc64_elf (input_bfd))
14187 {
14188 bfd_set_error (bfd_error_wrong_format);
14189 return FALSE;
14190 }
14191
14192 local_got_ents = elf_local_got_ents (input_bfd);
14193 TOCstart = elf_gp (output_bfd);
14194 symtab_hdr = &elf_symtab_hdr (input_bfd);
14195 sym_hashes = elf_sym_hashes (input_bfd);
14196 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14197
14198 rel = wrel = relocs;
14199 relend = relocs + input_section->reloc_count;
14200 for (; rel < relend; wrel++, rel++)
14201 {
14202 enum elf_ppc64_reloc_type r_type;
14203 bfd_vma addend;
14204 bfd_reloc_status_type r;
14205 Elf_Internal_Sym *sym;
14206 asection *sec;
14207 struct elf_link_hash_entry *h_elf;
14208 struct ppc_link_hash_entry *h;
14209 struct ppc_link_hash_entry *fdh;
14210 const char *sym_name;
14211 unsigned long r_symndx, toc_symndx;
14212 bfd_vma toc_addend;
14213 unsigned char tls_mask, tls_gd, tls_type;
14214 unsigned char sym_type;
14215 bfd_vma relocation;
14216 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14217 bfd_boolean warned;
14218 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14219 unsigned int insn;
14220 unsigned int mask;
14221 struct ppc_stub_hash_entry *stub_entry;
14222 bfd_vma max_br_offset;
14223 bfd_vma from;
14224 Elf_Internal_Rela orig_rel;
14225 reloc_howto_type *howto;
14226 struct reloc_howto_struct alt_howto;
14227 uint64_t pinsn;
14228 bfd_vma offset;
14229
14230 again:
14231 orig_rel = *rel;
14232
14233 r_type = ELF64_R_TYPE (rel->r_info);
14234 r_symndx = ELF64_R_SYM (rel->r_info);
14235
14236 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14237 symbol of the previous ADDR64 reloc. The symbol gives us the
14238 proper TOC base to use. */
14239 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14240 && wrel != relocs
14241 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14242 && is_opd)
14243 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14244
14245 sym = NULL;
14246 sec = NULL;
14247 h_elf = NULL;
14248 sym_name = NULL;
14249 unresolved_reloc = FALSE;
14250 warned = FALSE;
14251
14252 if (r_symndx < symtab_hdr->sh_info)
14253 {
14254 /* It's a local symbol. */
14255 struct _opd_sec_data *opd;
14256
14257 sym = local_syms + r_symndx;
14258 sec = local_sections[r_symndx];
14259 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14260 sym_type = ELF64_ST_TYPE (sym->st_info);
14261 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14262 opd = get_opd_info (sec);
14263 if (opd != NULL && opd->adjust != NULL)
14264 {
14265 long adjust = opd->adjust[OPD_NDX (sym->st_value
14266 + rel->r_addend)];
14267 if (adjust == -1)
14268 relocation = 0;
14269 else
14270 {
14271 /* If this is a relocation against the opd section sym
14272 and we have edited .opd, adjust the reloc addend so
14273 that ld -r and ld --emit-relocs output is correct.
14274 If it is a reloc against some other .opd symbol,
14275 then the symbol value will be adjusted later. */
14276 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14277 rel->r_addend += adjust;
14278 else
14279 relocation += adjust;
14280 }
14281 }
14282 }
14283 else
14284 {
14285 bfd_boolean ignored;
14286
14287 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14288 r_symndx, symtab_hdr, sym_hashes,
14289 h_elf, sec, relocation,
14290 unresolved_reloc, warned, ignored);
14291 sym_name = h_elf->root.root.string;
14292 sym_type = h_elf->type;
14293 if (sec != NULL
14294 && sec->owner == output_bfd
14295 && strcmp (sec->name, ".opd") == 0)
14296 {
14297 /* This is a symbol defined in a linker script. All
14298 such are defined in output sections, even those
14299 defined by simple assignment from a symbol defined in
14300 an input section. Transfer the symbol to an
14301 appropriate input .opd section, so that a branch to
14302 this symbol will be mapped to the location specified
14303 by the opd entry. */
14304 struct bfd_link_order *lo;
14305 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14306 if (lo->type == bfd_indirect_link_order)
14307 {
14308 asection *isec = lo->u.indirect.section;
14309 if (h_elf->root.u.def.value >= isec->output_offset
14310 && h_elf->root.u.def.value < (isec->output_offset
14311 + isec->size))
14312 {
14313 h_elf->root.u.def.value -= isec->output_offset;
14314 h_elf->root.u.def.section = isec;
14315 sec = isec;
14316 break;
14317 }
14318 }
14319 }
14320 }
14321 h = (struct ppc_link_hash_entry *) h_elf;
14322
14323 if (sec != NULL && discarded_section (sec))
14324 {
14325 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14326 input_bfd, input_section,
14327 contents, rel->r_offset);
14328 wrel->r_offset = rel->r_offset;
14329 wrel->r_info = 0;
14330 wrel->r_addend = 0;
14331
14332 /* For ld -r, remove relocations in debug sections against
14333 symbols defined in discarded sections. Not done for
14334 non-debug to preserve relocs in .eh_frame which the
14335 eh_frame editing code expects to be present. */
14336 if (bfd_link_relocatable (info)
14337 && (input_section->flags & SEC_DEBUGGING))
14338 wrel--;
14339
14340 continue;
14341 }
14342
14343 if (bfd_link_relocatable (info))
14344 goto copy_reloc;
14345
14346 if (h != NULL && &h->elf == htab->elf.hgot)
14347 {
14348 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14349 sec = bfd_abs_section_ptr;
14350 unresolved_reloc = FALSE;
14351 }
14352
14353 /* TLS optimizations. Replace instruction sequences and relocs
14354 based on information we collected in tls_optimize. We edit
14355 RELOCS so that --emit-relocs will output something sensible
14356 for the final instruction stream. */
14357 tls_mask = 0;
14358 tls_gd = 0;
14359 toc_symndx = 0;
14360 if (h != NULL)
14361 tls_mask = h->tls_mask;
14362 else if (local_got_ents != NULL)
14363 {
14364 struct plt_entry **local_plt = (struct plt_entry **)
14365 (local_got_ents + symtab_hdr->sh_info);
14366 unsigned char *lgot_masks = (unsigned char *)
14367 (local_plt + symtab_hdr->sh_info);
14368 tls_mask = lgot_masks[r_symndx];
14369 }
14370 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14371 && (r_type == R_PPC64_TLS
14372 || r_type == R_PPC64_TLSGD
14373 || r_type == R_PPC64_TLSLD))
14374 {
14375 /* Check for toc tls entries. */
14376 unsigned char *toc_tls;
14377
14378 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14379 &local_syms, rel, input_bfd))
14380 return FALSE;
14381
14382 if (toc_tls)
14383 tls_mask = *toc_tls;
14384 }
14385
14386 /* Check that tls relocs are used with tls syms, and non-tls
14387 relocs are used with non-tls syms. */
14388 if (r_symndx != STN_UNDEF
14389 && r_type != R_PPC64_NONE
14390 && (h == NULL
14391 || h->elf.root.type == bfd_link_hash_defined
14392 || h->elf.root.type == bfd_link_hash_defweak)
14393 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
14394 {
14395 if ((tls_mask & TLS_TLS) != 0
14396 && (r_type == R_PPC64_TLS
14397 || r_type == R_PPC64_TLSGD
14398 || r_type == R_PPC64_TLSLD))
14399 /* R_PPC64_TLS is OK against a symbol in the TOC. */
14400 ;
14401 else
14402 info->callbacks->einfo
14403 (!IS_PPC64_TLS_RELOC (r_type)
14404 /* xgettext:c-format */
14405 ? _("%H: %s used with TLS symbol `%pT'\n")
14406 /* xgettext:c-format */
14407 : _("%H: %s used with non-TLS symbol `%pT'\n"),
14408 input_bfd, input_section, rel->r_offset,
14409 ppc64_elf_howto_table[r_type]->name,
14410 sym_name);
14411 }
14412
14413 /* Ensure reloc mapping code below stays sane. */
14414 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
14415 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
14416 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
14417 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
14418 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
14419 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
14420 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
14421 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
14422 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
14423 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
14424 abort ();
14425
14426 switch (r_type)
14427 {
14428 default:
14429 break;
14430
14431 case R_PPC64_LO_DS_OPT:
14432 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
14433 if ((insn & (0x3f << 26)) != 58u << 26)
14434 abort ();
14435 insn += (14u << 26) - (58u << 26);
14436 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
14437 r_type = R_PPC64_TOC16_LO;
14438 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14439 break;
14440
14441 case R_PPC64_TOC16:
14442 case R_PPC64_TOC16_LO:
14443 case R_PPC64_TOC16_DS:
14444 case R_PPC64_TOC16_LO_DS:
14445 {
14446 /* Check for toc tls entries. */
14447 unsigned char *toc_tls;
14448 int retval;
14449
14450 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14451 &local_syms, rel, input_bfd);
14452 if (retval == 0)
14453 return FALSE;
14454
14455 if (toc_tls)
14456 {
14457 tls_mask = *toc_tls;
14458 if (r_type == R_PPC64_TOC16_DS
14459 || r_type == R_PPC64_TOC16_LO_DS)
14460 {
14461 if ((tls_mask & TLS_TLS) != 0
14462 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
14463 goto toctprel;
14464 }
14465 else
14466 {
14467 /* If we found a GD reloc pair, then we might be
14468 doing a GD->IE transition. */
14469 if (retval == 2)
14470 {
14471 tls_gd = TLS_GDIE;
14472 if ((tls_mask & TLS_TLS) != 0
14473 && (tls_mask & TLS_GD) == 0)
14474 goto tls_ldgd_opt;
14475 }
14476 else if (retval == 3)
14477 {
14478 if ((tls_mask & TLS_TLS) != 0
14479 && (tls_mask & TLS_LD) == 0)
14480 goto tls_ldgd_opt;
14481 }
14482 }
14483 }
14484 }
14485 break;
14486
14487 case R_PPC64_GOT_TPREL16_HI:
14488 case R_PPC64_GOT_TPREL16_HA:
14489 if ((tls_mask & TLS_TLS) != 0
14490 && (tls_mask & TLS_TPREL) == 0)
14491 {
14492 rel->r_offset -= d_offset;
14493 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14494 r_type = R_PPC64_NONE;
14495 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14496 }
14497 break;
14498
14499 case R_PPC64_GOT_TPREL16_DS:
14500 case R_PPC64_GOT_TPREL16_LO_DS:
14501 if ((tls_mask & TLS_TLS) != 0
14502 && (tls_mask & TLS_TPREL) == 0)
14503 {
14504 toctprel:
14505 insn = bfd_get_32 (input_bfd,
14506 contents + rel->r_offset - d_offset);
14507 insn &= 31 << 21;
14508 insn |= 0x3c0d0000; /* addis 0,13,0 */
14509 bfd_put_32 (input_bfd, insn,
14510 contents + rel->r_offset - d_offset);
14511 r_type = R_PPC64_TPREL16_HA;
14512 if (toc_symndx != 0)
14513 {
14514 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14515 rel->r_addend = toc_addend;
14516 /* We changed the symbol. Start over in order to
14517 get h, sym, sec etc. right. */
14518 goto again;
14519 }
14520 else
14521 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14522 }
14523 break;
14524
14525 case R_PPC64_GOT_TPREL34:
14526 if ((tls_mask & TLS_TLS) != 0
14527 && (tls_mask & TLS_TPREL) == 0)
14528 {
14529 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
14530 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14531 pinsn <<= 32;
14532 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14533 pinsn += ((2ULL << 56) + (-1ULL << 52)
14534 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
14535 bfd_put_32 (input_bfd, pinsn >> 32,
14536 contents + rel->r_offset);
14537 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14538 contents + rel->r_offset + 4);
14539 r_type = R_PPC64_TPREL34;
14540 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14541 }
14542 break;
14543
14544 case R_PPC64_TLS:
14545 if ((tls_mask & TLS_TLS) != 0
14546 && (tls_mask & TLS_TPREL) == 0)
14547 {
14548 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14549 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
14550 if (insn == 0)
14551 break;
14552 if ((rel->r_offset & 3) == 0)
14553 {
14554 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
14555 /* Was PPC64_TLS which sits on insn boundary, now
14556 PPC64_TPREL16_LO which is at low-order half-word. */
14557 rel->r_offset += d_offset;
14558 r_type = R_PPC64_TPREL16_LO;
14559 if (toc_symndx != 0)
14560 {
14561 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14562 rel->r_addend = toc_addend;
14563 /* We changed the symbol. Start over in order to
14564 get h, sym, sec etc. right. */
14565 goto again;
14566 }
14567 else
14568 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14569 }
14570 else if ((rel->r_offset & 3) == 1)
14571 {
14572 /* For pcrel IE to LE we already have the full
14573 offset and thus don't need an addi here. A nop
14574 or mr will do. */
14575 if ((insn & (0x3f << 26)) == 14 << 26)
14576 {
14577 /* Extract regs from addi rt,ra,si. */
14578 unsigned int rt = (insn >> 21) & 0x1f;
14579 unsigned int ra = (insn >> 16) & 0x1f;
14580 if (rt == ra)
14581 insn = NOP;
14582 else
14583 {
14584 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
14585 insn = (rt << 16) | (ra << 21) | (ra << 11);
14586 insn |= (31u << 26) | (444u << 1);
14587 }
14588 }
14589 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
14590 }
14591 }
14592 break;
14593
14594 case R_PPC64_GOT_TLSGD16_HI:
14595 case R_PPC64_GOT_TLSGD16_HA:
14596 tls_gd = TLS_GDIE;
14597 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14598 goto tls_gdld_hi;
14599 break;
14600
14601 case R_PPC64_GOT_TLSLD16_HI:
14602 case R_PPC64_GOT_TLSLD16_HA:
14603 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14604 {
14605 tls_gdld_hi:
14606 if ((tls_mask & tls_gd) != 0)
14607 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
14608 + R_PPC64_GOT_TPREL16_DS);
14609 else
14610 {
14611 rel->r_offset -= d_offset;
14612 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14613 r_type = R_PPC64_NONE;
14614 }
14615 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14616 }
14617 break;
14618
14619 case R_PPC64_GOT_TLSGD16:
14620 case R_PPC64_GOT_TLSGD16_LO:
14621 tls_gd = TLS_GDIE;
14622 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14623 goto tls_ldgd_opt;
14624 break;
14625
14626 case R_PPC64_GOT_TLSLD16:
14627 case R_PPC64_GOT_TLSLD16_LO:
14628 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14629 {
14630 unsigned int insn1, insn2;
14631
14632 tls_ldgd_opt:
14633 offset = (bfd_vma) -1;
14634 /* If not using the newer R_PPC64_TLSGD/LD to mark
14635 __tls_get_addr calls, we must trust that the call
14636 stays with its arg setup insns, ie. that the next
14637 reloc is the __tls_get_addr call associated with
14638 the current reloc. Edit both insns. */
14639 if (input_section->has_tls_get_addr_call
14640 && rel + 1 < relend
14641 && branch_reloc_hash_match (input_bfd, rel + 1,
14642 htab->tls_get_addr,
14643 htab->tls_get_addr_fd))
14644 offset = rel[1].r_offset;
14645 /* We read the low GOT_TLS (or TOC16) insn because we
14646 need to keep the destination reg. It may be
14647 something other than the usual r3, and moved to r3
14648 before the call by intervening code. */
14649 insn1 = bfd_get_32 (input_bfd,
14650 contents + rel->r_offset - d_offset);
14651 if ((tls_mask & tls_gd) != 0)
14652 {
14653 /* IE */
14654 insn1 &= (0x1f << 21) | (0x1f << 16);
14655 insn1 |= 58 << 26; /* ld */
14656 insn2 = 0x7c636a14; /* add 3,3,13 */
14657 if (offset != (bfd_vma) -1)
14658 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14659 if (r_type == R_PPC64_TOC16
14660 || r_type == R_PPC64_TOC16_LO)
14661 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
14662 else
14663 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
14664 + R_PPC64_GOT_TPREL16_DS);
14665 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14666 }
14667 else
14668 {
14669 /* LE */
14670 insn1 &= 0x1f << 21;
14671 insn1 |= 0x3c0d0000; /* addis r,13,0 */
14672 insn2 = 0x38630000; /* addi 3,3,0 */
14673 if (tls_gd == 0)
14674 {
14675 /* Was an LD reloc. */
14676 r_symndx = STN_UNDEF;
14677 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14678 }
14679 else if (toc_symndx != 0)
14680 {
14681 r_symndx = toc_symndx;
14682 rel->r_addend = toc_addend;
14683 }
14684 r_type = R_PPC64_TPREL16_HA;
14685 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14686 if (offset != (bfd_vma) -1)
14687 {
14688 rel[1].r_info = ELF64_R_INFO (r_symndx,
14689 R_PPC64_TPREL16_LO);
14690 rel[1].r_offset = offset + d_offset;
14691 rel[1].r_addend = rel->r_addend;
14692 }
14693 }
14694 bfd_put_32 (input_bfd, insn1,
14695 contents + rel->r_offset - d_offset);
14696 if (offset != (bfd_vma) -1)
14697 {
14698 bfd_put_32 (input_bfd, insn2, contents + offset);
14699 if (offset + 8 <= input_section->size)
14700 {
14701 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14702 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
14703 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
14704 }
14705 }
14706 if ((tls_mask & tls_gd) == 0
14707 && (tls_gd == 0 || toc_symndx != 0))
14708 {
14709 /* We changed the symbol. Start over in order
14710 to get h, sym, sec etc. right. */
14711 goto again;
14712 }
14713 }
14714 break;
14715
14716 case R_PPC64_GOT_TLSGD34:
14717 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14718 {
14719 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14720 pinsn <<= 32;
14721 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14722 if ((tls_mask & TLS_GDIE) != 0)
14723 {
14724 /* IE, pla -> pld */
14725 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
14726 r_type = R_PPC64_GOT_TPREL34;
14727 }
14728 else
14729 {
14730 /* LE, pla pcrel -> paddi r13 */
14731 pinsn += (-1ULL << 52) + (13ULL << 16);
14732 r_type = R_PPC64_TPREL34;
14733 }
14734 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14735 bfd_put_32 (input_bfd, pinsn >> 32,
14736 contents + rel->r_offset);
14737 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14738 contents + rel->r_offset + 4);
14739 }
14740 break;
14741
14742 case R_PPC64_GOT_TLSLD34:
14743 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14744 {
14745 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14746 pinsn <<= 32;
14747 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14748 pinsn += (-1ULL << 52) + (13ULL << 16);
14749 bfd_put_32 (input_bfd, pinsn >> 32,
14750 contents + rel->r_offset);
14751 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14752 contents + rel->r_offset + 4);
14753 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14754 r_symndx = STN_UNDEF;
14755 r_type = R_PPC64_TPREL34;
14756 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14757 goto again;
14758 }
14759 break;
14760
14761 case R_PPC64_TLSGD:
14762 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
14763 && rel + 1 < relend)
14764 {
14765 unsigned int insn2;
14766 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14767
14768 offset = rel->r_offset;
14769 if (is_plt_seq_reloc (r_type1))
14770 {
14771 bfd_put_32 (output_bfd, NOP, contents + offset);
14772 if (r_type1 == R_PPC64_PLT_PCREL34
14773 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14774 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14775 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14776 break;
14777 }
14778
14779 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14780 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14781
14782 if ((tls_mask & TLS_GDIE) != 0)
14783 {
14784 /* IE */
14785 r_type = R_PPC64_NONE;
14786 insn2 = 0x7c636a14; /* add 3,3,13 */
14787 }
14788 else
14789 {
14790 /* LE */
14791 if (toc_symndx != 0)
14792 {
14793 r_symndx = toc_symndx;
14794 rel->r_addend = toc_addend;
14795 }
14796 if (r_type1 == R_PPC64_REL24_NOTOC
14797 || r_type1 == R_PPC64_PLTCALL_NOTOC)
14798 {
14799 r_type = R_PPC64_NONE;
14800 insn2 = NOP;
14801 }
14802 else
14803 {
14804 rel->r_offset = offset + d_offset;
14805 r_type = R_PPC64_TPREL16_LO;
14806 insn2 = 0x38630000; /* addi 3,3,0 */
14807 }
14808 }
14809 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14810 /* Zap the reloc on the _tls_get_addr call too. */
14811 BFD_ASSERT (offset == rel[1].r_offset);
14812 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14813 bfd_put_32 (input_bfd, insn2, contents + offset);
14814 if ((tls_mask & TLS_GDIE) == 0
14815 && toc_symndx != 0
14816 && r_type != R_PPC64_NONE)
14817 goto again;
14818 }
14819 break;
14820
14821 case R_PPC64_TLSLD:
14822 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
14823 && rel + 1 < relend)
14824 {
14825 unsigned int insn2;
14826 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14827
14828 offset = rel->r_offset;
14829 if (is_plt_seq_reloc (r_type1))
14830 {
14831 bfd_put_32 (output_bfd, NOP, contents + offset);
14832 if (r_type1 == R_PPC64_PLT_PCREL34
14833 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14834 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14835 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14836 break;
14837 }
14838
14839 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14840 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14841
14842 if (r_type1 == R_PPC64_REL24_NOTOC
14843 || r_type1 == R_PPC64_PLTCALL_NOTOC)
14844 {
14845 r_type = R_PPC64_NONE;
14846 insn2 = NOP;
14847 }
14848 else
14849 {
14850 rel->r_offset = offset + d_offset;
14851 r_symndx = STN_UNDEF;
14852 r_type = R_PPC64_TPREL16_LO;
14853 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14854 insn2 = 0x38630000; /* addi 3,3,0 */
14855 }
14856 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14857 /* Zap the reloc on the _tls_get_addr call too. */
14858 BFD_ASSERT (offset == rel[1].r_offset);
14859 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14860 bfd_put_32 (input_bfd, insn2, contents + offset);
14861 if (r_type != R_PPC64_NONE)
14862 goto again;
14863 }
14864 break;
14865
14866 case R_PPC64_DTPMOD64:
14867 if (rel + 1 < relend
14868 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
14869 && rel[1].r_offset == rel->r_offset + 8)
14870 {
14871 if ((tls_mask & TLS_GD) == 0)
14872 {
14873 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
14874 if ((tls_mask & TLS_GDIE) != 0)
14875 r_type = R_PPC64_TPREL64;
14876 else
14877 {
14878 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14879 r_type = R_PPC64_NONE;
14880 }
14881 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14882 }
14883 }
14884 else
14885 {
14886 if ((tls_mask & TLS_LD) == 0)
14887 {
14888 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14889 r_type = R_PPC64_NONE;
14890 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14891 }
14892 }
14893 break;
14894
14895 case R_PPC64_TPREL64:
14896 if ((tls_mask & TLS_TPREL) == 0)
14897 {
14898 r_type = R_PPC64_NONE;
14899 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14900 }
14901 break;
14902
14903 case R_PPC64_ENTRY:
14904 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14905 if (!bfd_link_pic (info)
14906 && !info->traditional_format
14907 && relocation + 0x80008000 <= 0xffffffff)
14908 {
14909 unsigned int insn1, insn2;
14910
14911 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
14912 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14913 if ((insn1 & ~0xfffc) == LD_R2_0R12
14914 && insn2 == ADD_R2_R2_R12)
14915 {
14916 bfd_put_32 (input_bfd,
14917 LIS_R2 + PPC_HA (relocation),
14918 contents + rel->r_offset);
14919 bfd_put_32 (input_bfd,
14920 ADDI_R2_R2 + PPC_LO (relocation),
14921 contents + rel->r_offset + 4);
14922 }
14923 }
14924 else
14925 {
14926 relocation -= (rel->r_offset
14927 + input_section->output_offset
14928 + input_section->output_section->vma);
14929 if (relocation + 0x80008000 <= 0xffffffff)
14930 {
14931 unsigned int insn1, insn2;
14932
14933 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
14934 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14935 if ((insn1 & ~0xfffc) == LD_R2_0R12
14936 && insn2 == ADD_R2_R2_R12)
14937 {
14938 bfd_put_32 (input_bfd,
14939 ADDIS_R2_R12 + PPC_HA (relocation),
14940 contents + rel->r_offset);
14941 bfd_put_32 (input_bfd,
14942 ADDI_R2_R2 + PPC_LO (relocation),
14943 contents + rel->r_offset + 4);
14944 }
14945 }
14946 }
14947 break;
14948
14949 case R_PPC64_REL16_HA:
14950 /* If we are generating a non-PIC executable, edit
14951 . 0: addis 2,12,.TOC.-0b@ha
14952 . addi 2,2,.TOC.-0b@l
14953 used by ELFv2 global entry points to set up r2, to
14954 . lis 2,.TOC.@ha
14955 . addi 2,2,.TOC.@l
14956 if .TOC. is in range. */
14957 if (!bfd_link_pic (info)
14958 && !info->traditional_format
14959 && !htab->opd_abi
14960 && rel->r_addend == d_offset
14961 && h != NULL && &h->elf == htab->elf.hgot
14962 && rel + 1 < relend
14963 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
14964 && rel[1].r_offset == rel->r_offset + 4
14965 && rel[1].r_addend == rel->r_addend + 4
14966 && relocation + 0x80008000 <= 0xffffffff)
14967 {
14968 unsigned int insn1, insn2;
14969 offset = rel->r_offset - d_offset;
14970 insn1 = bfd_get_32 (input_bfd, contents + offset);
14971 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14972 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
14973 && (insn2 & 0xffff0000) == ADDI_R2_R2)
14974 {
14975 r_type = R_PPC64_ADDR16_HA;
14976 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14977 rel->r_addend -= d_offset;
14978 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
14979 rel[1].r_addend -= d_offset + 4;
14980 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
14981 }
14982 }
14983 break;
14984 }
14985
14986 /* Handle other relocations that tweak non-addend part of insn. */
14987 insn = 0;
14988 max_br_offset = 1 << 25;
14989 addend = rel->r_addend;
14990 reloc_dest = DEST_NORMAL;
14991 switch (r_type)
14992 {
14993 default:
14994 break;
14995
14996 case R_PPC64_TOCSAVE:
14997 if (relocation + addend == (rel->r_offset
14998 + input_section->output_offset
14999 + input_section->output_section->vma)
15000 && tocsave_find (htab, NO_INSERT,
15001 &local_syms, rel, input_bfd))
15002 {
15003 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15004 if (insn == NOP
15005 || insn == CROR_151515 || insn == CROR_313131)
15006 bfd_put_32 (input_bfd,
15007 STD_R2_0R1 + STK_TOC (htab),
15008 contents + rel->r_offset);
15009 }
15010 break;
15011
15012 /* Branch taken prediction relocations. */
15013 case R_PPC64_ADDR14_BRTAKEN:
15014 case R_PPC64_REL14_BRTAKEN:
15015 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15016 /* Fall through. */
15017
15018 /* Branch not taken prediction relocations. */
15019 case R_PPC64_ADDR14_BRNTAKEN:
15020 case R_PPC64_REL14_BRNTAKEN:
15021 insn |= bfd_get_32 (input_bfd,
15022 contents + rel->r_offset) & ~(0x01 << 21);
15023 /* Fall through. */
15024
15025 case R_PPC64_REL14:
15026 max_br_offset = 1 << 15;
15027 /* Fall through. */
15028
15029 case R_PPC64_REL24:
15030 case R_PPC64_REL24_NOTOC:
15031 case R_PPC64_PLTCALL:
15032 case R_PPC64_PLTCALL_NOTOC:
15033 /* Calls to functions with a different TOC, such as calls to
15034 shared objects, need to alter the TOC pointer. This is
15035 done using a linkage stub. A REL24 branching to these
15036 linkage stubs needs to be followed by a nop, as the nop
15037 will be replaced with an instruction to restore the TOC
15038 base pointer. */
15039 fdh = h;
15040 if (h != NULL
15041 && h->oh != NULL
15042 && h->oh->is_func_descriptor)
15043 fdh = ppc_follow_link (h->oh);
15044 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15045 htab);
15046 if ((r_type == R_PPC64_PLTCALL
15047 || r_type == R_PPC64_PLTCALL_NOTOC)
15048 && stub_entry != NULL
15049 && stub_entry->stub_type >= ppc_stub_plt_call
15050 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15051 stub_entry = NULL;
15052
15053 if (stub_entry != NULL
15054 && ((stub_entry->stub_type >= ppc_stub_plt_call
15055 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15056 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15057 || stub_entry->stub_type == ppc_stub_plt_branch_both
15058 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15059 || stub_entry->stub_type == ppc_stub_long_branch_both))
15060 {
15061 bfd_boolean can_plt_call = FALSE;
15062
15063 if (stub_entry->stub_type == ppc_stub_plt_call
15064 && !htab->opd_abi
15065 && htab->params->plt_localentry0 != 0
15066 && is_elfv2_localentry0 (&h->elf))
15067 {
15068 /* The function doesn't use or change r2. */
15069 can_plt_call = TRUE;
15070 }
15071 else if (r_type == R_PPC64_REL24_NOTOC)
15072 {
15073 /* NOTOC calls don't need to restore r2. */
15074 can_plt_call = TRUE;
15075 }
15076
15077 /* All of these stubs may modify r2, so there must be a
15078 branch and link followed by a nop. The nop is
15079 replaced by an insn to restore r2. */
15080 else if (rel->r_offset + 8 <= input_section->size)
15081 {
15082 unsigned long br;
15083
15084 br = bfd_get_32 (input_bfd,
15085 contents + rel->r_offset);
15086 if ((br & 1) != 0)
15087 {
15088 unsigned long nop;
15089
15090 nop = bfd_get_32 (input_bfd,
15091 contents + rel->r_offset + 4);
15092 if (nop == LD_R2_0R1 + STK_TOC (htab))
15093 can_plt_call = TRUE;
15094 else if (nop == NOP
15095 || nop == CROR_151515
15096 || nop == CROR_313131)
15097 {
15098 if (h != NULL
15099 && (h == htab->tls_get_addr_fd
15100 || h == htab->tls_get_addr)
15101 && htab->params->tls_get_addr_opt)
15102 {
15103 /* Special stub used, leave nop alone. */
15104 }
15105 else
15106 bfd_put_32 (input_bfd,
15107 LD_R2_0R1 + STK_TOC (htab),
15108 contents + rel->r_offset + 4);
15109 can_plt_call = TRUE;
15110 }
15111 }
15112 }
15113
15114 if (!can_plt_call && h != NULL)
15115 {
15116 const char *name = h->elf.root.root.string;
15117
15118 if (*name == '.')
15119 ++name;
15120
15121 if (strncmp (name, "__libc_start_main", 17) == 0
15122 && (name[17] == 0 || name[17] == '@'))
15123 {
15124 /* Allow crt1 branch to go via a toc adjusting
15125 stub. Other calls that never return could do
15126 the same, if we could detect such. */
15127 can_plt_call = TRUE;
15128 }
15129 }
15130
15131 if (!can_plt_call)
15132 {
15133 /* g++ as of 20130507 emits self-calls without a
15134 following nop. This is arguably wrong since we
15135 have conflicting information. On the one hand a
15136 global symbol and on the other a local call
15137 sequence, but don't error for this special case.
15138 It isn't possible to cheaply verify we have
15139 exactly such a call. Allow all calls to the same
15140 section. */
15141 asection *code_sec = sec;
15142
15143 if (get_opd_info (sec) != NULL)
15144 {
15145 bfd_vma off = (relocation + addend
15146 - sec->output_section->vma
15147 - sec->output_offset);
15148
15149 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15150 }
15151 if (code_sec == input_section)
15152 can_plt_call = TRUE;
15153 }
15154
15155 if (!can_plt_call)
15156 {
15157 if (stub_entry->stub_type >= ppc_stub_plt_call
15158 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15159 info->callbacks->einfo
15160 /* xgettext:c-format */
15161 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15162 "(plt call stub)\n"),
15163 input_bfd, input_section, rel->r_offset, sym_name);
15164 else
15165 info->callbacks->einfo
15166 /* xgettext:c-format */
15167 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15168 "(toc save/adjust stub)\n"),
15169 input_bfd, input_section, rel->r_offset, sym_name);
15170
15171 bfd_set_error (bfd_error_bad_value);
15172 ret = FALSE;
15173 }
15174
15175 if (can_plt_call
15176 && stub_entry->stub_type >= ppc_stub_plt_call
15177 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15178 unresolved_reloc = FALSE;
15179 }
15180
15181 if ((stub_entry == NULL
15182 || stub_entry->stub_type == ppc_stub_long_branch
15183 || stub_entry->stub_type == ppc_stub_plt_branch)
15184 && get_opd_info (sec) != NULL)
15185 {
15186 /* The branch destination is the value of the opd entry. */
15187 bfd_vma off = (relocation + addend
15188 - sec->output_section->vma
15189 - sec->output_offset);
15190 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15191 if (dest != (bfd_vma) -1)
15192 {
15193 relocation = dest;
15194 addend = 0;
15195 reloc_dest = DEST_OPD;
15196 }
15197 }
15198
15199 /* If the branch is out of reach we ought to have a long
15200 branch stub. */
15201 from = (rel->r_offset
15202 + input_section->output_offset
15203 + input_section->output_section->vma);
15204
15205 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15206 ? fdh->elf.other
15207 : sym->st_other);
15208
15209 if (stub_entry != NULL
15210 && (stub_entry->stub_type == ppc_stub_long_branch
15211 || stub_entry->stub_type == ppc_stub_plt_branch)
15212 && (r_type == R_PPC64_ADDR14_BRTAKEN
15213 || r_type == R_PPC64_ADDR14_BRNTAKEN
15214 || (relocation + addend - from + max_br_offset
15215 < 2 * max_br_offset)))
15216 /* Don't use the stub if this branch is in range. */
15217 stub_entry = NULL;
15218
15219 if (stub_entry != NULL
15220 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15221 || stub_entry->stub_type == ppc_stub_long_branch_both
15222 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15223 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15224 && (r_type != R_PPC64_REL24_NOTOC
15225 || ((fdh ? fdh->elf.other : sym->st_other)
15226 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15227 && (relocation + addend - from + max_br_offset
15228 < 2 * max_br_offset))
15229 stub_entry = NULL;
15230
15231 if (stub_entry != NULL
15232 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15233 || stub_entry->stub_type == ppc_stub_long_branch_both
15234 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15235 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15236 && r_type == R_PPC64_REL24_NOTOC
15237 && (relocation + addend - from + max_br_offset
15238 < 2 * max_br_offset))
15239 stub_entry = NULL;
15240
15241 if (stub_entry != NULL)
15242 {
15243 /* Munge up the value and addend so that we call the stub
15244 rather than the procedure directly. */
15245 asection *stub_sec = stub_entry->group->stub_sec;
15246
15247 if (stub_entry->stub_type == ppc_stub_save_res)
15248 relocation += (stub_sec->output_offset
15249 + stub_sec->output_section->vma
15250 + stub_sec->size - htab->sfpr->size
15251 - htab->sfpr->output_offset
15252 - htab->sfpr->output_section->vma);
15253 else
15254 relocation = (stub_entry->stub_offset
15255 + stub_sec->output_offset
15256 + stub_sec->output_section->vma);
15257 addend = 0;
15258 reloc_dest = DEST_STUB;
15259
15260 if (((stub_entry->stub_type == ppc_stub_plt_call
15261 && ALWAYS_EMIT_R2SAVE)
15262 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15263 || stub_entry->stub_type == ppc_stub_plt_call_both)
15264 && !(h != NULL
15265 && (h == htab->tls_get_addr_fd
15266 || h == htab->tls_get_addr)
15267 && htab->params->tls_get_addr_opt)
15268 && rel + 1 < relend
15269 && rel[1].r_offset == rel->r_offset + 4
15270 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15271 relocation += 4;
15272 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15273 || stub_entry->stub_type == ppc_stub_plt_branch_both
15274 || stub_entry->stub_type == ppc_stub_plt_call_both)
15275 && r_type == R_PPC64_REL24_NOTOC)
15276 relocation += 4;
15277
15278 if (r_type == R_PPC64_REL24_NOTOC
15279 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15280 || stub_entry->stub_type == ppc_stub_plt_call_both))
15281 htab->notoc_plt = 1;
15282 }
15283
15284 if (insn != 0)
15285 {
15286 if (is_isa_v2)
15287 {
15288 /* Set 'a' bit. This is 0b00010 in BO field for branch
15289 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15290 for branch on CTR insns (BO == 1a00t or 1a01t). */
15291 if ((insn & (0x14 << 21)) == (0x04 << 21))
15292 insn |= 0x02 << 21;
15293 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15294 insn |= 0x08 << 21;
15295 else
15296 break;
15297 }
15298 else
15299 {
15300 /* Invert 'y' bit if not the default. */
15301 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15302 insn ^= 0x01 << 21;
15303 }
15304
15305 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15306 }
15307
15308 /* NOP out calls to undefined weak functions.
15309 We can thus call a weak function without first
15310 checking whether the function is defined. */
15311 else if (h != NULL
15312 && h->elf.root.type == bfd_link_hash_undefweak
15313 && h->elf.dynindx == -1
15314 && (r_type == R_PPC64_REL24
15315 || r_type == R_PPC64_REL24_NOTOC)
15316 && relocation == 0
15317 && addend == 0)
15318 {
15319 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15320 goto copy_reloc;
15321 }
15322 break;
15323
15324 case R_PPC64_GOT16_DS:
15325 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15326 if (relocation + addend - from + 0x8000 < 0x10000
15327 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15328 {
15329 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15330 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15331 {
15332 insn += (14u << 26) - (58u << 26);
15333 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15334 r_type = R_PPC64_TOC16;
15335 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15336 }
15337 }
15338 break;
15339
15340 case R_PPC64_GOT16_LO_DS:
15341 case R_PPC64_GOT16_HA:
15342 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15343 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15344 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15345 {
15346 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15347 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15348 {
15349 insn += (14u << 26) - (58u << 26);
15350 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15351 r_type = R_PPC64_TOC16_LO;
15352 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15353 }
15354 else if ((insn & (0x3f << 26)) == 15u << 26 /* addis */)
15355 {
15356 r_type = R_PPC64_TOC16_HA;
15357 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15358 }
15359 }
15360 break;
15361
15362 case R_PPC64_GOT_PCREL34:
15363 from = (rel->r_offset
15364 + input_section->output_section->vma
15365 + input_section->output_offset);
15366 if (relocation - from + (1ULL << 33) < 1ULL << 34
15367 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15368 {
15369 offset = rel->r_offset;
15370 pinsn = bfd_get_32 (input_bfd, contents + offset);
15371 pinsn <<= 32;
15372 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15373 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15374 == ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
15375 {
15376 /* Replace with paddi. */
15377 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
15378 r_type = R_PPC64_PCREL34;
15379 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15380 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
15381 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
15382 goto pcrelopt;
15383 }
15384 }
15385 break;
15386
15387 case R_PPC64_PCREL34:
15388 if (SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15389 {
15390 offset = rel->r_offset;
15391 pinsn = bfd_get_32 (input_bfd, contents + offset);
15392 pinsn <<= 32;
15393 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15394 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15395 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
15396 | (14ULL << 26) /* paddi */))
15397 {
15398 pcrelopt:
15399 if (rel + 1 < relend
15400 && rel[1].r_offset == offset
15401 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT))
15402 {
15403 bfd_vma off2 = rel[1].r_addend;
15404 if (off2 == 0)
15405 /* zero means next insn. */
15406 off2 = 8;
15407 off2 += offset;
15408 if (off2 + 4 <= input_section->size)
15409 {
15410 uint64_t pinsn2;
15411 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
15412 pinsn2 <<= 32;
15413 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15414 break;
15415 if (xlate_pcrel_opt (&pinsn, &pinsn2))
15416 {
15417 bfd_put_32 (input_bfd, pinsn >> 32,
15418 contents + offset);
15419 bfd_put_32 (input_bfd, pinsn,
15420 contents + offset + 4);
15421 bfd_put_32 (input_bfd, pinsn2 >> 32,
15422 contents + off2);
15423 }
15424 }
15425 }
15426 }
15427 }
15428 break;
15429 }
15430
15431 /* Set `addend'. */
15432 tls_type = 0;
15433 save_unresolved_reloc = unresolved_reloc;
15434 switch (r_type)
15435 {
15436 default:
15437 /* xgettext:c-format */
15438 _bfd_error_handler (_("%pB: %s unsupported"),
15439 input_bfd, ppc64_elf_howto_table[r_type]->name);
15440
15441 bfd_set_error (bfd_error_bad_value);
15442 ret = FALSE;
15443 goto copy_reloc;
15444
15445 case R_PPC64_NONE:
15446 case R_PPC64_TLS:
15447 case R_PPC64_TLSGD:
15448 case R_PPC64_TLSLD:
15449 case R_PPC64_TOCSAVE:
15450 case R_PPC64_GNU_VTINHERIT:
15451 case R_PPC64_GNU_VTENTRY:
15452 case R_PPC64_ENTRY:
15453 case R_PPC64_PCREL_OPT:
15454 goto copy_reloc;
15455
15456 /* GOT16 relocations. Like an ADDR16 using the symbol's
15457 address in the GOT as relocation value instead of the
15458 symbol's value itself. Also, create a GOT entry for the
15459 symbol and put the symbol value there. */
15460 case R_PPC64_GOT_TLSGD16:
15461 case R_PPC64_GOT_TLSGD16_LO:
15462 case R_PPC64_GOT_TLSGD16_HI:
15463 case R_PPC64_GOT_TLSGD16_HA:
15464 case R_PPC64_GOT_TLSGD34:
15465 tls_type = TLS_TLS | TLS_GD;
15466 goto dogot;
15467
15468 case R_PPC64_GOT_TLSLD16:
15469 case R_PPC64_GOT_TLSLD16_LO:
15470 case R_PPC64_GOT_TLSLD16_HI:
15471 case R_PPC64_GOT_TLSLD16_HA:
15472 case R_PPC64_GOT_TLSLD34:
15473 tls_type = TLS_TLS | TLS_LD;
15474 goto dogot;
15475
15476 case R_PPC64_GOT_TPREL16_DS:
15477 case R_PPC64_GOT_TPREL16_LO_DS:
15478 case R_PPC64_GOT_TPREL16_HI:
15479 case R_PPC64_GOT_TPREL16_HA:
15480 case R_PPC64_GOT_TPREL34:
15481 tls_type = TLS_TLS | TLS_TPREL;
15482 goto dogot;
15483
15484 case R_PPC64_GOT_DTPREL16_DS:
15485 case R_PPC64_GOT_DTPREL16_LO_DS:
15486 case R_PPC64_GOT_DTPREL16_HI:
15487 case R_PPC64_GOT_DTPREL16_HA:
15488 case R_PPC64_GOT_DTPREL34:
15489 tls_type = TLS_TLS | TLS_DTPREL;
15490 goto dogot;
15491
15492 case R_PPC64_GOT16:
15493 case R_PPC64_GOT16_LO:
15494 case R_PPC64_GOT16_HI:
15495 case R_PPC64_GOT16_HA:
15496 case R_PPC64_GOT16_DS:
15497 case R_PPC64_GOT16_LO_DS:
15498 case R_PPC64_GOT_PCREL34:
15499 dogot:
15500 {
15501 /* Relocation is to the entry for this symbol in the global
15502 offset table. */
15503 asection *got;
15504 bfd_vma *offp;
15505 bfd_vma off;
15506 unsigned long indx = 0;
15507 struct got_entry *ent;
15508 bfd_vma sym_addend = orig_rel.r_addend;
15509
15510 if (r_type == R_PPC64_GOT_PCREL34
15511 || r_type == R_PPC64_GOT_TLSGD34
15512 || r_type == R_PPC64_GOT_TLSLD34
15513 || r_type == R_PPC64_GOT_TPREL34
15514 || r_type == R_PPC64_GOT_DTPREL34)
15515 sym_addend = 0;
15516
15517 if (tls_type == (TLS_TLS | TLS_LD)
15518 && (h == NULL
15519 || !h->elf.def_dynamic))
15520 ent = ppc64_tlsld_got (input_bfd);
15521 else
15522 {
15523 if (h != NULL)
15524 {
15525 if (!htab->elf.dynamic_sections_created
15526 || h->elf.dynindx == -1
15527 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
15528 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
15529 /* This is actually a static link, or it is a
15530 -Bsymbolic link and the symbol is defined
15531 locally, or the symbol was forced to be local
15532 because of a version file. */
15533 ;
15534 else
15535 {
15536 indx = h->elf.dynindx;
15537 unresolved_reloc = FALSE;
15538 }
15539 ent = h->elf.got.glist;
15540 }
15541 else
15542 {
15543 if (local_got_ents == NULL)
15544 abort ();
15545 ent = local_got_ents[r_symndx];
15546 }
15547
15548 for (; ent != NULL; ent = ent->next)
15549 if (ent->addend == sym_addend
15550 && ent->owner == input_bfd
15551 && ent->tls_type == tls_type)
15552 break;
15553 }
15554
15555 if (ent == NULL)
15556 abort ();
15557 if (ent->is_indirect)
15558 ent = ent->got.ent;
15559 offp = &ent->got.offset;
15560 got = ppc64_elf_tdata (ent->owner)->got;
15561 if (got == NULL)
15562 abort ();
15563
15564 /* The offset must always be a multiple of 8. We use the
15565 least significant bit to record whether we have already
15566 processed this entry. */
15567 off = *offp;
15568 if ((off & 1) != 0)
15569 off &= ~1;
15570 else
15571 {
15572 /* Generate relocs for the dynamic linker, except in
15573 the case of TLSLD where we'll use one entry per
15574 module. */
15575 asection *relgot;
15576 bfd_boolean ifunc;
15577
15578 *offp = off | 1;
15579 relgot = NULL;
15580 ifunc = (h != NULL
15581 ? h->elf.type == STT_GNU_IFUNC
15582 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
15583 if (ifunc)
15584 {
15585 relgot = htab->elf.irelplt;
15586 if (indx == 0)
15587 htab->local_ifunc_resolver = 1;
15588 else if (is_static_defined (&h->elf))
15589 htab->maybe_local_ifunc_resolver = 1;
15590 }
15591 else if (indx != 0
15592 || (bfd_link_pic (info)
15593 && (h == NULL
15594 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf)
15595 || (tls_type == (TLS_TLS | TLS_LD)
15596 && !h->elf.def_dynamic))
15597 && !(tls_type == (TLS_TLS | TLS_TPREL)
15598 && bfd_link_executable (info)
15599 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
15600 relgot = ppc64_elf_tdata (ent->owner)->relgot;
15601 if (relgot != NULL)
15602 {
15603 outrel.r_offset = (got->output_section->vma
15604 + got->output_offset
15605 + off);
15606 outrel.r_addend = sym_addend;
15607 if (tls_type & (TLS_LD | TLS_GD))
15608 {
15609 outrel.r_addend = 0;
15610 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
15611 if (tls_type == (TLS_TLS | TLS_GD))
15612 {
15613 loc = relgot->contents;
15614 loc += (relgot->reloc_count++
15615 * sizeof (Elf64_External_Rela));
15616 bfd_elf64_swap_reloca_out (output_bfd,
15617 &outrel, loc);
15618 outrel.r_offset += 8;
15619 outrel.r_addend = sym_addend;
15620 outrel.r_info
15621 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15622 }
15623 }
15624 else if (tls_type == (TLS_TLS | TLS_DTPREL))
15625 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15626 else if (tls_type == (TLS_TLS | TLS_TPREL))
15627 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
15628 else if (indx != 0)
15629 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
15630 else
15631 {
15632 if (ifunc)
15633 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
15634 else
15635 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
15636
15637 /* Write the .got section contents for the sake
15638 of prelink. */
15639 loc = got->contents + off;
15640 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
15641 loc);
15642 }
15643
15644 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
15645 {
15646 outrel.r_addend += relocation;
15647 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
15648 {
15649 if (htab->elf.tls_sec == NULL)
15650 outrel.r_addend = 0;
15651 else
15652 outrel.r_addend -= htab->elf.tls_sec->vma;
15653 }
15654 }
15655 loc = relgot->contents;
15656 loc += (relgot->reloc_count++
15657 * sizeof (Elf64_External_Rela));
15658 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
15659 }
15660
15661 /* Init the .got section contents here if we're not
15662 emitting a reloc. */
15663 else
15664 {
15665 relocation += sym_addend;
15666 if (tls_type != 0)
15667 {
15668 if (htab->elf.tls_sec == NULL)
15669 relocation = 0;
15670 else
15671 {
15672 if (tls_type & TLS_LD)
15673 relocation = 0;
15674 else
15675 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
15676 if (tls_type & TLS_TPREL)
15677 relocation += DTP_OFFSET - TP_OFFSET;
15678 }
15679
15680 if (tls_type & (TLS_GD | TLS_LD))
15681 {
15682 bfd_put_64 (output_bfd, relocation,
15683 got->contents + off + 8);
15684 relocation = 1;
15685 }
15686 }
15687 bfd_put_64 (output_bfd, relocation,
15688 got->contents + off);
15689 }
15690 }
15691
15692 if (off >= (bfd_vma) -2)
15693 abort ();
15694
15695 relocation = got->output_section->vma + got->output_offset + off;
15696 if (!(r_type == R_PPC64_GOT_PCREL34
15697 || r_type == R_PPC64_GOT_TLSGD34
15698 || r_type == R_PPC64_GOT_TLSLD34
15699 || r_type == R_PPC64_GOT_TPREL34
15700 || r_type == R_PPC64_GOT_DTPREL34))
15701 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
15702 }
15703 break;
15704
15705 case R_PPC64_PLT16_HA:
15706 case R_PPC64_PLT16_HI:
15707 case R_PPC64_PLT16_LO:
15708 case R_PPC64_PLT16_LO_DS:
15709 case R_PPC64_PLT_PCREL34:
15710 case R_PPC64_PLT_PCREL34_NOTOC:
15711 case R_PPC64_PLT32:
15712 case R_PPC64_PLT64:
15713 case R_PPC64_PLTSEQ:
15714 case R_PPC64_PLTSEQ_NOTOC:
15715 case R_PPC64_PLTCALL:
15716 case R_PPC64_PLTCALL_NOTOC:
15717 /* Relocation is to the entry for this symbol in the
15718 procedure linkage table. */
15719 unresolved_reloc = TRUE;
15720 {
15721 struct plt_entry **plt_list = NULL;
15722 if (h != NULL)
15723 plt_list = &h->elf.plt.plist;
15724 else if (local_got_ents != NULL)
15725 {
15726 struct plt_entry **local_plt = (struct plt_entry **)
15727 (local_got_ents + symtab_hdr->sh_info);
15728 plt_list = local_plt + r_symndx;
15729 }
15730 if (plt_list)
15731 {
15732 struct plt_entry *ent;
15733 bfd_vma sym_addend = orig_rel.r_addend;
15734
15735 if (r_type == R_PPC64_PLT_PCREL34
15736 || r_type == R_PPC64_PLT_PCREL34_NOTOC)
15737 sym_addend = 0;
15738
15739 for (ent = *plt_list; ent != NULL; ent = ent->next)
15740 if (ent->plt.offset != (bfd_vma) -1
15741 && ent->addend == sym_addend)
15742 {
15743 asection *plt;
15744 bfd_vma got;
15745
15746 plt = htab->elf.splt;
15747 if (!htab->elf.dynamic_sections_created
15748 || h == NULL
15749 || h->elf.dynindx == -1)
15750 {
15751 if (h != NULL
15752 ? h->elf.type == STT_GNU_IFUNC
15753 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15754 plt = htab->elf.iplt;
15755 else
15756 plt = htab->pltlocal;
15757 }
15758 relocation = (plt->output_section->vma
15759 + plt->output_offset
15760 + ent->plt.offset);
15761 if (r_type == R_PPC64_PLT16_HA
15762 || r_type == R_PPC64_PLT16_HI
15763 || r_type == R_PPC64_PLT16_LO
15764 || r_type == R_PPC64_PLT16_LO_DS)
15765 {
15766 got = (elf_gp (output_bfd)
15767 + htab->sec_info[input_section->id].toc_off);
15768 relocation -= got;
15769 }
15770 if (r_type != R_PPC64_PLT_PCREL34
15771 && r_type != R_PPC64_PLT_PCREL34_NOTOC)
15772 addend = 0;
15773 unresolved_reloc = FALSE;
15774 break;
15775 }
15776 }
15777 }
15778 break;
15779
15780 case R_PPC64_TOC:
15781 /* Relocation value is TOC base. */
15782 relocation = TOCstart;
15783 if (r_symndx == STN_UNDEF)
15784 relocation += htab->sec_info[input_section->id].toc_off;
15785 else if (unresolved_reloc)
15786 ;
15787 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
15788 relocation += htab->sec_info[sec->id].toc_off;
15789 else
15790 unresolved_reloc = TRUE;
15791 goto dodyn;
15792
15793 /* TOC16 relocs. We want the offset relative to the TOC base,
15794 which is the address of the start of the TOC plus 0x8000.
15795 The TOC consists of sections .got, .toc, .tocbss, and .plt,
15796 in this order. */
15797 case R_PPC64_TOC16:
15798 case R_PPC64_TOC16_LO:
15799 case R_PPC64_TOC16_HI:
15800 case R_PPC64_TOC16_DS:
15801 case R_PPC64_TOC16_LO_DS:
15802 case R_PPC64_TOC16_HA:
15803 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
15804 break;
15805
15806 /* Relocate against the beginning of the section. */
15807 case R_PPC64_SECTOFF:
15808 case R_PPC64_SECTOFF_LO:
15809 case R_PPC64_SECTOFF_HI:
15810 case R_PPC64_SECTOFF_DS:
15811 case R_PPC64_SECTOFF_LO_DS:
15812 case R_PPC64_SECTOFF_HA:
15813 if (sec != NULL)
15814 addend -= sec->output_section->vma;
15815 break;
15816
15817 case R_PPC64_REL16:
15818 case R_PPC64_REL16_LO:
15819 case R_PPC64_REL16_HI:
15820 case R_PPC64_REL16_HA:
15821 case R_PPC64_REL16_HIGH:
15822 case R_PPC64_REL16_HIGHA:
15823 case R_PPC64_REL16_HIGHER:
15824 case R_PPC64_REL16_HIGHERA:
15825 case R_PPC64_REL16_HIGHEST:
15826 case R_PPC64_REL16_HIGHESTA:
15827 case R_PPC64_REL16_HIGHER34:
15828 case R_PPC64_REL16_HIGHERA34:
15829 case R_PPC64_REL16_HIGHEST34:
15830 case R_PPC64_REL16_HIGHESTA34:
15831 case R_PPC64_REL16DX_HA:
15832 case R_PPC64_REL14:
15833 case R_PPC64_REL14_BRNTAKEN:
15834 case R_PPC64_REL14_BRTAKEN:
15835 case R_PPC64_REL24:
15836 case R_PPC64_REL24_NOTOC:
15837 case R_PPC64_PCREL34:
15838 case R_PPC64_PCREL28:
15839 break;
15840
15841 case R_PPC64_TPREL16:
15842 case R_PPC64_TPREL16_LO:
15843 case R_PPC64_TPREL16_HI:
15844 case R_PPC64_TPREL16_HA:
15845 case R_PPC64_TPREL16_DS:
15846 case R_PPC64_TPREL16_LO_DS:
15847 case R_PPC64_TPREL16_HIGH:
15848 case R_PPC64_TPREL16_HIGHA:
15849 case R_PPC64_TPREL16_HIGHER:
15850 case R_PPC64_TPREL16_HIGHERA:
15851 case R_PPC64_TPREL16_HIGHEST:
15852 case R_PPC64_TPREL16_HIGHESTA:
15853 case R_PPC64_TPREL34:
15854 if (h != NULL
15855 && h->elf.root.type == bfd_link_hash_undefweak
15856 && h->elf.dynindx == -1)
15857 {
15858 /* Make this relocation against an undefined weak symbol
15859 resolve to zero. This is really just a tweak, since
15860 code using weak externs ought to check that they are
15861 defined before using them. */
15862 bfd_byte *p = contents + rel->r_offset - d_offset;
15863
15864 insn = bfd_get_32 (input_bfd, p);
15865 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
15866 if (insn != 0)
15867 bfd_put_32 (input_bfd, insn, p);
15868 break;
15869 }
15870 if (htab->elf.tls_sec != NULL)
15871 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15872 /* The TPREL16 relocs shouldn't really be used in shared
15873 libs or with non-local symbols as that will result in
15874 DT_TEXTREL being set, but support them anyway. */
15875 goto dodyn;
15876
15877 case R_PPC64_DTPREL16:
15878 case R_PPC64_DTPREL16_LO:
15879 case R_PPC64_DTPREL16_HI:
15880 case R_PPC64_DTPREL16_HA:
15881 case R_PPC64_DTPREL16_DS:
15882 case R_PPC64_DTPREL16_LO_DS:
15883 case R_PPC64_DTPREL16_HIGH:
15884 case R_PPC64_DTPREL16_HIGHA:
15885 case R_PPC64_DTPREL16_HIGHER:
15886 case R_PPC64_DTPREL16_HIGHERA:
15887 case R_PPC64_DTPREL16_HIGHEST:
15888 case R_PPC64_DTPREL16_HIGHESTA:
15889 case R_PPC64_DTPREL34:
15890 if (htab->elf.tls_sec != NULL)
15891 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15892 break;
15893
15894 case R_PPC64_ADDR64_LOCAL:
15895 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
15896 ? h->elf.other
15897 : sym->st_other);
15898 break;
15899
15900 case R_PPC64_DTPMOD64:
15901 relocation = 1;
15902 addend = 0;
15903 goto dodyn;
15904
15905 case R_PPC64_TPREL64:
15906 if (htab->elf.tls_sec != NULL)
15907 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15908 goto dodyn;
15909
15910 case R_PPC64_DTPREL64:
15911 if (htab->elf.tls_sec != NULL)
15912 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15913 /* Fall through. */
15914
15915 /* Relocations that may need to be propagated if this is a
15916 dynamic object. */
15917 case R_PPC64_REL30:
15918 case R_PPC64_REL32:
15919 case R_PPC64_REL64:
15920 case R_PPC64_ADDR14:
15921 case R_PPC64_ADDR14_BRNTAKEN:
15922 case R_PPC64_ADDR14_BRTAKEN:
15923 case R_PPC64_ADDR16:
15924 case R_PPC64_ADDR16_DS:
15925 case R_PPC64_ADDR16_HA:
15926 case R_PPC64_ADDR16_HI:
15927 case R_PPC64_ADDR16_HIGH:
15928 case R_PPC64_ADDR16_HIGHA:
15929 case R_PPC64_ADDR16_HIGHER:
15930 case R_PPC64_ADDR16_HIGHERA:
15931 case R_PPC64_ADDR16_HIGHEST:
15932 case R_PPC64_ADDR16_HIGHESTA:
15933 case R_PPC64_ADDR16_LO:
15934 case R_PPC64_ADDR16_LO_DS:
15935 case R_PPC64_ADDR16_HIGHER34:
15936 case R_PPC64_ADDR16_HIGHERA34:
15937 case R_PPC64_ADDR16_HIGHEST34:
15938 case R_PPC64_ADDR16_HIGHESTA34:
15939 case R_PPC64_ADDR24:
15940 case R_PPC64_ADDR32:
15941 case R_PPC64_ADDR64:
15942 case R_PPC64_UADDR16:
15943 case R_PPC64_UADDR32:
15944 case R_PPC64_UADDR64:
15945 case R_PPC64_D34:
15946 case R_PPC64_D34_LO:
15947 case R_PPC64_D34_HI30:
15948 case R_PPC64_D34_HA30:
15949 case R_PPC64_D28:
15950 dodyn:
15951 if ((input_section->flags & SEC_ALLOC) == 0)
15952 break;
15953
15954 if (NO_OPD_RELOCS && is_opd)
15955 break;
15956
15957 if (bfd_link_pic (info)
15958 ? ((h == NULL
15959 || h->dyn_relocs != NULL)
15960 && ((h != NULL && pc_dynrelocs (h))
15961 || must_be_dyn_reloc (info, r_type)))
15962 : (h != NULL
15963 ? h->dyn_relocs != NULL
15964 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
15965 {
15966 bfd_boolean skip, relocate;
15967 asection *sreloc;
15968 bfd_vma out_off;
15969 long indx = 0;
15970
15971 /* When generating a dynamic object, these relocations
15972 are copied into the output file to be resolved at run
15973 time. */
15974
15975 skip = FALSE;
15976 relocate = FALSE;
15977
15978 out_off = _bfd_elf_section_offset (output_bfd, info,
15979 input_section, rel->r_offset);
15980 if (out_off == (bfd_vma) -1)
15981 skip = TRUE;
15982 else if (out_off == (bfd_vma) -2)
15983 skip = TRUE, relocate = TRUE;
15984 out_off += (input_section->output_section->vma
15985 + input_section->output_offset);
15986 outrel.r_offset = out_off;
15987 outrel.r_addend = rel->r_addend;
15988
15989 /* Optimize unaligned reloc use. */
15990 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
15991 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
15992 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
15993 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
15994 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
15995 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
15996 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
15997 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
15998 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
15999
16000 if (skip)
16001 memset (&outrel, 0, sizeof outrel);
16002 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16003 && !is_opd
16004 && r_type != R_PPC64_TOC)
16005 {
16006 indx = h->elf.dynindx;
16007 BFD_ASSERT (indx != -1);
16008 outrel.r_info = ELF64_R_INFO (indx, r_type);
16009 }
16010 else
16011 {
16012 /* This symbol is local, or marked to become local,
16013 or this is an opd section reloc which must point
16014 at a local function. */
16015 outrel.r_addend += relocation;
16016 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16017 {
16018 if (is_opd && h != NULL)
16019 {
16020 /* Lie about opd entries. This case occurs
16021 when building shared libraries and we
16022 reference a function in another shared
16023 lib. The same thing happens for a weak
16024 definition in an application that's
16025 overridden by a strong definition in a
16026 shared lib. (I believe this is a generic
16027 bug in binutils handling of weak syms.)
16028 In these cases we won't use the opd
16029 entry in this lib. */
16030 unresolved_reloc = FALSE;
16031 }
16032 if (!is_opd
16033 && r_type == R_PPC64_ADDR64
16034 && (h != NULL
16035 ? h->elf.type == STT_GNU_IFUNC
16036 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16037 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16038 else
16039 {
16040 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16041
16042 /* We need to relocate .opd contents for ld.so.
16043 Prelink also wants simple and consistent rules
16044 for relocs. This make all RELATIVE relocs have
16045 *r_offset equal to r_addend. */
16046 relocate = TRUE;
16047 }
16048 }
16049 else
16050 {
16051 if (h != NULL
16052 ? h->elf.type == STT_GNU_IFUNC
16053 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16054 {
16055 info->callbacks->einfo
16056 /* xgettext:c-format */
16057 (_("%H: %s for indirect "
16058 "function `%pT' unsupported\n"),
16059 input_bfd, input_section, rel->r_offset,
16060 ppc64_elf_howto_table[r_type]->name,
16061 sym_name);
16062 ret = FALSE;
16063 }
16064 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16065 ;
16066 else if (sec == NULL || sec->owner == NULL)
16067 {
16068 bfd_set_error (bfd_error_bad_value);
16069 return FALSE;
16070 }
16071 else
16072 {
16073 asection *osec = sec->output_section;
16074
16075 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16076 {
16077 /* TLS symbol values are relative to the
16078 TLS segment. Dynamic relocations for
16079 local TLS symbols therefore can't be
16080 reduced to a relocation against their
16081 section symbol because it holds the
16082 address of the section, not a value
16083 relative to the TLS segment. We could
16084 change the .tdata dynamic section symbol
16085 to be zero value but STN_UNDEF works
16086 and is used elsewhere, eg. for TPREL64
16087 GOT relocs against local TLS symbols. */
16088 osec = htab->elf.tls_sec;
16089 indx = 0;
16090 }
16091 else
16092 {
16093 indx = elf_section_data (osec)->dynindx;
16094 if (indx == 0)
16095 {
16096 if ((osec->flags & SEC_READONLY) == 0
16097 && htab->elf.data_index_section != NULL)
16098 osec = htab->elf.data_index_section;
16099 else
16100 osec = htab->elf.text_index_section;
16101 indx = elf_section_data (osec)->dynindx;
16102 }
16103 BFD_ASSERT (indx != 0);
16104 }
16105
16106 /* We are turning this relocation into one
16107 against a section symbol, so subtract out
16108 the output section's address but not the
16109 offset of the input section in the output
16110 section. */
16111 outrel.r_addend -= osec->vma;
16112 }
16113
16114 outrel.r_info = ELF64_R_INFO (indx, r_type);
16115 }
16116 }
16117
16118 sreloc = elf_section_data (input_section)->sreloc;
16119 if (h != NULL
16120 ? h->elf.type == STT_GNU_IFUNC
16121 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16122 {
16123 sreloc = htab->elf.irelplt;
16124 if (indx == 0)
16125 htab->local_ifunc_resolver = 1;
16126 else if (is_static_defined (&h->elf))
16127 htab->maybe_local_ifunc_resolver = 1;
16128 }
16129 if (sreloc == NULL)
16130 abort ();
16131
16132 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16133 >= sreloc->size)
16134 abort ();
16135 loc = sreloc->contents;
16136 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16137 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16138
16139 /* If this reloc is against an external symbol, it will
16140 be computed at runtime, so there's no need to do
16141 anything now. However, for the sake of prelink ensure
16142 that the section contents are a known value. */
16143 if (!relocate)
16144 {
16145 unresolved_reloc = FALSE;
16146 /* The value chosen here is quite arbitrary as ld.so
16147 ignores section contents except for the special
16148 case of .opd where the contents might be accessed
16149 before relocation. Choose zero, as that won't
16150 cause reloc overflow. */
16151 relocation = 0;
16152 addend = 0;
16153 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16154 to improve backward compatibility with older
16155 versions of ld. */
16156 if (r_type == R_PPC64_ADDR64)
16157 addend = outrel.r_addend;
16158 /* Adjust pc_relative relocs to have zero in *r_offset. */
16159 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16160 addend = outrel.r_offset;
16161 }
16162 }
16163 break;
16164
16165 case R_PPC64_COPY:
16166 case R_PPC64_GLOB_DAT:
16167 case R_PPC64_JMP_SLOT:
16168 case R_PPC64_JMP_IREL:
16169 case R_PPC64_RELATIVE:
16170 /* We shouldn't ever see these dynamic relocs in relocatable
16171 files. */
16172 /* Fall through. */
16173
16174 case R_PPC64_PLTGOT16:
16175 case R_PPC64_PLTGOT16_DS:
16176 case R_PPC64_PLTGOT16_HA:
16177 case R_PPC64_PLTGOT16_HI:
16178 case R_PPC64_PLTGOT16_LO:
16179 case R_PPC64_PLTGOT16_LO_DS:
16180 case R_PPC64_PLTREL32:
16181 case R_PPC64_PLTREL64:
16182 /* These ones haven't been implemented yet. */
16183
16184 info->callbacks->einfo
16185 /* xgettext:c-format */
16186 (_("%P: %pB: %s is not supported for `%pT'\n"),
16187 input_bfd,
16188 ppc64_elf_howto_table[r_type]->name, sym_name);
16189
16190 bfd_set_error (bfd_error_invalid_operation);
16191 ret = FALSE;
16192 goto copy_reloc;
16193 }
16194
16195 /* Multi-instruction sequences that access the TOC can be
16196 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16197 to nop; addi rb,r2,x; */
16198 switch (r_type)
16199 {
16200 default:
16201 break;
16202
16203 case R_PPC64_GOT_TLSLD16_HI:
16204 case R_PPC64_GOT_TLSGD16_HI:
16205 case R_PPC64_GOT_TPREL16_HI:
16206 case R_PPC64_GOT_DTPREL16_HI:
16207 case R_PPC64_GOT16_HI:
16208 case R_PPC64_TOC16_HI:
16209 /* These relocs would only be useful if building up an
16210 offset to later add to r2, perhaps in an indexed
16211 addressing mode instruction. Don't try to optimize.
16212 Unfortunately, the possibility of someone building up an
16213 offset like this or even with the HA relocs, means that
16214 we need to check the high insn when optimizing the low
16215 insn. */
16216 break;
16217
16218 case R_PPC64_PLTCALL_NOTOC:
16219 if (!unresolved_reloc)
16220 htab->notoc_plt = 1;
16221 /* Fall through. */
16222 case R_PPC64_PLTCALL:
16223 if (unresolved_reloc)
16224 {
16225 /* No plt entry. Make this into a direct call. */
16226 bfd_byte *p = contents + rel->r_offset;
16227 insn = bfd_get_32 (input_bfd, p);
16228 insn &= 1;
16229 bfd_put_32 (input_bfd, B_DOT | insn, p);
16230 if (r_type == R_PPC64_PLTCALL)
16231 bfd_put_32 (input_bfd, NOP, p + 4);
16232 unresolved_reloc = save_unresolved_reloc;
16233 r_type = R_PPC64_REL24;
16234 }
16235 break;
16236
16237 case R_PPC64_PLTSEQ_NOTOC:
16238 case R_PPC64_PLTSEQ:
16239 if (unresolved_reloc)
16240 {
16241 unresolved_reloc = FALSE;
16242 goto nop_it;
16243 }
16244 break;
16245
16246 case R_PPC64_PLT_PCREL34_NOTOC:
16247 if (!unresolved_reloc)
16248 htab->notoc_plt = 1;
16249 /* Fall through. */
16250 case R_PPC64_PLT_PCREL34:
16251 if (unresolved_reloc)
16252 {
16253 bfd_byte *p = contents + rel->r_offset;
16254 bfd_put_32 (input_bfd, PNOP >> 32, p);
16255 bfd_put_32 (input_bfd, PNOP, p + 4);
16256 unresolved_reloc = FALSE;
16257 goto copy_reloc;
16258 }
16259 break;
16260
16261 case R_PPC64_PLT16_HA:
16262 if (unresolved_reloc)
16263 {
16264 unresolved_reloc = FALSE;
16265 goto nop_it;
16266 }
16267 /* Fall through. */
16268 case R_PPC64_GOT_TLSLD16_HA:
16269 case R_PPC64_GOT_TLSGD16_HA:
16270 case R_PPC64_GOT_TPREL16_HA:
16271 case R_PPC64_GOT_DTPREL16_HA:
16272 case R_PPC64_GOT16_HA:
16273 case R_PPC64_TOC16_HA:
16274 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16275 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16276 {
16277 bfd_byte *p;
16278 nop_it:
16279 p = contents + (rel->r_offset & ~3);
16280 bfd_put_32 (input_bfd, NOP, p);
16281 goto copy_reloc;
16282 }
16283 break;
16284
16285 case R_PPC64_PLT16_LO:
16286 case R_PPC64_PLT16_LO_DS:
16287 if (unresolved_reloc)
16288 {
16289 unresolved_reloc = FALSE;
16290 goto nop_it;
16291 }
16292 /* Fall through. */
16293 case R_PPC64_GOT_TLSLD16_LO:
16294 case R_PPC64_GOT_TLSGD16_LO:
16295 case R_PPC64_GOT_TPREL16_LO_DS:
16296 case R_PPC64_GOT_DTPREL16_LO_DS:
16297 case R_PPC64_GOT16_LO:
16298 case R_PPC64_GOT16_LO_DS:
16299 case R_PPC64_TOC16_LO:
16300 case R_PPC64_TOC16_LO_DS:
16301 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16302 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16303 {
16304 bfd_byte *p = contents + (rel->r_offset & ~3);
16305 insn = bfd_get_32 (input_bfd, p);
16306 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
16307 {
16308 /* Transform addic to addi when we change reg. */
16309 insn &= ~((0x3f << 26) | (0x1f << 16));
16310 insn |= (14u << 26) | (2 << 16);
16311 }
16312 else
16313 {
16314 insn &= ~(0x1f << 16);
16315 insn |= 2 << 16;
16316 }
16317 bfd_put_32 (input_bfd, insn, p);
16318 }
16319 break;
16320
16321 case R_PPC64_TPREL16_HA:
16322 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16323 {
16324 bfd_byte *p = contents + (rel->r_offset & ~3);
16325 insn = bfd_get_32 (input_bfd, p);
16326 if ((insn & ((0x3f << 26) | 0x1f << 16))
16327 != ((15u << 26) | (13 << 16)) /* addis rt,13,imm */)
16328 /* xgettext:c-format */
16329 info->callbacks->minfo
16330 (_("%H: warning: %s unexpected insn %#x.\n"),
16331 input_bfd, input_section, rel->r_offset,
16332 ppc64_elf_howto_table[r_type]->name, insn);
16333 else
16334 {
16335 bfd_put_32 (input_bfd, NOP, p);
16336 goto copy_reloc;
16337 }
16338 }
16339 break;
16340
16341 case R_PPC64_TPREL16_LO:
16342 case R_PPC64_TPREL16_LO_DS:
16343 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16344 {
16345 bfd_byte *p = contents + (rel->r_offset & ~3);
16346 insn = bfd_get_32 (input_bfd, p);
16347 insn &= ~(0x1f << 16);
16348 insn |= 13 << 16;
16349 bfd_put_32 (input_bfd, insn, p);
16350 }
16351 break;
16352 }
16353
16354 /* Do any further special processing. */
16355 switch (r_type)
16356 {
16357 default:
16358 break;
16359
16360 case R_PPC64_REL16_HA:
16361 case R_PPC64_REL16_HIGHA:
16362 case R_PPC64_REL16_HIGHERA:
16363 case R_PPC64_REL16_HIGHESTA:
16364 case R_PPC64_REL16DX_HA:
16365 case R_PPC64_ADDR16_HA:
16366 case R_PPC64_ADDR16_HIGHA:
16367 case R_PPC64_ADDR16_HIGHERA:
16368 case R_PPC64_ADDR16_HIGHESTA:
16369 case R_PPC64_TOC16_HA:
16370 case R_PPC64_SECTOFF_HA:
16371 case R_PPC64_TPREL16_HA:
16372 case R_PPC64_TPREL16_HIGHA:
16373 case R_PPC64_TPREL16_HIGHERA:
16374 case R_PPC64_TPREL16_HIGHESTA:
16375 case R_PPC64_DTPREL16_HA:
16376 case R_PPC64_DTPREL16_HIGHA:
16377 case R_PPC64_DTPREL16_HIGHERA:
16378 case R_PPC64_DTPREL16_HIGHESTA:
16379 /* It's just possible that this symbol is a weak symbol
16380 that's not actually defined anywhere. In that case,
16381 'sec' would be NULL, and we should leave the symbol
16382 alone (it will be set to zero elsewhere in the link). */
16383 if (sec == NULL)
16384 break;
16385 /* Fall through. */
16386
16387 case R_PPC64_GOT16_HA:
16388 case R_PPC64_PLTGOT16_HA:
16389 case R_PPC64_PLT16_HA:
16390 case R_PPC64_GOT_TLSGD16_HA:
16391 case R_PPC64_GOT_TLSLD16_HA:
16392 case R_PPC64_GOT_TPREL16_HA:
16393 case R_PPC64_GOT_DTPREL16_HA:
16394 /* Add 0x10000 if sign bit in 0:15 is set.
16395 Bits 0:15 are not used. */
16396 addend += 0x8000;
16397 break;
16398
16399 case R_PPC64_D34_HA30:
16400 case R_PPC64_ADDR16_HIGHERA34:
16401 case R_PPC64_ADDR16_HIGHESTA34:
16402 case R_PPC64_REL16_HIGHERA34:
16403 case R_PPC64_REL16_HIGHESTA34:
16404 if (sec != NULL)
16405 addend += 1ULL << 33;
16406 break;
16407
16408 case R_PPC64_ADDR16_DS:
16409 case R_PPC64_ADDR16_LO_DS:
16410 case R_PPC64_GOT16_DS:
16411 case R_PPC64_GOT16_LO_DS:
16412 case R_PPC64_PLT16_LO_DS:
16413 case R_PPC64_SECTOFF_DS:
16414 case R_PPC64_SECTOFF_LO_DS:
16415 case R_PPC64_TOC16_DS:
16416 case R_PPC64_TOC16_LO_DS:
16417 case R_PPC64_PLTGOT16_DS:
16418 case R_PPC64_PLTGOT16_LO_DS:
16419 case R_PPC64_GOT_TPREL16_DS:
16420 case R_PPC64_GOT_TPREL16_LO_DS:
16421 case R_PPC64_GOT_DTPREL16_DS:
16422 case R_PPC64_GOT_DTPREL16_LO_DS:
16423 case R_PPC64_TPREL16_DS:
16424 case R_PPC64_TPREL16_LO_DS:
16425 case R_PPC64_DTPREL16_DS:
16426 case R_PPC64_DTPREL16_LO_DS:
16427 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16428 mask = 3;
16429 /* If this reloc is against an lq, lxv, or stxv insn, then
16430 the value must be a multiple of 16. This is somewhat of
16431 a hack, but the "correct" way to do this by defining _DQ
16432 forms of all the _DS relocs bloats all reloc switches in
16433 this file. It doesn't make much sense to use these
16434 relocs in data, so testing the insn should be safe. */
16435 if ((insn & (0x3f << 26)) == (56u << 26)
16436 || ((insn & (0x3f << 26)) == (61u << 26) && (insn & 3) == 1))
16437 mask = 15;
16438 relocation += addend;
16439 addend = insn & (mask ^ 3);
16440 if ((relocation & mask) != 0)
16441 {
16442 relocation ^= relocation & mask;
16443 info->callbacks->einfo
16444 /* xgettext:c-format */
16445 (_("%H: error: %s not a multiple of %u\n"),
16446 input_bfd, input_section, rel->r_offset,
16447 ppc64_elf_howto_table[r_type]->name,
16448 mask + 1);
16449 bfd_set_error (bfd_error_bad_value);
16450 ret = FALSE;
16451 goto copy_reloc;
16452 }
16453 break;
16454 }
16455
16456 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
16457 because such sections are not SEC_ALLOC and thus ld.so will
16458 not process them. */
16459 howto = ppc64_elf_howto_table[(int) r_type];
16460 if (unresolved_reloc
16461 && !((input_section->flags & SEC_DEBUGGING) != 0
16462 && h->elf.def_dynamic)
16463 && _bfd_elf_section_offset (output_bfd, info, input_section,
16464 rel->r_offset) != (bfd_vma) -1)
16465 {
16466 info->callbacks->einfo
16467 /* xgettext:c-format */
16468 (_("%H: unresolvable %s against `%pT'\n"),
16469 input_bfd, input_section, rel->r_offset,
16470 howto->name,
16471 h->elf.root.root.string);
16472 ret = FALSE;
16473 }
16474
16475 /* 16-bit fields in insns mostly have signed values, but a
16476 few insns have 16-bit unsigned values. Really, we should
16477 have different reloc types. */
16478 if (howto->complain_on_overflow != complain_overflow_dont
16479 && howto->dst_mask == 0xffff
16480 && (input_section->flags & SEC_CODE) != 0)
16481 {
16482 enum complain_overflow complain = complain_overflow_signed;
16483
16484 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16485 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
16486 complain = complain_overflow_bitfield;
16487 else if (howto->rightshift == 0
16488 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
16489 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
16490 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
16491 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
16492 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
16493 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
16494 complain = complain_overflow_unsigned;
16495 if (howto->complain_on_overflow != complain)
16496 {
16497 alt_howto = *howto;
16498 alt_howto.complain_on_overflow = complain;
16499 howto = &alt_howto;
16500 }
16501 }
16502
16503 switch (r_type)
16504 {
16505 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
16506 case R_PPC64_D34:
16507 case R_PPC64_D34_LO:
16508 case R_PPC64_D34_HI30:
16509 case R_PPC64_D34_HA30:
16510 case R_PPC64_PCREL34:
16511 case R_PPC64_GOT_PCREL34:
16512 case R_PPC64_TPREL34:
16513 case R_PPC64_DTPREL34:
16514 case R_PPC64_GOT_TLSGD34:
16515 case R_PPC64_GOT_TLSLD34:
16516 case R_PPC64_GOT_TPREL34:
16517 case R_PPC64_GOT_DTPREL34:
16518 case R_PPC64_PLT_PCREL34:
16519 case R_PPC64_PLT_PCREL34_NOTOC:
16520 case R_PPC64_D28:
16521 case R_PPC64_PCREL28:
16522 if (rel->r_offset + 8 > input_section->size)
16523 r = bfd_reloc_outofrange;
16524 else
16525 {
16526 relocation += addend;
16527 if (howto->pc_relative)
16528 relocation -= (rel->r_offset
16529 + input_section->output_offset
16530 + input_section->output_section->vma);
16531 relocation >>= howto->rightshift;
16532
16533 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16534 pinsn <<= 32;
16535 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
16536
16537 pinsn &= ~howto->dst_mask;
16538 pinsn |= (((relocation << 16) | (relocation & 0xffff))
16539 & howto->dst_mask);
16540 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
16541 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
16542 r = bfd_reloc_ok;
16543 if (howto->complain_on_overflow == complain_overflow_signed
16544 && (relocation + (1ULL << (howto->bitsize - 1))
16545 >= 1ULL << howto->bitsize))
16546 r = bfd_reloc_overflow;
16547 }
16548 break;
16549
16550 case R_PPC64_REL16DX_HA:
16551 if (rel->r_offset + 4 > input_section->size)
16552 r = bfd_reloc_outofrange;
16553 else
16554 {
16555 relocation += addend;
16556 relocation -= (rel->r_offset
16557 + input_section->output_offset
16558 + input_section->output_section->vma);
16559 relocation = (bfd_signed_vma) relocation >> 16;
16560 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16561 insn &= ~0x1fffc1;
16562 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
16563 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
16564 r = bfd_reloc_ok;
16565 if (relocation + 0x8000 > 0xffff)
16566 r = bfd_reloc_overflow;
16567 }
16568 break;
16569
16570 default:
16571 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
16572 contents, rel->r_offset,
16573 relocation, addend);
16574 }
16575
16576 if (r != bfd_reloc_ok)
16577 {
16578 char *more_info = NULL;
16579 const char *reloc_name = howto->name;
16580
16581 if (reloc_dest != DEST_NORMAL)
16582 {
16583 more_info = bfd_malloc (strlen (reloc_name) + 8);
16584 if (more_info != NULL)
16585 {
16586 strcpy (more_info, reloc_name);
16587 strcat (more_info, (reloc_dest == DEST_OPD
16588 ? " (OPD)" : " (stub)"));
16589 reloc_name = more_info;
16590 }
16591 }
16592
16593 if (r == bfd_reloc_overflow)
16594 {
16595 /* On code like "if (foo) foo();" don't report overflow
16596 on a branch to zero when foo is undefined. */
16597 if (!warned
16598 && (reloc_dest == DEST_STUB
16599 || !(h != NULL
16600 && (h->elf.root.type == bfd_link_hash_undefweak
16601 || h->elf.root.type == bfd_link_hash_undefined)
16602 && is_branch_reloc (r_type))))
16603 info->callbacks->reloc_overflow (info, &h->elf.root,
16604 sym_name, reloc_name,
16605 orig_rel.r_addend,
16606 input_bfd, input_section,
16607 rel->r_offset);
16608 }
16609 else
16610 {
16611 info->callbacks->einfo
16612 /* xgettext:c-format */
16613 (_("%H: %s against `%pT': error %d\n"),
16614 input_bfd, input_section, rel->r_offset,
16615 reloc_name, sym_name, (int) r);
16616 ret = FALSE;
16617 }
16618 if (more_info != NULL)
16619 free (more_info);
16620 }
16621 copy_reloc:
16622 if (wrel != rel)
16623 *wrel = *rel;
16624 }
16625
16626 if (wrel != rel)
16627 {
16628 Elf_Internal_Shdr *rel_hdr;
16629 size_t deleted = rel - wrel;
16630
16631 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
16632 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16633 if (rel_hdr->sh_size == 0)
16634 {
16635 /* It is too late to remove an empty reloc section. Leave
16636 one NONE reloc.
16637 ??? What is wrong with an empty section??? */
16638 rel_hdr->sh_size = rel_hdr->sh_entsize;
16639 deleted -= 1;
16640 }
16641 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
16642 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16643 input_section->reloc_count -= deleted;
16644 }
16645
16646 /* If we're emitting relocations, then shortly after this function
16647 returns, reloc offsets and addends for this section will be
16648 adjusted. Worse, reloc symbol indices will be for the output
16649 file rather than the input. Save a copy of the relocs for
16650 opd_entry_value. */
16651 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
16652 {
16653 bfd_size_type amt;
16654 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
16655 rel = bfd_alloc (input_bfd, amt);
16656 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
16657 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
16658 if (rel == NULL)
16659 return FALSE;
16660 memcpy (rel, relocs, amt);
16661 }
16662 return ret;
16663 }
16664
16665 /* Adjust the value of any local symbols in opd sections. */
16666
16667 static int
16668 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
16669 const char *name ATTRIBUTE_UNUSED,
16670 Elf_Internal_Sym *elfsym,
16671 asection *input_sec,
16672 struct elf_link_hash_entry *h)
16673 {
16674 struct _opd_sec_data *opd;
16675 long adjust;
16676 bfd_vma value;
16677
16678 if (h != NULL)
16679 return 1;
16680
16681 opd = get_opd_info (input_sec);
16682 if (opd == NULL || opd->adjust == NULL)
16683 return 1;
16684
16685 value = elfsym->st_value - input_sec->output_offset;
16686 if (!bfd_link_relocatable (info))
16687 value -= input_sec->output_section->vma;
16688
16689 adjust = opd->adjust[OPD_NDX (value)];
16690 if (adjust == -1)
16691 return 2;
16692
16693 elfsym->st_value += adjust;
16694 return 1;
16695 }
16696
16697 /* Finish up dynamic symbol handling. We set the contents of various
16698 dynamic sections here. */
16699
16700 static bfd_boolean
16701 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
16702 struct bfd_link_info *info,
16703 struct elf_link_hash_entry *h,
16704 Elf_Internal_Sym *sym)
16705 {
16706 struct ppc_link_hash_table *htab;
16707 struct plt_entry *ent;
16708
16709 htab = ppc_hash_table (info);
16710 if (htab == NULL)
16711 return FALSE;
16712
16713 if (!htab->opd_abi && !h->def_regular)
16714 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
16715 if (ent->plt.offset != (bfd_vma) -1)
16716 {
16717 /* Mark the symbol as undefined, rather than as
16718 defined in glink. Leave the value if there were
16719 any relocations where pointer equality matters
16720 (this is a clue for the dynamic linker, to make
16721 function pointer comparisons work between an
16722 application and shared library), otherwise set it
16723 to zero. */
16724 sym->st_shndx = SHN_UNDEF;
16725 if (!h->pointer_equality_needed)
16726 sym->st_value = 0;
16727 else if (!h->ref_regular_nonweak)
16728 {
16729 /* This breaks function pointer comparisons, but
16730 that is better than breaking tests for a NULL
16731 function pointer. */
16732 sym->st_value = 0;
16733 }
16734 break;
16735 }
16736
16737 if (h->needs_copy)
16738 {
16739 /* This symbol needs a copy reloc. Set it up. */
16740 Elf_Internal_Rela rela;
16741 asection *srel;
16742 bfd_byte *loc;
16743
16744 if (h->dynindx == -1
16745 || (h->root.type != bfd_link_hash_defined
16746 && h->root.type != bfd_link_hash_defweak)
16747 || htab->elf.srelbss == NULL
16748 || htab->elf.sreldynrelro == NULL)
16749 abort ();
16750
16751 rela.r_offset = (h->root.u.def.value
16752 + h->root.u.def.section->output_section->vma
16753 + h->root.u.def.section->output_offset);
16754 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
16755 rela.r_addend = 0;
16756 if (h->root.u.def.section == htab->elf.sdynrelro)
16757 srel = htab->elf.sreldynrelro;
16758 else
16759 srel = htab->elf.srelbss;
16760 loc = srel->contents;
16761 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
16762 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
16763 }
16764
16765 return TRUE;
16766 }
16767
16768 /* Used to decide how to sort relocs in an optimal manner for the
16769 dynamic linker, before writing them out. */
16770
16771 static enum elf_reloc_type_class
16772 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
16773 const asection *rel_sec,
16774 const Elf_Internal_Rela *rela)
16775 {
16776 enum elf_ppc64_reloc_type r_type;
16777 struct ppc_link_hash_table *htab = ppc_hash_table (info);
16778
16779 if (rel_sec == htab->elf.irelplt)
16780 return reloc_class_ifunc;
16781
16782 r_type = ELF64_R_TYPE (rela->r_info);
16783 switch (r_type)
16784 {
16785 case R_PPC64_RELATIVE:
16786 return reloc_class_relative;
16787 case R_PPC64_JMP_SLOT:
16788 return reloc_class_plt;
16789 case R_PPC64_COPY:
16790 return reloc_class_copy;
16791 default:
16792 return reloc_class_normal;
16793 }
16794 }
16795
16796 /* Finish up the dynamic sections. */
16797
16798 static bfd_boolean
16799 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
16800 struct bfd_link_info *info)
16801 {
16802 struct ppc_link_hash_table *htab;
16803 bfd *dynobj;
16804 asection *sdyn;
16805
16806 htab = ppc_hash_table (info);
16807 if (htab == NULL)
16808 return FALSE;
16809
16810 dynobj = htab->elf.dynobj;
16811 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16812
16813 if (htab->elf.dynamic_sections_created)
16814 {
16815 Elf64_External_Dyn *dyncon, *dynconend;
16816
16817 if (sdyn == NULL || htab->elf.sgot == NULL)
16818 abort ();
16819
16820 dyncon = (Elf64_External_Dyn *) sdyn->contents;
16821 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
16822 for (; dyncon < dynconend; dyncon++)
16823 {
16824 Elf_Internal_Dyn dyn;
16825 asection *s;
16826
16827 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
16828
16829 switch (dyn.d_tag)
16830 {
16831 default:
16832 continue;
16833
16834 case DT_PPC64_GLINK:
16835 s = htab->glink;
16836 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16837 /* We stupidly defined DT_PPC64_GLINK to be the start
16838 of glink rather than the first entry point, which is
16839 what ld.so needs, and now have a bigger stub to
16840 support automatic multiple TOCs. */
16841 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
16842 break;
16843
16844 case DT_PPC64_OPD:
16845 s = bfd_get_section_by_name (output_bfd, ".opd");
16846 if (s == NULL)
16847 continue;
16848 dyn.d_un.d_ptr = s->vma;
16849 break;
16850
16851 case DT_PPC64_OPT:
16852 if ((htab->do_multi_toc && htab->multi_toc_needed)
16853 || htab->notoc_plt)
16854 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
16855 if (htab->has_plt_localentry0)
16856 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
16857 break;
16858
16859 case DT_PPC64_OPDSZ:
16860 s = bfd_get_section_by_name (output_bfd, ".opd");
16861 if (s == NULL)
16862 continue;
16863 dyn.d_un.d_val = s->size;
16864 break;
16865
16866 case DT_PLTGOT:
16867 s = htab->elf.splt;
16868 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16869 break;
16870
16871 case DT_JMPREL:
16872 s = htab->elf.srelplt;
16873 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16874 break;
16875
16876 case DT_PLTRELSZ:
16877 dyn.d_un.d_val = htab->elf.srelplt->size;
16878 break;
16879
16880 case DT_TEXTREL:
16881 if (htab->local_ifunc_resolver)
16882 info->callbacks->einfo
16883 (_("%X%P: text relocations and GNU indirect "
16884 "functions will result in a segfault at runtime\n"));
16885 else if (htab->maybe_local_ifunc_resolver)
16886 info->callbacks->einfo
16887 (_("%P: warning: text relocations and GNU indirect "
16888 "functions may result in a segfault at runtime\n"));
16889 continue;
16890 }
16891
16892 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
16893 }
16894 }
16895
16896 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
16897 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
16898 {
16899 /* Fill in the first entry in the global offset table.
16900 We use it to hold the link-time TOCbase. */
16901 bfd_put_64 (output_bfd,
16902 elf_gp (output_bfd) + TOC_BASE_OFF,
16903 htab->elf.sgot->contents);
16904
16905 /* Set .got entry size. */
16906 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
16907 = 8;
16908 }
16909
16910 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
16911 && htab->elf.splt->output_section != bfd_abs_section_ptr)
16912 {
16913 /* Set .plt entry size. */
16914 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
16915 = PLT_ENTRY_SIZE (htab);
16916 }
16917
16918 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
16919 brlt ourselves if emitrelocations. */
16920 if (htab->brlt != NULL
16921 && htab->brlt->reloc_count != 0
16922 && !_bfd_elf_link_output_relocs (output_bfd,
16923 htab->brlt,
16924 elf_section_data (htab->brlt)->rela.hdr,
16925 elf_section_data (htab->brlt)->relocs,
16926 NULL))
16927 return FALSE;
16928
16929 if (htab->glink != NULL
16930 && htab->glink->reloc_count != 0
16931 && !_bfd_elf_link_output_relocs (output_bfd,
16932 htab->glink,
16933 elf_section_data (htab->glink)->rela.hdr,
16934 elf_section_data (htab->glink)->relocs,
16935 NULL))
16936 return FALSE;
16937
16938
16939 if (htab->glink_eh_frame != NULL
16940 && htab->glink_eh_frame->size != 0
16941 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
16942 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
16943 htab->glink_eh_frame,
16944 htab->glink_eh_frame->contents))
16945 return FALSE;
16946
16947 /* We need to handle writing out multiple GOT sections ourselves,
16948 since we didn't add them to DYNOBJ. We know dynobj is the first
16949 bfd. */
16950 while ((dynobj = dynobj->link.next) != NULL)
16951 {
16952 asection *s;
16953
16954 if (!is_ppc64_elf (dynobj))
16955 continue;
16956
16957 s = ppc64_elf_tdata (dynobj)->got;
16958 if (s != NULL
16959 && s->size != 0
16960 && s->output_section != bfd_abs_section_ptr
16961 && !bfd_set_section_contents (output_bfd, s->output_section,
16962 s->contents, s->output_offset,
16963 s->size))
16964 return FALSE;
16965 s = ppc64_elf_tdata (dynobj)->relgot;
16966 if (s != NULL
16967 && s->size != 0
16968 && s->output_section != bfd_abs_section_ptr
16969 && !bfd_set_section_contents (output_bfd, s->output_section,
16970 s->contents, s->output_offset,
16971 s->size))
16972 return FALSE;
16973 }
16974
16975 return TRUE;
16976 }
16977
16978 #include "elf64-target.h"
16979
16980 /* FreeBSD support */
16981
16982 #undef TARGET_LITTLE_SYM
16983 #undef TARGET_LITTLE_NAME
16984
16985 #undef TARGET_BIG_SYM
16986 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
16987 #undef TARGET_BIG_NAME
16988 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
16989
16990 #undef ELF_OSABI
16991 #define ELF_OSABI ELFOSABI_FREEBSD
16992
16993 #undef elf64_bed
16994 #define elf64_bed elf64_powerpc_fbsd_bed
16995
16996 #include "elf64-target.h"
This page took 0.413995 seconds and 5 git commands to generate.